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Abstract

Cantilever based sensors have been demonstrated to be a very flexible and wide
ranging micro-electro mechanical system (MEMS). Compared to static mode,
dynamic mode operation of cantilever based systems are able to measure both
stress and pure mass changes of the cantilever. Furthermore, by reducing the
dimensions of the sensor to the nanometer scale, the sensor can become faster,
cheaper and more sensitive.

The goal of this Ph.D. project has been to design, fabricate and characterize a
cantilever based mass sensor. The design of the device is based on electrostatic
actuation of a laterally vibrating cantilever and the readout is based on mea-
suring capacitance changes between the vibrating cantilever and a static parallel
electrode. Furthermore, the width of the cantilever is to be reduced to the sub-
micrometer scale in order to increase the mass sensitivity and spatial resolution.

In order to facilitate with the design a model of the capacitive based device has
been developed. This model is based on SPICE and is able to simulate both the
mechanical and electrical behavior of the device. It was found through simula-
tions that the capacitive readout of the device is only possible if the parasitic
capacitances are very low, due to the sub-micron dimensions of the cantilever
device. This lead to the integration of the mass sensor with CMOS technol-
ogy. By integrating the mechanical device with CMOS circuitry, the parasitic
capacitances are reduced enough to achieve capacitive readout. Furthermore, the
CMOS can be used to increase the functionality of the sensor.

It was decided that, as a first attempt, the fabrication of the cantilever will be a
post processing module using one of the CMOS poly-Si layers. A post-processing
sequence for fabricating 500nm wide laterally vibrating cantilevers on CMOS
circuitry was developed. Furthermore, fabrication of cantilevers that have been
defined by laser and E-beam lithography has been successful. In addition, single-
crystal Si and Al, non-integrated cantilevers, have been fabricated using atomic
force microscopy (AFM) and UV lithography respectively.

Non-electrical characterization has been performed on poly-Si test cantilever in
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and out of vacuum in order to determine the sensor performance. Furthermore,
electrical characterization of a CMOS integrated cantilever has also been per-
formed.

Mass measurements have been performed using vertically vibrating Al cantilevers.
The measurements have been performed in vacuum using the SEM detector signal
as a readout for the cantilever. Electron beam induced deposition (EBID) was
used to deposit carbon on the apex of the cantilever.



Dansk Resume

Bjælke baseret sensorer har demonstreret at være et meget fleksibelt mikro-
elektro mekanisk system (MEMS). I forhold til statisk mode, kan dynamisk mode
bjælkebaseret systemer b̊ade måle stres og masseændringer p̊a bjælken. Sensoren
kan blive hurtigere, billigere og mere følsom ved at reducere bjælkens dimensioner.

Formålet med dette Ph.D. projekt har været at designe, fremstille og karakteris-
ere en bjælkebaseret massesensor. Designet af komponenten er baseret p̊a elek-
trostatisk aktuering af en lateral vibrerende bjælke, og udlæsning af bjælkens
udbøjning sker ved at måle kapacitance ændringer mellem den vibrerende bjælke
og en stationær elektrode. Desuden skal bredden af bjælken reduceres til under
1 mikrometer, for at optimere sensorens massefølsomhed og dens rummelige sen-
sitivitet.

For at letteregøre designet at massesensoren, blev en model udviklet, som kan
modellere det kapacitive system. Modellen er baseret p̊a SPICE og kan simulere
b̊ade den elektriske og mekaniske opførsel af komponenten. Da bjælkens dimen-
sioner er meget små , blev det fundet at den kapacitive udlæsning af komponenten
kun kan lade sig gøre, hvis de parasitiske kapacitancer er meget lave. Dette fund
giver anledning til at komponenten bliver integreret med CMOS-teknologi. Ved
at integrere bjælken med et CMOS-kredsløb kan de parasitiske kapacitancer re-
duceres nok til at muliggøre den kapacitive udlæsning. Desuden kan CMOS’en
bruges til at forøge funktionaliteten af sensoren.

Det første forsøg p̊a at integrere CMOS og bjælker er efter-fremstilling af et af
CMOS’ens poly-silicium lag. Der blev udviklet en efter-proces der kan fremstille
500nm brede bjælker p̊a en CMOS chip. Desuden, er bjælker defineret med
laser og EBL blevet fremstillet. Udover disse poly-silicium bjælker, er enkelte-
krystallinske-silicium og aluminiumsbjælker ogs̊a blevet fremstillet, uden CMOS.

Ikke-elektriske karakteriseringer er blevet gennemført p̊a poly-silicium test kom-
ponenter (uden CMOS) b̊ade i vakuum og i luft. Desuden er elektriske karak-
teriseringer blevet gennemført p̊a en CMOS integreret poly-silicium komponent.
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Massemålinger er blevet gennemført ved brug af en vertical vibrerende Al bjælke.
Målinger er udført i vakuum, og udlæsning foretaget ved brug af SEM’ens elektron
detektor signal. Elektron induceret deponering blev brugt til at deponere kulstof
p̊a bjælken.
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Chapter 1

Introduction

In the beginning of the 1970’s technologies generated from the microelectron-
ics industry started to be used for fabrication of mechanical systems, so called
micro electro-mechanical systems (MEMS)[1]. Since then, micrometer scale me-
chanical systems have been moving towards nanometer scale mechanical systems
or nano electro-mechanical systems (NEMS). Miniaturization from the micro to
nano scale offers the potential for faster, cheaper and more sensitive sensors.

1.1 Cantilever based sensors

One of the most flexible mechanical sensor systems is the cantilever based sensor
[2][3]. The main feature of a cantilever based sensor is transducing the mechan-
ical behavior of the cantilever into a measurable signal, where the mechanical
properties are altered by physical changes in the environment. Cantilever based
sensors have a wide range of applications. Cantilevers have been demonstrated
in such applications as gas, temperature, pressure, biological and force sensors
[4][5][6][7][8][9][10][11][12][13]. The two types of operation modes of a cantilever
based sensor are static and dynamic mode. In static mode the bending of the
cantilever is used to transduce the desired physical quantity to a measurable sig-
nal. In dynamic mode the cantilever’s resonant behavior is used, where shifts in
the resonant frequency and the damping of the cantilever transduce the physical
quantities.

One of the first cantilever based sensors is the atomic force microscope (AFM),
invented by Binning et al. in 1986 [14]. In AFM, a tip is integrated onto the
apex of a cantilever and forces acting on the tip are transduced using static or
dynamic mode [15][16]. In static mode AFM, the tip is typically in contact with
the surface and by scanning the cantilever across the surface and measuring the
bending of the cantilever, the topography of the surface is obtained. In dynamic
mode, the tip is not in full contact with the surface and the resonant frequency

1
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shift due to the atomic forces acting on the tip serves as a measurement of the
surface topography. Force sensitivities down to 10−10N are routinely achieved
[16].

1.1.1 Static mode sensors

If the field of chemical or biological sensors the induced surface stress when
molecules are immobilized onto a surface induces a bending of the cantilever.
In this case the whole cantilever surface acts as the sensor and not the tip at the
cantilever apex as in AFM. A schematic drawing of the principle can be seen in
figure 1.1, where in (a) the cantilever is stress free and in (b) bending is induced
by molecular immobilization. Several examples of surface stress sensors have been
demonstrated and typically a surface stress of 10−5N/m can be detected [17].

Figure 1.1: In (a) the cantilever is stress free and in (b) molecules have immobilized
on the surface inducing surface stress and bending of the cantilever.

Several papers have demonstrated detection of alcohols in gas phase. These ex-
periments have been performed by coating the cantilever with a polymer layer
[18][19]. The cantilever is placed in a chamber where the alcohol is introduced
and absorbs into the polymer, inducing stress into the cantilever, due to swelling
of the resist. Partial pressures on the µl range has been demonstrated for differ-
ent alcohols.

The detection of immobilization of single stranded DNA oligonucleotides and
hybridization of the complementary oligonucleotide has been demonstrated by
Fritz et al. [20] and Wu et al. [21] . In this experiment gold coated cantilever
surfaces where functionalized by thiolated probe DNA. Then the target DNA
strand is introduced and by measuring the static bending of the cantilever by op-
tical means, the surface stress change induced by the hybridization was observed.
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Concentrations on the nM scale have been measured. Selectivity between 12-mer
oligonucleotides with one base differences has also been demonstrated.

Thaysen et al. [22] describe a novel piezoresistive readout of the cantilever bend-
ing, which is independent of the bulky optical readout system traditionally used.
This sensor is integrated in a fluid handling system with inlets and outlets and
ten cantilever sensors per chip. Measurements of gold etching and immobilization
of thiolated probe DNA on gold have been achieved.

1.1.2 Dynamic mode sensors

There have also been numerous dynamic mode sensors, where not only stress
changes can be measured but mass changes of the cantilever as well. The schematic
principle of operation can be seen in figure 1.2. In (a) the cantilever is vibrat-
ing at its resonant frequency and in (b) the added mass and stress, due to the
immobilization of molecules, shifts the resonant frequency.

Figure 1.2: In (a) the cantilever is vibrating at its resonant frequency and in (b) the
resonant frequency shifts due to the added molecules.

Through a theoretical treatment of a cantilever based sensor, Sader et al. [23]
have found that the resonant frequency shift, due to the deposition of an evenly
distributed mass on the cantilever surface, is induced by a surface stress change
as well as a mass increase. Furthermore, the two components can be separated.

Baltes et al. [24][25] have demonstrated high sensitivity alcohol measurements on
a cantilever integrated with CMOS circuitry. The cantilever is excited thermally
and an integrated piezoresistor reads out the cantilever’s vibrational amplitude.
A thin polymer layer is deposited on the cantilever and the absorbed alcohol is
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measured by measuring the resonant frequency shift of the cantilever.

Yang et al. [26] and Cleland et al. [27] have demonstrated the fabrication of
nanometer sized resonant structures. The feature size of the mechanical sensor
is defined by E-beam lithography. The actuation and detection principle is mag-
netomotive. The excitation of the device is achieved by passing an AC current
through the beam structure and applying a high magnetic field perpendicular to
the device, which generates a Lorentz force that drives the beam. The readout
is performed by measuring the electromotive force (EMF) across the beam. The
deposition of gold has been detected with a sensitivity in the attogram range [28].

Several gas sensors have also been demonstrated, where the mass change of a
polymer coated cantilever due to chemical gas absorbtion has been performed
[29][30][31][32].

Yang et al. [33] have measured hydrogen absorbtion in carbon nanotubes with
ultra thin cantilevers with a thickness down to 20nm. A bundle of nanotubes
is attached to the apex of the cantilever and the cantilever is placed in a vac-
uum chamber. The cantilever is excited by a piezo-actuator and the readout
is achieved by a laser doppler system. After measuring the resonant frequency
of the nanotube bundle the cantilever is placed in a hydrogen gas so that the
nanotubes absorb the gas. Then the cantilever is placed back into the vacuum
chamber and the resonant frequency is measured again. This system also demon-
strated attogram sensitivity [34].

The ultimate mass sensor, based on a nanotube cantilever, has been demonstrated
by Wang et al. [35]. In this experiment a TEM is used to observe individual nan-
otubes in a bundle. An electrode is approached from the top and the outermost
nanotube in the bundle is excited electrostatically and the vibration of the nan-
otube is observed by the TEM. Then a latex sphere is attached to the apex of the
nanotube and the resonant frequency is measured again. With this sensor a mass
sensitivity of 10−20g/Hz is reported, which is the best mass sensitivity achieved
to date.

1.1.3 Static versus dynamic mode

Static mode detection of biochemical species depends on the induction of surface
stress changes on the cantilever surface. This means that the absorbtion or im-
mobilization of the biochemical species must be on only one side of the cantilever
in order to maximize the measurable stress signal. This is usually achieved by
funtionalizing one side of the cantilever so that only one surface is receptive to
the wanted biochemical species. The problem of unspecific binding of the wanted
or other biochemical species to non-functionalized surfaces is always an issue.
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With dynamic mode measurements, both surface stress changes and mass changes
of the cantilever can be detected. This means that the desired biochemical species
do not have to be confined to one side of the cantilever but the entire surface
area can be used. Thus unspecific binding to the back-side of the cantilever is
not a problem.

In dynamic mode both the resonant frequency and the damping of the cantilever
can be measured. In this way more information can be accessed by the sensor.
Sader et al. and Chon et al. [36][37] have demonstrated that by measuring the
cantilever’s resonant frequency and damping effects, the viscosity and density of
the gas or fluid around it can be determined, without the need for functionaliza-
tion of the cantilever. This type of measurement is impossible with static mode
detection.

The sensitivity of a static mode biochemical sensor is dependent on the interac-
tion forces between the molecules in a biochemical detector. Typical values of
surface stress induced by hybridization of target DNA with probe DNA is on the
order of 3 × 10−3N/m [38]. Hansen et al. have estimated that for probe immo-
bilization, with a probe density of approximately 1013 strands of ssDNA/cm2,
which leads to an approximate sensitivity of 5pg/nm [39] for static mode. Ilic
et al. has demonstrated cell detection in air with mass sensitivities of 0.13pg/Hz
[40] for dynamic mode. The main disadvantage of dynamic mode is that oper-
ation in liquids is more complicated and that damping of the cantilever reduces
the sensitivity.

1.2 Actuation and readout principles

A schematic diagram of the resonant sensor principle is shown in figure 1.3. The
sensor consists of the vibrating mechanical structure and an actuation and detec-
tion unit. The actuation unit actuates the mechanical structure into resonance
and the readout unit converts the vibration of the sensor into an electrical signal.
The signal can then be feed back to the actuation unit in order to maintain peak
resonance of the structure. Some of the most common actuation and readout
schemes are described below.

1.2.1 Actuation methods

Electrostatic actuation

This technique uses two electrodes where one of the electrodes is the resonator
structure. By applying an alternating voltage between the driver plate and the
resonator structure one exerts a periodic force on the resonator, thus actuating it.
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Figure 1.3: Diagram of the resonant sensor principle, which consists of an actuation
unit, a vibrating structure and a readout unit.

This technique is very good when working in vacuum, since air would otherwise
damp the motion on the resonator. Otherwise, one has to ensure easy airflow
around the resonator. This type of actuation has been used for AFM cantilevers
by Blanc et al. [41].

Piezoelectric actuation

This technique utilizes the electromechanical coupling found in piezoelectric ma-
terials, such as single-crystalline quartz. The technique is to sandwich a piezo-
electric material between two metal contacts, which is then placed on a silicon
resonator. By again applying an alternating voltage across the piezoelectric ma-
terial, one can actuate the resonator. The drawbacks of this technique are that
most piezoelectric materials are not easy to work with and are not cleanroom com-
patible, containing Zr oxides [42]. Cleland et al. [43] have fabricated nanometer
sized piezoelectric aluminum nitride resonant structures, which might be used for
this actuation principle.

Thermal actuation

This technique uses the bi-morph effect of a cantilever with several layers each
having a different thermal expansion coefficient. The cantilever is heated by plac-
ing a resistor on or near the cantilever. When a current is passed through this
resistor, the temperature rises locally on the resonator and the material expands,
bending the resonator due to stress. Usually the resistor is an integrated diffused
resistor, or poly-Si that is deposited on the resonator. This method is good since
it requires no external drivers, but if one wanted to do an in-situ measurement the
heat could possibly deflect or damage the particles to be detected. Furthermore,
dynamic oscillation would require that the expanding material has a fast cooling
time constant, in the order of 10−5 second, which requires careful design. Ther-
mal actuation has been demonstrated to dynamically excite a cantilever up to
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16kHz in GaAs cantilever beams [7]. Furthermore, resonant frequencies as high
as 400kHz have been actuated and actuation frequencies in the MHz range are
claimed to be possible, with cantilevers integrated on CMOS circuitry [24][25].
Thermal actuation has primarily been used for static actuation [44][45], due to
the large forces that can be induced.

Instead of heating, the natural thermal vibrations, due to fluctuations in the
temperature of the structure can be used. For a cantilever the vibrational am-
plitude is dependent on the square root of the temperature and the square root
of the inverse spring constant of the cantilever. This type of thermal actuation
has been demonstrated by Ilic et al. [40]. By scaling down the dimensions of
the cantilever the relative vibrational amplitude increases. The challenge is to
accurately measure the vibration of the cantilever, due to the small vibrational
amplitude. This method can be coupled with the resistive heating, by passing a
DC current through a resistor on the cantilever, which increases the temperature
and thus the thermal vibrational amplitude of the structure.

Magnetomotive actuation

This is done by applying a static magnetic field perpendicular to a beam structure
and alternating an AC current through the beam. The Lorenz forces acting on
the electrons will drive the beam. The advantages are that this is a rather straight
forward and simple method. The disadvantages are that in order to achieve a
large actuation force, large magnetic fields need to be applied. This technique or
similar techniques has been demonstrated in other works [26][46][47].

Magnetic actuation

In this method the cantilever is a magnetic material and an oscillating magnetic
field is applied parallel to the vibration of the cantilever. The magnetic field
induces a force on the cantilever. Several examples of this actuation method
have been demonstrated [48][49]. The main problem with this method is the
need for a magnetic material on the cantilever and the aligning of the magnetic
field to the cantilever.

1.2.2 Readout methods

Capacitive readout

This detection technique can be used in the first three excitation setups discussed
above. The idea is that two electrodes separated by any material has a capac-
itance and this capacitance changes when the distance between the electrodes
changes. Thus, one can detect the resonance of the resonator by measuring the
capacitance. The method has been demonstrated as the integrated readout of an
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AFM sensor by Blanc et al. [41]. Sensitivities at the sub-Ångström have been
achieved with this method [50][51].

Piezoresistive readout

This is an often used readout technique since both single-crystal Si and poly-Si
are good piezoresistive materials at the right doping level [52][53]. The idea is
that when the resonator bends, the resistance of the piezoresistor changes due to
the stress in the material. Thus, one could detect the bending of a cantilever by
simply measuring the resistance of the piezoresistor. A drawback for this detec-
tion method is that one needs to have a circuit on the actual resonator structure.
This limits the minimum size of the resonator in the case of the cantilever, be-
cause one needs two contacts to the cantilever. Piezoresistive readout has been
demonstrated for Si based AFM cantilevers [54][55], Si based gas flow sensors
[56][57] and even plastic based stress sensors [58]. Displacement sensitivities of
(∆R/R)/Å=1.1 × 10−5 have been demonstrated [59].

Optical detection

The movement of the cantilever is detected by reflecting a laser beam off the
cantilever and onto a position sensitive photo diode. When the cantilever bends,
the movement is registered by the photo diode. This method is used in most AFM
microscopes. However, since the typical laser spot diameter is approximately
10µm, the minimal size of the mechanical device is limited. Another disadvantage
is that this type of detection method requires a laser and photo diode, which
takes up lots of space, and is not compatible with some possible applications.
Sub-Ångström unit sensitivity is routinely achieved with this method [16].

Summary

In order to have a mass sensor device, which has an integrated readout and actu-
ation unit and which has the potential to have a high sensitivity, the electrostatic
actuation and capacitive readout are among the best choices. This allows the
design of a simple cantilever system, which does not contain several layers, thus
the dimensions of the sensor can be scaled down. Furthermore, the capacitive
readout can be integrated on the same chip, which will provide a very compact
and highly sensitive sensor. Other advantages of a capacitive system are low
power consumption, wide operating temperature range, ease of trimming and
good linearity [60].
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1.3 CMOS integrated sensors

The main problem of capacitive systems is the presence of parasitic capacitances
[61], which can degrade or even destroy the mechanical capacitive signal. Further-
more, as the dimensions of the sensor decrease so does the capacitive signal that
needs to be measured. The solution of this problem is to integrate the mechanical
sensor with an Integrated Circuit (IC). The IC is used to amplify and handle the
capacitive signal. The integration of IC can lead to a so-called ”smart sensor”,
which has several functionalities built-in to the sensor, such as self calibration,
resonant frequency tracking and Q-factor enhancement [62][63][64][65].

Typically, integration of a mechanical sensor with IC is done through monolithic
integration with standard complementary metal-oxide-silicon (CMOS) technol-
ogy. Several approaches of CMOS integrated mechanical systems have been seen.
The three main approaches to CMOS integration are pre-CMOS, intermediate
CMOS and post-CMOS integration.

Pre-CMOS integration

In pre-CMOS integration the mechanical system is fabricated before the CMOS.
The main disadvantages of this method is that normal IC fabs do not allow
pre-processed wafers in their CMOS line, in order to keep the reproducibility of
their processes stable. Some examples of pre-CMOS integrated systems are the
accelerometer and gyroscope sensors fabricated by Sandia National Labs [66],
where poly-Si structures are first surface micromachined in the wafer and then
the mechanical structures are protected by SiO2 filling during the CMOS fabrica-
tion. Examples of bulk micromachining, pre-CMOS integration, is the pressure
sensor developed by Chavan et al. [67]. First a membrane is bulk micromachined
into the wafer, then the CMOS is fabricated. The membrane is vacuum sealed
by wafer-bonding the CMOS wafer with a glass wafer.

Intermediate CMOS integration

Intermediate CMOS integration involves surface micromachining of the CMOS
layers during the CMOS fabrication. This demands an IC fab that has micro-
machining facilities. The advantage of this process is that it is very flexible and
diminishes the overall complexity of the fabrication. An example is the Infineon
Technologies Pressure IC, where a poly-Si membrane is surface micromachined
with the BiCMOS circuitry [68]. The membrane is released by wet chemical etch-
ing the sacrificial layer through holes on the front side of the structure. Then
the cavity is hermetically sealed by oxidation under a controlled pressure, which
closes the holes.
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Post-CMOS integration

Probably the most used integration technique is the post-CMOS integration. In
this method the mechanical structure is fabricated after the CMOS. The main
reason why it is the most used method is simply that most research centers do
not have their own IC fab and are forced to buy IC circuits from outside fabs.
It is possible to use add-on structural layers instead of using the CMOS layers,
which adds to the flexibility. Furthermore, both surface and bulk micromachining
can be performed. Examples of post-CMOS integration are the electroplated ring
gyroscope [69][70], resonant cantilever based gas sensors [24][25][71] and an AFM
probe [72][73].

1.4 The EU NANOMASS project

In order to develop a highly sensitive and versatile mass sensor the NANOMASS
project was initiated in the beginning of the year 2000. The main goals of
NANOMASS are:

(1) Development of technologies for combining CMOS processing with novel
micro-nano processing.

(2) Development of techniques for fabricating a nanometer-sized cantilever based
mass sensor, which is integrated with CMOS circuitry.

Figure 1.4: Conceptual drawing of the NANOMASS mass sensor.

The concept of the NANOMASS sensor is seen in figure 1.4. The device consists
of a resonating nano-cantilever and CMOS circuitry. The cantilever is electro-
statically driven into resonance and the vibration of the cantilever is monitored
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by measuring the capacitance change in the system. The CMOS circuitry is nec-
essary for the capacitive readout to function and can be used for increasing the
functionality of the sensor. The design of the sensor aims at making the mechan-
ical device as small as possible in order to increase the mass sensitivity. This
design will allow both high mass sensitivity and high spatial resolution, since the
width of the cantilever is the thinnest dimension.

The NANOMASS project is a joint venture between four European research in-
stitutes. The partners are:

(1) The electrical engineering department at the Universitat Autònoma de Barcelona
(UAB)

(2) Instituto de Microelectrònica de Barcelona (IMB-CNM)

(3) Solid State department at Lund University (LU)

(4) Mikroelektronik Centret at the Technical University of Denmark (MIC)

The four collaborators handle different aspects of the realization of the mass
sensor device. UAB and CNM work mainly on circuit design, modelling and fab-
rication of the CMOS circuitry. MIC and LU are responsible for fabrication of
the mechanical cantilever using novel nanolithography techniques, such as laser,
AFM, e-beam and nanoimprint lithography. Furthermore, MIC along with UAB
is responsible for characterizing the final mass sensor, and finding suitable appli-
cations for the mass sensor.

1.4.1 Application possibilities of the NANOMASS sensor

The main goal of NANOMASS is to produce a highly versatile mass sensor, which
can be used both in vacuum and in air applications. Some of the main application
possibilities are:

Mapping spatial distribution of molecules or atoms

The NANOMASS sensor can be used for the calibration or characterization of
evaporation systems, atom beam lithography (ABL)[74][75], molecular beam epi-
taxy (MBE) [76][52] and focussed ion beam (FIB) [52] systems. This implies that
the performance of the device needs to be better than commercial products such
as quartz microbalances, which can have sensitivities down to 10−12g/cm2 [77][78].
Furthermore, a high spatial resolution is needed for most of these applications,
which is not possible in other sensor systems.
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Vacuum/environmental detector

If the sensor is sensitive enough the out-gasing or absorption of molecules in
vacuum, to a sensitive layer on the cantilever, can be detected at extremely low
gas pressures.

Bio/chemical sensing

With such a highly sensitive mass sensor the study of single molecular interactions
could be possible. Furthermore, an array of cantilevers, each with a specific func-
tionalization, could be used as a highly sensitive detector of bio/chemical agents,
such as explosives, anthrax and other hazardous or non-hazardous bio/chemical
agents.

1.4.2 NANOMASS work package descriptions

The NANOMASS project is divided in work packages (WP), which work on dif-
ferent aspects of the NANOMASS project. These work packages are:

• WP1 (Fabrication of sensors based on poly-Si cantilevers) This work
package is based on fabricating the cantilever with one of the poly-Si layers
of the CMOS and is the first fabrication approach. The fabrication of
the cantilever is based on post-CMOS surface micromachining. The main
objective is the realization of cantilevers with a width down to 500nm,
integrated with CMOS.

• WP2 (Fabrication of sensors using SOI technology) This work pack-
age is based on fabricating the cantilever in single crystal Si instead of in
poly-Si. The challenge is to fabricate the standard CMOS circuitry using a
silicon on insulator (SOI) wafer. This process requires some pre-processing
of the SOI, after which the CMOS is fabricated. Finally, the cantilever
is post-processed onto the circuit. This work package is still in the de-
velopment phase of building the CMOS on the SOI substrate. The main
objective is the development of 100nm wide cantilevers on CMOS circuitry.

• WP3 (Fabrication of metal cantilevers) In this work package metal will
be used instead of Si as the cantilever material. The process will be based
on the addition of an extra metal layer and surface micromachining. The
first phase of this work package is to fabricate metal cantilever without
CMOS and to characterize their performance. Then, if the performance
is proven to be good, the metal cantilever will be integrated with CMOS
circuitry. The first phase objective is to fabricate a 500nm wide cantilever.
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• WP4 (Fabrication of nano-cantilevers using electron beam lithog-
raphy (EBL)) In order to minimize the width of the cantilever EBL will
be tested, due to its ability to pattern sub-100nm feature sizes [79][80].
The first objective is to investigate the compatibility of EBL and CMOS
circuitry. Then, if EBL is compatible, cantilever fabrication will follow.

• WP5 (Fabrication of nano-cantilevers using nanoimprint lithogra-
phy (NIL)) NIL will be used to scale up the production of 100nm wide
cantilevers, through parallel processing. Again the objectives are to find
whether or not NIL is compatible with CMOS circuitry. If it is compatible,
NIL will be used to fabricate cantilevers on CMOS chips.

• WP6 (Evaluation of applications) This work package will evaluate the
application potentials of the mass sensor and the design will be addressed
accordingly.

• WP7 (Functional evaluation) In order to characterize the performance
of the sensor several types of tests need to be performed, such as calibration
of the mass sensitivity and spatial resolution. Furthermore, the evaluation
of the sensor in both air and vacuum is needed. These evaluations will be
used for future design considerations.

• WP8 (Dissemination and implementation) The main objectives here
are to evaluate the industrial applications of the device and implementing
the appropriate measures to further develop the demonstrators towards
industrialization.

Besides the use of EBL and NIL, AFM lithography is also being investigated as
a replacement of EBL. One of the main goals is to determine, which nanolithog-
raphy technique is most compatible with CMOS technology.

1.5 Overview of this thesis

The aim of this thesis is the design, fabrication and characterization of a high
sensitive, high spatial resolution mass sensor. Within the NANOMASS project
the main work packages that are treated in this thesis are WP1, WP2, WP3 and
WP7. Thus the main topics of this thesis are:

• The development of a model, which can both model the electrical and me-
chanical characteristics of a capacitive cantilever based resonator.

• The design and development of poly-Si cantilevers integrated with CMOS
circuitry.
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• The fabrication of single-crystal Si cantilevers with atomic force microscopy
(AFM) lithography.

• The design and development of metal cantilevers without CMOS circuitry.

• The characterization of cantilevers in air and in vacuum conditions.

1.5.1 Outline of chapters

• In chapter two the general cantilever theory is introduced and two models
are presented, which can be used to predict both the electrical and mechan-
ical characteristics of the device.

• In chapter three a brief overview of the different lithography processes that
have been used to realize the nano-cantilever is given.

• A brief description of the CMOS design is given in chapter four.

• In chapter five the fabrication of poly-Si cantilever on CMOS circuitry is
described in detail and results are presented.

• Chapter six describes the fabrication of single crystal Si and metal can-
tilevers not integrated with CMOS circuitry.

• In chapter seven the characterization of the CMOS integrated and non-
CMOS integrated cantilevers is presented. The characterization results are
compared with the model presented in chapter two.

• Finally, in Chapter eight the main conclusions and achievements of this
thesis are presented.

• Appendix A is a list of the articles and conference proceedings published
during this project.

• Appendix B is the SUGAR program used to perform the SUGAR simula-
tions.

• Appendix C is a detailed process sequence for poly-Si cantilevers integrated
with CMOS circuitry.

• Appendix D is a detailed process sequence for the freeze-drying release
method.

• Appendix E is a detailed process sequence for the resist release method.

• Appendix F is a detailed process sequence for the Al cantilevers.



Chapter 2

General Theory and Modelling

2.1 Cantilever Theory

In this section some general cantilever theory will be presented. Basically, this
will involve a short description of how the cantilever’s spring constant and reso-
nant frequency are calculated. Furthermore, the mass resolution of a cantilever
based mass detector will be addressed.

The spring constant of any given beam can be defined using Hook’s law, which
states that the bending of the beam will induce a force in the opposite direction
of the bending, which is proportional to the bending and the stiffness or spring
constant of the beam [15][16].

F = −k · x (2.1-1)

where F is the force, x is the bending and k is the spring constant, which is
defined as [15]:

k = 3
EI

l3
(2.1-2)

where E is the Young’s modulus, which is a material parameter concerning the
elasticity of the cantilever material and I is the moment of inertia of the rect-
angular beam cross-section, which takes into account the geometry of the beam.
For a rectangular beam, which has I = hw3

12
, the spring constant is:

k =
Ehw3

4l3
(2.1-3)

where h and w are the height and width of the cantilever as seen in figure 2.1.

15
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Figure 2.1: Simple cantilever with dimensions w, h and l, the width, height and
length respectively. The displacement of the bending cantilever at the apex is denoted
by x.

The resonant frequency of a simple spring and mass system, as shown in figure
2.2, is calculated by solving the equation of motion. The equation of motion with
no external forces and no damping is:

mẍ + kx = 0 (2.1-4)

where m is the dynamic mass of the system and k is the spring constant. A
general solution for this equation is x(t) = Asin(ωt + θ) and by inserting this
into equation 2.1-4 the radial frequency ω can be isolated. The resonant frequency
of the system is defined as:

f =
ω

2π
=

1

2π

√
k

m
(2.1-5)

In order to calculate the resonant frequency of a rectangular cantilever, which is
rigidly clamped at one end, the dynamic mass of the system is:

meff =
3m0

C4
n

, Cn = 1.875, 4.694, ... (2.1-6)

where m0 is the true mass of the cantilever, which is m0 = ρlwh, and Cn is a
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Figure 2.2: The simple spring and mass model with the spring constant k and mass
m.

constant corresponding to the resonant mode of the cantilever. By inserting 2.1-6
and 2.1-3 into equation 2.1-5 the resonant frequency of a rectangular cantilever
is found to be:

fn =
C2

n

2π

√
k

3m0

=
C2

n

4
√

3π

√
E

ρ

w

l2
(2.1-7)

where ρ is the density of the cantilever material. A more detailed description
of the calculation of the cantilever’s resonant frequency can be found elsewhere
[81][15][16].

The minimum detectable mass change of a cantilever based mass sensor is easily
deduced by assuming that the mass is evenly distributed on the cantilever and
that the spring constant is not effected by the added mass [29][30][31][32]. By
differentiating equation 2.1-7 with respect to m, the minimum detectable mass
is:

| ∂f

∂m
| =

C2
nk

1/2

4π
√

2m3/2
=

1

2

f

m
(2.1-8)

=⇒| ∆m

m
| = 2

∆f

f
(2.1-9)

It is seen in this equation that to decrease ∆m the resonant frequency of the
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cantilever must be high compared to the mass of the cantilever. This means
that the minimum detectable mass change can be decreased by scaling down the
cantilever’s dimensions.

In table 2.1 three values of minimal detectable mass change per frequency are
given for different cantilever dimensions. It is obvious from the table that the mass
change sensitivity is increased by miniaturizing the sensor. Commercially avail-
able cantilevers have a mass sensitivity in the pg range while the NANOMASS
final goal cantilever, with a width of 100nm, has a mass sensitivity of 10−19g/Hz,
which is the size of single large molecules or proteins.

width height length f0
∆m
∆f

2000nm 50µm 262µm 41kHz 3.0·10−12g/Hz
500nm 2µm 22µm 1.4MHz 7.4·10−17g/Hz
100nm 1µm 3.6µm 11.2MHz 1.5·10−19g/Hz

Table 2.1: The theoretical resonant frequency and mass resolution for three can-
tilevers with different dimensions. The length is calculated so that the spring constant
is 1N/m.

2.2 SPICE Model

SPICE is a simulation tool for simulating electrical circuits. The circuits are built
up in a visual environment, which makes SPICE a fast and easy way to simu-
late and interact with the device. The electrical characteristics of a cantilever
based capacitive excitation/readout system has previously been modelled by a
LRC equivalent circuit [82][83][84]. This simple small signal equivalent circuit is
able to model the current through the system and thus model the frequency re-
sponse of the cantilever at its resonance. The shortcoming of this model is that it
does not take into account spring softening effect, which occur when electrostatic
forces are acting on the cantilever. Furthermore, this model only works in the
linear regime and often the operation mode of such systems is in the non-linear
regime. Finally, only the electrical aspects of the device are modelled, but often
the mechanical aspects are just as important in order to simulate mechanical
stability and robustness.

In the model presented below a large signal model is developed and implemented
into SPICE, where both the electrical and mechanical characteristics of the sys-
tem will be addressed. The attractive features of this model are that it will be
able to calculate spring softening effects of the cantilever, snap-in voltage and
the non-linear effects of the dynamic frequency response as well as the electrical
behavior of the device.
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2.2.1 Large signal model

In order to avoid losing any higher order effects, a large signal model needs to
be developed. The mass detector system is based on electrostatic excitation
of a cantilever into resonance and capacitive readout to detect the cantilever’s
change in vibrational amplitude. In order to calculate the actuation and detection
properties an analysis of the capacitive system is needed. Figure 2.3 shows a
cantilever and two electrode capacitive system, where the charge on the two
electrodes is designated by qn and the gap between electrode one and electrode
two and the cantilever is designated as d1 and d2 respectively. In this model
the cantilever bending is approximated by a stiff plate displacement where the
cantilever is not rigidly clamped at one end, but the whole plate is moving. The
consequences of this approximation will be addressed in section 2.6

Figure 2.3: Diagram of the simplified device system where the cantilever bending is
approximated by a plate displacement.

The potential energy U of the system is:

U =
1

2
kx2 +

q2
1

2C1

+
q2
2

2C2

(2.2-1)

where x is the position, k is the spring constant of the cantilever and Cn is the
capacitance between the cantilever and the electrodes. The first term of equation
2.2-1 is the potential energy of the cantilever spring and last two terms describe
the total electrostatic energy. The equation of motion is then:
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mẍ =
∂p

∂t
= −∇U − Dẋ (2.2-2)

= −kx − Dẋ − q2
1

2C2
1

∂C1

∂x
+

q2
2

2C2
2

∂C2

∂x
(2.2-3)

where m is the mass and D is the loss rate. If we rearrange this equation and
also insert the potential difference between the electrodes and the cantilever:

Vn =
qn

Cn

(2.2-4)

then we get:

mẍ + Dẋ + kx =
q2
1

2C2
1

∂C1

∂x
− q2

2

2C2
2

∂C2

∂x
(2.2-5)

=
1

2
V 2

1

∂C1

∂x
− 1

2
V 2

2

∂C2

∂x
. (2.2-6)

The capacitances can be approximated as the parallel plate capacitance between
the electrodes and cantilever:

C1 =
εA1

d1 + x
⇒ ∂C1

∂x
= − C1

d1 + x
(2.2-7)

C2 =
εA2

d2 − x
⇒ ∂C2

∂x
=

C2

d2 − x
(2.2-8)

Then, by inserting equations 2.2-7 and 2.2-8 into 2.2-5:

mẍ + Dẋ + kx = − V 2
1 C1

2(d1 + x)
+

V 2
2 C2

2(d2 − x)
(2.2-9)

where the right-hand side terms are the forces from the capacitors. The currents
in this system are calculated from the conservation of charge:

In =
dqn

dt
= CnV̇n + Vn

∂Cn

∂x
ẋ (2.2-10)

where the first term is the current from the static capacitance of the system,
which is the normal capacitive current, and the second term is the current arising
from the mechanical motion of the cantilever. By inserting equations 2.2-7 and
2.2-8 into 2.2-10, the currents flowing into electrode 1 and 2 can be calculated as:
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I1 =
dq1

dt
= C1V̇1 − V1

C1

d1 + x
ẋ (2.2-11)

I2 =
dq2

dt
= C2V̇2 + V2

C2

d2 − x
ẋ (2.2-12)

The first version of the equivalent non-linear electrical network diagram of the
large signal model is shown in figure 2.4. In order for this model to simulate
both the electrical and mechanical properties of the system the non-linear elec-
trical network is divided into the electrical domain and the mechanical domain
as designated in figure 2.4. In order to model the mechanical aspects of the de-
vice, equation 2.2-9 must be implemented into the circuit. The right hand side
of this equation is the mechanical impedance of the cantilever and the left hand
side terms are the two non-linear voltage controlled force sources. The voltage
controlled force sources are shown in figure 2.4. The velocity in the mechanical
domain is then feed back to the electrical domain through two non-linear velocity
controlled current sources, also seen in figure 2.4. Equations 2.2-11 and 2.2-12
are used for the velocity controlled current sources.

Figure 2.4: Schematic diagram of the equivalent non-linear electric network.

The mechanical impedance of the cantilever is given by:

Zm = sm + D +
k

s
(2.2-13)

where s is the complex angular frequency. In the equivalent circuit the velocity
v(t) of the cantilever corresponds to a current and the force F corresponds to a
voltage. The equivalent electrical impedance of the cantilever thus becomes:
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Ze = sL + R +
1

sC
(2.2-14)

where L is an inductance, R is a resistance and C is a capacitance. By imple-
menting this equivalent circuit into the simulation program SPICE it is possible
to simulate both the electrical and mechanical behavior of an electrostatically
driven cantilever between two parallel electrodes.

2.2.2 Symmetric cantilever

In order to simplify the model a symmetric device will be considered, where the
two electrodes are the same size and at equal distance to the cantilever. That
is d = d1 = d2 and A = A1 = A2. Furthermore, A = lh, where l and h are the
length and height of the cantilever. In this symmetric case the capacitances in
the system are:

C1 =
εA

d + x
= C0

1

1 + x
d

(2.2-15)

C2 =
εA

d − x
= C0

1

1 − x
d

(2.2-16)

where

C0 =
εA

d
(2.2-17)

Then, the current flowing into electrode 1 and 2 are obtained by inserting 2.2-15
and 2.2-16 into equations 2.2-11 and 2.2-12:

I1 =
dq1

dt
= C0

V̇1

1 + x
d

− C0V1

d

ẋ

(1 + x
d
)2

(2.2-18)

I2 =
dq2

dt
= C0

V̇2

1 − x
d

+
C0V2

d

ẋ

(1 − x
d
)2

(2.2-19)

In order to implement the mechanical properties into SPICE, a transformation
scale factor is needed. By looking at figure 2.4, a transformation is needed be-
tween the force and the voltage, the velocity and the current and the mechanical
impedance to the electrical impedance:

F ←→ VF , v ←→ Iv and Zm ←→ Ze (2.2-20)

where VF is the force voltage and Iv is the velocity current. The transformation
scaling factor (T ) is defined as:
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T =
C0

d
VR, unit [C/m] or [N/V] (2.2-21)

where VR is a fitting constant, which fits the unit and thus has no physical impor-
tance. The transformation factor is the link between the electrical and mechanical
domain. The mechanical properties of the cantilever system are transformed to:

F = T · VF (2.2-22)

v =
Iv

T
(2.2-23)

Zm =
F

v
=

T · VF

Iv

T

= T 2 · Ze (2.2-24)

Furthermore, the normalized position x
d

can be written as:

x

d
=

1

d

∫ t

0

vdt =
1

Td

∫ t

0

Ivdt (2.2-25)

By inserting equations 2.2-23 into equations 2.2-18 and 2.2-19, the new current
equations are:

I1 = C0
V̇1

1 + x
d

− V1Iv

VR(1 + x
d
)2

(2.2-26)

I2 = C0
V̇2

1 − x
d

+
V2Iv

VR(1 − x
d
)2

(2.2-27)

Finally, the equation of motion can be rewritten by inserting equations 2.2-22
and 2.2-23 into 2.2-9

mẍ + Dẋ + kx = mv̇ + Dv + k

∫ t

0

vdt ⇔ (2.2-28)

m

T
İv +

D

T
Iv +

k

T

∫ t

0

Ivdt = − TV 2
1

2VR(1 + x
d
)2

+
TV 2

2

2VR(1 − x
d
)2

⇔ (2.2-29)

m

T 2
İv +

D

T 2
Iv +

k

T 2

∫ t

0

Ivdt = − V 2
1

2VR(1 + x
d
)2

+
V 2

2

2VR(1 − x
d
)2

⇔ (2.2-30)

Lİv + RIv +
1

C

∫ t

0

Ivdt = − V 2
1

2VR(1 + x
d
)2

+
V 2

2

2VR(1 − x
d
)2

(2.2-31)

Now we have all the equations needed in order to implement the system into
SPICE. Since VR is just a fitting constant, which does not have any physical
meaning, it will make the calculations more straight forward by setting VR = 1V .
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2.2.3 SPICE implementation

As seen in figure 2.4 the two non-linear voltage controlled force sources trans-
forms the applied voltages into forces, which act on the cantilever. The two
non-linear velocity controlled current sources transforms the physical attributes
of the cantilever into currents. The right side of equation 2.2-31 is used for the
two non-linear voltage controlled force sources for the first and second electrode
respectively. Equations 2.2-26 2.2-27 are used for the velocity controlled current
sources, where the current velocity, Iv, is feed back along with the cantilever’s
normalized position, equation 2.2-25. The final SPICE circuit diagram can be
seen in figure 2.5. The shaded areas show where the voltage controlled force
sources and the velocity controlled current sources are placed. The individual
boxes are used to implement the motion and current equations into SPICE. Fur-
thermore, the mechanical equivalent circuit is represented by the LCR branch.
The values of L, C and R can be deduced from equations 2.2-30 and 2.2-31 and
are given by:

Figure 2.5: The final SPICE circuit diagram of the cantilever based capacitive system
where both the electrical and mechanical properties can be simulated simultaneously.

L =
meff

T 2
(2.2-32)

C =
T 2

k
(2.2-33)
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R =
D

T 2
=

ωnmeff

QT 2
(2.2-34)

meff is again used to compensate for the mass-spring approximation, so the
resonant frequency matches that of a cantilever with one end rigidly clamped.
The loss rate D is written as a function of the cantilever’s angular frequency, the
effective mass and the Quality (Q) factor in the following manner:

D =
ω0meff

Q
(2.2-35)

The Q-factor is a measure of the energy lost by the cantilever per cycle [81][85].
A high Q-factor denotes low energy loss, and thus the frequency response of the
cantilever will have a large and sharp amplitude. The three main contributions
to the Q-factor are acoustic damping Qa, damping due to imbalances in the
cantilever structure Qs and damping due to internal structure (defects, etc...)
Qi. The total Q factor, is then:

1

Q
=

1

Qa

+
1

Qs

+
1

Qi

(2.2-36)

The resonant frequency of the LCR branch is calculated to:

fn =
1

2π

√
LC =

1

2π

√
k

meff

=
C2

n

4
√

3π

√
E

ρ

w

l2
(2.2-37)

which is exactly the result found from equation 2.1-7. That is, this resonant fre-
quency is the frequency of the cantilever without any external or damping forces
acting on it.

The velocity current Iv and the cantilever deflection x(t) are accessed as shown in
the circuit diagram. The currents, which flow into electrodes 1 and 2, are shown
as I1 and I2 respectively. The output current, which contains the device current
plus a capacitive current through the parallel parasitic capacitance, Cpa2, is de-
noted as Itot. The voltages of the system are controlled by the two DC and one
AC voltage sources. The model can simulate both one and two electrode devices,
by using AC and DC2 or by using AC and both DC1 and DC2, dividing the
voltage between the two sources.

As mentioned earlier, the two non linear voltage controlled force sources are taken
from equation 2.2-31. When performing an AC analysis simulation, which sim-
ulates the frequency response of the cantilever, the SPICE program only makes
a first order linear expansion around the point of operation. This means that
some of the effects are lost, because they are higher order effects. In particular
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the SPICE model cannot simulate both the static bending the cantilever and
the resonant frequency reduction, due to external forces acting on the cantilever,
when equation 2.2-31 is used directly. In order to model these effects equation
2.2-31 needs to be rewritten so that the wanted effects are calculated in the first
order.

The rewritten equation of motion, which is directly implemented into SPICE is:

Lİv + RIv +
1

C

∫ t

0

Ivdt =
V 2

2 − V 2
1

2VR

1 + (x
d
)2

(1 − (x
d
)2)2

+
V 2

2 + V 2
1

VR(1 − (x
d
)2)2

x

d
(2.2-38)

Basically, the first term addresses the static bending of the cantilever. If V1=V2

this term disappears resulting in no static bending. The second term addresses
the effective spring constant softening effect, which is proportional to the sum of
the voltages squared.

2.3 Spring softening effects

One of the desired qualities of the model is the ability to model spring softening
effects of the cantilever due to the applied electrostatic forces on the cantilever.
By looking at the basic equation of motion 2.1-4 this time including electrostatic
forces Fel and inserting x(t) = Asin(ωt+θ) and by inserting the Taylor expanded
electrostatic force, the radial frequency can be solved as [81]:

ω =

√
k − ∂F (0)/∂x

m
=

√
k − kel

m
(2.3-1)

where kel represents a spring constant softening. By inserting f = ω/2π and the
value for the electrostatic forces as seen in equation 2.2-5, the reduced resonant
frequency as a function of the applied voltages is approximately:

fr � f0 − 2C0l
3f0

Ew3d2h
(V 2

1 + V 2
2 ) (2.3-2)

During operation of the cantilever both a DC and AC voltage will be applied to
the cantilever. In this case the voltage squared would be:
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V 2 = (VDC + VAC)2 (2.3-3)

= V 2
DC + 2VDCVAC + V 2

AC (2.3-4)

= V 2
DC + 2VDCVac sin(ωt) + V 2

ac sin2(ωt) (2.3-5)

= V 2
DC + 2VDCVac sin(ωt) +

1

2
V 2

ac −
1

2
V 2

ac sin(2ωt) (2.3-6)

〈V 2〉 = V 2
DC +

1

2
V 2

ac (2.3-7)

where Vac is the amplitude of the AC signal. Only the average value of the
voltages has any spring softening effects but equation 2.3-7 shows that not only
the DC voltages but also the AC voltage will reduce the effective spring constant
of the cantilever. Usually, in the two electrode configuration the DC voltage is
applied to the cantilever and the AC voltage is applied to one of the parallel
electrodes, see figure 4.1. So the final dependence of the resonant frequency on
the applied voltages is:

fr � f0 − 2C0l
3f0

Ew3d2h
(V 2

DC +
1

2
V 2

ac) (2.3-8)

This equation shows that the resonant frequency of the cantilever is linearly de-
pendent on the sum of the applied voltages squared. It is worth noting that this
equation is only valid in the linear regime where x << d. Also the equation is
written so that the slope of the dependence is dependent on the static capaci-
tance of the system, equation 2.2-17. This is done because in the next section the
validity of that approximation is discussed and the role of fringing fields, which
will increase the value of C0 compared to the parallel plate approximation, is
introduced.

2.3.1 Frequency noise

Due to the dependence of the resonant frequency on the applied voltages, any
noise from the voltage source will also fluctuate the resonant frequency. The level
of frequency fluctuation or noise can be determined by differentiating equation
2.3-2:

∂f

∂V
=

4C0l
3f0

Ew3d3h
V (2.3-9)

thus the frequency noise as a function of the voltage noise is:
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δf =
4C0l

3f0V

Ew3d3h
δV (2.3-10)

In table 2.2 the frequency noise due to voltage noise is seen for three device
geometries at a applied voltage of 10V. It is seen that when scaling down the
device the frequency noise increases. In the last column the maximum voltage
source noise, in order to achieve a 1Hz fluctuation, is calculated.

width length height gap f0
δf
δV

δV

2000nm 50µm 262µm 5µm 41.3kHz -384Hz/V 2.6mV
500nm 2µm 22µm 1µm 1.4MHz -5610Hz/V 178µV
100nm 1µm 3.6µm 0.5µm 11.2MHz -28272Hz/V 35.4µV

Table 2.2: The frequency noise δf
δV due to voltage noise for three device dimensions.

In the last column the acceptable voltage noise in order to have a 1Hz frequency
fluctuation is calculated.

It is seen that the frequency noise increases as the dimensions of the device
decrease and that the tolerable voltage noise is on the mV-µV range. Typical
voltage sources have voltage noises on the order of 500µV, which is higher than
the acceptable noise for the two smallest devices in table 2.2. This means that
measures need to be taken in order to minimize the voltage output noise, in order
to have a high resolution.

2.4 Fringe effects

In the calculations above the capacitance between the cantilever and parallel
electrode was approximated by a parallel plate capacitance between the side wall
surfaces. In this approximation the fringing fields are neglected. If the gap size
between the cantilever and electrode has the same magnitude as the height of the
cantilever and electrode then these fringing field can not be neglected anymore. In
order to include these effects in the model the fringing fields can be approximated
by increasing the effective height of the parallel plate capacitor, as seen in figure
2.6. The total capacitance between the cantilever and parallel electrode now
becomes:

Ctot =
εA

d
(1 + α) (2.4-1)

where α is the fringe factor. The fringe factor will depend on the width and
height of the cantilever and the cantilever material. Furthermore, the fringe fac-
tor is very difficult to calculate analytically, thus this factor remains empirical.
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One would expect that as the height increases, compared to the gap distance, the
fringing contribution to the total capacitance would decrease.

Figure 2.6: In (a) the actual fringing fields are shown at the edges of the can-
tilever/driver system and in (b) the system is approximated by extending the plate
with αh.

In order to implement the fringe effects into the SPICE model, C0 in equation
2.2-17 is replaced with equation 2.4-1. In figure 2.7 frequency response of a can-
tilever with width, height, length and gap of 1µm, 0.6µm, 40µm and 1µm is
simulated with α values of 0 and 1. The applied voltages are VAC=100mV and
VDC=35V. In figure 2.7a the amplitude of the vibration has increased and the
resonant frequency has shifted. This is expected because the capacitance of the
device is increased, thus the forces acting on the cantilever are also increased,
which increases the amplitude and lowers the resonant frequency due to spring
softening effects. In figure 2.7b the output current is simulated with a parasitic
capacitance of 10fF. Again, both the current amplitude and resonant frequency
are changed.

The fringe factor will be estimated through experimental measurements.
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Figure 2.7: Simulated frequency responses of (a) the vibrational amplitude and (b)
the output current, using α=0 and α=1.

2.5 Non-linear effects

It has been observed that when the vibrational amplitude of the cantilever ap-
proaches the gap distance between the cantilever and electrode, the cantilever
shows non-linear behavior [86][87]. As stated one of the objectives of the SPICE
model was to be able to simulate the non-linearities. This is possible by perform-
ing a transient analysis and measuring the oscillation amplitude of the cantilever
at different AC frequencies. Figure 2.8 shows the simulated frequency response of
the cantilever’s oscillation amplitude in the non-linear regime. In this simulation
the cantilever dimensions were 1µm, 0.6µm, 40µm and 1µm for the width, height,
length and gap distance respectively. The applied voltages were 100mV AC and
22V DC. It can be seen that the frequency response of the cantilever is not sym-
metrical. As the frequency increases the amplitude increases very dramatically
and then falls again at a slower rate.

2.6 SUGAR model

The main weakness of the SPICE model is that it is based on the stiff plate ap-
proximation, thus the true bending of the cantilever is not correct. This means
that the SPICE model can be used for simulating the values of the snap-in volt-
age, the resonant frequency reduction due to spring softening effects and the
electrical behavior, but not the true cantilever deflection. Furthermore, in order
to successfully model the mechanical behavior, the displacement x(t) needs to be
reduced be a certain effective value. In order to determine this value a simple
finite element (FE) model has been used, which can simulate the static behavior
of the cantilever/electrode system.
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Figure 2.8: The simulated frequency response illustrating the non-linear effects due
to large vibrational amplitudes.

The 2D FE modelling has been performed with SUGAR, whose main components
are netlist interpreter models written in MATLAB or C, describing the charac-
teristics of different components. With a command line and GUI (graphical user
interface), SUGAR allows visualization and interaction of the device.

In this model the objective is to model the cantilever bending when a DC voltage
is applied between it and a parallel electrode. First, the device is built up, where
the material properties and the actual dimensions of the device are built up in
a netlist input file. The actual netlist files can be seen in Appendix B. When
the device is built up a static analysis is performed on the device. In the static
analysis the equilibrium state of the device is found. Then the device is displayed.
The final program written in MATLAB can also be found in Appendix B. The
variable parameters are the cantilever dimensions, the gap distance between the
cantilever and electrode and the fringe factor.

2.6.1 Snap-in voltage simulations

In figure 2.9a a device consisting of a 40µm long, 1µm wide and 2µm high device
is shown separated 2µm from a parallel electrode. Figure 2.9b shows the result
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Figure 2.9: Graphical display of the SUGAR model device with (a) no electrostatic
forces acting on the cantilever and (b) with a DC voltage of 185V applied between the
cantilever and electrode.

of a static analysis of the device when a voltage of 165V is applied between the
cantilever and static electrode with the same dimensions and a fringing factor of
0. In figure 2.10 the static deflection at the apex of the cantilever is shown as a
function of the DC voltage. The snap-in voltage of the device is approximately
176V. In the same figure a SPICE simulation, with the same device dimensions, is
performed and the simulation predicts a snap-in voltage of 68.4V, which is much
lower than the SUGAR model. A displacement reduction factor R is multiplied
to the x(t) seen in the SPICE circuit diagram, figure 2.5. By setting R to 0.1512
the snap-in voltage of the SPICE model now matches that of the SUGAR model.
Furthermore, the actual displacement of the cantilever for the SPICE model is
lower than the SUGAR model, which is expected, since the SPICE model is built
upon the stiff plate approximation.

2.6.2 Fringe factor effects

In the above simulation the fringe factor is zero, but in a real system the fringe
factor will probably be around 1. In figure 2.11a the snap-in voltage of the
device is calculated for different fringe factors. It is seen that the snap-in voltage
decreases dramatically at small values of the fringe factor then at higher fringe
factors the dependance is less. This dependence can be deduced from simply
equating the electrostatic forces, Fel = εhV 2

2(d−x)2
, to the spring constant force, Fsp =

kx, and solving for the snap-in criteria, which is [88]:

∂V

∂x
= 0 (2.6-1)

Solving the equation for x and plugging that back into the equated forces, the
snap-in voltage dependence on the capacitance is found to be:
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Figure 2.10: Simulation results of the displacement at the cantilever apex performed
by the SUGAR model and the SPICE model with R=0 and R=0.1512. The fringe
factor is 0 in this simulation.

Vs ∼ 1√
C

∼ 1√
α

(2.6-2)

By inverting the squared value of the snap-in voltage and plotting it against the
fringe factor a linear dependence is seen, figure 2.11b.

2.7 Summary

In this chapter the general cantilever theory has been presented, which presented
the spring constant and dynamic behavior of a rectangular cantilever and ended
with a simple calculation of the theoretical mass sensitivity. It was seen that the
mass sensitivity increases upon miniaturization of the cantilever and that mass
sensitivities on the order of 10−19g/Hz are achievable for cantilevers with widths
down to 100nm.

Two models were used to model the mass sensor device. The main model, which
is capable of predicting the electrical and mechanical behavior of the capacitive
cantilever/electrode system, even in the non-linear case, is the SPICE model.
With this model the current output of the device can be simulated with different
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Figure 2.11: The SUGAR simulation of (a) the snap-in voltage as a function of the
fringe factor and (b) the inverted snap-in voltage squared as a function of the fringe
factor.

cantilever/driver configurations and with different parasitic capacitances. Fur-
thermore, the resonant frequency and the snap-in voltage of the cantilever can
be simulated. The fall back of this model is that it is based on stiff components,
where the real cantilever bending is approximated by a plate displacement. This
means that in order to predict the resonant frequency and the snap-in voltage, a
displacement reduction factor must be placed in the model.

In order to calibrate the SPICE model, a 2D FE SUGAR model was used, which
is capable of modelling the precise bending of the cantilever. With this model
the precise snap-in voltage can be calculated, and by knowing this, the SPICE
model can be calibrated to predict the same snap-in voltage with the appropriate
displacement reduction factor.

Another important factor that could have a large influence on the performance
of the device is the fringe factor. The fringe factor is introduced as a factor
that increases the total capacitance of the cantilever/electrode system due to the
fringing fields, which at these geometries are probably very dominant. This factor
is purely empirical and can only be determined through characterization of the
real device.



Chapter 3

Lithography Techniques

In order to achieve the highest sensitivity for a cantilever based sensor, it was
seen that the resonant frequency to mass ratio must be as large as possible, see
equation 2.1-9. Thus, by decreasing the cantilever dimensions the mass sensitivity
increases. The cantilever is fabricated using silicon based processing techniques.
The critical fabrication step for defining the cantilever dimensions is the lithogra-
phy process. Many types of lithography techniques can be used to define silicon
based mechanical devices. In this chapter several lithography techniques will
be presented, that have been used to fabricate the mass sensor device, namely,
UV, laser, atomic force microscopy (AFM) and electron beam lithography (EBL).

In the NANOMASS project, one of the main objectives is to ascertain which
lithography technique is best suited for fabricating approximately 100nm wide
cantilevers with the best speed and reproducibility. As stated in section 1.4, there
are some specific objectives within the NANOMASS project which are treated
in this thesis. In this chapter, the main objective is the width of the cantilever
based sensor. As seen in section 1.4.2 of the introduction, in work package (WP)
1 the minimum width of the polysilicon based cantilever demonstrator is defined
as 0.5µm. In WP 2,4 and 5 the minimum width of the single crystal silicon based
cantilever demonstrator is 100nm, which puts large demands on the lithography
technique. In WP 3 the minimum width of the metal based cantilevers is 500nm,
without CMOS.

3.1 UV lithography

The two basic methods of UV lithography are called contact mask and projec-
tion UV lithography. Both setups are shown in figure 3.1. Before UV exposure, a
wafer or substrate is coated with a thin layer of photoresist. The polymer based
photoresist is dispensed in a liquid phase on the substrate and subsequently spun
at a certain rotational velocity until the photoresist is evenly coated on the sub-

35



3.1 UV lithography 36

strate. Then, the substrate is baked until the photoresist hardens. The thickness
of the resist layer is controlled by (1) the viscosity of the resist upon dispensing
and (2) the spinning rotational velocity, and can range from below 1µm to several
µm.

In contact mask lithography the photolithography mask, which has the desired
design, is placed above the substrate and the sandwich structure is irradiated
with UV wavelength light, figure 3.1(a). The mask protects the photosensitive
resist in certain areas so that the design on the mask can be transferred to the
photoresist. After UV exposure of the substrate, either the exposed or unexposed
areas can be removed with a chemical etchant, corresponding to a positive or
negative photolithography process.

Figure 3.1: Schematic drawing of (a) contact mask and (b) projection mask optical
lithography.

The minimum feature size (the minimum width that can be transferred to the
photoresist) is given by [79]:

sc = α

√
λ · (g +

d

2
) (3.1-1)

where λ is the wavelength of light used to expose, g is the gap between the mask
and the resist, d is the thickness of the photoresist and α is an empirical constant
on the order of 1, depending on the lithography system. The minimum feature
size can be decreased by minimizing λ, the gap g and the resist thickness d. In
high resolution systems the gap size is zero, so the UV wavelength and the resist
thickness are the two limiting factors. Typically, with a thin resist, line-widths
down to a 200-500nm are obtainable, but depend on a very precise and well de-
fined contact mask, which is usually fabricated with electron beam lithography
(EBL). Furthermore, the best resolutions depend on the surface being ultra-flat,
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with no particles or structures, in order to have a reproducible line-width on the
entire wafer.

In projection lithography the mask is separated from the wafer by an objective,
which projects the mask design onto the wafer. The advantages of this system
compared to the contact mask method is that (1) the mask is not in contact
with the wafer, thus there is no risk of damaging the wafer or mask and (2) since
the objective can have finite demagnification, the feature sizes on the mask is not
critical. Normally, the mask is projected in sections onto the wafer with a stepper
technique [53][89]. The minimum feature size of the projection UV lithography
is given by [79]:

sp = β
λ

NA
(3.1-2)

where β is an empirical constant on the order of 1, depending on the illumination
system, and NA is the numerical apperature of the magnifying objective. This
UV lithography technique is widely used in the IC industry, where feature sizes
down to 100-200nm are needed. State of the art microelectronic foundries can
have line-widths under 100nm, but more typical values are between 100-500nm.
Furthermore, this technique is rarely found in research facilities, with the line-
width mentioned above, since the equipment is high maintenance and expensive.

3.2 Laser lithography

The laser lithography process at MIC is a direct writing process. This process has
a very high pattern definition flexibility where new patterns can be implemented
immediately. However, only one device mask is made at a time, thus this is not
a batch process like UV lithography.

The schematic diagram of the direct writing laser facility is shown in figure 3.2.
The laser is a continuous-wave argon ion laser with UV option. Beam conditioning
and focusing optics, focus the laser beam onto a high-resolution x-y translation
stage. The focus point in the z-direction is controlled by an objective, which is
mounted on a z-axis stage. The operating laser wavelength for the laser lithog-
raphy is 488nm, which corresponds to the blue spectrum. There is also an A/O
modulator, which serves as an on/off switch for the laser beam. Both x-y and z
stages plus the A/O modulator are all controlled via a CPU unit. Through pro-
gramming software specific patterns can be scanned onto any substrate, which is
placed on the x-y stage.

This direct writing laser lithography can be used for prototyping Al coated un-
doped Si or SiO2, which is a technique developed at MIC by Karen Birkelund
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Figure 3.2: The laser lithography setup consisting of an Argon laser, acoustic mod-
ulator, optics and a stage, all controlled by a central CPU.

and Anja Boisen[90][91]. In this technique, direct writing on an Al coated Si or
SiO2 surface can be used to define a highly effective dry etching mask, which
can be used to selectively etch Si. Another use for the laser lithography system
is direct etching of Si surfaces [92][93]. In this process a Si substrate is placed
in a chlorine atmosphere and the laser is focussed on the substrate, heating the
Si to its melting point, where the chlorine gas reacts with the Si melt, remov-
ing it in the gas flow. Finally, the laser lithography facility can also be used
to expose photosensitive resist, which is the same process as in UV lithography
except that the resist is directly exposed instead of exposed through a mask. The
minimum feature size of the laser lithography system is approximately equal to
the wavelength of the laser, which is 488nm. Writing speeds are in the range of
0.1-10mm/sec.

3.3 AFM lithography

The third lithography system presented here is atomic force microscopy (AFM)
lithography. AFM is based on scanning the surface with a stylus-based micro-
scope technique as seen in figure 3.3. A microcantilever with an integrated tip
at the end is raster scanned across the surface. The bending of the cantilever,
due to the interaction forces between the tip and sample, is measured and a 3D
image of the surface topography is obtained.
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Figure 3.3: The atomic force microscopy lithography setup, where a negative poten-
tial is applied between the AFM tip and sample.

Besides imaging of surfaces, AFM has a vast number of other applications, such
as manipulation of particles on a surface[94], evaluation of the mechanical or
chemical properties of a surface [95], or altering the surface altogether. AFM
lithography in this thesis will be defined as local oxidation of a surface by apply-
ing a negative potential between the tip and surface as seen in figure 3.3.

Several articles have investigated AFM lithography [96][97][98] and it seems that
it is possible to perform highly reproducible local oxidations on silicon, titanium
and even aluminum surfaces. The minimum line-width of AFM lithography is
directly related to the AFM tip sharpness. It has been demonstrated that 10nm
lines on Si surfaces can be produced [99]. The writing speed of this technique
is approximately 10µm/sec. Furthermore, jumping and non-contact mode AFM
has also been used in AFM lithography, in order to decrease the tip wear and
thus increase the writing reproducibility and flexibility.

3.4 E-beam lithography

An electron beam lithography (EBL) setup is shown in figure 3.4 [53][89]. Usu-
ally the EBL system is integrated into a scanning electron microscope. The basic
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components of the lithography setup are the electron gun, the beam blanker,
the deflection coils and the condenser lenses, which focus the e-beam down to
0.01-0.1µm. The electron gun can either be a thermal (TEG) or a field emis-
sion gun (FEG). The FEG has a high brightness and a small energy spread and
thus has good focussing capabilities even at low acceleration voltages, which is
preferred for imaging purposes. Normal e-beam lithography systems use a high
acceleration voltage to minimize so called proximity effects due to backscattering
electrons. Thus, TEGs are usually used for EBL. The substrate is placed on a
high precision stage, which is needed if wanting to expose areas, larger then the
electron beam field.

Figure 3.4: A schematic drawing of the EBL setup

The e-beam lithography is a direct writing system where the beam blanker and
the deflection coils are used to expose a substrate which has a electron radia-
tion sensitive resist deposited on it. The resist is spun onto the substrate in
the same manner as the photoresist mentioned above. A typical e-beam resist
is poly(methyl methacrylate) or PMMA, which is spun onto the substrate at a
thickness of below 100nm for the best resolution.

There are two methods to expose the substrate; the raster scan and vector scan
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method. During raster scan the entire area is scanned, like when doing SEM
imaging. The beam blanker is used here to turn on the beam at areas of exposure.
During vector scan only the areas to be exposed are scanned. Thus, the e-beam
jumps from area to area. If only a small percentage of the total scan area needs
to be exposed, the vector scan method is the fastest. Furthermore, variable-
beam-shape systems have been developed so that the beam can have different
cross section shapes such as rectangles, thereby increasing the writing speed even
further. The minimal line-width of EBL is approximately the beam diameter,
which can be down to 10nm. Typically, the minimal line-width obtainable is
around 50-100nm [80][79]. The writing speed of EBL is typically 100-500µm/sec.

3.5 Summary

In table 3.1 the pros and cons of the techniques presented here are listed. Only UV
lithography can achieve batch processing, which ensures the highest throughput.
The best UV lithography systems can define features below 100nm, but this limit
is practically very difficult to achieve. In order to obtain sub 100nm line-widths,
either AFM or E-beam lithography are possibilities. The main differences are
that AFM is inherently simple and a cheaper process and that local oxidation can
produce line-widths down to 10nm reproducibly. EBL has a higher throughput
and can easily achieve the line-widths required for the 100nm wide demonstrator.

technique line-width speed advantages disadvantages
UV contact mask 300-500nm batch cheaper equipment only flat surfaces

high accuracy mask
UV projection mask sub 100nm batch no high accuracy mask high-budget equipment

structured surfaces ok
Laser 500nm 10mm/sec flexible and fast reproducibility problems
AFM 10nm 10µm low minimum line-width low throughput

low-budget equipment
E-beam sub-50nm +500µm/sec high throughput high-budget equipment

low minimum line-width

Table 3.1: A summation of the different lithography techniques discussed in this
chapter comparing the minimum line-width and speed and other advantages and dis-
advantages.



Chapter 4

CMOS Circuitry Design and
Fabrication

4.1 General design considerations

In this section the CMOS circuitry design for cantilever based mass detector will
be clarified. Previously the general design of the cantilever has been presented
as that seen in figure 4.1. Basically, the device consists of a laterally vibrating
cantilever separated from one (a) or two (b) parallel electrodes. The cantilever is
excited into resonance by applying an AC voltage between the static electrode and
the cantilever. The displacement of the cantilever is monitored by the capacitance
in the system. In the one electrode system both the AC and DC signal are applied
to the electrode and the output current is measured at the cantilever. In the two
electrode configuration one electrode is used for driving the cantilever and the
other is used for measuring the output current.

4.1.1 Parasitic capacitances

As seen in equation 2.2-10 the current through the system is equal to a regular
capacitive current and a mechanical current. In a real system the capacitive
current is not just the current through the cantilever electrode capacitance, but
also through any parasitic capacitances in the system, Cpa, as seen in chapter 2.
In the SPICE model the output current, which is the current flowing though Rs2,
figure 2.5, can be modelled with different values of parasitic capacitances, which
is denoted as Cpa2 in figure 2.5. Figure 4.2 shows SPICE simulations of the
output current at three different parasitic capacitances. The physical parameters
for this simulation are w=1µm, t=2µm, l=40µm d0=2µm, Q=50, VAC=1V and
VDC=110V. The Q-factor has been chosen based on previous measurements on
such cantilevers in air [81][100] where it was found to be 50.
By looking at figure 4.2 it is seen that the vibrational amplitude at the peak is
approximately 180nm at a resonance frequency of 706kHz. Since the amplitude
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Figure 4.1: Schematic drawing of the (a) one electrode design and (b) two electrode
design.

Figure 4.2: SPICE simulations of the vibrational amplitude of the cantilever and the
current output with three values of parasitic capacitance, 10fF, 50fF and 100fF.

is below 10% of the gap distance of 2µm, it is assumed that non-linearities do not
dominate the system. Along with the vibrational amplitude are three simulations
of output current with three different values of parasitic capacitance. It is seen
that when increasing the parasitic capacitance the current level is raised. Fur-
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thermore, the current seems to be linearly proportional to the frequency around
the resonance. This is understood by looking at the first term in equation 2.2-10:

Icap
∼= (Cpa + Ccan)V̇ (t) = (Cpa + Ccan)ωV0 cos(ωt) (4.1-1)

where V (t) = V0 sin(ωt), Ccan is the cantilever-electrode capacitance. Further-
more, by increasing the parasitic capacitance Cpa the gradient of the linear depen-
dance increases. It is also seen that the current output has a peak and anti-peak
current value. This effect is due to an anti-resonance produced by the parallel
parasitic capacitance. This anti-resonance approaches the mechanical resonance
when the parasitic capacitance increases [101][102]. Thus the mechanical reso-
nance is cancelled out by the anti-resonance at high parasitic capacitances.

In order to see how much parasitic capacitance can be tolerated the SPICE model
has been used to calculate the peak to anti-peak current and the peak to anti-peak
to peak current ratio PAPPR, which is defined as:

PAPPR =
Ipeak − Ia−peak

Ipeak

(4.1-2)

where Ipeak and Ia−peak are the peak current and anti-peak current respectively.
The peak to anti-peak current PAPC is a measure of what current resolution
is needed to make the measurements. Furthermore, the PAPPR ratio tells us
the ratio between what current resolution needed and the current level. The
simulation results are shown in figure 4.3.

Figure 4.3: SPICE simulation results showing (a) the current peak to anti-peak value
and (b) peak to anti-peak to peak current ratio.

By looking at figure 4.3a it is seen that the PAPC, as expected, is dropping with
the increase in parasitic capacitance. At Cpa=500fF the PAPC is approximately



4.1 General design considerations 45

7nA, which is a quite low value, but not impossible with careful readout circuitry
design. But, by looking at the PAPPR versus parasitic capacitance a much
steeper drop is seen. Already at Cpa=100fF the PAPPR is already below 0.1,
which means the signal is only 10% of the current level and at 400fF the signal
is less than 1%. These results show that the parasitic capacitance should not
be more than 300-400fF. Otherwise the mechanical current signal is too low to
measure.

4.1.2 One versus two electrode configuration

The mechanical current signal can be increased compared to the parasitic sig-
nal by increasing the DC voltage and decreasing the AC voltage. In theory by
having a very low AC voltage and high DC voltage the parasitic currents can be
lowered substantially. In the one electrode design, the snap-in of the cantilever
prevents the increase of the DC voltage beyond a certain value. In figure 4.4a-c
the output current for three different values of AC and DC voltage are shown for
the same device as above, but with a parasitic capacitance of 500fF. It is shown
that by decreasing the AC and maximizing the DC, the PAPPR can be increased
to 0.0759, but it is still very low, see figure 4.4. Furthermore, it is seen that by
applying high DC voltages the resonant frequency drops considerably, which is
unwanted because this decreases the mass resolution. In figure 4.4d the static
bending of the cantilever of the one electrode device shows that the DC voltage
cannot go beyond 126V DC.

A way to increase the DC without snap-in is to use the two electrode configu-
ration, figure 4.1b. In this configuration, since the electrodes are symmetric a
much higher voltage can be applied to the cantilever without snap-in. In figure
4.5 the same device is simulated with the same parasitic capacitance, this time
with the two electrode configuration. The AC voltage is held to 0.1V while the
DC voltage is increased. Through these simulations it is seen that the cantilever
signal is not enhanced as much as the one electrode configuration. The reason for
this is because in the one electrode configuration the effective static capacitance
C0 is increased due to the static bending of the cantilever towards the electrode.
Since the static cantilever capacitance is proportional to 1

d
, a decrease in the gap

leads to a larger increase in mechanical current then the linear dependance of
the DC voltage. Another disadvantage is that by applying too high voltages the
resonant frequency is decreased, which, again, is undesirable.

In a real system, with an off-chip amplifier, the parasitic capacitances occur
through the chip wires, the bonding pads and the external wires. With proper
shielding and grounding the parasitic capacitance can be minimized to around
500fF, which is still too high for this capacitive readout based mass detector
system. Furthermore, the dimensions here are on the order of microns. With
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Figure 4.4: SPICE simulations with the 1 electrode configuration showing the current
output frequency response for three different voltage configurations, (a) V = 1VAC +
110VDC , (b) V = 500mVAC +125VDC and (c) V = 100mVAC +126VDC . The parasitic
capacitance is set to 500fF. (d) the static bending of the cantilever versus the applied
DC voltage.

further miniaturization, the cantilever capacitance decreases even further mak-
ing the mechanical current signal even smaller.

In order to minimize the parasitic capacitance, integration of the mechanical
device on the same chip as the amplifier is a distinct possibility. By integrating
the mechanical cantilever with standard CMOS circuitry, parasitic capacitance
below 10fF can be obtained. Furthermore, integration with CMOS circuitry
allows design of tailored circuits, which have the exact characteristics that are
needed for the readout system.

4.2 CMOS technology

This section is a description of the CMOS technology, which was utilized for the
integration of the cantilever mass detector device. The CMOS fabrication was
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Figure 4.5: SPICE simulations with the 2 electrode configuration showing the cur-
rent output frequency response for three different voltage configurations, (a) V =
100mVAC + 200VDC , (b) V = 100mVAC + 300VDC and (c) V = 100mVAC + 320VDC .

performed at Centro Nacional de Microelectrónica (CNM), which is located on
the campus of Universitat Autonoma de Barcelona. The standard process is a so-
called twin-well, CMOS-2.5µm, 2poly, 1 or 2 metal levels. The process sequence
for the standard CMOS fabrication is seen in figure 4.6.

In step (1) the twin N and P wells are defined by photolithography and ion im-
plantation. In step (2) A 1µm thick LOCOS oxide is deposited. Step (3) is
the poly0 definition, where an LPCVD poly-silicon is deposited and defined with
lithography and wet etching. This poly0 acts as the lower electrode of the ca-
pacitors. In Step (4) the poly1 layer is defined. First, a thin gate oxide is grown,
which is approximately 365Å thick. Then the poly1 polysilicon layer is deposited
by LPCVD and defined using lithography and wet etching. The poly1 acts as the
top electrode of the capacitors and the gate electrode. Now, the source and drain
are implanted in step (5) using again photolithography and ion implantation.
In step (6) a 1.4µm thick BPSG interlevel oxide is deposited and defined using
photolithography and wet etching. The interlevel oxide is used for separating the
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Figure 4.6: Process sequence for the standard 2.5µm CMOS technology. First, the
twin wells are defined (1). Then, the thick LOCOS oxide is deposited (2). After that,
the first poly0 layer is deposited and defined (3). Then the gate oxide is grown and
the top poly1 layer is deposited and defined (4). The source and drain are now defined
(5) and the interlevel BPSG oxide is then deposited and defined. Finally, the metal
wires and bonding pads are defined (7) and the chips is passivated with a 700nm thick
PECVD glass (8).

metal wires from the capacitors and transistors. Next (7), the metal wires and
bond pads are defined, by first sputtering a 1µm thick Aluminum layer on the
CMOS surface and subsequently patterning it by lithography and wet etching.
Finally, in step (8), the whole chip is passivated by depositing a 4000Å thick
PECVD oxide and 7000Å thick PECVD nitride. Holes are then opened in the
passivation layer in order to access the Al bonding pads.

Previously, silicon based cantilever structures with the capacitive excitation and
readout design have been fabricated using a p++ poly-Si/SiO2/Si sandwich struc-
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ture [81][100]. In this structure the top Si layer is used as the device layer where
the cantilever and electrodes are defined and the oxide layer acts as a sacrifi-
cial layer. The thicknesses were 2µm and 4.5µm for the p++ poly-Si and the
SiO2 layer respectively. In the CMOS process described above a similar sand-
wich structure is present. The bottom poly0 layer is deposited on top of a 1µm
thick oxide layer. This sandwich layer structure is the basis for the first attempts
of integration. By using already deposited layers, no add on layers are needed,
which simplifies the integration process. Furthermore, electrical connections to
the poly0 layer and the transistors are already built into the CMOS fabrication
process. The fabrication of the mechanical cantilever is performed as a post pro-
cessing sequence. In this way all the CMOS processing steps remain standard,
which is highly desirable in a CMOS production line.

4.3 Circuit design

In this section the final design of the readout circuit will be presented. However,
the details of the circuits will not be discussed here. The main objective of the
readout circuitry is to sense the mechanical current produced by the cantilever
oscillation and convert this current into a voltage signal, which can be easily
measured with an oscilloscope or other voltmeter. Basically, two types of ampli-
fication circuits have been designed, which are the amplifier plus voltage follower
(BS) and the current amplifier (AC).

4.3.1 BS circuits

Figure 4.7: Diagram of the BS circuit, which consists of an amplifier and voltage
follower.
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The simple BS circuit can be seen in figure 4.7. The two main components are
the amplifier (source follower) and buffer (voltage follower). The amplifier is
a current mirror with three NMOS and one PMOS transistors. Basically, the
charge on the cantilever is connected to the gate of the first NMOS transistor. If
this transistor is polarized in its linear region, the mechanical current, when the
cantilever is in resonance, will fluctuate the gate charge and thus fluctuate the
current flowing in the current mirror. The output of the amplifier is connected
to an operational amplifier with unity gain, which gives a low impedance at the
output of the amplifier.

The gain of the amplifier can be determined from the small-signal model of the
transistors. The gain, for a first order model and at low frequencies, is:

Vout

Vin

= − gm1gm3

(gm1 + gm2)gm4

(4.3-1)

where gm is the transconductance of the transistors, which depends on the po-
larization and the dimensions of the transistors according to:

gm =

√
2µCox

W

L
Id (4.3-2)

where µ is the mobility of the carriers in the transistors, Cox is the gate capaci-
tance, W and L are the width and length of the gate respectively and Id is the
drain-source current.

The advantage of this type of amplification circuit is that the bandwidth of the
operational amplifier remains high since it has a unity gain, thus the bandwidth
of the circuit is high.

4.3.2 AC circuits

Two AC amplifiers, denoted AC1 and AC2, are seen in figure 4.8 and are two
types of current-voltage converters. The output voltage Vout of the AC1 circuit
seen in figure 4.8a is:

Vout = Ican(R1 + R2)(1 + R3/R4) (4.3-3)

where Ican is the total capacitive and mechanical current through the cantilever/electrode
system as defined by equation 2.2-10. Furthermore, the output voltage of the AC2
circuit seen in figure 4.8b is:

Vout = IcanR (4.3-4)
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Figure 4.8: Diagram of two types of AC circuits, which are (a) a current-voltage
converter and (b) a simple current-voltage converter.

The advantage with the circuit in figure 4.8a is that the same effective tran-
simpedance can be achieved with smaller resistors, which are easier to realize on
the CMOS chip.

4.4 1st Generation chip design and layout

Now that the amplification circuits have been described the CMOS chip design
and layout will be presented. The 1st generation CMOS chip layout is seen in
figure 4.9. The chip layout consists of both BS and AC circuits and several test
structures in section A of the chip. The other three sections mainly contain test
structures, which are used to evaluate the CMOS parameters during and after
post processing of the cantilever device.

4.4.1 BS circuit

In figure 4.10 the 1st generation BS circuit layout is seen. The nanoarea is where
the cantilever will be fabricated and consists of the poly0/SiO2/Si sandwich layer
as discussed above. Furthermore, the amplifier and voltage follower are seen. It



4.4 1st Generation chip design and layout 52

Figure 4.9: Chip layout for the 1st generation CMOS circuitry. The BS and AC
circuits are placed in section A.

is worth noting that the underlying Si substrate in the nanoarea is connected to
the voltage supply of V = −2.5V , which is used to polarize the circuit.

Figure 4.10: Layout of the 1st generation BS circuit. The arrows indicate the
nanoarea, the amplifier and the voltage follower.
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4.4.2 AC circuit

In figure 4.11 the 1st generation basic AC amplifier layout is seen. Here, the
non-inverting input of the operational amplifier is connected to the underlying
substrate of the nanoarea, which is grounded during operation. Thus, any para-
sitic currents through the substrate are short-circuited. Resistor R1 is also seen,
illustrating how much room is used to make a resistor. The insert in figure 4.11 is
an alternative nanoarea, where it is possible to fabricate a two electrode device.

Figure 4.11: Layout of the 1st generation AC circuit. The insert shows the 2-
electrode layout of the nanoarea.

4.4.3 1st generation problems

There were two major problems with the 1st generation CMOS chips. The first
problem was with the BS circuits, where the underlying substrate in the nanoarea
is connected to the -2.5V voltage supply. It was found that the cantilever had a
tendency to stick to the bottom substrate during operation. The reason is that in
order for the amplifier to work with the maximum gain the cantilever needs to be
charged at a certain value. This means that a potential of around 10-15V DC is
needed at the voltage input, thus the cantilever has an electrostatic attraction to
the bottom substrate, which is -2.5V, and the cantilever collapses to the substrate.

The second problem was that the operational amplifiers had a tendency of res-
onating in the frequency range of the calculated cantilever resonance.
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4.5 2nd generation chip design and layout

In the second generation, some simple design changes where made in order to
avoid the problems encountered with the 1st generation. Furthermore, the layout
of the chip was changed so that the devices can be more easily accessed with a
probecard and still be observed with an optical microscope. The chip layout is
seen in figure 4.12. It is seen that the chip is composed of two areas called the B
and A, which correspond to the left and right side of the chip respectively. The
B section is dedicated to BS circuits and the A side is dedicated to AC circuits.

Figure 4.12: Layout of the 2nd generation CMOS circuitry where the left two sections
consists of BS circuits and the right two sections consists of AC circuits.

4.5.1 BS circuit

The BS circuits were redesigned in order to solve two problems, which were (1)
the underlying substrate is not connected to the -2.5V power supply, but can
be accessed from a bonding pad and (2) an extra connection to the nanoarea is
added so that the polarization of the amplifier transistor can be done separately
from the input voltage. The layout of the new BS circuit can be seen in figure
4.13. Furthermore, the new cantilever design, which consists of the second input
electrode connected to a comb capacitor, is also shown in figure 4.13b. The idea
of the comb capacitor is that the charge on the cantilever is proportional to the
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voltage and the capacitance, see equation 2.2-4. Thus the potential required to
polarize the first transistor is reduced because the comb capacitor is larger than
the capacitance between the cantilever and driver electrode.

Figure 4.13: The 2nd generation BS circuit layout. Note that the underlying sub-
strate of the cantilever can be accessed from a bonding pad and can thus be grounded.

The electrical characterization of the new BS circuit can be seen in figure 4.14,
which shows in (a) the DC voltage output as a function of a static DC voltage
input and (b) the gain as a function of an applied AC frequency. This charac-
terization is performed on a test circuit, before the cantilever is fabricated and
the poly-Si, with a resistance of 180Ω, is in its place. In figure 4.14a the DC
characterization shows that Vin voltages below -1V and above 200mV the circuit
is either in saturation or closed respectively. In the linear region the maximum
gain, which is approximately 16dB. In figure 4.14b the frequency response of the
circuit is seen. The bandwidth of the circuit is found to be 1.7MHz, which is quite
high. For the cantilever simulations in section 4.1 the resonant frequency is ap-
proximately 700kHz. Furthermore, a cantilever with a width, height and length
of 100nm, 1µm and 10µm respectively has a fundamental resonant frequency of
1.4MHz, which is still within the bandwidth of this circuit.

4.5.2 AC circuit

The new AC circuits are virtually the same except that the operational ampli-
fier has been altered so that the gain is constant within the frequency range of
the cantilever. The Schematic layouts of three types of AC circuits can be seen
in figures 4.15 4.16 4.17. In figure 4.15a the four resistors and the capacitor of
the circuit are indicated by the arrows, while in figure 4.15b a close-up of the
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Figure 4.14: (a) the static transfer characteristic and (b) the frequency response of
the BS circuit.

nanoarea showing where the cantilever/electrode design will be. In figure 4.16
a two electrode configuration is shown and again the nanoarea is seen in figure
4.16b. Finally, a two cantilever device has been added, which could be used as
a differential measurement system. This new differential circuit and nanoarea
can be seen in figure 4.17. The idea of this device is to use one cantilever as
a reference cantilever while the other is used for measuring a mass change. By
subtracting the two outputs from the two cantilevers any outside influences on
the cantilever such as temperature variations can be filtered out. Also this de-
vice is the first step in designing future devices with an array of many cantilevers.

In figure 4.18 the frequency response of a BS and AC1 circuit is seen. It is seen
that as described above, the gain of the BS is around 16dB and the band width
is 1.7MHz. The AC1 circuit has a higher gain of around 32dB but a low band
width of 150kHz. However these measurements were performed before the poly0
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Figure 4.15: (a) Schematic layout of the one electrode AC1 type circuit and (b) a
close-up of the nanoarea showing the placement of the cantilever electrode.

Figure 4.16: (a) Schematic layout of the two electrode AC1 type circuit and (b) a
close-up of the nanoarea showing the placement of the cantilever and two electrodes.

layer has been processed to instead of a cantilever a 180Ω resistor is in its place,
thus the optimum operating conditions were not used during this measurement.

4.6 Summary

In the beginning the SPICE model was used to illustrate the effects of parasitic
capacitances on the cantilever based capacitive system. It was shown that para-
sitic capacitances below 300fF are needed to achieve the capacitive readout. This
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Figure 4.17: (a) Schematic layout of the differential device with two AC1 type circuits
and (b) a close-up of the nanoarea showing the placement of the two cantilevers and
two electrodes.

Figure 4.18: Two frequency responses comparing the BS and AC1 circuit. It is seen
that the BS has a low gain and high bandwidth, whereas the AC1 circuit has a high
gain and low bandwidth.

lead to the realization that integration of the sensor with CMOS is inevitable.
Furthermore, the one and two electrode configurations where compared and it
was determined that even though a higher DC voltage can be applied with the
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two electrode configuration, the signal is not enhanced compared to the one elec-
trode configuration.

The remainder of this chapter introduced the CMOS technology, which was used
to realize the CMOS integrated cantilever based mass sensor. It was determined
that the first attempt at CMOS integration would be based on a post-CMOS
surface micromachining of the bottom poly0 layer of the CMOS. Furthermore,
two amplification circuit designs were introduced and explained, namely the BS
and AC circuits. Finally, the layout design of the first and second generation
CMOS chip was presented.



Chapter 5

CMOS Integrated Cantilevers

5.1 Poly0 optimization

In section 4.2 it was concluded that the first approach to CMOS integration was
to use the CMOS poly0 layer as the structural layer and the LOCOS oxide as the
sacrificial layer, figure see 4.6. One of the reasons for choosing the poly0 layer
is that it was the only layer that can be altered in order to optimize the surface
roughness and thickness. A low surface roughness is desirable when performing
the lithography processes, in order to decrease the line-width as much as possi-
ble. An increased height of the cantilever increases the vertical stiffness of the
cantilever, which decreases the risk of vertical snap-in and it will also increase the
static capacitance of the device, which will in-turn increase the mechanical vi-
brational current according to equation 2.2-18 and 2.2-19 by increasing the static
capacitance C0.

The poly0 thickness was increased from 350nm to 600nm, which was the thickest
possible value without changing the CMOS characteristics considerably. In order
to minimize the surface roughness both the deposition and doping techniques
were investigated. The original poly0 was deposited by LPCVD at 6100C and
was doped by POCl3 diffusion. A SEM image of the poly0 surface is shown in
figure 5.1a. Figure 5.1b-e shows SEM and AFM images of two modified types
of poly0 surfaces. Both poly0 layers are deposited with LPCVD at reduced
temperature of 5800C. Poly0#1 is ion implanted with phosphorus (see figure
5.1b and d) and poly0#2 is doped using the same POCl3 diffusion gas as for the
original poly0 (see figure 5.1c and e). Contact mode AFM was used to measure
the root mean squared roughness of the samples. Table 5.1 shows the results of
these measurements. The overall roughness is lowest on the poly0#2 sample, but
the poly0#1 sample has a large overall roughness due to outgrowths. In between
the outgrowths, the roughness is actually lower than the poly0#2. This surface is
denoted poly0#1b in table 5.1. Energy dispersion spectroscopy (EDS) was used

60
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Figure 5.1: SEM images of (a) the original poly0 surface and (b) and (c) altered
poly0 surfaces. (d) and (e) are AFM images of the poly0 surfaces seen in (b) and (c).

to analyze the elements in the outgrowths and it was found that they are Si and
not contamination. It was decided that the final poly0 deposition and doping
will be the poly0#2 recipe.

poly0 type LPCVD temp (0C) doping rms roughness p-p roughness
poly0 610 POCl3 5.1nm 38.4nm

poly0#1 580 ion implantation 11.2nm 123.4nm
poly0#1b 580 ion implantation 2.8nm 25.4nm
poly0#2 580 POCl3 4.0nm 30.3nm

Table 5.1: The root mean squared (rms) roughness and the peak to peak (p-p)
roughness of the poly0#1 and poly0#2 surfaces. poly0#1b is the roughness in between
the outgrowths.

5.2 Process sequence

In the previous chapter the process sequence as well as the circuit design for
the CMOS were presented. It was decided that the first attempt of integration
of a mechanical cantilever will use the existing CMOS poly0 layer as the struc-
tural layer of the cantilever and that the LOCOS 1µm oxide will be used as the
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sacrificial layer. Furthermore, the cantilever fabrication will be performed as a
postprocessing sequence. The process sequence of the cantilever onto the CMOS
chip is seen in figure 5.2.

Figure 5.2: The post process sequence for fabrication of cantilever on CMOS cir-
cuitry. In (b), the poly1 is dry etched down to the thin gate oxide on top of the poly0,
then in (c) the cantilever RIE mask is defined. In (d) the poly0 is RIE defining the
cantilever structure in the poly0. In (e) a protective resist layer is deposited and a
window is opened over the nanoarea. Finally, in (f) the cantilever is underetched in
BFH and in (g) the protective resist is removed.

In the first step, figure 5.2a, a hole is opened in the CMOS passivation layer and
the top poly1 layer is etched down to the thin gate oxide using dry etching, figure
5.2b. Now, a mask that defines the cantilever/electrode structure is defined,
figure 5.2c. The types of lithography used for this step will be discussed in the
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next section. The important thing is that this lithography step defines an etch
mask that can withstand dry Si etching. In figure 5.2d the poly0 is etched using
an anisotropic reactive ion etching (RIE), which is capable of producing vertical
side walls. The RIE process is based on a SF6 and O2 plasma, which allows
passivation of the side-walls in order to reduce lateral etching. In order to protect
the CMOS during sacrificial layer etching, a protective resist is then deposited
on the chip and a hole is defined over the nanoarea, figure 5.2e. In figure 5.2f,
the underetching is then performed using buffered HF. This step is immediately
followed by a drying technique, which is designed to avoid stiction between the
cantilever and the bottom substrate or the lateral electrode, figure 5.2g. Two
techniques have been investigated and used, which are freeze-drying and resist
coating techniques. These techniques will be discussed further in section 5.4. The
detailed description of this process can be seen in Appendix C.

5.3 Mask definition

For the realization of the CMOS integrated cantilevers laser and e-beam lithog-
raphy have been used. UV lithography was not used because the sub-micrometer
line-widths that are needed here would be difficult to realize since the mask would
be separated from the nanoarea by the poly1 and the passivation layers, which are
several microns thick, see figure 5.2c. AFM lithography, was also attempted, but
due to the large poly0 surface roughness, finished cantilevers were not fabricated.

5.3.1 Laser fabricated cantilevers

The laser lithography process is based on first coating the chip with a 7-10nm
thick aluminum layer. The Al layer is locally annealed by the focused laser beam
and the mask pattern is directly written as described in sections 4.4 and 4.5.
Then, the pattern is developed by wet etching the non-annealed Al, which leaves
the laser annealed Al as an etch mask.

Laser writing optimization

Several measures have been taken in order to optimize the laser writing and Al
etch process. As explained in section 3.2 the laser lithography setup consists of a
laser, sample stage and optical lenses, which focus the laser onto the substrate on
the x,y stage. The stage and AO modulator, which is used to turn off and on the
laser, are both controlled by a PC and LabView software. The writing technique
is based on converting the wanted pattern into a simple .lmm file, which breaks
the pattern into horizontal or vertical lines. Then the pattern is generated by
writing one line at a time. The .lmm file contains line segments that consist of
two coordinates namely (x1,y1) and (x2,y2). These two coordinates correspond
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Figure 5.3: (a) The entire BS circuit and nanoarea and the laser defined mask after
development for a (b) 2nd generation BS circuit and (c) 1st generation BS circuit.

to the beginning and end of each line segment that the laser writes. It was found
that at the beginning and ending of each line, the power dose is higher due to
acceleration effects. This results in a widening of the structure at the edges.
Furthermore, it was found that the stage overshoots the last coordinate, upon
deceleration, which results in a zig-zag line if the lines in the structure are writ-
ten back and forth, see figure 5.4a. A SEM image of the zig-zag edge can be
seen in figure 5.4b. The solution to the widening at the edges is to use a low
scan speed, in order to minimize the acceleration effects. In order to resolve the
zig-zag effects, the important structures are only written in one direction as seen
figure 5.5a. Figure 5.5b shows a SEM image of a laser defined cantilever, where
the driver and cantilever are written in one direction, thus reducing the zig-zag
edge effect.

The Al etch was performed by immersing the chips into 80% phosphoric acid.
The time to etch the 7-10nm thick Al varied between 2-6 minutes. The reason
for the large variation is because the natural oxide that grows on the Al has a very
slow etch rate compared to the Al. The thickness of the natural oxide depends
on how long the Al coated sample has been exposed to air, thus older samples
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Figure 5.4: In (a) the concept of writing lines back and forth is shown, which can
lead to a zig-zag edge effect as seen in the SEM image in (b).

tend to take longer time. Figure 5.3 shows some optical images of laser annealed
masks on the nanoarea.

Fabrication results

Figure 5.6 shows some SEM images of final cantilever structures, which have been
defined by laser lithography. It can be seen that the side wall roughness is quite
large and that the top of the cantilevers are very porous. These problems with the
poor structural quality of the cantilevers is due to the poor mask quality of the
laser annealed mask. Since the Al thickness, 7-10nm, is comparable to the poly0
surface roughness, pinholes in the mask is very probable. Furthermore, the edges
of the laser annealed mask are not very well defined, which could be because of
thermal spreading of the heat during the local annealing. The minimum width
achieved with laser lithography is approximately 700nm.

Reproducibility problems

Since the laser lithography is a thermal process the thermal properties of the
substrate influence the laser annealing greatly. This means that the writing
power of the laser is different for different substrate layer thicknesses, such as
the poly-Si thickness, the oxide thickness and the Al thickness. Also the doping
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Figure 5.5: In (a) the concept of writing lines in one direction is shown, which
reduces the zig-zag edge effect as seen in the SEM image in (b).

level of the poly-Si layer influences the writing. In-fact it was found that laser
writing on Al coated p++poly-Si could not define a mask [81][100], which could
be because of the high thermal conductivity of this substrate. In order to solve
this problem and to make the process more reproducible a thin SiO2 layer is used
between the poly-Si and the Al layers. In the CMOS process the gate oxide is
used as this separation layer.

Aluminum surface investigation

It has been seen that the mask quality of the laser annealed mask is quite poor.
In order to investigate this, Al was deposited on both clean Si and SiO2 surfaces
at a thickness of approximately 7nm and the surface was examined by SEM and
AFM. In figure 5.7a and b SEM images of two types of surface can be seen, which
are Al on Si and Al on SiO2, respectively. Prior to the deposition of Al, the Si
substrate was dipped in HF, which etches away any natural oxide and passivates
the surface with hydrogen. It is seen that the Al coated SiO2 has many pinholes
and that the Al formes a structure on the surface. Whereas the Al coated Si
substrate is very flat without any pinholes. It seems that the surface energy for
the Si and SiO2 surfaces is quite different and that thin Al on SiO2 does not coat
the surface evenly, which can explain the poor mask quality.
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Figure 5.6: (a)-(d) finished BS cantilevers with integrated comb capacitor, which
have been defined by laser lithography and (e) the differential cantilever design and
(f) a single cantilever device.

In order to solve this problem, several treatments of the SiO2 surface prior to Al
deposition, such as chemical and plasma cleaning treatments and HMDS passi-
vation of the SiO2 surface, have been investigated. In figure 5.7 the results of the
(c) argon plasma treatment and (d) HMDS treatment are seen. It is seen that
the pinholes are gone for both treatments. The HMDS process consists of first
heating the substrate under vacuum, which desorbs any H2O in the SiO2 and then
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Figure 5.7: SEM images of (a) 7nm Al deposited on hydrogen passivated Si, (b) 7nm
Al on SiO2, (c) 7nm Al on a Argon plasma treated SiO2 surface and (d) 7nm Al on a
HMDS treated SiO2 surface.

the surface is passivated with HMDS molecules, which has a hydrophobic group
on it making the surface hydrophobic. HMDS is normally used as an adhesion
promoter between SiO2 and resist. In figure 5.7d the Al coated SiO2 surface is
pinhole free, which can be explained by the fact that the SiO2 is clean and not
being contaminated due to the HMDS passivation.

In order to measure the surface roughness, AFM has also been performed on the
different surfaces. The results can be seen in figure 5.8. In table 5.2 the root
mean square (rms) and the peak to peak (p-p) roughness values are listed. The
Al coated Si surface has the least roughness whereas the plasma treated SiO2

surface has the highest rms roughness and the untreated Al coated SiO2 surface
has the largest p-p roughness. The possible reason why the plasma treated SiO2

surface has the largest rms roughness is that the surface has been physically
etched by the Argon plasma prior to Al deposition. By looking at figure 5.8b,
the holes are again seen in the surface and the line scan shows that the depth of
the holes are approximately 7nm deep, corresponding to the thickness of the Al
layer. The HMDS treated surface has the lowest rms and p-p roughnesses for the
Al coated SiO2 surfaces.
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Figure 5.8: AFM images of (a) 7nm Al deposited on hydrogen passivated Si, (b)
7nm Al on SiO2, (c) 7nm Al on a Argon plasma treated SiO2 surface and (d) 7nm Al
on a HMDS treated SiO2 surface. In (e) a line trace of image (b) showing the depth
of the holes on the surface to be approximately 7nm.
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surface treatment rms roughness p-p roughness
Al on Si 0.494nm 2.08nm

Al on SiO2 - no treatment 1.18nm 9.68nm
Al on SiO2 - 250W Ar plasma 1.34nm 8.35nm

Al on SiO2 - HMDS 0.685nm 4.46nm

Table 5.2: The root mean squared (rms) and the peak to peak (pp) roughnesses for
four Al coated surfaces.

Figure 5.9: Optical images of (a)the EBL defined Al mask (b) the poly0 structure
after RIE (c) and (d) the poly0 structure after underetching.

5.3.2 EBL fabricated cantilevers

In order to achieve line-widths below 500nm, which is required according to WP1
(section 1.4.2), EBL was also used to define cantilever etch masks. The EBL
system that was used is located at Lund University and the mask patterning is
based on a metal lift-off technique, which was developed and performed in Lund
[103]. The process sequence is as follows. First, a two layer resist is used, where
the top layer is sensitive to e-beam radiation. The resist is exposed and developed
in a positive process using direct writing. After development a 30nm thick Al
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layer is deposited and then the metal is lifted off by etching the resist in acetone.
Optical images of the different process steps can be seen in figure 5.9. In figure
5.9a the 30nm thick Al mask is seen inside the nanoarea, which is used to define
the cantilever and electrode structure during RIE. The result after RIE is seen in
figure 5.9b, where the structure is very well defined. In figure 5.9c and d and in
figure 5.10 optical and SEM images of the finished cantilevers can be seen. It is
seen that both the side walls and the surface of the poly0 cantilevers are pinhole
free and have very sharp, well defined edges, which proves that the 30nm Al mask
is well defined and is a very effective RIE mask.

Figure 5.10: SEM images of EBL defined cantilevers which are sticking under the
electrode in (a,b and c) and are not sticking in (d,e and f), which is a result to different
releasing techniques. The smallest cantilevers have widths of 300nm.

5.3.3 AFM defined cantilevers

As stated in section1.4.2 AFM is being investigated as an alternate nano-lithography
technology to EBL. Therefor an attempt of defining the mechanical system in the
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nanoarea was made by AFM lithography.

The mask definition is similar to that of laser lithography. First, a thin 7-10nm
Al layer is deposited on the CMOS chip. Then, a rough alignment of the AFM
tip to the nanofabrication area is done by the optical microscope integrated with
the AFM, then the area is scanned and the final alignment is performed. Some
results of the AFM oxidation can be seen in figure 5.11. Due to the large rough-
ness of the poly0 surface of approximately 30nm p-p, the AFM oxidation could
not be seen with the AFM after oxidation, but in figure 5.11b and c the Al-oxide
structure is clearly seen by optical microscopy. In figure 5.11b a close-up of the
nanofabrication area is shown, where the AFM oxidized area is seen as the dark
pattern inside the circle. In figure 5.11c the Al oxide mask is clearly seen. It is
also worth noting that the large optical contrast demonstrates that the refractive
index of the oxidized Al has changed significantly. The size of the large rectan-
gles is approximately 6x6µm2 and the width and length of the line and the gap
distance between the line and larger square are approximately 500nm, 8µm and
500nm respectively.

In order to finish this device, laser lithography was used to pattern wires from
the AFM defined pattern to the edges of the nanoarea. Unfortunately, during
the wet etching of the chip, the Al-oxide/Al-annealed mask was overetched and
the structure did not survive the RIE.

Due to the large roughness of the poly0 the reproducibility of the AFM writing is
very unstable. Due to the native Al-oxide, high voltages were needed to oxidize
the Al and due to the large roughness, dielectric breakdown occurs, which destroys
the nanoarea surface completely. In order to remedy this problem non-contact
AFM lithography can be used[96][99], but again, due to the large roughness it
is very difficult to avoid contact between the AFM tip and sample. In the next
chapter the optimization of AFM lithography on flat surfaces is described.

5.4 Dry release techniques

Previous devices that have been fabricated by laser writing on test substrates,
without CMOS, have been dried by N2 gas after underetching of the cantilever in
BHF and DI water rinsing [81][100]. On the test substrates the thickness of the
structural poly-Si layer was 2µm, and the sacrificial layer thickness was 4.5µm
thick. With these dimensions stiction of the cantilever to the bottom substrate
was never observed. On the CMOS substrate the structural poly-Si layer is only
600nm thick and the sacrificial SiO2 layer is only 1µm thick. This means that
for a cantilever with the same length and width the vertical spring constant will
be 37 times smaller (equation 2.1-2), when the cantilever height is reduced from
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Figure 5.11: In (a) the whole BS circuit and nanoarea is shown. In (b) a close-up
image of the nanoarea showing the AFM oxidized pattern and in (c) another close-up
showing the details of the structure.

2µm to 600nm. Furthermore, since the gap between the cantilever and bottom
substrate is only 1µm, the risk of stiction due to capillary forces upon drying or
due to electrostatic forces under operation is much higher. In figure 5.12a a SEM
image of a 40µm long, 600nm high and wide cantilever is seen after underetching
and N2 drying. As can be seen, almost the entire cantilever is sticking to the
substrate.

In order to avoid the capillary forces that cause the cantilever to stick to the sub-
strate during drying the cantilever from a wet state, several dry-release methods
can be used [104]. By releasing the structure in a dry state the capillary forces are
greatly reduced and stiction during fabrication can be prevented. Two specific
release techniques have been investigated which are a freeze-drying [105] and the
resist assisted [106] technique.
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Figure 5.12: SEM images of poly0 cantilever that are approximately 600nm in width
and thickness and 40µm long and which in (a) has been dried using N2 and (b) using
the freeze drying technique.

5.4.1 Freeze-drying technique

The freeze-drying process sequence can be seen in figure 5.15. Immediately after
underetching the chip is rinsed in DI water several times, figure 5.15b. Then,
without letting the chip dry, the chip is transferred to an acetone bath where the
protective resist is etched away, figure 5.15c. The chip is then rinsed several times
with acetone to make sure all the resist is removed and the chip is then rinsed
in proponal. This if followed by the chip being immersed in liquid tert-butanol,
which has a high freezing temperature of 250C. Finally, the chip is placed on a
cooling plate inside a small vacuum chamber, where the tert-butanol solidifies,
figure 5.15d. Finally, the tert-butanol slowly evaporates under vacuum, figure
5.15e. An image of the freeze-drying chamber can be seen in figure 5.13. A SEM
image of a free-standing cantilever that is not sticking to the substrate can be
seen in figure 5.12b, which can be directly compared to the cantilever dried in
N2. A detailed process sequence can be seen in Appendix D.

However, it was seen that the freeze-drying technique is not very stable, which
could be due to contamination of the tert-butanol with H20 or other chemicals
that have a lower freezing point. In figure 5.14, images of a surface after freeze-
drying with contaminated tert-butanol is shown. Because of this, other dry re-
lease options where examined and a resist based technique was then adopted.
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Figure 5.13: Image of the freeze drying setup where the chip is placed into a cooled
vacuum chamber

Figure 5.14: SEM image of a contaminated surface after freeze-drying.

5.4.2 Resist technique

The process sequence of the resist technique can also be seen in figure 5.15. First,
the chip is rinsed in DI water just after underetching, figure 5.15b. Next, the pro-
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Figure 5.15: Process sequences of the freeze drying (left) and resist (right) dry release
techniques. In both processes the cantilevers are rinsed several times with DI water
(c). For the freeze-drying process the chip is immersed in tert-butanol(d) and then
the chip is placed on a cooled plate in a vacuum chamber until the tert-butanol has
evaporated (e). For the resist process the chip is coated with photoresist (d) and then
soft baked and finally the resist is etched in an O2 plasma (e).

tective resist layer is removed in acetone, figure 5.15c. The chip is then rinsed
several times in acetone and the chip, in a small amount of acetone, is diluted
with photoresist (the same type used for photolithography), figure 5.15d. The
chip is spun so that an even resist coating of a thickness of 1-2µm is obtained.
This is followed by soft-baking the chip with the resist coating at 900C for 1
minute. Finally, the resist is etched away in an O2 plasma and the cantilevers
are released, figure 5.15e. In figure 5.16a an optical image of the cantilever prior
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to O2 plasma etching shows the cantilevers encased in resist. At this step the
cantilever can be seen not to be sticking to the substrate, with optical microscopy.
A detailed process sequence can be seen in Appendix E.

Figure 5.16: Optical image of resist encapsulated cantilever in the nanoarea

The advantages of this process is that (1) the reproducibility is much higher since
there is no possibility of contamination during the release step, (2) the resist acts
as a protection layer for the cantilevers, which can be removed just before use and
(3) an additional anti-stiction coating process can be implemented just after the
O2 plasma dry release process in the same reaction chamber. This anti-stiction
layer coating will be discussed in the next section.

5.5 Anti-stiction layers

By using dry release techniques it is possible to fabricate cantilevers, which are
very long and narrow, that are not sticking to either the bottom substrate or the
parallel electrode. But, it could also be advantageous that the cantilever does
not stick to the substrate or to the parallel electrode after fabrication or dur-
ing operation, which is called ”in-use” stiction. In this case an anti-stiction layer
should be used to passivate the cantilever so that is cannot stick to other surfaces.
Several anti-stiction layer deposition techniques have been developed, since the
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in-use stiction is a major problem in both NEMS and MEMS design . The two
important types of anti-stiction layers are the FC coatings [107][108][109][110],
in which a hydrophobic FC layer is deposited in a CxFn+x plasma and the de-
position of a self assembled monolayer (SAM) [111], which has a hydrophobic
teflon molecule attached to it. The advantage with the FC coating is that it can
be performed directly after the O2 plasma release step in the same facility. The
implementation of anti-stiction layers in the cantilever fabrication is presently
being pursued within the NANOMASS project.

5.6 Post-processing effects on CMOS

Figure 5.17: (left)An optical image of the test chip used to test the post process-
ing influences on CMOS and (right)the cross section of the area used to fabricate
cantilevers.

In order to characterize the post processing effects on the CMOS a test chip was
used, which was characterized after each individual step of the post processing, see
figure 5.17. This chip was taken from a standard CMOS characterization wafer,
which is run in parallel to each CMOS run in order to test the CMOS parameters
and thus make sure that the technology is standard. On the test chip an open area
was found and a hole is opened in the passivation layer down to a poly1/SiO2/Si
sandwich layer as seen in figure 5.17. In this area the poly1/SiO2/Si sandwich
structure is coated with a 60nm thin PECVD oxide and then a 7nm thin Al layer.
Cantilevers were then fabricated using laser lithography and the post processing
sequence described above. Images of these cantilevers can be seen in figure 5.18.
It was found that two processes damage the CMOS parameters, which are the
metal evaporation deposition and SEM imaging/EBL lithography.
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Figure 5.18: (a) SEM image of the entire process area with many cantilevers, one of
which can be seen in (b).

5.6.1 Metal deposition effects

Upon metal deposition the threshold voltages of the PMOS and NMOS transistors
shifted to a lower value, which is outside the acceptable technological value. The
results of the NMOS threshold voltage is shown in figure 5.19. It is seen that the
threshold voltage is measured before any post processing and then again after
the metal deposition. The metal evaporation process is an E-beam evaporation,
where the metal is heated by a focused electron beam. This process produces X-
rays, which are harmful to the CMOS. The X-rays create electron/hole pairs and
the electrons get trapped at the gate SiO2 metal interface of the transistors, which
accounts for the threshold voltage shifts [112]. This type of radiation damage is
easily remedied by annealing out the trapped charge at 3500C for 30minutes.
This can be seen in figure 5.19, where the threshold voltages return to normal
values.

5.6.2 SEM and EBL effects

Another source of CMOS damage is irradiation with high energy electrons from
a SEM or during EBL. Actually, this effect was not discovered until working
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Figure 5.19: Bar graph showing the NMOS threshold voltage of the CMOS initially
before metal deposition, after metal deposition and after annealing the CMOS at
3500C for 30 minutes.

with the 2nd generation CMOS chips because EBL was not available until this
time. It was discovered that the CMOS circuitry with the very nice EBL defined
structures, which are shown in figure 5.10, are totally in-operable. In order to
investigate the effects of electron radiation an on-line measurement of the BS
circuit properties was performed. During SEM imaging, an investigation of the
BS circuit’s frequency response, show that at lower acceleration voltages, below
5keV, the CMOS is unaffected and neither the gain or bandwidth vary, even af-
ter several hours of radiation, see figure 5.20. But at 5keV the CMOS starts to
degrade and after 5minutes of radiation the bandwidth (BW) is reduced from
1.3MHz to approximately 1.0MHz.

The CMOS circuitry has also been characterized before and after EBL, which
uses a high acceleration voltage of 25keV. After exposing the nanoarea, with the
PMMA resist, the circuitry is completely inoperable . Even after several hours of
heat treatment the CMOS could not recover. This shows that e-beam radiation at
such high energies is exerting structural damage to the transistors, which cannot
be annealed out at 3500C. At present these problems are being addressed within
the NANOMASS project.

5.7 Summary

In this chapter the fabrication of the poly-Si based cantilever on CMOS circuitry
is presented. First, the optimization of the poly0 layer was shown. The poly0
layer was increased in thickness from 350nm to 600nm, which will increase the
static capacitance of the cantilever/electrode system and increase the vertical
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Figure 5.20: The frequency response for a BS circuit. Before SEM radiation the
BW of the circuit is 1.3MHz and after 5minutes at 5keV radiation the BW drops to
1.0Mz).

stiffness of the cantilever, which will increase the mechanical stability of the can-
tilever. The surface roughness was also investigated and found that by decreasing
the LPCVD deposition temperature to 5800C, the surface roughness can be de-
creased to approximately 30nm p-p.

Then the general process sequence of fabricating the poly-Si cantilevers on the
CMOS was presented. The mask definition of the cantilever was performed by
laser, E-beam and AFM lithography. Both laser and E-beam have been success-
fully used to fabricate released structures, whereas AFM lithography could not
be used due to the large poly0 surface roughness. The laser defined cantilever
tend to been very porous with many pinholes and poorly defined side-walls, while
the EBL defined cantilevers are pinhole free with very sharp defined side-walls.
Furthermore, the cantilever widths achieved with laser lithography and EBL were
down to 700nm and 300nm respectively.

One of the main challenges of the cantilever fabrication is stiction of the can-
tilevers with the bottom Si substrate during the release of the cantilever. Two
dry release methods have been investigated namely freeze-drying and resist coat-
ing. It was found that resist coating gave the best reproducibility and also serves
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as a temporary packaging of the chip.

Finally, processing effects on the CMOS circuitry have been investigated. It
seems that the only post processing procedure that irreversibly damages the
CMOS is the E-beam lithography. Solutions to this problem are currently being
investigated.



Chapter 6

Non Integrated Cantilevers

In this chapter cantilevers that have not been integrated with CMOS circuitry
are presented. As stated in the introduction, the final cantilever demonstrator
will have a width of 100nm and thus new lithography methods and structural
materials are being investigated. In this chapter the fabrication of AFM lithog-
raphy defined Si cantilevers and UV lithography defined metal cantilevers will
be presented. As mentioned in the introduction EBL and AFM lithography are
competing technologies for the fabrication of the cantilever and it has been seen,
in section 5.6.2 that EBL inflicts severe damage to the CMOS circuitry. On the
other hand EBL has a higher throughput and reproducibility at this stage. Also,
in this chapter, UV contact mask lithography is used to define metal cantilevers,
which have a width down to 400nm, which proves that this technology is also
a contender, since the throughput is much higher than for both EBL and AFM
lithography.

6.1 AFM defined Si cantilevers

6.1.1 Process sequence

The process sequence for the fabrication of AFM defined cantilevers is seen in
figure 6.1. The substrate consist of a Si on SiO2 on Si structure as seen in figure
6.1a. The top structural layer can be poly-Si or single crystal Si if a silicon on
insulator (SOI) substrate is used. A thin 7-10nm Al layer is deposited directly
on the Si surface, figure 6.1b. A thin spacer SiO2 layer can be added between the
Si and Al layer, if laser lithography is needed. Then the AFM is used to locally
oxidize the Al surface and the cantilever/electrode pattern is directly written,
figure 6.1c. The development of the mask is the same as for the laser annealed
mask, where the un-oxidized Al is etched away in a wet chemical etch, figure 6.1d.
The structural layer is then patterned by RIE, figure 6.1e. Finally, the SiO2 is
etched and a dry release technique is performed in order to release the cantilever,

83
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figure 6.1f.

Figure 6.1: Process sequence of fabricating cantilevers with AFM. The fabrication
starts with a Si/SiO2/Si substrate (a). First, a thin Al layer is deposited on the
substrate (b). Then AFM lithography is used to oxidize locally the cantilever mask
(c) and this mask is developed by wet etching the Al (d). The top Si layer is defined
by RIE (d) and the structure is released by wet SiO2 etching (f).

6.1.2 Local oxidation with AFM

AFM lithography is inherently a simple resistless and low cost technique for rapid
prototyping. Previous works on AFM oxidation lithography on Al coated surfaces
have mainly used contact mode AFM [90][113] for pattern generation. In contact
mode tip wear is a critical problem because the electrostatic forces between the
tip and sample are quite large, typically on the order of 100-1000nN for tip-
sample voltages on the order of 10-20V. This increases the tip-sample interaction
dramatically, because the spring constant of contact mode AFM probes is much
lower than that of non-contact AFM probes. Furthermore, due to friction between
the conducting tip and the Al, which has a thin insulating native oxide layer,
electrostatic effects make it difficult to control the tip-sample distance and thus
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the oxidation is non-reproducible. In order to remedy the problems encountered
with static mode AFM, other AFM modes have been used [114][96][97][99][115].

Jumping mode AFM

Jumping mode AFM is performed by vibrating either the sample stage or the
cantilever at a frequency below the resonant frequency of the cantilever. At each
vibration the cantilever contacts the surface and a force curve is used to measure
the height of the surface or the adhesion to the surface [116][117]. In figure 6.2 a
typical cantilever displacement versus tip/sample distance curve is shown. The
sample height is measured at point A, where the AFM tip makes first contact
with the surface. The adhesion between the tip and sample can also be measured
by the difference between point A and B, where B is the point where snap-off the
tip snap-off from the surface.

Figure 6.2: Cantilever displacement versus tip/sample distance curve, which illus-
trates jumping mode AFM. Point A denotes the first contact point and point B denotes
the snap-off point.

Jumping mode AFM has the advantage of less tip wear during scanning and less
friction between the tip and sample, thus electrostatic effects experienced in con-
tact mode are avoided. Furthermore, jumping mode AFM has also been used
for local oxidation of Al [114]. By measuring the adhesion forces, alignment of
the AFM with different types of surfaces, that do not necessarily have a height
contrast, can be performed. An example of this is seen in figure 6.3. The sur-
face is a laser annealed Al pattern on an oxidized poly-Si surface, which has a
large roughness, thus the height contrast between the laser annealed Al and the
underlying SiO2 is very low as seen in figure 6.3a. In figure 6.3b the adhesion
mode image shows a better contrast, which is then increased by applying a volt-
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age to the laser annealed Al, figure 6.3c. The increase in contrast is due to an
added electrostatic force between the laser annealed Al and the tip, which are
both conducting. In figure 6.3d the force curve of the cantilever at 0V and 20V is
seen, which illustrates the increase in adhesion. Furthermore, the oxidized lines
are clearly seen. The lines are darker than the laser annealed mask, which is a
good indication that oxidation has occurred, since the adhesion forces should be
reduced on Al-oxide.

Figure 6.3: AFM images using (a) contact mode and (b) and (c) adhesion jumping
mode AFM. The contrast is increased from (b) to (c) by applying 20V, which increases
the electrostatic adhesion.

Non-contact mode AFM

It has also been seen that optimization of the AFM lithography technique, by
using non-contact mode AFM (nc-AFM), can increase its reliability and repro-
ducibility [96][97][99]. In nc-AFM mode, the tip-surface interactions are reduced
even more than in jumping mode because there is no contact between the tip
and surface, whereas in jumping mode there is contact at each pixel point. This
further increases the tip lifetime and thus the reproducibility of the technique.
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As with jumping mode, the problems experienced with contact mode are not
present. Due to the low interaction forces between tip and sample, tip wear is
minimized. Furthermore, since friction is eliminated, the tip-sample distance can
be controlled very precisely.

In order to use AFM lithography for the fabrication of NEMS structures, it is
necessary not only to be able to write features with sub-micron dimension, but
also to connect larger contact pads. Therefore, it is advantageous to optimize
the lithography for defining small as well as larger features in the same writing
process. This can be obtained with nc-AFM lithography. In nc-AFM lithography
the tip-sample distance can be controlled by monitoring the modulation in the
oscillation amplitude of the AFM cantilever [118] [119]. Earlier non-contact AFM
lithography experiments on Si have shown that a water bridge is formed between
the conductive tip and sample and that the geometry of the water bridge influ-
ences the final oxide dimensions[96][97][99]. The formation of the water bridge is
observed by monitoring the cantilever’s oscillation amplitude after pulsing with a
DC voltage between the tip and sample, while simultaneously disconnecting the
feedback loop. After the voltage pulse the oscillation amplitude is lower than the
feedback set point, due to the extra forces acting on the tip due to the formation
of the water bridge.

The same behavior was observed on Al coated substrates. During writing the
feature size of an oxidized line can be controlled by simply controlling the tip-
sample distance and the applied DC voltage. By stretching the water bridge the
feature size decreases. By decreasing the tip-sample distance, the water bridge
covers a larger area on the Al surface, thus the feature size increases. In contact
mode AFM lithography on Al the sudden application of high voltages invokes
breakthrough of the thin natural Al-oxide and the surface is destroyed. This
breakthrough phenomenon is not observed in non-contact mode AFM lithog-
raphy. Thus higher voltages can be applied, which increases even further the
obtainable feature sizes. In figure 6.4 a schematic drawing and two AFM images
show how one can vary the feature size from almost 1µm (figure 6.4a) down to
100nm (figure 6.4b) by controlling the water bridge.

By optimizing the AFM writing, large areas can be written in a matter of min-
utes, when a tip/sample distance of approximately 3-5nm and a high DC voltage
of 30V or more are chosen. The details of the pattern are written by optimiz-
ing the AFM lithography with a larger tip/sample distance of approximately
8-10nm and a DC voltage of 20V. The scan speed is usually kept constant at
approximately 10µm/sec. Figure 6.5a shows an example of a device with two
oxidized 2x3µm2 areas and a very thin, 50nm wide, line extending from one of
the 2x3µm2 areas. The 50nm wide line is separated from the other 2x3µm2 area
by a 500nm gap. Figure 6.5b shows a profile of the Al-oxide pattern showing a
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Figure 6.4: In (a) the tip-sample distance is small (3-5nm) resulting in a wide wa-
terbridge cross section, whereas in (b) the tip-sample distance is increased (8-10nm),
which decreases the waterbridge cross section

height of 3.5nm, which corresponds to an oxidation of the entire 7nm Al thickness.

Figure 6.5: (a) Non-contact AFM image of the Al-oxide structure written by local
oxidation just after the oxidation. (b) the height of the oxide is measured to 3.5nm,
corresponding to approximately half the Al thickness.

In figure 6.6 two AFM images of approximately 10nm wide Al-oxide lines are
shown, illustrating that by optimizing the lithography parameters very small
feature sizes can be reproducibly obtained. Due to tip convolution the actual
width of the oxidized lines could be smaller than 10nm, but this cannot be seen
due to the finite tip sharpness of the AFM tip. It can also be seen in the images
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that the width of the oxide lines vary by approximately 3nm, which is due to the
small sample roughness, which varies the tip/sample distance slightly. Also seen
on the right image of figure 6.6, some high protrusions appear. These protrusions
are due to momentary halts in the scanning while oxidizing the lines, caused by
software errors.

Figure 6.6: Non-contact images of 10nm wide Al-oxide lines, which have been
achieved by optimizing the writing parameters.

6.1.3 Fabrication results

Jumping mode AFM results

Figure 6.7: (a) adhesion mode image of the laser annealed Al before etching the
Al, where the dark dots correspond to the edges of the laser written area. AFM
images after the cantilever (a) and the driver (b) are defined. In (c) a close-up of the
cantilever/electrode pattern is seen.
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The first attempt at fabricating structures were with jumping mode AFM and
were performed on a Al/SiO2/poly-Si/SiO2/Si substrate with layer thicknesses
of, 7nm, 100nm, 2µm, 4.5µm and 525µm respectively. Due to the slow writing
speed of the AFM lithography electrodes were first written with laser lithogra-
phy. Without development of the pattern the sample was transferred to the AFM
setup and the AFM was aligned to the laser annealed Al by using the adhesion
force mode, where the edges of the laser annealed mask can be seen due to a lo-
cal Al evaporation during laser writing, see figure 6.7a. Then the cantilever and
driver are defined with the AFM. The patterns are easily seen as the dark areas in
the adhesion mode images, figure 6.7a and b. Figure 6.7c shows a close-up of the
cantilever/electrode Al-oxide mask. The cantilever is approximately 300nm wide
and the gap is approximatively 200nm wide. After this the laser-annealed/AFM-
oxidized mask is developed by wet chemical etching of the unexposed Al and the
resulting structure is transferred by RIE to the poly-Si layer. Finally, the device
is released in BHF and dried in N2 gas. A SEM image of the final structure
is seen in figure 6.8. It can be clearly seen where the laser and AFM defined
masks have protected and where the two overlap, by the surface roughness of the
poly-Si. Unfortunately this cantilever broke, due to underetching of the poly-Si
structural layer during the RIE.

The drawback of jumping mode lithography is the inability to obtain reproducible
low line-widths. Since there is full contact between the tip and sample at each
pixel point, the minimum line-width is very dependent upon the AFM tip radius
and shape. Furthermore, since there is a wear of the tip, the tip quality deteri-
orates over time, thus even the best line-widths only last for a finite amount of
time.

Nc-AFM results

In order to increase control of the line-width a SOI (SOI-TEC with buried oxide)
substrate was used for the nc-AFM lithography experiments. The SOI substrate
has a very low surface roughness of approximately 3-5nm p-p compared to ap-
proximately 30nm p-p for the poly-Si. The thicknesses of the top Si layer and the
buried SiO2 are 350nm and 450nm respectively. As before, in order to access the
small AFM defined electrodes, larger wiring and contact pads were defined by
laser lithography. This time the AFM structures are defined first then the laser
defined wires and pads are written afterwards. As seen in figure 6.9a the AFM
oxidized areas are clearly seen with an optical microscope and thus the laser is
easily aligned to the AFM written areas. Figure 6.9b shows an optical image of
the laser and AFM structure after Al wet etching, illustrating that the alignment
of the laser onto the Al-oxide mask is possible. Figure 6.10 shows SEM images
of the structure after RIE. Figure 6.10a shows the whole device with 50x100µm2

bonding pads, 100µm long wires and the finer AFM defined structures. In figure
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Figure 6.8: SEM image of the poly-Si cantilever, which has been patterned by jump-
ing mode AFM lithography. The width of the cantilever is 200nm and the gap is
approximately 500nm.

6.10c the Al-oxide mask is seen to overhang the slightly underetched Si structure.
In figures 6.10b and d close-ups, showing the laser-AFM interface are shown.

Figure 6.9: Optical images of (a) the AFM written structure just after AFM oxi-
dation and (b) the same AFM written structure plus the laser written wires after Al
etching.

In figure 6.11 SEM images after underetching are shown. The dimensions of the
cantilever are 150nm, 350nm and 10µm for the width, height and length respec-
tively. After underetching the resist dry release method was used, as described in
section 5.4.2 . As can be seen in the images, the tip of the cantilever is touching
the substrate, which probably occurred after releasing the cantilever since only
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the end of the cantilever is sticking. Attempts of unsticking the cantilever failed,
thus no mechanical characterization of this cantilever was possible.

Figure 6.10: SEM images of (a) the whole laser and AFM defined device after RIE
etching, (b)-(d) close up images of the AFM defined area. Note that in (d) the Al-oxide
mask is clearly seen compared to the laser mask.

Figure 6.11: SEM images of the AFM/laser defined device after underetching. The
tilted view (a) shows that the cantilever is sticking to the substrate at the end of the
cantilever and in the top view (b) it was measured that the width of the cantilever is
150nm.
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6.2 Metal cantilevers

Another approach to fabricate small cantilevers is to use a structural material
other than Si. So far, the ideal properties of the structural layer of the cantilever
have been defined as (1) good electrical conductivity, (2) good elastic properties
and (3) a low density. So, by comparing the theoretical mass sensitivity for can-
tilevers with the same dimensions using equation 2.1-9, for different cantilever
materials, it is seen that Si yields the best sensitivity. In table 6.1 the theoret-
ical mass sensitivity for several materials are compared. The spring constant,
resonant frequency and minimal detectable mass are calculated using equations
2.1-2, 2.1-7 and 2.1-9 respectively and the cantilevers are 500nm wide, 1µm high
and 30µm long. As expected single crystal-Si and poly-Si have the best mass
sensitivity, but Al has a minimum detectable mass change that is only twice as
large as that for single crystal-Si.

material E (GPa) ρ (g/cm3) k (N/m) f (kHz) ∆m
∆f

(g/Hz) · 10−16

Si 180 2.33 0.414 787 0.178
poly-Si 160 2.33 0.370 744 0.188

Al 74 2.70 0.171 470 0.345
Ti 110 4.51 0.255 443 0.611
Cr 140 7.19 0.370 423 1.019
Ni 200 8.9 0.463 435 1.255
Au 80 19.3 0.185 183 6.388

Table 6.1: The calculated spring constant, resonant frequency and minimum de-
tectable mass for different cantilever material, with the same dimensions of 500nm,
1µm and 30µm for the width, height and length respectively

By looking at the device as a whole, the cantilever must be excited into resonance
in order to detect the vibration. This means that making the cantilever very short,
which would increase the mass resolution, is not a viable design. In table 6.2 the
minimum detectable mass change is calculated again, but this time, the spring
constant of each cantilever is kept constant along with the width and height, and
the length is adjusted. By isolating the length in equation 2.1-2 and inserting
into equation 2.1-5, it is seen that the resonant frequency can be increased by
decreasing both the Young’s modulus and the density of the cantilever material.

f =
Cn

4
√

3π

k2/3

ρ1/2E2/3t2/3w5/6
(6.2-1)

By looking at table 6.2 it is seen that Al has the best mass resolution followed by
poly-Si and then single crystal Si. This is because Al has both a low density and
low Young’s modulus compared to the other cantilever materials. In conclusion,
the choice cantilever material is one with a low density and low Young’s modu-
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lus, since the frequency can be increased by simply decreasing the length of the
cantilever. Among these materials Al is the best choice.

material E (GPa) ρ (g/cm3) l (µm) f (kHz) ∆m
∆f

(g/Hz) · 10−16

Al 74 2.70 16.67 1523 0.591
poly-Si 160 2.33 21.54 1442 0.696

Si 180 2.33 22.37 1415 0.736
Ti 110 4.51 19.01 1103 1.555
Cr 140 7.19 20.61 839 3.531
Ni 200 8.9 23.21 711 5.811
Au 80 19.3 17.10 562 11.740

Table 6.2: The calculated length, resonant frequency and minimum detectable mass
for different cantilever materials. The cantilevers have a spring constant of 1N/m, a
width of 500nm and a height of 1µm.

6.2.1 Fabrication process

As stated in section 1.4 of the introduction, the first phase of WP3 is to fabricate a
metal cantilever that has a width below 500nm without CMOS. In order to realize
this contact mask UV lithography was chosen because 500nm feature sizes should
be obtainable according to equation 3.1-1 if the wavelength and resist thickness
are optimized. In order to achieve this, the structures on the contact mask must
be well defined and with the feature sizes that are desired. For this purpose
the UV mask was fabricated using EBL, where line-widths down to 300nm were
defined on the mask.

In figure 6.12 the fabrication process of Al cantilevers is shown, which is based
on a lift-off technique. The process starts by defining a resist mold structure on
a Si substrate using UV lithography, figure 6.12b. Then, Al is deposited using
an evaporation technique, figure 6.12c. This is followed by lifting off the Al de-
posited on the resist, figure 6.12d. Finally, the metal structure is released by dry
etching the underlying Si, figure 6.12e. In order to be able to break individual
chips from the wafer, a second thick resist is spun and defined on the front side.
This thick resist acts as a protection mask for deep reactive ion etching (DRIE),
which can etch vertical groves through the wafer, but in this case only 100-200µm
is required, so that the individual chips can be separated from each other.

There are several advantages of this fabrication process. First, it is a batch
process, where a whole wafer of devices can be patterned at one time. Second,
the release step is a dry etching step, thus stiction is not an issue. Finally, all
these processing steps are CMOS compatible, thus the process sequence can be
transferred to CMOS circuitry.
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Figure 6.12: Process sequence of fabrication of Al cantilevers using UV lithography.
The process starts by spinning a 600nm thick resist on a Si substrate (a). Then the
resist is pattered by a negative lithography setup in (b). Al is then deposited on the
substrate (c)and lift-off of the resist layer (d) defines the Al structures. Finally, in (e),
the Al structures are underetched by isotropic RIE.

UV lithography

The most critical step of this process is the definition of the resist mold. The
ideal mold is one that has a high aspect ratio and a very narrow width, so that
the cantilever can have a good aspect ratio and still be able to be used for lift-off.
On the other hand the line-width is dependant on the resist thickness, thus a thin
resist thickness is desirable. As a first attempt of solving this, a two layer resist
system has been attempted. First, a commercially bought LOR (lift-off resist) is
spun onto the substrate at a thickness of 0.5-1µm and subsequently baked. Then,
a thin AZ5214E resist is spun at a thickness of approximately 600nm. In order to
achieve sub-micron lithography the AZ5314E is used in a negative process [120],
which is said to have higher resolution due to reduced proximity effects. Due to
lack of time and reproducibility problems with this resist no fabrication results
where obtained. Further details about LOR resist can be found elsewhere [121].
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The reverse process with AZ5214 resist is as follows: In AZ5214E a catalyst
is formed upon exposure, which promotes cross-linking during any later heat-
treatment. After a post annealing, the whole wafer is exposed (so called ”flood”
exposure) and the unexposed areas from the first exposure are made soluble to
the developed, whereas the exposed area do not become soluble since this resist
contains no more photoactive compound (PAC).

Mask design

An individual chip layout is seen in figure 6.13a and b where one and two electrode
devices have been designed. Several chips have been designed with different gap
sizes and cantilever widths. The gap size ranges from 500nm up to 1000nm and
the width ranges from 300nm up to 1000nm. Furthermore, each chip has 32 and
21 devices, for the 1 and 2 electrode design respectively, where the length of the
cantilever is varied on the individual chips according to the width and gap of the
cantilever.

Figure 6.13: Metal mask for the (a) one electrode chips and (b) the two electrode
chips.

6.2.2 1st generation metal cantilevers

In the 1st generation the LOR resist layer is not included, but only the AZ5214E
is used. This is because it was thought that the thin resist process should be
proven before complicating the process with extra resist layers. In figure 6.14a
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and b optical images of the resist mold and the Al structure after deposition of
100nm Al and lift-off are shown. In figure 6.15 SEM images of the Al structures
are seen both before (a) and after, (b)-(c), isotropic RIE of the underlying Si.
It is seen that the smallest width achieved was approximately 400nm, which is
below the 500nm goal. Furthermore, the structure of the cantilevers have well
defined edges.

Figure 6.14: Optical images of the 100nm thick Al structure just after lift-off, show-
ing the (a) one electrode and (b) two electrode design.

Figure 6.15: SEM images of the Al structure (a) before underetching and (b)-(c)
after underetching.
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6.2.3 Future generation metal cantilevers

In order to increase the height of the Al cantilevers several techniques can be
used. The first, which has been mentioned, is the use of an extra resist layer like
LOR. Another method is to use a resist/metal/resist layer. The idea is that the
top resist layer is thin and is used for the UV lithography process, as described
above. Then, the top resist is used to selectively etch the metal. The metal acts
as a etch mask for the lower thicker resist level in an O2 plasma etch, which should
define vertical side walls. Finally, the metal is removed and the resist mold can
be used to fabricate the metal cantilevers. This technique, along with the LOR
technique, are currently being investigated in the NANOMASS project.

6.2.4 CMOS integration

As stated in section 5.3 contact mask UV lithography was not attempted because
of the large separation of the mask and nanoarea surface, due to the passivation
layer. This separation cannot be avoided with contact mask lithography. In order
to use UV lithography on CMOS either projection lithography or a light coupled
mask (LCM) could be used [122][123]. Since most CMOS fabs use projection
lithography, this could be a straight forward way of defining cantilever. In LCM
mask UV lithography the contact mask is structured so that protrusions on the
mask surface have contact with the surface. In this way in the protrusions could
fit into the nanoarea and contact between the mask and surface can obtained.
By using LCM feature sizes down to 100nm have been obtained on flat surface
[124].

6.3 Summary

In this chapter cantilevers that are not integrated with CMOS have been pre-
sented. The objective of these cantilevers is to demonstrate the feasibility of
fabricating cantilevers with widths down to 100nm, and to demonstrate the fea-
sibility of fabricating cantilevers with other materials other than Si.

It was found that AFM lithography has the ability to achieve line-widths below
100nm, down to 10nm, which is difficult with other lithography methods such as
EBL. Furthermore, the fabrication of a 150nm wide cantilever has been demon-
strated on an SOI substrate, which is the first step of achieving the NANOMASS
main goal. It was shown that nc-AFM lithography is a highly flexible technique,
which has a high reproducibility. Furthermore, the speed can been increased by
varying the tip-sample distance, thus increasing the throughput of the technique.
Further investigation and optimization of this point are currently being pursued.
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The mass sensitivity of a cantilever based mass sensor was shown to be larger
for Al than for Si because the overall mass of the sensor is less for a cantilever
with the same spring constant. It was also demonstrated that cantilever widths
down to 400nm can be realized with contact mask lithography. This offers a high
throughput technique, which has the potential to define sub-micrometer wide
cantilevers. The cantilevers that have been fabricated were only 100nm high,
which could have the potential of being vertically vibrating mass sensors. In
the next chapter it will be shown that vertical electrostatic excitation of these
structures is possible even with a lateral driver electrode.



Chapter 7

Characterization

In this chapter three types of cantilevers are characterized.

1. Poly-Si cantilevers not integrated with CMOS

2. Poly-Si cantilevers integrated with CMOS

3. Al cantilevers not integrated with CMOS

In order to characterize the devices three characterization techniques have been
used besides the electrical capacitive readout.

7.1 Non-electrical characterization methods

In this section the different types of non-electrical characterization techniques will
be presented. Since the electrical characterization is the main challenge, other
characterization techniques were used to evaluate the cantilever’s performance.
These techniques can be used to compare with the model performance and to
help design the CMOS integrated device. The three different methods used have
been visual, SEM and AFM characterization.

7.1.1 Visual characterization

The schematic of the visual characterization setup can be seen in figure 7.1. The
setup comprises of a microscope, a CCD camera and a probe station. The chip
is accessed either with single probes, a probecard or by wire bonding the chip
to a chip holder. The device can then be monitored with the optical microscope
while the cantilever is statically bended or put into resonance. Furthermore, this
setup can be used for the characterization of the CMOS integrated devices, so
that the lateral vibration can be monitored with the microscope at the same
time as the electrical characterization is being performed. The accuracy of the
measurements is around 200nm by using special software to measure the single
pixels in the CCD image.

100
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Figure 7.1: Schematic drawing of the visual characterization setup used to charac-
terize cantilevers in air. An optical microscope is used to monitor the cantilever while
applying voltages.

7.1.2 SEM characterization

In order to characterize the performance of the cantilever in vacuum and still
monitor the bending and vibration of the cantilever, the device is placed in a
SEM. The schematic of this setup is seen in figure 7.2. In order to get electrical
contact to the device, electrical leads were installed on the front door of the
SEM. The chip is wire bonded to a ceramic chipcarrier, which is then placed on
the SEM stage with a specially made holder, figure 7.3. Due to the increased
imaging resolution of the SEM compared to optical microscopy, the cantilever
displacement can be measured with an accuracy of approximately 10nm. Finally,
the bending of the cantilever has can be measured directly by focussing the E-
beam on the cantilever and monitoring the secondary electron detector signal
[125][126][127].

7.1.3 AFM characterization

In order to have a high accuracy characterization of the cantilever in air, AFM
imaging of the device can also be used. The AFM characterization setup can
be seen in figure 7.4. The cantilever device is wire bonded to a chipcarrier and
placed on the stage of the AFM. The microscope used was a Nanoscope IV,
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Figure 7.2: Schematic drawing of the SEM characterization setup used to character-
ize cantilevers in vacuum. The sensor chip is placed in a SEM with electrical leads to
the outside so that actuation of the cantilever is possible.

Figure 7.3: Image of the ceramic chipcarrier, holder and cables, which are used inside
the SEM

which is configured so that the AFM tip is scanning over the surface. In order
to minimize the forces exerted on the cantilever by the AFM tip, non-contact
mode was used. To measure the bending in real-time the slow-scan of the AFM
is switched off, so that the AFM is only scanning one line across the cantilever.
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Then the cantilever’s displacement is measured by monitoring the line-scan. The
resolution of measuring the displacement of the cantilever is approximately 5nm.
The AFM setup can also be used to exert forces on the cantilever, which can be
used to characterize the force sensitivity of the sensor. Finally, the AFM can be
used to un-stick the cantilever from the bottom substrate or from the parallel
electrode, by using the AFM tip to push the cantilever with a controlled force.

Figure 7.4: Schematic drawing of the AFM characterization setup used to character-
ize cantilevers in air. The AFM is used to image a constant line across the cantilever,
which is used to measure the deflection amplitude.

7.2 Characterization of poly-Si cantilevers

The non-electrical characterization methods have been used to characterize non-
CMOS integrated devices in order to compare the performance with the SPICE
and SUGAR model. The cantilevers which have been characterized have been
prepared using laser lithography on Al coated SiO2/poly-Si/SiO2/Si substrate
with layer thickness 100nm/1.8µm/4.5µm/525µm respectively. The fabrication
of the cantilevers is similar of that seen in figure 6.1 but the RIE etch mask
is defined with laser lithography. A full description of the process sequence is
described elsewhere [81][100]. SEM images of the final poly-Si cantilevers are
shown in figure 7.5. These cantilevers have two electrodes so that one and two
electrode measurements can be performed. In tables 7.1, 7.2 and 7.3, a list of the
cantilevers that have been characterized can be seen along with the main findings
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of each cantilever. The approximate width, height and length are 1µm, 1.8µm
and 40µm respectively.

Figure 7.5: SEM images of poly-Si cantilevers defined by laser lithography. In (a)
the entire device is shown and (b) and (c) close-up images of the device are shown.
The cantilever is fully underetched while the electrodes are anchored to the substrate.
The dimensions of this cantilever are 700nm, 1.8µm and 40µm for the width, height
and length respectively.

The interesting aspects of the model that need to be treated here are (1) the
acoustic damping effects on the cantilever and (2) the fringe factor. In addition
to the acoustic damping, which occurs when operating the cantilever in air, the
air molecules will either increase the effective mass of the cantilever or increase
the effective spring constant of the cantilever due to air squeeze effects between
the cantilever and parallel electrode [128][129]. By characterization of the can-
tilever in air, the effective mass can be determined and thus the type of damping
can be determined. The fringe factor α can be determined by measuring the
static response of the cantilever.

The measurements can be split into the static and the dynamic characterization.
The static characterization consists of measuring the static bending of the can-
tilever at the apex as a function of an applied DC voltage. With this characteriza-
tion the fringe factor α can be calculated using the SUGAR model. The dynamic
characterization consists of two types of measurements; the frequency response
and the resonant frequency versus the sum of the applied voltages squared. The
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cantilever’s frequency response is used to determine the Q-factor of the cantilever.
The resonant frequency versus the sum of the applied voltages squared is used
to determine f0, which is the resonant frequency without any applied voltages,
by making a linear fit and extrapolating the frequency at 0V. Then this value is
used to calculate the effective density of the cantilever, where a Young’s mod-
ulus of 160GPa is assumed. Finally, the SPICE model can be compared to the
measurements, by using the α value and effective density.

7.2.1 Air measurements

Measurements in air have been performed by the visual characterization setup
and the AFM characterization setup. In order to compare the measurements to
the models, both static and dynamic frequency response measurements have been
performed.

Static measurements

The first static characterization was performed with the visual characterization
setup. Figure 7.6a an optical image of the cantilever shown. By counting the
pixel points in the image a rough estimate of static bending at different applied
voltages can be deduced. Figure 7.6b shows the static bending as a function of the
applied DC voltage on one of the parallel electrodes, while the other electrode is
grounded. The SUGAR simulations are plotted along with the data points where
a fringe factor of 3.1, 3.73 and 4.1 are used to compare with the data points.
Since the accuracy of the static bending measurement is low, the uncertainty of
the actual fringe factor is approximately ±0.5.

In order to perform a more accurate measurement the AFM characterization
setup has used on a different cantilever device, device 2. In figure 7.7a an AFM
image resulting from a line measurement is seen. The image is taken by first
switching off the slow scan so that the same line is being repeatedly scanned.
Then, a DC voltage is applied and subsequently set to zero, each time increas-
ing the applied voltage. The displacement of the cantilever is then measured
by measuring the distance of an artifact in the image at zero volts and at the
applied voltage. In figure 7.7b the static bending as a function of the applied DC
voltage is shown. The SUGAR simulation is also included using a fringe factor
of 5.16, which fits the AFM data almost perfectly. Another SUGAR simulation
is included showing the DC response of the cantilever at α=0. In this simulation
the static bending is predicted to be 42nm, which is almost 4 times as small as
the measured value. This confirms that fringing fields have a large contribution
to the total capacitance in the system, where in this case the real capacitance is 6
times that of the parallel plate approximation. This seems like a very high value
compared to the parallel plate approximation, which could be explained by two
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Figure 7.6: (a) Optical image of the cantilever taken with the visual characterization
setup and (b) the static bending measurement data and three SUGAR simulations,
with fringe factor 3.1, 3.73 and 4.1.

things, (1) a thinner cantilever than expected or (2) a lower Young’s modulus
than expected.

Dynamic measurements

In figure 7.8 the frequency response measured by the visual setup is shown for
device 1. By fitting the data with a Lorentzian function the Q-factor is measured
to be approximately 55. In order to be able to compare the SPICE model the
fringe factor α, found by the static measurements was used. A value of α=3.73
was used. In figure 7.9 the resonant frequency of the cantilever as a function
of the sum of the applied voltages squared is seen. By making a linear fit f0 is
calculated to 671192Hz. By using fixing the Young’s modulus to 160GPa, which
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Figure 7.7: (a) AFM image of the cantilever, which is used to measure static bending
of the cantilever at different applied DC voltages and (b) the static bending data
together with two SUGAR simulations with α=0 and α=5.16.

is a typical value of poly-Si, the effective density of the sensor was calculated to
3.27g/cm3. The SPICE simulation of the device is also seen in figure 7.9, which
seems to fit very accurately with the visual data.

Summary

In table 7.1 the main finings of the characterization of the poly-Si cantilevers in
air are found. The two fringe factor measurements of approximately 3.73 and
5.16 for device 1 and 2 respectively were found. The gap size of device 2 is over a
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Figure 7.8: Frequency response of device 1 measured with the visual setup together
with a Lorentzian fit. The Q-factor is measured to approximately 55.

Figure 7.9: The resonant frequency of the cantilever as a function of the sum of
the applied voltages squared for device 1 measured by the visual setup along with a
SPICE simulation using α=3.73.

500nm larger than device 1 and the width is also larger, which could explain the
larger value of fringe factor. Furthermore, the values correspond to a total capac-
itance increase of roughly 4 and 5 times for device 1 and 2 respectively. Again,
this can be explained by an overestimated Young’s modulus and cantilever width.
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device setup w h l gap E α Q f0 ρeff

device 1 Visual 911nm 1.8µm 39.20µm 1.87µm 160GPa 3.73 55 671.9kHz 3.27g/cm3

device 2 AFM 980nm 1.8µm 40.00µm 2.5µm 160GPa 5.16 - - -
device 3 Visual 1µm 1.8µm 39.56µm 2.03µm 160GPa - - 645.6kHz 4.12g/cm3

device 4 Visual 981nm 1.8µm 39.73µm 1.94µm 160GPa - - 658.3kHz 3.72g/cm3

Table 7.1: The α, Q, f0 and ρeff findings for five cantilevers measured by the visual
setup and the AFM setup.

The other finding of these results is that the effective density of the cantilever
is larger than the normal density of Si, which is 2.33g/cm3. This denotes that
the damping mechanism is not squeeze film damping where the air molecules can
move freely between the cantilever and parallel electrode.

7.2.2 Vacuum measurements

All the vacuum measurements have been performed with the SEM setup. By
imaging the cantilever, the static bending and dynamic vibrational amplitude of
the cantilever are measured.

Static measurements

In figure 7.10a a SEM image of the cantilever and two parallel electrodes are
seen from above. By zooming in the static displacement of the cantilever can
be measured at different DC voltages. In figure 7.10b and c the close-up images
show the apex of the cantilever where a potential of 0V and 130V respectively are
applied between the top electrode and the cantilever. In figure 7.10d the whole
device, including bond pads, is seen. When a high DC voltage is applied, the
positively charged top electrode becomes dark compared to the negatively charged
cantilever and bottom electrode, see figure 7.10c. This is because the secondary
electrons are being reduced in the positively charged electrode and vice-versa
for the cantilever. In figure 7.11 the measured DC response of the cantilever
is presented. SUGAR simulations with α values of 0.5 and 1.5 are compared.
It seems that the SUGAR model fits very poorly to the SEM data. A possible
explanation could be charging effects due to the electron radiation. In figure 7.10c
the bright area around the cantilever apex is due to charging of the system. It
was seen that while performing the measurements the behavior of the cantilever
would change, just by changing the electron scan speed or magnification.

Dynamic measurements

In figure 7.12 two SEM images of a cantilever, which is excited at its 1st and 2nd
mode are shown. The frequencies of the first and second mode are 315kHz and
1.8MHz respectively. These images show the details of the cantilever bending,



7.2 Characterization of poly-Si cantilevers 110

Figure 7.10: (a) SEM image of the cantilever and two parallel electrodes of device
5. Close-up images of the cantilever at (b) 0V and (c) 135V and (d) the whole device
at V=130V, showing the dark and light regions corresponding to the positively and
negatively charged areas.

Figure 7.11: The static bending as a function of the applied DC voltage together
with SUGAR simulations with α=0.5 and 1.5. on device 5
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which are impossible to observe on such small devices with an optical microscope.
In air the 2nd mode of vibration has not been possible to excite because the Q-
factor in air is much lower than in vacuum. This is because the main contributor
of damping in air is acoustic and in vacuum acoustic damping in eliminated.

Figure 7.12: Two SEM images of a cantilever showing the first and second vibrational
modes. In the top image the cantilever is driven with a frequency of 315kHz and in
the bottom image it is driven with a frequency of 1.8MHz.

In figure 7.13 the dynamic response of the cantilever as a function of the AC
driving frequency is seen. The Gaussian fit to the curve reveals that the Q-
factor is approximately 15000. This is approximately 270 times higher than in
air. As seen in equation 2.2-36 the acoustic Q-factor contribution is zero, so the
energy losses in the system are due to structural defects and imbalances in the
structure. Compared to other cantilever based devices in vacuum this value is
in good agreement, where Q-factors up to 20000 were reported for single-crystal
cantilevers [130][131][132]. This signifies that the structural and mechanical prop-
erties of these poly-Si devices are good.

As with the air measurements the resonant frequency versus the sum of the
applied voltage squared has been measured, in order to calculate the effective
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Figure 7.13: The frequency response of device 6 in vacuum measured by the
SEM along with a Lorentzian fit. The applied voltages in this measurement were
Vac=100mV and Vdc=0.

density of the cantilever in vacuum. In figure 7.14 the resonant frequency versus
the sum of the applied voltages squared is seen. In the same graph SPICE
simulations with α values of 1.5, found by the static measurements and 5.1 are
shown. It is seen that the fringe factor found by the static measurements does
not fit this data. Instead, a higher fringe factor of 5.1 fits the measurements much
better. Furthermore, this value fits better with the air measurements found in
table 7.1, which makes sense since the fringe factor should not depend on whether
the device is operated in vacuum or air.

Summary

The main findings of the vacuum characterization of the poly-Si cantilevers are
shown in table 7.2. With the static measurements the fringe factor was seen to be
lower than the air measurements and didn’t fit well with the SUGAR model. On
the other hand, the dynamic measurements revealed that a higher fringe factor
fit the dynamic measurement data. This could be explained by charging effects,
which can alter the behavior of the cantilever. Unfortunately, no other static
measurements were performed to compare.

Another aspect of these findings is that the effective density of the cantilever
increased compared to the air measurements. This can again be explained by
extra external forces acting on the cantilever, due to electrostatic charging.
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Figure 7.14: The resonant frequency as a function of the sum of the applied voltages
squared, comparing the SEM measurements and two SPICE simulations with α=1.5
and 5.1 on device 6.

device setup w h l gap E α Q f0 ρeff

device 5 SEM 1.14µm 1.8µm 39.8µm 2.3µm 160GPa 0.5-1.5 - - -
device 6 SEM 1µm 1.8µm 39.5µm 2.0µm 160GPa 5.1 15000 647kHz 4.11g/cm3

Table 7.2: The α, Q, f0 and meff findings for two cantilevers measured by the SEM
setup.

7.2.3 Air versus vacuum measurements

In table 7.3 f0 for several devices, measured both in and out of vacuum, are listed.
The the effective density of the cantilevers is calculated from f0 and by assuming
the Young’s modulus is 160GPa. The air measurements were performed with the
visual setup and the vacuum measurements were performed with the SEM setup.
Six different cantilevers were measured and the first conclusion is that the effective
mass of each cantilever is very different from each other. The second conclusion
is that the effective density decreases in vacuum compared to air, which is to
be expected due to the added acoustic mass. For all the devices the decrease
in effective density is approximately 1%. By approximating the acoustic mass
as the mass in a volume comparable to the volume filling the gap between the
cantilever and parallel electrodes, a value of approximately 1pg of air molecules
is found. This roughly matches the drop of 1% in the resonant frequency.
The variation in the calculated effective densities could be due to two several
factors. (1) The Al based mask tends to have pinholes, which are transferred
to the cantilever during dry etching. The pinhole density is very dependent
on the laser power and focus of the laser, which is different for each device.
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device w h l E f0air f0vac ρeff air ρeff vac
device 7 1.004µm 1.8µm 39.56µm 160GPa 645.6kHz 646.6kHz 4.121g/cm3 4.109g/cm3

device 8 0.981µm 1.8µm 39.73µm 160GPa 658.3kHz 659.8kHz 3.720g/cm3 3.703g/cm3

device 9 0.967µm 1.8µm 39.62µm 160GPa 564.7kHz 566.2kHz 4.967g/cm3 4.941g/cm3

device 10 1.156µm 1.8µm 39.55µm 160GPa 639.7kHz 642.9kHz 5.571g/cm3 5.516g/cm3

device 11 1.061µm 1.8µm 40.00µm 160GPa 662.0kHz 666.4kHz 4.188g/cm3 4.133g/cm3

device 12 1.165µm 1.8µm 39.27µm 160GPa 689.1kHz 692.2kHz 5.016g/cm3 4.971g/cm3

Table 7.3: The measured f0air and f0vac and the calculated ρeffair and ρeffvac
using the measured f0 and E=160GPa.

This porous surface of the poly-Si could decrease the Young’s modulus. (2)
The vacuum measurements were performed before the air measurements and
while imaging with the SEM, carbon deposition, due to electron beam induced
deposition, occurs. (3) The Cantilever’s spring constant is dependent on the
width cubed, equation 2.1-3 and the resonant frequency is linearly dependent on
the width, equation 2.1-7. This means that small deviations in the measurement
of the width could lead to large changes in the stiffness and resonant frequency
of the cantilever.

7.3 CMOS integrated cantilevers

Due to stiction problems the fabrication and characterization of the CMOS inte-
grated cantilevers have been a challenge. The characterization of the cantilevers
has been performed with the visual setup where the motion of the cantilever has
been observed at the same time as electrical measurements are performed.

7.3.1 Visual measurements

In figure 7.15 some optical images of a double cantilever device in the nanoarea
are shown. In figure 7.15a the nanoarea of the double cantilever device is seen
and in figure 7.15b a close-up of the cantilevers are seen. These images show that
the cantilever is vibrating at the end. Electrical measurements on this device was
not possible due to faulty CMOS circuitry, but it proves that excitation of the
cantilevers is possible.

7.3.2 Electrical measurements

Static measurements

In order to measure the parasitic capacitance of the system, static character-
ization of the cantilever and amplification circuit, as seen in figure 7.16, was
performed. In figure 7.16a a simple diagram showing the cantilever and circuit
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Figure 7.15: In (a) the double cantilever nanoarea is shown and in (b) a close-up
of the two cantilevers are seen vibrating and the end. Electrical characterization was
not performed due to faulty CMOS.

is shown and in figure 7.16b the equivalent diagram is shown showing the capac-
itances in the system. The cantilever’s capacitance is denoted by Ccan and the
parasitic capacitance is denoted as Cpa. By using this simple electrical model,
the gate voltage Vg can be determined as a function of the input voltage Vin, Ccan

and Cpa:

Vg =
Ccan

Ccan + Cpa

· Vin − 2.5
Cpa

Cpa + Ccan

(7.3-1)

The parasitic capacitance contains the cantilever-substrate capacitance and the
circuit input capacitance. By placing a STM tip on the cantilever anchor, Vg was
accessed. In figure 7.17 Vout as a function of both Vg and Vin has been measured.
In the linear regions of these curves, the circuit transistors are polarized and
the circuit has a finite DC gain. By measuring the slopes in the linear regions
(shown as the linear fits on figure 7.17 a and b) together with an estimated value
of Ccan based on the cantilever geometry, the parasitic capacitance was calculated
to 1.32fF. This value is very low, suggesting that the electrical readout should be
obtainable using the chosen amplification scheme.

Dynamic measurements

Electrical measurements on one device has been obtained. The measurement was
performed on a BS circuit with a cantilever and comb capacitor fabricated on the
nanoarea. An image of this type of device can be seen in figure 5.6. Due to the
small amplitudes of vibration, which is under 200nm for these measurements, no
optical images of the vibration where possible. In table 7.4 the dimensions of the
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Figure 7.16: In (a) a simple diagram on the whole device is seen denoting where the
STM tip accesses the gate voltage Vg and (b) is the equivalent diagram showing the
cantilever and parasitic capacitances.

Figure 7.17: The output voltage of the CMOS circuitry as a function of (a) the gate
voltage Vg and (b) the input voltage Vin.

cantilever and measurements can be seen.

In figure 7.18 the readout circuitry’s voltage output is shown as a function of the
AC voltage frequency. This cantilever has a width, height and length of 1µm,
0.6µm and 40µm respectively. The two curves correspond to two excitation volt-
ages. The dashed curve has an excitation voltage of 18VDC + 7VppAC and
the solid curve corresponds to an excitation voltage of 20VDC + 7VppAC. It
is seen that the higher excitation voltage increases the amplitude of the output
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signal and reduces the resonant frequency from 655kHz to 645kHz. The reason
for this is that the extra DC voltage increases the electrostatic forces acting on
the cantilever, which increases the vibrational amplitude and decreases the res-
onant frequency. The quality factor (Q) of the cantilever was measured to be
approximately 43 by fitting a Lorentzian curve to the data points.

Figure 7.18: The output voltage of the readout circuitry for two applied voltages to
a laser defined cantilever.

By taking the two measurements and plotting the resonant frequency versus the
sum of the applied voltage squared f0 can be calculated. The SPICE model
with α=6.5 has been used to model the cantilever. In figure 7.19 the resonant
frequency versus the sum of the applied voltage squared is seen for the two mea-
surements along with the SPICE model.

The SPICE model can also be used to simulate the actual signal of the cantilever,
which can then be compared to the electrical output of the device. In figure 7.20
the electrical signal and the SPICE simulation for the two frequency responses
along with the corresponding SPICE simulation are seen. The parameters for
the SPICE model are f0=693kHz, α=6.5, Q=30 and Cpa=10fF. In figure 7.20a
the measurement with Vin=18VDC+7VACpp is shown. The simulation predicts
the peak very well, but a low frequency the model deviates slightly. In figure
7.20b the measurement with Vin=20VDC+7VACpp is shown. In this simulation
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Figure 7.19: The resonant frequency versus the sum of the applied voltage squared
for the two electrical measurements showing the resonant frequency at 0V to be ap-
proximately 692kHz.

the SPICE model models very precisely the shape of the output signal. Due
to the saturation of the BS circuit the output could not go below 55mV. This
means that the anti-peak is not seen, which makes it difficult to match a parasitic
capacitance. Thus the value of 10fF is just an estimation, and perhaps not the
actual value.

Figure 7.20: The electrical measurement and SPICE simulations for the device. The
parameters for the SPICE model are f0=693kHz, α=6.5, Q=30 and Cpa=10fF.
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7.3.3 Electrical characterization summary

In table 7.4 the main findings of the electrical characterization is seen. The Q-
factor was measured to be approximately 43 when measuring directly from the
circuit output data, but a lower value of 30 was used for the final SPICE simu-
lations in figure 7.20. These values are slightly lower than the poly-Si cantilevers
without CMOS, which can be explained by the a higher damping because the gap
between the cantilever and bottom substrate is smaller. Furthermore, SEM im-
ages of the CMOS integrated cantilever reveal that the cantilever are very porous
compared to the poly-Si cantilever without CMOS, which could also lower the
Q-factor. Since no DC measurements have been performed, the fringe factor was
calculated by simulating the resonant frequencies until the model predicted the
correct values, which it did when α=6.5. This value is higher than the values
found with the poly-Si cantilevers. This can be explained by the fact that the
CMOS cantilever is 600nm high compared to 1.8µm high non-CMOS cantilevers
and that the CMOS cantilevers have a higher roughness, which could decrease ef-
fective Young’s modulus of the cantilever. By comparing the SPICE model with
the measurements a good agrement of the peak is seen. The effective density
of the cantilever is calculated to 2.4g/cm3, which is lower than the non-CMOS
poly-Si cantilevers in and out of vacuum. It is also very close to the text-book
value of 2.33g/cm3 for single crystal Si.

device setup w h l gap E α Q f0 ρeff Cpar

device 13 CMOS 0.84µm 0.6µm 40.0µm 1.8µm 160GPa 6.4 30 693kHz 2.4g/cm3 10fF

Table 7.4: The α, Q, f0 and meff findings for one cantilever measured with the
CMOS circuitry.

7.4 Metal cantilevers

7.4.1 Dynamic measurements

As described in the previous chapter, aluminum cantilevers have been fabricated.
The main goal with these cantilevers was to make an approximately 1µm high
and 500nm wide structure. However, so far only thin structures with a thickness
of approximately 100nm have been fabricated. Non-the-less, these types of can-
tilevers can also be excited vertically into resonance by applying an AC voltage
between the driver and cantilever due to the field asymmetry induced by the Si
substrate. In figure 7.21 two SEM images at different AC driving frequencies
are shown, showing the vertical vibration of the cantilever when at resonance at
fac=1435kHz.
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Figure 7.21: Two SEM images of a metal cantilever being excited with an AC
frequency of (a) 1447kHz and (b) 1435kHz.

By examining the images the approximate vibrational amplitude versus the driv-
ing frequency can be measured, even though the cantilever is imaged at an angle.
Thus the frequency response of the cantilever can be measured as shown in figure
7.22. The Q-factor is found from the fitted Lorentzian to be approximately 183.
This value is much lower than the values found from the poly-Si cantilevers in
vacuum, which was approximately 15000. Since there is no acoustic damping,
only structural defects and imbalances in the cantilever have to be considered,
see equation 2.2-36. By looking in figure 7.21, it is seen that the support of
the Al cantilever is underetched by approximately 1.4µm. This means that the
clamping of the cantilever is very poor and energy of the system is lost through
the clamping.

The width and length of the cantilever have been measured with the SEM to
660nm and 5.2µm respectively. The theoretical vertical resonant frequency of
this cantilever is approximately 3MHz, which is much higher than the resonant
frequency measured here. The main explanation could be that the cantilever has
been excited at the half frequency, which fits the numbers. The AC voltage used
to excite the resonance was 9Vpp, which is very high and also supports the theory
of exciting at half frequency.

In order to improve the clamping of the Al cantilever the process sequence could
be altered slightly. In the last underetching step, see figure 6.12, an isotropic etch
is used. Instead of this an anisotropic etch can be used to etch down into the
substrate, then the isotropic etch can be used to underetch the Al cantilever. In
this way there is still a large distance between the cantilever and the substrate
and at the same time the underetching of the cantilever support is minimized to
approximately half the width of the cantilever.
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Figure 7.22: The Frequency response of the metal cantilever seen in figure 7.21. By
using the Lorentzian fit the Q-factor is measured to approximately 183.

Another attempt of characterizing the Al cantilevers was performed, this time by
using the secondary electron signal from the electron detector of the SEM. For
this experiment a gain/phase analyzer was used to as the AC voltage source and
to measure simultaneously the electron detector signal. During the measurements
the electron beam is put into spot mode and the spot is placed at the end of the
cantilever, see figure 7.24a. In this first attempt, the E-beam is perpendicular
to the device surface and not tilted at an angle. In figure 7.23 the frequency
response of the same cantilever as seen above is shown. In this measurement
the AC voltage was 1V and the DC voltage is approximately 10V. By looking at
the figure it seems that the when scanning the frequency spectrum the output
signal jumps to a value and then slowly goes back to the original level. This
corresponds to a non-linear behavior of the cantilever, probably due to a large
vibrational amplitude. Furthermore, the frequency of the cantilever is found to
be approximately 2.8MHz, which is exactly double the frequency found in the
first experiment.

7.4.2 Mass measurement

During measuring of the cantilever it was noticed that the resonant frequency of
the cantilever was steadily dropping with time. Then after turning off the spot
mode and imaging the cantilever again it was found that an approximately 200nm
mass had been deposited onto the end of the cantilever, where the E-beam had
been focussed, see figure 7.24b. This mass is caused by electron induced deposi-
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Figure 7.23: The frequency response of the same cantilever mentioned above, using
the electron detector as readout. The resonant frequency in this curve is measured to
2.751MHz.

tion (EBID), where carbon based impurities in the vacuum chamber are broken
down by the electrons and deposited onto the surface [133][134]. A frequency
shift of 6.5kHz was measured and a rough estimation of the carbon deposit was
calculated to 14fg. This leads to a mass sensitivity of approximately 10−18g/Hz,
which is in good agreement with equation 2.1-9.

Figure 7.24: In (a) the Al cantilever is seen from above before carbon deposition
and in (b) a approximately 200nm wide carbon deposition is seen on the end of the
cantilever.
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7.5 Summary

In this chapter the characterization of poly-Si and Al cantilevers without CMOS
circuitry and CMOS integrated poly-Si cantilever have been presented.

Through the characterization of the poly-Si cantilevers, the fringe factor varied
between 3.73 up to 6.5 for the performed experiments. Furthermore, the effective
density of the almost all the poly-Si cantilevers are larger than the theoretical
value. These trends can be explained by a lower Young’s modulus, than the
160GPa used for the calculations, or a lower width of the cantilever. It was
also seen that the CMOS cantilever had the highest fringe factor, which can be
accounted for by the fact that the CMOS cantilever, see figure 5.6f, was more
porous than the non-CMOS poly-Si cantilevers, see figure 7.5, thus having an
even lower Young’s modulus.

The Q-factor in air and vacuum was found to be approximately 50 and 15000
respectively, which is explained to large acoustic damping of the cantilever in air.
Furthermore, it has been shown that the SPICE model can be used to success-
fully model both the mechanical and electrical behavior of the cantilever based
mass sensor device.

It was shown that the ultra-thin Al cantilevers can be vertically excited into reso-
nance with a lateral electrode and that due to poor clamping of the cantilever, the
Q-factor is quite low (183) compared to the laterally vibrating poly-Si cantilevers.
By focussing the electron beam at the apex of the cantilever and monitoring the
electron detector signal, the frequency response of the cantilever was measured.
Furthermore, EBID carbon was deposited due to the focused electron beam and
the first mass measurements were performed. The mass sensitivity of the Al
cantilever was measured to be 10−18g/Hz.



Chapter 8

Conclusions

The main objective of the Ph.D. project described in this thesis is the fabrication
and characterization of a cantilever based resonant mass sensor. The main out-
standing qualities of this sensor are that it should have both a high spatial and
mass resolution and that the sensor should be flexible, so that a range of possible
applications can be addressed.

In the introduction the resonant or dynamic mode sensor was introduced and
compared to a static mode sensor. Resonant based sensors have the main advan-
tage that by monitoring the cantilever’s resonant frequency and Q-factor, more
information about what is happening to the cantilever can be deduced. From
the dynamic behavior of the cantilever surface stress on the cantilever, mass de-
position/absorption on the cantilever and even the environment surrounding of
the cantilever can be measured. In contrast static mode measurements can only
measure surface stress.

The design of the mass sensor is based on a nanometer scale cantilever, which
is electrostatically actuated and which has a capacitive readout. In order to
achieve this sensor the NANOMASS project was born, where the world of micro-
electronics meets the world of nanotechnology. By integrating the mass sensor
with CMOS microelectronic circuitry, the mass sensor has the potential to be
faster, cheaper, more sensitive and more compact than any other sensor of its
kind. This thesis presents the journey of the development of this mass sensor
from design to the first working demonstrator.

In order to facilitate the design and to predict the final performance of the mass
sensor, a complete model of the electrical and mechanical properties of the capac-
itive based mass sensor was developed. This model consisted of a SPICE model
and a 2D finite element model. Through a large signal treatment of the cantilever
based capacitive system, and integrating this into SPICE, a model was formed
that can simulate both the electrical and mechanical behavior of the device in
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both the linear and the non-linear regimes. The weak point of this model is that
the cantilever bending is approximated by a stiff plate displacement, which lead
to the use of the 2D FE model, which is used to calibrate the SPICE model.

With the SPICE model it was shown that with the capacitive readout of the
device it is crucial that the parasitic capacitances are reduced as much as pos-
sible. This lead to CMOS integration. Furthermore, it was seen that the two
electrode configuration does not enhance the capacitive signal even though it is
possible to apply higher DC to AC voltage ratios compared to the one electrode
configuration.

It was decided that the first approach of integrating the mechanical device with
CMOS was to use the lower poly0 layer of the CMOS and perform post-CMOS
surface micromachining. This approach was chosen because of its simplicity, so
that the principle of integration could be proven. The circuit design consisted of
two types of circuits, which are the BS and AC amplifiers. The BS amplifier is
based on a simple source follower and buffer amplifier, whereas the AC amplifier
is based on a operational amplifier current to voltage converter. The challenge is
to design amplifiers that have a high enough band-width and at the same time
a high gain. For the poly-Si cantilevers fabricated in this thesis, the resonant
frequency can be as high as 1.5MHz, which puts strick demands on the circuitry.
With the 2.4µm CMOS technology that was used for the circuitry, a bandwidth
and gain of 1.7MHz and 16dB was obtained for the BS circuit and 150kHz and
32dB for the AC circuits.

In chapter 5 the integration of the cantilevers was presented. The mask defini-
tion of the cantilever was performed by three nanolithography techniques, namely
laser, E-beam and AFM lithography. Released cantilevers where achieved with
laser and E-beam lithography, but due to high surface roughness, AFM lithogra-
phy was not successful. Widths down to 700nm were achieved with laser lithog-
raphy and widths down to 300nm were achieved with EBL. The main challenge
of the cantilever processing was stiction of the cantilever to the bottom electrode
upon releasing it. Two dry release techniques where investigated, a tert-butanol
freeze-drying technique and a resist coating technique. It was found that the
resist coating technique had the most reproducible and advantageous qualities.

An investigation of the post-processing effects on the CMOS revealed that e-beam
evaporation and EBL caused damage to the CMOS. With e-beam evaporation X-
ray radiation causes electron/hole where the holes get trapped in the gate oxide.
It was found that this damage can be annealed out at 3500C. Electron radiation
from an electron source was also seen to damage CMOS. Below 5keV no dam-
age or degradation was observed, but at higher acceleration voltages the CMOS
becomes degraded, but can be repaired by annealing, and at high acceleration
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voltage, 25keV, the CMOS is damaged irreparably. This is a major problem
because EBL uses high acceleration voltage, >20keV, in order to minimize prox-
imity effects.

In parallel with the integration of poly-Si cantilevers with CMOS, single crystal Si
and Al cantilevers were also fabricated without CMOS. The objective with these
demonstrators was to investigate new lithography techniques and structural ma-
terials for the cantilever that can be used for fabricating the 100nm wide device,
which is the goal of the NANOMASS project. It was demonstrated that with
AFM lithography, a 150nm wide cantilever can be fabricated, which proves AFM
lithography to by a real contender of EBL, especially since EBL caused severe
damage to the CMOS circuitry. It was also demonstrated that 400nm wide Al
cantilevers can be fabricated with contact mask UV lithography. Furthermore,
the Al cantilevers were only 100nm high, thus could be used at vertically vibrat-
ing cantilevers.

Finally, the characterization of poly-Si and Al cantilevers was performed. In or-
der to characterize the cantilevers in air a visual and AFM setup were used. To
characterize the cantilevers in vacuum a SEM setup was used. For the poly-Si
cantilevers the fringe factor was found to be between 3.73 and 6.5 for the CMOS
integrated and the non-CMOS integrated cantilevers. The effective densities of
the poly-Si cantilever were also much higher than expected. These anomalies can
be explained by a using a too large width or Young’s modulus of the cantilever.
However, measurements of the same cantilever in and out of vacuum gave pre-
dictable results with several different cantilevers, with respect to a drop in the
resonant frequency of 1% due to the added acoustic mass in air. The SPICE
model was used to compare with the measurements with rather good agreement.
Electrical characterization was also performed on one cantilever. The SPICE
model is very accurate at predicting the output signal. The Q-factor in air and
vacuum was seen to be approximately 50 and 15000 respectively, which suggests
that the acoustic damping is very dominant at atmospheric pressure.

With the SEM characterization setup it was seen that the Al cantilevers can be
vertically vibrated by driving the cantilever with a lateral electrode. The Q-
factor was found to be low, 183, which is probably due to poor clamping of the
structure. Furthermore, by monitoring the electron detector signal readout of
the cantilever was also possible and these measurements lead to the first mass
detection of EBID carbon on the apex of the cantilever. The mass sensitivity was
measured to be 10−18g/Hz.

The main findings are that a model has been developed which can successfully
predict both the systems electrical and mechanical behavior of a cantilever based
mass sensor. This model was been used to facilitate the design of a CMOS inte-
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grated cantilever based mass sensor. The fabrication of CMOS integrated poly-Si
cantilever have been realized and the first electrical readout has been successful,
proving that integration is possible. Furthermore, the fabrication of 150nm wide
single crystal and 100nm high Al cantilevers have been demonstrated, paving the
way to the next generation of even smaller, more sensitive mass sensor devices.

The next step is to further investigate the actual performance of the mass sensor
system. This will be done both in vacuum and in air. In vacuum metal evap-
oration and latex sphere deposition will be attempted. If latex sphere can be
attached to the cantilever at different places on the cantilever, the mass sensi-
tivity of local deposition on the cantilever can be investigated. In air the mass
sensor will be used as a gas and bio/chemical sensor. For the gas measurements
only the resonant frequency and Q-factor will be monitored, but for bio/chemical
applications, the cantilever needs to be functionalized. The preparations for these
measurements are currently being pursued within the NANOMASS project.
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Appendix B

SUGAR program

Main SUGAR program:
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netist file containing material information:
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netist file containing device information:



Appendix C

CMOS post processing sequence
using laser lithography

1. Al deposistion: 7nm of Al is deposited onto the CMOS chip using e-beam
evaporation at 5Åper second.

2. Laser writing: The cantilever/electrode pattern is directly written at an
incident power of between 10-20mW.

3. Al etch: The unexposed Al is etched in 80% H3PO4 between 2-6 minutes.

4. Poly0 etch: The poly0 layer in the nanoarea is anisotropically etched for
7minutes. Recipe zd aniso: 32 sccm SF6, 8 sccm O2, Pressure=80mTorr
and Power=35W.

5. HMDS: The chip is baked in vacuum and HMDS treated for 30min.

6. Resist spinning: Resist is spun onto the chip at 1500rpm for 30sec. re-
sulting in a 2.5µ thick resist coating.

7. Resist baking: The resist is baked at 1100C for 2minutes.

8. UV lithography: Mask 1, The chip is exposed for 60sec. and developed
for 60sec. Holes are opened over the nanoarea.

9. BHF underetching: The 1µ sacrificial oxide is etched in BHF for 15min-
utes at an etch rate of 75nm per minute.

10. Dry release: See Appendix D and E

11. CMOS annealing: The chip is annealed for 20min at 3500C.
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Appendix D

Freeze-drying process sequence

1. DI water rinse: The chip placed and rinsed in DI water 3-5 times without
drying the chip at any point.

2. Resist removal: The chip is placed in acetone for 10 minutes to remove
the protection resist. The chip is then rinsed 3-5 times in acetone without
drying the chip.

3. Propanol rinse: The chips is rinsed in propanol 3-5 times without drying
the chip.

4. Tert-butanol: The chip is immersed in liquid tert-butanol that has been
heated to 300C.

5. Freezing: The chip is then placed on a cooling plate and the terr-butanol
freezes.

6. Evaporation: The chip is placed in vacuum with a cooling plate and the
solid tert-butanol slowly evaporates for about 1hour.
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Appendix E

Resist-release process sequence

1. DI water rinse: The chip placed and rinsed in DI water 3-5 times without
drying the chip at any point.

2. Resist removal: The chip is placed in acetone for 10 minutes to remove
the protection resist. The chip is then rinsed 3-5 times in acetone without
drying the chip.

3. Resist rinse: The chip in a slight amount of acetone is diluted with resist.

4. Resist spin: The chip is spun at 3000rpm for 30sec. to evenly distribute
the resist on the chip.

5. Resist etch: The resist is removed in the RIE. Recipe PR STRIP: 99sccm
O2, 20sccm N2, pressure=300mTorr and power= 60W. Etch rate 430nm/minute.
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Appendix F

Al cantilever process sequence

1. Resist spin: The chip is spun at 6000rpm for 30seconds to evenly distribute
the resist on the chip at a thickness of 600nm.

2. Resist bake: The chip is baked at 900C for 30 seconds.

3. Exposure1, metalmask1: Expose resist for approximately 3 seconds.

4. Post exposure bake: Post bake wafer at 1200C for 120seconds.

5. Flood exposure: Expose wafer for 30seconds without any mask.

6. Development: Develop resist with a NaOH solution for 75 seconds.

7. Al deposition: Deposition of Al metal at a thickness of 100nm.

8. Al lift-off : Lift off resist with Al by acetone and ultrasound for 5 minutes.

9. Thick resist spin: The chip is spun with a thick resist in order to deposit
a 10µ thick resist layer.

10. Exposure2 and development, ASE mask2: Expose resist for approxi-
mately 30 seconds and develop the resist for 5 minutes.

11. ASE etch: Groves are etched into the front side using the thick resist as
a mask. The recipe is ”shallow etch” and a depth of 100µm is etched.

12. Resist strip: Strip resist using acetone and ultrasound.

13. RIE underetching: Underetch Al structure by isotropically etching the Si
underneath the Al for 5-10 minutes. Recipe ab iso: 40sccm SF6, p=80mTorr,
P=30W.
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