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Abstract

This Ph.D. thesis focuses on clustering techniques for Knowledge Discovery
in Databases. Various data mining tasks relevant for medical applications are
described and discussed. A general framework which combines data projec-
tion and data mining and interpretation is presented. An overview of various
data projection techniques is offered with the main stress on applied Principal
Component Analysis. For clustering purposes, various Generalized Gaussian
Mixture models are presented. Further the aggregated Markov model, which
provides the cluster structure via the probabilistic decomposition of the Gram
matrix, is proposed. Other data mining tasks, described in this thesis are out-
lier detection and the imputation of the missing data. The thesis presents two
outlier detection methods based on the cumulative distribution and a special
designated outlier cluster in connection with the Generalized Gaussian Mixture
model. Two models for imputation of the missing data, namely the K-nearest
neighbor and a Gaussian model are suggested. With the purpose of interpreting
a cluster structure two techniques are developed. If cluster labels are available
then the cluster understanding via the confusion matrix is available. If data
is unlabeled, then it is possible to generate keywords (in case of textual data)
or key-patterns, as an informative representation of the obtained clusters. The
methods are applied on simple artificial data sets, as well as collections of tex-
tual and medical data.






Resumeé

Denne ph.d.-athandling fokuserer pa klyngeanalyseteknikker til ekstraktion af
viden fra databaser. Afthandling prasenterer og diskuterer forskellige datamin-
ing problemstillinger med relevans for medicinske applikationer. Specielt pra-
senteres en generel struktur der kombinerer data-projektion, datamining og au-
tomatisk fortolkning. Indenfor data-projektion gennemgas en reekke teknikker
med speciel vegt pa anvendt Principal Komponent Analyse. En rekke gener-
aliserede Gaussisk miksturmodeller foreslas til klyngeanalyse. Desuden foreslas
en aggregatet Markov model, som estimerer klyngestrukturen via dekomposi-
tion af en sandsynlighedsbaseret Gram-matrix. Herudover beskriver afthandlin-
gen to andre datamining problemstillinger nemlig “outlier” detektion og im-
putering af manglende data. Afthandlinger prasenterer “outlier” detektionsme-
toder. Dels baseret pa kumulerede fordelinger, dels baseret pa introduktion af en
speciel “outlier” klynge i forbindelse med den generaliserede Gaussisk mikstur-
model. Med hensyn til imputation af manglende data prasenteres to metoder
baseret pa K-nermeste-nabo eller en Gaussisk model antagelse. Der er udviklet
to metoder til automatisk fortolkning af klyngestrukturen. Néar klynge anno-
teringer (“labels”) er tilgeengelige vil konfusionsmatricen danne grundlaget for
fortolkningen. Hvis sddanne annoteringer ikke er tilgeengelige, er det muligt
at generere nggleord (i tilfelde af tekst data) eller generelt nggle-mgnstre, som
saledes bibringer til fortolkning af klyngerne. De foreslaede metoder er testet
pa simple kunstige datasat sa vel som kollektioner af tekst og medicinske data.
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Notation and Symbols

observation data matrix, where N is denoting number of exam-
ples, n = 1,2,..., N, and D is a dimensionality of the feature
space,d=1,2,..., D

the d’th, n’th element of the data matrix X y«p

n’th data vector

projected matrix, where K, £k = 1,..., K is dimensionality of
the projected feature space

n’th D-dimensional test data vector, wheren = 1,2,..., N,
determinant

Lo norm, vector length, ||x,||2 = />, %2,

matrix element-wise division
matrix with all elements 1
Probability Density Function of the vector x
Class Posterior Probability of the class k& conditioned on vector x
Likelihood of vector x
mean Vector /i = + >, Ty,
covariance matrix £ = & ", (zn, — p)(zn — pt
vector collecting the parameters of the model
Expectation-Maximization algorithm
Factor Analysis
Generalizable Gaussian Mixture model
Identity matrix
Independent Component Analysis
Independent and Identically Distributed

)T
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CHAPTER 1

Introduction

Recent progress in data storage and acquisition has resulted in a growing num-
ber of enormous databases. The information contained in these databases can be
extremely interesting and useful, however the amount is too large for humans to
process manually. These databases store information covering every aspect of
human activity. In the business world, the data bases are created for marketing,
investment, manufacturing, customers, products or transactions, and such infor-
mation can be stored both for accounting and analysis purposes. The domain of
scientific research is another area which makes heavy use of databases to store
information about, for example patients, patient histories, surveys, medical in-
vestigations. It is within this domain that the research for this thesis has been
performed. Medical databases contain data in a variety of formats: images in
the form of X-rays or scans, textual information to describe details of diseases,
medical histories, psychology reports, medical articles or various signals like
EKG, ECG, EEQG, etc. This data does not need to be located on the same sys-
tem. It may be distributed amongst various disparate computers depending on
the source of the data. Such heterogeneous data make the process of informa-
tion retrieval an even more complex process.

There is a substantial need for signal/image processing and data mining tools in
medical information processing systems and in telemedicine that are flexible,
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effective and used friendly. Telemedicine is defined as: The investigation, mon-
itoring and management of patients and education of patients and staff using
systems which allow ready access to expert advice and patient information no
matter of where the patient or relevant information is located. Such systems
serve a dual role: they can assist medical professionals in medical research
and in the clinic medical diagnosis and secondly, they can be used as infor-
mation sources for patients. Telemedicine faces a number of basic problems
concerning document retrieval, data mining in the databases, and visualization
of high-dimensional data.

This project focuses on the fact finding in the distributed databases by use of
advanced signal processing and machine learning methods which can be ap-
plied to extract the important for the medical scientists information. Such data
mining can also be used by patients to search for analogies or similar diseases
or any relevant information.

Data mining is a new discipline within the field of information retrieval that ex-
tracts interesting and useful material from large data sets. In the broader sense,
data mining is defined as part of knowledge discovery in databases (KDD)
[25} 126, [36] and draws on the fields of statistics, machine learning, pattern
recognition and database management. The general approach of KDD process
is presented on figure[1.1]

The KDD process involves the following steps:

1. Selecting the target data (focusing on the part of the data on which to
make discoveries). The data may consist from different type of informa-
tion.

2. Data cleaning and preprocessing includes removal of noise, outliers,
missing data (if they are not an object of the discovery). See Section 3.6.

3. Transforming data includes data reduction and projection in order to find
and investigate useful features and reduce the data feature space dimen-
sionality. See Chapter 2.

4. Performing the data mining task, e.g., classification, regression, cluster-
ing and as well the outlier detection and imputation of missing data, if
they were not removed in data cleaning process. Data mining is per-
formed in order to extract patterns and relationships in the data. See
Chapter |3, Chapter|5/and Chapter 6.
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Figure 1.1 The steps of the KDD process. In the first step the data is extracted
from the source location, then the preprocessing is performed and the data is
transformed to the form suitable for further processing. In the next step the
data mining is applied, for example clustering, classification, regression etc.
The final part of KDD process is a meaningful interpretation is the obtained
results.

5. Interpretation and visualization includes interpretation of mined patterns,
visualization of models, patterns and data. See Chapter 4.
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Typically, data mining algorithms assume that the data is already stored in
main memory, therefore no database extraction methods are investigated in this
work. However, in order to facilitate the extraction of the required information
from the databases, the issue of large data sets and the preprocessing and re-
quired transformation algorithms is addressed in Chapter 2. This is necessary
as the data we are dealing with is observational and has usually been collected
for a purpose other than data mining. Some of the preprocessing steps are
uniquely connected with the data and as such, they are described with the ex-
periments in Chapter 7| The relationships found in data are presented using
models for clustering, classification and outlier detection and imputation, in
Chapters (3, 16/ and [5] respectively. Finally, techniques for the useful summa-
rization, visualization and interpretation of the discovered structures are given
in Chapter 4.

The contents of this thesis are organized in the following way:

Chapter 2 gives an overview of the several projection methods implemented:
random projection, principal component analysis and non-negative ma-
trix factorization. A literature overview of the reduction techniques for
huge data sets is also included, as is a discussion of the various ways
to select the optimum number of components in the projected data. The
chapter concludes with a evaluation of the presented projection methods
applied to the artificial data sets.

Chapter 3 is dedicated to the various Gaussian Mixture models that were used
for classification and clustering the data focusing on the possible medi-
cal databases. The algorithms of unsupervised, supervised and unsuper-
vised/supervised Generalizable Gaussian Mixture models are described.
Two techniques are presented for outlier and novelty detection; the outlier
detection methods are compared through a simple example.

Chapter 4 describes the different similarity measures and methods that can be
used with agglomerative hierarchical clustering. In order to interpret the
resultant clusters, a method for obtaining keywords and prototypes is also
explained.

Chapter 5 explains two methods used for the imputation of missing values in
the study, namely the Gaussian and K-Nearest Neighbor models.

Chapter 6 defines a different approach for unsupervised clustering by means
of Gram matrix decomposition with the aggregated Markov model.



Chapter 7 collates the experimental results on the observational data sets. The
first section describes the data sets that have been used. The collection
of emails and newsgroups is used as an example of textual data. The
next data set originates from a survey undertaken by the Department of
Dermatology, Bispebjerg Hospital, University of Copenhagen, Denmark.
This study examined the connection between the level of sun exposure to
the skin and the risk of developing cancer disease. The third data set is
a dermatological collection of six diagnosed erythemato-squamous dis-
eases. Preprocessing is carried out separately for each of the data sets.
Data projection is then performed, except for the aggregated Markov
model, where the features space reduction is not required. Since, data
mining is the next step of the KDD process, the clustering of the text data
sets and the sun-exposure study is implemented using the various mod-
els. For visualization and interpretation, hierarchical clustering is applied
and keywords are generated. With respect to the data form sun-exposure
study, an investigation of the performance of the imputation models is
conducted.

Appendix A contains the definitions of the Jensen’s and Minkowski’s inequal-
ities and the derivation of the Kullback-Leibler similarity measure for
Gaussian density functions that is used in agglomerative hierarchical clus-
tering.

Appendix B-F contain reprints of the papers authored or co-authored during
the Ph.D. study.






CHAPTER 2

Dimensionality reduction
and feature selection

Data transformation is a first discussed here step of the KDD process which is
shown on figure/1.1.

When processing large databases, one faces two major obstacles: numerous
samples and high dimensionality of the feature space. For example, the docu-
ments are represented by several thousands of words, images are composed of
millions of pixels, where each word or pixel is here understood as a feature.
Currently, processing abilities are often not able to handle such high dimen-
sional data, mostly due to numerical difficulties in processing, requirements
in storage and transmission within a reasonable time. To reduce the computa-
tional time, it is common practice to project the data onto a smaller, latent space.
Moreover, such a space is often beneficial for further investigation due to noise
reduction and desired feature extraction properties. Smaller dimensions are also
advantageous when visualizing and analyzing the data. Thus, in order to extract
desirable information, dimensionality reduction methods are often applied.

This task is non-trivial. The goal is to determine the coordinate system where
the mapping will create low-dimensional compact representation of the data
whilst maximizing the information contained within.
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There are many solutions to this problem. Several techniques for dimensionality
reduction have been developed which use both linear and non-linear mappings.
Among them are, for example, low-dimensional projections of the data [10, 45,
40, 49], neural networks [3, 12, 74], self-organizing maps [48]. One can ap-
ply second order methods which use the covariance structure in determining
directions. To this family belongs the popular Principal Component Analysis
[10} 23, 44, 45] that restricts directions to those that are orthogonal; Factor
Analysis [40, 44,45] which additionally allows the noise level to differ along
the directions and Independent Component Analysis [49] for which the direc-
tions are independent but not necessarily orthogonal. Description of some of
the afore-mentioned methods can be found in [7, 10, 14,40, 42, 49, 55,166, 84].

Since the projection is not the main topic of this thesis, but the preprocessing
step in KDD process, only a few techniques, that were investigated alongside
the performed research, are presented in detail. Three algorithms are described
below, namely Random Projection [4, 9, 19], Principal Component Analysis
[10} 14, 23, 44,145, 66] and Non-negative Matrix Factorization [55]. The mod-
ified version of Non-negative Matrix Factorization, is applied in the decompo-
sition of the Gram matrix in the aggregated Markov model, described in Chap-
ter/6.

2.1 Dimensionality reduction methods

2.1.1 Random Projection

A lot of research studies have focused on an investigation of the Random Pro-
jection method. Many of the details and experiments not included in this work,
can be found in [4, 9, 19].

The method is simple and it does not require the presence of the data whilst
creating the projection matrix. Many find this a significant advantage. Random
projection is based on the set of vectors which are orthogonalized from the nor-
mal distributed random matrix. The orthogonal projection Vectorsﬁ (R-RT =
I) preserves the distances among the data points. In this way it is possible to

"Two vectors are said to be orthogonal if the cosine of its angle is equal 0, i.e. u- v’ = 0,
where v-vl =landu-u’ = 1.
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project the data to the smaller dimensional space while preserving fair sepa-
ration of the clusters. Note however, that R is orthogonal only column-wise,
i.e. the identity outcome of the dot product of the projection vectors holds only
for quadratic R (projecting onto the space of the same dimension as the origi-
nal). In the case of projecting onto smaller dimensions, the distance is no longer
preserved in an ideal way.

Let the D-dimensional data matrix be defined as X p« n, where IV is the num-
ber of samples. Data is projected with the help of the projection matrix R to
K dimensions (K < D) and the projected data matrix is denoted as X KxN-
Figure[2.1 presents the algorithm of the Random Projection method.

The Random Projection Algorithm

1. Generate random matrix Rxxp = {rxg,k = 1...K,d = 1...D}
drawn form normal distribution of zero mean and spherical covariance
structure r;g € N'(0,1). K < D.

2. Orthogonalize each of the projection vectors (use for example Gram-
Schmidt algorithm (see [56] or most linear algebra books for reference)).

3. Project data on the new set of directions X KxN = RixD - XpxnN

Figure 2.1 The Random Projection algorithm.

In order to check the success of the random projection method, the separability
is investigated with the following toy example. In the example, 200 data points
are generated from 2 Gaussian distributions with spherical covariance structure
Y = I and different mode locations, where distance between the data means
||ty — ol|2 approximately equals 5. Only one dimension is enough to sepa-
rate clusters. Originally, data spans 500 dimensions. The clusters are almost
linearly separable, i.e. the cluster overlap is negligible. Also by using Princi-
pal Component Analysis, described later in section and presented here as
reference, the distance between the clusters is fully preserved.

Figure presents the results of the experiment. Left plot shows the distance
between the cluster centers. As was suspected, the distance decays, and in the
small dimensional space it can be expected that the data is poorly separated.
This artifact is more significant for large dimensional and more complex data
sets, such as sparse vector space representation of textual information. The
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e o

w
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Success rate In [%]

)
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0 100 200 300 400 500 Dimension in the reduced space 1
Dimension in the reduced space

00 200 300 400 500
Dimension in the reduced space

Figure 2.2 Illustration of the Random Projection method with example of
2 Gaussian distributed clusters. Originally the measured distance between
the clusters is close to 6. The experiments are repeated 20 times and the
average performance is shown. Left plot describes the distance ||, — ps]]2
between the cluster centers as a function of dimensionality. It decays with
the projected dimension. Error-bars show maximum and minimum measured
distance in the trials. They increase with the dimension. Middle plot shows
success rate of the projection (the trials for which the distance is larger than
3, for smaller numbers clusters are assumed not to be separable). Also the
success rate decays with the reduced dimension. That means that for the
large reductions there is a considerable chance that the projected data will
lose separability. Note, that one dimension is enough to linearly separate the
data. The time needed to produce the projection matrix grows exponentially
with the size of the matrix R (right figure).

smaller the original dimensionality, the longer the separation is kept, when the
projection matrix is increased. The success rate’ (middle plot) is decaying sig-
nificantly with the dimension. The projection is not in all cases satisfactory,
the separability in some trials? is lower due to the random origin of the pro-
jection vectors. The number of “unlucky” projections grows significantly with
reduced dimension. The time needed to produce the projection matrix grows
significantly with the size of the projection matrix R (right plot).

When the projected dimension is large enough, the distortion of the distance
is not significant but then the time spent for creating and diagonalizing projec-
tion matrix is considerable. To summarize, for large dimensional data sets it is
not necessarily efficient and satisfying enoug to use random projection with-
out significant separability loss, especially when the dimensionality the data is

Success rate is the percentage of the number of projection runs in which the distance is
preserved (in this case the clusters are assumed to lose separability when the distance between
them is smaller than 3 (originally the distance is equal to 5)). The cluster distance is calculated
from projected known cluster centers.

3One particular run of the experiment is understood to be a trial.

“The benefits of the random projection may vary accordingly to the application.
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projected onto is high.

Random Projection is not applied in further experiments due to the fact that the
dimensionality of the data used in the experiments allowed us to use Principal
Component Analysis (section2.1.2). However, when facing larger databases it
could be advisable to use RP as the preprocessing step before applying PCA. In
such a case, creating the random projection matrix is less expensive than PCA
and with the projected space large enough, the distances in the data is not be
distorted significantly.

2.1.2 Principal Component Analysis

Principal Component Analysis (PCA) is probably the most widely used tech-
nique for dimensionality reduction. It is similar to random projection through
performing a linear mapping that uses the orthogonal projection vectors, but
in case of PCA the projections are found by diagonalizing the data covariance
structure, i.e. the variance along new directions is maximized. Thus, the pro-
jection of vector x on the new latent space appointed by orthogonal projection
vectors u can be written as X, = ufx, where k =1... K and K < D.

It is proofed, that the minimum projection error (in LS sense) is achieved when
the basis vectors satisfy the eigen-equations 3 - uy = Apuy [10]. Therefore,
the singular value decomposition (SVD) is often performed to find the orthog-
onal projections. The algorithm for PCA is shown in figure|2.3. Such a method
for determining the latent space is applied by Latent Semantic Analysis (LSA),
described in section and introduced in [20]. For further and more compre-
hensive analysis for PCA refer to [10, 23, 44, 45].

The most significant disadvantages of the PCA technique are complexity and
high memory usage. However, a great number of alternative algorithms have
been developed that reduce this problem, for example using networks to esti-
mate the few first eigenvalues and corresponding principal directions [3, 12].
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Principal Component Analysis Algorithm

1. Create the data matrix X

2. Determine covariance ¥ = + >, (xp — 1) (X, — 1)

3. Determine eigenvalues \; and eigenvectors uy of the covariance struc-
ture. Since 3 is positive and symmetric, X is positive and real satisfying
3 - up = Agug. Ais found in the optimization process of the character-
istic equation |X — A\I| = 0.

4. Sort eigenvalues and corresponding eigenvectors in the descending order.

5. Select K < D and project the data on selected directions:
Xixn = Ub i Xpxn

T

Figure 2.3 The Principal Component Analysis algorithm.

2.1.3 Non-negative Matrix Factorization

Some medical data such as images or texts contain only positive values. This
information can be utilized by adding the positivity constraint in the optimiza-
tion process for finding the projection vectors. One possible choice is the Non-
Negative Matrix Factorization (NMF). This approach is proposed by Lee & Se-
ung in [55]. The technique is closely related with proposed by Hofmann in [42]
Probabilistic Latent semantic Analysis (PLSA) and by Saul and Peveira in [76]
aggregated Markov model. NMF is based on the decomposition of the data
matrix X into two matrix factors W and H so that Xpun ~ WpwrxHr«nN.
Both W and H are constrained to be positive, i.e. W > 0 and H > 0. The
proposed optimization is done in an iterative way minimizing one of the two
suggested objective functions: Euclidean distance [34]:

X = WHI|3 = > (a0 — Y wanhkn)’ @1
d n k

or Kullback-Leibler (KL) divergence [69]:

D(X|[WH) = Z Z Tn - 108; T hk: — Zan + Y Warhgn) (2:2)
k

between X and WH. The update rules in case of the Euclidean distance are
shown in matrix notation by the equations 2.3|

old WTX Wrew :Wold XHT

Hnew — H I
WIWH WHH”

(2.3)
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Regarding KL divergence, the update rules are taking the form:

JWT . X./WH woew — yyold X/ WH HT

Hew — Hol )
1wk - WT 1pxy -HT

2.4)

The algorithm is proofed to converge, see [55] for further details. The modified
NMF updates rules are used in segmentation by the aggregated Markov model
described in detail in Chapter 6|

2.1.4 Evaluation of dimensionality reduction methods

Several methods have been described in this chapter. Visual comparison of the
techniques is usually useful for understanding differences between them. Here,
the comparison of those techniques is presented for artificially created toy data.
Three data sets are generated, namely:

3 Gaussians - Linear structure in the form of three Gaussian ideally separated
clusters with elliptical covariance structures, see figure 2.4. 1200 data
points are generated, 400 points for each cluster. The signal space has 2
dimensions, but the noisy data exists in 20 dimensions.

Rings - Non-linear manifold structure in the form of three uniformly distributed
circles centered at the origin of the coordinate system. The problem is
separable but a nonlinear decision boundary is needed (figure 2.5). 1200
data points are generated, 400 points for each cluster. The signal space
has 2 dimensions, but the data with the noise exists in 20 dimensions.

Text - The discrete data artificially created that resemble the discrete text in
the form of preprocessed and normalized term-document matrix®. The
data is modeled in latent space found in LSI framework (Latent Semantic
Indexing [20]. The data is multi-dimensional (60 features) and forms two
perfectly separable clusters. Features are selected so that a part is shared
and some of the features are unique for each of the clusters, see figure 2.6.
Data vectors are normalized to the £o norm unity length.

Figure [2.7/ shows the results of the projection of the 3 Gaussian clusters. The

>For explanation of text processing method refer to section|[7.2.1
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Figure 2.4 Scatter plot
of the 3 Gaussian clus-
ters. 2 first dimensions
(out of 20) are shown.
The clusters are linearly
separable.

Figure 2.5 Scatter plot
of the 3 rings. 2 first di-
mensions are presented.
The clusters can be sep-
arated by the non-linear
decision surface.

Figure 2.6 Feature plot
of the 2 text clusters.
On the y-axis are the
1000 examples (500 in
each class) and on the x-

axis are the 60 features.

NMF RP

o

.

o
AN
>
>
Component 2
Lo 0 v

Principal Component 2
)
Component 2

!
o

b

4
-5 -1 -05 0 05 1 1.5
Component 1

o
Ny
]
&

6 0 0.2 0.4 0.6 0.8 1 1.2

-2 0 2
Principal Component 1 Component 1

Figure 2.7 Results of the projection for the 3 Gaussian clusters (shown on
figure 2.4). Three techniques for creating the projection vectors are compared
here: Principal component Analysis (PCA), Non-Negative Matrix Factoriza-
tion (NMF) and Random Projection (RP). In all the cases the separation is
preserved.

problem is simple and linearly separable. Three different techniques for cre-
ating the projection vectors are compared here, Principal Component Analy-
sis (PCA), Non-Negative Matrix Factorization (NMF) and Random Projection
(RP). In this case, all the presented methods preserve the linear separability in
the data.

Figure[2.8|shows the results of the projection of the rings structure of 3 clusters.
As mentioned previously, the PCA, NMF and RP are compared. Only the Prin-
cipal Component Analysis preserves the distances amongst the data points well,
while the other methods have lost the separability. RP preserves the separation

60
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Figure 2.8 Results of the projection of the structure of 3 clusters in the shape
of rings (shown on figure [2.5). Three techniques for creating the projec-
tion vectors are compared here: Principal component Analysis, Non-Negative
Matrix Factorization and Random Projection. The original data is separable
but a non-linear separation function is needed. PCA does not change the data
shape since the data variance in all signal directions is identical. NMF returns
a highly skewed result, difficult to separate. A similar result is achieved with
RP. However, some of the other trials returned both better and worse results
with respect to the possibility of separation.

in some of the trials while in others the separation is lost. This happens due to
the random origin of the projection matrix.

In figure[2.9, the results are presented of the projection of the toy example: the
vector space representation of two text clusters. The data is linearly separa-

o
@

Component 2

Principal Component 2
Component 2
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Principal Component 1 Component 1 Component 1

Figure 2.9 Results of the projection of the 2 cluster artificial text example
(shown on figure[2.6). Three techniques for creating the projection vectors are
compared here, Principal Component Analysis, Non-Negative Matrix Factor-
ization and Random Projection. In this case RP is unable to separate the data,
while the other methods perform reasonably well.

ble and this characteristic is preserved by using any of the presented methods
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with the exception of Random Projection, which completely blends these two
classes. In this case Random Projection confirms its inability to extract the
separating dimensions, when processing large dimensional sparse data.

Out of three presented methods only Principal Component Analysis have shown
robustness for all the applied data sets. In conclusion, PCA is selected for
dimensionality reduction in later experiments due to being the simplest method
and the best performer out of all the researched techniques.

2.2 High dimensional data

The methods described earlier can operate on medium sized databases. How-
ever, when the dimensionality of the data is much larger other techniques have
to be implemented. In this thesis, only a short review of the projection tech-
niques for huge dimensional databases is presented, since no such databases
were available for the experiments presented in Chapter |7,

The simplest, most intuitive way to determine the low-dimensional projections
is to reduce the number of points in the data set. Random sampling without
replacement creates a subset expected to be a good representation of the data
distribution. PCA or any other classical method can then be computed from
this subset [64, 88]. This technique is obviously introducing an error so the
projection vectors will not be optimal. However, one can hope that given the
sufficient number of data points the error introduced by this reduction will be
negligible.

When the class structure is available a priori some sort of simple clustering
technique can be performed on high dimensional data (e.g., K-nearest neigh-
bor [36]). Another approach can be used, namely local PCA [29, 46]. With
this technique only the eigenvectors are extracted that correspond to the largest
eigenvalues for each cluster. This set of projections defines a new space for the
data.

The other way to reduce the complexity is to use recursive or iterative meth-
ods. In the case of dimensionality reduction that means computing the most
important components incrementally [22, 41, 65, 66].
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It is also possible to create a hybrid structure by performing a two step projec-
tion as is suggested in [19]. In order to find the high dimensional basis vectors
Random Projection could be used. The goal is to project the data to lower di-
mensional space without causing a significant change in the distance. For the
second step, classic methods like Principal Component Analysis, Factor Anal-
ysis [40, 44, 45] or Independent Component Analysis [49] can be used so the
important directions are extracted.

2.3 Selection of number of principal components

All the projection techniques presented in this chapter estimate the set of pro-
jection directions but also leave an open question as to how the optimum di-
mension of the space will be chosen. It is extremely important to notice that too
small a dimension may result in serious information loss, whilst one that is too
large will often introduce noise to the projected data. In both cases the conse-
quences are significant in the form of large errors in the information extraction,
clustering, density estimation, prediction etc.

Thus, several methods have been developed for selecting the optimum dimen-
sion. An overview is presented below of some of the techniques for selecting the
number of principal components in the case of PCA (described in section 2.1.2).

The simplest technique to find the effective dimension K is to calculate the
eigenvalue curve and base the decision on its shape. If the effective dimension-
ality of the data is smaller than the actual data size D, the eigenvalue curve
will have the shape of the letter “L”. Various, mainly ad hoc rules, have been
proposed for estimating the turning point of that curve@, which will minimize
the projection error [10,45]. One way is to use the cumulative percentage of
the total variation. Here, it is desired that the selected components contribute
significantly, say 80% —90% of the total variation. A similar way is to select the
threshold value for which the components with smaller variance/eigenvalues are
discarded. Thus, only the largest/dominant components contribute in the final
result. In this approach, typically the eigenvalues are rejected that are smaller
than 75 — 90% of the maximum.

®The turning point that determines the optimal K is usually ambiguous, due to the fact that
the L-curve often has a smooth characteristic.
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Another approach is proposed by Girolami in [32]. It suggests using both the
ordering information included in the eigenvalues and in the variation of the
eigenvectors. Thus, instead of looking at the eigenvalue curve, we now inves-
tigate the transformed curve of the form )\k(% > up ;)- Both the thresholding
and the turning point search can be applied. This transformation usually makes
the slope of the L-curve steeper which facilitates the decision.

Cattell in [15] suggests finding the largest eigenvalue beyond the point where
the curve becomes a straight line as close to horizontal as possible. A simi-
lar technique can be found in [18,/45], but here, the results are based on the
log-eigenvalue curve. Craddock and Flood in [18] claim that the eigenvalues
corresponding to the noise value should decay in geometric progression and
that will produce a straight horizontal curve in the logarithmic space.

The success of the methods mentioned above is subjective and dependent on the
choice of cut-off level. Nevertheless, they are often used due to their simplicity
and fairly reliable outcomes.

Additionally, objective rules have been developed for choosing the number of
principal components [37, 45]. Usually in such cases the decision is based on
the cross-validation error.

For example the cross-validated choice is proposed by [24, 45, 90]. For an in-
creasing number of retained components, the Least Square error is estimated
between the original data and the leave-one-out estimate of the data in the re-
duced space. Thus, the so-called Prediction Sum of Squares is calculated based
on the following equation

D N
PRESS(K) = (£an — Tan)*, (2.5)
d=1n=1

where 4, = Zszl Ugp, - Sk - ﬁgk is the set diminished with the x4, sample.

The next approach is presented in line with Hansen [37] and Minka [61]. The
D-dimensional observation vectors x are assumed here to be a composition of
the signal and the white noise: x = s + v. If we further assume, that both the
signal and the noise are normally distributed, then the observed N point data
sample x will have as well normal characteristics of the form N (p, X5+ X,).
Notice that the noise has zero mean: p, = 0.
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Thus, the density function of the data can be expressed by:

! (=2 (% — 1) T (B + 30) " (x - ).

exp
VI2rEs + 3, 2
(2.6)

p(X|M37 28) 21}) =

The X, is further assumed to be singular, i.e. the rank K < D and ¥, = 02Ip,
where Ip is D x D dimensional identity matrix. Then, ¥ = X, + ¢2Ip and it
can be estimated from the data set:

1 & S
Hs = N an, = N Z(xn - :u‘s)(xn - l"LS)T 2.7
n=1 n=1

Further, ¥ can be decomposed by singular value decomposition S = SAST,
where S = {s4, d = 1...D} collects the eigenvectors and A is a diagonal
matrix with eigenvalues \; ordered in descending order. Since the variation of
the noise is assumed to be significantly lower than the signal, the first eigenval-
ues will represent the signal components while the last ones are responsible for
the noise. Thus, by truncation in the eigenvalue space, the noise level can be
estimated:

Sk = S-diag([A1, A2, , Ak, 0,---,0]) - ST, (2.8)
1 ~ o~

~2 .

o° = D_KTrace(E ¥k,) (2.9

S, = &ip, (2.10)

and then the signal covariance is described by:

S, =S-diag([A — 6%, Ay — 52, ,Ag —52,0,---,0]) - ST (2.11)

If, in addition to the sample x, the NV, points are observed z,,, n = {1,2,... N}
forming the test set then the generalization erro’ can be estimated in cross-

"The generalization error is defined as the expected loss on the future independent sample.
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validation scheme as the negative log-likelihood over this test se

N.
~ 1 <&
G: = % ;log(p(Zi\us,Es,Ev))
N —
_ —iZhag <exp(—%(zi — p1s) (B +B0) "Nz — %)))
N, & 27(Zs + 2|
1 ) L 1 P A A~
= 5 log|2m(3; + 3y)| + S Trace[(2; + ¥,)71%, (2.12)

where X5 and 3, are estimated covariance structures of the signal and the
noise, respectively, for the K largest eigenvalues. And the covariance of the

test set 3, = N% SN (20— )T (20 — pig).

By minimizing the approximated generalization error the optimum signal space
is found.

Some of the presented approaches are illustrated with an example. For this
purpose a Gaussian cluster is generated, where the effective dimension is equal
to 3, but the signal, due to the added noise, existed in 10-dimensional space. In
order to determine the effective dimension of the data, the approximated gen-
eralization error is calculated according to equation 2.12| Results are presented
on figure[2.10 (lower right plot). The optimum dimension that gives a minimum
generalization error is equal to 3. Additionally, the Prediction Sum of Squares
(equation [2.5) is computed. Here, the curve flattens at the third component
suggesting that dimension for the signal space. For comparison the eigenvalue
curves are also shown. Both the eigenvalues of the data and the scaled version,
proposed in [32] indicate 3 components.

2.4 Discussion

Choosing the most suitable procedure for the projection should take into consid-
eration the performance of the particular method as well as the dimensionality
of the data and the application. For example, on-line learning can require a

81t is also possible to use for example the leave-one-out estimate or predicted generalization
error base on the sum of training error and penalized term. Penalization is typically dependent
on the model complexity eg. AIC or BIC criterion see [1, 69, 79].



2.4 Discussion 23

35
3
25
2
1.5
1
0.5
0 —
1 3 2 5 .7 ,8 6 4 10 9
2N w2
=1
10°
80
S
2 T
©
540 5
Q
1]
20
10'
=2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9
Number of principal components used Number of principal components used

Figure 2.10 Illustration selecting the number of components. For the exam-
ple, one Gaussian cluster is generated where the signal space had 3 compo-
nents but the noisy data existed in 10 dimensions. Upper left plot present the
eigenvalues \,. Here, the first 3 eigenvalues are dominant. A similar result
is obtained for a scaled eigenvalue curve [32] (upper right plot). Lower panel
presents the Predicted Sum of Squares (Eq.[2.5)) and the generalization er-
ror is calculated based on Eq. 2.12. In this simple case all methods find the
correct space of the signal.

fast dimensionality reduction method whilst batch learning can afford a slower
but more accurate technique. Principal Component Analysis is both simple and
well suited to the applications presented in this work, where mostly medium-
sized databases are available and batch learning is performed. Thus, in further
investigations, PCA is used.






CHAPTER 3

Generalizable Gaussian
Mixture models

Following the steps of the KDD process presented on figure in the first step
the transformation task is performed. Therefore in the preceding Chapter 2 the
dimensionality reduction and feature selection techniques are presented. On
such transformed data the essential part of KDD process may be applied, i.e.
data mining. In the next Chapter|4 the methods for data mining results interpre-
tation are introduced. The results of the full process based on the realistic data
are presented in the last Chapter 7|

Data mining general task is to discover relationships among the data samples.
Since, this work focuses mostly on segmentation one way to investigate these
connections is to determine data underlying distribution. The mixture models
are supplying with that cluster structure through the determined multi-modal
density.

A mixture model is a particular, very flexible form of the density function. It
can be written as a linear combination of the component densities p(x|j) as:

K
p(x) =Y p(x|k)P(k). (3.1)
k=1
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Coefficients P (k) are called mixing parameters or mixing proportions and they
are in fact the prior probability of the data being generated by the component k.
P(k) satisfies the following conditions: Zszl P(k) =1and, 0 < P(k) < 1.
Component densities are, naturally, normalized so that they satisfy the condi-
tions of the probability density function, i.e. [ p(x|k)dx = 1. By Bayes opti-
mal decision rule (assuming 0/1 loss function [69]) a new point z is assigned to
cluster k if

p(zl})P() a2

k= argznaac p(k|z) = argmax S B PR

|
k >k P
where 25:1 p(k|z) = 1.

Mixture models are widely used, mostly due to their flexibility in modeling
the unknown distribution shapes. In the data mining area, they are useful in
estimation of density and what follows in cluster analysis, i.e. the investigation
of group structure in the data (which is the main thread of this work). They
can be used also in many other applications like for example: neural networks,
soft weight sharing or mixtures of experts, description of which can be found
in [10].

Provided with sufficient number of components and correct selected parame-
ters the accuracy of the mixture models is very high. The estimate is accurate
even when the data was generated from a distribution which was different than
the chosen component densities. In such case, typically, only larger number
of components are needed in the approximation. As the component densities
p(x|k) all valid density functions can be used. However, exponential density
family [70] and especially the Gaussian p.d.f. is a good choice due to simple
analytical expressions.

The learning method for the mixture model is based on the maximum likeli-
hood (section which leads to the Expectation-Maximization (EM) algo-
rithm (section[3.2).

3.1 Maximum likelihood

When modeling the data distribution with the parametric form of the density
function (e.g., mixture model) the set of optimum parameters has to be deter-
mined. The maximum likelihood (ML) estimation is a solid tool for learning
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those parameters. In that technique, the optimum values of the parameters are
found by maximizing the likelihood derived from the training data set [10, 69].

In the parametric form of the density function p(x|6) the density depends on
the set of parameters 6.

The training data set consist of N samples D = {x,,n = 1,2,...N}. The
data likelihood £, assuming ¢.7.d. data points distribution, can be written in the
following way:

N
L£(0) = p(D|0) = [ [ p(xnl6)). (3.3)
n=1

Since we are looking for the set of parameters 6 that maximize the likelihood
L(6), the solution can be found from the differential equations of the form

aﬁfd—gﬂ = 0. Then, the optimum 6™ is found that maximizes the likelihood L,
0" = argmax L(6). (3.4)
9*

It is often advantageous (for the computational reasons) to use the log-likelihood
instead of the regular likelihood (equation 3.3) or, what is equivalent, to mini-
mize the negative log-likelihood.

3.2 Expectation-Maximization algorithm

Even though, the maximum likelihood approach supplies with the solution to
the optimization problem it does not provide the method for calculating the
parameters. Sets of differential equations are highly nonlinear and therefore
difficult to solve. However, the ML approach gives the opportunity to derive
the iterative algorithm that will allow to find the approximation to the correct
solution and at the same time will make the optimization process much simpler.
In order to find the maximum likelihood estimate of the parametric models the
Expectation-Maximization algorithm (EM) can be applied, which was intro-
duced in [21]. The other alternative technique, however not addressed here,
for determining parameters of the probability density function is a Variational
Bayes approach [2, 5, 16].

The EM term was first introduced and formalized by Dempster, Laird and Ru-
binin 1977 [21]. Itis an iterative schema which involves the non-linear function
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optimization and re-estimation of the parameters what leads to the maximiza-
tion of the data likelihood.

Let us write the log-likelihood as a function of some visible v and hidden h
variables

£(6) = log(p(v]6)) = log / p(h, v]0)dh (3.5)

Now, by introducing the additional function — the distribution over the hidden
states ¢(h) and by using Jensen’s inequality (appendix A), the likelihood given
in equation 3.5/can be rewritten in the following way:

£(0) < 1og [ q(h)f%dh > [atiros %dh _ Flg(h)o),
(3.6)

Fla(h),0) = / a(h) log(p(h. v]6))dh — / g(h)log(g(h))dh  (3.7)

The last term [ g(h)log(g(h))dh is, in fact, an entropy of q. The lower bound
on the likelihood F(g(h), #) is introduced in equation 3.7 It can be proofed [21]
that the difference between the likelihood £ and the new objective function F
is the nonnegative Kullback-Leibler (KL) divergence between the distribution
over hidden variables and the probability of the hidden states. Note also, that
maximizing F maximizes £, what is our objective.

Finally, the EM optimization algorithm can be introduced.

e E step:
In the E step the distribution over the hidden variables F(g(h), 6) is
estimated given the data and the current parameters i.e.
¢ (h) = argmaz F(q(h),0% 1) (3.8)
q(h)
e M step:
The M step is responsible for modifying the parameters in order to
maximize the joint distribution over the data and hidden variables i.e.

0% = argmaz F(q"(h),0) (3.9)
0

Figure 3.1 Expectation-Maximization algorithm
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When the exact EM steps are applie the algorithm is maximizing the data
likelihood at each step. Even though, usually, only approximate EM steps can
be applied, the algorithm converges and still maximizes the data likelihood.
The convergence proof is provided by Dempster et al. [21], and it can as well
be found in [10, 92].

3.3 Unsupervised Generalizable Gaussian Mixture
model

Gaussian probability density function is the most often choice for the density
components. This assures the ability of deriving analytically the expressions
for parameter updates in the EM algorithm. It also gives a flexible and accurate
estimate of the true density, which can be used in discovering the hidden cluster
structure in the data. The Gaussian mixture model is also applied for example
in [39,152,153,180].

Let define the density of the D-dimensional data vector x under the model
assumptions by the following equations:

K

p(x16) =) p(x|6k) - P(k), (3.10)

k=1
where

D 1 1
p(x|bi) = (2m) "2 || 72 exp(—5 (x — pp) S (k=) Bl

The Gaussian components p(x|fy) in equation(3.10 are mixed with proportions
P(k), which satisfy earlier mentioned conditions. 0 represents the collection
of parameters for component k so that 0, = {u;, Xy, P(k)}, where K is the
total number of components. The parameters are estimated from the set of ob-
servations D = {x,,n = 1,2,... N} by the Expectation-Maximization algo-
rithm described in section|3.2. The objective of the iterative EM is to minimize

IThe exact form of the hidden states distribution is known and the parameters minimize the
joint distribution.
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the cost function — the negative log-likelihood of the form:

L(OD) = —log(p(D|0))
N

= —log(] [ p(xnl0))

n

N
= _ Zlog(p(xn|9))>

N K
= = tog (D plxalti) - P(K)). (3.12)
n=1

k=1

In the E-step the cluster posterior P(k|x,,) is estimated for the fixed set of
the Gaussian parameters 6. The optimum parameters that minimize the cost
function are found in the M-step.

Naturally, the cost function is monotonically decreasing, what is ensured by
EM therefore in order to find the optimum model complexity, a generalization
error must be determined. By the complexity of the model the model order is
understood, i.e. in the case of the discussed GGM model the number of clusters
or what is strictly connected - number of parameters in the mixture. The model
has optimal complexity if its generalization error is minimal. By definition the
generalization error is a measure of how well a model can respond to new data
on which it has not been trained but which are related in some way to the train-
ing patterns. An ability to generalize is crucial to the decision making ability of
the model. For example, the generalization error can be simply calculated from
the validation set or approximated from the training set. Then the rule is to add
to the cost function (equation (3.12) the penalty value that is proportional to the
total number of parameterg (eg. Akaike Information Criterion [1], Bayesian
Information Criterion [79]). The minimum point of this composition (the cost
function plus the number of parameters in the system) defines the optimum
model complexity. Figure[3.2lillustrates this basic idea.

Two techniques are presented in the implementation of the EM algorithm for
Gaussian mixture model. The EM algorithm for Gaussian Mixture model can
be implemented in two different ways. So called hard assignment algorithm
bases on the 0/1 decision function, i.e. the points are uniquely assigned to one

The simple models that generalize well are preferred.
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=== Penalty
== Estimated Generalization Error

Optimum Model

Figure 3.2 The illustration of the selection of model complexity. The opti-
mum model is minimum in the estimated generalization error, which is deter-
mined as a sum of the cost function and the penalty value, defines to optimum
model.

cluster with maximum cluster posterior p(k|x). Then the cluster parameters
are estimated from the subsets of the data assigned to this cluster. The other
method is to use in the computations the precise cluster posterior probability
(soft assignment). Such a method certainly offers better density estimation.
This technique, however, returns often high number of components with few
clusters without assigned members form the actual data. Therefore, for cluster-
ing purposes, hard assignment algorithm is often more useful.

Figure|3.3 presents the algorithm for unsupervised Generalizable Gaussian Mix-
ture model with soft assignment. The parameters are initialized with the data
variance and randomly selected data points are used as cluster centers.
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Calculate mean and the covariance of the data:
Mo = Nil Zn Xn,
So=N"1 Zn(xn — o) (Xn — MO)T

Initialization
1. Initialize p;, as the random point drown from the data set.
2. Initialize X, = 3
3. Initialize P(k) =
Optimization

e E-step:

1. Calculate the likelihood: p(x|6)

2. Calculate the cost function: £(6)
_ p(xnlk)P(k)

3. Compute posterior: p(k|x,,) o)

Split the data set D into two parts:
—D,, (for mean estimation)
—Ds (for covariance estimation).

o M-step:

Znenu p(k|xn)-xn
S ey, PURT)

n- n T.p(k n
2. Estimate 33, = ZnEDz(XZ HZ)();(k\)l:k; p(klxn)
neDy, n

3. Estimate P(k) = ), p(k|xy,)

1. Estimate p;, =

Figure 3.3 The unsupervised Gaussian Mixture algorithm.

To obtain hard assignement algoritm the cluster parameters j;,, 3 and P(k)
are estimated in the M-step only based on the points assigned to the particular
cluster, the cluster posterior p(k|x) is quantized to binary (0/1) representation.

It is well known that the classic EM algorithm for Gaussian mixture model
overfits easily, i.e., the optimum parameters maximizing the likelihood tend to-
wards the Gaussian densities of zero covariance placed over each of the data
point@ . In order to avoid this artifact the generalization is introduced by divid-

31t can be easily shown that for 1; = x; and o — O the negative log-likelihood £ — —oc.
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ing the data set into two parts, and estimating mean and the covariance from
this disjoint sets. The alternative possibility is the Variational Bayes [2] meth-
ods, however they are not addressed in this work. The EM update steps are
performed until the algorithm converge what in practice means that the early
stopping criteria is used. The algorithm has converged when no changes in the
cluster assignments are observed.

In order to achieve good estimation of the parameters, the number of data sam-
ples must outnumber the number of parameters in the model. In case of unsu-
pervised Gaussian Mixture model the mean, covariance and the mixing propor-
tions are estimated, what means that for each cluster there are D + w +1
parameters to estimate, where D is the data dimension. For example, for 2-
dimensional data there are 2 + @ + 1 = 6 parameters to estimates per
cluster while in the case of 10 dimensions this number grows to 66 parameters
per cluster. In result, if the data consist from, e.g. 10 clusters, only 60 points
are needed in estimation of 2-dimensional case but for 10-dimensional data no
less than 660 points are required to ensure correct estimate of the parameters.
So, the number of data points needed in estimation grows quadratically with the

feature space dimensionality.

3.4 Supervised Generalizable Gaussian Mixture model

Supervised Gaussian Mixture model is used in the classification schema when
not only data points are provided, but as well the corresponding labels, i.e.
the data set consist of couples: D = {{xy,yn},n =1,2,... N}, where x,, is a
D-dimensional data sample and y,, is the corresponding class label, y,, € {c =
1...c= C}, where C is a total number of observed classes.

The idea is to adapt the separate Gaussian mixture for each of the observed
classes. Thus, the unsupervised mixture algorithm presented on figure 3.3/is
used for each of the class-separated subsets of the data.

The density of the data point x belonging to the class c is then expressed by
joint probability:

K

p(x.clf) = > p(x[6y) - P(kle) - P(o). (3.13)
k=1
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Similarly to unsupervised Gaussian mixture the p(x|0y) states for Gaussian
density components (equation [3.10), P(c) is the probability of the class ¢,
chzl P(c) = 1 and it is calculated from the data simply by counting mem-
bers of each class. P(k|c) gives the proportions of the clusters in the class c.

3.5 Unsupervised/supervised Generalizable Gaussian
Mixture model

For classification purposes both unlabeled and labeled data may be useful.
Castelli & Cover in [17] proofs that labeled samples have exponential contribu-
tion in reducing the probability of error, since they carry important information
about decision boundaries. Thus, unlabeled data alone, are insufficient in clas-
sification task due to the lack of this information. In real world applications,
however, labels are usually difficult to obtain. For example, in medical diag-
noses or the categories of the web-pages it is often not only expensive but also
time consuming and in some applications unrealistic (e.g., labeling of the con-
tinuously growing world wide web). Therefore, an excellent idea is to use avail-
able labeled examples with collected unlabeled data as, for example, results of
medical tests or web-pages. Thus, the unsupervised/supervised Generalizable
Gaussian Mixture (USGGM) is proposed.

In USGGM the joint input/output density is modeled, as previously, as the
Gaussian Mixture [53, 60, 63] in the following manner:

K
p(y, x[6) =D P(yl6r)p(x|6k) P(k). (3.14)
k=1

p(x|0%) are the Gaussian density components defined earlier by equation 3.10,
which are mixed with the non-negative proportions P (k). An additional set of
parameters, in the case of this model, the class cluster posteriors P(y|k) are also
non-negative and 25:1 P(y|k) = 1. 0 collects the parameters of the model
what in the case of USGGM model for the k-th component is described as
0r = {P(ylk), py, Xk, P(k)}. It is assumed that the joint input/output density
factorize so p(y,x) = P(y|k)p(x|k) and the data points are assigned to the
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class when y = argmazx P(y|x), where
y
K K
p(x|0k)P(k
plylx) = = " P(ylk)p(0ilx) = > _ P(ylk iy PAIPE) = )
e = P(x)

The entire data set consists of the unlabeled D, = {x,;n = 1...N,} and
labeled examples D; = {x,,yn;n = 1...N;}. The objective is to estimate
joint density parameters 6 based on the data set D = D,, U D; that will ensure
generalizability. The cost function (the negative log-likelihood) for this model
is given by:

¢ = —loxpw) (3.16)
= - Z logZP Yn|k)p(xn|k)P (k) — A Z IOgZP X |k) P
nGDl nGDu

where 0 < X\ < 1 is called a discount factor. The discount factor is introduced
to the cost function in order to control the influence of the unlabeled samples,
and that affects also the EM updates. Its value is estimated in a cross-validation
scheme. For a small number of labeled examples, EM will converge almost to
the unsupervised algorithm where the labeled points will effect only the initial-
ization part and the identification of the components with the class labels. With
growing size of D; the influence of the unlabeled data set starts to decrease
since the labeled data set is providing enough information both for classifica-
tion and for parameter estimation. Therefore, it is generally expected that A is
close to one with only few labeled data points and decreases towards zero with
the increasing size of labeled samples.

The unsupervised/supevised Gaussian Mixture algorithm is presented in fig-
ure 3.4, Similarly to previously described algorithms, the parameters for USGGM
are optimized by the EM algorithm. To ensure generalization the means and co-
variances are estimated from a disjoint data set and P(y|k) and P(k) from the
whole set. As previously, the cluster covariances Xy, are initialized with the data
covariance, means (i, are chosen randomly from the samples, component pro-
portions P(k) take uniform values and the class posterior probabilities P(y|k)
are forming the table computed from the available labels.
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Initialization

1. Choose values for K and 0 < \ < 1.

2. Letibe K different randomly selected indices from {1,2,--- , N}, and set y1), =
Xy, -

3 LetXg = N1 p(Xn — o) (Xn — p1g) " ,Where g = N71 3" 1 x,,, and

set Vk : X = 3.

.SetVk: P(k)=1/K.

5. Compute class prior probabilities: P(y) = N; ' > nep, 6(Yn — y), where
d(z) = 1if z = 0, and zero otherwise. Set Vk : P(y|k) = P(y).

6. Select a split ratio 0 < v < 1. Split the unlabeled data set into disjoint sets as
Dy = Dy UDy 2, with | Dy, 1| = [yN,] and | D, 2| = — |Dy.1]. Do similar
splitting for the labeled data set D; = D; U D 5.

Repeat until convergence

N

1. Compute posterior component probabilities:

X |k)P(k
P(k|Xn) % foralln € Du,

n|k)p(xn|k)P(k
and for all n € D, p(klya,Xn) = 5 Bt et P

2. For all k, update means

> % P(klyn,xn) + A Y %, P(k[x5)

n€Dy 1 n€Dy 1
Hy = Z Z
(k|yn7x71 + )\ k|xn
n€Dy n€Dy, 1

3. For all k, update covariance matrices

> Sk Pklyn.xn) + A > S Plk[xy)

n€Dy 2 n€EDy 2
B =
D Plklyn,xn) +A D Plklxn)
n€Dy o nEDy, 2

where Sy, = (X, — p13,)(Xn — pt3,) | . Perform a regularization of Xy
4. For all k, update cluster priors

> Plhlyn,xn) + A > Plklxn)

neD; neD,
N; + AN,
5. For all k, update class cluster posteriors

> (Y = yn) P(klyn, x5)

neD;

S™ P(klynx0)

neD;

P(k) =

Pylk) =

Figure 3.4 The USGGM algorithm.
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3.6 Outlier & Novelty detection

The outlier detection can be a part of the data cleaning process (see figure 1.1)
as well as data mining. In the first case the outlier problem is addressed in order
to enhance the data model. In the second case the outlier detection is itself
considered as a data mining task where outliers are the final outcomes of the
processing. The following outlier detection techniques base on the probabilistic
outcome of the GGM model, and therefore they are introduced in this chapter.
However, this work do address the outlier detection only as a data cleaning
problem performed prior to the data mining task.

Even though, methods presented later in this chapter are developed for the out-
lier detection they can be also used in novelty detection.

There are various origins of outliers. When the outlier sample is a result of an
error in the system, it may greatly influence the learning and estimation process.
Therefore, it is usually advised to exclude it from the data set, before estima-
tion, unless the applied model is designed to deal with outliers. On the other
hand, when the outlier is in fact an unusual example, it may itself be a subject
to the study. Thus, for example in medical systems, the outlier detection tech-
niques can be used to detect, e.g. incorrect diagnoses, abnormal changes in the
performed tests, scans or other signals. A novel sample is closely related to an
outlier. The difference is that novelty comes in fact from the new data genera-
tion mechanism appearing in the observed data after the model was trained and
the parameters were obtained. The novel points have low likelihood values in
the current model.

Thus, the ability to spot the outlier and novel samples is an important task in
processing data and in cluster analysis. Many definitions of an outlier can be
formulated. Here, an outlier is referred as an observation that deviates so much
from other observations as to arouse suspicions that it was generated by a dif-
ferent mechanism [47]. Based on that definition it is assumed that the outlier
observations are not produced by the model, or the survey is possibly harmed
by an error. Such an unlikely sample should have low probability value in that
model. In the case of Gaussian mixture it means that the probability of the out-
lier data point for any cluster is low. Figure illustrates this problem. The
outlier point is placed far away from the rest of the data samples. Therefore,
it is unlikely for it to be generated by any of the presented densities. Such a
situation may be indication of abnormal behavior, error or novel (unobserved
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Figure 3.5 The illustration of the outlier sample. The outlier observation
point (green star) can not be unambiguously assigned to any of the presented
densities since the probability for each of them is very low.

before) data point appearing in the data set. Any of those scenarios is important
in data analysis.

If the existence of the outliers is not taken into consideration during optimiza-
tion process, the final result may be affected greatly. For example, figure [3.6]
illustrate such an influence in case of simple linear model. Including the outlier
point in the parameter estimation (blue dashed line) causes substantial deviation
from the correct result (red solid line). Removing this unlikely data point from
the training set will produce significantly better estimate (green dashed line).

Similar techniques are used in the novelty detection. While in case of the out-
liers, the unlikely data points were removed from the data set to improve gen-
eralization, the novelty samples should be included and the model parameters
re-estimated.

3.6.1 Cumulative distribution

A simple outlier detection technique is proposed in line with [39]. The method
bases on the estimate of the input density p(x) which is available through eg.
mixture model.
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Figure 3.6 The influence of the one outlier sample on the estimation of the
function parameters from the data. A simple linear function is used as an
example. The linear function calculated from the data set with one outlier
sample produces strongly skewed incorrect result.

The cumulative distribution Q(¢) is defined as the probability of the data that
has likelihood below some threshold ¢, calculated for all the thresholds, i.e.
Q(t) = P(x € R) where R = {x,, : p(xy,) < t}. Now, the threshold in set on
the distribution Q(¢), which allows to reject the low probable events. Typically,
low value is chosen, for example 5%, what means that the rejected data has
the likelihood lower than 5% of the maximum likelihood value observed in the
data.

Again, the same technique can be used in detection of the novel events in the
new observed data.

3.6.2 Outlier cluster

The other method [54] is working as an extension to the earlier presented Gen-
eralizable Gaussian Mixture model. However similar techniques can be devel-
oped for arbitrary mixture model. It simultaneously detects the outliers and
estimates the data density in the mixture model framework.

The method involves the additional, especially created, wide, outlier cluster,
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which is placed in the center of the data. Figure (3.7 illustrates this idea. Due

—— Data density
Quitlier cluster

Figure 3.7 The outlier cluster (dashed line) has much larger covariance than
the data (solid line). Therefore the likelihood shown on the figure in the center
is dominated by data and on tails by outlier density.

to the high variance, the density of the outlier cluster takes much lower values
than the data density in the center of the distribution but higher on the tails.
Therefore, the unlikely samples fall into the outlier cluster rather than contribute
to the process of estimating the parameters of the data density.

The method uses modified unsupervised GGM in estimation. The model is a
linear combination of K + 1 component densities and the proportions:

K+1

p(x[6) = > p(x[6x) P(k). (3.17)

k=1

In the formula the Gaussians (given by equation |3.11) are used as component
densities p(x|0y). The parameters are estimated, as in earlier presented mod-
els, via EM algorithm that minimizes the negative log-likelihood given in equa-

tion|3.12.

This modification of the UGGM algorithm, presented in figure 3.3, uses one
additional Gaussian cluster with fixed parameters: g1 = pg = N Iy xp
and T 11 = X =N 1Y (%0 — 1) (Xn — 11g) T, where c is a multiplying
constant which decides about the wideness of the outlier cluster and typically
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takes large Valueg. The EM updates for y1;, and 3 concern only the K clusters
describing the data density while the parameters of the outlier cluster K + 1
remain the same. Mixing proportions P(k) that are indication of the cluster
membership are updated for all components.

Even though, the presented technique is developed for unsupervised GGM it
can easily be extended to other discussed models like SGGM and USGGM.

3.6.3 Evaluation of outlier detection methods

A 2-dimensional toy data set was generated for illustration and comparison of
the outlier detection techniques presented in sections 3.6.1 and [3.6.2. Results
are shown on figure[3.8.

1 « Data poins 1 - Data points 1 + Data points
08l o Outliers 0] Qutliers method 1 04| Outliers method 2
0.6] 0.6 0.6]

o o ° . . . .
04 . . 04 é 4 0.4
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0.4 -04] 0.4

x2
°
x2
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0. -0. 0.8

Figure 3.8 Two Gaussian clusters with the outliers are used as the data set
(left panel). The outliers are marked in red. Method 1 (middle plot) is corre-
sponding to the outcome of the cumulative distribution. The samples classi-
fied as outliers are marked with the green triangle. Here, more samples than
expected is detected as outliers. Right panel is presenting the results of the
clustering with the outlier cluster (method 2) . The examples that were classi-
fied as outliers are marked with the cyan diamond. Precisely the same points
that were originally outliers are predicted as outliers.

Two Gaussian distributed spherical clusters were generated. Then, additional 9
outlier samples formed in regular grid were included in the data set. Left plot of
figure 3.8 shows the created data. Blue points are generated by Gaussians and
red circles are the outliers. In the middle plot the result of the cumulative dis-
tribution is presented and in right plot the outcome of outlier cluster technique
is shown. The cumulative distribution was used with the threshold of 0.5% but

“Value of ¢ = 10 is used in the experiments
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still many low probable samples from the Gaussian clusters were classified as
outliers. In case of outlier cluster method the result is accurate.

3.7 Discussion

Summarizing, the mixture models are universal and very flexible approxima-
tions for the data densities. The significant drawback of that model is the com-
putational complexity. The number of parameters in the model grows quadrat-
ically with the data feature dimension what next requires a large number of
data points needed for good parameter estimation. For high dimensional data
it is moreover a time consuming process, since the inversion of the D x D co-
variance matrix is needed in each training iteration. Therefore, dimensionality
reduction techniques are often used in the preprocessing step.

In many applications, finding outliers, i.e. rare events, is more interesting than
finding the common cases. They indicate either some unusual behavior or con-
ditions or give information about new introduced cases or simply about errors
existing in the system. Therefore, ability of detecting outliers is an useful fea-
ture for the model.

The outlier cluster was found superior over the cumulative distribution. It does
not detect any outlier samples in the data where in fact there is no outliers. If the
density is estimated accurately then the outcome of this method is also precise.
The outlier detection technique is however, based on the mixture model and as
such inherit all its drawbacks.



CHAPTER 4

Cluster visualization &
interpretation

Visualization and the result interpretation, the next step in the KDD process
(see figure [1.1), follows the transformation part that is described in Chapter [2|
and the modeling part presented in Chapter 3| The following chapter discovers
the visualization and interpretation possibilities based on the outcome of the
Generalizable Gaussian Mixture model. The modeling results of the realistic
data sets together with theirs interpretation are visualized in the Chapter (7.

4.1 Hierarchical clustering

Hierarchical methods for unsupervised and supervised data mining provide a
multilevel description of data. It is relevant for many applications related to in-
formation extraction, retrieval, navigation and organization, for further reading
in this topic refer to, e.g. [13, 28]. Many different approaches have been sug-
gested to hierarchical analysis from divisive to agglomerative clustering and
recent developments include [11, 27, 58,169, 187, 89]. In this section, the ag-
glomerative probabilistic clustering method is investigated [52, 53, 80] as an
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additional level based on the outcome of the Generalizable Gaussian Mixture
model.

The agglomerative hierarchical clustering algorithms start with each object as a
separate element. These elements are successively combined based on a simi-
larity measure until only one group remains.

Let us start from the outcome of the unsupervised GGM model (described in
section 3.3), the probability density components p(x|k) (equation(3.11), where
k is an index of the cluster with parameters collected in 6, and treat it as
first level ; = 1 of the new developed hierarchy. On this level, K clusters are
observed that are described by means p,,, covariances 3 and the proportion
values P(k), k = 1,2,..., K. The goal is to group together the clusters that
are similar to each other. This similarity can be understood, for example, as the
distance between the clusters in the Euclidean space, or the similar character-
istics in the probability space. Therefore, various similarity measures can be
applied what often leads to different clustering results. A few of the possible
choices for distance measures between the clusters are presented further in this
chapter.

The simplest technique for combining the clusters is to merge only two clusters
at each level of the hierarchy. Two clusters are merged, when the distance
between them is the smallest. The procedure is repeated until one cluster at the
top level is reached containing all the elements. That is, at level j = 1 there are
K clusters and there is one cluster at the final level, j = 2K — 1.

Let p;j(x|k) be the density for the k’th cluster at level j and P;(k) the corre-
sponding mixing proportion. Then the density model at level j is defined by:

K—j+1
p(x)= > Pi(k)p;(xlk). (4.1)

k=1

If cluster r and m at level j are merged into ¢ at level j + 1 then

pj(x|r) - Pj(r) + pj(x|m) - Pj(m)

, 42
Pi(r) + P;(m) 2

Pj+1(x|0) =

and

Pji1(€) = Pj(r) + Pj(m). (4.3)
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The class posterior

P (k) = PEE (X]'fzjj o (44)

propagates also in the hierarchy so that

Pi1(0xn) = Py(rlxa) + Pj(mlx,). 4.5)

Once, the hierarchy is created it is possible to determine the class/level mem-
bership for new samples. Thus, x,, is assigned to cluster & at level j if

p(xn|k) P(K)

B = e

> p, (4.6)
where p is a threshold value, typically close to 1. That ensures high confidence
in the assignment. The data sample “climbing up” the tree structure gains con-
fidence with each additional level. That means, that if the sample at level j can
not be assigned unambiguously to any of the clusters it will surely be possible
at one of the higher levels of the hierarchy.

4.1.1 Similarity measures

4.1.1.1 Kullback-Leibler similarity measure

The natural similarity measure between the cluster densities is the symmetric
Kullback-Leibler (KL) divergence [10, 69], since it reflects dissimilarity be-
tween the densities in the probabilistic space. Symmetric KL for agglomerative
hierarchical clustering was introduced and investigated in [52]. It is defined as

_1 X|T) 10 p(X|T) X 1 X|m) 1o p(X|m) X
D(rum) = 5 [ ol to L+ 5 [ plim)tog 25 @)

On level 5 = 1, KL divergence for the Gaussian clusters can be expressed by
the simplified form:

D 1
Di(r,m) = — +(TraceS ' Sp] + Trace[2,1)  (48)
1 —_ —
+ Z(Mr - :U’m)T(Er ! + Eml)(:ur - /“Lm)

The derivation of this equation is provided in appendix A.
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Unfortunately, a significant drawback of KL is that an exact analytical expres-
sion can be obtained only for the first level of the hierarchy, while distances for
the next levels have to be approximated [52,53,/80]. For that approximation
simple combination rule can be used in which, the distances to a new cluster
are calculated from the original distances weighted by the mixing proportions
P(k). Thus, the distance between the merged cluster /{r, m} and the other
cluster k is defined by the following recursive formula:

Dyuins) = O T

(4.9)

4.1.1.2 Lo similarity measure

The L distance was presented in [53] as a similarity measure in connection
with agglomerative hierarchical clustering .

The £, distance in case of density functions is defined as

Dji1(r,m) = / (pj(x|r) — pj(x|m))? dx (4.10)

where r and m index two different clusters. Due to Minkowski’s inequality
(appendix A), D(r, m) is a distance measure.

Let define the set of cluster indices Z = {1,2,--- , K} and Z, and Z3 are
disjoint subsets of Z such that 7, NZg = 0, Z, C Z and Zg C Z. I,, I
contain the indices of clusters, such that they include clusters r and m at level
J, respectively. Then, the density of cluster r is given by:

pi(xlr) =Y aip(x]i), a;i= > P(i)

= 4.11)
i€To IS P(Z)

for ¢ € Z,, , and zero otherwise. The density of cluster m with 3; is defined in
a similar way:

P(i)

pj(x\m) = Z Bip(x[i), Bi = m

1€1g

4.12)

The Gaussian integral is given by [91]:

/ p(xla)p(x]b) dz = N (11q — 1, S + ), @.13)
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where NV (11, B) = (2m)~P/2 . |B|Y2  exp(—ip T2 p).

If we further define the K—dimensional vectors & = {«;}, 5 = {f;} and the
K x K symmetric matrix G = {Gyp}, where Gop = N (g — 1y, X + Xp)s
then the distance D can be rewritten in the simplified notation as:

D(r,m) = (a — 3) T G(a— f). (4.14)

It is also important to include the prior of the component in the distance mea-
sure. Thus, the modified £» is then given by:

Dj+1(7“,'m)—/ (pj(x|r)P;(r) —pj(x|m)Pj(m))2 dx (4.15)

which easily can be expressed by a modified matrix Gg, = P(a)P(b)Gap.

4.1.1.3  Cluster Confusion similarity measure

Another possibility is to use as a similarity measure the confusion between
the clusters [53]. When merging two clusters, the similarity £ is defined as
a probability of misassignment when drawing the samples from two clusters
separately.

E(r,m):/ p(xr)P(r)dx+/ p(x|m)P(m)dx, (4.16)

where R, is a set that contains vectors x classified as belonging to cluster m
ie. Ry = {x:m = argmaz p(j|x)} and R, = {x : r = argmazx p(j|x)}.

J J
In general, E(r,m) can not be computed analytically, but it can be approxi-
mated with arbitrarily accuracy by using an auxiliary set of data samples drawn
from the estimated model. The cluster confusion similarity measure can be
computed using the following algorithm:

1. Randomly select a cluster ¢ with probability P (i)

2. Draw a sample x,, from p(x,|7)

3. Determine the estimated cluster j = argmazx p(k|xy)
k

4. Estimate E(r,m) as the fraction of samples where (i = r A j = m) or
(j=rANi=m)

Figure 4.1 The Cluster Confusion similarity measure algorithm.
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4.1.1.4 Sample Dependent similarity measure

Instead of constructing a fixed hierarchy, a sample dependent hierarchy can be
obtained by merging a number of clusters relevant for a new data sample x,,.
This similarity measure was proposed in [53].

Let p(k|x,), Kk = 1,..., K be the computed posteriors that are ranked in de-

scending order and the accumulated posterior is stored in A(i) = 2221 p(k|xy).

The sample dependent cluster is then formed by merging the fundamental, for

this sample, components & = 1,2,--- , M, where M = argmin A(i) > p,
7

with for example, p = 0.9.

4.1.2 Evaluation of similarity measures in hierarchical clustering

To compare the presented similarity measures a 6 cluster toy example was cre-
ated. All clusters are drawn from normal distributions with spherical covariance
structures. In four clusters (1, 2, 3, 4) the covariance is set to identity matrix
3} = I, and for two clusters (5, 6), 3 = 0.1 - I. The scatter plot of the data is
shown on figure4.2.

The graphs visualizing hierarchical clustering are called dendrograms. Den-
drograms for different similarity measures are shown on figure 4.3| All the dis-
cussed measures recognize the dissimilarity between the narrow and the wide
variance clusters. As mentioned earlier, the hierarchy produced by different
similarity measures vary.

For the selected test samples shown also on figure [4.2 ordered class posterior
values are shown in table|4.1. Five test points were especially selected for good
illustration of the Sample Dependent similarity measure. The sample coordi-
nates are shown on top of the table and refer to figure [4.2. The threshold
value p is assumed to equal p = 0.9. For example, sample x; gains full confi-
dence after second hierarchy level, thus the fundamental clusters for that exam-
ple ware clusters number 1 and 4. A similar situation is in the case of sample
x5. Regarding point xg, the single cluster no. 6 provides enough of the confi-
dence. Sample x3 builds two level hierarchy {1, 3} and sample x4 three level
{{6, 3}, 1}. In that way the hierarchy is independently created for each of the
samples.
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Figure 4.2 The scatter plot of the artificial data generated for comparison
between the similarity measures presented in Chapter [4. The dendrogram
for the presented data build with KL, £, modified £ and Cluster Confusion
similarity measures are presented on figure|4.3] 6 test samples that are marked
with red stars were selected for illustration of Sample Dependent similarity
measure that is presented in table [4.1]

X1 = (2,-2) | 2= (—0.6,05) |[ x5 = (4,35) |[ xs = (0.9,1) |[ x5 = (0.4, 0)
p(klxi) | k |[ pklx) | Kk p(klxi) | k |[ p(klxs) | k || p(klx:) | k
0.5 1 0.967 6 0.82 1 0.388 6 0.495 5
0.5 4 0.015 2 0.18 3 0.351 3 0.495 6
0.0 2 0.011 3 0.00 4 0.259 1 0.006 1
0.0 3 0.007 5 0.00 2 0.001 2 0.002 3
0.0 5 0.000 4 0.00 5 0.001 4 0.002 4
0.0 6 0.000 1 0.00 6 0.000 5 0.000 2

Table 4.1 The Sample Dependent similarity measure. The test samples,
which coordinates and are referring to figure|4.2. The ordered class posterior
and the corresponding cluster numbers are shown in columns. The assumed
threshold value is p = 0.9. For example, sample x; gains full confidence
already after first hierarchy level, thus the fundamental clusters for that ex-
ample are a composition of clusters number 1 and 4. For point X2, the single
cluster no. 6 provides enough of the confidence. In case of sample x4 3 level
hierarchy is proposed namely, {{6, 3}, 1}.
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Cluster visualization & interpretation

KL Similarity Measure L2 Similarity Measure

1

5 6 1 3 2 4 1 3 4 2 5 6

L2 modified Similarity Measure

—

Cluster Confusion Similarity Measure

’_k_

4.2

Figure 4.3 The presented dendrograms are corresponding to hierarchical
clustering created with different similarity measures for a 6 cluster toy exam-
ple shown on figure[4.2. The type of the measure is shown above each figure.
By referring to figure[4.2]the differences, among the methods, in the ordering
of clusters can be seen.

Confusion matrix

The important final step of the KDD process (figure is an understandable
presentation of the obtained results. In case of supervised learning the confu-
sion matrix is often used as a cluster interpretation. The confusion matrix, by
definition, contains information about actual and predicted classifications done
by a classification system. An illustration of that idea is presented in table 4.2.
a represents a vector generated by class A, and b by class B. The estimated
corresponding clusters are marked by A and B, respectively. P(a|A) is a prob-
ability of the assignment of the vector that was generated from class A to the
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Class A | Class B
Cluster A | P(alA) | P(blA)
Cluster B | P(a|B) | P(b|B)

Table 4.2 A simple illustration of the confusion matrix idea. Vector a is gen-
erated by class A, while vector b by class B. The estimated corresponding
clusters are marked by A and B, respectively. P(a|A) is the probability of the
assignment of the vector that was generated from class A to the correspond-
ing cluster A. P(a|B) denotes probability of misassignment of the vector a.
When confusion matrix equals identity matrix ,there is no cluster confusion
observed.

corresponding cluster A. P(a|B) denotes probability of misassignment of the
vector a. When confusion matrix equals identity matrix, there is no cluster
confusion observed.

The confusion matrix can be also useful in the interpretation when unsupervised
learning is used but all the labels are available. In such case not a class but a
cluster structure of the data is the matter of the interest. In such case, number
of clusters is typically larger than number of class labels. Thus, the confusion
matrix provides the “supervised” labeling for the clusters.

4.3 Keywords and prototypes

As another method of interpretation, keywords and prototypes are proposed.
Here, no class labels are required. The term Keywords originate from textual
date@ but it can be easily extended to other data types. For example, as keyword
a typical image can be understood or typical values of the observed features.
As prototype the most representative cluster example, is considered, which is
selected from the original documents, what in GGM model corresponds to the
example with the highest density value.

The simplest approach for keywords generation is to use the location param-
eter (mean) as a representative for each cluster. A more general and accurate
technique requires generating a set of the most probable vectors y; from each
of the clusters found by, e.g., Monte Carlo sampling of the probability density

"Detailed description of the text data type can be found in section|7.1.
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function p(x). Vectors y; are called typical features. Since, in most of the cases
the computations are not hold in the original Sp&Cé@, the clusters are described
in the latent space, where processing was also performed. Therefore, the typical
features need to be back-projected to the original space, where an interpretation
is possible, i.e.y; = U - y,, where U is a projection matrix. Then, keywords
correspond to the most fundamental features of the back-projected vectors may

be generated:
Keywords,, = Feature(yy > p) (4.17)

Since the density values for particular clusters may vary greatly it is unpractical
to use directly equation|4.17. Instead, the back-projected vectors are normalized
so that maximum value is equal 1 or they sum to 1. Then, p is typically selected
as a value close to 1.

In some cases it is more useful to represent clusters by one common example.
Thus, the prototype of a given cluster can be found by selecting the example,
that has the highest density value p(x,|k). For example, for text data the pro-
totypical documents can be found. It is also possible to generate keywords
directly from such prototype.

The interpretation with keywords and prototypes is possible on each level of
the hierarchy. The typical features are drawn from mixture distribution of the
merged clusters and back-projected to the original term space, where the com-
mon keywords representation is found. The prototypes must be found, sepa-
rately, for each of the component clusters.

4.4 Discussion

The hierarchical clustering supplies with the multilevel description of the data.
In that way, the data points, which can not be unambiguously assigned to any
of the clusters found by GGM model can gain the confidence on higher levels
in the hierarchy. Several similarity measures may be used, which result with
different structures. However, no method significantly outperformed the other ,
despite their drawbacks. Therefore, the results from all the similarity measures
are presented later in the experimental Chapter |7, It should be noted that for-

%One step of the KDD process is projection of the data, which is carried out whenever the
original data dimensionality is significantly large. The Gaussian Mixture models considered in
Chapter[3Jrequire small (from numerical reasons) dimensionality of the data.
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mula for Kullback-Leibler similarity measure is the approximate and Cluster
Confusion similarity measure is computationally expensive.

Interpretation of the clusters on all hierarchy levels is provided by keywords
and prototypes. Additionally, if the data labels are available it is possible to
compute the confusion matrix between the obtained and original labeling.






CHAPTER 5

Imputating missing values

The missing data imputation task can be both a subject of data cleaning process
as well as the data mining itself, see figure [1.1l In this work the problem is
addressed in connection to the particular data set that was collected during the
survey and therefore the data records are partially missing. One of the tasks in
connection with this data set was to create models that will allow for accurate
prediction of the lacking values.

The sun-exposure data was used in connection with missing values imputation.
The experiments can be found in [81]. Since originally, the diary records are
categorical, both nominal and ordinal, coding technique is proposed that con-
verts the data to binary vectors. [-out-of-c coding was used for this purpose.
It represent c level categorical variable with a binary c bits vector. For exam-
ple, if the variable takes one of the following three states {1,2,3}, (¢ = 3)
then the states are coded as shown on the figure (5.1 Missing data appears in

various applications both in the statistical and in the real life problems. Data
may be missing from various reasons. For example, subjects to studies, medi-
cal patients, often drop out from different reasons before the study is finished.
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‘ state binary representation ‘

1 100
2 010
3 001

Table 5.1 An example of 3 state categorical variable coded into binary rep-
resentation using I-out-of-c coding.

The questionnaires are not filled out properly because they were forgotten, the
questions were skipped accidentally or they were not understood or simply the
subject did not know the answers. The error can occur in the data storage, the
samples may get contaminated, etc. The cause may also be the weather condi-
tions, which did not allow the samples to be collected or the investigation to be
performed. Missing data can be detected in the original space for example by
finding the outlier samples by use of methods described in Section

A lot of research effort has been spend in this subject. One could refer, for
example, to the books written by Little & Rubin [57] or by Schafer [77], some
theory can as well be found in the articles by Ghahramani [30, 31] or Rubin
[73].

In order to define a model for missing data, lets, in line with Rubin [72] de-
compose the data matrix X = {x,,}2V_, to the observed and the missing part as
follows: X = [X?, X™]. One could now introduce the matrix R = {r,}_,
which is an indicator of the missingness:

{ 1, x4, observed
R = ..
0, x4, missing

The joint probability distribution of the data generation process and the miss-
ingness mechanism can be then decomposed:

p(R, X[, 0) = p(R|X, §)p(X|0), (5.1)

where 6 and £ are the parameters for the data generation process and missing
data mechanism, respectively.
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The mechanism for generation of missing data is divided into the following
three categories [30, 72]:

MAR (data Missing At Random). The probability of generating the missing
value may depend on observation but not on missing value itself, i.e.
p(R|X?, X™ &) = p(R|X?, &), see figure/5.1/for illustration.

MCAR (data Missing Completely At Random) is a special case of MAR. By
that definition the missing data is generated independently from X° and
X™, ie p(RIX?,X™ &) = p(R|E), see figure/5.2.

NMAR (data Not Missing at Random). The missing values generation mecha-
nism is depending both on observed and missing part, i.e. p(R|X?, X" €).
Then the data is said to be censored.

MAR MCAR

05 0.5
0 0
0 2 4 6 8 10 0 2 4 6 8 10
x1 x1
Figure 5.1 An example for data Figure 5.2 An example for data
missing at random (MAR) generat- missing completely at random
ing mechanism. (MCAR) generating mechanism.

Majority of the research covers the cases, where missing data is of the MCAR
or the MAR type. There is no general approaches for NMAR type.

Let us imagine, a following example: the sensor that is unreadable outside a cer-
tain range. In such case, learning the data distribution where the missing values
were omitted will cause severe error (NMAR case). But if the same sensor fails
only occasionally (MAR case), due to other reasons than measured tempera-
ture, the data, however harmed, often supplies enough information to create the
imputation system and achieve a good estimate of the data distribution.
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Most of the issues in statistical literature [10, 30, 57, 77] concerns two tasks,
namely the imputatiorﬁ of the missing values and the estimation of the model
parameters. In the estimation, it is a common practice to use the complete
case analysis (CCA) or available-case analysis (ACA). Case deletion is often
used in case of both tasks in order to force the incomplete data to the complete
data format. Omitting the patterns with unknown features (CCA) can be jus-
tified, whenever the large quantity of the data is availableE and the variables
are missing completely at random or just at random as shown in figures
and figure [5.2. Then the accuracy of the estimation of the model parameters
will not suffer severely due to the deletion process. However, the estimate may
be biased if the missingness process depends on some latent variable. The ad-
vantage of this technique is the possibility of using the standard methods for
statistical analysis developed for fully observed data. The significant drawback
is the loss of information that occurs in the deletion process. When there is not
enough data samples, the recommended technique is to use all the available for
the modeling data (ACA). It is well-founded since the missing data vectors also
carry information which, may turn out crucial for the modeling. Thus, all the
cases, where the variable of interest occurs are included in the estimation.

Once the parameters are estimated, the imputation can be performed. Natu-
rally with the proper model selected, the missing values are re-inserted with a
minimum error.

There has been suggested many different methods for completing the missing
values (e.g., [57]). One way for the multivariate data is replacing the missing
value with a predicted plausible value. The following list presents the most
often used techniques in the literature:

Unconditional Mean Imputation replaces the missing value with the mean
of all observed cases. It assumes MCAR generation mechanism and both
the mean and the variance of the completed data is underestimated.

Cold deck uses values from a previous study to replace missing values. It
assumes MCAR case. Variance is underestimated.

!"The imputation is a general term for reconstruction of the missing data by plausible values.
2Only c.a. 5% of the missing data is an acceptable amount to delete from the data set.



59

Hot deck replaces the missing value with the value from a similar, fully ob-
served case. It assumes MAR case and it gives better variance estimate
than the mean and cold deck imputation.

Regression replaces the missing value with a value predicted from the regres-
sion of observed variables. If the regression is linear the MAR assump-
tion is done. The variance however, is underestimated, but less than in
the mean estimation.

Substitution replaces the missing study with another fully observed study not
included earlier in the data set.

For example, one could use the conditional Mean Imputation. Here, both the
mean and the variance are calculated based on the complete cases and the miss-
ing values are filled in by means of linear regression conditioned on the ob-
served variables. An example of this technique as a method of estimating miss-
ing values in multivariate data can be found in [57].

There are also alternative methods that maintain the full sample size and result
in unbiased estimates of parameters, namely multiple imputation [73, 71] and
maximum likelihood estimation based approaches [30, 85, 86]. In the multi-
ple imputation approach, as the name indicates unlike earlier mentioned single
imputation techniques, the value of the missing variable is re-inserted several
times. That technique returns together with the plausible value also the uncer-
tainty over the missing variable. In the maximum likelihood based approach the
missing values are treated as hidden variables and they are estimated via EM
(algorithm 3.1).

Below, two models for estimating missing data are presented. The first method
is a simple non-parametric /X -Nearest Neighbor (KNN). In the second model
the imputation is based on the assumption that the data vectors are coming from
the Gaussian distribution. Both KNN and the Gaussian imputation analysis are
based on the article [81] enclosed in appendix B. The experimental results are
found in section|7.3.2}
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5.1 K-Nearest Neighbor model

In order to determine nearest neighbors of the investigated data point, a dis-
tance measure must be proposed. In case of binary data the Hamming distance
measure is used, which is given by the following formula:

XZa Xj Z |xdz wd] (5.2)

where x; and x; are two binary vectors, d is a bit index and D is a number
of bits in the vector. Thus, for example, the distance between two vectors:
x1 = [100] and x2 = [001] is calculated in the following way: D(x1,X2) =
S |zar — a2 =1 =0 +1]0—=0]+1]0—1] =2.

When the data has real values, for example L£,-norm can be applied as a dis-
tance measure. L2-norm between D-dimensional vectors x; and x; is defined
as

D
D(xi X5) = 4| > _(Tai — 2g5)>. (5.3)
d=1

Naturally, any other vali distance measure may be used, that is suitable for
the application, data type, or domain the calculations are hold. For example,
with the discrete data often the linear cosine inner-product is used to measure
vector dissimilarities or in the probability domain the KL divergence [69] may
be applied.

As the optimum number of nearest neighbors K, for the investigated data set,
the number is selected, for which the minimum imputation error is observed, in
the experiment performed on fully observed data vectors.

The algorithm for the non-parametric K -Nearest Neighbor Model is presented
on figure 5.3.

3The distance metric must satisfy the positivity, symmetry and triangle inequality conditions.
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KNN Algorithm:

1. Divide the data set D into two parts. Let the first set contain data vectors
in which at least one of the features is missing, D,,,. The remaining part
where all the vectors are complete is called D,.

2. For each vector x € D,y,:

e Divide the vector into observed and missing parts as x = [x?, x].

e Calculate the distance (Eq. or Eq.[5.3]) between the x° and all
the vectors from the set D,. Use only those features, which are
observed in X.

e Use the K closest vectors (K -nearest neighbors) and perform a ma-
jority voting (in the discrete case) or mean value (for real data) es-
timate of the missing values.

Figure 5.3 The algorithm for KNN model for imputation.

5.2 Gaussian model

Let now make an assumption that x comes form Gaussian distribution with
mean p and covariance . The feature vector x, is divided into an observed
and missing part: x = [x°,x™], as it was done in previous sections. Under
the Gaussian model assumption, the optimal inference of the missing part is
given as the expected value of the missing part given the observed part. That is
given by the least-squares linear regression between x"* and x° predicted by a
Gaussian (for reference see [30]) i.e.,,

E(X"X%) = fiy + SmoSoy - (X° — 11) (5.4)

where
2 (0]0) EO’I’I’L

EIm s 5.5

1= [Hos ] and X =

The Gaussian imputation algorithm is presented in figure [5.4.
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GM Algorithm:

1. Divide the data set D into two parts. Let the first set contain data vectors
in which at least one of the features is missing, call it D,,. Then the
remaining part, where all the vectors are complete is called D,.

2. Estimate mean p and the covariance matrix 3 from D,, i.e.

Bo= D % (5.6)
° neD,
~ 1 . .
= v 2 G- —p)’ (5.7)
o HEDO

where N, = |D,| is the number of complete vectors.
3. For each vector x € D,,

e Divide the vector into two parts x = [x°,x"], where x is the
observed vector features and x™ the missing.

e Estimate the missing part of the vector using Eq.[5.4!
R = BX) = i+ o Bl (0~ ) 59)

In case of binary vectors, sign of that estimate is used i.e., X" =
sign [E'(x"™|x°)]. For discrete numbers the estimate may be ade-
quately quantized.

Figure 5.4 The algorithm for Gaussian model for imputation.

5.3 Discussion

The missing data problem occurs in many medical related databases. One of the
data mining task concerns the imputation of such lost data. In this chapter two
methods for imputation are presented. The experimental results and analysis of
the performance for both methods are presented in section [7.3.2. It is shown
in this section that the Gaussian imputation, for the applied data set, performs
slightly better than KNN model.



CHAPTER 6

Probabilistic approach to
Kernel Principal Component
Analysis

Spectral clustering methods, one of which is presented in the following chapter,
are the another techniques used in data mining task, see figure[1.1. In this case
the presented in Chapter 2 feature dimensionality reduction methods are not
necessary even when the data dimensionality is large. It can be, however, used
prior to the performed clustering.

The kernel principal component analysis (KPCA) [78] in decomposition of a
Gram matrix has been shown to be a particularly elegant method for extracting
nonlinear features from multivariate data. It has been shown to be a discrete
analogue of the Nystrom approximation to obtaining the eigenfunctions of a
process from a finite sample [88]. This relationship between KPCA and non-
parametric orthogonal series density estimation was highlighted in [33], and
the relation with spectral clustering has recently been investigated in [8]. The
basis functions obtained from KPCA can be viewed as the finite sample esti-
mates of the truncated orthogonal series [33]. However, a problem common
to orthogonal series density estimation is that the strict non-negativity required
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from a probability density is not guaranteed when employing these finite order
sequences to make point estimates [43]. This is also the case of the KPCA
decomposition [33].

The following chapter considers the non-parametric estimation of a probability
density from a finite sample [43] and relates this to the identification of class
structure. This approach is presented in yet unpublished article [83].

6.1 Density Estimation and Decomposition of the Gram
Matrix

Lets consider the estimation of an unknown probability density function p(x)
from a finite sample of N points {x1,--- ,Xxn} ~ p(x) where the feature space
of x is D-dimensional. Such sample can be employed to estimate the density in
a non-parametric form by using, for example, a Parzen window estimator (refer
to [43] for a review). Then the obtained density estimate is given by

N
p(x) = N7t Z Kn(x,xp,) 6.1)
n=1

where KCp, (x4, x;) denotes the window (or kernel function) of width h, between
the points x; and x;, which itself satisfies the requirements of a density function
[43]. Tt is important to note that the pairwise kernel function values Kj,(x;, ;)
or Gram matrix' provides the necessary information regarding the sample esti-
mate of the underlying probability density function p(x).

For applications of unsupervised kernel methods such as KPCA the selection
of the kernel parameter, in case of the Gaussian kernel h, is often problematic.
However, since the kernel matrix can be viewed as the sample density estimate,
methods such as leave-one-out cross-validation can be employed in obtaining
an appropriate value of the kernel width parameter.

'N x N Gram matrix G = {g;;} of the data matrix X = {24, } is defined as the matrix of
the dot products g;; = x, x; or equivalently: G = X”X.
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6.1.1 Kernel Decomposition

The density estimate can be decomposed in the following probabilistic manner:

N
p(x) = Zp(x,xn) (6.2)
n;l
= > p(x|xn)P(xn) (6.3)
B N
= N p(x|xn) (6.4)

It is assumed that each sample point is equally probable a priori, i.e. P(x,,) =
N~!, which is an outcome of the independent and identically distributed (i.i.d.)
assumption. The kernel operation can then be seen (compare equations
and|6.4) as the conditional density p(x|x,,) = Kp(x, Xp,).

By Bayes’ theorem [10], a discrete posterior probability can be defined for any
point x given each of the [N sample points
P K
p(xa|%) = p(x[xn) P(xn) _ (x,%n)

S L p(X[xa) () SN K (%, %)

such that p(x,|x) > 0 V n. Itis easy to note that 27]1\[:1 p(xn|x) = 1.

K(x,x,) (6.5)

If there is the underlying class structure in the density then the sample posterior
probability can be decomposed by introducing a discrete class variable

C
p(xn|x) = Zp Xp, €|X) = Zp(xn\c, x)p(c|x). (6.6)
c=1

If the points have been drawn i.i.d. from the respective C' classes forming the
distribution such that x,, L x | ¢, then

p(xn|x) = Zp X, €[x) = Z (xnlc)p(clx), (6.7)
=1

where the stochastic constraints ZnN:1 p(xn|c) = 1 and ZCC:l p(elx) = 1 are
satisfied.
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The decomposition of the posterior probabilities for each point in the available
set p(x;|x;) = chzl p(xile)p(c|x;), for all 4,5 = 1,---, N is identical to
the aggregate Markov model originally proposed by Saul and Periera [76]. The
matrix of posteriors (elements of the normalized kernel matrix) can be viewed
as an estimated state transition matrix for a first order Markov process. This
decomposition then provides class posterior probabilities p(c|x,,) which can be
employed for clustering purposes.

A divergence based criterion such as cross-entropy

ZZIC X;, X;j log{Zp x;|c)p(c|x;) } (6.8)

=1 j=1

or distance based criterion such as squared error

ii{ (xi, ;) {prz\ cx]}}2 6.9)

i=1 j=1

can be locally optimized by employing the standard non-negative matrix mul-
tiplicative update equations (NMF) [55] (also described in section 2.1.3) or
equivalently the iterative algorithm which performs Probabilistic Latent Se-
mantic Analysis (PLSA) [42]. If the normalized Gram matrix is defined as
Gyxn = p(xixj) = K(xi,%;) then the decomposition of that matrix with
NMF or PLSA algorithms yields Gy« nx = W H such that W = p(x;|c) and
H = p(c|x;) are understood as the required probabilities which satisfy the
previously defined stochastic constraints.

If a new point z is observed the estimated decomposition components can, in
conjunction with the kernel, provide the required class posterior p(c|z),

plelz) = Zp clxn)p(xn|2) (6.10)

= Zp c|xn)K(z,%,,) (6.11)

- Zp ¢[xn) s (ZK’(‘Z")X N (6.12)

This can be viewed as a form of “kernel” based non-negative matrix factor-
ization, where the “basis’ functions p(c|x,,) define the class structure of the
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estimated density.

In attempting to identify the model order a generalization error based on the
test sample predictive negative log-likelihood can be employed

G. = —N' log{p(zn)}, (6.13)

where IV, denotes the number of test points. In the presented model, the likeli-
hood of the test sample p(z) is derived from in the following manner:

p(z) = (z|xn) (6.14)

v
>

C
Z plelxy,) (6.15)

2 |

The p(z|c) can be decomposed given the finite set such that

p(zle) = Zilp(ZIXz)p(XzICL (6.16)

where p(z|x;) = K(z|x;). So the unconditional density estimate of an test point
given the current kernel decomposition which assumes a specific class structure
in the data can be computed as follows

N N C

NZZZ’C z|x;)p(xi|c)p(c|xn). 6.17)

n=1[1=1 c=1

6.1.2 Examples of kernels

For continuous D-dimensional data a common choice of kernel, for both kernel
PCA and density estimation, is the isotropic Gaussian kernel of the form

Kaloex) = n) En-Peap{ -k —xal?} 619

Of course many other forms of kernel can be employed, though they may not
themselves satisfy the requirements of being a density. If we consider for ex-
ample the case of the linear cosine inner-product in case of discrete data such
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as vector space representations of text, the kernel is defined as

xI'x,,

K(x,xp) (6.19)

REIRER
The decomposition of such cosine based matrix directly yields the required
probabilities.

This interpretation provides a means of spectral clustering which, in case of
continuous data, is linked directly to non-parametric density estimation and
extends easily to discrete data such as for example text. We should also note that
the aggregate Markov perspective allows us to take the random walk viewpoint
as elaborated in [59] and so a K-connected graph may be employed in defining
the kernel similarity /Cr (x, x,,). Similarly to the smoothing parameter and the
number of clusters, the number of connected points in the graph can be also
estimated from the generalization error.

6.2 Discussion

For the case of a Gaussian kernel this interpretation of a kernel based clus-
tering enables estimating the kernel width parameter by means of test predic-
tive likelihood and as such cross-validation can be employed. In addition, the
problem of choosing the number of possible classes, a problem common to all
non-parametric clustering methods such as spectral clustering [59,/62], can now
be addressed. This overcomes the lack of an objective means of selecting the
smoothing parameter in most other forms of spectral clustering models. The
proposed method first defines a non-parametric density estimate, and then the
inherent class structure is identified by the basis decomposition of the normal-
ized kernel in the form of class conditional posterior probabilities P(x,,|c) and
P(c|x,). Since the projection coefficients are provided a new, previously unob-
served point can be allocated in the structure. Thus, projection of the normal-
ized kernel function of a new point onto the class-conditional basis functions
yields the posterior probability of class membership for the new point. Some-
thing which cannot be achieved by partitioning based methods such as those
found in [59] and [62].

A number of points arise from the presented exposition. Firstly, in case of
continuous data, it can be noted that the quality of the clustering is directly re-
lated to the quality of the density estimate. Once a density has been estimated
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the proposed clustering method attempts to find modes in the density. Also if
the density is poorly estimated perhaps due to a window smoothing parameter
which is too large then class structure may be over-smoothed and so modes
may be lost. In other words essential class structure may not be identified by
the clustering. The same argument applies to a smoothing parameter which is
too small thus causing non-existent structure to be discovered and to the con-
nectedness of the underlying graph connecting the points under consideration.






CHAPTER 7

Segmentation of textual and
medical databases

In the previous chapters some of the results were presented, and there the dis-
cussed techniques were compared on the simple data sets. Carefully selected
auxiliary data sets were used in order to obtain good illustration. It allowed
in some of the cases to decide which technique to apply in further investiga-
tions. This chapter focuses on implementation of the earlier described models
on observational data.

7.1 Data description

In this section the applied data sets are presented together with short description
of the accompanying them preprocessing procedure. The detailed report of the
preprocessing steps is given in sections [7.2.1 and Four data sets were
used in the further investigations.



72 Segmentation of textual and medical databases

Email data: is a COHCCtiOIE of private emails categorized into three groups
namely: conference, job, and spam. The documents are hand-labeled.
Since emails were collected by an university employee the categories are
university related. The collection was preprocessed, details of the pro-
cedure are presented in section 7.2.1, so the final data matrix consists of
1405 documents each described by 7798 terms. The clustering of the
data was performed in latent space found in Latent Semantic Indexing
framework [20]. This data set is used due to its simplicity and fairly good
separation.

Newsgroups: is collection of 4 selected newsgroup@. The data is used in many
publications, starting from the data collector Ken Lang published in [51]
and also for example in [6, 9, 68]. The original collection consists of
20 different newsgroup categories each containing around 1000 records.
In the experiments only four newsgroups were selected, namely com-
puter graphics, motorcycles, baseball and Christian religion each of 200
records. The preprocessing steps are identical to those performed on the
Email collection which are described in detail in section |7.2.1, In pre-
processing 2 documents were remove resulting with the final number
of 798 records and 1367 terms. Also in case of this data set labels are
available.

Sun-exposure study: The data was collected by Department of Dermatology,
Bispebjerg Hospital University of Copenhagen, Denmark. It concerns a
cancer risk study. The data set used in the experiments represents one
year study or in fact 138 days, collected during spring, summer, and au-
tumn period. The survey was performed on a group of 196 volunteers
resulting in a total number of 24212 collected records. The experiments
concern only the one year fraction of diary database. However, full study
was performed throughout 3 years survey. This extended data set consist
of diary records, detailed UV measurements, questionnaire of the past
sun habits and the measurements of the skin type. This data is available
for future study.

For the survey purpose, a special device was constructed for measuring
sun exposure* of the subjects. The picture of the device is shown on
figure|7.1. Additionally, subjects were asked to fill out daily diary records

!'The Email database can be obtained at following location: http://isp.imm.dtu.dk/staff/anna
The full data collection consisting of 20 categories is available at e.g., http://kdd.ics.uci.edu
3See section[7.2.1]for details.

“UVA and UVB radiation dose was measured every 10 minutes. In the performed experi-
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Figure 7.1 The devise measuring sun radiation the skin is exposed on.

about their sun behavior by answering 10 questions which are listed in
table 7.1. Since it is a common knowledge that high sun exposure leads
to the increase of cancer risk, it was expected that a link between these
two events can be established.

| No. Question Answer |

1. Using measuring device yes/no

2. Holiday yes/no

3. Abroad yes/no

4. Sun Bathing yes/yes-solarium/no

5. Naked Shoulders yes/no

6.  On the Beach/Water yes/no

7. Using Sun Screen yes/no

8. Sun Screen Factor Number yes-number (26 values)/no
9. Sunburned no/red/hurts/blisters

10.  Size of Sunburn Area no/little/medium/large

Table 7.1 Questions concerning the daily sun habits in the sun-exposure
study.

In the questionnaire, question number seven contains redundant informa-
tion, for the investigation, since it is already included in question eight,
and therefore it was removed from the data set. Also question number
one, which is in fact an indicator of missingness in the data, was not
included in the cluster structure investigation. In result, the records are
described by 8 questions — 8 dimensional, categorical vectors. As ex-
pected, in the survey, a lot of data is missing. Therefore, the techniques
are investigated to imputate missing values in these records. For other
experiments, concerning data segmentation, the missing records were re-

ments only daily dose was available.
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moved. In the diary collection there are 1073 incomplete records, 4171
are missing in UVA/UVB measurements and when combining these two
data sets 5041 records have missing values. Therefore, only 19171 com-
plete records from 187 subjects were used in the investigation.

Dermatological collection: is the collectio of erythemato-squamous diseases.
Six classes (the diagnosis of erythemato-squamous diseases) are observed:
psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic der-
matitis, pityriasis rubra pilaris. This database contains 358 instances de-
scribed by 34 attributes, 33 of which are nominal (values 0, 1, 2, 3) and
one of them (age) is ordinal. Original data set contains few missing val-
ues that were removed for this investigation. The data set was previously
used in [35]]. The set is segmented by the aggregated Markov model, that
is described in Chapter 6|

7.2 Segmentation of textual databases

7.2.1 Preprocessing

In order to obtain the vector space representation of the the textual data [75]
the documents are transformed into word-frequencies. Then, in order to re-
duce, often large, dimension of the feature space certain preprocessing steps
are performed that are described below. Such processing the textual databases
is common in literature and can as well be found for example, in [39, 50, 52].

Each of the text documents is represented by the unique histogram over the
word collection. The word collection is the list of all the words that occur in any
of the observed documents. For each document, the number of occurrences of
each word is recorded and that creates a unique fingerprint (histogram, feature
vector) of that document. The relationships among the words are neglected.
Typically, the feature space has extremely high dimension. One could easily
imagine vectors of the size of a full dictionary, what is several thousands of
terms. In every language the sentences are build from verbs, substantives, ad-
jectives, adverbs and also from the conjunctions, pronouns, prepositions etc.
The last, do not carry any crucial information, for clustering, but they occur in
the sentences significantly more often than the other words. Therefore, it is an

3 Available at http://ftp.ics.uci.edu/pub/machine-learning-databases
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important preprocessing step to remove them. In the information technology
area they are called stopwords. A list of 585 stopwords has been used in the
experiments. Also words with very hing or very lowﬁ frequency of occurrence
are erased. In this work the terms that occur less than 2 times and the docu-
ments containing less than 2 words are removed from the data set. In order to
reduce dimensionality and compress the information a stem merging algorithm
is applied. In this case it means that the frequencies of the words that have the
same stem but different suffixes are merged togetheﬁ§ . For example, if words
like working, worked, works occur in the collection, they are all represented
by single stem word work and the frequencies of the sub-terms are accumulated
in the main term. That technique require lookup in the dictionary and therefore
it is time expensive. Summarizing, each text document is converted and rep-
resented by a histogram over the list of selected words. The collection of such
histograms is referred to as term-document matrix (TD).

Since the documents have various lengths the term-document matrix is normal-
ized. Basically, any normalization method can be applied here, however, in
the experiments the normalization to the unit sphere was used (unit £2-norm

length), i.e. X; = II;iIIz , where x is not normalized term-document matrix.
T

For the cross-validation purposes data was randomly divided to the training and
the test set. In the Email data, training set contains 702 vectors leaving for test
703 examples. For newsgroups the sets had the same size of 399 samples each.

From both sets, the mean vector calculated from the training set ju = N ~! YonXn
was subtracted form the data vectors.

In the following sections, steps of the KDD process, presented in Chapter!1, are
applied on the observational data sets. The data is preprocessed and then pro-
jected to low-dimensional latent space using the Principal Component Analysis.
That framework was introduced in [20]). In that space, the density is modeled
with Generalizable Gaussian Mixture model, from which the cluster structure
is obtained. The interpretation of clusters is provided, in the form of keywords.
Hierarchical clustering is also applied enabling multiple level classification and
interpretation. Some of the results can also be found in the following contribu-

®Those words are not unique for any of the documents.

"It is generally not recommended to force small clusters.

8 Also another technique is very popular in literature, so called suffix stripping, where the
recognized word endings are deleted and the remaining identical stems are merged, e.g. Porter
Stemming Algorithm [67].
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tions [52, 53, 80].

7.2.2 Projection to the latent space

All the textual data sets are high dimensional. The email collection after pre-
processing is described by 7798 terms and the newsgroups by 1217. In each
case the dimension is too large to be able to use effectively any of the GGM
model@ discussed in chapter 3| Therefore, the representation of the data in the
reduced space must be obtained. Selected projection methods are described in
detail in chapter 2. In the experiments Principal Component Analysis is used.
This general technique in context of the text data was originally proposed by
Deerwester in [20] and named Latent Semantic Indexing (LSI), where as the
projection vectors the eigenvectors are used that are obtained by singular value
decomposition. That defines a new latent space where the semantic similarities
of the documents can be discovered.

On figure|7.2 the latent space for the investigated collections is shown. In each
case (for visualization purpose), 2 suitable principal components are selected.
Based on the presented scatter plots of both of the data sets, it is easy to see in
case of both sets the existing structure in the data.

In order to determine the optimal number of principal components for each col-
lection the eigenvalue curves are investigate as are shown on figure|7.3. For
Email collection 5 principal components were selected and for Newsgroups 4
components are used. In both cases, this decision is arguable, since no dominant
group of components is observed.

7.2.3 Clustering and clusters interpretation

°In high dimensions the number of parameters to estimate is also high so large number of
data points is needed. Additionally, the covariance matrix is also large and it needs to be inverted
many times in the learning process, which is time consuming. This drawbacks of the GGM
models are explained in section|3.3}

'9The attempt of calculating the generalization error (Eq. was unsuccessful, since the
error curve was monotonically decreasing. The reason may be due to the shape of the eigenvalue
curve (see figure [7.3), where for high principal components large values, in comparison to the
first eigenvalues, are still observed.
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Figure 7.2 Scatter plots of the training data sets in the latent space for the
investigated text collections, Email and Newsgroups data sets, respectively.
For good visualization 2 principal components are carefully selected. It is
easy to see in both cases that there exists a cluster structure in the data.
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Figure 7.3 Eigenvalue curves for the investigated textual collections, Email
and Newsgroups data sets. Additionally, the largest eigenvalues are shown in
close-up. Based on these plots the decision is made about the number of prin-
cipal components. In case of Email collection 5 largest principal components
are used and for Newsgroups 4 are selected.

7.2.3.1 Email collection

In the performed experiment for the Email collection the latent space of 5 com-
ponents was used. At first, the collection was scanned against outliers. For
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detection, the UGGM model with an outlier cluster was applied, for details see
section 3.6.2| No outlier samples were found in the training set. Thus, the full
collection of 702 samples was used in segmentation process.

Clustering

For clustering the unsupervised Generalizable Gaussian Mixture model hard
assignment (0/1 decision function) was applied, details of which can be found
in section 3.3\ In the particular result, presented later in this section, seven
clusters'! were obtained. The cluster assignment for selected components is
shown on figure|7.4.

Email data set - hard assignment

o
o
:

g
=
.

o

Principal Component 2
|
o

|
o
N

-0. : . . : . .
—8.4 -0.3 -02 -0.1 0 0.1 0.2 0.3
Principal Component 1

Figure 7.4 Scatter plot of the Email data with indicated data points assign-
ment to the clusters and shown density contours. The dependency between
principal components 1 and 2 are shown. The density was estimated by the
UGGM model with hard cluster assignment. 7 clusters, indicated in the leg-
end bar, are observed.

For illustration, the same 2 principal components are displayed as were shown
on figure 7.2.

Since labels are available, the confusion matrix, described in section [4.2] was

"'Number of clusters was decided based on the training error with AIC penalty [1]. Typically,
the number of clusters in this model, for Email collection varies in the range between 6 and 11.
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also calculated and presented on figure It can be used in further analysis
as an supervised indication of cluster contents. Based on figure [7.5 it may

Email data set Email test data set
Conf. Job Spam Conf. Job Spam

1 4.4 0.5 1 5.9 21
2 15 0.0 2 1.5 0.0
3 . 0.0 15 3 . 0.0 1.1
a 16 [JEX oo 4 26 0.0
5 0.0 0.0 36.3 5 0.5 0.0 24.7
6 11 15 6 1.0 0.7
7 0.0 0.0 2.6 7 0.0 0.0 1.9

Figure 7.5 Confusion matrix for Email data set. Left table shows the confu-
sion in the training set and right, in the test set. From the presented figures,
it may be concluded that most of the conference emails are accumulated in
cluster number 1. Cluster 4 takes majority of job emails and clusters 5 and 6
of spam. The rest of the clusters (2,3 and 7) contain only small fractions of
data points.

be concluded that most of the conference emails are accumulated in cluster
number 1 (94% of the training data points). Cluster 4 takes majority of job
emails (93%) and clusters 5 and 6 of spam (36% and 59%, respectively). The
rest of the clusters contain only small fractions of data points.

A soft version of the GGM model was also applied for comparison. As ex-
pected, the outcome is much more complex (model uses 21 clusters to describe
the density p(x)). The scatter plot of the data with the surface plot of the density
function is presented on figure|7.6. Density structure between the soft and the
hard assignment does not differ significantly (compare figures 7.4 and [7.6). In
the soft assignment algorithm the density is described by 21 components while,
in case of the hard assignment only 7 are needed. In the hard GGM algorithm,
in the optimization process, the clusters that do not have members assigned, are
re-initialized or deleted, while in soft version they are preserved, even when the
mixing proportions P(k) are smaller than N ~!, what corresponds to one mem-
ber. In that way, more complex models are possible, leading to a more accu-
rate density estimate, but at the same time allowing clusters without members
among the training set. Therefore, for clustering, hard assignment is usually
more useful.
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Email data set - soft assignment
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Figure 7.6 Scatter plot of the Email data with indicated cluster structure
and data probability density contours. The dependency between principal
components 1 and 2 are shown. The density is found by the UGGM model
with soft cluster assignment. 21 clusters is observed. The observed density
structure does not differ significantly for the hard assignment outcome (see
figure[7.4).

Hierarchical clustering

All similarity measures are applied here that are presented in section 4.1. At
the first hierarchy level (j = 1) 7 clusters are used, obtained from hard UGGM
model. The dendrograms for KL, Cluster Confusion, £o and modified Lo sim-
ilarity measures are presented on figure [7.7, For the Sample Dependent sim-
ilarity measure the frequencies with which certain cluster combinations occur
in the test set, are shown with the bar plot. The most often used combinations
are labeled over the corresponding bars. Dendrogram structures describe the
consecutive clusters that are merged in the process. Even though, the structures
vary significantly, it is difficult to select a superior method, since the quality of
hierarchical clustering is a subjective issue. Note, however, that even though KL,
often provides interesting results it is an approximate measure and the Cluster
Confusion similarity measure require density sampling and therefore is compu-
tationally expensive.
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Figure 7.7 The dendrograms for Email data set. UGGM with hard clus-
ter assignment resulted with 7 clusters that are used at the first level j = 1.
Based on that outcome the presented hierarchies are build with five similarity
measures are applied which are described in section [4.1. In case of sam-
ple depended similarity measure the most often combinations are presented
above the frequency bars. The tree structures describe the consecutive clus-
ters that are merged in the process. The closest clusters include: clusters 5
and 6 (spam emails) merged firstly by all the measures, and 1 and 4 which are
found to be closely related in semantic domain (both are university related.)
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Once the hierarchy is build it is possible to determine the cluster assignment of
new points. For the majority of the test samples, the first hierarchy level gives
enough confidence in assignment to the cluster. Approximately 76% of the data
points can be uniquely assigned to one of the seven basic clusters (majority is
assigned to clusters 1, 4, 5 and 6) with a confidence larger than 90% (p = 0.9).
Those values are shown on figure[7.7/for Sample Depended similarity measure,
where the cluster posterior p(k|x) is is observed for the first hierarchy level
(clusters from 1 to 7). The rest of the samples (24%) needs at least 2 clusters
to provide sufficient description. A big fraction of these data points fall into
the composition of spam emails (clusters 5 and 6). Such union is suggested by
KL and Cluster Confusion and Sample depended similarity measures. Lo and
modified £y first combines all the minor importance clusters and then adds to
this mixture two spam clusters. Another likely formation provides mixture of
Jjob and conference emails (cluster 1 and 4).

Another method for interpretation is to obtain the cluster representation as for
example, to generate keywords for each cluster or cluster union. Such a tech-
nique is fully unsupervised but it requires understanding of the context through
a provided set of related words.

Keywords assignment

For the Email collection, clustered with hard UGGM and with hierarchies shown
on figure|7.7, keywords are generated and presented in this section. First, let us
introduce the numbering schema of clusters in the dendrogram structure. The
clusters are marked with consecutive numbers. In case of the presented Email
example there are 7 clusters (numbered: 1,2,...,7) at the first hierarchy level
7 = 1. At each next level new number is assigned to the new composition.
Thus, at level j = 2, the two closest clusters create cluster number 8, at the
level 7 = 3 the next 2 clusters result with composition number 9, etc.

The idea is illustrated on the figure to the right. In

this simple example 5 clusters are observed at the

basic level j = 1. At second level in the hierarchy

7 = 2 clusters 1 and 2 are merged, resulting with 8

the composition number 6. On the next level, clus- 7

ters 2 and 3 create cluster 7. Next, 2 new clusters ’7—‘
1

are merged together (6 and 7) and to the new com-
position, number 8 is assigned. Finally, cluster 9 is
the composition of 8 and 5, collecting also all the
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basic level clusters: 1, 2, 3, 4 and 5. Totally, with K clusters on the basic level
7 = 1 there are K — 1 hierarchy levels, thus, total number of clusters in the
hierarchy equals 2K — 1.

In order to assign keywords, the set of typical features is generated. Thus,
based on the outcome of the UGGM algorithm, i.e. cluster means, covariances
and mixing proportions, a new set of 5000 points are randomly drawn form the
modeled data distribution. From this sample as typical features the vectors are
selected for which density value is in top 20%. By lowering this threshold, in
case of multi-modal densities, it is possible to include to keywords represen-
tation, also contributions from weaker clusters, i.e. those with wider variance.
The typical features were back-projected to the original space are the data mean
is added. Reconstructed in that way histograms are no longer positive due to the
restricted number of principal components used in projection. Thus, the nega-
tive values are neglected. As keywords, words, form the histograms assigned to
the clusters or cluster unions, are accepted with frequency higher than, e.g. 10%
of the total weight, i.e. the word is accepted if wg; / D 4; wa; > 0.9, where wy; is
the frequency of a d’th word from the ¢’th typical feature vector (reconstructed
histogram).

Keywords for the first level in the hierarchy with corresponding mixing propor-
tions P (k) are presented in table|7.2.

Cluster number 1 inherit clearly the conference keywords like: information,
university, conference, call, workshop, etc. Cluster number 2 and number 4 are
university job related, thus, position, university, science, work, are appearing
here. Clusters 3, 5, 6 and 7 are easily recognized with often used words in
spam emails thus, such terms like: list, address, call, remove, profit and free
are observed. One can refer now to the confusion matrix presented on figure
7.5 and find similarities in the cluster interpretation.

For each dendrogram shown on figure 7.7 the keywords corresponding to higher
hierarchy levels are given in tables [7.3,7.4, 7.5, and [7.6. When merging the
clusters together, the density of the union is expressed by the following equa-
tion: p(x) = > 7. p(x|k)P(k), where Z,, collects the indexes of the merged
clusters. If one cluster in the union is dominant (has narrow variance) main key-
words will most likely come from this cluster, since majority of typical features
will be sampled from its center (higher probability region). The more compa-
rable the densities are, the more likely is that the union keywords are a mixture
from both component clusters. For example, in table 7.3 the keywords corre-
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| Cluster | P(k) | Keywords

1 .245 | information, conference, university, paper, call, neural, research, appli-
cation, fax, contact, science, topic, workshop, system, computer, invite,
internation, network, submission, interest

2 .004 | research, university, site, information, science, web, application, posi-
tion, computer, computation, work, brain, candidate, neural, analysis,
interest, year, network

3 .009 | succeed, secret, profit, open, recession, million, careful, produce,
trump, success, address, letter, small, administration, question
4 .190 | university, research, science, position, computation, brain, application,

candidate, year, computer, send, department, information, analysis,
neuroscience, interest, cognitive

5 202 | free, site, web, remove, click, information, visit, subject, service, adult,
internet, list, sit, offer, business, line, time

6 335 | call, remove, free, address, card, list, order

7 .014 | call, remove, free, address, list, order, card, day, send, service, infor-
mation, offer, business, money, mail, succeed, make, company, time,
line

Table 7.2 Keywords for 7 clusters obtained from UGGM model. Keywords
provide the interpretation of the clusters. Cluster number 1 inherit clearly the
conference keywords like: information, university, conference, call, work-
shop, etc. Cluster number 2 and number 4 are university job related, thus,
position, university, science, work, are appearing here. Clusters 3, 5, 6 and 7
are easily recognized with often used words in spam emails thus, such terms
like: list, address, call, remove, profit and free are observed.

sponding to the KL similarity measure are presented. There, cluster number 8
is a composition of clusters 5 and 6 and as such inherit the keywords from both
clusters, which densities are comparable. Cluster number 9, however, which is
composed from clusters 1 and 4 is represented by job keywords, so keywords
are coming only from cluster number 4, which is dominant. It is possible to
include keywords form other clusters by selecting larger number of typical fea-
tures and by that sampling the larger area of the probability space.
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| Cluster | Keywords

8 free, call, remove, information, site, subject, list, web, business, offer, message,
rep, time, mail, visit, line, day, address, send, year

9 research, university, computation, science, application, succeed, position, in-
terest, information, neural, work, cognitive, open, brain, year, neuroscience,
model, fax, secret, network
10 research, university, computation, science, application, succeed, position, in-
terest, information, neural, work, cognitive, open, brain, year, neuroscience,
model, fax, secret, network

11 free, call, remove, information, site, subject, list, web, business, offer, message,
rep, time, mail, visit, line, day, address, send, year
12 research, university, computation, science, application, succeed, position, in-

terest, information, neural, work, cognitive, open, brain, year, neuroscience,
model, fax, secret, network
13 research, university, computation, science, application, succeed, position, in-
terest, information, neural, work, cognitive, open, brain, year, neuroscience,
model, fax, secret, network

Table 7.3 Keywords for hierarchy build with KL similarity measure. Clus-
ter number 4 containing job emails has the narrower variance and therefore
higher density values. When selecting typical features, most or all of the
points are generated by this particular cluster. Therefore, its keywords are
dominating keywords from other clusters in hierarchy.

Similar interpretation obtain the hierarchy based on Cluster confusion similarity
measure, presented on figure [7.4. Also here cluster number 4 is merged at the
beginning, thus it dominates in the selected typical features.

In case of L5 and modified £ similarity measures, shown in tables|7.5 and 7.6,
the clusters are merged successively, first the minor clusters, with few mem-
bers, and then the clusters containing the spam emails and at last the clusters
with conference and job emails. That structure, taking into consideration the
known labeling, seems to give the best results for Email collection, both in hi-
erarchy and the corresponding keywords. The major difference, between Lo
and modified L9 similarity measures, is the increased distance from small clus-
ters to the rest arising form included mixing proportion values in the distance
measure.
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| Cluster | Keywords

8 free, call, remove, information, site, subject, list, web, business, offer, message, rep,
time, mail, visit, line, day, address, send, year

9 research, university, computation, science, application, succeed, position, interest,
information, neural, work, cognitive, open, brain, year, neuroscience, model, fax,
secret, network

10 research, university, computation, science, application, succeed, position, interest,
information, neural, work, cognitive, open, brain, year, neuroscience, model, fax,
secret, network

11 research, university, computation, science, application, succeed, position, interest,
information, neural, work, cognitive, open, brain, year, neuroscience, model, fax,
secret, network

12 research, university, computation, science, application, succeed, position, interest,
information, neural, work, cognitive, open, brain, year, neuroscience, model, fax,
secret, network

13 research, university, computation, science, application, succeed, position, interest,
information, neural, work, cognitive, open, brain, year, neuroscience, model, fax,
secret, network

Table 7.4 Keywords for hierarchy build with Cluster Confusion similarity
measure. Similar to KL measure, here cluster number 4 is merged on the
beginning of the hierarchy and since its density values are dominant it control
the keywords generation process i.e., all the higher hierarchy level keywords
are job related.

| Cluster | Keywords

8 call, remove, free, list, message, information, rep

9 call, remove, free, list, message, information, rep

10 call, succeed, address, free, secret, information, day, card, site, make, money, web,
offer, number, profit, time, order, business, remove, company

11 free, call, remove, information, site, subject, list, web, business, offer, message, rep,
time, mail, visit, line, day, address, send, year

12 call, information, university, conference, neural, fax, application, research, address,
model, science, internation, computer, includ, paper, workshop, program, network,
work, phone

13 research, university, computation, science, application, succeed, position, interest,
information, neural, work, cognitive, open, brain, year, neuroscience, model, fax,
secret, network

Table 7.5 Keywords for hierarchy build with Lo similarity measure. The
clusters are merged successively first the minor clusters, with few members
(clusters 8 and 9) and then the clusters containing the spam emails (clusters
10 and 11) and at last the clusters with conference (12) and job emails (13).
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| Cluster | Keywords

8 free, work, year, position, card, program, research, interest, business, address, offer,
computation, send, time, start, candidate, order, service, application, subject

9 call, remove, free, list, message, information, rep

10 call, succeed, address, free, secret, information, day, card, site, make, money, web,
offer, number, profit, time, order, business, remove, company

11 free, call, remove, information, site, subject, list, web, business, offer, message, rep,
time, mail, visit, line, day, address, send, year

12 call, information, university, conference, neural, fax, application, research, address,
model, science, internation, computer, includ, paper, workshop, program, network,
work, phone

13 research, university, computation, science, application, succeed, position, interest,
information, neural, work, cognitive, open, brain, year, neuroscience, model, fax,
secret, network

Table 7.6 Keywords for hierarchy build with modified £, similarity measure.
The clusters are merged successively first the minor clusters, with few mem-
bers and then the clusters containing the spam emails and at last the clusters
with conference and job emails. The major difference, between this similarity
measure and Lo, is the increased distance from small clusters to the rest what
is due to including the mixing proportion value in the distance measure. With
respect to known labeling modified £ similarity measure provides the best
results.

7.2.3.2  Newsgroups collection

In the experiments, the term-document matrix of the Newsgroups collection
is projected on the latent space defined by 4 left eigenvectors associated with
largest eigenvalues obtained from singular value decomposition of that matrix.
The collection is first screened for outliers. As before, the UGGM algorithm
with outlier cluster was applied (for details refer to section [3.6.2). Since no
outliers are detected in the training set, the full set of 399 samples is used in
segmentation.

Clustering

In one particular trial of the hard assignment unsupervised Generalizable Gaus-
sian Mixture model, described in section [3.3] 6 clusters were obtained. The
scatter plot of the assigned to the clusters data and the corresponding density
contours p(x) is presented on figure|7.8. Clusters are marked as indicated on the
legend bar. The same 2 principal components are shown as also are displayed
on figure 7.2.
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Figure 7.8 Scatter plot of the data clustered with UGGM model with hard
assignment for Newsgroups collection. The estimated probability density
function p(x) is shown with the counter plot. 6 clusters were found in this
particular experiment. The legend bar provides cluster labeling.

Since data points are labeled, the confusion matrices for training and test en-
semble are calculated and they are presented on figure|7.9| From that matrices it
is possible to determine what kind of documents to expect in the clusters. Thus,
for example, cluster 3 contain the majority of newsgroup documents concern-
ing Christian religion, clusters number 1 and 5 — Baseball and cluster number
2 — Computer Graphics. Some of the clusters, for example number 1, 3 or 5,
are mixed with respect to the original labels.

Soft assignment UGGM model was performed for comparison. On average, the
number of clusters obtained in the algorithm was larger than that obtained from
hard assignment algorithm. In one particular experiment 13 clusters were ac-
quired. The scatter plot of the labeled data and the obtained probability density
function p(x) is presented on figure As in case of Email collection, the
density does not differ significantly from the hard version algorithm. However,
it is described with twice as many components, what suggests better fit to the
underlying data distribution.
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Newsgroups collection Newsgroups collection - test set

Comp. Motor Baseb. Christ. Comp. Motor Baseb. Christ.

1 4.2 9.1 m 6.5 1 9.7 6.3 m
m 15.9 1.9 2.8 125 7.7 1.1
2.1 2.3 0.0 7.8 1.8 1.1 m
3.1 3.7 0.0 1.9 4.4 0.0

4.2 5.7 30.6 0.0 2.9 3.6 20.9 1.1
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Figure 7.9 The confusion matrix of the Newsgroups collection calculated
based on the available data labels. Left figure present the numbers for the
training set and right figure for the test set. The data is originally labeled in
four groups: Computer Graphics, Motorcycles, Baseball and Christian Reli-
gion. The matrices in supervised way supply with the cluster explanation. For
example, cluster 4 collects documents concerning motorcycles, cluster num-
ber 3 in 89% is composed from Christian Religion newsgroups and Baseball
newsgroups are divided between two clusters number 1 and 5.

Newsgroups collection
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Figure 7.10 Scatter plot of the Newsgroups collection clustered with soft
assignment UGGM model. The estimated probability density function p(x)
is shown with the counter lines. 13 components are acquired as the setting
that provides minimum generalization error. Visually, the density structure is
similar to the one obtained by the hard assignment algorithm (figure [7.8).
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Hierarchical clustering

The hierarchical structure is build based in the 6 cluster outcome of the hard
UGGM model. Five similarity measures, described in section are ap-
plied and they are presented on figure [7.11, KL, Cluster Confusion, £ and
modified £ similarity measures are visualized with the dendrograms and for
Sample Depended similarity measure the most frequently occurring combina-
tions are shown. Approximately 70% of the data points are assigned to the first
level clusters that are coming directly from the UGGM model. The confidence
level used in assignment is larger than 90%, i.e. the cluster posterior of the data
points ia larger than 0.9, p(k|x,,) > 0.9. Remaining 30% of the data points are
assigned in the hierarchy. Most often combinations include following cluster
unions: {1,4}, {2,4}, {1,2,4}, {2,3}, {1, 5}, {5,6}, {4,6}. Clusters 1, 2 and
4 are likely merged, since their overlap is significant. This overlap is concluded
based on the confusion matrices on figure 7.9 and the Cluster Confusion sim-
ilarity measure (figure 7.11) which combines these clusters first. With respect
to the original labeling the KL similarity measure performs the best in case of
this collection. It preserved the original classes division on the third hierarchy
level, where 4 clusters corresponding to 4 classes are remained.

Keywords assignment

Keywords corresponding to the dendrogram structures are presented below on

figures(7.7,/7.81/7.9,7.10 and

On figure(7.7 keywords for the first hierarchy level are presented, for the clusters
obtained with hard assignment UGGM model. Thus, 6 clusters are observed,
scatter plot of which is given on figure [7.8. In the table also corresponding
mixture proportions are shown.
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Figure 7.11 Hierarchical structures for Newsgroups collection. UGGM with
hard cluster assignment resulted with 7 clusters at the first level j = 1. Four
similarity measures described in the section[4.1]are presented on figures. The
confusion matrix and the scatter plots of the data were shown previously on
figures[7.5 and[7.4} respectively. All similarity measures differ significantly.
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| Cluster | P(k) | Keywords

1 22 team, game, year, win, run, pitch, hit, write, article, score

2 26 | file, write, article, image, graphic, format, window, program, color, gif,
ftp, convert, package, work, read

3 25 | god, write, christian, people, jesus, article, question, faith, truth, life,
christ, time, thing, bible, church

4 .16 | bike, write, article, motorcycle, dod, dog, good, road

5 11 write, article, year, game

6 .01 write, article, bike, year, game, team, god, win, good, hit, run, pitch,
people, make, time, dod

Table 7.7 Keywords for the 6 clusters obtained from hard assignment UGGM
model. Keywords provide the fully unsupervised interpretation of the clus-
ters. For example, cluster number 1 is represented by such keywords as:
team, game, win, pitch, hit which certainly connect with a team game topic.
Keywords for cluster number 2 represent computer graphics related topics
with words like: file, image, graphics, format, etc. Cluster number 3 with
words like: god, christian, people, jesus, faith belongs to Christian religion
newsgroup. Keywords for cluster number 4 (bike, motorcycle, dod, road)
correspond to the Motorcycle newsgroup.

Cluster number 1 is represented by such keywords as: team, game, win, pitch,
hit which certainly connect with a team game topic. Keywords for cluster num-
ber 2 represent computer graphics related topics with words like: file, image,
graphics, format, etc. Cluster number 3 with words like: god, christian, peo-
ple, jesus, faith belongs to Christian religion newsgroup. Keywords for cluster
number 4 (bike, motorcycle, dod, road) correspond to the Motorcycle news-
group. Cluster 5 relates to writing articles about games and cluster 6 contains
mixture of keywords from different subjects like: bike, game, people. In ta-

| Cluster | Keywords

7 team, game, year, win, run, pitch, hit, write, article, score

8 team, game, year, win, run, pitch, hit, write, article, score

9 team, game, year, win, run, pitch, hit, write, article, score

10 god, write, christian, people, jesus, article, question, faith, truth, life, christ, time,
thing, bible, church

11 god, write, christian, people, jesus, article, question, faith, truth, life, christ, time,
thing, bible, church

Table 7.8 Keywords for the clusters in the hierarchy build with KL similarity
measure. The first levels are dominated by cluster 1, the top clusters (10 and
11) inherit keywords from the structure most dominant cluster — number 3.

ble 7.8 keywords for hierarchy build based on KL similarity measure are pre-
sented. For this outcome of UGGM model cluster number 3 is dominant. It can
be seen in all the following tables containing hierarchy keywords, where the top
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level cluster is represented by keywords coming from this particular cluster. In
the superior for this collection KL similarity measure the following clusters are
observed on the level with remained 4 clusters: 8{1,5,6}, 4, 2 and 3.

| Cluster | Keywords

7 bike, write, article, motorcycle, dod, dog, good, road

8 file, write, article, image, graphic, format, window, program, color, gif, ftp, convert,
package, work, read

9 file, write, team, game, article, image, bike, year, win, graphic, run, format, pitch,
hit, window, program, color, gif, ftp, convert

10 file, write, team, game, article, image, bike, year, win, graphic, run, format, pitch,
hit, window, program, color, gif, ftp, convert

11 god, write, christian, people, jesus, article, question, faith, truth, life, christ, time,
thing, bible, church

Table 7.9 Keywords for the clusters in the hierarchy build with Cluster Con-
fusion similarity measure.

Cluster | Keywords

7 bike, write, article, motorcycle, dod, dog, good, road

8 file, write, article, image, graphic, format, window, program, color, gif, ftp, convert,
package, work, read

9 file, write, team, game, article, image, bike, year, win, graphic, run, format, pitch,
hit, window, program, color, gif, ftp, convert

10 file, write, team, game, article, image, bike, year, win, graphic, run, format, pitch,
hit, window, program, color, gif, ftp, convert

11 god, write, christian, people, jesus, article, question, faith, truth, life, christ, time,
thing, bible, church

Table 7.10 Keywords for the clusters in the hierarchy build with £ similarity
measure.

| Cluster | Keywords

7 write, article, year, game

8 write, article, bike, year, game, motorcycle, dod, dog, team, baseball

9 team, game, year, win, run, pitch, hit, write, article, score

10 file, write, team, game, article, image, bike, year, win, graphic, run, format, pitch,
hit, window,program, color, gif, ftp, convert

11 god, write, christian, people, jesus, article, question, faith, truth, life, christ, time,
thing, bible, church

Table 7.11 Keywords for the clusters in the hierarchy build with modified
Lo similarity measure.
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7.2.4 Clustering of Email collection with unsupervised/supervised
Generalizable Gaussian Mixture model

Email collection is applied in illustration of the USGGM model, described in
section 3.5} In these experiments slightly different, preprocessing steps are per-
formed, than reported earlier, resulting with total number of 1280 email doc-
uments (640 for both in training and test set), and the term-vector consists of
1652 words. The difference is in a another threshold value which is set on term
frequencies.Words that occur less than 40 time are removed. what reduces
significantly the length of the term vector. In result, also some of the atypi-
caE documents are removed that contained less than 2 words. The commonly
used framework Latent Semantic Indexing (LSI) [20] is employed, which op-
erates using a latent space of feature vectors. These are found by projecting
term-vectors into a subspace spanned by the left eigenvectors associated with
the largest eigenvalues found by a singular value decomposition of the term-
document matrix, for reference see chapter 2/with description of the projection
methods. 5-dimensional subspace is used. The data in reduced space do not
differ significantly from the previous experiments.

Figure|7.12 shows the average performance (over 1000 runs) of the USGGM
algorithm.

The algorithm parameter is set to v = 0.5. The algorithm is performed with
N, = 200 unlabeled examples and a variable number of labeled samples. As
expected, with few labeled examples available, N; = 10, 20, the optimal A is
close to one, where all unlabeled data are fully used. The minimums in the
classification error curves (upper left plot on figure are marked with the
black triangles A. As IN; increases, A decreases and for N; = 200 equals 0.3,
indicating the reduced utility of unlabeled examples. The classification error is
reduced, approximately 26% using unlabeled data for N; = 10 and gradually
decreasing to 1% when N; = 200. Thus, with large set of labeled examples
the importance of unlabeled samples is negligible, therefore the value of the
discount factor A is not crucial for the level of the error. The classification error
for optimal A as a function of the size of the labeled data set /V; is shown in the
right upper plot of figure|7.12. The number of optimal components, selected by

>The threshold value was investigated and, in conclusion, the classification error remains
roughly the same for any values below approximately 100 occurrences. In order to reduce di-
mensionality of the term vector, the threshold is set to 40 occurrences.

13 Atypical documents contain many words, which are rare in the database.
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Figure 7.12 Average performance of the USGGM algorithm over 1000 re-
peated runs using N,, = 200 unlabeled examples and a variable number of
labeled examples IN;. Upper left plot shows the performance as a function
of the discount factor A\ for unlabeled examples (A = 0 corresponds to no
unlabeled data). The upper right plot shows number of components selected
by the AIC criterion for optimal \ as described in section[3.5.

the mixture modelm, grows with the number of labeled examples /NV;. Naturally,
the classification error decreases when enlarging the size of the labeled data set
(lower plot of figure 7.12).

In figure 7.13] the hierarchies of individual class dependent densities p(x|y) are
presented. In this experiment only the modified Lo dissimilarity is used, since
the KL similarity measure is approximate and the Cluster Confusion measure
is computational expensive if little overlap exist as many ancillary data are re-
quired. The modified £, is computational inexpensive and basically treat dis-
similarity as the cluster confusion, while the standard L2 do not incorporate

!“The selection was based on the training error with AIC criterion [1].
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Figure 7.13 Hierarchical clustering using the USGGM model. Left column
is class y = 1 conference, middle column y = 2 jobs, and right column is
for y = 3 spam. Upper rows show the dendrogram using the modified L2
dissimilarity for each class, and the lower row the histogram of cluster level
assignments for test data.

priors. The lower panel on figure 7.13 shows the cluster level assignment distri-
butions of test samples. In case of conference class 90% of the data points falls
into the first level clusters, obtained directly form the USGGM model. For job
74% are classified in the first hierarchy level and for spam emails 83%. Rest of
the data points is described by the higher hierarchy levels, i.e. by the combined
cluster representations.

Typical features, as described in section 4.3, are selected from the high density
region and back-projected into original term-space providing keywords for each
cluster. Keywords are given in table[7.12. The conference class is dominated
by cluster 1 and cluster 4. This has keywords listed in table 7.12, which are
in accordance with the meaning of conference. The job class split between 2
clusters, namely 2 and 6 and spam emails are divided between clusters 3 and 5.
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[y [ k] Py ] Keywords |

1 7354 information, conference, call, workshop, university
3 .0167 remove, address, call, free, business

! 4 2297 call, conference, workshop, information, submission, paper, web
6 0181 research, position, university, interest, computation, science
) 6078 research, university, position, interest, science, computation,

2 ’ application, information
6 3922 research, position, university, interest

3 3 .6301 remove, call, address, free, day, business
5 .3698 free, remove, call

Table 7.12 Keywords for the USGGM model. y = 1 is conference, y = 2
is jobs and y = 3 is spam. The conference class is dominated by cluster 1
and cluster 4. This has keywords which are in accordance with the meaning
of conference. Similarly for the job class which is split between 2 clusters,
namely 2 and 6 and for spam emails that are divided between 3 and 5.

7.3 Segmentation of medical database

7.3.1 Segmentation of the data from sun-exposure study

The hard assignment UGGM model, described in section 3.5, is used in cluster-
ing the data of the sun-exposure study. The behavioral patterns are investigated,
i.e. as data samples the several consecutive diary records are understood. In that
way, a similar approach to the one used in processing textual databases, may be
used. The results of the presented below experiments can be found in [82].

Preprocessing

Since the technique was developed for textual data, it is necessary to redefine
some of the variables. As features, unique records are found in the data and the
histograms over these records are build. The total number of observed patterns
for 8 questions, selected from table 7.1} is 20736. This number is obtained by
multiplying all possible answers, i.e. 20736 = 2-2-3-2-2-27-4-4. However,
only a small fraction of 423 patterns exists actually in the data. As documents,
the sliding time window is used which is calculated separately for each of the
survey participants. The optimal size of the window is an important issue. For
example, taking the full set of records belonging to each person will produce
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a set of points in the space that will not form any particular structure, since
each of them will contain most of the observed patterns. On the other hand,
if observing only one diary record at the time, all the different vectors will be
equal distant so the cluster structure in such space will be lost as well. In the
experiments a window of size 7 is used. This was decided after performing
several experiments, taking into account stationarity of the obtained clustering
and the level of the computational complexity, which is large for small window
sizes. Attempts were made to apply the generalization error (equation in
window selection, however, without success. The histograms are, at the same
time, characteristic for the subjects and the time windows. Similar to the text
data, the histograms create the pattern-window matrix which, for simplicity, is
referred to as the term-document matrix. This matrix is normalized to the unit
Lo-norm length.

The term-document matrix is formed from the histogram vectors that are ob-
tained by counting occurrences of every pattern in the window. However, the
histograms does not convey time ordering information. Thus, it is possible to
include additionally time information by considering the co-occurrence matrix
of joint occurrences of neighbor patterns in the window. There are 207362 pos-
sible co-occurrences (or in the case of this particular collection 4232) but only
a small fraction of 1509 combinations is present in the actual data set.

An attempt was made to combine the different types of data. While the diary
entries are of categorical type, the measured UV radiation is continuous. The
UV measurements, in order to match the presented framework, are quantized
and they are expressed by 4-valued representation. In order to incorporate the
time relation between the consecutive records the co-occurrence of the diary
records is introduced. Those three data sources can be combined in the pre-
sented framework simply representing each documen@ by the histogram of
the feature vector from the combined sources. This idea is shown on the figure
below.

FEATURES

DIARY PATTERNS
DIARY HISTOGRAM UV HISTOGRAM CO-OCCURRENCE

[

:
%2}%‘) =

5The document in this case corresponds to a window of n consecutive days of the survey
belonging to one subject.
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The set of 19171 diary records with corresponding UV measurements is se-
lected for the clustering experiments. Data is complete, i.e. there is no missing
records or UV measurements. From this collection, records belonging to 10
selected subjects are hold out for testing. The sliding window of size 7 re-
sulted with 2738 data vectors from which 158 is selected as test set and 2064,
80% of remaining data, as training set and 516 as validation set. Each feature
vector consists of the diary histogram, the co-occurrence matrix and the UV
histogram.

In line with the KDD process, presented on figure/(1.1, this particular collection
is processed as shown on figure|7.14. In the first step, data is windowed creating

Data

Pattern vector
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Figure 7.14 Framework for data clustering: 1) The data is windowed into
several histogram vectors and together with the co-occurrence matrix and the
UV histograms form a term-document matrix. 2) Data is normalized and
projected into the latent space found by singular value decomposition. 3) The
Gaussian mixture model is used to cluster the data. 4) For interpretation the
typical features are drawn from data distribution and back-projected to the
original space where key-patterns are found.

vectors that contain data from consecutive days. Both diary histograms, the
co-occurrence matrix and UV radiation histograms are screened against rare
patterns by removing patterns. The diary histogram is reduced from 423 to
97 pattern&T6 and in a similar way, the co-occurrence matrix is reduced from

!6The patterns larger than .1% maximum value was preserved. It equals 96% of total mass

(X 4 Tan = 100%).
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1509 to the 80 most often occurring pairs of patterns. The next step involves
normalization of the term-document matrix. Two types of normalization are
performed. First, each window histogram is scaled to unity L£2-norm length,
and then, pattern vectors are scaled to zero mean and unit variance over training
samples.

Projection to the latent space

Each type of the datﬂ is projected separately on the orthogonal directions
found by singular value decomposition (the PCA projection method which is
described in section [2.1.2). The scatter plots of the data in selected principal
component space are presented on figure[7.15.
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Figure 7.15 Scatter plots of the training data sets in the latent space for the
sun-exposure collection. For good visualization 2 principal components were
carefully selected. The top panel shows the diary data and UV measurements.
The lower plot presents the scatter plot of the projected diary patterns co-
occurrence matrix. It is possible to see the existing structure in the data.

"Diary and UV histograms and co-occurrence matrix.
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The corresponding eigenvalues are shown on figure [7.16/ For both diary and

Diary data UV measurements
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Figure 7.16 Eigenvalue curves for the sun-exposure collection. Additionally,
the largest eigenvalues are shown in close-up. Based on these plots the deci-
sion of number of principal components is made. 9 eigenvalues were chosen
in case of Diary data and Diary patterns co-occurrence. 3-dimensional space
was selected for UV measurements.

co-occurrence 9 largest eigenvalues are selected. In case if UV measurements
3 eigenvalues are chosen.

Clustering and cluster interpretation

The clustering is performed of term-document matrix build from diary records.
Additionally, the cluster structure is investigated of combined diary records with
UV measurements and the co-occurrence matrix. The segmentation was per-
formed by the unsupervised Gaussian Mixture model with hard cluster assign-
ment.
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Since the data is not labeled only unsupervised cluster interpretation can be
applied. Based on estimated density the typical features are selected and back-
projected to the histogram space where the mean is added. As previously, in
the case of textual collections, the negative values in back-projected vectors
are neglected. As keywords in case of this data set key-patterns are selected
which corresponds to the most probable diary records, UV measurements and
co-occurrence couplings.

Furthermore, the used framework makes it possible to describe the behavior of
every new person in the experiment in terms of cluster assignment and associ-
ated keywords. The confidence of assigning the person into a given cluster k
can be expressed by the posterior probability:

N

1
p(k|Per) = N z:lp(k:|Per,xn) - p(Xn), (7.1)
n—=
where x,, is a feature vector of the size d and ¢ = 1,2, ..., N. The number of

feature vectors N is different for every person and depends on the number of
returned diary records and the window size. In this experiment the selected test
set with records from 10 subjects are used.

The investigation was performed of the importance of the co-occurrence ma-
trix and the UV histograms for the clustering. The results of the experiments
are collected in the tables|7.13,(7.14,/7.15 and|7.16 where the key-patterns, as-
sociated probabilities and description of the clusters are provided. In the first
column the cluster number is displayed. Second column contains the most prob-
able patterns for the cluster. The third gives the probabilities for the key-patterns
and the fourth column presents a general interpretation of the cluster based on
the observed key-patterns.

In table [7.13/ the results are shown of clustering of the diary histograms. The
presented patterns are equivalent to the set of questions given in section 7.1.
Note, that 2 questions (number 1 and 7) were a priori excluded for this exper-
iments. For example: pattern 10111 describes the following set of answers: 1.
holiday - yes, 2. abroad - no, 3. sun bathing - yes, 4. naked shoulders - yes,
5. on the beach - yes, remaining questions 6,7 and 8 - no, or pattern 0: all the
questions where answered - no or pattern 1: 1. holiday - yes and the rest of the
questions from 2 to 8 - no. This rule for describing patterns hold as well in case
of tables|7.14,(7.15/and7.16]
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I #. | Key-Pattern | Probability. | Description |
1. 10001,11,10111 0.33,0.32,0.19 holiday, on the beach, sun bathing
2. 0 0.98 working - no sun
3. 1 0.9 on holiday - no sun
4. 0,0001,1 0.4,0.27,0.18 working naked shoulders - no sun
5. 1,1101 0.67,0.17 holiday, naked shoulders
6. | 1011,1001,10011 | 0.47,0.17,0.16 holiday , sun bathing
7. 11 0.5 holiday abroad - no sun
8. 10111,0001,1001 | 0.45,0.17,0.13 | holiday, sun bathing, naked shoulders
9. 0000001 0.05 no sun, sunburned - red
10. 0 0.99 working - no sun

Table 7.13 Key-patterns for clustering diary histograms. In the first column
the cluster number is shown. Second column contains the most probable pat-
terns for the cluster. The presented pattern numbers are equivalent to the set
of questions given in section[7.1] For example: pattern 10111 gives the fol-
lowing set of answers: holiday - yes, abroad - no, sun bathing - yes, naked
shoulders - yes, on the beach - yes, remaining questions 6,7 and § - no, or pat-
tern 0 means that all the questions where answered - no. Third column gives
the probabilities for the key-patterns, and fourth column presents a general
description of cluster.

| # | Key-Pattern Probability. Description

1. 1001,1000, 0.31,0.26, holiday, naked
1yv,10011 0.16,0.11 shoulders, small UV radiation

2. 11,0001,0, 0.29,0.2,0.17, holiday abroad,
2UV,0UV 0.16,0.15 working

3. 1,11 0.39,0.12, holiday

4. 1011,2¢v, 0.0.31,0.25, naked shoulders,
3uv,0001 0.14,0.13 high sun radiation

5. | 1,2pv,3uv,10001 | 0.2,0.17,0.16,0.14,0.12,0.1 holidays, high UV

6. luv,0uv 0.14,0.13 low UV

7. 3uv,1001, 0.22,0.22, holiday, naked,
2uv,10011 0.16,0.15 shoulders, high UV

8. 0,0uv 0.6,0.4 no sun

Table 7.14 Key-patterns for clustering diary histograms combined with UV
histograms. In the first column the cluster number is displayed. Second col-
umn contains the most probable patterns. The rule for interpreting the diary
key-patterns is given in table[7.13] Patterns corresponding to the UV his-
tograms are marked with the subscript “UV”. Four different values of UV
are observed: 0 corresponds to very low sun radiation and 3 describes very
high one. Third column gives the probabilities for the key-patterns and fourth
column presents general description of cluster based on the key-patterns.
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Table 7.14 presents key-patterns for clustering diary histograms combined with
UV histograms. Eight clusters were found. Diary key-patterns are explained
in table 7.13. Patterns corresponding to the UV histograms are marked with
the subscript “UV™. Four different values of UV from 0 to 3 are observed: 0
corresponds to the very low sun radiation and 3 describes very high one. This
rule for describing UV -patterns hold as well in case of table[7.16.

| # ‘ Pattern Probability. Description

1. 1001,1101-1101 0.27,0.13 holiday,naked sholders

2. 1001,1101-1101,1 0.26,0.21,0.1 holiday,naked sholders

3. 0001,1001-0, 0.17,0.12, working,
10111,0-1001 0.11,0.1 naked shoulders

4. 11,11-11 0.14,0.11 holiday, abroad

5. 0001,1001-0, 0.27,0.14, holiday or working,
1001,0-1001 0.13,0.1 naked shoulders

6. 1001,0,0-1,1-0,1,1-1 | 0.29,0.19,0.16,0.14,0.1,0.09 | work - holiday, no sun

7. 10011 0.19 holiday, on the beach

8. 10001,1-10011 0.21,0.12 holiday, on the beach

9. 0-0,0,0-1,1-0 0.36,0.35,0.12,0.12 working - no sun

10. | 1001,1-1101,1101-1, 0.26,0.16,0.12, holiday,

1101-1101,1011 0.12,0.11 naked shoulders

Table 7.15 Key-patterns for clustering diary histograms combined with co-
occurrence matrix. In the first column the cluster number is displayed. Sec-
ond column contains the most probable patterns for the cluster. The rule for
interpreting the diary key-patterns is given in table [7.13. The co-occurring
patterns are shown with the dash between them, e.g. “0-1” means that a pat-
tern working is followed by pattern holiday. Third column gives the proba-
bilities for the key-patterns and fourth column presents general description of
cluster based on the key-patterns.

In table [7.15] the key-patterns for clustering diary histograms combined with
the co-occurrence matrix are presented. The diary key-patterns are explained
in table 7.13| The co-occurring patterns are shown with the dash between them
e.g., “0-1” means that a pattern working is followed by pattern holiday, pattern
“1-10011” means that holiday without sun was followed by holiday spent on
the beach. This rule for describing co-occurrence patterns hold as well in case
of table[7.16}
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‘ # | Pattern | Probability Description |

1. | 1001,0001,1101-1101 0.15,0.1,0.09 naked shoulders

2. 0,1yv,0-0,0001 0.17,0.16,0.14,0.13 | working, low sun radiation
3. 1001-0,0-1001, 0.17,0.14 no sun radiation,

0,1-0,0-1,0pv ,0.14,0.12,0.11,0.1 holiday-work

4. luv,2uv 0.12,0.1 medium sun exposure

5. 3uv,11,11-11 0.11,0.11,0.09 holiday, high sun radiation
6. 0-0,0,0uv 0.29,0.27,0.23 working, no sun

Table 7.16 Key-patterns for clustering the diary histograms combined with
the co-occurrence matrix and the UV histograms. In the first column the
cluster number is displayed. Second column contains the most probable pat-
terns for the cluster. The diary key-patterns are explained in table[7.13. The
co-occurring patterns are explained in table[7.15/and the UV patterns in ta-
ble[7.14] Third column gives the probabilities for the key-patterns and fourth
column presents general description of cluster based on the key-patterns. This
clustering provides the most compact and explicit result. Cluster no. 5 col-
lects very high sun radiation patterns while cluster no. 2 very low ones.

Table [7.16 shows the key-patterns for clustering diary histograms combined
with co-occurrence matrix and UV histograms. The diary key-patterns are ex-
plained in table|7.13. The co-occurring patterns are explained in table 7.15/and
the UV patterns in table Both the UV values and the co-occurrence pairs
are likely to appear as key-patterns. Cluster ni. 5 collects very high sun radi-
ation patterns while cluster no. 2 very low ones and similarly clusters 3 and
1. Cluster 4 corresponds to medium sun radiation behavior. This suggests that
joining time information and the sun exposure measurements are important for
the clustering. In conclusion this clustering is the most compact and explicit in
result.

In figure|7.17|the probability is presented of observing certain groups of behav-
iors in the clusters together with registered sun exposure values are. Clustering
was performed using full pattern/window matrix'® for which keywords are dis-
played in table[7.16. Five behaviors are specified: working - no sun exposure,
holiday - no sun exposure, sun exposure describes mild sun behaviors often
on the beach or naked shoulders without sun-screen and without sunburns, and
corresponding to high sun exposure behaviors: using sun-block and sunburns.
In the lower panel the measurements are presented of the sun radiation. For
example cluster number 6 groups behaviors marked as working - no sun and
corresponding UV values are low. An opposite situation occurs for cluster no.

'8With all the sources combined, i.e. diary and UV and co-occurrence histograms.
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Figure 7.17 The probability of observing certain groups of behaviors in the
clusters together with registered sun exposure values. Key-patterns for the
clusters are presented in the table[7.16. For each cluster grouped behaviors
from diary records are presented on the upper plot and corresponding UV ra-
diations are shown on the lower figure. For example cluster number 6 groups
behaviors marked as working - no sun and corresponding UV values are low.
An opposite situation occurs for cluster no. 5 which contains records with
reported sunburns, sun exposure and using sun-block and consequently the
observed UV values are high.

5 which contains records with reported sunburns, sun exposure and using sun-
block and consequently the observed UV values are high.

For the same clustering setting the cluster probabilities were calculated for 10
test subjects using equation |7.1, Together with key-patterns presented in ta-
ble[7.16 description is possible of the behavior of the particular persons during
the whole period of the survey. For all test persons there is a large probability of
the cluster no. 6 that describes working and no sun exposure. However, some
of the periods are described by other patterns. For example, for person no. 251
there is high probability component for cluster no. 5 describing holidays with
high sun radiation. Persons no. 213 and 35 can be well described by clusters 6
(working, no sun) and 1 (naked shoulders) while person no. 23 by clusters 6, 1
and 4 (medium sun exposure).
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Figure 7.18 Cluster probabilities calculated for the 10 test persons equa-
tion (7.1). Person index is shown on the x-axes and different grey level colors
corresponds to six clusters. The corresponding key-patterns are given in ta-
ble[7.16] For all test persons there is a large probability of the cluster no. 6
that describes working and no sun exposure. However, some of the periods
are described by other behavioral patterns. For example, for person no. 251
there is high probability component for cluster no. 5 describing holidays with
high sun radiation. Persons no. 213 and 35 can be well described by clusters
6 (working, no sun) and 1 (naked shoulders) while person no. 23 by clusters
6, 1 and 4 (medium sun exposure).

7.3.2 Imputation missing values in Sun-Exposure study

Preprocessing

The sun-exposure data was used in connection with the missing values imputa-
tion in [81]. Since, the diary records, originally, are categorical, both nominal
and ordinal, coding technique is proposed that converts the data to binary vec-
tors. For this purpose /-out-of-c coding is used. It represents c level categorical
variable with a binary c bits vector. The example of coding is presented in
Chapter|5 in table/5.1.

From the questionnaire, given in table|7.1, one question is ordinal variable of



108 Segmentation of textual and medical databases

26 states, namely Sun Screen Factor Number. Therefore, for simplicity adn for
dimensionality reduction, it is quantized, to 5 levels (no/1-7/8-16/17-35/> 35),
before coding is applied. Each diary record, in the final form for missing data
analysis, is described by 17 dimensional binary feature vector.

Due to the characteristics of data, three different profiles are taken into con-
sideration. The first, which is called Complete Diary Profile (CDP), uses all
records in the estimation process. The second, Personal Profile (PP), assumes
that all questionnaires from one person have similar characteristics while the
characteristics across the persons differ. This arise from the expectation that
human behavior varies from person to person. Thus, the estimation is done
from the other complete records of given person. The third profile is the Day
Profile (DP), which assumes that data vectors for one day are similar or equiva-
lently belong to one distribution while parameters of the distributions across the
days vary. This is due to the fact that human behavior is influenced by weather,
day of week, temperature, the season of the year, etc. The model using each of
the described profiles is called a method. In addition, a Voting procedure is also
considered. It compares proposals from all the above mentioned methods and
takes the majority vote among the outcomes. This method is expected to give
the best results, however, it is much more computationally expensive since it
combines the other three methods.

In order to imputate missing values in the diary records, the models described
in chapter 5/ are implemented here. To check the performance, the techniques
are tested on complete questionnaires. Diary records description is presented in
section|7.1 and necessary preprocessing steps are given in section|7.3.1

The leave-one-out permutation estimate of the generalization error is performed,
where one validation sample is chosen randomly from the complete data set in
500 repeated permutations and then a number of training samples. The per-
formance is then an average over the 500 permutations. As an example, if
considering Day Profile, the day number of the validation sample specifies the
day number of the training samples of which, there are at most 194 persons to
choose from. When training set size, [V, is smaller than 194 then N randomly
chosen samples out of 194 are selected.

Errors of, so called, low concentration are investigated, i.e. only one binary
block in the vector, that is corresponding to one question, is missing at the time.
The final error rate is an average over such single errors made in all possible
nine blocks.
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In case of KNN model, the number of nearest neighbors is separately optimized,
for each profile and for each block, using another set of 500 repeated permuta-
tion samples. The optimal (X in the range 1 — 30) is then found by determining
the number which leads to minimum leave-one-out error.
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Figure 7.19 Learning curves for the Gaussian model (left plot) and the K-
Nearest Neighbor model (right plot). Four different methods are presented
here: Personal Profile, Day Profile, Complete Diary Profile and Voting. Error
bars show standard error in 500 runs. The best results with respect to error
rate are observed for Day Profile when the size of the training set is maximal.
The results of the Personal Profile and Voting are similar in the Gaussian
model case. The Complete Diary Profile performs significantly worst. For
the K -Nearest Neighbor model the size of the training set is not so important
for the level of error rate like it is in case of Gaussian model.

Figure 7.19/presents learning curves for the Gaussian model (left plot) and the
K -Nearest Neighbor model (right plot), respectively. All four methods are
shown, namely Personal Profile, Day Profile, Complete Diary Profile and Vot-
ing. As it was expected, Voting, gives very good results both for Gaussian and
K-Nearest Neighbor model, however in both cases the Day Profile outperform
the other methods. The Complete Diary Profile performs significantly worst.
For the K-Nearest Neighbor model the size of the training set is not so impor-
tant for the level of error rate like it is in case of Gaussian model.

The same results, but compared method-wise are presented in figure|7.20. Gaus-
sian model performs at least as good and in many cases much better than K-
Nearest Neighbor model. The difference is more significant for larger training
data sets.
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Figure 7.20 Comparison between GM (light line) and KNN model (dark
line) for all the profiles shown separately. Gaussian model performs at least
as good and in many cases much better than K -Nearest Neighbor model. The
difference is more significant for larger training data sets.

Figure [7.21] and [7.22| presents the performance of the imputation for each of
the nine blocks separately. Every sub-figure corresponds to one question in
the questionnaire. The highest error is made in imputation of the second block
(question no. 2: Holiday). The error rate for this block is so significant that
it basically creates the overall error rate of the validation sample. Not surpris-
ingly, the value of this field is best predicted by Day Profile. Also therefore
the observed on figure [7.19 average error rate is the smallest for Day Profile.
For the rest of the blocks, imputation with Personal Profile performs the most
successfully. The situation is similar for the KNN model (figure [7.22).

Table|7.17 presents error correlation matrices for Gaussian and K -Nearest Neigh-
bor models, respectively, for three methods: Personal, Day and Complete Diary
Profile. The E;; entry of error correlation matrix, which was presented in [38]
is defined as F;; = Prob{error in method 4 A error in method j}. The error
rates are shown for two extreme training set sizes, namely 5 and 100 samples.
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Figure 7.21 Learning curves for GM model shown separately for all 9 blocks.
On z-axes the size of the training set is shown and on the y-axes the error rate.
Learning curves for the block no. 2 present the highest rate. In this case, the
Day Profile A gives the best results in imputation. In the other cases, the
Personal Profile () performs best. Voting is marked with ¢ and Complete
Diary profile with [J.

Ideally uncorrelated methods would return errors only on the main diagonal. In
such case the Voting procedure would produce optimal results.

Figures|7.23/and|7.24 show the error rate for 30 validation samples as a function
of training set size. All the methods share the same set of validation samples. It
is interesting to see that for some of the validation samples, the error does not
depend on which method or model is used or the size of the training set. This
phenomenon is even stronger when using KNN model (for example, sample
no. 2). In other cases, increased size of the training set reduces the error rate
(sample no. 20 for the Gaussian model). It can also be seen that for other
validation samples, the error rate varies from method to method (e.g., samples
12 and 20 in Gaussian model) and between the models (e.g., sample 2). In such
cases, Voting returns the lowest error rate.
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Figure 7.22 Learning curves for GM model shown separately for all 9 blocks.
On z-axes the size of the training set is shown and on the y-axes the error rate.
Similarly to the GM (figure[7.21), learning curves for the block no. 2 present
the highest rate. In this case, the Day Profile A gives the best results in
imputation. In most of the other cases, the Voting ¢ performs best. Personal
Profile is marked with () and Complete Diary profile with [J.

Gaussian model

5 samples | 30 samples \
PP DP CDP PP DP CDP
PP 0.2481 | 0.0518 | 0.1701 PP 0.1695 | 0.0351 | 0.2096
DP | 0.0518 | 0.1566 | 0.1100 DP 0.0351 | 0.1484 | 0.1705
CDP | 0.1701 | 0.1100 | 0.2634 || CDP | 0.2096 | 0.1705 | 0.2668
K -Nearest Neighbor model
5 samples I 30 samples |
PP DP CDP PP DP CDP
PP 0.1754 | 0.0255 | 0.4093 PP 0.2217 | 0.0405 | 0.2294
DP | 0.0255 | 0.0870 | 0.1004 DP 0.0405 | 0.1359 | 0.1240
CDP | 0.4093 | 0.1004 | 0.2024 || CDP | 0.2294 | 0.1240 | 0.2486

Table 7.17 Error correlation table for KNN model. Left and right tables
present data for small training set (5 samples) and large training set (100
samples), respectively. Used abbreviations: PP - Personal Profile, DP - Day
Profile, CDP - Complete Diary Profile. Ideally uncorrelated methods would
return errors only on the main diagonal. In such case the Voting procedure
would produce optimal results.
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Figure 7.23 30 validation samples predicted with Gaussian models as a func-
tion of size of the training set. The error rate is an average over 9 observed
blocks. 0 corresponds to no error made and 1 to the error made in each of the
blocks. Increased size of the training set reduces the error rate as for example
in case of sample no. 20 and for other validation samples, the error rate varies
from method to method (e.g., samples 12 and 20).
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Figure 7.24 30 validation samples predicted with KNN model as a func-
tion of size of the training set. The error rate is an average over 9 observed
blocks. O corresponds to no error made and 1 to the error made in each of
the blocks. For some of the validation samples, the error does not depend on
which method or model is used or the size of the training set, for example
sample no. 2.
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7.4 Aggregated Markov model for clustering and clas-
sification

In the experiments presented in this section the aggregated Markov model is
applied. The model is described in detail in Chapter 6. Five data sets are used.
The description of two of them, which were not stated earlier, is given below.

Linear structure 2-dimensional five Gaussian distributed clusters are created
with the spherical covariance structure, as shown on figure [7.25 (left
plot). The clusters are linearly separable. This artificially created data
is used for illustration of the simple clustering problem.

.-‘.-.::'-‘-' 5965%

Figure 7.25 The scatter plots of the artificial data for 5 Gaussian distributed
clusters (left figure) and 3 cluster ring formations (right panel).

Manifold structure Three clusters are created as shown on the right plot of
figure Clusters are formed in the shape of rings all centered at the
origin with radiuses 2, 5 and 8, respectively. The data span 2 dimensions.
This data is given as an example of complex nonlinear, yet separable,
problem.

Additionally the performance of the algorithm is investigated on textual data:
Email and Newsgroups collections and the small medical data set of six erythemato-
squamous dermatological diseases. These databases are described in section
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Preprocessing

In case of continuous space collections (Gaussian and Rings clusters) data vec-
tors are normalized with its maximum value so, they fall in the range between
0 and 1. This step is necessary whenever the features describing data points are
significantly different in values or ranges. Such normalization is also performed
in case of dermatological collection, in order to equalize the range of different
attributes. The normalization to the unit L£o-norm length is applied for discrete
domain data sets, i.e. for Email, Newsgroup and Dermatological collection.

For Gaussian and Rings clusters the isotropic Gaussian kernel (equation |6.18)
is used. With discrete data sets (Emails, Newsgroups and Dermatological col-
lection) the cosine inner-product (equation |6.19) is applied.

The cluster structure in the data is investigated in original space, i.e. no projec-
tion is performed to the latent space and no dimensionality reduction is applied.

7.4.1 Clustering of the toy data sets

Linear structure

The Gaussian clusters example is a simple separation problem. The model is
trained using 500 randomly generated samples and for generalization error 2500
validation samples are selected. The aggregated Markov model as, a probabilis-
tic framework, allows the new data points, not included in the training set, to
be uniquely mapped in the model. Therefore, it is possible to compute the gen-
eralization error and based on it to determine the model parameters: the kernel
width A for the continuous low dimensional data or K in K-connected graph
for discrete high dimensional values and the optimum number of classes c.

In 20 experiments, different training sets are generated, so the final error is an
average over 20 outcomes of the algorithm on the same validation set. The
right plot of figure 7.26 presents the dependency of the generalization error as
a function of the kernel smoothing parameter h. For A = 0.06 the error is
minimal. For this particular / the model complexity is then investigated (left
plot of figure7.26). Here, the minimal error is given for all 2, 3, 4 and 5 clusters.
It can be shown, that the generalization error of the discussed model, in case
of fully separable examples, is identical for the number of clusters lower or
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Figure 7.26 On both figures the generalization error is presented as a func-
tion of the kernel smoothing parameter h (left panel) for 5 Gaussian dis-
tributed clusters. The optimum choice is A = 0.06. The right figure presents,
for optimum smoothing parameter, the generalization error as a function of
number of clusters. Here, any cluster number below or equal 5 may give the
minimum error for which the error values are shown above the points. The
optimum choice is a maximum model, i.e., ¢ = 5 (see the explanation of this
choice in the text). The error bars show the standard error values.

equal the correct number. When perfec@ cluster posterior probability p(c|z;)
is observed, the sample probability p(z;) is the same for both smaller and larger
models. It is true, as long as the natural cluster separations are not split, i.e. as
long as the sample has large (close to 1) probability of belonging to one of the
clusters mazx p(c|z;) ~ 1.

For Gaussian clusters the cluster posterior p(c|z) is presented on figure 7.27.
Naturally, the values are in the 0-1 range. Perfect decision surfaces can be
observed. The probabilistic framework simplifies determination of the decision
surfaces. For comparison, on figure [7.28, the components of the traditional
kernel PCA are presented. Here, both the positive and the negative values are
observed. That makes it difficult to determine the optimum decision surface.

Manifold structure

In case of Rings structure the clustering problem is not any longer simple. The
clusters are, however, separable but a nonlinear decision boundary is needed.
In the training, 600 examples are used and for generalization 3000 validation
samples are generated. There are performed 40 experiments, where the different

1%0/1 valued



7.4 Aggregated Markov model for clustering and classification 117

CLUSTER 1 CLUSTER 2 CLUSTER 3

CLUSTER 4

Figure 7.27 The cluster posterior values p(c|z) obtained from the aggregate
Markov model for five Gaussian clusters. The decision surfaces are nonnega-
tive. In case of this simple example the separation is perfect, where 0/1 class
posterior probability values are observed. It is simple to form the decision
surfaces in case of the probabilistic outcome.

CLUSTER 1 CLUSTER 2 CLUSTER 3

CLUSTER 4 CLUSTER 5

Figure 7.28 The components of the traditional kernel PCA model for five
Gaussian clusters. The values are both positive and negative. That makes the
determination of the decision surface more ambiguous.

training sets are selected. The generalization error, shown on figures|7.29, is an
average over errors obtained in each of the 40 runs on the same validation set.
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The optimum smoothing parameter (figure [7.29] left plot) equals h = 0.065
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Figure 7.29 The generalization error as a function of kernel smoothing pa-
rameter h for 3 clusters formed in the shape of rings (left panel). The opti-
mum choice is h = 0.065. On the right figure the generalization error as a
function of number of classes is shown for the optimum choice of smoothing
parameter. The error bars show the standard error. 2 and 3 clusters provide the
minimal error values. As before the maximal model of 3 clusters is selected.
The explanation of such selection can be found on page 116/

and the minimum generalization error is obtained for 3 classes. Similarly to the
Gaussian clusters example, a smaller model of 2 classes is also probable.@

The class posterior for Rings data set and the kernel PCA components are pre-
sented on figures 7.30 and |7.31} respectively. Also in this case perfect (0/1)

CLUSTER 1 CLUSTER 2 CLUSTER 3

Figure 7.30 The cluster posterior values p(c|z) obtained from the aggregate
Markov model for the Rings structure of three clusters. The decision surfaces
are nonnegative. The separation is perfect since the class posterior probability
values are 0/1. It is easy to determine the decision surfaces.

cluster posterior is observed (figure |7.30), which is the outcome of the aggre-

The generalization error is similar for both 2 and 3 numbers of classes.



7.4 Aggregated Markov model for clustering and classification 119

gate Markov model.

The components of kernel PCA (figure|7.31) provide, as in case of cluster poste-
rior, the separation but with more ambiguity in selection of the decision surface.

CLUSTER 1 CLUSTER 2 CLUSTER 3

Figure 7.31 The components of the traditional kernel PCA model for Rings
structure of three clusters. The components are both positive and negative. It
is difficult to determine the appropriate decision surface.

7.4.2 Clustering of the textual data collections

The generalization error for Email collection is shown on figure|7.32. The mean

Email collection
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Figure 7.32 Left panel presents the mean generalization error as a function
of both the class number and the K numbers of active neighbors in the K-
connected graph for Emails collection. Since the differences around the min-
imum are small, the additional plot (left figure) is provided, which shows the
minimal curves. Thus, as the optimal model K = 50 (50-connected graph)
with 3 clusters is chosen.
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values are presented averaged from 20 random choices of the training and the
test set. For training 702 samples are reserved and the rest of 703 are used in
calculation of the generalization error. Since, the used kernel is the cosine inner-
product, the K -connected graph is applied to determine the number of active
neighbors in the Gram matrix. For Email collection, the minimal generalization
error is obtained when using 50-connected graph with the model complexity of
3 clusters. Since the data is not naturally separated, there exist small confusion
among the clusters. The smaller models are not favored as it was in case of
Rings and Gaussian data sets.

CONF JOB SPAM CONF JOB SPAM

Figure 7.33 As interpretation the confusion matrix of the training (left plot)
and of the test set (right plot) is provided. The separation is almost perfect,
only small confusion especially between conference and job emails is ob-
served.

Figure presents the confusion matrices of the training (left plot) and the
test set (right plot). The figures provide the supervised interpretation of the
found clusters. Thus, spam emails fall into cluster 1 in almost 100%. Cluster
number 2 covers job emails and cluster number 3 conference emails. There is
slight confusion between cluster 2 and cluster 3. It can be expected, since both
job and conference emails are university related. The results can be compared
with similar experiment, as in outcome of UGGM model on figure [7.5.

The generalization error for Newsgroups collection is shown on figure 7.34.
For the training, 400 samples is used randomly selected from the set and the
rest of the collection is designated for calculation of the generalization error.
40 experiments was performed and figure|7.34 displays the mean value of the
generalization error. For clarity, since the differences at the minimum are small,
four selected generalization error curves with the standard error on the error bars
are shown on the right plot of figure 7.34. The optimum model has 4 classes
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Newsgroups collection
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Figure 7.34 Left panel presents the mean generalization error as a function
of both the cluster number ¢ and K which is the number of active neighbors
in the K'-connected graph for Newsgroups collection. Since the differences
at the minimum are small, it is difficult to see the placement of the minimum.
Therefore, the curves for selected K (10 20 30 40) are provided on the right
plot. The optimal model complexity is 4 clusters when using 20-connected
graph.

where the connectivity among 20 closest neighbors are remained in the Gram
matrix.

Figure [7.35 presents the confusion matrices of the training (left plot) and the
test set (right plot).

Comp. Motor Baseb. Christ. Comp. Motor Baseb. Christ.

1 14.0 98.0 7.9 71 1 129 6.4 4.0

2 3.5 0.0 0.0 E 2 1.2 2.0 0.9 91.1
3 78.9 1.0 2.2 2.0 3 m 1.0 3.6 5.0
4 3.5 1.0 89.9 5.1 4 24 2.0 m

Figure 7.35 The confusion matrix of the training (left plot) and the test set
(right plot). There is a small confusion among the clusters. The data is well
separated. Small confusion among the clusters is however observed.

The figures provide the supervised interpretation of the discovered clusters.
Thus, for example the Motorcycles newsgroups documents are mostly covered
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by cluster 1. Cluster 2 contains Christian Religion, cluster 3 Computer Graph-
ics and cluster 4 Baseball. There is small confusion among the discovered
clusters. The results can be compared with the similar outcome of the UGGM
model on figure7.9.

In order to compare the aggregated Markov model with the classical spectral
clustering method, presented in [62], the following experiments are performed.
For both, continuous and discrete data sets, using both the Gaussian kernel
and inner-product the investigation of the overall performance in classification,
measured by the miss-classification error, is made. It is found, that both the
aggregated Markov model and the spectral clustering model for selected model
parameters does comparably well in the sense of miss-classification error. How-
ever, the spectral clustering model is less sensitive to the choice of smoothing
parameter h. Note, that the spectral clustering method does not provide the ob-
jective technique for selecting the optimal parameters. Thus, as the optimum,
the parameters providing the minimum misclassification error are selected.

7.4.3 Classification of the medical data collections

The unsupervised classification task is performed on the dermatological col-
lection. The data, described in detail in section [7.1] consists of 6 classes of
erythemato-squamous diseases, namely psoriasis, seboreic dermatitis, lichen
planus, pityriasis rosea, cronic dermatitis, pityriasis rubra pilaris. In the ex-
periments 358 examples are used that are described by 34 attributes. The min-
imum in the calculated generalization error is indicating two class structure,
which is the minimal investigated complexity. In conclusion, the data set is
too small to allow correct estimation of the model parameters. Therefore, the 6
class structure is optimized directly and the misclassification error is considered
in determining the optimum number of connected neighbors. While the model
complexity is determined in supervised way, the learning itself is performed in
unsupervised manner.

The misclassification error and the confusion matrix is presented on figure
As the optimum number of active neighbors any number above K = 100 can
be selected. For decomposition purposes K = 300 is chosen. Then the Gram
matrix is decomposed, resulting with a data separation of 6 clusters. For inter-
pretation purposes the confusion matrix is provided. Here, it can be seen, that
there is a large confusion, between two clusters, namely seboreic dermatitis and
pityriasis rosea. The rest of the clusters are separated.
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Figure 7.36 Left panel presents the misclassification error as a function of the
number of neighbors in K—connected graph for Dermatological collection.
K = 300 is selected. The right plot presents the confusion matrix obtained
from the model, where unsupervised learning is performed in 6 class struc-
ture. The classes are marked with abbreviations form original erythemato-
squamous diseases. Almost perfect classification can be seen except of two
classes of seboreic dermatitis and pityriasis rosea which are confused.






CHAPTER 8

Conclusion

The focus of this thesis has been in examining various principled approaches
to data mining in order to discover inherent latent structure within the data and
to provide and provide an intuitive interpretation of any such structure. The
analysis was performed on medium size databases which came from disparate
sources and were heterogeneous in nature.

The general framework, known as the Knowledge Discovery in Databases pro-
cess was applied. The investigated methods include techniques for projection,
clustering, structure interpretation, outlier detection and imputation missing
values. In the first phase, projection techniques were investigated with the main
focus on Principal Component Analysis. Though Random Projection and Non-
negative Matrix Factorization were also examined as possible techniques for
dimensionality reduction. The Random Projection method did not provide sat-
isfactory results in the case of complex data types such as sparse textual data
and when large dimensionality reduction is required. This is the case of Gener-
alizable Gaussian Mixture models, which require a small number of dimensions
in order to estimate correctly the parameters of the data density. Any increase
in the dimensionality increases significantly the number of parameters to esti-
mate which then requires more data points for an sensible estimate. The Non-
negative Matrix Factorization provided the matrix decomposition which was
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subsequently applied to clustering in conjunction with the aggregated Markov
model.

For clustering purposes, the unsupervised and unsupervised/supervised Gener-
alizable Gaussian Mixture models were investigated and applied later on the
observational data sets. These models return multi-modal density estimate
which provides the cluster structure inherent in the data. In case of unsuper-
vised/supervised GGM model the influence was investigated of the unlabeled
samples used in learning process. It was found that unlabeled examples are
important for the estimation whenever the labeled data set is small. This impor-
tance deteriorates as the size of labeled set increases.

Another important issue addressed in this thesis was the outlier detection meth-
ods. In the KDD process, outliers can have a dual role. They can be considered
as noise. In which case, its removal improves the model. Alternatively, the
outliers are the subject of interest and require careful analysis. In this work two
outlier detection methods were compared. The first method was based on the
cumulative distribution where the low probability samples were classified as
outliers. The second method was based on the Generalizable Gaussian mixture
model with one cluster was designated to collect outliers. The method based on
cumulative distribution require manual tuning of the rejection threshold. The
outlier cluster technique is fully automatic and provides better outcome when-
ever the data density is correct estimated.

The agglomerative hierarchical clustering was the next research area. In this
work, hierarchical clustering was an extension to the aforementioned Gaussian
Mixture model. Several similarity measures were applied. However, no method
significantly outperformed the other, despite their noted drawbacks. For in-
stances, only approximate formula is available for higher hierarchy levels with
Kullback-Leibler similarity measure. The Cluster Confusion similarity mea-
sure is computational expensive, since it requires many ancillary data points to
obtain a good dissimilarity estimate especially when there is small cluster over-
lap. The agglomerative hierarchical clustering can be employed as an additional
clustering level. This was found to be most appropriate when visualizing the
the data in order to present a multi-level understanding of the inherent clustered
nature of the data.

Being able to intuitively understand the results is another important part of the
KDD process. For labeled data sets, the confusion matrix between the class
and the cluster structure was provided which enabled the interpretation of the
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discovered clusters in terms of known labels. Furthermore, the next proposed
method for interpretation was to generate the meaningful representatives of
clusters. In the case of textual databases keywords were provided and for other
forms of data the model important features were selected.

An attempt was made to combine different data sources and various types of the
data, in the clustering framework. It was shown the in case of the investigated
sun-exposure collection, that clustering benefited from the additional sources of
information. However, no objective measure of importance for the data sources
was developed.

The issue of handling missing data was also addressed in this thesis. Similar
to outliers, the missing data may be handled in two ways. First, if assumed
as noise contribution, they can be removed from the data set as has been done
in the majority of the performed experiments. In can be applies whenever the
missingness process is believed to be completely at random. Second, the miss-
ing data can itself be the subject of the data mining task and as such imputation
techniques can be applied. Two methods were collated in this work, namely
K-Nearest Neighbors and Gaussian model. Even though the experiments were
carried out on the binary data set of the sun-exposure study, the results obtained
by the Gaussian model were found to be superior.

As an alternative to the Gaussian Mixture model in data segmentation the aggre-
gated Markov model was proposed. This technique, originating from spectral
clustering methods, performs the decomposition of the Gram matrix in a fully
probabilistic framework. It provides the estimates of the class posterior prob-
abilities of the data points and allows new data points to be assigned in the
framework. Therefore cross-validation can be applied, to select the model pa-
rameters, which was not possible with classical spectral clustering techniques.
Moreover, the data with the large dimensional feature space are easily handled
by this method. Hence, no projection techniques are needed, even though they
can be applied.

Future work
When working with the disparate and heterogeneous data it would be interesting

to develop an objective measure to determine if the combination of sources
provided more information than the individual sources.
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It would be also interesting to develop a general model where both continuous
and discrete data are combined in unsupervised and unsupervised/supervised
clustering framework.

As a future research task also more complex imputation methods like, for exam-
ple maximum likelihood and multiple imputation techniques can be interesting
to develop.



APPENDIX A

Equations

Jensen’s inequality:

If f is a convex function such that its hessian is positive semi-definite H > 0
for all x € R, then for random variable X holds

E[f(X)] > f(EX) (A.1)

Minkowski’s inequality:

If p > 1, then Minkowski’s integral inequality states that

[ 1@ +swra]” <[ [ @pal+ [ [owralt o

Similarly, if p > 1 and ag, by, > 0, then Minkowski’s sum inequality states that

[i(%—!—bk } [Zak} [ibﬂ; (A.3)

k=1 k=1 k=1

Equality holds iff the sequences a1, as, ... and b1, bo, . . . are proportional.
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Kullback-Leibler divergence:

Kullback-Leibler divergence [69] is defined as follow:
p(x|k)

Div(k,l) = /p(x|k)ln D) (A4)
A symmetric version is defined as D(k, 1) = 1(Div(k, 1) + Div(l, k)). Thus,
1 pxlk) 1 / p(x|l)
Dk, 1) = = k)in i )i . A5
() = 5 [ sl + 5 [ oo EEE. )
where D(k,l) > 0and D(k,l) = D(I, k).
If the density functions p(x|k) and p(x|l) are Gaussians,
D 1 1
p(xlk) = (2m) 72 B2 exp(—5 (x = ) ' B = py), (A6
and
1
p(x|l) = (2m) 7% %72 exp(—5 (x = ) "B (x — ), (A7)

where D is dimension, then the KL divergence may be simplified in the follow-
ing way.

PR IR e = )T (= )
p(x[D) (2m) 7% || 72 exp(=(x — i) TZ ! (x — )
B (g0 - ) "B (x )
\Ek!2exp(——(x—m)T2 = )
= Sin(IZi]) — 5in(ISel) — 50— i) S (x — )
by )" e ) (A8)
(x — ) TE " (x — p) = Trace(Z 7 (x — p)(x — ) 7). (A9)

and due to linearity of the integral:

/ Trace(af(x))g(x)dz = Trace(a / F@)g(@)dz)  (A10)
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pxlk) 1 1
s E X ax = 5 [oiin(B)x = 5 [ plxliin(Ei)dx
= 5 PR ) - )
- %/p(x|k:)(x — ) 'S x = p)dx (A1)
5 PR e ) S (g =

=~ [ race(= = ) o ) V()
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= = (A.12)

P(xk) (x = ) TS 3¢ — gy =
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p(x|k) 1 1 D 1 -

/p(xk)lnp(X“) dx = §ln(|21|) - §ln(|2k|) -3 + §Trace(2l 120
1 _

+§(Mk — )2 (g — )" (A.14)

x| 1 1 D 1 _
/p(xl)ln p(X\ ) dx = §ln(|2k|) - Eln(|§]l|) - — 4+ §Trace(2k121)

p( |k) 9
+%(uz — 1) By — )™ (A.15)
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D 1
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1
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Abstract. In a sun-exposure study, questionnaires concerning sun-
habits were collected from 195 subjects. This paper focuses on the
general problem of missing data values which occurs when some, or
even all, the questions have not been answered in a questionnaire.
Here only missing values of low concentration are investigated. We
consider and compare two different models for imputating miss-
ing values: the Gaussian model and the non-parametric K-Nearest
Neighbor model.

INTRODUCTION

The missing data problem occurs in virtually any application of statistics to
real life problems. It is particularly important whenever statistical analysis
is based on human responses. The severeness of missing data is aggravated if
probability of data drop-out is a function of the missing value. Attempts to
fill in missing data ranges from complex monte carlo procedures, like multiple
imputation [5], over EM-based, deterministic, yet iterative, procedures [1, 2,
6, 7], to basic statistical methods based on simple multivariate parametric,
typically Gaussian, density approximations [4].

In the sun-exposure experiment studied, questionnaires concerning sun-
habits were collected from 195 subjects (the group of people involved in the
experiment lasting 138 days). In addition, UV radiation were measured at
a 10 minute sampling rate. While the ultimate objective is to relate sun-
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habits, UV dose, and risk of cancer, this work focuses on imputating missing
questionnaire values. We present the analysis of two basic missing value
approaches based on parametric and non-parametric representations, respec-
tively. Rather than invoking complex statistical methods we concentrate on
evaluating the two schemes using a modern learning theory tool, the “learn-
ing curve”, which in the present context quantifies the fill-in error as function
of training sample size. Such analysis is important for experimental design.
Secondly, we investigate the utility of voting schemes for enhancing the per-
formance of missing data mechanisms.

DESCRIPTION OF THE DIARY DATA

In the experiment two types of data was collected. The subjects wore a
special designed watch called the “Sunsaver”, which measures UVA and UVB
radiation. In addition, the following questionnaire was also returned:

. Using Sunsaver (yes/no)

. Working (yes/no)

. Abroad (yes/no)

. Sun Bathing (yes/yes-solarium /no)

Naked Shoulders (yes/no)

On the Beach/On the water (yes/no)

. Using Sun Screen (yes/no)

. Sun Factor Number (no/1-7/8-16/17-35/>35)

. Sunburned (no/red/hurts/blisters)

. Size of Sunburn Area (no/little/medium/large)

—
o

FEach questionnaire was stored along with date and subject identification
number. Some of the answers are binary (yes/no) whereas others are coded
using a l-out-of-c binary representation. The 1-out-of-c¢ coding ensures that
the Hamming distance between any two data vectors equals one, thus pre-
venting an arbitrary distance for categorical data such as Sunburned.

The sun factor number (question no. 8) has a larger range of values. In
order to decrease the length of its binary representation, it was quantized
into five levels (no/small (1-7)/medium (8-16)/large (17-35)/huge (>35)).
Furthermore, it was combined with question no. 7 creating one binary vector
block.

Eventually, for every person and every day, a 17-dimensional binary vector
is created. It contains nine blocks from one to four bits each. There are 24212
data records in the diary, distributed among 195 persons and 138 days. There
are at least one missing value in more than 1000 vectors due to partially
unfilled questionnaires (i.e., in approx. 4% of the questionnaires).
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MISSING DATA MODELS

The d-dimensional binary feature vector is defined as z = [21,z2,...,Z4].
The data set is denoted as D = {x(™;n = 1,2,...,N}, where N is the
number of examples.

Two models for filling in missing data are described here. The first method
is based on the assumption that the diary data vectors are Gaussian dis-
tributed. The second is a non-parametric K-Nearest Neighbor model. Many
different models can be proposed. This paper, however, focuses on compar-
ing a the complicated stochastic model with a simpler non-parametric one
for specific diary records.

Due to the characteristics of data, there are three different profiles taken
into consideration. The first called the Complete Diary Profile uses the full
data set in the estimation. The second called the Personal Profile assumes
that questionnaires from one person have similar characteristics while the
characteristics across the persons differ. This arise from the expectation that
human behaviour varies from person to person. The third profile is called
the Day Profile and assumes that data vectors for one day are similar or
equivalently belong to one distribution, while parameters of the distributions
across the days vary. This is due to the fact that human behavior is influenced
by whether, temperature, the season of the year, etc. The model using each
of the described profiles is called a method.

In addition, a Voting procedure is also considered. It compares proposals
from all the above mentioned methods and takes the majority vote among
the outcomes. This method is expected to give the best results, however, it
is much more computationally expensive since it combines the other three
methods.

Gaussian Model (GM)

Assume that & is Gaussian distributed with mean g and covariance 3. Fur-
ther that the feature vector is divided into observed and missing parts, as
T = [To,Zm]. Under the Gaussian model assumption, the optimal inference
of the missing part is given as the condition expectation of the missing part
given the observed part, i.e.,

E(@m|o) = pm + BmoZy, - (2o — o) 1)
where
X 3
= (o, and X = o0 om 2
1= (1o, fim] ST S (2)

The Gaussian imputation model is then given as:

GM Algorithm:
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1. Divide the data set D into two parts. Let the first set contain data
vectors in which at least one of the features is missing, call it D,,.
Then the remaining part, where all the vectors are complete is called
D..

2. Estimate mean p and the covariance matrix ¥ from D,, i.e.,

i = NL 32t $- Npl—1 3 (m(")_ﬁ) (m(") —ﬁ)T, (3)

¢ neD. ’ neD,

where N, = |D,| is the number of complete examples.
3. For each vector x € D,,
e Divide the vector into two parts & = [x,,Zn], where z, is the
observed vector features and x,,, the missing.

e Estimate the missing binary vector as the sign of the conditional-
distribution mean for the missing part given the known features:

~ . ~ S A_l ~
Tm = SIgN I:u'm + EmC'Eoc» : (330 - uo)]
K-Nearest Neighbor Model (KNN)

The distance measure for binary vectors (Hamming distance) is defined as
follows:

d

D(p,g) =Y |z — 27|, (4)

i=1

where p and ¢ are two binary vectors and i is a bit (dimension) index.
The algorithm for the non-parametric K-Nearest Neighbor Model is given
as:

KNN Algorithm:

1. Divide the data set D into two parts. Let the first set contain data vec-
tors in which at least one of the features is missing, D,,,. The remaining
part where all the vectors are complete is called D..

2. For each vector € D,,:

¢ Divide the vector into observed and missing parts as = [Z,, Z]-

e Calculate the distance Eq. (4) between the &, and all of the vectors
from the set D.. Substitute by non-missing parts in the vectors
from the complete set D..

e Use the K closest vectors (K-nearest neighbors) and perform a
majority voting estimate of the missing values.
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EXPERIMENTS

In order to compare the performance of the models on the diary records, a
validation set was taken out from the fully completed questionnaires. We
perform a leave-one-out permutation estimate of the generalization error as
in 1000 repeated permutations one validation sample is chosen randomly,
then a number of training samples. The performance is then average over
the 1000 permutations.

We are investigating errors of low concentration, i.e., only one block (ques-
tion) in the vector is missing at the time. The final error rate is an average
over such single errors made in all possible nine blocks.

Learning curves, Gaussian Model

0.14 -

Error rate

—— Personal Profile

0.071 Day Profile
—— Complete Diary Profile
— Voting
0.06 T T T Il Il Il Il Il Il Il
10 20 30 40 50 60 70 80 90 100

Training set size

Figure 1: Learning curves for the Gaussian model. Four different methods are
presented here: Personal Profile, Day Profile, Complete Diary Profile and Voting.
Error bars show deviation from the mean curve over 1000 runs.

Figure 1 and figure 2 presents learning curves for the Gaussian model and
the K-Nearest Neighbor model, respectively. The deviation from the mean
is shown with the error bars. It decreases slightly with increasing training
set size.

For the Gaussian model Voting, as it was expected, gives very good re-
sults, it performs better than all other methods for small training sets, how-
ever for larger training sets it performs slightly worse than Day Profile. Per-
sonal Profile and Complete Diary Profile does generally worse. In the case of
KNN model, both Personal Profile and Complete Diary Profile return high
error. In this case Day Profile clearly performed better than Voting for all
the training sets.



139

Learning curves, K - Nearest Neighbors Model
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Figure 2: Learning curves calculated for the K-Nearest Neighbor model. Four
different methods are presented here: Personal Profile, Day Profile, Complete Diary
Profile and Voting. Error bars show deviation from the mean curve over 1000 runs.

In figure 3, the same set of curves is presented, as on the figures 1 and
2. However, here the comparison is made between the two discussed models.
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Figure 3: Comparison between GM (light line) and KNN model (dark line) for all
the profiles shown separately.
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It is clearly seen that for large training sets for every profile, the Gaussian
model (light) performs better than KNN model (dark).
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Figure 4: Learning curves for all the 9 blocks separately. GM is shown with solid
lines and KNN with the dashed. z-axes are training set size while y-axes are error
rates. Diamond marker is Complete Diary Profile, circle is Day Profile, square is
Personal Profile, and triangle is Voting.

Figure 4 presents the error rate separately for each of the nine blocks. Ev-
ery sub-figure corresponds to one question in the questionnaire. The learning
curve for block no. 2 (middle-top sub-figure) presents the highest error rate.
This block corresponds to question no. 2 (working). The error rate for this
block basically creates the overall error rate for the validation sample. Not
surprisingly, the value of this field is best predicted by Day Profile. For the
rest of the blocks Personal Profile imputate with the smallest error. The
situation is similar for the KNN model. However, it is possible to see (also
from the figures 1, 2 and 3), that the error rate does not decrease much with
increased size of the training set.

Tables 1 and 2 present error correlation matrices for Gaussian and K-
Nearest Neighbor model, respectively, for three methods: Personal, Day and
Complete Diary Profile. The E;; entry of error correlation matrix [3] is
defined as F;; = Prob{error in method ¢ A error in method j}. The error
rates are shown for two extreme training set sizes, namely 5 and 100 samples.
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PP DP CDP PP DP CDP
PP | 0.2481 | 0.0518 | 0.1701 PP | 0.1695 | 0.0351 | 0.2096
DP | 0.0518 | 0.1566 | 0.1100 DP | 0.0351 | 0.1484 | 0.1705

CDP | 0.1701 | 0.1100 | 0.2634 || CDP | 0.2096 | 0.1705 | 0.2668

Table 1: Error correlation table for GM. Left and right tables present data for small
training set (5 samples) and large training set (100 samples), respectively. Used
abbreviations: PP - Personal Profile, DP - Day Profile, CDP - Complete Diary
Profile.

PP DP CDhpP PP DP CDhP
PP | 0.1754 | 0.0255 | 0.4093 PP | 0.2217 | 0.0405 | 0.2294
DP | 0.0255 | 0.0870 | 0.1004 DP | 0.0405 | 0.1359 | 0.1240
CDP | 0.4093 | 0.1004 | 0.2024 CDP | 0.2294 | 0.1240 | 0.2486

Table 2: Error correlation table for KNN model. Left and right tables present data
for small training set (5 samples) and large training set (100 samples), respectively.
Used abbreviations: PP - Personal Profile, DP - Day Profile, CDP - Complete
Diary Profile.

Ideally uncorrelated methods would return errors only on the main diagonal.
In such case the Voting procedure would produce optimal results.

Figure 5 shows the error rate for 100 validation samples as a function of
training set size. All the methods share the same set of validation samples. It
is interesting to see that for some of the validation samples, the error does not
depend on which method or model is used or the size of the training set. This
phenomenon is even stronger when using KNN model (for example, sample
no. 25). In other cases, increased size of the training set will reduce the error
rate (sample no. 18 for the Gaussian model). It can also be seen that for
other validation samples, the error rate varies from method to method and
between the models. In this cases, Voting may return the lowest error rate.

CONCLUSIONS

It is generally expected that the models perform better for large training
sets. However, the error rate is strongly sample related, i.e., it can increase
significantly with the one “unlucky” sample.

Applying different methods depending on the block number can be rele-
vant for this data set. In this case using Day Profile in the prediction of the
value of the block no. 2 and Personal Profile for the rest of the blocks may
give considerable improvement in the error rate. However, such mixing of
the methods is highly data dependent and has to be tuned manually.

In conclusion, for the present data set, the Gaussian model is superior to
the non-parametric K-nearest neighbor model although the Gaussian model
assumptions is violated for binary data vectors. The Day Profile method gave
best results indicating a strong daily variation. If the errors made by different
methods had been uncorrelated, the results returned by the Voting would give
the best imputation performance of missing data. For small training sets
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Voting resulted in improved performance, while severe correlation among the
errors of the methods disfavors Voting for large training sets. In addition.
the use of overlapping training sets additionally improved correlation among
the methods.
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Figure 5: Error rate for different profiles in the GM (the upper four plots) and in
the KNN (bottom four plots). Figures show dependency of training set size for
specific validation samples. The methods share the same set of validation samples.
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Abstract. This paper presents hierarchical probabilistic clustering methods for unsu-
pervised and supervised learning in datamining applications. The probabilistic clus-
tering is based on the previously suggested Generalizable Gaussian Mixture model.
A soft version of the Generalizable Gaussian Mixture model is also discussed. The
proposed hierarchical scheme is agglomerative and based on a L, distance metric.
Unsupervised and supervised schemes are successfully tested on artificially data and
for segmention of e-mails.

1 Introduction

Hierarchical methods for unsupervised and supervised datamining give multilevel description
of data. It is relevant for many applications related to information extraction, retrieval navi-
gation and organization, see e.g., [1, 2]. Many different approaches to hierarchical analysis
from divisive to agglomerative clustering have been suggested and recent developments in-
clude [3, 4, 5, 6, 7]. We focus on agglomerative probabilistic clustering from Gaussian density
mixtures. The probabilistic scheme enables automatic detection of the final hierarchy level.
In order to provide a meaningful description of the clusters we suggest two interpretation
techniques: 1) listing of prototypical data examples from the cluster, and 2) listing of typical
features associated with the cluster. The Generalizable Gaussian Mixture model (GGM) and
the Soft Generalizable Gaussian mixture model (SGGM) are addressed for supervised and
unsupervised learning. Learning from combined sets of labeled and unlabeled data [8, 9] is
relevant in many practical applications due to the fact that labeled examples are hard and/or
expensive to obtain, e.g., in document categorization. This paper, however, does not discuss
such aspects. The GGM and SGGM models estimate parameters of the Gaussian clusters with
a modified EM procedure from two disjoint sets of observations that ensures high generaliza-
tion ability. The optimum number of clusters in the mixture is determined automatically by
minimizing the generalization error [10].

This paper focuses on applications to textmining [8, 10, 11, 12, 13, 14, 15, 16] with
the objective of categorizing text according to topic, spotting new topics or providing short,
easy and understandable interpretation of larger text blocks; in a broader sense to create
intelligent search engines and to provide understanding of documents or content of web-
pages like Yahoo’s ontologies.

2 The Generalizable Gaussian Mixture Model

The first step in our approach for probabilistic clustering is a flexible and universal Gaussian
mixture density model, the generalizable Gaussian mixture model (GGM) [10, 17, 18], which
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models the density for d-dimensional feature vectors by:

ple) =) P(k)p(zlk), p(z|k)= exp (*l(wfuk)TEZI(w*ﬂk)) ey

1
k=1 V[2m 2| 2

where p(z|k) are the component Gaussians mixed with the non-negative proportions P(k),
22:1 P(k). Each component £ is described by the mean vector 1 and the covariance matrix
Xi,. Parameters are estimated with an iterative modified EM algorithm [10] where means are
estimated on one data set, covariances on an independent set, and P (k) on the combined set.
This prevents notorious overfitting problems with the standard approach [19]. The optimum
number of clusters/components is chosen by minimizing an approximation of the generaliza-
tion error; the AIC criterion, which is the negative log-likelihood plus two times the number
of parameters.

For unsupervised learning parameters are estimated from a training set of feature vectors
D = {z,;n =1,2...,N}, where N is the number of samples. In supervised learning
for classification from a data set of features and class labels D = {x,, yn}, where y, €
{1,2,...,C} we adapt one Gaussian mixture, p(x|y), for each class separately and classify
by Bayes optimal rule by maximizing p(y|z) = p(x|y)P(y)/ Z;le(ww)P(y) (under 1/0
loss). This approach is also referred to as mixture discriminant analysis [20].

The GGM can be implemented using either hard or soft assignments of data to com-
ponents in each EM iteration step. In the hard GMM approach each data example is as-
signed to a cluster by selecting highest p(k|z,) = p(x,|k)P(k)/p(x,). Means and co-
variances are estimated by classical empirical estimates from data assigned to each com-
ponent. In the soft version (SGGM) e.g., the means are estimated as weighted means g =
>, pklza) - 20/ 3, plklen).

Experiments with the hard/soft versions gave the following conclusions. Per iteration the
algorithms are almost identical, however, SGGM requires typically more iteration to con-
verge, which is defined by no changes in assignment of examples to clusters. Learning curve'
experiments indicate that hard GGM has slightly better generalization performance for small
N while similar behavior for large N - in particular if clusters are well separated.

3 Hierarchical Clustering

In the suggested agglomerative clustering scheme we start by K clusters at level j = 1 as
given by the optimized GGM model of p(z), which in the case of supervised learning is
p(x) = 25:1 ZkKjl p(z|k,y) P(k)P(y), where K, is the optimal number of components for
class y. At each higher level in the hierarchy two clusters are merged based on a similarity
measure between pairs of clusters. The procedure is repeated until we reach one cluster at
the top level. That is, at level j = 1 there are K clusters and 1 cluster at the final level,
j = 2K — 1. Let p;(x|k) be the density for the k’th cluster at level j and P;(k) as its mixing
proportion, i.e., the density model at level j is p(z) = Yo7 ™" P;(k)p;(z|k). If clusters k
and m at level j are merged into £ at level j + 1 then
_ pile|k) - P;(k) + p;(2|m) - P;(m)

pisi(alt) = TR  Pall) = KK + Pm) @)

The natural distance measure between the cluster densities is the Kullback-Leibler (KL) di-
vergence [19], since it reflects dissimilarity between the densities in the probabilistic space.
The drawback is that KL only obtains an analytical expression for the first level in the

! Generalization error as as function of number of examples.
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hierarchy while distances for the subsequently levels have to be approximated [17, 18].
Another approach is to base distance measure on the £, norm for the densities [21], i.e.,
D(k,m) = [ (p;(z|k) — p;(@|m))’ dz where k and m index two different clusters. Due to
Minkowksi’s inequality D(k, m) is a distance measure. Let Z = {1,2,---, K} be the set
of cluster indices and define disjoint subsets Z, N Zy = 0, Z, C T and I3 C Z, where Z,,
I3 contain the indices of clusters which constitute clusters £ and m at level j, respectively.
The density of cluster k is given by: p;(z|k) = Y, ., aip(zli), a; = P(i)/ Y ,cr, P(i) if
i € T, and zero otherwise. p;(xz|m) = E’iEIﬁ Bip(x|i), where (3; obtains a similar definition.
According to [21] the Gaussian integral [ p(x|i)p(z|f) dz = G(p; — py, i + i), where
G, Z) = (2m)~Y?-|Z|/2 - exp(—pu ="' n/2). Define the vectors @ = {a;}, 8 = {5} of
dimension K and the K x K symmetric matrix G = {Gy} with G;p = G(p; — pg, i +3),
then the distance can be then written as D(k,m) = (a — 8) " G(a — 3). Figure 1 illustrates
the hierarchical clustering for Gaussian distributed toy data.

A unique feature of probabilistic clustering is the ability to provide optimal cluster and
level assignment for new data examples which have not been used for training. « is assigned
to cluster k at level j if p;(k|@) > p where the threshold p typically is set to 0.9. The proce-
dure ensures that the example is assigned to a wrong cluster with probability 0.1.

Interpretation of clusters is done by generating likely examples from the cluster, see
further [17]. For the first level in the hierarchy where distributions are Gaussian this is
done by drawing examples from a super-eliptical region around the mean value, i.e., (z —
[J,k)TE;l((E — ;) < const. For clusters at higher levels in the hierarchy samples are drawn
from each Gaussian cluster with proportions specified by P(k).
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Figure 1: Hierarchical clustering example. Left panel is a scatter plot of the data. Clusters 1,2 and 4 have wide
distributions while 3 has a narrow one. Since the distance is based on the shape of the distribution and not
only its mean location, clusters 1 and 4 are much closer than any of these to cluster 3. Right panel presents the
dendrogram.

4 Experiments

The hierarchical clustering is illustrated for segmentation of e-mails. Define term-vector as
a complete set of the unique words occurring in all the emails. An email histogram is the
vector containing frequency of occurrence of each word from the term-vector and defines the
content of the email. The term-document matrix is then the collection of histograms for all
emails in the database. After suitable preprocessing? the term-document matrix contains 1405
(702 for training and 703 for testing) e-mail documents, and the term-vector 7798 words. The
emails where annotated into the categories: conference, job and spam. It is possible to model

2Words which are too likely or too unlikely are removed. Further only word stems are kept.
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directly from this matrix [8, 15], however we deploy Latent Semantic Indexing (LSI) [22]
which operates from a latent space of feature vectors. These are found by projecting term-
vectors into a subspace spanned by the left eigenvectors associated with largest singular value
of a singular value decomposition of the term-document matrix. We are currently investigat-
ing methods for automatic determination of the subspace dimension based on generalization
concepts. We found that a 5 dimensional subspace provides good performance using SGGM.

A typical result of running supervised learning is depicted in Figure 2. Using supervised
learning provides a better resemblance with the correct categories at the level in the hierarchy
as compared with unsupervised learning. However, since labeled examples often are lacking
or few the hierarchy provides a good multilevel description of the data with associated inter-
pretations. Finding typical features as described on page 3 and back-projecting into original
term-space provides keywords for each cluster as given in Table 1.
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Figure 2: Supervised hierarchical clustering. Upper rows show the confusion of clusters with the annotated
email labels on the training set at the first level and the level where 3 clusters remains, corresponding to the three
categories conference, job and spam. At level 1 clusters 1,11,17,20 have big resemblance with the categories. In
particular spam are distributed among 3 clusters. At level 19 there is a high resemblance with the categories and
the average probability of erroneous category on the test set is 0.71. The lower left panel shows the dendrogram
associated with the clustering. The lower right panel shows the histogram of cluster assignments for test data,
cf. page 3. Clearly some samples obtain a reliable description at the first level (1-21) in the hierarchy, whereas
others are reliable at a higher level (22-41).

5 Conclusions

This paper presented a probabilistic agglomerative hierarchical clustering algorithm based
on the generalizable Gaussian mixture model and a £, metric in probabilty density space.
This leads to a simple algorithm which can be used both for supervised and unsupervised
learning. In addition, the probabilistic scheme allows for automatic cluster and hierarchy level
assignment for unseen data and further a natural technique for interpretation of the clusters
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Table 1: Keywords for supervised learning

1 | research,university,conference 8 | neural,model 15 | click,remove,hottest,action
2 | university,neural,research 9 | university,interest,computetion | 16 | free,adult,remove,call

3 | research,creativity,model 10 | research,position,applicati 17 | webs| creativity,click
4 | website,information 11 | science,position,fax 18 | websi ck,remove

5 | information,program. i 12 | position,fax,website 19 | free,call,remove,creativity
6 | research,science,computer,call 13 | research,position,application 20 | mac

7 | website,creativity 14 | free,adult,call, website 21 | adult,government

1 | research.university,conference | 11 | science.position.fax | 39 | freewebsite,cal Lcreativity |

via prototype examples and features. The algorithm was successfully applied to segmentation
of emails.
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Abstract.  This paper presents hierarchical proba-
bilistic clustering methods for unsupervised and su-
pervised learning in datamining applications, where
supervised learning is performed using both labeled
and unlabeled examples. The probabilistic cluster-
ing is based on the previously suggested General-
izable Gaussian Mixture model and is extended us-
ing a modified Expectation Maximization procedure
for learning with both unlabeled and labeled exam-
ples. The proposed hierarchical scheme is agglomer-
ative and based on probabilistic similarity measures.
Here, we compare a Lo dissimilarity measure, er-
ror confusion similarity, and accumulated posterior
cluster probability measure. The unsupervised and
supervised schemes are successfully tested on artifi-
cially data and for e-mails segmentation.

1 Introduction

Hierarchical methods for unsupervised and supervis-
ed datamining provide multilevel description of data,
which is relevant for many applications related to in-
formation extraction, retrieval navigation and organi-
zation of information, see e.g., [4, 7]. Many differ-
ent approaches to hierarchical analysis from divisive
to agglomerative clustering schemes have been sug-
gested, and recent developments include [3, 6, 16,
20, 24]. In this paper we focus on agglomerative
probabilistic clustering from Gaussian density mix-
tures based on earlier work [14, 15, 19] but extended
by suggesting and comparing various similarity mea-
sures in connection with cluster merging. An advan-
tage of using the probabilistic clustering scheme is
automatic detection of the final hierarchy level for
new data not used for training. In order to provide
a meaningful description of the clusters we suggest
two interpretation techniques: listing of prototypical
data examples from the cluster, and listing of typical
features associated with the cluster.
The generalizable Gaussian mixture model (GGM)

[8] and the soft generalizable Gaussian mixture model
(SGGM) [19] are basic model for supervised and un-
supervised learning. We extend this framework to

This research is supported by the Danish Research Councils
through Distributed Itimedia Technologies and Applicati
program within Center for Multimedia and the Signal and Image
Processing for Telemedicine (SITE) program.

supervised learning from combined sets of labeled
and unlabeled data [9, 17, 18] and present a modi-
fied version of the approach in [17] called the unsu-
pervised/supervised generalizable Gaussian mixture
model (USGGM). Supervised learning from combin-
ed sets is relevant in many practical applications due
to the fact that labeled examples are hard and/or ex-
pensive to obtain, for instance in document catego-
rization or medical applications. The models esti-
mate parameters of the Gaussian clusters with a mod-
ified EM procedure from two disjoint data sets to pre-
vent notorious infinite overfit problems and ensuring
good generalization ability. The optimum number of
clusters in the mixture is determined automatically
by minimizing an estimate of the generalization er-
ror [8].

This paper focuses on applications to textmin-
ing [8, 11, 12, 13, 18, 22, 21, 23] with the objec-
tive of categorizing text according to topic, spotting
new topics or providing short, easy and understand-
able interpretation of larger text blocks — in a broader
sense to create intelligent search engines and to pro-
vide understanding of documents or content of web-
pages like Yahoo’s ontologies.

In Section 2, various GGM models for supervised
and unsupervised learning are discussed, in particu-
lar we introduce the USGGM algorithm. The hier-
archical clustering scheme is discussed in section 3
and introduces three similarity measures for cluster
merging. Finally, Section 4 provide numerical expe-
riments for segmentation of e-mails.

2 The Generalizable Gaussian
Mixture Model

The first step in our approach for probabilistic clus-
tering is a flexible and universal extension of Gaus-
sian mixture density model, the generalizable Gaus-
sian mixture model [8, 14, 15, 19] with the aim of
supervised learning from unlabeled and labeled data.
Define « as the d-dimensional input feature vector
and the associated output, y € {1,2,---,C}, of class
labels, assuming C' mutually exclusive classes. The
joint input/output density is modeled as the Gaussian
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mixture in [17]'
K
p(y, #l6) = P(y|k)p(@|k) P(k) ()
k=1

p(z|k) = @

1 1 Ty-1
7@ exp (—5(1 - ) B (T - Nk))

where K is the number of components, p(z|k) are
the component Gaussians mixed with the non-negati-
ve priors P(k), Ele P(k) = 1and the class-cluster
posteriors P(y|k), Eyczl P(y|k) = 1. The k’th Gaus-
sian component is described by the mean vector g¢,
and the covariance matrix Xy. 6 is the vector of all
model parameters, i.e., 8 = {P(y|k), g, g, P(k) :
Vk,y}. Since the Gaussian mixture is an universal
approximator, the model Eq. (1) is rather flexible.
One restriction, however, is that the joint input/output
for each components is assumed to factorize, i.e.,
p(y, @|k) = P(y|k)p(x|k).

The input density associated with Eq. (1) is given
by

K
p(|6.) Zp v.x) =Y pl@lk)P(k), @)

k=1
where 6,, = {uk,)lk, (k) : Vk,y}. Assuming a 0/

1 loss function the optimal Bayes classification rule
is ¥ = max, (y|z) wherez

Pylz) ZP ylk)P(klz) ()

with P(k|z) = (ﬂvlk) (k)/;ﬂ(m)-

Define the data set of unlabeled examples D,, =
{zn;n = 1,2,---,N,} and a set of labeled exam-
ples Dy = {&n,yn;n = 1,2,-- -, Ni}. The objective
is to estimate @ from the combined set D = D; UD,,
with N = N; + N,, examples ensuring high gener-
alizability. If no labeled data are available we can
merely perform unsupervised learning of 6,,, how-
ever, if a number of labeled data are available, esti-
mation from both data sets is possible as p(y|z) and
p(z) share the model parameters 8, [9]. The neg-
ative log-likelihood for the data sets, which are as-
sumed to consist of independent examples, is given
by

L = —logp(D|0) (5)

K
= " 10g)" Plyalb)p(a.[k)P(E)

neD; k=1

-2y logZp x| k)P(k)

n€D,
where0 < A <1lisa dlscoum factor. If the model
is unbiased (realizable), the estimation 6,, from ei-
ther labeled or unlabeled data will result in identical

!In [17] referred to as the generalized mixture model.
2The dependence on @ is omitted.

optimal setting and thus A = 1 is optimal. On the
other hand, in the typical case of a biased mode, it is
advantageous to discount the influence of unlabeled
data [9, 18].

Initialization
. Choose values for K and 0 < A < 1.
2. Let % be K different randomly selected indices

~

from {1,2,---, N}, and set ;. = &, .
3.LetSo = N1 o (@n — o) (@n — o) T,
where prg = N7'Y p@n. and set VE :
3 =X
4.SetVk: P(k) =1/K.

“

Compute class prior probabilities: P(y) =
Nt > onep, 9(¥n — y), where §(2) = 1if
z = 0, and zero otherwise. Set Vk : P(ylk) =
P(y).
Select a split ratio 0 < 7y < 1. Split the unla-
beled data set into disjoint sets as Dy, = D1 U
Dy, with [Dya1| = [yNy] and |Dygl

— |Dy,1]. Do similar splitting for the la-
beled data set D; = Dy 1 U Dy .
Repeat until convergence

S

1. Compute posterior component probabilities:

pklen) = pla@n|k)P(k)/ 3 p(wnlk)P(k),
for all n € Dy, and for all n € Dy,

P(yn|k)p(zn|k) P(k)
2k Pyalk)p(@alk) P(k)’
2. For all k update means
By =
Z T P(k|yn, @n) + A Z z, P(k|zy)
n€Dy,1 n€Dy,1
D Plynza) + X D Plklzs)
neD; 1 nEDu 1
3. For all k update covariance matrices
X =
S SenPlklyn@n) + X Y SknP(klTn)

p(klyn, Tn) =

neDy2 n€Dy,2
S P(klyn,@a) + X Y. P(klza)
n€ED; 2 n€Dy,2

where Sky = (@n — p) (@n — ;) T - Perform
a regularization of Xy, (see text).
4. For all k update cluster priors
> Plklyn,ma) + X Y P(klan)
P(k) = "€ neDu
(k) N+ ANy
5. For all k update class cluster posteriors
> 8y = ya) Plklyn, @2)

neD;y

Z P(k|yn, zn)

Plylk) =

neDy

Figure 1: The USGGM algorithm.
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2.1 The USGGM Algorithm

The model parameters are estimated with an itera-
tive modified EM algorithm [8], where means and
covariance matrices are estimated from independent
data sets, and P(y|k), P(k) from the combined set.
This approach prevents overfitting problems with the
standard approach [2]. It is designated the generaliz-
able Gaussian mixture model with labeled and unla-
beled data (USGGM) and may be viewed as an ex-
tension of the EM-I algorithm suggested in [17]. The
GGM can be implemented using either hard or soft
assignments of data to components in each EM it-
eration step. In the hard GGM approach each data
example is assigned to a cluster by selecting high-
est P(k|z). Means and covariances are estimated
by classical empirical estimates from data assigned
to each component. In the soft version (SGGM) [19]
means and covariances are estimated as weighted
quantities. e.g.. st = 3, p(klan)n/ 3, p(kln).
GGM provides a biased estimate, which gives bet-
ter results for small data sets [19], however, in gen-
eral the soft version is preferred. The USGGM al-
gorithm is summarized in Fig. 1 and is based on the
soft approach. The main iteration loop is aborted®
when no change in example cluster assignment is
noticed. Labeled examples are assigned to clusters
kn = argmaxy, P(k|yn, Z»), n € Dy, and unlabeled
to kp, = argmaxy P(k|z,), n € D,. In contrast to
EM algorithms there is no guarantee that each itera-
tion leads to improved likelihood, however, practical
experience indicates that the updating scheme is suf-
ficiently robust. Potential poor conditioned covari-
ance matrices for clusters where few examples are
assigned is avoided by regularizing towards the over-
all input covariance matrix X (defined in Fig. 1) as
3 « g + aXg. ais selected as the smallest pos-
itive number, which ensures that the resulting condi-
tion number is smaller than 1/(d - €), where € is the
floating point machine precision.

Essential algorithm parameters are the number
of components K and the weighting factor A. In
principle, these parameters should be chosen as to
maximize generalization performance. One method
is to pick K and A so that the cross-validation es-
timate of the classification error is minimized. A
less computational cumbersome method is to select
K based on the AIC estimate of the generalization
error [1, 8, 19], which is the negative log-likelihood
plus the number of parameters in the model, K (d(d+
1)/2+4C)—1. The only remaining algorithm param-
eter to determine is the split ratio -y, which in princi-
ple also should be selected to achieve high general-
ization performance. Practical simulations show that
7 = 0.5 is a proper choice in most cases.

3Convergence criteria based on changes in the negative log-
likelihood can also be formulated.

2.2 Unsupervised GGM Model

If only input data are available one has to perform un-
supervised learning. In this case the object of mod-
eling is the input density Eq. 3, which can be trained
using the SGGM algorithm* [19].

2.3 Supervised GGM Model

Clearly USGGM can be used in the case of no un-
labeled examples. Another choice is to use sepa-
rate GGM models for the class conditional input den-
sities, i, p(zly) = u¥, p(aly, k)P(kly) with
p(x|y, k) defined by Eq. (2) and where K, is the
number of components. Using Bayes optimal rule
and assuming a 1/0 loss function, classification is
done by maximizing p(ylx) = p(xly)P(y)/
25:1 p(z|y)P(y). The approach is also referred
to as mixture discriminant analysis [10] and seems
more flexible than the model in Eq. (1). However,
it does not use discriminative training, i.e., minimiz-
ing the classification error or negative log-likelihood
L = -3, 10gp(yn|En, B), where 0 are model pa-
rameters. Modeling instead p(z|y) will provide rea-
sonable estimates of p(y|z) in the entire input space,
whereas discriminative learning will use the data to
obtain relatively better estimates of p(y|z) close to
the decision boundaries. The model in Eq. (1) de-
scribes the joint input-class probability p(y,z) =
p(y|z)p(x) and may be interpreted as a partial dis-
criminative estimation procedure.

3 Hierarchical Clustering

In the case of unsupervised learning, i.e., learning
p(x), hierarchical clustering concerns identifying a
hierarchical structure of clusters in the feature space
. In the suggested agglomerative clustering scheme
we start by K clusters at level j = 1 as given by the
optimized GGM model of p(z). At each higher level
in the hierarchy two clusters are merged based on
a similarity measure between pairs of clusters. The
procedure is repeated until we reach one cluster at the
top level. That s, at level j = 1 there are K clusters,
and one cluster at the final level, j = K.

For supervised learning one can either identify
a hierarchical structure common for all classes, i.e.,
working from the associated input density p(z), or
identifying individual hierarchies for each class by
working from the class conditional input densities
p(zly). For the model in Eq. (1) p(z) is given by
Eq. (3) and

K

plal) = 25 = plal) ) ©
k=1

4The SGGM is similar to USGGM in Fig. 1 and is essentially
obtained by setting A = 1, neglecting steps 5 of the initialization
and main iteration loop, and further neglecting sums over labeled
data.
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where P(kly) = P(ylk)P(K)/ ¥, P(ylk)P(k). Let
pj(x|y, k) be the density for the k’th cluster at level
j. and P;(k|y) the mixing proportion, which in the
general case both may depend on y. Further, the
(class conditional) density model at level j is
plaly) = i Pi(kly)p; (@ly, k). 1F clusters
£ and m at level j are merged into 7 at level j + 1
then

pin1(@ly, i) = @)
i@y, O F; (Lly) + p; @[y, m)P; (mly)
Pj(tly) + Pj(mly) ’
Pir1(ily) = P;(€ly) + P;(mly) ®

3.1 Level Assignment

A unique feature of probabilistic clustering is the abil-
ity to provide optimal cluster and level assignment
for new data examples, which have not been used for
training. & is assigned to cluster & at level j if
B RPEY) o g,
o))
where the threshold p typically is set to 0.9. The
procedure ensures that the example is assigned to a
wrong cluster with probability 0.1.

P;(kly, z) =

3.2 Cluster Interpretation

Interpretation of clusters is done by generating likely
examples from the cluster [14, 19] and displaying
prototype examples and/or typical features. For the
first level in the hierarchy in which distributions are
Gaussian, prototype examples are identified as those
who has highest density values. For clusters at higher
levels in the hierarchy, prototype samples are drawn
from each Gaussian cluster with proportions speci-
fied by P(k) or P(k|y). Typical features are in the
first level found by drawing ancillary examples from
a super-eliptical region around the mean value, i.e.,
(@ — pg) TS, Mz — py) < const., and then listing
associated typical features, e.g., keywords as demon-
strated in Sec. 4. At higher levels we proceed as de-
scribed above.

3.3 Similarity measures

Many different similarity measures may be applied
in the framework of hierarchical clustering. The nat-
ural distance measure between the cluster densities is
the Kullback-Leibler (KL) divergence [2], since it re-
flects dissimilarity between the densities in the prob-
abilistic space. The drawback is that KL only obtains
an analytic expression for the first level in the hierar-
chy, while distances for the subsequent levels have
to be approximated [14, 15]. Consequently, we con-
sider three different measures, which express similar-
ity in probability space for models of p(x) or p(z|y)
(cf. Sec. 3) and can be computed exactly at all levels

in the hierarchy’. Fig. 2 illustrates the hierarchical
clustering for Gaussian distributed toy data.

3.3.1 L, Dissimilarity Measure
The L5 distance for the densities [25] is defined

D(f,m)=/(pj(z\€)fpj(z\m))2dz (10)

where £ and m index two different clusters. Due to
Minkowksi’s inequality, D(¢,m) is a distance mea-
sure, which also will be referred to as dissimilar-
ity. Let Z = {1,2,---, K} be the set of cluster
indices and define disjoint subsets Zo, N Zg = 0,
Zo C T and Zg C 7, where Z,, T contain the
indices of clusters, which constitute clusters £ and
m at level j, respectively. The density of cluster
£ is given by: p;(z|) = ;o7 cip(zli), @i =
P(i)/ iz, P(9) if i € I,, and zero otherwise.
pj(zlm) = 3 ez, Bip(2|i), where B; obtains a sim-
ilar definition. According to [25], the Gaussian inte-
gral is given by
[ p(z|a)p(z|b) dz = N (1, — py, Xa + Xs), where
N(p,T) = (2m) 2 V2 - exp(—pT =" 1/2).
Define the vectors & = {e;}, 8 = {8;} of dimen-
sion K and the K x K symmetric matrix G = {Gap}
with Gap = N (i, — py, Xa +33), then the distance
can be then written as D(£,m) = (¢ — 3)T G(a —
B). It turns out (see Fig. 2) that it is important to
include the prior of the component in the dissimi-
larity measure. The modified £, is then given by
D(t;m) = [ (0 @|£)P;(0) ~ p; (|m) P (m))* da.
which easily can be computed using a modified ma-
trix Gap = P(a)P(b)Gap.

3.4 Cluster Confusion Similarity
Measure

Another natural principle is based on merging clus-
ters, which have the highest confusion. Thus, when
merging two clusters, the similarity is the probabil-
ity of misassignment (PMA) when drawing exam-
ples from the two clusters seperately. Let  be an
example from cluster Cx denoted by & € Cy and let
m = arg max; P(j|x) be the model estimate of the
cluster, then the PMA for all £ # m is given by:

E(¢,m)=P{#m)= (11
/ Pl P(O)de + / p(a|m)P(m)dz
Rm

Re

where Ry, = {x : m = argmax; P(j|x)} and like-
wise for R¢. In general, E(£,m) can not be com-
puted analytically, but can be approximated arbitrar-
ily accurately by using an ancillary set of data sam-
ples drawn from the estimated model. That is, ran-
domly select a cluster ¢ with probability P(z), draw a
sample from p(z|i) and compute the estimated clus-
ter j = argmaxy, P(k|x). Then estimate P(€ # m)

5In the following sections we omit the possible dependence on
y for notational convenience.
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as the fraction of samples where (i = £ A j = m) or
(j=LtAi=m).

3.5 Sample Dependent Similarity Mea-
sure

Instead of constructing a fixed hierarchy for visual-
ization and interpretation of new data a sample de-
pendent hierarchy can be obtained by merging a num-
ber of clusters relevant for a new data sample . The
idea is based on level assignment described in
Sec. 3.1. Let P(klx), k = 1,2,---, K, be the com-
puted posteriors ranked in descending order and com-

pute the accumulated posterior A(€) = Ei:l P(k|x).

The sample dependent cluster is then formed by merg-
ing the fundamental components £ = 1,2,---,m
where m = min; A(¢) > p, withe.g., p = 0.9.

Level | Ly | modified £» | Error confus.
2 [ 5={14)23 | 5={1.4} 23 | 5={1.4} 23
3| 6={1.24}3 | 6={134}2 | 6={1.34}2

Figure 2: Hierarchical 2D clustering example with 4 Gaus-
sian clusters. 1 and 4 have wide distributions, 2 more nar-
row, and 3 extremely peaked. The priors are P(k) = 0.3
for k = 1,2,3 and P(3) = 0.1. The table shows the
construction of higher-level clusters, e.g., the £z distance
measure groups clusters 1 and 4 at level 2, which is due to
the fact that distance is based on the shape of the distribu-
tion and not only its mean. This also applies to the other
dissimilarity measures. At level 3, however, the £2 method
absorbs cluster 4 into 5 to form cluster 6. The other meth-
ods absorbs cluster 3 at this stage. The reason is that the
prior of cluster 3 is rather low, which is neglected in the Lo
method.

4 Experiments

The hierarchical clustering is illustrated for segmen-
tation of e-mails. Define the term-vector as a com-
plete set of the unique words occurring in all the
emails. An email histogram is the vector containing
frequency of occurrence of each word from the term-
vector and defines the content of the email. The term-
document matrix is then the collection of histograms

for all emails in the database. Suitable preprocessing
of the data is required for good performance. This
concerns: 1) removing words, which are too likely
(stop words) or too unlikely®; 2) keeping only word
stems; and 3) normalizing all histogram vectors to
unit length’. After preprocessing the term-document
matrix contains 1280 (640 for training and 640 for
testing) e-mail documents, and the term-vector con-
sists of 1652 words. The emails where annotated into
the categories: conference, job and spam. It is possi-
ble to model directly from the term-document matrix,
see e.g., [18, 22], however, we deploy the commonly
used framework Latent Semantic Indexing (LSI) [5],
which operates using a latent space of feature vec-
tors. These are found by projecting term-vectors into
a subspace spanned by the left eigenvectors associ-
ated with largest singular values of a singular value
decomposition of the term-document matrix. We are
currently investigating methods for automatic deter-
mination of the subspace dimension based on gener-
alization concepts, however, in this work, the num-
ber of subspace components is obtained from an ini-
tial study of classification error on a cross-validation
set. We found that a 5 dimensional subspace pro-
vides good performance. Fig. 3 presents a 3D scatter

Figure 3: 3D scatter plot of the data. Three largest out of
five principal components are displayed. Light grey color
- conference, black - job, dark grey - spam. Data is well
separated, however, there exists small confusion between
job and conference e-mails.

plot of the first 3 feature dimensions, viz. the largest
principal components. Data seem to be well sepa-
rated, however, parts of job and conference e-mails
are mixed. Fig. 4 shows the performance of the
USGGM algorithm, and in Fig. 5 the hierarchical
representations are illustrated.

A threshold value for unlikely word up to approx. 100 occur-
rences has little influence on classifi error. In the si
the threshold was set to 40 occurrences.

7 Another approach is to normalize the vectors to represent esti-
mated probabilities, i.e., let vector sum to one. However, extensive
experiments indicate that this approach give a feature space, which
is not very appropriate for Gaussian mixture models.
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Figure 4: Average performance of the USGGM algorithm
over 1000 repeated runs using N, = 200 unlabeled ex-
amples and a variable number of labeled examples Nj.
The algorithm parameter is set to v = 0.5. Upper panel
shows the performance as a function of the discount fac-
tor A for unlabeled examples (A = 0 corresponds to no
unlabeled data). As expected, if few unlabeled examples
are available, N; = 10, 20, the optimal A is close to one,
and all available unlabeled data are fully used. As IV; in-
creases A decreases towards 0.3 for N; = 200, indicating
the reduced utility of unlabeled examples. The classifica-
tion error is reduced approx. 26% using unlabeled data
for N; = 10, gradually decreasing to 1% for N; = 200.
The classification error for optimal X as a function of N; is
shown in the middle panel. The lower panel shows number
of components selected by the AIC criterion for optimal A
as described in Sec. 2.1. As N; increase, also it is advanta-
geous to increase the number of components.

[y [ k] Ply) ] Keywords
1 7354 information, .con¥erence, call,
workshop, university
3 0167 remove, address, call, free, busi-
ness
1 call, conference, workshop, in-
4 2297 formation, submission, paper,
web
6 0181 research, posmo‘n, unl\ferslty, in-
terest, computation, science
research, university, position, in-
2 .6078 terest, science, computation, ap-
P plication, information
6| 3092 research, position, university, in-
terest
3 6301 remove, call, address, free, day,
3 business
S5 .3698 | free, remove, call

Table 1: Keywords for the USGGM model. y = 1 is con-
ference, y = 2 is jobs and y = 3 is spam.

Typical features as described in Sec. 3.2 and back-
projecting into original term-space provides keywords
for each cluster as given in Tab. 1. In Fig. 5 we
choose to illustrate the hierarchies of individual class
dependent densities p(x|y) using the modified Lo
dissimilarity only. The cluster confusion measure
is computational expensive if little overlap exist as
many ancillary data are required. The modified £
is computational inexpensive and basically treat dis-
similarity as the cluster confusion, while the standard
L3 do not incorporate priors. The conference class
is dominated by cluster 1. This has keywords listed
in Tab. 1, which are in accordance with the meaning
of conference. The lower left panel shows the cluster
level assignment distribution of test set emails, which
are classified as conference emails cf. Sec. 3.1. Some
obtain significant interpretation at level 1 (clusters 1-
6), while others at a high level (cluster 9). Similar
comments can be made for the jobs and spam classes.
For comparison, we further trained an unsuper-
vised SGGM model and the results for a typical run
are presented in Fig. 6. The top row illustrate the hi-
erarchy formed by using the sample dependent, the
modified £, dissimilarity, and the cluster confusion
similarity measures. For the sample dependent mea-
sure the numbers on top of the bars indicate the most
frequent combinations of first level clusters. Clearly
there is a significant resemblance among the sample
dependent and the cluster confusion similarity hierar-
chies, e.g., higher level clusters formed by {1, 3} and
{2,10}. However, inspection of the bottom row pan-
els, which show the cluster confusion with the class
labels, indicate that the cluster combinations of the
sample dependent method is better aligned with the
class labels. The modified £ provides the best align-
ment of clusters with class labels at level 8 and is in
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Figure 5: Hierarchical clustering using the USGGM model. Left column is class y = 1 conference, middle column y = 2
Jjobs, and right column is for y = 3 spam. Upper rows show the dendrogram using the modified Lo dissimilarity for each
class, and the lower row the histogram of cluster level assignments for test data, cf. Sec 4.
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o 1 3 6

0 1 10 9
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Confusion at the
hierarchy level 8 Confusion at the
hierarchy level 8

Probability

T2 s 5 6 9 10 2 9 17 5 7 17
Cluster Cluster Cluster
1 free,remove 2 | research,university,position 3 | free,information,address,day
4 | call,remove,address 5 | free,service,site,sit,internet 6 | call,remove,address,business
7 | call,remove 8 | free,address,state,quantity 9 | information,conference,workshop
10 | research,university,interest,position

Figure 6: Unsupervised SGGM modeling of p(z). Upper rows show the hierarchical structure. Left panel illustrates the
sample dependent similarity measure Sec. 3.5, the middle panel the modified £ dissimilarity measure, Sec. 3.3.1, and the right
panel the cluster confusion measure Sec. 3.4. measure. Lower rows show the confusion of clusters with the annotated email
labels at the first level in the hierarchy (left panel) and at level 8, where 3 clusters remain for the modified L dissimilarity
(middle) and the cluster confusion measure (right panel). E.g., the black bars are the fraction of conference labeled test set
emails ending up in a particular cluster. In addition, keywords for each cluster of the first level are also provided.
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that respect superior to the other methods for the cur-
rent data set. The keywords for clusters 2,10 and 9
provide perfect description of the jobs and confer-
ence emails, respectively. Keywords for the other
clusters indicate that these mainly belong to the broad
spam category.

5 Conclusions

This paper presented probabilistic agglomerative hi-
erarchical clustering schemes based on the introduced
unsupervised/supervised generalizable Gaussian mix-
ture model (USGGM), which is an extension of [17].
The ability to learn from both labeled and unlabeled
examples is important for many real world applica-
tions, e.g., text/webmining and medical decision sup-
port. The USGGM was successfully tested on a text-
mining example concerning segmentation of emails.

Using a probabilistic scheme allows for automatic
cluster and hierarchy level assignment for unseen
data, and provides further a natural technique for an
interpretation of the clusters via prototype examples
and features. In addition, three different similari-
ties measures for cluster merging were presented and
compared.
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Abstract. In a medically motivated sun-exposure study, ques-
tionnaires concerning sun-habits were collected from a number of
subjects together with UV radiation measurements. This paper
focuses on identifying clusters in the heterogeneous set of data for
the purpose of understanding possible relations between sun-habits
exposure and eventually assessing the risk of skin cancer. A general
probabilistic framework originally developed for text and web min-
ing is demonstrated to be useful for clustering of behavioral data.
The framework combined Latent Semantic indexing like approach
with probabilistic clustering based on the generalizable Gaussian
mixture model.

INTRODUCTION

In the studied sun-exposure experiment, questionnaires concerning sun-habits
were collected from 187 subjects. In addition, daily UV radiation were mea-
sured at a 10 minute sampling rate using a specially designed “sun-watch”.
The ultimate objective is to relate the heterogeneous data of sun-habits, UV
dose and other data (e.g., medical records) with the purpose of assessing the
risk of skin cancer for individual subjects. This paper focuses on the sub-
task of identifying relevant structure in the combined data set of sun habit
diaries and daily UV dose measurements. We aim at identifying relevant
structure using hierarchical probabilistic clustering. Although the method
presented in [7] can be invoked for hierarchical clustering, we resort to sim-
ple probabilistic clustering in this work. The diary records can be viewed
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as a vector of categorical data, whereas the daily UV dose is a continuous
measurement which is measured for different persons during 138 days. The
long-term theoretical aim is to identify a hierarchical probabilistic clustering
model which efficiently handles combinations of categorical and continuous
data. However, the idea of the present paper is to study the capabilities of
our flexible multimedia text and images data [4, 5, 6, 7, 9] mining framework
for analysis and understanding of behavioral data.

SUN EXPOSURE STUDY

A specially designed device, measuring received sun radiation (PID), was
given to the group of subjects. In addition, subjects were requested to fill
out a diary concerning their sun behaviors during each day of the study (for
more details, see [10]). Eight selected questions are presented here:

Variable Values

1. Holiday yes/no

2. Abroad yes/no

3. Sun Bathing yes/yes-solarium/no

4. Naked Shoulders yes/no

5. On the Beach/Water yes/no

6. Sun Factor Number no/26 values in range 1-60
7. Sunburned no/red/hurts/blisters

8. Size of Sunburned Area  no/little/medium/large

Thus, two types of data were collected: continuous measurements of the
sun UV radiation (PID) and categorical diary records. Each diary record is
represented by an 8 dimensional vector and describes a specific behavior of
the particular person during the particular day. The total number of possible
patterns for the presented set of questions equals 20736, however, only a small
fraction of 423 patterns actually exist in the investigated data set.

PREPROCESSING

Latent Semantic Indexing (LSI) [2] was developed for text and multimedia
mining, see [4, 5]. In this study we pursue a similar idea, which enables
to combining different types of data into a common framework. Figure 1
presents the general framework of preprocessing, clustering and data post-
processing. In the first step, data is windowed creating vectors that contain
data from consecutive days. The optimal size of the window is an issue to be
addressed. For example, taking the full set of records belonging to a given
person will produce a set of points in the space that will not form any partic-
ular clusters, since each of them will contain most of the observed patterns.
On the other hand, taking one diary record at the time will significantly in-
crease the computational complexity. In the experiments a window of size 7
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Figure 1: Framework for data clustering: 1) the data is windowed into several his-
togram vectors and together with the co-occurrence matrix and the PID histogram
forms a pattern/window matrix. 2) data is then normalized and projected onto the
orthogonal singular value decomposition space. 3) the Gaussian mixture algorithm
is used to cluster the data. 4) In order to interpret the results, cluster centers are
back-projected to the original space where key-patterns are identified.

is used. This was decided after several experiments, taking into account sta-
tionarity of the clustering and complexity level. In the final paper we plan to
invoke the concept of generalization for optimal window selection, see further
[3].

Originally, the pattern/window matrix is formed from the histogram vec-
tors achieved by counting occurrences of every found pattern in the window.
However, the histograms does not convey time ordering information. It is
possible to include time information by considering the co-occurrence matrix
of joint occurrences of neighbor patterns in the window. There are 207362
possible co-occurences but only 1509 were present in the actual data set.
The continuous sun radiation measurements were quantized in order to fit
the presented framework. Both diary histograms, the co-occurrence matrix
and sun radiation are screened against rare patterns by removing patterns
which have occurrence below a certain threshold.

The next step involves normalization of the pattern/window matrix. Two
types of normalization are performed. First, each window vector is scaled
to unity length, and then, pattern vectors are scaled to zero mean and unit
variance over training samples. The three component matrices (diary-window
histograms, co-occurrence and PID histograms) are then separately projected
onto the few principal component directions found by singular value decom-
position (SVD). Finally, the generalizable Gaussian mixture model is used



165

for clustering in the subspace.

UNSUPERVISED GAUSSIAN MIXTURE MODEL

The Gaussian mixture model was previously addressed in [4, 6, 8]. The K
component mixture of Gaussian densities of the d-dimensional feature vector
x is defined as:

p(@) =Y p(elk) - p(k) (1)
k

where p(z|k) = N (e, k) are Gaussian densities and p(k) are nonnegative
mixture proportions such that >, p(k) = 1. The parameters pr and X are
estimated from the training data set D = {x,,n = 1... N} by minimizing
negative log-likelihood cost function of the form: £ = -3 log(p(x,|k))
through expectation-maximization method. In order to ensure generalizabil-
ity, parameters g and ¥ are estimated from the disjoint sets of observations
and the optimal number of mixture components is found by the AIC-criterion
[1, 3]. The complete algorithm for generalizable Gaussian mixture model
(GGM) can be found in [4, 7].

OUTLIER DETECTION

The Gaussian mixture model models the data density In order to spot an
outlier, which indicate non-stationarity in data, the cumulative probability
[6, 7] is computed Q(t) = Prob(z € R),R = {x : p(x < t)} for all thresholds
t. Thus, the outliers occupy lower part of the cumulative curve.

PROTOTYPES

In order to find key-patterns corresponding to each of the clusters, centers p
need to be back-projected to the original space of normalized histograms?.
Furthermore, the used framework makes it possible to describe the behavior
of every new person in the experiment by using both cluster assignment and
associated key-patterns. The confidence of assigning the person into the given
cluster k£ can be expressed by the posterior probability:

plkPer) = = Y p(klPer, ) - p(z), ©

where ; is a feature vector of the size d and ¢ = 1,2,..., N. The number of
feature vectors N is different for every person and depends on the number of
returned diary records and the window size.

L Another way would be to project the most probable feature vectors from each of the
clusters found e.g. by Monte Carlo sampling.
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RESULTS

The set of 19171 diary records and corresponding PID values were selected
for the clustering experiments. Data are complete i.e., there is no missing
records or PID values. The missing record problem for the current data
set was partly addressed in [10]. The sun behaviors of 187 subjects during
summer period were collected. Of this 10 persons were hold out for testing.
Sun exposure measurements were quantized into 4 values. The slicing window
of size 7 was applied forming 2580 training and 158 test feature vectors. Each
feature vector consist of the diary histogram, the co-occurrence matrix and
the PID histogram. The diary histogram is reduced from 423 to 97 patterns
by removing rare patterns. In a similar way, the co-occurrence matrix is
reduced from 1509 to the 80 most often occurring pairs of patterns. Each of
these matrices are projected separately on the orthogonal directions found
by SVD. For both diary and co-occurrence the 9 largest eigenvalues is used
and 3 for PID data?.

The investigation was performed of the importance of the co-occurrence
matrix and the PID histograms for the clustering. The results of the exper-
iments are collected in the tables 1, 2, 3 and 4.

In the experiments hard assignment GGM model [4] is used, i.e., the
parameters of the clusters g and X were estimated from the set of samples
assigned to each of the clusters. In order to achieve a more detailed cluster
structure one could use soft GGM [9, 7).

In the tables 1, 2, 3 and 4 the results of back-propagation are shown.
The key-patterns, associated probabilities and description of the clusters are
provided. In the first column the cluster number is displayed. Second column
contains the most probable patterns for the cluster. The third gives the
probabilities for the key-patterns and the fourth column presents a general
description of the cluster based on the key-patterns.

In table 1 the results of clustering of the diary histograms are shown. The
presented patterns are equivalent to the set of questions given in section: Sun
Exposure Study. For example: pattern 10111 describes the following set of
answers: 1. holiday - "yes”, 2. abroad - ”"no”, 3. sun bathing - "yes”, 4.
naked shoulders - ”yes”, 5. on the beach - ”yes”, remaining questions 6,7
and 8 - "no”, or pattern 0: all the questions where answered "no” or pattern
1: 1. holiday - ”yes” and the rest of the questions from 2 to 8 - "no”. This
rule for describing patterns hold as well in the case of table 2, 3 and 4.

Table 2 presents key-patterns for clustering diary histograms combined
with PID histograms. Eight clusters were found. Diary key-patterns are
explained in table 1. Patterns corresponding to the PID histograms are
marked with the subscript ” PID”. Four different values of PID from 0 to
3 are observed: 0 corresponds to the very low sun radiation and 3 describes
very high one. This rule for describing PID-patterns hold as well in the case
of table 4.

2The decision was made based on the shape of the eigenvalue curve but a more elaborate
selection can be invoked using the concept of generalization [4].
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[ #. | Key-Pattern [ Probability. | Description |
1. 10001,11,10111 0.33,0.32,0.19 holiday, on the beach, sun bathing
2. 0 0.98 working - no sun
3. 1 0.9 on holiday - no sun
4. 0,0001,1 0.4,0.27,0.18 working naked shoulders - no sun
5. 1,1101 0.67,0.17 holiday, naked shoulders
6. | 1011,1001,10011 | 0.47,0.17,0.16 holiday , sun bathing
7. 11 0.5 holiday abroad - no sun
8. 10111,0001,1001 | 0.45,0.17,0.13 | holiday, sun bathing, naked shoulders
9. 0000001 0.05 no sun, sunburned - red
10. 0 0.99 working - no sun

Table 1: Key-patterns for clustering diary histograms. In the first column the clus-
ter number is shown. Second column contains the most probable patterns for the
cluster. The presented pattern numbers are equivalent to the set of questions given
in section: Sun Ezposure Study. For example: pattern 10111 gives the following set
of answers: holiday - yes, abroad - no, sun bathing - yes, naked shoulders - yes, on
the beach - yes, remaining questions 6,7 and 8 - no, or pattern 0 means that all
the questions where answered "no”. Third column gives the probabilities for the
key-patterns, and fourth column presents a general description of cluster.

In table 3 the key-patterns for clustering diary histograms combined with
co-occurrence matrix are presented. The diary key-patterns are explained
in table 1. The co-occurring patterns are shown with the dash between
them e.g., ”0-1” means that a pattern working is followed by pattern holiday,
pattern ”71-10011” means that holiday without sun was followed by holiday
spent on the beach. This rule for describing co-occurrence patterns hold as
well in the case of table 4.

Table 4 shows the key-patterns for clustering diary histograms combined
with co-occurrence matrix and PID histograms. The diary key-patterns are
explained in table 1. The co-occurred patterns are explained in table 3 and
the PID patterns in table 2. Both the PID values and the co-occurrence
pairs are likely to appear as key-patterns. This could suggest that joining
time information and the sun exposure measurements are important for the
clustering. Moreover, the description of the clusters is more explicit.

In figure 2 the probability of observing certain groups of behaviors in the
clusters together with registered sun exposure values are presented. Clus-
tering was done using full pattern/window matrix for which keywords are
displayed in table 4. Five behaviors are specified: working - no sun exposure,
holiday - no sun exposure, sun exposure describes mild sun behaviors often
on the beach or naked shoulders without sun-screen and without sunburns,
using sun-block and diary records with reported sunburns. In the bottom
figure the observed sun exposure measurements are presented. For example
cluster number 6 groups behaviors marked as working - no sun and corre-
sponding PID values are low. Opposite, cluster no. 5 contains records with
reported sunburns, sun exposure and using sun-block and consequently PID
values are high.

For the same clustering setting the cluster probabilities were calculated
Eq. (2) for 10 test subjects. Together with key-patterns presented in table 4
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[# ] Key-Pattern [ Probability. [ Description |

1. 1001,1000, 0.31,0.26, holiday, naked
1pp,10011 0.16,0.11 shoulders, small PID

2. 11,0001,0, 0.29,0.2,0.17, holiday abroad,
2pp,0pID 0.16,0.15 working

3. 1,11 0.39,0.12, holiday

4. 1011,2p;p, 0.0.31,0.25, naked shoulders,
3prp,0001 0.14,0.13 high sun radiation

5. | 1,2pip,3p1p,10001 | 0.2,0.17,0.16,0.14,0.12,0.1 holidays, high PID

6. 1p[D,0p1D 0.14,0.13 low PID

7. 3p1p,1001, 0.22,0.22, holiday, naked,
2p1p,10011 0.16,0.15 shoulders, high PID

8 0,0p1p 0.6,0.4 no sun

Table 2: Key-patterns for clustering diary histograms combined with PID his-
tograms. In the first column the cluster number is displayed. Second column
contains the most probable patterns for the cluster. The diary key-patterns are
explained in table 1. Patterns corresponding to the PID histograms are marked
with the subscript ” PID”. Four different values of PID are observed: 0 corresponds
to very low sun radiation and 3 describes very high one. Third column gives the
probabilities for the key-patterns and fourth column presents general description of
cluster based on the key-patterns.
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Figure 2: The probability of observing certain groups of behaviors in the clusters
together with registered sun exposure values. Key-patterns for the clusters are
presented in the table 4. For each cluster grouped behaviors from diary records are
presented on the upper plot and corresponding PID is shown on the lower figure.

it gives a good description of the behavior of the particular persons during
the whole period of the experiment. For all test persons there is a large
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[ # ] Pattern [ Probability. [ Description

1. 1001,1101-1101 0.27,0.13 holiday,naked sholders

2. 1001,1101-1101,1 0.26,0.21,0.1 holiday,naked sholders

3. 0001,1001-0, 0.17,0.12, working,
10111,0-1001 0.11,0.1 naked shoulders

1. 11,1111 0.14,0.11 holiday, abroad

5. 0001,1001-0, 0.27,0.14, holiday or working,
1001,0-1001 0.13,0.1 naked shoulders

6. | 1001,0,0-1,1-0,1,1-1 | 0.29,0.19,0.16,0.14,0.1,0.09 | work - holiday, no sun

7. 10011 0.19 holiday, on the beach

8. 10001,1-10011 0.21,0.12 holiday, on the beach

9. 0-0,0,0-1,1-0 0.36,0.35,0.12,0.12 working - no sun

10. | 1001,1-1101,1101-1, 0.26,0.16,0.12, holiday,

1101-1101,1011 0.12,0.11 naked shoulders

Table 3: Key-patterns for clustering diary histograms combined with co-occurrence
matrix. In the first column the cluster number is displayed. Second column contains
the most probable patterns for the cluster. The diary key-patterns are explained
in table 1. The co-occurring patterns are shown with the dash between them e.g.,
”0-1” means that a pattern working is followed by pattern holiday. Third column
gives the probabilities for the key-patterns and fourth column presents general
description of cluster based on the key-patterns.
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Figure 3: Cluster probabilities calculated for the 10 test persons Eq. (2). Person
index is shown on the x-axes and different grey level colors corresponds to six
clusters. Key-patterns are given in table 4.

probability of the cluster no. 6 that describes working and no sun exposure.
However, some of the periods are described by other behaviors. For example
for person no. 251 there is high probability component for cluster no. 5
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[# ] Pattern [ Probability [ Description |

1. | 1001,0001,1101-1101 0.15,0.1,0.09 naked shoulders

2 0,1p7p,0-0,0001 0.17,0.16,0.14,0.13 | working, low sun radiation

3 1001-0,0-1001, 0.17,0.14 no sun radiation,

0,1-0,0-1,0p1p ,0.14,0.12,0.11,0.1 holiday-work

4. 1pin,2pPID 0.12,0.1 medium sun exposure

5. 3pip,11,11-11 0.11,0.11,0.09 holiday, high sun radiation
6. 0-0,0,0prp 0.29,0.27,0.23 working, no sun

Table 4: Key-patterns for clustering the diary histograms combined with the co-
occurrence matrix and the PID histograms. In the first column the cluster number
is displayed. Second column contains the most probable patterns for the cluster.
The diary key-patterns are explained in table 1. The co-occurred patterns are
explained in table 3 and the PID patterns in table 2. Third column gives the
probabilities for the key-patterns and fourth column presents general description of
cluster based on the key-patterns.

describing holidays with high sun radiation. Persons no. 213 and 35 can be
well described by clusters 6 (working, no sun) and 1 (naked shoulders) while
person no. 23 by clusters 6, 1 and 4 (medium sun exposure).

CONCLUSION

This paper discusses using an Latent Semantic Indexing like method for pro-
cessing and clustering categorical data. Moreover, it provides the possibility
for combining multiple date types into a common vector space framework.
We applied the method to analysis a combination of categorical diary data
and real valued sun radiation measurements. Using the analogy to textmin-
ing we proposed methods for interpretation of the identified clusters. This
scheme allows for evaluating the significance of various feature representa-
tions. For the specific data set we addressed the role of different represen-
tations. Preliminary results indicate that the sequence information and UV
dose measurements contribute to stabilizing the clustering model and its in-
terpretation.
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Abstract: Automated analysis of the world wide web is a new challenging
area relevant in many applications, e.g., retrieval, navigation and organiza-
tion of information, automated information assistants, and e-commerce. This
paper discusses the use of unsupervised and supervised learning methods for
user behavior modeling and content-based segmentation and classification of
web pages. The modeling is based on independent component analysis and
hierarchical probabilistic clustering techniques.
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1. Introduction

Webmining is an increasingly important and very active research field which
adapts advanced machine learning techniques for understanding the complex
information flow of the world wide web, see e.g., (Nigam 00, Weigend 99).
Web data are fundamentally multimedia streams of text, sound, images, and
various database information. While optimal information retrieval, navigation
or organization requires mining of all media modalities, this paper focuses on
textmining and user behavior modeling.

Textmining (Hansen 00, Landuaer 98) is used to categorize text according
to topic, to spot new topics, and in a broader sense to create more intelligent
searches, e.g., by WWW search engines. Textmining proceeds by pattern
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recognition based on text features, typically document summary statistics.
While numerous high-level language models for extraction of text features
exists, simple summary statistics are still preferred because they are compact
representation and can be adapted automatically and continuously, without
costly manual intervention of language expertise.

Modeling the user’s behavior when navigating a web site is very rele-
vant in e-commerce applications (Cooley 99, Mobasher 99, Pei 00, Shahabi 97,
Spiliopoulou 99, Yan 96). User modeling can be divided in three levels of func-
tionality: the first level concerns automatic segmentation of users who display
similar behavior. Second level concerns automatic classification of users using
expert annotations of identified user segments. The third, and most elabo-
rate level, involves interactive web pages continuously adapted to the user’s
behavior. This paper addresses merely automatic segmentation.

Section 2. describes a probabilistic hierarchical clustering framework based
on the generalizable Gaussian mixture (GGM) model, which is reviewed. In
section 3. we discuss the use of the GGM for supervised learning. Section 4.
presents webmining applications using the methods of Sections 2.-3. cover-
ing: classification of webpages, hierarchical segmentation of emails, and user
behavior segmentation.

2. Hierarchical Probabilistic Clustering
2.1. Generalizable Gaussian Mixture Model
The Gaussian mixture model is a very flexible pattern recognition device, see,
e.g., (Ripley 96) for a review. The K component Gaussian mixture density of
a feature vector & of dimension d, is defined as
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where the component Gaussians are mixed with proportions Y, P(k) = 1,
P(k) > 0, and 0, = {X, s} is a parameter vector. The parameters are
estimated from a set of examples D = {@,|n = 1,- -, N}. Traditionally mix-
ture densities are estimated using maximum likelihood (ML), e.g., through
various expectation-maximization (EM) methods (Ripley 96). The (negative
log-) likelihood cost function is defined by Sy(8) = SN_, —logp(z,|6) and
6 = arg ming S v (0) are the estimated parameters. The objective of modeling
is to ensure that the generalization error, defined as the expected cost on inde-
pendent data, G(8) = — [ logp(x|8)p°(x) de is minimal. Here p°(z) denotes
the “true” density.

The Gaussian mixture model is extremely flexible and simply minimizing
the above cost function will lead to an “infinite overfit”. This solution is opti-
mal for the training set, but unfortunately has a generalization error roughly
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equal to that of the single component Gaussian model, as the singular com-
ponents have zero measure w.r.t. test datal. This instability has lead to much
confusion in the literature and needs to be addressed carefully. Basically, there
is no way to distinguish generalizable from non-generalizable solutions if we
only consider the likelihood function. The only way to ensure generalizability
is to invoke the concept of generalization in the estimation procedure. The
most common remedy is to bias the distributions so that they have a common
shared covariance matrix, see e.g., (Hastie 96). In fact, classical EM algorithms
only work under this assumption. A more principled method is to invoke reg-
ularization in terms of priors in a Bayesian framework (Rasmussen 00).

Here we adopt the Generalizable Gaussian Mixture model presented in
(Hansen 00) which combines three approaches to ensure generalizability. First,
we compute centers and covariances on different resamples of the data set. Sec-
ondly, we make an exception rule for sparsely populated components in which
the covariance matrix defaults to the scaled full-sample covariance matrix.
Thirdly, we estimate the number of mixture components by the AIC-criterion
(Akaike 69, Hansen 96). The algorithm allows for individual component co-
variance matrices which enables a flexible local metric in contrast to methods
assuming common covariance matrix, hence a global metric.

The Generalizable Gaussian Mixture algorithm is a modified EM proce-
dure (Dempster 77) and is provided in Figure 1 for a fixed number of mixture
components, K.

2.2. Hierarchical Clustering

There are numerous contributions within hierarchical clustering (see e.g.,
(Ripley 96)). Here the focus is to construct a relatively simple agglomerative
hierarchical clustering using a probabilistic model which is based on the work in
(Szymkowiak 01). For recent approaches to full hierarchical probabilistic clus-
tering techniques the reader is referred to (Vasconcelos 99, Williams 00).
Define pj(x|k) as the conditional probability® density of @ for cluster CJ
k=1,2,---,K—j+1inlayer j =1,2,---, K of a hierarchy. Further define
P;(k) as the priors of the clusters (mixing proportions). At the most detailed
level j = 1, the density is modeled by the GGM described above, i.e., p;(z|k)
are Gaussian densities. At each consecutive level two clusters with minimum
distance are merged until we reach one cluster at level j = K. As distance
measure we suggest to use the symmetric Kullback-Leibler divergence?® between

!The cost function has a trivial (infinite) minimum attained by setting p, = = for
k=1,---,K —1, and X} = 0. The remaining K’th Gaussian is adapted to the remaining
N — K + 1 data points, with pye = (N =K +1)3N 2, and Sx = (N - K +
1)t Zgzk(zn —pg)(®n — /J'K)T'

2For notation convenience, we omitted the condition on the model parameters in what
follows.

3See e.g., (Ripley 96) for the classical Kullback-Leibler definition.
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Figure 1: Generalizable Gaussian Mizture Algorithm.

Initialization for K components

1. Compute the mean vector pg = N~' 3, @p.

2. Compute the covariance matrix of the data set:
Sy=N""! Zn(mn - ﬂu)(mn - I‘U)T-

3. Initialize gy, ~ N (19, Xo)-

4. Initialize Xy = X.

5. Initialize P(k) = 1/K.

Repeat until convergence

1. Compute p(k[2,) = p(@alk)p(k)/ T p(@alOp(6) and assign @,
to the most likely component.

2. Split the data set in two parts D, Dx. Often 50/50 splitting is
used.

3. For each k estimate p,; on the points in D,, assigned to compo-
nent k.

4. For each k estimate X on the points in Dy assigned to compo-
nent k. If the number of data points assigned to the k’th compo-
nent, Ny, is less than d + 1, then Xy, « (N Xy, + Xo) /(N + 1).

5. Estimate P(k) as the frequency of assignments to component k.

the mixture components, as defined by
p(x|ks)

p(:D'kl) l xr 0g ——— adx

For layer j = 1 in which the cluster densities are Gaussian the distance can be
expressed as (Szymkowiak 01):

1
D(k1, ky) = 5/p(:l:|k1) log

d 1
Di(ky, k) = —5 + 5 (T2 Be,] + T2y, By, ) + (3)
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When proceeding from level j to j + 1 suppose that clusters C,{l and Ciz are
merged. Then the merged density of cluster C,]c+1 at level j + 1 is a mixture
given by:

_ Pi(k)p;(x|k1) + Pj(ko)pj(|kz)
Pl =R ) + Bk

s Pya(k) = Py(k) + Pi(k2) (4)

The remaining densities are unchanged.

At level 1 the expression for the distance in Eq. (4) is exact, while exact
calculation at other levels cannot be cast into a simple analytical form. Conse-
quently, we suggest to use a simple combination rule in which the distances to
a merged cluster is original distances weighted by the mixing proportions, as in
Eq. (4), i, Djs1(k, ) = (P;(k1)Dj(k1, €) + P;(k2) Dj(ka, €)) / (P (k1) + P; (k2)),
where clusters Cf,, Cj, have been merged into C;"" at level j, and £ indexes a
cluster at level j + 1.
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Using a Bayes optimal decision strategy (assuming simple 0/1 loss function,
see e.g., (Ripley 96)), a specific training example z,, is assigned to cluster k if

ny(@lt)P,(0)
b (ali) Py ()

()

k = arg mlgixPj(Z\:c") = arg max

If clusters Cil,Ciz have been merged into CJ™' at level 7, then Pjy,(k|z,) =
Pj(k1|x,) + Pj(ka|x,). Thus, all posterior cluster probabilities are easily com-
puted from the level 1 posteriors P (k|zy,).

Once the hierarchy is constructed we want to determine cluster/level mem-
bership of new examples. For this purpose we chose the following criterion: If
Pj(k|z) = arg max, Pj(¢|x) > p then z € C, where ming Pi(k) < p<1lisa
prescribed threshold, e.g., p = 0.9. This corresponds to accepting that x is
assigned to a wrong cluster in with probability 0.1.

2.3. Interpretation of Clusters

Interpretation of clusters in the hierarchy is important for webmining applica-
tions. Suppose that each original example in our database is a set of elements
drawn from finite number of possible elements (often large). Each example
could for instance be a html-document consisting of a number of elements,
i.e., words from a large vocabulary. The set of elements of each example is
encoded into the feature vector @. Basically two methods exist for a cluster
interpretation: The first consist in listing a number of representative examples
from the available training data set which are member of the cluster to be
interpreted. The second method consists in listing typical elements associated
with the cluster.

2.3.1. Prototype Examples

Representative examples of a specific cluster can be defined as the ones which
are most probable. Since p(z|k) is a probability density the values are not
directly comparable. Instead we compute the probability? Q(t) = Prob(z €
R), R = {z : p(z|k) < t}, for all thresholds ¢. We aim at identifying the
t-value corresponding to the most probable example for the major part of the
probability mass. This value is found as tmax = arg max; Q(t) < Qmax, where
that Qmax is a high threshold, e.g., 0.9. Practically, Q(¢) is computed from
the training data assigned to cluster k, say Dy, = {z, € C}, as follows: rank
t, = p(x,|k), 2, € Dy in ascending order, t; <ty < --- < ty,, where p(x,|k)
are model density values, and Ny = |Dy| is the number of example in D.
Finally, let Q(t,) = n/Ni. Prototype examples are then a number of high
ranked examples having t,, near ;.

4This idea relates to the concept of highest probability density regions (Box 92, Ch. 2.8).
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2.3.2. Prototype Elements

In order to list representative elements associated with a cluster we start by
finding most probable feature vectors from each cluster, basically using the
method described in the previous section. An large surrogate data set can
be generated by drawing Monte Carlo random samples from the estimated
Gaussian mixture. From these data typical feature vectors are those having ¢-
values for which Q(t) is sufficiently high. Finally, the generated feature vectors
are back-projected into original element space.

2.3.3. Novelty Detection

When the estimated density model is applied to new data there is a risk that
these can not meaningfully be described by the model; in other words, we
need to address the novelty problem. In line with recent work (Baker 99,
Bishop 94, Nairac 97, Basseville 93), we suggest a novelty detector based on
total input density p(x). The method described in Section 2.3.1. can be used
to form a Q(t)-function for p(z). We then set a low threshold Qu, and find
the corresponding tmin as tmin = arg ming Q(t) > Qmin- Finally, novel events
are detected as those having density values less than #p,;,.

3. Generalizable Gaussian Mixture Classifier

If the feature vectors & are annotated by providing class labels, we are able
to perform supervised learning using the GGM model. Consider a data set
D= {(xn,cn)|n=1,2,---,N} where c, € {1,2,---,C} is the class associated
with example n. The joint density of feature vectors x and class labels ¢
is p(z,c) = p(z|c)P(c), where p(z|c) is the class conditioned density and
P(c) is the marginal class probabilities. The classifier is designed by adapting
GGM’s to each class separately. Hence, the class conditional density can be
written as p(z|c) = LK<, p(z|k, ¢) P(k|c), where P(k|c) and K, are the mixture
component probabilities and number components used for class ¢, respectively.

Labels are assigned to a new data point in accordance with the optimal
Bayes classification (under the 0/1 loss) rule by selecting the maximum poste-
rior probability, P(c|z) = p(z|c)P(c)/ X5, p(x|c)P(c).

3.1. Unsupervised-then-Supervised Gaussian Mixture Model

In (Nigam 00) the interplay between supervised and unsupervised learning
was discussed. To estimate the role of the labels for the GGM model first per-
form an GGM input density estimate p(x) = K, P(k)p(z|k). Next estimate
P(c|k) for each component k from the joint feature/label training data set as
N /N, where N is the number of data samples of component k assigned
class label ¢, and Ny, is the number of data samples of component k. Finally,
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estimate the conditional class probability by

K

oelOP(e) é p(z|k, ) P(c|k) P(k) ) gjlp(w\k)P(c\k)P(k)_ o

p() p(z) a p(z)
The classification of examples using Eq. (6) can be compared to that of the
supervised GGM classifier, illustrating the role of labels during training.

P(clz) =

4. Experiments
4.1. Classification of Web Pages

The focus is on understanding the textual content of a web page based on
statistical features. Here we consider the single word statistics; frequency of
word occurrence, hence disregarding order and association. Word frequencies
have been used in the vector space model (Luhn 58, Salton 89) for decades. In
practice words which high and low frequencies have little discriminative power.
High frequency words are typically function words, e.g., is and the. Such words
are removed by comparing the document with a list of stop words, i.e., a dic-
tionary of common words. Also low frequency words are removed since they
do not represent any common meaning among a number of web pages. In
addition, we will consider to remove words with common stem, i.e., words like
worked and working are represented by their stem work. Typically the number
of words/terms after such parsing is still a very large compared to the number
of documents available for learning. Since learning algorithms often fail to
generalize in high dimensions there is a need for efficient and robust means
for data reduction and feature extraction. Latent Semantic Indexing (LSI)
(Deerwester 90) is a method to generate a reasonable low dimensional feature
vector, and is further believed to handle polysemy and synonomy problems.
Polysemy refers to the problem that words often have more than one mean-
ing, whereas synonomy refers to the problem of different words with similar
meaning.

LST is based on the T'x N term-document matrix, Z = [z, - -, 2y], where
z, represent term frequency of document n, i.e., z;, is the probability of term
i in document 7.5 The term frequencies are projected on a orthogonal set of
eigen-histograms found by singular value decomposition (SVD). LSI can aid
interpretation by visualizing group structure in the set of documents, typically
by scatter plots of the term histograms on a reduced set of salient eigen-
histograms. Another virtue of this representation is that it can be used as
a dimensionality reduction scheme. First we remove the mean value z,, =
2, — I, where it = N"' YN z,. Then the SVD is given by Z = UAV' =
SR w;D;v], where the T x R matrix U = {u;} = [ui,us,- -+, ug], with
R being the rank® of Z, and the N x R matrix V' = {v,;} = [v1,v2, -, vg]

5The probabilities as normalized so that ZZ Zin = 1.
SSince T >> N, then for independent documents the rank is R = N.
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Figure 2: Learning curves for supervised learning of the generalizable Gaus-
sian mizture classifier using WebKB data set.
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represent the orthonormal basis vectors (i.e., eigenvectors of the symmetric
matrices X X' and XX, respectively). A = {);} is a R x R diagonal
matrix of singular values ranked in decreasing order. Many singular values will
be small and are regarded as artifacts or noise. Consequently, the subspace
associated with these should be omitted while maintaining the latent semantic
structure. The projection onto the d dimensional latent subspace is given by
X = ﬁTZ, ﬁ: [ul,uQ,---,ud].

The CMU WebKB repository (CMU homepage) consist of 2240 web pages
labeled according to the following categories: Course (24.7%), Faculty (21.6
%) Project (15.7%), Student (38.0%). A term list of 13071 words that oc-
curred in two or more documents was defined without screening for stop-
words. Latent semantic analysis is performed using feature dimensions of
d = 5,20,30. In Figure 2 learning curves for the GGM classifier Section 3.
were estimated by cross-validation. Data are randomly split 10 times into a
test set of (Niest = 1240) and training sets of increasing sizes, Nirain = 100—
1000. Learning curves were estimated as the averaged test error as a function of
d. A generalization cross-over, as function of the dimension, is noticed, i.e., the
larger dimensional representations requires more samples to generalize. The
proposed GGM classifier achieves classification rates and learning curves com-
parable to those found in (Nigam 00). The GGM model, however, achieves this
performance based on the full 13071 dimensional term-frequency showing the
strength of Latent Semantic Analysis representation. This allows for handling
more complex webmining problems and also avoiding the selection of terms as
in (Nigam 00). The interplay between supervised and unsupervised learning
was further addressed in (Nigam 00). To estimate the role of the labels for the
GGM model, we have carried out a similar learning curve experiment for the
unsupervised-then-supervised Gaussian mixture model Section 3.1. It turns
out that learning is much less efficient for the unsupervised-then-supervised
procedure indicating significant class overlap.
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Figure 3: Novelty detection using web 173 pages from the Department group of
the WebKB data set. The model has d = 30 dimensions and both the training
and test sets contained 1120 documents. Threshold t for p(x) is selected for
Q =5%.
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4.1.1. Novelty Detection

Since the GGM classifier produces conditional probabilities we obtain in this
way a clue to the “internal” confidence. The magnitude of the probabilities
is determined by proximity of the decision boundary of the closest competing
class. The overall test error rate give a clue to our confidence in the prob-
abilities obtained from the system. However, when applied to new data the
possibility exist, of course, that the new data can not in a meaningful way be
assigned to any of the classes in the training data. In other words we need
to address the novelty problem by identifying outliers in p(x) as described in
Section 2.3.3. Figure 3 shows (Q)(t) based on training and a test set gathered
from the documents above. We note that the test data are not rejected at
reasonable Q-levels. The third curve is obtained from a third independent set
of documents Department not related in an obvious way to the training and
test sets. This data is declared novelty at levels below Qupin = 5%.

4.1.2. Web Navigation

A possible application is a navigation tool that can assist the user by com-
bining the supervised and unsupervised classification schemes. At first the
supervised part uses a list of labeled web pages, as typically can be found in
a bookmark/favorite list ordered in folders for which the folder name serves
as label for the underlying web pages (links). The GGM classifier classifies
new pages into known bookmark labels. Documents not qualifying w.r.t. the
current list of topics are detected as novel and using unsupervised GGM clus-
tering of the pages and evaluating representative keywords for each mixture
component, we are able to get an overall description of the document. Key-
words are generated by back-projecting cluster centers into term-frequency
space and then selecting most probable terms. Using e.g., Other/Misc pages
of the WebKB data set 40% of the pages in this group are detected as novel,
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and these were subsequently clustered into 4 new groups. Keywords suggested
the 4 groups could be interpreted as: Places, Spare time, Computer systems and
Multimedia as indicated by Table 1.

Table 1: Keywords associated with novel WebKB group Other/Misc.

\ Multimedia | Computer sys. | Spare time Places
€ros up page mississippi
random readme webteam detroit
np cache visits university
u incoming funny military
player msdos uva saint
ramifications | directory today macon
gif windows museum | williamsburg
format mac totals rolla
slide unix robins | aeronautical
modulo wie total louis

4.2. Email Segmentation using Hierarchical Probabilistic Clustering

Consider hierarchical segmentation of emails. A database of 1443 English
emails categorized in three groups conference, jobs, and spam were collected.
Only the text contained in subject and body was considered. As in Section 4.1.
we performed LSI using a stop word list of 577 words, removed words which
occurred less than 4 times, and finally we discarded emails which contained
less than 2 words. Only one word for words with a common stem was main-
tained by discarding 13 different endings. After preprocessing we had 1405
emails divided into 702 for training and 703 for testing. Each email was repre-
sented by it’s term-histogram of 7798 terms. Using a latent subspace of d = 30
components’ resulted in GGM models with optimal number of clusters in level
1 in the range 6-10. We chose to illustrate a model consisting of K = 10
clusters. Performing hierarchical clustering on top of the GGM, as described
in Section 2.2., results in a dendrogram hierarchy depicted in lower left panel
of Figure 4. Numbers refer to cluster numbers, e.g., 12 is the merging of clus-
ters 4 and 11. The confusion matrices computed from training examples for
hierarchy levels 1 and 8 are shown in the upper panels of Figure 4. It is noted
that at level 1 the conference category is mainly represented by cluster 7 and
5, jobs by cluster 5, and spam by clusters 9, 6, 10 and 1. At level 8, corre-
sponding to three clusters, clusters 1 and 17 mainly represent spam whereas
cluster 16 mainly represents both conference and jobs. Consequently, the un-
supervised hierarchical clustering is not able to distinguish these categories.
Also notice that cluster 5 and 7 which largely represent these categories are
merged at an early level into cluster 13. For comparison, supervised learn-
ing was also implemented. As expected, it performs much better regarding
cluster separation. Then confusion on the first level of hierarchical clustering

7 A method for selecting the subspace dimension based on generalization error in described
in (Szymkowiak 01).
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was much smaller comparing to the unsupervised. However, since the goal of
the algorithm is to extract hidden common sense in the text documents, the
exact classification can be misleading. In the tested database the clustering
algorithm seems to confuse big parts of the conference and jobs group. This
happens both for the unsupervised and supervised learning algorithm. The
KL divergence measure, Eq. (4), indicates a small distance in the probabilistic
space between these two clusters, and the generated keywords (see Table 2)
are closely related which explains the small distance. When filtering test set

Figure 4: Dendrogram for hierarchical email clustering and distribution of
test set emails among clusters.
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emails through the hierarchy we assign a specific email to the cluster at which
the posterior probability is above 0.9, according to Section 2.2. The right lower
panel of Figure 4 shows the fraction of test set emails ending up in different
clusters. We notice that several email first obtain a meaningful interpretation
at high level in the hierarchy (i.e., cluster number larger than 10).

Keywords are generated by back-projecting most probable features from
each cluster at any level in the hierarchy as outlined in Section 2.3. The back-
projection intro term-frequency space is given by z = Uz, where x is a prob-
able feature vector and U is the 1405 x 30 projection matrix. The keywords
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are then found as the most likely terms, i.e., highest values® of z.

Table 2: Keywords for email cluster hierarchy in Figure /.

[Cluster [ Keywords

1 free address government

2 fax

3 subject future remove computer

4 adult free

5 fax interest computation computer web science position research university
6 good mac

7 fax year message call conference information computer address

8 call girl

9 good year receive product special make month day future mail friend quick line state send offer

10 | government remove adult

11 action address check hottest click site creativity call website government web free remove mac adult
12 hey jessica site remove call government creativity web website mac adult fax free

13 conference send information application computation year interest science address call fax computer
14 website mac adult remove fax free computer

15 website revolution remove fax free call adult girl computer

16 year interest computation fax address science web computer position university research

17 mail government subject creativity call website free future fax food adult remove computer

18 food web free mac government adult

19 message fax computer science list call subject university money position information address dear

4.3. User behavior modeling

User behavior modeling is an important aspect of e-commerce systems. The
current examples is based on our work reported in (Christiansen 01) which
studied an e-commerce company selling articles via the web. Web log-data
was recorded for half a year and resulted in 31700 sessions for which all user
actions where mapped into 60 unique events. Events could be pressing a buy
button, selecting a certain group of articles, or following a link to a another
web page. Each session is thus a variable length sequence of events from the
60 element event-alphabet B = {1,2,---,60}, B = |B| = 60. In general, it
might be difficult to map the details of the web server log file into a unique
event space unless the logging has been designed with this purpose in mind.

The log-on to the site could be done in two ways, either as member login
with personal password, or as a guest assigned a pseudo user-id. Each ses-
sion was numbered in succession, i.e., repeated log-on from the same user is
mapped to different session numbers. Using the industry standard, sessions
are interrupted and the user automatically logged-off after 30 minutes of no
activity.

Too short sessions will not reflect a real interest in the web site (Yan 96).
Hence, the minimum session length was set to four events, corresponding to
the shortest way into the “shopping area” from the opening site. A total of
4339 sessions remained of which 1089 randomly was selected as test set, leaving

8Due to using a low-dimensional subspace of d = 30, zZ + % typically does take values
in the range [0;1] nor is ), % + @; = 1. In principle, we could feed the values trough a
softmax-function (Ripley 96), which, however, will not change the ranking.
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3250 sessions for training.

Let s, € B represent session n consisting of L, events, £ = [1; L,]. As
in (Yan 96), we deploy histogram statistics representation of the sessions by
computing the frequency of events: z, = Ly' Yf, 8(i— s4), where i € B, 6(-)
is the Kronecker delta-function, and Z = [21, - -, 2, is denoted the histogram
matrix. It is possible to use second order statistics, i.e., co-occurrence matrices.
The B x B co-occurrence matrix for session n and displacement 7 is defined as,
cij(n,7) = (L, —1)7! SEncts (i - Sen) * 0() — Seqrm), Vi, j € B, and expresses
the frequency of events ¢ and j in distance 7 of the sequence. Co-occurrence
features have be used in e.g., (Faisal 99) and will be further addressed in
(Christiansen 01). In this study we merely address the use of the histogram
and also neglect to include the duration of a session as a feature. In order
to obtain a compact feature space we apply singular value decomposition (see
p- 7) of the zero mean B x N histogram matrix Z = UDV' defined by

Z, = Zp—U, wherew = N ! EnNzl 2,. Then we project onto the d-dimensional

latent subspace spanned by the largest singular values as given by X = ﬁTZ ,
where U = [uy, U, - -+, Ug).

Repeated training of the unsupervised GGM model using d = 30 features
resulted in that the most generalizable model contained K = 17 components
(clusters). Figure 5 shows the obtained analysis of cluster 1. The upper left
panel shows the event sequences of the 40 sessions belonging to cluster 1,
and are quite similar for the first few instances in the sequence. The upper
right panel shows event histograms, and obviously most sessions use a rather
limited number of events. In the lower panel the interpretation of cluster 1
is illustrated. The lower left panel shows the histogram of most the probable
session, whereas the lower right panel shows the back-projection of the cluster
center to histogram space. There is a significant resemblance indicating that
the cluster can be interpreted by events (ordered in decreasing importance) as:
35,27,8,22,23. From the actions associated with these events it seems that
the cluster represents users attempting to register as a new members, while
none of the users are able to get to the shopping web page. Other clusters
can be interpreted using this technique. For instance, cluster 3 represents
members who first login as guests, secondly choose a goods pick-up store, and
then browse for while. However, almost 200 out of 708 in this cluster decide to
quit after having watched the entry shopping web page. Cluster 15 represents
a group of users which are not able to use the site correctly. They try use
a search function before selecting preferred goods pick-up store, which turns
out to be impossible. This way cluster 15 reveals a simple bug in the web site
design.

5. Conclusion

This paper discussed the use of unsupervised and supervised methods for anal-
ysis and interpretation of world wide web data. A hierarchical probabilistic
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Figure 5: User behavior modeling. Analysis of cluster 1.
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clustering scheme based on the generalizable Gaussian mixture (GGM) model
was described. In addition, methods for interpretation of the identified clusters
were presented. The use of the GGM for supervised and unsupervised-then-
supervised classification was also discussed. We successfully applied supervised
GGM for classification of web pages. The unsupervised GGM was applied for
hierarchical probabilistic clustering of emails and segmentation of user’s be-
havior when shopping on a web site.
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