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Foreword 
 
 
 
 
 
The management of the large number of areas found in many post-conflict countries, 

suspected or verified of being contaminated by mines, poses a major challenge to decision 

makers involved in the administration of national mine action programmes. Analytical 

tools are therefore needed which can facilitate the identification of the most important 

minefields with respect to mine clearance. In February 2002, the Danish Defence Research 

Establishment initiated in collaboration with the Technical University of Denmark a 

Ph.D.-project to investigate whether the application of operations research or statistics can 

support the Humanitarian Mine Action sector to make the prioritization of mine clearance 

operations more effective. The present Ph.D.-thesis summarizes the results from the 

completed research project. 
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English Summary 

 
 
 

During the last 10-15 years, the international community has become aware of the 

devastating mine contamination problems experienced in many post-conflict countries. As 

a consequence, a considerable amount of money and time is spent on research and 

development in new ways of locating buried mines and unexploded ordnance in a fast and 

secure way. A major breakthrough is however still waiting, and a large fraction of the mine 

clearance, which still remains to be done, will therefore hinge on slow and dangerous 

procedures based on prodders and metal detectors.   

 

Realizing that landmine contamination is a phenomenon which cannot be eliminated 

overnight but is a problem which has to managed in several years to come, it is essential 

that the resources a national government in a mine affected country spends on mine 

clearance are used on the right projects. However, the identification of the mine clearance 

projects with the greatest impact is a delicate task. More systematic approaches to the 

ranking of minefields with respect to mine clearance can be found in the literature, but 

these methods are either founded on simple scoring rules or are of a more qualitative 

nature. Thus nobody seems yet to have examined the usefulness of the analytical tools 

which might be provided by operations research and statistics in order to support decision 

makers involved in national mine clearance programmes.             

 

In February 2002, the Danish Defence Research Establishment initiated in collaboration 

with the Technical University of Denmark a Ph.D.-project to investigate whether the 

application of operations research and statistics can support decision makers in 

Humanitarian Mine Action to make the prioritization of mine clearance operations more 

effective. The main part of that project, which is presented in the enclosed thesis, has 

concentrated on the development of a risk model quantifying to what extent a minefield 

poses a risk to a society.  

 

The risk model is derived in two steps: First, a general model, which requires detailed 

information about the mined area in question, is derived. Secondly, by the introduction of 
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two additional assumptions, the general model is turned into a simple binomial model 

depending on two parameters m and q. In this context the integer m denotes the number 

of so-called functional mines in the minefield under consideration, and the parameter q 

denotes the probability of a randomly selected mine being encountered by a person, a 

vehicle, etc… during a predefined observation period.  

 

The true values of the binomial parameters, which jointly characterize the state of the 

mined area, will rarely be known in advance, but beliefs about these based on whatever 

information is available can conveniently be expressed in terms of probability distributions 

p(m) and p(q). This prepares the way for the introduction of Bayesian data analysis by 

which updates of the probability distributions can be generated from incoming accident 

statistics.  

 

The major obstacle to a real-life application of the derived risk model seems to be the lack 

of actual information about the binomial parameter q. A considerable part of the enclosed 

thesis focuses therefore on ways to provide information about q  through statistical 

modelling. Depending on the level of historical information available to a hypothetical 

decision maker, two different proposed models are examined as ways of extracting 

information about q : 1) A simple hierarchical model which as input requires accident 

statistics and clearance reports from already cleared minefields; 2) A finite mixture model 

where only accident statistics and the specification of certain prior distributions are needed 

as input data. Common to both models is the generation of posterior distributions of the 

parameter q. To extract information about q from these distributions various simulation 

techniques are applied including importance sampling and Markov Chain simulation.  

 

The possibility of making updates of the entering probability distributions p(m) and p(q) 

through incoming accident statistics by the use of Bayes’ rule makes the suggested risk 

model dynamic. Moreover, the application of Bayesian data analysis gives the derived risk 

model a very flexible structure which allows an accommodation to the varied 

circumstances found in Humanitarian Mine Action with respect to the amount of accessible 

information. The present thesis closes with an overall prescription for the synthesis of 

different pieces of information based on the concept of reference priors.  
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Danish Summary / Dansk Resumé 

 
 
 

Indenfor de seneste 10-15 år er det internationale samfund i stigende grad blevet 

opmærksom på de ødelæggende mineforureningsproblemer, som eksisterer i mange post-

konflikt lande. Som en konsekvens heraf investeres i dag en betragtelig mængde af penge 

og tid på forskning og udvikling af hurtigere og pålideligere metoder til lokalisering af 

nedgravede miner og ueksploderet ammunition. Et større teknisk gennembrud lader 

imidlertid vente på sig. Det må derfor forventes, at velprøvede men langsommelige 

minerydningsteknikker baseret på minesonder og metaldetektorer også i fremtiden vil spille 

en betydelig rolle – og mineforureningen vil derfor være et fænomen i de berørte lande, 

som skal håndteres i mange år fremover. 

 

I denne situation er det afgørende, at de begrænsede økonomiske ressourcer, som et land 

afsætter til minerydning, udnyttes optimalt. Udpegningen af de rydningsprojekter, hvis 

gennemførelse vil have den største samfundsmæssige effekt – herunder reducere risikoen for 

fremtidige mineulykker - er imidlertid en vanskelig opgave. Mere systematiske tilgange til 

prioriteringen af minefelter med henblik på senere minerydning kan findes i litteraturen, 

men disse metoder er enten simple kvantitative metoder eller er af en mere kvalitativ 

karakter. De muligheder, som eksempelvis inddragelsen af analytiske redskaber hentet fra 

operationsanalyse eller statistik kunne tilvejebringe, er derimod mangelfuldt beskrevet. 

 

I februar 2002 igangsatte Forsvarets Forskningstjeneste i et samarbejde med Danmarks 

Tekniske Universitet et PhD-projekt med det formål at undersøge, hvorvidt inddragelsen 

af operationsanalyse eller statistik kan støtte beslutningstagere indenfor humanitær 

minerydning med henblik på at opnå en optimal ressourceudnyttelse. Hovedparten af dette 

projekt, der præsenteres i vedlagte PhD-afhandling, har koncentreret sig om udviklingen af 

en risikomodel, som kvantificerer den trussel et minefelt udgør for det omkringliggende 

samfund.    

 

Ovenstående risikomodel udledes i to trin: Indledningsvis udledes en overordnet model, 

som kræver detaljeret information om minefeltet, der ønskes risikovurderet. Ved 
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anvendelsen af to forsimplende antagelser transformeres den overordnede model til en 

simpel binomial model, der afhænger af parametrene m og q. Heltalsparameteren m angiver 

antallet af såkaldte funktionelle miner i minefeltet under vurdering, mens parameteren q  

angiver sandsynligheden for, at en tilfældigt udvalgt mine i minefeltet bliver antruffet af en 

person, et køretøj, etc… indenfor en nærmere angivet observationsperiode.       

 

De sande værdier af ovenstående binomialparametre, som tilsammen karakteriserer det 

pågældende minefelts tilstand, vil sjældent være kendte på forhånd, men vurderinger af 

disse baseret på den tilgængelige information kan passende udtrykkes i form af 

sandsynlighedsfordelinger p(m) og p(q). Dette baner vejen for introduktionen af Bayesiansk 

dataanalyse, som muliggør opdateringer af de opstillede sandsynlighedsfordelinger via 

Bayes’ regel.  

 

En betydelig del af PhD-afhandlingen fokuserer på metoder til tilvejebringelse af 

information om parameteren q  gennem statistisk modellering. Afhængig af mængden af 

historisk information, som er tilgængelig for en hypotetisk beslutningstager, undersøges to 

forskellige metoder til ekstraktion af information om q : 1) En simpel hierarkisk model hvor 

ulykkesstatistikker og rydningsrapporter fra allerede ryddede minefelter udgør inddata; 2) 

En finite mixture model hvor kun ulykkesstatistikker samt specifikationen af visse a priori 

fordelinger indgår som inddata. Fælles for begge modeller er frembringelsen af posteriori 

fordelinger for parameteren q. For at udtrække information om q  fra disse fordelinger 

anvendes forskellige simulationsteknikker, eksempelvis importance sampling og Markov 

Chain simulation.  

  

Opdateringen af de indgående sandsynlighedsfordelinger p(m) og p(q) via indkommende 

ulykkesstatistikker gør den udledte risikomodel dynamisk. Anvendelsen af Bayesiansk 

dataanalyse giver derudover risikomodellen en fleksibel struktur, hvilket muliggør en 

tillempning af modellen til de meget varierende forhold som forefindes indenfor humanitær 

minerydning. Den vedlagte PhD-afhandling afslutter med en overordnet forskrift på 

syntesen af forskellige fragmenter af relevant information og dets overførsel til 

risikomodellen baseret på konceptet reference priors.      
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Chapter 1 

The Land Mine Problem 
 

 

 

Globally, land mines claim an estimated 15,000-20,000 civilian victims per year in 90 

countries, and about 40-50 million mines remain to be cleared [MacDonald et al., 2003]. 

Besides the suffering and death caused by mines, the sheer presence of mines or the mere 

suspicion of their presence has far reaching consequences in terms of blockage of 

reconstruction and economic growth in many mine affected countries. The recognition of 

the size of the global land mine problem made in 1994 the United Nations (UN) to declare 

that “land mines may be one of the most widespread, lethal and long-lasting forms of 

pollution we have yet encountered” [United Nations, 1994]. 

 

One manifestation of the growing international understanding of the land mine problem is 

the emergence of the civilian discipline Humanitarian Mine Action (HMA) whose core 

activities include mine clearance operations in post-conflict countries. Since its advent in 

the late eighties the HMA sector has undergone a tremendous development. Another 

manifestation is the intensification in research aiming at improving the mine detection 

technology. Unfortunately the search for a replacement of the simple metal detector used 

in manual demining has turned out to be a much larger technological challenge than 

anticipated at first. As a consequence, the predominant part of mine clearance operations 

in the foreseeable future will still hinge on manual demining. Mine clearance remains thus 

to be a very slow, troublesome and dangerous business. At the current rate, the clearing of 

all existing minefields will approximately require 450-500 years [MacDonald et al., 2003].    

              

Realizing that landmine contamination is a phenomenon which cannot be eliminated 

overnight but is a problem which has to managed in several years to come, it is essential 

that the resources a national government in a mine affected country spends on mine 

clearance are used on the right projects. However, the identification of the mine clearance 

projects with the greatest impact is a delicate task. More systematic approaches to the 

ranking of minefields with respect to mine clearance can be found in the literature but 

these methods are either founded on simple scoring rules [GICHD, 2001] or are of a more 
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qualitative nature [Millard, 2000, 2001]. Thus nobody seems yet to have examined the 

potential usefulness of the strong analytical tools provided by operations research and 

statistics to support the decision makers involved in HMA.             

 

By the present thesis the first step in the above direction has been taken. Thus in the 

chapters which follow a general framework based on Bayesian data analysis is introduced 

which can support decision makers in their efforts to identify the most important 

minefields with respect to mine clearance. It is not claimed that the suggested 

mathematical models provide the full picture of all facets of the landmine problem in a 

given country. Alternative methods taking a more qualitative approach are therefore still 

needed to complement the analysis. The outlined framework nevertheless represents a very 

structured way of collecting and synthesizing information which can minimize the risk of 

future minefield accidents.       

 

The coming chapters 2-15 are of a quite technical character and to appreciate their 

contents, the present chapter provides a background to certain aspects of the global 

landmine problem. Thus in paragraph 1.1, the meaning of the word “mine” is defined, and 

a brief historical account of the origin and development of HMA is given. The main 

contents of paragraph 1.1 are based on the publication “A guide to Mine Action” by the 

Geneva International Centre for Humanitarian Demining [GICHD, 2004]. Paragraph 1.2 

summarizes the current state of HMA. In paragraph 1.3 the discussion about impact and 

prioritizations in HMA is introduced, and the merits and shortcomings of the so-called 

mine impact score model  are mentioned. In paragraph 1.4 the research objectives of the 

present thesis are defined, and possible techniques from operations research or statistics 

which might be brought into play to reach the defined objectives are discussed. Finally 

paragraph 1. 5 outlines the contents of the chapters 2-15.                 

 

 

1.1 Introduction to Humanitarian Mine Action 

According to the Anti-Personnel Mine Ban Convention [for a thorough introduction, see 

GICHD, 2004] a mine is defined as “a munition designed to be placed under, on or near the 

ground or other surface area and to be exploded by the presence, proximity or contact of a 

person or a vehicle”. As illustrated in fig. 1.1, a landmine is in principle a very simple piece 
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of device. It consists of a casing made by metal, plastic or wood containing a piece of 

explosive material. The casing contains furthermore a fuzing mechanism to initiate the 

detonation of the explosive which is typically activated by a vertical pressure on the casing 

or by the extension of a connected tripwire. Certain types of mines may also be activated 

from distance by remote control.  

 
Fig. 1.1. Anti-personnel mine (AP). Photo: Danish Demining Group.  

                             
 

Landmines are manufactured in a variety of different sizes and shapes but may generally 

be classified as either anti-tank mines (AT-mines) or anti-personnel mines (AP-mines) 

depending on whether the intended victim is a vehicle or a person. Where the threshold 

“pressure” to activate an AP-mine is typically of the order of 10 kg or less, an AT-mine 

usually demands a vertical pressure equivalent to several hundreds of kg. Depending on 

how the mine injuries its victim, AP-mines may be classified further as blast-, 

fragmentation-, bounding-, or directional fragmentation-mines. There are today 

approximately 700 types of manufactured AP-mines excluding the improvised (home 

made) mines [Handicap International, 2000] . 

 

Even though landmines have been used excessively in international or local conflicts at 

several occasions during the 20th century, the emergence of Humanitarian Mine Action 

(HMA) as a discipline is of relatively recent date. Its origin can thus be traced back to 

October 1988, where the United Nations for the first time appealed for funds for 

humanitarian demining in Afghanistan [GICHD, 2004]. At that time, the Soviet troops 

were about to leave Afghanistan, and the Afghan society was left with a severe mine 

 3



contamination problem but without a functioning national army to address the clearance 

of the minefields.  

 

As a result of the UN initiative, more than 10,000 Afghan refugees received basic mine 

clearance training by military contingents from donor countries. The UN furthermore 

supported the creation of a number of NGO’s (Non Governmental Organizations) to 

survey, map, mark and clear minefields and support the civilian population through mine 

awareness campaigns.  

 

The initiatives seen in 1988 in Afghanistan were notable for various reasons: Firstly, the 

term humanitarian demining implied demining activities for humanitarian purposes, and 

the phrase was thus deliberately used to distinguish it from military demining (so-called 

breaching). Secondly, where mine clearance previously had been entrusted to military 

units, mine clearance and related activities became now a possible civilian occupation.  

 

The end of the Gulf War in 1991 marked the second major event in mine action. During 

the subsequent mine clearance programme in Kuwait which lasted from 1991-1993, 

mechanical mine clearance with flails and tillers was introduced, and several commercial 

companies entered the field of mine action. 

 

In the following years from 1992-1994, UN-assisted mine action programmes were planned 

and initiated in Cambodia, Mozambique and Angola with varying degrees of success. An 

important event was the establishment of the Cambodian Mine Action Centre (CMAC), 

which was set up in 1992 and was intended a leading and coordinating role of the 

Cambodian mine action programme. This programme has since then turned into one the 

largest mine action programmes worldwide. Similar mine action centres have been 

established in a variety of mine affected countries during the nineties.   

 

Important lessons were learned during the first half of the nineties. Firstly, the presence of 

national authorities capable of regulating, coordinating and sustaining programme 

objectives were prerequisites for successful completions of national mine action 

programmes. Secondly, with an increasing number of actors with various backgrounds 

involved in mine action, there was a need to standardize the different components of mine 
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action. Consequently, a conference on international standards for humanitarian mine 

clearance programmes was launched in Denmark in 1996, and proposals from the 

conference were subsequently by a UN-led working group developed into the standards 

International Standards for Humanitarian Mine Clearance Operations, released in 1997 

(these standards have since 2001 been superseded by the International Mine Action 

Standards, IMAS). 

 

Besides the increasing number of mine action programmes which were set up during the 

last half of the nineties, e.g., Albania, Bosnia and Herzegovinia, Northern Iraq, etc., the 

launch of the Convention on the Prohibition of the Use, Stockpiling, Production and 

Transfer of Anti-Personnel Mines and on Their Destruction (in short, the Anti-Personnel 

Mine Ban Convention) in 1997 contributed to an enhanced public awareness of the impact 

of the global mine contamination problem. Signatory States of this convention undertake 

never under any circumstances to use, produce, develop, stockpile, or transfer anti-

personnel mines, or to assist, encourage, or induce anyone to commit such acts. Signatories 

are furthermore obliged to clear all anti-personnel mines in mined areas under their 

jurisdiction not later than 10 years after they become Parties to the Convention. When the 

Anti-Personnel Mine Ban Convention entered into force in 1999, 133 States had signed the 

Convention. Today, i.e., 2005, more than two thirds of the States in the world have signed 

the Convention. 

 

 

1.2 Humanitarian Mine Action Today  

The main objective of humanitarian demining is to clear all mines and other explosive 

remnants of war from a given area such that the area is safe to the civilian population. 

Unfortunately, no existing mine clearance method applied in HMA can guarantee a 100% 

clearance.  

 

In manual demining, which is the most frequently used method under mine clearance 

operations, a metal detector is used for the location of buried metal containing mines, and 

an excavator or prodder is subsequently used to uncover the mine. The repeated process of 

detection and uncovering is dangerous and time consuming due to the high false alarm rate 

by the metal detector. 
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Fig. 1.3 (right): Deminer working with a prodder.  

(Photo: Danish Demining Group). 

Fig. 1.2 (below): Manual demining.  

(Photo: Danish Demining Group). 

 

The search for a replacement of the simple metal detector used in manual demining has 

turned out to be a much larger technological challenge than anticipated at first. This is 

revealed by the spectrum of technologies which have been put on test including ground 

penetrating radar (GPR), nuclear quadrupole resonance, infrared imaging (IR), ion 

mobility spectrometry, photoacoustic spectroscopy, thermal neutron analysis, reversal 

electron attachment detector, antibodies, artificial noses (Bio-mimics), and various 

methods based on chemical detection. The list of animals trained to detect mines includes 

dogs, rats and various insects, and the development of plants genetically modified to 

change colour by the induction of TNT or some of its degradation products has reach a 

stage where actual plants are being tested in controlled minefields. However, in spite of the 

efforts made by the research community, a technological breakthrough seems not to be 

impending, and the major part of mine clearance operations in the foreseeable future will 

therefore still hinge on manual demining.  

 

Besides manual demining, two supplementary methods of increasing importance are mine 

dog detection and mechanical mine clearance. In mine dog detection, the detection tool is 

the dog due the dogs outstanding capacity to detect odours including explosives as TNT in 

very small concentrations. In contrast with metal detectors, dogs can detect mines with a 
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low metal content buried in soil characterized by a high metal content. Mine dogs function 

optimally in areas with a low mine density and are therefore typically used in the process 

of area reduction, i.e., the process through which an area initially suspected of being 

contaminated with mines is reduced to a smaller area. In areas characterized by a high 

mine density, mine dogs can get confused, and other factors such as fatigue or climatic 

conditions might affect the reliability of mine dogs.     

   
   Fig. 1.4. A deminer handling his dog in the Tete           Fig. 1.5. A Hydrema flail system used for 

   province, Mozambique (photo: GICHD))                      mechanical mine clearance. 

      
 

In mechanical mine clearance, machines like flails and tillers are used to detonate or 

destroy mines, typically tripwire-operated mines, or as vegetation cutters prior to manual 

mine clearance. The major advantage of mechanical mine clearance is obviously speed, but 

its usefulness as a clearance method depends on the terrain of the mine affected area. The 

quality of the clearance achieved by mechanical mine clearance has been questioned, and 

mechanical mine clearance is therefore rarely used alone but typically as an assisting tool 

to manual clearance. 

 

It has been one of the essential lessons learned from a decade of ongoing mine action that 

collection of accurate and timely information about the scale, form and impact of a mine 

contamination problem is a prerequisite for a successful national mine action programme. 

Standardized Landmine Impact Surveys have been completed in a number of severely mine 

affected countries since 1999. The essential information provided by these surveys is the 

geographical distribution of mine affected communities. In this context a community is 

being referred to as mine affected if it contains one or several areas which are believed or 
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verified to contain mines. Also included in the surveys are accident statistics from the mine 

affected areas. Fig. 1.6 below illustrates the distribution of mine affected communities 

according to the landmine impact survey undertaken in Mozambique in the period 1999-

2001. Table 1.1 contains the corresponding accident statistics where recent victims refers 

to the number casualties recorded two years prior to the survey.     

  
Fig. 1.6. Mine affected communities in Mozambique.      Table 1.1. Mine accident statistics 

from Mozambique. Source: 

Canadian International Demining  
Corps et al., 2001.   
 

# of recent 

victims 

# of 

communities 

0 710 

1 45 

2 11 

3 13 

4 2 

5 3 

8 1 

10 1 

25 1 

unknown 4 

TOTAL 791 

Reprinted from Canadian International Demining  

Corps et al., 2001.  

                                                                       

              
 

 

1.3 Impact and Prioritizations in Humanitarian Mine Action 

The present lack of a fast and reliable mine detection technology means that the mine 

contamination problem found in many post-conflict countries cannot be eliminated 

overnight but has to be managed in several years to come. This entails that only a subset 

of the mine affected areas in a given country can be subject to mine clearance in the 

foreseeable future. To contain the mine contamination problem as effective as possible it is 

therefore essential that the national authorities are able to rank or prioritize the minefields 

according to the expected gain from a potential clearance operation.  
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Ignoring the emergency phase which may follow immediately after the ending of a war, the 

prioritization issue outlined above is in general a complicated matter. A contributory 

factor to this complexity is the multiple set of objectives which may influence the final 

prioritizations in a national coordinated mine action programme. For example, to reduce 

the direct dangers of explosive accidents will in most cases be a prominent objective in a 

mine clearance programme, but there are situations in which the relief of the indirect 

effects of mine contamination, i.e. the blockage of reconstruction and economic growth, are 

just as significant.  

 

A second factor which complicates the prioritization process is the inability to measure the 

impact of mine clearance operations. In the early days of HMA the impact was simply 

considered to be proportional to the number of eliminated mines - or the size of the area 

cleared. Nowadays the situation is realized to be more complex. As a matter of fact, in the 

GICHD publication “A Study of Socio-Economic Approaches to Mine Action”, the 

situation in HMA is summarized as follows: “We remain unable to determine the impact of 

mine action in total, let alone estimate the decline in accidents due to the various 

components of mine action such as mine awareness or clearance” [GICHD, 2001].          

 

It goes without saying that the inability to measure the impact of HMA is a serious 

problem for at least two reasons: Firstly, it makes it difficult for decision makers to 

allocate resources into HMA optimally as the impact of a potential clearance task is 

unknown. Secondly, the lack of documentation could in the long run result in a reduced 

interest in HMA from national or international financial donors.  

 

In spite of GICHD’s rather pessimistic statement made above, certain attempts have been 

made to quantify the impact of mine contamination. The most prominent among the more 

quantitatively orientated models is the mine impact score model which has been 

implemented into the so-called IMSMA database [see GICHD, 2004, chapter 12]. The mine 

impact score is a weighted linear combination of 13 variables which includes the number of 

recent victims, certain livelihood and institutional blockage variables characterizing the 

mine affected community under study, and binary variables indicating whether mines or 

UXO (i.e., unexploded ordnance) have been present. Some weights are fixed, for example 

the weight associated with the number of recent victims, while others can be adjusted 
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within certain limits. The working hypothesis is that communities scoring high most likely 

are the ones in which mine action has the greatest potential for reducing future suffering 

[GICHD, 2001]. 

 

Possibly due to its implementation into the IMSMA data base, the mine impact score 

model has been used as a prioritization tool in the published landmine impact surveys 

which were mentioned in the previous paragraph. Figure 1.7 below illustrates the variables 

and the used weights in the report from the survey conducted in the Republic of 

Mozambique. According to the authors of the report [Canadian International Demining 

Corps et al., 2001] the used weights were chosen on the basis of “the CIDC’s experience, 

discussions with knowledgeable persons, and a review of the relevant literature”. 

 
Figure 1.7. Reprinted from Canadian International Demining Corps et al. , 2001. 

 

                     
 

The mine impact score system permits a classification of the mine affected communities 

into three classes: “Low”, “Medium” and “High”. As an example, fig. 1.8 and fig. 1.9 on 

the following page show the distribution of mine impact scores and the final impact 

classification based on the landmine impact survey conducted in Yemen 1999-2000. 
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Figure 1.8 (left): Impact scores in Yemen. Reprinted 

from Survey Action Centre et al. , 2000. 

Figure 1.9 (below): Impact classification in Yemen.   

Reprinted from Survey Action Centre et al. , 2000. 

 

As confirmed by simulation runs performed by the Survey Action Centre who developed 

the model, the mine impact score is drawn to communities with comparatively many 

recent victims. On the contrary, communities with no record of recent mine victims will 

never be classified as “High” no matter how the weights of the blockage indicators are 

varied [Canadian International Demining Corps et al., 2001]. The number of recent victims 

is thus a variable attached central importance.  

 

The mine impact score model is easy to comprehend and calculate, and it keeps 

information costs down. Through its blend of entering variables it takes into consideration 

the risk aspect of mine contamination (i.e., Group 1 and Group 3 variables in fig. 1.7) as 

well as its socio-economic impact (Group 2  variables in fig. 1.7) even though the relative 

magnitudes of the attached weights appear arbitrary. The mine impact score model suffers 

however from a number of shortcomings which will be commented here. First of all, it is 

questionable, whether the number of recorded casualties is a reliable measure of the threat 

a given minefield poses to the surrounding society. That is, due to the stochastic nature of 

mine accidents, two identical minefields may display very different accident patterns even 

if the local population’s degree of exposure to the minefields are identical.    

 

Secondly, the high emphasis on the number of recent victims in the mine impact score 

model causes a problem as the majority of the mine affected communities show a record of 

very few or none reported victims (see for example table 1.1). Consequently, most of the 
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communities are classified as “Low” which makes the mine impact score less suited for 

long-term planning purposes.  

 

Thirdly, the binary nature of the variable indicating whether mines have been present 

excludes the possibility of a more graduated estimate of the mine contamination.  

 

Fourthly, the mine impact score model does not prescribe how to make a balanced 

updated risk assessment of the minefield if new information arrives.     

 

Finally, the mine impact score model does not quantify the risk associated with a given 

minefield in such a way that comparisons to other sources of risk in the society can be 

made.               

 

1.4 Research Objectives of Thesis  

As remarked in the introduction to the present chapter, nobody seems yet to have 

examined the potential usefulness of the strong analytical tools provided by operations 

research and statistics to support the decision makers involved in HMA. Taking the 

observations made in connection with the impact score model into account, the aim of the 

present thesis is to analyze and give suggestions to how the situation in HMA, as to 

making qualified ranking of minefields, can be improved through the involvement of 

operations research or statistics.  

 

In the previous paragraph it was noted that the mine impact score model considers the 

risk aspect and to a certain extent also the socio-economic impact of mine contamination. 

To simplify matters we will deal exclusively with the risk aspect of mine contamination. 

This limitation does not intend to downplay the importance of socio-economic 

considerations in relation to HMA. In other words, it is to be understood that any 

systematic risk assessment based on the approach outlined in the following chapters should 

be properly counterbalanced by some kind of socio-economic analysis before a final ranking 

of minefields can be made.  

 

The word risk is used in many different contexts. Most expressions of risk are compound 

measures describing both the probabilities and severities of a set of damaging events. 
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Lowrance [Lowrance, 1976], for example, defines risk as a measure of the probability and 

severity of the consequences of undesirable events. Some risk measures attempt to describe 

the vulnerability of the society as a hole to a certain hazard, while other measures pay 

attention to particular groups or individuals. In the present context the most flexible 

measure of risk seems to be obtained if we define the risk associated with a given minefield 

as the probability of mine accidents in the minefield within an observation period of 

predefined length. Consequently, our primary objective is to derive a mathematical model 

from which the probability of mine accidents within an observation period can be 

calculated.   

 

A mathematical model of the above kind should permit a ranking of an arbitrary number 

of minefields according to risk. However, to be useful within the framework of HMA it 

should additionally be flexible enough to accommodate the varied circumstances found in 

HMA with respect to accessible data. A second objective of the present work is therefore 

to provide methods which enable a decision maker to extract and transfer essential 

information from a variety of different sources into the mathematical model.  

 

Finally, the shortcomings identified in the mine impact score model should be overcome by 

the introduction of the mathematical model. 

 

As to the possible techniques from operations research or statistics which might be brought 

into play, the stated primary objective points in the direction of a descriptive stochastic 

mathematical model. That is, mine accidents are by nature stochastic events, and the 

frequency by which they happen might be envisaged as a function of some underlying 

variables describing the state of the minefield under study in a given observation period. 

As the state of the minefield may change over time, we are also looking for a dynamical 

model. Types of models which fit the above specifications include stochastic variables 

characterized by parametric probability distributions with time dependent parameters, and 

Markov processes.   

 

What complicates HMA in particular is the lack of solid information. Most mine affected 

areas do in fact show a record of zero accidents. Whatever the choice of a descriptive 

stochastic dynamical model, the parameters which enter into such a model will be very 
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hard to estimate from the recorded accident statistics alone. Consequently, complementary 

information has to be added. In the case of HMA complementary information of potential 

relevance might be very diversified, and different levels of credibility might be attached to 

different pieces of information. A type of stochastic model which allows such diversified 

information to be added is a Bayesian probability model where previous information enters 

as  a priori information.     

 

Finally, one of the shortcomings identified in the case of the mine impact score model was 

its inability to make a balanced updated risk assessment of the minefield if new 

information arrives. A Bayesian type of model might show its relevance here too due to its 

ability to generate updated posterior distributions based on incoming observations.       

 

 

1.5 “Road Map” to Thesis   

To provide the reader with an overview of the contents of the present thesis, fig. 1.10 on 

page 16 includes a “road map” showing the interrelationships between the last 14 chapters 

of the thesis (excluding various appendices).   

 

The key chapter in the thesis is chapter 2 where it is shown that a minefield accident 

under fairly general conditions can be considered to be the outcome of a binomial process. 

Consequently, the state of a minefield in a given observation period can be described by 

just two binomial parameters, i.e. the integer m  and the probability parameter θ . The 

two binomial parameters will rarely be known in advance but have to be estimated.  

 

Chapter 3 describes carefully the generation and the features of the simulated data to be 

used in the following chapters. 

 

Depending on the character of the available information, the present report suggests two 

different ways of obtaining information about the probability parameter  through the 

application of Bayesian data analysis. Thus given that accident statistics and mine 

clearance data are available, an estimate of θ  in terms of a probability distribution can be 

generated by the use of a simple hierarchical Bayesian model as derived in chapter 4.  

θ
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If only accidents statistics are available, the extraction of information about θ  is made 

difficult. However, given that an estimate of the degree of mine contamination in an 

“average” minefield can be provided in terms of an informed prior distribution, it is 

possible to estimate θ  through the application of so-called finite mixture models. This 

approach is discussed in the chapters 5-13. The applied techniques include Markov Chain 

Monte Carlo sampling and finite mixture models with a varying number of components.  

 

A unified strategy for the synthesis of the various pieces of information is suggested in 

chapter 14 through the application of the reference prior approach. 

 

Chapter 15 closes with a summary, conclusions, and suggestions for further work. 
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Chapter 2 

Risk Assessments of Mined Areas – a Bayesian Approach in Mine Action 

 

 

2.1 Introduction 

To keep the discussion at a general level we will as our point of departure consider a 

hypothetical post-conflict region or country containing a large number of mine affected 

communities as sketched in fig. 2.1 and 2.2 below. In the present context a community is 

being referred to as mine affected if it contains one or several areas within the community 

border which are believed or verified to contain mines. Similarly, an area which is believed 

or verified to contain mines will be termed “a mine affected area”. In what follows the 

word “minefield” and the concept “mine affected area” will be used interchangeably.    

 
 

    Post-conflict region 

  

 

 

 

 

 

                      

                                           
                                                                             Mine affected areas         

                                                                      
                                                                                                 

           Fig. 2.1: Post-conflict region                            Fig. 2.2: Mine affected community.                              

               = Mine affected community. 

 
 
 
Concerning the mine affected areas , we will make the following few assumptions: 
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• A mine affected area can contain an arbitrary number of mines (including 

zero) of various types and in various conditions. 

• The mines present in a given area can be distributed in a random or non-

random pattern, each mine being positioned either at the ground of the 

surface or buried to a certain depth.   

• Information available to a decision maker about types and numbers of 

mines in a mine affected area may include detailed mine maps, 

assessments from regional or local experts, or no information at all.      

 

In the present chapter we will present a simple stochastic risk model designed for risk 

assessments of mine affected areas. The risk model will be derived in two steps: First, a 

general model which requires detailed information about the mined area in question will be 

derived. Secondly, by the introduction of two additional assumptions the general model 

turns into a simple 2-parameter binomial model. The true values of the binomial 

parameters which jointly characterize the state of the mined area will rarely be known in 

advance, but beliefs about these based on whatever information is available can 

conveniently be expressed in terms of probability distributions. This prepares the way for 

the introduction of Bayesian data analysis by which updates of the probability 

distributions can be generated from incoming accident statistics. 

 

After having derived the risk model, illustrative examples showing how the ranking of 

mine affected areas can be accomplished through Bayesian data analysis will be given.  

 

2.2 Derivation of General Risk Model 

Consider some minefield which at time  contains m mines as sketched in fig. 2.3, 

where each mine has been assigned a number  

0t =

{1,2,..., }k m∈
 
Fig. 2.3. Minefield containing m = 10 mines. 
 

 

                                                                               

1 2

3

4

5

6
7 8

9
10
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As minefield accidents by nature are random events, the central quantity in a risk 

assessment of the above minefield is the probability distribution , where z denotes the 

number of accidents in the minefield during a future observation period of a certain length. 

In what follows, an observation which starts at time t  and ends at time  will be 

denoted  as indicated in fig. 2.4. The time unit in fig. 2.4 is arbitrary, but as accident 

statistics in so-called Landmine Impact Surveys typically report the number of casualties 

observed during a two-year period, we will assume that | ( = 2 years for all  t.  

( )p z

1t +
( )t∆

)t | 

m

∆

 
Fig. 2.4. Time axis 

                                                                  
                                                                                      1t = − 0t = 1t = 2t =
                                                                                                                                              

                                                                                
 
 
                                                                         

time t 

                                                                                                           (0)∆ (1)∆
 

Now, let  denote the number of minefield accidents which might occur 

during  in the minefield from fig. 2.3. To calculate  we will by way of 

introduction look at mine no. 1 from fig. 2.3. During  mine no. 1 will either detonate 

or not. To record this event, let  denote the binary random variable which takes the 

value 1 if mine no. 1 is set off and 0 otherwise.   

0 {1,2,..., }Z ∈

(0)∆ 0( )p z

(0)∆
1
0Z

 

To calculate , that is, the probability of mine no. 1 being set off during , it is 

valuable to consider the sequence of events which is a prerequisite for a detonation: Firstly, 

during  there has to be a “contact” between mine no. 1 and a person, a vehicle, etc. 

Secondly, to detonate during the “contact”, mine no. 1 has to be exposed to a pressure 

which is equal to or exceeds a certain threshold value.   

1
0( )p z (0)∆

(0)∆

 

The very simplified account given above covers up certain difficulties. First of all, the 

notion a “contact” is ill-defined, as the triggering of a mine not necessarily implies a 

physical contact between the mine and say a person. Secondly, to set off a mine the 

triggering pressure has to be exerted at the right part of the mine or at the right part of 

the ground above a buried mine.                
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To overcome the above difficulties and to keep our model considerations simple, we will 

assume that every mine can be characterized by an individual contact zone, that is, a 

surface in 3D-space with the following properties: 

 

1) To set off the mine, a pressure equal to or exceeding a certain threshold pressure 

(TP) has to be exerted within the boundary of the contact zone. 

2) The threshold pressure is constant over the contact zone.  

 

Examples of contact zones for different types of mines are sketched in fig. 2.5 below. 

Depending on whether the mine is located on the surface of the ground or buried, the 

contact zone may or may not coincide with parts of the casing of the mine. 

 
Fig. 2.5 Contact zones of mines. The red coloured areas denote the contact zones of mines of various designs. 

 
                           Fig. 2.5.a         Fig. 2.5.b            Fig. 2.5.c                     Fig. 2.5.d 

                                                                                                                      
                                                                                                                          tripwire 

 
 
 
 
 
                        Fig. 2.5.e                                                             

                                                                                          Fig. 2.5.f 

                                                                                             
                                                 

                                                              surface level 

 
 
 
                                                        tripwire                           

 
 
 
 
 
        mine     

 

 

 

 

The introduction of contact zones allows us to clarify the “contact” concept: Whenever a 

person, a vehicle, etc., touches the contact zone of a mine, we will refer to the event as a 

“contact”.  
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The idealized model of a uniform threshold pressure can be sketched as in fig. 2.6 below.  

 
Fig. 2.6. Probability of detonation.  denotes the probability of detonation given a pressure P is 

exerted on the contact zone of a mine. The value “TP” denotes the threshold pressure of the mine.  
det(P)p

                                  TP
P HpressureL

1

pdetHPL

 
 

It should be noted that not all mines fit into the idealized model sketched in fig. 2.6. We 

will however ignore cases such as the PFM-1 anti-personnel mine which can be triggered 

by the accumulated effect of successive contacts due to its pressure fuzed liquid explosive.      

 

The magnitude of the threshold pressure of a mine will in general depend on factors such 

as 

• type of mine (AP-mine, AT-mine) 

• fuzing mechanism 

• condition of mine (ageing, corrosion) 

• vertical position of mine. 

 

Whether the threshold pressure of a mine is reached during a random contact will in 

general depend on the kind of activity during the contact (walking, driving, ...). In 

addition, for a given type of activity the pressure exerted on a mine will presumably vary 

from contact to contact due to its stochastic nature. To incorporate this variability into 

our model we will assign the minefield from fig. 2.3 a probability distribution  which 

denotes the probability of observing a contact pressure of magnitude CP during a contact 

with a randomly selected mine. The contact pressure is here defined as the maximum 

pressure exerted on a randomly selected mine during a contact.        

(p CP)

 

It follows from the considerations above that mine no. 1 subsequent a random contact only 

will detonate with a certain probability  which can be calculated as 1φ
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                                                                             (2.01) 
1

1 ( )
TP

p CP dCPφ
∞

= ∫ ,

 

where  in equation (2.01) denotes the threshold pressure of mine no. 1. The parameter 

 will be denoted the conditioned probability of detonation of mine no. 1.  
1TP

1φ
 

After having introduced these facilitating concepts, a closed expression for  can be 

obtained in the following way: Let  denote the random variable which counts the 

number of times the contact zone of mine no. 1 is struck during the period . The 

probability of mine no. 1 not being set off can be written as 

1
0( )p z

1X

(0)∆

 

                                                      (2.02) 1
0 1

1 1

2
1 1

1 1
0

( 0) ( 0)

( 1)(1 )

( 2)(1 ) ...

( )(1 ).i
i

p Z p X

p X

p X

p X i

φ

φ

φ
∞

=

= = = +

= − +

= − +

= = −∑
 

If  follows a Poisson distribution with intensity , that is 1X 1λ

 

                                                  
1

1 1
1

1

( ) ,
!

x

p x e
x

λ λ−=                                 (2.03) 

where , it follows that [ ]1 1XE λ=

                                            
1

1 1

1 1
0

0

( 0) (1
!

.

i
i

i

p Z e
i

e

λ

λ φ

λ φ
∞

−

=
−

= = −

=

∑ 1)

1

0Z

0

                (2.04) 

Consequently  takes the form 1
0( )p z

                                                                               (2.05) 
1 1

1 1

1
01

0 1
0

1 if
( )

if 0.

e z
p z

e z

λ φ

λ φ

−

−

⎧⎪ − =⎪⎪= ⎨⎪ =⎪⎪⎩
 

If the stochastic variables  furthermore are independent, it follows that the 

distribution of can be calculated as 

1 2
0 0 0, ,.., mZ Z Z

0
1

m
k

k

Z
=

=∑
                                                                                 (2.06) 0

1

( ) ( ),
m

k

k

p z p z
=

=∑�
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where  is given as 0( )kp z

                                                                         (2.07) 
0

0
0

1 if
( )

if 0,

k k

k k

k

k
k

e z
p z

e z

λ φ

λ φ

−

−

⎧⎪ − =⎪⎪= ⎨⎪ =⎪⎪⎩

1

0

 

and the sum denoted by Σ in equation (2.06) includes all vectors  for which 

. In spite of the simple structure of equation (2.07) the model embedded 

in this equation reflects the combined action of several factors, that is, 

1 2
0 0 0( , ,..., )mz z z

1 2
0 0 0... mz z z z+ + =

 

• the types, conditions and vertical locations of the mines present (reflected by  ) kTP

• the activities taking place in the mined area (reflected through ) ( )p CP

• the intensities of the activities taken place in the mined area (reflected by ). kλ
 

The utility of the model may be questioned as neither m nor the true values of the 

parameters  will be known in the general case. We might however have some, 

albeit incomplete information at hand which makes it possible to make a qualified guess at 

their true values by means of probability distributions ,  and . From these 

distributions  can be calculated numerically.     

{{ , }}k kφ λ

( )p m ( )p φ ( )p λ

0( )p z

 

In the present chapter we will follow a slightly different course. That is, by introducing 

two additional assumptions the stochastic variable  from (2.06) can be turned into a 

binomially distributed variable. Apart from its simple analytical structure the binomial 

model demands as input only two parameters to calculate .  

0Z

0( )p z
 

Table 2.1. Applied notation in minefield model.  

Factor Represents Factor Represents 

t time kTP  Threshold pressure of mine no. k. 

( )t∆  Observation period [t ; t+1] CP Contact Pressure 

m Number of mines (p CP)  Probability of CP during contact.  

tZ  Number of accidents in  ( )t∆ kφ  The probability of detonation of mine 

no. k given a random contact. 

( )tp z  Probability of observing accidents 

in . 
tz

( )t∆
kX  Number of random contacts with 

mine no. k during    ( )t∆
k
tZ  0-1 variable. Indicates whether mine 

no. k has been set off in .  ( )t∆
kλ  The expected value of   kX
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2.3 Derivation of a Binomial Model 

 

2.3.1 Homogeneous minefields 

The presence of mines is obviously a prerequisite for mine accidents, but the intensity of 

the activity taking place in a mined area may have a profound effect on the probability of 

mine accidents as well. If several activities of different intensities are going on in a given 

area, the making of a risk assessment becomes complex. 

 

To sketch how a thorough risk assessment may be structured in a complex environment, 

assume that a number of activities A1, A2 …, AN which might cause the triggering of a 

mine takes place in a mined area. With respect to activity Ai, we will assume that the 

mined area in question can be split up into homogeneous sub-areas Ai1, Ai2,…,AiK(i) within 

which the intensity of activity Ai may be taken as uniform. A mined area characterized by 

an activity of uniform intensity will be termed a homogeneous minefield, and we will 

assign all contact zones within the borders of a homogenous minefield the same Poisson 

parameter whatever the number of mines present. For a homogeneous minefield  we 

thus have that 
ijA

                                                                        (2.08) 
0

0

0

1 if
( )

if 0,

k

k
ij

k

ij ik

ij ik

e z
p z

e z

λ φ

λ φ

−

−

⎧⎪ − =⎪⎪⎪= ⎨⎪⎪ =⎪⎪⎩

1

m

)

 

where , and m is the number of mines present in sub-area A . The 

probability distribution of the contact pressure CP in minefield A  may similarly be 

denoted . Fig. 2.7 illustrates the partitioning of a mined area into homogeneous 

minefields for two activities A

{1,2,..., }k ∈ ij

ij

(ijp CP

1 and A2. As sketched in fig. 2.7, the partitioning may 

depend on the activity considered.    

 
Fig. 2.7: Partitioning of mined area into homogeneous minefields for two different activities A and . 1 2A

 
  
 
                                                                                                     A11        A12            A11 

  

                                 Mined Area   

          

                                                                                         A21    A22     A23        A2 
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From the considerations above it follows that a homogeneous minefield plays a pivotal 

role. In other words, if  can be calculated for an arbitrary homogeneous minefield, 

the probability of accidents in any minefield can be determined by combining the 

probability distributions  from the underlying homogeneous minefields. In the 

remaining paragraphs we will focus exclusively on the determination of  for a 

homogeneous minefield characterized by a single activity through .  

( )ij tp z

( )ij tp z

( )tp z

( )p CP

 

2.3.2 Functional Mines    

To simplify equation (2.08) we will look into the variation among the values taken by the 

parameters  in a homogeneous minefield which according to equation (2.01) 

will be a function of the frequency of threshold pressures and the probability distribution 

. It turns out that  in many cases will take a value of either zero or one.   

1 2{ , ,..., }mφ φ φ

(p CP)

)

,

kφ

 

Let us, to keep things simple, assume that  can be represented by a normal 

distribution in a homogeneous minefield characterized by a single activity. If  

it follows from equation (2.01) that 

(p CP

( , )CP N µ σ∼

                                                (2.09) 

which can be expressed as 

( | , )
k

k
TP

N CP dCPφ µ σ
∞

= ∫

                                           1
2( ) 1 ( ),k k erfcφ φ τ τ= = − k                                   (2.10)

  

where erfc denotes the complementary error function, and  
 

                                                                   .
2

k
k

TPµτ
σ

−=                                            (2.11) 

                                         

Fig. 2.8 1
2( ) 1 ( )erfcφ τ τ= − . 
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It is evident from equation (2.11) and fig. 2.8 that if | | for all k in a minefield, the 

individual  takes either a value of zero or one. This simplifies equation (2.08) 

considerably and turns eventually Z  from equation (2.06) into a binomially distributed 

variable.   

1

TP TP

kτ �

kφ

0

   

To prove the above assertion, consider an arbitrary minefield which at t=0 contains m 

mines characterized by the threshold pressures TP . 1 2, ,..., m

 

From the minefield above we construct a sequence of related minefields labelled n = 1,2,…, 

all characterized by the same set of threshold pressures as above and with 

( ) ( ,n np CP N σµ∼ ) . It follows that τ  for minefield n is given by  ,k n

                

                                                , ,
2( )

k
k n

n

TP
σ

µτ −=                                 (2.12) 

where k m .  {1,2,..., }∈

) m∈

1
,

))

µ≤

1 µ< 0→ µ>

 

If denotes the 0-1 variable which records whether mine no. k in minefield n  is set off 

during , we have that  for k  is given by 
0,
k
nZ

(0)∆ 0,( k
np z {1,2,..., }

 

                                                                       (2.13) 
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,
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0, ( )
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k n

k
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e z
p z
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λφ τ

−

−

⎧⎪ − =⎪⎪= ⎨⎪ =⎪⎪⎩
 

and it follows that the generating function  of Z  for minefield n can be written ( )nP s 0,n
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=
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−
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− −

= + −
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∏

∏

∏
�

�        (2.14) 

where m  in (2.14) denotes the number of mines satisfying TP . For later convenience 

we will refer to m  as the number of functional mines.  For n  we have that 

 if TP , and φ τ  if  TP . If we exclude the possibility that any 

of the TP

� k

� → ∞

,( )k nφ τ → k ,( )k n k

k’s are identical to , it follows that µ
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                                                                                (2.15) 

1

lim ( )

( (1 ))

(1 ( 1)(1 )) ,
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n

m

k
m

P s

e s e

s e

λ λ

λ

→∞

− −
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−

= + −

= + − −

∏
�

�

 

where the last line in equation (2.15) is recognized as the generating function for a 

binomially distributed variable with parameters m  and ( . If  is defined as � 1 )e λ−− binZ

  

                                                                                 (2.16) ( ,1 ),binZ Bi m e λ−−�∼

 

it follows that  for n  converges in law to . 0,nZ → ∞ binZ

 

To illustrate the practical significance of the above result, consider table 2.2 below which 

tabulates the distribution of threshold pressures for a hypothetical minefield containing 10 

mines including 6 anti-personnel mines and 4 anti-tank mines. Due to the large difference 

between the TP of a typical anti-personnel mine and an anti-tank mine the TP’s in table 

2.2 fall into two well separated groups.  

 
Table 2.2. Distribution of threshold pressures (TP) for hypothetical minefield containing 10 mines.  

 

mine 

# 

TP 

(kPa) 

 1   6 

 2   8 

 3   8 

 4  10 

 5  11 

 6  13 

 7 120 

 8 250 

 9 260 

10 280 

AP- 
mines 

 AT- 
 mines 
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In fig. 2.9 below, four different normal distributions each representing a possible choice of 

 have been superimposed on a histogram showing the distribution of threshold 

pressures from table 2.2. For each normal distribution the corresponding values of  for 

the 10 mines are tabulated in table 2.3. 

(p CP)

kφ

 
Fig. 2.9: Frequency distribution of threshold pressures and normal distributed CP’s. Vertical bars represent 

threshold pressures from table 2. Black solid curve: CP ~ N(60,10); black dashed curve: CP ~ N(60,25); blue 

solid curve: CP  ~ N(150,10); blue dashed curve: CP ~ N(150,25). P(kPa) denotes threshold pressure.    

     

                             
50 100 200 300

PHkPaL

1

2
frequency

 
 

Table 2.3. Calculated values of φ  for the minefield tabulated in table 2.2 when CP~ . . ( , )N µ σ 0.1λ =
 

µ  60 150 

σ  10 25 10 25 

1φ  1.000 0.985 1.000 1.000 

2φ  1.000 0.981 1.000 1.000 

3φ  1.000 0.981 1.000 1.000 

4φ  1.000 0.977 1.000 1.000 

5φ  1.000 0.975 1.000 1.000 

6φ  1.000 0.970 1.000 1.000 

7φ  0.000 0.008 0.999 0.885 

8φ  0.000 0.000 0.000 0.000 

9φ  0.000 0.000 0.000 0.000 
10φ

 
0.000 0.000 0.000 0.000 
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As it emerges from table 2.3, the parameters  take in the case =60 a value of 

approximately one which corresponds to all mines with a  (se table 2.2). The 

remaining mines take a value of approximately zero. Similarly, when =150,  take 

a value of approximately one, and the remaining mines a value of approximately zero. For 

the four cases tabulated in table 2.3 we may thus infer that  approximately follows a 

binomial distribution, that is,  when , and  

when . Table 2.4 shows the expected value of  for the four cases above 

calculated from the general expression given by equation (2.08), and from the 

expression , respectively. The deviation between the two models is marginal. 

1φ φ→ 6

7

µ

kTP µ≤

µ 1φ φ→

( )tp z

(6,1 )tZ Bi e λ−−∼ 60µ = (7,1 )tZ Bi e λ−−∼

150µ = tZ

(1 )m e λ−−�

 
Table 2.4: The expected number of accidents.  is calculated from (2.08), . Percentage deviation 

refers to deviation between  and .   

[ ]tE Z 0.1λ =
[ ]tE Z (1 )m e λ−−�

   

µ  60 150 

σ  10 25 10 25 

[ ]tE Z  0.571 0.560 0.666 0.656 

(1 )m e λ−−�  0.571 0.571 0.667 0.667 

Percentage 

deviation 

0.00 1.97 0.02 1.60 

 

The error induced by the use of the binomial model will in the general case depend on the 

detailed distribution of threshold pressures and the location and spread of . To 

provide an upper bound to this error, consider a homogenous minefield which at time t 

contains m mines characterized by the set . Let  denote the expected 

value of  (calculated from (2.08)), and let , where  is given by 

(2.16). It can be shown that 

(p CP)

]

)

1 2{ , ,..., }mτ τ τ [ tE Z

tZ [ ] (1binE Z m e λ−= −� binZ

                                          
( )min
2

( )max
2

(1 )

(1 )

| [ ] [ ] |

( )

( )(1

bin
t

erfc

erfc

E Z E Z

m e e

m m e

λ
τ

τ

λ

λ

−
+

−
−

− −

−

− ≤

− +

− −

�

� )

                                (2.17) 

where 
                                                                      (2.18)        min 1 2min{ , ,..., | 0},m kτ τ τ τ τ+ = ≥
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and 
                                                          (2.19) max 1 2max{ , ,..., | 0}.m kτ τ τ τ τ− = <

)

 

The deviation of  from  will according to equation (2.17) depend on both m  

and , but as , the deviation goes inevitably to zero. This is 

illustrated in fig. 2.10 where the deviation |  is shown as a function of 

and  for  and .  

[ ]binE Z [ ]tE Z �

m max min( , ) ( ,τ τ− + → −∞ ∞
[ ] [ ] |bin

tE Z E Z−

minτ+ maxτ− 10m = 6m =�

 
Fig.2.10. | [  as a function of  and .  ] [ ] |bin

tE Z E Z− minτ+ maxτ− 10, 6, 0.1.m m λ= = =�
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2.4 Bayesian Data Analysis 

The calculation of p z  for a homogeneous minefield demands in general a detailed 

knowledge of the distribution of threshold pressures and a knowledge of the location and 

spread of . However, if information is at hand which allows us to conclude that 

 for all mines present, it follows from the previous paragraph that 

( )t

(p CP)

1

i m e λ−−�∼

i m θ�∼

0;1[

| |kτ �

 

                                                 Z B                                 (2.20) ( ,1 ),t

or simply 

                                                     Z B                                 (2.21) ( , ),t

 
where . Consequently, a binomial distribution will under these circum-

stances give a satisfactory description of the probability of minefield accidents.  

1 ]e λθ −= − ∈
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Unfortunately, we do not in general know the true values of either m  or θ . We might 

however have some information at hand which makes it possible to make a qualified guess 

at their true values. A convenient way to quantify our belief about m  or  is in terms of a 

probability distribution. Such a probability distribution will necessarily be time-dependent 

and should be regularly updated by taking the number of accidents observed during future 

observation periods into consideration.  

�

� θ

 

Updating of probability distributions can be carried out in a convenient way by Bayes’ 

theorem. To recast our risk assessment problem into a form which makes it suitable to 

Bayesian data analysis, let  denote our prior distribution as to the number of 

functional mines present at time t in the minefield under study. The probability 

distribution  can be written as 

( )t mπ �

( )tp z

 

                                                                           (2.22) 
0

( ) ( | ) ( )t t
m

p z p z m mπ
=

=∑
�

� �t

t

where 

                                                                            (2.23) 
1if 0

( | 0)
0 else

t

t

z
p z m

⎧ =⎪⎪⎪= = ⎨⎪⎪⎪⎩
�

and 

                                       (2.24) 
( | , ) ( | ) if max(1, )

( | 1)
0 else.

t t
t

p z m m d m z
p z m

θ π θ θ⎧⎪ ≥⎪⎪≥ = ⎨⎪⎪⎪⎩

∫ � � �
�

 

The term  in (2.24) denotes our prior distribution of θ  conditioned on m  

covering the period . The inclusion of the term  in the summation in (2.22) 

simply means that we do not exclude the possibility that the minefield under study 

actually contains zero functional mines.  

( | )t mπ θ � �

( )t∆ 0m =�

 

What is needed to calculate  is consequently the prior distributions  ( )tp z

  

                                                                              (2.25) ( ) { (0), (1),...}t t tmπ π π=�

and 

                                                                              (2.26) ( | ) for 1.t m mπ θ ≥� �
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For  we may write  and  collectively as the prior joint distribution 1m ≥� ( )t mπ � ( | )t mπ θ �

 

                                                                              (2.27) ( , ) ( | ) ( )t t tm mπ θ π θ π=� � m�

t

).π �

t

�

t

z

 

From  in (2.22) we may calculate whatever property of interest and subsequently 

make a risk assessment of the minefield covering the period .  

( )tp z

( )t∆

 

Assume now that the minefield under study is not selected for mine clearance, and a 

period  passes away during which  minefield accidents are observed. According to 

Bayes’ theorem, the posterior distribution  for  is given as   

( )t∆ tz

( | )t m zπ � 0m =�

  

                                                    (2.28) ( 0 | ) ( | 0) ( 0t t t tm z p z m mπ = ∝ = =� �

 

In the case  the posterior distribution  can be calculated as    1m ≥� ( , | )t m zπ θ�

     

                                                    (2.29) ( , | ) ( | , ) ( | ) ( ).t t t t tm z p z m m mπ θ θ π θ π∝� � �

 

From  in (2.29) the posterior marginal distribution   ( , | )t m zπ θ�

 

                                                (2.30) ( | ) { (0 | ), (1 | ), (2 | )...},t t t t t t t tm z z z zπ π π π=�

 

and the posterior conditional distribution 

 

                                                                              (2.31) ( | , ) for 1t tm z mπ θ ≥� �

 

can be derived. The link between (2.30) and (2.31) and the corresponding distributions 

valid at t=1 is given by the relations 

 

                                                                          (2.32) ( )( ) ( | )t t t t tm m zπ π+∆ = +� �

and 

                                                      (2.33) ( )( | , ) ( | , )t t t t t tm z m z zπ θ π θ+∆ = +� �
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By use of the updates (2.32) and (2.33) we can make an updated risk assessment covering 

the period [  by the calculation of ( ); 2 ( )]t t t t+∆ + ∆

 

                                                   (2.34) ( ) ( ) ( )
0

( ) ( | ) ( |t t t t t t t
m

p z p z m m zπ+∆ +∆ +∆
=

=∑
�

� � )

 

The method outlined above is of course only valid if the conditions determining  are 

identical in two successive observation periods. If essential conditions have changed (except 

the number of mines present), new conditional distributions of  based on the available 

information have to be set up.  

θ

θ

 

In the following paragraphs illustrative examples of the application of (2.34) will be given.   

 

2.5. Application of Bayesian Data Analysis: Example 1    

To test the utility of the Bayesian approach outlined above we will illustrate the mode of 

operation of (2.34) by a hypothetical example covering several observation periods. The 

example may serve two purposes: 1) support the view that reliable risk assessments of 

minefields in general have to be based on careful probability calculations; 2) illustrate that 

(2.34) offers an approach to risk assessment which has the potential of generating reliable 

estimates.    

 

Now, consider a hypothetical minefield containing 10 functional mines at  and 

characterized by 

0t =
0.1θ = . Consequently, . More generally we have that 

 for all  where  denotes the number of functional mines left at time 

t. Due to the stochastic nature of  the accident pattern observed during the coming 

observations periods might show very different forms. This is illustrated in fig. 2.11 (on the 

following page) which displays the accident pattern obtained from four simulations 

covering 30 successive observation periods starting at . In each observation period  

was determined by sampling from a binomial distribution . 

0 (10, 0.1)Z Bi∼

( , 0.1)t tZ Bi m�∼ 0t ≥ tm�

tZ

0t = tz

( , 0.1)tBi m�

 

A hypothetical observer who has access to the recorded number of casualties within the 

first few observation periods from one of the simulations in fig. 2.11, and who is ignorant 

about the true content of mines in the minefield under study, will have great difficulties in 

making any kind of reliable risk assessment of the minefield. That is, simply counting the 
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number of minefield accidents within say the first four observation periods does not reveal 

much about what to be expected in the future. To interpret the recorded observations in a 

balanced way the observer needs complementary information.     

 
Fig. 2.11. Simulation of accident pattern from hypothetical minefield during 30 successive observation 

periods. The minefield contains 10 functional mines at t = 0, and . The number of accidents recorded 

within the first four observations periods goes from zero accidents (simulation 2) to 5 (simulation 3). 

0.1θ =
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2
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3
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Assume now that our hypothetical observer wishes to interpret the accident pattern from 

simulation 1 through Bayesian data analysis as outlined in the previous paragraph. More 

specifically, he wants to make statistical inferences about the true values of m  and  at 

time t by means of the accident pattern  and Bayesian updating. As to the 

observer’s choice of prior distributions and , let us consider the two options 

tabulated in table 2.5 below (and illustrated in fig. 2.12 on the following page). In both 

cases the observer assumes that  at t = 0, and  is assumed independent of 

, i.e., . 

� θ

0 1 1{ , ,..., }tz z z −

0( )mπ � 0( | )mπ θ �

30m ≤� 0( | )mπ θ �

m� 0 0( | ) ( )mπ θ π θ=�

 
Table 2.5. The observer’s two sets of prior distributions.      

 

Prior distributions Choice 1 Choice 2 

0( )mπ �  (30)m UD� ∼  1
3(30, )m Bi� ∼  

[ ]E m�  15 10 

0( )π θ  (0,1)Uθ ∼  (5, 45)Beθ ∼  

[ ]E θ  0.5 0.1 
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Fig. 2.12. The observer’s two sets of prior distributions. See table 2.5 for technical details.  
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Choice 1 makes up what might be termed a non-informative set of priors. That is, apart 

from the restriction  the prior  assigns equal possibility to all values of m . A 

similar observation goes with . In the case of Choice 2, the expected values of m  and 

 do in fact coincide with the true values of m  and θ  in the minefield at , but a 

degree of uncertainty is reflected through the depicted variances of m and θ .  

30m ≤� 0( )mπ � �

0( )π θ �

θ � 0t =
�

 

Fig. 2.13 on the following page shows the marginal posteriors  and 

 obtained for successive values of t when the prior distributions are as 

given in table 2.5. The marginal distribution  was for  generated 

from the conditioned distribution  by the relation 

0 1 1( | , ,..., )t tm z z zπ −�

0 1 1( | , ,..., )t z z zπ θ −t

t

t

t−

0 1 1( | , ,..., )t z z zπ θ − 0t >

0 1 1( | , , ,..., )t m z z zπ θ −�
 

                                  (2.35) 0 1 1 0 1 1 0 1 1
1

( | , ,..., ) ( | , , ,..., ) ( | , ,..., ).t t t t t
m

z z z m z z z m z z zπ θ π θ π− −
=

∝∑
�

� �

The impact of the sequence of accidents  on the shape and location of the 

generated posterior distributions is clearly illustrated in fig. 2.13. Thus if very dispersed 

distributions are applied at  (Choice 1), the generated posterior distributions are 

highly displaced and reshaped relative to the distributions valid at . On the other 

hand, if very localized distributions are applied at  (Choice 2), the generated 

posteriors more or less maintain the shapes of the priors applied at .   

0 1 1{ , ,..., }tz z z −

0t =
0t =

0t =
0t =
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Fig. 2.13. Marginal posterior distribution of m  and  for successive values of t. The posteriors are based on 

the priors specified in table 2.5 and the accident pattern from simulation 1 in fig.2.11.   
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The observations made above seem to agree with common sense. That is, if the observer of 

the minefield under study has no or very little information at hand about the true values 

of m and , the observer should apply very disperse prior distributions at  reflecting 

his lack of knowledge. As a consequence, high importance will be attached to the observed 

number of accidents when the dispersed prior distributions are updated through Bayes’ 

theorem. This seems reasonable as the accident statistics are the only information 

available. On the contrary, if the observer has very detailed information at hand which 

allows him to set up very localized priors at , these prior distributions will only be 

slightly affected by the observed accident pattern. That is, a very extreme accident pattern 

has to be observed if the observer is to change his initial beliefs about the true values of  

and  

� θ 0t =

0t =

m� .θ

 

The true number of functional mines left in the hypothetical minefield at time t can easily 

be inferred from fig. 2.11. Similarly, from the marginal distributions  

and  the expected value of m  and  can be calculated for increasing 
0 1 1( | , ,..., )t tm z z zπ −�

0 1 1( | , ,..., )t z z zπ θ −t � θ
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values of t. In what follows these quantities will be denoted  and , 

respectively. Fig. 2.14 below illustrates to what extent  and  deviate  from 

their true values for increasing values of t. It emerges clearly from the depicted graphs that 

the deviations between true and expected values are sensitive to the choice of prior 

distributions. In the limit t  it is observed that , as expected. As long as 

there are mines left,  converges to its true value for increasing values of t.   

tm< >� tθ< >

tm< >� tθ< >

→ ∞ 0tm< > →�

tθ< >

 

Fig. 2.14. Deviation between true and expected value of m� and  for increasing values of t. Choice 1 and 

Choice 2  refer to the prior distributions defined in table 2.5. 
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Of major importance in the present context is how the combined action of the marginal 

and conditioned distributions of m  and , respectively, determines the distribution 

 (defined in (2.22)). In fig. 2.15 on the following page the expected number of 

accidents looking one observation period ahead is shown for increasing values of t. 

Included in the same plot is the true average , where  can be inferred 

from fig. 2.11. Not surprisingly, the deviations between the true and estimated value of 

 is sensitive to the choice of prior distributions. While the true average inevitable 

� θ

( )tp z

t tZ m θ< >= ⋅� tm�

tZ< >
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decreases for every detonated mine, this is not necessarily the case if  is calculated 

by Bayesian updating. However, in the limit t ,  as expected.  
tZ< >

→ ∞ 0tZ< >→

 
Fig. 2.15. The expected number of accidents in the coming observation period as a function of t. The black 

curve is calculated as . The red curve is calculated by Bayesian updating.      t tZ m θ< >= ⋅�

 

 
1 5 10 15 20 25 30

t
0.2
0.4
0.6
0.8

1

<Zt> Set 1

estimated
true

1 5 10 15 20 25 30
t

0.2
0.4
0.6
0.8

1

<Zt>Choice 1 Set 2Choice 2 

estimated
true

 
 

The theoretical case examined over the last few pages indicates that risk assessments of a 

minefield based on Bayesian data analysis is a feasible and sound approach as it gives a 

balanced weighing of prior knowledge and later obtained accident statistics. In a real-life 

application only reliable accident statistics from a single or a few observation periods will 

be available. It is therefore essential to provide informative prior distributions. A 

thorough discussion about how prior distributions based on various types of information 

can be set up is covered by chapter 4 - 14. Until then an additional example will be 

given to illustrate how the Bayesian approach can be of support when different 

minefields are to be ranked according to risk.  

 
 
2.6 Application of Bayesian Data Analysis: Example 2 
In the introduction to the present chapter we considered as our point of departure a 

hypothetical post-conflict region containing a large number of mine affected areas. Recall 

that the chief aim of the derivations made so far is to develop a mathematical model 

which will enable us to rank those mine affected areas in proportion to the risk they pose 

to the surrounding society.                

 

To illustrate by a simple example how minefields can be ranked according to risk, consider 

two minefields, i.e., minefield 1 and minefield 2, which at time t = 0 have been assigned 
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the prior distributions  and  listed in table 2.6. Thus the minefields are 

identical with respect to  but different with respect to . The applied priors 

are illustrated in fig. 2.16 and fig. 2.17, respectively.  

0( )mπ � 0( | )mπ θ �

0( )mπ � 0( | )mπ θ �

 
Table 2.6. Features of prior distributions for minefield 1 and minefield 2.  

 

Minefield 0( )mπ �  [ ]E m�  [ ]V m�  0( )π θ  [ ]E θ  [ ]V θ  0[ ]E Z  Rank 

1 1
3(30, )Bi  10 6.67 (5,50)Be  0.091 0.0015 0.91 1 

2 1
3(30, )Bi  10 6.67 (1,10)Be  0.091 0.0069 0.91 1 

 

 

Fig. 2.16.  for minefield 1 and 2.                        Fig. 2.17. Red curve:  for minefield 1; blue 0( )mπ � 0( )π θ
                                                                           curve:  for minefield 2.  0( )π θ
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Based on the given prior distributions the second last column in table 2.6 shows the 

expected number of casualties in the two minefields for the coming period  where 

 has been calculated from (2.22). As  in both minefields, minefield 1 and 

minefield 2 are ascribed the same rank as shown in the last column of table 2.6. That is, 

the risk of a minefield is equated with the expected number of casualties in the coming 

observation period. In general, we will ascribe the minefield with the largest value of  

a rank of 1 and give it priority with respect to mine clearance.      

(0)∆

0[E Z ]

0 0

0[ ] 0.91E Z =

[ ]tE Z

 

Assume now that none of the minefields from above are cleared during , and let  

denote the number of accidents which are actually observed in both minefields during 

. By means of the posterior distributions  and  and the relations 

(2.32) and (2.33) updated rankings of the minefields valid at t = 1 can be obtained. Table 

2.7 below shows the calculated rankings based on two scenarios:  and . 

(0)∆ 0z

(0)∆ 0( | )m zπ � 0( | , )m zπ θ �

0 0z = 0 1z =
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  Table 2.7: Updated rankings of minefield 1 and minefield 2 at t = 1. 
 

Scenario 0 0z =  0 1z =  

Minefield 
1[ ]E Z  Rank 1[ ]E Z  Rank 

1 0.73 1 0.83 2 
2 0.45 2 0.84 1 

 

In the case , the expected value of accidents for the coming observation period  

is readjusted downwards, i.e.,  for both minefields, see table 2.7. This is 

explained by the fact that the outcome  is below the expected value of 0.91. 

However, the adjustment downwards is relatively stronger for minefield 2. Consequently, 

at t = 1 minefield 1 is ranked 1. 

0 0z = (1)∆

1[ ] 0.91E Z <

0 0z =

 

The greater sensitivity of minefield 2 to the observation  is due to the dispersed 

prior distribution of . This is illustrated in fig. 2.18.a where the posterior distribution 

 for minefield 2 is displayed together with the prior distribution Beta(1,10). In 

the case  the posterior distribution of θ  is clearly displaced to smaller values of  

which leads to a downwards adjusted value of . The corresponding posterior 

distribution of  for minefield 1 is displaced only slightly relative to its localized prior 

distribution, as it is seen from fig. 2.18.b.   

0 0z =
θ

0( | 10, )zπ θ 0

0 0z = θ

1[ ]E Z

θ

 
Fig. 2.18.a.                                                               Fig. 2.18.b. 

Conditioned posterior distribution for minefield 2.            Conditioned posterior distribution for minefield 1. 
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In the case , which is above the expected number of accidents in , the posterior 

distribution  for both minefields is displaced to larger values of θ  relative to the 
0 1z = (0)∆

0( | 10,1)π θ
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corresponding prior distribution. The effect is however largest in the case of minefield 2 

due to its dispersed prior distribution of θ . Consequently, minefield 2 is ranked 1. Note 

that the expected number of accidents in  is adjusted downwards as both minefields at 

t = 1 contain one mine less relative to t = 0.  

(1)∆

 

From the observations made above we can once again conclude that the Bayesian 

approach induces a balanced weighing of prior information and later incoming accident 

statistics which makes it particularly useful in relation to mine action.  

 

 

2.7 Further Notes on Ranking of Minefields 

In the example studied in paragraph 2.6 just two minefields were ranked, and the ranking 

was founded on the number of accidents to be expected in the two minefields in a coming 

observation period. More generally we may consider the ranking of K homogenous 

minefields, each minefield being characterized by a probability distribution , and we 

may consider alternative ways to summarize the contents of  than simply stating its 

expected value.   

( )( k
tp z )

)

( )( )k
tp z

 

To elaborate on this subject, note that the expected value of  does make up an 

important piece of information, but a ranking based on expected values alone may not 

exploit the full content of information inherent in the collective set of distributions 

. To give an easy comprehensible (but rather artificial) example, consider two 

hypothetical minefields, minefield 1 and minefield 2, where , and  

with a probability of 1 as illustrated in fig. 2.19 below.      

( )( k
tp z

( ){ ( )}k
tp z

(1) (10,0.1)tZ Bi∼ (2) 1tZ =

 
Fig. 2.19.  for two hypothetical minefields. , and  with a probability of 1.   ( )tp z (1) (10, 0.1)tZ Bi∼ (2) 1tZ =
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As to the expected number of accidents we have that , but the 

variances are different as  and . Consequently, a ranking based on 

expected values will assign identical ranks to the two minefields. A simple calculation 

shows that , , and . In 

other words, the most probable event is that the same number of accidents are observed in 

both minefields. However, if the observed number of accidents are different, the number of 

accidents in minefield 2 will in the majority of cases be larger than the number of 

accidents in minefield 1. Thus minefield 2 poses a larger risk than minefield 1 and 

minefield 2 should therefore be assigned a rank of 1.      

(1) (2) 1t tZ Z< > = < > =
2

1 0.9σ = 2
2 0σ =

(1) (2)( ) 0.349t tp Z Z< = (1) (2)( ) 0.387t tp Z Z= = (1) (2)( ) 0.264t tp Z Z> =

   

One way to differentiate between minefields characterized by distributions  with 

identical expected values but different variances is to treat the ranks of the minefields as 

stochastic variables and subsequently rank the minefields according to their expected 

ranks. To illustrate this approach, let the stochastic rank be defined as 

( )( k
tp z )

,jk

kR
 

                                       ( ) ( )

1 1

( )
K K

k j
k t t

j j

R I Z Z I
= =

= ≤ =∑ ∑

)j

jk

                                (2.36) 

 

where  is the indicator function, and  [Laird et al., 1989]. In (2.36) 

the minefield with the largest outcome of  is assigned a rank of 1. From (2.36) the 

expected rank  can be calculated as 

()I ⋅ ( ) ( )( k
jk t tI I Z Z= ≤

tZ

k̂R

                                              
1

ˆ ,
K

k k
j

R R P
=

= < >=∑                                 (2.37) 

 

where , and  for all . Returning to the example from fig. 

2.19, the expected rank of minefield 1 and 2 according to (2.37) turns out to be  

and , respectively. To obtain integer ranks we simply arrange the expected ranks 

in increasing order. As  we obtain as wished that minefield 2 is ranked as 1. 

1kkP = ( ) ( )( )k
jk t tP p Z Z= ≤ j

1̂

j k≠

1̂ 1.74R =

2̂ 1.65R =

2̂R R<
 

An additional merit of the method outlined above is that the variances and covariances of 

the stochastic ranks can be calculated [for further details, see Laird et al., 1989]. 
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2.8 Conclusions 

The conceptual framework build up in the present paper is simple but important as it 

clarifies the interplay between the key factors behind minefield accidents. It is evident from 

the preceding discussions that reliable risk assessments entail a balanced weighing of the 

various pieces of information which may be available to a decision maker. A risk 

assessment methodology which simply equates the risk of a minefield with the recorded 

number of accidents, or alternatively the believed number of mines present, is clearly too 

simplistic an approach.   

 

The introduced risk model appears as a useful decision support tool to decision makers 

involved in mine action. As the application of the model is founded on Bayesian data 

analysis, risk assessments based on the model will reflect a balanced weighing of prior 

information and accident statistics from the minefield. The sensitivity of the risk model to 

the choice of prior distributions calls however for further analysis, and the development of 

refined methods for providing prior distributions are needed. Strategies for the provision of 

prior distributions from historical data and Bayesian modelling will be the main theme in 

the following chapters. 
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Chapter 3 

Generation of Minefield Data 
 

 

To carry on the analysis initiated in chapter 2, realistic data sets including accident 

statistics, mine clearance data, minefield area types, etc. are needed. Unfortunately, the 

available information about these issues is very sparse. For example, while the previously 

mentioned landmine impact survey reports contain accident statistics from several mine 

affected communities covering an observation period of 2 years, the same reports lack 

detailed information about the nature of the corresponding minefields which limits the 

statistical utility of the data. Through the included accident statistics the landmine impact 

surveys do however give an impression of the magnitude of the mine contamination 

problem  and its impact. For comparison, table 3.1 below illustrates the distribution of 

minefield/UXO accidents in two surveyed countries. It appears from table 3.1 that for 

both countries, the majority of the mine affected communities has not recorded any 

accidents due to the presence of mines or UXO within two years prior to the survey.    

                            
Surveyed Country Yemen Mozambique 

No. of recent victims No. of communities No. of communities 

    0 514 710 

    1   39   45 

    2   23   11 

    3     5   13 

    4     4     2 

    5     1     3 

    6     1     0 

    7     3     0 

    8     1     1 

  10     0     1 

>10     1     1 

unknown     0     4 

 

 

 
      
       

 

 

 

 

 

 

 

 

 

Table 3.1. Source: Canadian International Demining Corps et al., 2001, Survey Action Centre et al., 2000.  

 

As the landmine impact survey reports do not contain any information about the likely 

number of mines in the minefields under study, nothing can be concluded from the 
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accident statistics in table 3.1 about the probability of encountering a mine. Concerning 

information about the observed density distribution of landmines, only a few references in 

the literature are available including Bajic (Bajic et al., 2003) and Trevelyan (Trevelyan, 

1997). While Bajic et al. apply clearance data collected in Croatia to derive empirical 

statistical models of minefield areas and spatial densities of AP- and AT mines (see fig. 3.1 

- 3.2 below), Trevelyan uses clearance reports from mine clearance operations undertaken 

in Afghanistan to estimate clearance rates (see fig. 3.3 and 3.4 for observed mine 

densities). Neither the study by Trevelyan nor the study by Bajic et al. include any kind of 

accident statistics covering the studied minefields.   

 
Fig. 3.1 (left): Lognormal model of minefield areas based on observations made in Croatia 1998-2001. Data 

source: (Bajic et al., 2003). Fig. 3.2 (right): Lognormal models of mine densities based on Croatia data. Solid 

line: AT mines, dashed line: AP mines. Data source: (Bajic et al., 2003). 
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Fig. 3.3 (left): Observed AP mine densities based on approximately 1700 cleared minefields in Afghanistan  

until mid-May 1997. Data source: (Trevelyan, 1997). Fig. 3.4 (right): Statistical features of frequency 

distribution shown in fig. 3.3. Data source: (Trevelyan, 1997).     
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From the figures included above it appears that the same asymmetric pattern is observed 

in both countries as to the mine density, that is, most minefields in a given country 

display a relatively small mine density, while a few number of minefields have a relatively 

high mine density. The median mine density is however considerably higher in Afghanistan 

than in Croatia. Note from fig. 3.4 that around 23% of the areas in Afghanistan originally 

classified as minefields turned out to be mine free.      

 

In the chapters which follow, various methods which may prepare the way for real-life 

applications of the binomial model derived in chapter 2 will be introduced. To substantiate 

the utility of the proposed methods it would be preferable to test each suggested method 

on one or several relevant data sets picked out from ongoing or completed mine clearance 

programmes. However, the fragmentary nature of the data available at present in 

Humanitarian Mine Action excludes the possibility of performing such tests. Examination 

of the various methods on simulated but realistic data sets is therefore the only option left.  

 

To generate a simulated data set covering 1000 virtual minefields, which suffices in the 

present context, the following procedure was followed: Firstly, 1000 sets of binomial 

parameters ( , )j jm θ�  were sampled (for details, see below) where jm�  denotes the number of 

functional mines present in minefield j at time t = -1, and jθ  denotes the probability of a 

randomly selected mine being triggered by a person during the following observation 

period. Secondly, based on the 1000 pairs of binomial parameters, accident statistics were 

simulated by making 1 draw jy  from each of the 1000 binomial distributions, that is, 

( , )j j jy Bi m θ�∼ . Each minefield in the simulated data set is thus characterized by three 

records as shown in table 3.2. 
                                 Table 3.2. Records in simulated data set.  

Minefield jm�  jθ  jy  

1 1m�  1θ  1y  

2 2m�  2θ  2y  

--- --- ---  

1000 1000m�  1000θ  1000y  

 

Fig. 3.5 below illustrates the frequency of virtual minefields containing a given number of 

functional mines. The outcome depicted in fig. 3.5 was generated by sampling jm�  1000 

times from a Log-Series distribution. Table 3.3 tabulates selected quantiles.   
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      Fig. 3.5  Frequency of minefields containing             Fig. 3.6. Frequency of  θ  for virtual minefields. 

      m  functional mines �

 

Table 3.3.  Quantiles corresponding to distribution of m  in 1000 virtual minefields. �

 

X% Number of  mines  

in  X% quantile 

10%  0 

20%   0 

30%    1 

40%   2 

50%   4 

60%    7 

70%    14 

80%    25 

90%   51 

100% 475 

Median 17.74 

  

The distribution of the sampled values of the probability parameter jθ  corresponding to 

jm�  is depicted in fig. 3.6. This distribution was generated in the following way: Initially, a 

parameter jα  was drawn 1000 times from a normal distribution N . For every 

drawn 

( | ,j )α µ τ

jα , the corresponding jθ  was calculated through the transformation 

. The specific choice of parameters (  corresponds to 

 which leads to a realistic pattern of accident statistics, see table 3.4 on the 

following page.    

1(1 )j j
j e eα αθ −= + , ) ( 4.7,0.5)µ τ = −

[ ] 0.010E θ =

 

Note that the typical virtual minefield contains a small number of mines or no mines, 

while a few number of minefields contain a very large number of mines, as it emerges from 
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fig. 3.5 and table 3.3. The vast majority of the virtual minefields exhibits furthermore no 

or very few recorded accidents as it emerges from table 3.3.  
 

Table 3.4  Simulated accident statistics from 1000 virtual minefields. 

 

Number of 

observed casualties 

Number of 

minefields 

0 887 

1 81 

2 19 

3 7 

4 2 

5 2 

6 2 

¥7 0 

 

 

In the following chapters the simulated data set will be used in two different settings. In 

chapter 4 it is assumed that a hypothetical decision maker has access to a small sample 

 picked at random from the simulated data set. From 

this sample it is possible to estimate the distribution of the binomial parameters 

  through Bayesian hierarchical modelling.  

1 1 2 2{( , ),( , ), ..., ( , )}M Mk k k k k Km y m y m y� � �

1 2 1000{ , , ..., }θ θ θ
 

In the chapters 5 – 13 the hypothetical decision maker has access to the complete accident 

statistics  from the simulated data set but does not have information about 

the mine content in any individual minefield under study. In this case an estimate of the 

distribution of  can be provided through the application of finite mixture 

models.  

1 2 1000{ , , ..., }y y y

1 2 1000{ , , ..., }θ θ θ
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Chapter 4 

Hierarchical Bayesian Models 
 

 
 

4.1. Introduction 

In chapter 2 it was concluded that the number of casualties in a mine affected area under 

fairly general assumptions can be considered to be the outcome of a binomial process. A 

given minefield can therefore be characterized by its current set of binomial parameters 

, and the expected number of casualties in the future can be estimated via estimates 

of m  and θ .  

( , )m θ�
�

 

In the Bayesian risk model suggested in chapter 2, estimates of m  and  are requested in 

terms of probability distributions. More specifically, the following set of prior distributions 

have to be provided:    

� θ

                                                                           (4.01) ( ) { (0), (1),...},t t tmπ π π=�
 
                                                                               (4.02) ( | ) for 1.t m mπ θ ≥� �

 

Of the two parameters m  and θ , information about m  appears at first to be the more 

accessible. That is, several sources can provide information to a decision maker concerning 

the possible degree of mine contamination in a mine affected area. These sources include 

military mine maps and related archives, military staff and other ex-combatants with local 

knowledge, and local or regional authorities. In the future it may furthermore become 

technically possible to complement these sources of information by actual geophysical 

measurements or other kinds of measurements in the minefield. Therefore, through a 

proper synthesis of the different pieces of information it should be possible to construct a 

prior .  

� �

( )t mπ �

 

The major obstacle to a real-life application of the risk model derived in chapter 2 seems 

therefore to be the lack of actual information about the binomial parameter θ . In the 

present report we have therefore decided to focus exclusively on ways to extract 

information about  through statistical modelling.  θ
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With the above aim in mind, two different types of models will be examined. In the 

present chapter it will be demonstrated through the application of a hierarchical Bayesian 

model how a probability distribution  can be generated by combining accident 

statistics and clearance data from mine clearance operations. In the chapters 5-13 a so-

called finite mixture model will be studied which only requires the availability of accident 

statistics. 

( )p θ

 

The contents of the present chapter will be as follows: In paragraph 4.2, the hierarchical 

Bayesian model, which is based on the Beta-distribution, is introduced. Paragraph 4.3 

follows with a short discussion about the choice of a prior distribution for the parameters 

specifying the Beta-distribution. In paragraph 4.4, the concept of Monte Carlo importance 

sampling is introduced. This involves in particular the selection of a usable importance 

sampling density. A numerical study follows in paragraph 4.5 based on the minefield data 

introduced in chapter 3. A summary and final conclusions are given in paragraph 4.6. 

 

 

4.2. A Hierarchical Bayesian Model 

To generate a qualified estimate of the binomial parameter θ  related to some minefield, 

consider a group of previously mine affected areas, say {area1, area2, ..., areaJ}. These areas 

might for example be geographically located in a different but comparable region or 

country where a larger mine clearance programme has been completed. For each area from 

the above list we will assume that the following two observations are available: 1) The 

number of casualties recorded two years preceding the mine clearance operation; 2) The 

number of functional mines located during the mine clearance operation. Based on such 

information the following table can be set up:  

 
Table 4.01. Data from J  previously mine affected areas.  for all areas.  1

i i
t tm m z− = +� � 1

i
t−

)

 

Area Number of mines 

located at time t 

Casualties 

during   ( 1t∆ −

Mines at 

time  1t −
Unknown 

1 1
tm�  1

1tz −  
1

1tm −�  
1θ  

2 2
tm�  2

1tz −  2
1tm −�  2θ  

... … … … … 

J  J
tm�  1

J
tz −  1

J
tm −�  

Jθ  
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Table 4.01 makes up what we might term historical data. The main observation to be 

made is that by adding the numbers  and , the set  is accessible for each 

minefield. We will assume that m  for all areas included in table 4.01.  

i
tm� 1

i
tz − 1 1{ ,i i

t tz m− −� }

− >�

,..., }Jθ θ θ

1 0i
t

 

The column located at the extreme right in table 4.01 contains the unknown binomial 

parameters  covering the J minefields. To set up a probability distribution 

 we will assume that the members of the set { ,  make up random samples 

from the 

1 2{ , ,..., }Jθ θ θ

( )p θ 1 2

same probability distribution. This is a valid assumption if no complementary 

information is available about the individual minefields. As θ , a convenient choice 

of a common probability distribution is the Beta-distribution. That is, we assume 

]0;1[j ∈

α β ∀∼

 

                                              θ                                          (4.03) ( , )j Beta j

which implies that 

                                      11( | , ) (1 ) .
( , )

j jp
B

αθ α β θ θ
α β

−= − 1
j
β−                            (4.04) 

  

The hierarchical relationship between the observations 1
j
tz , the parameters − jθ  and the 

hyperparameters  and β  can be sketched as illustrated in fig. 4.01 below.   α

 
Figure 4.01 Hierarchical structure between hyperparameters, binomial parameters, and observations.                         
                                                                                                                  

                                             

      

 

 

  

               z  1θ 1
1t−

−

−
−
−

 

 

To avoid a cluttered notation we will in the equations which follow simply write { ,1 1}j j
t tz m− −�  

as { , }j jz m . Through the information contained in table 4.01 we can update our knowledge 

about the hyperparameters ( ,  by the application of Bayes’ theorem: )α β
 

              (4.05) 1 2 1 2 1 2 1 2( , | , , ..., , , , ..., ) ( , , ..., | , , ..., , , ) ( , )J J J Jp z z z m m m p z z z m m m pα β α β α β∝

                                     θ                 2
2

1tz −

                                    θ               z    3
3

1t

                                                          

                                        

                         θ          1J
1

1
J
tz

                         θ             J 1
J
tz −

a 
b 
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where  in (4.05) denotes our prior distribution of  and . We will return to this 

issue later. The likelihood function appearing in (4.05) can be written as 

( , )p α β α β

 

              

1 2 1 2 1 2
1

1

1

1

1 1

( , , ..., | , , ..., , , ) ( | , , ..., , , )

( | , ) ( | , )

(1 )
( , )

( , )
.

( , )

J

J J j J
j

J

j j j j j
j

J j j j
j

jj

J j j j j

jj

j j jz m z

p z z z m m m p z m m m

p z m p d

m
dz B

m B z m z
z B

α β

α β α β

θ θ α β θ

θ θ θ
α β

α β
α β

=

=

=

=

+ − + − −

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎛ ⎞ −⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞ + + −⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∏

∏ ∫

∏∫

∏

                (4.06) 

 

Note that the distribution of jθ  is independent of the unit index j. This implies in 

particular that jm  by assumption conveys no information about jθ .  

 

Inserting the likelihood function (4.06) into (4.05) we get the following expression for the 

posterior distribution of a and b: 

 

        1 2 1 2
1

( , )
( , | , , ..., , , , ..., ) ( , ).

( , )

J j j j j
J J

jj

m B z m z
p z z z m m m pz B

α βα β α β
α β=

⎡ ⎤⎛ ⎞ + + −⎟⎜⎢ ⎥∝ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦
∏        (4.07) 

                                                                   

Consider now an existing minefield characterized by the binomial parameter . If the 

parameter  originates from the same “superpopulation” as the parameters , 

we can exploit the posterior  to generate an estimate of 

the distribution of θ . That is, we will write  as                    

θ

θ 1 2{ , ,..., }Jθ θ θ

1 2 1 2( , | , , ..., , , , ..., )Jp z z z m m mα β J

( )p θ
                  

                   
1 2 1 2

11

1

( ) ( | , ) ( , | , , ..., , , , ..., )

(1 ) ( , )
( , ) .

( , ) ( , )

J J

J
j j j

j

p p p z z z m m m d d

B z m z
p d d

B B

βα

θ θ α β α β α β

θ θ α β α β α β
α β α β

−−

=

=

⎡ ⎤− + + −⎢ ⎥∝ ⎢ ⎥⎣ ⎦

∫∫

∏∫∫
         (4.08) 

 

 

The estimate  can be used in different ways. One possible choice is to insert  as 

our prior distribution of  in the Bayesian risk model derived in chapter 2. Alternatively, 

we can estimate  and possibly  from  and use these estimates as partial 

( )p θ ( )p θ
θ

[ ]E θ [ ]Var θ ( )p θ
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information. In chapter 14 we will give a detailed account of the construction of priors 

based on partial information.  

 

We have thus arrived at a method which in a simple way extracts information about the 

binomial parameter θ . However, the limitations of the method should be fully realized. 

That is, the use of  as a prior distribution for  for some minefield can only be 

justified if the minefield under study in all essential features is similar to the minefields 

which make up the historical data. 

( )p θ θ

 

An alternative to (4.08) can be set up if the data { , }j jz m  are supplemented by 

explanatory variables 1 2( , ,..., )j j j
kx x x x= j  for all . One possible choice is to express the 

relation between 

j

jθ  and the explanatory variables jx  as 

 

                                                log ,
1

j j

j
xθ α β

θ
= +

−
                                     (4.09) 

from which it follows that 

                                             
exp( ) .

1 exp( )

j

j j

x
x

α βθ
α β
+=

+ +
                                     (4.10) 

 

As ( , )j j jz Bi m θ∼  it follows from (4.10) that the corresponding likelihood function takes 

the form                                            

                        

1 2
1 2 1 2

1

( , , ..., | , , , , ..., , , , ..., )

exp( ) exp( )
1 .

1 exp( ) 1 exp( )

J
J J

jJ j

j jjj

jz

p z z z m m m x x x

m x x
z x x

α β

α β α β
α β α β=

−⎡ ⎤ ⎡⎛ ⎞ + +⎟⎜ ⎢ ⎥ ⎢= ⎟ −⎜ ⎟⎜ ⎢ ⎥ ⎢⎟⎜ + + + +⎝ ⎠ ⎣ ⎦ ⎣
∏

j j jm z⎤
⎥
⎥⎦

           (4.11)              

  

According to Bayes’ theorem the conditioned posterior distribution of  can now be 

obtained as 

,α β

                       (4.12) 
1 2

1 2 1 2

1 2 1 2
1 2 1 2

( , | , , ..., , , , ..., , , , ..., )

( , , ..., | , , , , ..., , , , ..., ) ( , | , , ..., ),

J
J J

J J
J J

p z z z m m m x x x

p z z z m m m x x x p x x x

α β

α β α β∝

 

where  denotes the prior distribution of  conditioned on the 

explanatory variables. From the posterior distribution in (4.12), an estimate  

conditioned on the explanatory variables can subsequently be generated.  

1 2( , | , , ..., )Jp x x xα β ,α β
( )p θ
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In a real-life application, an estimate of  based on (4.12) is preferable to (4.08) as the 

inclusion of explanatory variables improves a decision makers ability to discriminate 

between various types of minefields. However, to keep the discussions at a general level in 

the following paragraph we will focus exclusively on model (4.08).       

( )p θ

 

 

4.3. Specification of Prior Distribution 

To apply model (4.08), the prior  has to be specified. On the assumption that no 

information about  and β  is available, we are looking for a probability distribution 

whose influence on the posterior  is marginal, that is, the 

posterior distribution should be dominated by the likelihood function (4.06). Priors 

carrying this property are generally termed noninformative priors. Different principles may 

be used when constructing noninformative priors, but two well established methods are 

Jeffreys’ prior [Jeffreys, 1946] and the reference prior approach as defined by Bernardo 

[Bernardo, 1979]. In the case of the Beta-distribution parameters  and β , both of the 

above methods identify the noninformative prior as the square root of the Fisher 

information matrix, that is,   

( , )p α β
α

1 2 1 2( , | , , ..., , , , ..., )Jp z z z m m mα β J

α

                                                 1/2( , ) ( , ) ,p Iα β α β∝                                      (4.13) 

 

where the Fisher information matrix is given as 

 

                                                (4.14) 
( ) ( ) ( )

( , ) ,
( ) ( ) ( )

I
ψ α ψ α β ψ α β

α β
ψ α β ψ β ψ α β

⎡ ⎤′ ′ ′− + − +⎢ ⎥= ⎢ ⎥′ ′ ′− + − +⎢ ⎥⎣ ⎦
                                 

( )xψ′  being the trigamma function. Apart from having an intractable analytical expression 

due to the presence of the trigamma function, the square root of the Fisher information is 

improper, that is, 

                                            1/2

0 0

( , )I d dα β α β
∞ ∞

=∞∫ ∫                                   (4.15) 

 

which is due to the fact that 1/2( , )I α β → ∞  when either α  or β  goes to zero. 

Consequently, the square root of the Fisher information cannot be applied as a prior 

distribution unless the corresponding posterior p z  can be proved to be 1 2( , | , , ..., )Jz zα β
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proper. To avoid such complications we will replace (4.13) by a function “similar” in shape 

but with a simpler analytical expression. A convenient choice turns out to be 

               . 

                                             5/2

1( , ) .
( )

p α β
α β

∝
+

                                        (4.16) 

 

(4.16) is in fact improper, but it can be shown that the corresponding posterior 

 is proper if there exists at least one observation  where 0 . 

For a thorough discussion of (4.16), see [Gelman et al., 2003, p. 128]. Fig. 4.02 and 4.03 

below illustrate for comparison 3D-plots of 

1 2( , | , , ..., )Jp z z zα β iz i iz m< <

1/2( , )I α β  and , respectively.    5/2( )α β −+
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Fig. 4.03: Plot of 5/2( , ) ( )p α β α β −∝ +    Fig. 4.02. Plot of Jeffreys’ prior for the Beta 

distribution parameters, 1/2( , ) ( , )p Iα β α β∝ .   
 

 

 

 

4.4. Monte Carlo Integration with Importance Sampling 

The integral 

                                   (4.17) 1 2 1 2( ) ( | , ) ( , | , , ..., , , , ..., )J Jp p p z z z m m m dθ θ α β α β= ∫∫ dα β

                          

cannot be undertaken analytically, and it is difficult to evaluate (4.17) by some quadrature 

method for large values of J. An approximation to  can however be generated by the 

method of importance sampling. The main idea in importance sampling is simple. Let 

( )p θ
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( , )I α β  denote a distribution which is easy to sample from, and whose support includes the 

support of . Writing  as  1 2 1 2( , | , , ..., , , , ..., )J Jp z z z m m mα β ( )p θ
 

           

1 2 1 2

1 2 1 2

( ) ( | , ) ( , | , , ..., , , , ..., )

( , | , , ..., , , , ..., )
( | , ) ( , )

( , )

( | , ) ( , ) ( , ) ,

J J

J J

p p p z z z m m m d d

p z z z m m m
Be I d d

I

Be w I d d

θ θ α β α β α β

α βθ α β α β α β
α β

θ α β α β α β α β

=

=

=

∫∫
∫∫

∫∫

             (4.18) 

 

( )p θ  can be approximated by  defined as ( )mp θ
 

                                
1

1

( , )
( ) ( | , ) ,

( , )

m
i i

m i i m
i k k

k

w
p Be

w

α βθ θ α β
α β=

=

≡∑
∑

                              (4.19) 

where 

                             1 2 1 2( , | , , ..., , , , ..., )
( , )

( , )
i i J J

i i
i i

p z z z m m m
w

I
α βα β

α β
= ,                       (4.20) 

 

and  denotes points sampled from . It can be shown 

that   
1 1 2 2{( , ),( , ),...,( , )}m mα β α β α β ( , )I α β

                                                                                               (4.21) ( ) ( )mp pθ → θ

J

J

 

for m  given that  exists and is finite [Geweke, 1989, Tanner 1993]. The density 

 is denoted the importance sampling density, and  in (4.20) is denoted an 

importance weight. The value of  is invariant with respect to an arbitrary scaling of 

 or . Consequently, the normalization constant of 

the posterior  is not needed.        

→ ∞ ( )p θ

( , )I α β ( , )i iw α β
( )mp θ

( , )I α β 1 2 1 2( , | , , ..., , , , ..., )Jp z z z m m mα β

1 2 1 2( , | , , ..., , , , ..., )Jp z z z m m mα β
 

The main result from (4.19) is that , through an appropriate choice of , can be 

approximated by a linear combination of Beta-distributions. What is uncertain, however, is 

how to choose  in the first place. That is, it is unclear how a given choice of  

affects the numerical accuracy of  and the overall efficiency of the algorithm. To 

elaborate on that, consider a sampling distribution  satisfying   

( )p θ ( , )I α β

( , )I α β ( , )I α β
( )mp θ

( , )I α β
 

                                   ( , ) ( , ) ]0; [ ]0; [,w wα β α β< <∞ ∀ ∈ ∞× ∞                          (4.22) 
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 and                                                                         

                        (4.23) 2
1 2 1 2( | , ) ( , ) ( , | , , ..., , , , ..., ) .J JBe w p z z z m m m d dθ α β α β α β α β <∞∫∫

  

It can then be shown [Geweke, 1989] that 

                                                            

                                        2( ( ) ( )) (0, ),mm p p Nθ θ σ− ⇒                                  (4.24) 

 where           

              (4.25)         [ ]
2

2
1 2 1 2( | , ) ( ) ( , ) ( , | , , ..., , , , ..., ) .J JBe p w p z z z m m m d dσ θ α β θ α β α β∝ −∫∫ α β

J

)

  

From (4.24) it follows that the numerical accuracy of the estimator  in general is 

improved if  is diminished. It appears from (4.25) and (4.20) that  is kept small if 

 is similar in shape to the posterior . Problems 

might arise, however, if the tail of  goes to zero at a higher rate than the posterior 

itself. In that case, very large weights will show up occasionally which will induce the value 

of  to fluctuate severely even after several iterations. 

( )mp θ
2σ 2σ

( , )I α β 1 2 1 2( , | , , ..., , , , ..., )Jp z z z m m mα β

( , )I α β

( )mp θ
 

Proof of (4.24) demands in general a detailed mathematical analysis of the involved 

posterior and importance sampling distribution, in particular investigations of the tail 

behaviour of both distributions. In the present context we will not spent time on 

mathematical proofs but instead provide an illustrative example of the potential problems 

involved in setting up a sampling distribution. Consider therefore the data set in table 4.02 

representing historical data from 50 virtual minefields.  

  
Table 4.02. Historical data. Number of functional mines present in 50 virtual minefields at time  and 

the associated number of casualties observed during the observation period .   
1t −

( 1t∆ −

 

1tm −�  1tz −  

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 7, 8, 

8, 8, 8, 8, 10, 10, 14, 16, 17, 18, 25, 25, 36, 44, 45, 131, 133 

0 

40, 43, 52, 55, 75 1 

295 2 

75 3 

219 6 
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The historical data in table 4.02 were constructed from the large data set introduced in 

chapter 3 (containing 1000 minefields) by random sampling from the subset containing at 

least one mine. Table 4.02 shows the number of functional mines at time  in the 50 

sampled minefields grouped according to the associated number of casualties observed 

during .       

1t −

( 1t∆ − )

 

Fig. 4.04 below shows the posterior  obtained from the accident 

statistics and mine data in table 4.02. The posterior distribution was calculated in 

accordance with (4.05).    

( , | )p historical dataα β

 
Fig. 4.04. Posterior distribution of the Beta-distribution parameters  based on accident statistics and 

clearance data from 50 minefields. “Historical data” refers to table 4.02. 
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To recast the posterior distribution into a form which resembles a multivariate normal 

distribution, we will introduce the following reparameterization: 

 

                                                 log ,r α
β

=                                                  (4.26) 

                                                      (4.27) log( ).s α β= +

 

The posterior distribution in terms of the new coordinates  can be written as ,r s
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1 2 1 2

1 2 1 2

1 2 1 2

( , | , , ..., , , , ..., )

( , | , , ..., , , , ..., )

( , | , , ..., , , , ..., ) .

J J

J J

J J

p r s z z z m m m

d d
dr dsp z z z m m m
d d
dr ds

p z z z m m m

α α

α β
β β

α β αβ

=

=

                       (4.28) 

 

Fig. 4.05 below shows the posterior  which resembles a bivariate 

normal distribution. However, the posterior in fig. 4.05 is characterized by a strong 

shoulder extending into the positive direction of the s-axis. A bivariate normal 

approximation  is shown in fig. 4.06 where µ  is equal to the mode of 

, and  is the negative of the hessian of  

evaluated at the mode.            

( , | )p r s historical data

(( , ) | , )N r s µ Σ

( , | )p r s historical data 1−Σ ( , | )p r s historical data

                                                                   
Fig. 4.05 (left figure below). Posterior distribution of r and s based on historical data from table 4.02.                            

             

pHr, s»historical dataL

-5

-4

-3

r

2
4

6
8

10

s

-5

-4

-3

r

NHHr,sL» m,SL

-5

-4

-3

r

2
4

6
8

10

s

-5

-4

-3

r

 
Fig. 4.06 (right figure above). Multivariate normal approximation to  from fig. 4.05. 

, , , .    

( , | )p r s historical data

( 4.46, 4.89)µ = − 11 0.100Σ = 12 21 0.0799Σ = Σ = − 22 1.057Σ =

 

To investigate the usefulness of the normal approximation as an importance sampling 

density, fig. 4.07 on the following page illustrates the location of the contour lines of the 

posterior  around its mode . Fig. 4.07 clearly shows 

that the rate of decrease of the posterior is smallest in the positive directions of the 

superimposed dashed lines.  

( , | )p r s historical data ( 4.46, 4.89)µ = −

 61



Fig. 4.07 (left figure below). Contourplot of the posterior . In the positive directions of 

the dashed lines the rate of decrease of the posterior is particular small.  
( , | )p r s historical data
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Fig. 4.08 (right figure above). Single contour line of posterior . The probability along 

the contour line is  of the probability at the mode . Each of the four axis originating 

from the mode are parameterized          

( , | )p r s historical data

0.001 ( 4.46, 4.89)µ = −
( )( ) , , 1,2.j

j i ix Te i jδ µ δ= + =

 

In fig. 4.08 the superimposed lines from fig. 4.07 are shown together with the contour line 

along which the posterior  has decreased to 0.001 of its value at the 

mode. Based on the superimposed lines we can define four axes as shown in fig. 4.08, every 

axis originating from the mode  and parameterized as  

( , | )p r s historical data

µ
 

                                       ( )( ) , , 1,2;j
j i ix Te i jδ µ δ= + =                                    (4.29) 

 

where , , ,  and (1) (1, 0)e = (2) (0,1)e = 1 0δ ≥ 2 0δ ≤
0.37 0

.
0.93 1

T =
−

 

 

The four axis are labelled according to the scheme given in table 4.03.      
                                          
 Table 4.03. Axis labels.  

Axis 1 2 3 4 

i 1 2 1 2 

j 1 1 2 2 
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Fig. 4.09 illustrates the sizes of the weights  along each of the above axes if the 

bivariate normal distribution from fig. 4.07 is used as the importance sampling density. 

Not surprisingly, very large weights show up along Axis 1 and Axis 3 as the normal 

approximation  goes to zero at a faster rate than  in 

these particular directions. Consequently, one should expect large fluctuations in the value 

of  when a point located along or in the vicinity of these axes is sampled by the 

importance sampling density.  

( , )w r s

(( , ) | , )N r s µ Σ ( , | )p r s historical data

( )mp θ

      
Fig. 4.09. The logarithm to the weight  along each of the axis defined in (4.29). The vertical dashed 

line in each plot indicates the value of  which corresponds to the 0.001-contour line shown in fig. 4.08. 

Points sampled along or in the vicinity of Axis 1 and Axis 3 will in particular give rise to very large weights.  

( , )w r s

iδ
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To remedy the above defects, an alternative to the normal approximation is needed. One 

possibility is the so-called k-variate split normal density [Geweke, 1989] which allows one to 

adjust the spread in each of the directions defined in (4.29). The k-variate split normal 

density  is specified by four sets of parameters. In the case k = 2, the 

parameters  and r  are two-dimensional vectors with positive components, and T  is a 

*( , , , )N T q rµ
,qµ
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two-by-two matrix. In what follows  denotes the indicator function for nonnegative 

real numbers and sgn .    

sgn ( )n+

( ) 1 sgn ( )n n− += −
 

A member of the population  is constructed in the following way:  2x ∈ \ *( , , , )N T q rµ
 

                          1)   where  denotes the identity matrix.               (4.30) 2(0, )N Iε ∼ 2I

          2)                              (4.31) [ sgn ( ) sgn ( )] , 1,2.i i i i i iq r iη ε ε ε+ −= + =

          3)  x .                                                                 (4.32) Tµ η= +

*( ( | , , , ))Log N x T q rµ  is consequently given as (up to an additive constant) 

 

                  
2

*

1

log ( | , , , ) [log( ) sgn ( ) log( ) sgn ( )] .
2

i i i i
i

N x T q r q r ε εµ ε ε+ −

=

′
∝ − + −∑        (4.33) 

 

From (4.31) it follows that the spread of x  around the mode µ  can be adjusted by 

changing the parameters  and . Assume now that the following inequality holds:  1 2 1, ,q q r 2r

 

                  
*

*

( ( ) | ) ( ( ) | , , , )
for 0 ,

( (0) | ) ( (0) | , , , )
j i j i

i
j j

p x historical data N x T q r
p x historical data N x T q r

δ δ µ δ
µ

≤ < ≤∆ij          (4.34) 

 

that is, the rate of decline of  is larger than the rate of decline of 

 along the parameterized lines 

( ( ) | )j ip x historical dataδ
*( ( ) | , , , )j iN x T q rδ µ ( )j ix δ  for 0 iδ< ≤ ∆ij . It follows that   

 

                          

* *

( ( ) | ) ( (0) | )

( ( ) | , , , ) ( (0) | , , , )

( ( )) ( (0)) for 0 .

j i j

j i j

j i j i ij

p x historical data p x historical data

N x T q r N x T q r

w x w x

δ

δ µ µ

δ δ

≤

⇓

≤ < ≤∆

                   (4.35) 

 

Consequently, the magnitudes of the weights  are bounded from above by 

 along the parameterized line. A convenient feature of the k-variate split normal 

distribution is that (4.35) can be satisfied on a parameterized line of finite length by a 

simple adjustment of the parameters  and . By appropriate choices of these 

( ( ))j iw x δ
( (0))jw x

1 2 1, ,q q r 2r
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parameters we can thus avoid that points with low probabilities sampled along the 

parameterized lines are assigned extremely large weights.  

 

To illustrate how suitable values of  and  can be determined in the present case, 

note from (4.30) - (4.33) that the ratios 
1 2 1, ,q q r 2r

                                        
*

1
*

2
11

2( ( ) | , , , ) , 1,
( (0) | , , , )

j

j

jqN x T q r e j
N x T q r

δ
δ µ
µ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠⎟⎜
−

= = 2;                       (4.36) 

and 

                                        
*

2
*

2
21

2( ( ) | , , , ) , 1,
( (0) | , , , )

j

j

jrN x T q r e j
N x T q r

δ
δ µ
µ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎟⎜ ⎟

−

= = 2;                       (4.37) 

 

where ( )j ix δ  is given by (4.29). If inequality (4.34) is satisfied for 0 iδ< ≤ ∆ij , it follows 

from (4.36) and (4.37) that  

                            

1

1
1 1

1

2
11

2( ( ) | )
for 1,2

( (0) | )

for 0 ,
( (0) | )

2 log
( ( ) | )

j

j

j j
j

j

jqp x historical data
e j

p x historical data

q
p x historical data

p x historical data

δ
δ

δ δ

δ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎟

−

≤ =

⇓

≥ < ≤∆

             (4.38)               

and  

                                      

2

2
2 2

2

2
21

2( ( ) | )
for 1,2

( (0) | )

for 0.
( (0) | )

2 log
( ( ) | )

j

j

j j
j

j

jrp x historical data
e j

p x historical data

r
p x historical data

p x historical data

δ
δ

δ δ

δ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎟

−

≤ =

⇓

≥ − <∆ ≤

             (4.39)                  

 

If we define ( )j if δ  as  
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                              ( ) ,
( (0) | )

2 log
( ( ) | )

i
j i

j

j i

f
p x historical data

p x historical data

δδ

δ

=                               (4.40) 

 

the constraints on jq  and jr  from (4.38) and (4.39) can be rephrased as 

 

                                                          (4.41) 1 1 1( ) for 0 and 1,2;j j jq f jδ δ≥ < ≤∆ =

 

                                                       (4.42) 2 2 2( ) for 0 and 1,2.j j jr f jδ δ≥ −∆ ≤ < =

 

Fig. 4.10 below illustrates the behaviour of ( )j if δ  along the four axis. Regarding , for 

example, fig. 4.10 shows that if , the corresponding weights  

for  .        

1 1( )f δ

1 1.22q = ( ( )) ( (0))j i jw x w xδ ≤

10 δ< ≤ 20

 
Fig. 4.10. ( )j if δ  for . Given that  or ( ) is larger or equal to the maximum value of , {1,2i j ∈ } jq jr ( )j if δ  

within a given interval, the corresponding weights  within the same interval. The vertical 

dashed line in each plot indicates the size of  at which the value of the posterior  

is  0.001 of its value at the mode . 

( ( )) ( (0))j i jw x w xδ ≤

iδ ( ( ) | )j ip x historical dataδ
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Based on fig. 4.10 we will make the following assignments with respect to  and : 1 2 1, ,q q r 2r

 

                                             
1 1

2 2

1.22 1.00

3.50 1.00

q r
q r =                                         (4.43)  

 

With the choice , for example, it follows from fig. 4.10 that inequality (4.34) is 

violated if . However, the value of the split normal density evaluated in a 

point belonging to this “area” is less than  relative to its value at the mode. In other 

words,  the Monte Carlo importance sampling has to include several points if large weights 

are to show up due to sampling in this area. The most critical assignment is . In 

this case inequality (4.34) is violated if . At this point, the value of the split 

normal density is as large as 0.001 relative to its value at the mode.   

1 1r =

2 10.39δ <−
2310−

2 3.50q =

1 13.0δ >

 

Fig. 4.11 shows the distribution of 3000 points sampled from the 2-variate normal split 

density with  and  specified in (4.41) ,  and with T  given as  1 2 1, ,q q r 2r ( 4.46, 4.89)µ = −

 

                                               
0.37 0

.
0.93 1

T =
−

                                             (4.44) 

 
Fig. 4.11. 3000 sampled points from , the 2-variate split normal density. , 

the matrix T is defined in (4.42) and the vectors q  and r are specified in (4.41). The axes intersect the mode 

of the posterior .      

*( | , , , )N x T q rµ ( 4.46, 4.89)µ = −
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Using the split normal density as the importance sampling density, the following 

paragraph illustrates how the distribution of the binomial parameter θ  can be estimated 

through Monte Carlo importance sampling.       
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4.5. Estimation of the Distribution of q through Monte Carlo Importance Sampling 

Having constructed a suitable importance sampling density, the estimation of the 

distribution of  can be accomplished through Monte Carlo importance sampling as 

prescribed by (4.19). The three graphs positioned in the left column of fig. 4.12 show the 

estimate of  (based on the posterior ) after 100, 1000 and 5000 

sampled points, respectively. The plots positioned in the right column of fig. 4.12 illustrate 

the corresponding distribution of importance weights .  

θ

( )p θ ( , | )p r s historical data

( , )w r s

 
Fig. 4.12. Estimation of distribution of θ  through Monte Carlo importance sampling. Sample points are 

obtained by sampling from the split normal density introduced in paragraph 4.4. n = number of sample 

points; red solid curve represents the exact distribution of θ  according to chapter 3.    
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A summary of the properties of  can be found in table 4.04 below. ( )p θ
 

Table 4.04. Expected value and spread of θ  according to the three estimates of  from fig 4.12. The last 

row “DATA” refers to the expected value and spread of the true distribution of , i.e., the distribution 

generated in chapter 3. Max w denotes the largest weight assigned to a sampled point during the Monte 

Carlo integration.    

( )p θ
θ

Sample Points [ ]E θ  [ ]σ θ  Max w 

100 0.0129 0.0139 4.2 

1000 0.0121 0.0122 14.0 

5000 0.0117 0.0118 46.4 

DATA 0.0102 0.0053 - 

 

It appears from fig. 4.12 that the Monte Carlo importance sampling method works well in 

the present case. After just 100 sampled points the broad features of  are established. 

More sample points are however needed to smooth out the crisps which appear in . 

The distribution of the importance weights displays a modest spread.      

( )p θ
( )p θ

 

The essential point to be observed in fig. 4.12 is the approximate agreement between the 

estimate  obtained through Bayesian data analysis and the true distribution of θ  (as 

defined in chapter 3). As expected, the spread of  is overestimated considerably. Notable 

too is the limiting property that  when . This phenomenon can be traced 

back  to components  (entering into the expression for ) which have α -

values being less than 1.  

( )p θ
θ

( )p θ → ∞ 0θ →

( | , )Be θ α β ( )p θ

 

To investigate the sensitivity of  to the number of minefields included as historical 

data, two further studies were made including 25 and 100 minefields, respectively, 

following the approach outlined above. The data set consisting of 25 minefields was derived 

from the data set appearing in table 4.02 by discarding 25 minefields selected by random. 

The data set including 100 minefields was constructed by adding 50 new minefields 

(selected by random from the data set in chapter 3) to the 50 virtual minefields from table 

4.02. The estimates of  are shown in fig. 4.13 and summarized in table 4.05. Based on 

a data set including just 25 minefields, the estimate of  is off by approximately 150% 

from the true value, as shown in table 4.05. The estimate of  based on information 

from 100 minefields is in the examined case essentially equal to the true average of .     

( )p θ

( )p θ
[ ]E θ

[ ]E θ
θ
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Fig. 4.13. Left figure:  obtained from Monte Carlo importance sampling based on data set including 25 

minefields. Right figure: Sampling based on data set including 100 minefields. 

( )p θ

     

0.01 0.02 0.03 0.04 0.05
q

20

40

60

80

100
pHqL Imp. Sampling: n = 5000

0.01 0.02 0.03 0.04 0.05
q

20

40

60

80

100
pHqL Imp. Sampling: n = 5000

Fig.  

 

Table 4.05. The sensitivity of the average and spread of  calculated from the estimate  to different 

number of minefields included in the data set. The last row “DATA” refers to the expected value and spread 

of the true distribution of θ , i.e., the distribution generated in chapter 3. 

θ ( )p θ

                                    
Number of minefields [ ]E θ  [ ]σ θ  

25 0.0251 0.0878 

50 0.0121 0.0122 

100 0.0103 0.0115 

DATA 0.0102 0.0053 

 

     

 

4.6 Summary and Conclusion               

Assessing the risk of a minefield through the risk model derived in chapter 2 presupposes 

estimates of the binomial parameters m  and θ  characterizing the state of the minefield. In 

the present chapter we have shown how an estimate of the probability distribution of  

can be generated through Bayesian data analysis given that clearance data and accident 

statistics from former minefields similar to the minefield under study are available.       

�

θ

 

The main assumption underlying the model calculations in the present chapter is the 

hypothesis that the set of binomial parameters  associated with the former 

minefields are sampled from the same superpopulation, that is, a Beta-distribution 

characterized by the hyperparameters α  and . Taking the accident statistics from the 

1 2{ , ,..., }Jθ θ θ

β
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former minefields into consideration, a posterior distribution of α  and  can subsequently 

be generated by use of Bayes’ theorem. From this posterior distribution, an estimate of 

 can finally be provided through Monte Carlo importance sampling. The use of 

importance sampling as an integration technique entails the construction of a suitable 

importance sampling density. In the present context it has been found that the 2-variate 

split normal density makes up a flexible choice which seems to overcome some of the 

shortcomings displayed by simple multivariate normal distributions. 

β

( )p θ

 

To keep the discussions simple, the data set applied in the present chapter has not 

involved explanatory variables. The inclusion of explanatory variables will however 

improve a decision makers ability to discriminate between various types of minefields, and 

explanatory variables should therefore be included if possible in any real-life application.  
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Chapter 5 

Finite Mixture Models 

 

 

5.1 Introduction 

In chapter 4 it was shown how a probability distribution  could be generated through 

Bayesian data analysis by combining accident statistics and clearance data from mine 

clearance operations. The main theme below is how to estimate  if only accident 

statistics are available. That is, we will assume that the number of casualties caused by 

mines in minefield j within the last 2 years has been recorded for a total of M minefields, 

i.e. . The minefields under study have not been cleared yet, however, and 

detailed knowledge about the content of mines in the individual minefields is therefore 

lacking.  

( )p θ

( )p θ

{1,2,..., }j ∈ M

 

To make the above estimation problem computational approachable we will, like it was 

done in chapter 4, assume that the binomial parameters  covering the M 

minefields are sampled from the 
1 2{ , ,..., }Mθ θ θ

same probability distribution. As already discussed in 

chapter 4 this is a perfectly valid assumption if we have no complementary information 

about the individual minefields. Mathematically, the above assumption can be expressed in 

various ways. In the present context it is convenient to introduce the auxiliary variable jα  

defined as              

                                            ( )
1

j
j

j
Log θ ,

θ
=

−
α                                                (5.1) 

  

and let jα  follow a normal distribution as α , i.e.  Rj ∈

j

 

                                                                                   (5.2) ( ) ( | , ) .j jp Nα α µ τ= ∀

It follows that 

                                2( | , ) ( | , ) ( | , )4 ( ).
2

j
j j j

j

dp p N Cosh
d
αθ µ τ α µ τ α µ τ
θ

= = jα                    (5.3)         

 

From here on the index in jθ  will be omitted as jθ  follows the same distribution for all j.  
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Fig. 5.1 below illustrates  for different sets of ( , . A more detailed account of 

(5.3) will be given in chapter 7. 

( | , )p θ µ τ )µ τ

 
Fig. 5.1  calculated according to (5.3) for three different sets of ( , . ( | , )p θ µ τ )µ τ
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Expression (5.2) can easily be modified if a set of explanatory variables 1 2( , ,..., )j j

nx x x j  is 

attached each observation jy . In this case (5.2) can be replaced by the expression 

  

                                           0 1 1( ) ( | ... , ) .j j
j j n np N x xα α µ β β τ= + + ∀ j

x

                                      (5.4) 

 

In other words, if two observations are ascribed the explanatory variables , 

the corresponding α ’s are by assumption sampled from the same normal distribution with 

average value  and variance .  

1 2( , ,..., )nx x x

0 1 1 ... n nxµ β β+ + τ

 

To simplify the following discussions we will in the present report exclusively work with 

model (5.2). This implies that our initial estimation problem is reduced to the estimation 

of the normal distribution parameters ( , . We are nevertheless still left with the 

problem that detailed knowledge about the degree of mine contamination in the individual 

minefield is lacking. A flexible type of statistical model which allows us to incorporate this 

uncertainty is the so-called finite mixture model. 

)µ τ

 

 

5.2 Finite Mixture Models 

According to the risk model derived in chapter 2 we may consider the observation jy  as 

the outcome of a stochastic process, where the random variable ( , )j j jY Bi m θ�∼  given that 
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0jm >� . If jm� = 0 we obviously have that . In the present context the 

parameter 

( 0) 1jp Y = =

jm refers to the number of functional mines present in minefield j at time t = -1 

(that is, 2 years ago). By use of (5.2) and (5.3) this can altogether be written as 

�

 

              

0

2

2

( ) if  = 0

( | ) 1 exp( ) ( )exp( ) if  > 0
2 (1 exp( )) 2

( | , , ),

j

j j j
mj

j

I y m
mp y m m y d my

f y m

α α µ α
πτ α τ

µ τ

∞

−∞

⎧⎪⎪⎪⎪⎪= = ⎛ ⎞⎨ − −⎟⎜⎪ ⎟⎜⎪ ⎟⎜ ⎟⎜⎪ +⎝ ⎠⎪⎪⎩

≡

∫
�

     (5.5) 

                                           
where 0( )jI y  denotes the indicator function defined as 
 

                                                        I y                                                              (5.6) 0

1 if 0
( )

0 else.
j

j

y⎧ =⎪⎪⎪= ⎨⎪⎪⎪⎩
 

Due to their different content of mines at t = -1 we may distribute the M minefields into 

say g clusters. This partitioning is sketched in fig. 5.2 where the cluster denoted 

contains all minefields which contained m mines at t = -1.   mG

 
Fig. 5.2. Partitioning of minefields into clusters conditioned on their content of mines at t = -1. 
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In the general case, the number of different clusters and the number of minefields 

belonging to each cluster will be unknown to a decision maker. One can, however, make a 

qualified guess. In a Bayesian framework such a guess can be made by the specification of 

a vector  where 0 1  and 
1 2

( , , ..., )
gm m mλ λ λ λ= imλ≤ ≤

  

                                                         (5.7) 
1

1.
g

m
i

iλ
=

=∑
 

That is, the number of components in the vector λ  denotes the believed number of 

clusters, and the magnitude of  denotes the probability that a miλ randomly selected 

minefield contains  functional mines at t = -1. Therefore  denotes the expected 

number of minefields belonging to cluster . Strictly speaking, the probabilities specified 

in the vector λ  are prior probabilities in the sense that λ  is stated prior to the realization 

of the outcomes (y

im miM λ⋅

miG

1, y2, …, yM).        

 

As ( )j i ip m m λ= =� m

.i

 for all j it follows from (5.5) that  can be written as ( | , , )jp y µ τ λ

 

                                                                    (5.8) 
1

( | , , ) ( | , , )
g

j m j
i

ip y f y mµ τ λ λ µ τ
=

=∑
 

The likelihood function given by (5.8) makes up a special case of what might be termed a 

finite mixture model. The quantity  in (5.8) is termed a mixture parameter or simply a 

weight, whereas the distribution  is termed a mixture component.  
mi

λ

( | , , )f y m µ τ
 

After the realization of the outcome jy , the posterior probability  is 

according to Bayes’ rule given as 

( | , ,j i jp m m y µ τ λ=� , )

                                ( | , , )( | , , , ) .
( | , , )

m j i
j i j

j

i f y mp m m y
p y

λ µ τµ τ λ
µ τ λ

= =�                            (5.9) 

 

If we finally assume that the M random variables (Y1, Y2, …, YM) are independent, it 

follows from (5.8) that   

 

                                 1 2
1

( , , ..., | , , ) ( | , , ).
M

M j
j

p y y y p yµ τ λ µ τ λ
=

=∏                                    (5.10) 
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The extension of (5.8) to the more general case where the individual observations are 

assigned explanatory variables 1 2( , , ..., )j j j
kx x x x= j

0

 is straightforward. Following the 

notation from (5.4) we can thus replace (5.8) by the expression 

 

                                                       (5.11) 0
1

( | , , , , ) ( | , , ),
g

j j
j m j i

i
ip y x f y m xµ β τ λ λ µ β τ

=

= +∑
 

where . Assuming that the observations (y1 2( , , ..., )kβ β β β= 1, y2, …, yM) are conditionally 

independent, it follows from (5.11) that 

                            

                   1 2
1 2 0 0

1

( , , ..., | , , ..., , , , , ) ( | , , , , ).
M

M j
M j

j

p y y y x x x p y xµ β τ λ µ β τ λ
=

=∏                (5.12) 

 

In (5.11) the explanatory variables enter exclusively into the expression of the mixture 

components, that is, they are not informative about the mixture parameters . A final 

generalizing step is to make  dependent on the explanatory variables as expressed in 

(5.13): 

miλ

miλ

                                           (5.13) 0
0 0

1

( | , , , , ) ( , ) ( | , , ).
g

j j
j m m j i

i
i ip y x x f y m xµ β τ λ λ λ µ β τ

=

= +∑ j

 

In (5.13) the variable  is just a constant. 0
miλ

 

Equation (5.13) is a very flexible expression, and a posterior distribution  based 

on (5.13) can be determined through Bayesian data analysis if (5.13) is supplemented by 

prior distributions for the entering variables. In the present context, however, we will focus 

on the simple mixture model given by (5.8) to keep discussions simple. The generalizations 

of (5.8) shown above might therefore seem of minor relevance. They are, however, included 

to illustrate the large potential of finite mixture models in relation to mine action, and the 

utility of (5.11) and (5.13) should be tested in the future on real data sets to exploit this 

potential.               

( | , )p y xθ

 

So focusing on the simple mixture model given by (5.8), let us recall that the quantity of 

primary interest in the present context is the posterior  which can be extracted ( | )p yθ
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from (5.8) in the following way: First,  is calculated by means of Bayes’ rule, 

i.e. 

( , , | )p µ τ λ y

y

y

y

                                                                (5.14) 

1

( , , | ) ( | , , ) ( , ) ( )

( | , , ) ( , ) ( ),
M

j
j

p y p y p p

p y p p

µ τ λ µ τ λ µ τ λ

µ τ λ µ τ λ
=

∝

=�
 
where  is given by (5.8), and  and  denote the prior distributions 

of  and λ , respectively. Thereafter  can be extracted from  

through the integrations   

( | , , )jp y µ τ λ ( , )p µ τ ( )p λ

( , )µ τ ( | )p yθ ( , , | )p yµ τ λ

               

                                                                    (5.15) 0

0

( | ) ( | , ) ( , | )

( | , ) ( , , | ) ,

p y p p y d d

p p y d d d

θ θ µ τ µ τ τ µ

θ µ τ µ τ λ λ τ µ

∞ ∞

−∞
∞ ∞

−∞

=

=

∫ ∫

∫ ∫ ∫
 
 
where  is given by (5.3), and ( | , )p θ µ τ
  
 
                          (5.16) 1 2 1 2( , , | ) .... ( , , , ,..., | ) ... .g gm m m m m mp y d p y d d dµ τ λ λ µ τ λ λ λ λ λ λ=∫ ∫ ∫ ∫
 

As it emerges from (5.15), it should be a simple matter to obtain  through a double 

integration if the marginal posterior density  can be provided. Unfortunately, 

there are many unclarified matters connected with the provision of . Each of 

these matters will be thoroughly discussed in the coming chapters, but to give a 

preliminary impression we will here touch on the major challenges.    

( | )p yθ

( , | )p µ τ
( , | )p µ τ

 

First of all, to provide , prior distributions  and  are needed as input 

in (5.14). Concerning the vector λ  this includes a decision on the dimension of λ  which 

reflects, as may be recalled, the number of minefield clusters underlying the accident 

statistics (y

( , | )p µ τ ( , )p µ τ ( )p λ

1, y2, …, yM). Given that the dimension of λ  has (somehow) been determined, 

one has next to decide on the  set of integers { ,   to be associated with the 

components of λ , where  signifies the mine content in a minefield which belongs to 

cluster .  

1 2,...}m m

km

kG
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Having determined the dimension of λ  and the associated integers , the next 

problem is to provide analytical expressions for the prior distributions  and . 

Concerning  it has become standard in mixture model calculations to assume that 

, i.e. 

1 2{ , ,...}m m

( , )p µ τ ( )p λ
( )p λ

1 2( , ,..., )gDirichletλ α α∼ α

p yθ

y

y

                                                                                                          (5.17) 1

1

( ) .
g

m
i

i
i

p αλ λ −

=

∝∏
 

Concerning the normal distribution parameters µ  and τ  it seems unlikely that 

information will be available which allows the specification of a very informative prior. It is 

essential, however, to know the sensitivity of  to various choices of . ( | ) ( , )p µ τ
 

Apart from the challenges listed above which are all associated with the specification of 

prior distributions, the integral  from (5.5) poses in itself a problem in two 

ways: Firstly, cannot be evaluated analytically which precludes the possibility 

of getting an analytical expression for . Alternatively one might sample from 

 through Markov Chain Monte Carlo simulation which is the choice made in the 

present work. Secondly, the outcome of the Markov Chain simulation process turns out to 

be very sensitive to the numerical accuracy of the evaluation of . A classical 

numerical integration formula such as  a 20-point Gaussian quadrature formula cannot in 

general provide the demanded accuracy, and an improved numerical integration algorithm 

has therefore to be provided.  

( | , , )f y m µ τ
( | , , )f y m µ τ

( , | )p µ τ
( , | )p µ τ

( | , , )f y m µ τ

 

Each of the problems listed above will be discussed in the coming chapters, and various 

solutions will be suggested.  

 

Before the closing of this introduction a brief comment will be given on the concept of 

indicator variables which is a computational convenient concept in relation to finite 

mixture models. An indicator variable is a label vector jζ  associated each random variable 

jY  indicating the component of origin of jy . Put in another way, if we have g mixture 

components in (5.8), the associated label vector jζ  contains g components for all j and  

 

                                                     (5.18) 
1,   origins from the k'th mixture component

0, else.
j

jk

if y
ζ

⎧⎪⎪⎪= ⎨⎪⎪⎪⎩
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The true values of the indicator variables  are by assumption unknown and 

they are therefore treated as random variables. To clarify this, let 
1 2, , ..., Mζ ζ ζ

1 2( , ,..., )j j j g jε ε ε ε=  

denote an outcome of the indicator jζ , i.e., only one of the components from  are 

different from zero. As 
jε

( )j i ip m m λ= =� m  (the key assumption underlying model (5.8)), we 

have that 

        1 2
1 2( ) ... gj j m m m
j jp ε ε εζ ε λ λ λ= = gj                                   (5.19)  

 

from which it follows that 1 2(1; , ,..., )j m m mgMultinomialζ λ λ∼ λ

y

y

y

 for all j. As the Dirichlet 

distribution (se equation (5.17)) is the conjugate distribution to the Multinomial 

distribution, the introduction of indicator variables turns the conditioned  posterior density 

of λ  into a very simple form, which is very convenient in relation to Markov Chain Monte 

Carlo simulation (see chapter 6).  

 

The concept of indicator variables will be used throughout the following chapters, and it 

implies technically that the posterior  is replaced by the enlarged posterior 

. Further details will be given where it is found relevant in the following 

chapters.     

( , , | )p µ τ λ
( , , , | )p µ τ λ ζ

 

From chapter 8 and further on several implementations of mixture model (5.08) including 

certain extended versions will be given. Before so it seems appropriate to discuss how 

sampling from the posterior  can be performed through Markov Chain Monte 

Carlo simulation. 

( , , , | )p µ τ λ ζ
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Chapter 6 

Markov Chain Monte Carlo Simulation 

 

 

In a Bayesian context, the aim of doing a Markov Chain Monte Carlo simulation (MCMC) 

is to make samples from some posterior distribution , often referred to as the target 

distribution, in the correct proportions. There are different ways to construct a Markov 

Chain whose stationary distribution is equal to . In the Metropolis-Hastings 

algorithm [Hastings, 1970], which is a special kind of a Markov Chain simulation method, a 

sequence of draws  is generated in the following way:  

( | )p yφ

( | )p yφ

0 1 2{ , , ,...}φ φ φ
 

Based on some initial value  which satisfies , a candidate point  is drawn 

from a proposal distribution . The quotient r defined as 

0φ 0( | ) 0p yφ > *φ
* 0( | )J φ φ

 

                                            
* *

0 0

( | )/ ( | )
,

( | )/ ( | )
p y J 0

*p y J
φ φ φ
φ φ φ

=

φ

⎧⎪⎪⎪= ⎨⎪⎪⎪⎩

, , ,...}φ φ φ

φ φ

r                                                (6.01) 

 

is subsequently calculated. Finally  is determined by the rule 1φ

                                       φ                                      (6.02) 
*

1
0

with probability min(r,1)

else.

φ

Under quite general conditions, which includes almost any choice of proposal distribution, 

it can be shown that a sequence of points {  sampled as prescribed above in 

their distribution converges to the exact distribution . Further details about 

regularity conditions, choices of J  and related technical matters, see [Gilks et al. 

1996].    

0 1 2

( | )p yφ
* 0( | )

  
Typically, the parameter  from the target distribution is a vector . 

Instead of updating the complete vector φ  in a single step as sketched in (6.01) and (6.02) 

above, it is often more convenient to update the individual components of  successively 

in g separate steps. More generally,  can be partitioned into blocks of components of 

various dimension which are then updated one at a time. The above strategy might be 

φ 1 2( , ,..., )gφ φ φ φ=

φ

φ
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termed single-component Metropolis-Hastings. The single-component Metropolis-Hastings 

algorithm can be sketched as follows [Gilks et al., 1996, page 10]:  

 

Let  denote the component vector  at iteration 

t+1 after i - 1 completed updating steps. A candidate point  is sampled from a proposal 

distribution , and the quotient r 

1 1 1
1 2 1 1{ , ,..., , ,..., }t t t t t

i i iφ φ φ φ φ φ+ + +
− − += t

g

)

\ { }tiφ φ
*
iφ

*( | ,t t
i i i iJ φ φ φ−

 

                                       
* *

*

( | , )/ ( | , ) ,
( | , )/ ( | , )

t t
i i i i i
t t t t
i i i i i i

p y Jr
p y J
φ φ φ φ φ
φ φ φ φ φ

−

− −
=

t
i−

i

                                          (6.03)         

 

 is subsequently calculated. Finally,  is determined by the rule 1t
iφ
+

                                                                          (6.04) 
*

1
with probability min(r,1)

else.

i
t
i t

i

φ
φ

φ
+

⎧⎪⎪⎪= ⎨⎪⎪⎪⎩
 

Note that  in (6.03) denotes the full conditional distribution of , i.e. *( | , )t
ip yφ φ−

*
iφ

 

                                       
*

*

* *

( , , )( | , )
( , , )

t
i it

i i
t

i i i

p yp y
p y d

φ φφ φ
φ φ φ

−
−

−

= .
∫

                              (6.05) 

 

Note furthermore that every component  is assigned an individual proposal distribution 

. If we, concerning component , make the particular choice 
iφ

*( | , )t t
i i i iJ φ φ φ− iφ

 

                                                                           (6.06)             * *( | , ) ( | , )t t t
i i i i i iJ pφ φ φ φ φ− = ,y −   

 

it follows from (6.03) and (6.04) that the candidate point  is accepted with a probability 

of 1. The proposal distribution given by (6.06) is termed a Gibbs sampler. A particular 

simple situation arises if the Gibbs samplers for all i take the forms of simple standard 

distributions which are easy to sample from. In that case every iteration of the single-

component Metropolis-Hastings algorithm can be carried out as a sequence of draws from 

standard distributions. If (6.06) is applied at one or more steps in the single-component 

Metropolis-Hastings algorithm, this is referred to as Gibbs sampling.  

*
iφ
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In many applications of the single-component Metropolis-Hastings algorithm some of the 

conditioned distributions derived from a given target distribution take the form of simple 

standard distributions whereas others do not. This turns out to be the case too if we look 

at the target distribution  introduced in chapter 5. Starting from 

 we can derive the four conditioned distributions , 

,  and . As shown in appendix A, the conditioned 

distributions  and  have analytical expressions which allow 

Gibbs sampling. This is however not the case concerning  and  

which is due to the integral . Analytical expressions for all conditioned 

distributions can be found in appendix A. 

( , , , | )p µ τ λ ζ y

y

y

( , , , | )p µ τ λ ζ ( | , , , )p yζ µ τ λ
( | , , , )p yλ ζ µ τ ( | , , , )p yµ ζ τ λ ( | , , , )p yτ ζ µ λ

( | , , , )p yζ µ τ λ ( | , , , )p yλ ζ µ τ
( | , , , )p yµ ζ τ λ ( | , , , )p yτ ζ µ λ

( | , , )f y m µ τ

 

Fig. 6.1 below sketches the sampling algorithm which has been used in the present work to 

sample from . Samples from the conditioned distributions  and 

 are obtained directly by Gibbs sampling whereas sampling from 

 and  are obtained using  a normal distribution and a scaled 

inverse c

( , , , | )p µ τ λ ζ ( | , , , )p yζ µ τ λ

( | , , , )p yλ ζ µ τ
( | , , , )p yµ ζ τ λ ( | , , , )p yτ ζ µ λ

2–distribution, respectively, as a proposal distribution. Further documentation can 

be found in appendix A.                

 

Fig 6.1.  Markov-chain simulation by single-component Metropolis-Hastings. 
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The successive samplings from the conditioned distributions constitute the core activity in 

the single-component Metropolis-Hastings algorithm, but as indicated in fig. 6.1 two 

additional components are required to initiate and terminate the Markov chain properly. 

Finally, a numerical integration formula is needed for the evaluation of . ( | , , )f y m µ τ
 

To start the sampling algorithm, an initial vector  is needed (it is not 

necessary to provide an initial indicator vector ). In principle, any vector will do, but to 

obtain a faster convergence of the Markov Chain we use as  a local maximum of 

 added some noise. The so-called EM-algorithm (Expected Maximization) is 

used to generate a local maximum. A thorough introduction to the EM-algorithm can be 

found elsewhere [see for example Gelman et al., 2003, ch. 12]. 

0 0 0{ , , }φ µ τ λ= 0

y

0ζ
0φ

( , , | )p µ τ λ

 

Concerning the termination of the single-component Metropolis-Hastings algorithm, the 

algorithm can be stopped when a “sufficient” number of draws has been sampled from the 

converged Markov Chain. What turns out to be a sufficient number will depend on the 

quantities of interest to be summarized, e.g. modes, quantiles, test statistics or posterior 

probabilities; and the demanded accuracy of the quantities of interest.  

 

A point of some controversy is the discussion about how to monitor the approximate 

convergence of the Markov Chain. In the present implementation we have chosen to use 

the potential scale reduction factor  as suggested by Gelman [Gelman et al., 1992]. In 

their approach m Markov Chain simulations are initiated from m overdispersed 

distributions. After the completion of 2n iterations in each chain, the first half of the 

sampled points from each chain is discarded, and for each scalar quantity ψ of interest the 

variances B and W defined as 

R̂

 

                                            2
. ..

1

(
1

m

j )
j

nB
m

ψ ψ
=

= −
− ∑                                       (6.07) 

 

                                                  2

1

1 m

j
j

W
m =

= ∑s                                              (6.08) 

 

are subsequently calculated, where . ,jψ  ..ψ  and 2
js  are defined as 
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                      2 2
. .. .

1 1 1

1 1 1, , (
1

n m n

j ij j j ij
i j i

s
n m n

ψ ψ ψ ψ ψ ψ
= = =

= = = −
−∑ ∑ ∑ . ) .j              (6.09) 

 

From the expressions above it emerges that the factors B and W represent the between-

sequence variance and the within-sequence variance, respectively.  

 

Based on the factors B and W, the potential scale reduction factor  is defined as R̂

 

                                                
var( | )ˆ ,

y
R

W
ψ=                                           (6.10) 

where  

                                              1 1var( | ) ny W
n n

ψ −= + B                               (6.11) 

 

is an estimate of the marginal posterior variance . var( | )yψ
 

According to Gelman et al., the estimate var( )ψ  represents an overestimate due to the 

overdispersed starting points, whereas W underestimates var  due to the finite length of 

the individual Markov Chain. As n , both 

( )ψ
→ ∞ var( )ψ  and W will approach , and 

 according to (6.10). If the calculated value of  is high after the completion of 2n 

iterations, this seems to indicate that the sampling is far from convergence and improved 

inferences about  can be obtained by continued sampling until .  

var( )ψ
ˆ 1R → R̂

ψ ˆ 1R ≈
 

In the Markov Chain simulations which are to be presented in the following chapters, each 

simulation starts with a prescribed number of iterations. The potential scale reduction 

factor  is subsequently calculated for each scalar of interest. If  for all scalars, 

the sampling algorithm is closed down. Otherwise the sampling continues until  for 

all scalars of interest.     

R̂ ˆ 1.1R ≤
ˆ 1.1R ≤

 

Concerning the integral which enters into the expression for , the integral has 

to be evaluated several times during a Markov Chain simulation and in consequence it has 

to be evaluated fast. Unfortunately, the integration cannot be carried out analytically, and 

we therefore have to rely on numerical integration.  

( | , , )f y m µ τ

 

 85



As the integral appearing in  can be rewritten as ( | , , )f y m µ τ
2

( ) tg t e dt−∫ , it seems natural 

to use a quadrature formula such as a 20-point Gauss-Hermite quadrature to implement 

the numerical integration. However, preliminary tests have revealed that the evaluation of 

 by a 20-point Gaussian quadrature formula is subject to large errors for 

certain combinations of the parameters ( , .  

( | , , )f y m µ τ

, , )m y µ τ
 

Various solutions to the above problem have been examined during the present project. 

Simply increasing the number of used interpolation points reduces the accuracy problem 

but does not eliminate it, and the speed of the integration algorithm is furthermore slowed 

down if every integral is to be evaluated by the summation of a very large but fixed 

number of terms. An adaptive integration algorithm where the number of included 

interpolation points varies with ( ,  appears as the required alternative.  , , )m y µ τ
 

In the Markov Chain simulations which are to be presented, the integral appearing in 

 has been evaluated by an adaptive integration algorithm founded on certain 

error bound analyses derived by Crouch et al. [Crouch et al., 1990]. The technical details 

behind the adaptive algorithm are not essential in the coming chapters, and the complete 

documentation is therefore deferred to chapter 13.     

( | , , )f y m µ τ
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Chapter 7 

Tests of Mixture Models 

 

 

After having introduced the concept of finite mixture models; explained the basic 

assumptions underlying mixture models in the present context, and discussed various 

implementation issues, the following chapters will focus on various tests of the mixture 

model given by (5.8) and certain extensions of (5.8).  

 

In what follows, we will envisage a hypothetical decision maker confronted with the 

accident statistics from table 7.1 (which were originally introduced in chapter 3). Thus 

table 7.1 covers accident statistics from 1000 virtual minefields. For completeness, the 

corresponding frequency distribution of  for the 1000 minefields is shown in fig. 7.1.  θ
 

Table 7.1.  Simulated accident statistics                    Fig 7.1. Frequency of q for 1000 virtual                              

from 1000 virtual minefields.                                   virtual minefields.   

 
Number of 

observed casualties 

Number of 

minefields 

0 887 

1 81 

2 19 

3 7 

4 2 

5 2 

6 2 

¥7 0 

0.01 0.02 0.03 0.04
q

20

40

60

80

100

Freq. Distribution of q

                                                                            
 

Our hypothetical decision maker is assumed to be ignorant of the true underlying 

frequency distribution of θ  depicted in fig. 7.1, but he wants to make statistical inferences 

about the distribution of  through the application of the mixture model given by (5.8). 

To use model (5.8) within a Bayesian framework, the decision maker has to decide on four 

issues: 

θ
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• The dimension of λ . 

• The set of integers  to be associated with the components 

. 
1 2{ , ,..., }gm m m

1 2
( , ,..., )

gm m mλ λ λ

• The prior distribution , where . ( )p λ 1 2( , ,..., )gDirichletλ α α∼ α

H

H

i

• The prior distribution .    ( , )p µ τ
 

A given specification of the above quantities makes up in combination with the mixture 

model (5.8) what might be termed a discrete model. There exists obviously an infinite 

number of different discrete models to choose from, and the decision maker’s particular 

choice will reflect his level of knowledge about the minefields under study. 

 

From the population of possible discrete models we will assume that the decision maker 

has selected a subset of k models indexed as say  to test on the accident 

statistics from table 7.1. Based on model  the posterior distribution  

can be simulated through Markov Chain simulation, and it is now an issue of major 

importance to investigate the sensitivity of the posterior  derived from 

 to the particular model choice . If  turns out to be sensitive 

to the choice of model, the decision maker needs analytical tools which enable him to 

evaluate and compare the predictive quality of the tested models. Based on such 

evaluations it may be possible to select a single best mode, or alternatively to combine the 

models into a supermodel , where the weights  are somehow 

derived from the model evaluations. Obviously, the above strategy is only profitable if the 

analytical tools chosen are able to differentiate among the tested models in terms of 

predictive quality.      

1 2{ , , ..., }kH H H

iH ( , , , | , )ip yµ τ λ ζ

( | , )ip y Hθ
( , , , | , )ip yµ τ λ ζ iH ( | , )ip y Hθ

1 1 2 2 ... k kH H H Hω ω ω= + + iw

 

The statistical literature on model checking and model comparisons is vast. One aspect of 

model checking is so-called posterior predictive checking [see for example Gelman et al., 

2003], where a set of replicated data  conditioned on model  is generated from the 

posterior distribution ,  denoting the vector of model parameters. The 

replicated data set  can be sampled from the distribution 

repy iH

( | , )ip y Hφ φ
repy

 

                                 ( | , ) ( | ) ( | , ) .rep rep
ip y y H p y p y H dφ φ φ= ∫                          (7.01) 
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If model  fits, it is expected that  should look similar to the original data y. To 

quantify the degree of similarity, test quantities  can be introduced which are scalar 

summaries of parameters and data. Given a test quantity  has been defined, a 

corresponding Bayesian p-value (equivalent to p-values in classical statistics) can be 

calculated as 

iH repy

( , )T y φ

( , )T y φ

                                                                            (7.02) ( ( , ) ( , )).rep
Bp p T y T yφ φ= ≥

 

That is,  is the probability that the test statistic based on the replicated data is more 

extreme than the corresponding test statistic based on the observed data. Formally,  

under model  is calculated as 

Bp

Bp

iH

 

                                                              (7.03) ( , ) ( , ) ( | , )rep
rep rep

B T y T yp I p y y H dyφ φ≥= ∫ ,i

φ

 

but in practice  is easily obtained as a by-product from the Markov Chain simulation.    Bp

 

Posterior predictive checking is primarily applied to check the fit of a single model. When 

comparing several models, a convenient measure termed the deviance [Nelder et al., 1972] 

is defined as minus two times the log-likelihood, i.e. 

 

                                                                                (7.04) ( , ) 2 log ( | ),D y p yφ = −

                                      

and due to its connection with the Kullback-Leibler information measure it can be argued 

that the expected deviance  under model defined as ˆ ( )avgD y iH

 

                                              
1

1ˆ ( ) ( , ),i

L
t

avg H
t

D y D y
L

φ
=

= ∑                                    (7.05) 

 

is a reasonable measure of the overall fit of model . In (7.05) the variable  denotes a 

sample point from a Markov Chain simulation under model . 
iH i

t
Hφ

iH

 

A somewhat related measure of overall model fit is the deviance information criterion 

(DIC) defined as [Spiegelhalter et al. , 2002] 

                                                                                (7.06)              ˆˆ2 ( ) ( )avgDIC D y D yφ= − ,  
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where  

                                                                                       (7.07) ˆ ˆ( ) ( , ( )).D y D y yφ φ=

 

In (7.07)  denotes a point estimate of φ , for example the mean value of φ  obtained 

through a Markov Chain simulation under model .   

(̂ )yφ

iH

 

The following chapters will give several examples of Bayesian -values and deviances 

obtained under different mixture models. The purpose is twofold: Through the calculation 

of -values it is revealed whether some or all of the proposed mixture models fail to 

reproduce certain aspects of the data set from table 7.1. More fundamentally -values 

may reveal errors in the underlying programming code. Regarding the calculated 

deviances, it is essential to know whether deviance calculations can support a decision 

maker when the available information about the minefields under study does not clearly 

indicate a single best model.  

Bp

Bp

Bp
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Chapter 8 

Preliminary Markov Chain Simulations 

 

 

Listed in table 8.1 are four discrete models which, do to their very simple structure, will be 

referred to as “naïve” models during the following discussions. The four models may, if 

desired, be considered as a small set of competing models picked out by a decision maker 

for further investigation in relation to the accident statistics from table 7.1.  

 
                      Table 8.1 Four naïve discrete models. 

Model  

 

Dimension  

of λ  

Integers  

1 2{ , ,..., }gm m m   
1 2( , , ..., )gα α α  

H1 11 {0,1,…,10} (1,1,…,1) 

H2 21 {0,1,…,20} (1,1,…,1) 

H3 31 {0,1,…,30} (1,1,…,1) 

H4 41 {0,1,…,40} (1,1,…,1) 
 

Each model in table 8.1 is specified with respect to the dimension of λ , the integers 

, and the Dirichlet parameters  which define . Common to 

all models is the prior distribution  specified in (8.01) and (8.02) below. 
1 2{ , , ..., }gm m m 1 2( , ,..., )gα α α ( )p λ

( , ) ( ) ( )p p pµ τ µ τ=
   

                            (8.01)              
1 1k

1constant, if 10 10 ,  being a large number 
( )

0 else,

k k
p

µ
µ

⎧ − ≤ ≤⎪⎪⎪= ⎨⎪⎪⎪⎩
 

 

                                   (8.02)              
2k

2constant, if 0 10 ,  being a large number 
( )

0 else.

k
p

τ
τ

⎧ ≤ ≤⎪⎪⎪= ⎨⎪⎪⎪⎩
 

 

In (8.01) and (8.02) the priors  and  are specified in terms of two for the time 

being large but undefined constants  and  which cut off the priors at faraway distances 

and therefore guarantee a proper posterior distribution for the mixture model (5.8). The 

prior  which results from (8.01) and (8.02) is given by   

( )p µ ( )p τ

1k 2k

( )p θ
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1 2

1

0

10 10
2

10 0

2 1 1

( ) ( | , ) ( , )

( ) ( | , )
2

( ) (1 ) ,
2

k k

k

p p p d

Cosh N d d

Cosh

θ θ µ τ µ τ µ τ

α α µ τ µ τ

α θ θ

∞ ∞

−∞

−

− −

=

∝

≈ = −

∫ ∫

∫ ∫

d

                        (8.03) 

 

where the approximation in the last line of (8.03) can be justified on any closed interval 

 through appropriate choices of  and . The -distribution is often 

referred to as a non-informative prior distribution. 

]0;1[I ⊂ 1k 2k (0, 0)Beta

 

Similarly, the assignment  made in table 8.1 results in what might be termed a non-

informative prior distribution for λ  as equal density is assigned every λ  satisfying the 

constraint . The only apparent difference between the four models in table 8.1 

is thus the dimension of λ .  

1iα =

1
1

g
mi iλ

=
=∑

 
Fig 8.1. Marginal posteriors  for model  from table 8.1 obtained from Markov 

chain simulation. Each cluster of points makes up the second half of 2000-2500 sampled points.       
( , | , )ip y Hµ τ 1 2 3 4, , ,H H H H
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Fig. 8.1 (on the previous page) and fig. 8.2 and 8.3 below illustrate various features of the 

posteriors  for model  and  generated under mixture model 

(5.8) through Markov Chain simulation. Each sampling which includes 2000-2500 sampled 

points is based on the accident statistics from table 7.1 and the relevant prior distributions  

given in table 8.1, where  and . Depicted in fig. 8.1 are the marginal 

posterior distributions . Fig. 8.2 shows the posterior average value of the 

individual components of λ , and fig. 8.3 shows the posterior variance . 

( , , , | , )ip yµ τ λ ζ H

]

H

1 2 3, ,H H H 4H

1 20k = 2 50k =

( , | , )ip y Hµ τ

[ | ,m iVar y Hλ
 

Fig. 8.2. Posterior average value of  calculated from  for model . As the 

number of components in the mixture model increases, the posterior average value of  becomes confined 

to the vicinity of its prior expected value.  

mλ ( , , , | , )ip yµ τ λ ζ 1 2 3 4, , ,H H H H

mλ
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In fig. 8.2 the red dashed lines show the expected value  according to the [ mE λ ] prior 

distribution  which can be calculated as ( )p λ [ ] mm totalE αλ α= , where .  
1

g
total ii

α α
=

=∑
 

Similarly, in fig. 8.3 the red dashed lines show the prior expected value  which can be 

calculated as 

[ mV λ ]

                                      2

(( ) .
(1 )

m total m
m

total total
Var α α αλ

α α
−=
+

)                                         (8.04) 
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 Fig. 8.3. Posterior variance of  calculated from  for model .   mλ ( , , , | , )ip yµ τ λ ζ H 1 2 3 4, , ,H H H H
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Two observations can be made from the above figures: Firstly, it is evident from fig. 8.2 

that  when the dimension of λ  is large. [ | ] [mE y Eλ ≈ ]mλ
 

Secondly, from fig. 8.3 it is evident that the variance of the individual components of λ  is 

not, on average, diminished when going from the prior distribution to the posterior 

distribution. Thus the marginal posterior distribution  is mainly determined by the 

prior distribution , i.e., the data from table 7.1 provide negligible information to the 

determination of λ .        

( | )p yλ
( )p λ

 

The reason behind the above observations can be explained as follows: When the number 

of components in λ  increases, the prior variance of  decreases for all m  according to 

(8.04), i.e., the prior distribution of  becomes more localized. Consequently, more 

extreme observations are needed if the posterior distribution of  is to be displaced 

substantially from its prior distribution. The observations from table 7.1 do not represent 

extreme observations, that is, most of the observations could origin from any of the used 

mixture components, and the outcome observed in fig. 8.2 and 8.3 follows.       

mλ

mλ

mλ
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The observations made above may also be used to explain the location and strong 

correlation between the sampled values of  and  which are observed in fig. 8.1. Due to 

the fact that  when the dimension of λ  increases, it follows that λ  essentially 

behaves as a deterministic vector when the dimension of λ  is large. In other words, the 

finite mixture model given by (5.8) can be approximated by the simpler model 

µ τ

[ ] 0mVar λ →

 

                                                                  (8.05) * *( | , , ) ( | , , ),j m j
m

p y f y mµ τ λ λ µ τ=∑
 

where the parameter  is a constant fraction (as opposed to a stochastic 

variable). Even simpler, as no explanatory variables are attached to the individual 

observation 

* [m Eλ λ≈ ]m

jy , we may tentatively consider the 1000 virtual minefields as one  

superminefield characterized by a total number of accidents , and with a 

total mine content . If we consider  with 

 in accordance with (8.03), it follows from Bayes’ rule that 

1000

1total jj
y

=
=∑ y

m )

),

*1000total mm
m λ≈ ⋅ ⋅∑ ( ,total totaly Bi m θ∼

(0, 0)Betaθ ∼
 

                                                                     (8.06) | ( ,total total total totaly Beta y m yθ −∼

             

and [ | ] total
total total

yE y mθ = . From table 7.1 we have that . Table 8.2 below lists 

the calculated values of  based on the information contained in table 8.1. 

170totaly =

[ | ]totalE yθ
.                     
Table 8.2. Expected value of  calculated from model (8.06).  denotes the expected number of mines 

covering all minefields estimated from the prior distribution.   denotes the total number of accidents 

recorded from all minefields.  

θ totalm

totaly

 

Model totalm  [ | ]totalE yθ  

H1 5000 0.0340 

H2 10000 0.0170 

H3 15000 0.0113 

H4 20000 0.0085 

  

To establish the relationship between the results from table 8.2 and the locations of the 

sampled values of µ  and τ  as observed in fig. 8.1, recall that the probability parameter  

is connected to the binomial parameters  through the transformation  

θ

,µ τ
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                            2( | , ) ( | , ) ( | , )4 ( ),
2

dp p N Cosh
d
αθ µ τ α µ τ α µ τ
θ

= = α
                  (8.07) 

 

where log
1
θα
θ

=
−

.  The average value of  is by definition calculated as | ,θ µ τ

                                                                           (8.08) 
1

0

[ | , ] ( | , ) .E pθ µ τ θ µ τ θ θ= ∫ d

θ

θ

 

An infinite number of pairs ( ,  give rise to distributions  whose average value 

of  are identical. This is illustrated in fig. 8.4, where all points ( ,  belonging to the 

same contour line give rise to the same expected value of . The four contour lines 

included in fig. 8.4 correspond to the four values of E y  from table 8.2.  

)µ τ ( | , )p θ µ τ
θ )µ τ

θ

[ | ]total

 
Fig. 8.4 Contour lines. Points ( ,  located on the same contour line represent distributions  whose 

average value of  are identical. The real numbers indicate the magnitude of E  for each contour.   
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τ  

µ  
 
In fig. 8.5 on the following page the four Markov Chain simulation plots from fig. 8.1 have 

been assembled into a single plot upon which the above contour lines are superimposed. 

The four contour lines nicely traverse the centres of the clusters.  

 

Fig. 8.5 illustrates how to explain the locations of the sampled points. Taking the blue 

cluster originating from model  as an example, the spread of the sampled points 

perpendicular to the belonging contour line reflects the uncertainty about E . Similarly, 

the spread of the sampled points along a given contour line reflects the uncertainty about 

the variance of  for fixed E .      

1H

[ ]θ

θθ [ ]
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Fig. 8.5. Contour lines corresponding to = 0.0085, 0.0113, 0.017 and 0.034 obtained from table 8.2 

superimposed on the four marginal posteriors  from fig. 8.1.  
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That two different points located on the same contour line are different with respect to the 

variance of θ  is illustrated in fig. 8.6 by a rather extreme example. Both distributions 

included in fig. 8.6 belong to the contour line characterized by , but they 

obviously deviate from each other with respect to the variance of θ .          

[ ] 0.5E θ =

 
Fig.8.6. Two distributions characterized by = 0.5 but with different variances. [ ]E θ
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The quantities  and  can easily be calculated. Simple manipulations 

show that 

[ | , ]E θ µ τ [ | , ]Var θ µ τ

                        

1

0
2

2
3

[ | , ] ( | , ) .

( | , )4 ( ) (1 | 1, , ).
2 (1 )

E p d

eN Cosh d f
e

α

α

θ µ τ θ µ τ θ θ

αα µ τ α µ τ
∞

−∞

=

= =
+

∫

∫
       (8.09) 
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More generally it can be shown that  

 

                                                                               (8.10) [ | , ] ( | , , )nE f n nθ µ τ µ τ= ,

 

from which it follows that . 2[ | , ] (2 | 2, , ) (1 | 1, , )Var f fθ µ τ µ τ µ τ= −
 

Due to (8.10), the distributions of  and  can easily be extracted from the points 

 sampled under the four naïve models. The frequency distributions of  and 

 are shown in fig. 8.7 and fig. 8.8. A summary of the findings are given in table 8.3.     

[ ]E θ [ ]Var θ
( , )µ τ [ ]E θ

[ ]Var θ
 
Table 8.3.  Summary of Markov chain simulations.  denotes the averages from table 8.2. *[ ]E θ
 

Model [ [ ]]E E θ  *[ ]E θ  [ [ ]]Eσ θ  [ [ ]]
[ [ ]]
E

E E
σ θ

θ
 [ [ ]EVar θ ] 

H1 0.033 0.034 0.0063 0.18 0.0058 

H2 0.018 0.017 0.0035 0.10 0.0019 

H3 0.012 0.0113 0.0021 0.079 0.00097 

H4 0.0089 0.0085 0.0015 0.060 0.00053 

 
Fig. 8.7. The frequency distribution of  obtained from the collection of points  sampled under 

model  and . Each point ( ,  represents a distribution  where .  

[ ]E θ ( , )µ τ

1 2 3, ,H H H 4H )µ τ ( | , )p θ µ τ [ ] (1 | 1, , )E fθ µ τ=
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Fig. 8.8. The frequency distribution of  obtained from the collection of points ( ,  sampled under 

model  and . Each sampled point ( ,  represents a distribution  where 

. 

[ ]Var θ )µ τ

1 2 3, ,H H H 4H )µ τ ( | , )p θ µ τ
2[ ] (2 | 2, , ) (1 | 1, , )Var f fθ µ τ µ τ= −
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Fig. 8.9. Simulation of . Each histogram is generated from the corresponding Markov-chain simulation 

depicted in fig. 8.1. Superimposed each histogram is the distribution  which 

generated the true frequency distribution of  shown in fig. 7.1. 
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The complete posterior distribution  can be obtained through simulation as shown 

in fig. 8.9 above. The frequency distributions were generated as follows: For every sampled 

point  from ,  was subsequently drawn from the normal 

distribution , and  was calculated as . Note that the -axis in 

fig. 8.9 is cut off at  as the frequency is practically zero for larger values of θ . 

Table 8.4 sums up essential descriptors for the generated distributions from fig. 8.9. For 

clarity the posterior intervals included in table 8.4 are sketched in fig. 8.10.        

( | )p yθ

( , )µ τ ( , , , | , )ip y Hµ τ λ ζ α

( | , )N α µ τ θ 1(1 )e eα αθ −= + θ
0.05θ =

 

Table 8.4. Numerical summaries of the posterior distribution . Listed values are based on the 

histogrammes in fig. 8.9. Values in the last row ”DATA” are derived from the distribution  

 which generated the true frequency distribution of θ  shown in fig. 7.1. 

( | )p yθ

( | , ) ( | 4.7, 0.5)p pθ µ τ θ= −
 

Model [ ]E θ  [ ]Var θ  50% posterior 

interval for  θ

95% posterior 

interval for  θ

H1 0.032 0.0059 [0.0019,0.026] [0.00012,0.24] 

H2 0.017 0.0015 [0.0015,0.015] [0.00012,0.12] 

H3 0.012 0.00078 [0.0011,0.011] [0.00010,0.080] 

H4 0.0090 0.00053 [0.00092,0.0079] [0.000095,0.054] 

DATA 0.010 0.000028 [0.0064,0.012] [0.0034,0.023] 

 
Fig. 8.10. Location of 50% and 95% of the posterior density of . In fig. 8.10.a, 25% of the posterior 

density is located to the left and to the right, respectively, of the horizontal line under a given model. In fig. 

8.10.b, 2.5% of the posterior density is located to the left and to the right, respectively, of the horizontal line 

under a given model. The posterior interval ”DATA” is derived from the distribution 

 which generated the true frequency distribution of θ  shown in fig. 7.1.  

( | )p yθ

( | , ) ( | 4.7, 0.5)p pθ µ τ θ= −
 

Fig. 8.10.a                                                            Fig. 8.10.b 
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In table 8.4 it is found that  calculated from the Markov chain simulations and the 

corresponding  estimated form the simpler superminefield model are by and large 

identical. This does not imply that the superminefield model can replace the finite mixture 

model as the superminefield model underestimates the true variance of θ  considerably. 

This is illustrated in fig. 8.11 where the posterior distribution  

calculated under each of the naïve models is shown together with the true probability 

distribution of . 

[ ]E θ
*[ ]E θ

( | , )totay l total totalBeta m yθ −

θ
 
Fig. 8.11. The posterior distribution of θ  calculated from  under the superminefield 

model.  denotes the expected number of mines covering all minefields.  denotes the total number of 

accidents recorded from all minefields. Red curve: The true probability distribution of θ . The Beta 

distribution underestimate the true variance of  considerably. 

( | , )total total totalBeta y m yθ −

totalm totaly

θ
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Another reason for not replacing the finite mixture model with the superminefield model is 

that to fully exploit the observations jy  one should in a real-life application supplement 

these by explanatory variables 1 2( , , ..., )j j j
kx x x x= j . As previously discussed, the availability 

of explanatory variables paves the way for the exploitation of the more advanced mixture 

models given by (5.11) and (5.13). However, the inclusion of explanatory variables rules 

out the possibility of  merging of the considered minefields into one big minefield, which is 

the prerequisite for the use of superminefield model.        

 

In all models examined so far, non-informative prior distributions have been used for 

 and , the only information contained in  being the dimension of the vector 

. By changing the dimension of λ  a decision maker obviously changes the number of 

mixture components to be included in the mixture model, but he also changes the prior 

( , )p µ τ ( )p λ ( )p λ
λ
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variance of the individual components of λ  if . This effect is seen, for 

example, in the fifth column of table 8.3 where the quantity  decreases for 

increasing values of the dimension of λ .  

(1,1,...,1)Dirichletλ ∼
[ [ ]]/ [ [ ]]E E Eσ θ θ

 

The essence of the above observation is that despite of having used non-informative priors, 

a lot of information may unintentionally be conveyed to the mixture model through the 

fixing of the dimension of λ . For example, by setting the dimension of λ  to a large value 

the individual components of λ  get essentially locked to their prior expected values , 

and one ends up with a mixture model having only two free parameters, i.e. . This 

property of the mixture model is unfortunate and calls for modifications. Various 

suggestions which may reduce the above defects will be discussed and tested in the coming 

chapters.       

[ ]mE λ

,µ τ
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Chapter 9 

Model Checking, Model Comparisons and Evaluation of Naïve Models  

 

9.1 Model Checking and Model Comparisons 

In a real-life situation, the true distribution of θ  will be unknown to a decision maker, and 

the question is whether the techniques of model checking and model comparisons as 

discussed in chapter 7 are able to reveal which one among a group of competing models 

approximates the true distribution of  best. Alternatively, the decision maker may 

through model comparisons be able to derive model weights with the purpose of expressing 

an estimate of  as a weighted average of the posteriors generated from the competing 

set of models.       

θ

( )p θ

 

In chapter 7 two approaches were discussed in relation to model checking and model 

comparisons. The first approach involved the calculation of posterior predictive 

distributions and related test statistics, whereas the second approach dealt with the 

concept of deviance as a measure of predictive accuracy. In what follows, the results from 

the calculations of various test statistics, deviances and related measures of predictive 

accuracy will be presented. 

 

Table 9.1 below show the results from the calculation of Bayesian pB-values based on five 

different test statistics. Fig. 9.1-9.5 on the following pages show the corresponding 

frequency distributions of the five test statistics. 

 
Table 9.1. Test statistics and Bayesian pB-values. 

Test Statistic  ( )repT y  ( )T y  Bayesian pB-value 

   1H  2H  3H  4H  

1T  ,rep j
j

y∑  170 0.53 0.56 0.55 0.55 

2T  ( )repVar y  0.345 0.52 0.60 0.62 0.61 

3T  ( )repMax y  6 0.75 0.84 0.86 0.85 

4T  # :
1000

j jy y y∈ = 0  0.887 0.54 0.49 0.51 0.49 

5T  99% quantile 3 0.73 0.69 0.66 0.65 
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Fig. 9.1. The frequency distribution of the test statistics  under the naïve models 

. is marked by the vertical black tab.   
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Fig. 9.2. The frequency distribution of the test statistic  under the naïve models 

.  is marked by the vertical black tab.   
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Fig. 9.3. The frequency distribution of the test statistic  under the naïve models 

.  is marked by the vertical black tab.   
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1 2 3 4, , andH H H H max 6y =
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Fig. 9.4. The frequency distribution of the test statistic , ,
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Fig. 9.5. The frequency distribution of the test statistic (the 99% quantile of a replicated data set) under 

the  naïve models . . 
5T
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To calculate the Bayesian pB corresponding to the test statistic  under model 

, for example, the following procedure is followed: For each point ( ,  sampled from 

plicated data set  is generated by sampling 

from  given by (5.08). The Bayesian p

1 rep jT y=∑ ,

H a re

)

)

1H , )µ τ λ

1( , , , | , )p yµ τ λ ζ  ,1 ,2 ,1000{ , ,..., }rep rep rep repy y y y=

( | , ,repp y µ τ λ B is subsequently calculated as the 

fraction of the ’s which equals or exceeds .     1( repT y 1( ) 170T y =

 

As it emerges from table 9.1, the calculated pB’ s are not extreme under any of the naïve 

models. Consequently, the completed model checking does not provide a decision maker 

with firm arguments for the dismissal of any of the models.            

 

The results from a different line of approach, i.e., the calculation of the expected deviance 

and the deviance information criterion (DIC), are summarized in table 9.2 on the following 

page. In general, the model with the lowest expected deviance will have the highest 

posterior probability. As it is seen from table 9.2, the expected deviance varies only 

slightly under the four naïve models. However, model H1 does exhibit the smallest expected 

deviance which is contrary to what might be anticipated. A similar pattern is observed in 

the DIC-column of table 9.2. 
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Table 9.2. Comparison of models by means of sampled deviances.  the average sampled deviance; 

deviance information criterion; model complexity parameter, see definition in the text. 

ˆ ( )avgD y =

DIC = (2)
Dp =

 

Model ˆ ( )avgD y  DIC pD
(2)

1H  920.257 922.568 2.66302 

2H  921.064 923.317 2.54707 

3H  921.649 924.083 3.41124 

4H  921.742 924.073 2.40732 

 

Included in table 9.2 is the model complexity parameter PD
(2) which is calculated as  

    

                                       

(2)

2

1

1 var( ( , ) | )
2
1 1 ˆ( ( , ) ( )) .
2 1

D

L
l

avg
l

p D y y

D y D y
L

φ

φ
=

=

= −
− ∑

                         (9.01) 

 

Thus PD
(2) is an estimate of half times the posterior variance of the deviance and can be 

interpreted as the number of unconstrained parameters in a Bayesian model. In this 

context, a parameter is considered as unconstrained if it is estimated with no prior 

information, and it is considered as constrained if all information about the parameter 

comes from the prior distribution. The tabulated values of PD
(2) in table 9.2 confirms what 

has previously been discussed: Due to the large number of components in the vector λ , the 

individual components of λ  get essentially locked to their prior expected values E , and 

one ends up with a constrained mixture model having approximately two free parameters 

(the P

[ ]mλ

D
(2) under model H3 appears, however, a bit out of line).            

 

 

9.2 Evaluation of Naïve Models 

The mixture models which have been examined so far were in chapter 7 introduced as 

“naive” discrete models due to the particular simple choice of integers , 

Dirichlet parameters , and prior distribution . The subsequent Markov 

chain simulations and model checking have revealed several important properties of the 

finite mixture model (5.8). However, to make (5.8) adaptable to real-life applications and 

1 2{ , , ..., }gm m m

1 2( , ,..., )gα α α ( , )p µ τ
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to remedy some of the shortcomings inherent in (5.8), a couple of modifications have to be 

implemented.  

 

Firstly, the simple choice of integers and Dirichlet parameters made in connection with the 

naïve models leads to an unrealistic probability distribution as to the mine content in a 

randomly selected minefield. This will of course affect the reliability of the generated 

posterior . Secondly, when the dimension of  is increased, the mixture model 

becomes computationally intractable, and the individual components of λ  get locked to 

their prior expected values .     

( | )p yθ λ

[ mE λ ]

 

An attractive alternative which seems to remedy the above shortcomings is to work with 

sets of integers sampled from some probability distribution . The increased 

flexibility gained hereby gives rise to new choices: 1) the selection of an appropriate 

sampling distribution; 2) the determination of g .   

1 2( , ,..., )gp m m m

 

Another problem revealed by the completed Markov chain simulations is the high 

sensitivity of the posterior  to the dimension of λ  when the prior  is non-

informative. The only way to remedy this problem is to replace non-informative priors 

with vaguely or moderately informative priors. It is uncertain, however, on what criteria 

such partly informative priors should be derived. 

( | )p yθ ( , )p µ τ

 

All issues outlined above will be addressed in the following chapters. We begin in chapter 

10 by demonstrating how sampling from a distribution  can be built into 

the structure of (5.8). There are various ways to accomplish this, but in the present report 

the choice has fallen on an elegant method developed by Stephens [Stephens, 2000] in 

which the integer  and the associated probability  is considered as a point in a 

continuous birth-death point process. Due to the method by Stephens, a Markov chain can 

be generated which alternately samples from the mixture model (5.8) and from a birth-

death point process. As a result, a stationary distribution “averaged” over mixture models 

of varying dimension (i.e., varying sizes of g) is generated. The outlined extended mixture 

model can be considered as an alternative to the so-called reversible jump methodology [see 

Richardson and Green, 1997]. 

1 2( , ,..., )gp m m m

im miλ
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After the introduction of the above method, chapter 11 deals with the specification of the 

various priors which enter into the extended mixture model. Finally, in chapter 12 the 

results from a variety of Markov chain simulations based on the extended mixture method 

are presented. 
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Chapter 10 

Finite Mixture Models with Varying Number of Components 

 

 

Due to the assignment  

                                   (10.01) 1 2{ , ,..., } {0,1,2,..., 1}gm m m g→ −

m

i

 

which was made in connection with the naïve models considered in chapter 7-9, the 

mixture model (5.8) took on the simple form 

 

                                                              (10.02) 1

1
1

( | , , ) ( | , , )

( | 1, , )

g

j m j i
i
g

i j
i

ip y f y m

f y i

µ τ λ λ µ τ

λ µ τ

=

−
=

=

= −

∑

∑
 

from which the posterior distribution could be calculated as    
 

                                                                                  (10.03) 

1

( , , | ) ( | , , ) ( , ) ( )

( | , , ) ( , ) ( ).
M

j
j

p y p y p p

p y p p

µ τ λ µ τ λ µ τ λ

µ τ λ µ τ λ
=

∝

=∏
   
We will now abandon the assignment (10.01) and instead consider the set of integers 

 as a stochastic vector distributed according to some probability 

distribution . Considering  as independent of  and λ , 

this results in the modified posterior distribution 

1 2{ , , ..., }gm m m

1 2( , ,..., )gp m m m 1 2( , ,..., )gp m m m ,µ τ

 

                                                       (10.04) 

1

( , , , | ) ( | , , , ) ( , ) ( ) ( )

( | , , , , ) ( , ) ( ) ( ),
M

j
j

p m y p y m p p p

p y m g p p p m

µ τ λ µ τ λ µ τ λ

µ τ λ µ τ λ
=

∝

=∏
where  and 1 2( , ,..., )gm m m m=

                                       .                   (10.05) 
1

( | , , , , ) ( | , , )
g

j m j
i

ip y m g f y mµ τ λ λ µ τ
=

=∑
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When  is regarded as a stochastic vector, the significance of the number of 

included components is unclear. Any application of (10.04) should therefore include runs 

over different values of g to examine the sensitivity of  to g. As an 

alternative to making separate runs for different values of g, one could consider g as a 

stochastic variable distributed according to a probability distribution , in which case 

(10.04) is expanded to the expression 

1 2{ , , ..., }gm m m

( , , , | )p mµ τ λ y

.

y

y

y

g

g

( )p g

 

                                        (10.06) 

1

( , , , , | ) ( | , , , ) ( , ) ( ) ( ) ( )

( | , , , , ) ( , ) ( ) ( ) ( )
M

j
j

p m g y p y m p p p m p g

p y m g p p p m p g

µ τ λ µ τ λ µ τ λ

µ τ λ µ τ λ
=

∝

=�
 

From (10.06) the marginal distribution  can be obtained, and  is 

extracted from  as before. 

( , | )p µ τ ( | )p yθ

( , | )p µ τ
 

In what follows we will implement (10.06) by closely following an algorithm derived by 

Stephens [Stephens, 2000]. To simplify sampling from (10.06) it is advantageous to update 

 in two successive steps by sampling from the full conditioned posterior 

distribution  and , respectively. Sampling from 

 means sampling from a finite mixture model with a fixed number of 

components g, and the sampling procedure outlined in chapter 6 can thus be applied if the 

data y are augmented by indicator variables ζ . What is left is therefore the construction of 

a Markov chain with stationary distribution .   

( , , , , | )p m gµ τ λ

( , , | , , )p m g yλ µ τ ( , | , , , )p y mµ τ λ
( , | , , , )p y mµ τ λ

( , , | , , )p m g yλ µ τ
 

The conditioned posterior  can according to Bayes’ rule be written as ( , , | , , )p m g yλ µ τ
 

                                             (10.07) ( , , | , , ) ( | , , , , ) ( , , | , ),p m g y p y m g p m gλ µ τ λ µ τ λ µ τ∝

where  

                                  
1 1

( | , , , , ) [ ( | , , )].
g

m j i
j i

ip y m g f y mλ µ τ λ µ τ
= =

= ∑∏                     (10.08)               

 

It is worthy of note that (10.08) is invariant to permutations of the component labels, i.e. 

 

                                      (10.09) 
1 2

1 2

1 2

( ) ( ) ( ) 1 2

( | ( , ,..., ),( , ,..., ), , , )

( | ( , ,..., ),( ( ), ( ),..., ( )), , , )
g

g

m m m g

m m m g

p y m m m g

p y m m m gε ε ε

λ λ λ µ τ

λ λ λ ε ε ε µ τ

=
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for all permutations ε  of . If we express 1 2, ,..., gm m m

  

                                                  (10.10) ( , , | , ) ( | , ) ( | , ) ( | , ),p m g p p m p gλ µ τ λ µ τ µ τ µ τ=

 

and assume that  and the ’s are independent and identically 

distributed, it follows that    

| , (1,1, ...,1)Dirichletλ µ τ ∼ im

                                                       (10.11) 
1

( , , | , ) [ ( | , )] ( | , ).
g

i
i

p m g p m p gλ µ τ µ τ µ τ
=

∝ ∏
 

As  in (10.11) is invariant to permutations of the component labels just as 

(10.08), it follows that the conditioned posterior                 

( , , | , )p m gλ µ τ

 

                                                        (10.12) ( , , | , , ) ( | , , , , ) ( , , | , )p m g y p y m g p m gλ µ τ λ µ τ λ µ τ∝

 

is also invariant to permutations of the component labels. This property allows us to 

ignore the component labels and simply consider any set  as 

g points in . More specifically, we might view  as a distribution 

of points or a point process on [Stephens, 2000, p. 45].  

1 21 2{( , ),( , ),...,( , )}gm m mm m mλ λ λ g

)

0[0,1]×` ( , , | , , )p m g yλ µ τ

0[0,1]×`

 

Looking at  as a point process provides the way for the introduction of a 

Markov birth-death process in continuous time with stationary distribution 

. In this simulated process, the birth and death of points ( ,  occur as 

independent Poisson processes, and the dimension of the finite mixture model consequently 

varies during the simulation process.  

( , , | , , )p m g yλ µ τ

( , , | , , )p m g yλ µ τ im imλ

 

To introduce the Markov birth-death process thoroughly, several terms have to be defined. 

In what follows we will simply write  as  to avoid cluttered expressions. Firstly, if the 

process at time t  is characterized by the state vector z written as   
miλ iλ

 

                                                                  (10.13) 1 1 2 2{( , ),( , ), ..., ( , )},g gz m m mλ λ λ=

 

and a birth occurs at the point , the process jumps to the state vector * *
0( , ) [0,1]mλ ∈ ×`
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                                 (10.14)             * * * * * *
1 1( , ) {( (1 ), ), ...,( (1 ), ),( , )}.g gz m m m mλ λ λ λ λ λ∪ = − −  

 

Similarly, if a death occurs at the point ( , , the process jumps to the state vector )i imλ
 

                                    

1 1
1 1

1
1

\ ( , ) {( , ),, ...,( , ),
(1 ) (1 )

...( , ), ...,( ), }.
(1 ) (1 )

i
i i i

i i

i g
i g

i i

z m m m

m m

λ λλ
λ λ

λ λ
λ λ

−
−

+
+

=
− −

− −

                      (10.15) 

 

Whatever the number of points included in the state vector, the conventions made above 

ensure that . 1ii
λ =∑

 

To guarantee that the Markov birth-death process has the posterior  as its 

stationary distribution, the birth- and death rates have to obey a certain balance equation. 

Given a birth occurs when the process is at z, this implies that  is 

chosen according to the density 

( , , | , , )p m g yλ µ τ

* *
0( , ) [0,1]mλ ∈ ×`

 

                                                          (10.16) * * * 1 *(( , ) | ) (1 ) ( | , )gb m z g p mλ λ µ τ−= − ⋅

 

with the restriction that   if either the conditioned prior given by (10.10) 

or the likelihood given (10.08) is equal to zero at the point . The parameter g 

in (10.16) denotes the number of components in z. From (10.16) it is evident that 

. The density  has yet to be defined. The overall birth rate is 

set to . 

* *( , | ) 0b m zλ =
* *( , )z mλ∪

* | (z Beta gλ ∼ 1, ) )*( | ,p m µ τ

bγ
 

Regarding the death process, let each point ( , )j jmλ , , die independently of the 

others in a Poisson process with rate  when the process is at z. The overall death rate 

amounts then to . The balance equation implies that if  is set to 

1, 2, ...,j = g

z

( )j zδ

( ) ( )jj
zδ δ=∑ ( )j zδ

 

                      ( | \ ( , ), 1, , ) ( 1 | , )
( ) for

( | , , , ) ( | , )
j j

j b
p y z m g p g

z j
p y z g g p g

λ µ τ µ τδ γ
µ τ µ τ

− −= ∀              (10.17) 
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the birth-death process defined above has the stationary distribution . The 

density  appearing in (10.17) has yet to be defined. Similarly to the birth process, 

(10.17) is restricted by the condition that  if the conditioned prior (10.10) is equal 

to zero at the point 

( , , | , , )p m g yλ µ τ
( | , )p g µ τ

( ) 0j zδ =

\ { , }j jz mλ .  
 

From the summary above it appears that to simulate the Markov birth-death process, 

three quantities have to be specified: The birth rate , the density , and the 

density . Given that these quantities have been specified, the simulation of the 

birth-death process is straightforward. The following sketch of the simulation algorithm 

follows closely the algorithm suggested by Stephens [Stephens, 2000, page 48]:  

bγ ( | , )p m µ τ
( | , )p g µ τ

 

1) The birth-death process is run for a virtual time . A convenient choice is 

  

0t

0 1.t =
2) Let the state vector  make up the initial model.  1 1 2 2{( , ),( , ), ..., ( , )}g gz m m mλ λ λ=

3) Calculate the death rate  for each component j in accordance with (10.17).  ( )j zδ
4) Calculate the total death rate . ( ) ( )jj

z zδ δ=∑
5) The time t  for the next jump (i.e., birth or death) is simulated by sampling 

from an exponential distribution with mean . 

′
1( ( ))b zγ δ −+

6) The type of jump at time t  is determined by sampling a real number 

. The jump is classified as a birth if 

′

(0,1)r Uniform∼
( )

b

b
r

z
γ

γ δ
≤

+
. 

 

Depending on the type of jump determined at step 6, the state vector z is adjusted in the 

following way: 

 

7a) Birth: A new point  is determined by sampling independently * *( , )mλ
      and  from the density . * | (z Beta gλ ∼ 1, ) )*m *( | ,p m µ τ

7b) Death: The component to die is selected with probability ( )
( )
j z
z

δ
δ

. 

 

The birth-death algorithm returns hereafter to step 3 and continues until the accumulated 

jump times exceed . 0t
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By combining the above birth-death process with the Markov process outlined in chapter 

6, sampling from the target distribution  can be achieved. Fig. 10.1 below 

gives an overview of the various components in the joined sampling algorithm. Note that 

the indicators ζ  are once again used as auxiliary variables under the updates of 

. The indicator variables do not interfere with the birth-death process.      

( , , , , | )p m gµ τ λ y

p y mµ τ λ

, ..., }mφ φ

( , | , , , )g

 
Fig 10.1. Markov-chain simulation including birth-death point process. 
 
   

  

  

 

 

 

 

 

 

 

 

 

 

 

      Initial value  
0 0 0 0 0{ , , , , }m gφ µ τ λ= 0  

1ζ  is sampled from 
0 0 1 1 1( | , , , , , )p y m gζ µ τ λ

1µ  is sampled from 
0 1 1 1 1( | , , , , , )p y m gµ τ λ ζ1 1 1( , , )m gλ  is sampled from 

0 0( , , | , , )p m g yλ µ τ  by 

birth-death Markov process  

1τ  is sampled from 
1 1 1 1 1( | , , , , , )p y m gτ µ λ ζ

2λ  is sampled from 
 1 1 1 1 1( | , , , , )p m gλ µ τ ζ

    Monitoring 
   Convergence 

    Evaluation of  
     ( | , , )f y m µ τ

 

 

It appears from fig. 10.1 that the vector λ  is updated twice during every iteration. The 

second update (i.e., λ ) is not a prerequisite for convergence of the Markov chain but has 

simply been included to improve mixing.      

2

     
To ensure that any Markov chain simulation following the above sampling scheme reaches 

all important parts of the target distribution, every simulation is initiated from m different 

starting points {  in accordance with the procedure outlined in chapter 6. This 

time, however, the starting points also differ with respect to g, i.e., the starting points are 

picked from mixture models of different dimension.  

0 0
1
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Chapter 11 

Specification of Prior Distributions 

 

 

To apply the extended mixture model introduced in chapter 10, four priors have to be 

specified: 

1)  ( | , )p λ µ τ
2)  ( | , )p g µ τ
3)  ( | , )p m µ τ
4)  ( , )p µ τ

   

Concerning , we will continue with the assignment  

which was made in relation to the naïve models in chapter 8. As to the remaining priors it 

will in the present chapter be exemplified how informative priors can be set up which only 

require a modest amount of input from the decision maker. The suggested priors will be 

thoroughly tested in chapter 12.         

( | , )p λ µ τ | , (1,1,...,1)Dirichletλ µ τ ∼

  

11.1 Specification of  ( | , )p g µ τ

As a matter of simple convenience we will ascribe g a Poisson distribution, i.e., 

 

                                            ( | , ) ( ) ,
!

g

p g p g
g

µ τ Λ= ∝                                     (11.01) 

 

where  in (11.01) is independent of ( , . In chapter 12, Markov chain simulations will 

be carried out for different values of . 

Λ )µ τ
Λ

 

11.2 Specification of   ( | , )p m µ τ

Unlike the parameter g which does not have a clear physical interpretation, the parameter 

m from  is directly linked to the degree of mine contamination in the minefields 

under study. Consequently, if historical information is available from mine clearance 

operations completed elsewhere which has revealed the typical content of mines in 

( | , )p m µ τ
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minefields of a similar nature, such information should be incorporated into the prior 

distribution .  ( | , )p m µ τ
 

A simple structure to impose on  is to write   as ( | , )p m µ τ ( | , )p m µ τ
 

                                                               (11.02)      
0 if 0

( | , ) ( )
( ) if 0.

p m
p m p m

m m
µ τ

π

⎧ =⎪⎪⎪= = ⎨⎪ >⎪⎪⎩
 

That is,  is assumed independent of , and . The rationale behind (11.02) 

is the general experience that a considerable fraction of the areas originally classified as 

minefields during subsequent mine clearance operations turns out to be mine free. Being 

“mine free” may actually be the most frequent observation made during larger mine 

clearance programmes. It seems therefore appropriate to ask a decision maker for the 

probability that a randomly selected minefield actually contains zero mines. The decision 

maker may give his answer through the point estimate  in (11.02). 

( )p m ,µ τ 0m ∈ `

0p

 

Concerning the conditioned distribution , a convenient measure of the decision 

maker’s uncertainty (or lack of information) is the entropy  which for  defined 

in (11.02) takes the form 

( )mπ
( )H π ( )mπ

                                                                            (11.03) 
1

( ) ( )log ( ),
m

H mπ π π
∞

=

=−∑ m

 

where . Thus  is a functional, and it can be shown that  for 

any choice of . As a matter of fact  if and only if  takes the form 
1

( ) 1
m

mπ∞

=
=∑ ( )H π ( ) 0H π ≥

( )mπ ( ) 0H π = ( )mπ
 

                                                                                     (11.04) 
1 if

( )
0 if ,

m j
m

m j
π

⎧ =⎪⎪⎪= ⎨⎪ ≠⎪⎪⎩
 

where . Given two distributions  and  we will say that  relative 

to  reflects a larger uncertainty (i.e., less information) about m  if .    

,m j ∈ ` 1( )mπ 2( )mπ 1( )mπ

2( )mπ 1 2( ) ( )H Hπ π>

 

Assume now that the decision maker based on the available information can impose k 

restrictions on  being expressed as ( )mπ
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                                                                 (11.05) 
1

( ) ( ) , 1,2,..., .j j
m

g m m j kπ
∞

=

= Μ =∑
 

It can then be shown [see for example Berger, 1980] that the distribution which satisfies 

(11.05) and maximizes the entropy  is given as ( )H π
 

                                            

1

1

1

( )

( )
( ) ,

m

k
j jj

k
j jj

g m

g m

em

e

λ

λ
π

∞

′=

=

=
′

=
∑

∑∑
                                 (11.06) 

 

where the coefficients jλ  are to be determined from the k conditions in (11.05). The prior 

given by (11.06) seems to be a fair choice as no information has been imparted to  

except from what has been deliberately expressed by (11.05).  

( )mπ

 

In what follows we will assume that information is at hand which allows the decision 

maker to specify the expected value of m (given m > 0). The specification can be written 

as          

                                                                                         (11.07) 
1

( ) ,
m

m mπ
∞

=

=Μ∑
 

from which it follows that  is given as ( )mπ

                                                 

1

( ) .
m

m

m

em
e

λ

λ
π ∞

′

′=

=
∑

                                        (11.08) 

 

By use of the identity 
1 1

m
m

ee
e

λ
λ

λ

∞

=
=

−∑  it turns out that 1log(1 )λ = −
Μ

 from which it 

follows that 

                                             11 1( ) ( ) (1 ) ,mmπ −= ⋅ −
Μ Μ

                                  (11.09) 

i.e., 1| 0 (m m Ge>
Μ

∼ ).   

So to conclude,                    
0

1

if 0
( ) 1 1( ) (1 ) if 0m

p m
p m

m−

⎧ =⎪⎪⎪⎪= ⎨⎪ ⋅ − >⎪⎪ Μ Μ⎪⎩

                          (11.10) 
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The sensitivity of the posterior  to various combinations of  will be 

examined in chapter 12.  

( , , , , | )p m gµ τ λ y

y

0( , )p Μ

 

11.3 Specification of    ( , )p µ τ

The prior  given by (11.10) can be considered as a moderately informative prior as it 

is based on just two specifications, i.e., the point estimate  and the average value Μ , 

whose meanings are intuitively clear. It seems harder, however, to make similar 

specifications concerning the prior . That is, if historical information is at hand 

about the likelihood of encountering a mine, such information may presumably be 

rephrased in quantitative terms by estimates of certain properties of , say  or the 

50% quantile of the distribution of θ . In other words, the estimate refers directly to 

properties of the binomial parameter  and not to properties of either  or .   

( )p m

0p

( , )p µ τ

( )p θ [ ]E θ

θ µ τ

 

To set up a prior  which is based on prior knowledge about , recall that in chapter 

8 a non-informative prior distribution was set up in terms of two uniform priors  and 

 both being cut off at a faraway distance (specified by the constants k

( , )p µ τ θ

( )p µ
( )p τ 1 and k2) to 

ensure a proper posterior distribution of . In fig 11.1.a below, the square at 

which  is shown for the particular choice  and . 

( , , , | )p µ τ λ ζ
( , ) constant 0p µ τ = ≠ 1 20k = 2 50k =

 
Fig. 11.1. Specification of prior for  under simple mixture model. Fig. 11.1.a (left figure): Prior 

distribution used under the naïve models  in chapter 8:  within square. 

Fig. 11.1.b (right figure): Subset of contour lines traversing the square from fig. 11.1.a .  

,µ τ

1 2 3 4, , ,H H H H ( , ) constant 0p µ τ = ≠

 

    
-20 20

m

t
50

-20 20
m

t

-20 20
m

t
50

-20 20
m

t

  
Recall also that every point ( ,  located within the square in fig. 11.1.a corresponds 

through relation (5.3) to a probability distribution  characterized by an expected 

)µ τ
( | , )p θ µ τ
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value . In fig. 11.1.b all points ( ,  characterized by the same 

expected value of  are linked through a contour line.      

[ | , ] (1,1, , )E fθ µ τ µ τ= )µ τ
θ

 

To set up a moderately informative prior  we will tentatively write  as ( , )p µ τ ( , )p µ τ
 

                                                                  (11.11) 
 if 0 (1,1, , )

( , )
1 if (1,1, , ) 1.

f E
p

E f

β µ τ
µ τ

µ τ

⎧ ≤ ≤⎪⎪⎪∝ ⎨⎪ < ≤⎪⎪⎩
 

That is,  requires only a specification of the two parameters  and E . To apply 

expression (11.11), a hypothetical decision maker has to proceed as follows: Firstly, the 

decision maker divides the square from fig. 11.1 up into two compartments A and B 

separated by a contour line  of his own choice as sketched in fig. 11.2. Secondly, the 

decision maker specifies through his choice of  the prior odds  

( , )p µ τ β

E

β
 

                                                 
( , )

,
( , )

A A

B B

p
p
µ τβ
µ τ

=                                           (11.12) 

 

where  and ( ,  are arbitrary points belonging to compartment A and B, 

respectively. It follows that all points belonging to a given compartment are assigned the 

same probability, a priori.   

( , )A Aµ τ )B Bµ τ

 
Fig. 11.2. Compartmentalization by contour line. All points ( ,  located on the red solid contour line are 

characterized by the expected value . All points belonging to a given compartment are 

assigned the same a priori probability.       

)µ τ

[ | , ]E θ µ τ = E

                              -20 20
m

t

-20 20
m

t

 

    E 

  Comp. A 

Comp. B 

Table 11.1 below tabulates three different combinations of the parameters ( , , denoted 

Set 1, Set 2 and Set 3. The corresponding priors  are sketched in fig. 11.3. As the 

)E β
( , )p µ τ
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probability mass is more localized in Set 3 relative to the distributions found in Set 1 and 

Set 2, we will consider the distribution corresponding to Set 3 as the most informative 

among the three prior distributions. The three priors will be applied in chapter 12.  

 
Table 11.1. Three parameter combinations determining three priors  . ( , )p µ τ

Parameter combination E β  

Set 1 0.2 4 

Set 2 0.1 9 

Set 3 0.02 49 

 

Fig. 11.3 Priors  corresponding to the three parameter combinations from table 11.1.     ( , )p µ τ
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In table 11.1 we have summarized the parameters to be specified if the priors suggested in 

the present chapter are to be applied.  

 
           Table 11.1. Parameters to be specified in informative prior distributions .  

Parameter Function 

Λ  The average number of components in finite mixture model 

0p  The probability that a minefield contains zero mines. 

Μ  The expected numbers of mines in a minefield, given that the minefield 

contains mines.   

E  Associated value of contour line dividing the parameter space of  and 

 into compartments A and B. 

µ
τ

β  Prior odds for point belonging to compartment A relative to point 

belonging to compartment B.  
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Chapter 12 

Markov Chain Simulations with Extended Mixture Model 

 

 

12.1 Introduction 

The aim of the following Markov chain simulations is twofold: Firstly, to investigate the 

utility of the extended mixture model as a way of generating the posterior . 

Secondly, to examine the sensitivity of the posterior  to different choices of 

informative priors. In the present chapter the results from 36 Markov chain simulations, all 

carried out according to the sampling scheme from fig. 10.1, are presented. The complete 

set of tested models are shown in table 12.1 below. 

( | )p yθ

( | )p yθ

 
Table 12.1. Thirty six finite mixture models specified by their prior distribution parameters. 
 

Model Λ  ( , )E β  0p  Μ  Model Λ  ( , )E β  0p  Μ  
1 3 (0.02, 49) 0.1 10 19 10 (0.02, 49) 0.1 10 

2 3 (0.02, 49) 0.1 20 20 10 (0.02, 49) 0.1 20 

3 3 (0.02, 49) 0.1 30 21 10 (0.02, 49) 0.1 30 

4 3 (0.02, 49) 0.2 10 22 10 (0.02, 49) 0.2 10 

5 3 (0.02, 49) 0.2 20 23 10 (0.02, 49) 0.2 20 

6 3 (0.02, 49) 0.2 30 24 10 (0.02, 49) 0.2 30 

7 3 (0.1, 9) 0.1 10 25 10 (0.1, 9) 0.1 10 

8 3 (0.1, 9) 0.1 20 26 10 (0.1, 9) 0.1 20 

9 3 (0.1, 9) 0.1 30 27 10 (0.1, 9) 0.1 30 

10 3 (0.1, 9) 0.2 10 28 10 (0.1, 9) 0.2 10 

11 3 (0.1, 9) 0.2 20 29 10 (0.1, 9) 0.2 20 

12 3 (0.1, 9) 0.2 30 30 10 (0.1, 9) 0.2 30 

13 3 (0.2, 4) 0.1 10 31 10 (0.2, 4) 0.1 10 

14 3 (0.2, 4) 0.1 20 32 10 (0.2, 4) 0.1 20 

15 3 (0.2, 4) 0.1 30 33 10 (0.2, 4) 0.1 30 

16 3 (0.2, 4) 0.2 10 34 10 (0.2, 4) 0.2 10 

17 3 (0.2, 4) 0.2 20 35 10 (0.2, 4) 0.2 20 

18 3 (0.2, 4) 0.2 30 36 10 (0.2, 4) 0.2 30 
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A few comments on the applied prior distributions: To investigate the sensitivity of the 

Markov chain simulations to the number of components included in the extended mixture 

model, two values of Λ  were tested, that is,  in model 1 , and  in model 

. 

3Λ = 1→ 8

y

10Λ =

19 36→

 

The various combinations of  and Μ  set up in table 12.1 give rise to different a priori 

estimates of the expected number of mines in a randomly selected minefield. In what 

follows we will denote such an a priori estimate , where . The 

combinations of  and  in table 12.1 include the estimates  = 8, 9, 16, 18, 24, 

and 27. The three applied combinations of ( ,  were mentioned at the end of chapter 11.  

0p

m< > 0(1 )m p< >= − Μ

0p Μ m< >

)E β
 

 

12.2 Results from Markov Chain Simulations 

The following presentation will be split up into two parts: In the first part, certain features 

of the Markov chain simulations which arise due to the introduction of the point process 

will be illustrated. In the second part, various properties of the posteriors  derived 

from the completed simulations will be calculated and compared.     

( | )p yθ

 

Features of Point Process 

To ensure that any Markov chain simulation reaches all important parts of the target 

distribution , every simulation under a given model is initiated from four 

different starting points. The starting points are different with respect to g, i.e. the number 

of included mixture components, which for practical reasons has been set to 10, 20, 30 and 

40, respectively. Due to the introduction of the point process, g  varies in time (i.e. 

iteration time), and after a few iterations g fluctuates about its average value, which is 

largely determined by the parameter Λ . This is illustrated for model 21 ( ) in fig. 

12.1 (on the following page) where g  as a function of iteration time is shown for each of 

the four Markov chains run under model 21. 

( , , , , | )p m gµ τ λ

10Λ =

 

Due to the point process, the set of integers  entering into the extended 

mixture model varies with time as new integers are constantly born and old integers are 

eliminated. Fig. 12.2 (on the following page) shows the list of integers which have survived 

at iteration time t = 336, 337, 338 and 339. 

1 2{ , ,..., }gm m m
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Fig. 12.1. The variation of g  with iteration time. The four graphs below illustrate the number of included 

mixture components as a function of time (i.e. time t = number of iterations). g(0) indicates the number of 

included mixture components at the start of the simulation. The displayed values of  were recorded 

during the Markov chain simulations under model 21.         

( )g t
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Fig. 12.2. List of integers  included in the extended mixture model at four successive 

iterations during the Markov chain simulation under model 21, .  
1 2{ , ,..., }gm m m

(0) 40g =

                   

t = 336: {0,3,6,8,8,8,9,11,22,27,55,87,103} 

t = 337: {0,0,6,8,10,11,57} 

t = 338: {0,0,6,8,9,10,18,60} 

t = 339: {0,0,6,8,60,95} 

 

 

 

 

 

Every integer m  is associated with a probability  which varies with iteration time. Fig. 

12.3 (on the following page) shows the distribution of the integers and their associated 

probabilities as points in . Note that in fig 12.2 a given integer may appear more 

than once, whereas fig. 12.3 shows the distribution of different integers. Consequently, the 

probabilities in fig. 12.3 do not necessarily sum to 1.    

mλ

0[0;1]×
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Fig. 12.3. Plots of integers included in the extended mixture model and their associated probabilities at four 

successive iterations during the Markov chain simulation under model 21, . Note that the 

multiplicity of an integer in a given list  cannot be determined from the plots below.  

(0) 40g =

1 2{ , ,..., }gm m m
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From the list of integers  and the associated set of probabilities 

 the average number of mines, a posteriori, can be calculated. This number 

will be denoted  to distinguish it from the prior estimate . Fig. 12.4 shows 

 as a function of iteration time.   

1 2{ , ,..., }gm m m

1 2{ , ,..., }gm m mλ λ λ
[ ]E m m< >

[ ]E m

 
Fig. 12.4.  as a function of iteration time under model 21. The integers and associated probabilities 

sampled at time t  were recorded and the average number of mines was calculated as . 

[ ]E m

1
[ ] j

g
m jj
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The Distribution of θ : Statistical Inferences from Markov Chain Simulations 

In the present context, the parameter of primary interest is the binomial parameter  

whose distribution can be estimated from the sampled values of the normal distribution 

parameters . To ensure that all important values of ( ,  are sampled properly 

during a Markov chain simulation, four Markov chains initiated from different starting 

points were run in parallel. At regular intervals the first halves of points ( ,  sampled 

from each chain were temporarily discarded, and the remaining halves were merged into 

one big chain from which the potential scale reduction factor  could be calculated. When 

 was found to be less or equal to 1.1 for both µ  and , the sampling was stopped.    

θ

( , )µ τ )µ τ

)µ τ

R̂

R̂ τ

 

Fig. 12.5 below shows the distribution of ( ,  for each of the Markov chains from fig. 

12.1. Each plot includes 670 sampled points. After having discarded half of the sampled 

points from each chain, the remaining points were merged as shown in fig. 12.6, and the 

sampling was stopped as  was found to be less than 1.1 for both  and τ .    

)µ τ

R̂ µ
 
Fig. 12.5. Simulation of marginal posterior  under model 21. The four plots illustrate the 

distribution of the second half of the points ( ,  sampled during four Markov chain simulations run in 

parallel. The four chains are characterized by different starting points. The plot labels  indicate the 

number of components included in the mixture model at t = 0. 

( , | )p µ τ y

)µ τ
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Fig. 12.6. The four marginal posteriors  from fig. 12.5 merged into one plot. All statistical 

inferences concerning the distribution of the binomial parameter under model 21 are based on the merged 

plot.    

( , | )p µ τ y
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Based on the sample in fig. 12.6 various properties of  can be calculated like it was 

done in chapter 7 under the naïve models. The  sensitivity of  to different choices 

of priors is the main theme in the remaining part of the present chapter.    

( | )p yθ
( | )p yθ

 
Fig. 12.7 below provides an overview of the distribution of  derived from  

based on the 36 completed Markov chain simulations. Similarly, fig. 12.8 shows the 

distribution of .  

[ | ]E yθ ( | )p yθ

[ | ]Var yθ
      
Fig. 12.7. The posterior  obtained under the mixture models from table 12.1. The dashed red line 

indicates the true average value of θ  (obtained from the distribution ). The 

integer located to the right of each point refers to model number according to table 12.1.    

[ | ]E yθ
( | , ) ( | 4.7, 0.5)p pθ µ τ θ= −
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Fig. 12.8 The posterior  obtained under the mixture models from table 12.1. The dashed red line 

located at the bottom of the plot indicates the true variance of θ  (obtained from the distribution 

).  

[ | ]Var yθ
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Fig. 12.9 and 12.10 below illustrate the location of the 95% and 50% posterior intervals for 

 calculated under the mixture models from table 12.1.  θ
   
Fig. 12.9 Location of 95% posterior interval for  under the mixture models from table 12.1. 2.5% of the 

posterior density of  is located to the left and to the right, respectively, of the horizontal line under a 

given model. The posterior interval termed ”DATA” is derived from the distribution  

.  

θ
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Fig. 12.10. Location of 50% posterior interval for  under the mixture models from table 12.1. 25% of the 

posterior density of  is located to the left and to the right, respectively, of the horizontal line under a 

given model. The posterior interval termed ”DATA” is derived from the distribution  

.  
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Figure 12.8, 12.9 and 12.10 illustrate as expected that the posterior variance or posterior 

interval of θ  in all examined cases is estimated to be larger than the true variance or the 

true 50% (or 95%) interval of θ . This overdispersion has two sources: the uncertainty 

about the actual content of mines in the individual minefields (which is reflected through 

the use of a finite mixture model), and the overdispersion implied by the introduction of 

the scale parameter  which was made in (5.1) and (5.2) . τ

 

To analyse the above results thoroughly we will by way of introduction examine whether 

the average number of components included in the extended mixture model affects 

essential properties of the posterior . According to table 12.1, model j and model 

j+18 are identical except from the ascribed value of Λ , where  for model 1 1

and  for model 19 . Recall that  signifies the expected number of 

components in the mixture model, a priori.  

( | )p yθ
3Λ = 8 , →

10Λ = 36→ Λ

 

Fig. 12.11 below illustrates the average number of components actually included during the 

Markov chain simulations for the 36 examined models. Each point in fig. 12.11 is found by 

averaging over the length of chains similar to the chains depicted in fig. 12.1. These 

posterior averages are seen to be displaced slightly upwards relative to their respective 
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prior values (i.e. 3 and 10, respectively), but within each group the posterior averages seem 

to be unaffected by the values of E, , p0 , and Μ .  β
 
Fig. 12.11. The average number of included mixture components under the mixture models from table 12.1. 

 denotes the average number of included mixture components during the second half of the 

Markov chain simulation under each model. The red dashed lines indicate the prior average number of 

components as specified by the parameter .   
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Fig. 12.12. The effect of  on the posterior . Two circles linked by a line indicate two models which 

only differ with respect to . The magnitude of Λ  clearly affects the value of . The integer located 

to the right of each point refers to model number according to table 12.1.    
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In fig. 12.12 above, the averages  from fig. 12.7 have been reproduced, but this time 

two models which only differ with respect to the ascribed value of  are linked by a 

[ | ]E yθ
Λ
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dashed line. Fig. 12.12 shows a clear dependence between the value of Λ  and . In 

general, the expected value of θ  is diminished when the value of  is increased from 3 to 

10. A similar trend is seen with respect to the posterior variance of θ  as illustrated in fig. 

12.13.           

[ | ]E yθ
Λ

  
Fig. 12.13. The effect of Λ  on . Two circles linked by a line indicate two models which only differ 

with respect to the value of Λ . The integer located to the right of each point refers to model number 

according to table 12.1. 
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Numerical inaccuracies due to the application of Markov chains of finite length might play 

a part in the observed differences between  calculated at  and . 

However, as the trends in fig. 12.12 and 12.13 are quite consistent, numerical inaccuracies 

cannot account fully for the observed patterns. We will return to this problem later. 

[ | ]E yθ 3Λ = 10Λ =

 

From table 12.1 it can be seen that models indexed as i, i+6 and i+12 constitute a group 

of models which are identical with respect to <m> but different with respect to the 

parameter E  and β . Recall that <m> denotes the estimated number of mines, a priori, in 

a randomly selected minefield. In fig. 12.14 and 12.15 the averages  from fig. 12.7 

are once again reproduced, but this time the averages are shown as a function of <m>. 

Fig. 12.14 includes all model characterized by , whereas fig. 12.15 includes all models 

characterized by .  

[ | ]E yθ

3Λ =

10Λ =
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Fig. 12.14.  as a function of . The mixture models from table 12.1 characterized by  are 

distributed into groups of three according to their ascribed value of . Solid black line is calculated 

according to equation (12.01). Red dashed line indicates the true average value of .        
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Fig. 12.15.  as a function of  for mixture models from table 12.1 characterized by . 

Solid black line and dashed red line, see fig. 12.16. Dashed black line indicates the modifying effect of the 

informative prior  on model 22 and model 19. 
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Included in fig. 12.14 and 12.15 is also a plot of  as a function of <m> where 

 denotes the estimate of  according to the superminefield model from 

chapter 8, i.e. 

[ | ]totalE yθ
[ | ]totalE yθ [ ]E θ

                                   170[ | ] .
1000

total
total

total

yE y
m m

θ = ≈
⋅< >

                              (12.01) 

 

From fig. 12.14 and 12.15 the following observations can be made: 

 

1)  is highly sensitive to <m> and is roughly inverse proportional to <m>. 

Consequently, the parameters  and Μ  have a substantial effect on .  

[ | ]E yθ

0p ( | )p yθ
2) In general  is displaced upwards relative to the estimate given by (12.01). 

However, the displacement is much stronger when . The exceptions are 

model 19 and 22 whose estimates are displaced downwards relative to (12.01).    

[ | ]E yθ
3Λ =

3) Due to the inverse proportionality between  and , the sensitivity 

of  to variations in  diminishes as increases.  

[ | ]E yθ m< >

[ | ]E yθ m< > m< >

4) The effect of  appears to diminish when increases.             ( , )p µ τ m< >

 

Regarding point 1, the strong dependence of  on  means inevitably that very 

misleading results can be generated if the prior belief about  is considerably out of 

line with the true average value. 

( | )p yθ m< >
m< >

 

Regarding point 2, further tests have to be carried out to detect the reason behind the 

different results obtained from models specified by  and , respectively, and 

the general displacement from (12.01). However, certain observations point in the direction 

that the discrepancies are due to premature termination of the Markov chains when 

. Firstly, the estimates of  provided by model 20, 26 and 32 in fig. 12.15 are 

very close to the true average value as indicated by the dashed red line in fig. 12.15. This 

agreement is to be expected as  under these models (which is very close to the 

true average mine content of 17.8). The estimates of  from the corresponding models 

in fig. 17.14 (i.e. model 2, 8 and 14) do not exhibit a similar agreement.  

3Λ = 10Λ =

3Λ = [ ]E θ

18m< >=

[ ]E θ

 

Secondly, a characteristic difference between the point process run at  and  is 

the rate at which new components (i.e., new integers) are introduced into the mixture 

3Λ = 10Λ =
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model. Fig. 12.16.a and 12.16.b below show for model 22 ( ) and model 4 ( ) 

the distribution of the number of new mixture components introduced per iteration based 

on iterations from the second half of the completed Markov chain simulations. From fig. 

12.16 it follows that the average number of new components introduced per iteration is 

( ) and 3.4 ( ).         

10Λ = 3Λ =

1.7 3Λ = 10Λ =
 

Fig. 12.16. The frequency distribution of the number of new components introduced per iteration.  for 

Model 22,  and  for model 4.    

10Λ =
3Λ =
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A possible consequence of having a large number of new components introduced per 

iteration is that all parts of the birth distribution  are sampled properly including its 

right-end tail during the finite number of steps in the Markov chain simulation. On the 

other hand, if the right-end tail is not sampled properly, which may be the case when 

, the posterior values of m will, on average, be too low which will increase  as 

observed in fig. 12.14.        

( )p m

3Λ = [ | ]E yθ

 

The considerations made above are admittedly speculations, and only through more 

elaborate tests can the importance of  be properly clarified.   Λ

 

The strong sensitivity of  to the prior  is problematic, and for that reason 

various informative priors  have been used in the present chapter to investigate 

their possible counter-balancing effect. In connection with point 4 on the previous page it 

was commented that the effect of  appears to diminish as increases. To 

elaborate on this observation, note that in fig. 12.14 and 12.15 three models located along 

the same vertical line are identical with respect to <m> but different with respect to E  

and . For convenience we may term such a group of models a triad. The trend observed 

in fig. 12.14 and 12.15 is that in each triad, the model with  generates in general 

the lowest estimate with respect to  (the only exception being model no. 21 in fig. 

( | )p yθ ( )p m

( , )p µ τ

( , )p µ τ m< >

β
0.02E =

[ ]E θ
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12.15). As to the order of the estimates of  from the remaining two models in each 

triad, nothing can be concluded in general. However, the variation among the estimates of 

 in a triad is largest when <m> is small and seems to diminish for increasing values of 

<m>. 

[ ]E θ

[ ]E θ

 

The above observations can be explained by noting the inverse relationship between 

 and <m>. From (12.01) it is seen that if  it follows that 

. Consequently, for the group of mixture models satisfying , 

the predominant part of the posterior  will be located along contours in the - 

plane which are well below the -contour line (i.e. ). This is illustrated in 

fig. 12.17 in the case of model 21 where the -contour line has been superimposed on 

the plot of  from fig. 12.6. Consequently, the prior  characterized by 

 does not influence the location of  substantially. The same observation 

obviously goes with the priors characterized by larger values of E .  

[ | ]E yθ 8.5m< >

[ | ] 0.02E yθ 8.5m< >

( , | )p µ τ y

y

y

y

,µ τ

0.02 [ ] 0.02E θ =
0.02

( , | )p µ τ ( , )p µ τ
0.02E = ( , | )p µ τ

 
Fig. 12.17. Sampled values from  obtained under model 21. Due to the large value of  in 

model 21, the values of ( ,  sampled during the Markov chain simulation are located well below the 

contour line . Consequently, the informative prior  used in model 21 does not influence the 

location of .   

( , | )p µ τ m< >
)µ τ

[ ] 0.02E θ = ( , )p µ τ
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Now when <m> approaches 8.5 from above, the birth-mechanism from the point process 

will to an increasing extent give birth to points ( ,  where m is small. This will be 

balanced by a posterior  whose predominant part approaches the contour-line 

 from below. If  for the prior , areas located in the -plane above 

the 0.02 contour are assigned a lower prior probability relative to areas located below the 

)mλ

( , | )p µ τ y

0.02 0.02E = ( , )p µ τ ,µ τ
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contour line. This in turn induces a higher death rate of points ( ,  characterized by low 

values of m . The informative prior  thus counter-balances the birth-mechanism, 

and due to its modifying effect the value of  is displaced downwards relative to 

what would have been obtained if  was non-informative. Fig. 12.18 below clearly 

illustrates the imprint of the informative prior in the case of model 19.   

)mλ
( , )p µ τ

[ | ]E yθ

( , )p µ τ

   
Fig. 12.18. Sampled values from  obtained under model 19.  for  and = 9. 
The prior  clearly influences the location of  which is due to  the low value of . 
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As to the informative priors  tested in the present chapter the following conclusions 

can be made: If  is large, the impact of  on the posterior  is marginal. 

On the other hand, if the prior  is small, the posterior  is very sensitive to 

changes in , and moderate informative priors  do have a counter-balancing 

impact on the posterior . However, to bring the above conclusions on a firm ground 

more test calculations should be done. This includes a clarification of the role of the 

parameter , in particular whether the observed differences between  and relation 

(12.01) is related to the size of Λ .  

( , )p µ τ
m< > ( , )p µ τ ( | )p yθ

m< > ( | )p yθ
m< > ( , )p µ τ

( | )p yθ

Λ [ | ]E yθ

 

 

12.3 Model Checking and Model Comparisons 

The present chapter will close with a few observations dealing with model fit diagnostics in 

line with the approach taken in chapter 7.  
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Firstly, fig. 12.19 below illustrates for all models defined in table 12.1 the distribution of 

the Bayesian pB-values corresponding to the five test statistics  defined in chapter 

9. Like what was seen in the case of the naïve models from chapter 8, none of the 

calculated pB-values appearing in fig. 12.19 are extreme, i.e. none of the examined models 

disqualify themselves due to model misfit under the applied test statistics.  

1T T→ 5

 
Fig. 12.19. Bayesian -values calculated for the mixture models defined in table 12.1. The five test 

statistics are identical to the test statistics defined chapter 7.                     
Bp
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Secondly, in fig. 12.20 and 12.21 the expected deviance  and the model complexity 

parameter  are shown for model 1 . Regarding the expected deviance, there is a 

distinct difference in  between models characterized by  (i.e., model 1 ) 

and  (model 19 ) where members of the last group have considerably lower 

ˆ ( )avgD y
(2)
Dp 3→ 6

ˆ ( )avgD y 3Λ = 18→

10Λ = 36→
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deviances than members of the first group. Thus the predictive power of the finite mixture 

model (as measured by the expected deviance) is considerably improved when going from 

 to . The variation of  among the members of the second group is 

modest. That is, no single member stands out as superior in terms of predictive power.  

3Λ = 10Λ = ˆ ( )avgD y

 

Fig. 12.20. Expected deviances calculated for the mixture models defined in table 12.1. Notable is the 

relatively large expected deviance in model 1  ( ) in comparison with model 19  ( ). 18→ 3Λ = 36→ 10Λ =
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Fig. 12.21. Model complexity parameter  calculated for the mixture models defined in table 12.1. The 

value of  is observed to be strongly dependent on the value of the parameter Λ .      
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The model complexity parameter  was in chapter 9 defined as half the posterior 

variance of the deviance, and  was interpreted as the number of unconstrained 

parameters in the Bayesian model. This interpretation of  has lost its meaning in the 

case of model 1  where  is typically above 100, as seen from fig. 12.21. The value 

of  is strongly dependent on Λ . 

(2)
Dp

(2)
Dp

(2)
Dp

1→ 8 (2)
Dp

(2)
Dp

  

Once again it must be concluded that further studies are needed to clarify how and why 

the choice of  affects the progression of the Markov chain simulation. Of particular 

interest is to determine the value of  which minimizes the expected deviance.     

Λ

Λ

 

 

12.4 Summary and Conclusions of Finite Mixture Calculations 

The overall objective of the chapters 5-12 has been to discuss how a probability 

distribution  can be set up which is solely based on accident statistics from a group of 

minefields. The major difference between the point of departure taken in chapter 5 and the 

situation outlined in chapter 4 is therefore the decision maker’s uncertainty concerning the 

degree of mine contamination in the minefields under study. To make inferences about 

 a statistical model explicitly incorporating this additional uncertainty is therefore 

needed. In this context, the finite mixture model appears to be an obvious choice of model.  

( )p θ

( )p θ

 

The finite mixture model has been introduced in two steps: First, a particular naïve 

version of the mixture model containing a fixed set of integers  was 

introduced, and Markov chain simulations based on the naïve model were carried out for 

four different choices of integers. Based on the shortcomings found a more advanced 

mixture model was subsequently introduced, the major difference from the naïve model 

being the treatment of the integers  as stochastic variables and the 

averaging over mixture models of varying dimension.  

1 2{ , ,..., }gm m m

1 2{ , ,..., }gm m m

 

To make the advanced mixture model operational, a hypothetical user has to express his 

prior belief about the degree of mine contamination in terms of a probability distribution 

. This information may eventually be complemented by the user’s belief about the 

approximate location of  through the specification of the prior . The completed 

Markov chain simulations based on the advanced mixture model show that the derived 

( )p m

( )p θ ( , )p µ τ
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posterior distribution  is highly sensitive to the prior , in particular when the 

expected number of mines in a randomly selected minefield is small. However, for the 

range of informative priors  tested, the sensitivity of  to  appears as 

marginal unless the expected number of mines is small. A third adjustable factor , which 

largely determines the average number of components included in the mixture model, 

shows a substantial effect on the location and spread of . It remains to analyze the 

reason behind the sensitivity of  to Λ  and to find an optimal value of .  

( | )p yθ ( )p m

( , )p µ τ ( | )p yθ ( , )p µ τ
Λ

( | )p yθ

( | )p yθ Λ

 

The observed sensitivity of  to the prior  might from a non-Bayesian point of 

view appear as open to criticism as the estimate of  is certainly biased. It is unclear, 

however, how an estimate at all can be provided about  if previous knowledge about 

the degree of mine contamination in the minefields under study is completely ignored.   

( | )p yθ ( )p m

( )p θ
( )p θ

 

The observed sensitivity of  to a particular choice of  may possibly be reduced 

if the posteriors  obtained for different choices of  are averaged. It is 

uncertain, however, how to assign weights to the different posteriors under such an 

averaging process. An attractive option, in theory at least, is to assign weights according 

to the relative predictive power of the competing models. Unfortunately, Bayesian -

values do not seem to be of any help in this context. Alternatively, the predictive power 

can be quantified in terms of the expected deviance calculated under each model. As 

illustrated by the deviance calculations completed in chapter 12, the variation with respect 

to the expected deviance among the models characterized by  is unfortunately 

modest, i.e., the accident statistics do not clearly through the expected deviances rank the 

competing models. This observation might be due to inadequate sampling during the 

Markov chain simulations or might simply reflect that the accident statistics do not 

provide sufficient information for such a ranking. In any case: Further research on the 

model averaging aspect is needed.      

( | )p yθ ( )p m

( | )p yθ ( )p m

Bp

10Λ =
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Chapter 13 

Integral Evaluation under Markov Chain Simulations   

 

 

13.1 Introduction 

As already noted in chapter 6, the integral which appears in the expression for 

 defined under the finite mixture model cannot be carried out analytically, and 

we therefore have to rely on numerical integration. Unfortunately, the use of an 

approximate summation formula such as a 20-point Gauss-Hermite quadrature generates 

inaccurate results for certain combinations of the entering variables ( , . Simply 

increasing the number of interpolation points reduces the accuracy problem but does not 

eliminate it, and the integration algorithm is furthermore slowed down. What seems 

preferable in the present context is therefore an adaptive integration algorithm where the 

number of included interpolation points varies with ( , .  

( | , , )f y m µ τ

, , )y m µ τ

, , )y m µ τ
 

In the present chapter we will give a somewhat detailed account of an adaptive numerical 

integration algorithm (based on work by Crouch et al., 1990) which has been implemented 

to provide reliable Markov chain simulations. The chapter serves mainly as technical 

documentation and may without loss of context be skipped on a first reading.            

 

13.2 Numerical Integration Formula 

In what follows we will generally factorize  as ( | , , )f y m µ τ
 

                                      
2

( | , , ) ( )

,

t

g

f y m A g t e dt

A I

µ τ
∞

−

−∞
= ⋅

= ⋅
∫                                 (13.01) 

 

where ,  is a constant independent of t , and  is just a shorthand notation for 

the integral. To set up an adaptive numerical integration algorithm, assume that  from 

(13.01) is analytical except for isolated poles (not located on the real axis) within some 

strip  in the complex plane as sketched in fig. 13.1 below.   

1m ≥ A gI

( )g t

( )tκ− < < +F κ
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Fig. 13.1. The location of the strip  in the complex plane. Red circles denote isolated poles 

of the analytical function .   
( )tκ− < < +F κ

( )g t
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Now, if κ  has been chosen such that  

 

                                                                 (13.02) 
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it follows from error bound derivations done by Crouch et al. that 
2

( ) tg t e dt
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−∞∫  can be written as                     
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where the absolute value of  in (13.03) satisfies    1( , )hε κ
 

                                    (13.04)          

           

2 2( 2 / )
1| ( , ) | {| ( ) | | ( ) |} .h th e g t i g t i eκ πκε κ κ κ

∞
− −

−∞

≤ × + + −∫

In (13.03),  and  denote the summation over the residues of the poles 
below

res∑ above
res∑

jt  located respectively below and above the real axis in the strip . The ( )tκ κ− < < +F
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parameter  can be considered as a step size of the summation formula, and  is an 

arbitrary parameter which may be chosen for convenience.  

h 0t

 

To implement (13.03) on a computer system we necessarily have to truncate the 

summation which sums over an infinite number of terms. Our final approximation of 

 can thus be written as 
2

( ) tg t e dt
∞

−

−∞∫
 

                

2

1 22 2
0 0

2
0

( 2 ( )/ )0

2
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( 2 ( ) /0

( ) ( )
0 0 0

1 1

( 2 ( )/ )
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( )

[ ( ) ( ) ( ) ]

( )
2

1

( )
2

1

j

i t t h

j

i t t

t

k k
t t nh

n n

t i t t h
j

below

t i t t h
j

g t e dt

h g t e g t nh e g t nh e

g t e e
i res

e

g t e e
i res

e

π

π

π

π

π

π

− −

− −

∞
−

−∞

− − + − −

= =

− − −

− − −

≈

+ + + −

⎫⎧ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ ⎨ ⎬⎪ ⎪−⎪ ⎪⎪ ⎪⎩ ⎪⎭

+
−

∫

∑ ∑

∑

2
0t nh

) .h

above

⎫⎧ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎪⎭
∑

         (13.05) 

 

The use of the summation formula in (13.05) in place of 2( )exp( )g t t dt
∞

−∞
−∫  implies three 

sources of error: 1) the error term  given by (13.04) whose magnitude can be 

controlled by appropriate choices of κ  and h ; 2) the truncation error  due 

to the truncation of the summation which sums over an infinite number of terms; 3) the 

rounding error  which is due to the finite precision of the applied computer system. The 

acceptable bounds on the three sources of error will obviously depend on our tolerance 

concerning the absolute error on the evaluation of .  Thus before we proceed 

with the determination of  and  it is essential to clarify the relationship between 

the absolute error on  and the absolute error on 

1( , )hε κ

2 2 1 2( , , )k k hε ε=

3ε

( | , , )f y m µ τ

1, ,h kκ 2k

( | , , )f y m µ τ 2( )exp( )g t t dt
∞

−∞
−∫ .             

   

 

13.3 Error Analysis 

In what follows  denotes the output from a numerical computation of 

. In general  will be different from  due to various 

numerical errors. If 

*( | , , )f y m µ τ
( | , , )f y m µ τ *( | , , )f y m µ τ ( | , , )f y m µ τ

2( | , , ) ( )exp( ) gf y m A g t t dt A Iµ τ
∞

−∞
= − ≡ ⋅∫ , the absolute error amounts 
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to  where  and  denotes the numerical 

approximation to A  and , respectively, and  and  denotes the absolute error on 

 and , respectively.  

* *| ( | , , ) ( | , , ) | ,g gf y m f y m A I I Aµ τ µ τ− ≈ ∆ + ∆* *A *
gI

gI A∆ gI∆

A gI

 

Let us as our point of departure aim at an integration algorithm which can provide 

 with an absolute error not exceeding say . Consequently, ( | , , )f y m µ τ 1410−

 

                                           

* *

14 *

* *

10

10 .

g g

g
g

A I I A

II A
A A

−

−

∆ + ∆ ≤

∆ ≤ − ∆

14

                                      (13.06) 

 

To simplify the following discussion we will ignore the term 
*

*
gI A

A
∆  from (13.06). To 

justify this, let , i.e.  is a floating-point real number with a precision of say 

16 digits. If by assumption the product , we can write , 

where . It follows that (13.06) can be rewritten as 

* 10mA a= ⋅ *A
* * [0;1]g gA I A I⋅ ≈ ⋅ ∈ * * 10 x

gA I b −= ⋅

0x ∈ N
 

                                       14 2
2

1 10 10 .m x m
g

bI
a a

− − − −∆ ≤ − ∆A                              (13.07) 

 

Now, if the only numerical error associated with  is due to the rounding error in relation 

to the storage of A , this implies that  given a precision of 16 digits. 

Consequently,  

*A
160.5 10mA −∆ ≤ ⋅

                             2 16 14
2 2

110 0.5 10 10 (0.05 10 )x m x m m xb bA
a a a

− − − − − − − −∆ ≤ ≤ ⋅ .          (13.08) 

 

From (13.08) it follows that the second term in (13.07) is much smaller than the first term 

given that , and the second term in (13.07) will consequently be ignored. Our final 

demand on  is therefore  

* * 1gA I ≤

gI∆

                                                141 10 ,m
gI

a
− −∆ ≤                                          (13.09) 

or simply 

                                                                                            (13.10) 1410 .m
gI − −∆ ≤
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In other words, to guarantee that  is calculated with an absolute error being 

less or equal to , the parameters  and  should be chosen such that  

( | , , )f y m µ τ
1410−

1, ,h kκ 2k

                    

                                                              (13.11) 14
1 2 1 2 3| ( , ) ( , , ) | 10 .mh k k hε κ ε ε − −+ + ≤

  

It is instructive to derive an upper bound on the rounding error due to the finite precision 

of the applied computer system. With that in mind, the process of replacing the integral 

 by an approximating summation followed by the storage of the individual terms on the 

computer will be sketched as     
gI

                                                                                     (13.12)              *

1 1

,
k k

g i
i i

I g
= =

≈ ≈∑ ∑ ig  

 

where  is a shorthand notation for the various summations in (13.05), and  

denotes the stored value of . Whereas the difference between  and  is 

accounted for by  and , the difference between  and  is 

accounted for by . Thus the only difference between  and  is by assumption due to 

the finite precision of the applied computer system.      

1

k
ii

g
=∑ *

ig

ig gI 1

k
ii

g
=∑

1( , )hε κ 2 1 2( , , )k k hε
1

k
ii

g
=∑ *

1

k
ii

g
=∑

3ε ig *
ig

 

To get a bound on , note that sε
 

                                      (13.13) * *
1 1 1

| | | | | | | |
k k k

s i i i ii i i
g g g g kε ε

= = =
= − ≤ − ≤∑ ∑ ∑ max ,

0

 

where  denotes the largest rounding error. If the parameters  and  have been 

chosen such that the inequality  is satisfied, it follows that 

 from which it follows that 

maxε 1, ,h kκ 2k
14

1 2 1 2| ( , ) ( , , ) | 10 mh k k hε κ ε − −+ ≤
14

1
| | 1

k m
g ii

I g − −
=

− ≤∑
 

                             

14

1

14

14 1 14 1
,max

10

10 10

10 10 10 10 10 ,

k
m

i g
i

x m m

x m m m m m
i

g I

b
a

bg
a

− −

=

− − − −

− − − − − + − − − +

≤ +

= +

⇓

≤ + ≤ + ≈

∑

           (13.14) 
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where  denotes the largest component from the summation . In (13.14) we 

have written 

,maxig
1

k
ii

g
=∑

10 x m
g

bI
a

− −=  similar to what was done in relation to (13.07).   

 

From (13.14) it follows that  

 

                                                              (13.15) max * 15
,max ,max| | | | 0.5 10 m

i ig gε − −= − ≤ ⋅

and 

                                                                                   (13.16)   15| | 0.5 10 m
s kε − −≤ ⋅ ⋅ .

2

 

Thus the rounding error  is (not surprisingly) proportional to k, i.e. the number of terms 

included in the approximating summation. Furthermore, if  the rounding error may 

exceed the acceptable tolerance on . It is therefore essential to choose the step size h  

as large as possible to ensure that the number of terms to be included in the quadrature 

formula becomes as small as possible.  

sε
20k ≥

1410−

 

With the above aim in mind we now turn to the determination of the parameters  

and . A wide range of combinations of  might possibly satisfy the inequality 

, but the fastest integration algorithm is obviously 

obtained if  is as small as possible. Thus the optimal combination of parameters 

might be obtained as a solution to a (restricted) mixed integer minimization problem if 

explicit bounds for  and  are available. However, the search for the 

optimal solution is time-consuming, and in the present context we have as presented below 

applied a less sophisticated approach which seems to give acceptable solutions in relation 

to the completed Markov chain simulations. 

1, ,h kκ

2k 1 2( , , , )h k kκ
14

1 2 1 2 3| ( , ) ( , , ) | 10 mh k k hε κ ε ε − −+ + ≤

1k k+

1( , )hε κ 2 1 2( , , )k k hε

 

In the approach followed in the present work it is simply demanded that  

 and . Consequently, it is guaranteed that the 

error inherent in the applied quadrature formula is within the fixed limit of . The 

error bound on  might however exceed the limit  when a large number of terms 

are required to satisfy the inequality . This occasional violation 

appears not to have affected the progression of the completed Markov chain simulations. 

16
1| ( , ) | 10 mhε κ − −≤ 15

2 1 2| ( , , ) | 10 mk k hε − −≤
1410 m− −

sε 1410 m− −

15
2 1 2| ( , , ) | 10 mk k hε − −≤
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The problem might furthermore be eliminated if the integral evaluations are done on a 

machine with a larger precision than 16 digits.    

 

From the observations made above it is evident that the step size h  is a parameter of 

central importance. To identify the largest possible value  of h  an explicit expression for 

 is needed. However, it is intuitively clear that the allowable step size must increase 

when the bound  is relaxed. Through the choice of  (recall 

that ) it is therefore possible to affect the allowable step size. From the 

error bound expression it is clear that one should search for factorizations where , i.e. 

.  

1( , )hε κ
16

1| ( , ) | 10 mhε κ − −≤ 10mA a= ⋅

( | , , ) gf y m A Iµ τ = ⋅

1A ≤
0m ≤

 

In what follows, three different factorizations will be derived which ensure that for any 

 there exists a factorization such that . ( | , , )f y m µ τ 1A ≤
 
 
13.4  Factorization of  ( | , , )f y m µ τ
By definition  is equal to  ( | , , )f y m µ τ
 

               
0

2

2

( ) if  = 0

( | , , ) 1 exp( ) ( )exp( ) if  > 0.
2 (1 exp( )) 2m

I y m
mf y m y d my

µ τ α α µ α
πτ α τ

∞

−∞

⎧⎪⎪⎪⎪⎪= ⎛ ⎞⎨ − −⎟⎜⎪ ⎟⎜⎪ ⎟⎜ ⎟⎜⎪ +⎝ ⎠⎪⎪⎩
∫

           (13.17) 

   

Only the integral expression in (13.17) is of interest in the following derivations. The 

integral will as a matter of convenience be rewritten as 

 

                          
2

2

1 exp( ) ( )( | , , ) exp( ) .
2 (1 exp( )) 2m

xy xg y m dx
x

µµ τ
πτ τ

∞

−∞

− −=
+∫                  (13.18) 

 

The subject in the present paragraph is therefore through some transformation to 

accomplish the factorization 
2

( | , , ) ( ) tg y m A g t e dtµ τ
∞

−

−∞
= ⋅ ∫ . It turns out that three 

different factorizations suffice to accomplish the goal stated in the previous paragraph. The 

three factorizations will be referred to as fac 1, fac 2 and fac 3.  
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Concerning fac 1: by use of the two transformations 

 

1)  2z x yµ τ= − −

2) 
2
zt
τ

=   

 

in (13.18) it can easily be shown that (13.18) is factorized as 

 

              

2

2

( )exp( ) 12( | , , ) exp( ) ,
(1 exp( ))m

yy
g y m t dt

t

τµ
µ τ

π α β

∞

−∞

+
= × −

+ +∫             (13.19) 

 

where and 2yα µ τ= + 2β = τ . We have thus obtained a factorization where 

 

                                          

2( )exp( )
2 ,

yy
A

τµ

π

+
=                                         (13.20) 

and                                                               

                                      1( ) .
(1 exp( ))mg t

tα β
=

+ +
                                                   (13.21) 

 

Similarly, if only the transformation 
2
xt
τ

=  is used, (13.18) is factorized as 

 

                          

2

2
2

exp( ) exp( )2( | , , ) exp( ) ,
(1 exp( ))m

tg y m t dt
t

µ
ατµ τ

π β

∞

−∞

−

= × −
+∫                (13.22) 

 

where 22 ( )y µα τ
τ

= +  and 2β = τ . (13.22) will be termed fac 2.  

 

Finally, by use of the identity  

 

  `                          

2 2
2

2
21

2

1 exp( ) exp( )
(1 exp( )) 4

1 exp( ) ,
(1 exp( ))

m

m

mt dt m
t

t dt
m t

βα
α β

α β β

∞

−∞
∞

−∞

− = − + ×
+ +

−
+ − + +

∫

∫
         (13.23) 
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in (13.19), a third factorization can be derived which takes the form 

 

                           

2

2

( )exp(( )[ ])
2( | , , )

1 exp( ) ,
(1 exp( ))m

y my m
g y m

t dt
t

τ µ
µ τ

π

γ β

∞

−∞

−− +
= ×

−
+ +∫

                                 (13.24) 

 

where  and 2( )m yγ τ µ= − − 2β = τ . (13.24) is termed fac 3. The three factorizations 

are summarized in table 13.1. In paragraph 13.6 it will be shown that the three tabulated 

factorizations actually ensure that for any  there exists an .  ( | , , )f y m µ τ 1A ≤
 

Table 13.1. Derived factorizations. 
Fac.  A  ( )g t  , ,α β γ  

fac 1 2( )exp( )
2

yy τµ

π

+
 

1
(1 exp( ))mtα β+ +

 2yα µ τ= +  
2β τ=  

fac 2 2

2exp( )
2
µ
τ

π

−

 

exp( )
(1 exp( ))m

t
t

α
β+

 22 ( )y µα τ
τ

= +  

2β τ=  

fac 3 2( )exp(( )[ ])
2

y my m τ µ

π

−− +
 

1
(1 exp( ))mtγ β+ +

 2( )m yγ τ µ= − −  
2β τ=  

  

 

13.5 Adaptive Numerical Integration Algorithm 

After having derived three different factorizations what remains is to choose  and  

such that  and . The specific choice of parameters 

will in general depend on the used factorization.          

1, ,h kκ 2k
16

1| ( , ) | 10 mhε κ − −≤ 15
2 1 2| ( , , ) | 10 mk k hε − −≤

  

Factorization 1 

To determine κ  and h  such that , note that  is defined as 

 whose poles are the points 

16
1| ( , ) | 10 mhε κ − −≤ ( )g t

(1 exp( ))−mtα β+ + ( (2 1) )
j

i jt π
β

− −= α  where  

The location of a subset of the poles in the complex plane is sketched in fig. 13.2 for the 

case .   

0,1,2,...j = ±

0β >
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Fig. 13.2. The distribution of isolated poles in the complex plane in the case . The 

confinement of κ  to the strip bounded by the red dashed lines eliminates the summation over the 

poles in  (13.05).       

( ) (1 exp( )) mg t tα β −= + +

                                

i

p\2b
-p\2b

pêb

-pêb

3pêb

-3pêb

5pêb

-5pêb
 

 

The poles of  are not simple poles but poles of order m which complicates the 

computation of the residues in (13.05). It is therefore convenient to restrict the parameter 

 to the interval 

( )g t

κ 0 2
πκ β< ≤ , as indicated in fig. 13.2. This restriction implies two 

things: Firstly, as no poles are located within the strip  if ( )tκ κ− < <F 0 2
πκ β< ≤ , the 

last two summations in (13.05) can be ignored. Secondly, it can easily be verified that 

 if 1| ( ) | 1g t iκ± ≤ 0 2
πκ β< ≤ . Consequently, (13.02) is satisfied. Concerning the error 

term  we furthermore have that [Crouch et al., 1990, p. 465] 1( , )hε κ
 

                        

2 2

2

( 2 / )
1 1 1

( 2 / )

| ( , ) | {| ( ) | | ( ) |}

2 .

h t

h

h e g t i g t i e

e

κ πκ

κ πκ

ε κ κ κ

π

∞
− −

−∞

−

≤ × + + −

≤

∫ dt
           (13.25) 

 

Note that (13.25) is minimized if h
πκ = . An efficient choice of the parameters κ  and h  

can according to Crouch et al. be made by use of the following algorithm: We tentatively 

set h
πκ =  from which it follows that 

                                               
2

2( )
1| ( , ) | 2 .hh e

π

ε κ π
−

≤                                    (13.26) 

 

To determine the step size h , we simply demand that 
2

2( ) 162 10 mhe
π

π
− − −≤ η≡  from which 

it follows that 
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                                               .
2log( )

h π
π
η

≤                                           (13.27) 

 

Consequently, h is set to the upper bound 2log( )

π
π

η

 as h is wanted as large as possible. 

 

Now, it might turn out that the above choice of κ  and h causes the condition 

2h
π πκ β= ≤  to be violated. In that case we make the alternative choice 2

πκ β=  which 

by the same set of arguments as before leads to the requirement 

 

                                             
2

2 2

4 ,2( 4 log( )
h βπ

ππ β
η

≤
+

                                  (13.28) 

from which h is determined.  

 

Fig. 13.3 illustrates the step size h as a function of β  for three different bounds 

, i.e. . The step size clearly increases when m decreases. The 

assignment 

1610 mη − −= 2, 0, 2m = −

h
πκ =  is only active when 1/2

2
2(log( ))π πβ
η

−≤ .        

 
Fig. 13.3. The step size h  as a function of  under the bound . Red curve: m = -2; green curve: 

m = 0; blue curve: m = 2. 

β 1610 mη − −=

                              1 2 3 4 5
b

0.1
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0.5

h StepsizeStep size for different 

error bounds. 

 
 

After having determined the step size of the quadrature formula, we next move to the 

determination of the parameters  and  such that . To derive an 

error bound of  it is convenient to write out the original summation as  

1k 2k 15
2 1 2| ( , , ) | 10 mk k hε − −≤

2 1 2( , , )k k hε
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                         (13.29)   
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∞ ∞
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= =
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⋅ + ⋅ + + ⋅ −

∑

∑ ∑ 2
0t nh

2
0t nh

                                      

Firstly, to make sure that the terms from each of the two summations in (13.29) diminish 

in magnitude for increasing values of n , the parameter  is chosen such that  

attains its maximum at . The determination of  is accomplished by means of a 

numerical optimization algorithm.  

0t
2

1( ) tg t e−

0t t= 0t

 

Secondly, let the truncation of (13.29) be written as 

 

                         (13.30) 
1 22 2

0 0( ) ( )
1 0 1 0 1 0

1 1

( ) ( ) ( ) .
k k

t t nh

n n

h g t e h g t nh e h g t nh e− − + − −

= =

⋅ + ⋅ + + ⋅ −∑ ∑
 

The error caused by the truncation is a function of the summation limits  and . The 

error due to the first truncated summation from (13.30) is given by the sum 
1k 2k
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                         (13.31) 

 

Introducing the variable , the last term from (13.31) can be rewritten as 1 1j n k= − −
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                  (13.32) 

where . 0 12 ( ( 1) )h t k hx e− + +=
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Assuming that  which is equivalent to  we finally get that 1x < 0 1( 1)t k h+ + > 0
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                               (13.33) 

 

where  in (13.33).  1 0 1( 1)t k hγ = + + > 0

 

Concerning the second truncated summation it can be shown with a similar set of 

arguments that 
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2
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2

( )
1 0

2

( )

,
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h
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∞
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∑
                              (13.34) 

 

where  in (13.34).  2 0 2( 1)t k hγ = − + < 0

 

So to conclude: If the summation  is replaced by two truncated 

summations including  and  terms, respectively, the induced truncation error 

 is bounded according to the inequality 

2
0( )

1 0( )
n t nh
n

h g t nh e
=∞ − +
=−∞

+∑
1k 2k

2 1 2( , , )k k hε
 

                           
2 2
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1 1
2 1 2 2| ( , , ) | [ ]

(1 ) (1 ) (1 )m h h

ek k h h
e e e

γ γ

α βγ γ γε
− −

+ − −≤ +
+ − − 22

e

0 0

k

               (13.35) 

     

given that  and .  1 0 1( 1)t k hγ = + + > 2 0 2( 1)t k hγ = − + <

 

If we simply set , the two restrictions on k are simultaneously satisfied if 1 2k k= =
0| | 1tk
h

> − . As an example, fig. 13.4 below illustrates the shape of  for the 

case . In fig. 13.5 the corresponding bound on  

(termed “error bound” in fig. 13.5) calculated according to (13.35) is shown. It emerges 

2
1( )exp( )g t t−

( | , , ) (1 | 6, 5,1.5)f y m fµ τ = − 2| ( , ) |k hε
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from fig. 13.5 that  if . This number can be somewhat reduced if 

 and  are treated separately. That is, a closer inspection of the contribution from each 

of the terms in (13.35) reveals that if  and  we still get . 

38k ≥ 15
2| ( , ) | 10 mk hε − −≤

1k 2k

1 24k = 2 38k = 15
2| ( , ) | 10 mk hε − −≤

  

 Fig. 13.4 (left):  in the case 2
1( )exp( )g t t− ( | , , ) (1 | 6, 5,1.5)f y m fµ τ = − . Fig. 13.5 (right): -Log10  to the error 

bound given by (13.35) as a function of k. . 0 0.24, 0.137,t h= − = 1
1 10A −≈
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The identification of the set  which reduces  and keeps the error bound 

(13.35) below the acceptable limit demands an optimization algorithm. To avoid the time-

consuming optimization step we have in the present implementation simply set 

, and the subsequent determination of k is straightforward.  

1 2( , )k k 1k k+ 2

k1 2k k= =
 

Factorization 2 

Concerning fac 2, the function  is defined as ( )g t exp( )
(1 exp( ))m

t
t

α
β+

 whose poles are the points 

(2 1)
j

i jt π
β
−= , where  Thus, the distribution of the poles follows the same 

pattern as in fig. 13.2 but are now restricted to be located along the imaginary axis. 

Consequently, if we once again restrict κ  to the interval 

0,1,2,...j = ±

0 2
πκ β< ≤ , the contribution 

from the residues in (13.05) disappears. It can furthermore be shown that  

for all t if  and 

2| ( ) | 1g t iκ± ≤

0α > mαβ > . It follows that the bound on  derived in relation to 

fac 1 also holds for fac 2. 
1( , )hε κ

 

A bound on the truncation error  can be derived along lines similar to those 

being followed in connection with fac 1. Omitting the details we will simply state that    
2 1 2( , , )k k hε
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where , and 1 0 1( 1)t k hγ = + + >
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where . Consequently 2 0 2( 1)t k hγ = − + < 0

                                   
2 20

21 2

1

( )

2 1 2 2| ( , , ) | [ ].
(1 ) (1 )

mt
m

h

e e ek k h h
e e

α β γ γ αγ

γε
− − − +

− −≤ +
− − 22hγ

k

                    (13.38) 

 

Just as in the case of fac 1 we have in the present implementation set , and 

given the step size h the subsequent determination of k is straightforward. 
1 2k k= =

 

As  under fac 3 in structure is similar to  under fac 1, there is no need for further 

error bound derivations.    

( )g t ( )g t

                    

13.6 Proof of Factorization Property    

In paragraph 13.4 it was claimed that for any , there exists among the 

factorizations listed in table 13.1 at least one which satisfies that . The proof is 

straightforward and will be given here.      

( | , , )f y m µ τ
1A ≤

 

In the case of fac 2 it was stated in paragraph 13.5 that  for all t if  

and 

2| ( ) | 1g t iκ± ≤ 0α >

mαβ > . As 22 ( )y µα τ
τ

= +  and 2β = τ , the restrictions on α  and  imply that β

 

                                                   20 y µ
τ

< + <m                                        (13.39) 
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Consider now an arbitrary set of parameters ( ,  from a given . If 

 satisfies (13.39) it follows that  in the case of fac 2 as 

, , )y m µ τ ( | , , )f y m µ τ

( , , , )y m µ τ 1A ≤
2

2 2exp( )
2

A µ π
τ

−= . 

 

If ( ,  does not satisfy (13.39), this implies that   , , )y m µ τ
 

                                               2 0y yµ
τ τ

+ ≤ ⇔ ≤− 2

µ                                  (13.40) 

 

or 

                                           2y m m yµ
τ τ

+ ≥ ⇔ − ≤ 2

µ                                 (13.41) 

 

If the violation of (13.39) is due to (13.40), note that 
2( )exp( )

2
yA y τµ π= +  in the case of 

fac 1. Using the right inequality from (13.40) in the expression for A it follows that  

 

                                 

2
2 22

2 2

( )( ) ( ) 0
2 2

yy

µ ττ µ τµ µ
τ

− ⋅
+ ≤ − + =− ≤ .

2
µ
τ

≤

                (13.42) 

 

Consequently, A  if fac 1 is used. 1

 

If the violation of (13.39) is due to (13.41), note that 
2( )exp(( )[ ])

2
y mA y  in 

the case of fac 3. From (13.41) we have that  

m τ µ π−= − +

0

0

                                                                                       (13.43) 2( )m yµ τ≥ − ≥

 

as (  always. From this it follows that )m y− ≥

 

        2 2 21 1 1
2 2 2( ) ( ) ( ) ( )y m y m m y m yτ µ τ τ τ− + ≥ − + − = − ≥2 0

≤

         (13.44) 

 

Consequently, A  if fac 3 is used.   1
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Chapter 14 

Reference Priors 

 

 

14.1. Introduction 

To recapitulate what has been achieved so far, it was concluded in chapter 2 that the 

number of casualties in a mine affected area under fairly general assumptions can be 

considered to be the outcome of a binomial process. A forecast of the number of casualties 

can therefore be made if the binomial parameters characterizing the state of the minefield 

under study are known. The true binomial parameters will rarely be known in advance, 

but beliefs about these based on whatever information is available can be rephrased in 

terms of probability distributions. A convenient way to do so which provides the way for 

Bayesian data analysis is to express our previous knowledge through the priors   

 

                                                                         (14.01) ( ) { (0), (1),...}t t tmπ π π=�

and 

                                                                             (14.02) ( | ) for 1.t m mπ θ ≥� �

 

For  we may write  and  collectively as the prior joint distribution 1m ≥� ( )t mπ � ( | )t mπ θ �

 

                                                                       (14.03) ( , ) ( | ) ( ).t t tm mπ θ π θ π=� �  m�

 

Up to now we have devised two ways of extracting information about the binomial 

parameter . Thus in chapter 4 it was demonstrated how a probability distribution  

could be generated by combining accident statistics and clearance data from mine 

clearance operations. Similar information could in principle be provided through the 

analysis of accident statistics alone by the application of finite mixture models, as shown in 

chapter 5 to chapter 12. 

θ ( )p θ

 

Irrespective of how  has been provided, one has to extract the essential information 

contained in  and transfer it to (14.03) for every single minefield under consideration. 

( )p θ
( )p θ
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The most simple approach is to set  for all m . However, there might be 

cases where only essential features such as  and possibly  should be extracted 

from  and incorporated with confidence into (14.03). The problem then arises how to 

piece together a prior  from  and  and similar fragments of information 

of relevance as to the distribution of m . More generally, we are looking for a method 

which can point out the particular prior that reflects our state of knowledge optimally.      

( ) ( | )tp mθ π θ= � �

[ ]E θ [ ]Var θ
( )p θ

( , )t mπ θ� [ ]E θ [ ]Var θ
�

 

The number of possible states of knowledge is infinite, but the spectrum of states can be 

considered to be bounded from above and below by two extreme states as sketched in 

figure 14.01 below. The state “complete knowledge” refers to the unique state where we a 

priori are absolutely certain about the true values of ( , . The opposite to “complete 

knowledge” might be termed “complete ignorance”. Consequently, the state “complete 

ignorance” denotes a kind of zero point as indicated in figure 14.01.  

)m θ�

  

Fig. 14.01. Spectrum of states of previous knowledge about the binomial parameters ( ,  .                                                  )m θ�   

                                 state of knowledge       

                                                          “complete knowledge” 

                                                                                               spectrum of  

                                                                                               intermediate states   

                                       0                  “complete ignorance” 

 
To derive a prior which corresponds to the zero point in fig. 14.01, we need a clarification 

of the phrase “complete ignorance”. In the present context we will use the phrase 

“complete ignorance” when our previous information about the parameters of interest is 

negligible relative to the information an experiment or observation can provide [Box and 

Tiao, 1973]. Thus in our search for a prior which reflects “complete ignorance” we will be 

looking for a probability distribution whose influence on the posterior distribution is 

marginal, that is, the posterior distribution should be dominated by the likelihood function 

as this is the factor through which observations modify our prior knowledge. Prior 

distributions guaranteed to play a minimal role in the posterior distribution are generally 

termed noninformative priors, a term which has already been used several times in the 

present report. Various approaches to generate noninformative priors are available as much 
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work has been done in this area [see for example Bernardo, 1979, Robert, 1994, Yang and 

Berger, 1998].  

 

The derivation of a noninformative prior is of central importance but not sufficient in the 

present context as we want priors matching the intermediate states in fig. 14.01 as well. 

This together with the fact that the parameter space of ( ,  is  makes the 

identification of suitable priors a challenging task. An intuitively appealing approach 

introducing so-called reference priors is due to Bernardo [Bernardo, 1979, Bernardo et al., 

1994]. Bernardo’s reference priors refers to a class of priors which in a certain sense 

maximize the information gained from observations. The derivation of a reference prior is 

in the general case technically demanding. However, the reference prior approach is 

adaptable to a variety of situations, and we will therefore base our derivation of prior 

distributions on Bernardo’s concept of reference priors.  

)m θ� ]0;1[×`

 

The introduction and derivation of reference priors in the remainder of the present chapter 

will cover the following topics: In paragraph 14.2, Bernardo’s definition of reference priors 

for the general one-dimensional case is introduced. In paragraph 14.3, we set up the 

constrained functional which determines the two-dimensional reference prior 

. In paragraph 14.4, the reference prior corresponding to the 

“zero-point” state from fig. 14.01 is presented without proof. In paragraph 14.5, the joint 

posterior  based on the reference prior from paragraph 14.4 is shown and 

compared with the likelihood function . In paragraph 14.6 we discuss how to set 

up reference priors when partial information is available. Paragraph 14.7 closes with 

concluding remarks. Appendix B contains technical details as to the derivation of the 

reference prior.  

( , ) ( | ) ( )t t tm mπ θ π θ π=� � m�

)

)

( , | )t m zπ θ�

( | , )p z m θ

 

14.2. The Reference Prior Concept     

To introduce the approach suggested by Bernardo, let X  be some random variable taking 

values in some sample space where  depends on the value of a scalar parameter 

, that is, . Let furthermore  denote the prior distribution of θ .  

(p X x=

θ ( ) ( |p X x p x θ= = ( )π θ
 

Assume now that an experiment e  provides a single observation . Let denote the 

corresponding posterior distribution of θ . To quantify the information gained from the 

x ( | )xπ θ
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observation  about θ , Bernardo makes use of the Kullback-Leibler entropy distance 

 defined as                            

x

[ ( | ), ( )]K xπ θ π θ

                               
( | )[ ( | ), ( )] log ( | ) .
( )

xK x x dπ θπ θ π θ π θ θ
π θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

∫                         (14.04) 

 

In general the Kullback-Leibler entropy distance for two normalized density functions  

and  is defined as [Kullback, 1959]: 

( )f x

( )g x

 

                                        
( )[ ( ), ( )] log ( ) .
( )

f xK f x g x f x dx
g x

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

∫                           (14.05) 

 

The use of the Kullback-Leibler entropy distance as a measure of information makes 

intuitively sense. That is, if a decision maker’s previous knowledge about the true value of 

 is accurate, the information gained from performing an experiment will be relatively low. 

Put in another way: If the accurate previous knowledge is reflected in the prior , the 

posterior  will almost certainly resemble the prior distribution. This induces a low 

value of K x . If the decision maker on the other hand is ignorant about the 

true value of θ , the information gained from performing an experiment will be high. In 

this case the posterior distribution will be dominated by the likelihood function. This 

usually implies that the posterior distribution and the prior distribution are far apart in 

space which in turn generates a large value of . 

θ

( )π θ

( | )xπ θ
[ ( | ), ( )]π θ π θ

[ ( | ), ( )]K xπ θ π θ
 

It can be shown that the Kullback-Leibler entropy distance is always non-negative and 

equals zero if and only if  [Lehmann et al., 1998, p. 47]. In (14.05) the variable 

 is for convenience assumed to be a continuous variable but might as well be discrete in 

which case the integration is replaced by a summation.  

( ) ( )f x g x=

x

 

The entropy distance  depends on the particular observation . The 

expected information  provided by a single observation is obtained by averaging 

(14.04) over the marginal distribution of x : 

[ ( | ), ( )]K xπ θ π θ x

( , ( ))I e π θ

 

                                   ( , ( )) [ ( | ), ( )] ( ) ,I e K x p x dxπ θ π θ π θ= ∫                            (14.06) 

where  is given as ( )p x
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                                             ( ) ( | ) ( ) .p x p x dθ π θ θ= ∫                                    (14.07) 

 

Consider now a hypothetical experiment  yielding k  independent observations. The 

expected information  can be calculated as  

( )e k

( ( ), ( ))I e k π θ
 

                                   ( ( ), ( )) [ ( | ), ( )] ( ) ,k kI e k K c p c dcπ θ π θ π θ= k∫                      (14.08) 

 

where , , and 1 2( , ,..., )k kc x x x= 1 2...k kdc dx dx dx=

 

                                           

1

( ) ( | ) ( )

( | ) ( )

k k

k

i
i

p c p c d

p x d

θ π θ θ

θ π θ θ
=

=

=

∫
∏∫

                               (14.09) 

 

In the limit k Ø ¶ we will eventually obtain perfect information about the true value of θ . 

The corresponding quantity  defined as ( ( ), ( ))I e π θ∞

 

                                                                      (14.10) ( ( ), ( )) lim ( ( ), ( ))
k

I e I e kπ θ π θ
→∞

∞ =

 

measures, if it exists, our missing information about θ . The missing information depends 

on the function  and is therefore referred to as a missing information functional. If we 

search for a prior distribution containing negligible information about  relative to what 

an observation can provide, the particular prior which maximizes the missing information 

functional appears to be the optimal choice. Bernardo terms the maximizing prior the 

reference prior [Bernardo et al., 1994]. Thus the determination of a non-informative prior 

has been transformed into a maximization problem of an information functional. 

( )π θ
θ

 

Even though the approach outlined above appears straightforward, the actual derivation of 

reference priors might get involved in specific cases. If the parameter of interest, say θ , 

can take only a finite number of values, the quantity  is always finite. As a 

consequence, the reference prior for θ  can be derived directly from (14.08). For a 

continuous , however,  is typically infinite. To circumvent this problem, an 

asymptotic expansion of the information  might be derived from which the 

maximizing prior can be identified.   

( ( ), ( ))I e π θ∞

θ ( ( ), ( ))I e π θ∞

( ( ), ( ))I e k π θ
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14.3. Information Functional in the Two-Dimensional Case   

We will now set up the missing information functional from which a 2-dimensional 

reference prior  can be derived. To avoid a cluttered notation, the symbol m  will in 

what follows be replaced by m .  
( , )mπ θ� �

 

Let us once again consider a hypothetical experiment  yielding k independent 

observations , where . The expected information 

provided by k observations can in analogy to (14.08) be written as     

( )e k

( (1), (2),..., ( )) kz z z k c= ( ) ( , )z i Bi m θ∼

                    

                                                 (14.11) ( ( ), ( , )) ( ) [ ( , | ), ( , )]k k

kc
I e k m p c K m c mπ θ π θ π θ=∑

where  is given as                         ( )kp c

                                   

1

( ) ( ) ( | , ) ( | )

( ) ( ( ) | , ) ( | )

k k
m

k

im

p c m p c m m d

m p z i m m

π θ π θ

π θ π
=

=

=

∑

d

θ

θ θ

∫

∑ ∏∫
                   (14.12) 

 

In (14.11) we have extended the Kullback-Leibler entropy distance to include density 

functions of two variables. To simplify (14.11) the following identity will be useful 

[Kullback, 1959, p. 13]: 

 

                            

1 2

1
1

2

1 1
1 1 1

2 2

1 2 1 1 2

[ ( , ), ( , )]

( , )log[ ] ( , )
( , )

( ) ( | )log[ ] ( ) ( )[ log[ ] ( ) ]
( ) ( | )

[ ( ), ( )] ( ) [ ( | ), ( | )] ,

K f x y f x y

f x y f x y dx dy
f x y

g x h y xg x dx g x h y dy dx
g x h y x

K g x g x g x K h y x h y x dx

=

= +

= +

∫ ∫

∫ ∫ ∫

∫

        (14.13) 

 

where  and  for i = 1,2 are defined as ( )ig x ( | )ih y x

                          

                                            ( ) ( , )i ig x f x y dy= ∫                                           (14.14) 

                                             ( , )( | ) .
( )

i
i

i

f x yh y x
g x

=                                           (14.15) 

 

By means of (14.13) the entropy distance  can be written as                       [ ( , | ), ( , )]kK m c mπ θ π θ
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                                    (14.16) 
[ ( , | ), ( , )]

[ ( | ), ( )] ( | ) [ ( | , ), ( | )].

k

k k k
m

K m c m

K m c m m c K m c m

π θ π θ

π π π π θ π θ= +∑
 

(14.16) allows us to express  from (14.11) as                   ( ( ), ( , ))I e k mπ θ
 

                                  (14.17) 

( ( ), ( , ))

( ) [ ( | ), ( )]

( ) ( | ) [ ( | , ), ( | )]

( ( ), ( ))

( )[ ( | ) [ ( | , ), ( | )]]

( ( ), ( )) ( ) ( ( ), ( | )),

k k

k k k

k k

k

k

k

m

c

c m

m c

I e k m

p c K m c m

p c m c K m c m

I e k m

m p c m K m c m

I e k m m I e k m

π θ

π π

π π θ π θ

π

π π θ

π π π θ

=

+

=

+

= +

∑

∑∑

∑ ∑

∑

π θ

π

 

where we in (14.17) have used the identity . Consequently, 

the prior  which in the limit k Ø ¶ maximizes the functional 

( ) ( | ) ( | ) ( )k k kp c m c p c m mπ =

( , )mπ θ
                 

                                     (14.18) ( ( ), ( , )) ( ( ), ( )) ( ) ( ( ), ( | ))
m

I e k m I e k m m I e k mπ θ π π π θ= +∑
 

is our two-dimensional reference prior.  

 

14.4 Derivation of Two-Dimensional Reference Prior 

To identify the prior  which in the limit k Ø ¶ maximizes (14.18) we need 

asymptotic expansions of  and .  

( , )mπ θ

( ( ), ( ))I e k mπ ( ( ), ( | ))I e k mπ θ
 

Regarding the term  it can be shown due to a theorem of Clarke and 

Barron [Clarke et al., 1990] that  as  k Ø ¶, 

( ( ), ( | ))I e k mπ θ

 

                   
1/2( | )1( ( ), ( | )) log ( | )log ,

2 2 ( | )
k

I mkI e k m m d R
e m

θ
π θ π θ θ

π π θ

⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥⎣ ⎦

∫         (14.19)      

 

where  for k Ø ¶. The term 0kR → ( | )I mθ  denotes the Fisher information, i.e. 
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2

2( | ) [ log ( | , )] ,
(1 )

mI m E p z mθ θ
θ θ
∂= − =
∂ − θ

                       (14.20) 

 

where we in (14.20) have used that . From (14.20) it follows that (14.19) can 

be rewritten as 

( , )Z Bi m θ∼

                   

1 1
2 2

1 1
2 2

1 (( ( ), ( | )) log ( | )log
2 2 ( | )
1 log [ ( | ), ( | , )] .
2 2

k

k

km BeI e k m m d R
e m

km K m Be R
e

π θπ θ π θ θ
π θ

π π θ θ

| , )⎡ ⎤
⎢ ⎥= + ⎢ ⎥⎣ ⎦

= − +

∫ +
       (14.21) 

 

As  only enters into the integral in (14.21), it is evident that  is 

maximized if                                                                                

( | )mπ θ ( ( ), ( | ))I e k mπ θ

                                            1 1
2 2( | ) ( | , ) .m Be mπ θ θ= ∀                                  (14.22) 

 

Regarding the term  from (14.18), let us rewrite the expression for 

 as 

( ( ), ( ))I e k mπ
( ( ), ( ))I e k mπ
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( ) ( | )log ( | )
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ππ π
π

π π

π π

π π π π

=

=

−

= −

∑ ∑

∑∑

∑∑

∑∑ ∑

     (14.23) 

 

In what follows we will assume that m takes only a finite number of different values, that 

is, . It can then be shown (see appendix B) that    1 2{ , ,..., }MAXm M m m m∈ =

                                                                                        

                                                              (14.24) ( ) ( | )log ( | ) 0k k k
m Mkc

p c m c m cπ π
∈

→∑∑
 

in the limit k Ø ¶. This allows us to write  from (14.23) as ( ( ), ( ))I e k mπ
                             

                                                           (14.25)      ( ( ), ( )) ( )log ( ) .k
m M

I e k m m m Rπ π π
∈

= − +∑
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Now let  and define ( ) 1
m M

mπ
∈

=∑ m M
h

∈
=∑ m . From the derived expansions of 

 and  it follows from (14.18) that  for large 

values of k can be written as 

( ( ), ( ))I e k mπ ( ( ), ( | ))I e k mπ θ ( ( ), ( , ))I e k mπ θ

 

                    1 1
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2 2

( ( ), ( , ))
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2 2

1 log [ ( ), ] ( ) [ ( | ), ( | , )] .
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I e k m
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kmm K m Be R
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k h mK m m K m Be R
e h

π θ

π π

ππ π θ θ

π π π π θ θ
∈

∈

∈

=

−

⎡ ⎤+ − +⎢ ⎥⎢ ⎥⎣ ⎦

= − − +

∑

∑

∑

  (14.26) 

 

It is evident from (14.26) that  is maximized if ( ( ), ( , ))I e k mπ θ
 

                                                   ( ) mm
h

π =                                             (14.27) 

                                                  1 1
2 2( | ) ( | , )m Be m Mπ θ θ= ∀ ∈                             (14.28)  

Consequently, the reference prior can be identified as 

 

                                       1 1
2 2( , ) ( | , )mm Be m M

h
π θ θ= ∀ ∈                            (14.29) 

                             

Fig. 14.02 below sketches the reference prior π  when m . ( , )m θ ∈ {1,2,...,20}
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Fig. 14.02. 1 1
2 2( , ) ( | , )m m Beπ θ θ∝  

for m . {1,2,...,20}∈

θ

 

For the sake of clarity, the integer  

m is treated as a continuous variable in  

the 3D-plot. 

 

The flat surface on top of the  

3D-graph represents a density plot of π .  ( , )m

( , )mπ θ  
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14.5. Joint and Marginal Posterior Distributions Based on Reference Prior 

Before we proceed with further analysis of (14.29), let us illustrate by a few examples how 

the derived reference prior influences the joint posterior distribution  and the 

derived marginal distributions for various observations.  

( , | )m zπ θ

 

To generate an analytical expression for  it is convenient to factorize the 

posterior joint distribution as . The two one-dimensional 

posterior distributions are by definition given as 

( , | )m zπ θ
( , | ) ( | , ) ( | )m z m z m zπ θ π θ π=
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p z m mm z
p z m
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Using  (14.29) as our prior distribution, the conditioned posterior  becomes ( | , )m zπ θ

 

                                      1 1
2 2( | , ) ( | , ),m z Be z m zπ θ θ= + + −                           (14.32) 

 

whereas the marginal posterior  takes the form                              ( | )m zπ
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∝
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z

θ                          (14.33) 

 

Combining (14.32) and (14.33) we get the joint posterior distribution 

                            

                      1 1 1 1
2 2 2 2( , | ) ( , ) ( | , ).

m
m z m z m z e z m zzπ θ θ

⎛ ⎞⎟⎜∝ ⎟Β + + − Β + + −⎜ ⎟⎜ ⎟⎜⎝ ⎠
       (14.34) 
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Fig. 14.03. Posterior distributions based on reference prior (14.29) for different values of z. 
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In fig. 14.03 (on the previous page) the joint posterior  from (14.34) is shown for 

different values of z. For the sake of clarity, the integer m is treated as a continuous 

variable in all 3D-plots. Included in fig. 14.03 is for comparison the likelihood function 

. As it emerges from fig. 14.03, the shape of the posterior distribution is clearly 

dominated by the likelihood function. 

( , | )m zπ θ

( | , )p z m θ

 

For completeness, plots of the marginal posterior distributions  and  for 

different values of z  are included in fig. 14.04 and fig. 14.05 below.         
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 Fig. 14.04. Marginal posterior of m . 
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 Fig. 14.05. Marginal posterior of θ . 
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14.6 Derivation of Reference Priors when Partial Information is Available 

Situations where no information is available about neither m  nor θ  will rarely occur. The 

content of the present paragraph is an elaboration of how reference priors can be derived 

from the missing information functional in (14.26) when partial information of some kind is 

available. Thus we are aiming at reference priors corresponding to the intermediate states 

in fig. 14.01.  

 

In what follows we will assume that the partial information can be rephrased as a set of 

constraints on the priors  and , that is, ( )mπ ( | )mπ θ
 

                                                             (14.35) ( ) ( ) for {1,2, ..., },j j
m M

m g m j kπ µ
∈

= ∈∑
 

                                      (14.36) , ,( | ) ( ) {1,2,..., } and .j m j mm g d for j l m Mπ θ θ θ µ= ∈∫ ∈

M

 

Major simplifications in the derivation of reference priors can be obtained if one or more of 

the conditions listed below are met: 

 

1) independence between m and . θ

2)  available for all m M . ( | )mπ θ ∈
3) no restrictions on . ( )mπ

 

We will examine each of the above conditions in turn. 

 

14.6.1. Independence Between m and θ  

The most simple case arises if we make the restriction 

 

                                                                              (14.37) ( | ) ( ) ,m mπ θ π θ= ∀ ∈

 

that is, we do not a priori assume any dependence between the number of mines in the 

minefield under study and the distribution of θ . In that case (14.26) can be written 

 

          
2

1 1
2 2

1( ( ), ( , )) log [ ( ), ] [ ( ), ( | , )] .
2 2

k
k h mI e k m K m K Be R

e h
ππ θ π π θ θ= − − +          (14.38) 
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In (14.38) the contributions from  and  are separated into two independent terms 

which can be maximized separately. Given that restrictions like (14.35) have been enforced 

on  due to partial information, the prior  which maximizes (14.38) can be found 

as the solution to the following constrained maximization problem: 

( )mπ ( )π θ

( )mπ ( )mπ
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                     (14.39) 

 

With respect to  we are left with the maximization problem ( )π θ
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                         (14.40) 

 

According to Bernardo [Bernardo, 1994, p. 319], the solution to (14.40) can (given it 

exists) be written as 

                                  1 1
2 2

1

( ) ( | , )exp( ( )),
l

j j
j

Be gπ θ θ λ θ
=

= ∑                                 (14.41) 

 

where the jλ ’s are constants to be determined from the constraints in (14.40). To give an 

example where (14.40) might be brought into play, consider the case where estimates of 

 and  makes up the partial information about θ  (the moments  and  

can for example be obtained from a finite mixture model calculation). It follows that 

 and  in (14.40).  

[ ]E θ [ ]Var θ [ ]E θ [ ]Var θ

1( )g θ = θ 2
2( ) ( [ ])g Eθ θ θ= −

 

14.6.2. Conditioned Priors Available 

A different situation arises if the conditioned priors  are available for all m due to 

partial information. In the most simple case we have that  for all m  where 

( | )mπ θ
( | ) ( )mπ θ π θ=

 172



( )π θ  might be based on accident statistics and clearance data from mine clearance 

operations as discussed in chapter 4. In this case we simply ignore (14.40) and determine 

 from (14.39). On the other hand, if the available priors  depend on m, the 

corresponding reference prior  is to be found as the solution to the maximization 

problem 

( )mπ ( | )mπ θ

( )mπ
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         (14.42) 

 

 

14.6.3. No Restrictions on . ( )mπ

In the case that no restrictions are imposed on , we will rewrite the expansion of 

 from (14.26) as   

( )mπ

( ( ), ( , ))I e k mπ θ
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where 1 1
2 2exp( [ ( | ), ( | , )]).

m M

s m K m Beπ θ θ
∈

= −∑                        

 

As no restrictions are imposed on , it follows that (14.43) is maximized if ( )mπ

 

                               
1 1
2 2exp( [ ( | ), ( | , )])( ) ,m K m Bem

s
π θ θπ −=                          (14.44) 

 

for any choice of . ( | )mπ θ
 

To determine  we simply maximize  from (14.43), that is, the set of reference 

priors { (  can be identified as solutions to the maximization problem 

( | )mπ θ log( )s

| )}mπ θ
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or alternatively                            
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From (14.46) it follows that the maximizing priors  can be written as ( | )mπ θ
            

                             1 1
, ,2 2

1

( | ) ( | , )exp( ( )) ,
l

j m j m
j

m Be g m Mπ θ θ λ θ
=

= ∀ ∈∑                  (14.47) 

 

where the ,j mλ ’s are constants to be determined from the constraints in (14.46). 

 

 

14.7. Summary and Conclusions 

A prerequisite for the employment of the Bayesian risk model derived in chapter 2 is the 

provision of a prior distribution . As a decision maker’s previous 

knowledge about the minefield under study can be anything from “complete ignorance” at 

the one end to a state of “complete knowledge” at the other end, it is a delicate matter 

how to embed an arbitrary level of knowledge into the two-dimensional probability 

distribution . Of particular importance is not to impose features on  which 

are without foundation in the available information.  

( , ) ( | ) ( )t t tm mπ θ π θ π= m

( , )t mπ θ ( , )t mπ θ

 

The aim of the present chapter has been to set up a general procedure for the construction 

of prior distributions which overcome the above difficulties. The concept of reference 

priors as defined by Bernardo has in this context turned out to be of great value. Thus 

through the application of the Kullback-Leibler entropy distance as a measure of 

information it has been possible to identify the distribution which maximizes the 
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information gained from an infinite number of observations. The distribution in question is 

termed a reference prior. The reference prior is to be considered as a noninformative prior 

which in a certain sense reflects a state of “complete ignorance”.  

 

Given the decision maker has previous knowledge which can be rephrased as a set of 

constraints on , a constrained reference prior can be identified as the solution to a 

constrained maximization problem. In certain special cases, as discussed in paragraph 14.6, 

the maximization problem takes on a simple form from which the identification of the 

constrained reference prior is straightforward. It is notable that the marginal reference 

prior  found by the above method deviates from a uniform distribution even when m  

and θ  are assumed to be independent. 

( , )t mπ θ

( )mπ

 

With the above method in place it is at last possible to associate the various pieces of 

models derived in the present report. In fig. 14.06 below, a hypothetical Bayesian risk 

assessment module is sketched illustrating the interrelationships between the various model 

components.        

   
Fig. 14.06. Information flow in Bayesian risk assessment model. See text for further details.    
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By going through fig. 14.06 we take the opportunity to recapitulate what has been 

achieved so far and what is still left to be developed before a risk assessment system based 

on Bayesian data analysis is operational.   

 

In fig. 14.06, the minefield under study is represented by the grey box positioned at the 

right lower corner. To make a risk assessment of the minefield for the coming observation 

period , information of relevance as to the possible values of m and  are to be 

collected. Regarding θ , a probability distribution can be provided through the hierarchical 

Bayesian model derived in chapter 4 or the finite mixture model discussed in chapter 5-12. 

This is indicated in the left upper part of fig. 14.06. If necessary it may be decided only to 

extract certain pieces of information such as  and .  

( )t∆ θ

[ ]E θ [ ]Var θ
 

Regarding , a probability distribution can be provided through the synthesis of 

individual estimates from various local or regional experts. In the future it may be possible 

to complement these estimates by actual geophysical measurements (or some other kind of 

measurement) from the minefield. We have not in the present report discussed how to 

provide and synthesize the above type of information.      

m

 

Having somehow provided information about m  and , all pieces of information are put 

together and embedded into a reference prior distribution. The reference prior thus 

constitutes the core component in the risk model. Subsequently, a probability distribution 

 can be set up founded on the reference prior.  

θ

( )tp z
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Chapter 15 

Summary, Conclusions and Suggestions for Further Work 

 

 

Humanitarian Mine Action has undergone an impressive development since its advent in 

the late eighties. This development can be registered specifically at the organizational level 

among the practitioners in the HMA sector and more generally as an improved 

understanding of the complexities of the mine contamination problem and its impact on 

mine affected countries. The present lack of a fast and reliable mine detection technology 

means nonetheless that the worldwide mine contamination problem cannot be eliminated 

in the foreseeable future but has to be managed in several years to come. To sustain the 

sectors capacity for development, we request decision makers involved in HMA to be aware 

of disciplines such as of operations research and statistics which might offer powerful 

analytical tools enabling the HMA sector to optimize ongoing procedures with existing 

technologies. 

 

The present thesis represents a first attempt to develop a minefield risk assessment model 

based on principles from operations research and statistics which might support decision 

makers in their attempt to classify and prioritize potential minefields according to risk. It 

should be emphasized however that only the first step in this direction has been taken. In 

what follows the major findings in the present research project will therefore be 

summarized in two steps: Firstly, with reference to the objectives stated in chapter 1, the 

main features of the derived risk model will be summarized. Secondly, various directions 

along which the presented model can be improved and adjusted to real-life applications are 

suggested.               

 

 

15.1 Main Features of Derived Risk Model     

The main objective set up in chapter 1 was to derive a mathematical model by which a 

decision maker can rank an arbitrary number of minefields according to risk. This 

objective has been met through the formulation of the stochastic binomial model derived in 

chapter 2. By incorporating the binomial model into a Bayesian framework it has 
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furthermore been possible to make the risk model dynamic in the sense that the risk 

assessment of a given minefield can be updated over time by incoming accident statistics 

through the application of Bayes’ rule.  

 

Apart from making the risk model dynamic, the application of Bayesian data analysis has 

given the risk model a very flexible structure which allows it to accommodate to the varied 

circumstances found in HMA with respect to accessible information. That is, due to the 

approach followed in Bayesian data analysis where prior beliefs about all entering variables 

are expressed in terms of probability distributions, it is possible to impart information 

from a variety of different sources into the risk model. Such information may be of a 

quantitative nature (e.g. accident statistics) or it may be of a more subjective or 

qualitative nature such as expert opinions concerning the degree of mine contamination in 

a given area. An overall prescription for the synthesis of different pieces of information and 

its transfer to the risk model is formulated in chapter 14 dealing with reference priors.  

 

The derived risk model seems to overcome many of the shortcomings identified in the 

landmine impact score model referred to in chapter 1. Thus unlike the mine impact score 

model the risk model makes a balanced weighing of the decision makers previous 

knowledge about the minefield under study and later incoming accident statistics. The risk 

model is well suited for long term planning purposes due to its ability to make very 

graduated risk assessments. This contrasts with the mine impact score model which 

classifies all minefields with no records of recent victims as “Low”. Finally, as risk in the 

present context is defined in probabilistic terms, it is possible to compare minefield risk 

assessments with other sources of risk in the society.    

 

 

15.2 Suggestions for Further Work 

An appealing feature of the derived risk model is that only two parameters are needed to 

characterize the state of a given minefield. The analytical challenge is then to estimate 

these parameters by the collection and synthesis of various types of information of 

relevance. Concerning this estimation process, we have in the present thesis presented just 

two different approaches as to the estimation of the probability parameter θ , and none of 

these methods have involved explanatory variables. Consequently, some work remains to 

 178



be done before the risk model can be operational in real-life applications. In what follows 

we will give suggestions to areas where improvements are needed.   

 

To take the finite mixture model calculations as our first example, the omission of 

explanatory variables has had the practical consequence that the posterior  

generated from a given mixture model has been amenable to control against simpler 

models. There is no doubt, however, that to exploit the full potential of the mixture model 

concept in a real life application, one should aim at the more generalized versions of 

mixture models in which explanatory variables enter into the expression of both the 

mixture components and the mixture parameters. Such advanced models can be considered 

as a special case of so-called Mixture-of-Experts Models [see for example Jacobs et al., 

1991] which may be generalized one step further to Hierarchical Mixture-of-Experts Models 

[Jordan & Jacobs, 1992]. Consequently, there exist several options for extensions of the 

application of the finite mixture model concept.  

( | )p yθ

 

Given that explanatory variables are decided to be included in future work, the lack of 

relevant statistical material leaves us to speculate on what might candidate as explanatory 

variables. In fig. 15.1 below, likely variables are suggested which might correlate with θ . 

All variables may possibly influence what might loosely be termed the level of human 

activity which again determines the probability parameter .   θ

 
Fig. 15.1. Possible explanatory variables  
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As shown in fig. 15.1, the explanatory variables are for clarity split up into two groups: 

area-specific variables and community-specific variables. By area-specific variables we 

mean variables which describe characteristic features of the mine affected area of interest 

such as area type (residential area, agricultural area, pasture, forest, road, etc.), whether 

the area is marked or unmarked, public access to area (level of accessibility), geographical 

location of area relative to important community facilities such as water facilities, and the 

number of recent victims known to the public. Similarly, by community specific variables 

we mean variables which describe characteristic features of the community. It goes without 

saying that to determine the statistically most significant explanatory variables, the data 

collection process in HMA has to be broadened considerably to include a much wider 

spectrum of data.   

 

A second problem which has not been touched on in the present thesis is the estimation of 

the binomial parameter m . As noted in the introduction to chapter 4, various sources 

which might provide information of a more subjective or qualitative nature about the 

possibility of mine contamination in a given area include military staff and other ex-

combatants with local knowledge, and local or regional authoritatives. Information of a 

quantitative nature might be available in terms of military mine maps and related 

archives. In the future it may furthermore become technically possible to undertake 

geophysical measurements or some other kind of measurements from outside the borders of 

a minefield. In any way, it is an open question how to combine these various pieces of 

information into a probability distribution.  

 

In the publication “A Study of Soci-Economic Approaches to Mine Action” [GICHD, 2001] 

it is stated that humanitarian mine action is just as much about data processing as it is 

about mines. It seems fair to conclude that the Bayesian framework set up in the present 

thesis represents substantial new thinking concerning data processing in Humanitarian 

Mine Action, and the outlined approach to risk assessment and ranking of minefields can, 

if properly used, in the future support decision makers considerably in their aim at 

improving the impact of national mine action programmes. There exist however several 

options for extensions and improvements of the work presented in the present thesis which 

may gradually turn the theoretical model considerations into a decision tool of practical 

value to the Humanitarian Mine Action sector.    

 180



Appendix A. Sampling from Conditioned Distributions 
To apply the single-component Metropolis-Hastings algorithm introduced in 

chapter 6 sampling has to be carried out from the four conditioned 

distributions , ,  and . 

We here describe in brief how samples can be obtained from each of the 

conditioned distributions. 

( | , , , )p yζ µ τ λ ( | , , , )p yλ ζ µ τ ( | , , , )p yµ ζ τ λ ( | , , , )p yτ ζ µ λ

 

A1. Sampling from   ( | , , , )p yζ µ τ λ
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where  and 1 2{ , ,..., }gm m m m∈
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Let  denote accumulated probabilities. Sampling from the 

conditioned distribution  can now  be carried out as follows: For 

a given ( ,  and a given observation , calculate the accumulated 

probabilities , . Sample then a real number t where 
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jζ  are fixed to 0. Repeat the procedure for all observations jy . 

 

 

A2. Sampling from    ( | , , , )p yλ µ τ ζ

Define  as  KX

 

            (A.3) {# | is associated with component  },k j jX y y y k via ζ= ∈

 

i.e.,  denotes the number of observations originating from component k  

according to the indicator variable ζ . Let furthermore λ  follow a Dirichlet 

distribution, i.e. λ . It follows that   

KX

1 2( , ,..., )gDirichlet α α α∼
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                   (A.4) 1 1 2 2| , , , ( , ,..., ).g gy Dirichlet X X Xλ µ τ ζ α α α+ + +∼

   

A formal proof of (A.4) can be given sketched as follows: Note that  
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which can be written as 
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and (A.4) follows immediately from (A.6) and (A.7). Sampling from the 

Dirichlet dist. can be implemented as described in Gelman (2003, p. 582).  
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where the constant of proportionality in the last line of (A.8) is constant for 

fixed values of  and ζ .  , ,y τ λ
 

Sampling from  can be carried out by use of the Metropolis-

Hastings algorithm discussed in chapter 6.  If  denotes the value of  from 

the preceding iteration, a new  is sampled from a jumping distribution 

 where d is a constant. The draw  is subsequently 

evaluated by the calculation of the quotient 

( | , , , )p yµ τ λ ζ
0µ µ

*µ
* 0 * 0( | ) ( | ,J Nµ µ µ µ= )d *µ
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               (A.9) 

 

If  is accepted . Otherwise  . If the proportion of accepted 

draws is too low or too high, the acceptance rate can be adjusted by  

adjusting d. Sampling from the conditioned distribution  can be 

carried out in a similar way. We have that 

*µ 1µ µ= * 01µ µ=

( | , , , )p yτ µ λ ζ
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                 (A.10) 

 

where the constant of proportionality in the last line of (A.10) is constant for 

fixed values of  and . , ,y µ λ ζ
 

As  we cannot in connection with the Metropolis-Hastings algorithm 

apply a normal distribution as jumping distribution. Instead we apply a scaled 

-distribution. If  denotes the value of  from the preceding iteration, 

a new  is sampled from the distribution , and the draw is 

subsequently evaluated by calculating the quotient 

0τ ≥

2invχ 0τ τ
*τ 2 * 0( | ,inv sχ τ τ )
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If  is accepted . Otherwise  . The acceptance rate can be 

controlled by adjustment of the parameter  s. 

*τ 1τ τ= * 01τ τ=
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Appendix B. Reference Prior Derivation 
In paragraph 14.4 it was claimed that 

                                                                                       

                                                               (B.01) ( ) ( | )log ( | ) 0k k k
m Mkc

p c m c m cπ π
∈

→∑∑
 

in the limit k Ø ¶. In the present appendix we will set out to prove (B.01). 

 

Consider an experiment yielding k  observations (  where 

, i . Note that  and . 

According to Bayes’ rule,  can be written as                  
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             (B.02) 

 

Consider now the log-term from (B.02) which can be written as 
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                  (B.03) 

 

where  denotes the number of times the outcome  occurs in the 

vector . As the corresponding stochastic variable , it follows 

that 

( )ks j *{0,1,2,..., }j ∈ m

kc * *( ) ( , ( | , ))kS j Bi k p j m θ∼
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and 
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According to Chebychevs' Inequality we consequently have  
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which implies that 
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implying that  
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By assumption  and  for . Therefore . 

Defining  as 

*( ) 0mπ > *( | ) 0mπ θ > ]0;1[θ ∈ ( | ) 1km M
m cπ

∈
=∑

( , )g m k

                     

                                      (B.10) * *( , ) exp( [ ( | , ), ( | , )]) ( | ) ,g m k k K p j m p j m m dθ θ π θ= −∫
 

let us consider the following three cases:   
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1) m < m*   

2) m > m*  

3) m = m*. 

 

Based on the above three cases we want to show that in the limit k Ø ¶,  
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as = 0 for . Consequently,  is equal to zero if . It follows 

from (B.09) that   

( | , )p j m θ j m> ( , )g m k *m m<
*( | ) 0 ifkm c m mπ → <

 

Case 2: . *m m>
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where we from the second to the third line have applied Jensen’s Inequality for a strictly 

convex function. Consequently,  is strictly positive for all values 

of θ . To illuminate the behaviour of  as a function of θ  note that 

* *[ ( | , ), ( | , )]K p j m p j mθ θ
θ* *[ ( | , ), ( | , )]K p j m p j mθ

  

                         
* * * * * *[ ( | , ), ( | , )]K p j m p j m m m mθ θ θ

θ θ
∂ −= − +

∂
θ

θ

j m p j mθ θ

                      (B.16) 

 

which reveals that K p  has one extremum located at  * *[ ( | , ), ( | , )]
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θ
                                                         

The second derivative of  evaluated at the extremum point takes 

the value                              
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which is strictly positive for m > m*. Hence K p  has a well defined 

minimum as illustrated in fig. 14.06 below.  

* *[ ( | , ), ( | , )]

 
Fig. 14.06. K  as a function of  for different values of m.  [ ( | 10, 0.8), ( | , )] θ
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Let K denote the minimum of . As K  we have for k , min
* *[ ( | , ), ( | , )]K p j m p j mθ θ min 0> ≥ 0
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from which it follows that  when m > mlim ( , ) 0
k

g m k
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= *. It follows from (B.09) that 
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Case 3: m m .*

The two previous cases showed that  . As , 
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Note that g m  is different from zero in the limit k Ø ¶ because the entropy distance 

 when θ . That is, the entropy distance is not strictly 

positive.   
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We now return to the sum from (B.01):     
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As  and , it follows that *( | ) 0 ifkm c m mπ → ≠ *( | ) 1 ifkm c m mπ → =
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Consequently (B.20) goes to zero in the limit , as we set out to prove.  0k →
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Numerical study 
To test the validity of the proof stated above, a simple numerical study was conducted in 

the following way: By use of a random number generator a sequence of vectors  of 

increasing length were build from sampled observations . The binomial 

parameters  were randomly chosen and set to the values (7, 0.18). Fig. B.1 below 

illustrates the posterior  for different values of m and for increasing values of k . 

As expected,  for increasing values of k.  

kc
* *( , )Z Bi m θ∼

* *( ,m θ )

( | )km cπ

(7 | ) 1kcπ →
 

Fig. B.1  Simulation study:  for increasing values of k. ( | )km cπ 1
10( )mπ = ,  for all m.        ( | ) (1,1)m Beπ θ =
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Note: The posterior distribution  in the numerical study was calculated from the formula →  ( | )km cπ
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