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Preface

This thesis is a result of a collaboration between IMM �Institute of Mathe�

matical Modelling� and IMT �Department of Environmental Science and

Engineering� at the Technical University of Denmark �DTU�� The Ground�

water Research Centre also at DTU has 	nanced this Ph�D� project� The

centre was established in ��

 with the main purpose of procuring basic

technical knowledge for a successful and cost�e�ective protection� reclama�

tion and utilization of soil and groundwater resources� The research program

in the Groundwater Research Centre is divided into several sub�projects�

The present study was carried out under project no� 
�
 � Biodegradation

of aromatic compounds�

My work in context with this thesis has been divided into two parts� Part

one� the carrying out of the microbiological degradations experiments in

the laboratory �this period lasted a year� and part two� the modelling and

statistical analysis of the data� In gaining a better understanding of the

subject� it has been an advantage both to carry out the experiments and

to implement the modelling and the statistical analysis as well� The ad�

vantage has been in designing the experiments and analyzing the samples

from a statistically point of view� and in understanding the results of the

measurements when modelling and testing the data�

It has been di�cult writing this thesis since it treats subjects from two quite
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di�erent specialized areas �statistics and microbiology�� The thesis is mainly

written to microbiologists� interested in kinetics and who have some knowl�

edge of the most elementary statistics� In case of no statistical knowledge�

the reader can skip chapters and sections outlined in the Introduction� The

treatment of biostatistics in context with microbiological degradation expe�

riments is by no means exhaustive� but it is intended to show the aspects and

possibilities of statistical modelling and testing applied to microbiological

degradation experiments� The amount of mathematical�statistical formulae

has been cut down to the most essential in order to make the reading more

easy�

The thesis is not distinctly divided into theory and case studies� The neces�

sary statistical and microbiological theories are mostly described along with

good advice and illustrations from the experiments carried out in this study�

Depending of the interest of the reader some chapters may be omitted as

outlined in section ��� One type of reader may focus on nonlinear param�

eter estimation techniques and thus use especially chapter � as a reference

�book�� another reader may only be interested in the biological results and

tend to omit the more statistically minded chapters� However� it is strongly

recommended to read the whole thesis in order to achieve a better under�

standing of the problems in microbiological degradation experiments�

By

Helle M�lgaard Sommer

April ����
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Summary

The variability of parameter estimates in microbiological degradation mo�

dels has not received much attention in the literature� This in spite of the

fact that the parameters are used in models for predicting and controlling

microbiological processes of commercial interest� Furthermore� the accu�

racy of the parameter estimates are depending of the choice of estimation

method� this fact has not either received much attention� all though an un�

suitable estimation method can lead to estimates which are quite di�erent

from the �true� values�

The present thesis describes various nonlinear estimation techniques and

describes analysis techniques for testing the reproducibility of a given ex�

periment� The parameter estimation method employed for the experiments

in this study is based on an iterative maximum likelihood method and the

test statistic is an approximated likelihood ratio test� The estimations were

carried out by the nonlinear estimation programDekimo �developed at IMM

by Bilbo and Sommer�� available on request� The program successfully 	tted

all experiments� A few estimations were also carried out by the Lineweaver�

Burk linearization� but the estimated parameters 	tted the data poorly due

to the inappropriate estimation method�

The examinationof reproducibility�variabilitywere carried out for two kinds

of experiments� A single substrate experiment with toluene and a dual
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substrate experiment with toluene and benzene� A pure culture� isolated

from soil� grew with benzene and�or toluene as the only carbon and en�

ergy source� The substrates were degraded in batches under aerobic condi�

tions� The Monod model was employed to describe the biological processes

in the single substrate system� and Bailey � Ollis� model was employed

to describe the processes in the dual substrate system� In the single sub�

strate system � identical experiments were performed on three di�erent

days� and in the dual substrate system �� identical experiments were per�

formed on four di�erent days� The data are available on the www address�

http���www�imm�dtu�dk�documents�ftp�phdliste�phd
��abstract�html

Experimental observations indicate that these microbiological degradation

experiments have a limited reproducibility� i�e� that a common set of para�

meter estimates could not be employed to describe all experiments in each

of the two substrate systems� However� experiments carried out on the

same days �within runs� were more uniform than experiment carried out on

di�erent days �between runs�� In the single substrate system a common sets

of parameter estimates for experiments within runs 	tted the data very well�

whereas common sets of parameter estimates for experiments between runs

	tted the data poorly and were moreover strongly rejected to be identical

by the likelihood ratio test� In the dual substrate system a common set

of parameter estimates could not be accepted neither within the runs nor

between the runs� Never the less� experiments within the runs were more

uniform compared to experiments carried out on di�erent days �between

the runs�� The lag phases within runs were thus exactly the same� but were

quite di�erent from experiments from di�erent runs�

The limited reproducibility is probably caused by variability in the pre�

cultures� more precisely� variations in the activity level of the precultures

just before used as inoculum� Facing the fact that these microbiological

degradation experiments have a limited reproducibility one must in general

expect large variability on the parameter estimates�
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Resum� �in Danish�

Variabiliteten af parameterestimater i mikrobiologiske nedbrydningsfors�g

har der i litteraturen ikke v�ret fokuseret meget p�� Det p� trods af� at

parametrene bliver anvendt som v�rende karakteristiske for de biologiske

processer og bliver anvendt i modeller til pr�diktion og overv�gning af

mikrobiologiske processer i kommercielle sammenh�ng� Desuden har der

i litteraturen v�ret meget lidt opm�rksomhed p� de metoder og teknikker�

som parametrene bliver estimeret ved hj�lp af� selvom en uegnet estima�

tionsmetode kan f�re til estimater� som er en del forskellige fra de �sande�

v�rdier�

N�rv�rende afhandling beskriver kort adskillige ikke�line�re estimations�

teknikker og analyseteknikker til brug ved test af modelreduktion og repro�

ducerbarhed� Den i dette studie anvendte parameterestimationsmetode er

baseret p� en iterativ maksimum likelihood metode� og det statistiske test

er et likelihood kvotient test� Estimationerne blev udf�rt v�h�a� det ikke�

line�re estimationsprogramDekimo �udviklet p� IMM af Bilbo og Sommer��

og programmet modellerede alle eksperimenter tilfredsstillende� Et par es�

timationer blev desuden udf�rt v�h�a� Lineweaver�Burk metoden� men de

estimerede parametre beskrev data d�rligt p�g�a� den uegnede estimations�

metode�

Der blev i dette studie unders�gt reproducerbarhed�variabilitet af to forskel�
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lige typer fors�g� Et enkelt�substrat�fors�g med toluen og et dobbelt�substrat

fors�g med toluen og benzen� En renkultur� isoleret fra jordbakterier� groede

p� toluen og benzen som de eneste karbon og energi kilder� Substraterne

blev nedbrudt af bakterierne i batches under aerobe forhold� Monod model�

len blev anvendt til beskrivelse af de biologiske processer i enkelt�substrat�

fors�gene� og Bailey � Ollis� model blev anvendt til beskrivelse af pro�

cesserne i dobbelt�substrat�fors�gene� I enkelt�substrat�systemet blev der

udf�rt � identiske fors�g p� tre forskellige dage� og i dobbelt�substrat�

systemet blev der udf�rt �� identiske fors�g p� 	re forskellige dage� �Alle

r�data er tilg�ngelige p� www adressen�

http���www�imm�dtu�dk�documents�ftp�phdliste�phd
��abstract�html�

og programmet Dekimo kan rekvireres p� foresp�rgelse��

Eksperimentelle observationer tyder p�� at ovenn�vnte fors�g har en be�

gr�nset reproducerbarhed� d�v�s� at et f�lles s�t parameterestimat ikke

kunne anvendes til at beskrive alle de ens udf�rte eksperimenter i hver af de

to substrat systemer� Fors�g� som var udf�rt p� samme dag �indenfor run�

derne�� var imidlertid mere ensartede end fors�g� som var udf�rt p� forskel�

lige dage �mellem runderne�� For enkelt�substrat�fors�gene kunne man med

held modellere fors�gene indenfor runderne med et f�lles s�t parameteresti�

mater� hvorimod et f�lles s�t parameterestimater til modellering af fors�g�

udf�rt p� forskellige dage� ikke var egnede til beskrivelse af data og var

desuden forkastet af kvotient testet� For dobbelt�substrat�fors�gene kunne

et f�lles s�t parameterestimater ikke accepteres� hverken for fors�g udf�rt

p� samme dag �indenfor runderne� eller for fors�g� udf�rt p� forskellige dage

�mellem runderne�� Ikke desto mindre var fors�gene udf�rt p� samme dag

mere ensartede i forhold til fors�gene udf�rt p� forskellige dage� Lagfaserne

indenfor runderne havde s�ledes den samme l�ngde men var en del forskel�

lige fra fors�g fra forskellige runder�

Den begr�nsede reproducerbarhed skyldes sandsynligvis variabilitet i forkul�

turen� mere pr�cist� variation i aktivitets niveauet i forkulturen umiddelbart

f�r denne blev anvendt som inoculum� Da disse mikrobiologiske fors�g har

en begr�nset reproducerbarhed m� man s�ledes forvente en stor variabilitet

p� parameterestimaterne�
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Chapter �

Introduction

��� Background

Obtaining reliable estimates of parameters in microbiological systems are

prerequisites for predicting and controlling processes in wastewater treat�

ments plants� production of useful intermediates of commercial interest�

determination of the fate of toxic compounds in the groundwater etc� Bio�

logical treatment of contaminations in the aqueous environment receives

increasing attention due to the widespread problem of groundwater con�

tamination for example with oil products� Assessing the biodegradation

kinetics of these compounds is essential e�g� in predicting the extent to

which contamination will spread or in predicting the duration of in situ

biodegradation cleanup operations� Many of the monoaromatic compounds

found in gasoline �especially under aerobic conditions� can be degraded by

microorganisms found in soil and in groundwater�

Four factors that play an important role in obtaining reliable estimates are

�

� Chapter �� Introduction

� the precision of the measurements�

� the number of samples�

� the estimation technique� and

� the reproducibility of the experiment�

Precision of measurements� Holmberg � Ranta ���
�� carried out computer

simulations with the Monod model and added random noise to the data to

correspond to a measurement error� They reported that a noise on the

measurement of up to ��� resulted in parameter estimates that varied up

to a ���� � This also emphasizes the importance of stating the parameter

values not just as point estimates� but with the corresponding variances

as well� The estimation was sensitive to measurement noise and this can

explain the great variations which are often reported in parameter estimates

obtained from di�erent experiments performed under similar conditions�

Number of samples� The simulation studies by Vialas et al� ����
� indi�

cated � not surprisingly � that the identi	cation of the parameter Ks� was

signi	cantly easier in the case of �� regular data points than in the case of

�� regular data points� If there are too few samples� many di�erent models

are likely to 	t the data material�

Estimation technique� Even when the measurement errors are small and the

chosen model is correct� major errors in the parameter estimates can be in�

troduced by an unreliable estimation technique� The di�erent estimation

techniques are based on di�erent assumptions about the measurement er�

rors� If the assumptions are inappropriate for the actual data� the results of

the parameter estimation will not be fully valid� S ez � Rittmann ������

emphasize the importance of using an estimation technique in microbio�

logical experiments that matches the structure of the measurement errors�

especially when the variance is strongly non�constant� Parameters in mi�

crobiological degradation models are often estimated by linearization or by

heuristic methods �Criddle� ���
! Alvarez et al�� ����! Folsom et al�� ����!



��� Background 


Machado � Grady� ��
�! Vecht et al�� ��

�� Such methods do not account

for the error structure and can thus be inaccurate and some times very time�

consuming or even lead to inconsistent results� Parameter estimates found

by these methods can only be rough estimates� In recent years� however�

more researchers have used nonlinear estimation methods for some of the

parameters combined with linearization or with parameter estimates from

the literature �Kong et al�� ����! Chang et al�� ���
! Nakhla � Al�Hazazin�

���
! Thatipamala et al�� ������ These methods represent steps in the right

direction� but when using linearization or parameter values from the litera�

ture� there is still a risk of serious validation problems� The best estimation

result is obtained by use of nonlinear estimation for all the parameters�

�The intrinsic nature of environmental systems as multi�input multi�output

systems in which input often can only be measured but not controlled�

make the use of advanced system and parameter estimation techniques for

the model building process important�� �Reichert� �����

Reproducibility� It is obvious that any reported experiment ought to be

reproducible� and if experimental results are claimed to be reproducible�

it should be possible to obtain the previous results within some variations

when the experiment is replicated� If the reproducibility of an experiment

is con	rmed� the next point of interest is to determine the variability� that

is the variance of the experimental parameter values between replicated

experiments� The choice of model� the measurement method� and the es�

timation technique are all merely tools� A poor choice of tool may cause

irreproducibility� A few studies concerning variability of the parameter val�

ues have been reported �Arcangeli � Arvin� ���
�� but reproducibility of

the experiments was not examined explicitly� Blok � Booy ���
�� reported

a rather poor reproducibility in an inter laboratory test� In the test seve�

ral laboratories participated using di�erent chemicals and methods to test

the so�called �readily biodegradability� �positive if degraded more than ���

after � weeks and negative if 
�� or less degraded� of several compounds�

Large variability was found between the laboratories and between the di�e�

rent methods� Blok � Booy carried out simulations performed on the basis

� Chapter �� Introduction

of the Monod model and explained the variability by the varying quality

of the inoculum �mixed culture�� By quality they meant the quantity of

speci	c bacteria which are able to degrade the particular compound� In

other words� they explained the variability of the results by the varying

start concentrations of the speci	c bacteria in the di�erent experiments�

Pavlostathis � Giraldo�Gomez ������ also suggest� that in order to obtain

more reliable estimates the measurement of kinetic rates should be based on

the viable microbial population density� as opposed to the total microorga�

nism concentration� However� this is as they comment a very di�cult task�

especially in systems dealing with particulate organic substrates� Tanner�

Souki � D�Ambrosi ���
�� discovered large variability of parameter values

estimated from identical experiments� They believed that this variability

was caused by large measurement errors� We believe it is not the only expla�

nation but the fact that it is di�erent experiments �di�erence in inoculum�

and that there may be considerable variance on the parameter estimates

due to the estimation method �linearization�� Considering the many micro�

biologic degradation experiments carried out� it is surprising that relatively

few authors have found it worthwhile to test in a formalized way whether

the experiments are reproducible�

��� Scope of the thesis

The objective of the present study was to examine the reproducibility of

two simple microbiological degradation experiments� In the present thesis

the term �reproducibility� is used as a general term for describing variation

between experiments that are repeated under more or less the same condi�

tions in contrast to the strict de	nition given in the ISO ���� standard� By

a reproducible experiment we mean an experiment

� which is repeated a number of times and for which a common set of pa�

rameter estimates can be accepted when employing the likelihood ratio test�

� which replicates have been carried out on di�erent days� using di�erent

precultures �inoculum� grown from the same biomass�



��� Scope of the thesis �

The repeated identical experiments �replicates� are here de	ned as experi�

ments�
� which examine degradation of the same compound�s��

� which use the same type of biomass�

� which use the same chemical analysis methods�

� which are carried out under the same conditions�

� which ideally should be governed by the same model parameters

As mentioned above there are several factors that play an important role

in obtaining reliable parameter estimates� �� the measurement errors were

attempted minimized by not taking too small samples� and were examined

by taking triplicates mainly in the beginning and at the end of the ex�

periments� �� the number of samples also have a great in"uence on the

estimates� which is the reason why as many samples as possible were taken�


� an appropriate estimation method is especially important for obtaining

good parameter estimates and therefore a great deal of the present thesis

concerns the estimation technique� The choice of an appropriate estima�

tion technique has not been given much attention in articles concerning

microbiological degradation experiments� Traditionally the chemical analy�

ses used in the experiments are described thoroughly whereas the estimation

and the assumptions made in that context are given little attention� This

seems rather out of proportions�

Examination of reproducibility of degradation experiments is especially im�

portant when estimating parameter values� Special emphasis is laid upon

repeating the experiment exactly the same way from one time to another�

Focus has also been on the applicability and the development of a computer

program used for estimation of kinetics parameters �part of the program al�

ready existed�� With regard to the nonlinear estimation technique and the

test statistic for common sets of parameter estimates� other experiments

following a Monod�like model could have been used�

Two kinds of experiments were performed in the present thesis� One was

a single substrate system with toluene and the other was a dual substrate

� Chapter �� Introduction

system with toluene and benzene� Both substrates are monoaromates and

served as the only carbon and energy sources in the systems� The sub�

strates were degraded by a pure culture isolated from soil bacteria� The

experiments were kept relatively simple �a pure culture and one� respec�

tively two substrates�� Both kinds of experiments were repeated several

times �see chapter ��� The Monod model and Bailey � Ollis� model were

chosen to describe the single and the dual substrate experiments� No other

competing models were 	tted to the data material in search of the most

suitable models� However� model reduction of Monod and Bailey � Ollis

was examined� Since Bailey � Ollis� model contains � parameters there were

many combinations of parameters with which the model could be reduced�

In the present work only the most obvious parameters were tested�

��� Methods used in the present work

All methods used in the present work are thoroughly described in the di�e�

rent chapters� In this section the various methods are summarized without

detailed descriptions� For the description of the biological processes in the

single and the dual substrate systems� respectively� the Monod model and

the Bailey � Ollis� model were chosen� The biomass concentrations were de�

termined from protein measurements using a slightly modi	ed version of the

Lowry method and the substrates were measured on a gas chromatograph

from samples taken from the liquid phase�

The parameter values were estimated using a nonlinear estimation method

based on an iterative maximumlikelihood routine� The variance of the mea�

surement errors was assumed to depend on the response level � increasing

with increasing response level� Moreover� the standard deviation on the er�

rors for the biomass was estimated to be three times the standard deviation

on the errors on the substrate�s�� The log likelihood value was optimized by

the quasi�Newton routine in order to obtain the parameter values� In the

quasi�Newton expression the second derivative �the Hessian matrix� is used�
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The Hessian matrix � or the inverse Hessian � was estimated or rather up�

dated for every iteration by the BFGS �Broyden�Fletcher�Goldfarb�Shanno�

algorithm� The test of reproducibility is based on an approximate likelihood

ratio test and a signi	cance level of �� �� � ��� was chosen�

��� Outline and reading guide

The thesis is not distinctly divided into theory and case studies� The neces�

sary statistical models and microbiologicalmethods are described along with

good advice and illustrations of the experiments carried out� The thesis can

be read and used on di�erent levels� depending on the interest of the reader�

One reader who is interested in learning more about the possibilities and

advantages of using statistical methods for designing� estimating� and tes�

ting� may use the thesis more as a reference book� Another reader who is

only interested in the biological results may tend to omit the more statis�

tical minded chapters� However� it is strongly recommended to read these

chapters� since they are written especially for non�statisticians and since

one of the main objectives with the present thesis is to propagate a larger

knowledge and understanding of statistical methods among microbiologists�

At the end of this section a schematic reading guide is given�

The thesis is organized in the following chapters� Chapter �� is the present

chapter with the background and the scope of the project� Chapter � de�

scribes the biological experiments� the analysis methods� the setup� and

gives an outline of all the experiments carried out in the present study�

Chapter 
 emphasizes di�erent aspects which are important when choosing

an appropriate model to describe the biological processes� The models cho�

sen �Monod and Bailey � Ollis� for the experiments performed in this study

are described likewise� The �th chapter is an extensive chapter concerning

general aspects of parameter estimation� not just the ones employed in this

work� It starts by giving a mathematical formulation of the degradation

models� de	ning the nonlinearity� and discusses di�erent error structures�
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The main focus of the chapter is on various often employed estimation tech�

niques� The techniques are shortly introduced to the reader� Finally� tech�

niques for determining the precision of the parameter estimates and for

checking the assumed error structure are given� Chapter � presents the

likelihood ratio test used in this study to test for model reduction and re�

producibility� Chapter � focuses on the design of experiments in degradation

models� The problem of choosing a speci	c sampling procedure is addressed

and examples of optimal designs are given� Identi	cation problems for the

parameters in the Monod model are shown by use of sensitivity analysis�

In chapter � general optimization problems are discussed and good advice

is given on the use of the estimation program Dekimo or similar nonlinear

estimation programs� Chapter 
 presents the main part of the experimental

results for the single substrate and the dual substrate system � parameter

estimates and variances� as well as results of tests for model reduction and

reproducibility� Chapter � discusses the limited reproducibility of microbio�

logical degradation experiments� Chapter �� summarizes the results of the

research carried out in the present study�
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Chapter �

Biological experiments

The main objective of this Ph�D� study has been to examine the variabi�

lity�reproducibility of repeated microbiological degradation experiments car�

ried out under conditions which were as identical as possible� In case of

distrustful measurement results or large variability among the estimation

results it is of great importance to be able to go back in the experimental

procedure and seek for possible explanations� A careful description of the

experiments is thus necessary for understanding� explaining and comparing

the results of the experiments� In this chapter di�erent aspects and condi�

tions of the microbiological experiments are described�

��� Experimental design

Two types of degradation systems were examined �� single substrate experi�

ments with toluene as substrate and �� dual substrate experiments with

toluene and benzene as substrates� All experiments were carried out as

��
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batch experiments� For the single substrate system three identical runs

were carried out �I� II� and III� and for the dual substrate system four

identical runs were carried out �IV� V� VI� and VII�� Each run consists of

three batch experiments �A� B� and C� plus a blank test �without biomass��

Thus� for the single substrate system nine batch experiments plus three

blank tests were carried out all together! and for the dual substrate system

�� batch experiments plus four blank tests were performed� For each run

three batch experiments �A� B� and C� plus a blank test were carried out

simultaneously and the biomass in these batches originate from the same

precultur� In Fig� ��� a schematic outline of the experimental design is given

for the single substrate system� A schematic outline of the dual substrate

system would look the same except that there would be four runs instead

of three�
Figure ���� Schematic overlook of the single substrate system
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The reason for this design was that it was suspected that the biomass might

cause the largest variability� Therefore the experimental procedure was

designed using the blocking technique where each run represents a block �see

chapter ��� Within each of the runs the biomass is assumed to be exactly

the same� and between the runs the biomass may di�er somewhat �activity

level� mutation etc�� When examining reproducibility it is important that

the experiments are carried out the same way in each replication and that

factors like temperature� which in"uence the degradation rate� are kept

constant for all the experiments� It is also important that the experiments

are performed within the range of the models validity� The range was not

known beforehand but learned along the way �sequentially� �for Run VIII

and IX the Monod model was not valid� the initial toluene concentrations

were higher than �� mg�l � see section ��� for more details�� For Run I �

VII the toluene concentrations varied from ���� mg�l �Table �����

The following procedure was used to obtain a biomass that varied as little

as possible between all of the experiments� A few colonies of a pure cul�

ture �adapted to toluene over a �� month period� were frozen in a glycerol

medium �appendix A� at ����C in � ml tubes to obtain no activity in the

biomass under the hole period of experiments �six month�� Arvin et al�

���
�� also froze the biomass in order to maintain as little activity as pos�

sible� Machado � Grady ���
�� kept the biomass on agar slants during the

period of experiments� they did not� however� state for how long time�

For each run �I� II� � � � X� a small amount of the frozen biomass was grown

on an agar plate �Casein�peptone yeast agar� at ���C in a dark cabinet in

order to assure that the bacteria appeared �normal� �like the previous�� A

preculture of about ��� ml was then made from two or three colonies on the

agar plate� Toluene stock solution was added to the preculture �about ��

mg�l�� as well as growth medium� and chemicals� After about one day the

toluene was completely degraded and the biomass was ready to be used for

inoculum in the run of current interest� The preculture was shaken violently

to ensure total mixing before �
� ml was removed and added to each batch

�A� B� and C�� The whole procedure was carried out under sterile conditions�

�� Chapter �� Biological experiments

A pure culture instead of a mixed culture was chosen in order to ensure

minimum variation of biomass in the repeated experiments� This is of great

importance when comparing the experiments on the assumption that they

are identical� In a mixed culture one or several groups of bacteria can

be selected either during the thawing� in the preculture� or during the ex�

periment �Yoon� Klinzing � Blanch� ������ This e�ect would be likely to

obscure or disturb the e�ect of the substrate degradation from experiment

to experiment if a mixed culture was used�

The blank tests carried out served several purposes �� to test whether the

batches were gas tight� �� to test sterile conditions �no contamination of

other bacteria�� and 
� to adjust the concentration of the substrate mea�

surements if there had been any changes in external factors that would

e�ect the measurements� �See appendix D for an example of adjusting��

The blank tests were identical with the �real� experiments �A� B� and C�

except that no biomass was added� The 	rst two blank tests �from Run I

and II� were carried out to ensure that the batches were gas tight� Concen�

trated acid �H�SO�� was added to the blank tests until pH reached �����

which would ensure no growth of any possible contaminating bacteria and

thereby no degradation of toluene� The batches were found to be gas tight�

The remaining � blank tests were mainly carried out to verify sterile con�

ditions� For this purpose only the biomass was not added the blank tests�

otherwise they were similar to the �real� experiments� These blank tests

showed no growth of biomass and it could therefore be concluded that the

experiments were carried out under sterile conditions�

The blank tests were also used to detect changes in experimental conditions

concerning the substrate measurements� As an example� any changes in the

pentane mixture or change to a new pentane mixture� with not exactly the

same concentration as the former� were revealed by a jump in the constant

concentration level in the blank tests� This knowledge was used for adjusting

the substrate measurements in the �real� batch experiments�

Apart from the above mentioned experiments� preliminary experiments were
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carried out mainly for control and in order to achieve knowledge of the ex�

perimental conditions �such as constant temperature� the number of samples

which could be taken before all substrate was degraded etc��� The prelimi�

nary experiments and their purpose are described in section ���� Table ���

summarizes all the experiments performed�

Number Initial Concentration �mg�l� Remarks

Batch A Batch B Batch C Blank test

Single substrate

Run I ��� ��� ��	 ���

Run II 
�� ��� 
�
 ���

Run III ��� 
�� ��� ���

Dual substrate

Run IV ��� � ��
 ��
 � 
�	 ��� � 
�
 
�� � ���

Run V 
�� � ��
 
�� � ��
 
�
 � ��� 
�� � ���

Run VI ��	 � ��� ��� � ��	 ��� � ��	 ��
 � 
��

Run VII 
�� � ��� ��� � ��� 
�� � 	��	 ��� � 		��

Run VIII 	��� 	
�� 	
�� 	
�� inhibition

Run IX ��� � 	��	 		�� inhibition

Run X ��� � ��� ��� � ��� ��� � ��� 
�	 � ��� missing data

Preliminary

Exp� i� ��
 equilibrium

Exp� ii� 
�� ��� � ��� preculture

Exp� iii� ��� ��
 ��
 � test exp�

Table ���� Summary of the batch experiments with their initial concen�

trations of substrate� Experiments above the line are used for parameter

estimation and the three runs below the line are only used for verifying the

parameter estimates obtained from the other experiments� The preliminary

experiments are used to obtain information on the assumptions and the ex�

perimental procedure� Experiments with two initial concentrations contain

benzene and toluene� respectively�
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��� Experimental setup

The experiments were carried out in ��litre batches under sterile aerobic

conditions� Due to the large number of samples ������� each of �� ml�

taken from each batch� it was necessary to carry out the experiments in

such relative large batches� The medium was stirred continuously to en�

sure total mixing and aerating� The aqueous medium consisted of benzene

and�or toluene� bacteria� growth medium and four litres of distilled water

Fig� ���� The biomass was a pure culture� identi	ed as a Pseudomonas cepa�

cia and originated from a groundwater sample from a former gaswork site

at Fredensborg� Denmark �sampled by J� Flyvbjerg ����
��� H� M� Jensen

������ adapted the bacteria to toluene in a chemostat over a period of ��

months and isolated the Pseudomonas cepacia�

Figure ���� Experimental batch� Completely mixed conditions were pro�

vided by a magnetic stirring bar� The experiments were conducted under a

slight positive pressure to enable sampling�

Benzene and�or toluene served as the sole carbon source and the growth

medium supplied the biomass with nitrogen� phosphorus� and other mine�

rals necessary for the bacterial growth� The growth medium consisted of

nutritive� trace metals� and a phosphate mixture� The composition of the
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growth medium is given in appendix A� The phosphate mixture also served

as a bu�er to ensure a stable pH value near ��

As mentioned earlier three batch experiments plus a blank test were carried

out simultaneously and repeated again 
�� times separated by one or two

weeks� In Fig� ��
 the setup is illustrated� All batches were placed in a

large plastic box insulated with Styrofoam on the sides and small plastic

balls 	lled with air "oating on the water surface� A combined pump and

heating device was used to ensure a constant temperature of �
�C in the

water surrounding the batches�

Figure ��
� Experimental setup for single and dual substrate system

The sampling procedure was as followed� Substrate and biomass samples

of �� ml were taken from the bottom of each batch every 
� minutes by

adding sterile 	ltered air in order to let the solution "ow out as a result of

positive pressure� Double or triple measurements were taken when changing

to a new pentane mixture� The samples were collected in glass wares and

treated immediately� Pentane mixture was added to the substrate samples

which then were violently shaken� and trichloroacetic acid �TCA� was added

to the biomass samples� The purpose of these steps was to halt the degra�

dation process so that samples would accurately re"ect the concentrations

�
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in the batches at the time of sampling� The samples were stored at ��C

until analyzed �substrate samples the day after and biomass samples 
��

days later�� The reason for not sampling the substrate concentration from

the headspace as some researchers have done �Alvarez�Cohen � McCarty�

������ �Chang� Voice � Criddle� ���
� was �� that the method is less pre�

cise �unpublished data� due to no use of internal standard �see the section

below�� �� it is not possible to go back one or more days later to check the

samples� and 
� that in this study it was impossible to sample and measure

at the same time due to a tight time schedule�

A description of the preparation for the experiments �auto claving� making

standard solutions� setting up� etc�� is given in appendix B� All materials�

except from some tubes made of Te"on� were made of glass to prevent

volatilization and minimize adsorption�

��� Chemical analysis

The toluene and benzene samples were analyzed in random order on a Shi�

madzu GC��A gas chromatograph and later on a Carlo Erba� MEGA gas

chromatograph both connected with a computing integrator� �Tests were

made to ensure that the two gas chromatographs �Shimadzu and MEGA�

gave the same results� when analyzing the same samples�� The samples were

extracted with a pentane mixture �� ml� double distilled� and the peaks were

quanti	ed by internal standardization with heptane as a standard� Data

acquisition and integration were achieved on a MAXIMA Chromatography

Workstation� Standard curves for toluene and benzene were made for low

����� mg�l� and high ������ mg�l� concentrations �appendix C� in order

to convert from peak area to concentration� It was obvious that one linear

regression �Least Square method� LS� could not 	t the data from low to

high concentrations satisfactory� The linear regression curves for high con�

centrations were used when calculating the concentrations of the standard

solutions of toluene and benzene� The regression curves for low concen�
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tration were used when calculating concentrations of the samples from the

batch experiments�

The biomass samples were measured by the Lowry method �Lowry� Rose�

brough� Farr � Randall� ����� and �Peterson� ����� � see appendix B for the

procedure� The analysis of the protein content in the biomass measurements

was carried out one week after the run was performed� The measurements

were performed in random order in cuvettes on a Perkin Elmer� UV�VIS

Spectrometer Lampda �� Standard curves for the protein were made each

time of measuring �for each run� in order to convert the response of absorp�

tion to a concentration �mg protein�l�� All standard curves should ideally

be exactly alike� However� the standard curves made for Run I and II were

di�erent from the other standard curves� This was due to lack of precision

in the procedure �the protein standard solution needed for making the stan�

dard curve was measured and not weighted as in the later�� The procedure

was changed after this discovery� The two standard curves for Run I and

II were recalculated using the remaining standard curves and could then be

used to determine the protein concentration in these runs with the same

accuracy as in the rest of the runs�

The Lowry method measures the protein in the biomass� and in order to

convert to mg biomass�l� the measured protein was multiplied by � on the

assumption that ��� of the biomass consists of protein� This assumption

was checked by measuring the net weight from � dried samples �see appendix

C�� The net weight was found to be twice as high �conversion factor #

������ but with quite large variations� For batch A� B� and C the results

were� ��� � ��
� ��� � ���� ��� � ��� �estimated mean values � twice the

standard deviation� which is approximatively ��� con	dence interval�� All

the protein in the biomass� from living and dead biomass� is measured by

the Lowry method� Since it was assumed that all the measured biomass

was active� it was important to ensure a fully active biomass especially in

the beginning of the experiment where the inert part composed a large part

of the total measured biomass� Thus one of the reasons for a preculture

was to activate the biomass so that only a small part of the biomass was
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inert�inactive� Another reason for carrying out a preculture was to ensure

adaption of the biomass to the batch environment described above so that

an unnecessary lag phase could be avoided� �A lag phase is the time it takes

the bacteria to undergo a change of chemical composition before they are

capable of initiating growth��

��� Gaining information

Besides Run I� � � �� VII three more runs were carried out �VIII� IX� X��See

Table ����� Two of these were similar to the single substrate system� but

could not be used for estimating the kinetic parameter values� The initial

toluene concentrations were higher in these runs �more than �� mg�l� which

resulted in some inhibition of the degradation� The reason for this may be a

product inhibition� where an intermediate product toxic to the degradation

accumulates� The spectra from the gas chromatograph measurements were

examined in order to try to 	nd any possible accumulation of intermediate

products� Since examination of causes to inhibition was not part of the

present study� no further investigations were performed�

The third run �Run X� was a dual substrate experiment carried out similar

to Run IV�� � �� VII but because of missing substrate data at the end of the

experiment it could not be used for parameter estimation� All three runs

�VIII� IX� X� were� however� used in verifying the parameter estimates found

from the corresponding runs�

The three preliminary experiments were the 	rst experiments to be con�

ducted� The purpose of these was to gain information on the degradation

system� Experiment i� served the purpose of examining the time it took for

the toluene�benzene equilibrium between headspace and medium to adjust�

The result was less than � minutes for a concentration of ���� mg�l to reach

equilibrium of ���� mg�l� The rate is thus ��
� mg�l�minute� which is much

more than the greatest degradation rate � # ���� mg �l�minute� and there�
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fore it seems reasonable to assume that the system is constantly in equili�

brium�

Experiment ii� was carried out in order to gain informationon the preculture

with respect to the time it took before �� mg�l toluene was completely

degraded and how much biomass was produced from a few colonies from the

agar plate� The biomass density was measured and an appropriate amount

of the preculture to be added the runs was calculated� �Density # ����� mg

dry weight biomass�l and amount to be added # �
� ml preculture��

The last preliminary experiment iii� was performed similar to the single

substrate experiments� It was performed in order to gain information on

the procedure � how many samples was it possible to take per hour� was it

possible to maintain a constant temperature in the hole tank �see Fig� ��
�

throughout the experiment �answer� yes�� how long time did it take before

the substrate was degraded� were the initial substrate�biomass concentra�

tion appropriate etc� Experiment iii� con	rmed the calculation that plenty

of oxygen for the substrate degradation was available� Samples were taken

at the end of the experiment and analysed for oxygen contents�
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Degradation models

It is desirable for most microbial ecologists and biologists in general� that a

description of the processes in an experiment is supplemented with a quan�

titative approach also� The quantitative approach involves estimation of

constants and�or parameters in the model chosen to represent the process

under study� such as substrate degradation and biomass growth� In many

situations� the functions that best represent biological behaviour in degra�

dation processes are nonlinear with respect to their parameters and usually

consist of two or more nonlinear coupled di�erential equations�

The kinetics of biodegradation have been described by a variety of mathe�

matical models� increasing in complexity as they attempt to accommodate

the numerous variables which can e�ect the rate of biological removal of the

compound� These models are usually unstructured models� meaning that

there is no description of the intra cellular components �Nielsen et al� �����

and no description of the physiological state of the bacteria population � all

cells in the whole population were assumed to be identical� In other words

the models are more or less empirical� Description of natural systems by

�
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mathematical models are drastically simpli	ed and can only cover certain

aspects of real systems� This is important to remember when modelling

degradation experiments� One should not try to obtain a perfect 	t of the

data by extending the model� without having additional information of the

system� Otherwise the parameters will be even more di�cult to identify

� the system may become overparametrized� Hence� the choice of a par�

ticular model should be based not only on how well experimental data 	t

the model� but also on the statistical reliability of the parameter estimates�

Moreover� the structure of the model should be related as directly as possible

to the causal mechanisms acting in the system under investigation� In other

words modelling must be a compromise between making the model exten�

sive enough to be realistic and reducing the number of parameters to a level

where they can be estimated from available data� Before choosing a more

complex model it is important to remember� that if the model doesn�t 	t the

data well� several explanations may be possible� �� large measurement er�

rors� �� too few data� 
� inaccurate estimation of the parameter values� and

�� important variables missing in the model� Only in the last mentioned

case a new and more elaborate model should be employed� Among the

several methods that exist for discriminating between competing models�

Beck � Arnold ������ recommend an F �test� Discrimination among com�

peting models should not be performed as shown in the article of Luong

���
�� with only � observations and little di�erences between the models�

or as performed in Han � Levenspiel ���

� with only � observations� It is

too few data to discriminate between models which are not tremendously

di�erent from each other�

The large majority of microbiological models are formulated as determini�

stic models� However� other models such as stochastic models exist� Deter�

ministic models assume the future behaviour of a system to be completely

determined by the knowledge of its present state and values of variables

which describe the in"uence of the environment on the modelled system�

Stochastic models also take in to account the random in"uences of the tem�

poral evolution of the system itself� The main reason for the little �hardly

any� use of stochastic models in microbiologic experiments may be a lack
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of data for the characterization of random variables and high requirement

of computational resources for solving the stochastic equations� Bj�rneboe

������ and Ste�ensen ������ examined applications of stochastic di�erential

equations for the Monod model� and Wang ������ and Spliid ������ exa�

mined a microbiologic growth model� In chapter � more is written about

stochastic models�

In this study competing models were not examined to 	t the data sets�

The purpose was not to 	nd some optimal model for the data set� but

to choose an appropriate� simple� and commonly used model for the bio�

logical system� Model reduction was� however examined� By use of the

likelihood ratio test certain parameter values were tested for being equal to

zero� When examining variability of replicated experiments it is advisable

to start with a simple experiment and use a relative simple model� in order

to achieve less correlation between parameters and between the variables�

Afterwards the investigations can be extended to cover a more complicated

experiment where a more elaborate model is needed� In this study a single

substrate system with an easy degradable compound as toluene was chosen

as the simple system� A dual substrate system with toluene and benzene as

substrates was chosen as the more complicated system� The chosen models

for these two systems are discussed in the following sections� As mentioned

earlier� the biological system could for that matter be any other system�

not necessary a single substrate or a dual substrate system with competing

substrates� or with toluene and benzene as substrates � it is mainly the used

estimation and testing technique that is in focus�

��� Single substrate degradation model

The choice of an appropriate� simple� and common used model for the single

substrate system �Run I� II� and III� was fairly simple� Generally only the

Monod model is employed for these single substrate systems where there
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are no signs of self�inhibition �substrate inhibition� or product inhibition�

Substrate inhibition occurs when high concentrations of substrate inhibit

the growth of the biomass� Product inhibition occurs when a toxic product

from the degradation pathway accumulates in the medium to such an extent

that the metabolic activity is suppressed� Mulchandani � Luong ���
��

have given a review on the many di�erent models developed to describe

substrate and product inhibition�

Other models than the Monod model for describing non�inhibition processes

have been suggested �Contois� ����� Grau et al�� ����! Chen � Hashimoto�

���
� but have by far not reached the same extension as the Monod model�

The Monod model consists of two nonlinear 	rst�order di�erential equa�

tions� The substrate concentration is denoted S� the biomass X� and the

time t�

dS
dt

� �k

SX

Ks � S

�
���

dX
dt

� Y k

SX

Ks � S
� bX �
���

where the parameters are�

k the maximum degradation rate for toluene�

Ks the half�saturation coe�cient�

Y the yield coe�cient� and

b the decay coe�cient�

Equation �
��� was modi	ed to correct for the continuous supply of target

compound from the headspace as suggested by Broholm et al� ������ � The

right hand side of Eq� �
��� is thus multiplied by the headspace factor h�

h �

VL

VL �HCV A
� HC � exp �B� �B��T 	 �
�
�

where
VL and VA are the volumes of the liquid and the air in the batch

respectively�
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HC is the Henry�s law constant� which is the equilibrium distribu�

tion coe�cient between air and liquid for toluene �Atkins ��
���

B� and B� are constants �Lamarch ��
��� and

T is the absolute temperature�

The continuous stirring in the batches ensures equilibrium between liquid

and air for toluene�benzene� The change in VL due to the sampling was

about ������ This resulted in a changing of h of only ��� we therefore

ignored the fact that h was not a constant�

��� Dual substrate degradation model

The modelling of a biomass growing simultaneously on two substrates is

complicated by the need to describe the rate at which each individual sub�

strate is degraded� Several models have been proposed to qualitatively

de	ne di�erent types of interactions between two substrates� Three com�

mon metabolic phenomena in connection with dual substrate experiments

are� cometabolism� competitive inhibition� and simultaneously utilization�

Substrate and product inhibition can also occur� but when looking at the

data in this study there is no reason to believe that a substrate or product

inhibition is present in the dual substrate experiments�

Cometabolism is a process where degradation of one substrate depends on

the presence of another substrate� or as expressed by Alvarez�Cohen et al�

������ �Cometabolism is the transformation of a compound by organisms

that do not obtain energy or carbon for cell growth from the transforma�

tion and hence require an alternative source of carbon and energy�� Di�erent

models have been suggested in order to model the cometabolic phenomena�

Criddle ����
� summarize some of the models� Cometabolism can be ex�

cluded as describing the experiments with toluene and benzene degraded

under aerobic conditions� Firstly� similar experiments have been carried

�
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out showing that both toluene and benzene can be degraded independently

without additionally substrates to induce the degradation process �Jensen

������ Secondly� there is no indication in this study� that the degradation

of benzene stops or slows down after toluene has been degraded�

When simultaneously utilization occurs the substrates are degraded simul�

taneously with no inhibition of any of the degradations rates� Competi�

tive inhibition occurs when one or both of the substrates inhibit the other

substrate�s degradation� Many models can describe both simultaneously

utilization and competitive inhibition� depending on the value of certain

parameters� Since we did not know beforehand if the substrates �toluene

and benzene� inhibited each others degradations� a model which could de�

scribe both simultaneous utilization and competitive inhibition was chosen�

The chosen model is referred to as Bailey � Ollis� model �Bailey � Ollis�

����� pp������ However� the model used here includes the modi	cation

suggested by Machado � Grady ���
�� and Yoon et al� ������� As for the

single substrate system the chosen model is extended to meet the air�liquid

system� Eq� �
��� and Eq� �
��� are multiplied by the headspace factors ht

and hb for toluene and benzene respectively�

dSt
dt

� �ht � k

StX

Kst � St � zb � Sb

�
���

dSb
dt

� �hb � k

SbX

Ksb � Sb � zt � St

�
���

dX
dt

� �Yt �
dSt

dt
� Yb �

dSb
dt
� bX �
���

where the parameters are�

kt the maximum degradation rate for toluene�

Kst the half�saturation coe�cient for toluene�

Yt the yield coe�cient for toluene�
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zt toluene inhibition coe�cient

kb the maximum degradation rate for benzene�

Ksb the half�saturation coe�cient for benzene�

Yb the yield coe�cient for benzene�

zb benzene inhibition coe�cient� and

b the decay coe�cient

The modi	cation of Bailey � Ollis� model consisted of replacing Kst�Ksb

and Ksb�Kst with the two independent parameters zb and zt� The reason

for this replacement is that Ksb and Kst are di�culty to identify� thus the

standard deviations of the estimates of these parameters will be quite large�

which will result in even worse determined inhibition coe�cients� Further�

more� the inhibition coe�cient of toluene and benzene are independent of

each other with this replacement� The drawback is that there are two more

parameters to estimate� The inhibition parameters zb and zt describe how

much one substrate inhibits the degradation of the other substrate� If both

inhibition coe�cients are zero� there is no inhibition of any of the degrada�

tions� And since both substrates give growth to the biomass� the substrates

will be degraded faster than if the substrates were degraded alone� This

process are referred to as simultaneously utilization� In the following the

modi	ed Bailey � Ollis� model with the extension to met the air�liquid

system is referred to as the Bailey � Ollis� model�

The reason for choosing the Bailey � Ollis� model was that it satis	ed

the wish for a model that was appropriate for describing the data� that it

was relative simple compared to other models for dual substrate systems�

and that it was a commonly used model� In earlier experiments �Jensen

����� which also used toluene and benzene as substrates� the Bailey � Ollis�

model was found appropriate to describe the biological processes� Moreover

the Bailey � Ollis� model is one of the simpler models for dual substrate

degradation� For more complex models the parameter identi	cation be�

comes more di�culty �Bates � Watts ��

�� Bailey � Ollis� model is also

commonly used �Folsom� Chapman � Pritchard� ����! Strand� Bjelland

� Stensel� ����! and Chang� Voice � Criddle� ���
�� Sambanis� Pavlou
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� Fredrickson ���
�� expressed the interactions between two substrates de�

scribed by Tilman ���
�� in mathematical terms using unstructured models

all based on Bailey � Ollis� model but with no biomass growth�



Chapter �

Techniques of parameter

estimation

Parameter estimation consists of determining the optimal values of the pa�

rameters of a given model� which describes the measured data� It is im�

portant which estimation technique is chosen� The various estimation tech�

niques rely on di�erent assumptions of the measurement errors� The more

realistic the assumptions about the errors are� the more correct is the re�

sult� The assumptions about the measurement error structure thus plays

an important role� therefore the subject is discussed in the present chapter�

The error structure is described by the measurement error variance� by the

mutual dependences between errors� and by the statistical distribution�

Before estimating the parameters it may in some cases be advantageous to

perform a transformation� The various transformation possibilities serve

di�erent purposes� �� to obtain a nicer measurement error distribution �e�g�

normal distribution or univariate�� �� to obtain an easier model to estimate

in �e�g� a linear model�� or 
� to reduce correlations between parameter


�
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estimates� Such transformations are shortly described in section ���� No

transformation was employed on the data in this study! linear transfor�

mation is� however� often employed by environmental researchers � often

without full understanding of the e�ect it has on the results� Due to the

widespread use of transformation the subject is included in this chapter�

Estimation of the parameter values can be performed by �� linear transfor�

mation of the nonlinear model� followed by use of linear regression analysis�

�� nonlinear estimation methods �also referred to as nonlinear regression

analysis�� or 
� combining nonlinear estimation for some of the parameters�

with either linearization or with parameter values found in the literature

�for �similar� experiments� for other parameters�

In the present chapter a linearization technique is illustrated on one of the

experiments from this study� and a short description of several commonnon�

linear estimation techniques is given� All the experiments in this study were

modelled using a nonlinear estimation program Dekimo �developed at the

Institute of Mathematical Modelling� DTU� part of the program is described

in Bilbo� ������ A few experiments were also modelled using linearization

�Lineweaver�Burk� and AquaSim �a commercialized software program pack�

ages� Reichert� ����� in order to compare the di�erent parameter estimates

obtained from the three methods� In chapter 
 the results are given� All

parameters in a given model are written as a vector and estimated simul�

taneously� The values for the parameter vector can be estimated from one

or more experiments� When estimating a set of parameter values based on

several experiments� we call the estimates a common set of parameter esti�

mates� The estimation technique is� however� the same as when estimating

parameter values based on a single experiment� The technique of calculating

the precision of the parameter estimates is given in section ���� Finally the

assumptions of the measurement errors were checked in section ��� by use

of residual analysis� Generally� the present chapter gives some basic de	�

nitions� review on di�erent often employed techniques and examples and

calculations using the data from this study�
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The models that best represent the microbiological degradation behaviour

are usually nonlinear with respect to their parameters �see next section��

The two models used in this study �Monod and Bailey � Ollis� see chap�

ter 
� consist of two respectively three coupled di�erential equations� This

implies that the depending variable �the responses� cannot be expressed ex�

plicit but must be approximated implicit� Several numerical approximation

methods can be employed to solve the problem� The degradation models

under consideration can be rewritten in two di�erent types of mathematical

formulation depending on the assumption of the measurement errors �also

just referred to as errors�� All small letters in bold represent a vectors and

capitals in bold are matrices� if nothing else is written�

y � f�t� �	 � � �����

or

dy
dt

� g�t� �	 � � �����

for the Monod model�

y �

�
S

X

�
f �

�
f�

f�
�

�
�
Spred

Xpred

�
� � N ��� �����	

g �

�
� �k SX

S�Ks

Y � k SX

S�Ks

� bX

�
� � �

�
���

k
Ks

Y
b

�
���

and for Bailey � Ollis� model�

y �

�
� Sb
St

X

�
� f �

�
� f�
f�

f�
�

� �
�

�� Spredb
Spredt

Xpred

�
�� � � N ��� �����	
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g �

�
����

�kb

SbX

Sb�Ksb�ztSt

�kt

StX

St�Kst�zbSb

Yb � kb

SbX

Sb�Ksb�ztSt
� Yt � kt

StX

St�Kst�zbSb
� bX

�
���� � �

�
��������������

kb
Ksb

Yb
zb

kt
Kst

Yt
zt

b

�
��������������

y is the dependent variable �response�� t is the independent variable �time��

f the predicted response �or expectation function�� � the model parameter

vector� and � the error vector� assumed distributed after a normal distribu�

tion N with a mean of zero and a variance of ������ When y� �� �� ����

are illustrated with a 
 �hat� it is the estimates of these�

The 	rst mathematical formulation Eq������ expresses errors on the mea�

sured responses �substrate and biomass� and the second Eq������ expresses

errors on the degradation�growth rates� There is no unambiguous answer

which model formulation is the most correct� However� for the experiments

in this study we found that Eq������ was the most adequate formulation�

since it was the responses which were measured and not the rates� The non�

linearity of the model results from the functional form of the expectation

function Eq������� If there is no correlation between errors� the model can

also be written by�

yij � fj�ti� �	 � �ij �ij � N ��� ����ij	

	
i � �� � � � � n

j � �� � � � �m

���
�

where i is the index for an observation and n is the total number of ob�

servations� j is the index for the type of response �substrate�biomass� and

m is the total number of responses� One observation consists of measure�

ments of two or three responses depending of the system �single or dual

substrate�� Systems with more than one type of response are also referred

to as multiresponse systems�
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��� De�nition of nonlinearity

A model that is nonlinear in its parameters can be de	ned as one whose

sensitivity equations depend on one or more of the model parameters �Beck

� Arnold� ����! Draper � Smith� ��
��� A sensitivity equation mathe�

matically describes how sensitive a model is� in terms of changes in the

dependent variables� toward changes in parameters of the model� A sensi�

tivity equation is de	ned as the 	rst derivative of the expectation function

�predicted response variable� with respect to a parameter p of the chosen

model

f
�
� �

�f �t� �	

�	p

p � �� � � � � P �����

These equations cannot not be calculated explicitly� since explicit expres�

sions of f�t� �	 cannot be given� Two di�erent methods are here given for

treating the problem� �� by approximating the functions f�t� �	 numeri�

cally and then take the 	rsts derivation of the function with respect to a

parameter or �� by using the method shown in Holmberg � Ranta ���
���

where the sensitive functions are obtained by solving a system of di�erential

equations�

Here the sensitivity functions are estimated by using the 	rst method men�

tioned above� The numerical approximation used was a ��th order Runge�

Kutta algorithm� given by

�yi�� � �yi �
l�

�
�

l�



�
l�



�

l�
�

�����

where l�� � � � � l� are de	ned by

l� � h � f �t��yi� �� ti	

l� � h � f �t��yi � l�� �� ti � h��	

l� � h � f �t��yi � l�� �� ti � h��	

l� � h � f �t��yi � l�� �� ti � h	
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and where f �
t

is the derivative with respect to the independent variable and

h is a time step�

d�y
dt

� f �t�yi� �� ti	 �����

For a given set of parameter values �� the value of a predicted response


yi�� to a given time ti � h is obtained by use of the response value 
yi at

time ti plus the derivate function values �Eq������ To demonstrate the idea�

a few calculations are shown for the Monod model� Approximation of the

substrate response by use of the Runge�Kutta method yields�

Si � � � Si �
A

�
�

h


�

kBXi

B �Ks
�

h


�

k�Si � �
�

� h kBXi

B�Ks 	Xi

Ks � �Si � �
�

� h kBXi

B�Ks
	

�
h

�
�

k�� � �	Xi

Ks � �� � �

where A � h �kSiXi��Si�Ks	 and B � Si�����A� Now an approximation

of the sensitivity equation for the parameter k can be indicated�

dSi��

dk

�
�

�
�

A
k
�

h


�

�XiSi � �
�

� �AXi	 � �Si � �
�

�A �Ks	 � �kXiSi � �
�

� kAXi	 � ��A�k	

�Si � �
�

� A�Ks	�

�
h








m

dSi � �

dk

�
h

�
�

SiXi

Si �Ks
�

h


�

k� � h�S�X�

�Si�Ks��
� �k �

hSiX
�
i �Si � �
�

�Ks�

Si�Ks

�XiSi � �
�
�Si � �
�

�Ks	

�Si � k � h
�

XiSi

Si�Ks

�Ks	�

�
h
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From the above calculations of the approximative sensitivity equations it

is easy to evaluate the dependence of the parameters under consideration�

Only one of the sensitive equations need to depend on a parameter in order

to declare the model nonlinear� For the Monod model no less than six of

the eight sensitivity equations are depending on the parameters� For Bailey

� Ollis� model �� out of �
 sensitivity equations depend on one or more

parameters� Thus both of these models have a high degree of nonlinea�

rity� Several suggestions have been made to meet the need for a measure of

�the amount of nonlinearity� in nonlinear models� Such a measure helps in

deciding when linearized results provide acceptable approximations used in

parameter estimation techniques� Bates � Watts ���

� present material

concerning measurement of how severe nonlinear a particular model�data

situation is� They developed relative curvature measures for the nonlinea�

rity of an estimation problem using the 	rst and second derivative of the

expectation function�

f
�
� �

�f�t� �	

�	p

and f
��
� �

��f�t� �	

�	p�	q

�����

Models can� however� also be nonlinear with respect to the independent

variable� To avoid confusion� the terms �linear� and �nonlinear� will be

reserved for how a model behaves with respect to its parameters and not

the independent variable�

��� Error structure

The assumptions made on the distribution and especially the mean and the

variance structure of the errors� �� in a given model� is of great importance

for the results of the analysis�the parameter estimates and the test statistic

for reproducibility�� Depending on the assumptions for the errors the most

appropriate estimation technique �objective function� should be chosen� In

the beginning of this section the assumptions made on the error structure
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in the present work is given� and later it is shown� based on the data how

they were estimated� At the end of the section a di�erent error structure�

depending on the time �stochastic di�erent equations�� is described shortly�

This technique is� however� not used in the present study� but could be a

technique for the future�

����� Assumptions

The mathematical models for Monod�Bailey � Ollis �Eq� ���� were in this

study based on the assumption that the errors were normally distributed�

uncorrelated between the di�erent responses� and independent of time�

� � N ��� �����	 ���
�

and for a given time ti the diagonal covariance matrix can be written by

Cov��i�j��i�j�	 � ������i� � ���



� wi� 
 �

� 
 �

� 
 wim

�
A �����

where i � �� � � � � n is the index for observations and j is the index for the

type of responses �substrate�biomass� j � �� � � � �m �m � � in the Monod

model and m � 
 in the Bailey � Ollis� model�� ���i� are elements in the

matrix �� given in Eq�������� The errors on the two di�erent responses

taken at time ti were assumed to be uncorrelated which is illustrated by the

zeroes in the matrix Eq������� Moreover� errors were assumed independent

on time� meaning that the errors on one type of response� measured at

two di�erent times were uncorrelated� This is illustrated by the zeroes

outside the diagonal in Eq�������� The structure of the covariance matrix

V ��� � ����� for two responses is given by

V ��	 � ����� � ���



BB�
����� � � � � �

� ����� � � � �


 
 


� � � � � ���n�
�

CCA ������
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� ���



BBBBBBBBB�
w�� � � � � �

� w�� 



 w��

w��




wn�

� � � � wn�

�
CCCCCCCCCA

������

The elements in the diagonal are di�erent in magnitude re"ecting that er�

rors may not have the same magnitude for the di�erent responses and for

measurements taken at various stages �at di�erent concentration levels��

This situation is illustrated in Fig� ����

Figure ���� Error structure in the experiments

The measured responses covered a large interval over which the magnitude

of the errors changed� The concentration of the substrate was large initially

and in the end� completely degraded� For the biomass it was more or less

the opposite� It is thus natural to assume that the errors on the measured

responses change during the experiment� This error structure is in the

literature often referred to as heteroscedastic�
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The di�erent magnitudes for the errors on the various responses are often

explained by the methods used when performing the chemical analysis �see

chapter ��� But the natural variability of the processes considered will

generally also vary with concentration� The concentrations of the substrates

were determined with a higher precision than the biomass concentrations�

When estimating the parameter values the above described error structure

should be accounted for� In order to assure that all responses are weighted

appropriately� one has to transform the data initially or implement a weight�

ing procedure in the estimation method� A weighting procedure in the es�

timation method was implemented in this study� Since the structure of the

variance matrix V ��� for the errors is a diagonal matrix� the distribution

for the errors can be given as

�ij � N ��� ���wij	 i � �� �� � � � � n j � �� � � � �m ������

where i and j are index for observations and responses� respectively� and wij

is the weight function� Among several possibilities we have for the single

substrate system chosen �see next section� to describe the weight function

by�

wi� � f��ti� �	 wi� � � �
p
f��ti� �	 ����
�

and for the dual substrate system�

wi� � f��ti� �	 wi� � � � f��ti� �	 wi� � f��ti� �	 ������

where fj�ti� �	 are predicted values given by the model under consideration

�Monod�Bailey � Ollis�� for substrate �j � � and 
� and biomass �j � ��

and � is the parameter vector� These weights apply for the units used in this

study� As mentioned earlier the biomassmeasurements were determined less

precise than the substrate measurements� For the Bailey � Ollis� model the

variance of the biomass was estimated to be about � times larger than the

variance of the substrates! or the standard deviation of the biomass to be 


times larger than the standard deviation of the substrates� The reason for

a di�erent structure in the dual substrate system was that the precision on
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the biomass measurements for the low concentrations were improved �see

chapter ��� If the elements in the variance matrix V ��� were all equal

to one� there would be no weighting� When or if the predicted value fj

reached a certain value near zero the weighting procedure was turned of�

This was done in order to prevent that a measurement with a very small

concentration was weighted unreasonable high and thus more or less would

dominate the whole estimation�

Figure ���� Trend in decay phase

����� Estimation of the error structure

The best way of examining and determine the error structure is by use of

more than one measurements for all observations� At each observation the

variances for the various responses can then be calculated� On basis of these

estimated variance values the overall structure can be assessed� However� it

is rather di�cult and time consuming to carry out duplicate measurements

in these degradation experiments� so only few were made� Instead one can

use other measurements that can serve the same purpose� Measurements

from the blank test� the lag phase� and the decay phase �if b � �� also

referred to as starvation phase� are all alternatives since the response levels

are constant in these phases� Thus� they only dependent on the estimated

mean values� Problems arise if there is a trend in the phases� which is
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not accounted for� For example� if the biomass concentration is constant

for some of the chosen period and then slowly dies away� In Fig� ��� the

situation is illustrated� When using the lag and decay phase caution should

also be taken on determining the beginning and the end of the phases� And

when using a blank test one must ensure that the batches are gas tight� and

that no degradation of the substrate occurs as in the experiments in this

study�

The assumption of uncorrelated errors between responses� Eq������� was ex�

amined by use of repeated measurements and by use of data from blank

tests and lag phases� In Fig� ��
 a strong correlation between the errors

on the substrate responses �toluene and benzene� are signi	cant� This cor�

relation was probably due to the sampling method �one sample for both

measurements�� The correlation between the substrate responses was� how�

ever� ignored in the analysis due to the more complicated estimation method

to be used when the variance matrix ����� is not diagonal� In chapter � it

is discussed whether the ignoring of the correlation between the substrates

has any serious in"uence on the parameter estimation and on the likelihood

test�

Figure ��
� Correlation between substrates
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There are not enough replicated measurements of the substrate and the

biomass taken at the same time in order to examine the correlation between

these two kind of responses� However� the assumption of no correlation

between substrate and biomass errors seemed reasonable since the substrate

sample and the biomass sample were two physically di�erent samples�

We do account for the in"uence on the errors from the magnitude of the

response level and from the response type� Replicated measurements were

used together with measurements from the lag and the decay phases �if b �

�� and from the blanc tests in predicting the variance structure �the diagonal

in the variance matrix� Eq��������� The variance of each measurement was

determined by

����ij � ��� �wij ������

where �� was estimated by the program Dekimo and the weight functions

were de	ned by the user� This means that the user determines the ratio

between substrate and biomass errors� and the ratio on errors from low and

high concentration levels� In order to compare the identical experiments�

one common structure was chosen for all the single substrate experiments

and one for all the dual substrate experiments �Eq� ���
 and ������ In

Fig� ��� and ��� the error structure for the single substrate system is illu�

strated� and in Fig� ��� and ��� the error structure for the dual substrate

system is shown�

As seen in Fig� ��
 and Fig� ��� the variance of the measurement errors on

the biomass was about � times as large as the variance on the substrate

measurements� The errors were as expected heteroscedastic� such that the

variance is inversely proportional to the response� Cornish�Bowden � En�

drenyi ���
�� had found a weight function of ��Y �
pred �corresponding to

w � f�t� �	� in our study� to be reasonable for an enzyme experiment�
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Figure ���� Variance structure for substrate measurement errors in the single

system

Figure ���� Variance structure for biomass measurement errors in the single

substrate system

S ez � Rittmann ������ found a weighting of ��Ypred �corresponding to

w � f�t� �	 in our study� to describe the variance structure of the mea�

surement errors for their experiment� The experiment S ez � Rittmann
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Figure ���� Variance structure for substrate measurement errors in the dual

substrate system

Figure ���� Variance structure for biomass measurement errors in the dual

substrate system

carried out was a batch experiment with phenol� Depending on the data

an inappropriate assumption of the error structure may result in unreliable

parameter estimates and an incorrect result of the likelihood ratio test�
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Figure ��
� The estimated variance structure for the responses in the single

substrate system

����� Stochastic di�erential equations

In most degradation experiments the errors are assumed to be independent

of time �uncorrelated with time�� mainly of the following three reasons�

�� the estimation method for time depending error structure is very little

known to environmental researchers� �� calculation of stochastic models

requires some knowledge of the method in order to interpret the results� and


� using stochastic di�erence equations in degradation models requires many

observations �Ste�ensen� ���� and Bj�rneboe� ����� in order to identify the

stochastic variables� For the last mentioned reason stochastic di�erential

equations were not used in this study� In future works more data may be

obtained which could open up for the possibility of using stochastic di�e�

rential equations in nonlinear degradation models� In this section a short

introduction to the method is given� For a review on the stochastic di�e�

rential equations� consult with Petersen ������� Kloeden � Platen ���
���

and Kloeden� Platen� � Schurz �������

The dependence of time of the errors can be more or less random with a
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Figure ���� The estimated variance structure for the responses in the dual

substrate system

stochastic part being a function W of time� response� and�or independent

variable� � is referred to as process error�

� � ����W �t� Y�X		 ������

The dependence of time can be modelled by an approximative formulation

that does not describe all aspects of importance for the system� because

�� the underlying relations are not exactly known�

�� the relations in the system are too complex to be handled� or


� simply because some factors are stochastic by nature�

The modelling of degradation kinetics by stochastic di�erential equations is

based on estimation of the model parameters and estimation of two error

components� a process error component and a measurement error compo�

nent� The model can be written as

dY �t	

dt

� g�Y �t	� �	 �W �Y �t	� t	 � U �t	 ������

where g�Y �t	� �	 is a function of characteristic parameters� e�g� kinetic

parameters� The function U �t	 is an appropriate process error� distributed

�
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as a zero mean Gaussian noise� U �t	 � N ��� Q�t		� Generally� W �Y �t	� t	 is

a nonlinear matrix function of Y �t	� Y �t	 is a stochastic response vector

with measurement error� e

Y � y � e� e � N ���R	 ����
�

The measurement error is considered to be constant in time� The process

error and the measurement error can be more or less confounded and to

avoid problems in estimating the errors it is necessary that the variance of

the measurement error do not exceed a certain level� As a rule�of�thumb

the following expression can be used �Ste�ensen� �����

�



�
��meas

��proc
� 
 ������

In obtaining satisfying identi	cation of the two errors it is moreover neces�

sary that the time interval between the samplings are not constant through�

out the experiment �Bilbo� ������

Generally� the estimation problem cannot be handled within the traditional

framework of mean square calculus� since the right hand side of Eq�������

is not integrable in the mean square sense �Bilbo� ������ Estimation of

parameters in nonlinear stochastic di�erential equations can be expressed

in terms of 	ltering techniques� e�g� the Kalman 	lter� The idea is to

calculate the conditional means response� 
yj�t � �	 and the conditional

variance� V �yjy�t � �	� 		 and updating these estimates at each time step�

Bj�rneboe ������� Ste�ensen ������� Wang ������� and Spliid ������ have

studied stochastic di�erential equations and the application in microbiologi�

cal degradation systems as discussed in this thesis� In Table ��� an overview

is given of the stochastic models they examined referring to the structure

of the model in Eq� �������

Ste�ensen applied a process error W �Y �t	� t	 � constant and Bj�rneboe

applied a more complex process error function W �Y �t	� t	 � c � g�Xt� St	�

Both Bj�rneboe and Ste�ensen concluded that the estimation of the para�

meters �model parameters plus process and measurement error parameters�
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for the Monod model was connected with di�culties in case of �small� sam�

ple size �less than ��� observations of each response�� However� Bj�rneboe

found that estimation of model parameters and the error components were

possible with simulated data� He concluded that the large uncertainty of

the parameter estimates was due to an incomplete model speci	cation� i�e�

an incomplete description of the error structure� Since the measurement

errors in microbiological degradation experiments often are fairly large and

since the deterministic part of the nonlinear models present an identi	cation

problem in itself� Bilbo does not recommend the use of stochastic di�eren�

tial equations in cases with small sample size� large variability in the data

and with nonlinear models of the Monod�type�

dY �t� Deterministic part Stochastic part Study on real� Reference

dt g�Y ��� W �Y ���U�t� simulated data

c� � U �t	 sim� data �	�

c� � U �t	 sim� � real data ���

dSt
dt

�k XtSt

St�Ks

c�St � U �t	 sim� data �	�

dXt

dt Y k XtSt

St�Ks

� bXt c�Xt � U �t	 sim� data ���

c�k
StXt

St�Ks

�U �t	 sim� � real data �	�

c�Y k
StXt

StXt

� U �t	 sim� data ���

dXt

dt 	 �Xt � �X�
t �U �t	 sim� � real data ���� ���

Table ���� Stochastic models for microbiological degradation experiments�

$�% Bj�rneboe ������� $�% Ste�ensen ������� $
% Spliid ������� and $�% Wang

�������

Spliid ������ and Wang ������ examined the application of stochastic di�e�

rential equation to a biomass growth model described by a 	rst order growth
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process �	 �Xt�� They suggested a more general process error than used by

Bj�rneboe and Ste�ensen� namely W �Xt	 � � � X�
t � Wang estimated an

appropriated set of � and 
 for a speci	c experiment�

��� Transformations

A common practice in estimating the parameters in degradation experi�

ments is to transform the nonlinear model into a linearized form and then

	t the transformed data to the linearized form by simple least squares�

Hereby the estimates of the parameters can be obtained by using linear re�

gression� The linearization technique �linear regression� is useful because of

its simplicity� the estimates can be obtained by direct calculations� whereas

nonlinear estimation procedures require complicated iterative schemes� The

linearization technique can� however� have severe statistical faults� When

transforming the data� the error structure is transformed as well� which can

introduce heteroscedastic error structure and give rise to incorrect estima�

tion results� The reason for this is that when using linear regression the

error structure is assumed to be homoscedastic� which is often wrong� Dif�

ferent linearized forms of the same nonlinear degradation model typically

yield dissimilar estimates of the same parameters� because each lineariza�

tion transforms the error structure di�erently �Dowd � Riggs� ������ In the

present section transformation technique is described shortly in general fol�

lowed by a previously very common transformation in nonlinear degradation

models �Lineweaver�Burk�� which is somewhat di�erent from the general

transformation technique� At the end of this section the Lineweaver�Burk

technique is used in estimating parameter values for one of the experiments

in this study�

Linearization of a nonlinear model can be obtained by one of several trans�

formation techniques or a combination of these depending on the model

under consideration�
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� transformation of the parameters� 	�

� transformation of the independent variable� x�

� transformation of the dependent variable� y�

Transformation of the parameters and transformation of the independent

variable do not change the error structure if the model is written as y �

f�x� 		 � �� However� transformation of the response �the dependent vari�

able� also involves a transformation of the measurement errors as well� which

a�ects the assumption on it� In the following� simple examples are given to

illustrate these transformations�

Transformation of parameters� Let

y �

�
	�

�
	�

	�
x� � ������

be our model equation� with 	� and 	� as parameters� Letting �� � ��	�

and �� � 	��	�� we have the linear model

y � �� � ��x� � ������

The error structure is una�ected by this transformation� The linear re�

gression analysis yields estimates of the new parameters �� and �� and the

parameter covariance matrix V ��	 � ������ From these estimates the origi�

nal parameter values � and their covariance matrix V ��� can be calculated�

Consult Bard ������ for calculations of these values�

Transformation of the independent variables� Let

y � 	� � 	�
�

x�
� 	� lnx� � 	�x

���

� � � ������

be our model equation� with 	�� 	�� 	�� and 	� as parameters� Letting

z� � ��x�� z� � lnx�� and z� � x
���
� � we have the linear model

y � 	� � 	�z� � 	�z� � 	�z� � � ����
�

As we can see the error � is una�ected of the transformation and� thus� has

the same distribution as before transforming the independent variables� If
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the independent variables were subject to error� there would be problems

transforming them� There are many possible transformations of the inde�

pendent variables� One useful type of transformation worth trying in many

problems is the power transformation�

zi �
	
x�ii � for �i �� �

lnxi � for �i � �

������

for i � �� �� � � � � k where �i are the transformation parameters to be esti�

mated� The best way of estimating the �i is to estimate them at the same

time as the model parameters via nonlinear estimation methods �Draper �

Smith� ��
��� but then some of the idea of linearizating the nonlinear model

is lost� Alternative� an iterative procedure can be used� as described by Box

� Tidwell ������ and Box � Draper ���
���

Transformation of the depending variable� Let

y � ���	� � 	�x� � 	�x�	 � � ������

be our model equation� with 	�� 	�� and 	� as parameters� Letting z � y���

we have the linear model
z � 	� � 	�x� � 	�x� � �� ������

If � � N ��� ���I	 in the original model Eq� ������ the new error �� � ��� x��

���x�

will have the following mean and variance� �x� � 	� � 	�x� � 	�x��

�� � �� �

x��

� � �x�
� g��	 ������

V ���	 �


�g��	

��

��
V ��	 �

x��

�� � �x�	�
� ��� ����
�

Transformation of the response �dependent variable� to obtain a linear

model also involves transformation of the error structure� Di�erent trans�

formations will have more or less e�ect on the distribution of the errors and

thereby of the parameter estimates�

Stabilizing variance

The purpose of the above described transformations was to obtain a linear
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model so that linear regression analysis could be employed� The purpose

of the here described transformation is however to stabilize the variance�

If the structure of the errors is not normal� transformation of the response

can be used to obtain �nicer� structure of the errors �closer to normally dis�

tribution�� However� this may not result in a linearization of the nonlinear

model and if the original model is linear it generally results in making the

model nonlinear� Some well known transformations are shown in Draper �

Smith ���
���

z �
	
�y� � �	�
 � for 
 �� �

lny � for 
 � �

������

Estimation of a 
 that will stabilize the errors can be done by a maximum

likelihood method using nonlinear estimation or by the method suggested

by Box � Cox �������

Another way of dealing with error structure that is not normal distributed

is by using a parameter estimation method that accounts for the �special�

structure of the errors �for example weighted least squares or maximum

likelihood� described in later sections��

Lineweaver�Burk transformation

Since most microbiological degradation models consist of two or more cou�

pled nonlinear di�erential equations it is generally so that they cannot be

solved analytically as y � f�x� �	� where y is the response vector� The

Lineweaver�Burk expression was earlier very often used for transformation

of degradation models� Bates � Watts ���

� call this kind of transforma�

tion �transformable linear�� One of the problems with this linearization is

that the �independent� variable �here Si� occurs on both sides of the equal�

sign and it is almost impossible to examine the variance structure of the

measurement errors� For the Monod model the transformation becomes�

dSi
dt

� �k �

SiXi

Si �Ks

���
��

m

Xi

dSi�dt

�

Ks
k

�
�

Si
�

�
k

� ��
�

Si
� �� ����i	 ���
��
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where �� � Ks
k and �� � �
k � Xi is usually calculated from Xi � X� �

Y �S� � Si	 under the assumption that b � �� and Y is calculated from

Y � �Xt� � X�	��St� � S�	 where t� is the time at which the substrate

has been degraded� From a linear plot the parameters Ks and k can be

calculated by� slope � a � ��Ks and cut o� line � b � k�Ks �Fig� ������

Figure ����� Illustration of the Lineweaver�Burk method

In chapter 
 parameter estimates obtained by the Lineweaver�Burk linea�

rization are compared with estimates obtained by use of the nonlinear pro�

grams AquaSim and Dekimo�

When using the ordinary �unweighted� least squares method in estimating

the parameters �� and �� in the linearized model Eq����
��� we indirectly

assume that the errors ��i are normally distributed with a constant variance�

which is not the case� The wrong assumptions about the errors can give rise

to seriously incorrect parameter estimates� For example� if the true variance

structure followed the dashed line in Fig� ����� the �true� regression line

could be quite di�erent from the regression line shown in the 	gure and

thus the �correct� parameter estimates would be quite di�erent as well�

Linearized forms of nonlinear equations require that more data points are
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needed for parameter estimation than if nonlinear estimation techniques

are used �Gar	nkel et al��� Besides the Lineweaver�Burk linearization other

methods can be used for linearizing the nonlinear Monod model� for example

Eadie�Hofstee and all the linearized versions �Cornish�Bowden� ����� of the

integrated equation� However� they all violate the assumptions on the error

structure and thus may give rise to more or less incorrect estimates�

��� Nonlinear estimation

Nonlinear estimation is not often used to estimate microbial kinetic para�

meters �Robinson� ��
�� though lately more researchers have used nonlinear

estimation for some of the parameter values� Part of the explanation for the

limited use of nonlinear estimation techniques may be that an appropriate

use requires some knowledge of the method in order to interpret the output

and understand its limitations� In the nonlinear estimation procedure there

are three phenomena to be considered�

� the error structure�

� the objective function or sum of squares function �e�g� ordinary least

square��

� the minimization method �the method used to minimize the objective

function��

First of all assumptions are made on the error structure and depending

on these assumptions an appropriate objective function should be chosen�

After the estimation of the parameter values� the assumptions on the error

structure should be checked by use of residual analysis� If the residual ana�

lysis reveals an error structure signi	cantly di�erent from the one assumed

earlier� new assumptions should be made and the estimation repeated�

The nonlinear minimizationmethod is an iterative technique in which initial

parameter estimates are sequentially improved until the �best� estimates
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�i�e� those that minimize di�erences between the observed and predicted

responses� are calculated� This involves many arithmetic operations which

require the aid of a computer� Most nonlinear estimation methods require

initial guesses for the parameters and if these are far away from the optimal

values the estimation process may not succeed� Linearization methods can

be used to obtain quali	ed initial guesses� In this section various objective

functions �least squares estimates and maximum likelihood� are discussed�

followed by a short description of various common methods of minimizing

the chosen objective function in order to obtain the parameter estimates�

����� Objective function

In order to obtain parameter estimates an objective function must be chosen

for minimization� In the statistical literature the objective function is also

referred to as an expectation surface� There are several objective functions

to choose among� Most of them involve a minimization of the residual sum

of squares in some sense� The simple residual sum of squares is given by

SSE �
X
�Yobs � Ypred	
� ���
��

or written in mathematical terms

SSE��	 � jjy� f��	jj� �

nX
i	�

�yi � f�ti� �	�
��yi � f�ti� �	� ���

�

where yi is the observed response vector at time ti� i � �� � � � � n� f�ti� �	

is the corresponding vector of predicted values� and � is the unknown pa�

rameter vector� The parameter vector can be extended to include boundary

conditions� such as initial concentrations of biomass and substrate� X� and

S�� These parameters are also referred to as system parameters and can�

together with the model parameters� be estimated simultaneously using the

same estimation technique� In this study X� has been included in the mo�

dels�
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In the following� the general least squares method with submodels �weighted

least squares and ordinary least squares methods� and the maximum likeli�

hood method are described�

General least squares �GLS� analysis

When applying general least squares assumptions are made that the mea�

surement errors are normally distributed with a zero mean and a variance

structure described by ������
� � N ��� �����	 ���
��

In this model the matrix �� does not need to be a diagonal matrix� it may

be a general symmetric positive semide	nite matrix� which implies that the

measurements �errors� can be correlated and of di�erent magnitudes� ��

contains previously discussed weights �section ��
� and must be chosen by

the user prior of the parameter estimation� The least squares estimator 
�

is obtained by minimization of S��	 over the parameter space�

S��	 �

nX
i	�

�yi � f�ti� �	�
����
� �yi � f�ti� �	� ���
��

The variance factor ��� can be estimated from


��� �

�
n� p

nX
i	�

�yi � f �ti� 
�	�
����
� �yi � f �ti� 
�	� ���
��

The optimum is found for 
� when �����	S�
�	 � �� S��	 is once continu�

ously di�erentiable on an open set �� with � � �� when 
� satis	es

f ���t� 
�	
��y � f�t� 
�		 � � where f ���t� 
�	 �

�
���

f�t� 
�	 ���
��

�Gallant ��
���

When using general least squares �GLS� for parameter estimation� know�

ledge of the error correlations is necessary� In order to obtain reliable esti�

mates� a large number of observations is necessary� For this reason� among

others� GLS is rarely used in microbiological degradation models�
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Weighted least squares �WLS� analysis

The weighted least squares method is a sub�model of the general least

squares method� brought about by an assumption of a simpler error struc�

ture� The errors are still assumed to be normally distributed with zero

mean but with no correlations between the errors �no correlation between

the responses and no time dependent correlation�� The error structure can

be written as

� � N ��� �����	 ���

�

where �� is a diagonal matrix that may have di�erent values in the diagonal

� according to the di�erent variances of the errors� Usually the exact error

structure of �� is not known� but must be estimated� The matrix must be

speci	ed by the user prior of the parameter estimation� In section ��� it is

shown how they can be estimated� The weighted least squares estimator of


� is obtained by minimization of S��	

S��	 �

nX
i	�

��yi � f �ti� �		
����
� �yi � f�ti� �		� ���
��

If the diagonal elements of �� are wij� S��	 can be written�

S��	 �

mX
j	�

nX
i	�

��yij � fj�ti� �		
�w��
ij � ������

where wij act as weights� For this reason the method is often referred to as

weighted least squares� The variance factor ��� is estimated from


��� �

�
n� p

nX
i	�

��yi � f�ti� 
�		
����
� �yi � f�ti� 
�		� ������

or


��� �

�
n� p

mX
j	�

nX
i	�

�yij � f�ti� �		
�w��
ij ������

where m is the number of responses� n is the number of observations� and p is

the number of parameters� The nonlinear estimation programAquaSim uses
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the WLS method� and in chapter � an estimation of one of the experiments

carried out in this study is performed using AquaSim�

Ordinary Least Squares Estimation �OLS� Analysis

The most commonly used method of the least squares methods in degrada�

tion experiments is the ordinary least squares method� OLS is a sub�model

of the weighted least squares� In contrast to the weighted least squares

the errors must be univariate� distributed with a constant variance over the

measurement range�

� � N ��� ���I	 ����
�

where I is a identity matrix with ��s in the diagonal� The least squares

estimator of 
� is obtained by minimization of S��	�

S��	 �

nX
i	�

��yi � f�ti� �		
��yi � f�ti� �		� ������

or

S��	 �

mX
j	�

nX
i	�

�yij � fj�ti� �		
� ������

An estimate of the variance of the errors corresponding to the least squares

estimator 
� is

��� �

�
n� p

nX
i	�

��yi � f�ti� 
�		
��yi � f�ti� 
�		� ������

or


��� �

�
n� p

mX
j	�

nX
i	�

�yij � fj�ti� �		
� ������

where n is the number of observations and p is the number of parameters

in the nonlinear model�

OLS is used when nothing is known about the measurement errors� but if

the measurement errors are known to be almost constant� then OLS is not
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a poor method� If the standard deviation of the measurement errors varies

by more than tenfold over the range in which it is measured� then WLS is

usually superior to OLS �Beck � Arnolds� ������ The measurements with

the largest errors will dominate the estimation too much in the OLS analysis

and result in incorrect estimates�

Maximum likelihood �ML� estimation

The maximum likelihood estimation method can� like the general least

squares �GLS� method� account for correlations between the errors� More�

over� the errors do not necessarily have to be normally distributed� Any

appropriate distribution can be employed

� � ���� �����	 ����
�

where � can be any de	ned distribution describing the behaviour of the

measurements errors and �� is not necessarily a diagonal matrix� For a

normal distribution the log�likelihood function for the parameters � is

S��	 � L��	 � ������

c �
N

�
log j�����j �

�
�

nX
i	�

��yi � f�ti� �		
����
� �yi � f�ti� �		�

�Gallant� ��
���

The maximum likelihood estimators 
� and 
��� are obtained by minimiza�

tion of the negative log�likelihood function� The variance of the errors is

estimated by

��� �

�
n� p

nX
i	�

��yi � f�ti� �		
����
� �yi � f�ti� �		� ������

The estimation program Dekimo uses the ML method� but does not account

for correlations between errors � the correlation matrix�� is a diagonal ma�

trix �only with elements di�erent from zero in the diagonal�� The measure�

ment errors are assumed to be normally distributed� With the assumption

that the errors are uncorrelated and normally distributed the weighted least

squares method might as well have been applied for parameter estimation�
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However� by use of ML the log�likelihood value is obtained which is of great

value when estimating the parameter correlation matrix �� �section ��� of

parameter estimates� and a necessity when using the likelihood ratio test in

testing identity between sets of parameters across several experiment�

In section ��� assumptions on the structure of the error matrix �� for the

experiments in this study� are given�

����� Optimization methods

In contrast to linear models� explicit functions giving the best parameter

estimates do not exist for nonlinear models �Draper � Smith� ������ To

overcome these di�culties iterative methods are used to determine values

for parameters that minimize the chosen objective function �GLS� WLS�

OLS� ML� or similar�� In other words� an initial set of parameter estimates

�� is determined either by use of a linearized form of the chosen nonlinear

model or by guessing� An initial value of the objective function S���	

is calculated and a new set of parameter values �� is estimated to the

corresponding objective function� The new value of the objective function

S���	 is compared with the objective function for the initial parameter

estimates S���	� and if the former is less than the value of the objective

function for the initial estimates� then the second set of parameter estimates

replaces the 	rst�

�� � S���	� �� � S���	 	 if S���	 � S���	 	 �� � S���	 	

if S���	 � S���	 � � � ������

This process continues until the objective function reaches a minimum� at

which point the best parameter values have been located� There is no uni�

versal method for determining the path to be taken from the initial parame�

ter estimates to the values that minimize the objective function �Robinson�

��
�! Bard� ������ In this section a few commonmethods will be mentioned�
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Trial and error technique

A simple but not very e�cient method of minimizing the chosen objective

function is by trial and error� Parameter values are chosen by guessing

more or less randomly� and the set of parameter values that result in the

smallest value of the objective function are chosen to be the 	nal estimates�

It is impossible to know if one has reached the global minimum� or even a

local minimum �Fig� ������ Another set of parameter estimates which 	ts

the data best �global optimum� may exist� The trial and error technique

is some times used in connection with a spreadsheet where the predicted

values of the responses are calculated by using small time steps and the ob�

jective function is usually ordinary least squares �Jensen� ���� and Jensen�

������ This method only requires a PC with a spreadsheet and patience for

estimating� Others �Koeppe � Hanmann� ��
�� have written a program to

generate parameter guesses and to select the set that results in the lowest

value of the objective function� The trial and error method becomes very

di�cult to use for models with say four or more parameters�

Figure ����� Local � global minimum

Simplex technique

In contrast to trial and error searches� most nonlinear estimation methods

specify the direction and the magnitude of changes to be made to the para�
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meter estimates during the recursive process� The simplex method �Nelder

� Mead� ����� requires only function evaluation� not derivatives of the

objective function� It is not very e�cient � it converges slowly � but the

method is very robust especially for estimating parameters in coupled non�

linear di�erential equations which appear in most microbiology degradation

models� A simplex is a convex geometrical 	gure in P dimensions� de	ned

by P �� points �P is here the total number of parameters�� From the initial

parameter array speci	ed by the user� the start simplex is generated� For a

function of only two parameters� the simplex is a triangle� In three dimen�

sions it is a tetrahedron� A simplex design is a design where P � � values

of p factors are given by the corners of the P dimensional simplex� The

simplex method takes a series of steps� most steps just moving the point

of the simplex where the objective function is largest through the opposite

face of the simplex to a lower point� This is illustrated for a design for three

parameters in Fig� �����
Figure ����� Simplex method

The following expression is used to locate and replace a new point in the

simplex�

S���	 �
� � �

P

� �
P��X

		�
S��		� S��j	�� � � S��j	 ������
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� controls the step size� and S���	 is the objective function in the new

corner of the simplex and S��j	 is the old corner� which is being replaced�

In �Numerical Recipes� �Press et al�� ��
�� a recipe for a program �amoeba�

using the simplex method is given� The simplex technique is implemented

in the estimation program AquaSim�

Secant technique

The secant method is a more e�cient algorithm for minimizing the cho�

sen objective function compared with the simplex method� The simplex

method slowly moves down the �gradient� of the objective function� whereas

the secant method rapidly jumps to the position of a suggested solution

of the problem found by parabolic extrapolation� The secant method is

a derivative�free method which simply uses numerical approximations to

derivatives� It is based on using a secant plane approximation to the ob�

jective function rather than a tangent plane approximation� The method

uses earlier iterations to calculate an approximation to the secant and is

therefore also called a two step method� It is recalled that the goal is to

minimize the objective function by 	nding the solution 	� to S�		��	 � ��

To illustrate the method the principles are shown in Fig� ���
 for a one

dimensional function h�		 � �S�		��	 and the secant ��		 is expressed by

��		 �
h�	k	� h�	k��	

	k � 	k��

�	 � 	k	 � h�	k	 ����
�

An estimate of 	� is given by


	k�� �
h�
	k	
	k�� � h�
	k��	
	k

h�
	k	 � h�
	k��	

������

For each iteration the estimate of S�	�	 decreases until the chosen conver�

gence criterion are reached� For a multi dimensional function with more

than one parameter� the secant expression becomes

���	 �
Pm

j	��h��k	� h��k��		Pm
j	���k � �k��	

�� � �k	 � h��k	 ������
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Figure ���
� Secant method� Extrapolation or interpolation lines �dashed�

are drawn through the two most recently evaluated points� whether or not

they bracket the function� The points are numbered in the order that they

are used�

The secant method is an option in the estimation program packet� AquaSim�

The selected algorithm is an extension of the secant method DUD �Doesn�t

Use Derivatives� �Ralston � Jennrich� ���
�� The �creators� of AquaSim

recommend to start the parameter estimation with the secant algorithm

and only switch to the more robust simplex method in case of numerical

problems� Having roughly localized the solution with the simplex method�

go back to the secant method to accelerate 	nal convergence and obtain

estimates of the standard deviations for the parameter estimates� which

cannot be obtained by the simplex method�

Gaussian technique

The mathematical elements of the Gaussian method �also called the Gauss�

Newton� Newton�Gauss� or linearization method� are derived through the

application of a 	rst order Taylor series expansion �Burden et al�� ���
��

This expansion essentially linearizes the nonlinear objective function� S��	

�e�g� GLS� WLS� OLS� ML� or similar functions� in the neighbourhood of

�� Chapter �� Techniques of parameter estimation

the best parameter estimates� The best parameter estimates are obtained

by iteratively improving the parameter values until there is no change� The

Gaussian method is an attractive method because it is relatively simple

and because it speci	es direction and size of the corrections on the para�

meter vector� which is used for 	nding the new guess on parameter values�

The Gaussian method is e�ective in seeking minima which are reasonably

well�de	ned provided that the initial estimates are in the general region

of the minimum� For strongly nonlinear models �like most microbiological

degradation models� modi	cations must be made to ensure convergence�

Linearization of the objective function is performed by the Taylor series

about the best parameter estimate �� given by

S�ti� �	 � S�ti� �
�	 � Ji��	� � 	��	 � Ji��	� � 	��	 � � � �JiP �	P � 	�P 	 ������

where J is the Jacobian matrix de	ned by

Jip �

�S�ti ��	

�	p

����
��

p � �� �� 
 
 
 � P ������

and p is the index for the parameters� The Taylor series written in matrix

notation is

S�t� �	 � S�t� ��	 � J �� � �
�	 ����
�

By rearranging this expression it becomes clear that the equation has a

linear form with J as the independent variable� � � � � �
� as parameter

vector and S�t� �	 � S�t� ��	 as the dependent variable� To simplify the

notation S�t� �	 � S and S�t� ��	 � S��

S � S� � �J � � ������

The estimate of � can now be obtained by use of the normal equations

�method used in linear regression analysis��


� � �J�J	��J��S � S�	 ������

The vector 
� will thus minimize the sum of squares

SSE��	 �

nX
i	�

�Si � S� � �Ji�
� ������
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where � � � � ��� The values of �� can be replaced by those of �� and the

same procedure is applied as described above by Eq������� except that all

zero subscripts are replaced by ones� This will lead to another set of revised

estimates ��� and so on� We can then write

�u�� � �u � �u ������

Since the Jacobian matrix� J

J � �S��� � ���f�t� �	��� � �y � f �t� �		 � ��V �y � f�t� �		 ����
�

�Bard� ����� Eq������� can be rewritten by use of Eq� ������

�
u�� � �
u � �V �

V 	��V ��y � f�t� �u		 ������

where y is the observation vector and f is the expectation function de	ned

in section ���� The procedure of this optimization method is described by

Robinson ���
��� Draper � Smith ���
�� and Bard ������ among others�

The Gauss procedure has a tendency to �overshoot�� that is� to go beyond

points � where smaller S��	 values exist� to points where larger S��	 values

occur� To avoid this problem� a line search technique can be employed�

Line search methods are particularly useful for models that exhibit a high

degree of nonlinearity� since the objective functions of these models may be

poorly approximated by the truncated Taylor series in the neighbourhood

of the best parameter estimates �Bard� ������ Which of the many methods

is best in �helping� to 	nd new parameter estimates� partly depends on the

nonlinear model of interest �Robinson� ��
���

The Levenberg�Marquardt modi	cation is one of many modi	cation me�

thods �Beck � Arnold� ������ The method alters both the step size and

direction taken by the Gaussian technique� attempting to ensure that the

objective function S��	 is sequentially reduced� Another modi	cation of

the Gaussian method is the Box�Kanemasu modi	cation� It ensures that

changes taken in the parameter search do not oscillate widely or diverge

away from the parameter values de	ning the minimum of the objective

function �Beck � Arnorld� ������

�
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Newton�Raphson or quasi�Newton Technique

The quasi�Newton method� also called the variable metric method� requires

calculation of the 	rst and the second derivatives of the objective function�

S�t� �	 � S�t� �u	 � Ju��� � �u	 � ����� � �u	�Hu�� � �u	 ������

where J is the Jacobian matrix de	ned in Eq������� and H is the Hessian

matrix

Hu � ��S�t��	

�����

����
�	�u

������

In search of the optimal set of parameter estimates the objective function

should be minimized by 	nding the solution to

�Su��� � Ju �Hu�� � �
u	 � � ������

which� if Hu is nonsingular� has the solution

�
u�� � �
u � �Hu	��Ju ����
�

Eq�����
� de	nes the uth iteration of the Newton�Raphson �also known as

Newton� method� Since the Hessian matrix H is equal

H � �V �V � �
�V �

���
�y � f�t� �		 ������

�Bates � Watts� ��

� Eq�����
� can be rewritten as

�
u�� � �
u � �V �V �
�V �

���
�y � f�t� �u		��� � V �y � f �t� �		 ������

where y is the observation vector and f is the expectation function�

When estimating a new set of parameter values the problem comes down to

calculating the 	rst and second derivatives of the expectation function� f �

However� the expectation function f in most microbiological degradation

equations cannot be calculated analytically� but must be approximated by

numerical algorithm �in this study by a �th order Runge�Kutta approxi�

mation�� This results in an unnecessary inaccuracy� Instead it is better to
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implement the formula given in Eq�����
� for the iterative parameter estima�

tion� The Jacobian matrix J is not calculated from Eq�����
� but estimated

by a central di�erence approximation

Jp �
S�t� � � hep	� S�� � hpep	

�hp

� p � �� � � � � P ������

where ep is the pth basis vector and hp is the step�size for the parameter p�

According to Dennis � Schnabel ���

� the optimal choice of step�size for

the central di�erence approximation is

hp � ����	p ������

where � is a constant larger than the machine precision�

And the Hessian matrix� needed in Eq�����
�� is not calculated using a the

direct numerical evaluation of the second derivative of the objective func�

tion S��	 in Eq�������� since these calculations generally result in very poor

approximations� Instead an updating formula for the Hessian �or the in�

verse Hessian� was implemented in Dekimo� Using a secant approximation

to the Hessian yields a very robust optimization procedure �Bilbo� ������

The secant method is also classi	ed as the quasi�Newton method� because

basically the procedure is a modi	ed Newton�Raphson method� The most

successful quasi�Newton method seems to be the BFGS method for iterative

Hessian approximation combined with so called soft line search �Dennis �

Schnabel� ��

�� The soft line search secures that the procedure always

takes a step that decreases S��	� Furthermore the soft line search ensures

that the Hessian matrix �H� has a positive de	nite solution for the next

updating of the Hessian matrix �Dennis � Schnabel� ��

�� which is a pre�

condition for the functionality of the optimization routine� �See Madsen �

Melgaard� ���� for more information��

The estimation program� Dekimo� uses the quasi�Newton method as de�

scribed above in optimizing of the maximum likelihood objective function�
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��� Standard deviation of parameter estimates

Point estimates of microbial parameters are of little information by them�

selves� A parameter is never known with ���� precision� thus a knowledge

of the uncertainty of the estimate is valuable� The most commonly used

measure of the uncertainty of the parameter estimate is the standard devi�

ation �SD or ��� If the parameters are estimated using a linearized form of

the model� it is general di�cult to assess the precision with which nonlinear

parameters are determined� For example� when using the Lineweaver�Burk

linearization together with linear regression analysis� estimates of the pa�

rameters � plus the corresponding standard deviations can be obtained�

But � is not the parameter of interest since �� � Ks
k and �� �

�
k �example

from the Monod model�� Estimates of � for Ks and k are not easily ob�

tained from �� and �� but it can be done by use of the equations given by

Bard �������

Neither use of the trial and error method nor the simplex method in mini�

mizing the chosen objective function provide estimates of the standard de�

viations� However� it is possible by use of likelihood inference results in

Bates � Watts ���

� �p�� or marginal con	dence intervals p���� to obtain

approximate standard deviations� The method requires many additional

function evaluations� �see also Nelder � Mead� ������

Standard deviations of the parameter estimates can be estimated from a

single experiment or from more experiments� In this study a standard devi�

ation estimated from a single experiment� will be call a �standard deviation

within experiment� ��we�� A standard deviation estimated from three ex�

periments within the same run� is called �standard deviation within run�

��wr�� and 	nally a standard deviation estimated from all the experiments

is termed �standard deviation between runs� ��br�� In the following the

estimation of �we will be discussed� There are basically two methods of

estimating �we� One way is by approximating the nonlinear model f�ti� �	

to a linear function in the area of the optimal parameter estimates� and
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then estimate the standard deviations of the parameter estimates like in a

normal linear case� The nonlinear model can be approximated by a 	rst

order Taylor series�

f�ti� �	 � f �ti� �
�	 �

�f�ti��	

���

����
�	��

� �� � ��	 ����
�

If we consider this as a linear model with � as the parameters� �� and

f�ti� �
�	 as constants� and 
f


��
j�	�� � X as the variables� then the standard

deviation for the parameter estimate can be calculated as �Robinson� ��
��


�we �

q
V �
�	 �

q

��� � �X
�

X	��

� 
�� �
vuut� �

�f �ti��	

���

�� �
�f �ti��	

���

� ���
������

where ��� is the variance connected with the measurement error�

The calculation of �we using Eq������� is statistically optimistic� The in�

accuracy in using Eq������� arises because a nonlinear model is treated as

a linear model in the neighbourhood of the best parameter estimates� The

degree of optimism� and hence the extend to which �we is underestimated�

depends on how close the linear Taylor series expansion approximates the

model near the minimum� Especially when models have a high degree of

nonlinearity the method of 	nding the standard deviation by linear approx�

imation can be rather unrealistic� A more correct way of estimating the

standard deviation of the parameter estimates for nonlinear models is by

use of the Hessian matrix� The Hessian matrix is a measurement of the

curvature of the likelihood objective function� By use of the Cramer�Rao�s

equation an estimate of the standard deviation for parameter estimates

within the experiment is given by Cox � Hinkley ������


�we � 
�� �
r

��
h

�logL���


��

i

������

The standard deviations for parameter estimates �within the runs� �wr
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and �between the runs� �br were estimated di�erently� Ordinary analysis

of variance was employed as illustrated in the following�


�wr �

sPr
j	�

Ps
i	��xij � x�j	�

r �s � �	

������


�br �

sPr
j	��x�j � x��	�

r � �

������

where i and j here are indices for experiments within a run and for runs�

respectively� s is the number of experiments within a run� and r is the

number of runs� xij are parameter estimates� x�j are average values of

parameter estimates belonging to the same run� and x�� is the total average

value for all estimates of the parameter under considerations�

The total standard deviation �total for each parameter estimate can be cal�

culated from the following equation� The total variance can be split up into

variance within runs and variance between runs�


��total �
r�s � �	 
��wr � �r � �	 
��br

rs� �

����
�

When parameter estimates are highly correlated� standard deviations are

not always enough to characterize the uncertainty of the parameter esti�

mates� It is also necessary to know the degree of correlation between the

estimates� Thus� the parameter correlation matrix should be calculated�

This can be done by use of the normalized inverse Hessian matrix �Bard�

������

Corr���	 �



BBBBB�
� ��� ��� 
 ��P

��� �


 �


 �

�P� �

�
CCCCCA �H�� ������
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The program Dekimo estimates the parameter correlation matrix by this

method� The correlation matrix is symmetrically squared with dimensions

set by the number of parameters of the nonlinear model� The elements

range from �� to &� and the elements along the main diagonal are all ones�

since any parameter is perfectly self�correlates� Elements outside the main

diagonal constitute correlations for all pairwise combinations of the para�

meters� In this context� a high correlation �either positive or negative� is

undesirable� The correlation depends on �� the values of the independent

variable �here ti� chosen at which to measure the dependent variable �the

responses yij� and �� the nature of the nonlinear model itself� An optimal

experiment design can minimize the correlation due to the chosen values of

the independent variable �e�g� when to take a sample�� In chapter � optimal

designs are discussed� However� little can be done with the correlation due

to the nature of the model� The Monod model or similar models are of such

a nature that the parameter estimates have a high degree of correlation�

��	 Residual analysis

Residual analysis is used to verify the appropriateness of assumptions made

about �� the model� and �� the measurement errors� If the assumptions

appear to be strongly violated� then the 	tted model must be modi	ed

and the analysis �the 	tting of a new model� estimation of parameters�

analysis of residuals� continues until a satisfactory result is obtained� A new

model could either be one with a new error structure or a new �biological�

model �f�t� �		� Several techniques for examining residuals exist �Draper �

Schnabel� ��
��� Residuals are estimated measurement errors� 
� � r

y � f�t� �	 � �

r � f�t� 
�	� y ���
��

where y is the observed response vector and f�t� �	 is the predicted response

vector also referred to as the expectation function� Since the predicted val�
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ues and thereby the residuals are calculated from the model under consid�

eration� the residuals are depending on the precision of all the parameter

estimates and on the correctness of the choice of model�

When a data set includes repeated measurements� it is possible to perform

tests for lack of 	t of the chosen degradation model� Such analyses are based

on an analysis of variance in which the value of the objective function�

S���	 is decomposed into the �replication�� Sr �contribution to objective

function of deviations of the replicated observations about their averages��

and the �lack of 	t�� Sl � S���	 � �Sr	� In Fig� ���� this idea is illustrated�

The average value of the repeated measurements �Sobs� is compared to the

predicted value given by the model f �x� �	� To obtain a measurement of

how well or ill the data 	t the model� the following test can be carried out�

The ratio of the lack of 	t over the replication divided by their respective

degrees of freedom is compared to an F�distribution�

Sl�fl

Sr�fr

 F �fl� fr��	 ���
��

where � is the signi	cance level� and fl and fr are degrees of freedom� fl is

calculated as fl � n� P � fr� where n is the total number of observations

and P is the total number of parameters� If � is less than �� the lack of

	t is considered signi	cant� thus the chosen model is not appropriate for

describing the given set of data �consult Bates � Watts ���

� for more

information��

The data set rarely includes enough repeated measurements to carry out

the lack of 	t test� Instead the residuals r can be plotted against the

dependent variable� y� and against the independent variable� x �in this case

time�� which also provides a great deal of information� In Fig� ���� the

most frequently occurring plots of residuals against the depending variable

are illustrated�

Figure ���� a� shows independent equally distributed residuals with a com�

mon mean of zero� It is a homogeneous error structure� For this error

structure an ordinary least squares function could be employed as objec�
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Figure ����� Lack of 	t

tive function� Figure ���� b� shows a relation between the residuals and

the dependent variable �the response�� The mean is constant zero� but the

variance increases with the depending variable ypred � f�x� ��	� This struc�

ture is often seen for degradation experiments� where the responses cover a

wide range� The variance structure for the errors can then be described by

V ��	 � ������ where �� is a diagonal matrix with increasing elements cor�

responding to the structure of the variance� Weighted least squares �WLS��

maximum likelihood �ML�� or similar functions should be employed when

such a residual structure appears�

If correlation between the residuals show up as a trend in the residual plot�

�Fig� ���� c�� it can be due to errors in the analysis �e�g� if the regression

is forced on false conditions through zero�� It could also result from the

fact that the residuals are not completely independent of each other� This

situation is best shown for a linear model f�xi� �	 � xi�

yi � xi� � �i ���
��

Assume that � � N ��� ��I	 thus the least squares estimator is


� � �x�x	��x�y ���

�
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Figure ����� Frequently occuring residual plots

The residual vector is
r � y � x�� ���
��

m

r � �I � x� x�x	��x��y ���
��

The covariance matrix for the residuals� also called the dispersion matrix is

Cov�ri� rj	 � D�r	 � ��� �I � x�x�x	��x� ���
��

From this matrix the correlation matrix can be calculated� which can show

that the residuals are not always uncorrelated�

In Fig� ���� d� the correlation between the residuals is systematic� which

can result from 	tting a wrong model to the data� The chosen model may
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not be able to describe the process of the experiment� Care should be taken

in drawing such conclusions since the systematic errors also may be a result

of incorrect assumptions about the variance structure� A large number of

repeated measurements is necessary in order to distinguish between the two

possible causes�

In the following� residual plots for the experiments in this study are shown

together with a ��� con	dence interval calculated from the assumed vari�

ance structure given in section ��
� The residual plots �Fig� ����� ����� ���
�

����� and ����� correspond to the plot in Fig� ���� b�� The variance increases

with increasing response level� as expected� The columns of data seen in

most of the plots are due to a lag phase or a starvation phase where the

concentration levels were constant�

Figure ����� Residual plot for the toluene measurements in the single sub�

strate system�

Recalling the symbols and indices given in section ��� the jth error at the

time instant ti is called �i�j� Its variance is denoted ����i�j� The vector of

parameters of the model f�ti� �	� Recalling the assumed variance structure

for the responses �given in section ��
���� the structure for the substrates

was given by ����i�j � ��� �f�ti� �	 and for the biomass in the single substrate

�
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Figure ����� Residual plot for the biomass measurements in the single sub�

strate system�

Figure ���
� Residual plot for the benzene measurements in the dual sub�

strate system�

system by ����i�j � ��� � �
p
f�ti� �	 and in the dual substrate system by

����i�j � ��� � �f�ti� �	� In order to estimates the ��� con	dence intervals

the values of �� were needed� The values �one for the single and one for



��� Residual analysis ��

Figure ����� Residual plot for the toluene measurements in the dual sub�

strate system�

Figure ����� Residual plot for the biomass measurements in the dual sub�

strate system�

the dual substrate system� were obtained by taking the average values of ��

estimated by the program Dekimo �single sub� sys�� ��� � �
�
� and dual

sub� sys�� ��� � �
��
�� The ��� con	dence interval for the residuals with
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a mean of zero are thus given by�

generally � � ���i�j � t�n� p	��
��� ���
��

substrates � � � �� � f�t� �	 � t�n � p	��
��� ���

�

biomass� single sub� � � � �� � �
p
f�t� �	 � t�n� p	��
��� ���
��

biomass� dual sub� � � � �� � �f�t� �	 � t�n� p	��
��� ������

where n is the total number of observations in the system �single�dual� and

p is the number of parameters in the model under consideration�

Outside the ��� con	dence intervals �� of the data should ideally be found�

When calculating the percentage of data outside the intervals for the 	ve

plots the following results are obtained�

Single sub� sys� residuals for toluene ��
� outside

residuals for biomass 
�
� outside

Dual sub� sys� residuals for benzene 
��� outside

residuals for toluene ��� � outside

residuals for biomass ��� � outside

The residuals seem to be reasonably equally distributed above and under

the abscissa� This fact together with the acceptable percentage of data

outside the ��� con	dence interval� indicate that the models �Monod and

Bailey � Ollis & the assumption on the error structure� were appropriate

for 	tting the data�



Chapter �

Testing

After 	tting a model to the experimental data sets� there is a need for

summarizing the inferential results� Can some of the parameters for example

have a certain value' Can the model under consideration be reduced' Can

some or all of the parameter values� estimated from di�erent data sets� take

the same values' It could e�g� be of interest to test whether�

� some of the parameters can take values obtained from similar experi�

ments reported in the literature�

� some of the parameters in a model can be said to have the same value

e�g� for the yield constants for benzene and toluene�

� the model under consideration can be reduced by setting a parameter

value equal to zero and thereby obtaining a simpli	ed model�

� di�erent sets of parameter values estimated from identical experiments

can be said to have a common set of parameter values�

Concerning the experiments in this study� special interest was on testing

common sets of parameter estimates in order to examine reproducibility�


�
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��� Likelihood ratio test

When testing these hypothesis the likelihood ratio test is employed� Con�

sider the problem of testing one of the hypothesis mentioned above �referred

to as the null hypothesis H�� against the alternative H�

H� � �� � �� � � against H� � �� � � �����

where � is the parameter space in the unrestricted case and �� is the para�

meter space in the restricted case� If the maximumof the likelihood function

under the hypothesis H� is denoted by L���	 and the maximum of the

likelihood function in the unrestricted case �H�� denoted by L���	� then

the ratio between the two likelihoods is�


 �
L���	

L���	

�����

The distribution of�� log
 can be used for setting up a test statistic� Under

the hypothesis H�� the following holds asymptotically for large sample sizes�

The multivariate case requires larger sample sizes than in the univariate

case� before results can be trusted �Gallant� ��
�� �

�� log
 � ���r	��� ���
�

The number of degree of freedom in the ���r	 distribution is equal to the

number of restrictions� r� imposed on the parameters under the null hy�

pothesis compared to the number of parameters under the H� hypothesis�

In other words� r is equal to the number of reduced parameters� � is the

level of signi	cance and ���r	��� denotes the � � � quantile of the ���

distribution� The greater the �� log
� the less we are inclined to accept the

null hypothesis� The decision rule is! reject H� if �� log
 � ���r	�����
�

The distribution of �� log
 is only approximatively ��� distributed� In a

few cases it is� however� possible to derive the exact distribution of the

test quantity� For example� if the hypothesis H� � � � � is tested against

H� � � �� � in a general linear model Y � X� � �� where the errors � are
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independent� identically normally distributed �univariate�� the likelihood

ratio test can be rewritten to an exact F�test� and the following test is

employed�

F �
�n� p	�S�	�	� S�	�		

r � S�	�	

� F ��	 �����

where S is the sum of squares under the H� and the H� hypothesis� respec�

tively� n is the number of observations� p is the number of parameters� and

r is the reduced number of parameters� In the multiresponse case with m

responses� Gallant ���
�� suggests that the number of degrees of freedom

in the denominator should be �nm� p	� A conservative choice of n� p may

be more appropriate� as mentioned in Bilbo ������ � The test �Eq� ������

however� is not used in this study� The approximative likelihood ratio test

is the nonlinear analogue to the F test �Beck � Arnold� ������

The log likelihood value itself� does not provide any information on how well

the model 	ts the data� Only when compared to an alternative log likelihood

value obtained from an alternative 	t to the same data set� the magnitude

of the log likelihood values has a meaning� The log likelihood value and the

ratio test value depend on the choice of error structure� In some cases a test

hypothesis is rejected with one error structure but accepted with another�

Thus� it is important to determine the �true� error structure�

��� Test statistic in practice

In the following� it is shown how the likelihood ratio test is used in this study�

First a couple of examples are given where one or more of the parameter

values are 	xed� Then an example of model reduction and 	nally the test

method for reproducibility is illustrated�
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����� Fixed parameter value

The following example is given to illustrate the test for� whether some of

the parameter values can take speci	c values e�g� obtained from similar

�or nearly similar� experiments reported in the literature� Two estimations

were performed� One where the yield constant Y was 	xed equal to ��� mg

biomass�mg substrate� and another where all the parameters could assume

any values� The likelihood values of the estimates are then compared� Con�

sider an estimation in the Monod model for Run I� batch A� described in

chapter ��
H� � �� �
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The likelihood ratio test yields

�� logL���	�L���	 ��� �logL���	� logL���		 � �����

�� ��

�� �
��	 � �
�� � ����	�����


The H� hypothesis cannot be accepted at a �� signi	cance level� since the

test value # ���� were larger than the ���value # 
�
�� If two parameters

were 	xed the degree of freedom in the ���distribution would equal �� In

the case of three 	xed parameters� r would equal 
� etc�

An experiment from the present study �Run VI� batch A� is used in il�

lustrating the test for whether some of the parameters in a model can be

assumed to have identical values� In the example� a test is carried out to

examine whether the value of the yield coe�cient for benzene� Yb could be

assumed to equal the yield coe�cient for toluene� Yt�
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The likelihood ratio test yields

�� �logL���	� logL���		� ���
�

�� ��
��� �

�	���
�� � ����	�����
 � 

��

The test hypothesis is rejected� The degree of freedom in the ���distribution

is �� since there was one parameter less to estimate under the null hypothesis

�Y instead of Yb and Yt�� compared to the full model under the alternative

hypothesis H�� Thus the yield constant for benzene and toluene cannot be

considered identical in this study�

����� Model reduction

In the test procedure for model reduction the parameter which is excluded

from the model� is set to zero under the null hypothesis� The analysis is set

up and calculated exactly in the same manner as the examination of 	xed

values for some of the parameters �Eq� ����� and Eq� ������� An example

is given here with the Monod model �Run II� batch A�� The model was

reduced by setting the decay coe�cient b equal to zero�

H� � �� �
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The likelihood value for the full model is denoted by L���	 and for the re�

duced model by L���	� The likelihood ratio test yields

�� �logL���	� logL���		 � ������

�� ����
�� � ��
��	 � �
�� � ����	�����
 � 

��

In the classic analysis of variance the result of model reduction is often given

in a table as shown in Table ����

Model S��	 Test value ����	 Accept hypothesis '

Full model ������ ���� 
�
� Yes

Reduced model ������

Table ���� Scheme for test of model reduction�

Since the reduced model is not �an orthogonal submodel� of the full model�

the parameter values �k�Ks� Y � changed when b was removed from the full

model� New parameter values were therefor estimated�

By use of the ��� con	dence interval for the parameter estimates� the

investigator gets an idea of which parameters could be excluded from the

model� A rough estimate of the ��� con	dence interval was obtained by ���

standard deviation� If the con	dence interval includes zero� the parameter

under consideration may be excluded� In nonlinear models it is not su�cient

to look only at the parameter con	dence intervals� since these are more or

less skewed in distribution �Bates � Watts� ��

�� A comparison of the

log likelihood values using the likelihood ratio test is a more correct way of

examining a model reduction�

In some cases the order in which the parameters are tested �for being equal

to zero� has an in"uence on the result� If e�g� neither of the two parameter
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estimates are highly signi	cant equal zero and if they are mutually corre�

lated� the order in which they are tested may have an in"uence on the result�

Usually the 	rst parameter estimate which is tested has a larger chance of

being accepted as equal to zero� than if this parameter was tested after that

the other was accepted as being equal to zero� �Consult Montgomery� ����

for more information on the subject��

Another well known test used for the examination of signi	cant parameter

values� is the t�test� The hypothesis H� � 	p � � against H� � 	p �� � can be

tested by using the statistic
T �

	p � �q

���p

������

which is compared to a t�distribution with n � P degrees of freedom� The

variances of the parameter estimates� 
���p � p � �� � � � � P � are obtained from

the estimation procedure by the program� Dekimo �see chapter ��� The test

is also performed in Dekimo� It is� however� not a very reliable test of the

H��hypothesis �Carstensen� ������ Bates � Watts ���

� recommend that

the likelihood ratio test be used in nonlinear cases� since it is less a�ected

by the nonlinearity than the t test�

����� Reproducibility

Examination of reproducibility involves a test where log likelihood values

from several experiments are compared� In principle the test statistic is

the same as the test used in the above given examples� where only one

experiment was considered at a time� The testing falls in two parts� �� test

for common sets of parameter estimates for experiments within the same

run �within a block�� and �� test for common parameter estimates for all

experiments �also between the blocks�� If both �� and �� is accepted we will

claim the experiment to be reproducible�
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In the single substrate system � experiments were used in examining repro�

ducibility� and in the dual substrate system �� experiments were used�

Single substrate system Dual substrate system

Batch A Batch A

Run I Batch B Run IV Batch B

Batch C Batch C

Batch A Batch A

Run II Batch B Run V Batch B

Batch C Batch C

Batch A Batch A

Run III Batch B Run VI Batch B

Batch C Batch C

Batch A

Run VII Batch B

Batch C

Table ���� Experiments carried out in the single substrate system�

In the classical analysis of variance� the setup shown in Table ��� could be

characterized as a random e�ect model since there are no systematic e�ects�

If the biomasses in the various runs were taken from di�erent cultures of

bacteria� the model could have been considered a deterministic �systematic�

model� Our model is� however� somewhat di�erent from the classical ana�

lysis of variance model since batch A� B� and C are complete experiments

in themselves and not just single measurement as in the classical analysis

of variance� The methods of the classical analysis of variance can therefore

not be fully implemented� only the general idea� The test procedure always

begins with the full model� In this case it means a null hypothesis that

only restricts parameter values within the runs� The estimated parameter

vectors for batch A� B� and C are assumed to be the same under the null
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hypothesis H� � �A � �B � �C � The hypothesis can be written as�

H� � �� �
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where A� B� and C are three batches within the same run� The logL���	

value is given by summarizing the log likelihood values estimated for com�

mon sets of parameter values for each run� The logL���	 value is given

by summarizing the log likelihood values estimated for the individual esti�

mations for all batch experiments� Twelve estimations using the program

Dekimo were carried out in the single substrate system� and 	fteen in the

dual substrate system� The likelihood ratio test for common sets of para�

meter values within the runs is given by

�� �
rX

j	�
logL��j��	�within� �

rsX
i	�

logL��i��	�individual� 	 ����
�

compared to �� �p �rs� r		�����


where i and j here indicate experiments and runs� respectively� s is the

number of experiments within a run� r is the number of runs� and p is the

number of parameters in the model� If the hypothesis is accepted� this will

be our new model consisting of three�four common estimations from the

three�four runs� We will now test if these common sets of parameter esti�

mates can be said to have the same values for all the runs� For the single
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substrate system the hypothesis for a common set of parameter values be�

tween runs is given by

H� � �� �
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The logL���	 value is obtained from the estimation procedure for a com�

mon set of parameter values for all experiments within the system� The

logL���	 value is obtained by summarizing the log likelihood values esti�

mated for common sets of parameter values for each run� The likelihood

ratio test for a common set of parameter values for all experiments within

the single or the dual substrate system is given by�

���logL���	�total� �

rX
j	�

logL��j��	�within� 	 ������

compared to �� �p �r � �		�����


Due to program limitations in Dekimo� the latter test cannot be performed

directly since it is not possible at present to estimate a common set of para�

meter values for more than 
 experiments� Instead of estimating a common

set of parameter values for all experiments �logL��	�total��� the test pro�

cedure has been split into three�four common estimations for experiments

from three di�erent runs �logL��	�between���
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For the single substrate system

a� batch A Run I� batch A Run II� and batch A Run III

b� batch B Run I� batch B Run II� and batch B Run III

c� batch C Run I� batch C Run II� and batch C Run III

For the dual substrate system

a� batch A Run IV� batch A Run V� batch A Run VI

b� batch A Run VII� batch B Run IV� batch B Run V

c� batch B Run VI� batch B Run VII� batch C Run IV

d� batch C Run V� batch C Run VI� batch C Run VII

There is no special reason for comparing the batches in the order shown

above� One batch experiment from each run is in principle chosen randomly�

The likelihood ratio test for the new situation becomes

���
kX

u	�
logL��u��	�between��

rsX
i	�

logL��i��	�individual� 	 ������

compared to �� �p �rs � k		�����


where u is the index for test setup shown above �a�� b�� c�� ��� and

logL��u��	�between� is the log likelihood values for common estimations be�

tween runs� These test procedures are used in chapter 
�

�� Chapter �� Testing



Chapter �

Designing experiments

Investigators should seek to design experiments which maximize the qua�

lity of information that can be extracted from data� Obtaining the best

possible experiments involve several considerations before performing the

experiments� In any experiment� the results and conclusions that can be

drawn depend to a large extent on the manner in which the data were col�

lected� Optimally designed experiments are therefore desirable since they

provide the highest quality of information for a given expenditure of re�

sources� In this chapter a discussion is given on designing experiments along

with descriptions and explanations of what is done in connection with the

experiments performed in this study� When and where to sample in the

Monod model is also examined by use of D�optimal sampling and by use of

sensitivity equations�

�
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��� Objective of an experiment

The de	nition of an optimally designed experiment depends on the inves�

tigator�s goal� Depending on the purpose di�erent designs are employed�

however� some of the purposes can be obtained in the same design� The

goal of the investigator could be to

� determine the lack of 	t of a certain model

� discriminate between competing models

� obtain good parameter estimates with minimum variance and mini�

mum correlation �small and uniform con	dence region�

� to test di�erent treatments or factor e�ects on the experiment

� to test the variability of the experiment� etc�

Lack of �t

In determining the lack of 	t for the chosen model� the data should include

as many repeated measurements as possible� The analysis for testing the

lack of 	t is given in chapter �� section ����

Competing models

When considering di�erent appropriate models to describe the biological

system under consideration� a good idea is usually to look in the literature

for earlier results and experiments on the subject� If there are several ap�

propriate models to chose between� one should always start out with the

simplest model with the fewest number of parameters� least correlated� and

with the fewest number of non�physical parameters� When setting up the ex�

periment to be conducted� the experimental conditions that maximize the

di�erences among the competing models should be chosen� For example

when examine competitive inhibition versus simultaneous utilization� the

experiment should be performed with the combination of initial substrate

concentration that gives rise to the largest di�erent between the degrada�

tion models �Fig� ����� Fedorov ������ and Beck � Arnold ������ describes

criteria for model discrimination�
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Figure ���� Revealing di�erences between two models� a� competitive model

with inhibition and b� simultaneously utilization model without inhibition�

Good parameter estimates

If the main objective of the experiment is to obtain good estimates of the pa�

rameters in a certain model� the researcher will be concerned about �� which

chemical analysis method to use in order to obtain good measurements� ��

how many samples to take and when to take them� 
� any replicates of the

measurements� and �� which estimation method to employ�

The 	rst question is dealing with laboratory and chemical technique and

the best method depends on what is measured� The second is related to

choosing optimal design points� Box � Lucas ������ have described an op�

timal design criterion for nonlinear models� In section ��� a more detailed

description and speci	c examination on the optimal sampling points for the

models in this study is found� Item 
� is of great important when examin�

ing the variance structure� No matter which method is used to estimate the

parameter values� they all rely on some assumption of the variance struc�

ture� An incorrect assumption on the variance structure can have great

in"uence on the modelling and thereby on the estimated parameter values

�see chapter ���
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The precision and accuracy of the parameter estimates depend on the esti�

mation method �item ��� Parameters in microbiologic degradation models

are mostly estimated by linearization and by using parameter values from

similar experiments found in the literature �Vecht et al�� ��

! Folsom et

al�� ����! Strand et al� ����! Machado � Grady� ��

! Alvarez et al�� ������

If nonlinear estimation methods are employed it is usually only for a few

parameters� The linearization method can give rise to incorrect parameter

estimates� and when employing parameter values from the literature� one

shall be aware of� that the parameter values are depending on the system in

which they are estimated� Nonlinear estimation methods should always be

employed when dealing with nonlinear microbiological degradation models�

as described in more detail in chapter ��

Blocking

When testing di�erent factors e�ect on the experiment or when non�homo�

geneous conditions appear� it is necessary to use a blocking technique�

Blocking is a technique used to increase the precision of an experiment� A

block is a portion of the experiment which is considered to be more homoge�

neous than the entire set of material�experiments� The blocking technique

is often used when many experiments are carried out� There may also be

limits on for example how many experiments it is possible to carry out on

one day� how many experiments can be carried out using a given chemical

mixture� etc� These restrictions also give rise to blocks� More information

can usually be obtained from an experiment when using the blocking tech�

nique and the corresponding analysis� �Consult with Hicks ���
�� or Box�

Hunter � Hunter ����
� for more information on using the blocking tech�

nique�� With the blocking technique it is possible to more precisely reveal

factors that have an e�ect on the experiments�

Variability

In examining the variability of an experiment� replicated experiments are

carried out to be as identical as possible� If any suspicions on inhomogeneous

conditions exist� the blocking technique described above should be used�
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Our study

The purpose of the experiments in this study was mainly to examine the

variability�reproducibility of microbiological degradation experiments� In

this context� replicates of the experiments were conducted and parameter

estimates were compared� Because changes in the biomass from preculture

to preculture can occur� it was necessary to use the blocking technique�

This resulted in the design shown in Fig� ���� Experiments with biomass

originating from the same preculture constituted a block �referred to as a

run� and were carried out simultaneously�

Figure ���� Experimental design for the single substrate system

Also� there were restrictions on the number of batch experiments carried out

simultaneously� since it was only possible to place � batches in the water

tank �see the experimental set up in chapter ��� Thus� the � batches �A�

B� C� plus a blank� constituted a block� The runs and the precultures were

thus confounded�

�
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��� Controllable
uncontrollable noise

The process in which an experiment is performed can be regarded as a com�

bination of machines�instruments� methods� people� and other resources

that have or may have in"uence on the results� Some of the process variables

are controllable� whereas other variables are uncontrollable� As examples

of controllable variables for the microbiological degradation experiments

carried out in this study� the choice of the Lowry method for biomass mea�

surements� Pseudomonas cepacia �biomass�� and a constant temperature of

���C can be mentioned� The uncontrollable variables can be known or un�

known� For the uncontrollable known variables it is important to measure

their variations during the experiment and verify afterwards if any e�ect on

the results can be identi	ed �e�g� duration times of the precultures�� For

the unknown variables the problem is larger � if experiments are to be com�

pared they should be carried out in the same way such that the unknown

variables are kept constant and thereby have the same magnitude of e�ect

on the results of the experiments� This is the reason why the preparation

of the biomass and the experiments themselves were carried out the same

way every time� If the unknown and uncontrollable variable is related to

the order in which the samples are measured� it is important to randomize

the measuring in order to �average out� the e�ect of extraneous factors�

that may be present� Statistical methods require that the observations �or

measurement errors� are independently distributed random variables� To

avoid too many unknown factors that have an in"uence on the results of

the experiments� we have chosen to carry out relatively simple experiments�

��� Sequential design

After the investigator has de	ned which objective the experiments have� how

many experiments to perform� which model to employ� and so on� it still

leaves many practical questions� which can only be answered by performing
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experiments� For this reason screening experiments are carried out and often

they are smaller than the �real� experiments� However� not everything can

be predicted� As more information is gained when the experiment is carried

out� this new information should be utilized in the next experiment and by

that means improve the experimental results� Such a design is referred to as

a sequential design� However� when examining the natural variability of the

parameter estimates� the investigator is interested in obtaining as identical

experiments as possible in order to compare these� Thus sequential designs

should be used with caution when examining reproducibility� Details about

sequential designs are given in Juusola� Bacon � Downie ������ and in Ford�

Kitsos � Titterington ���
���

As examples of sequential learning in the present study� we can mention ��

the achieving of more knowledge of the procedure for biomass measuring�

which improved the precision �see chapter ��� and �� the discovering of in�

hibition of the degradation and the biomass growth when the initial toluene

concentration exceeded �� mg�l �Run VIII and IX�� The initial toluene con�

centration in the later experiments was thus carefully kept under �� mg�l�

��� Optimal design and sampling

There are three important considerations when designing the optimal sam�

pling procedure� �� in what range should the initial substrate and biomass

concentrations be chosen� �� how many samples should be taken and 
�

where�when shall the samples be taken� These questions are important for

the parameters identi	cation and for the precision of the parameter esti�

mates�
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����� What range

The range for the initial biomass concentration should be chosen not too

small and not too large� If chosen too small� it can e�g� be di�cult to

distinguish between a lag phase and a small growth rate� and if chosen too

large the total biomass concentration would not change considerably which

would make the estimation of the yield coe�cient Y di�cult� Moreover�

the biomass will "occulate if the density becomes too large� and thus the

biomass cannot be considered totally homogeneous�

The range for the initial substrate concentration also is limited� If chosen

too small� the degradation of the substrate will occur too fast to obtain

enough samples� and if chosen too large the degradation may be inhibited

�as seen in Run VIII and IX�� If the model is of the Monod type� it is

moreover a prerequisite that S �� Ks for identi	cation and estimation of

k and Ks� It is important that the degradation sequence runs through ��

and �� order �Eq������� ������ ���
�� ������ in order to identify both k and

Ks� In the �� order sequence k is identi	ed and in the �� order sequence�

it is the relationship between k and Ks that is determined� If the experi�

ment only is performed in the �� order sequence� Ks and k would be very

strongly correlated and almost impossible to separate� And if there are only

measurements in the �� order sequence and non in the �� order sequence� es�

timation becomes very di�cult or impossible� In Run X the last part of the

benzene degradation is missing due to analysis problems� which destroyed

the samples� Thus the estimation of all parameters becomes impossible� It

was necessary to 	x some of the parameter values �see chapter 
�

The Monod model

For S �� Ks �� order rate will be

dS
dt

� k

SX

S �Ks

� kX �����

dX
dt

� Y k

SX

S �Ks
� bX � Y kX � bX �����
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For S �� Ks �� order rate will be

dS
dt

�

SX

S �Ks

�

k
Ks

SX ���
�

dX
dt

� Y k

SX

S �Ks
� bX � Y

k
Ks

SX � bX �����

where
S is the substrate concentration�

X is the biomass concentration� and

t is the time�

The parameters are�

k the maximum degradation rate for toluene�

Ks the half�saturation coe�cient�

Y the yield coe�cient� and

b the decay coe�cient�

As for the single substrate system correlations between the parameter esti�

mates in the dual substrate system cannot totally be avoid� only reduced�

With many more parameters and two �in stead of one� degradation equa�

tion� it becomes less obvious how the correlations between the parameter

estimates can be reduced� However� the ratio between S and Ks should as

in the single substrate system be as large as possible� Moreover� the two

substrate initial concentrations should be of such magnitudes that they are

not totally degraded at the same time� otherwise the correlation between

the two yield coe�cients for toluene and benzene� respectively �Yt and Yb�

will be very strong and impossible to identify separately�

If the investigator is interested in revealing e�g� the 	rst substrate inhibition

on the second or vice versa� the ratio between the two substrates should

vary as much as possible� In the present work this was not done for two

reasons �� in order to examine reproducibility it was important to carry out

experiments as identical as possible and �� if initial toluene concentration

was over �� mg�l� inhibition would occur� and if much less than actually

used the degradation would occur to fast to obtain enough observations�
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����� How many observations

The necessary number of samples to be taken in order to insure a certain

precision of the parameter estimates is of interest� A technique to obtain

this goal is illustrated in the following� Consider a model�

yi � f�xi� �	 � �i �i � N ��� ���	 �����

i � �� 


� n

where yi is the dependent variable vector� xi is the independent variable�

f is a linear or nonlinear function of the parameters� � is the vector of

the parameters� �i is the measurement error associated in the i�th obser�

vation� and n is the number of observations� In degradation models xi is

replaced with ti which is the time of sampling� f consists of two �or three�

mathematical expressions � one for the biomass and one �or more� for the

substrate�s�� and yi is the measurement of the biomass or substrate�s��

For a linear model it is possible to determine the necessary number of sam�

ples� The optimum only depends on a priori information on the standard

deviation and the decided signi	cance level� �� The marginal con	dence

region for a parameter 	p is given by�

	p � t�n� P 	��� �
q

V �	p	 �����

where P is the total number of parameters� V �	p	 is the variance of the

parameter p� and t is the t distribution with �n � P 	 degrees of freedom�

For a required minimum signi	cance level the number of samples� n can

be calculated for each parameter and the largest number n is picked in the

design�

For a nonlinear model� Bates � Watts have given a marginal con	dence

region�

	p � t�n � P 	��� � 
���
q

�S�
��p	 � S�
�	 �����
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where �S�
��p	 is the sum of squares function for the parameter vector 
��p �

�
	�� 


� 
	p��� 
	p��� 


� 
	P 	 and S�
�	 is the sum of squares for the full model

with all P parameters 
��

However� for nonlinear models that are formulated as di�erential equations�

i�e� implicit equations� it is very di�cult to determine sample sizes to as�

sure a minimum of uncertainty on the parameter estimates �Bilbo ������

Generally� it is not possible to express an exact rule de	ning an optimal

number of sampling points in a degradation kinetic model based on non�

linear di�erential equations� As pointed out by Box � Lucas ������� the

variance of the parameter estimates depend on the design matrix� i�e� the

matrix of values of the independent variables� and on the parameter values

themselves� As a result� one has to resort to the experience gained during

previous experiments� It seems obvious that the more samples the better

identi	cation of the parameters� This is in good agreement with experi�

ments in this study� The substrate measurements in Run V were half the

number ���� as for the similar dual substrate experiments in Run IV� VI�

and VII� and the identi	cation of the parameter values were corresponding

more di�cult for the small experiment�

����� When	where to sample

Selecting an appropriate sampling procedure is critical to successful analysis

of any experiment� The procedure for microbiologic experiments is concern�

ing at which point of time during the experiments the samples should be

taken� For this purpose di�erent methods can be employed� �� optimal

design criteria and �� sensitivity equations�

Optimal design criteria

Consider the following� When the variance structure of the measurement

errors are normal distributed� the covariance matrix of the parameter esti�

mates 
� is described by
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V �
�	 � �f �
�
� f

�
�	

��
��� ���
�

where

f
�
� � f

�
��x� �� �

�
BB�

�f��x���

���


 
 


�f��x���

��P






�fk�x���

���


 
 


�fk�x���

��P

�
CCA �����

f �� is also called the sensitivity matrix or the Jacobian matrix� In a linear

regression model the optimal design points only depend on the design vari�

ables such as when the samples are taken� at what temperature� at what

pressure� etc� The sensitivity matrix f �� becomes equal to X �matrix of

the independent variables� x� and is thereby independent on the parame�

ter values� A good experimental design will be one that makes the matrix

�f �
�
� f

�
�	

�� small in some sense� Several functionals have been suggested in

the literature as measurements of �smallness�� To mention a few �

�� D�optimal designs � This design method minimizes the determinant

of the matrix �f �
�
� f

�
�	

�� meaning that the volume of the con	dence

ellipsoid is minimized �Fig� ��
�� Both the variance and the correla�

tion between the parameter estimates are e�ected by this optimization

design�

�� A�optimal designs � This design method minimizes the trace of the

matrix� tr�f �
�
� f

�
�	

��� meaning that the variances of the parameter

estimates are minimized�


� E�optimal designs � this design method minimizes the maximal eigen�

value of �f �
�
� f

�
�	

��� which makes the correlation between the para�

meter estimates less correlated� The ellipsoid in Fig� ��
 will be closer

to a circle�

Box � Draper ���
�� describes more throughly these optimal criteria along

with others�
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Figure ��
� Parameter con	dence interval

Special design problems arise for nonlinear models� The properties of a

design generally depend on the unknown parameter values� since f �� is

depending on the parameter vector �� This leaves the investigator with the

paradoxical position of having to know at the design stage the very same

quantities one is conducting the experiment to estimate� A way of solving

this problem is by sequential design� The 	rst experiments �preliminary

experiments� are used for checking the methods� the range in which the

experiment is carried out� etc� The preliminary experiments can also be

used for determining approximate values of the model parameters� which

can be used in choosing good design points� The number of preliminary

experiments depends on the amount of work� expenses� and time involved for

the preparation of the experiments� compared with the number of samples

taken in the �actual� experiment�

In a degradation model one more problem arises � the function f cannot be

given explicitly� This means that the predicted value of the i�th response

�biomass and substrate�� yi� has to be determined by numerical methods

�we have used ��th order Runge�Kutta iteration�� As a result� we are not

able to obtain analytical solutions for the � in some sense � optimal de�
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sign points� t� Box � Lucas ������ outlined a procedure for determining

the D�optimal design points for nonlinear models� The application of the

Box�Lucas criterion for parameter estimation has received great attention

by pharmacokineticists �Cobelli et al� ��

! Mori � DiStefano� ����! DiSte�

fano� ��
�� ��
�! Cobelli � DiStefano� ��
��� Bilbo ������ showed by using

this procedure the estimation of the design points for a Monod model� Dif�

	culties in optimization of the criteria �f �
�
� f

�
�	

�� resulted in several local

optima in the case of the smallest possible number of design points n � P �

where P is the total number of parameters in the model� In the four�point

design� Bilbo showed two sets of optimal design points and he was unable

to select one of the design points as more preferable than the other �Fig� ���

and Fig� ����� The parameter values were determined from an earlier experi�

ment� The 	rst two design point in a set �� measurements� two substrate

& two biomass� can be interpreted as determining the degradation rate�

k� and the yield coe�cient� Y � Since the degradation and growth curves

are approximately linear initially� two points will be �enough� to identify

the steepness of the curves at this part� where the degradation takes on ��

order rate�

Figure ���� Illustration of an estimated optimal four�point design� � indicate

the design�points�
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Figure ���� Illustration of an estimated optimal four�point design� � indicate

the design�points�

The last two design points �out of the four� determine the biomass decay� b�

However� it is less obvious how Ks is determined� but it has been reported

by Vialas� Cheruy � Gentil ����
� and Holmberg � Ranta ���
�� that the

sensitivity function reaches a peak just before the substrate is completely

degraded �where degradation takes on �� order rate�� This is in agreement

with our experience from the sensitivity functions �see later in this chapter��

In the highest sensitive zone for a parameter� the in"uence of this parameter

is at the greatest and that is where an observation should be taken� More

information on optimal design points in a Monod model is described in

Bilbo ������� A four�point design has though little value in practice� since

four observations general are too few in order to obtain reliable parameter

estimates� The designs carried out by Bilbo are only included in order to

give an idea of the technique� For a more elaborated six�point design� Bilbo

reported that the optimization proved to be considerably more di�cult due

to singularities in the numerical estimation of �f �
�
� f

�
�	� An optimal design

of e�g� �� points would most likely be impossible to obtain�

The purpose of the D�optimal design was to minimize the number of sam�

��
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ples and to minimize correlation and variance of the parameter estimates�

However� for the Monod model and similar models even an optimal experi�

mental design cannot quite eliminate the high degree of correlation exhibited

by estimates of the parameters �Box � Lucas� ������

The application of the optimal sampling number and optimal design points

technique for the experiment in this study has been less than hoped for� This

has more than one reason �� when there are relatively large uncertainties on

the parameter estimates� on the variance estimates� and on the estimation

of the D�matrix� optimization techniques becomes must less powerful� ��

the biological processes can easily get displaced which also will displace the

optimal sampling points� and 
� large di�culties in estimating the design

points �if more than four design points� makes the technique less attractive�

Sensitivity Equations

Sensitivity equation analysis treats the problem of the uniqueness of the

determination of the parameter values� It can be used in order to give the

investigator more information on how the model behaves and where�when

it is optimal to sample� A sensitivity equation describes how sensitive a

model is in terms of changes in the dependent variable caused by a given

change of a parameter� Depending on whether absolute or relative measures

of the variable and of the parameter are used� the following four sensitivity

functions can be de	ned�

f
�a�a
� �

�f
�	p

������

f
�r�a
� �

�
f

�f
�	p

������

f
�a�r
� � 	p

�f
�	p

������

f �
r�r
� �

	p
f

�f
�	p

����
�

In chapter � Eq������� was used in de	ning nonlinearity of a model� The two

most often used sensitivity functions are Eq������� and Eq�����
�� because

the units of these functions do not depend on the units of the parameter�
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This makes the comparison of the sensitivity of a variable to di�erent pa�

rameters possible� Unique estimates of the parameters in a nonlinear model

cannot be obtained if the sensitivity equations are multiples of one another�

The more di�erent the patterns of the sensitive functions are� the better

can the parameters be identi	ed �less correlated with other parameter es�

timates�� In the following the sensitive functions for k� Ks� Y � and b in

the Monod model are examined using Eq� ������� The sensitivity equations

were estimated by use of the estimation program AquaSim� On basis of an

experiment �batch A� Run I� a set of sensitivity equations was obtained�

The derivatives required are calculated in AquaSim by the 	nite central

di�erence approximation� which is more easy than using a derivation of a

numerical approximation to f �

�f
�	p
�

f�� �
�	 � f�� �
�	

�
�

������

The central di�erent approximation is more accurate than forward di�e�

rent approximation but it requires more evaluations of the function f � In

Fig� ���� ���� and ��
 the sensitivity equations for the Monod model are

shown�

Figure ���� Sensitivity curves� substrate
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Figure ���� Sensitivity curves� biomass

Figure ��
� Sensitivity curves� biomass

The in"uence of the maximumdegradation rate �k	 and the yield coe�cient

�Y � on the substrate curve Fig� ��� are very much the same� their curves are

almost parallel� They can� however� be separated if measuring the biomass

right after the substrate has been totally degraded� Fig� ���� In this region

only Y has in"uence on the biomass curve and thus is easy to identify�
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Since the estimate of b was very small� it�s in"uence on any of the response

curves shown in Fig ��� and ��� is hard to see� Therefore we have included

Fig� ��
� which shows the in"uence of the absolute values of the parameter

estimates� Here it can be seen that the best place to measure the biomass

decay coe�cient is at the very end of the experiment� The half�saturation

coe�cient Ks is more di�cult to identify � it is quite correlated with both

k and Y and it�s sensitivity to any of the two response curves is not very

high� However� the best place to measure Ks is when it reaches it�s peak

just before the substrate is totally degraded�

These results are in good agreement with the estimated covariance matrix

for Run I� batch A �Table ����� which show a strong correlation between k

and Ks� and a strong negative correlation between k and Y �

k Ks Y b

k � ���� ����� ���
�

Ks ��� � ��� ���


Y ���� ��� � ����

b ���
� ���
 ���� �

Table ���� Parameter correlation matrix for Run I� batch A�

When the sensitivity equations are nearly proportional� which is the case

for many models of interest� the parameter estimates are highly correlated�

The question arises� can the parameter be uniquely determined at all '�

Holmberg ���
�� carried out a test �developed by Pohjanpalo ���
� with

the Monod model and found that if the responses X and S were completely

known all parameters could be uniquely determined� This implies that the

model is theoretically globally identi	able� The practical identi	ability with

incomplete measurements and relative large measurements errors� cannot�

however� be studied with this test �Pohjanpalo ���
�� In order to illustrate

the practical problems of parameter identi	cation� an example from Run
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I� batch A is used� In Fig� ��� it is shown how curve 	tting for two quite

di�erent sets of parameter estimates suits the data almost equally well �the

log likelihood values were ��
��� for the full line and ����
� for the dashed

line�� �The estimation was carried out with weighting function equal to

��� The di�erences are especially large on the k � Ks pair� The two Y �

values were almost the same� which is in good agreement with the sensitivity

function Fig� ���� where Y could be identi	ed very well on the last part of

the biomass curve�

Figure ���� Two di�erent optima� � biomass obs� � toluene obs�

Because of these properties with quite di�erent sets of parameter estimates

which 	t the data almost equally well� Holmberg � Ranta ���
�b� suggest

that the Monod model should be regarded rather as a black�box than as a

physical model�
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Computing and practical

recommendation

This chapter is of more practical character and focuses on giving some good

advice on performing the experiments and analyzing the data� It also de�

scribes which kind of problems arises when using the nonlinear estimation

program Dekimo or similar programs� What causes the problems and what

can possible be done to illuminate�minimize them'

	�� Advice on performing and analyzing data

One should always have a critical sense when sampling data� Detect possible

error sources and concentrate on the large ones� If possible average out

systematic errors by randomizing� Some examples on what was considered

when performing the experiments in this study are given in the following�

��
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� how large should the samples be in order to ensure measurements with

reasonable small errors � about �� ml was suitable�

� does the order in which the samples are measured on the gas chro�

matograph have any in"uence � no� unless a sample with very high

concentration has been running just previously�

� how long time can the samples stay in the refrigerator without change

in the concentrations � at least a couple of days� if stored properly�

� how large a "ask should be used for the pentane mixture! if a large

"ask is used� too much of the internal standard will evaporate and

leave the mixture with a di�erent ratio� which has great in"uence on

the calculation of the substrate concentration! if a smaller "ask is used�

it does not last throughout the run and a new pentane mixture much

be made � the change of pentane mixture during the experiment does

have a small in"uence on the concentration level� which was the reason

why replicates were taken just before and after the changing� �These

changes were as far as possible adjusted by the blank test carried out

simultaneously��

When analyzing the data one will almost always run into problems concern�

ing outliers or possible outliers� In this context it is of great value if one has

made a thoroughly journal on the performing of the experiments� It makes

it easier to identify �true� outliers� One is often in a con"ict when classify�

ing measurements as outliers � on one hand you take away a measurement

from an already not too large sample size� on the other hand an outlier can

violate the result of the estimation�

	�� Optimization problems

Finding the best parameter estimates for nonlinear models are no trivial

matter� For linear models� the surface described by the objective func�

tion or sum of squares function is parabolic and only one set of parameter
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estimates corresponds to a minimal value of the objective function� For

nonlinear models� however� there may be several points along the surface

where �the slope� equals zero� Some of the sets of parameter estimates may

have meaningless values� These unrealistic values can be avoided by trans�

forming the parameters into constrained parameters� which as a side pro	t

often will improve the estimation time� The estimation routine will then be

limited only to search in a certain parameter area� General techniques for

estimating in models whose parameters are constrained can be found e�g�

in Bard ������ or Gill et al� ���
���

The estimation routine may end in a global optimum �truly the highest

function value� or in a local optimum�the highest in a 	nite neighbourhood��

When estimating in nonlinear models complete certainty cannot readily be

given that the global optimumof the objective function has been found� As a

general recommendation for minimizing functions� it is always advantageous

to restart the algorithm with di�erent initial parameter values to con	rm

the minimum found in the 	rst trial� For some data sets it is best to restart

the routine near the optimumand for others it is some times better to restart

further away from the optimum� In the present study all model 	ttings were

selected from the best �if not the same� of three or more estimations with

di�erent initial parameter values� In the single substrate system almost

all estimations for each experiment ended in the same optimum� In the

dual substrate system� however� often one of the estimations ended in a

di�erent optimum� Even when the estimations reached the same optimum

the variance structure of the parameter estimates could vary� Most of the

variations are due to the updating of the Hessian matrix� The Hessian

matrix starts out as an identity matrix� and if there are too few iterations

the matrix will not be properly updated� On the other hand if too many�

very small inaccuracies in the approximation of the object function and

in the updating of the Hessian can through the large number of iterations

result in an incorrect estimation of the covariance matrix �this is often seen

by a large conditional number given in the output 	le��

Di�cult convergence of 	nding the optimum of the objective function is
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among others related to ill�conditioned models �nearly proportional sensi�

tivity equations�� but not to the accuracy of the measurements �Beck �

Arnold� ������ When the parameters are strongly correlated the sensitivity

equations are nearly proportional and many di�erent sets of parameter val�

ues near the optimum may 	t the data set almost equally well� In Fig� ���

a response surface for k and Y is shown� Run II� batch A were used in

generating the surface where only k and Y varied� The relatively strong

correlation between the parameters is re"ected in the long ridge� In Fig� ���

the corresponding contour is shown�

Figure ���� Response surface for two parameters

In contrast to the accuracy of the measurements� the sample size does have

an in"uence on the success of optimization� The smaller the sample size

is� the more "at is the surface of the objective function near the optimum

and a situation with many local minima as shown in Fig� ��
 can occur

�Ste�ensen� ������ The larger the sample size is� the more well�de	ned is

the surface of the objective function� This situation was also seen in the

dual substrate system where the estimation of Run V was more di�cult

than the estimation of Run IV� VI� and VII due to less observations�
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Figure ���� Contour for two parameters

Other problems of convergence can be due to numerical problems� The

objective function must for example be twice continuous di�erentiable when

using the maximum likelihood optimization method� The Hessian matrix

�second derivative of the objective function� must be positive de	nite and

non�singular� Roundo� errors can occur after many iterations and can cause

the Hessian matrix to become nearly singular or non�positive de	nite� This

may cause that the search direction does not lead downhill �closer to a

minimum� and convergence becomes di�cult to obtain� In trying to avoid

this problem a Cholesky decomposition of the Hessian matrix was employed�

However� should this situation occur anyway� it is recommendable to restart

the algorithm with parameter values at the claimed minimum point� and

see if it changes� Simple and easy� but not very elegant� For some nonlinear

models� the initial values must be close to the best parameter estimates and

linearized forms can then be used�
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Figure ��
� Ill�conditioned response surface

Of other numerical problems causing di�culties in convergence we can men�

tion an inappropriate choice of step size control� convergence criteria and

scaling� These problems are already thought of when building the estima�

tion program� In Dekimo there are �should be� no convergence problems

caused by the above mentioned cases�

	�� Estimation of non�model parameters

Treating the initial value of the biomass� X�� as a parameter to be esti�

mated �a system parameter� besides the model parameters� is more realistic

than assuming that this concentration is known� The value of X� has a

relative large in"uence on the model 	tting� The same could not be said

about the initial substrate concentration�s�� thus these values were not esti�

mated by the program Dekimo� Changes in the substrate values only a�ects

the degradation curve a little� In the estimation program Dekimo and in

AquaSim the initial value of the biomass was estimated simultaneously with

the model parameters� When using the Lineweaver�Burk linearization � dif�
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ferent initial values for the biomass were examined and the best was chosen�

Another non�model parameter that needed to be estimated was the lag

phase � The lag phase only occured in the dual substrate systems and was

not estimated automatically by any of the estimation programs� It was esti�

mated �by hand�� In Dekimo the user support the program with information

on the length of the lag phase � It is recommendable to test which of 
��

di�erent lengths of the lag phase� that result in the best 	tting of the data

�greatest log�likelihood value�� The estimation program AquaSim cannot

handle a lag phase and therefore the observations in the begining of the

experiment must be removed from the data material� Since the estimated

parameter values were not very sensitive to changes in the lag phase� it is

for the time being good enough to estimate these parameters roughly by

hand� In future work the lag phase may be incorporated in the parameter

vector and estimated by the program Dekimo� However� estimation of one

more parameter slows down the optimization routine and may give rise to

convergence problems as a result of overparametrization�

��� Chapter �� Computing and practical recommendation



Chapter 	

Results and comments

This chapter is mainly concerning results of the parameter estimations� tests

for model reduction� and for reproducibility for the single and the dual sub�

strate system� At the end of the chapter parameters are estimated using

three di�erent estimation techniques and the results are compared� The es�

timations were carried out by the computer program Dekimo �Bilbo ������

Two types of estimation were performed�

� Individual estimation� where one experiment was estimated at a time�

� Common estimation� where three batches �within or between runs�

were estimated commonly�

With the indices ��� �� or 
� the above mentioned types of estimation indi�

cate how they were estimated� ��� indicates that a full model was employed�

��� indicates that a reduced model was employed and that the examined ex�

periments were carried out the same day �within the same run�� and 	nally

�
� indicates that a reduced model was employed and that the examined

experiments were carried out on di�erent days �between runs��

���

��� Chapter 
� Results and comments

The examination of possible model reduction of respectively the Monod and

Bailey � Ollis� model were treated as an entire block� meaning that only if

reduction of the model under consideration was possible for all experiments

in the single or the dual system� the model was reduced�

In order to simplify the models �Monod and Bailey � Ollis� they are ex�

amined for possible model reduction by comparing individual estimations

of the full model to individual estimations of a reduced model� After these

examinations� the reproducibility of the experiments are examined by com�

paring common estimations to individual estimations� Depending on the

results of the model reduction� a full model or a reduced model was used�

The procedure for model reduction and for reproducibility is described in

chapter �� In this study model reduction is examined 	rst and then the

reproducibility� it could also have been carried out in the opposite order�

��� Single substrate system

The observed responses and the estimated models for Run I� II� and III are

shown in Fig� 
��� 
��� and 
�
� In the 	gures three kinds of curves are

drawn� In the section above the di�erent kinds of estimation methods are

described� The model 	tting for �Individual �� for Run I and III seem to

describe the data very well� For Run II the 	tting is not quite as good�

The estimation in this run should maybe have been carried out with a lag

phase of e�g� � hours� Comments on the model 	tting for the individual

estimations �Individual �� are given in section 
����� and comments on the

common estimations �Common �� are given in section 
����� The model

	ttings of �Individual 
� and of �Common 
� are shown in section 
����� The

estimates of the parameters corresponding to the shown curves in Fig�� 
���


��� and 
�
 are displayed in Table 
���

The values of the estimated initial concentrations� X� for batch A� B� and

C� were determined from the common estimation� The standard deviations
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�SD� on the parameter estimates were calculated as averages of the variances

within the batch experiments �
��we� from the same run� 
�we is automatically

calculated by Dekimo�

SD � ��we �
s
��we�A� � ��we�B� � ��we�C�




�
���

For all three runs Ks is the parameter which is determined with the largest

standard deviation�

Before carrying out tests for common sets of parameter values within the

runs� possible model reductions are examined�

��� Chapter 
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Individual 	 Individual � Common �

Run I A B C SD A B C SD A� B� C

k ���
 ��
� ���� ���� ���� ��
	 ��
� ���� ��
�

Ks ���� ���� ���� ���� ���� ���� ��
� ��	� ����

Y ���� ���� ��

 ���� ��

 ���� ���� ���� ���	

b ����	 ���� ���� ���	 �� �� �� � ��

�� ���� ��	� ��	� ���	 ��	� ��	� ��	� ���	 ��		

X� ���� ��	� ���� ���	 ���� ��	� ���� ���	 ��

L ���� 
��� ���
� � 
��� 
��
 ����� � �	���

Run II

k ���� ���� ���� ���� ���� ���� ���� ���	 ����

Ks ��	� ���	 ���� ���
 ���	 ���	 ���
 ���� ���	

Y ��

 ��
� ��
� ���� ��
� ��
	 ���� ���� ��
�

b ���	 ��� ��� ���	 �� �� �� � ��

�� ��	� ��	
 ���	 ���	 ��	
 ��	
 ���	 ���	 ��	�

X� ��	
 ��	� ��	
 ���� ��	
 ��	� ��	
 ���� ��

L ����	 �
��� ��
�� � ����
 �
��	 ����� � �	��

Run III � � � �

k ��
� ��
� ��
� ���� ���� ���� ��
� ���� ��
�

Ks ���	 ���	 ���� ���� ���	 ���� ���	 ���� ���	

Y ���� ��
� ��
� ���� ���� ��
	 ��
� ���� ��
�

b ���� ��� ���� ��� �� �� �� � ��

�� ��	� ��	
 ��	� ���� ��	� ��	
 ��	� ���� ��	�

X� ��	� ��	
 ��	� ���	 ��	� ��	
 ��	� ���	 ��

L �	��
 ��
�� ����� � �	��
 ����� ����� � �	��

Table 
��� Estimated parameter values for batch A� B� and C in the single

substrate system� �Individual �� uses the full Monod model� �Individual ��

uses the reduced model A� and �Common �� also uses the reduced model

A� SD is the standard deviation� and L is the log likelihood value� ( #

	xed value� (( # the same X� as given for �Individual ��� and & # new

estimates are given in Table 
�
 � see section 
���� for explanation� The

values with raised index are read as ������ The units of the parameters are

given by the following� k �mg substrate�mg biomass�hour�� Ks �mg substrate�l��

Y �mg biomass�mg substrate�� b ��hour�� and X��mg biomass�l��
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Figure 
��� Estimation within Run I a� batch A� b� batch B� and c� batch

C� � biomass obs� � toluene obs�

��� Chapter 
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Figure 
��� Estimation within Run II a� batch A� b� batch B� and c� batch

C� � biomass obs� � toluene obs�
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Figure 
�
� Estimation within Run III a� batch A� b� batch B� and c� batch

C� � biomass obs� � toluene obs�
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���� Model reductions

The most obviously parameter to reduce the Monod model with is the decay

constant b� From Table 
�� �Individual �� it can be seen that all the esti�

mates of b are near zero� In particular� a ��� con	dence interval �roughly

twice the standard deviation� around the b estimates would include zero�

And when performing the likelihood ratio tests for every experiment� all

���values were below the critical value con	rming that the Monod model

can be reduced to a more simple model without the biomass decay�

Reduced model A

dS
dt

� �h � k

SX

Ks � S

�
���

dX
dt

� Y � k

SX

Ks � S

�
�
�

The properties associated with the estimated parameters in the reduced

model are improved �smaller standard deviations�� All experiments were

re�	tted and new estimates are given in Table 
��� �Individual ��� The

model 	tting of the experiments look very much the same as the graphs for

�Individual �� �Fig� 
��� 
��� and 
�
�� except from the fact that the last

part of the biomass curves now are horizontal �b � ��� In Run I the biomass

decay coe�cient b were almost only determined by the last two biomass

measurements in the experiments� Thus� in the following experiments many

measurements of the biomass in the decay phase were taken�

Since the estimates of the half�saturation constant� Ks from the � experi�

ments seem relatively small compared to the substrate initial values� it is

relevant to examine if the Monod model �Eq��
��� and Eq��
�
�� can be

further reduced to a zero order degradation kinetic model� also called a lo�

garithmic model �Simkins � Alexander ��
��� This model also has the very

attractive character of being linear�
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Reduced model B

dS
dt

� �h � k �X �
���

dX
dt

� Y � k �X �
���

For Run I �Table 
��� �Individual � and ��� ��� con	dence intervals around

Ks estimates do not include zero� This indicate that a reduction may not

be possible� For Run II and III however� ��� con	dence intervals around

Ks would include zero� The results of the likelihood ratio tests are given in

Table 
���

Run I Run II Run III

A B C A B C A B C

Model A 
�� 
�� ���� ����
 �
��	 ����� �	��
 ���� �����

Model B ���
 ��� �		�� ����� �
��
 �
��
 �		�� ����	 ����	

Test value 	��� ��� 	��� ��� ��� 	
�� ��� ��� ���

�������� ��� ��� ��� ��� ��� ��� ��� ��� ���

Further reduc� No No No Yes Yes No Yes Yes Yes

Table 
��� �Reduced model A� is the model given by Eq��
��� and Eq��
�
��

and �Reduced model B� is given by Eq��
��� and Eq��
���� The values are

the estimated log likelihood values� The �Test values� were calculated from

the equations given in chapter ��

Not all of the experiments in this study can be described by the reduced

model B �Eq��
��� and Eq��
����� For the overall description we will there�

fore use the reduced model A given by Eq��
��� and Eq��
�
�� The conclusion

is that the Ks estimates are small� but not always zero and have a relatively

large variation�

�
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���� Test for reproducibility

Within the runs

The common estimations for batches within the runs are shown in Fig� 
���


��� and 
�
� The 	tted substrate curves for the individual and the com�

mon estimations are practically identically� The largest di�erence between

the two estimations �Individual � and Common �� is seen for the biomass

curves� especially in the decay phases � The reason for this is the fact that

the biomass measurements is weighted less than the substrate measurement

in the estimation routine� due to the larger variance on the biomass mea�

surements compared to the substrate measurements�

A test for the hypothesis that the parameter values for the three batches A�

B� and C belonging to the same run� were the same� is carried out� The log

likelihood values were used in forming the test statistic� which was compared

to a quantile in the ���distribution�

�� �
rX

j	�
logL���	�within� �

rsX
i	�

logL���	�individual� 	 compared to

���p �rs � r		�����
 �
���

The joint test�

�� �����
�� �����
�		 � ���
� � �����	 � ��
�

Using �#�� the hypothesis of common sets of parameter estimates cannot

be accepted� However� if the test is split up in the three runs to 	nd which

sub hypothesis cannot be accepted� the following result is obtained�

�� �logL���	�within� �

sX
i	�

logL���	�individual� 	 compared to

���p �s � �		�����
 �
���
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Test in Run�

I � �� � ���
�� ��
� � �
�� �
�		 � ��
� � ����	�
� � ��
�

II � �� � �����
�� ����
�� ��
�� ��
�		 � �
� � ����	�
� � ��
�

III � �� � ���
�
�� ����
�� 
�
�� 
�
�		 � ��
� � ����	�
� � ��
�

The hypothesis for Run I and II is accepted� but for Run III the hypothesis

of a common set of parameter estimates is rejected� It seems to be batch A

that is causing the trouble� The yield coe�cient Y is much larger for batch

A than for the other two batches� and it is the only experiment out of all ��

where the concentration of the biomass exceed the start concentration for

the substrate� If only batch B and C in Run III are compared� the estimates

are much more alike� In Table 
�
 the parameter values are recalculated�

The values of the initial concentrations X� for batch B and C are changed a

little due to the new common estimation consisting only of batch B and C�

The new initial concentrations for batch B and C resulted in small changes

in the estimated parameter values�

Run III Individual � Common �

Parameter Batch B Batch C SD B and C

k ����� ����� ����� �����

Ks ����� ����� ����� �����

Y ��	�� ��	�	 ���
� ��	
�

�� ��
�� ��
�� ���
� ��
��

X� ��
�� ����� ���

 ��
��� �����

L 
����� 
���	� 
 
	����

Table 
�
� New estimates for batch B and C Run III� L is the log likeli�

hood� The units of the parameters are given by the following� k �mg sub�

strate�mg biomass�hour�� Ks �mg substrate�l�� Y �mg biomass�mg substrate�� and

X��mg biomass�l��

After having removed batch A from the data in Run III the hypothesis of

a common set of parameter values can easily be accepted�

�
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Test in Run III�

�� � ����
�� ��
�
�� 


�		 � �
� � ���
	�
� � �
�

The joint test�

�� � �����
�� ���
�
�		 � ��
� � �����	�
� � ��
�

It is di�cult to guess upon the reason why batch A in Run III behaves

so di�erently compared to batch B and C� A more detailed microbiologi�

cal information on the biomass in the three batches might have given an

explanation� We are aware of the �danger� in singling out one experiment

when assuming that the experiments are truly representative of a larger

population of possible experiments� The three experiments should ideally

be considered as random realizations of a larger population of experiments�

Between the runs

The hypothesis of common sets of parameter values for experiments between

the runs �days� is examined in this section� According to the procedure de�

scribed in chapter �� three parallel tests for common set of parameter values

from di�erent runs were carried out �

a� Run I batch A� Run II batch A� and Run III batch A

b� Run I batch B� Run II batch B� and Run III batch B

c� Run I batch C� Run II batch C� and Run III batch C

Any other combination of batches from three di�erent runs could have been

chosen in the three parallel tests� The examination of common sets of

parameter estimates were treated the same way as when examining com�

mon sets of parameter values within the runs� This means that new initial

concentrations for the biomass were estimated from the new common es�

timation� and new individual estimates �Individual 
� with the new initial

concentrations were computed as well� In Fig� 
��� 
��� and 
�� the com�

mon estimations between the runs are shown together with the individual

estimations �Individual 
� and together with the individual estimation �In�

dividual �� given in Table 
��� Common estimation for Run I is 	tted worse

than for Run II and III� this is due to less observations in Run I compared
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to Run II and III� and not because Run I is pronounced more di�erent from

the other two�

The results of the likelihood ratio tests were the following�

The joint test�

�� � ��
��
�� �����
�		 � ��

� � �����	�
� � ��
�

Test in�

a� � � � ����

�� ���
�� ��
�� �

�		 � ��
� � ����	�
� � ��
�

b� � � � �����
�� ���

� ��
�� ��
�		 � ��
� � ����	�
� � ��
�

c�� � � ���
�
�� ����

� ��
�� 
�
�		 � ��
� � ����	�
� � ��
�

Using � � �� the hypothesis of a common set of parameter estimates for

experiments from di�erent runs is rejected for all three tests� When looking

at the common estimations and the individual estimations �Individual 
�

in Fig� 
��� 
��� and 
��� the di�erences do not seem very large� However�

when comparing the common estimations or Individual 
 with Individual �

the di�erences become much larger� and it is clear to see that the common

estimation does not 	t the data as well� This indicates that the new initial

concentrations were not appropriate� and together with the rejection of the

common sets of parameter estimates between the runs� we will conclude that

the single substrate experiment has a limited reproducibility with respect

to variation between runs�


���� Experiments with inhibition

In Run VIII and IX� which consist of experiments also carried out as sin�

gle substrate experiments� product or substrate inhibition possibly occured�

The biological processes in these experiments probably followed some un�

known product inhibition process� It seems as though the intermediate

product was not a �problem� for the degradation until it accumulated to a

�
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Figure 
��� Estimation between runs a� Run I batch A� b� Run II batch A�

and c� Run III batch A� � biomass obs� � toluene obs�
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Figure 
��� Estimation between runs a� Run I batch B� b� Run II batch B�

and c� Run III batch B� � biomass obs� � toluene obs�

�
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Figure 
��� Estimation between runs a� Run I batch C� b� Run II batch C�

and c� Run III batch C� � biomass obs� � toluene obs�
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certain concentration and then inhibited the degradation of the substrate

and the growth of the biomass� It was� however� not possible to 	nd any ac�

cumulation of intermediate products when examining the spectra from the

gas chromatograph measurements� This does not exclude the possibility of

an accumulated intermediate� The intermediate may for example not have

been extracted from the sample by pentane �if the intermediate was po�

lar it would not have been extracted since pentane is non�polar� and could

therefore not be seen on the spectra� The inhibition only occured when the

initial toluene concentration was greater than �� mg�l�

Alvarez et al� ������ found no substrate inhibition �or self�inhibition� for

toluene concentrations � 
� mg�l for a mixed culture from sandy aque�

ous material� Run VIII and IX were not modelled with any product in�

hibition model� they were only used in comparison with the non�inhibited

experiments from the single substrate system� That some kind of inhibi�

tion occured when S� was greater than �� mg�l is most clearly seen in Run

VIII �Fig� 
���� The biomass growth stopped before the toluene was totally

degraded�

Outliers from the biomass measurements shown in Fig� 
�� have not been

removed since these experiments were not modelled� The outliers from the

biomass measurements are usually much less than the measurements in the

same area� This is due to the analysis method� After the samples were

centrifuged the liquid was sucked up and by that process some or all of the

biomass at the bottom of the test tube was easily sucked up as well�

In Run IX� batch A was not inhibited since the initial substrate concen�

tration for toluene was less than �� mg�l� Batch B was cut out of the

experiment due to an accident with the glass top of the batch�bottle� Batch

C was inhibited� If we use the parameter estimates obtained from batch A

to model the data in batch C �Fig� 
�
�� it becomes very clear that some

inhibition of the degradation and the growth processes have occured� and

that the Monod model is insu�cient for describing the processes�

�
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Figure 
��� Run VIII a� batch A� b� batch B� and c� batch C� � biomass

obs� � toluene obs�
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Figure 
�
� Run IX a� batch A and b� batch C� � biomass obs� � toluene

obs�

��� Dual substrate system

The dual substrate system consisted of four identical runs� The observed

responses and the estimated models for Run IV� V� VI� and VII are shown

in Fig� 
��� 
���� 
���� and 
���� �Individual �� are estimations� where the

full Bailey � Ollis� model was employed� �Common �� are estimations for

batch A� B� and C within the same run� where the full model was employed�

and �Individual �� are estimates� where the reduced model B was employed�

��� Chapter 
� Results and comments

The model 	tting for �Individual �� for all the runs in the dual substrate

system seem to describe the data very well� Comments on the �Common ��

estimation is given in section 
����� The model 	ttings of �Individual 
� and

of �Common 
� are shown in section 
����� The model 	ttings of �Individual

�� are not shown�

The estimates of the parameters are displayed in Table 
�� and 
��� The

values of the estimated initial concentrations� X� for batch A� B� and C� were

determined from the common estimation� The lag phases were estimated

�by hand�� meaning that for each run 
 or � di�erent lag phases were tested

and the one that resulted in the largest log likelihood value was chosen�

The standard deviations �SD� on the parameter estimates were calculated

as averages of the variances within the batch experiments �
��we� from the

same run� 
�we is automatic calculated by Dekimo�

SD � ��we �
s
��we�A� � ��we�B� � ��we�C�




�
�
�

The inhibition coe�cient zt �which inhibit the benzene degradation� is the

most inaccurate determined parameter in the model in contrast to the zb

inhibition coe�cient which take the value of zero for all �� experiments

except from one �zb � �
����� The half�saturation coe�cients Ksb and Kst

have as in the single substrate system a relative large SD�value� The SD�

value for the yield coe�cient Yb is larger compared to Yt� A reason for the

better determination of Yt�estimate could be due to the larger initial value

of S� for toluene compared to the S��value for benzene� The e�ect of the

yield coe�cient is larger the larger the substrate concentration� In general�

the standard deviation values for the estimates in the dual substrate system

are larger than in the single substrate system� which very likely is due to

the larger number of parameters in the Bailey � Ollis model�
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Individual 	 Common 	 Individual �

Run IV A B C SD A� B� C A B C SD

kb ��	� ���
 ���� ���� ���� ��	� ��	
 ��	
 ���	

Ksb ��		 ��
� ���
 ��	� ��
� ���	 ���� ���
 ����

Yb ��
� ���� ���
 ��	
 ���� 	��� ��

 ��

 ����

zb ���� ���� ���� ���� ���� �� �� �� �

kt ���� ���
 ���	 ���� ���� ���� ���� ���� ����

Kst ���� 	��� ���
 ��	� ���
 ���
 	�	� ��
� ��	�

Yt ���� 	�	
 	�	� ���� 	�	� ���	 	�	� 	��� ��	�

zt ���
 	��� 	��� ���� 	��� �� �� �� �

b ���� ���� ���� ��� ���� ���� ���� ���
 ���	

�� ���� ���
 ���� ���	 ���� ��	� ���� ���� ���	

X� ��
	 ��
� ��
� ���� �� ��
	 ��
� ��
� ����

lag � � � � � � � � �

L ��� �
�� ���	 � �
�
 �	��� 	��� 	�� �

Run V
kb ��	� ���� ���
 ���� ���� ��	� ���	 ��	
 ���	

Ksb ��	� ���� ��
	 ��	� ���	 ���	 ��
� ���
 ���	

Yb ��	� ���� ��
� ��	� ��

 ���� ���
 ���
 ����

zb ���� ���� ���	 ���	 ���� �� �� �� �

kt ���� ���� ���� ���	 ���� ���� ���� ���� ���	

Kst ��	
 ���	 ���� ���
 ���	 ���� ���	 ���	 ���	

Yt ���
 ���� ���� ���� ���
 ���
 ���
 ���� ����

zt ���
 ���
 ���	 ���� ��
� �� �� �� �

b ���	 ��� ���� ��� ���� ���� ��� ���	 	��

�� ���
 ��	� ���� ���	 ��	� ���� ��		 ��	� ���	

X� ���	 ���� ���� ���� �� ���	 ���� ���� ����

lag 
 
 
 � 
 
 
 
 �

L ��
 ����
 ���� � �
��
 �	��� ��
�
 �	��
 �

Table 
��� Estimated parameter values in the dual substrate system for

Run IV and V� �Individual �� and �Common �� use the full Bailey � Ollis�

model� and �Individual �� uses the reduced model B� SD is the standard

deviation� L is the log likelihood value� and lag is the lag phase� ( # 	xed

value and (( # the same X� values as given for �Individual ��� The units of

the parameters are given by the following� kb �mg substrate�mg biomass�hour��

Ksb �mg substrate�l�� Yb �mg biomass�mg substrate�� zb �non�� kt �mg substrate�mg
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biomass�hour�� Kst �mg substrate�l�� Yt �mg biomass�mg substrate�� zt �non�� b

��hour�� X� �mg biomass�l�� and lag phase �hour��

Individual 	 Common 	 Individual �

Run VI A B C SD A� B� C A B C SD

kb ��	� ���	 ���
 ���� ��
� ��	� ��	
 ��	� ���	

Ksb ���	 ���� ���� ��	� 	�
� ���	 ���� ���	 ����

Yb ���	 ���	 ��	� ���� ���	 ���� ���� ���� ��	�

zb ���� ���� ���� ���� ���� �� �� �� �

kt ��

 ��
� ��
� ���� ��
� ��

 ��
� ��
� ����

Kst ���
 ��
� ���
 ���� 	��	 	��
 ��
	 ���	 ����

Yt ��

 ��
� ���� ���� ��
	 ���� ��
� ���
 ���


zt ���� ���
 ���� ���� ���
 �� �� �� �

b ���� ���� ���� 
�� 	�� ��� ���� ���� 	��

�� ���� ���� ���� ���	 ��	� ��		 ���� ���� ���	

X� ���
 ���	 ���� ���� �� ���
 ���	 ���� ����

lag � � � � � � � � �

L 
�� ���� 	��� � ����� �	��� ���� 
�
 �

Run VII

kb ���� ��	� ���� ���� ���� ��	� ���� ��		 ���	

Ksb ���	 ���� 	��� ��	� ���� ���	 ���� ���� ���	

Yb ���� ��
� ���� ���	 ���� 	�	� ���� ���� ����

zb ���� ���� ���� ���� ���� �� �� �� �

kt ���� ���� ���� ���� ��

 ���� ��
� ���
 ����

Kst ��
� 	�
	 ���
 ��	� 	�	� ���� 	��� 	��� ��	�

Yt ���� ��
� ���� ���� ��

 ���� ���� ���� ����

zt 	��� ��
� 	��� ���� 	��
 �� �� �� �

b 
�� 
�� ���	 	�� ���� ���	 ��� ����	 ���

�� ���� ���� ��		 ���	 ��	� ��	� ��		 ��	� ���	

X� ���	 ���� ��
� ���� �� ���	 ���� ��
� ����

lag 
 
 
 � 
 
 
 
 �

L ���� 	��� �	��� � �	�	 ����� ����
 ��
�	 �

Table 
��� Estimated parameter values in the dual substrate system for Run

VI and VII� �Individual �� and �Common �� use the full Bailey � Ollis�

model� and �Individual �� uses the reduced model B� SD is the standard

deviation� L is the log likelihood value� lag is the lag phase� ( # 	xed value
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and (( # the same X� values as given for �Individual ��� The units of

the parameters are given by the following� kb �mg substrate�mg biomass�hour��

Ksb �mg substrate�l�� Yb �mg biomass�mg substrate�� zb �non�� kt �mg substrate�mg

biomass�hour�� Kst �mg substrate�l�� Yt �mg biomass�mg substrate�� zt �non�� b

��hour�� X� �mg biomass�l�� and lag phase �hour��


���� Model reductions

The Bailey � Ollis� model� which was used for modelling the processes in

the dual substrate system� consists of � parameters� With � parameters

there are many combinations of parameters that could be examined for be�

ing eliminated from the model� In the present study the obviously ones and

those of special interest were tested� The benzene inhibition constant is

number one� As can be seen from Table 
�� and 
�� all estimates of zb are

zero� except for one �zb � �
���� but here the ��� con	dence interval in�

cludes zero� Also the likelihood ratio test showed that zb could be accepted

as being equal to zero� Thus� the Bailey � Ollis� model could be reduced

to a more simple model without the inhibition constant zb�

Reduced model A

dSt
dt

� �h� � k

StX

Kst � St

�
���

dSb
dt

� �h� � k

SbX

Ksb � Sb � zt � St

�
����

dX
dt

� �Yt �
dSt

dt
� Yb �

dSb
dt
� bX �
����

It is also interesting to see if the toluene inhibition constant zt could be

eliminated from the model � in such a case the model would turn into a

simultaneously utilization model �reduced model B�� Reducing the model

with zt does� however� not seem likely� since far from all ��� con	dence

intervals around zt include zero�
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Figure 
��� Estimation within Run IV a� batch A� b� batch B� and c� batch

C� � biomass obs� � toluene obs� 
 benzene obs�
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Figure 
���� Estimation within Run V a� batch A� b� batch B� and c� batch

C� � biomass obs� � toluene obs� 
 benzene obs�
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Figure 
���� Estimation within Run VI a� batch A� b� batch B� and c� batch

C� � biomass obs� � toluene obs� 
 benzene obs�
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Figure 
���� Estimation within Run VII a� batch A� b� batch B� and c�

batch C� � biomass obs� � toluene obs� 
 benzene obs�

��
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Reduced model B

dSt
dt

� �h� � k

StX

Kst � St

�
����

dSb
dt

� �h� � k

SbX

Ksb � Sb

�
��
�

dX
dt

� �Yt �
dSt

dt
� Yb �

dSb
dt
� bX �
����

By carrying out new estimations with the reduced model B the following

likelihood ratio tests were obtained�
Run IV Run V

A B C A B C

Reduced model A ��� ���� ���
 ��	 
���� 
	��

Reduced model B 

��� 
��� 
�� 

��� 
���� 

���

Test value �
�� ���� 	��� �
�� ��� 
���

�������� ��� ��� ��� ��� ��� ���

Further reduction No No No No No No

Run VI Run VII

A B C A B C

Reduced model A ��� ���� 
��� 
��� 
��� 

���

Reduced model B 

��� ���� ��	 
���� 
���� 
���


Test value ���� ��� �
�� ���� �
�� ����

�������� ��� ��� ��� ��� ��� ���

Further reduction No No No No No No

Table 
��� �Reduced model A� is the model given by Eq��
���� Eq��
�����

and Eq��
����� and �Reduced model B� is given by Eq��
����� Eq��
��
�� and

Eq��
����� and the values are the estimated log likelihood values� The �Test

values� were calculated from the likelihood ratio test� given in chapter ��
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From the test results it was not possible to reduce the Bailey � Ollis� model

to a simultaneously utilizationmodel �reduced model B�� The reduced model

B also 	tted the data in the �� experiments very poorly �graphs not shown��

When zt takes a value greater than zero� it means that the toluene inhibits

the benzene degradation� And when all the toluene has gone the benzene

degradation rate will accelerate� This phenomena can only be seen in a small

part of the degradation curve� namely between the time where toluene has

been totally degraded or nearly� and until benzene is totally degraded� Only

this part separate the two models� In Fig� 
��� 
���� 
���� and 
���� the

situation is more or less seen depending on the time interval and on the

parameter values�

Other parameters of interest to reduce the model by were the maximum

degradation coe�cient� the half�saturation coe�cient� and the yield coe��

cient for toluene �kt�Kst� Yt�� These parameter values were 	xed equal the

mean values obtained from the single substrate system� This new model

is denoted reduced model C� Estimations were carried out with these 	xed

values and compared with the values from the reduced model A� The re�

duced model C was not compared with reduced model B� since model B

was not accepted� The likelihood ratio tests gave the results� displayed in

Table 
���

From the results of the test it was not possible to use the parameter esti�

mates for toluene obtained in the single substrate system�

The biomass decay constant was not examined to be equal zero as in the

single substrate system� since the ��� con	dence interval did not include

zero in most of the cases�
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Run IV Run V

A B C A B C

Reduced model A ��� ���� ���
 ��	 
���� 
���

Reduced model C 

��� 
��� 
�� 

��� 
���� 

���

Test value �
�� ���
 	��
 �
�� 
��� 
���

�������� ��� ��� ��� ��� ��� ���

Further reduction No No No No No No

Run VI Run VII

A B C A B C

Reduced model A ��� ���� 
��� 
��� 
��� 

���

Reduced model C 

��� ���� ��	 
���� 
���� 
���


Test value ���� ��� �
�� ���� �
�� ���	

�������� ��� ��� ��� ��� ��� ���

Further reduction No No No No No No

Table 
��� �Reduced model A� is the model given by Eq��
���� Eq��
�����

and Eq� �
����� and �Reduced model C� is also given by Eq��
���� Eq� �
�����

and Eq� �
����� but kt�Kst� Yt have 	xed values� The values given in the

table are the estimated log likelihood values� and the �Test values� were

calculated from the likelihood ratio test given in chapter ��


���� Test for reproducibility

Within runs

A test for the hypothesis that the parameter values for three batches A� B�

and C belonging to the same run could be said to have the same values�

is carried out� The log likelihood values from the three batches were used

in forming the test statistic �given in chapter �� which is compared to a

quantile in the ���distribution�
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The joint test�

�� � �����

�� ����		 � ���
� � �����	�
� � ��

Test in Run�

IV� � � � �
�
�� ��
� � ��
� � 
�
�		 � ��
� � �����	�
� � ��



V� � � � ����
�� ��
�� ��
�� �
�		 � �

� � �����	�
� � ��



VI� � � � ���

�� ��

 � ��

 � ��
�		 � ���
� � �����	�
� � ��



VII� � � � ���
�
�� ���
� � ��
�� ��

		 � ���
� � �����	�
� � ��



All the above shown tests reject the hypothesis of common sets of para�

meter estimates within the runs� For Run IV the rejection may not seem

reasonable� since the common estimation is practically identical with the

individual estimation as seen in Fig� 
��� For Run V� VI� and VII the dif�

ferences between common and individual estimation is larger� see Fig�
����


���� and 
���� These observations re"ect the magnitude of the test values�

The test value for Run V is the smallest� whereas the test values for Run

VI and VII are considerable larger� The test value for Run V is relatively

large compared to the small number of observations in contradistinction to

the number of observations in Run IV� VI� and VII�

Between runs

A test for the hypothesis that the parameter values for three batches be�

longing to di�erent runs could be said to have the same values� was carried

out� According to the procedure described in chapter �� four parallel tests

for common set of parameter values for experiments from di�erent runs were

carried out�
a� Run IV batch A� Run V batch A� Run VI batch A

b� Run VII batch A� Run IV batch B� Run V batch B

c� Run VI batch B� Run VII batch B� Run IV batch C

d� Run V batch C� Run VI batch C� Run VII batch C

Any other combination of batches from three di�erent runs could have been

��� Chapter 
� Results and comments

chosen in the four parallel tests� The examination of common sets of pa�

rameter estimates were treated the same way as when examining common

sets of parameter values within the runs� This means that new initial con�

centrations for the biomass were estimated for the new common estimation

�Common 
�� and new individual estimates �Individual 
� with the same

new initial concentration were carried out as well� In Fig� 
��
� 
���� 
���

and 
��� the common estimations �Common 
� between the runs are shown

together with the individual estimations �Individual 
��

The results of the tests were the following�

The joint test�

�� � ��
�

�� ����
�		 � ���
� � �����	�
� � ��

Test in�

a� � � � �����

� ��
� � �
�� 

�		 � ���

 � �����	�
� � ��



b� � � � ���

�� ����
� � 
�

� ��
�		 � �
�
� � �����	�
� � ��



c� � � � ����
�� ���
� � ��
� � 
�
�		 � ���
� � �����	�
� � ��



d� � � � �����
�� ����
� � �
�� ��
�		 � ���
� � �����	�
� � ��



Using � � �� the hypothesis of a common set of parameter estimates for

experiments from di�erent runs is rejected for all four tests� For a few graphs

the rejection of a common set of parameter estimates seem less obviously�

As a whole we must conclude that common sets of parameter estimates

do not describe the observed measurements very well� Thus� one common

set of parameter estimates for all �� experiments would 	t the graphs even

worse� The conclusion is then that the dual substrate system has a limited

reproducibility as the single substrate system�
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Figure 
��
� Estimation between runs a� Run IV batch A� b� Run V batch

A� and c� Run VI batch A� � biomass obs� � toluene obs� 
 benzene obs�
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Figure 
���� Estimation between runs a� Run VII batch A� b� Run IV batch

B� and c� Run V batch B� � biomass obs� � toluene obs� 
 benzene obs�
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Figure 
���� Estimation between runs a� Run VI batch B� b� Run VII batch

B� and c� Run IV batch C� � biomass obs� � toluene obs� 
 benzene obs�

��� Chapter 
� Results and comments

Figure 
���� Estimation between runs a� Run V batch C� b� Run VI batch

C� and c� Run VII batch C� � biomass obs� � toluene obs� 
 benzene obs�
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���� Experiment with missing data

Due to an accident in the chemical analysis of the substrate samples the

last measurements of the benzene degradation in all three experiments in

Run X were lost� As a result� the simultaneous estimation of all parameters

was impossible� However� when 	xing minimum two of the parameters at

a time� estimation of the rest of the parameters was possible� The 	rst

estimation was performed with 	xed inhibition constants zb and zt� The

values were set to � and ���� respectively� which were equal the average

values from the dual substrate experiments� The results of individually and

commonly estimations are shown in Fig� 
��� and the parameter estimates

are given in Table 
�
�

Individual Common

Parameters Batch A Batch B Batch C SD Batch A� B� and C

kb ���	� ��	�	 ��	�	 ����
 �����

Ksb ����� ���

 ����� 	��		 ��

	

Yb ����� ����� ����� ��	�� �����

zb �� �� �� � ��

kt ����
 ����� ����� ����� �����

Kst 	���� ���
	 	�		� ��	

 	�	�	

Yt ����� ���
� ��
�� ����� ��
��

zt ����� ����� ����� � �����

b ����� ����� ����� ����	 �����

�� ����� ����� ����� ����
 �����

X� ���
	 ��
�� ���
� ����
 ���
	� ��
��� ���
�

lag phase ��
 ��
 ��
 � ��


L ����
	 �	���	 �	
��	 � �

���

Table 
�
� Estimated parameter values for Run X� batch A� B� and C� indi�

vidually and commonly� SD is the standard deviation� L is the log likelihood

value� and values with ( were 	xed during the estimation� The units of

the parameters are given by the following� kb �mg substrate�mg biomass�hour��

Ksb �mg substrate�l�� Yb �mg biomass�mg substrate�� zb �non�� kt �mg substrate�mg

biomass�hour�� Kst �mg substrate�l�� Yt �mg biomass�mg substrate�� zt �non�� b

��hour�� X� �mg biomass�l�� and lag phase �hour��

��
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Figure 
���� Estimation within Run X� zb and zt were 	xed �� and �����

a� batch A� b� batch B�� and c� batch C� � biomass obs� � toluene obs� 


benzene obs�
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Concerning the test for common set of parameter estimates within the run�

the test result is not di�erent from the previously tests in the dual substrate

system � the test rejects the hypothesis of a common set of estimates within

the run� even though the common estimation seems to describe the data

reasonable well� However� the more observations �as in the dual substrate

system� the better can possible di�erences between the two sets of estimates

be revealed�

Test in Run X�

�� � ����
�� ���

�� ��
�� ��
�		 � ��
� � �����	 � �

�

The second estimation for Run X was performed with 	xed inhibition and

half�saturation coe�cients for benzene zb and Ksb� The values were set to

average values� respectively equal to � and ����
� The results are shown in

Fig� 
��
 and the parameter estimates are given in Table 
��� As for the

previous estimation a common set of estimates could not be accepted�

Individual Common

Parameters Batch A Batch B Batch C SD Batch A� B� and C

kb ��		� ���	� ���
� ���
� �����

Ksb ����
� ����
� ����
� � ����
�

Yb ����� ����� ����
 ��	�� �����

zb �� �� �� � �

kt ����	 ����
 ����� ����� ���
	

Kst 	���� ����� 	���� ����	 	����

Yt ����� ����� ��

� ����� ��

�

zt ����
 	�	
	 	���� ��
�� 	����

b ����� ����� ����� ����� �����

�� ����� ����� ����� ����� �����

X� ����� ����	 	���� ����
 ������ ����	� 	����

lag phase ��
 ��
 ��
 � ��


L ������ �		��	 �	
��
 � �

���

Table 
��� Estimated parameter values for Run X� batch A� B� and C�

individually and commonly� SD is the standard deviations� and L is the log

likelihood value� and values with ( were 	xed during the estimation�
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Figure 
��
� Estimation within Run X� zb and Ksb were 	xed �� and ������

a� batch A� b� batch B�� and c� batch C� � biomass obs� � toluene obs� 


benzene obs�




�
 The structures of the correlation matrices ���

Many of the parameter estimates changed surprisingly little between the

two estimations �zb � �� zt � �
�� and zb � �� Ksb � �
����� even though

the 	xed values were quite di�erent� With the relatively strong parameter

correlation one would have expected the opposite� The reason for the small

changes in the estimates could� however� be due to the large number of

parameters in the model�

��� The structures of the correlation matrices

The structure of the correlation matrices varied from experiment to exper�

iment� but the main structures were the same� The examination of the

correlation matrices is divided into two parts! �� for the single substrate

system and �� for the dual substrate system�

Single substrate system

A strong positive correlation between k and Ks� a negative correlation be�

tween k and Y � and a small positive correlation between Ks and Y were in

common for all the structures in the single substrate system� An average

correlation matrix for the single substrate system based on the correlation

matrices� is given in Table 
���� A few covariance matrices could not be

used� due to a very large conditional number � see chapter ��

Avoiding correlations between the parameter estimates are impossible due

to the structure of the model �Box � Lucas� ������ however the correlations

can be minimized� See chapter � for more on the subject�

k Ks Y

k � ��� ����

Ks ��� � ���

Y ���� ��� �

Table 
���� Average correlations matrix for the single substrate system�
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Dual substrate system

An average correlation matrix for the dual substrate system based on the

correlation matrices from the �� experiments� is given in Table 
���� A few

covariance matrices could not be used� due to very large conditional number

� see chapter ��
kb Ksb Yb kt Kst Yt zt b

kb � ��
 ��� ��
 ��� ���� ��� ���

Ksb ��
 � ��� ��� ��� ���� ��
 ���

Yb ��� ��� � ��� ��� ���� ��� ���

kt ��
 ��� ��� � ��� ���
 ��� ���

Kst ��� ��� ��� ��� � ��� ��� ���

Yt ���� ���� ���� ���
 ��� � ��� ���

zt ��� ��
 ��� ��� ��� ��� � ���

b ��� ��� ��� ��� ��� ��� ��� �

Table 
���� Average correlations matrix for the dual substrate system�

A strong positive correlation between kb and Ksb� between kb and zt� and

between zt and Ksb were in common for all the structures in the dual sub�

strate system� And likewise a strong negative correlation between kt and Yt�

and between Yb and Yt� and a positive correlation between kt and Yb� For

minimizing the correlations between the parameter estimates see chapter ��

When comparing the results from Table 
��� with the single substrate sy�

stem �Table 
����� one will notice that the strong negative correlation be�

tween kt and Yt is also found in the dual substrate system� but that the

strong correlation between kt and Kst is not found in the dual substrate

system� This indicates that parameter estimates are more or less depend�

ing on the system in which they are conducted� It is not so that kt and

Kst are not correlated� they are just less correlated compared to the other

parameter correlations�




�� Overlook of the estimates from single and dual substrate systems ��


��� Overlook of the estimates from single and

dual substrate systems

The Monod model in the single substrate system was reduced to a Monod

model with no biomass decay! and the Bailey � Ollis� model in the dual

substrate system was reduced to a competitive model where benzene did not

inhibit the toluene degradation but toluene inhibited the benzene degrada�

tion� The reduction of the Bailey � Ollis� model was very convincing since

all estimates of zb �except from one� were already equal to zero when using

the full model�

In spite of the fact that the experiments have a limited reproducibility it

is still of interest to know the magnitude of the parameter estimates and

of the variances that one could expect to obtain in a future experiment

like these� For this reason averages and corresponding standard deviations

for the parameter estimates are calculated �using the equations given in

chapter �� and the results are displayed in Table 
����

In the single substrate system it was as we recall possible to describe ex�

periments within the same run with a common set of parameter estimates�

but not for experiments from di�erent runs� This situation is re"ected in

the standard deviations given in Table 
���� where the standard deviations

within the runs are smaller than the standard deviations between the runs�

The standard deviations within the experiments are in general smaller than

any of the other standard deviations � this holds for both the single and

the dual substrate system� In the dual substrate system it was as men�

tioned earlier not possible to describe the experiments with a common set a

parameter estimates neither for experiments within the runs nor for expe�

riments from di�erent runs� This situation is also re"ected in the standard

deviation given in Table 
���� where 
�wr for some parameter estimates are

smaller than 
�br and for other larger� in other words� there is no di�erence

in the magnitude of the standard deviations within and between the runs�
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Experiment Parameter Average value ��we ��wr ��br ��t

Single sub� kt �mg�mg�hour� ���� ���� ���� ��
	 ����

Kst �mg�mg�hour� ��
� ���� ���� ���� ��
�

Yt �mg�mg� ��	� ���� ���� ���� ����

Dual sub� kb �mg�mg�hour� ���
 ���� ���	 ���� ����

Ksb �mg�mg�hour� ���� ��
� ���� ���� ����

Yb �mg�mg� ���� ��
	 ���� ��
� ����

kt �mg�mg�hour� ���� ��
� ���� ��
� ����

Kst �mg�mg�hour� ��	� ��
� ��	� ���� ����

Yt �mg�mg� ���� ���	 ��
� ��
	 ��
�

zt ���� ���	 ���� ���	 ���


b ��hour� ���
 ���
 ���
 ���� ���


Table 
���� The average values were calculated from all batch experiments

belonging to the single or the dual substrate system� 
�we is the standard

deviation for parameter estimates within the experiment and is given by the

program Dekimo� 
�wr is the standard deviation within the runs� 
�br is the

standard deviation between the runs� and 
�t is the total standard deviation�

A general result in the dual substrate system is that the estimates of the

maximum degradation coe�cient for toluene� kt� were larger than for ben�

zene� kb� and that the estimates of the yield coe�cient for toluene� Yt� were

larger than for benzene� Yb�

The parameter values given in Table 
��� are not independent of each other�

One should be aware of that some of the parameter estimates are strongly

correlated �see the section above��
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��� Three di
erent estimation techniques

Di�erent optimization methods used for estimation in the same nonlinear

model describing the same experiment can yield di�erent parameter esti�

mates� In the following parameter estimates obtained fromLineweaver�Burk

linearization� AquaSim� and from Dekimo are compared� The experiment

used for illustrating all three estimation methods was Run I� batch A� Run

VII� batch B �a dual substrate experiment� was moreover used in compar�

ing AquaSim and Dekimo� For matter of simplicity the measurement errors

were assumed univariate� i�e� the weight function wij in Dekimo was set

to �� Linear regression analysis was carried out for the Lineweaver�Burk

linearization �Fig� 
�����

Figure 
���� Linear regression used in the Lineweaver�Burk linearization

The regression line is mostly controlled by only the two last points� which

are the two substrate measurements with the lowest concentrations� From

the cut o� and the slope of the line� k and Ks were determined �see chap�

ter � for calculations of the parameter values�� In Table 
��
 the parameter

estimates from the Lineweaver�Burk are given together with the estimates

from AquaSim and Dekimo for Run I� batch A� The model 	tting based on

parameter estimates from Lineweaver�Burk is shown in Fig� 
���� and the
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model 	tting based on parameter estimates from AquaSim and Dekimo� re�

spectively is shown in Fig� 
���� In order to compare the three di�erent 	ts

the log likelihood values were calculated for all of them by 	xing all para�

meter values and letting Dekimo estimate the likelihood values� Parameter

estimates obtained from Dekimo 	t the data best� The estimation with

AquaSim was almost as good� however� standard deviation and parameter

correlation matrix was not estimated by the program�

Parameter Lineweaver
Burk AquaSim Dekimo SD

kt �mg�mg�hour� ��	� 
��� 
��� ����

Kst �mg�mg�hour� ���
 ���� ���� 
���

Yt �mg�mg� ���� ���� ���� ����

b ��hour� � � � 


X� �mg�l� ���� ���� ���� ����

log likelihood 
����� 

���� 

���� 


Table 
��
� Parameter estimates for Run I� batch A� estimated by Linewea�

ver�Burk� AquaSim� and Dekimo� SD �
�we� is the standard deviation esti�

mated by Dekimo�

The same picture is seen with the estimations in the dual substrate system�

The log likelihood values for the two kinds of estimations �Dekimo and

AquaSim� were practically the same� but AquaSim did not calculate the

standard deviations on the parameter estimates� The model 	ttings are

shown in Fig� 
�� and 
��
� With di�erent initial values for the parameters

�Table 
���� three quite di�erent sets of estimates were obtained �Table 
����

in AquaSim in spite of that the model 	ts were almost identical� With the

same three initial values� three di�erent sets of estimates were obtained in

Dekimo� The estimates obtained by Dekimowere� however� much more alike

as seen in Table 
���� Dekimo seems better in 	nding the global optimum�

since the three sets of parameter estimates were must more alike compared

to the optimum found by AquaSim� However� since the parameters are

highly correlated� all � optima �global or not� 	t the data very well�
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Figure 
���� Run I� batch A estimated by the Lineweaver�Burk method�

� biomass obs� � toluene obs�

Parameter Initial values

kb �mg�mg�hour� ��
	� ���		 �����

Ksb �mg�mg�hour� ����� 
���� 
����

Yb �mg�mg� ����
 ����
 ����


zb ����� ����� ����


kt �mg�mg�hour� ��
�� ��	�	 ��	��

Kst �mg�mg�hour� ����
 
�

	 
�
��

Yt �mg�mg� ����� ����� ���
�

zt ����� 
�
�� 
����

b ��hour� ����
 ����� �����

X� �mg�l� ����� ��
�� �����

Table 
���� Three di�erent sets of initial values used for estimating in

AquaSim and Dekimo�
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Figure 
���� Run I� batch A estimated by AquaSim and Dekimo� � biomass

obs� � toluene obs�

Parameter AquaSim Dekimo SD

kb �mg�mg�hour� ��	
� ����� ����� ��	�
 ��	
� ��	�� ����

Ksb �mg�mg�hour� ��	
� 	�
�
 ���
� ����	 ����� ����	 ��	


Yb �mg�mg� ����� ����	 ����� ���	
 ����� ����	 ��	�

zb ���

 ����
 ���	� ��
�� ���
� ����	 ��	�

kt �mg�mg�hour� 	��
	 ��
�� ����� ��
�� ����� ��
�� ���


Kst �mg�mg�hour� ����� 	��

 	���� ����� ����� ����� ���


Yt �mg�mg� ����� ����� ���	
 ��
�� ��
�
 ��

� ����

zt ��	

 	��	� ��
�� ����� ����� ��	�� ��	�

b ��hour� ����� ����� ����� ����	 �����	 �����	 �����

X� �mg�l� ��	�� ����� ����� ����� ����� ����� ���


log likelihood ������ ��
��� ������ ����

 ����
� �����
 �

Table 
���� Parameter estimates for Run VII� batch B� estimated by Aqua�

Sim and Dekimo� SD �
�we� is the standard deviation estimated by Dekimo�

With three di�erent initial values of the parameters� di�erent estimates were

obtained�
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Figure 
���� Run VI� batch B estimated by AquaSim for three di�erent

initial values� � biomass obs� � toluene obs� 
 benzene obs�

Figure 
��
� Run VI� batch B estimated by Dekimo for three di�erent initial

values� � biomass obs� � toluene obs� 
 benzene obs�

��� Chapter 
� Results and comments
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Discussion

Reproducibility

For both the single and the dual substrate system the experiments which

were carried out the same days �within the runs� resembled each other

more than experiments which were carried out on di�erent days �between

the runs�� In the single substrate system� the likelihood ratio test was in

agreement with these observations� since the test could accept common

sets of parameter estimates within the runs but not between the runs�

In the dual substrate system the likelihood ratio test rejected all hypothe�

sis of common sets of parameter estimates� However� the fact that the

lag phases between the runs varied considerably but were exactly the same

within the runs� indicates that the experiments were more uniform within

the runs than between the runs�

Since the experiments were more uniform within the runs than between� it

seemed reasonable to suspect the biomass of causing the variability� The

biomass in experiments carried out the same day came from the same pre�

culture� whereas the biomass in experiments carried out on di�erent days

���
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came from physical di�erent precultures� which though originated from the

same frozen stock culture �see Fig� ���� chapter ��� This fact is the only

known variation between the runs� all other factors should be as identical

as within the runs� A possible reason for the variation in the preculture

may be due to variations on the agar plate in the early growth phases of

the bacteria� The bacteria may e�g� have mutated and when starting the

�real� experiments the biomass could therefore be genetically di�erent from

the biomasses in other runs� Even though the biomass was grown on agar

plates after each experiment and showed the same morphology as previously�

Another explanation of the greater variation between the runs involves the

conversion of mg protein�l into mg biomass�l� As mentioned in chapter �

the conversion with a factor � was not exact� but showed some variation� If

the protein measurements from one or more batch experiments should have

been converted by e�g� ��
 instead of �� the estimated parameter values

would have been di�erent� so would the log likelihood values and the tests

likewise �see appendix E�� A third explanation could be the variation of

duration time of the precultures �the time between starting the preculture

by adding bacteria from the agar plates until the preculture was used as in�

oculum in the �real experiments��� The biomass is likely to be more active

just after the exponential phase than later on� Several hours later� part of

the biomass may have died or would be in a starvation phase� In Table ���

a review of the duration time of the precultures together with the estimated

lag phases is shown�

Single substrate Dual substrate

Run I II III IV V VI VII

Duration time �� ���� �� ���� �� ���� ��

Lag phase � ���� � � � � �

Table ����� Review of the duration time �in hours� of the precultures and

of the lag phases in the runs� The ��� refers to experiments where the lag

phase is uncertain and maybe should be two�



��


In the single substrate system� a slow start or perhaps a lag phase in Run II�

cannot be explained by a longer duration time of the preculture compared

to Run I and III� However� this does not exclude the explanation that the

biomass in the preculture for Run II had su�ered the longest period of

starvation or death before it was used as inoculum in the �real experiments��

The toluene in this preculture may have degraded faster due to less toluene

and more bacteria initially than in the precultures for Run I and II�

In the dual substrate system it seems more likely that there may be a

connection between the duration time of the precultures and the lag phases�

The lag phases cannot be explained by the presence of benzene� since there

was no lag phase in Run VI�

Likelihood ratio test

In the discussion of the likelihood ratio tests appropriateness for these mi�

crobiological degradation experiments� several aspects are considered� The

appropriateness of the test is evaluated by looking at the 	gures and the

standard deviations of the estimates� In the single substrate system the

likelihood ratio test accepts common sets of estimates within the runs and

rejects between the runs� This result is re"ected in the model 	ttings� The

common estimations within the runs 	t the data very well compared to the

individual estimation� Between the runs the 	ttings by common estimations

are less good� These observations are also re"ected in the average standard

deviation �SD� for the parameter estimates� SD within the runs are smaller

than SD between the runs �see chapter 
� section 
����

In the dual substrate system the likelihood ratio test rejects all hypothesis

of common estimates� both within and between the runs� When looking at

the average standard deviations there are no di�erence between the SD for

parameter estimates within the runs compared to the SD for estimates be�

tween the runs� When looking at the model 	ttings the rejection of common

sets of parameter estimates may seems reasonable except for one run �Run

IV�� The common estimation for Run IV is practically identical to the indi�

vidual estimations� The exact reason why the likelihood ratio test rejected
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the common set of parameter estimates is not known� One reason might

be that the strong correlation between the substrate responses �toluene and

benzene�� which is not accounted for in the likelihood expression� has some

in"uence on the test� In order to examine this� it would require a large

number of simulations with known parameter values and known structure

of the measurement errors�

Statistics

The program �Dekimo� used in this study to estimate the parameters of

the microbiological degradation models� are based on di�erent assumptions�

One of these assumptions was� however� violated� namely the assumption

of no correlations between the responses� It turned out that the substrate

measurements �toluene and benzene� were strongly correlated� In spite of

this� the analysis showed that a simple model based on no correlation be�

tween the responses proved to be e�ective� The strong correlation could give

rise to singularity in the design matrix and cause di�culties in convergence�

The strong correlation between the responses may as mentioned earlier also

have an in"uence on the likelihood ratio test� One of two solutions to this

problem may be considered �� instead of one sample to determine benzene

and toluene two samples could be taken from the batches or �� include the

correlation in the model building�

A more numerically related aspect is the time step size� which has relative

large in"uence on the value of the estimates� The step sizes in Dekimo are

variable� large when little change in the rate of di�erential equations and

small when a great change in the rate was detected� Experience from esti�

mating in a spreadsheet� where the integration of the di�erential equations

were performed by step�wise linearization� showed however that the size of

the steps have a large in"uence on the modelling and thereby on the pa�

rameter estimates� The step sizes in Dekimo should be adequately small in

order to ensure correct parameter estimates � the step sizes are determined

by the BDF method� However� if the change in rate is too large e�g� when

the curve breaks o� convergence problems may occur due to di�culties in

determining an appropriate time step size� This situation may occur if e�g�
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the Monod model is modelled with a very smallKs value �less than �������

The model employed to describe the microbiological degradation experi�

ments in this study consists of a biological model� which is deterministic

and a �statistic� part �measurement error�� which is stochastic� Other mo�

dels may also have been used in describing the processes under considera�

tion e�g� the stochastic di�erential models� Stochastic di�erential equations

introduce the possibility of formulating more elaborate dynamical models

for degradation kinetics� Parameterization of the stochastic nature of the

measurement error component makes it possible to account for the occur�

rence of highly correlated responses with time �not to be mistaken with

the correlation between di�erent responses�� However� statistical models

of degradation kinetics based on nonlinear� stochastic di�erential equations

require more accurate measurements of both the substrate compounds and

the biomass compound� compared to currently available methods�

��� Chapter �� Discussion
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Conclusions

Nonlinear parameter estimation methods and examination of reproducibi�

lity in microbiological degradation experiments are two very important but

overlooked phenomena� This is quite disturbing since it is current practice

to use the parameters as characteristics of the biological processes�

Incorrect parameter estimates are easily obtained if an inappropriate esti�

mation method is used� e�g� linearization� including parameter values from

other experiments� or an incorrect error structure in a nonlinear estimation

method� The parameter estimates vary from one experiment to another

even though they are conducted under almost exactly the same experimen�

tal conditions� Therefore the variability and the reproducibility should also

be examined�

In the present study an iterative maximumlikelihood estimation routine was

implemented for parameter estimation� and the measurement error struc�

ture was mainly determined from repeated measurements� The estimation

program �Dekimo� successfully found the global optimum� for the two non�

���

��
 Chapter ��� Conclusions

linear models� Monod and Bailey � Ollis� Parameter estimation using two

other methods than the one employed in the study by Dekimo showed some

interesting results� The linearization method Lineweaver�Burk resulted in

parameter estimates which did not provide a good 	t of the data� The non�

linear program AquaSim gave good model 	ts but had trouble 	nding the

global optimum especially for Bailey � Ollis� model� Moreover� the pro�

gram did not estimate standard deviations for the parameter estimates due

to a poor functioning secant routine� Instead it was necessary to use the

more simple Simplex routine� which did not provide the user with standard

deviations of the parameter estimates�

In the present study of microbiological degradation experiments it was not

possible to reproduce the experiment completely� that is it was not possible

to describe all � and �� experiments in the single and the dual substrate

systems� respectively� with one common set of parameter values for each

system� However� for the single substrate system it was possible to estimate

common sets of parameter values within the runs �experiments carried out

on the same day�� Looking at the 	tted models for the dual substrate sy�

stem common sets of parameter estimates within the runs seemed possible�

but the likelihood ratio test rejected this hypothesis� The fact that the

hypothesis was rejected might be due to the strong correlation between

the substrate responses� which were not accounted for in the likelihood

ratio test� For both the single and the dual substrate system� common sets

of parameter estimates between the runs did not seem likely� because the

di�erences were too large� It is believed that it was the variability of the

biomass in the preculture that caused the limited reproducibility� It is di�

sturbing that some of the least complicated experiments on microbiological

degradation seems to have limited reproducibility�

In spite of the limited reproducibility� the experiments in the single and

the dual systems� had several features in common� All experiments in the

single substrate system could be estimated without the biomass decay �b �

��� All experiments in the dual substrate system were estimated without

inhibition of the toluene degradation �zb � ��� All the estimations showed
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that the yield coe�cients Y for toluene were larger than for benzene� and

that the maximumdegradation coe�cients k for toluene were larger than for

benzene� Furthermore� the correlation matrices were very much alike within

the single and the dual substrate systems� which also show some similarity

even though the experiments are said to have limited reproducibility�

It is often seen that several sets of parameter estimates with quite di�erent

values 	t a given data set almost equally well �present thesis and Holmberg

� Ranta� ��
��� This can be due to

�� strong correlations between the parameter estimates�

�� relatively large measurements errors�


� nonlinearity of the model �Box � Lucas� ������

The large variations which are often reported in parameter estimates ob�

tained from di�erent experiments performed under similar conditions �Holm�

berg� Siev)nen � Carlberg� ��
�� can thus be explained� The reproducibility

of experiments is often uncertain because it can be di�cult to obtain ex�

actly the same environmental conditions and prevent changes in the internal

state of the organism� In this study we have concentrated on performing

experiments under the same environmental conditions for all the runs� The

procedure of the precultures should though maybe have been even more

identically performed� however� preventing changes in the internal state of

the organism was not possible�

The parameters should not be used as biological characteristics� which is

current practice� They depend on the system in which they were estimated�

This was also seen in the present study when the average parameter values

for toluene obtained in the single substrate system were used in the dual

substrate system � the modelling 	tted the data very poorly� The idea

of comparing the parameters and using them as biological characteristics�

should therefore be critically reconsidered�

�
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Chemical recipes

Glycerol medium

Tryptonesoybroth �TSB� 
� g

Glucose � g

Skim�milk powder �� g

Glycerol 
�� �� g

Distilled water � litre

Stock solution of toluene and benzene

� litre of distilled water was autoclaved� When cooled o�� concentrated

toluene ����� or benzene was added using a sterile pipette� The stock so�

lution was stirred for one day to ensure total dissolution� Stock solution

used in the experiments were taken from the bottom of the �stock solution

batch��

�
�

�
� Appendix A� Chemical recipes

Growth medium � concentrations i batch experiments

Stock solution Concentration in experiments �mg�l�

Nutrient

KNO� �����

Mg�NO���� �H�O �
���

Ca�NO���� �H�O �����

Fe�NO���� �H�O 
��


NH�NO� �
��

Tracer metals

MnSO�� H�O ����


Co�NO���� �H�O �����

Na�B�O
� ��H�O �����

Zn�NO���� �H�O �����

Na�MoO�� �H�O ���



NiSO�� �H�O �����

KJ �����

EDTA �di�Na� �����

CuSO� ���



Phosphate bu�er

Na�HPO�� �� H�O �
��

KH�PO� ���

Concentrated solutions of the nutrient and the trace metals were made up as stock so�

lutions� stored at room temperature in a dark closet� and diluted appropriately for use�

The phosphate bu�er was added as powder�
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Procedures

PROCEDURE FOR PREPARING AND PERFORMING EACH

RUN

Agar plate

The agar media was made from Casein�peptone glucose yeast� Five plates

were made �one for use as inoculum� one for use after the preculture expe�

riment� and one for use after the �real� experiments�� The plates were put

in a dark cabinet at 
�� C for a day in order to ensure that the plates were

sterile �if contaminated bacteria would grow on the plates��

Grafting

In order to prevent that the biomass would defrost during the transportation

from the basement to the laboratory� a small ice�water bath were made�

With a sterile grafting knife a small amount of biomass was put on a plate

and placed in a dark cabinet at 
�� C for a day�

�
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Autoclave

The autoclaving lasted � hours�

� Four � litre bottles �for batch A� B� C� and blank test� each containing

� litre of distilled water & nutrient �� ml of each standard solutions�

see appendix A� & a magnet�

� One � litre bottle �for the preculture� containing ��� litre of distilled

water & nutrient & magnet�

� Two � litre bottles �for production of standard solutions of benzene

and toluene� containing � litre of distilled water�

� Four large and three smaller glass tops for the bottles�

� Three measuring cups with phosphor mixture� various small bottles�

measuring cups� and "asks

Preculture

In order to measure the amount of toluene� which was added to the precul�

ture� the following procedure was used� �� ml pentane mixture was pro�

duced �
�� mg heptane & �� ml double distilled pentane�� � ml toluene

standard solution were dissolved in a �� ml "ask and after that measured

on a gas chromatograph by extracting toluene into the pentane mixture�

The amount of toluene was then calculated and added to the preculture to�

gether with the phosphor mixture and 
 colonies of bacteria from the agar

plate� When carrying out the grafting one should be aware of not to use

a too hot grafting knife� otherwise the heat would kill the bacteria� The

inner side of the bottleneck was smeared with silicone �in order to make the

bottle gas tight� before the glass top was put on� The bottle was then put

on a magnet stirrer and a sample was taken� The next day more samples

were taken to see if the toluene was degraded� If and when the toluene

was degraded the preculture was ready to be use as inoculum and the last

preparations of the �real� experiments could begin�

Preparing for the batches experiments

Two "asks of pentane mixture were prepared �each consisting of ��� ml

pentane mixture� and the amount of toluene�benzene were calculated and
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poured into sterile "asks �this should not be done to much time ahead of the

start of the experiment� otherwise the substrate�s� will evaporate from the

"asks�� The phosphate mixture was added the � autoclaved ��litre bottles

each containing � l of distilled water� grow medium� and a magnet� Before

starting the experiments the bottles were heated up to ��� C� The measured

amount of substrate and about �
� ml biomass from the preculture for each

bottle were then poured into the ��litre bottles under sterile conditions�

Each batch was shaken violently and stirred for �� minutes before sampling�

This was done in order to ensure homogeneously condition in the medium�

The experiment

Each �� minutes two samples were taken from one of the four batches by

injecting air through a sterile 	lter to insure overpressure� One sample for

the biomass determination and the other for the substrate�s� determination�

TCA was added to the biomass sample� a lid was put on and the tube

was shaken violently and then placed in a refrigerator� To the substrate

sample � ml pentane mixture was added� a lid was put on and the tube was

shaken violently and then placed in a refrigerator upside down� After the

experiment was done samples were taken� diluted and spread on an ager

plate to ensure that the bacteria look the same as before the preculture was

started�

LOWRY METHOD FOR PROTEIN DETERMINATION

Reactions

Formation of the protein�copper complex� Reduction of the phosphomolyb�

date�phosphotungstate reagent �Folin�Ciocalteu phenol reagent� by tyrosine

and tryptophan residues�

Reagents

Production of reagent ��

A� � g Na� CO
 dissolved in ��� ml ��� N NaOH

B� � g Na�K�tartrate �Sodium potassium tartrate� in ��� ml distilled water

C� � g CuSO�� �H�O in ��� ml distilled water�

�
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Reagent �� Mix ��� ml A & � ml B & � ml C

For each sample ��� ml reagent � is used� Solution A is durable for � weeks

in a refrigerator� The durability of solution B and C are months� Reagent

� must be fresh daily�

Reagent �

Folin�Ciocalteus phenol reagent� Durable until change of colour to green�

Protein �


���� mg Bovin Serium Albumin

����� ml distilled water

The solution can be frozen at ���� C in batches of ��� ml� Durability�

about a year in a freezer�

Protein �

Dilute Protein � �� times by �� weighting a small "ask� �� adding ��� ml

Protein �� and 
� adding distilled water corresponding to � x the weight of

the protein� Protein � is made fresh daily


 M Trichlor acetic acid �TCA�

Dissolve ����� g TCA in ��� ml distilled water� Use gloves � the solution is

corrosive and suspected of being carcinogenic�

���� N NaOH

Dissolve �
�� g NaOH in ��� ml distilled water�

��
� N NaOH

Dissolve ���� g NaOH in ��� ml distilled water�

Sampling

Immediately after sampling from a batch� TCA is added and the tube is

shaken� The concentration of TCA in the tube should be about ��� M� e�g��



�
�

to a sample of �� ml� � ml is added� The tubes are closed with a lid and

placed in the refrigerator until analysed� The tubes used when sampling

should be the same as used when centrifuging�

Preparation of the samples

The samples are centrifuged at ���� rotations�min� for �� minutes� When

done� the samples are decanted and as much water as possible is removed

e�g� by sucking up the water with a pipette� Be careful � it is better to

leave a drop of water instead of risking to suck up some of the biomass at

the bottom of the tube� ��� ml ���� N NaOH is added to each sample and

shaken on a Whirley mixer and the lids are put back on� The samples are

then incubated for �
 hours at 
�� C�

Analyzing the samples and the standard curve

� Prepare Reagent �

� Construct a standard curve as the shown in Table � with replicates�

Be �as always� very accurate when adding the preparations� Protein

� should be added as the last�

Standard Total protein Distilled water ��
� N NaOH Protein �

No� �g �l �l �l

� � ��� ��� �

� 
 ��� ��� ��


 � �
� ��� ��

� �� ��� ��� ��

� 
� ��� ��� ���

� �� ��� ��� ���

� �� �� ��� ���


 �� � ��� ���

Table �� Scheme for making standard curve�

�

 Appendix B� Procedures

� Prepare the spectrophotometer for use �see the manual in the labora�

tory��

� Add ��� ml Reagent � to standards�samples� Incubate standards�

samples precise �� min� �use stop watch� the timing is critical�� Pre�

pare e�g� 
��� samples at a time with an interval of e�g� �� second

apart�

� Add ��� � l Reagent � at the same interval as above and shake with

Whirley mixer�

� Incubate at precise 
� min� before measuring�

Calculation of biomass

Concentration of protein # The measured amount of protein divided by

ml sample which was taken from the batch� The result is given in � g

protein�ml or in mg protein�l� If converted into mg dry weight biomass�l� it

is necessary to know the percentage concentration of protein in the biomass

�usually about �����



Appendix C

Calculations

STANDARD CURVES FOR TOLUENE

The regression curve for all �� standards seems to describe the data very well

�Fig� C���� But when looking only at the low concentrations the regression

curve does not describe the data so well �Fig� C���� The regression curve

for the full data set was�

Conc� � �
���� � �

��� �Area

Thus two regression curves were calculated� For the low concentrations the

regression curve was�
Conc� � � � �
���� �Area

The intercept was not signi	cantly di�erent from zero and was therefor set

to zero �Fig� C�
�� For the high concentrations the regression was �Fig� C����

Conc� � �
�
�� � �
��
� �Area

�
�

��� Appendix C� Calculations

Figure C��� Regression curve for the full data set for toluene standards

Figure C��� Regression curve for the full data set for toluene standards� low

concentrations



���

Figure C�
� Regression curve for the low concentrations of the toluene stan�

dards

Figure C��� Regression curve for the high concentrations of the toluene

standards

��� Appendix C� Calculations

STANDARD CURVES FOR BENZENE

There were made two regression curves for benzene of the same reason as

for the toluene standard curve� For the low concentrations the intercept

was set to zero �not signi	cantly di�erent from zero� and the regression was

thus found to be�

Conc� � � � �
���� �Area

For the high concentrations the regression was�

Conc� � 

���
 � �

��� �Area

In Fig� C�� and C�� the regression curves are seen for low and high concen�

trations respectively�

Figure C��� Regression curve for the low concentrations of the benzene

standards



��


Figure C��� Regression curve for the high concentrations of the benzene

standards

DETERMINATION OF THE DRYWEIGHT OF THE BIOMASS

IMT�s laboratory procedure was followed� From each batches �A� B� and

C� three samples were taken � some of ��� ml and some of ��� ml� The

measured mg dry weight biomass�l were compared to the measured average

values of mg protein�l found by the Lowry method� The conversion factors

for the three batches are given in the following table�

Batch Conversion factors Average values Standard deviations

A ��� ��� ��� ��� ���

B ��� ��� 
�� ��� ���

C ��� ��� ��� ��� ���

��� Appendix C� Calculations



Appendix D

Adjustment with the blank

test

The blank tests were in some situations used for adjusting the substrate

concentrations� If an unusually pattern were found in the three batch ex�

periments A� B� and C and the same pattern were recognized in the blank

test� when the blank test was used for adjusting� The unusually pattern

could occur when using the last of an extractions solvent bottle �pentane

& heptane� and changing to a new bottle� When using the last ��� of the

solvent of the bottle the pentane�heptane concentration changed dramatic�

After the two 	rst runs more that 
�� of the pentane mixture was never

used �this is also referred to as learning sequential�� Not all the experiments

were adjusted by the blank tests� In this appendix an example from Run

II is given� All three batches A� B� and C were adjusted but only batch

C is shown here� In Fig D�� the original measurements are shown and in

Fig� D�� after adjustments� The same characteristic drop in concentration

level were found in the blank test �Fig� D�
�� In this case the drop in con�

centration level is probably due to the equilibrium �of substrate between

���

��� Appendix D� Adjustment with the blank test

headspace and media�� which was not quite in balance at the start of the

experiment The adjustment was carried out by determine a regression of

the � measurements seen in Fig� D�
 of the blank test� calculating it back

to a horizontal line� and use this recalculation on the measurements from

the batch experiment�

Figure D��� Original data set� Run II� batch C

Figure D��� Adjusted data set� Run II� batch C



���

Figure D�
� Regression line in the blank test� Run II

��
 Appendix D� Adjustment with the blank test



Appendix E

Protein conversion factor

The conversion factor �from mg protein�l to mg biomass�l� used in this

study was equal �� This factor may though vary from experiment to exper�

iment� The conversion factor has in"uence on the parameter estimates� An

example is here given with a factor equal 
��� In practice less variation of

the estimated conversion factor is though expected�

Parameter Conversion factor�� Conversion factor��

kb �mg�mg�hour� 
��	� 
����

Ksb �mg�mg�hour� ����� �����

Yb �mg�mg� ���	� ���
�

b ��hour� 
���
� 
����	

X� �mg�l� ����� �����

���

��� Appendix E� Protein conversion factor

Figure E��� � biomass obs� � toluene obs�
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