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Summary

The focal point of the research presented here is all-optical signal processing via
nonlinearities. The objective has been to investigate the interaction between optical
signals via nonlinearities and how these nonlinearities can be engineered to serve
speci�c purposes.

The nonlinear response of materials with a second order nonlinearity, the so-called
�(2) materials, is faster and stronger than that of more conventional materials with
a cubic nonlinearity. The �(2) materials support spatial solitons consisting of two
coupled components, the fundamental wave (FW) and its second harmonic (SH).

During this project the interaction between such spatial solitons has been investi-
gated theoretically through perturbation theory and experimentally via numerical
simulations. The outcome of this research is new theoretical tools for quantitatively
predicting the escape angle, i.e. the angle of incidence below which the solitons will
fuse and above which they will move apart. Head-on collision experiments are not
comprised within the model assumptions, but even so expressions predicting the so-
called inwards escape angle are proposed and numerically veri�ed for certain cases.
Chapter 2 and paper 1 are dedicated to this part of the research. In chapter 4 the gen-
erality of the theoretical approach is emphasized with the derivation and veri�cation
of equivalent tools for media with a saturable nonlinearity.

The strength of the �(2) nonlinearity strongly depends on the phase mismatch be-
tween the FW and the SH. Via quasi-phase-matching (QPM) the phase mismatch
and hence the nonlinearity is e�ectively brought under control through periodic sign
reversal of the nonlinearity. On the average QPM changes the quadratic nonlinearity
and induces new cubic nonlinearities in the system. The engineering and exploitation
of these cubic nonlinearities in two-period QPM wave-guides has been another area
of investigation. Introducing the second period might make practical engineering of

the nonlinearities possible. A major result is the discovery that cubic nonlinearities
leads to an enhancement of the bandwidth for soliton generation. This part of the
research is presented in Chapter 3 and paper 2.
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Dansk resumé

Stikordene for den forskning, der præsenteres her, er �all-optical� signal behandling
ved hjælp af ikke-lineariteter. Speci�kt har målet været at undersøge optiske sig-
nalers vekselvirkning gennem ikke-lineariteter, og hvordan disse ikke-lineariteter kan
skræddersys til bestemte formål.

Materialer med en kvadratisk ikke-linearitet, de såkaldte �(2) materialer, har vist
sig at have ikke blot en kraftig ikke-linearitet, men også et ekstremt hurtigt respons
sammenlignet med de mere udbredte materialer med en kubisk ikke-linearitet. I �(2)

materialer kan der eksiteres rumlige solitoner bestående af to koplede felter, den
fundamentale bølge (FW) og dens anden harmoniske (SH).

I dette projekt er vekselvirkningen mellem to sådanne rumlige solitoner blevet under-
søgt teoretisk ved hjælp af perturbationsregning og eksperimentelt gennem numeriske
simuleringer. Resultatet er nyt teoretisk værktøj, der kan forudsige den kritiske ind-
faldsvinkel, under hvilken solitonerne vil smelte sammen. Frontale sammenstød falder
uden for model-antagelserne, men under visse forudsætninger kan der alligevel op-
stilles udtryk, som viser sig at være korrekte. Kapitel 2 og artikel 1 er dedikeret til
denne del af forskningen. I kapitel 4 eftervises den generelle metode gennem udledning
og veri�cering af tilsvarende værktøjer for materialer med en mætbar ikke-linearitet.

Den kvadratiske ikke-linearitets styrke afhænger kraftigt af om faserne mellem den
FW og den SH er tilpasset hinanden. Tilpasningen kan ske ved hjælp af kvasi-fase
tilpasning (QPM), der grundlæggende er en periodisk inversion af ikke-linearitetens
fortegn. QPM ændrer den midlede kvadratiske ikke-linearitet og inducerer nye mid-
lede kubiske ikke-lineariteter i systemet. Specielt er der blevet forsket i metoder til
manipulering og udnyttelse af disse kubiske ikke-lineariteter for to-periode QPM bøl-

geledere. Med to perioder burde det være praktisk muligt at udnytte de midlede
ikke-lineariteter. Et vigtigt resultat er opdagelsen af, at kubiske ikke-lineariteter ud-

vider båndbredden for generering af solitoner. Denne del af forskningen er præsenteret
i kapitel 3 og i artikel 2.
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Chapter 1

Introduction

The �eld of nonlinear optics is immense and it comprises several autonomous areas
of research. In this introduction the focus will be on the processes leading to spatial
soliton formation and interaction in quadratic materials.

1.1 The quest for nonlinear light control

In 1961, shortly after the invention of the laser, a group around P. Franken generated
the second harmonic (SH) of an optical wave by passing it through a quartz crystal
[1]. Besides the discovery in 1893 of Pockels' e�ect1 this was he �rst observation of a
nonlinear optical event and as such it marked the beginning of the �eld of nonlinear
optics [2, 3].

The second harmonic generation (SHG) process is based on the �(2) nonlinearity,
which is the quadratic nonlinearity arising from photon-electron interactions. In gen-
eral three waves are mixed in a �(2) crystal. This situation is refered to as type-II
vectorial interaction. Type-I interaction of which SHG is an example, is degenerate
three-wave mixing where two waves have the same polarization and same fundamen-
tal wavelength (FW). In SHG the photons at the FW are repeatedly up-converted

1Friedrich Pockels discovered that the refractive index in certain crystals changes linearly with

the amplitude of an applied electric �eld.
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via SHG (! + ! ! 2!) and then down-converted via (2! � ! ! !). Because of the
repeatedness of the process the �(2) nonlinearity is often refered to as the cascaded
nonlinearity. The conversion e�ciency depends strongly on the wave vector mismatch
�k = k2!�2k! because the energy that down-converts experience a phase shift with
respect to the original FW. Realizing a small mismatch and hence a considerable con-
version e�ciency was di�cult in the early years of nonlinear optics. However, in 1967
Ostrovskii [4] recognized the importance of the phase shift in the FW, which becomes
an almost linear function of propagation distance at large phase mismatches, thus
mimicking the third order nonlinearity known from the cubic nonlinear Schrödinger
equation (NLS).

In the late 1980s and early 1990s experiments close to the phase match condition
were made [5, 6]. These experiments showed a strong phase shift, larger than �, due
to cascading. The availability of materials such as polymers and semiconductors with
very strong �(2) nonlinearities and relatively low loss led to a series of articles [7, 8]
which rediscovered the potential exploitation of the cascaded nonlinearity. During
the 1990s all-optical switching devices like the directional coupler, the Mach-Zehnder
interferometer, and the optical transistor were proposed [9]-[11] and demonstrated in
type-I [12] and in type-II [13]-[15] interactions.

Quadratic solitons in optics

Besides SHG the �eld of nonlinear optics also comprises temporally and spatially
coherent structures, i.e. temporal and spatial solitary waves. The key feature in tem-
porally coherent structures is the balance between group-velocity dispersion, i.e. the
spreading of the pulse due to di�erent velocities of the di�erent frequency compo-
nents, and self-phase modulation, i.e. the phase shift induced through the nonlinearity
changing the phase of di�erent frequency components with di�erent amounts. Anal-
ogous spatially coherent structures depends upon the balance between refraction and
self-focusing. Self-focusing arises when a continuous wave (CW) via the change in
the intensity dependent refractive index creates a wave guide in the medium. When
this self-created wave guide equals the di�raction of the CW the wave experiences
self-trapping and a spatial soliton has emerged. In �(2) materials trapping is a result
of interaction between the FW and its SH rather than a result of a refractive index
change.

In 1974 Karamzin and Sukhorukov and later in 1981 Kanashov and Rubenschik
predicted the existence of spatial solitons in �(2) materials [16]-[18], but due to the
experimental limitation to high mismatch regimes the observed quadratic e�ects were
very small. Hence the area was deemed experimentally exotic and largely �left in the
dark� for the next couple of decades.



1.1 The quest for nonlinear light control 3

The close-to-phase-matching experiments around 1990 spawned a new interest in the
spatial solitons. In a series of publications the solitons were studied analytically in
waveguides, i.e. in media where trapping occurs in one transverse direction [19]-[30],
and in bulk with trapping in two transverse directions [31]-[34], and likewise in type-II
[35]-[40].

In the mid 1990s spatial solitons were experimentally observed [41]-[43] in �(2) ma-
terials and all-optical switching was demonstrated exploiting type-II [44]. In 1998
temporal solitons were also observed in a �(2) material [45].

Soliton interaction

The interaction between spatial solitons was from the start showed an immense inter-
est due to the obvious potential applications in photonics [46]. An intriguing feature
of solitons is their particle-like behavior during collision. In 1D Kerr media collisions
are fully elastic due to integrability of the NLS equation [47, 48]. In contrast �(2) me-
dia are described by non-integrable equations [49] and soliton collisions are therefore
inelastic, displaying both fusion, repulsion, annihilation, and generation of additional
solitons [50, 51].

Fusion and crossing of spatial �(2) solitons was investigated numerically in type-I
[52]-[55] and in type-II [56, 40]. Experimental observations con�rming the numerics
were later made [57]-[60].

Variational theories [61, 62], which are able to predict critical launch angles and
relative phases separating regimes of collision and no collision [56]-[63], were devel-
oped. More recently elegant non-planar e�ective particle theories have predicted the
absence of spiraling for type-I solitons [65, 66].

Quasi-phase-matching

Quasi-phase-matching (QPM) is a major alternative over conventional phase match-
ing in many laser applications based on frequency-conversion processes in quadratic
nonlinear media. Lately remarkable progress has been made in the periodic poling
of lithium niobate technique for both two-dimensional bulk media and waveguides
[67, 68]. This has refueled the interest in QPM even though it was proposed [2, 3]
and even demonstrated [69, 70] in the early years of nonlinear optics.

Besides other practical advantages, QPM can be used to tailor the nonlinearity of the
material to form complex structures. For example, engineerable pulse compression
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in frequency-doubling schemes in synthetic QPM gratings has been demonstrated in
aperiodically poled lithium niobate and KTP [71]-[74], and transverse QPM gratings
have been made, both for shaping second-harmonic beams and to extend the spectral
coverage of optical parametric oscillators [75, 76]. Bandwidth enhanced parametric
interactions can be obtained in modulated-period structures [77], multiple nonlinear
interactions can be achieved in quasi-periodic schemes [78]-[82], and simultaneous
generation of multiple color laser light has been demonstrated in QPM waveguides
[83] and QPM crystals [84]. QPM engineering also �nds novel important applications
beyond pure frequency-conversion devices, and generation of enhanced cascading
phase-shifts [85] and all-optical diode operation [86] have been demonstrated.

Spatial solitons are supported by QPM media [87]-[91] and have been observed in
periodically poled lithium niobate [92]. Perturbative approaches suggest that the
averaged �eld equations should include induced averaged cubic nonlinearities [93]-
[95]. Such terms, modifying the average properties of CW waves [96, 97] and the
soliton families of the averaged equations [93]-[98], can be analyzed as sustained by
competing quadratic and e�ective cubic nonlinearities [99]-[103].

The question thus naturally arises whether and how QPM engineering can be em-
ployed to bring the e�ective cubic nonlinearities to compete with the quadratic in the
average �elds. One solution is to add a strong dc-part to the nonlinear QPM grating,
i.e. as done in [104, 105]. This adds a term to the induced Kerr terms, which is pro-
portional to the QPM grating period and the dc-value squared, and thus can be large
[95]. Another potentially more versatile technique is to modulate the QPM period
with a second longer period, as it was shown theoretically in [94]. This introduces an
extra degree of freedom, which can be used to engineer the e�ective quadratic and
induced averaged cubic nonlinearity.
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Chapter 2

Interaction in �
(2) media

In this chapter soliton interaction in media with a second-order nonlinearity is con-
sidered. Soliton interaction has been investigated before [1]-[3]. These contributions
made it possible to predict the fusion distance and yielded valuable insights regard-
ing the signi�cance of the phase-di�erence between the solitons. However, models for
solitons launched with a nonzero angle of incidence with respect to each other have
not been developed.

As depicted in Fig. 2.1, the aim is to predict quantitatively the escape angle. In the
planar interaction case the inwards escape angle is de�ned as the angle of incidence
below which two identical solitons will fuse and above which they will pass through
each other. The outwards escape angle is de�ned as the angle below which two iden-
tical solitons will turn around and fuse and above which they will continue to move
apart.

α
α α α

Figure 2.1: The escape angle concept.
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In a symmetric setup with identical solitons the interaction problem can be reduced
to that of an e�ective particle in a well-potential [3]. In the �rst section this e�ective
particle approach is presented. The derivation of the full set of soliton interaction
equations, i.e. the general analytical model describing nonplanar interaction of non-
identical solitons, involves extensive perturbation theory. This part has therefore been
placed in appendix A.

The chapter should be viewed merely as an introduction since the main results and
conclusions have already been published in paper 1. However, the paper deals only
with the 2D in-plane case. Thus in the second section of this chapter new results for
the outwards escape angle in 1D are presented and in the third section an example
of spiraling, the 2D nonplanar case, is given.

Regarding the inwards escape angle it has only been been possible to numerically
verify the theoretical expression for perfect phase-matching conditions in the 2D
in-plane case. Attempts to verify expressions for other cases, i.e. for nonzero phase
mismatches in 2D and for both zero and nonzero phase mismatches in 1D, have so
far proved futile. Note that this is not surprising since all model assumptions (see
section 2.1) are violated in this case. For further discussion of the inwards escape
angle the reader is refered to paper 1, where the results for the 2D in-plane case have
been published.

2.1 The e�ective particle approach

Beam propagation under type-I second harmonic generation (SHG) conditions in
lossless bulk �(2) materials is considered. The 1D slab waveguide version is trivially
recovered by separating the linear variation in y out of the equations below. The
system of normalized dimensionless dynamical equations describing the evolution of
the slowly varying envelope of the fundamental wave (FW), A1 = A1(x; y; z), and its
second harmonic (SH), A2 = A2(x; y; z), is [4, 5]

i
@A1

z
+ 1

2r2
?A1 +A�1A2 = 0; (2.1a)

i
@A2

z
+ 1

4r2
?A2 � �A2 +A2

1 = 0: (2.1b)

z is the propagation variable, and r2
? = @2=@x2 + @2=@y2 accounts for di�raction

in the transverse (x; y)-plane. The normalized phase mismatch is � = ld(2k1 � k2),
where ld is the di�raction length of the fundamental and k1 and k2 are the wave
numbers of the FW and SH, respectively. Equations (2.1) conserve the power P =R
(jA1j2+ jA2j2)d~r? and the vector momentum ~M =

R
Im(A�1r?A1+A�2r?A2)d~r?,

where
R
d~r? � R R1

�1
dxdy. The system (2.1) is known to have a one-parameter
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family of radially symmetric bright 2D solitons of the form A1(~r ) = V (r;�) exp(i�z)
and A2(~r ) = W (r;�) exp(i2�z) where � > max(0;��=2) is the internal soliton

parameter and r =
p
x2 + y2. Furthermore a gauge transformation can be applied to

�nd the soliton pro�les V and W moving with transverse velocities �x and �y. The
general three parameter soliton pro�les are given by

V (x � �xz; y � �yz;�; �x; �y) = V (x; y;�� 1

2
�x � 1

2
�y)e

�i(�xx+�yy); (2.2a)

W (x � �xz; y � �yz;�; �x; �y) =W (x; y;�� 1

2
�x � 1

2
�y)e

�i2(�xx+�yy): (2.2b)

In the following a superposition of two solitons is considered. The �eld components
can be expressed as

A1 =
X
j=1;2

V (j)(x� x(j); y � y(j))ei�
(j)z; (2.3a)

A2 =
X
j=1;2

W (j)(x� x(j); y � y(j))e2i�
(j)z ; (2.3b)

where x(j) and y(j) give the soliton center positions in the transverse plane, and �(j) is
the accumulated phase of soliton j. The transverse velocities of the solitons are given
by _x(j) and _y(j), where dot denotes di�erentiation with respect to the propagation
coordinate.

In appendix A the general set of soliton interaction equations, i.e. the general ana-
lytical model describing weak nonplanar interaction between the two solitons (2.3),
is derived. The derivation is based on a perturbative approach and the solitons are
assumed to be far apart with only a small overlap of the soliton tails. The functional
forms of the non-interacting soliton pro�les are then retained during interaction. The
changes in the shape due to the interaction come about as a result of slowly varying
soliton parameters x(j), y(j), and �(j).

If the solitons are identical with no phase di�erence between them and they are
launched placed opposite each other in the transverse plane, then the two sets of
soliton parameters reduce to one, � = �(1) = �(2), x(1) = �x(2), y(1) = �y(2).
Under these conditions there can be no net transfer of energy between the solitons
and since the initial overlap is assumed small it can be assumed that the individual
soliton powers do not change, i.e. @P=@z = 0. With this in mind it is only necessary
to consider two out of the six interaction equations (A.25, with � = 1 and  =
0). Without loss of generality the two remaining equations (A.25b) and (A.25c) for
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soliton 1 are chosen,

@M
(1)
x

@Z
+
@U (1)

@x(1)
= 0; (2.4a)

@M
(1)
y

@Z
+
@U (1)

@y(1)
= 0; (2.4b)

where the interaction potential U (1) is

U (1) = �Re
Z �

V �(1)
2
W (2) + 2V (1)W �(1)V (2)

�
d~r?: (2.5)

The system (2.4) can be derived from the Lagrangian

L = _XMx + _YMy � U: (2.6)

In (2.6) X = x(1) = �x(2) and Y = y(1) = �y(2). The soliton index has been removed
because of unambiguousness. By exploiting the gauge transformation (2.2), (2.6) can
be rewritten as

L =
�
_X2 + _Y 2

�
P � U; (2.7)

with interaction potential U given by

U = �
Z �

V 2(x�X; y � Y )W (x+X; y + Y ) cos(2�)

+2V (x �X; y � Y )V (x+X; y + Y )W (x�X; y � Y ) cos(�)

�
d~r?; (2.8)

where � = 2 _XX + 2 _Y Y . In a classical framework (2.7) is nothing more than the
Lagrangian for a particle with mass P and kinetic energy Ekin = ( _X2 + _Y 2)P=2

moving in a potential U = U(X;Y; _X; _Y ).1

Even though the potential is two-dimensional and nonuniform in the (X;Y )-plane
the general idea can be appreciated by the one-dimensional case illustrated in Fig.
2.2. The particle, placed in the potential, will be a�ected by forces trying to drag it
towards the bottom of the potential. To escape the barrier the particle must have
su�cient kinetic energy, Ekin. The su�cient kinetic energy is the equivalent amount
of potential energy, Epot, at the location of the particle. Put in another way, the total
energy, Etot, of the system must be zero, i.e. Etot = Ekin+Epot = 0. Equivalently
the solitons, in the soliton interaction picture, will continue apart if their outwards
velocities initially are above some critical value. If initially the velocities are below

1In paper 1 the system is further reduced by introducing cylindrical coordinates with R =p
X2 + Y 2. Though the reduction is illustrative, it is of little practical use, because _R 6= _X2 + _Y 2

is di�cult to relate to the real system.
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Figure 2.3: Contour plots illustrating interaction in 1D quadratic media. Here � = 20
and the two solitons are identical with individual powers P = 198:8. In both cases the
initial separation is 2x0 = 3. In the left plot the solitons are launched with outwards
angles � � 4:6Æ and in the right plot they are launched with � � 4:9Æ.

where �c is the critical transverse velocity �x for which (2.10) is satis�ed, i.e. �c =
�c(�; �; x0). The interaction potential is

U = �
Z �

V 2(x� x0)W (x+ x0) cos(4x0�x)

+2V (x� x0)W (x � x0)V (x + x0) cos(2x0�x)

�
dx: (2.11)

In general the analytical expressions for the soliton pro�les V and W are not known
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Figure 2.4: Outwards escape angle, �c, in degrees as a function of the phase mismatch,
�, for 1D interaction in a quadratic material. FWHM=1 and x0 = 1:5. A (�) is the
result of a numerical experiment where the solitons fused, whereas a (Æ) is the result
of an experiment where they escaped, i.e. continued to move apart.
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and they must be found by numerical methods. Note that for a given �, the individual
soliton characteristics, such as the power, P , and the full-width at half-maximum,
FWHM, are functions only of the soliton propagation parameter �. Approximations
for the pro�les do exist, but it turns out that the functional form of the soliton tale,
i.e. V (x);W (x) for x� FWHM, is very important, and that the tales of the standard
trial functions, i.e. a Gaussian or a sech, are not close enough.

In Fig. 2.4 the outwards escape angle is shown as a function of the phase mismatch
�. The initial separation of the soliton centers, 2x0 = 3, and the initial width of the
solitons, FWHM=1, are kept constant. The �gure shows both the analytically found
curve and results of numerical experiments like the one in Fig. 2.3. For � � �19
there is no longer any soliton parameter � yielding FWHM=1. This is due to the fact
that the soliton width goes to in�nity when � approaches the cut o� value ��=2. For
positive values of � it was always numerically possible to �nd a � ful�lling FWHM=1
though it cannot be ruled out that a cut o� value exists. The soliton characteristics
for the di�erent phase mismatches are shown in Fig. 2.5.
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Figure 2.5: Characteristics for the interacting solitons of Fig. 2.4. On the left �gure
the full curve shows the total power, the dashed curve shows the power in the FW,
and the dotted curve shows the power in the SH. The right �gure shows how the
soliton propagation parameter � changes.

The experiments are seen to agree with the theoretical predictions. The minimum
around � = �10 is global. Note that the angles are expected to be small due to the
small initial overlap and correspondingly weak coupling. The overlap is small for all
� because the FWHM instead of the power is chosen to be constant. As a curiosity
it might be added that in the limit of � ! 1 the 1D cubic nonlinear Schrödinger
equation is expected to be recovered. Hence the interaction between the solitons
should show signs of the integrability of that system, i.e. the escape angle should go
to zero. This is obviously not what is observed in Fig. 2.4. To explain this apparent
discrepancy it su�ces to note that in the limit � !1 the power goes to in�nity as
a consequence of the �xed width. This inhibits the system from entering the e�ective
cubic regime.
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2.3 Spiraling

As mentioned in the introduction of this chapter, spiraling is the 2D nonplanar in-
teraction case. The situation is somewhat more complicated than in the 1D case or
the 2D in-plane case where the potential is e�ectively one-dimensional. In the 2D
nonplanar case the potential is also two-dimensional and in general nonuniform in
x0 and y0. The transcendental equation (2.9) is the one to be solved in order to �nd
the critical velocities �x and �y. Notice that the potential

U = �
Z �

V 2(x� x0; y � y0)W (x + x0; y + y0) cos(2�)

+2V (x � x0; y � y0)V (x+ x0; y + y0)W (x � x0; y � y0) cos(�)

�
d~r?; (2.12)

through � = 2�xx0 + 2�yy depends on the sign of the transverse velocities. Hence
the signs of transverse velocities are still of importance. Notice also that the theory
does not distinguish between a given set of velocities (�x; �y) and the same set with
inverted signs, (��x;��y). This can be understood by reexamining the e�ective par-
ticle picture discussed above. If both signs are positive, then the particle faces the
barrier as illustrated in Fig. 2.2. However, if the signs are inverted, then the particle
crosses the bottom of the barrier before it eventually faces the potential barrier. In
the 1D soliton interaction picture crossing the bottom of the potential corresponds to
the solitons passing through each other, a situation which is not correctly described
by the theory. In the 2D nonplanar case, the potential is also two-dimensional and
the particle does not necessarily have to cross the bottom of the potential. Hence,
correct predictions are a possibility, though no e�ort to verify this experimentally
has been made.

To conclude this section the result of a numerical experiment on spiraling with both
angles chosen in the outwards direction is shown in Fig. 2.6. In the �gure all parame-
ters but the transverse velocity in the x-direction are kept constant. Evidently raising
�x from 0:088 in the left plot to 0:089 in the right plot is enough for the solitons to no
longer fuse. In angles these numbers correspond to � � 5Æ and � � 5:1Æ, respectively.
The critical velocity �c as calculated from (2.9) is �c � 0:088.
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Figure 2.6: Sequences spaced z = 15 apart of soliton positions illustrating spiraling.
The arrows indicate direction of revolution. The curves are equi-intensity curves of
the FW with I = 3:5. In the left plot �x = 0:088 and in the right plot �x = 0:089
(Predicted: �c � 0:088). The rest of the parameters are the same for both plots:
� = 5, P � 122, FWHM=1, x0 = 1:5, y0 = 0, and �y = 0:05.
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Chapter 3

Two-period QPM media

This chapter is dedicated to soliton engineering with two-period quasi-phase-matching
(QPM) in �(2) crystals like the one depicted in Fig. 3.1 (for reviews, see [1, 2]). As
opposed to one-period QPM the introduction of a second period should make it
practically possible to engineer the e�ective competing nonlinearities. The main con-

E 2ω

z

2π/κ

z

2π/κ2

1

ωE

d   (z)

d   (z)

(1)

(2)

Figure 3.1: Two-period QPM grating.

clusions have already been published in paper 2 and this chapter is meant only to
give a brief presentation of the idea of QPM in general and of the averaged equations
and nonlinearities for two-period QPM in particular. With a few examples on the
soliton properties the theoretical predictions are veri�ed in the end of the chapter.
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Though reasonably straight forward, the shear size of the involved expressions makes
the actual derivation of the averaged equations and the induced averaged nonlinear-
ities somewhat di�cult. Hence this has been put in appendix B.

3.1 Governing equations and basic soliton features

The dimensionless equations governing the propagation of coupled beams in a lossless
QPM slab waveguide are [3, 4]

i
@E1

@z
+

1

2

@2E1

@x2
+ d(z)E�1E2e

�i�z = 0; (3.1a)

i
@E2

@z
+
�

2

@2E2

@x2
+ d(z)E2

1e
i�z = 0; (3.1b)

where E1 = E1(x; z) is the slowly varying envelope of the fundamental wave (FW)
and E2 = E2(x; z) the second harmonic (SH). � is the intrinsic wave-vector phase
mismatch and the spatial periodic modulation of the nonlinearity is described by the
grating function d(z) whose amplitude is normalized to 1, and whose domain length
is de�ned as � = �=�, where � is the real and positive spatial grating frequency, the
so-called QPM frequency.

In its basic form QPM aims at counteracting the large wave vector phase mismatch,
� � 1000, which is inherent in most quadratic materials and causes poor second
harmonic generation e�ciency. In more mathematical terms a large � results in fast
varying exponentials, ei�z, in (3.1). These exponentials tend to average out the e�ect
of the nonlinearity. If a grating with the right periodicity is introduced then the
mth Fourier component of the grating function quasi matches �. This results in an
e�ective mismatch � = ��m� � 1 and on average the nonlinearity is non-vanishing.

However, on average the grating also induces cubic nonlinearities [5]. The strengths
of these induced cubic nonlinearities depend on the QPM frequency and hence o�ers
a way of engineering spatial solitons. The problem with one-period QPM is that the
average cubic nonlinearities are very small since they are inversely proportional to
� � �. With a grating function characterized by two QPM frequencies, like the one
depicted in Fig. 3.1, one could hope to obtain yet another degree of freedom in order
to e�ectively engineer the solitons, i.e. to use one QPM frequency to eliminate the
intrinsic phase mismatch and the other to engineer the averaged cubic nonlinearities.
The grating function for a two-period grating structure like the one depicted in Fig.
3.1 is characterized by the QPM frequencies �1 and �2 and can be represented by its
Fourier series

d(z) =
X
k

d
(1)
k exp(ik�1z)�

X
l

d
(2)
l exp(il�2z); (3.2)
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where the summations are over all integers (k; l) from �1 to1. In (3.2) d
(1)
k and d

(2)
l

are the Fourier components of the primary and the superimposed secondary grating,
respectively. For square grating functions only the odd harmonics enters into the
expansion, d2l+1 = 2=i�(2l+ 1) and d2l = 0.

The actual analysis of beam propagation performed here relies heavily on the as-
sumption that the amplitude pro�les of the beams are slowly varying. Put in other
words, it is assumed that all initial transients have died out and some oscillatory but
otherwise stationary state has developed. Only then it makes sense to talk about
averaged and/or induced nonlinearities and averaged �elds. In case of a one-periodic
structure the expansion of the beams in a Fourier series is straight forward since the
higher order modes simply are harmonics of the single QPM frequency. In a two-
period structure the situation is a bit more subtle since cross-harmonics are expected
to arise, i.e. higher order modes at some superposition of both QPM frequencies.
However, here it is assumed that such cross-harmonics do not arise or at least that
they are negligible. This assumption is justi�ed by the agreement between theoretical
predictions and numerical experiments.

The Fourier expansions for the two-period structure become

w(x; z) = w0(x; z) +
X
q 6=0

wq(x; z)e
iq�1z +

X
q 6=0

!q(x; z)e
iq�2z; (3.3a)

v(x; z) = v0(x; z) +
X
q 6=0

vq(x; z)e
iq�1z +

X
q 6=0

�q(x; z)e
iq�2z ; (3.3b)

with w = E1 and v = E2e
�i�z. � = � � m�1 � n�2 is the new e�ective phase

mismatch where m and n are the QPM orders related to the primary and secondary
grating, respectively. The expansions are valid under the additional assumption that
the Fourier components are located far apart in order to avoid overlap between the
peaks.

In appendix B the equations governing the averaged �elds w0 and v0 are derived
together with the averaged nonlinearities. Their �nal form is

i
@w0

@z
+

1

2

@2w0

@x2
+ �w�0v0 + (jw0j2 � jv0j2)w0 = 0; (3.4a)

i
@v0
@z

+
�

2

@2v0
@x2

� �v0 + �w2
0 � 2jw0j2v0 = 0: (3.4b)

Equations (3.4) with the characteristic cubic terms appearing as self-phase and cross-
phase modulation of the FW but only cross-phase modulation for the SH are not
unique to two-period QPM. They have the same form regardless of the speci�c type
of grating, the parameters merely being given as sums over the Fourier coe�cients
of the grating [5]-[7].
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then by choosing 1st order QPM, i.e. m = n = 1, (3.5) reduces to

� = � 4

�2
;  =

4

�2�2

�
1� 8

�2

�
; (3.6)

e�ectively mimicking the one-period QPM system.

The system (3.4) with competing nonlinearities supports a family of solitons that
can be found by substituting w0 = u1 exp(i�z) and v0 = u2 exp(i�z) into (3.4) and
solving the resulting boundary value problem with numerical methods. In Fig. 3.2
one example on the evolution of such a soliton is shown. With the two periods chosen
to (�1; �2) = (13; 195) the nonlinearities must be calculated numerically via (3.5) and
thus this is an example of how the ratio between the frequencies come into play.
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Figure 3.3: Fraction of power in the SH for the two-period QPM system with
(�1; �2) = (997; 13) as a function of total power. Solid line and �: Theoretical and
numerically measured values, respectively. Dashed curves: Zero-order approximation,
 = 0. The value of � is indicated at each pair of curves.

In Fig. (3.3) a series of simulations is presented to verify the model in the e�ective
one-period limit where the averaged nonlinearities are given by (3.6). Soliton initial
conditions are launched in a real two-period structure with �1 chosen to be a high
prime and �2 a small prime. Choosing primes is an e�ective way of reducing (3.5)
to (3.6). The fraction of power in the SH after any initial transient has died out is
measured and compared to the theoretically predicted value. Besides verifying the
model in the one-period limit, Fig. (3.3) also illustrates an important example of
soliton engineering, namely how one via the QPM frequencies can tailor the power
sharing between the FW and the SH.

For more details and further examples the reader is refered to paper 2. One important
result presented in the paper is the discovery that the averaged cubic nonlinearities
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leads to an increase in the bandwidth for soliton generation [8], i.e. the interval of
phase mismatches for which soliton generation is broadened at a given input power
launched only in the the FW.
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Chapter 4

Soliton interaction in

saturable media

The investigation of interaction in saturable media closely follows the procedure
outlined in chapter 2. Hence the theory will be presented with less comments and in
less detail. Though the theory is immediately applicable to the 2D interaction case,
only media with one transverse direction will be considered here.
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Figure 4.1: Contour plots illustrating interaction in 1D saturable media. Here � =
0:2 ) P � 2:7. In both cases the initial separation is 2x0 = 10. In the left plot the
solitons are launched with outwards angles � � 10:8Æ and in the right plot they are
launched with � � 11:9Æ.
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In the �rst section the outwards escape angle is considered. The derivation of the
interaction potential can be found in appendix C. It follows the same Lagrangian
approach as the derivation of the potential for quadratic media in appendix A. In
the second section numerical results on the inwards escape angle are presented. This
section should be viewed as an up-to-the-minute account on work in progress.

4.1 The outwards escape angle

The evolution of the envelope  =  (x; z) in a medium with a saturable nonlinearity
is governed by the nonlinear Schrödinger equation

i
@ 

@z
+
@ 

@x
+

j j2
1 + j j2 = 0: (4.1)

The power, P , and the momentum along the x-axis, M , are conserved quantities.

P =

Z 1

�1

j j2dx; M =
i

2

Z 1

�1

�
 
@ �

@x
�  �

@ 

@x

�
dx: (4.2)

Stable solitons of the form  (x; z) = V (x) exp(i�z) are known to exist for 0 < � < 1.
Solitons moving with transverse velocity � can be found by the gauge transformation

V (x� �z;�; �) = V (x;�� 1

4
�)e�

i
2 �x: (4.3)

In the limit �! 0 the nonlinearity is e�ectively cubic. Hence it is possible to approx-
imate the solitons with the standard 1D sech-type solitons for the cubic Schrödinger
equation. However, the sech-approximation is not very good for �! 1 and since the
entire �-interval is considered here, the exact numerically found solitons are used.

In appendix C the soliton interaction equations for weak interaction in 2D are derived.
The 1D version is found by trivial elimination of the y-dimension. By following the
same line of arguments as in section 2.1, remembering in particular the assumption
of weakly overlapping solitons, the outwards escape angle for the interaction between
two identical solitons in a symmetrical setup with no phase di�erence between them
can be found via the transcendental equation

�2P (�) = �U(�; x0; �); (4.4)

with the interaction potential U given as

U =

Z 1

�1

�
ln

g

(1 + V 2(x� x0))(1 + V 2(x+ x0))
� h

1 + V 2(x+ x0)

�
dx; (4.5)
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Figure 4.2: Outwards escape angle, �c, in degrees as a function of the power for 1D
interaction in a medium with a saturable nonlinearity. x0 = 5 has been kept constant.
A (�) is the result of a numerical experiment where the solitons fused, whereas a (Æ)
is the result of an experiment where they escaped, i.e. continued to move apart.

where

g = 1+ V 2(x� x0) + V 2(x + x0) + h; h = 2V (x� x0)V (x+ x0) cos(�x0): (4.6)

In the above x0 is the initial location of the soliton center on the x-axis.

10 30 50 70
0

0.5

1

λ

10 30 50 70

5

10

F
W

H
M

10 30 50 70
0

2

4

M
a

x
( 

V
 )

P

Figure 4.3: Soliton characteristics for the interacting solitons of Fig. 4.2. The top,
middle and bottom graphs show how the soliton parameter, the width, and the peak
amplitude, respectively, change with power. The dashed lines indicate the powers of
the numerical experiments from Fig. 4.2.
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In Fig. 4.2 the analytically found escape curve is plotted as a function of soliton
power, P = P (�), and tested against numerical experiments. One of the numerical
experiments is shown in Fig. 4.1. The initial separation, 2x0 = 10, has been kept con-
stant. At powers P < 50 the experimental data matches the analytical predictions
very well. At higher powers the agreement is less accurate. The reason for this appar-
ent inaccuracy is a breakdown in the assumptions for high powers. The combination
of higher power and an ever increasing soliton width with power, as shown in Fig. 4.3,
eventually results in too much power being located in the overlap for the interaction
to be considered weak. Note that had the initial separation been kept constant at
a higher value, then the graph would have been accurate for higher powers, but at
the price of smaller escape angles at low powers. In the other limit, for small �, the
FWHM at some point also becomes bigger than the initial separation leading to an
almost complete overlap of the solitons and a breakdown in the model assumptions.
The parameter settings chosen here is a compromise focusing on verifying the theory,
i.e. the interaction potential (4.5), for relatively big angles.

4.2 The inwards escape angle: head-on collisions

Fig. 4.4 shows data for the inwards escape angle (see Fig. 2.1) in a 1D saturable
medium. The three graphs are for three di�erent values of the soliton parameter �
and they show the power content, Cwin, in the window x 2 [�15; 15] at a distance
of 5 times the initial collision point. Cwin is de�ned as the remaining power within a
given window divided with the total launched power. The choice of measuring Cwin

at 5 times the initial collision point is made to ensure consistency in the numerical
experiments, the number 5 being somewhat arbitrarily chosen.

For two solitons launched with initial separation 2x0 = 40 and initial transverse
velocity � = 0:1 ) � � 5:7Æ the initial collision point is at z = 200 and the mea-
surement of Cwin takes place at z = 1000. All simulations have been performed by
applying the standard split-step method with a step-size of �z = 10�3. Since some
radiation is expected it is important to simulate in a su�ciently large x-interval. Here
this interval has been chosen to x 2 [�409:6; 409:6]with 8192 points of discretization.

Fig. 4.4 re�ects the complexity of the saturable system. In the limit where � !
0 the system e�ectively mimics the cubic nonlinear Schrödinger equation and the
interaction between solitons is expected to show signs of the integrability of that
system, i.e. they should pass through each other una�ected. However, in the previous
section, it was shown that the theory predicts an attractive force between the solitons
for all � 6= 0. Combining the integrability with an attractive force leads to the
behavior illustrated in Fig. 4.5 for small applied angles. The solitons initially pass
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Figure 4.4: Relative power content, Cwin, in the window x 2 [�15; 15] at a distance
of 5 times the initial collision point as a function of inwards angle of incidence and
for di�erent soliton parameters (� is indicated on each graph.). The discrete points
are the outcome of experiments whereas the full curves in between the points only
serve to help the eye.
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Figure 4.5: Contour plots illustrating what happens for low values of the applied
angle (here � � 5:7Æ). � = 0:5) P � 9:4.

through each other, but because of the attraction they eventually turn around and
collide again. This process repeats itself over and over. Eventually the solitons fuse
because of the radiation shed during the multiple collisions. The propagation distance
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between two consecutive collisions gets smaller for � ! 1 and for � ! 0Æ. The
behavior described here accounts for the numerical results for small angles in Fig.
4.4. Here most of the power is still in the window of measurement, i.e. Cwin � 1.

At some angle of incidence the attractive force is no longer strong enough to make
the solitons turn around and hence they continue to move apart. This is illustrated in
Fig. 4.6(a) and holds for all �. Power is shed as radiation when the angle of incidence
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Figure 4.6: Contour plots illustrating what happens for values of the angle of incidence
being big enough to counteract the attractive force (A: � � 11:3Æ. B: � � 16:7Æ).
� = 0:95) P � 746.

is raised even further. When the power shedding is strong enough, a new stable state
is formed between the two original solitons. This is illustrated in Fig. 4.6(b). Notice
that after the collision the two original solitons move apart slower than the solitons
from Fig. 4.6(a) even though they were launched with a higher angle of incidence. The
amount of power in the new state depends on the amount of power shed as radiation
during the collision. This in turn depends on the angle of incidence and on the soliton
parameter, i.e. how close the system is to the integrable limit. In this way the part
of Fig. 4.4 from � � 15Æ can be explained. For � = 0:95 the system is far from the
integrable limit and a lot of radiation is shed during collision which is the reason for
the relatively strong formation of new states observed in the �gure. For � = 0:5 the
system is still far from the integrable limit, but already much less radiation is shed
during the collisions resulting in lower Cwin than observed for � = 0:95. For � = 0:2
the system is close to the integrable limit and almost no radiation is shed during the
collision.

When the angle is raised beyond a certain point, Cwin is seen to diminish again. This
could be a consequence of less interaction time, i.e. the solitons pass through each
other so fast that they have little time to a�ect each other.

One curious feature of the graphs in Fig. 4.4 is not easily explained. For � = 0:95 and
for � = 0:5 the spikes after the initial drop in Cwin are unexpected. The immediate
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explanation would be that Cwin is measured in between oscillations of the type shown
in Fig. 4.5. However, this is not so. This can be seen for example from the simulation
in Fig. 4.6(a). This simulation is located in the Cwin � 0 region between the initial
drop and the two spikes for � = 0:95 in Fig. 4.4, but it clearly shows no sign of
the two solitons turning around and colliding again. Hence the explanation must be
looked for elsewhere. In particular it must be ruled out that the numerics in some
way can provoke the spikes. This remains to be investigated.
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Chapter 5

Epilogue

Besides being a requirement, a dissertation is also the natural place to conclude
and summarize on the work performed during the years spent in pursuit of the
Ph.D. degree. The work presented here has evolved around two distinct areas of
quadratic (or �(2)) nonlinear optics: soliton interaction and soliton engineering with
quasi-phase-matching (QPM) gratings. The direct applicational motivation behind
any research undertaken in either of these areas is the wish to construct all-optical
switching devices to be implemented in optical circuitry.

Exploiting optical nonlinearities for switching devices is interesting mainly because
of the fast response. The �(2) nonlinearity arises through mutual interaction of two
beams rather than through a refractive index change which is the case for the tradi-
tional cubic (or �(3)) nonlinearity. The �(2) nonlinearity holds several advantages over
the �(3) nonlinearity. The response of the �(2) nonlinearity can be made stronger than
that of the �(3) nonlinearity and the propagation of two-dimensional bright spatial
�(2) solitons is stable which is not the case for two-dimensional spatial �(3) solitons.
Another desired feature is the non-integrability of the �(2) system in the sense that it
is not possible to �nd an inverse scattering transform. This leads to inelastic interac-
tion between the beams with a rich spectrum of possible outcomes of the collisions.

Spatial soliton collisions have been analyzed earlier via variational approaches. All
of these earlier works dealt with solitons assumed to be parallelly launched and
as such they could only give qualitative predictions of the outcome of a collision.
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One of the main achievements presented here is the incorporation of launch angles
into the model. For identical solitons the variational approach leads to the classical
mechanical problem of a single particle moving in a potential. In this picture the
angle of incidence between two colliding solitons is merely the velocity of the particle
whereas the potential re�ects the forces acting between the solitons. In the simplest
case the escape angle is found by determining the corresponding particle velocity for
which the total energy in the e�ective particle picture is zero. Thus it has been possible

for the �rst time to predict quantitatively the outcome of the interaction between two

solitons, i.e. to put a numerical value on the escape angle below which solitons will

fuse and above which they will move apart.

The generality of the method used to describe soliton interaction is emphasized by
the fact that it has been able to correctly predict the escape angles for all the cases
where it has been employed during this work, i.e. both in one and two-dimensional
�(2) media and in one-dimensional saturable media. However, the theory generally
fails to predict the outcome in the special case of head-on collisions between two
solitons. This is not surprising since the model assumption of weakly interacting
solitons is severely violated when the solitons pass through each other. What is more
surprising is that it actually predicts the correct results for certain cases. It has been
possible to establish a very simple expression based on a Gaussian approximation

in the perfect phase matching case in one-dimensional �(2) media relating soliton

power with escape angle, i.e. the angle below which solitons will fuse and above which

they will pass through each other. The fact that this result has been obtained leaves
hope that it could be possible to predict the correct results in the general head-on
collision case. One way to go about it would be to include higher order terms in the
perturbation theory.

Regarding the research performed on soliton engineering with QPM the main result

has been the derivation of an averaged model describing soliton propagation in two-

period QPM structures. Traditionally QPM has been employed to reduce the huge
intrinsic phase mismatch and more recently also to engineer the solitons. However,
with one-period QPM it is di�cult to achieve both a reduction of the phase mismatch
and e�ective engineering. Hence additional techniques like phase matching via tem-
perature tuning are normally required. Soliton engineering is not just an academic
issue. It is of paramount importance whenever light with a certain intensity pro�le
crosses from one medium to another, i.e. from a �ber to a switching crystal. If the
soliton generation process in the crystal reshapes the pro�le too much, power and
hence information is lost as radiation. It is a fundamental issue to be able to pro-
duce and operate such components as simply as possible. With two-period QPM both

reduction of the phase mismatch and e�ective engineering can be achieved at room

temperature without employing other techniques.

Two-period QPM introduces new means of manipulating the induced �(2) and �(3)

nonlinearities which on average control beam propagation in the crystal. In one-



39

period QPM the strength of the induced �(3) nonlinearity is determined solely by the
size of the domain length, the shorter the domain length the weaker the nonlinearity.
With two periods it is necessary to take into account also the ratio between the two
periods, the lower the ratio the higher the strength of the �(3) nonlinearity. In two-

period QPM also the induced �(2) nonlinearity depends on this ratio and hence, in

principle, engineering of this nonlinearity is possible.

Another more fundamental discovery made during the QPM part of this work is the
fact that �(3) nonlinearities in general enhances the soliton generation bandwidth, i.e.

the range of wavelength dependent e�ective phase mismatches where solitons can be

generated when a given beam pro�le, here sech-type, is launched in the crystal. For a
given power the generation process depends critically on the phase mismatch and gen-
eration is only achieved within a narrow band stretching from perfect phase matching
and not far into the positive region. In a physical setup this would correspond to a
narrow interval of wavelengths which potentially imposes severe constraints on the
other network components. With this in mind it is easy to understand why broad-
ening of this bandwidth is highly desired. Introducing �(3) nonlinearities via QPM
into the system has been shown to do just that and examples with practically realistic

parameter settings illustrate how the bandwidth can be almost doubled.

Even though the �eld of quadratic nonlinear optics has been heavily investigated
in recent years there is still plenty of discoveries to be made and much research
to be performed. This is in particular the case on the level of �ne tuning the �eld
to practical purposes but also on the level of fundamental physics. With regards to
soliton engineering with QPM it is safe to say that only the top of the iceberg has been
revealed and that many potentially very interesting grating structures still remain
to be discovered. It is the hope of the author of this thesis that others may gain
inspiration through the work presented here and that it may assist in achieving the
ultimate goal: cost e�cient and manageable all-optical signal processing in nonlinear
materials.
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Appendix A

Interaction equations for

combined �
(2) and �

(3) media

In this appendix the general set of soliton interaction equations, i.e. the general ana-
lytical model describing nonplanar interaction between two solitons, will be derived.
The underlying assumption is that the functional forms of the non-interacting soli-
ton pro�les are retained during interaction. The changes in the shape due to the
interaction come about as a result of slowly varying soliton parameters.

The propagation of two coupled beams in a medium exhibiting both a �(2) and a
�(3) response is governed by the two coupled dimensionless di�erential equations
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where A1 = A1(x; y; z) is the fundamental wave (FW) and A2 = A2(x; y; z) is the
second harmonic (SH). Equations (A.1) are the Euler-Lagrange equations of the
Lagrangian density
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For intrinsic �(3) normally � = 1 whereas  determines the strength of the cubic
nonlinearity as compared to the quadratic and � = 1; �1 = 1

2 ; �2 = 1; and � = 2. For

QPM-induced �(3) terms �2 = 0 whereas the rest of the coe�cients are determined
by the speci�c QPM grating function. The system is known to conserve the power
P =

R
(jA1j2 + jA2j2)d~r? and the momentum ~M =

R
Im(A�1r?A1 + A�2r?A2)d~r?,

where
R
d~r? �

R R1
�1

dxdy.

Substitution of a superposition of two overlapping localized �elds,

A1 = A
(1)
1 (x� x(1); y � y(1); z) +A

(2)
1 (x� x(1); y � y(1); z); (A.3a)

A2 = A
(1)
2 (x� x(2); y � y(2); z) +A

(2)
2 (x� x(2); y � y(2); z); (A.3b)

where x(j) and y(j) is the �eld o�-set in the transverse plane, into the Lagrangian
density (A.2) yields

L = L(1) + L(2) + Lc + L�c ; (A.4)

where L(1) and L(2) are the no-interaction Lagrangian densities, i.e. (A.2) with A1;2

replaced by A
(1)
1;2 or A

(2)
1;2. The coupling Lagrangian, Lc, is given by
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From (A.4) a set of eight coupled di�erential equations can be derived, one for each
of the four �eld components and one for each of their conjugates. The set constitutes
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the new governing equations. The equations for the FW A
(1)
1 and its SH A
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Because of symmetry the equations for A
(2)
1 and A

(2)
2 are thus far exactly the same.

It is emphasised that up until now no assumptions have been made and equations
(A.6) are exact.

The system (A.1) is known to have symmetric bright soliton solutions of the form
A1(x; y; z) = V (x; y;�) exp(i�z) and A2(x; y; z) = W (x; y;�) exp(i2�z). � is the
soliton propagation parameter taking on di�erent values depending on the type of
medium, i.e. on the parameters �; ; �1; �2; and �. Furthermore a gauge transfor-
mation can be applied and soliton pro�les V andW moving with transverse velocities
�x and �y can be found. The general three parameter soliton pro�les are given by
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With this in mind the interaction between solitons is now assumed weak and hence
all the interaction terms in the expressions above are assumed to be small compared

to the terms with components from A
(1)
n or A

(2)
n only. Under this assumption it is

reasonable to expect that the functional forms of the solitons (A.7) are left unchanged,
i.e. that the changes are adiabatic and solely due to slowly varying soliton parameters.
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In terms of perturbation theory the parameters depend on a slow propagation variable
Z = �z, where � is a small parameter, and they can be expressed as
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where x(j) and y(j) give the soliton center positions in the transverse plane, and �(j) is
the accumulated phase of the soliton. Subscript 0 denotes initial values. Substituting
solitons on the form
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into (A.6) yields
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In (A.10) � = �(2) � �(1) is the phase di�erence between the solitons. Note that a
part of the �(3) interaction terms is independent of the phase di�erence and that the
� terms stem from @=@z = @=@z + �@=@Z. In (A.10) the terms from (A.6) with only

A
(2)
n �eld components, i.e. the terms in the square brackets of equations (A.6), have

been excluded. This is done in advance, knowing that their contribution to �rst order
will be trivially zero.

Next V (j) and W (j) are expanded into asymptotic series according to

V (j)(x; y; z) = V
(j)
0 (x� x(j); y � y(j)) +

1X
n=1

�nV (j)
n (x; y; z); (A.11a)

W (j)(x; y; z) =W
(j)
0 (x � x(j); y � y(j)) +

1X
n=1

�nW (j)
n (x; y; z): (A.11b)

All interaction terms are then assumed to be higher order terms and from (A.10) it is
then obvious that to the zeroth order only the left-hand sides of (A.10a) and (A.10b)
contribute and that the resulting equations are simply the no-interaction equations
from which the solitons are determined. Collecting terms to the �rst order yields
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and
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:

The full system of equations describing the �rst order correction to soliton 1 due to the
interaction with soliton 2 is given by (A.12-A.13) and their conjugates. By rotating
the superscripts, i.e. (1) $ (2), the system to solve in order to �nd the correction
to soliton 2 due to interaction with soliton 1 is immediately recovered. Solving these

equations for W
(j)
1 and V

(j)
1 would be a non-trivial task to perform. However, one

way of continuing is to apply Fredholms alternative and �nd solvability conditions for
solutions to exist. It is from these conditions that the �nal set of interaction equations
will be derived.

If the matrix operator K̂ is given by

K̂ =

2
664

A1 A2 A3 A4
B1 B2 B3 B4
A3� A4� A1� A2�
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775 ; (A.14)
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and
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then the full system for soliton 1 can be put on matrix form
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Fredholms alternative states that the solution vector, �Vh, of the adjoint homogeneous
system corresponding to (A.15) must be orthogonal to the right-hand side, �h, of our
original problem, i.e. �V �h � �h = 0. The known solutions of the homogeneous system
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obtained from (A.15) are
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together with their conjugates. The solution (A.18a) yields the solvability condition
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Integrating over the transverse plane yields
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where it has been exploited that @=@� = �@=@�(1). P (1) is the to the zeroth order

conserved power. U
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and U
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(3) interaction potential given by

U
(1)

�(3) = ��1
2

Z �
V
�(1)2

0 V
(2)2

0 e2i� + V
(1)2

0 V
�(2)2

0 e�2i�

2V
�(1)
0 jV (1)

0 j2V (2)
0 ei� + 2V

(1)
0 jV (1)

0 j2V �(2)0 e�i�
�
d~r?

��2
4

Z �
W
�(1)2

0 W
(2)2

0 e4i� +W
(1)2

0 W
�(2)2

0 e�4i�+

2W
�(1)
0 jW (1)

0 j2W (2)
0 e2i� + 2W

(1)
0 jW (1)

0 j2W �(2)
0 e�2i�

�
d~r?

��
2

Z �
V
�(1)
0 jW (1)

0 j2V (2)
0 ei� + V

(1)
0 jW (1)

0 j2V �(2)0 e�i�+

W
�(1)
0 jV (1)

0 j2W (2)
0 e2i� +W

(1)
0 jV (1)

0 j2W �(2)
0 e�2i�

�
d~r?

��
2

Z �
V

(1)
0 V

�(2)
0 e�i� + V

�(1)
0 V

(2)
0 ei�

�
��

W
(1)
0 W

�(2)
0 e�2i� +W

�(1)
0 W

(2)
0 e2i�

�
d~r?: (A.22)

By inspection it is found that the solvability conditions pertaining to the solutions
(A.18b) and (A.18c) can be expressed as
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and
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respectively. M
(1)
x and M

(1)
y are the to the zeroth order conserved momenta along

the transverse axes.

If everywhere in equations (A.20-A.24) the superscripts are rotated, the equivalent
equations for the the second soliton are found. To sum up, the full set of interaction
equations governing the variation of two generally non-identical interacting solitons
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in the general nonplanar case is
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Appendix B

Averaged equations for

two-period QPM

The averaged equations and the induced averaged nonlinearities for two-period QPM
gratings are derived in this appendix.

The dimensionless equations governing the propagation of two coupled beams in
lossless QPM slab waveguides are

i
@E1

@z
+

1

2

@2E1

@x2
+ d(z)E�1E2e

�i�z = 0; (B.1a)

i
@E2

@z
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1

4

@2E2

@x2
+ d(z)E2

1e
i�z = 0: (B.1b)

E1 = E1(x; z) is the fundamental wave (FW) and E2 = E2(x; z) is the second
harmonic (SH). � is the intrinsic phase mismatch and the spatial periodic modulation
of the nonlinearity is described by the grating function d(z) whose amplitude has been
normalized to 1. Here a two-period grating function is considered. Such a function
can be represented by its Fourier series

d(z) =
X
k

d
(1)
k exp(ik�1z)�

X
l

d
(2)
l exp(il�2z): (B.2)

In (B.2) d
(1)
k and d

(2)
l are the Fourier components and �1 and �2 the spatial QPM

frequencies of the primary and the superimposed secondary grating, respectively. The



52 Averaged equations for two-period QPM

summations are over all integers (k; l) from �1 to1. Notice, that though the terms
primary and secondary are used to distinguish the gratings, mathematically speaking
they are of equal importance.

Insertion of (B.2) into system (B.1) yields
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2 + w2R(2) = 0; (B.3b)

where

w = E1; v = E2e
�i�z: (B.4)

The residual phase mismatch has been de�ned as � = � �m�1 + n�2 with m and
n being the QPM orders related to the primary and secondary grating, respectively.
In (B.3) the Fourier coe�cients from (B.2) pertaining to the QPM orders have been
separated out of the sums and the R terms represent what is left of the sums and
are given by

R(1) = d(1)m
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X
k 6=m

d
(1)
k ei(k�m)�1z +

X
k 6=m

d
(1)
k ei(k�m)�1z �

X
l6=n

d
(2)
l ei(l�n)�2z; (B.5a)

R(2) = R(1)jm!�m;n!�n: (B.5b)

Because of the periodic grating the beams start oscillating. The analysis in the fol-
lowing relies on an expansion of the beams in Fourier series. The Fourier components
are assumed to be slowly varying during propagation, i.e. j@wq=@zj � �1;2jwq j (with
equivalent expressions for the other �eld components). It is also assumed that the
higher order Fourier components are much smaller than the averaged (q = 0) dc-
amplitudes, i.e. jwq 6=0j � jw0j (with equivalent expressions for the other �eld com-
ponents). In case of a one-periodic structure the expansion of the beams in a Fourier
series is straight forward since the higher order modes are simply harmonics of the
single QPM frequency. In a two-period structure the situation is a bit more subtle.
Cross-harmonics, i.e. higher order modes at some superposition of both QPM fre-
quencies, could be expected to arise. In the case where the ratio between the QPM
frequencies is an integer the cross-harmonics are already included in the sums. In
other cases they are not, but the numerical experiments show that a model without
cross-harmonics still yields correct results and hence they are neglected. The Fourier
expansions become

w(x; z) = w0(x; z) +
X
q 6=0

wq(x; z)e
iq�1z +

X
q 6=0

!q(x; z)e
iq�2z; (B.6a)

v(x; z) = v0(x; z) +
X
q 6=0

vq(x; z)e
iq�1z +

X
q 6=0

�q(x; z)e
iq�2z ; (B.6b)
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and to lowest order the Fourier components of the qth higher order mode are easily
found to be

wq =
d
(2)
n

�1
w�0v0

d
(1)
[m+q]

q
; !q =

d
(1)
m

�2
w�0v0

d
(2)
[n+q]

q
; (B.7a)

vq =
d
(2)
�n

�1
w2
0

d
(1)
[�m+q]

q
; �q =

d
(1)
�m

�2
w2
0

d
(2)
[�n+q]

q
; (B.7b)

where the terms in square brackets are the integer Fourier indices.

To �nd the equations which govern the propagation of the averaged �elds w0 and
v0, (B.6) is inserted into (B.3) and all non dc-terms are eliminated. Only the two
lowest order contributions are taken into account and in the following the �-terms
comprise the lowest order contributions whereas the �-terms comprise the �rst order
contribution. The structure of the averaged equations is

i
@w0

@z
+

1

2

@2w0

@x2
+ �1w

�
0v0 + (�1jw0j2 � �2jv0j2)w0 = 0; (B.8a)

i
@v0
@z

+
1

4

@2v0
@x2

� �v0 + �2w
2
0 � 2�3jw0j2v0 = 0: (B.8b)

To make the derivation of the nonlinearities more presentable the induced quadratic
and cubic terms are considered in separate sections.

B.1 Induced quadratic nonlinearity

In (B.8a) �1 is a sum of the only two dc-contributions in (B.3a) involving w�0v0. One

arises trivially from d
(1)
m d

(2)
n w�v , i.e. d

(1)
m d

(2)
n w�0v0. The other stems from w�0v0R

(1),
where only the double sum from R(1) in (B.5a) yields dc-terms. Thus

�1=d
(1)
m d(2)n +

X
k 6=m

d
(1)
k ei(k�m)�1z �

X
l6=n

d
(2)
l ei(l�n)�2z; (k �m)�1 + (l � n)�2 = 0

=d(1)m d(2)n +
X
k 6=m

d
(1)
k d

(2)
[�(k�m)�1=�2+n]

: (B.9)

Obviously the condition placed to the far right on the top line in (B.9) is the condition
to be ful�lled for the contribution to be a dc-contribution. The index in the square
brackets stems from this condition.
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Likewise �2 is determined from (B.3b),

�2=d
(1)
�md

(2)
�n +

X
k 6=�m

d
(1)
k ei(k+m)�1z �

X
l 6=�n

d
(2)
l ei(l+n)�2z ; (k +m)�1 + (l + n)�2 = 0

=d(1)m d(2)n +
X

k 6=�m

d
(1)
k d

(2)
[�(k+m)�1=�2�n]

: (B.10)

If the two QPM frequencies do not share harmonics, for instance if one is an irrational
number, then there are no contributions from the R terms since the conditions (k �
m)�1+(l�n)�2 = 0 and (k+m)�1+(l+n)�2 = 0 from (B.9) and (B.10), respectively,
can never be ful�lled, i.e. the Fourier components do not exist. In this case

�1 = d(1)m d(2)n ; �2 = d
(1)
�md

(2)
�n: (B.11)

B.2 Induced cubic nonlinearity

The strengths of the induced averaged cubic nonlinearities �1, �2, and �3 are de-
duced from w�vR(1) and w2R(2) in (B.8a) and (B.8b), respectively. They take into
account �rst order contributions with one dc-�eld component. The terms with two
dc-components yielded the lowest order quadratic contribution. For the �1 and �2
nonlinearities the contributions thus stem from

0
@w�0X

q 6=0

vqe
iq�1z+w�0

X
q 6=0

�qe
iq�2z+v0

X
q 6=0

w�qe
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X
q 6=0
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�iq�2z

1
A� (B.12)
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X
k 6=m

d
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k ei(k�m)�1z

X
l6=n

d
(2)
l ei(l�n)�2z

1
A :
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The terms from (B.12) which will eventually make up the �1jw0j2w0 nonlinearity in
(B.8a) are

d(2)n w�0
X
q 6=0

d
(1)
[m�q]vq ; (k �m)�1 + q�1 = 0 (B.13a)

+ d(1)m w�0
X
q 6=0

d
(2)
[n�q]�q ; (l � n)�2 + q�2 = 0 (B.13b)

+ d(2)n w�0
X
q 6=0

d
(1)

[m�q
�2
�1

]
�q ; (k �m)�1 + q�2 = 0 (B.13c)

+ d(1)m w�0
X
q 6=0

d
(2)

[n�q
�1
�2

]
vq ; (l � n)�2 + q�1 = 0 (B.13d)

+ w�0
X

k 6=m; q 6=0; k 6=m�q�2=�1

d
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k d

(2)

[(n�q)�(k�m)
�1
�2

]
�q ; (k �m)�1 + (l � n)�2 + q�2 = 0 (B.13e)

+ w�0
X

l6=n; q 6=0; l6=n�q�1=�2

d
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l d

(1)

[(m�q)�(l�n)
�2
�1

]
vq : ; (k �m)�1 + (l � n)�2 + q�1 = 0 (B.13f)

By inspection it is easily found that not excluding k = m in (B.13e) yields the
extra contribution (B.13b) and not excluding k = m� q�2=�1 in (B.13e) yields the
contribution (B.13c). Likewise not excluding l = n and l = n � q�1=�2 in (B.13f)
yields the contributions (B.13a) and (B.13d), respectively. Bearing this in mind and
substituting the �eld components with index q with (B.7) in (B.13e) and (B.13f)
leads to the general expression for �1.
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q
:(B.14)

�2 is determined from (B.12) in exactly the same way. For the sake of completeness,
the terms corresponding to (B.13) are presented. They are

d(2)n v0
X
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d
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q ; (k �m)�1 � q�1 = 0 (B.15a)
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From (B.15) �2 can now be deduced through the same line of arguments as used
above for �1.
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For the �3jw0j2v0 nonlinearity the contributions stem from (B.8b), i.e. from0
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and they are
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From (B.17) �3 is the deduced,

�3=
d
(2)
n

�1

X
l; q 6=0

d
(2)
l d

(1)

[�(m+q)�(l+n)
�2
�1

]
d
(1)
[m+q]

q
+
d
(1)
m

�2

X
k; q 6=0

d
(1)
k d

(2)

[�(n+q)�(k+m)
�1
�2

]
d
(2)
[n+q]

q
: (B.18)

In case that the two periods do not share common harmonics only the terms (B.13a-
B.13b), (B.15a-B.15b), and (B.17a-B.17b) in the above survive and
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B.3 Averaged equations and nonlinearities

When the grating function is real and odd, which is the case for a square grating,

the Fourier coe�cients of (B.2) obey d
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; (B.20a)
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or in case the QPM frequencies share no common harmonics

� = �1 = �2 = d(1)m d(2)n ; (B.21a)
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With the averaged nonlinearities given by (B.20) or (B.20) the equations governing
the averaged �elds (B.8) become
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+ �w�0v0 + (jw0j2 � jv0j2)w0 = 0; (B.22a)
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� �v0 + �w2
0 � 2jw0j2v0 = 0: (B.22b)



58 Averaged equations for two-period QPM



Appendix C

Interaction equations for

saturable media

The procedure for deriving the soliton interaction equations describing interaction
between two localized beams in saturable media is the same as the one followed in
appendix A for interaction in combined �(2) and �(3) media. Therefore comments
and details will be more sparse.

The propagation of a beam 	 = 	(x; y; z) in saturable media is described by the
Euler-Lagrange equations of the Lagrangian density

L = i
1

2

�
	
@	�

@z
�	�

@	

@z

�
+r?	 � r?	� � j	j2 + ln(1 + j	j2): (C.1)

Substituting the superposition of two overlapping beams, 	 = A + B, into (C.1)
yields

L = i
1

2

�
(A+B)

�
@A�

@z
+
@B�

@z

�
� (A� +B�)

�
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+
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@z

��
+(r?A+r?B) � (r?A� +r?B�)
�(A+B)(A� +B�) + ln(1 + (A+B)(A� +B�)): (C.2)

The Euler-Lagrange equation for both A and B is

i

�
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@z
+
@B

@z

�
+r2

?(A+B) +
(A+B)(A� +B�)

1 + (A+B)(A� +B�)
(A+B) = 0: (C.3)
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The nonlinearity is split into three contributions. One contribution involves only A,
another only B, and the third contribution, R, involves both A and B.

(A+B)(A� +B�)

1 + (A+B)(A� +B�)
(A+B) =

jAj2
1 + jAj2A+

jBj2
1 + jBj2B +R; (C.4)

where

R =
A(1 + jBj2)(jBj2 +AB� +A�B) +B(1 + jAj2)(jAj2 +AB� +A�B)

(1 + jAj2)(1 + jBj2)(1 + jAj2 + jBj2 +AB� +A�B)
: (C.5)

Rewriting (C.3) yields
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�
i
@B

@z
+r2

?B +
jBj2

1 + jBj2B
�
+R = 0: (C.6)

Now the �elds A and B are expanded in asymptotic series according to
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A0(x� x(1); y � y(1)) +

1X
n=1

�nAn(x; y; z)

#
ei�

(1)

; (C.7a)
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where �� 1 is a small parameter and

xj(z) =

Z z
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�jx(Z
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= �jx(Z); (C.8a)
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�j(z) =
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0

�j(Z 0)dZ 0 + �j0 ) @�j(z)

@z
= �j(Z); (C.8c)

where j = 1; 2. xj and yj express the soliton center position in the transverse plane
and �j is the accumulated phase of soliton j. Subscript 0 denotes initial values. To
zeroth order in � A and B are assumed not to interact. Considering A, then collecting
terms of the �rst order in � order yields

r2
?A1 � i�(1)x

@A1

@x
� i�(1)y
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@y
� �(1)A1 (C.9)

+(2� 3jA0j2)jA0j2A1 + (1� 2jA0j2)A2
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� i

@A0

@Z
:

In (C.9) the A-only contribution of the nonlinearity from (C.6) has been expanded
in a power series around A = 0 and ~R is

~R =
A0(1 + jB0j2)(jB0j2 + h) +B0(1 + jA0j2)(jA0j2 + h)ei�

g(1 + jA0j2)(1 + jB0j2) ; (C.10)
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where � = �(2) � �(1) and

h = A0B
�
0e
�i� +A�0B0e

i�; and g = 1 + jA0j2 + jB0j2 + h: (C.11)

Equation (C.9) and its conjugate is put into matrix form
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Via Fredholm's alternative three solvability conditions are found, one for each of the
known solution vectors
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of the homogeneous system corresponding to (C.12).

For the solution vector �Vh1 one getsZ �
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where P (1) is the to the zeroth order conserved power and
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The second solution vector �Vh2 yieldsZ �
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where M
(1)
x is the to the zeroth order conserved momentum along the x-axis and

U2 =

Z �
ln

g

1 + jA0j2 �
h

1 + jB0j2
�
d~r?: (C.18)

The third solvability condition is trivially found to be

@M
(1)
y

@Z
+

@U2

@y(1)
= 0; (C.19)

where M
(1)
y is the to the zeroth order conserved momentum along the y-axis and U2

is given by (C.18).

By inspection it is obvious that @U1

@� = @U2

@� and that

U2 ! ln(1 + jB0j2) for x(1) � x(2) !1: (C.20)

Hence ln(1+ jB0j2) is subtracted U2 leading to the �nal interaction potential U (1) =
U2 � ln(1 + jB0j2). If everywhere in equations (C.15,C.17,C.19) the superscripts are
rotated, i.e. A$ B, the equivalent equations for the second soliton are found.

To sum up, the full set of interaction equations governing the variation of two gen-
erally non-identical interacting solitons in the general nonplanar case is

@P (1)

@Z
� @U (1)

@�(1)
= 0; (C.21a)

@P (2)

@Z
� @U (2)

@�(2)
= 0; (C.21b)

@M
(1)
x

@Z
+
@U (1)

@x(1)
= 0; (C.21c)

@M
(2)
x

@Z
+
@U (2)

@x(2)
= 0; (C.21d)

@M
(1)
y

@Z
+
@U (1)

@x(1)
= 0; (C.21e)

@M
(2)
y

@Z
+
@U (2)

@x(2)
= 0; (C.21f)

where

U (1) =

Z �
ln

g

(1 + jA0j2)(1 + jB0j2) �
h

1 + jB0j2
�
d~r?; (C.22a)

U (2) =

Z �
ln

g

(1 + jA0j2)(1 + jB0j2) �
h

1 + jA0j2
�
d~r?; (C.22b)

and

g = 1 + jA0j2 + jB0j2 + h; and h = A0B
�
0e
�i� +A�0B0e

i�: (C.23)
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Escape angles in bulk �
(2)

soliton interactions

Ste�en Kjær Johansen, Ole Bang, and Mads Peter Sørensen,
Physical Review E, Volume 65, 026601 (February 2002).

We develop a theory for non-planar interaction between two identical type I spatial
solitons propagating at opposite, but arbitrary transverse angles in quadratic non-
linear (or so-called �(2)) bulk media. We predict quantitatively the outwards escape
angle, below which the solitons turn around and collide, and above which they con-
tinue to move away from each other. For in-plane interaction the theory allows pre-
diction of the outcome of a collision through the inwards escape angle, i.e. whether
the solitons fuse or cross. We �nd an analytical expression determining the inwards
escape angle using Gaussian approximations for the solitons. The theory is veri�ed
numerically.
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Stable self-guided laser beams or optical bright spatial solitons are of substantial
interest in basic physics[1] and for technical applications, such as inducing �xed[2]
and dynamically recon�gurable waveguides[3]. Several types of spatial solitons have
been demonstrated experimentally, including 1D Kerr solitons[4] and 1D and 2D
(number of transverse dimensions) solitons in saturable[5], photorefractive[6], and
�(2) media[7]. Even incoherent solitons, excitable by a light bulb, have been demon-
strated in photorefractive media[8]. All solitons exist when di�raction is balanced by
the nonlinear self-focusing e�ect. In bulk Kerr media the self-focusing e�ect dom-
inates and leads to collapse of both coherent and incoherent 2D solitons[9], their
existence requiring an e�ectively saturable nonlinearity.

An intriguing feature of solitons is their particle like behavior during collision. In
1D Kerr media collisions are fully elastic due to integrability of the 1D nonlinear
Schrödinger (NLS) equation[10]. In contrast, saturable, photorefractive, and �(2)

media are described by non-integrable equations and soliton collisions are there-
fore inelastic, displaying both fusion (Fig. 1:A), crossing (Fig. 1:B), repulsion, and
annihilation, additional solitons can be generated in a �ssion-type process [11], and
solitons can even spiral around each other [12]. All processes depend strongly on the
relative phase and have been demonstrated experimentally (see [1] and references
therein).

Complex waveguide structures can be generated by soliton interaction, such as direc-
tional couplers[13], but their e�cient implementation requires a detailed understand-
ing of the nature of soliton collisions. Snyder and Sheppard predicted the outcome
of collisions of 1D solitons in saturable media by comparing the collision angle with
the critical angle for total internal re�ection in an equivalent waveguide[14]. Except
for this work most theories are based on the variational approach, which require the
solitons to be far apart and breaks down at collision.

Here we focus on �(2) materials [15], which are more general than the simpler cu-
bic Kerr and saturable media in the sense that dependent on the phase-mismatch
between the fundamental and second-harmonic (SH) waves the nonlinearity can be
both purely quadratic (close to phase-matching) and e�ectively cubic (for a large
phase-mismatch). Spatial solitons in �(2) materials do not modify the refractive in-
dex, and consist of one (type I) or two (type II) fundamental �elds resonantly coupled
to a SH. The �(2) materials are of signi�cant interest to photonics due to the strong
and fast nonlinearities they can provide through cascading[16]. Furthermore, soliton
induced waveguides in photorefractives can have a strong �(2) nonlinearity, which
can be used for second-harmonic generation (SHG)[17].

Fusion and crossing (Fig. 1:A,B) of spatial �(2) solitons has been demonstrated
numerically[18] and experimentally [19], and �ssion of 1D type I solitons was demon-
strated analytically and numerically in the large phase-mismatch limit approximately
described by the NLS equation[20]. However, the �(2) system is more general and
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Figure 1: A,B: Planar collision between two Gaussians, P = 48:3 and � = 0. C,D:
Outwards launched exact solitons, P = 122:4 and � = 5. The launch angles are
�x = 58Æ (A), �x = 62Æ (B), �x = 5:4Æ (C), and �x = 5:7Æ (D).

complex than the saturable NLS equation and so far variational theories were only
able to predict critical launch angles and relative phases separating regimes of colli-
sion and no collision [21]. Elegant non-planar e�ective particle theories predicted the
absence of spiraling type I solitons, but still required weakly overlapping solitons [22].
In this letter we extend the e�ective particle approach to arbitrary launch angles and
present the �rst theory able to correctly predict the outcome of collisions between
2D type I solitons in �(2) media.

We consider beam propagation under type-I SHG conditions in lossless bulk �(2)

materials. Neglecting walk-o� the system of normalized dynamical equations for the
slowly varying envelope of the fundamental wave, E1 = E1(~r ), and its SH, E2 =
E2(~r ), are [23]

i@zE1 +
1
2r2

?E1 +E�1E2 = 0; (1a)

i@zE2 +
1
4r2

?E2 � �E2 +E2
1 = 0: (1b)

Here ~r=(x; y; z), z is the propagation variable, and r2
? = @2x + @2y accounts for

di�raction in the transverse ~r? = (x; y)-plane. The normalized phase mismatch is
� = ld(2k1� k2), where ld is the di�raction length of the fundamental and k1 and k2
are the wave numbers of the fundamental and SH, respectively. The system (1) can
be derived from the Lagrangian density

L = 2Im (E1@zE
�
1 ) + Im (E2@zE

�
2 ) + �jE2j2

+jr?E1j2 + 1
4 jr?E2j2 �Re

�
E�2E

2
1

�
; (2)



68 Paper 1

and conserves the power P=
R
(jE1j2+jE2j2)d~r? and momentum ~M=

R
ImfE�1r?E1+

1
2E

�
2r?E2gd~r?, where we have de�ned

R
d~r? �

R R1
�1

dxdy.

The system (1) is known [24, 25] to have a one-parameter family of radially symmetric
bright 2D solitons of the formE1(~r ) = V (r;�) exp(i�z) andE2(~r ) =W (r;�) exp(i2�z)

where � > max(0;��=2) is the internal soliton parameter and r =
p
x2 + y2. We

have found this family numerically, using a standard relaxation method, and approxi-
mately, using the variational approach [25] with Gaussians pro�les (V;W ) = (Vg ;Wg),

Vg = a1 exp(�r2=b); Wg = a2 exp(�r2=b): (3)

Here a1 = a2[2(�b� 1)]�
1
2 , a2 =

3
2 (�+ b�1), and b = [1+ (12�2 +8�� + �2)

1
2 =(2�+

�)]=2�. Because the system is Galilean invariant we can apply a gauge transformation
to �nd moving solitons. Thus the general three parameter soliton family ( ~V ; ~W ) is
given by

~V (x � �xz; y � �yz;�; �x; �y) =

V (r;� � 1
2�

2
x � 1

2�
2
y) exp[�i(�xx+ �yy)]; (4a)

~W (x � �xz; y � �yz;�; �x; �y) =

W (r;� � 1
2�

2
x � 1

2�
2
y) exp[�2i(�xx+ �yy)]; (4b)

where (V;W ) are either the exact soliton pro�les (Vs;Ws) found numerically or
(Vg ;Wg) given by (3). �x;y = tan(�x;y) are the initial transverse velocities corre-
sponding to the launch angles �x;y with respect to the z-axis.

We substitute a �eld composed of two weakly overlapping solitons ( ~V (i); ~W (i)) into
the Lagrangian density (2). We then follow the procedure outlined in [22] and allow
the solitons to vary adiabatically through a slow variation of the soliton parameters
with Z = �z being the slow propagation variable. To �rst order in �� 1 the result is
a set of dynamical equations governing the collective coordinates x(i), y(i), and �(i),
being the center positions along the x and y-axis and accumulated phase of soliton

i=1,2, respectively. We can express the new coordinates as x(i)(z) =
R z
0
�
(i)
x (Z 0)dZ 0+

x
(i)
0 , y(i)(z) =

R z
0 �

(i)
y (Z 0)dZ 0 + y

(i)
0 , and �(i)(z) =

R z
0 �

(i)(Z 0)dZ 0 + �
(i)
0 , where sub-

script 0 denotes initial values.

At this point one traditionally simpli�es the system by assuming the velocities to
be small (@zx

(i) � �; @zy
(i) � �), i.e. the solitons propagate almost in parallel.

However, we are interested in velocities that can be considerable, so instead we assume
symmetric interaction between in-phase solitons with initially identical pro�les, � =

�(i) and P = P (i), and equal but opposite velocities, �x;y = �
(1)
x;y = ��(2)x;y. Without

loss of generality we set x0 = x
(1)
0 = �x(2)0 � 0 and y0 = y

(1)
0 = �y(2)0 � 0.

Symmetry is conserved and the two sets of collective coordinates degenerate to one,
X = x(1) = �x(2); Y = y(1) = �y(2). In cylindrical coordinates with R =

p
X2 + Y 2
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we can then reduce the dynamical equations to the Euler-Lagrange equation of the
e�ective Lagrangian

L(R; _R) =
1

2
P _R2 � Ue�(R;

_R); (5)

for the single coordinate R. The e�ective potential

Ue�(R;
_R) =

C0

2R2
P +

1

2
U(R; _R) (6)

is composed of the classical centrifugal barrier, where C0 = (X _Y � Y _X)2 = (x0�y +
y0�x)

2 is constant because of conservation of angular momentum, and of the inter-
action integral

U = �
Z
V (1)

�
V (1)W (2) cos(2�) + 2W (1)V (2) cos(�)

�
d~r?

(7)

where � = 2�xx + 2�yy. We note that, strictly speaking, U is only a quasi-classical
potential since it depends on the velocities (in contrast to the potential used in [22]).

We have now established a picture of an e�ective particle moving in a potential,
Ue�, with the kinetic energy Ekin = 1

2P
_R2 � 0. For small velocities the potential

(7) has the shape of a well and hence represents an attractive force. In the general
case of non-planar interaction, C0 6= 0, the centrifugal barrier is always repulsive and
goes to in�nity at R = 0. This does not necessarily rule out fusion since also the
velocities go to in�nity because of conservation of C0. The centrifugal barrier also
creates a local minimum in the e�ective potential (still assuming small velocities)
which suggests that spiraling con�gurations may exist. In general, however, we cannot
expect our model to yield correct physical results in the vicinity of R = 0 since
it violates the assumption of weakly overlapping solitons. In fact fusion has been
observed numerically, but stable spiraling con�gurations have not been found[22].

Here we shall not discuss the qualitatively di�erent regimes. Rather we are interested
in quantitative predictions of escape velocities. For solitons launched with outwards
velocities we will all ways be able to theoretically predict the escape velocity. On the
other hand, a consistent theory for the determination of the inwards escape velocity
only exists for in-plane interaction, when the classical centrifugal barrier vanishes,
i.e. C0 = 0.

We �rst determine the outwards escape angle. For simplicity we focus on in-plane
interaction with y0 = �y = C0 = 0 wherefore R = jX j and _R = �x. In this case the
e�ective particle either escapes the potential, Etot = Ekin +Epot > 0, or is trapped
by it, Etot < 0, and the escape velocity, �c, is given by the relation

�2cP = U(x0; �c): (8)
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Figure 2: Outwards escape angle in degrees (solid curve) for FWHM=1 and x0=1.5.
Numerical experiments where exact solitons fused (�) and where they escaped (Æ).
The dashed line shows the initial soliton power, P .

Unfortunately we are not able to express the interaction integral U(x0; �x) in terms of
analytical functions and we cannot use Gaussians, since the Gaussian tale asymptotic
is di�erent from that of the exact soliton. It is however trivial to solve (8) numerically
and in Fig. 2 we have plotted the outwards escape angle, given by �c = Arctan(�c),
versus the phase mismatch. The initial beam width and separation are kept constant
to ensure a weak overlap of the soliton tails at all phase mismatches. The simulations
were performed with numerically found exact solitons as initial conditions. They
con�rm the accuracy of the escape angle predicted by Eq. (8). We found the minimum
of about 3Æ around � = �7 to be global. Note that the angles are expected to be
small, since the initial overlap and hence the attractive force between the solitons
is weak. As an example of the dynamics we show in Fig. 1:C,D the outcome of
the experiments with �=5 from Fig. 2. Only the fundamental waves are shown, the
evolution of the SH waves being qualitatively the same.

Now considering solitons launched towards each other we �rst elaborate on the e�ec-
tive particle picture. If we assume the solitons to be initially far apart this corresponds
to the e�ective particle experiencing essentially no potential. Even a small launch an-
gle should then result in a positive total energy and enable the e�ective particle to
cross the bottom of the potential and escape towards in�nity, corresponding to soliton
crossing. This is o� course not the correct physical picture, since our system is not
integrable and thus in reality the collision is not elastic. There is transfer of energy
into internal soliton modes and shedding of energy as radiation.

In a di�erent picture we assume that the soliton pro�les do not change before the
point of collision. This seems reasonable when comparing the characteristic length
of slow adiabatic change with the relatively short interaction distance occurring for
considerable velocities. In this case we can treat the interaction as if the solitons
were launched on top of each other (x0=0) corresponding to the e�ective particle
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being launched in the bottom of the potential, where it experiences the maximum
barrier. Then the relation determining the escape velocity becomes �2cP = 2U(0; �c)
rather than (8). The interaction integral no longer depends on the asymptotic tales
but on the entire pro�les and hence we can apply the Gaussian approximation (3).
The general transcendental equation for the inwards escape angle is then given by

�2c =
2

b

�b+ 1

2�b� 1

�
e�

4
3 b�

2
c + 2e�

1
3 b�

2
c

�
; (9)

which for �=0 simpli�es to

� = 0 : �c = 0:23�
p
P ; (10)

in terms of the power. In the large phase-mismatch cascading limit, (� � �) where
the nonlinearity is e�ectively cubic, Eq. (9) simpli�es to

� � � : �c =

s
3

4

�
P

2�
� �

�
: (11)

We remark that this approach is equivalent to �nding the critical angle of total
internal re�ection for a waveguide [14]. However, since beam propagation in quadratic
media does not induce changes in the refractive index the method used in [14] is not
applicable to this case.

In Fig. 3 we have summarized the results for exact phase matching, �=0, and plotted
the predicted inwards escape angle, �c = Arctan(�c), versus soliton power, both for
�c given by (10) and for �c found with exact solitons. The curves are close and the
simple square root dependency on the power excellently predict the escape angle. In
the experiments we used Gaussians as initial conditions. These were launched with
a distance of 2x0=10 between them, ensuring practically zero initial overlap. In Fig.
1:A,B we show examples of experiments with � = 0 and a power of P = 48:3. We
note that for the exact soliton initial conditions we observed even better agreement
than with Gaussians. Close to the escape angle all the power is shed as radiation and
thus (10) serves as an accurate prediction of soliton annihilation (Fig. 4:B). We also
investigated the cases of non-zero mismatches, focusing on � = �3. In these regimes
there is a power threshold for soliton excitation and the collisions are of a much more
complex nature than for perfect phase matching, where solitons exist at all powers.
For relatively low powers not far above the threshold the collisions mostly resulted
in destruction of the solitons (Fig. 4:A). The explanation of this phenomenon is that
too much power is shed as radiation in the collision and hence the resulting beams
di�ract because they do not carry su�cient power to form solitons. For higher powers
the predicted escape angles were reasonably close to the observations.

In conclusion we have developed a theoretical description that should hold for systems
with all types of local nonlinearities. In particular we have studied bulk �(2) media



72 Paper 1

20 40 60
0

25

50

75

P

αc

Figure 3: Inwards escape angle in degrees versus soliton power calculated analytically
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experiments where Gaussians crossed (Æ) and fused (�).
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Figure 4: A: Crossing followed by di�raction (� = �3 and P = 45:3). B: Annihilation
(� = 0 and P = 48:3).
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and determined analytical expressions for the escape angles when the centrifugal
barrier vanishes. This happens in the two in-plane cases of outwards and inwards
launched solitons. The simple expression for the inwards escape angle represents
the �rst analytical prediction of the outcome of a soliton collision. We have veri�ed
the analytical expressions numerically using Gaussian approximations and observed
excellent agreement.

We acknowledge support from the Danish Technical Research Council under Talent
Grant No. 56-00-0355. Much of the numerical work was carried out at Centre de
Computacio i Comunicacions de Catalunya
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Paper 2

Engineering of spatial solitons

in two-period QPM structures

Ste�en Kjær Johansen, Silvia Carrasco, Lluís Torner, and Ole Bang,
Optics Communications, Volume 203, Issue 3-6, pp. 393-402 (March 2002).

We report on a scheme which might make it practically possible to engineer the
e�ective competing nonlinearities that on average govern the light propagation in
quasi-phase-matching (QPM) gratings. Modulation of the QPM period with a second
longer period, introduces an extra degree of freedom, which can be used to engineer
the e�ective quadratic and induced cubic nonlinearity. However, in contrast to former
work here we use a simple phase-reversal grating for the modulation, which is practi-
cally realizable and has already been fabricated. Furthermore, we develop the theory
for arbitrary relative lengths of the two periods and we consider the e�ect on solitons
and the bandwidth for their generation. We derive an expression for the bandwidth
of multicolor soliton generation in two-period QPM samples and we predict and con-
�rm numerically that the bandwidth is broader in the two-period QPM sample than
in homogeneous structures.
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Quasi-phase-matching (QPM) is a major alternative over conventional phase match-
ing in many laser applications based on frequency-conversion processes in quadratic
nonlinear media (for reviews, see [1, 2]). Besides other practical advantages, QPM
allows tailoring the nonlinearity of the material to form complex structures. This
opens a range of new possibilities, which have become experimentally feasible with
the recent progress in poling techniques. For example, engineerable pulse compression
in frequency-doubling schemes in synthetic QPM gratings has been demonstrated in
aperiodically poled lithium niobate and potassium niobate [3, 4, 5, 6], and transverse
QPM gratings have been made both for shaping second-harmonic beams and to ex-
tend the spectral coverage of optical parametric oscillators[7, 8]. Bandwidth enhanced
parametric interactions can be obtained in modulated-period structures [9], multi-
ple nonlinear interactions can be achieved in quasi-periodic schemes [10, 11, 12, 13],
and simultaneous generation of multiple color laser light has been demonstrated in
QPM crystals doped with active lasing ions [14]. QPM engineering also �nds novel
important applications beyond pure frequency-conversion devices, e.g., to generate
enhanced cascading phase-shifts [15], all-optical diode operation [16], and multicolor
soliton formation [17, 18, 19, 20, 21, 22].

Here we show that two-period QPM structures o�er new opportunities for soliton
control.

Multicolor solitons mediated by second-harmonic generation (SHG) form by mutual
trapping of the beams at the fundamental frequency (FF) and at the second harmonic
frequency (SH). Here we focus on bright solitons whose basic properties are well
known. Whole dynamically stable families exist above a certain power threshold for
all phase mismatches. At lowest order the e�ect of QPM grating is to average the
quadratic nonlinearity [2]. However, taking higher order perturbations into account
reveals that the corresponding averaged �eld equations include e�ective cubic, Kerr-
like terms[19, 23, 24]. Such terms modify the average properties of CW waves [25, 26]
and the soliton families of the averaged equations [19, 24, 27], which can be analyzed
as sustained by competing quadratic and e�ective cubic nonlinearities [28, 29, 30, 31,
32].

Nevertheless, in standard QPM the strength of the induced averaged cubic nonline-
arity is proportional to the ratio between the QPM grating period and the soliton
characteristic length (i.e., the di�raction length in the case of spatial solitons). At
optical wave lengths, the former is typically of the order of ten �m, whereas the latter
is a few mm. Therefore, the strength of the induced cubic nonlinearities is extremely
small. The question thus naturally arises whether and how QPM engineering can be
employed to bring the e�ective cubic nonlinearities to compete with the quadratic
in the average �elds. One solution is to add a strong dc-part to the nonlinear QPM
grating, i.e. as done in [33, 34]. This adds a term to the induced Kerr terms, which
is proportional to the QPM grating period and the dc-value squared, and thus can
be large[24]. Another potentially more versatile technique is to modulate the QPM
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period with a second longer period, as it was shown theoretically in [23]. This in-
troduces an extra degree of freedom, which can be used to engineer the e�ective
quadratic and induced averaged cubic nonlinearity.

Here we consider the latter technique. However, in contrast to the rather complicated
long-period modulation used in [23] we use here a simple phase-reversal grating for
the modulation, similar to the two-period QPM sample recently employed by Chou
and co-workers [12] for multiple-channel wavelength conversion in the third telecom-
munication window. Furthermore, we develop the theory for arbitrary relative lengths
of the two periods and we consider the e�ect of the modulation on multicolor solitons.
We expect soliton formation to be possible for a variety of phase-reversal periods, in
view of the fact that multicolor solitons have been shown to be robust against strong
perturbations, including quasi-periodic QPM gratings[21] and even periodic gain and
loss[35]. Using the induced averaged cubic nonlinearities we derive an expression for
the bandwidth of multicolor soliton generation in two-period QPM samples and we
show that the bandwidth is broader in the two-period QPM sample than in ho-
mogeneous quadratic nonlinear materials. Importantly, all our results are con�rmed
numerically.

We consider beam propagation under type-I SHG conditions in a lossless QPM �(2)

slab waveguide. The slowly varying envelope of the fundamental wave, E1 = E1(x; z),
and its SH, E2 = E2(x; z), are[36]

i
@E1

@z
+

1

2

@2E1

@x2
+ d(z)E�1E2e

�i�z = 0; (1)

i
@E2

@z
+
�

2

@2E2

@x2
+ d(z)E2

1e
i�z = 0; (2)

where in all cases of practical interest � ' 0:5. The normalized wave-vector mismatch
is introduced via the real parameter � = k1!

2
0�k, where �k = 2k1 � k2, and !0 is

the beam width, and k1;2 are the linear wave numbers of the fundamental and SH,
respectively. The scaled transverse coordinate, x, is measured in units of !0 and
the propagation coordinate, z, is measured in units of 2ld where ld = k1!

2
0=2 is the

di�raction length of the fundamental wave. The spatial periodic modulation of the
nonlinearity is described by the grating function d(z) whose amplitude is normalized
to 1, and whose domain length we de�ne as � = �=�, where � is the spatial grating
frequency or the QPM frequency, which we assume real and positive. In the case of
second-harmonic generation in lithium niobate pumped at �! � 1.5 �m with a beam
width of !0 � 20 �m, the intrinsic material wave vector mismatch is of the order
j�j � 103. Thus the QPM frequency must also be of this order which corresponds to
a domain length of � 10 �m. For such values, a scaled grating frequency of the order
� � 10 correspond to a domain length of about 1 mm.

The two-period grating function, d(z), consists of a primary grating, d(1)(z), and a
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Figure 1: Two-period QPM grating.

superimposed secondary grating, d(2)(z). We expand d(z) in a Fourier series

d(z) =
X
k

d
(1)
k exp(ik�1z)�

X
l

d
(2)
l exp(il�2z) (3)

where the summations are over all (k; l) from �1 to 1. If we assume the grating
functions to be square, only the odd harmonics enters into the expansion, d2l+1 =
2=i�(2l + 1) and d2l = 0. In the case of low-depletion SHG, the e�ect of the super-
imposed period is to split each peak of the original one-period QPM grating into
an in�nite family of peaks[12]. More formally, one has peaks at all spatial QPM fre-
quencies m�1 + n�2 where m and n are the QPM orders related to the primary and
secondary grating, respectively. These peaks are not delta-like, though for simplicity
they are depicted as such in Fig. 2, but rather sinc-like functions around the relevant
QPM frequency. The SHG-e�ciency is higher the lower the order. Hence, in one-
period QPM one would choose to match to the �rst peak (m = �1). In two-period
QPM there is an equivalent rule, i.e. the low-depletion SHG-e�ciency is highest for
m = n = �1. To be able to treat the problem mathematically we have to neglect all
overlap between peaks in order to avoid resonances. Thus we must assume � >> 1
in the one-period case. In the general two-period case the spectrum becomes dense,
as in the case of a Fibonacci grating[21]. In order to be able to neglect any overlap
between the peak we are looking at, and the rest of the dense spectrum, we have to
assume, not only high spatial QPM frequencies, but also that the two frequencies are
of di�erent order. We remark that soliton excitation is expected to be possible no
matter what the spectrum looks like, as long as the power is high enough[21]. Our
numerical simulations presented here agree with this expectation. It is the lack of
analytical tools which necessitates the assumption of well separated peaks.

By applying the asymptotic expansion[37] technique we have established a perturba-
tion theory describing the propagation of the averaged �elds in this two-period QPM
system. We make the transformationE1(x; z) = w(x; z) andE2(x; z) = v(x; z) exp (i�z),
where � = � �m�1 � n�2, is the residual phase mismatch, which is assumed to be
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Figure 2: Peak splitting in the two-period QPM grating. Dashed peaks indicate the
location of the 1'st order peaks in the one-period case.

small. The functions w(x; z) and v(x; z) are assumed to vary slowly on the scale given
by the QPM periods and can be expanded in the Fourier series

w(x; z) = w0(x; z) +
X
k 6=0

wk(x; z)e
ik�1z +

X
l6=0

!l(x; z)e
il�2z; (4)

v(x; z) = v0(x; z) +
X
k 6=0

vk(x; z)e
ik�1z +

X
l 6=0

�l(x; z)e
il�2z: (5)

We remark that this assumption is valid also when the QPM frequencies share com-
mon harmonics. In this case the SHG spectrum discussed above becomes discrete as
in the one-period case. However, to avoid overlap between peaks the QPM frequen-
cies must still be assumed of di�erent order. Furthermore we formally assume that
� >> 1, �1 >> 1, and �2 >> 1. Substituting (4-5) into (1-2) and matching leading
order terms yields the relations for the harmonic coe�cients[19]. One gets

wq =
1

q�1
d(2)n d

(1)
(q+m)w

�
0v0; vn =

1

q�1
d
(2)
�nd

(1)
(q�m)w

2
0 ; (6)

!q =
1

q�2
d(1)m d

(2)
(q+n)w

�
0v0; �n =

1

q�2
d
(1)
�md

(2)
(q�n)w

2
0 ; (7)

and the equations governing the averaged �elds are of the form

i
@w0

@z
+

1

2

@2w0

@x2
+ �w�0v0 + (jw0j2 � jv0j2)w0 = 0; (8)

i
@v0
@z

+
1

4

@2v0
@x2

� �v0 + �w2
0 � 2jw0j2v0 = 0: (9)

System (8-9) conserves the same power as system (1-2), P =
R
(jw0j2 + jv0j2)dx =
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R
(jE1j2 + jE2j2)dx. The strengths of the averaged nonlinearities are given by

� = d(1)m d(2)n �
X
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d
(1)
k d

(2)

[(k�m)
�1
�2

+n]
; (10)
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d
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q
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In these expressions, q, l, and k are integers, and the summations are everywhere
over all integers from �1 to 1 except zero. We emphasize that the averaged model
(8-9) is valid for arbitrary values of �1 and �2 as long as the assumptions �1 >> 1,
and �2 >> 1 are not violated. However care must be taken when calculating the
sums in (10) and (11). When necessary, k and l, themselves integers, must always
be chosen such that the (k �m)�1=�2 and (l � n)�2=�1 are integers. This ensures

that the Fourier coe�cients d
(1)
k and d

(1)
l exist. We remark that if one of the QPM

frequencies is an irrational number expressions (10) and (11) are greatly simpli�ed

� = d(1)m d(2)n ; (12)
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n d
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X
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d
(1)2
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q
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d
(1)
m d

(1)
�m

�2

X
q

d
(2)2

[n+q]

q
: (13)

To make the cubic self- and cross-phase modulation symmetric in (8-9) we have had

to assume that d
�(i)
n = d

(i)
�n = �d(i)n , which is the case for square grating functions.

Otherwise expressions (10-13) hold for any grating function of the form (3). Rewriting
(10) and (11) for square grating functions we get

� = � 4

�2

0
@ 1
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�
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�
2s�1�2 + n

�
1
A ; (14)
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X
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1
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�
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1
A ; (15)

where the summations now are over all integers q, r, and s from�1 to1 except zero.
Notice the di�erent sign of the lowest-order contribution to (14) at the (m = 1; n = 1)-
peak, and the (m = 1; n = �1)-peak. Such change of sign has implications to the
soliton features, as shall be discussed below. Equations (8-9) were �rst derived in [19].
They have the same form regardless of the speci�c type of grating, the parameters
still merely being given as sums over the Fourier coe�cients of the grating. Thus
they were derived in [24] for QPM with both a linear and a nonlinear grating with
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or without a dc-value of the nonlinear grating. They were also derived in [23] for a
more exotic two-period grating.

By letting w0(x; z) = �w(x; z)=� and v0(x; z) = �v(x; z)=� we can reduce system (8-9)
to

i
@ �w

@z
+

1

2

@2 �w

@x2
+ �w��v + ~(j �wj2 � j�vj2) �w = 0; (16)

i
@�v

@z
+

1

4

@2�v

@x2
� ��v + �w2 � 2~j �wj2�v = 0: (17)

The stationary bright solitary families of system (16-17) are of the form �w(x; z) =
u1(x) exp(i�z), �v(x; z) = u2(x) exp(i2�z). They are parametrized by the soliton pa-
rameter � > maxf0;��=2g. The stationary solutions of (8-9) are parametrized by
exactly the same parameter but since this system is characterized by three (�, �,
and ) rather than the two parameters of (16-17) (� and ~ = =�2) each solution of
(16-17) corresponds to an in�nite family of solutions of (8-9), i.e. an in�nite number
of QPM frequency combinations and thus physical setups. System (16-17) conserves
the renormalized power �P =

R
(j �wj2 + j�vj2)dx = �2P . We note that also the assumed

slow variation of the functions w(x; z) and v(x; z) imposes constraints on the choice
of the soliton parameter �. The characteristic soliton scale length, 2�=�, must be
much larger than the QPM period � = �=�, where � in the two-period case is the
smallest QPM frequency.

Merely looking at expressions (14-15) suggests that in principle there is ample room
for engineering of the averaged nonlinearities. The main parameters are the QPM
frequencies �1 and �2. In general we can state that the higher the QPM frequencies
are, the lower the induced averaged cubic terms become. Thus  ! 0 for �1; �2 !1.
One also notices that the ratio between �1 and �2 and vice versa plays an important
role in the sums in expressions (14) and (15). We observe that the smaller the ratio
the more signi�cant the corresponding sums. From (14) it is obvious that the induced
part of the averaged quadratic nonlinearity depends only on the ratio �2=�1. Thus
we can realize the same averaged quadratic nonlinearity at large QPM frequencies
(no induced averaged cubic terms) and at low QPM frequencies (signi�cant induced
averaged cubic terms). We note that if we let the second grating function d(2)(z) = 1,

the only Fourier coe�cient left in the expansion of d(2)(z) is d
(2)
0 = d

(2)
n = d

(2)
�n = 1

and hence � = d
(1)
m and  = 1

�1

P
d
(1)2

[m+q]=q. The whole system thus degenerates into

the one-period case and the results of [19] are reproduced.

Depending on our objectives we can make the individual terms of the averaged non-
linearities more or less signi�cant. Thus we can essentially make the two-period QPM
system behave like the one-period system with induced averaged cubic nonlinearities
by choosing �1 >> �2 while still assuming �2 >> 1. In this way one can use �1 to
reduce a large intrinsic phase mismatch, �, to a small e�ective mismatch which can
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Figure 3: Fraction of power in the SH for the two-period QPM system with (�1; �2) =
(997; 13) as a function of total power. Solid line and �: Theoretical and numerically
measured values, respectively. Dashed curves: Zero-order approximation,  = 0. The
value of � is indicated at each pair of curves.

then be manipulated further with �2. Thus, if we let �1 !1 the averaged nonline-
arities of for the system with square grating functions (14-15) with m = n = 1
reduces to

� = � 4

�2
;  =

4

�2�2

�
1� 8

�2

�
: (18)

To verify the model in this �1 ! 1 limit we have made a series of simulations
launching soliton initial conditions, found from (16-17), in a real two-period struc-
ture described by (1-2) with �1 chosen to be a high prime and �2 a small prime.
Choosing primes e�ectively eliminates contributions from the remaining sums in (14-
15) because r and smust be chosen such that r�2=�1 and s�1=�2 are positive integers.
We measure the fraction of power in the SH after any initial transient has died out
and compare this to the theoretically predicted value. In Fig. 3 we have summa-
rized the results of this investigation for di�erent powers and di�erent e�ective phase
mismatches.

If both QPM frequencies are of the same order, the full non-simpli�ed expressions
(14-15) must be used to calculate the averaged nonlinearities. Because of the way
the ratio �1=�2 enters in (14-15), one has discrete resonances between the QPM
frequencies. At these discrete resonances the induced averaged nonlinearities become
stronger. The strength depends on the order of the resonance, the lower the order
the higher the strength. To show how the strength of the averaged nonlinearities are
calculated we concentrate on the summations involving s�1=�2. The contribution of
the terms involving r�2=�1 is handled in an analogous way. First-order resonances
arise when �1=�2 is a positive integer; then s is summed over all integers except zero
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from �1 to 1. Second-order resonances arise when �1 = (2p� 1)�2=2 where p is a
positive integer. In this case s only spans the even integers. Third-order resonances
occur when �1 = p � �2=3 where p = 1; 2; 4; 5; 7; 8; � � � ; then s must be summed over
the integers �3;�6;�9; � � � . And so on and so forth for higher-order resonances.

We emphasize that resonances in principle must be taken into account whenever
the gratings periods are rational values. In actual practice, the values of the grating
periods are not integers but may be approximated by rational numbers. For example,
let (�1; �2) = (194:7; 13:3). In this particular case, we can write �1 = p�2=133, where
p is any integer which has no common divisor with 133 except 1, showing that we
are thus dealing with a 133'rd order resonance. In this particular case, p = 1947, and
s must be summed over �133;�266;�399; � � � .

In Fig. 4 we show the induced averaged cubic nonlinearity of the reduced system,
~ = =�2, as a function of the QPM frequency �1 (�2 is �xed). We have plotted the
values for the lowest order resonances together with the no-resonance curve, i.e. the
limiting curve where the average nonlinearities are given by (12-13) which in the case
of square grating functions reduces to

� = � 4

�2
; (19)

 =
4

�2

�
1� 8

�2

��
1

�1
+

1

�2

�
: (20)

It is evident from Fig. 4 that the higher order resonances quickly converge towards
the no-resonance curve with �1 and that only the �rst order resonances yield induced
averaged cubic nonlinearity signi�cantly higher than the no-resonance case. We note
that the resonance peaks shown are truly discrete. Furthermore, when the grating
periods are non-integer numbers, only very high-order resonances occur. The point
labelled Æ in Fig. 4 illustrates the idea. It corresponds to (�1; �2) = (8:66; 13). While
the very similar structure corresponding to (�1; �2) = (26=3; 13) yields a third-order
resonance contribution, (�1; �2) = (8:66; 13) yields a 650th order resonance. Hence,
the negligible deviation relative to the no-resonance curve. The conclusion is thus
that only the no-resonance curve is of practical experimental interest.

However, to verify that the model is correct we still need to analyze the full resonant
structure of the averaged nonlinearities. Thus in Fig. 5 we focus on the �rst order
resonances and show how the e�ective averaged quadratic nonlinearity changes with
the ratio �1=�2. In the same �gure we have also plotted ~ to emphasize the interplay
between ~ and �. Recall that the graphs are not continuous but discrete functions of
�1=�2, i.e. the plot only holds for values of �1 which are integers of �2 (�2 = 13 in
this case). In Fig. 6 we have made a series of numerical experiments to con�rm that
the averaged model derived in this paper does predict correct behavior also at the
QPM frequency resonances. Again we launch soliton found from (16-17) in the real
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Figure 4: Averaged cubic nonlinearity at the (m = n = 1)-peak in the reduced system
as a function of the QPM frequency �1 (�2 = 13). Full curve: No-resonance limit. �:
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0 10 20 30
0

0.1

0.2

A
ve

ra
g

e
 c

u
b

ic
 n

o
n

lin
e

a
ri
ty

, γ~

Ratio between QPM frequencies, κ
1
 / κ

2

0 10 20 30
0

0.1

0.2

0 10 20 30
0

0.1

0.2

0.2

0.3

0.4
A

ve
ra

g
e

 q
u

a
d

ra
tic

 n
o

n
lin

e
a

ri
ty

, 
| η

 |

Figure 5: Averaged nonlinearities at the �rst order resonances from Fig. 4. �2 = 13
and �1 = p � 13 (p is an integer). �: The e�ective cubic nonlinearity, ~, of the
averaged system. �: Amplitude of the averaged quadratic nonlinearity, �. The curves
are discrete and the lines in between the �'s and �'s are just to help the eye. The
dashed and dotted lines indicate the asymptotic values of ~ (�1 ! 1) and j�j,
respectively. F indicates the point where ~ � 0:050 (see text).
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Figure 6: Fraction of peak-intensity in SH at the �rst order resonances from Fig.
5. �2 = 13 and �1 = p � 13 (p is an integer). The input power is kept constant at
P = 15 and � = 0. The lines represent theoretically predicted values whereas �, �
and � are numerically measured values. Dashed line and �: Maximum value. Solid
line and �: Average value. Dashed dotted line and �: Minimum value. Notice that the
lines actually represent the discrete integer values. They are drawn as lines just to
help the eye.

system described by (1-2), but now we keep the input power �xed, while we change
�1 in integer steps of �2. Simulations where carried out in the actual two-period QPM
structure. As before we let the evolution continue until any initial transient has died
out. Then we sample the minimum, maximum, and averaged peak intensities and
compare those with the theoretically predicted values.

It is worth recalling that for every soliton solution of the reduced system (16-17) we
have a whole family of solutions of the form (4-5). In Fig. 7 we have shown how one
speci�c solution for ~ � 0:050 leads to di�erent initial conditions for two di�erent
physical setups. The two setups here chosen corresponds to the point F indicated on
both Fig. 4 and Fig. 5. We also show the evolution of these initial conditions in Fig.
7, i.e. the evolution of the peak intensities.

For the induced averaged nonlinearities addressed in this paper to be of potential
practical importance, they have to impact the observable soliton properties, including
their excitation conditions. To show that this seems to be the case, in Fig. 8 we show
the behavior found for the soliton content[38], SC, as a function of the residual phase
mismatch in a two-period structure with QPM frequencies (�1; �2) = (195; 13). We
also include the outcome of the numerical experiments performed for a structure with
the non-integer values (�1; �2) = (194:7; 13:3), to show that the e�ect predicted is not
restricted to a particularly suitable choice of these parameters. We launch a FF signal,



88 Paper 2

0 5 10

2

4

6

Propagation distance, z

In
te

ns
ity

I
2ω

Iω

0 5 10

2

4

6

Propagation distance, z

I
2ω

Iω

−4 −2 0 2 4
0

2

4

6

Transverse coordinate, x

In
te

ns
ity

 p
ro

fil
e

FF

−4 −2 0 2 4
0

2

4

6

Transverse coordinate, x

SH
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Figure 8: Soliton content for sech input FF as a function of the residual phase mis-
match � = � � �1 � �2 (m = n = 1). Input power is Pin = 50. Left plot is for
(�1; �2) = (195; 13) (� ' �0:38; ~ ' 0:050) and right plot for (�1; �2) = (194:7; 13:3)
(� ' �4=�2; ~ ' 0:038). �': SC for two-period QPM. '�': SC for purely quadratic
model. The discrete points are the outcome of numerical experiments; the full lines
in between are only to help the eye. The dashed and dotted lines are estimates from
the limiting NLSE for a pure quadratic model and for a model with cubic terms,
respectively.

with a sech-shape, and no SH seeding and calculate how much of the initial power,
Pin, is bound in the soliton which eventually forms. We propagate until a steady
state has emerged and then we collect the energy �ow in a window wide enough to
enclose substantially all the soliton. Typical values are propagation until z = 103

and collection of energy �ow in a window of x = �10, but these values were adapted
whenever needed in order to capture always all the soliton energy. Simulations where
carried out in the actual two-period QPM structure. The bandwidth of the SC for
sech inputs can be estimated by using the Zakharov-Shabat scattering equations
associated with the (1+1)-dimensional nonlinear Schrödinger equation, NLSE. With
cubic terms, i.e. for system (8-9), one gets the estimate

SC '
2
q

�2�
�2+�

�2Pin

 p
2�2Pin �

s
�2�

�2 + �

!
: (21)

In the plot we also include the actual value of SC that is numerically found in the
corresponding homogeneous pure quadratic case. Compared to the pure quadratic
model, the bandwidth for the two-period structure is found to get wider. This e�ect
can be understood by comparing the approximate theoretical expressions for the two
cases given by (21). There is also an expected signi�cant increase in the e�ciency
owing to the fact that in systems with induced cubic terms the exited solitons are
closer to the initial sech-shape than in purely quadratic systems. To explain the �dip�
in the SC in the case of (�1; �2) = (194:7; 13:3) again one must turn to the SHG
spectrum. We �nd that the (m = �1; n = 31)-peak is located exactly at � = 9:6, which
is where the bottom of the �dip� seems to be. Thus we conclude that the e�ciency
of soliton excitation is diminished because of resonances between the (m = n = 1)-
and the (m = �1; n = 31)-peak.
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Figure 9: Soliton content for sech input FF as a function of intrinsic phase mismatch
� with (�1; �2) = (195; 13). Input power is Pin = 50. The discrete points are the
outcome of numerical experiments; the full lines in between are only to help the eye.
The dashed curves are estimates from the limiting NLSE. The vertical lines located at
� = 182 and � = 208 indicate the m = 1; n = �1 and m = n = 1 peaks, respectively.
The dashed vertical line at � = 195 indicates the location of the peak in the absence
of a second period (see Fig. 2).

In Fig. 9 we plot the soliton content for the (�1; �2) = (195; 13) case, but now
we scan mismatches not only around the (m = n = 1)-peak but also around the
(m = 1; n = �1)-peak. In the absence of resonances and average cubic nonlinearities,
i.e. � = �4=�2, no di�erences are found in the behavior of soliton excitation at
each peak. However, such is not the case when the soliton generation e�ciencies can
interfere with each other, as shown in Fig. 9. For example, in the particular case
shown, one observes that soliton generation around the (m = 1; n = �1)-peak takes
place within a narrower band of mismatches and is less e�cient than around the
(m = 1; n = 1)-peak. This is because the average nonlinearities (14-15) are nonlinear
functions of m and n and hence they change their relative strengths at the two
peaks. A di�erent behavior than that displayed in Fig. 9 might be obtained with
di�erent values of the two-grating periods and input light conditions, as shown in
Fig. 10. When resonances are involved we note that at the (m = 1; n = �1)-peak
the induced part of the average second order nonlinearity is stronger than the no-
resonance value 4=�2 whereas it is weaker at the (m = 1; n = 1)-peak. Notice also that
the soliton content vanishes in the intermediate region between the (m = 1; n = �1)-
peaks. This is because in the intermediate region between both peaks, e.g., at the
mismatch that would be exactly compensated with a single-period QPM structure,
the interference between the two peaks acts as a periodic amplitude modulation of
the e�ective nonlinear coe�cient, with a period comparable with the characteristic
soliton length. Such modulation constitutes a very strong perturbation that prevents
soliton formation.
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Figure 10: Same as in Fig. 9, but here (�1; �2) = (195; 39)
.

We remark that one �nds soliton generation around other peaks than the (m = 1; n =
�1)-peak. For example, in the (�1; �2) = (195; 13) case we observe a band (not shown
in the plot) around � = 39 corresponding to the (m = 1; n = 3)-peak. However, soliton
formation in this band is much less e�cient than in the (m = 1; n = �1)-band and
therefore we did not include it the plot. Similarly, other bands with higher QPM
order also exist but one has to launch correspondingly high powers to excite solitons.

In conclusion, we derived an averaged model for the soliton propagation in two-period
QPM systems of the form (8-9), and we showed that the model gives an accurate de-
scription of stationary soliton propagation under a variety of input light and material
conditions. We have shown that one can use one grating period of the QPM struc-
ture to reduce the intrinsic phase mismatch and the other grating period to induce
averaged cubic nonlinearities. We found the induced averaged cubic nonlinearities to
be strongest when one QPM frequency is a multiple of the other, but we showed
that those are strictly discrete resonances that cannot occur when experimentally
feasible grating periods are taking into account. However, our investigations predict
that also the no-resonance averaged contributions can be important. In particular,
we found that the QPM engineered averaged cubic nonlinearities, induced in feasible
two-period samples, enhances the peak-e�ciency and residual mismatch-bandwidth
of the soliton excitation process with non-soliton single frequency pump light.
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