

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Aspects with Program Analysis for Security Policies

Yang, Fan; Nielson, Flemming; Nielson, Hanne Riis

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Yang, F., Nielson, F., & Nielson, H. R. (2010). Aspects with Program Analysis for Security Policies. Kgs. Lyngby,
Denmark: Technical University of Denmark (DTU). (IMM-PHD-2010-239).

http://orbit.dtu.dk/en/publications/aspects-with-program-analysis-for-security-policies(fbf0e56e-0ee7-4ecf-81ec-e13e9e870896).html

Aspects with Program Analysis for
Security Policies

Fan Yang

Kongens Lyngby 2010
IMM-PHD-2010-239

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Enforcing security policies to IT systems, especially for a mobile distributed sys-
tem, is challenging. As society becomes more IT-savvy, our expectations about
security and privacy evolve. This is usually followed by changes in regulation
in the form of standards and legislation. In many cases, small modification of
the security requirement might lead to substantial changes in a number of mod-
ules within a large mobile distributed system. Indeed, security is a crosscutting
concern which can spread to many business modules within a system, and is
difficult to be integrated in a modular way.

This dissertation explores the principles of adding challenging security policies to
existing systems with great flexibility and modularity. The policies concerned
cover both classical access control and explicit information flow policies. We
built our solution by combining aspect-oriented programming techniques with
static program analysis techniques. The former technique can separate security
concerns out of the main logic, and thus improves system modularity. The
latter can analyze the system behavior, and thus helps detect software bugs or
potential malicious code.

We present AspectKE, an aspect-oriented extension of the process calculus
KLAIM that excels at modeling mobile, distributed systems. A novel feature of
our approach is that advices are able to analyze the future use of data, which
is achieved by using program analysis techniques. We also present AspectK to
propose other possible aspect-oriented extensions based on KLAIM, followed by
a discussion of open joinpoints that commonly exist in coordination languages
such as KLAIM. Based on the idea of AspectKE, we design and implement
a proof-of-concept programming language AspectKE*, which enables program-

ii

mers to easily specify analysis-based security policies with the help of high-level
program analysis predicates and functions. The prototype is efficiently real-
ized by a two-stage implementation strategy and a static-dynamic dual value
evaluation mechanism. We have performed two case studies to evaluate our
programming model and language design. One application is based on a elec-
tronic health care workflow system. The other is a distributed chat system. We
considered a number of security policies for both primary and secondary use of
data, classical access control and predictive access control - control access based
on the future behavior of a program. Some of the above mentioned policies can
only be enforced by analysis of process continuations.

Resumé

Det er en vigtig udfordring at kunne håndhæve sikkerhedspolitikker i mobile
og distribuerede IT-systemer. Efterhånden som samfundet bliver mere og mere
afhængigt af IT stiger vores forventninger til sikkerhed og privathed, hvilket
leder til ny lovgivning og nye standarder. I mange tilfælde giver selv små æn-
dringer i sikkerhedskravene anledning til ganske omfattende ændringer i større
distribueret systemer. Det skyldes at sikkerhed går på tværs af de sædvanlige
modularitets-principper og derfor ikke kan håndteres modulært.

Denne afhandling udforsker metoder, der muliggør en flexible og modulær tilfø-
jelse af nye sikkerheds-politikker til eksisterende IT-systemer. Det gælder både
klassiske politikker for adgangskontrol men også politikker for informations flow.
Metoden er baseret på brugen af aspekt-orienteret programmering sammen med
teknikker fra statisk analyse af programmer. Her gør den aspekt-orientede til-
gang det muligt at adskille sikkerheds-overvejelserne fra de funktionelle overve-
jelser og dermed opnå øget modularitet. Brugen af statisk analyse gør det muligt
at finde en del af de mulige sikkerhedshuller, der overlever denne design-proces.

Afhandlingen præsenterer AspectKE, der er en aspekt-orienteret udvidelse af
process algebraen KLAIM, der er specielt god til at modellere mobile og dis-
tribuerede IT-systemer. En nyskabelse er muligheden af at aspekter kan anal-
ysere den fremtidige brug af data ved hjælp af teknikker fra statisk analyse af
programmer. Vi præsenterer også AspectK som et eksempel på andre aspekt-
orienterede udvidelser og studerer de såkaldte åbne join-punkter, der er almin-
delige i KLAIM og andre sprog til koordination. Med udgangspunkt i AspectKE
designes og udvikles der et prototype programmeringssprog, AspectKE*, som
gør det muligt at programmere sikkerheds-politikker, der udnytter de nye mu-
ligheder. Prototypen er implementeret i to trin ved hjælp af en særlig statisk-

iv

dynamisk evaluerings-mekanisme. Vi har afprøvet systemet på to større eksem-
pler. Den ene modellerer et elektronisk patient journal system og den anden
er et distribueret chat system. I begge tilfælde ser vi på et antal sikkerheds-
politikker for både primær og sekundær brug af data såvel som klassiske poli-
tikker for adgangskontrol og informations flow baseret adgangskontrol, der ne-
top afhænger af den fremtidige brug af data. Evnen til at analysere fremtidige
beregninger er essentiel for at kunne udtrykke visse af disse politikker.

Preface

This dissertation was prepared at the department of Informatics and Mathe-
matical Modelling, the Technical University of Denmark, in partial fulfillment
of the requirements for acquiring the Ph.D. degree in Computer Science. The
Ph.D study has been carried out under the supervision of Professor Flemming
Nielson and Professor Hanne Riis Nielson in the period from June 2007 to Au-
gust 2010. The Study was funded by DTU Scholarship but also got partially
supported by Danish Strategic Research Council (project 2106-06-0028) project
Aspects of Security for Citizens.

Most of the work behind this dissertation has been carried out independently
and I take full responsibility for its contents. During the three year study, my
excellent research collaborators have also given me many inspirations and sug-
gestions. Besides work with my two supervisors, the development of process
calculi AspectKE (Chapters 3 and 4), reported in [YHNN] and AspectK (Chap-
ter 5), reported in [HNNY08], were in collaboration with Chris Hankin; The
development of programming language AspectKE* (Chapters 6 7 and 8), re-
ported in [YMA+10a,YMA+10b,YAM+], were in collaboration with Hidehiko
Masuhara and Tomoyuki Aotani.

Lyngby, October 2010

Fan Yang

vi

Acknowledgements

I would like to thank my supervisors, Flemming Nielson and Hanne Riis Niel-
son, for providing me with the opportunity to work on this interesting research
project, for their excellent guidance, inspiring suggestions and insightful com-
ments on my work, during my entire three year PhD study.

I would like to thank the rest of the LBT group: Christian Probst, Henrik Pi-
legaard, Terkel Tolstrup, Christoffer Rosenkilde Nielsen, Jörg Bauer, Sebastian
Nanz, Han Gao, Ye Zhang, Ender Yuksel, Nataliya Skrypnyuk, Matthieu Queva,
Alejandro Hernandez, Fuyuan Zhan, Piotr Filipiuk, Kebin Zeng, Roberto Larcher,
Michael J.A. Smith, Sebastian Mödersheim, Lijun Zhang, Jose Quaresma, and
Michal Tomasz Terepeta, for creating an inspiring and friendly working envi-
ronment. I got many good suggestions from them of research and of life.

I would like to thank Chris Hankin. I really enjoyed the time working with him
on process calculi design. I really appreciate the series of fruitful meetings both
at the Technical University of Denmark and Imperial College London, which
greatly speed up my work. I also would like to thank him for proof-reading the
dissertation, and giving many useful comments.

I would like to thank Hidehiko Masuhara, for hosting and supervising me during
my five months external visit at the PPP research group in the University of
Tokyo, Japan, and for inviting me for a second visit to finish the remaining
research work. I really benefitted from those fruitful discussions and constructive
comments on my work, especially for unmatched suggestions over programming
language design and implementation.

viii

I would like to thank Tomoyuki Aotani, for his supreme guidance on imple-
menting static analysis on bytecode instructions using ASM framework, and
the inspiring discussions about analysis-based pointcuts.

I would like to thank the rest of the PPP research group: Robert Hirschfeld,
Watanabe Takuya, Muroi Hiroaki, Kouhei Sakurai, Kazunori Kawauchi and
Manabu Toyama, for their comments about my work and for help me to adjust
to the Japanese style of daily life.

I would like to thank Lorenzo Bettini for developing the excellent Klava system,
and discussing it with me.

I would like to thank the members from Aspects of Security for Citizens project:
Christian Probst, Hubert Baumeister, Sebastian Nanz, Michael Huth, and Ale-
jandro Hernandez for their comments on my work. Special thanks to Alejandro
Hernandez, we really had some nice time on proving interesting analysis prop-
erties of AspectKE.

I would also like to thank the evaluation committee: Rocco De Nicola, Mario
Südholt, and Christian Probst, for their helpful comments on this dissertation.

Last but not the least, I would like to thank my family: my father, my mother,
especially my beloved wife Ziyan Feng, for her proof-reading of the dissertation,
and for her consistent support and patience during my entire PhD study.

ix

x Contents

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Preliminary Summary . 4
1.2 Dissertation Outline . 4

2 Setting the Scene 7
2.1 Research Background and Related Work 8
2.2 KLAIM . 19
2.3 Concluding Remarks . 24

3 AspectKE: Trapping Actions 27
3.1 Syntax . 28
3.2 Semantics . 29
3.3 Advice for Access Control Models 33
3.4 Concluding Remarks . 45

4 AspectKE: Trapping Processes 47
4.1 Extended Syntax and Semantics 48
4.2 Advice for Data Usage . 52
4.3 Concluding Remarks and Related Work 61

xii CONTENTS

5 AspectK: Generalization 65
5.1 Syntax and Semantics . 65
5.2 Advice for Access Control with Logging 69
5.3 Open Joinpoints and Other Language Extensions 71
5.4 Concluding Remarks . 74

6 AspectKE*: Programming Language 75
6.1 The AspectKE* Programming Language 77
6.2 A Secure Distributed Chat Application 84
6.3 Highlight of the Language Features 93
6.4 Concluding Remarks . 95

7 AspectKE*: Implementation 97
7.1 Overview of the System . 98
7.2 AspectKlava Runtime System . 101
7.3 Static Analysis of Process in AspectKlava 112
7.4 Concluding Remarks . 124

8 Demonstration and Evaluation 125
8.1 Demonstration . 125
8.2 Evaluation . 130
8.3 Concluding Remarks and Related Work 135

9 Conclusion 139
9.1 Contributions . 140
9.2 Future Work . 141

List of Figures

2.1 Code Scattering and Tangling . 11

2.2 Improve Modularity with AOP 13

6.1 Overview of a Simplified Chat System 85

7.1 Overview of the Implementation 98

7.2 Instructions of out action (in clientsendmsg) 115

7.3 Instructions of eval action (in clientsendmsg) 115

7.4 Call Graph of Processes . 118

8.1 Chat System without Malicious Code 126

8.2 Information is Leaked from Client1 and Client2 to Eavesdropper 126

8.3 Client1 Sends a Message to Eavesdropper 127

8.4 Eavesdropper Receives a Message Sent from Client1 127

8.5 No information is Leaked: Client1 (and Client2) are Terminated
by Aspect protect_message . 129

8.6 Client1 is Terminated by Aspect protect_message 129

xiv LIST OF FIGURES

List of Tables

2.1 KLAIM Syntax – Nets, Processes and Actions 19

2.2 KLAIM Structural Congruence 21

2.3 KLAIM Reaction Semantics (on closed nets) 22

2.4 Matching Input Patterns to Data 22

3.1 AspectKE Syntax - Aspects for Trapping Actions 28

3.2 Reaction Semantics of AspectKE (on closed nets) 30

3.3 Trapping Aspects in AspectKE 31

3.4 Checking Formals against Actuals 31

4.1 AspectKE Syntax - Aspects for Trapping Processes 48

4.2 Reaction Semantics for action eval of AspectKE (on closed nets) 49

4.3 Trapping Aspects in AspectKE 50

4.4 Behavior Analysis Functions . 51

5.1 AspectK Syntax - More Type of Advice 66

5.2 Reaction Semantics of AspectK (on closed nets) 67

xvi LIST OF TABLES

5.3 Trapping Aspects in AspectK . 68

6.1 AspectKE* Syntax - 1 . 79

6.2 AspectKE* Syntax - 2 . 80

6.3 Program Analysis Predicates and Functions 83

7.1 Instructions Used in Process . 114

7.2 Program Facts of clientsendmsg 123

8.1 Benchmark Results of Chat System (msec.) 130

Listings

2.1 Bank Transfer Function . 10

2.2 Bank Transfer Function with Other Concerns 10

2.3 Logging Aspect in AspectJ . 12

2.4 Security Aspect in AspectJ . 12

6.1 Hello World Main Program . 81

6.2 Hello World Aspect . 84

6.3 Node Client1 . 88

6.4 Process clientlogin . 88

6.5 Process clientsendmsg . 89

6.6 Aspect for Ensuring the Correct Origin 89

6.7 Aspect for Protecting Chat Information 90

6.8 Aspect for Protecting Password 92

7.1 Tuple and Pattern-Matching (in AspectKlava) 103

7.2 Part of the Net for Chat Application (in AspectKlava) 105

7.3 Node ServerAlice (in AspectKlava) 105

xviii LISTINGS

7.4 Node Client1 (in AspectKlava) 106

7.5 Process clientsendmsg (in AspectKlava) 107

7.6 Data Type Declaration in Aspect (in AspectKlava) 109

7.7 Aspect for Protecting Chat Information (in AspectKlava) 111

7.8 Bytecode Instructions of Process clientsendmsg 113

8.1 Process eavesdropper . 128

8.2 Chat Server and Client (Simplified Version) 132

8.3 Aspect for Policy 2 in SCoPE . 133

Chapter 1

Introduction

Ensuring Security in Distributed Systems. In modern society, ensuring
security of IT systems, especially for a distributed system, is challenging. This
is because in such a system, trusted components have to work with untrusted
components. For example, while a user of a chat system trusts the programs
running at the service provider’s computers, he or she might want to run a
client program developed by an untrusted third-party. In such a case, we need
to ensure that the untrusted third-party program does not perform malicious
operations. For another example, in an electronic health record (EHR) work-
flow system, while we allow users to define and perform workflow processes on
patients’ medical records, we must ensure the user-defined processes, which can
not be fully trusted, do not illegally access and/or use the patients’ private sen-
sitive information intentionally or unintentionally. This dissertation will tackle
the issue of enforcing challenge security policies to such untrusted, distributed
and mobile systems.

Coordination models and languages such as tuple space systems [Gel85,FAH99]
provide a very elegant and simple way of building distributed systems. The
core characteristics of a tuple space system is the shared network-based space
(tuple space) that serves as both data (tuple) storage and data exchange area.
Its simple yet expressive distributed primitives can easily operate on these data
through the shared space. As the tuple space systems have simple yet powerful
language features for building distributed and collaborative applications, we
choose it to illustrate our security solutions for distributed systems.

2 Introduction

Separating Security Concerns from Main Logic. Although there is broad
agreement that security and other non-functional properties should be designed
and integrated into IT systems from the beginning, it is also recognized that,
as society becomes more IT-savvy, our expectations about security and privacy
evolve continuously. This is usually followed by changes in regulation in the
form of standards and legislation. On the other hand, the functional aspects of
IT systems change evolve as well, which requires security and privacy concerns
to be able to easily adapted and enforced to evolving systems.

Following the good software engineering practice that one can only obtain ade-
quate security if it is catered in the original design of system rather than being
added as an afterthought, we would still agree that security should feature in
the initial design of a system. However, we shall also argue that there is merit
in separating out security and other non-functional properties so that they can
be updated without disturbing the functional aspects of the system. One objec-
tive of this dissertation is to explore the principles behind separating security
concerns out of the functional aspects of a distributed system with appropriate
language support, so that the security concerns could be easily added to existing
programs at various development phases, e.g, from the beginning, or after the
system has been fully developed and deployed.

The traditional approach to enforcing security policies is to use a reference mon-
itor [Gol99] that dynamically tracks the execution of the program. It makes
appropriate checks on each basic operation being performed, either blocking the
operation or allowing it to proceed. In concrete systems this is implemented as
part of the operating system or as part of the interpreter for the language at
hand (e.g. the Java byte code interpreter); in both cases as part of the trusted
computing base. Sometimes it is found to be more cost effective to systemati-
cally modify the code so as to explicitly perform the checks that the reference
monitor would have imposed [ES00]. In any case, even small modification in
the security policies may involve substantial changes in the code for checks and
the underlying system.

The aspect-oriented programming [KHH+01,KLM+97] is an interesting approach
to separate concerns. This technology enables us to program non-functional con-
cerns in the so-called aspect program, which could then be merged into the main
program and enforce the properties defined by the aspect program. Security is
an obvious candidate for such non-functional concerns, because e.g., the secu-
rity policy can be implemented by more skilled or more trusted programmers,
or indeed because security considerations can be retrofitted by (re)defining the
aspect to suit the (new) security policies. The detailed definition of the aspects
will then make decisions about how to possibly modify the operation being
trapped. This calls for a modified language (like AspectJ [KHH+01] for Java)
that supports the use of aspects and incorporates a notion of trapping oper-

3

ations and applying advice. It is possible to systematically modify the code
so as to explicitly perform the operations that the advice would have imposed
(e.g. [KHH+01]).

In many cases the aspect-oriented approach provides a more flexible way for
dealing with modifications in security policies [Dan07,GDY+04,GRF02,PS08,
WJP02] than the use of reference monitors. It facilitates to develop frameworks
for enforcing security policies that may be well suited to the task at hand but
that are perhaps not of general applicability and therefore not appropriate for
incorporating into a reference monitor. In this dissertation, we take the aspect-
oriented approach as the basic policy enforcement mechanism, and our focus
is to explore and improve the type of security policies that can be naturally
expressed in aspects.

Enforcing Explicit Information Flow Policies. There exists a variety of
security policies proposed and used in modern IT systems. When inspecting
them from the data-usage point of view and taking EHR system as an example,
many security policies regulate the primary use of data (patient data collected
for use in direct health care service), but there is a trend for the secondary use
of data (re-use existing data for new purposes like public health care research,
commercial activities) and thus a number of policies are proposed for regulating
their usage [And00,Can02,SBH+07]. The latter is more challenging as we need
to explicitly address issues of data access and information (data) flow, possibly
throughout the entire data life cycle, which is hard to deal with by traditional
access control methods. Therefore the enforcement of policies that rely on ex-
plicit information (data) flow is one of the main themes in this dissertation.

One way of enforcing data-flow policies is the runtime monitoring approach.
Essentially, we keep track of execution state of each variable. Although the
data-flow information can be precisely recorded, this approach produces large
execution time overhead and lacks mechanisms to look into future events.

On the contrary, the static analysis approach is a collection of techniques that
can check a program before execution [NNH05]. They could simulate all execu-
tion paths of a program, including future events, and could make sufficiently pre-
cise safe-approximation of the properties of a program statically. Their innate
characteristics suggest they could obtain data-flow information of a program
earlier than the runtime monitoring approach, which sometimes is much more
preferable. After all, detecting and preventing the execution of malicious/unsafe
code in the first place can save potential cost of failure recovery. In this disser-
tation, we combine static analysis approaches and aspect-oriented programing
to enforce challenging data-flow security policies.

4 Introduction

1.1 Preliminary Summary

The main thesis of this dissertation is to show that

Aspect-oriented programming provides a flexible way of enforcing
security policies in distributed systems, more specifically, within the
tuple space paradigm. Static program analysis techniques can en-
hance the expressiveness of security aspects and elegantly support
the enforcement of security policies that rely on information flow.

For this purpose, we proceed by formally designing and practically implementing
an aspect-oriented programming language on top of the tuple space system,
where static program analysis components have been elegantly integrated. We
considered and applied our language to two application domains to show its
usefulness, which are studies about enforcing security policies on relatively a
large scale application such as an EHR workflow system, and on a lightweight
application such as a distributed chat system.

More concretely, first we design a core process calculus AspectKE based on
KLAIM [DFP98], which is equipped with formal syntax and semantics so as to
clarify the essential idea of our approach. We choose an EHR workflow appli-
cation as a running example to illustrate the design features of the AspectKE
programming model. Second, we discuss the aspect-oriented tuple space pro-
gramming model in a more general setting, by presenting the design of another
process calculus AspectK and the concept of open joinpoint. Third, we extend
AspectKE into a more practical prototype language AspectKE*, developed an
efficient runtime system AspectKlava, and demonstrate the usefulness and prac-
ticality of the theoretical model developed in the first part. A distributed chat
system is mainly used to illustrate the practical work.

Though AspectKE, AspectK and AspectKE* are based on KLAIM, the tech-
niques developed in this dissertation can also be applied to other distributed
frameworks, especially those based on process calculi. We believe it is useful
for monitoring, analyzing and controlling the behavior of the mobile processes,
under a distributed AOP execution environment.

1.2 Dissertation Outline

This dissertation consists of, apart from the introduction, eight chapters.

Chapter 2 presents the general research background behind our language design.

1.2 Dissertation Outline 5

In particular, the coordination language KLAIM [DFP98] is presented and cho-
sen as the basis for our work, because of its favorable features for implementing
mobile and distributed systems.

Chapter 3 starts to present the formal syntax and semantics of the process
calculus AspectKE, an aspect-oriented extension of KLAIM. This chapter only
focuses on the basic features of this language, while more advanced features
are presented in Chapter 4. Here we show how aspects can trap the actions of
KLAIM, how the language is useful for enforcing a number of classical access
control models, and how multiple security policies can be integrated into existing
systems thereby allowing policies to be refined at a later stage. The enforcement
of primary use of data policies are demonstrated in this chapter.

Chapter 4 continues Chapter 3 by presenting the advanced features of AspectKE.
Here we show how aspects can trap processes of KLAIM and exploit the ability
to analyze the behavior of remotely executed processes as well as the future
use of data in the current process. The enforcement of secondary use of data
policies and predictive access control policies are discussed in this chapter.

Chapter 5 presents an extension to the basic part of AspectKE, namely AspectK.
This chapter also discusses other possible aspect-oriented extensions of the tuple
space system and argues that open joinpoints commonly exist in coordination
languages.

Chapter 6 and the following chapters present the practical work based on the
AspectKE model. This chapter describes the language design of the AspectKE*
programming language, which particularly features high-level program analysis
predicates and functions that can provide information on future behavior of a
program. Moreover it builds a secure distributed chat system with the proposed
language constructs.

Chapter 7 presents the runtime system that supports the realization of the
AspectKE* language. It discusses the efficient two-staged implementation strat-
egy, the dual value evaluation mechanism, the design and use of the AspectKlava
runtime Java package, and how static analysis - interprocedural data-flow anala-
ysis - is performed and integrated into the aspects.

Chapter 8 demonstrates the usability of AspectKE*, and assesses the expressive-
ness and performance of this language through case studies and benchmarking.

Chapter 9 re-states the major contributions of this dissertation and outlines
directions of future work.

6 Introduction

Chapter 2

Setting the Scene

In this chapter, we will present background material for better understanding
this dissertation.

Section 2.1 introduces the research background together with related work,
which covers work in different research domains that our dissertation draws on,
including static program analysis, aspect-oriented programming for enforcing
security policies, process calculi, security of coordination languages and tuple
spaces. Some of this work directly inspires our work. Related work that is not
suitable to discuss here but also relevant for our work is discussed at suitable
places in the subsequent chapters.

Section 2.2 formally presents KLAIM [DFP98], a process calculus for model-
ing distributed tuple spaces with process mobility. A running example in the
electronic health care setting is also demonstrated. KLAIM provides the basic
building blocks for our language, as AspectKE, AspectK and AspectKE* are all
essentially the designs and implementations of a aspect-oriented KLAIM model.

8 Setting the Scene

2.1 Research Background and Related Work

2.1.1 Static Program Analysis

Static program analysis is performed without actually executing programs, and
in most cases is performed on source code or object code. It can predict safe
and computable approximations to the set of values or behaviors generated dy-
namically when executing a program [NNH05]. Examples include to compute
where values originate from and might flow to, what possible values that expres-
sions might be evaluated to, what values might reach a certain program point
of interest, etc.

Traditionally, static program analysis is used to optimize code [ASU86]. A
growing number of static analyses have been used in the verification of properties
for safety-critical software as well as discovery of bugs in potentially vulnerable
code, e.g, [BBC+06].

The analysis provides approximate properties of the programs being analyzed,
which are usually divided into three classes according to their analysis nature:

• Over-approximation captures the entire behavior of a program. It esti-
mates the program behaviors that may happen along all the execution
paths

• Under-approximation captures a subset of all possible behaviors of a pro-
gram. It estimates the program behavior that must happen along all
execution paths

• Undecidable-approximation can’t decide whether the approximation be-
haviors belong to the program or not. Its result usually can not give
meaningful information.

The nature of the properties determine the type of analysis technique that will
be adopted, in order to get a satisfactory analysis result. In this dissertation
we use the over-approximation analysis to ensure the capturing of all behaviors
(intended and malicious) that may occur in a program.

It is important that the program analysis should be semantics based, which
means that the information obtained from the analysis can be proved to be safe
(or correct) with respect to the semantics of a programming language.

There are various types of analysis techniques for answering analysis questions
on programs with different language constructs, such as Data Flow Analysis,
Control Flow Analysis, Abstract Interpretation and Type systems [NNH05].

2.1 Research Background and Related Work 9

Recently, Flow Logic [NN02] has been proposed which bridges the gap between
these approaches and can cope with a wide variety of programming languages
as well as process calculi.

Model checking [BK08] is complementary to static analysis techniques. For a
given a model, it can test whether this model meets certain specifications by
performing exhaustive exploration of the possible states in a system. It is a
powerful technique for precise verification of software and hardware, but suffers
the so-called state explosion problem, and becomes intractable for program with
large state spaces and undecidable for infinite ones. The problem can however
be addressed by using abstraction techniques.

In this dissertation, we use static analysis to find potentially malicious code,
and restrict ourselves to Data Flow Analysis, an analysis technique for collecting
data-flow information of variables in a program. In Chapter 4, we propose a
simple form of data-flow analysis, named behavior analysis, to illustrate the
essential idea of integrating static analysis into aspect-oriented process calculus
AspectKE. Chapter 7 gives a more elaborated illustration of the actual data-
flow analysis developed on Java bytecode, which is used for implementing our
experimental programming language AspectKE*.

2.1.2 Policy Enforcement Mechanisms

In this subsection, we relate our work to the state of the art techniques for policy
enforcement. In particular, we outline existing aspect-oriented programming
techniques for providing data-flow and control-flow information, and highlight
our research directions.

2.1.2.1 Inlined Reference Monitors

Various techniques for enforcing security policies exist, and the most traditional
one is a reference monitor that observes software execution and mediates dynam-
ically all access to objects by subjects (introduced in [A+72]). Instead of mixing
monitoring code in target system, Inlined Reference Monitors (IRMs) [ES00]
use a load-time, trusted program rewriter to insert security code into a tar-
get application, bringing in a self-monitor application which performs security
checks when it executes. There are many IRM systems implemented by various
program rewriters (e.g. [UES00,ET99,BLW05,Ham06]), ensuring that different
applications obey their corresponding security policies.

10 Setting the Scene

2.1.2.2 Aspect-oriented Programming

Independently, the aspect-oriented programming (AOP) paradigm [KHH+01]
emerged and acted as another effective mechanism for tackling the same issue.
The main aim of AOP is to address so-called crosscutting concerns that exists in
traditional programming models like object-oriented programming or procedural
programming. Crosscutting concerns are parts of a program which rely on or
must affect many other parts of the system, which often cannot be cleanly
decomposed from the rest of system, and can result in either scattering, i.e., code
duplication, and/or tangling, i.e., significant dependencies between systems.

For example, Listing 2.1 shows a very simple method for transferring an amount
from one account to another in a banking application.

1 vo i d t r a n s f e r (Account from , Account to , i n t amount){
2 i f (from . ge tBa l ance () < amount) {
3 System . e r r . p r i n t l n (" I n s u f f i c i e n t Funds ") ;
4 } e l s e {
5 from . withdraw (amount) ;
6 to . d e p o s i t (amount) ;
7 }
8 }

Listing 2.1: Bank Transfer Function

However, this method overlooks certain concerns that a practical application
would require. For example, it lacks mechanism to check whether the current
user has the permission to perform this operation, and it does not contain
any logging facilities to generate system log for diagnostics purpose. Listing
2.2 shows one example to address these concerns in traditional programming
approach, where Lines 2-4 implement the logging facility and Lines 5-6 address
the security concern.

1 vo i d t r a n s f e r (Account from , Account to , i n t amount){
2 Logger l o g g e r = new Logger () ;
3 l o g g e r . i n f o (" T r a n s f e r r i n g " + amount + " from "
4 +from . u s e r + " to " +to . u s e r) ;
5 i f (! c h e ckUse rPe rm i s s i on (t h i s . use r , from)){
6 System . e r r . p r i n t l n (t h i s . u s e r + " has no p e rm i s s i o n ") ;
7 } e l s e {
8 i f (from . ge tBa l ance () < amount) {
9 System . e r r . p r i n t l n (" I n s u f f i c i e n t Funds ") ;
10 } e l s e {
11 from . withdraw (amount) ;
12 to . d e p o s i t (amount) ;
13 }
14 }

2.1 Research Background and Related Work 11

15 }

Listing 2.2: Bank Transfer Function with Other Concerns

As Figure 2.1 illustrated, these extra concerns not only tangle with basic transfer
functionality as shown in Listing 2.2, but might also scatter across numerous
other methods. Improper handling of these (crosscutting) concerns leads to loss
of modularity and thus decreases the comprehensibility and maintainability of
software systems.

Transfer Money Pay Bill . . .

Code scattering

Code
tangling

Figure 2.1: Code Scattering and Tangling

Indeed security (and logging) is naturally identified as one kind of crosscutting
concern that aspect-oriented programming was designed to deal with. Instead
of using a rewriter to inject monitoring code as in IRM approach, security
policies are directly encapsulated in aspects which are automatically invoked
when the target program executes certain actions. The most popular AOP
language AspectJ [KHH+01] uses the pointcut and advice model, where the
join points are points in a program where additional or alternative behavior
can be introduced, through a weaving procedure, by advice with a pointcut that
specifies join points of the program. The language developed in this dissertation
also adopts this model.

Listings 2.3 and 2.4 present a logging aspect and a security aspect in AspectJ.
They can be weaved into Listing 2.1 to achieve the same functionalities as Listing
2.2 does. Both aspects contain: 1.pointcuts (Lines 3-5 in Listing 2.3, and Lines
2-5 in Listing 2.4) that specify when and where to insert additional behaviors -
in this case when invoking the transfer function; 2.advices (Lines 6-10 in Listing
2.3 present before advice, which shall be executed before the execution of transfer
function; Lines 6-13 in Listing 2.4 present around advice, which takes over the
execution of original transfer function. Notice proceed statement at Line 11
returns back to the execution of original transfer function.) This dissertation

12 Setting the Scene

will not present syntax of AspectJ in details, but rather introduce the core
concepts of AOP.

1 a sp e c t Logg ing {
2 Logger l o g g e r = new Logger () ;
3 po i n t c u t t r a n s (Account from , Account to , i n t amount) :
4 c a l l (v o i d Bank . t r a n s f e r (Account , Account , i n t))
5 && arg s (from , to , amount) ;
6 b e f o r e (Account from , Account to , i n t amount) :
7 t r a n s (from , to , amount){
8 l o g g e r . i n f o (" T r a n s f e r r i n g " + amount + " from "
9 +from . u s e r + " to " +to . u s e r) ;
10 }
11 }

Listing 2.3: Logging Aspect in AspectJ

1 a sp e c t S e c u r i t y {
2 po i n t c u t t r a n s (Bank bank , Account from , Account to , i n t amount) :
3 c a l l (v o i d Bank . t r a n s f e r (Account , Account , i n t))
4 && arg s (from , to , amount)
5 && t a r g e t (bank) ;
6 vo i d around (Bank bank , Account from , Account to , i n t amount) :
7 t r a n s (bank , from , to , amount){
8 i f (! Bank . che ckUse rPe rm i s s i on (bank . use r , from)){
9 System . e r r . p r i n t l n (bank . u s e r + " has no p e rm i s s i o n ") ;
10 } e l s e {
11 proceed (bank , from , to , amount) ;
12 }
13 }
14 }

Listing 2.4: Security Aspect in AspectJ

Compared with Figure 2.1, Figure 2.2 shows that aspect oriented programming
can improve modularity of a program by implementing crosscutting concerns as
aspects.

2.1.2.3 IRM, AOP and Static Analysis

There is a close connection between AOP and IRM. Hamlen and Jones [HJ08]
propose an aspect-oriented security policy specification language SPoX that is
enforced by IRMs, which establish a formal connection between AOP and IRMs.
JavaMOP [Che05] implements IRM using AspectJ aspects as the instrumenta-
tion mechanism. Our work takes the AOP approach to internalize the reference

2.1 Research Background and Related Work 13

Transfer Money Pay Bill . . .

Security
Aspect

Logging
Aspect

. . .

Figure 2.2: Improve Modularity with AOP

monitor for enforcing security policies to tuple space systems, and directly en-
codes security concerns inside aspects.

Most researches focus on the class of security policies that can be enforced by
monitoring execution of a target system [Sch00]. Some research efforts are taken
towards enforcing more demanding policies that cannot be easily enforced alone
by using the monitoring based approach, but require combination of other tech-
niques, for example, static analysis. Jif [MZZ+01] extends Java with a security-
typed system, which supports not only access control but also information flow
control. In [SMH01], the authors outline several promising methods such as
IRM, type systems and certifying compilers, for enforcing more demanding se-
curity policies and also argue that synergies among these approaches will achieve
remarkable results. We consider our approach – aspect-oriented programming
with data-flow analysis – is a comparable research direction to IRM with type
systems, for enforcing challenging security policies. In addition, our approach
potentially has better modularity for defining security policies.

2.1.2.4 Data-flow and Control-flow in AOP Languages

Much work has been done in aspect-oriented programming communities, that
provides various language constructs and techniques for identifying the data flow
and control flow between join points. Those language constructs can serve as
powerful policy enforcement mechanisms. AspectJ’s cflow [KHH+01] captures
the control flow between join points. dflow pointcut [MK03] identifies join points
based on the data-flow information. Tracematches [AAC+05] gives advice based
on the execution history of computation. However, these systems can only refer
to the past and current events.

14 Setting the Scene

A few AOP languages propose mechanisms to trigger aspects by future control
flow of a program, e.g, pcflow [Kic03] and transcut [SMH09]. However, they
lack support for providing data-flow information in the future. Some advanced
AOP languages (e.g., [AM07, CN04]) offer methods for referring to future be-
havior of a program in aspects, which in theory can be used to specify security
policies depending on future control flow and data flow. However, they usually
lack formal semantics and offer only access to low level (e.g., bytecode-level)
information of a program, which makes it hard to understand and to develop
appropriate underlying analyses for enforcing security policies. As they lack
high level abstraction for presenting analysis results, it is not trivial to use the
results for composing security policies.

In this dissertation, the formal semantics of a process calculus AspectKE (pre-
sented in Chapter 3 and 4) clarifies how to develop useful behavior (program)
analyses to obtain future data flow of a program. AspectKE presents the anal-
ysis results through appropriate language abstraction, and formally paves the
way for integrating program analysis techniques into policy specification and en-
forcement procedure. Chapters 6, 7 and 8 describe our experiences of building
the practical prototype language AspectKE* with static analysis components
included.

2.1.3 Security with Aspect-Oriented Programming

There are many papers that explore AOP techniques to enforce security policies.

One line of work directly or indirectly uses the popular Java-based general
purpose AOP languages like AspectJ [KHH+01], Hyper/J [OT00], CaesarJ
[AGMO06], to express and enforce security policies.

Some have reported their experiences of using the above languages for enforcing
access control policies. For example, In [WVD01] the authors present general
guidelines for how to compose access control aspects in AspectJ. In [VPDW+05]
an enforcement of application-specific policies in an access control service is im-
plemented in CaesarJ. Some explore the expressivity of these AOP languages re-
garding security policies. For example, Phung and Sands [PS08] identify classes
of reference monitor-style policies that can be defined and enforced by AspectJ.
They also present a method to realize some history-dependent security policies
which cannot be naturally expressed in AspectJ. Some use these languages to im-
plement classical security models. For example, Ramachandran et al. [RPW06]
discusses using AspectJ for implementing multilevel security and demonstrate
how aspects, in comparison with traditional programming, can guarantee better
security assurance.

2.1 Research Background and Related Work 15

Some have indirectly used these languages: they first define their policies using
certain policy languages with formal specification, and then translate or map
them into the concrete aspects of AOP languages,instead of directly coding the
policies into the aspects. Oliveira et al. [dOWKK07] use their own rewrite-based
system to express access control policies and map them into an AspectJ pro-
gram. In [CCBR06], availability requirements are expressed in a formal model
that combines deontic and temporal logics, and then translated into availability
aspects in AspectJ. One common advantage of these approaches is that policies
can be formalized through security oriented languages that are naturally more
suitable for security considerations than other general purpose languages. An-
other advantage is that some policy languages have formal semantics that enable
formal verifications. Our language is designed with security in mind and has
a formal semantics (AspectKE) which enables us to reason about the defined
policies when needed.

Even though these well-known AOP languages have industrial strength and can
be readily used for policy enforcement mechanisms, they have their limitations;
it is quite difficult to apply these AOP languages to the types of systems we
have been studying. For example, the languages are designed for programs
that run on a local machine. And they do not natively support pointcuts for a
distributed system. They also lack a pointcut mechanism to capture the future
execution of a program, and thus are unable to enforce predictive access control
policies – policies that rely on the future behavior of a program. All the above
issues are explicitly addressed by our work. In particular, to the best of our
knowledge few, if any, proposals have ever reported how to use aspect-oriented
programming techniques to enforce secondary use of data policies, which is
becoming increasingly important in large IT systems, and provide a predictive
access control policy enforcement mechanism.

Some researchers design their own special purpose aspect languages or systems
to study security enforcement mechanisms. For example, HarmlessAML [Dan07]
is an aspect-oriented extension of the functional language Standard ML, and has
a type system that guarantees well-typed harmless advice does not interfere with
mainline logic computation. Our work has a different research focus on enforcing
access control policies to a distributed computing model and on studying how
properties obtained from behavior analyses can be used to specify access control
policies. As mentioned earlier, in [MK03] the dataflow pointcut is proposed
which can specify where aspects should be applied based on the origins of values
in the past execution, and it is useful in situation where flow of information is
important. Our work tackles the similar issue, but checks the flow of information
in the future, which is particularly useful to enforce predictive access control
policies.

16 Setting the Scene

2.1.4 Process Calculi

Process Calculus (or process algebra) is a formal approach to describe and model
concurrent systems. It is a useful tool for succinctly describing interactions,
communications, and synchronizations between independent processes.

A system represented with process calculi normally consists of several processes,
which are recursively defined by one or more syntactic categories (including
itself). These processes are essentially defined by operators working on basic
primitives of a process, e.g, actions or events.

The semantics of the process calculi describe how a system, represented in a pro-
cess calculus, may evolve. A common way of describing its semantics is through
Structural Operational Semantics(SOS) [Plo81], which defines the behavior of a
program in terms of transition relations. In this way one can easily consider the
system defined by process calculi as a well-specified transition system. Other
approaches such as denotational semantics and axiomatic semantics [NN07],
primarily used in programming languages, can also specify the meaning of a
process calculus. In this dissertation, we take the SOS approach to present the
meaning of our calculi.

2.1.4.1 Process Calculi with Process Communication and Mobility

Classical process calculi such as CSP [Hoa78], CCS [Mil82] focus on describing
synchronous communication among different processes. For example, CCS in-
cludes operators for describing parallel composition (P |Q, which allows compu-
tation in processes P and Q to proceed simultaneously), choice between actions
(P +Q, either proceed with P or Q) and process handshaking (when processes
c.P and c̄.Q executed in parallel, they can synchronize their execution on com-
munication channel c, when the handshaking succeeds they continue as P and
Q).

The π-calculus [MPW92], developed from CCS, is the most influential calculus
for mobile processes. It could naturally express processes that have changing
structure. In π-calculus, the name is the central notation which can represent
both communication channels and variables. The communication is performed
by input prefixing c(x).P (a process waiting for a message to be sent by channel
c, and bound with variable x) and output prefixing c̄〈y〉.Q (a process sending a
name y on channel c). Note that the communication can only occur if both sides
of the channel are ready to execute. When c(x).P is executed in parallel with
c̄〈y〉.Q, name y will be delivered through the channel to the receiving process,
and variable x inside P will be bound with y. The process P can then use y as a
channel name and, if other processes are blocked and waiting for communication

2.1 Research Background and Related Work 17

on that channel, it could trigger execution of other processes in parallel.

The KLAIM process calculus introduced below is influenced by these process
calculi.

2.1.4.2 Process Calculi and Programming Languages

Calculi (or also Process Calculi) are high-level abstractions of computing models.
They are often used to formally describe and clarify the essential features behind
various practical programming language designs. Just as λ-calculus [Bar84] is
a useful model to study theory of functional programming languages, and typed
λ-calculus [Bar92] inspired the development of typed programming languages
(such as ML or Java), etc, process calculi can formally express the core idea of
a computing model, explore its properties of the concurrent computing model,
and inspire the development of practical system.

Here we mention examples merely in the coordination language domain: Linda
[Gel85] inspires the design of practical tuple space system JavaSpace [FAH99],
and KLAIM [DFP98] is the model of X-KLAIM [BDNFP98] programming lan-
guage (realized tuple space system with process mobility). We will introduce
these in details below.

Again in this dissertation, we first introduce process calculus AspectKE and
formally present our computing model. Then we develop the practical program-
ming language AspectKE* based on the formal model.

2.1.5 Coordination Languages and Tuple Spaces

2.1.5.1 Tuple Space Languages

Coordination languages allow two or more parties to communicate via coordi-
nating operations to accomplish shared goals in a network.

Linda [Gel85] was the first coordination language that is based on a shared
global environment tuple space. Coordinating activities among several paral-
lel processes are performed by basic asynchronous communication primitives.
A tuple space is a repository of tuples that can be concurrently accessed by
processes using the provided four basic primitives. These primitives enable a
process to write and retrieve (through out,read/in actions) data to and from a
tuple space based on pattern-matching, and to create a process for execution
(through the eval action). Linda implementations can be found in programming
languages such as Prolog, Ruby, Java or Lisp. The Java implementations of

18 Setting the Scene

Linda includes IBM’s TSpaces [LCX+01] and Sun’s JavaSpaces [FAH99].

KLAIM [DFP98] is tuple space based process calculi for programming dis-
tributed tuple space system that supports process mobility. It uses classical
primitives from CCS and π-calculus, and additionally, integrates the primitives
from classical tuple space languages such as Linda. A KLAIM program con-
tains multiple shared tuple spaces distributed over a network, instead of a single
globally shared tuple space like in Linda. Consequently, node is an important
concept in KLAIM, which serves as an abstraction of host computer which is
connected to the network that accommodates processes and a tuple space. Be-
sides the standard actions to access tuples, a KLAIM process can create new
processes on a local or remote node (through the eval action), and create a new
remote node (through the newloc action). We will formally present KLAIM in
Section 2.2, and use it to introduce our aspect-oriented version of KLAIM in
the subsequent chapters.

KLAIM has later evolved to the KLAIM family (reviewed in [BBD+03]), includ-
ing cKlaim, OpenKlaim, HotKlaim, OKlaim and X-Klaim etc. The prototype
language of KLAIM is X-Klaim [BDNFP98], whose runtime system depends on
Klava [BDP02]. Klava is implemented in Java and has proved to be suitable
for programming many distributed applications involving code mobility. Our
AspectKE* prototype language is built on top of it.

2.1.5.2 Security in Tuple Space Languages

Generally, secure shared tuple-space coordination languages can be classified
into two categories in terms of the underlying access control mechanisms [FLZ06].
The entity-driven approach (additional information, associated to resources such
as tuple spaces, tuples and single data fields, list the entities which are allowed
to access the resources) e.g., Secure Lime [HR03] and KLAIM [DFP98]; and the
knowledge-driven approach (both resources and processes are decorated with
relevant additional information, and the processes can only access resources if
they prove to keep those relevant additional information) e.g., SecOS [VBO03]
and SecSpaces [GLZ06]. Our language is suitable for expressing access con-
trol policies that fit both an entity-driven approach and a knowledge-driven
approach, as the additional information is essentially expressed in aspects and
is not embedded in resources or processes. Moreover, this additional informa-
tion is not limited to the past and current facts used in previous work, e.g.,
password [HR03], locks [VBO03] or partitions [GLZ06], but also facts about the
future, e.g., how particular data will be used.

Regarding policy enforcement to KLAIM based languages, some authors use
control and data-flow analyses that are written in Flow Logic approach (e.g. [HPN06,

2.2 KLAIM 19

N ∈ Net N ::= N1 || N2 | l :: P | l :: 〈
−→
l 〉

P ∈ Proc P ::= P1 | P2 |
∑
i ai.Pi | ∗P

a ∈ Act a ::= out(
−→
`)@` | in(

−→
`λ)@` | read(

−→
`λ)@` | eval(P)@` | newloc(!u)

c ∈ Cap c ::= out | in | read | eval | newloc

`, `λ ∈ Loc ` ::= u | l `λ ::= ` | !u

Table 2.1: KLAIM Syntax – Nets, Processes and Actions

HNNP08]). Others use type systems (e.g. [DFP00,DFPV00]), and [DGH+08]
combine these two lines of work. They can be used to enforce very advanced
security policies, however, all of them require users to explicitly annotate poli-
cies in the main code (e.g. attach policies to each location). Our approach,
however, avoids this by specifying policies inside the aspects, thus achieving a
better separation of concerns.

2.2 KLAIM

AspectKE, AspectK, and AspectKE* are essentially all extensions of the KLAIM
(Kernel Language for Agents Interaction and Mobility) coordination language
[DFP98] with support for aspect-oriented programming. In this section we will
review the fragments of KLAIM used in the following chapters.

KLAIM is a language specifically designed to program distributed systems with
mobile components that interact with each other on multiple distributed tuple
spaces (databases). KLAIM uses a Linda-like generative communication model.
However, instead of a global shared tuple space (shared database), KLAIM
associates each node with a local tuple space. Each node can also have processes
associated with it. The KLAIM computing primitives allow programmers to
distribute and retrieve data and processes to and from locations (nodes) of a
net, evaluate processes at remote locations and introduce new locations to the
net.

2.2.1 Syntax of KLAIM

The syntax of a KLAIM fragment is displayed in Table 2.1.

A net (in Net) is a parallel composition of located processes and/or located

20 Setting the Scene

tuples. For simplicity, components of tuples can be location constants only1.
Nets must be closed : all variables must be in the scope of a defining occurrence
(indicated by an exclamation mark).

A process (in Proc) can be a parallel composition of processes, a guarded sum of
action prefixed processes, or a replicated process (indicated by the ∗ operator).
We write 0 for a nullary sum, a.P for a unary sum, and a1.P1 + a2.P2 for a
binary sum.

An action (in Act) operates on locations, tuples and processes. A tuple can be
output to, input from (read and delete the source) and read from (read and keep
the source) a location. Processes can be spawned at a location. New locations
can also be created. The actual operation performed by an action is called a
capability (in Cap) – this is a key concept when formalizing uses of data in later
chapters. We do not distinguish real locations and data: all of them are called
locations (in Loc) in our setting, which can be location constants l, defining
(i.e. binding) occurrences of location variables !u (where the scope is the entire
process to the right of the occurrence), and use of location variables u.

Well-Formedness of Locations and Actions To express the well-formedness
conditions we introduce the functions bv and fv for calculating the bound and
free variables of the various kinds of locations that may occur in actions. The
definitions are standard, in particular, bv(l, u, !v) = {v} and fv(l, u, !v) = {u}.
In later chapters we will also make use of another function, lc, to extract the
location constants appearing in an action.

An input action (and a read action) is well-formed if its sequence
−→
`λ = `1, · · · , `k

(for k ≥ 0) of locations is well-formed. This is the case when the following two
conditions are fulfilled:

∀i, j ∈ {1, · · · , k} : i 6= j ⇒ bv(`λi) ∩ bv(`λj) = ∅ and
bv(
−→
`λ) ∩ fv(

−→
`λ) = ∅

The first condition demands that we do not use multiple defining occurrences
of the same variable in an action. The second condition requires that bound
variables and free variables cannot share the same name in a single action. Thus
we disallow in(!u, !u)@l as well as in(!u, u)@l.

We do not impose further restrictions on the syntax of output action, the process
evaluation action and the location creation action.

1Compared with the original KLAIM, we do not allow processes to be components of tuples.

2.2 KLAIM 21

l :: (P1 | P2) ≡ (l :: P1) || (l :: P2) l :: (∗P) ≡ l :: (P | ∗P)

N1 ≡ N2

N || N1 ≡ N || N2

Table 2.2: KLAIM Structural Congruence

2.2.2 Semantics of KLAIM

Informally the meaning of a KLAIM program is as follows:

1. a node is selected for the next step of execution

2. if the process at the node is a choice, then one of the enabled choices is
chosen non-deterministically and executed as described in the following
four steps

3. if the prefix of the process is an output action, the output is performed

4. if the prefix of the process is an input (either destructive or non-destructive),
the input action is enabled if there is a matching tuple at the target loca-
tion, and the input is performed and appropriate variables are bound in
the remainder of the process

5. if the prefix is an eval, the process is spawned at the target location

6. if the prefix is a newloc, the network is dynamically extended with a new
location and the continuation process is given the address of that location

7. then return to Step 1

Notice that we do not need to deal with parallelism and replication within nodes
because, at the cost of having duplicate addresses in the network, these can be
lifted to the net level.

More formally, the semantics is given by an one-step reduction relation on nets
and is defined in Table 2.3. We make use of a structural congruence on nets;
this is an associative and commutative (with respect to ||) equivalence relation
and the interesting cases are defined in Table 2.2. The semantics also assumes
that all location constants referred in a Klaim program do exist, and a static
check is performed before execution to guarantee this property. Notice this is
a slightly simplified way to formulate the semantics rules originally presented
at [DFP98], where it differentiates real sites from logical locations and will check

22 Setting the Scene

ls :: (out(
−→
l)@l0.P + · · ·)→ ls :: P || l0 :: 〈

−→
l 〉

ls :: (in(
−→
`λ)@l0.P + · · ·) || l0 :: 〈

−→
l 〉 → ls :: Pθ if match(

−→
`λ;
−→
l) = θ

ls :: (read(
−→
`λ)@l0.P + · · ·) || l0 :: 〈

−→
l 〉 → ls :: Pθ || l0 :: 〈

−→
l 〉 if match(

−→
`λ;
−→
l) = θ

ls :: (eval(P ′)@l0.P + · · ·)→ ls :: P || l0 :: P ′

ls :: (newloc(!u).P + · · ·)→ ls :: P [l′/u] || l′ :: 0 with l′ fresh

N1 → N ′1

N1 || N2 → N ′1 || N2

N ≡ N ′ N ′ → N ′′ N ′′ ≡ N ′′′

N → N ′′′

Table 2.3: KLAIM Reaction Semantics (on closed nets)

match(!u,
−→
`λ ; l,

−→
l) = [l/u] ◦match(

−→
`λ ;
−→
l) match(ε ; ε) = id

match(l,
−→
`λ ; l,

−→
l) = match(

−→
`λ ;
−→
l) match(. ; .) = fail otherwise

Table 2.4: Matching Input Patterns to Data

dynamically whether a logical location (refereed in a Klaim program) associates
with an existing site.

The rule for out is rather straightforward; it uses the fact that the action selected
may be part of a guarded sum to dispense with any other alternatives. The rules
for in and read only progress if the formal parameters

−→
`λ match the candidate

tuple
−→
l . The details of the matching operation are given in Table 2.4 (explained

below). If the matching succeeds and produces a substitution then the rule
applies; if no substitution is produced (due to a fail in part of the computation)
then the rule does not apply. The rule for eval will spawn a new process at
a specified location before continuing with the following process P . The rule
for newloc will create a fresh empty location and substitute it for u in the
continuation process P .

The matching operation of Table 2.4 returns a substitution θ being a (potentially
empty) list of pairs of the form [l/u]; if the list is empty, it is denoted by id.
Notice that the definition does not apply to location variables because tuples in
the tuple space may only contain location constants and the reaction semantics
is restricted to closed nets.

2.2 KLAIM 23

2.2.3 Running Example

Health Care Information Systems are gradually becoming prevalent and indis-
pensable to our society. An electronic health record (EHR), part of a system’s
database, stores a patient’s data and is created, developed, and maintained by
the health care providers.

To illustrate the use of KLAIM, we now introduce a typical EHR system, which
is inspired by [EB04], and the scenario presented here is used throughout the
dissertation.

The EHR database (EHDB) stores all patient healthcare records and we assume
that there are two types of data for each patient: medical records (Medical-
Record) and private notes (PrivateNote). Medical records are entries created
by doctors and so are the private notes. However, the latter are of a more
confidential nature. Also we distinguish between past records (Past) that have
been entered into the EHR system previously and recent records (Recent) that
have been created since the patient was admitted to the hospital. We therefore
assume that the EHR database contains tuples with the following five fields:

patient The name of the patient
recordtype The type of record: MedicalRecord or PrivateNote
author The author of the record
createdtime The time of creation of the record: Recent or Past
subject The record’s content

For example 〈Alice,MedicalRecord,DrSmith,Recent, text〉 is a recent medical record
of Alice, created by DrSmith and it has content text.

Doctors and nurses, as well as the patient, can access a patient’s record. We
model these actors as locations in a network. The process at the location repre-
sents the actions of an individual and the data is the individual’s local “knowl-
edge”. As an example, the following process expresses that DrSmith reads one of
the Past medical records for Alice created by DrHansen before she was admitted
to this hospital, writes some of the information in her own note (in location
DrSmith) and then creates a new medical record for the patient:

DrSmith :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.
out(Alice, content)@DrSmith.
out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB

Here DrSmith will first consult location EHDB and read a five-tuple whose first
four components are Alice,MedicalRecord,DrHansen, and Past respectively and
the corresponding fifth component is assigned to variable content. The second
action will write the content read at the first action to the location associated
with DrSmith. The final construct will write a new five-tuple to location EHDB

24 Setting the Scene

for this patient whose last three components indicate that the author is DrSmith,
it is a Recent medical record and the content is newtext.

To illustrate the semantics of KLAIM let us consider the following net, consisting
of locations EHDB and DrSmith:

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.

out(Alice, content)@DrSmith.
out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB

The execution may proceed as follows:

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.

out(Alice, content)@DrSmith.
out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB

→
EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉

|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: out(Alice, alicetext)@DrSmith.

out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB
→

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: 〈Alice, alicetext〉
|| DrSmith :: out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB
→

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Alice,MedicalRecord,DrSmith,Recent, newtext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: 〈Alice, alicetext〉

DrSmith first reads the tuple 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉 from
EHDB; the binding of the variable content is reflected in the continuation of the
process. In the second step DrSmith outputs a tuple that consists of Alice to-
gether with a bound content (alicetext) to her own tuple space. In the final step,
a new tuple that represents a new medical record is written to location EHDB.

2.3 Concluding Remarks

Our research work does not happen in a vacuum. This chapter presented the
essential research background and related work that our research directly builds
upon, and some of this work challenges and inspires our research. We also

2.3 Concluding Remarks 25

presented the KLAIM process calculus, from which we designed AspectKE,
AspectK and AspectKE*. They will be discussed in the following chapters.

26 Setting the Scene

Chapter 3

AspectKE: Trapping Actions

In this Chapter, we show how to integrate aspects into KLAIM by presenting the
basic features of AspectKE (Section 3.1 and 3.2), particularly on how aspects
trap actions (except the eval action) in a KLAIM program. We leave the
advanced features of AspectKE, i.e., how aspects trap processes of a KLAIM
program, to Chapter 4. In the last section of this chapter (Section 3.3), we
explore the expressiveness of the introduced language constructs by enforcing
various classical access control models (mandatory access control, discretionary
access control and role based access control) and advice for retrofitting policies
to an evolving system. This is introduced by the electronic health care setting
introduced in previous chapter, Section 2.2.3.

In AspectKE, we consider a global set of aspects. The base semantics is that
of KLAIM (Section 2.2). However, before performing any action, we check first
if any aspect applies to the action and combine the advice of all applicable
aspects before executing it (all actions in a KLAIM program are potential join
points). An advice is either that the action be allowed to proceed or not. We
resolve possible conflicts by ensuring that any aspect that disallows an action
has priority. In the formal semantics, aspects are applied in definition order but,
because aspects can only allow or disallow the join point to proceed, the order
is actually immaterial.

28 AspectKE: Trapping Actions

S ∈ System S ::= let −→asp in N

asp ∈ Asp asp ::= A[cut] , body
body ∈ Advice body ::= case (cond) sbody ; body | sbody

sbody ::= break | proceed

cut ∈ Cut cut ::= ` :: ca

ca ∈ CAct ca ::= out(
−→
`t)@` | in(

−→
`λt)@` | read(

−→
`λt)@` | newloc()

cond ∈ BExp cond ::= `1 = `2 | cond1 ∧ cond2 | cond1 ∨ cond2 | ¬ cond
| test(

−→
`t)@` | ∃u ∈ set : cond | ∀u ∈ set : cond

set ∈ Set set ::= {`} | set ∩ set | set ∪ set
`t, `

λ
t ∈ Loc `t ::= ` | `λt ::= `λ |

Table 3.1: AspectKE Syntax - Aspects for Trapping Actions

3.1 Syntax

The Syntax of AspectKE is given by Tables 3.1 and 2.1 (the KLAIM syntax).

Table 3.1 introduces a system S (in System) that consists of a net N and
a sequence of global aspect declarations −→asp. An aspect declaration (in Asp)
takes the form A[cut] , body: A is the aspect name, and body (inAdvice) is the
advice to the trapped action. Each action (the Act in Table 2.1) is a potential
join point that can be intercepted by AspectKE’s pointcut (in Cut).

Moreover, is introduced as a don’t-care parameter in the cut version of actions,
and in the test primitive of conditional expressions (BExp). It can match any
type of location used in the program. Note in the cut, the occurrence of !u
and u have different meanings from those of KLAIM, which do not respectively
represent defining occurrences of location variable and use of location variable.
Rather they bind different type of locations in the join point. The exact meaning
of , !u and u mentioned above will be clarified when we explain the semantics
of the language.

Each aspect gives a unique run-time suggestion (either break or proceed)
which may depend on the evaluation of a conditional expression. The sugges-
tion break suppresses the trapped action whilst proceed allows the trapped
action to be executed. In case that multiple aspects trap an action, break
takes precedence over proceed. The primitive test(

−→
`t)@` evaluates to tt if a

tuple exists in the tuple space of ` which matches
−→
`t . Besides basic boolean

expressions, condition cond also includes bounded existential quantification and

3.2 Semantics 29

universal quantification – this allows simple queries to the databases occurring
in the nets.

In contrast to other aspect languages, the condition is part of the advice instead
of being part of the pointcut (being evaluated before intercepting a join point).
Evaluating the condition after intercepting a join point allows a more natural
modelling of security policies.

Well-formedness of Cuts We define cl(cut) as the list of location entities
(constants as well as variables) involved in a cut. For example:

cl(ls :: in(!x, y)@l0) = 〈ls, x, y, l0〉

In addition to the well-formedness conditions for KLAIM, we require that the
variables of cl(cut) are pairwise distinct. We shall also impose that aspects are
closed : any free variable in the body is defined in the cut. Additionally, when
!u is used in a cut pattern, no use of u will be allowed inside tests.

Example 3.1 To illustrate how aspects can be composed in AspectKE that
work with the KLAIM program, this example shows a simple aspect that gives
advice to the running example in Section 2.2.3.

Aout1 [user :: out(, data)@DrSmith]

, case(data = alicetext)
break;

proceed

The exact meaning of this aspect is clarified in the semantics subsection, but the
basic function is: trap an out action of processes running at location DrSmith
that attempt to send a tuple with two fields. If the actual value of the second
field is equal to alicetext, the aspect will break the execution of the action and
its continuation process. Otherwise, the action continues. 2

3.2 Semantics

The semantics is given by a one-step reduction relation on well-formed systems,
nets and actions. As before, we make use of the structural congruence on nets
which is defined in Table 2.2. In addition, we also re-use the operation match
in Table 2.4, for matching input patterns to actual data.

The reaction rules are defined in Table 3.2, where −→asp is a global environment
of aspects. The rules for systems and nets are straightforward. We discuss the
rules for actions: they all make use of the function Φ for determining whether or

30 AspectKE: Trapping Actions

−→asp ` N → −→asp ` N ′

let −→asp in N → let −→asp in N ′

−→asp ` N1 → −→asp ` N ′1
−→asp ` N1 || N2 → −→asp ` N ′1 || N2

N ≡M −→asp `M → −→asp `M ′ M ′ ≡ N ′
−→asp ` N → −→asp ` N ′

−→asp ` ls :: (out(
−→
l)@l0.P + · · ·)

→

{ −→asp ` ls :: P || l0 :: 〈
−→
l 〉 if Φ

−−→asp(ls :: out(
−→
l)@l0.P)

−→asp ` ls :: 0 if ¬Φ
−−→asp(ls :: out(

−→
l)@l0.P)

−→asp ` ls :: (in(
−→
`λ)@l0.P + · · ·) || l0 :: 〈

−→
l 〉

→

−→asp ` ls :: Pθ if Φ

−−→asp(ls :: in(
−→
`λ)@l0.P)

∧ match(
−→
`λ;
−→
l) = θ

−→asp ` ls :: 0 || l0 :: 〈
−→
l 〉 if ¬Φ

−−→asp(ls :: in(
−→
`λ)@l0.P)

−→asp ` ls :: (read(
−→
`λ)@l0.P + · · ·) || l0 :: 〈

−→
l 〉

→

−→asp ` ls :: Pθ || l0 :: 〈

−→
l 〉 if Φ

−−→asp(ls :: read(
−→
`λ)@l0.P)

∧ match(
−→
`λ;
−→
l) = θ

−→asp ` ls :: 0 || l0 :: 〈
−→
l 〉 if ¬Φ

−−→asp(ls :: read(
−→
`λ)@l0.P)

−→asp ` ls :: (newloc(!u).P + · · ·)

→

−→asp ` ls :: P [l′/u] || l′ :: 0 with l′ fresh

if Φ
−−→asp(ls :: newloc(!u).P)

−→asp ` ls :: 0 if ¬Φ
−−→asp(ls :: newloc(!u).P)

Table 3.2: Reaction Semantics of AspectKE (on closed nets)

3.2 Semantics 31

ΦA[cut],body,−−→asp(l :: a.P) = case check(extract(cut) ; extract(l :: a)) of
fail : Φ

−−→asp(l :: a.P)

θ : (proceed = [[body θ]]) ∧ Φ
−−→asp(l :: a.P)

Φε(l :: a.P) = tt

Table 3.3: Trapping Aspects in AspectKE

check(α,−→α ; α′,
−→
α′) = do(α;α′) ◦ check(−→α ;

−→
α′)

check(ε ; ε) = id
check(. ; .) = fail otherwise

do(u ; l) = [l/u]
do(!u ; !u′) = [u′/u]
do(; l) = id
do(; !u) = id
do(l ; l) = id
do(c ; c) = id
do(. ; .) = fail otherwise

Table 3.4: Checking Formals against Actuals

not all applicable aspects allow the action to proceed (in this case it evaluates
to tt) or whether at least one aspect requires the action to break (in this case it
evaluates to ff). Note that we have omitted eval from AspectKE at this point,
it will be re-introduced in Chapter 4. Subject to the definition of Φ the rules
and axioms should be straightforward: if Φ returns tt then the action will be
executed; otherwise it and its continuation will be replaced with the 0 process
and execution of this thread terminates. As in KLAIM, out simply puts tuple−→
l into location l0 and continues with the continuation process P ; in and read
only progress if the formal parameters

−→
`λ match

−→
l , and this operation is defined

in Table 2.4. The newloc action creates a fresh empty location.

The function Φ is defined in Table 3.3 and makes use of three auxiliary functions.
The function check, defined in Table 3.4, checks the applicability of each aspect
in the aspect environment, and produces the corresponding bindings of actual
parameters of actions to the formal parameters of advice. The auxiliary function
do matches parameters of the pointcut against parameters of the join point;
notice that a plain variable in a pointcut can only match an actual location and
banged (!) variables in the pointcut can only match against binding occurrences
of variables, while the don’t-care () can match both in the join point. The
last case of function do expresses that the function will return fail for all other
combinations. For example, the attempt to match a banged variable !u in the
pointcut to an actual location l from the join point will return fail.

The function extract facilitates the checking process by producing a list of

32 AspectKE: Trapping Actions

names: the location where the trapped action occurs; the capability (out, in,
read or newloc); the parameters of the action; the target location of the action.
As an example,

extract(l :: out(`1, · · · , `n)@`′) = (l,out, `1, · · · , `n, `′)

The evaluation of function check relies on the evaluation of several invocations of
do that try to match every parameter in the pointcut against the corresponding
parameter in the join point. If at least one mismatch occurs, check will return
fail, which means that this aspect will not apply to the action and we shall
evaluate the next aspect against this action; otherwise, it returns a substitution,
θ, which is applied to the advice (body θ) and we check whether the semantics of
the advice is proceed, and continue searching through the remaining aspects,
taking the conjunction of all results. In this way break takes precedence over
proceed. The function [[]] evaluates its parameter (a case statement) in the
expected way. One might wonder whether the parameter (body θ) might contain
free variables since θ may map a variable to a variable; however, the well-
formedness of cuts guarantees that this does not happen since all aspects are
closed. One may also note that the order in which the aspects are listed in −→asp
does not matter.

Another option for defining the semantics of newloc action is:

let −→asp in ls :: (newloc(!u, asp).P + ...) || N

→

let −→asp, (asp[l′/u]) in ls :: P [l′/u] || l′ :: 0 || N with l′ fresh

if Φ
−−→asp(ls :: newloc(!u).P)

let −→asp in ls :: 0 || N if ¬Φ
−−→asp(ls :: newloc(!u).P)

In this approach, we can also introduce a new aspect asp to the current global
aspect environment. The variable u of the new aspect can be instantiated with
the new location l′. However, this approach violates the oblivious spirit [FF05]
of aspect-oriented programming: when programming the basic functionality,
users should not consider defining aspects at the same time.

Example 3.2 Suppose we have a system that contains the same net as in
running example of Section 2.2.3 and aspect Aout1 in Example 3.1:

let

Aout1 [user :: out(, data)@DrSmith]

, case(data = alicetext)
break;

proceed

in

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.

out(Alice, content)@DrSmith.
out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB

3.3 Advice for Access Control Models 33

and some steps of execution (omitting the aspect definition):

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.

out(Alice, content)@DrSmith.
out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB

→
EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉

|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: out(Alice, alicetext)@DrSmith.

out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB
→

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: 0

Aspect Aout1 does not trap the read action, thus the read action executes and
binds content with alicetext. But Aout1 traps the first out action, and the result
substitution is

[DrSmith/user, alicetext/data]

and the case condition data = alicetext evaluates to tt, thus the aspect breaks
the execution of this action and its continuation process. 2

3.3 Advice for Access Control Models

To evaluate the expressiveness of the language and show its language features,
we now demonstrate how AspectKE can be used to enforce access control policies
by utilizing three well-known access control models, namely discretionary access
control (Section 3.3.1), mandatory access control (Section 3.3.2) and role-based
access control (Section 3.3.3), and how AspectKE can introduce new aspects for
retrofitting new policies to existing systems (Section 3.3.4).

Since patient confidentiality is an important issue in the health care industry
it is imperative that EHRs are protected [Win05]. To help achieve this goal,
governments define many types of security policies, encapsulated in various acts
and guides (e.g. [Dep03a, Dep03b]). Throughout the paper, we will enforce
several security policies for the EHR system that was introduced in Section
2.2.3 and this shows different features of the language.

The first is a primary use of data policy inspired by [EB04] which regulates the
basic access control concerning the read and write rights owned by doctors and
nurses:

34 AspectKE: Trapping Actions

Doctors can read all patients’ medical records and private notes,
while nurses can read all patients’ medical records but cannot read
any private notes. Medical records and private notes can only be
created by doctors.

For simplicity, here we restrict ourselves to only focussing on read, in and out
actions, while eval and newloc actions will be discussed further in Chapter 4
when enforcing other security policies.

3.3.1 Discretionary Access Control

We will show how to enforce the above policy with discretionary access control
(DAC), which is a type of access control as a means of restricting access to
objects based on the identity of subjects and/or the groups to which they be-
long [QZW+85]. We do so by using an access control matrix containing triples
(s, o, c), identifying which subjects s can perform which operations c on which
objects o. If we use the KLAIM programming model, we should equip the se-
mantics of KLAIM with a reference monitor that consults the access control
matrix when an action is executed, to check if the action is permitted. In
AspectKE we can directly use aspects to elegantly inline the reference monitor
to enforce this discretionary access control policy.

Example 3.3 The access control matrix is stored in location DAC, which
contains tuples: 〈user, recordtype, capability〉. For example, if DrSmith is a
doctor and NsOlsen is a nurse, then DAC might contain the following tuples:

〈DrSmith,MedicalRecord, read〉
〈DrSmith,PrivateNote, read〉
〈DrSmith,MedicalRecord, out〉
〈DrSmith,PrivateNote, out〉
〈NsOlsen,MedicalRecord, read〉

We also assume that the location DAC can only be modified by privileged users,
thus doctors and nurses cannot perform any in and out action on it. This can
be enforced by other aspects but we omit them here.

3.3 Advice for Access Control Models 35

The following aspect declarations will impose the desired requirements.

Areadp1A1
[user :: read(, recordtype, , ,)@EHDB]

, case(test(user, recordtype, read)@DAC)
proceed;

break

Ainp1A2 [user :: in(, recordtype, , ,)@EHDB]

, case(test(user, recordtype, in)@DAC)
proceed;

break
Aoutp1A3

[user :: out(, recordtype, , ,)@EHDB]

, case(test(user, recordtype, out)@DAC)
proceed;

break

Aspects Areadp1A1
, Ainp1A2 , and Aoutp1A3

enforce the above policy by using DAC, where
the access rights for each user are described. Note that the second field of the
tuple operated by these cut actions is recordtype, which trap an action that
clearly specifies a concrete record type.

Consider the following KLAIM program that is a variant of the running example
in Section 2.2.3 (in that the user is nurse NsOlsen instead of doctor DrSmith)
and is equipped with the above four aspects:

NsOlsen :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.
out(Alice, content)@NsOlsen.
out(Alice,MedicalRecord,NsOlsen,Recent, newtext)@EHDB

The first read action will be trapped by aspect Areadp1A1
, and the resulting substi-

tution is
[NsOlsen/user,MedicalRecord/recordtype]

and the condition test(NsOlsen, MedicalRecord, read)@DAC is evaluated. Since
NsOlsen has the appropriate right according to DAC we proceed and perform
this read action thereby giving rise to the binding of content to alicetext.

The second action will not be trapped by any of the aspects, so it will simply
be performed and the tuple 〈Alice, alicetext〉 is output to location NsOlsen.

The last action will be trapped by aspect Aoutp1A3
and after the substitution we

evaluate the condition test(NsOlsen, MedicalRecord, out)@DAC which is evalu-
ated to ff and thus we break the execution.

However, the KLAIM program can also execute read or in actions without
specifying the record type, e.g., using !recordtype instead of recordtype, users
can thus get a record as follows:

NsOlsen :: read(Alice, !recordtype,DrHansen,Past, !content)@EHDB

36 AspectKE: Trapping Actions

where a successful input action can retrieve any type of EHR record.

None of the above aspects can trap these input actions, thus we have to enforce
additional aspects so that the above input actions will not bypass our aspects
and consequently break the policy. The simple aspects forbid any attempts to
read or in (read and then remove) EHR records without specifying the record
type:

Areadp1A4
[user :: read(, !recordtype, , ,)@EHDB]

, break
Ainp1A5 [user :: in(, !recordtype, , ,)@EHDB]

, break

One may wonder why not build the above two aspects on top of aspects Areadp1A1

and Ainp1A2 by directly replacing recordtype with !recordtype in their pointcut,
respectively. The reason is that these aspects will not be well-formed: when
trapping actions, recordtype binds with a variable, which cannot be used in a
test condition such as test(user, recordtype, read)@DAC. 2

3.3.2 Mandatory Access Control

In this subsection we will show how to enforce the above policies by using manda-
tory access control (MAC), which is a means of restricting access to objects based
on the sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects [QZW+85].
Before enforcing the above policy, we first impose a comparable classical MAC
policy - the Bell-LaPadula security policy [Gol99] based on a mandatory access
control model. Later we enforce the above policy as a variant of the Bell-
LaPadula policy. In the presentation, security levels are assigned to subjects
(as clearances) and objects (as labels).

Example 3.4 In this scenario, we just need two security levels, and may
assign security levels to subjects as follows: doctors have level high and nurses
have level low; similarly we may assign objects as follows: private notes have
level high and medical records have level low.

To model this policy we need to introduce a location MAC that stores tuples
of the form: 〈user, securitylevel〉 and 〈recordtype, securitylevel〉. Continuing
Example 3.3, we create the location MAC with the tuples:

〈DrSmith, high〉
〈NsOlsen, low〉
〈PrivateNote, high〉
〈MedicalRecord, low〉

As before we also assume that the location MAC can only be modified by priv-
ileged users.

3.3 Advice for Access Control Models 37

Firstly, we enforce the Bell-LaPadula security policy [Gol99] to illustrate that
AspectKE can enforce a well-known mandatory access control policy. Then we
will enforce our example policy, with small modifications based on the aspects
that enforce Bell-LaPadula policy.

If we enforce the Bell-LaPadula security policy, the first part of the policy states
that a subject is allowed to read or input data from any object provided that the
subject’s security level dominates that of the object. In our case, this guarantees
no read up: that is, low subjects (nurses) cannot read high objects (private
notes) but can only read low objects (medical records); however, high subjects
(doctors) can access both kinds of records.

The no read up part of the policy can be enforced by aspects as follows:

Areadp1B1
[user :: read(, recordtype, , ,)@EHDB]

, case(¬(test(user, low)@MAC ∧ test(recordtype, high)@MAC))
proceed;

break

The second part of the policy (a simplified form of Bell-LaPadula star prop-
erty [Gol99]) states that a subject can write to any object provided that the
security level of the object dominates that of the subject (no write down). In
our case high subjects (doctors) cannot write low objects (medical records) but
low subjects (nurses) can write to both kinds of records.

The no write down of the policy can be enforced by the aspect below:

Aoutp1B2
[user :: out(, recordtype, , ,)@EHDB]

, case(¬(test(user, high)@MAC ∧ test(recordtype, low)@MAC))
proceed;

break

Additionally, we have an aspect for the read action to prevent users from reading
records without specifying the record type, and an aspect for the in action to
prevent users from reading and deleting records:

Areadp1B3
[user :: read(, !recordtype, , ,)@EHDB]

, break
Ainp1B4 [user :: in(, , , ,)@EHDB]

, break

These aspects correctly enforce our policy about reading patient records. How-
ever, the no write down policy is not quite right for our example, instead we
depart from the Bell-LaPadula policy and define:

Aoutp1B2′
[user :: out(, recordtype, , ,)@EHDB]

, case(test(user, high)@MAC)
proceed;

break

38 AspectKE: Trapping Actions

This aspect allows doctors to write any kind of record.

The aspect Aoutp1B2′
together with Areadp1B1

,Areadp1B3
,Ainp1B4 reflect a mandatory access

control model which satisfies our policy. In this case we only allow high users
(doctors) to write patient records. Hence nurse NsOlsen in Example 3.3 cannot
execute the third action as it will be blocked by Aoutp1B2′

, which however would be
allowed with Aoutp1B2

from the Bell-LaPadula security policy. 2

3.3.3 Role-Based Access Control

Role-based access control (RBAC) [SCFY96] is another access control mecha-
nism which allows central administration of security policies and is often more
flexible and elegant for modelling security policies. The simplest model in the
RBAC family is RBAC0, where there are three sets of entities called user, role,
and permission. A user can be assigned multiple roles (role assignment) and
a role can have multiple permissions (permission assignment) to corresponding
operations. In addition, the user can initiate a session during which the user
activates some subset of roles that he or she has been assigned. A user can exe-
cute an operation only if the user’s active roles have the permission to perform
that operation.

Example 3.5 To implement the security policy for patient records, we use
a model that does not differentiate a user’s assigned role and active role (we
assume that the assigned roles of all users are activated by default), so we only
need location RDB with tuples 〈user, role〉:

〈DrSmith,Doctor〉
〈NsOlsen,Nurse〉

For permission assignment we also need a location to describe each role’s per-
mission. This can be done by storing tuples 〈role, object, capability〉 at PDB:

〈Doctor,MedicalRecord, read〉
〈Doctor,PrivateNote, read〉
〈Doctor,MedicalRecord, out〉
〈Doctor,PrivateNote, out〉
〈Nurse,MedicalRecord, read〉

Once more we assume that the locations RDB and PDB can only be modified
by privileged users.

3.3 Advice for Access Control Models 39

The following aspects then implement the required policy:

Areadp1C1
[user :: read(, recordtype, , ,)@EHDB]

, case(∃role ∈ {Doctor,Nurse} :
(test(user, role)@RDB ∧ test(role, recordtype, read)@PDB))

proceed;
break

Ainp1C2 [user :: in(, recordtype, , ,)@EHDB]

, case(∃role ∈ {Doctor,Nurse} :
(test(user, role)@RDB ∧ test(role, recordtype, in)@PDB))

proceed;
break

Aoutp1C3
[user :: out(, recordtype, , ,)@EHDB]

, case(∃role ∈ {Doctor,Nurse} :
(test(user, role)@RDB ∧ test(role, recordtype, out)@PDB))

proceed;
break

These three aspects are useful for interrupting the execution when a user at-
tempts to operate on EHR records with a concrete record type, which essentially
relies on the tuples from RDB and PDB. They also show the benefit of admitting
quantifiers into the conditional expressions.

Similar to the previous subsections, we have to enforce additional aspects for
capturing user attempts to access EHR records without specifying the record
type.

Areadp1C4
[user :: read(, !recordtype, , ,)@EHDB]

, break
Ainp1C5 [user :: in(, !recordtype, , ,)@EHDB]

, break

In the following sections we will use the role-based access control mechanism
since it is best suited for enforcing security policies in a large organization. 2

3.3.4 Advice for Retrofitting Policies

Now we will show how aspects in AspectKE can retrofit new security policies
into an exiting system that is being developed/updated or has already been
deployed. Concretely, when a new functionality has been introduced to the
existing system we will show how we enforce new policies to cater for the new
requirements posed by the add-on functionality (Section 3.3.4.1); when a policy
has been proposed to refine existing policies, we will show how we enforce policies
based on the existing functionality of the system (Section 3.3.4.2); on the other
hand, sometimes additional functionality has to be introduced to the system to
implement aspects which refine existing policies (Section 3.3.4.3).

40 AspectKE: Trapping Actions

Indeed, the possibility to refine, renew and retrofit security policies into an
existing/evolving system is very important for IT systems. Taking the EHR
system as an example, as the public debate about security standards (especially
for privacy) evolves, governments have to modify the corresponding acts and
guides. As a consequence, the security policy for an EHR system will undergo
frequent change [BS04]. Moreover, the IT system itself will always be enhanced
by new functionalities, which means that new policies need to be enforced. The
National IT Strategy for the Danish Health Care Service states that “it is also
important to acknowledge the fact that IT is not just implemented once and for
all” [Nat03].

3.3.4.1 Enforcing Security Policy for New Functionality

AspectKE can be used for enforcing new security policies when a new function-
ality has been introduced at any phase of the system development. The running
example in Section 2.2.3 introduces a functionality of the EHR system as re-
gards to reading and writing from and to the EHR database (EHDB). Now we
introduce another (new) function to the EHR system that enables a manager
to add a patient, or delete information from the system.

In our programming model, each patient is represented by a location. A manager
can add a new patient to the system as follows:

MgDavis :: newloc(!patient).out(patient,Patient)@RDB

First a new location for the patient is created, then it is registered in the role
database RDB by the out action. To delete a user one can simply perform an
in action to the location RDB.

We shall now show how to enforce the following security policy regarding the
manager role at the hospital [EB04], for this new-added functionality.

In the hospital, only managers are allowed to add a user to, or delete
from the system.

3.3 Advice for Access Control Models 41

Example 3.6 The following aspects will enforce the above security policy.

Anewlocp2 [user :: newloc()]

, case(test(user,Manager)@RDB ∧ test(Manager, Location, newloc)@PDB)
proceed;

break
Aoutp2 [user :: out(,)@RDB]

, case(test(user,Manager)@RDB ∧ test(Manager,RDB, out)@PDB)
proceed;

break
Ainp2 [user :: in(,)@RDB]

, case(test(user,Manager)@RDB ∧ test(Manager,RDB, in)@PDB)
proceed;

break

These aspects are composed in a way that is similar to the Example 3.5. Before
using them we need to put the tuple 〈MgDavis,Manager〉 into RDB and the
tuples 〈Manager, Location, newloc〉, 〈Manager,RDB, out〉, and 〈Manager,RDB, in〉
into PDB. Finally, once again we assume that PDB can only be modified by
privileged users. 2

Example 3.6 shows that AspectKE can enforce a policy for new functionality
(code), no matter when this functionality is developed, potentially in the entire
life cycle of the EHR system. This is because the underlying aspect-oriented
mechanism allows new aspects to intercept all join points (including a join point
of new code) and give appropriate advice. Example 3.6 also shows how to
give advice on an action (newloc) that creates new node in a net. Note that
Examples 3.5 and 3.6 use the role-based access control model which shows that
the tuples introduced above at PDB are good at expressing permissions that
only directly rely on roles and objects. However, some permission assignments
are more complex and therefore we shall also use logical formulae to express
permission assignments in the following sections.

3.3.4.2 Refining Security Policy with Existing Functionality

AspectKE can be used to to refine an existing security policy at any phase of
the system development. The following is a policy which can be considered as
a refinement of the previous policy (enforced by Example 3.3-3.5) to protect
patients’ privacy. This policy is also inspired by [EB04]:

Private notes can only be viewed on the basis of the doctor-patient
confidentiality – doctors cannot view private notes that were not cre-
ated by themselves; nurses can only view recent medical records which
were created after the patient has been admitted.

42 AspectKE: Trapping Actions

Traditional programming paradigms normally necessitate modifying existing
code to enforce this extra policy, while the aspect approach simply requires
additional aspects.

Example 3.7 The first part of the policy can be expressed by the aspects
shown below. These two aspects will prevent a doctor from reading a private
note written by another doctor or reading a private note without clearly speci-
fying the author of the note.

Areadp31 [user :: read(,PrivateNote, author, ,)@EHDB]

, case(test(user,Doctor)@RDB ∧ (user = author))
proceed;

case(¬test(user,Doctor)@RDB)
proceed;

break

Areadp32 [user :: read(,PrivateNote, !author, ,)@EHDB]

, case(¬test(user,Doctor)@RDB)
proceed;

break

Note that the second case of Areadp31
and Areadp32

allow any users registered in RDB
except doctors to read a private note, which includes users taking roles as nurses.
Allowing nurses to read a private note is not problematic, as these two aspects
only reflect the intention of this policy. Preventing nurses to read a private note
is enforced in the previous policy.

These two aspects are supposed to work together with those aspects defined in
the Examples 3.3 to 3.5. For example if a nurse tries to read a private note, these
aspects will proceed the execution but aspects in Examples 3.3-3.5 will suggest
break. Another example is if a doctor tries to read a private note written by
other doctors, aspects in Examples 3.3-3.5 will allow the action to proceed
whilst these aspects will break the execution. Since break takes precedence
over proceed, the final decision suggested from this advice will be to block the
execution in both cases.

The second part of the policy says that nurses can only read recent medical
records which can be expressed by the following aspects where, once again, the
aspects should be considered in conjunction with those of Examples 3.3 to 3.5.
These two aspects will prevent a nurse from reading a past medical record or

3.3 Advice for Access Control Models 43

reading a medical record without specifying the created time.

Areadp33 [user :: read(,MedicalRecord, , createdtime,)@EHDB]

, case(test(user,Nurse)@RDB ∧ createdtime = Recent)
proceed;

case(¬test(user,Nurse)@RDB)
proceed;

break

Areadp34 [user :: read(,MedicalRecord, , !createdtime,)@EHDB]

, case(¬test(user,Nurse)@RDB)
proceed;

break

2

Note that no new functionality is required to enforce this policy, as these aspects
only rely on the existing program (i.e., node RDB).

3.3.4.3 Refining Security Policy with New Functionality

Sometimes refining an existing security policy is necessary. We have to introduce
additional functionality to support the implementation of the aspects for policy
refinement. Now we consider the following security policy that restricts certain
locations in the hospital from accessing to the database [Bez98]:

A nurse can only read medical records of the patients who are in the
wards located on the nurse’s working floor. Furthermore, the nurse
can only access medical records through the computers that are located
on that specific floor. But in the emergency room, a nurse does not
have this restriction.

Example 3.8 To express this policy as aspects we shall assume that the cur-
rent location database CLDB records every user’s current location information
(indicating that they are using computers at that location), and that the as-
signed location database ALDB stores every user’s assigned room (e.g. for nurses
this is their working floors and rooms which they are responsible for; for patients
this is the floors and wards that they are on). These two databases store tuples
with the same fields 〈user, floor, room〉 and can only be modified by privileged
users.

The set Floor contains the actual floors of the hospital (e.g. f1,f2). The set
Room contains the actual rooms of the hospital and includes two types of rooms:
ordinary wards (e.g. w1,w2) and the special room EmergencyRoom.

44 AspectKE: Trapping Actions

The appropriate advice can now be expressed as follows:

Areadp41 [user :: read(patient,MedicalRecord, , ,)@EHDB]

, case(test(user,Nurse)@RDB∧
∃floor ∈ Floor : test(user, floor,EmergencyRoom)@CLDB)

proceed;
case(test(user,Nurse)@RDB∧

∃floor ∈ Floor ∃room ∈ Room : (test(user, floor, room)@CLDB∧
test(user, floor, room)@ALDB∧
test(patient, floor, room)@ALDB))

proceed;
case(¬test(user,Nurse)@RDB)

proceed;
break

Areadp42 [user :: read(!patient,MedicalRecord, , ,)@EHDB]

, case(test(user,Nurse)@RDB∧
∃floor ∈ Floor : test(user, floor,EmergencyRoom)@CLDB)

proceed;
case(¬test(user,Nurse)@RDB)

proceed;
break

In Areadp41
, the first case caters for the situation where a nurse is working in the

emergency room; the second case allows the read action when a nurse is trying
to access the medical record for a patient who is on the same ward/floor as
where the nurse is currently at and assigned to work, the third case allows a
user who is not a nurse to perform the read action. The aspect Areadp42

is similar
to the aspect Areadp41

except that it does not contain the second case. This is
because reading a medical record without specifying the name of the patient is
not acceptable for a nurse who is not working in the emergency room.

As in Example 3.7, these aspects will work together with all previously in-
troduced security polices. Moreover, these aspects are both in the spirit of
role-based access control, and they demonstrate that when composing aspects
in AspectKE for larger and more complex security policies of an organization,
role-based access control can be very efficacious, as has already been observed
in the literature [SCFY96]. 2

Note new functionality has to be introduced to enforce this policy such as the
newly introduced nodes for databases (e.g., CLDB, ALDB). This new function-
ality can be developed as part of the main logic of the EHR system, or can be
merely developed and maintained to enforce security policies. We observe that
although we might need to extend the functionality of the system’s main logic
to enforce certain security policies, the policies themselves are still described in
aspects (even though they directly or indirectly rely on new nodes/processes),
which are still separated from the main logic.

3.4 Concluding Remarks 45

3.4 Concluding Remarks

In this chapter we presented basic features of AspectKE with formal semantics,
where aspects can trap KLAIM actions before they are actually performed.
We showed the usefulness of this language by enforcing various access control
models, namely mandatory access control, discretionary access control and role
based access control model, and by showing how aspects can retrofit policies into
existing systems. The policies presented in this chapter are primarily extracted
from a case study on building a secure electronic health care workflow system.

The language constructs presented here will be re-used in Chapter 4 when in-
troducing the advanced features of AspectKE, as well as in Chapter 5 when we
present AspectK.

46 AspectKE: Trapping Actions

Chapter 4
AspectKE: Trapping

Processes

Classical reference monitors have difficulties of enforcing security policies based
on the future behaviors of programs, rather they rely only on information gath-
ered by monitoring execution steps [Sch00], and perform history-based dynamic
checks. However, there are security policies that are concerned with information
flow and thus cannot be implemented correctly without a security check of the
overall behavior of the program.

For example, in a software system, remote evaluation involves the transmission
of programs from a client to a server for subsequent execution at the server.
However, as the programs transmitted might perform unintended operations at
the server side, a security check is usually needed. A typical example of this is
Java applets which can be transferred to a remote system and executed by the
Java Virtual Machine (JVM). Since the unknown applets are not always written
by trusted users, the JVM has certain mechanisms for ensuring that the applet
will not be able to do malicious actions, e.g., the bytecode verifier [Ler01] and
sandbox mechanism [Oak98].

As another example, in the EHR domain, rather than enforcing the primary use
of data policies for direct patient care as shown in the last chapter, there is a
trend to define and enforce secondary use of data policies. Here data is used
outside of direct health care delivery that includes activities such as analysis,
research, public health etc, even though it still lacks a robust infrastructure of

48 AspectKE: Trapping Processes

policies and is surrounded with complex ethical, political, technical and social
issues [SBH+07]. Compared with primary use of data, whose focus is on reg-
ulating “someone has some rights to access some data”, it focuses on defining
“how the data can be used after it is released to someone”. The enforcement of
such policies requires security checks in the form of inspection of the flow of
data.

In general, program analysis techniques concern computing reliable, approxi-
mate information about the dynamic behavior of programs [NNH05], and the
derivation of useful information by simulating execution of all possible paths
of the executing program. For example, type systems can be used to enforce
various kinds of information flow as well as access control security policies (like
Jif [MZZ+01] for Java).

In Section 4.1, we extend the AspectKE language presented in Chapter 3 so
that AspectKE is enabled to not only trap the action, but also trap a process
that is to be executed in the future. The process can be a process that is to
be sent to a remote site, or a process continuation of a trapped action. This
enables us to perform simple forms of program analyses, called behavior analysis,
that syntactically inspect the trapped processes, i.e., actions in a new thread
to be executed (at local/remote sites) or the remaining actions in the current
thread. In the following Section 4.2, we will show how to use simple behavior
analysis techniques to enforce various security policies that require checking of
the future behavior of a program, the so-called predictive access control policies,
and these techniques can detect and prevent execution of the potential malicious
operations at the earliest stage.

4.1 Extended Syntax and Semantics

cut ∈ Cut cut ::= · · · | ` :: ca.X

ca ∈ CAct ca ::= · · · | eval(X)@`

cond ∈ BExp cond ::= · · · | c ∈ set | ` ∈ set | set = ∅
set ∈ Set set ::= · · · | {c} | Act(X) | Locc(X) | FV(X) | FVc(X) | LC(X)

| LCc(X) | LVar∗

Table 4.1: AspectKE Syntax - Aspects for Trapping Processes

Table 4.1 shows the extended syntax of AspectKE. The cut version of action
(CAct) has been extended to include the eval action, whose parameter X is

4.1 Extended Syntax and Semantics 49

−→asp ` ls :: (eval(P ′)@l0.P + · · ·)

→

{ −→asp ` ls :: P || l0 :: P ′ if Φ
−−→asp(ls :: eval(P ′)@l0.P)

−→asp ` ls :: 0 if ¬Φ
−−→asp(ls :: eval(P ′)@l0.P)

Table 4.2: Reaction Semantics for action eval of AspectKE (on closed nets)

intended to bind its argument – the process P – in the ordinary action. Table
4.2 shows the semantics of the eval action. As was the case for the semantics
of the other actions in Table 3.2, execution depends on the results of evaluation
of the Φ function. When evaluated to tt, the eval action spawns a new process
at the specified location before continuing with the following process; otherwise
the action will be terminated and no process will be spawned.

The pointcut (Cut) in Table 3.1 has been extended with ` :: ca.X, which not
only binds the action, but also binds the program continuation after the trapped
action to a variable X.

We shall modify the Well-formedness of cut defined in Section 3.1 to support
the pointcut that captures the processes. First we slightly modify the cl(cut)
function so that it takes a process parameter.

cl(ls :: in(!x, y)@l0.X) = 〈ls, x, y, l0, X〉

Second we shall put a further restriction on the use of variables in cut. In
Section 3.1, the use of a location variable u is not allowed in tests if !u is used
in a pointcut, here we additionally impose that in tests the use of a location
variable shall not come from behavior analysis functions (that might return free
variables), to avoid using free variables in tests.

As process variables are also included in cl(cut), we need them to be pairwise
distinct. For example, in an eval pointcut

cl(ls :: eval(Y)@l0.X) = 〈ls, Y, l0, X〉

we require Y and X to be different, where Y binds a process to be evaluated as
a new thread, while X binds a process to be executed after the eval action in
the current thread.

The Φ function in Table 3.3 has to be replaced by that in Table 4.3, where it
uses an updated version of the function extract and also records the process
continuation:

extract(l :: out(`1, · · · , `n)@`′.P) = (l,out, `1, · · · , `n, `′, P)

50 AspectKE: Trapping Processes

ΦA[cut],body,−−→asp(l :: a.P) = case check(extract(cut) ; extract(l :: a.P)) of
fail : Φ

−−→asp(l :: a.P)

θ : (proceed = [[body θ]]) ∧ Φ
−−→asp(l :: a.P)

Φε(l :: a.P) = tt

Table 4.3: Trapping Aspects in AspectKE

The new version of extract will not directly effect the definition of check func-
tion, but we have to extend the do function defined in Table 3.4 to cope with
process continuation P and variable X that are introduced by the extract func-
tion.

do(X ; P) = [P/X]

Table 4.1 extends BExp and set in Table 3.1, which can be used for defin-
ing properties that require syntactic analysis of the processes to be executed
(usually the continuation of the trapped action bound by X). The set-forming
behavior analysis functions Act, Locc, LC, LCc,FV,FVc will be explained in the
following sections when needed, but we have collected their definitions in Table
4.4 where fv, bv, lc, cap and loc are the obvious extraction functions for free
variables, bound variables, location constants, capabilities and target locations,
respectively.

Note these functions expose different data-flow information of processes bound
by process variables, and can be used to enforce predictive access control policies,
namely access control policies that depend on the future behavior of a program.

Example 4.1 To illustrate how aspects in the extended AspectKE trap a
KLAIM program and extract its properties, the following aspect gives advice to
the running example in section 2.2.3.

Aread2 [user :: read(, , , ,)@DrSmith.X]

, case(out ∈ Act(X))
break;

proceed

This aspect traps a read action of processes running at location DrSmith, when
reading a tuple with five fields. The process continuation of the trapped action
will be recorded in variable X. Function Act returns all actions in processes
represented by X. If the actual process bound by X contains any out actions,
the aspect will break the execution of the action and its continuation process.
Otherwise, the action continues.

4.1 Extended Syntax and Semantics 51

Act(P1|P2) = Act(P1) ∪ Act(P2)
Act(Σiai.Pi) =

⋃
i({cap(ai)} ∪ Act(Pi))

Act(∗P) = Act(P)

Locc(P1|P2) = Locc(P1) ∪ Locc(P2)
Locc(Σiai.Pi) =

⋃
i({loc(ai) | cap(ai) = c} ∪ Locc(Pi))

Locc(∗P) = Locc(P)

LC(P1|P2) = LC(P1) ∪ LC(P2)
LC(Σiai.Pi) =

⋃
i(lc(ai) ∪ LC(Pi))

LC(∗P) = LC(P)

LCc(P1|P2) = LCc(P1) ∪ LCc(P2)
LCc(Σiai.Pi) =

⋃
i({lc(ai) | cap(ai) = c} ∪ LC(Pi))

LCc(∗P) = LCc(P)

FV(P1|P2) = FV(P1) ∪ FV(P2)
FV(Σiai.Pi) =

⋃
i(fv(ai) ∪ (FV(Pi) \ bv(ai)))

FV(∗P) = FV(P)

FVc(P1|P2) = FVc(P1) ∪ FVc(P2)
FVc(Σiai.Pi) =

⋃
i({fv(ai) | cap(ai) = c} ∪ (FVc(Pi) \ bv(ai)))

FVc(∗P) = FVc(P)

Table 4.4: Behavior Analysis Functions

52 AspectKE: Trapping Processes

Suppose we have a system that contains the same net as in running example of
Section 2.2.3 and aspect Aread2 :

let

Aread2 [user :: read(, , , ,)@DrSmith.X]

, case(out ∈ Act(X))
break;

proceed

in

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.

out(Alice, content)@DrSmith.
out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB

and some steps of execution (omitting the aspect definition):

EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉
|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: read(Alice,MedicalRecord,DrHansen,Past, !content)@EHDB.

out(Alice, content)@DrSmith.
out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB

→
EHDB :: 〈Alice,MedicalRecord,DrHansen,Past, alicetext〉

|| EHDB :: 〈Bob,PrivateNote,DrJensen,Recent, bobtext〉
|| DrSmith :: 0

Aspect Aread2 traps the read action, whose result substitution is

[DrSmith/user,
out(Alice, content)@DrSmith.out(Alice,MedicalRecord,DrSmith,Recent, newtext)@EHDB/X]

Here Act(P) ⊆ {out, in, read, eval,newloc} is the set of capabilities performed
by the process P (see Table 4.4). In this case, Act returns set {out}, the case
condition evaluates to tt, thus the aspect breaks the execution of this action
and its continuation process. 2

4.2 Advice for Data Usage

In this section, we now show how to use the extended AspectKE to enforce
security policies that require behavior analyses of processes to be executed in
future, and we clarify the meaning of set-forming behavior analysis functions
(from Set in Table 4.1 and 4.4) through examples – enforcing several predictive
access control EHR security polices to the target EHR system presented in
Section 2.2.3. In Section 4.2.1, we show how to enforce policies by utilizing the

4.2 Advice for Data Usage 53

set-forming functions that check properties of remotely evaluating processes. In
Section 4.2.2, we show how to enforce policies by checking properties of the
continuation process at the current thread.

4.2.1 Remote Evaluation

Using the action eval, AspectKE can easily express a process’s remote evalua-
tion. Moreover, using behavior analysis, AspectKE can check the content of the
transmitted process by composing various aspects that embody different secu-
rity considerations. This gives us a flexible way of controlling the use of remote
processes. We will enforce a security policy in a distributed mobile environment
that has to consider both direct and indirect access to tuple spaces, and in the
latter case AspectKE shows great usefulness.

Consider a policy concerning removal of data from the system [EB04]:

Doctors, nurses and patients are not allowed to delete records from
the database – only the administrator of the database can do that.

Thus, in terms of AspectKE, only the administrator is allowed to perform an
in action on the EHR database.

Example 4.2 In section 3.3.1-3.3.3, we introduced aspects for restricting the
in actions to access the EHR database when enforcing a basic access control
policy. Here we shall slightly update them to reflect the new policy. As we
prefer to use the role-based access control model, we show how to update the
relevant aspects in Section 3.3.3.

For aspect Areadp1C1
, we need to add role Administrator to role set, while updating

tuple spaces RDB with tuple 〈AdWalker,Administrator〉, and PDB with tuples
〈Administrator,MedicalRecord, in〉 and 〈Administrator,PrivateNote, in〉.

In aspect Ainp1C5 , we have forbidden all users to delete records from the EHR
database. Now we relax this requirement and replace it with the following
aspect.

Ainp5 [user :: in(, !recordtype, , ,)@EHDB]

, case(test(user,Administrator)@RDB
proceed;

break

This breaks direct attempts to perform in actions, only actions by the admin-
istrator are allowed.

This advice only deals with direct attempts to delete data; we also have to cater

54 AspectKE: Trapping Processes

for processes like

NsOlsen :: eval
(
in(patient, !recordtype, !author, !createdtime, !subject)@EHDB

)
@AdWalker

where anyone (e.g., NsOlsen) who spawns an arbitrary process on the adminis-
trator AdWalker’s node can behave as an administrator and delete the records.

This behavior can be captured by an aspect for eval actions that targets the
AdWalker location, without using any behavior analysis functions.

Aevalp5A
[user :: eval(Y)@AdWalker.X]

, case(test(user,Administrator)@RDB)
proceed;

break

However, this aspect is too restrictive as it disallows the possibility for other
users to perform well-behaved actions on behalf of an administrator (e.g., out,read
etc.).

Using behavior analysis functions, we are able to check the process in advance so
that less restrictive policies can be enforced. For example, the following aspect
prevents remotely spawned in actions on AdWalker, but allows other types of
action.

Aevalp5B
[user :: eval(Y)@AdWalker.X]

, case(test(user,Administrator)@RDB)
proceed;

case(test(user,)@RDB ∧ ¬(in ∈ Act(Y)))
proceed;

break

Here Act(P) is the set of capabilities performed by the process P (see Table 4.4).
It follows that any in actions within Y will be trapped. There is no restriction
for actions other than in actions, so remote code can still perform actions like
out and read.

We may want to be more liberal and allow in actions on locations distinct
from EHDB. To do so we introduce Locin(P) to be the set of locations `, where
in(· · ·)@` occur in P ; note that this set may include location constants as well
as location variables (see Table 4.4).

Rather than aspects Aevalp5A
and Aevalp5B

, we could use the aspect:

Aevalp5C
[user :: eval(Y)@AdWalker.X]

, case(test(user,Administrator)@RDB)
proceed;

case(test(user,)@RDB ∧ (LVar? ∪ {EHDB}) ∩ Locin(Y) = ∅)
proceed;

break

4.2 Advice for Data Usage 55

where LVar? is the set of all location variables in the program. This aspect
allows users to perform an in action on behalf of an administrator when the
target locations will never be EHDB, which is the least restrictive aspect for
enforcing the same policy. 2

Example 4.2 shows that whilst security policies may be very simple to enforce
superficially, execution of remotely spawned code might easily invalidate policies
which appear to be reasonable. Using aspects, we are able to elegantly update
the enforcement of the security policy to cater for this. Furthermore, the exam-
ples also illustrate AspectKE’s capability of checking the remote code before it
is executed, which gives the users greater flexibility to enforce a less restrictive
but more precise policy.

One might wonder whether combining the use of newloc and eval actions will
break the above security policies. Consider the following example:

NsOlsen :: newloc(!u).out(u,Administrator)@RDB.

eval
(
in(patient, !recordtype, !author, !createdtime, !subject)@EHDB

)
@u

Here NsOlsen tries to create a new location, register it to RDB, then execute the
in action from the new location. This attempt will not work: if policy Anewlocp2

and Aoutp2 from Example 3.6 are still enforced, NsOlsen is neither able to create
any new location nor update RDB since only a Manager can do that.

In fact, all aspects defined in this paper will directly break any action executed
at a location that has not been registered in RDB, and this includes all attempts
to use newloc and eval to bypass the security policies as shown above, because
only the manager can update RDB through aspects defined in Example 3.6.

4.2.2 Using Program Continuations

Now we show how AspectKE can trap the continuation process and use behavior
analysis functions to get the future behavior of the executing process, which
enables the advice to control and avoid executing the malicious processes as
early as possible.

As we have mentioned before, our society is moving in the direction of trying to
exploit patient healthcare records that already exist for new purposes (known as
secondary use of data). At the Canadian Institute of Health Research [Can02]
it is stated that “health research based on the secondary use of data contributes
to our present level of understanding of the causes, patterns of expression and
natural history of diseases.” This raises new challenges for developing an effec-
tive system to ensure people’s rights to privacy and confidentiality: decisions
concerning access control decisions are not only based on the right of access of

56 AspectKE: Trapping Processes

different principals but should also examine how the data is to be used after
access has been provided.

For example, researchers who are making secondary use of data should not be
able to access the identity of patients. Therefore we want to prevent them from
executing a process like

RsMiller :: read(patient, !recordtype, !author, !createdtime, !subject)@EHDB

which explicitly specifies the patient whose records the researcher is interested
in reading. We can easily compose aspects that forbid the researcher from
performing such actions (but allow nurses, doctors, etc . . .) that are similar to
those aspects that have been shown in Section 3.3.

In order for the researcher to blindly get a patient’s healthcare record, the
researcher may perform a process such as

RsMiller :: read(!patient, recordtype, !author, !createdtime, !subject)@EHDB

The difference between the read action in this program and those in the previous
examples is the use of ! in front of patient, i.e., the researcher does not specify
which patient’s healthcare record is to be read. However, after the researcher
has obtained the healthcare record, s/he can still use the patient’s identity. We
might want to prevent the researcher from executing a process like

RsMiller :: read(!patient,MedicalRecord, !author, !createdtime, !subject)@EHDB.
out(patient, subject)@Publication

(4.1)
whereas it would be acceptable to execute the process

RsMiller :: read(!patient,MedicalRecord, !author, !createdtime, !subject)@EHDB.
out(subject)@Publication

(4.2)
since the second program will not use the identity of the patient whose record
has been selected.

The following policy is extensively discussed and accepted around the world
and is specified directly or indirectly in a number of codes (e.g. [Dep03b,Can02,
Dan00,SBH+07]):

Researchers should not read and use the patient’s healthcare records
of an EHR system in a way that might potentially expose the identity
of the patient.

Example 4.3 The following aspects, which replace the aspects Areadp1C1
and

Areadp1C4
in Example 3.5, enforce this policy, which enforce both the basic access

control policies for doctors and nurses, and policies for the researchers regarding
their rights to read EHR records. It is necessary to revise the aspects because
our previous development was only for primary use of data.

4.2 Advice for Data Usage 57

Areadp61 [user :: read(patient, recordtype, , ,)@EHDB.X]

, case(∃role ∈ {Doctor,Nurse} :
(test(user, role)@RDB ∧ test(role, recordtype, read)@PDB))

proceed;
break

Areadp62 [user :: read(patient, !recordtype, , ,)@EHDB.X]

, break

Areadp63 [user :: read(!patient, recordtype, , ,)@EHDB.X]

, case(∃role ∈ {Doctor,Nurse} :
(test(user, role)@RDB ∧ test(role, recordtype, read)@PDB))

proceed;
case(test(user,Researcher)@RDB ∧ ¬(patient ∈ FV(X)))

proceed;
break

Areadp64 [user :: read(!patient, !recordtype, , ,)@EHDB.X]

, case(test(user,Researcher)@RDB ∧ ¬(patient ∈ FV(X)))
proceed;

break

Aspect Areadp1C1
is replaced by divided into aspects Areadp61

and Areadp63
, according

to whether a patient name is clearly specified or not. Similarly, Areadp1C4
is re-

placed/divided by aspects Areadp62
and Areadp64

. In both cases, additional conditions
regarding researchers are only added to aspects when a patient name is not spec-
ified, i.e., Areadp63

and Areadp64
. In these two aspects, the behavior analysis function

FV is used, which returns the set of free variables of P (see Table 4.4).

In our example the aspect Areadp63
will bind X with the out actions of the above

two programs: in program (4.1) with out(patient, subject)@Publication, and
in program (4.2) with out(subject)@Publication. Thus ¬(patient ∈ FV(X))
would be evaluated to ff for the first case and to tt for the second case. Using
this extra information from the behavior analysis function, the advice can be
based on some properties of the future execution of the continuation process (in
particular, whether or not patient will ever be used). And the suggestions from
aspect Areadp63

would be break for the first case and proceed for the second one.
Note at the point that the access control decision has been made, !patient in
the join point read action is still a defining occurrence variable and thus does
not bind with any actual location yet, and behavior analysis merely analyses
the future behavior of process based on its static information. 2

The above aspect is too restrictive since it forbids the execution of meaningful
read actions as well. As one of the case studies performed by the Canadian
Government [Can02] indicates:

58 AspectKE: Trapping Processes

In practice, the researchers might need to do some data linkage op-
erations between different databases.

For example, we may allow the researcher to extract several records for the
same patient from different databases and put that information together as in
the process

RsMiller :: read(!patient,MedicalRecord, !author, !createdtime, !subject1)@EHDB.
read(patient,MedicalRecord, !author, !createdtime, !subject2)@EHDB2.
out(subject1 , subject2)@Publication

(4.3)
where we introduce another EHR database EHDB2 that is located at another
hospital.

Now there are two databases so we need to consider which policies are suitable
for each of them, respectively. For illustration purposes, we might simply de-
mand that the second database has the same security policy as the original one.
Thus the second read action would be denied, since the original policy prohibits
a researcher from reading a specific patient’s healthcare record. Because of this,
establishing data linkage in the direct manner of program (4.3) will never work.

To make the data linkage work we can restrict the researcher’s access to the
data through a trusted location (EHDB for example) by remote evaluation, and
let the trusted location perform the actual data linkage actions. In this way
the policy will allow the second read action whenever it is executed from the
trusted location:

RsMiller :: eval
(
read(!patient,MedicalRecord, !author, !createdtime, !subject1)@EHDB.

read(patient,MedicalRecord, !author, !createdtime, !subject2)@EHDB2.
out(subject1 , subject2)@Publication)

@EHDB

(4.4)

Example 4.4 Revisiting the aspects Areadp61
–Areadp64

for the original database in
Example 4.3, we shall enable the trusted locations to read and perform data
linkage actions from the EHR databases. For simplicity, we assume that these
trusted locations are all EHR databases. Thus when a database performs data
linkage actions, the aspects should not disallow the use of patient in the second
read of program (4.4), but they should definitely prevent the out action with
patient as parameter, where we put the same restriction for the researchers. We
may replace the aspects Areadp61

–Areadp64
with the following aspects for enforcing

such a security policy for databases, as well as the policies for doctors, nurses,

4.2 Advice for Data Usage 59

researchers that we discussed in the previous examples:

Areadp71 [user :: read(patient, recordtype, , ,)@dest.X]

, case(test(dest,DataBase)@RDB ∧ ∃role ∈ {Doctor,Nurse} :
(test(user, role)@RDB ∧ test(role, recordtype, read)@PDB))

proceed;
case(test(dest,DataBase)@RDB∧

(test(user,DataBase)@RDB ∧ test(DataBase, recordtype, read)@PDB))
proceed;

case(¬test(dest,DataBase)@RDB)
proceed;

break

Areadp72 [user :: read(patient, !recordtype, , ,)@dest.X]

, case(test(dest,DataBase)@RDB∧
(test(user,DataBase)@RDB ∧ test(DataBase, recordtype, read)@PDB))

proceed;
case(¬test(dest,DataBase)@RDB)

proceed;
break

Areadp73 [user :: read(!patient, recordtype, , ,)@dest.X]

, case(test(dest,DataBase)@RDB ∧ ∃role ∈ {Doctor,Nurse} :
(test(user, role)@RDB ∧ test(role, recordtype, read)@PDB))

proceed;
case(test(dest,DataBase)@RDB∧

(test(user,DataBase)@RDB ∨ test(user,Researcher)@RDB)∧
¬(patient ∈ FVout(X)))

proceed;
case(¬test(dest,DataBase)@RDB)

proceed;
break

Areadp74 [user :: read(!patient, !recordtype, , ,)@dest.X]

, case(test(dest,DataBase)@RDB∧
(test(user,DataBase)@RDB ∨ test(user,Researcher)@RDB)∧
¬(patient ∈ FVout(X)))

proceed;
case(¬test(dest,DataBase)@RDB)

proceed;
break

In these aspects, DataBase represents all EHR databases in the system and
includes EHDB and EHDB2. Areadp71

and Areadp72
replaces Areadp61

and Areadp62
by in-

troducing additional cases to allow databases to read EHR records with a spec-
ified patient name. Areadp73

and Areadp74
replace Areadp63

and Areadp64
by ensuring both

databases and researchers can blindly read an EHR record if they never out-
put the obtained patient name to other locations. This is achieved by using
FVout(P) behavior analysis functions, which returns the set of free variables
occurring in out actions in P . Now roles Researcher and DataBase can both

60 AspectKE: Trapping Processes

blindly read EHR records as long as they do not output the patient’s identity,
but only the role DataBase can explicitly specify which patient to read. These
aspects will prevent the execution of program 4.1 and 4.3 but program 4.2 and
4.4 will be allowed. 2

As demonstrated in the last subsection, if remote evaluation is allowed, we need
to pay closer attention to the overall security of the system. For example, in the
event that the researcher attempts to get a doctor to link databases and output
the private information as in

RsMiller :: eval
(
read(!patient,MedicalRecord, !author, !createdtime, !subject1)@EHDB.

read(patient,MedicalRecord, !author, !createdtime, !subject2)@EHDB2.
out(patient, subject1 , subject2)@Publication)

@DrSmith

(4.5)
or in the event that the researcher attempts to obtain the records of a patient
whose name is selected from his own tuple space either before evaluating a
process at an EHR database or during the evaluation procedure.

RsMiller :: read(!patient)@RsMiller.

eval
(
read(patient,MedicalRecord, !author, !createdtime, !subject1)@EHDB.

read(patient,MedicalRecord, !author, !createdtime, !subject2)@EHDB2.
out(patient, subject1 , subject2)@Publication)

@DrSmith

(4.6)

RsMiller :: eval
(
read(!patient)@RsMiller.

read(patient,MedicalRecord, !author, !createdtime, !subject1)@EHDB.
read(patient,MedicalRecord, !author, !createdtime, !subject2)@EHDB2.
out(patient, subject1 , subject2)@Publication)

@DrSmith

(4.7)
we need an aspect that inspects the actions performed by a researcher perform-
ing an eval action on all the EHR databases or locations other than the EHR
databases.

4.3 Concluding Remarks and Related Work 61

Example 4.5 This motivates the aspect:

Aevalp7 [user :: eval(Y)@dest .X]

, case(test(user,Researcher)@RDB ∧ test(dest,DataBase)@RDB)∧
∀x ∈ LCread(Y) : ¬(test(x,Patient)@RDB)∧
∀y ∈ Locread(Y) : (test(y,DataBase)@RDB))

proceed;
case(test(user,Researcher)@RDB∧

(¬test(dest,DataBase)@RDB ∧ test(dest,)@RDB)∧
∀x ∈ Locout(Y) : (test(x,DataBase) ∨ x ∈ {dest}))

proceed;
case(¬test(user,Researcher)@RDB ∧ test(user,))

proceed;
break

The first case of the aspect ensures that a researcher can directly evaluate pro-
cesses in the EHR databases if s/he is not able to get the name of the patient
whose record s/he is trying to obtain either before evaluation or during evalu-
ation (by reading a patient name from a location other than EHR databases).
Note that LCread(P) is a set of location constants in read actions of process P
(defined in Table 4.4). The second case guarantees that when sending a process
to other remote locations, the process only contains out actions that are per-
formed on the EHR databases (trusted locations) or the tuple space associated
with that remote location. 2

In summary, the examples in this section show the versatility of AspectKE when
dealing with remote evaluation and future execution paths of processes. We il-
lustrated the usefulness of each behavior analysis function when enforcing access
control policies that require the future behavior of process. When selecting the
appropriate behavior analysis functions, it is possible to enforce less restrictive
policies and avoid the execution of malicious processes as early as possible. More
importantly, in a highly complex and privacy related computing environment,
with policies that are changed frequently such as the EHR system, enforcing
various access control and data usage policies through security aspects shows
the potential of being a very flexible and elegant approach.

4.3 Concluding Remarks and Related Work

In this chapter we presented the advanced features of AspectKE. By trapping
processes and using behavior analysis functions, AspectKE can enforce policies
that require explicit information flow, and thus predictive access control and
secondary use of data policies can be intuitively specified and enforced.

62 AspectKE: Trapping Processes

The EHR examples presented, in Chapter 3 and this chapter, were chosen to
illustrate the different characteristics of AspectKE, but they were also chosen
so as to constitute a complete set of access control policies. Here we conjecture
that our aspects indeed enforce a complete set of access control policies, but in
order to validate our conjecture we need to apply a formal validation method
to it, which is left for future work.

As we have finished presenting AspectKE, we will now mention some related
work that is relevant for the theme of our language design but from other per-
spectives; namely distribution with aspect-oriented programming and security
policy languages.

4.3.1 Distribution with Aspect-Oriented Programming

Much work has been done regarding how to deploy and weave aspects for dis-
tributed systems: some work is relevant for language design of distributed AOP
with explicit distribution [NCT04,NSV+06,TT06], other work explores the im-
plementation of AOP middleware to support distributed AOP [PSD+04,LJ06,
TJSJ08].

AspectKE can be consider as a special distributed AOP. It naturally follows the
KLAIM programming model and uses remote pointcuts [NCT04] that identify
join points in a program running on different locations. However, AspectKE does
not aim at enhancing the flexibility of mechanisms to deploy, instantiate and
execute distributed aspects, e.g., support advice execution over remote hosts, as
AWED [NSV+06] and ReflexD [TT06] have achieved. Rather, it focuses on in-
tegrating analysis components for reasoning about the local or mobile processes
to support advanced access control in a distributed setting. Compared with
other AOP, AspectKE provides a well-defined security enforcement mechanism
to tuple space systems that supports process mobility.

AO4BPEL [CM04] is an aspect extension of the process-oriented composition
language BPEL, which was originally designed for composing Web Services.
Work in [CSZ04, CH05] discusses different principles of using AOP to imple-
ment coordination systems (in AspectJ), but they are not related to security.
Recently, AspectKB [HNN09] has been proposed. It uses Belnap Logic to handle
conflicts when distributed advices are composed in a coordination environment.

4.3.2 Security Policy Languages

Binder [DeT02] and Cassandra [BS04] are very powerful logic-based security
policy languages, and both are based on datalog logic-programming language.

4.3 Concluding Remarks and Related Work 63

In [BS04], there are substantial case studies performed using Cassandra based
on the UK National Health Service procurement exercise. In AspectKE, our
security policies are mainly expressed through logical formulae and predicates
in the aspects. The big difference is that AspectKE provides predicates that
can describe future events. There are other prominent policy languages like
Protune [BO05], Rei [KFJ03], Ponder [DDLS00], and KeyNote [BFIK99], which
can express basic access control policies very well. However, only Ponder and Rei
can express usage control through obligation policies but, unlike our approach,
neither language can enforce them and they have to trust that the party receiving
the data uses it in proper ways [DHS07].

64 AspectKE: Trapping Processes

Chapter 5

AspectK: Generalization

In chapter 4, we primarily focused on enriching the pointcut and advice condition
that can be expressed in aspect, building on top of basic features of AspectKE
(Chapter 3). In this chapter, we shall extend the basic features of AspectKE
from the type of advice point of view, so that aspect will not only break or
proceed the process execution, but also introduce additional behavior around
them similar to AspectJ’s before and after advice. The language formulated
is called AspectK. We will then introduce the open joinpoints that commonly
exist in coordination languages, and show how they are addressed in AspectKE
and AspectK. After that we discuss the formulation of other extensions and
problems of supporting the around pointcut in the presence of open joinpoint.

5.1 Syntax and Semantics

5.1.1 Syntax

The AspectK’s syntax is somewhat similar to that of AspectKE (that only traps
actions) presented in Section 3.1. Here we focus on the differences between the
two.

Compared to AspectKE’s syntax shown in Table 3.1, we have extended and

66 AspectK: Generalization

body ∈ Advice body ::= case (cond) sbody ; body | sbody
sbody ::= as break | as proceed as

as ∈ Act∗ as ::= a.as | ε
ca ∈ CAct ca ::= · · · | eval(X)@`

Table 5.1: AspectK Syntax - More Type of Advice

replaced some of them, as is displayed in Table 5.1. Here, we introduce as (in
Act∗) that represents a sequence of actions, which can be inserted in front of
break and proceed, or inserted after proceed. We also extends ca (in CAct∗)
that supports the cut version of the eval action.

Inserting actions in front of or after break and proceed gives us the possibility
to offer similar functions like before, after or even around advice as in main-
stream aspect-oriented programming languages like AspectJ [KHH+01]. There
can exist problems for fully supporting the around advice, due to the open join-
points in coordination languages such as KLAIM. We will discuss that later in
this chapter.

In case multiple aspects trap one action, all the before actions are executed in
declaration order, then the original action (in case of no break), and finally the
after actions in reverse declaration order. As in AspectKE, the keyword break
takes precedence over keyword proceed.

We have to slightly modify the well-formedness of cuts defined in Chapter 3,
and additionally introduce the following requirement: when !u is used in the cut
pattern, u should only occur in the after actions, but not in the before action.
This is because the aspects in AspectK (and AspectKE) intercept the execution
of an action before it is actually performed. Thus !u (defined in pointcuts of
read, in or newloc) is not bound with a concrete value yet when executing the
before advice. Otherwise it will cause free variables in before advice.

5.1.2 Semantics

The semantics is given by a one-step reduction relation on well-formed systems,
nets and actions. The reaction rules are defined in Table 5.2, and we also re-use
the structural congruence on nets defined in Table 2.2 and re-use the operation
match in Table 2.4.

In Table 5.2, the reaction rules for systems and nets are straightforward. The

5.1 Syntax and Semantics 67

−→asp ` N → −→asp ` N ′

let −→asp in N → let −→asp in N ′

−→asp ` N1 → −→asp ` N ′1
−→asp ` N1 || N2 → −→asp ` N ′1 || N2

N ≡M −→asp `M → −→asp `M ′ M ′ ≡ N ′
−→asp ` N → −→asp ` N ′

ls :: (out(
−→
l)@l0.P + · · ·)→ ls :: P || l0 :: 〈

−→
l 〉

ls :: (in(
−→
`λ)@l0.P + · · ·) || l0 :: 〈

−→
l 〉 → ls :: Pθ if match(

−→
`λ;
−→
l) = θ

ls :: (read(
−→
`λ)@l0.P + · · ·) || l0 :: 〈

−→
l 〉 → ls :: Pθ || l0 :: 〈

−→
l 〉 if match(

−→
`λ;
−→
l) = θ

ls :: (eval(P ′)@l0.P + · · ·)→ ls :: P || l0 :: P ′

ls :: (newloc(!u).P + · · ·)→ ls :: P [l′/u] || l′ :: 0 with l′ fresh

ls :: (stop.P + · · ·)→ ls :: 0

−→asp ` ls :: Φ
−−→asp
proceed(ls :: out(

−→
l)@l0).P → −→asp ` N

−→asp ` ls :: out(
−→
l)@l0.P + · · · → −→asp ` N

−→asp ` ls :: Φ
−−→asp
proceed(ls :: in(

−→
`λ)@l0).P || N ′ → −→asp ` N

−→asp ` ls :: in(
−→
`λ)@l0.P + · · · || N ′ → −→asp ` N

−→asp ` ls :: Φ
−−→asp
proceed(ls :: read(

−→
`λ)@l0).P || N ′ → −→asp ` N

−→asp ` ls :: read(
−→
`λ)@l0.P + · · · || N ′ → −→asp ` N

−→asp ` ls :: Φ
−−→asp
proceed(ls :: eval(P ′)@l0).P || N ′ → −→asp ` N

−→asp ` ls :: eval(P ′)@l0.P + · · · || N ′ → −→asp ` N

−→asp ` ls :: Φ
−−→asp
proceed(ls :: newloc(!u)@l0).P || N ′ → −→asp ` N

−→asp ` ls :: newloc(!u)@l0.P + · · · || N ′ → −→asp ` N

Table 5.2: Reaction Semantics of AspectK (on closed nets)

68 AspectK: Generalization

rules for the five actions come in pairs (note this is different from AspectKE).
One rule takes care of the action when no advice is allowed to interrupt it; this
is syntactically denoted by underlining.

The rules for non-underlined actions take the same shape and make use of func-
tion Φ defined in Table 5.3. Rather than return a boolean value as in AspectKE,
the result of Φ is a sequence of actions trapping ls :: a; as in AspectKE, −→asp is
a global environment of aspects. The index f is either proceed or break. In
general f will become break (changed in function κ, which is defined in Table
5.3) if at least one “break” advice applies, otherwise it will be proceed. In
case of proceed the action a is eventually emitted, otherwise it will be dis-
pensed with and be replaced with the stop action, killing all the subsequent
actions. Recall that advice is searched in the order of declaration and applies
in a parenthesis-like fashion.

Φ
A[cut],body,−−→asp
f (l :: a) = case check(extract(cut) ; extract(l :: a)) of

fail : Φ
−−→asp
f (l :: a)

θ : κ
−−→asp,l::a
f (body θ)

Φεf (l :: a) = case f of
proceed : a
break : stop

κ
−−→asp,`::a
f (case cond sbody; body) = case [[cond]] of

tt : κ
−−→asp,`::a
f (sbody)

ff : κ
−−→asp,`::a
f (body)

κ
−−→asp,`::a
f (sbody) = case sbody of

as1 proceed as2 : as1.Φ
−−→asp
f (l :: a).as2

as break : as.Φ
−−→asp
break(l :: a)

Table 5.3: Trapping Aspects in AspectK

The function Φ re-uses function check (defined in Table 3.4) and function extract
(defined in Section 3.2), which checks the applicability of each aspect in the
aspect environment to the action being trapped, and produces the corresponding
bindings of actual action parameters to the formal parameters of advice. If a cut
does not match a normal action, fail is returned and the remaining aspects in
the aspect environment will apply to the trapped action and search for further
advices; Otherwise, we use κ (see Table 5.3) to recursively search for further
advices, and starts searching advice from the current aspect.

The κ function processes the advice associated with a matching cut. The first
clause in the definition processes conditional advices using the results of evalua-

5.2 Advice for Access Control with Logging 69

tion of [[cond]]. The function [[]] evaluates its parameter (a boolean condition) in
the expected way. The second clause deals with non-conditional advices which
are either proceed or break advices. In the former case, the before actions and
after actions sandwich a recursive call to Φ to find further applicable aspects.
In the latter case, the before actions are performed and Φ is called recursively
to find further applicable aspects taking care to record the fact that a break
has been encountered (re-set Φ’s f to break).

Note that we have to extend the do function defined in Table 3.4 to cope with
process P for remote evaluation and variable X for eval action, which are
introduced by the extract function.

do(X ; P) = [P/X]

Eventually, when all aspects in the aspect environment have been considered, the
second clause of Φ is invoked (see Table 5.3). If no break has been encountered,
the underlined action is emitted, otherwise a stop is emitted. In the latter case,
the program will terminate after all of the before actions have been executed.

5.2 Advice for Access Control with Logging

With the before and after actions, AspectK can express policy that requires
logging actions. Here we will show an example based on the development of
EHR system introduced in the previous chapters.

Let us loosen the restriction of the policy’s second part introduced in Section
3.3.4.2, which is inspired by [EB04].

Normally Nurses can only view recent medical records, but they can
view past medical records for special purposes. In the latter case,
the system must supply some form of logging for accesses and access
attempts. The manager should be made aware of repeated attempts
by a nurse to access information beyond his/her rights.

To express this policy, we assume there exists a logging database (LogDB) that
keeps track of special activities by tuples

〈user, action, patient, recordtype, createdtime〉

The tuple records a user ’s actions performed on a patient, who has a specific
recordtype created at createdtime.

In order to capture the repeated attempts by nurses to access information be-
yond their rights, we need nurses to consume special tokens before they perform

70 AspectK: Generalization

special activities. Each nurse has a limited number of tokens within a certain pe-
riod, mainly maintained by managers, which is stored in location TokenDB with
tuples 〈user, token〉. Each user has a number of copies of the tuple 〈user,Token〉
in TokenDB, and they cannot be removed by other users (aspects for enforcing
this are omitted). Once a nurse uses up his/her own tokens he/she can still
perform the action, however, the activity will be sent to a location ManagerAlert
so that managers will be notified by checking this location.

The aspect Ap33 defined in Example 3.7 in Section 3.3.4.2 forbids any nurses’
attempts to read a past medical record. Here we replace it with aspects Areadp81

and Areadp82
to reflect the new policy. The only difference of these two new aspects

are whether they capture an action when the user reads a specific patient’s
medical record (with parameter patient in pointcut), or just reads a medical
record without specifying patient name (with parameter !patient in pointcut).

Areadp81 [user :: read(patient,MedicalRecord, , createdtime,)@EHDB]

, case(test(user,Nurse)@RDB ∧ createdtime = Recent)
proceed;

case(test(user,Nurse)@RDB ∧ createdtime = Past∧
test(user,Token)@TokenDB)

in(user,Token)@TokenDB
proceed;
out(user, read, patient,MedicalRecord, createdtime)@LogDB

case(test(user,Nurse)@RDB ∧ createdtime = Past∧
¬test(user,Token)@TokenDB)

out(user)@ManagerAlert
proceed;
out(user, read, patient,MedicalRecord, createdtime)@LogDB

case(¬test(user,Nurse)@RDB)
proceed;

break

Areadp82 [user :: read(!patient,MedicalRecord, , createdtime,)@EHDB]

, case(test(user,Nurse)@RDB ∧ createdtime = Recent)
proceed;

case(test(user,Nurse)@RDB ∧ createdtime = Past∧
test(user,Token)@TokenDB)

in(user,Token)@TokenDB
proceed;
out(user, read, patient,MedicalRecord, createdtime)@LogDB

case(test(user,Nurse)@RDB ∧ createdtime = Past∧
¬test(user,Token)@TokenDB)

out(user)@ManagerAlert
proceed;

5.3 Open Joinpoints and Other Language Extensions 71

out(user, read, patient,MedicalRecord, createdtime)@LogDB
case(¬test(user,Nurse)@RDB)

proceed;
break

Aspect Areadp81
(and Areadp82

) extends aspects Ap33 for two additional cases of nurses
reading past medical records. The first case will be executed if users still have
their tokens left in the token database. In this case, before performing the read
action, one token has to be removed by the in action; after performing the
read action, the details of this activity will be sent to logging database. The
second case will be executed if a user does not have any tokens left for the token
databases. Instead of removing a token before performing the action, the name
of the user will be sent to a location where managers can be made aware of what
happened, and managers can thus check the logging database to see whether
the nurses performed too many abnormal activities.

5.3 Open Joinpoints and Other Language Ex-
tensions

5.3.1 Open Joinpoints

Trapping an input (in or read in AspectKE and AspectK) action before a con-
crete tuple has been selected for input requires to cope with joinpoints that con-
tain constructs for binding new variables (the notation !u is used in AspectKE
and AspectK) – we call these open joinpoints. This is considerably more chal-
lenging than the closed joinpoints of traditional aspect-oriented language like
AspectJ [KHH+01]. To be more concrete, when we trap a method call in As-
pectJ, we trap the actual call, i.e. the method name with its actual parameters,
rather than the definition of the method, i.e. the method name with its formal
parameters; in other words AspectJ traps closed joinpoints rather than open
joinpoints.

In this dissertation, both AspectKE and AspectK provide mechanisms (inte-
grated in their semantics) to handle open joinpoints, which exist in their common
base language KLAIM. Because of the open joinpoints, we have put additional
restrictions in order to correctly use our languages. These are integrated into the
well-formedness conditions for these process calculi presented before. Otherwise
free variables would occur in advice. In AspectK, the variables (in pointcut)
that bind new variables (in a open joinpoint) can only be used in actions after
the break or proceed. In AspectKE, the variables (in a pointcut) that bind

72 AspectK: Generalization

new variables (in a open joinpoint) can only be used in conditions that are com-
bined with behavior analysis functions, for checking data flow among variables
in joinpoints.

More generally, coordination languages are distinguished from object oriented
languages and web service languages [CM04] by their need to deal with open
joinpoints. Similar considerations would apply if we were to incorporate aspects
into process calculi that, like the π-calculus, allow a notion of open input (or
input from the environment) but would not be necessary for calculi without
this feature [And01,BJJR04,JJR03,WZL03,Wan01]. This calls for considerable
care in designing a notion of advice where input actions are trapped before a
concrete tuple is selected for input.

5.3.2 Discussion About Other Extensions

We have shown how to extend the model of AspectKE (that traps actions) so
that the two types of basic advice, break and proceed, can be equipped with
actions before or after the advice (to obtain some of the benefits of around
advice). Thus, we can perform common tasks such as logging which other AOP
languages normally can do. We illustrate the usefulness of the design through
an EHR example.

There are different views as to whether the actions generated by an advice should
be subject to further advices. Throughout the development we have taken the
view that this is indeed desirable. But it is straightforward to modify Table 5.3
to use underlined before and after actions to accommodate the alternative view.

We now discuss other possibilities of extending the current design of AspectK.

5.3.2.1 Types of Advice

We did consider the incorporation of an ignore advice, as is commonly ex-
pressible in AOP languages by the around advice, but we found this to be a
challenging extension.

To illustrate the problems, consider the following advice

AIGNORE[u :: read(!v)@lpriv] , ignore

for simply ignoring inputs from a private location lpriv. The problem with this
definition is that it might trap a read action occurring in the following process
l :: read(!w)@lpriv.out(w)@lprint, which would then become l : out(w)@lprint
and contains a free variable; however, our semantics does not ascribe meaning

5.3 Open Joinpoints and Other Language Extensions 73

to such processes. AspectJ does not have this problem, as it does not deal with
open joinpoints.

Even a somewhat more useful advice

AREDIRECT[u :: read(!v)@lpriv] , ignore u :: read(!v)@lsandbox

for redirecting inputs from a private location lpriv to a sandbox lsandbox is prob-
lematic. Once again consider the program l :: read(!w)@lpriv.out(w)@lprint
that is intended to become l :: read(!w)@lsandbox.out(w)@lprint. The problem
is that our current notion of substitution does not achieve this effect: while we
can bind v to w to obtain the substitution [w/v], we would not normally let the
substitution change the defining occurrence !v in u :: read(!v)@lsandbox to !w so
as to yield the desired u :: read(!w)@lsandbox.

This can be solved by suitable extensions of our approach; in particular we
can introduce special variables, e.g. β, that can be substituted also in defining
occurrences and write

AREDIRECT[u :: read(!β)@lpriv] , ignore u :: read(!β)@lsandbox

Then the program l :: read(!w)@lpriv.out(w)@lprint would be correctly trans-
formed to l :: read(!w)@lsandbox.out(w)@lprint.

5.3.2.2 Local or Global Advice

For simplicity we have taken an approach where all advices are given in advance
and are global in scope. It would be worthwhile if we can introduce new advice
while limit the scope of its applicability. Indeed, it might be natural to consider
the aspect environment as distributed and associated with locations. In that
case it is appropriate to define another version of newloc, with a newloc(!u : Γ)
construct with inference rule,:

l ::
−→asp newloc(!u : −→asp′).P → l ::

−→asp P [l′/u] || l′ ::
−→asp′ 0 with l′ fresh

This would constitute a static treatment of scoped advice unlike the dynamic
treatment in CaesarJ [AGMO06].

This would be useful when dealing with eval actions, defined with local advice.
Then we might write an advice for executing a process in a sandbox as follows:

ASANDBOX[u ::
−→asp eval(X)@lsensitive] ,

newloc(!usandbox : −→asp[ABOXREAD[u ::
−→asp′ out(v)@w] , u ::

−→asp′ out(v)@usandbox])
ignore

u ::
−→asp eval(X)@usandbox

74 AspectK: Generalization

When executing a program l ::
−→asp eval(P)@lsensitive.P

′ the advice transforms
it to a process that evaluates the process P in a confined location and redirects
all outputs to a confined location.

Clearly a number of additional extensions can be contemplated. For example
we might want to have more powerful pointcut languages that allow patterns to
bind over a number of parameters (in order to avoid having separate advice for
each arity of the operations) or gives priorities to advice.

5.3.2.3 Trapping Processes

One may wonder why not apply the same ideas developed in Chapter 4 to
AspectK: trap a process (either the continuation process or a process to be
sent remotely), and then use behavior analysis functions that directly analyze
a process.

The reason is that if we allow before and after actions around break or pro-
ceed, a safe behavior analysis would be very difficult to achieve, since the pro-
cesses trapped might execute more actions (inserted by aspects at runtime) than
planned. This is an interesting direction for future work and will require more
powerful program analyses than the behavior analyses presented in Chapter 4.

5.4 Concluding Remarks

In this chapter we presented AspectK, which is built on top of the basic AspectKE
features introduced in Chapter 3. AspectK allows actions before and after pro-
ceed or break, which can benefit crosscutting activities such as logging, as the
before, after, or even around advices do in other aspect-oriented programming
languages. However, it is not trivial to add advice for ignoring or redirecting
given actions due to the open joinpoints, which commonly exists in coordination
languages. On the contrary, the advanced features of AspectKE introduced in
Chapter 4 provide various behavior analysis functions, and enable us to rea-
son about the future execution of processes. This improves the capability of
standard reference monitors which normally can only cope with history-based
security policies. However, AspectKE does not allow actions before and after
proceed or break as AspectK does. We argued it would be more challenging to
support both extensions presented in Chapters 4 and 5, because a safe behavior
analysis would require more advanced program analyses, and thus be difficult
to develop. Yet we believe it would be interesting future work.

Chapter 6

AspectKE*: Programming
Language

We have presented the AspectKE programming model in previous chapters and
have shown it is useful to enforce a variety of security policies. Now we will
bring the model into practice by building a programming language and runtime
system based on it.

However, it is not practical to straightforwardly implement AspectKE’s original
semantics, because it models computation as rewriting process descriptions. As
rewriting substitutes variables, AspectKE can predict future behavior of a pro-
cess from the current process description without tracking data flow in the past.
However, this also means performing program analysis for each step of program
execution, which causes huge runtime overhead. In other words, the behavior
analysis functions are defined with the assumption that analyses must access
the runtime state of every variable in continuation processes, thus a dynamic
syntax-based program analysis (behavior analysis) is needed to evaluate each
analysis function at runtime, which is not an appropriate model for checking
the future behavior of processes in reality.

Regarding how to check the behavior of processes in practice, static analysis is a
candidate technique as it could check a program before execution [Nec97,LY99].
For example, a runtime system of Java checks binary code before execution.
This approach, however, has two limitations. First, it lacks flexibility - once the

76 AspectKE*: Programming Language

analyses are developed, it is difficult to reuse them: the programmers cannot
easily access the analysis results and (re)define security policies, because those
analyses and security policies are normally integrated with a compiler and a
runtime system of the language. The second is expressiveness: static analyses
are sometimes too restrictive to accurately enforce security policies in practice,
due to the fact that they have to approximate properties of a program. On the
contrary, as another common technique to check process’s behavior, runtime
monitoring is precise, yet comes at the price of execution time overhead and
lacks the mechanism to look into future events. Our implementation relies on
both static analysis and runtime monitoring approaches.

In this and the following chapters, we will present the design and practical im-
plementation of the AspectKE* programming language, an AOP language based
on a distributed tuple space system under the Java environment, which provides
expressive language constructs to enforce basic as well as predictive access con-
trol policies. It is a proof-of-concept language that demonstrates practical and
expressive language primitives for AspectKE along with an efficient implemen-
tation model. Our approach utilizes static analysis techniques to implement the
language, but the language in return also effectively overcomes the limitations
of static analysis raised above. Some of the main features of AspectKE* are as
follows.

• It provides high-level program analysis predicates and functions that can
be used as pointcuts in aspects, which enable programmers to easily ex-
press conditions based on future behavior of processes.

• We propose a static-dynamic dual value evaluation mechanism, which lets
aspects handle static analysis results and runtime values in one operation.
It enables programmers to specify policies’ static and dynamic conditions
in a uniform manner.

• We propose an efficient implementation strategy that gathers static in-
formation for program analysis predicates and functions before execution,
and at runtime performs merely look up operations, which minimizes the
runtime overheads caused by program analysis predicates and functions.

In this chapter, we present a proof-of-concept programming language AspectKE*
that is based on AspectKE presented in Chapter 3 and Chapter 4. We present
the design (in Section 6.1) and usage of AspectKE* by developing a relative low-
cost and much simpler system (compared with the more demanding and complex
secure EHR workflow system which is partly illustrated in previous chapters),
- a secure distributed chat system, as another application demonstrating the
usefulness of the AspectKE programming model and AspectKE* programming
language (in Section 6.2). We will focus on presenting the language features and

6.1 The AspectKE* Programming Language 77

discussing its uniqueness when compared with other aspect-oriented program-
ming languages (in Section 6.3).

In the following chapters, we shall present the technical challenges of imple-
menting AspectKE’s runtime system, and evaluate the language.

6.1 The AspectKE* Programming Language

AspectKE* programming language provides much more user-friendly and prac-
tical language constructs to program AspectKE model. First we present its
syntax with brief explanations. The syntax is listed in Table 6.1 (explained in
Section 6.1.1) and Table 6.2 (explained in Section 6.1.2).

6.1.1 Project, Location, Node and Process

Now we shall introduce the language constructs listed in Table 6.1 for base
programs.

A program is the top-level programming concept in AspectKE*, which represents
an individual network with all the computing components. It consists of a
project declaration, several location declarations and a few entity declarations.

A project declaration (in project_decl) defines the name space of this program.
All entities (in entity_decl_list) within a program are defined under the same
name space: compiling the same entity declaration under a different project
declaration will generate different runtime representations of the entity; An
aspect will be enforced to nodes and processes only if this aspect is under the
same name space.

A location declaration (in location_decl) defines pseudo (logical) identities for
nodes in a program. Each pseudo identity associates with a unique physical ip
address (and port number) when the program is instantiated at runtime.

An id (in id) is a string that consists of numbers, alphabetic characters, under-
lines etc. It normally represents the identity of a specific language construct.
When in a format surrounded with quotation marks such as "abc", it represents
a constant in type string with value abc.

A node declaration (in node_decl) consists of tuple declarations and a process
call. A tuple starts with the keyword data, and a process call starts with keyword
process followed by the name of the process and a list of parameters. Note that
parallel processes can be instantiated at a node if they are directly called in a

78 AspectKE*: Programming Language

process invoked by the node.

A process declaration (in process_decl) starts with keyword proc. Its formal
parameter list contains two types of variables: location and string. The body of
the process declaration is block, which starts with a list of sequential statements
and followed by a block of statements to be executed in parallel (in par_block).
A sequential statement (in stmt) can be a local variable declaration in a block,
or an action of type out, in, read, eval and newloc, whose semantics are the
same as those defined in AspectKE, which outputs a tuple, inputs a tuple (read
and delete a tuple), reads a tuple, instantiates a process, and creates a new
node. Parallel statements (in par_stmt) in a parallel block will be instantiated
at the same time, which can be a process declared in the project, an anonymous
process with merely one action, or an anonymous process that has a body block.

Example 6.1 List 6.1 shows a Hello World program that demonstrates the
basic usage of nodes and processes. In the program, a process at node Loc1
reads "hello" and "world" from its own tuple space and create a process at node
Loc2 that outputs these words in a different order.

Line 1 declares the project name, Line 3 declares the logical locations in the
program. Lines 5-13 define initial states of node Loc1 and Loc2. Node Loc1
consists of three tuples and one process. Node Loc2 is empty. Lines 15-20 define
a process p1. Line 16 declares two local variables, which are bound to values by
an input action. For example, the tuple 〈baz,"word1",foo〉 at Line 17 matches
the tuple 〈Loc2,"word1","hello"〉 at node Loc1, and binds baz with Loc2, foo
with "hello", respectively. Line 18 performs an in action, which reads a tuple
〈Loc2,"word2","world"〉 from Loc2 in a similar manner to read actions, but then
removes the read tuple. Line 19 creates a process p2 with parameters "hello",
"world" and Loc2 at node Loc2. The process p2 then executes two out actions
that outputs "hello" and "world" onto the node "Loc2" in a different order.

After a successful execution of the program, node Loc1 contains tuples 〈Loc2,
"word1", "hello"〉 and 〈Loc1, "word1", "hello"〉; while node Loc2 shall contain
tuples 〈"hello", "world"〉 and 〈"world", "hello"〉.

2

6.1.2 Aspects

Now we shall introduce the language constructs listed in Table 6.2 for aspects.

An aspect (in aspect_decl) is formed by a name, a pointcut and a body that
contains set declarations and an advice. In an aspect, all variables declared in
the pointcut and set declarations can be used in the advice.

6.1 The AspectKE* Programming Language 79

program ::= project_decl location_decl_list entity_decl_list

entity_decl_list ::= ε | node_decl | process_decl | aspect_decl

| entity_decl_list entity_decl_list

project_decl ::= project id ;

location_decl_list ::= ε | location_decl | location_decl_list ; location_decl_list

location_decl ::= location id_list

id_list ::= id | id_list , id_list

id ::= string

node_decl ::= node id { tuple_decl_list process_call_init }

tuple_decl_list ::= ε | tuple_decl | tuple_decl ; tuple_decl

tuple_decl ::= data (id_list)

process_call_init ::= ε | process_call ;

process_call ::= process id (actual_param_list)

actual_param_list ::= ε | id | actual_param_list , actual_param_list

process_decl ::= proc id (formal_param_list) block

formal_param_list ::= ε | type id | formal_param_list , formal_param_list

type ::= location | string
block ::= { stmt par_block }

stmt ::= ε | variable_decl | action | stmt ; stmt

variable_decl ::= type id_list

action ::= out (id_list)@id | in (id_list)@id | read (id_list)@id

| eval (process_call)@id | newloc(id)
par_block ::= ε | parallel { par_stmt }

par_stmt ::= ε | process_call ; | action ; | block | par_stmt par_stmt

Table 6.1: AspectKE* Syntax - 1

80 AspectKE*: Programming Language

aspect_decl ::= aspect id { advice : pointcut { set_decl_list advice } }

pointcut ::= cut_action on target continuation

cut_action ::= out (cut_param_list) | in (cut_param_list)

| read (cut_param_list) | eval (process id) | newloc(location)
cut_param_list ::= ε | cut_param | cut_param_list , cut_param_list

cut_param ::= id | bound type id | unbound type id | type
on ::= ε | && on (bound location id) | && on (id)

target ::= ε | && target (bound location id) | && target (id)

continuation ::= ε | && continuation (process id)

set_decl_list ::= ε | set id = { set_el_list } | set_decl_list ; set_decl_list

set_el_list ::= ε | set_el | set_el_list , set_el_list

set_el ::= id | action_name | LVAR

action_name ::= OUT | IN | READ | EVAL | NEWLOC

advice ::= case_stmt | if_stmt

case_stmt ::= case_list default

case_list ::= ε | case bool_expr suggestion | case_list case_list

default ::= default suggestion

if_stmt ::= if bool_expr suggestion else else_stmt

else_stmt ::= if_stmt | suggestion
suggestion ::= proceed ; | terminate ;

bool_expr ::= bool_expr ‖ bool_expr | bool_expr && bool_expr

| ! bool_expr | (bool_expr) | id == id | id != id

| element_of (set_el , set) | empty (set)

| test (test_param_list)@id | beused (id, action_set, id)

| beusedsafe (id, action_set, set, id)

| exist (id, set) < bool_expr> | forall (id, set) <bool_expr>

test_param_list ::= ε | test_param | test_param_list , test_param_list

test_param ::= id | type
set ::= id | { set_el_list }| performed (id) | targeted (action_set, id)

| union (set, set) | intersection (set, set)

action_set ::= { action_list }

action_list ::= ε | action_name | action_list, action_list

Table 6.2: AspectKE* Syntax - 2

6.1 The AspectKE* Programming Language 81

1 p r o j e c t h e l l o w o r l d ;
2
3 l o c a t i o n Loc1 , Loc2 ;
4
5 node Loc1{
6 data (Loc2 , " word1 " ," h e l l o ") ;
7 data (Loc2 , " word2 " ," wor ld ") ;
8 data (Loc1 , " word3 " ," h i ") ;
9 p r o c e s s p1 (Loc2) ;
10 }
11
12 node Loc2{
13 }
14
15 proc p1 (l o c a t i o n baz){
16 s t r i n g foo , bar ;
17 r ead (baz , "word1 " , foo)@Loc1 ;
18 i n (baz , " word2 " , bar) @Loc1 ;
19 e v a l (p r o c e s s p2 (foo , bar , baz)) @baz ;
20 }
21
22 proc p2 (s t r i n g foo , s t r i n g bar , l o c a t i o n baz){
23 out (foo , bar) @Loc2 ;
24 out (bar , f oo) @baz ;
25 }

Listing 6.1: Hello World Main Program

6.1.2.1 Pointcut

A pointcut (in pointcut) must clarify which join points it tries to capture, which
is specified by conjuncting four pointcut predicates, namely cut_action, on, target
and continuation. Note that all actions are potential join points in AspectKE*.
The current implementation allows predicates in the pointcut to be connected
by the && operator but not ‖ nor !.

A pointcut matches a join point if all parameters in the first three predicates
match the corresponding fields in a join point (the fourth predicate is not in-
volved in the matching procedure). These parameters have two purposes: spec-
ify the matching rule of a join point, or expose the information of the actual
parameters of a selected join point. Note that the information that can be as-
sociated with actual parameters is both dynamic and the pre-computed static
data. The exact meaning of how the information is collected and used will be
thoroughly discussed in the following part of the dissertation.

82 AspectKE*: Programming Language

When capturing an out, in or read action, a cut action uses a parameter list
(in cut_param_list) to match each field of a tuple. Only when the parameter
list has the same length as the tuple, and all parameters matches their corre-
sponding fields, can we say the parameter list matches a tuple. A parameter (in
cut_param) can be a constant (id), which matches against a constant with the
same value, a variable (with modifier bound or unbound), which matches against
any constants by a bound variable and any variables by a unbound variable, or a
don’t-care pattern (indicated by only specifying a type), which matches against
any constants and variables. In any case, the parameter will only match a field
with a same type. When the parameter is a variable (bound or unbound) and
is matched, it will bind static as well as runtime information of the matching
field, and this information can be used in the advice. We shall clarify this later.

When capturing an eval action, a cut action uses a process variable to directly
bind the process to be evaluated in the join point action. When capturing a
newloc action, a cut action matches a newloc action no matter what location
will be generated.

The optional on and target predicates match and/or bind the locations a join
point action is performing at and performing to, respectively. The matching
rule is the same as a parameter matching a tuple’s field. They can be jointly
used with cut_action.

The optional continuation predicate will not influence the matching result. It
will simply bind a continuation process of a matched join point action.

6.1.2.2 Advice

It is possible to pre-define several sets in advice. The element of a set (in
set_el) can be a constant, an action name or LVAR (a special reserved keyword
for variables).

In the advice (in advice), either if-else statement (allowing “else if”) or case state-
ment with terminate or proceed in the branches can be written. It allows only
one advice declaration per aspect and there is only one kind of advice. It uses
boolean expression (in bool_expr) to express conditions and uses advice sug-
gestion (in suggestion) to describe an advice’s intervention to the matched join
point: proceed will continue the execution of the join point while terminate will
prohibit the execution of the current join point and its continuation processes.

The boolean expression is defined using classical boolean operators and boolean
predicates such as: element_of (test whether a element belongs to a set), empty
(test whether a set is empty), exist (test whether there is any element from a
set satisfies a boolean condition) and forall (test whether all elements from a set

6.1 The AspectKE* Programming Language 83

Predicate & Func-
tion

The Return Value

performed(z) the set of potential actions that
process z will perform.

targeted(acts,z) the set of destination locations
that the actions in set acts of pro-
cess z will target to.

beused(v,acts,z) true if variable v will be poten-
tially used in any actions in set
acts of process z.

beusedsafe(v,acts,
locs,z)

true if any potential action acts
in process z that uses variable v
is targeted only to locations in
locs.

Table 6.3: Program Analysis Predicates and Functions

satisfy a boolean condition). The test predicate is used for testing whether a
specified tuple currently exists in the tuple space of a checked location (similar
to read action, but does not allow unbound variables defined in a parameter list).
We shall discuss predicates beused and beusedsafe shortly.

The set (in set) is used in the boolean expression, which can be a name of a
predefined set, an anonymous set, and union or intersection of two sets. We
shall discuss set expressions performed and targeted shortly.

6.1.2.3 Program Analysis Predicates and Functions

We introduce language constructs called program analysis predicates and func-
tions that predict future behavior of a program, and therefore are useful for
enforcing predictive access controls that refer future events of a program.

Table 6.3 summarizes the predicates and functions, which allow for checking
different properties of the future behavior of a continuation process; i.e., the rest
of the execution from the current join point, or a process to be evaluated locally
or remotely. In the table, z is the continuation process of the captured action.
acts is a collection of action names such as IN and OUT. v is a variable (it shall
be declared in the pointcut). locs is a collection of locations. When computing a
predicate/function on process z, the results are collected from process z and all
processes spawned by z. In Chapter 7, we explain the implementation of those
predicates and functions by using static analysis.

Example 6.2 To illustrate the basic usage of aspects, we will show a simple

84 AspectKE*: Programming Language

aspect for the Hello World program introduced in Example 6.1. This aspect will
terminate the execution of an eval action targeted at node Loc2 if the process
to be executed remotely contains any out actions.

1 a sp e c t h e l l owo r l d_a sp e c t {
2 ad v i c e : e v a l (p r o c e s s y) &&
3 on (bound l o c a t i o n s) && t a r g e t (Loc2){
4 i f (e lement_of (OUT, per fo rmed (y)))
5 t e rm i n a t e ;
6 e l s e
7 proceed ;
8 }
9 }

Listing 6.2: Hello World Aspect

In this aspect, the pointcut matches the join point action at Line 19 in Listing
6.1. This is because when the eval action is performed at Line 19, variable baz has
a value of Loc2, which matches the parameter of target predicate. Predicates eval
and on do not put further restrictions on join point matching. When matched,
they will bind variables with the actual parameters correspondingly, in this case
the variable s will bind Loc1, while process variable y will bind process p2.

The advice is an if statement, and uses the program analysis function performed,
which returns the set of actions that might be performed in process p2. In our
case, this set will contain out actions (at Lines 23 and 24 of process p2 in Listing
6.1). Thus the element_of predicate is true and the aspect suggests to terminate
the execution of eval action. 2

6.2 A Secure Distributed Chat Application

Enforcing security policies to a distributed system is challenging, especially when
trusted components of a system have to work with untrusted ones. For exam-
ple, while a user of a chat system trusts the programs running at the service
provider’s computers, he or she may need to run a chat client program devel-
oped by an untrusted third-party. In such a case, we need to ensure that the
untrusted program does not perform any malicious operations.

In this section, we show how AspectKE* can be used to enforce security policies
for a distributed chat application that contains untrusted components.

6.2 A Secure Distributed Chat Application 85

ServerAlice

<“Login”,“abc123”,Client1>

ServerBob

Client1

<“Login”,ServerAlice,“abc123”>

<“LoginSuccess”,
ServerAlice>

Server

Client2

<ServerAlice,“abc123”>

<“LoginSuccess”>

<“File”,“0A12EF...”
>

Eavesdropper

Console1-
Alice

Console2-
Bob

login

sendfile sendmsg

<“Msg”,ServerAlice,ServerBob,“hi.”>

<“Msg”,ServerBob,“hi.”,
Client1>

<ServerAlice,ServerBob>

node

process

tuple

Figure 6.1: Overview of a Simplified Chat System

6.2.1 Background: Distributed Chat System and Secu-
rity Policies

6.2.1.1 Distributed Chat System

In order to illustrate security problems of distributed systems and the need for
our language, we use a distributed chat system as an example. Figure 6.1 shows
an overview of the system, which consists of a server computer and a couple of
users’ client computers. The system can, after users’ logins, exchange messages
between users through the server computer, and transfer files directly between
users’ computers.

In the system, the users (i.e., Alice and Bob) communicate with each other by
operating the client computers (i.e., Client1 and Client2) through console devices.
Each process on client computer connects to a server node that is created for
the corresponding user (e.g., ServerAlice) on the server computer. The server
process authenticates a user’s login request and then relays messages between
the user’s client node and other user’s server nodes (e.g., ServerBob).

In the figure, a login procedure takes 6 steps, indicated by the arrows with
number 1-6. (1) Alice makes a login request from Console1, which is observed by

86 AspectKE*: Programming Language

Client1 as creation of a tuple of string "Login", the node of her server program
(i.e., ServerAlice) and the password string that she typed in. (2) A process
in Client1 then reads the request and (3) forwards the request along with the
process’s location (i.e., Client1) to ServerAlice. (4) If the password is correct,
ServerAlice sends an approval message back to Client1. (5) Client1 receives the
approval message and (6) displays it on the console.

After a successful login, the login process continues to spawn several processes to
handle requests from this user and other users, including a process for message
sending, as shown at steps 7-9. (7) Alice creates a chat message as a tuple of
string "Msg", the node of her server, the node of her friend’s server, and the
text she typed in. (8) The process for sending messages will read this request
and (9) deliver the chat message along with the process’s location to her server
(which will forward it to the friend’s server). Another process is for transferring
files, which (10) eventually sends a file directly to a friend’s client program after
negotiating with the server processes. (This part is omitted in the dissertation.)

Besides these intentional steps, the figure also illustrates two malicious opera-
tions that might be embedded in the client processes, namely, (m1) leak of the
user’s password. (m2) leak of the friendship between users.

6.2.1.2 Security Policies for the Chat System

We assume the following trust model for the chat system: the programs run-
ning on the server (namely ServerAlice and ServerBob) are trusted, while the
programs running on Client1 and Client2 cannot be trusted, because the chat
clients used are developed by a third-party. (Note that the consoles represent
hardware devices, which shall be trusted.) The challenge is, how do we ensure
the untrusted client programs cannot perform malicious operations.

First, we will set up security policies for the client programs, in order to clearly
express what kinds of operations are considered as “malicious”. Among many
possible policies, we focus on the following three access control security policies.
The first one is simple, the other rest two are predictive access control policies
based on future behavior of a program.

Policy 1: When a client program sends a message tagged with "Msg" to a
server program, it must correctly identify the sender information.

At step 9, the client creates a tuple 〈"Msg",ServerBob,"hi.", Client1〉, whose
fourth field must be the sender. This policy prevents processes at an other
client nodes forging a chat message from Alice.

6.2 A Secure Distributed Chat Application 87

Policy 2: A process in a client node is allowed to receive a message tagged
with "Msg" from the console, if it will not send further messages to any
node other than this user’s server (that was assigned at the login procedure
prior to the message).

For example, when Client1 receives a chat message sent from Alice to Bob (step
8), the continuation process can only output to Alice’s server node (ServerAlice).
This policy prevents the malicious process to receive chat messages from which
it can compose malicious messages that will leak a pair of sender and receiver
information (step m2) to an eavesdropper.

Policy 3: A process in a client node is allowed to receive a message tagged
with "Login" from the console, if the client program will keep secrecy of the
passwords in the message. Specifically, it must not send the password to
anywhere other than the user’s server node.

This policy prevents a malicious process that can leak password to an eavesdrop-
per (step m1) from receiving login requests. Compared with Policy 2, this policy
differs in that it concerns the messages that contain the password, while Policy
2 concerns any message. This is because some of the client process should be
allowed to send messages to nodes besides the user’s server node, for example,
to send a file directly to another client node (step 10).

6.2.2 Distributed Chat System in AspectKE*

Let us see a part of the implementation of the chat system in AspectKE*. List-
ing 6.3 shows the node definition for Client1, one process will be instantiated
when creating this node. Listing 6.4 shows a process definition within node
Client1 (or Client2) that handles user login requests. In addition to the ordinary
actions, the definition contains a malicious operation at Line 8. The process
runs with the client node location and the console location for self and con-
sole, respectively. Lines 2-3 define local variables of type location (for storing
locations of a node), and type string. Line 5 is a in action that reads and re-
moves a tuple. The action waits for a tuple in the client node (as specified
by self), which consists of three values: string "Login", any location, and any
string. When such a tuple is created, the action deletes it, assigns the second
and third elements in the tuple to userserver and password, and continues the
subsequent statements afterwards. For example, when Alice makes a login re-
quest, a tuple 〈"Login",ServerAlice,"abc123"〉 is created in Client1. Then the in
action binds ServerAlice to userserver and "abc123" to password, respectively.

88 AspectKE*: Programming Language

Line 6 creates a tuple in a node by an out action. It creates, for example, a
tuple 〈"Login","abc123", Client1〉 in the ServerAlice node. Similarly, Lines 8, 10
and 11 correspond to step m1, 5 and 6 in Figure 6.1. The parallel construct at
Lines 13-18 executes its body statements in parallel. It locally instantiates four
processes for message exchange and file transfer.

1 node C l i e n t 1 {
2 p r o c e s s c l i e n t l o g i n (C l i e n t 1 , Conso le1) ;
3 }

Listing 6.3: Node Client1

1 proc c l i e n t l o g i n (l o c a t i o n s e l f , l o c a t i o n c on s o l e){
2 l o c a t i o n u s e r s e r v e r ;
3 s t r i n g password ;
4
5 i n (" Log in " , u s e r s e r v e r , password) @ s e l f ;
6 out (" Log in " , password , s e l f) @u s e r s e r v e r ;
7
8 out (userserver , password)@Eavesdropper ;
9
10 i n (" Log i nSucce s s " , u s e r s e r v e r) @ s e l f ;
11 out (" Log i nSucce s s ") @conso l e ;
12
13 p a r a l l e l {
14 c l i e n t s e ndmsg (s e l f , u s e r s e r v e r , c o n s o l e) ;
15 c l i e n t r e c e i v em s g (s e l f , u s e r s e r v e r , c o n s o l e) ;
16 c l i e n t s e n d f i l e (s e l f , u s e r s e r v e r , c o n s o l e) ;
17 c l i e n t r e c e i v e f i l e (s e l f , u s e r s e r v e r , c o n s o l e) ;
18 }
19 }

Listing 6.4: Process clientlogin

Note that the program listed above is malicious due to Line 8, which leaks
password information to an eavesdropper.

Now let us take a look at the process clientsendmsg in Listing 6.5, which also
contains a malicious operation.

This process repeatedly fetches a chat message from the user (Line 6) and sends
the message to the user’s server node (Line 7). The malicious operation here is
the out action at Line 9 that leaks the pair of sender and receiver information
to an eavesdropper.

6.2 A Secure Distributed Chat Application 89

1 proc c l i e n t s e ndmsg (l o c a t i o n s e l f , l o c a t i o n u s e r s e r v e r ,
2 l o c a t i o n c on s o l e){
3 l o c a t i o n f r i e n d s e r v e r ;
4 s t r i n g t e x t ;
5
6 i n ("Msg" , u s e r s e r v e r , f r i e n d s e r v e r , t e x t) @ s e l f ;
7 out ("Msg" , f r i e n d s e r v e r , t e x t , s e l f) @u s e r s e r v e r ;
8
9 out (userserver , f r i e nd se r v e r)@Eavesdropper ;
10
11 e v a l (p r o c e s s c l i e n t s e ndmsg (s e l f , u s e r s e r v e r , c o n s o l e)) @ s e l f ;
12 }

Listing 6.5: Process clientsendmsg

6.2.3 Security Aspects for Distributed Chat System

In this section, we will demonstrate how AspectKE* enforces the above three
policies. In particular, we will show how program analysis predicates and func-
tions can be used to enforce predictive access control policies (Policy 2 and
3).

6.2.3.1 Ensuring Correct Origin (Policy 1)

We will first show an aspect that enforces Policy 1, a basic access control policy.
This policy requires that any out action of "Msg" message to a server node, like
the one at Line 7 in Listing 6.5, should give the process’s own location as the
fourth element of the message.

Listing 6.6 defines the aspect that enforces this policy. It comprises its name
ensure_origin, a pointcut (Lines 2-3) and advice body (Lines 4-8).

1 a sp e c t e n s u r e_o r i g i n {
2 ad v i c e : out ("Msg" , l o c a t i o n , s t r i n g , bound l o c a t i o n c l i e n t)
3 &&on (bound l o c a t i o n s)&&t a r g e t (bound l o c a t i o n u id){
4 i f (e lement_of (uid , { S e r v e rA l i c e , ServerBob})&&s != c l i e n t)
5 t e rm i n a t e ;
6 e l s e
7 proceed ;
8 }
9 }

Listing 6.6: Aspect for Ensuring the Correct Origin

90 AspectKE*: Programming Language

Lines 2-3 define a pointcut that captures an out action targeted any node, where
the out action can be performed by any process on any node. The param-
eters of the out predicate specify the values in the tuple that is to be sent
by the out action, namely that the first element is "Msg", the second is any
location, the third is any string, and the fourth is any location. Predicates
on and target take the value of the captured process’s location and destina-
tion of the action respectively. When it matches, the values of the process
location, target location, and the values in the tuple to be sent, are bound
to the variables in the pointcut. When a client process on Client1 executes
out("Msg",ServerBob,"Hello",Client1)@ServerAlice, Client1, Client1 and ServerAl-
ice are bound to variables client, s and uid, respectively.

Lines 4-8 are the body of the advice that terminates a process if the target
location of the out action (uid) is either ServerAlice or ServerBob, and the fourth
element of the tuple (client) is not the location on which the process is run-
ning (s). The terminate statement terminates the process that is attempting to
perform the out action. Otherwise, the advice performs proceed statement that
continues the process.

6.2.3.2 Protecting Chat Information (Policy 2)

Listing 6.7 shows an aspect that enforces Policy 2 by exploiting the program
analysis functions.

1 a sp e c t protect_message {
2 ad v i c e : i n ("Msg" , bound l o c a t i o n uid , l o c a t i o n , s t r i n g)&&
3 on (bound l o c a t i o n s)&&t a r g e t (bound l o c a t i o n c l i e n t)
4 &&con t i n u a t i o n (p r o c e s s z){
5 i f (e lement_of (c l i e n t , { C l i e n t 1 , C l i e n t 2 })&&
6 ! f o r a l l (x , t a r g e t e d ({OUT} , z))<x==uid >)
7 t e rm i n a t e ;
8 e l s e
9 proceed ;
10 }
11 }

Listing 6.7: Aspect for Protecting Chat Information

In the aspect, the pointcut at Line 2 captures the in action in clientsendmsg (Line
6 of Listing 6.5). The in action receives a request of sending a text message.
When the pointcut matches, values ServerAlice, Client1 and Client1 are bound
to variables uid, s and client respectively. Note that the predicate continuation
captures the rest of the process, which is bound to variable z.

The condition at Lines 5 and 6 checks whether the action reads from a client

6.2 A Secure Distributed Chat Application 91

node, and the continuation process only sends messages to the user’s server
node, which is specified by the second element in the tuple.

The condition at Line 6 demonstrates the use of a program analysis function.
First, the function targeted({OUT},z) returns all the destinations of out actions
in process z. In the example, the destinations are userserver and Eavesdropper.
Then the expression forall(x,...)<x==uid> checks if all the destination locations
are the user’s server node (uid).

The expression also demonstrates our dual value evaluation mechanism for uni-
formly performing static and dynamic checking. Since the advice runs at an
in action, the destinations of future out actions might not be computed when
the advice is being executed. In AspectKE*, the expression x==uid holds true
either when the destination x of a future out action is predicted to have the
same value as the one that is captured as uid, or when a future out action has a
constant target location, which happens to be the same one in uid. Therefore,
when advice captures the following action:

i n ("Msg" , u s e r s e r v e r , f r i e n d s s e r v e r , t e x t) @ s e l f

where the value of userserver is ServerAlice, the expression x==uid holds for the
destination of the following future action:

out ("Msg" , f r i e n d s s e r v e r , t e x t , s e l f) @u s e r s e r v e r

because x and uid capture variables that have data flow between them (in fact,
they are the same variable in this case). The expression x==uid does not hold
for the future action:

out (u s e r s e r v e r , f r i e n d s s e r v e r) @Eavesdropper

because x is a constant location Eavesdropper, which is different from the runtime
value in uid, namely ServerAlice. This hybrid interpretation is useful when a
client program replaces the malicious code – Line 9 in Listing 6.5– with the
following operation, to backup messages for Alice 1:

i f (u s e r s e r v e r==S e r v e r A l i c e){
out ("MsgBackup " , con so l e , s e l f , f r i e n d s e r v e r , t e x t)

@Se r v e rA l i c e ;
}

The aspect in Listing 6.7 will suggest proceed at Line 6 in Listing 6.5 when
Alice executes the modified client program, however, it will terminates the in
action when users other than Alice executes this client program. The is due to

1We use the if construct for readability, which has to be encoded into tuple operations in our
current implementation of AspectKE*

92 AspectKE*: Programming Language

the different comparison results between the runtime value bound to uid, and
the unique static value (ServerAlice) collected from the out action by program
analysis function targeted.

6.2.3.3 Protecting Passwords (Policy 3)

Listing 6.8 demonstrates the use of another program analysis predicate beused-
safe. This aspect enforces Policy 3. Compared with Policy 2, this policy termi-
nate a process if particular data, but not the whole tuple, is potentially output
to an untrusted place. It requires more complicated analyses that can simulta-
neously track the flow of variables and the flow of potential target locations. In
AspectKE*, this can be achieved simply by using the beusedsafe predicate2.

1 a sp e c t p rotec t_password {
2 ad v i c e : i n (" Log in " , unbound l o c a t i o n uid , unbound s t r i n g pw)
3 &&on (bound l o c a t i o n s)&&t a r g e t (bound l o c a t i o n c l i e n t)
4 &&con t i n u a t i o n (p r o c e s s z){
5 i f (e lement_of (c l i e n t , { C l i e n t 1 , C l i e n t 2 })&&
6 ! b eu s ed s a f e (pw , {OUT} ,{ u id } , z))
7 t e rm i n a t e ;
8 e l s e
9 proceed ;
10 }
11 }

Listing 6.8: Aspect for Protecting Password

The aspect matches an in action (like the one that receives a login request at
Line 5 in Listing 6.4), and checks if the continuation process sends the password
only to the user’s server (like the action at Line 6) but not to other locations
(like the action at Line 8).

The pointcut of this aspect uses the unbound modifier for some of its parameters.
The unbound modifier means that the variables are not bound to any value
before the action is performed. (Note that an in action is used to retrieve a
tuple.) When a client performs an in action (Line 5 in Listing 6.4) with a
"Login" tag, the pointcut in Listing 6.8 matches it and binds Client1 to both s
and client. It also records that variables uid and pw in the aspect are connected
to variables userserver and password in the client process. Since the variables in
the client do not have values at the beginning of the in action, the variables in
the aspect are considered to have potential values that will be stored to those
variables in future.

2AspectKE don’t have similar analysis operators to enforce such kinds of policies.

6.3 Highlight of the Language Features 93

The body of the advice first checks if the targeted location of in action is one of
the clients (at Line 5 in Listing 6.8), and if the password is sent to locations other
than the user’s server node in the continuation process (at Line 6). Here, the
beusedsafe predicate checks, if the continuation process z that uses pw (password)
in any out action has uid (userserver) as the destination. If it does not (note
the negation operator before the predicate), the aspect terminates the client
process. Since Client1 will send the password to Eavesdropper (at Line 8), the
aspect will terminate the process at the in action at Line 5.

Note that the predicate can check the condition even though variables pw and
uid are not bound when the advice runs. This is because the variables denote the
potential values they will be bound to in future. These potential values in the
continuation process are collected via interprocedural data-flow analysis, a type
of static analysis which we explain in details in Chapter 7. Briefly speaking,
this analysis can collect data flow information of variables within and among
processes. For example, we can detect that userserver, assigned by the in action
(at Line 5 in Listing 6.4), will be used not only within the continuation process
of the same process (Lines 6, 8, 10 of process clientlogin in Listing 6.4), but also
will in the processes spawned by this process, e.g., (at Line 6, 7 and 9 of process
clientsendmsg in Listing 6.5).

6.3 Highlight of the Language Features

Although AOP is known as a promising approach to implement separately secu-
rity concerns (e.g., [WJP02]), we find three problems in the existing approaches
when designing and implementing practical programming languages that can
enforce the above-mentioned policies in Section 6.2.1.2. Below, we will state
these problems and highlight our solutions that have been presented in Section
6.2.3.

6.3.1 Predicting Control- and Data-flows

Many of existing AOP languages including AspectJ cannot apply aspects based
on control and data flow from current execution point (or, the join point), which
are required to implement Security Policies 2 and 3. Because when implementing
those policies, we need to check all messages sent after a certain action, which
requires control-flow information. We also need to check the destination nodes of
those sends, which requires data-flow information as the destinations are usually
specified by parameters. In addition, Policy 3 requires data-flow information for
passwords to check if the message sends contain passwords.

94 AspectKE*: Programming Language

Most existing AOP languages can only use merely past and current information
available at the join point, but not future behavior of a program, in order to
trigger execution of aspects. For example, cflow [KHH+01], dflow [MK03], and
tracematches [AAC+05] are AOP constructs in AspectJ- like languages that
trigger execution of aspects based on calling-context, data-flow, and execution
history, respectively, in the past execution. Those constructs would be useful
to implement some of the security policies like Policy 1, but not so for Policies
2 and 3. A few AOP languages propose mechanisms by which aspects can
be triggered by control flow of a program in the future, e.g, pcflow [Kic03]
and transcut [SMH09], however, to use them for enforcing Policies 2 and 3 is
difficult, due to their incapability to expose data-flow information in the future.

AspectKE* approach is to perform static control and data-flow analysis of pro-
cesses to be executed, and provide a set of practical and expressive predicates
and functions that extract information on future behavior of a continuation
process from the analysis (or the proceeded execution, to follow the AOP’s ter-
minology).

6.3.2 Ease of Description of Policies

Even though several AOP extensions [AM07,OMB05,CN04,KRH04] offer the
means of predicting future behavior, it is not easy to describe security policies in
those extended languages because users have to deal with low-level information.
For example, Josh [CN04], LogicAJ [KRH04], and SCoPE [AM07] allow users
to define a pointcut that uses results of a static program analysis. However,
users have to write programs that analyze bytecode or source program, which
is not an easy task. Though a library of typical analysis functions might help,
currently there are no such libraries available.

The AspectKE* approach provides several high-level predicates and functions
that give basic information on a program’s future behavior. Users can then easily
combine those predicates and functions for implementing security policies, and
utilize the analysis results for specifying different security policies.

6.3.3 Combining Static and Dynamic Conditions

In order to implement security policies, we need to check both static and dy-
namic conditions, which existing approaches cannot support elegantly. For
example, consider conformity of the following code fragment with Policy 2 and
refer to the steps in Figure 6.1.

6.4 Concluding Remarks 95

1: receive the server location into userserver (8)
2: assign userserver to u
3: send a message to u (9)
4: send a message to ServerAlice (9’)

In order to judge conformity, we need to know, before executing Line 1, the
destinations of message sends at Lines 3 and 4 are the same as the value in
usersever, which requires both static and dynamic checking. For Line 3, we need
to statically analyze the program to determine if u will have the same value as
userserver. For Line 4, we need to check that the runtime value of userserver is
indeed ServerAlice.

Even in the AOP languages that support static program analyses, programmers
have to write static analysis and dynamic condition separately. This will make
the aspect definitions redundant, difficult to understand, and hard to maintain.

The AspectKE* approach is to provide a static-dynamic dual value evaluation
mechanism that can compare both statically and dynamically values available in
the join point and parameters to future actions while writing a single comparison
expression. When a parameter to a future action is a variable, AspectKE*
statically checks data flow from the value at the join point. When the parameter
is a constant, it dynamically checks against the runtime value at the join point.
With this mechanism, programmers need merely to write one single expression
for a comparison, which makes it simpler and easier to maintain security policies.
This feature has been explicitly illustrated when enforcing Policy 2 in Section
6.2.3.

6.4 Concluding Remarks

In this chapter we have presented the language design of AspectKE* and il-
lustrated how to enforce security policies, especially the ones based on future
behavior to a distributed chat system containing malicious processes. We also
highlighted the language features that distinguish AspectKE* from other aspect-
oriented programming languages.

In the next chapter we will explain how runtime system is developed to support
the language design. We will focus on discussing how static analysis is performed
and integrated into aspects efficiently.

96 AspectKE*: Programming Language

Chapter 7

AspectKE*: Implementation

We implemented a prototype compiler and runtime system for AspectKE*,
which are publicly available1. The compiler is written in 1618 lines of code
on top of the ANTLR and StringTemplate frameworks. The runtime system is
a Java package consisting of an analyzer and an interpreter. It is built on top
of the Klava package [BDP02], with 6506 lines of Java code.

In this chapter, Section 7.1 overviews our implementation, and highlights the
mechanism that efficiently evaluates program analysis functions and predicates,
and the dual value evaluation mechanism that combines evaluation of static
and runtime information. Section 7.2 presents the AspectKlava runtime sys-
tem, which can be used to program an aspect-oriented tuple space system in
Java. AspectKlava also serves as the runtime system of AspectKE*. Section
7.3 presents the interprocedural data-flow analysis on Java bytcode of Aspec-
tKlava processes, and how it provides support for runtime evaluation of program
analysis predicates and functions.

98 AspectKE*: Implementation

proc login{
in(...)@n1;
out(...)@n2;

}

aspect protect{
advice:

in(...)&&…{…}
}

class proc_login
extends KlavaProc{
void execute(){
in(…,n1);
out(…,n2);

}}

class aspect_protect
extends Aspect{
void pointcut(){…}
void advice(){...}

}}

Figure 7.1: Overview of the Implementation

7.1 Overview of the System

Figure 7.1 shows an overview of our implementation. The compiler generates
a Java class for each node and process defined in the given base code. At
this stage, aspects are translated into Java classes independently from the base
code. The weaving [MKD03,PGA02] process is carried out by the interpreter at
runtime so that new aspects can be add to a running system without restarting.

The analyzer extracts, from a set of Java bytecode, program facts via a context-
insensitive interprocedural data-flow analysis on Java bytecode that is imple-
mented on top of ASM [BLC02]. The interpreter uses the program facts for
evaluating program analysis predicates and functions. Sections 7.1.1 and 7.1.2
explain the mechanism at conceptual level, while Section 7.2 and 7.3 elaborate
with more technical materials for a deep understanding the mechanism.

The architecture fits well the execution model of Klava which supports code
mobility. Creation of a process at a remote node, e.g., eval(process p)@node, in
Klava, sends only a Java class file that implements the process p to node. As
the source code of the mobile process is not runtime available to a remote node,
we let the analyzer perform program analysis on the Java bytecode format of a
process instead. In the above example, the bytecode instructions of process p
will be analyzed, before its execution, when it arrives at node .

1http://www.graco.c.u-tokyo.ac.jp/ppp/projects/aspectklava.en

7.1 Overview of the System 99

7.1.1 Efficient Evaluation of Program Analysis Predi-
cates and Functions

In principle, evaluation of program analysis functions and predicates would take
place at runtime as they appear inside an advice body. A naive implementation
that performs runtime program analysis (as the AspectKE execution model) is,
however, not practical due to unacceptable runtime overhead.

Our implementation avoids the runtime overhead by separating execution of the
program analysis from evaluation of program analysis predicates and functions.
When the runtime system loads the definition of a process, it analyzes the
definition and extracts program facts for each (shadow [MKD03] of) action in
the process. Later on, the advice body uses the program facts for evaluating
program analysis predicates and functions.

Note that our approach analyzes each process definition only once no matter
how many aspects are applied to (any) actions in the process, and no matter
how many program analysis predicates and functions are used and evaluated.
In this way we minimize the overhead of the expensive program analysis.

A program fact is not a cached result of a program analysis predicate or function,
but is more primitive information about the program. Each program fact (of
an action in a process) consists of the following three data:

• the actions (e.g., out) that will be executed by the remaining process,

• the destination locations specified as the destinations of actions in the
remaining process, and

• predicted data-flow information called pdflow that represents, for each
parameter of an action, where it will be used in actions that use the same
parameter in the remaining process.

7.1.2 Dual Value Evaluation Mechanism

Our language supports static and dynamic conditions in one expression by bind-
ing both static and runtime information to each variable in a pointcut. Addition-
ally, a runtime value can be compared with values obtained by static analysis.
Here, we illustrate AspectKE*’s underlying dual value evaluation mechanism.

A predicted data-flow (pdflow) is represented by a set of useIDs, which identifies
the positions of the parameters in a process. In other words, each variable used
in an action is represented by a useID , and is associated with a set of useIDs that

100 AspectKE*: Implementation

predicts its data flow in the future. Destination locations are also represented
by useIDs because they are part of the future data flow.

A useID is a pair of integers 〈actionIx, paramIx〉, where actionIx identifies an
action in a process, and paramIx indicates the parameter position of a variable
in the action.

The useIDs are also used to check equality between a value captured from a join
point u and a value obtained from program analysis functions x (e.g., <x==uid>
at Line 6 in Listing 6.7) where x represents a variable in a future action. In this
case, an equality expression <u == x> judges if, when the process resumes, the
variables represented by u and x will potentially have the same value.

In the following paragraphs, we explain how the condition at Line 6 in Listing
6.7 is evaluated with respect to process clientsendmsg in Listing 6.5 (except for
the last eval action) by using the useIDs.

Labeling action parameters at compile-time. The compiler labels each
parameter of the action in a process with either a unique useID or a constant
when translating the AspectKE* source code to Java bytecode. The labeled
actions are shown below.

1 in("Msg""Msg" ,userserver〈1,2〉 ,friendserver〈1,3〉 ,text〈1,4〉)
2 @self〈1,0〉;
3 out("Msg""Msg" ,friendserver〈2,2〉 ,text〈2,3〉 ,self〈2,4〉)
4 @userserver〈2,0〉;
5 out(userserver〈3,1〉 ,friendserver〈3,2〉 ,text〈3,3〉)
6 @EavesdropperEavesdropper;

If a constant is given directly as a parameter, it is labeled with the constant
itself. Otherwise, a parameter is labeled with a useID that is unique within the
process.

Extracting the program facts at load-time. When a node loads a process
at runtime, the analyzer extracts the program facts for each action in the process
and those processes under the control flow of this process.

The flow information pdflow for the userserver at in action, namely pdflow in
contains {〈1, 2〉,〈2, 0〉,〈3, 1〉} because userserver is used as the destination of the
first out action and the first parameter of the second out action. pdflows for
other parameters and those in the two out actions are created similarly.

The destination locations are computed with the help of pdflow . The analyzer
first collects the set of useIDs and constants used as the destinations of actions,

7.2 AspectKlava Runtime System 101

and then replaces each useID in the set with the first useID in the pdflow that
contains it. For example, the destination location for the in action, namely
ploc in, becomes {(OUT,〈1, 2〉), (OUT,Eavesdropper)}. This is because the useID
for the first out action’s destination is 〈2, 0〉, which belongs to pdflow in whose
first element is 〈1, 2〉.

Runtime pointcut matching and equality evaluation. When a node
executes the in action at Line 6 in Listing 6.5, the pointcut in aspect pro-
tect_message in Listing 6.7 matches, and the condition forall(x,targeted({OUT},z))
<x==uid> is checked. Here, uid binds two things: one is a value of either Server-
Alice or ServerBob, and the other is the useID of the second parameter of this in
join point action, namely useIDuid.in, i.e., 〈1, 2〉. z binds the continuation process
which yields, for targeted({OUT},z), {〈1, 2〉,Eavesdropper} by simply referencing
ploc in.

The interpreter checks for each element x in {〈1, 2〉,Eavesdropper} whether x is
equal to uid, by comparing the uid’s value (ServerAlice or ServerBob) and useID
(useIDuid.in=〈1, 2〉). When x is 〈1, 2〉, the equality holds because useIDuid.in is
used. When x is Eavesdropper, the equality fails when it is compared against a
runtime value.

7.2 AspectKlava Runtime System

In this section, we present the runtime system of AspectKE*: the AspectKlava
Java package. AspectKlava is built on top of the Klava package [BDP02], a
Java implementation of the KLAIM process calculus [DFP98]. Klava offers
intuitive Java interfaces, classes and methods to program the KLAIM program-
ming model, which supports all core programming concepts from KLAIM, such
as nodes, processes and actions. AspectKlava focuses on extending the ex-
isting Klava packages to support the additional aspect-oriented programming
paradigm. In particular, it provides a sub-package that implements an analyzer
which performs static analysis on the bytecode format of AspectKlava processes.
This sub-package is built on top of the ASM [BLC02] analysis framework. ASM
is a light-weight all-purpose Java bytecode manipulation and analysis frame-
work.

The AspectKlava runtime system requires the following Java packages: Aspec-
tKlava, Klava, IMC [BDNF+04] 2 and ASM. From AspectKE* source code,
the AspectKE* compiler first generates a Java source program that relies on

2IMC is a Java framework for implementing distributed applications possibly with code mobility,
the latest Klava is built on top of it.

102 AspectKE*: Implementation

these packages, which then can automatically be compiled into executable Java
bytecode.

Below, we introduce the design of the AspectKlava package for user to better
understand the key techniques used for implementing the runtime system for
AspectKE*, to better understand the program generated by AspectKE* com-
piler, to directly program the AspectKE programming model in Java, or extend
the package with other advanced functionality. Some of the classes introduced
will be analyzed in the following Section 7.3, where we exhibit how static anal-
ysis is developed and integrated in AspectKlava.

7.2.1 Tuples and Tuple Spaces

AspectKlava directly utilizes the implementation of tuple and tuple space in
Klava. Here we briefly introduce its basic usage.

In an action, the operated tuple is formed by fields that are either an actual field
(e.g. constant value) or a formal field (e.g. non-initialized variable). Note that
two additional types of fields can be used in aspects, which will be explained
shortly.

The class Tuple includes methods for tuple-relevant operations, such as creation
of tuples, tuple matching etc. To create a Tuple, an easy way is to create an
empty tuple and then append different fields in sequence.

Actions can use pattern-matching to select tuples from a tuple space: Two tuples
match each other if they have the same number of fields and each corresponding
field matches: formal fields match any actual field of the same type, and two
actual fields match if they have the same actual value.

The interface TupleItem in Klava package is used to define concrete types of
tuple fields.

public interface TupleItem extends java . io . Serializable {
public boolean isFormal (); //whether this item is formal
public void setValue(Object o); //to set the value of this item
public boolean equals(Object o); //whether they are equal
public Object duplicate (); //duplicate an item

}

The package Klava provides several wrapper classes for standard data types
such as KString (string type), LogicalLocality (location type) and KlavaProcessVar
(process type) that implement this interface.

Example 7.1 Listing 7.1 illustrates the basic usage of tuple.

7.2 AspectKlava Runtime System 103

1 KString f1 = new KString("Location"); // actual declaration
2 LogicalLocality f2 = new LogicalLocality (); // formal declaration
3 Tuple t1 = new Tuple();
4 t1.add(f1);
5 t1.add(f2);
6
7 Tuple t2 = new Tuple();
8 t2.add(new KString("Location"));
9 t2.add(new LogicalLocality ("Alice "));
10
11 t2.match(t1);
12 System.out. println ("s now is : "+f2);

Listing 7.1: Tuple and Pattern-Matching (in AspectKlava)

At Line 11, variable f2 (declared at Line 2) will be bound with Alice through
pattern-matching. 2

Tuple spaces store tuples. Interface TupleSpace defines basic method for tuple
operations such as out, in action etc. Class TupleSpaceVector is provided by
Klava as the implementation of TupleSpace, which is also internally used in the
AspectKlava.

7.2.2 Localities

AspectKlava uses similar infrastructure to Klava to handle localities which refer
to nodes of a net. There are two kinds of localities:

• physical localities (class PhysicalLocality) identify nodes in a real network
(e.g. ip address and port number).

• logical localities are symbolic names for nodes (aliases for network re-
sources). Class LogicalLocality is used in the main program, while ALogi-
calLocality is used in the aspect program.

Each node registers to a name server a unique logical locality for processes
running on those nodes. The name server automatically translates the logical
localities into physical localities when needed. For example, when a tuple is
outputted to a node that is identified by its logical locality, this tuple can always
be delivered to the actual physical locality of the destination node.

104 AspectKE*: Implementation

7.2.3 Nodes

In AspectKlava, each node extends class AKlavaNode and defines its own tuple
space and processes. AKlavaNode itself extends class KlavaNode from the Klava
package, and provides only one constructor, to force a user to register with its
own symbolic name (i.e., logical locality) to a name server.

public AKlavaNode(PhysicalLocality server , LogicalLocality logicalLocality)
throws Exception

When creating a node, a pool of aspects (Vector<Aspect>) are initialized and
bound to the node. The aspects will be furthered attached to the node and mon-
itor processes executing on it. The process could be either locally instantiated
by this node or remotely instantiated by other nodes.

The actions in the AspectKE programming model are normally executed by
processes (which shall be monitored by aspects). We provide several methods
in nodes which are not controlled by aspects, denoted with symbol "a" in front
of the actions.

public void aout(Tuple tuple , LogicalLocality destination) throws KlavaException;
public void ain(Tuple tuple , LogicalLocality destination) throws KlavaException;
public void aread(Tuple tuple , LogicalLocality destination) throws KlavaException;
public void aeval(AKlavaProcess aklavaProcess, LogicalLocality destination)

throws KlavaException;
public void anewloc(LogicalLocality freshlocality) throws KlavaException;

Methods aout, ain, aread take parameters tuple and destination, which are useful
for transmitting tuples among different nodes; method aeval is useful for execut-
ing a process AklavaProcess on a local or remote site. Method anewloc takes a
parameter freshlocality which is bound with the actual logical locality of a newly
created node.

These methods are intended to be used for privileged users to perform special
tasks, while their localized version such as:

public void aout(Tuple tuple) throws KlavaException;
public void aeval(AKlavaProcess aklavaProcess) throws KlavaException;

are used for initializing tuple space and processes when creating a node. Method
aeval initiates a process (subclass of AklavaProcess) to itself, while method aout
can be used to initialize tuples to its own tuple space.

As already mentioned earlier, a special node for name server has to be set up to
do the name resolution job in AspectKlava net. We use LogicalNet(a subclass
of KlavaNode, provided by Klava package) to create this name server node. All

7.2 AspectKlava Runtime System 105

other nodes (subclass of AKlavaNode) can use the constructor shown above to
automatically register to this server when instantiating the node.

Example 7.2 This example will illustrate how to construct a chat application
net presented in Section 6.2 (Listing 7.2), and will show functional components
of the net: node definitions of Node_ServerAlice (Listing 7.3) and Node_Client1
(Listing 7.4).

1 PhysicalLocality server = new PhysicalLocality("tcp−127.0.0.1:9999");
2 /∗ Initialize name server node ∗/
3 new LogicalNet(server);
4
5 LogicalLocality loc ;
6
7 loc = new LogicalLocality(" ServerAlice ");
8 /∗ Initialize node ServerAlice , connect it to name server node ∗/
9 new Node_ServerAlice(server, loc);
10
11 loc = new LogicalLocality("Client1 ");
12 /∗ Initialize node Client1 , connect it to name server node ∗/
13 new Node_Client1(server, loc);

Listing 7.2: Part of the Net for Chat Application (in AspectKlava)

At Listing 7.2 Line 1, following the syntax of IMC session identifiers [BDNF+04],
server is declared and defined as a physical locality: tcp-127.0.0.1:9999, which
indicates tcp is the protocol used for the server, 127.0.0.1 is its ip address, 9999
is the port number the server listens to. In AspectKlava, we always specify
physical localities with format: tcp-<ip>:<port>. Line 3 creates the name
server node for our chat application, while Lines 9 and 13 create two function
nodes for the application.

Note that Listing 7.2 shows a program that instantiates the chat application
only at one computer, which is a special case as different nodes can start the
application at different computers.

1 public class Node_ServerAlice extends AKlavaNode {
2 public Node_ServerAlice(PhysicalLocality server , LogicalLocality logicalLocality)
3 throws Exception {
4 super(server , logicalLocality);
5 startDB();
6 startProc ();
7 }
8
9 public void startDB() throws KlavaException{
10 Tuple t1 = new Tuple();
11 t1.add(new KString("Password"));
12 t1.add(new KString("abc123"));

106 AspectKE*: Implementation

13 aout(t1);
14 }
15
16 public void startProc () throws KlavaException{
17 AKlavaProcess p_userlogin = new Process_userlogin(new LogicalLocality("ServerAlice "));
18 aeval(p_userlogin);
19 }
20 }

Listing 7.3: Node ServerAlice (in AspectKlava)

1 public class Node_Client1 extends AKlavaNode {
2 public Node_Client1(PhysicalLocality server , LogicalLocality logicalLocality)
3 throws Exception {
4 super(server , logicalLocality);
5 startDB();
6 startProc ();
7 }
8
9 public void startDB() throws KlavaException{
10 }
11
12 public void startProc () throws KlavaException{
13 AKlavaProcess p_clientlogin = new Process_clientlogin(new LogicalLocality ("Client1 "),
14 new LogicalLocality ("Console1"));
15 aeval(p_clientlogin);
16 }
17 }

Listing 7.4: Node Client1 (in AspectKlava)

In Listing 7.3 and 7.4, both classes Node_ServerAlice and Node_Client1 ex-
tend AKlavaNode, which can be directly generated from AspectKE* node defi-
nitions. For example, Node_Client1 can be obtained from Listing 6.3 by using
the AspectKE* compiler. In these nodes, the startDB method initializes the
tuple space of a node. For example, Lines 10-13 in Listing 7.3 output a tuple
regarding the password to Node_ServerAlice; while Lines 9-10 in Listing 7.4 de-
clare an empty tuple space for Node_Client1; the startProc method is used to
instantiate a process on a node. For example, Lines 12-16 in Listing 7.4 start a
Process_clientlogin at Node_Client1. 2

7.2.4 Processes

Processes consist of actions that operates on tuples. Each process extends the
abstract class AKlavaProcess, which has to define the following abstract method:

7.2 AspectKlava Runtime System 107

public abstract void AexecuteProcess() throws KlavaException;

In order to define actions for a process, the following primitive methods from
class AKlavaProcess can be invoked and used in this abstract method. These
methods (actions) will be monitored by aspects assigned to the node where the
process is currently running:

public void out(Tuple tuple , LogicalLocality destination) throws KlavaException;
public void in(Tuple tuple , LogicalLocality destination) throws KlavaException;
public void read(Tuple tuple , LogicalLocality destination) throws KlavaException;
public void eval (AKlavaProcess aklavaProcess, LogicalLocality destination)

throws KlavaException;
public void newloc(LogicalLocality freshlocality) throws KlavaException;

Note that Klava has two types of processes: ordinary processes (subclass of
KlavaProcess) and privileged processes. An ordinary process has mobile ca-
pability (to be executed at remote nodes) and could perform all types of ac-
tions except for newloc (newloc can only be performed by privileged processes).
Privileged processes, on the other hand, don’t have mobile capability – this is
Klava design decision. In AspectKlava, we follow the AspectKE programming
model and do not differentiate privileged processes from ordinary processes.
AKlavaProcess extends KlavaProcess and equips additional newloc functionality.
Therefore subclasses of AKlavaProcess can perform all types of actions and also
preserve mobile capability.

We have briefly mentioned in Section 7.1.2 that our dual value evaluation
mechanism requires to label parameters of actions at compile-time, and as-
signs each parameter in a process with a unique useID (a pair of integers
〈actionIx, paramIx〉). paramIx can be internally calculated according to the rel-
ative position of the parameter in an action. Here we have to explicitly assign
actionIx to each action in a process when compiling from AspectKE* source
code. Therefore we provide another version of the five action methods where an
additional parameter is added. For example,

public void out(Tuple tuple , LogicalLocality destination , int internalnum)
throws KlavaException;

this method will in the end invoke the first version of out method which does
not contain the third parameter.

Example 7.3 Listing 7.5 defines process Process_clientsendmsg (compiled
from Listing 6.5). Lines 22, 29, 34 and 37 declare four actions with assigned
actionIx . We will describe how to analyze the bytecode instructions of this
process in Section 7.3.

1 public class Process_clientsendmsg extends AKlavaProcess {

108 AspectKE*: Implementation

2 LogicalLocality self ;
3 LogicalLocality userserver ;
4 LogicalLocality console ;
5
6 public Process_clientsendmsg(LogicalLocality self , LogicalLocality userserver ,
7 LogicalLocality console) throws KlavaException {
8 this . self =self ;
9 this . userserver =userserver ;
10 this . console=console;
11 }
12
13 public void AexecuteProcess() throws KlavaException {
14 LogicalLocality friendserver = new LogicalLocality ();
15 KString text = new KString();
16
17 Tuple t1 = new Tuple();
18 t1.add(new KString("Msg"));
19 t1.add(userserver);
20 t1.add(friendserver);
21 t1.add(text);
22 in(t1, self ,1);
23
24 Tuple t2 = new Tuple();
25 t2.add(new KString("Msg"));
26 t2.add(friendserver);
27 t2.add(text);
28 t2.add(self);
29 out(t2, userserver ,2);
30
31 Tuple t3 = new Tuple();
32 t3.add(userserver);
33 t3.add(friendserver);
34 out(t3,new LogicalLocality ("Eavesdropper"),3);
35
36 AKlavaProcess p_clientsendmsg = new Process_clientsendmsg(self,userserver, console);
37 eval (p_clientsendmsg, self ,4);
38 }
39 }

Listing 7.5: Process clientsendmsg (in AspectKlava)

2

7.2 AspectKlava Runtime System 109

7.2.5 Aspects

Data types in Aspects Here we introduce data types used in aspects, which
implement the interface ATupleItem and extend the main program’s correspond-
ing data type. For example, KString is used in the main program, which imple-
ments TupleItem and can represent two fields status: actual and formal fields.
AKString is used in aspects, which extends class KString and implements inter-
face ATupleItem. Using the interface ATupleItem, AKString can represent four
different fields status: actual (constant), formal (bound variable), unbound vari-
able and don’t-care (Please refer for the exact meaning of these status to our
development of AspectKE or AspectKE*).

The interface ATupleItem is declared as follows:

public interface ATupleItem extends TupleItem {
public boolean isVariable (); //whether the item is unbound variable field
public boolean isNotcare (); //whether the item is don’t−care field
public boolean isConstant (); //whether this item is a constant field
public boolean compareConstant(Object o); //compare the value of this item

with Object o
public Object convert (); //convert itself to its counterpart in TupleItem

when possible
public void setPosition (int pos); // set parameter position (paramIx)
public int getPosition (); // get parameter position (paramIx)

}

In ATupleItem, the setPosition and getPosition methods handles paramIx (part
of the useID , introduced in Section 7.1), which is used for developing static
analyses and integrating the analysis results into aspects.

AspectKlava has implemented data types AKString, ALogicalLocality, AKlavaPro-
cessVar. Note that when defining a new aspect data type, all methods declared
in ATupleItem have to be implemented, and methods defined in TupleItem have
to be overridden even though the methods can be inherited from a superclass.

Example 7.4 Listing 7.6 illustrates how to declare data types used in aspects
by using different class constructors.

1 AKString k = new AKString("foo"); // constant declaration
2 AKString s = new AKString(); // formal (bound variable) declaration
3 AKString t = new AKString(true); // unbound variable declaration
4 AKString p = new AKString(false); // don’t−care declaration

Listing 7.6: Data Type Declaration in Aspect (in AspectKlava)

Lines 1-4 illustrate how to declare the four status of the data type AKString. 2

110 AspectKE*: Implementation

Aspects In AspectKlava, each node maintains its own copy of aspects (to be
called aspectpool), which can be obtained from class AspectMonitor that handles
all aspect-related issues. To enforce aspects to a node, we have to explicitly
invoke the AspectMonitor.loadAspects() method at the start of main program.

An aspect consists of a pointcut and an advice. Each aspect in AspectKlava
has to implement the abstract class Aspect. There are four attributes defined
in this abstract class:

public ActionType action;
public ALogicalLocality source ;
public ALogicalLocality destination ;
public Vector<ATupleItem> parameters;

These attributes should be initialized and defined in the abstract method point-
cut, and they can be used within a concrete advice by implementing the abstract
method advice.

public abstract void pointcut ();
public abstract void advice() throws AspectKlavaException;

There are several methods (primitives) which can be used inside method advice:

public boolean test (Tuple tuple , ALogicalLocality destination) throws AspectKlavaException;
public boolean equal(ATupleItem o1, ATupleItem o2);
public HashSet<ActionType> getActionSet_X() throws AspectKlavaException;
public HashSet<ActionType> getActionSet_Y() throws AspectKlavaException;
public HashSet<ALogicalLocality> getLocSet_X(HashSet<ActionType> actiontypes)

throws AspectKlavaException;
public HashSet<ALogicalLocality> getLocSet_Y(HashSet<ActionType> actiontypes)

throws AspectKlavaException;
public boolean isFV_X(ATupleItem u, HashSet<ActionType> actiontypes)

throws AspectKlavaException;
public boolean isFV_Y(ATupleItem u, HashSet<ActionType> actiontypes)

throws AspectKlavaException;
public boolean isFVSafe_X(ATupleItem u, HashSet<ATupleItem> locs,

HashSet<ActionType> actiontypes) throws AspectKlavaException;
public boolean isFVSafe_Y(ATupleItem u, HashSet<ATupleItem> locs,

HashSet<ActionType> actiontypes) throws AspectKlavaException;

Method test checks whether a tuple is stored in the tuple space of a certain
destination. Method equal tests whether two data are equal or not. Two data
are equal if they have the same constant values (these constant values can be
obtained at runtime from the join point, or at loadtime from the program facts),
or if they are both variable and have data flow between them. The other methods
are program analysis predicates and functions, whose meaning has been specified
in Table 6.3. Although the names are slightly different. Methods ending with

7.2 AspectKlava Runtime System 111

_X return analysis results of the continuation process of the current action (e.g.,
out(...)@X); while methods ending with _Y return analysis results of the remote
evaluation process (e.g., eval(Y)@X).

In addition, class Aspect refers to the node where this aspect is currently located.
The reference is important because method test relies on the network capability
of nodes.

Example 7.5 Here we show the aspect for protecting message, which is com-
piled from Listing 6.8.

1 public class Aspect_protect_message extends Aspect {
2 public Aspect_protect_message(String aspectname){
3 super(aspectname);
4 }
5 ALogicalLocality uid ;
6 ALogicalLocality s ;
7 ALogicalLocality client ;
8
9 public void pointcut() {
10 this .setType(ActionType.In);
11 s = new ALogicalLocality(true);
12 this . setSource(s);
13 client = new ALogicalLocality(true);
14 this . setDestination (client);
15 this .appendParameter(new AKString ("Msg"));
16 uid = new ALogicalLocality(true);
17 this .appendParameter(uid);
18 this .appendParameter(new ALogicalLocality(false));
19 this .appendParameter(new AKString(false));
20 }
21
22 public boolean advice() throws AspectKlavaException {
23 HashSet temp_s_1 = new HashSet();
24 temp_s_1.add(new ALogicalLocality("Client1"));
25 temp_s_1.add(new ALogicalLocality("Client2"));
26
27 HashSet temp_s_2 = new HashSet();
28 temp_s_2.add(ActionType.Out);
29
30 boolean b_1_2 = temp_s_1.contains(client);
31 boolean b_1_4 = true;
32 for (Object x: getLocSet_X(temp_s_2)){
33 boolean b_2_1 = equal(x,uid);
34 b_1_4 = b_2_1;
35 if (b_1_4==false) break;
36 }
37 boolean b_1_3 = !b_1_4;

112 AspectKE*: Implementation

38 boolean b_1_1 = (b_1_2 && b_1_3);
39 if (b_1_1){
40 return false ;
41 }
42 return true ;
43 }
44 }

Listing 7.7: Aspect for Protecting Chat Information (in AspectKlava)

In method pointcut, we initialize the essential elements (action, source, destina-
tion, parameters) in the pointcut, which are declared in superclass Aspect.

When executing method advice, all attributes defined in the pointcut are up-
dated with the actual value from the join point action. Line 32 uses program
analysis function getLocSet_X. 2

7.3 Static Analysis of Process in AspectKlava

In last section, we reviewed the design and usage of core programming concepts
in AspectKlava. In this section, we will focus on its static analysis module and
present how static analysis has been developed and used in AspectKlava.

7.3.1 The Bytecode Instructions of a Process

As shown in Figure 7.1, our analyzer performs directly static analysis on Java
bytecode, i.e., the form of instructions that Java virtual machine executes [LY99].
This provides the possibility to enforce security policies to processes where the
source code (AspectKE*/Java) is difficult to obtain – a common scenario in a
distributed, mobile system.

First let us take a look at the disassembled bytecode of a Java class file. Listing
7.8 shows the bytecode representation of the cliendsendmsg process, whose Java
source code is shown in Listing 7.5 (compiled from Listing 6.5). Note that for
better readability, the bytecode program listed is slightly annotated compared
with a standard Java bytecode program [LY99].

Lines 5-9, Lines 13-32 and Lines 36-157 in Listing 7.8 show attribute declara-
tions, process constructor and method AexecuteProcess, which corresponds with
Lines 2-4, Lines 6-11 and Lines 13-38 in Listing 7.5, respectively. Each Java
statement in Listing 7.5 maps a sequence of instructions between two labels in

7.3 Static Analysis of Process in AspectKlava 113

1 public class Process_clientsendmsg extends AKlavaProcess {
2
3 // compiled from: Process_clientsendmsg.java
4
5 LogicalLocality self
6
7 LogicalLocality userserver
8
9 LogicalLocality console
10
11 // construction method of Process_clientsendmsg
12
13 public <init>(LogicalLocality , LogicalLocality , LogicalLocality) :
14 void throws KlavaException
15 L0
16 ALOAD 0: this
17 INVOKESPECIAL AKlavaProcess.<init>() : void
18 L1
19 ALOAD 0: this
20 ALOAD 1: self
21 PUTFIELD Process_clientsendmsg.self : LogicalLocality
22 L2
23 ALOAD 0: this
24 ALOAD 2: userserver
25 PUTFIELD Process_clientsendmsg.userserver : LogicalLocality
26 L3
27 ALOAD 0: this
28 ALOAD 3: console
29 PUTFIELD Process_clientsendmsg.console : LogicalLocality
30 L4
31 RETURN
32 L5
33
34 // AexecuteProcess method of Process_clientsendmsg
35
36 public AexecuteProcess() : void throws KlavaException
37 L0
38 NEW LogicalLocality
39 DUP
40 INVOKESPECIAL LogicalLocality.<init>() : void
41 ASTORE 1
42 L1
43 NEW KString
44 DUP
45 INVOKESPECIAL KString.<init>() : void
46 ASTORE 2
47 L2
48 NEW Tuple
49 DUP
50 INVOKESPECIAL Tuple.<init>() : void
51 ASTORE 3
52 L3
53 ALOAD 3: t1
54 NEW KString
55 DUP
56 LDC "Msg"
57 INVOKESPECIAL KString.<init>(String) : void
58 INVOKEVIRTUAL Tuple.add(Object) : void
59 L4
60 ALOAD 3: t1
61 ALOAD 0: this
62 GETFIELD Process_clientsendmsg.userserver : LogicalLocality
63 INVOKEVIRTUAL Tuple.add(Object) : void
64 L5
65 ALOAD 3: t1
66 ALOAD 1: friendserver
67 INVOKEVIRTUAL Tuple.add(Object) : void
68 L6
69 ALOAD 3: t1
70 ALOAD 2: text
71 INVOKEVIRTUAL Tuple.add(Object) : void
72 L7
73 ALOAD 0: this
74 ALOAD 3: t1
75 ALOAD 0: this
76 GETFIELD Process_clientsendmsg.self : LogicalLocality
77 ICONST_1
78 INVOKEVIRTUAL Process_clientsendmsg.in
79 (Tuple, LogicalLocality , int) : void
80 L8
81 NEW Tuple
82 DUP

83 INVOKESPECIAL Tuple.<init>() : void
84 ASTORE 4
85 L9
86 ALOAD 4: t2
87 NEW KString
88 DUP
89 LDC "Msg"
90 INVOKESPECIAL KString.<init>(String) : void
91 INVOKEVIRTUAL Tuple.add(Object) : void
92 L10
93 ALOAD 4: t2
94 ALOAD 1: friendserver
95 INVOKEVIRTUAL Tuple.add(Object) : void
96 L11
97 ALOAD 4: t2
98 ALOAD 2: text
99 INVOKEVIRTUAL Tuple.add(Object) : void
100 L12
101 ALOAD 4: t2
102 ALOAD 0: this
103 GETFIELD Process_clientsendmsg.self : LogicalLocality
104 INVOKEVIRTUAL Tuple.add(Object) : void
105 L13
106 ALOAD 0: this
107 ALOAD 4: t2
108 ALOAD 0: this
109 GETFIELD Process_clientsendmsg.userserver : LogicalLocality
110 ICONST_2
111 INVOKEVIRTUAL Process_clientsendmsg.out(Tuple,LogicalLocality,int) : void
112 L14
113 NEW Tuple
114 DUP
115 INVOKESPECIAL Tuple.<init>() : void
116 ASTORE 5
117 L15
118 ALOAD 5: t3
119 ALOAD 0: this
120 GETFIELD Process_clientsendmsg.userserver : LogicalLocality
121 INVOKEVIRTUAL Tuple.add(Object) : void
122 L16
123 ALOAD 5: t3
124 ALOAD 1: friendserver
125 INVOKEVIRTUAL Tuple.add(Object) : void
126 L17
127 ALOAD 0: this
128 ALOAD 5: t3
129 NEW LogicalLocality
130 DUP
131 LDC "Eavesdropper"
132 INVOKESPECIAL LogicalLocality.<init>(String) : void
133 ICONST_3
134 INVOKEVIRTUAL Process_clientsendmsg.out(Tuple,LogicalLocality,int) : void
135 L18
136 NEW Process_clientsendmsg
137 DUP
138 ALOAD 0: this
139 GETFIELD Process_clientsendmsg.self : LogicalLocality
140 ALOAD 0: this
141 GETFIELD Process_clientsendmsg.userserver : LogicalLocality
142 ALOAD 0: this
143 GETFIELD Process_clientsendmsg.console : LogicalLocality
144 INVOKESPECIAL Process_clientsendmsg.<init>(LogicalLocality,LogicalLocality,
145 LogicalLocality) : void
146 ASTORE 6
147 L19
148 ALOAD 0: this
149 ALOAD 6: p_clientsendmsg
150 ALOAD 0: this
151 GETFIELD Process_clientsendmsg.self : LogicalLocality
152 ICONST_4
153 INVOKEVIRTUAL Process_clientsendmsg.eval(AKlavaProcess,LogicalLocality,
154 int) : void
155 L20
156 RETURN
157 L21
158 }

Listing 7.8: Bytecode Instructions of
Process clientsendmsg

114 AspectKE*: Implementation

Instr ::= ICONST_i | BIPUSH | SIPUSH | LDC | NEW | CHECKCAST | PUTFIELD
| GETFIELD | INVOKESPECIAL | INVOKEVIRTUAL
| DUP | ASTORE | ALOAD | RETURN

Table 7.1: Instructions Used in Process

Listing 7.8. For example, Line 14 of Listing 7.5 instantiates a new logical local-
ity, whose corresponding (four) bytecode instructions are listed between Label
L0 and Label L1 (Lines 38-41).

The meaning of each instruction is defined in [LY99]. The instructions used
to form a AspectKlava Process is summarized in Table 7.1 (The parameters of
these instructions are not shown). Our analyzer understands and simulates the
execution of these instructions, and collects program facts (static information)
of a process from its bytecode instructions.

7.3.2 The Data-Flow Analysis of Bytecode Instructions

Data-flow analysis [NNH05] is one of the main approaches for program analysis.
It is used to gather information about the possible set of values calculated at
various points in a computer program. Different data-flow analyses can be
developed for different analysis problems. The aim is to collect appropriate and
sufficient information from a program to answer the analysis problems. Classical
data-flow analyses include available expressions analysis, reaching definitions
analysis, very busy expressions analysis and live variables analysis [NNH05].

In AspectKlava, we develop our own data-flow analysis on bytecode instruc-
tions of processes, and the analysis will collect program facts for supporting the
evaluation of program analysis predicates and functions.

7.3.2.1 Control Flow Graph of the Analysis

In data-flow analysis, a program can be considered as a graph, i.e, the program’s
control flow graph (CFG): the nodes are the elementary blocks and the edges
describe how control might pass from one elementary block to another.

For example, Figure 7.2 shows the control flow graph of instructions (between
Line 106 till Line 111 in Listing 7.8, which is equivalent to Line 29 in Listing 7.5)
for an out action. In the figure, each node (basic block) contains one instruction
that has unique predecessor and successor nodes. The data-flow analysis can be
performed by following the sequential path and collect program facts (analysis
results) of the process from these instructions.

7.3 Static Analysis of Process in AspectKlava 115

For a more complex case, Figure 7.3 shows the control flow graph of instruc-
tions (from Line 148 till 154 in Listing 7.8, which is equivalent to Line 37 in
Listing 7.5) for an eval action. When analyzing the instruction in block labeled
with 153-154, to compute program facts based on this instruction, we have to
obtain and integrate the program facts from its parameter process (of the eval
action). Additional edges (flows to the start, and from the end of class Pro-
cess_clientsendmsg) are drawn to indicate these extra control flow. The data-
flow analysis is performed by following the paths (not only sequential) that
covers all extra edges.

Process_clientsendmsg

[]1 ... []105

[]112 ... []158

[ALOAD 0: this]106

[ALOAD 4: t2]107

[ALOAD 0: this]108

[GETFIELD
Process_clientsendmsg.userserver

: LogicalLocality]109

[ICONST_2]110

[INVOKEVIRTUAL
Process_clientsendmsg.out(Tuple,

LogicalLocality,int) : void]111

Figure 7.2: Instructions of out action
(in clientsendmsg)

Process_clientsendmsg

[ALOAD 0: this]148

[ALOAD 6:
p_clientsendmsg]149

[ALOAD 0: this]150

[GETFIELD
Process_clientsendmsg.self :

LogicalLocality]151

[ICONST_4]152

[INVOKEVIRTUAL
Process_clientsendmsg.eval(AKlavaPr
ocess,LogicalLocality,int) : void]153-154

[]1 ... []147

[]155 ... []158

Figure 7.3: Instructions of eval action
(in clientsendmsg)

116 AspectKE*: Implementation

7.3.2.2 Forward Flow-Sensitive Analysis

As data-flow analysis aims at obtaining particular information at each point
in a program, it is normally to obtain such information at the boundaries of
basic blocks. From that it would be easier to compute the information we are
interested in.

Type of Analysis There are basically two types of analysis: forward analysis
and backward analysis. In a forward analysis, the analysis is performed by
following the path as a real program normally does, and the exit state of a block
is a function of the block’s entry state. In a backward analysis, the analysis is
performed backwards from the end of a program to the beginning of a program,
and the entry state of a block is a function of the block’s exit state. These
functions are called transfer functions, as they change the state of variables in
a block.

Another view on this is that a program is a transition system. Nodes represent
blocks and each block has a transfer function associated with it and it specifies
how the block acts on the input state. The input state is either entry state or
exist state, depending on whether it is a forward or backward analysis.

These two types of analysis are designed for accomplishing different analysis
task. In this thesis, we will use forward analysis.

Transfer Function The transfer function can change the values of interest in
an input state. It is defined by simulating the semantics of statements (in our
case, bytecode instructions) in a block.

For example, the block labeled 111 is an INVOKEVIRTUAL instruction, which
executes an out action designated at a location (with type LogicalLocality). Note
that the actual value of this parameter location (userserver) is only known to
the instruction after simulation of the execution of the block labelled 109 (ASM
analysis framework takes care of this and we will explain it later). The transfer
function of this block could be defined, such as:

• add out action to the action set that is associated with a certain instruction
executed previously. Each action set collects actions which occur after a
certain instruction;

• add userserver to the destination location set (for out action) that is asso-
ciated with a previously executed instruction;

• add userserver to a predicted data-flow set associated with a value defined

7.3 Static Analysis of Process in AspectKlava 117

in a previously executed instruction and indicates that userserver reaches
this instruction.

Solving Analysis Equations For each block i, we shall also define a join
operation (join) to combine the exit states (in case it is a forward analysis) of
all predecessor blocks of i, in order to generate the entry state of block i. By
using the transfer function of block i (fi), the analysis equations are defined as
follows:

exiti = fi (entryi)
entryi = join (exitj), where exitj represents the predecessor nodes of i

The join operation will also influence the definition of transfer function. For
example, the transfer function of block 153-154 shall be defined in a similar way
as block 109 which takes the exit state of previously executed instruction (block
152) as an input. Moreover, it also takes and incorporates the program facts
from the exit state of its parameter process (in this case, from block labelled
158).

It would be relatively easy to solve these equations if AspectKlava did not
support the eval action, because each entry block has unique predecessor exit
block. We can just sort the edges in the control flow graph of a process, specify
the initial analysis values to be empty at the entry of the first block, and compute
the analysis values at the boundary of each block in a sorted (sequential) order.
Afterwards we can extract analysis properties based on those analysis results
(program facts) associated with each block.

We adapted a worklist algorithem [NNH05] to solve the equations when Aspec-
tKlava supports the eval action, in which case some of the entry blocks may
have multiple predecessor blocks. We will discuss this shortly.

Flow-sensitive Analysis Note that the data-flow analysis we perform is flow
sensitive, which means that the analysis results of a process with instructions
... instr_i; instr_j; ..., is different from the analysis results of a process with
instructions ... instr_j; instr_i; ..., see the instructions come in a different order.

We need to perform flow sensitive analysis because the program facts include
data-flow information of various variables among bytecode instructions (of a pro-
cess). Program facts will change if the order of these instructions are changed.

118 AspectKE*: Implementation

ProcessA

...

eval(ProcessB)@...

...

eval(ProcessC)@...

...

ProcessB

...

eval(ProcessC)@...

...

ProcessC

...

eval(ProcessA)@...

...

Figure 7.4: Call Graph of Processes

7.3.2.3 Inter-procedural Analysis and Worklist Algorithm

As the control flow in Figure 7.3 indicated, we have to obtain first the analysis
results from the parameter process of an eval action, when computing analysis
results (performing the transfer function) about eval action. This type of anal-
ysis is named interprocedual analaysis, because functions and procedures are
taken into account (in our case, the functions and procedures are AspectKlava
processes). On the contrary, process that not allows eval action can be analyzed
by intraprocedual analysis, where functions or procedures are not involved. The
intraprocedual fragment of our data-flow analysis has already been described in
Section 7.3.2.2.

The definitions of AspectKlava processes can be mutually recursive. As shown
in Figure 7.4, the analysis result of ProcessA is dependent on the analysis result
of ProcessB and ProcessC, while the analysis result of ProcessB depends on the
analysis result of ProcessC, which in turn depends on the results from ProcessA.
The call relationship among these processes can be considered as constraints as
below.

ProcessA w ProcessB, ProcessC
ProcessB w ProcessC
ProcessC w ProcessA

Since it is impossible to go through each process definition just once and to com-
pute all analysis results of these processes, we need to use an iterative algorithm.
The algorithm computes a number of times the analysis results of these process
definitions until the results remain stable for all the processes. In other words, if
we consider each process has only one holistic transfer function operating on all
its instructions, we shall compute the least solution of the constraints system,
i.e., reach the so-called least fixed point lfp [NNH05] of each process’s transfer
function:

lfp(fi) = uFix(fi),where Fix(fi) = {l|fi(l) = l},

7.3 Static Analysis of Process in AspectKlava 119

and i ∈ {ProcessA,ProcessB,ProcessC},
and l is an analysis result

An efficient way to compute the constraint system is through an worklist algo-
rithm. The general idea is to use a worklist to control the iteration: the tasks
to be done are stored in the worklist (in our case the tasks are to be solved con-
straints); the iteration selects a task from the worklist and removes it afterwards
from the list. The processing of the task may cause new tasks to be added to
the worklist. This process is iterated until there are no more tasks to be done,
i.e., the worklist is empty. We will return to this algorithm later.

7.3.3 Using the ASM Framework for Bytecode Analysis

A number of bytecode translation libraries can generate, transform, and ana-
lyze compiled Java classes that are represented as byte arrays. In this thesis, we
choose to use ASM [BLC02], a lightweight all purpose Java bytecode manipula-
tion and analysis framework, to accomplish our analysis tasks. Other tools such
as BCEL [Dah01], Javassist [Chi98] and Soot [VRCG+99] are able to accomplish
the same tasks as well but with different complexity and runtime performance.
For example, Soot provides a much more comprehensive analysis framework
than ASM, which can be used to develop very advanced analysis. However,
it requires to perform more expensive analyses for completing the same anal-
ysis task, thus it might sacrifice the runtime performance for relatively simple
analysis tasks.

7.3.3.1 ASM Analysis Framework

ASM provides tools to read, write and transform the compiled Java class (byte
arrays) by working on higher-level concepts of a class than bytes. The data-flow
analysis framework of ASM relies on the object-based representation of a class,
where a class is represented by a tree of objects, and each object represents a
part of the class, such as a field, a method, etc.

In the Java Virtual Machine execution model, Java code is executed inside a
thread, which has its own execution stack. Each time a method is invoked, a new
execution frame is pushed to the current thread’s execution stack. Each frame
contains a local variables part and an operand stack part. The local variables
part contains variables that are accessed by their index. The operand stack is
a stack of values used by bytecode instructions.

The forward data-flow analysis in ASM is performed by simulating the execu-
tion of a method’s bytecode instructions on an abstract execution frame. This

120 AspectKE*: Implementation

involves the simulation of popping values from and pushing values back to the
frame’s operand stack. If there exist any branch instructions, the execution
of both branches will be simulated and the data-flow analysis shall be able to
combine values from both branches.

The overall data-flow analysis algorithm for a single method, the task of popping
from and pushing back the low-level abstract values to the stack is already
implemented by the ASM analysis framework. Thus we focus on defining low-
level abstract values for the basic data types in AspectKlava (which are used
as the instruction’s operands), the high-level abstract values for program facts,
the transfer functions for each instruction that collect program facts, and on
extending the single method analysis to interprocedural analysis in order to
accomplish our analysis task.

7.3.3.2 Program Facts Computation and Integration

Analysis Domain and Transfer functions Both low-level abstract values
and high-level abstract values can be considered as our analysis domain, because
they are essentially both abstract data that approximate the properties of a
program, but at a different level.

Low-level abstract values are popped from and pushed back when simulating the
execution of a method’s bytecode instructions. For example, when the analysis
loads the bytecode version of class ALogicalLocation, an abstract value of this
class is needed for it to be virtually executed by the ASM framework.

High-level abstract values are collected for answering our high level analysis
questions. For each process class, the high-level abstract values map each action
to its respective analysis result obtained from its continuation instructions. Note
that low-level abstract values can also be used in high-level abstract values.

When defining the transfer function for each instruction trans_inst, we need to
manipulate both low-level and high-level abstract values. The low-level abstract
values are relatively easy to push around, as we only need to follow the seman-
tics of each instruction; the high-level abstract values are more challenging to
use, because for a given instruction, we have to update them based the property
of interest. Defining a transfer function for the high-level abstract values are
generally discussed in Section 7.3.2.2. For example, when encountering an out
action, the high-level abstract values require to update action sets (associated
with those previously executed actions), while this is not only based on the orig-
inal semantics of the bytecode instructions, it also relies on our analysis interest.
Finally, all the transfer functions of an instruction accumulated together can (or
will) form a higher level transfer function, namely trans_proc.

7.3 Static Analysis of Process in AspectKlava 121

Key Steps of the Interprocedural Data-flow Analysis To use a work-
list algorithm to perform interprocedural analysis, we have to go through the
following steps:

1. Constraints Collection: Start from the first process to be analyzed, we
use a depth-first search (DFS) algorithm to traverse the call graph of pro-
cesses, and collect all constraints that denote the dependency relationship
between processes. Please refer to Section 7.3.2.3 for a constraints exam-
ple. Note that we use the ASM analysis framework to traverse the method
AexecuteProcess (of AspectKlava) in order to collect constraints.

2. Analysis Result Initialization: We initialize the analysis result (formed by
abstract values) of all dependent processes as empty.

3. Analysis Results Computation: Start from the first process to be ana-
lyzed, and collect analysis results for the current process. We use ASM
analysis framework to traverse the constructor method and AexecutePro-
cess method (of AspectKlava), and compute the analysis results from the
entry state (formed by both low-level and high-level abstract values) of the
process via using its transfer function trans_proc (which consists of sev-
eral trans_inst for each instructions). Note that this will need the analysis
results from other processes when there is eval action in this process.

4. Keep Updating Analysis Results until Stable: Use constraints to guide the
iteration of the algorithm, and re-analyze a process only if its callee process
(the parameter process in a eval action) modifies the analysis result. The
analysis results will keep growing until it reaches the fixed point of trans-
fer function trans_proc. Note that to ensure the algorithm terminates,
analysis domain, transfer function and join function have to be defined in
a particular way so that the analysis result either stays the same or grows
larger, and the analysis result cannot grow indefinitely. Refer to [NNH05]
for more details.

After the algorithm terminates, we obtain program facts (analysis result) for all
processes reachable from the starting process, and they then will be cached for
future use. The join point actions in these processes can be linked with their
program facts, which will be used by program analysis predicates and functions
at runtime.

Integration of Program Facts into Aspects To use program facts in as-
pects, we establish an internal link between program facts and aspects.

122 AspectKE*: Implementation

• By using useID (a pair of integers 〈actionIx, paramIx〉, introduced in Sec-
tion 7.1.1) as both the index to structure program facts (consists of ab-
stract values) and the index to locate join point actions and their param-
eters in the runtime system, each program fact can be mapped to a join
point action (with actionIx), and moreover, it is also possible to select
relevant parts of a corresponding program fact for a particular parameter
of a matched join point (with paramIx).

• The data types used in program facts shall be converted to those used
in aspects, even though these facts are originally collect from data type
used in the main program. For example, in the AspectKlava process, a
constant location is defined using class LogicalLocation. Our analyzer will
first read and convert its bytecode format into a corresponding abstract
value that is used in the analysis, and then returns a constant expressed
in class ALogicalLocation, so that it can be recognized and used in aspects.

• Parameters defined in a pointcut can match and bind a runtime value from
the join point as in other AOP programming language, but it needs to be
annotated with appropriate useID , to link and compare with values from
the program facts, in order to realize the so-called dual value evaluation
mechanism.

Example 7.6 Table 7.2 displays the program facts (analysis results) obtained
from the bytecode instructions shown in Listing 7.8. They are used in aspects
to evaluate program analysis predicates and functions at runtime.

The first column shows that the program facts of a process are indexed by
action number. Number 1-4 represent the actionIx within process clientsendmsg
in Listing 6.5, e.g, number 1 denotes the in action. Number -1 represents the
program fact at the beginning of a process, which is useful when computing
program facts for other processes (that invoke this process such as clientlogin).

The second and third column show the analysis domains and analysis values
(high-level abstract value), which are used at runtime in aspects. Note that
the analysis values are represented with a mixed value of internal data type
(low-level abstract value) used in ASM framework (e.g, L1, L2, etc), and aspect
datatype (e.g., #AL_2 is a value of type ALogicalLocality with 2 as the paramIx
number). Here we avoid explaining the meaning of these data in detail, as these
program facts are used internally in the runtime system for evaluating program
analysis predicates and functions.

Note that Table 7.2 only shows the program facts obtained from analyzing List-
ing 7.8 (with AspectKE* source code in Listing 6.5). If we start the analysis on
bytecode instructions of Listing 6.4, we need also to analyze all the processes it
spawns: clientsendmsg, clientreceivemsg, clientsendfile, and clientreceivefile. With

7.3 Static Analysis of Process in AspectKlava 123

#Action Analysis Domain Analysis Values
(actionIx)

-1 DefinedSet [L1, L2, L3]
ArgumentMap {3=L3, 2=L2, 1=L1}
ActionSet_X [in, out, eval]
UsedValueMap_X {out={L1=[#AL_2], L2=[#AL_2, Eavesdropper]}, read={},

in={L1=[#AL_1], L2=[#AL_1]}, eval={L1=[#AL_1]}, newloc={}}
LocationMap_X {out=[#AL_2, Eavesdropper], read=[], in=[#AL_1], eval=[#AL_1],

newloc=[]}
ActionSet_Y []
UsedValueMap_Y {out={}, read={}, in={}, eval={}, newloc={}}
LocationMap_Y {out=[], read=[], in=[], eval=[], newloc=[]}

1 DefinedSet [L1, L2, K1, L3, L4]
ArgumentMap {4=K1, 3=L4, 2=L2, 1=K2, 0=L1}
ActionSet_X [in, out, eval]
UsedValueMap_X {out={L1=[#AL_2], L2=[#AL_2, Eavesdropper], K1=[#AL_2],

L4=[#AL_2, Eavesdropper]}, read={}, in={L1=[#AL_0],
L2=[#AL_0]}, eval={L1=[#AL_0]}, newloc={}}

LocationMap_X {out=[#AL_2, Eavesdropper], read=[], in=[#AL_0], eval=[#AL_0],
newloc=[]}

ActionSet_Y []
UsedValueMap_Y {out={}, read={}, in={}, eval={}, newloc={}}
LocationMap_Y {out=[], read=[], in=[], eval=[], newloc=[]}

2 DefinedSet [L1, L2, K1, L3, L4]
ArgumentMap {4=L1, 3=K1, 2=L4, 1=K3, 0=L2}
ActionSet_X [in, out, eval]
UsedValueMap_X {out={L1=[#AL_0], L2=[#AL_0, Eavesdropper], L4=[Eavesdropper]},

read={}, in={L1=[#AL_4], L2=[#AL_4]}, eval={L1=[#AL_4]},
newloc={}}

LocationMap_X {out=[#AL_0, Eavesdropper], read=[], in=[#AL_4], eval=[#AL_4],
newloc=[]}

ActionSet_Y []
UsedValueMap_Y {out={}, read={}, in={}, eval={}, newloc={}}
LocationMap_Y {out=[], read=[], in=[], eval=[], newloc=[]}

3 DefinedSet [L1, L2, K1, L3, L4]
ArgumentMap {2=L4, 1=L2, 0=L5}
ActionSet_X [in, out, eval]
UsedValueMap_X {out={L1=[#AL_1], L2=[#AL_1, Eavesdropper]}, read={},

in={L1=[#AL_-3], L2=[#AL_-3]}, eval={L1=[#AL_-3]}, newloc={}}
LocationMap_X {out=[#AL_1, Eavesdropper], read=[], in=[#AL_-3], eval=[#AL_-3],

newloc=[]}
ActionSet_Y []
UsedValueMap_Y {out={}, read={}, in={}, eval={}, newloc={}}
LocationMap_Y {out=[], read=[], in=[], eval=[], newloc=[]}

4 DefinedSet [L1, L2, K1, L3, L4]
ArgumentMap {3=L3, 2=L2, 1=L1, 0=L1}
ActionSet_X []
UsedValueMap_X {out={}, read={}, in={}, eval={}, newloc={}}
LocationMap_X {out=[], read=[], in=[], eval=[], newloc=[]}
ActionSet_Y [in, out, eval]
UsedValueMap_Y {out={L1=[#AL_2], L2=[#AL_2, Eavesdropper]}, read={},

in={L1=[#AL_1], L2=[#AL_1]}, eval={L1=[#AL_1]}, newloc={}}
LocationMap_Y {out=[#AL_2, Eavesdropper], read=[], in=[#AL_1], eval=[#AL_1],

newloc=[]}

Table 7.2: Program Facts of clientsendmsg

124 AspectKE*: Implementation

the worklist algorithm, program facts from all these processes will be computed,
and cached for future use of aspect evaluation. 2

7.4 Concluding Remarks

To summarize this chapter, we presented the detailed implementation techniques
for AspectKlava runtime system.

Firstly we described the high level implementation strategy regarding static
analysis: Gather fundamental static analysis information at process’s load time,
to avoid performing all dynamic syntax-based program analysis at runtime. Ap-
parently, this strategy is more efficient than the semantics defined in AspectKE,
and we will give benchmark results in the next chapter. Our innovative static-
dynamic dual value evaluation mechanism enables a uniform way of expressing
security conditions no matter whether it is checked statically or dynamically.

Secondly, we present the core programming elements used in AspectKlava, which
further extends the Klava package with aspect-oriented notation.

Thirdly, we review the actual interprocedural data-flow analysis that has been
developed. As the processes will be executed in a distributed mobile environ-
ment, where source code is not available, our analysis is performed on Java
bytecode. We also describe how the program facts (analysis results) can be
linked to aspect evaluation at runtime system.

Chapter 8

Demonstration and Evaluation

In the previous two chapters we have presented the design of the AspectKE*
programming language and its runtime system AspectKlava. In this Chapter,
we shall discuss the usability, performance, and expressiveness of this language.
Section 8.1 starts by presenting simple demonstrations using AspectKE* to build
a distributed chat system. We show how a security hole is fixed by a simple
aspect, that takes the power of program analysis predicates and functions to de-
tect malicious actions. Section 8.2 assesses the expressiveness and performance
of our language via case studies and benchmarking.

8.1 Demonstration

In this section, we demonstrate with screenshots how AspectKE* can fix a
security hole in the distributed chat system presented in Chapters 6 and 7. We
assume readers understand the architecture of the chat system, the proposed
security policies, and definitions of the relevant processes and aspects. All of
them have been presented in Section 6.2.2.

Demo 1: Chat System without Malicious Code Figure 8.1 displays a
screen shot of the distributed chat system which contains no malicious code. It
shows that Alice using the left ChatConsole exchanges messages and files with

126 Demonstration and Evaluation

Bob who is using the right ChatConsole.

Figure 8.1: Chat System without Malicious Code

Figure 8.2: Information is Leaked from Client1 and Client2 to Eavesdropper

8.1 Demonstration 127

Figure 8.3: Client1 Sends a Message to Eavesdropper

Figure 8.4: Eavesdropper Receives a Message Sent from Client1

128 Demonstration and Evaluation

Demo 2: Chat System with Security Hole In this demo, the chat sys-
tem contains a security hole, which might be exploited by a malicious process
and thus violates Policy 2 (presented in Section 6.2.2). Figure 8.2 shows the
execution traces where a malicious client process runs at node Client1 and an
eavesdropper process (Listing 8.1) runs at node Eavesdropper. In this demo, no
malicious actions are performed at process clientlogin (removes Line 8 in List-
ing 6.4), but process clientsendmsg (Listing 6.5) executes malicious actions as
follows (using the following code to replace Line 9 in Listing 6.5).

out(userserver , friendserver , text)@Eavesdropper;

Figures 8.3 and 8.4 zoom in on the execution traces of processes executed at
Client1 and Eavesdropper. In the orange boxes, we can see that the messages
captured by the malicious clients are received by the Eavesdropper node. Clearly,
the security hole has been exploited successfully by the untrusted process.

1 proc eavesdropper(){
2 location userserver , friendserver ;
3 string text ;
4
5 in(userserver , friendserver , text)@Eavesdropper;
6 eval (process eavesdropper())@Eavesdropper;
7 }

Listing 8.1: Process eavesdropper

Demo 3: Chat System with Security Hole Removed In this demo, the
chat system contains a security hole as in Demo 2, but the hole is removed by
an aspect, which prevents malicious process from exploiting the hole. Figure
8.5 shows the execution traces where a security aspect is enforced (defined in
Listing 6.7). Figure 8.6 zooms in on the execution traces of processes executed
at Client1. In the orange box, we can see that the aspect terminated client
process clientsendmsg because it detected that there are malicious actions in the
continuation process and security policy might be violated. Clearly, the security
hole is removed by the aspect.

From the above demonstrations we can see how an aspect (that reasons about
the future behavior of a process) can terminate the execution of a process that
contains malicious actions to be executed in future. It shows how simple it is to
specify aspects to fix security holes in a distributed system by using AspectKE*.

8.1 Demonstration 129

Figure 8.5: No information is Leaked: Client1 (and Client2) are Terminated by
Aspect protect_message

Figure 8.6: Client1 is Terminated by Aspect protect_message

130 Demonstration and Evaluation

8.2 Evaluation

In this section, we assess the expressiveness and performance of our language
through case studies and benchmarking.

8.2.1 Performance Evaluation

Our performance evaluation focuses on the overheads of program analysis rather
than the entire execution time of practical application programs. This is because
our implementation is merely a prototype, whose execution time could be largely
different from a fully-optimized implementation. The purpose of performance
evaluation is to validate our implementation framework.

We compared overheads of basic operations in “our implementation” with that
in a “naive implementation”. Our implementation analyzes a program only once
to gather program facts at load-time for later usage at runtime. The naive
implementation analyzes a program whenever a program analysis predicate or
function is to be evaluated. The latter simply simulates the semantic model of
AspectKE, as we already presented in Chapters 3 and 4.

configuration our implementation naive implementation time
case process #ex-

ecu-
tions

#as-
pects #anal-

ysis
per-

formed

time
of

load-
time
anal-
ysis

time
of

pro-
cess
exe-
cu-
tion

#anal-
ysis
per-

formed

time
of

run-
time
anal-
ysis

time
of

pro-
cess
exe-
cu-
tion

improv-
ement
(%)

1 clientlogin 1 0 1 34 28 0 0 31
clientsendmsg 10 0 0 0 205 0 0 190
Total 1 267 0 221 −21

2 clientlogin 1 1 1 37 34 1 37 33
clientsendmsg 10 1 0 0 199 10 145 199
Total 1 270 11 414 35

3 clientlogin 1 1 1 37 32 1 36 36
clientsendmsg 100 1 0 0 1966 100 1443 1847
Total 1 2035 101 3362 39

4 clientlogin 1 1 1 35 40 1 36 34
clientsendmsg 10 10 0 0 265 100 1340 271
Total 1 340 101 1681 80

Table 8.1: Benchmark Results of Chat System (msec.)

We use a program that sequentially executes processes clientlogin and clientsendmsg
(presented in Section 6.2) in the chat system, with aspects protect_password and
protect_message enforced. Compared with definitions shown in Section 6.2, the
definitions here are slightly simplified to avoid termination of the processes and
inclusion of other processes into analysis.

8.2 Evaluation 131

The compiled (bytecode) version of process clientlogin contains 113 instructions,
and clientsendmsg contains 89 instructions. Our analyzer directly performs static
analysis on them. The programs were executed on top of JVM 1.6.0 for MacOS
X by a 2.16 GHz Intel Core 2 Duo processor with 2 GB memory. The time
is measured by System.currentTimeMillis(). We execute each program for 100
times and calculated the median values.

Table 8.1 summarizes the measurement results. We executed the benchmark
program with four configurations of different message and aspect numbers. For
each implementation, the table lists the number of program analyses performed,
as well as the time spent for analysis and process execution. Note that even
though process execution time includes time for aspects activation and eval-
uation, it excludes the time spent for performing (load-time/runtime) static
analysis, which is listed in separate columns.

From the table, we can see that our implementation analyzes programs even
when no aspects are applied (case 1). The analysis count for clientsendmsg is
zero in our implementation, because the interprocedual analysis performed on
clientlogin analyzes clientsendmsg in advance. While the time a naive implemen-
tation spends for analysis is proportional to message and aspect numbers, our
implementation spends constant time for analysis.

As shown in the rightmost column of case 1, our implementation has overheads
(21% in this measurement) due to load-time program analysis even if no aspects
are applied. The overheads are quickly compensated for when there are aspects.

Although it is difficult to predict performance of a fully optimized implemen-
tations, we can clearly claim, from this measurement, that huge overheads of
static program analysis make naive implementations far from realistic. We can
also presume that our implementation strategy can give realistic performance to
programs that require less dynamic process migrations but have many aspects.

8.2.2 Comparison Against Analysis-Based AOP Languages

We argue that our approach offers better abstraction than existing analysis-
based AOP languages. In particular, policies that require both runtime and
static information cannot be easily implemented by others.

Some advanced AOP languages [AM07,CN04,KRH04] allow programmers to de-
fine their own pointcut primitives, including those that exploit program analysis
results. In theory, it is possible for those languages to define security aspects
based on future behavior of a program, via defining pointcuts that statically
analyze the program. However, those languages offer access to programs at
bytecode or AST-level, which makes it difficult to correctly implement static

132 Demonstration and Evaluation

analyses. For example, Josh [CN04] provides an extensible pointcut language,
where analysis-based pointcuts can be defined based on the Javaassist library.
As Javaassist does not directly provide data and control flow of a program, users
have to develop the analysis almost from scratch. SCoPE [AM07] is an extended
AspectJ compiler that allows programmers to define analysis-based pointcuts
which specify join point shadows by using user-defined static program analysis,
and provides access to various bytecode manipulation libraries, including the
ones offering powerful program analysis capabilities (e.g., Soot [VRCG+99]).
However, users still have to develop the analysis at low-level. Moreover, these
languages do not provide a mechanism to combine runtime data and static in-
formation as we do.

Below, we show an aspect for Policy 2 (the policy is defined in Section 6.2) in
SCoPE (Policy 1 in SCoPE is as simple as in AspectKE* because it does not
depend on any static program analysis).

1 class ChatClient{
2 ChatServer getMyServer (){...}
3 void sendMessage(ChatServer to, String message){
4 getMyServer().sendMessage(this,to ,message);
5 }
6 ...
7 }
8 class ChatServer{
9 ChatClient getMyClient (){...}
10 void sendMessage(ChatClient sender, ChatServer to,
11 String message){
12 to.sendMessage(this,message);
13 }
14 ...
15 }

Listing 8.2: Chat Server and Client (Simplified Version)

The base chat program (originally introduced in Section 6.2) for SCoPE as-
pects is re-implemented using Java Remote Method Invocation API. Listing 8.2
shows the fragment code of classes for the chat servers and clients1. A client
cannot send a message directly to another client. Instead, it sends messages
to the server associated to it using sendMessage in ChatServer. The associated
server is obtained from getMyServer() in class ChatClient. The server then sends
the message to another server which is specified by the second parameter of
sendMessage in ChatServer, and finally the other client gets the message from
its server through receiveMessage(not shown here) in ChatClient.

Listing 8.3 shows aspect ViolateP2, which terminates a program when Policy 2
is violated. The leakMessage() method checks whether sendMessage() is called
on a ChatServer object who does not come from getMyServer(). It exploits

1These classes essentially extends Remote interface, here we present the simplified version.

8.2 Evaluation 133

1 pointcut violateP2 ():
2 withincode(∗ Console .∗(..)) &&
3 call (void ChatClient .sendMessage(..)) &&
4 if (leakMessage(thisJoinPointStaticPart));
5 boolean leakMessage(JoinPoint. StaticPart sjp){
6 InvkInst invk = getMethodInsnOf(sjp);
7 Collection <Method> impl = dispatch(sjp);
8 for (Method m:impl){
9 DataflowGraph dg = getDataflowGraph(m);
10 Value ths = impl.getThis ();
11 Value msg = impl.getArg()[1];
12 Collection <InvkInst> methodInvokes = getInvocationsWithin(m);
13 Collection <Value> mySvrs = /∗ create a collection ∗/
14 for (InvkInst node : methodInvokes)
15 if (node invokes ChatClient .getMyServer())
16 mySvrs.add(node.getReturn());
17 else if (node invokes ChatServer.sendMessage())
18 if (!dg.isOneOf(node.getTarget(),mySvrs))
19 return true ;
20 else
21 for (Value arg : node.getArgs())
22 if (dg.flowTo(msg,arg))
23 return true ;
24 }
25 return false ;
26 }
27 before (): violateP2(){
28 terminate ();
29 }

Listing 8.3: Aspect for Policy 2 in SCoPE

the methods that are commonly available in program analysis libraries (such
as Soot [VRCG+99]), in order to get an intra-procedural data flow graph, a
method invocation instruction which corresponds to the given join point shadow,
a set of methods to which a method invocation instruction dispatches, and a
set of method invocations within a method. The aspect is longer and more
complicated than the one in AspectKE*, because SCoPE lacks abstractions for
common tasks. For instance, the function targeted in AspectKE* successfully
abstracts the locations to which a message will be sent, whereas a number of
operations (12–18) need to be implemented in ViolateP2.

Moreover, this aspect does not fully implement Policy 2 because it has no access
to runtime data. AspectKE*, however, can uniformly check it as primarily
discussed in Section 6.3.3 and 7.1.2.

8.2.3 Security Policies for an Electronic Healthcare Record
Workflow System

To assess expressiveness and applicability of AspectKE* for enforcing more real-
istic security policies, we implemented security policies for an electronic health-

134 Demonstration and Evaluation

care record workflow system. Some interesting steps in this system have already
been modeled in Chapters 2.2, 3, 4 when presenting AspectKE. This study is to
confirm that the policies modeled in Chapter 3 and 4 can be defined by exploit-
ing language primitives of AspectKE*, especially the proposed program analysis
predicates and functions.

The target system manages electronic health records (EHRs) – a database that
stores patients’ data, and a place where doctors, nurses, administrators, re-
searchers, etc perform different tasks relying on patients’ EHR records. Note
that most of the target system and policies are directly extracted from a health
information system for an aged care facility in New South Wales, Australia
[EB04]. Since policies can be determined internally by the system owner, or
externally by laws, regulations, norms etc, we also integrate interesting security
policies from the literature such as [Dep03b, Dep03a, Bez98, SBH+07, Can02].
Some are extracted from nationwide EHR security policies issued by govern-
ments, and others are from selected research papers. The aim is to cover both
primary use of data (producing or acquiring data at an individual patient’s care
process) and emerging use of data (e.g., for purposes like public health and com-
mercial activities). From another perspective, the policies cover both classical
access control and predictive access control models.

We implemented a simple tuple space based EHR workflow system in AspectKE*.
It consists of 16 nodes, 41 processes and all security policies (aspects) presented
in Chapters 3 and 4, except for aspect Aevalp7 , as the behavior analysis functions
LC and LCc defined in Table 4.4 are currently not supported by AspectKE*. We
plan to provide them in the future.

When using other AOP languages that support no analysis-based pointcuts (e.g.,
AspectJ), policies that depend on the classical access control models (presented
in Chapter 3) can still be implemented, however policies that refer to predictive
access control (presented in Chapter 4) are difficult to be implemented because
they rely on future behavior of an action. (AOP languages with analysis-based
pointcuts are discussed in Section 8.2.2.) When using other security mechanisms
for tuple space systems, such as the ones based on Java Security framework
[FAH99] or other techniques [VBO03,HR03,GLZ06], we could implement those
policies in Chapter 3. However, policies presented in Chapter 4, cannot be
implemented because those mechanisms do not provide information on future
behavior.

In summary, our experience shows that AspectKE* is very expressive and useful
to enforce complex real world security policies to a distributed system written
in the KLAIM computing model.

8.3 Concluding Remarks and Related Work 135

8.3 Concluding Remarks and Related Work

In this chapter we have demonstrated the usability of AspectKE* by present-
ing three demos with a series of screenshots. The aim is to show how easy a
security hole in a distributed chat system can be removed through an analysis-
based aspect, which prevents a malicious process from exploiting it. Then the
performance results were given, which testifies the two-stage implementation
strategy introduced in previous chapters is more practical and more efficient
than the original semantics of AspectKE. We also compared our work with other
analysis-based AOP languages by building the same chat system, and highlight
our advantages. In the end, we described our experience on enforcing various
security policies to an electronic health care workflow system in AspectKE*.

As we have finished presenting both AspectKE and AspectKE*, we will discuss
about the related work.

8.3.1 Expressive Pointcuts

AspectKE* provides high-level predicates and functions to describe future be-
havior of a program, which makes it much easier to implement security aspects
than other analysis-based approaches [AM07,CN04,KRH04] since users do not
need to develop the analysis. In particular, these high-level language constructs
are designed with security properties in mind (can be considered as security
policy language constructs), which is particularly useful for users to compose
security policies, as users prefer to compose and enforce security policies with do-
main specific policy languages [DDLS00]. Recently, the maybeShared() point-
cut (matches all field accesses that may be shared) was proposed in [BH10]
to help implement efficient monitoring algorithms for detecting data race in
concurrent systems, the aim – providing easily accessible pointcut for users to
avoid developing complex static analysis – is similar to ours but in a different
application domain.

Alpha [OMB05] provides Prolog queries to exploit information over a rich set of
program semantics for the execution history up to the current join point. The
language is very expressive and we believe it may even support predicates that
combine static and runtime information of a variable as we did. However, it
cannot capture the future events and is not a compiled language and therefore
lacks efficient implementation.

In sum, these languages [AM07, CN04, KRH04] implement partially the secu-
rity policies with more complicated definitions as we compared in Section 8.2.2,
or they provide only sophisticated constructs without realistic implementation
[OMB05]. AspectKE* can be considered as an approach to provide highly ex-

136 Demonstration and Evaluation

pressive pointcuts to AOP languages, like pcflow [Kic03], maybeShared [BH10],
and the ones for distributed computing [NCT04,NSV+06,TT06]. However, none
of the others are directly comparable to ours with respect to security policy en-
forcement to distributed applications.

8.3.2 Control- and Data-flows Pointcuts

There are several AOP systems in which a pointcut can specify a relationship
between join points. AspectJ’s cflow captures join points based on a control
flow, which is useful to implement access control policies. dflow [MK03] iden-
tifies joint points based on data-flow information, which is useful to enforce
secrecy and integrity policies. However, both capture control data flow that has
already occurred, rather than that will happen in the future as in AspectKE*.

pcflow [Kic03] is proposed to reason about which join points can occur in the
future under a program’s control flow. Tracematches [AAC+05] and transcut
[SMH09] are similar approaches for identifying temporal relationships between
joint points, which describe related events by patterns comprised of several
pointcuts. Tracematches track join point relationships based on execution traces,
while transcut tracks relationships by selecting a region in the control flow graph
of a program. However, none of the above-mentioned methods ever integrate
with any data-flow analysis as AspectKE* does.

8.3.3 Access Control with Aspect-oriented Programming

There are plenty of studies for applying AOP to enforce access control policies.
To name a few: [WJP02,CW09,dOWKK07]. To the best of our knowledge, only
AspectKE* supports predictive access control policies. Moreover, as far as we
know, we are the first to enforce secondary use of data policies through security
aspects.

8.3.4 Tuple Space Security

There are tuple space systems which provide security mechanisms. For exam-
ple, KLAIM [DFPV00] has a static type system that realizes access control.
SECOS [VBO03] provides a low-level security mechanism that protects every
tuple field with a lock. Secure Lime [HR03] provides a password-based access
control mechanism for building secure tuple spaces in ad hoc settings. JavaS-
paces [FAH99], which is used in industrial contexts, has a security mechanism
based on the Java security framework. Our work is different in using AOP with

8.3 Concluding Remarks and Related Work 137

program analysis. Hence it not only provides a flexible way to enforce security
policies, but also enables predictive access control policies and secondary use of
data policies, which cannot be realized in these other approaches.

138 Demonstration and Evaluation

Chapter 9

Conclusion

In this dissertation, we have investigated the use of Static Program Analysis
techniques in conjunction with the Aspect-oriented Programming approach to
model and build distributed, mobile systems, using tuple spaces. Our main
thesis is that

Aspect-oriented programming provides a flexible way of enforcing
security policies in distributed systems, more specifically, within the
tuple space paradigm. Static program analysis techniques can en-
hance the expressiveness of security aspects and elegantly support
the enforcement of security policies that rely on information flow.

We have presented AspectKE, AspectK and AspectKE*, three aspect-oriented
extension of the coordination language KLAIM [BDNFP98], which provide con-
crete vehicles for presenting our approach. The distributed tuple spaces provide
a natural model of the kind of system that motivated our work. However, the
approach could equally well be applied to other distributed frameworks, espe-
cially those based on more classical process calculi. The join points in this case
would be read and write accesses to channels (e.g, π-calculus).

The static program analysis techniques integrated in the aspects are primarily
based on data-flow analysis, which is demonstrated to be particularly useful for
enforcing security policies that require explicit information flow like predictive

140 Conclusion

access control and secondary use of data when integrating within aspects. How-
ever, the approach could also be combined with other static program analysis
techniques and thus enforce other type of security policies, which we shall briefly
discuss in the end of the thesis.

The remaining parts of this chapter will recapitulate the technical contributions
we developed and discuss a number of directions for future work.

9.1 Contributions

• We have specified AspectKE, an aspect-oriented extension of the coordi-
nation process calculus KLAIM, equipped with formal semantics which
describes how aspect-oriented notation is introduced into the tuple space
paradigm by trapping actions (Chapter 3), and how behavior analyses are
developed and integrated into aspects (Chapter 4). To illustrate the latter
idea, we allow the pointcuts to trap processes, either continuation pro-
cesses or processes to be executed remotely, and introduce several simple
behavior analysis functions for collecting information from the trapped
processes, and use them in advice.

• We have discussed some language extensions building on top of the AspectKE
model and proposed the notion of open joinpoint which universally exists
in coordination languages such as tuple space system. These are primarily
discussed in the way of formalizing the process calculus AspectK (Chapter
5), which allows actions before and after proceed or break in an advice.

• We evaluated the expressiveness of AspectKE (and AspectK) by investi-
gating its policy enforcement capability through examples in an electronic
health care (EHR) setting. We have demonstrated that AspectKE can
enforce discretionary access control, mandatory access control as well as
role-based access control. Furthermore, AspectKE can elegantly retrofit
new policies to an existing system with minimum effort at any phase within
the system development cycle. We have also shown that in a distributed
and mobile system, the information flow is very hard to control. AspectKE
can enforce a range of predictive access control policies to cater for this
issue, through composing aspects that check remote evaluation and the
program continuation. We enforce both primary and secondary use of
data policies, which shows that AspectKE is suitable to cater for old as
well as new challenges in a complex distributed computing environment,
where security and privacy are of great importance. We have also shown
that AspectK can benefit crosscutting activities such as logging as the ad-
vices do in other AOP languages. These are primarily covered in Chapters
3, 4 and 5, along with the presentation of our process calculi.

9.2 Future Work 141

• We have designed and implemented a proof-of-concept programming lan-
guage AspectKE*, based on AspectKE programming model developed in
previous chapters. One of the key features of AspectKE* is the program
analysis predicates and functions that provide information on future be-
havior of a program. With a dual value evaluation mechanism that handles
results of static analysis and runtime values at the same time, those func-
tions and predicates enable programmers to specify security policies in
a uniform manner. Our two staged implementation strategy gathers fun-
damental static analysis information at load-time, to avoid performing all
analysis at runtime as AspectKE does. We built a compiler for AspectKE*
and developed a runtime system – AspectKlava in Java. This includes the
development of interprocedural data-flow analysis on processes in the form
of bytecode instructions. The main materials are presented in Chapters 6
and 7.

• We have demonstrated the usability of AspectKE*, assessed expressive-
ness and the performance of implementation primarily through examples
in a distributed chat applications setting. Besides implementing a secure
distributed chat application (Chapters 6 and 8), we also successfully im-
plemented the security policies presented in Chapter 3 and 4, and enforced
them to an electronic health care workflow system using AspectKE*.

To conclude, we find that the combination of aspects with behavior and
static analysis techniques shows great potential for serving as a flexible
and powerful mechanism for policy enforcement, and a promising method
for building security and trust in a distributed and mobile environment.

9.2 Future Work

Below we outline several directions for future work relevant to the Aspec-
tKE/AspectKE* programming model.

9.2.1 Indirect Flow Analysis

There are other challenging secondary use of data policies which not only require
control of direct flows but also of indirect flows [DD77,SM03]: e.g. after storing
specific data into a doctor’s own tuple space, the doctor should not allow them
to be transferred into a researcher’s tuple space by indirectly passing through
another location. In this case, checking all the parallel executing processes with
security aspects that rely on more advanced static analyses might be needed. For
example, the static analysis should include analysis components that are able to

142 Conclusion

predict all possible data that can be stored in a certain tuple space. It could be
done using the flow logic framework [HPN06,HNNP08]), or developing analysis
techniques by combining pointer analysis [NNH05] for tuple spaces with control
and data-flow analysis over processes. In this way, we shall also use aspect to
express policies depending on indirect flows.

9.2.2 Enriching the Power of Aspects

The current AspectKE/AspectKE* language can only make the monitored pro-
cess terminate or proceed. It would be interesting to extend the language so
that it can perform other kinds of actions. In AspectKE/AspectKE* we disal-
low before and after actions around the proceed/break advice (as allowed in
AspectK). This is because, if we had allowed these actions, a safe behavior anal-
ysis would be very difficult to achieve, since the processes to be executed might
execute more actions (inserted by aspects at runtime) than expected. This is
an interesting direction for future work and will require more powerful program
analyses than the analyses this dissertation presented, as we need to incorporate
effects from aspects while analyzing processes.

9.2.3 Formal Validation of AspectKE Programs

As AspectKE has a formal semantics, we shall be able to formally formulate a
static analysis and verify whether a given AspectKE program (including both
base and aspect programs) satisfies certain global security properties that are
expressed by the analysis result. In this way, we shall know whether the workflow
system holds certain global security properties after enforcing the complete set
of EHR policies presented in this dissertation (Chapters 3 and 4).

Bibliography

[A+72] J. Anderson et al., “Computer Security Technology Planning
Study.” 1972.

[AAC+05] C. Allan, P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tib-
ble, “Adding trace matching with free variables to AspectJ,” in
Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applica-
tions, OOPSLA’05. ACM, 2005, p. 364.

[AGMO06] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, “An
overview of CaesarJ,” in Transactions on Aspect-Oriented Soft-
ware Development I, ser. LNCS, vol. 3880. Springer, 2006, pp.
135–173.

[AM07] T. Aotani and H. Masuhara, “SCoPE: an AspectJ compiler for
supporting user-defined analysis-based pointcuts,” in Proceedings
of the 6th international conference on Aspect-oriented software de-
velopment, AOSD’07. ACM, 2007, pp. 161–172.

[And00] J. G. Anderson, “Security of the distributed electronic patient
record: a case-based approach to identifying policy issues,” Inter-
national Journal of Medical Informatics, vol. 60, no. 2, pp. 111–
118, 2000.

[And01] J. H. Andrews, “Process-algebraic foundations of aspect-oriented
programming,” in Proceedings of the Third International Confer-
ence on Metalevel Architectures and Separation of Crosscutting

144 BIBLIOGRAPHY

Concerns, REFLECTION’01, ser. LNCS, vol. 2192. Springer,
2001, pp. 187–209.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, and tools. Addison-Wesley, 1986.

[Bar84] H. Barendregt, The lambda calculus: its syntax and semantics.
North Holland, 1984.

[Bar92] H. P. Barendregt, “Lambda calculi with types,” pp. 117–309, 1992.

[BBC+06] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-
Garvey, B. Ondrusek, S. Rajamani, and A. Ustuner, “Thorough
static analysis of device drivers,” ACM SIGOPS Operating Sys-
tems Review, vol. 40, no. 4, p. 85, 2006.

[BBD+03] L. Bettini, V. Bono, R. De Nicola, G. L. Ferrari, D. Gorla,
M. Loreti, E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri,
“The klaim project: Theory and practice,” in Proceedings of the
Global Computing. Programming Environments, Languages, Secu-
rity, and Analysis of Systems, IST/FET International Workshop,
GC’03, ser. LNCS, vol. 2874. Springer, 2003, pp. 88–150.

[BDNF+04] L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, L. Lopes,
L. Oliveira, H. Paulino, and V. T. Vasconcelos, “A Software Frame-
work for Rapid Prototyping of Run-Time Systems for Mobile Cal-
culi,” in Global Computing. IST/FET International Workshop,
GC 2004, Revised Papers, ser. LNCS, C. Priami, Ed., vol. 3267.
Springer, 2004, pp. 179–207.

[BDNFP98] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese, “Interac-
tive Mobile Agents in X-Klaim,” in Proceedings of the 7th IEEE
International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE’98. IEEE Computer So-
ciety, 1998, pp. 110–115.

[BDP02] L. Bettini, R. De Nicola, and R. Pugliese, “Klava: a Java package
for distributed and mobile applications,” Software-Practice and
Experience, vol. 32, no. 14, pp. 1365–1394, 2002.

[Bez98] K. Beznosov, “Requirements for access control: US healthcare do-
main,” in Proceedings of the third ACM workshop on Role-based
access control, RBAC’98. ACM, 1998, p. 43.

[BFIK99] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The
keynote trust-management system version 2,” 1999, RFC 2704.

BIBLIOGRAPHY 145

[BH10] E. Bodden and K. Havelund, “Aspect-oriented Race Detection in
Java,” IEEE Transactions on Software Engineering, 2010.

[BJJR04] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely, “µabc: A mini-
mal aspect calculus,” in Proceedings of the 15th International Con-
ference on Concurrency Theory, CONCUR’04, ser. LNCS, vol.
3170. Springer, 2004, pp. 209–224.

[BK08] C. Baier and J. Katoen, Principles of model checking. The MIT
Press, 2008.

[BLC02] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a code manipu-
lation tool to implement adaptable systems,” in Proceedings of the
ASF (ACM SIGOPS France) Journees Composants 2002: Adapt-
able and extensible component systems, 2002.

[BLW05] L. Bauer, J. Ligatti, and D. Walker, “Composing security poli-
cies with polymer,” in Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation,
PLDI’05. ACM, 2005, pp. 305–314.

[BO05] P. A. Bonatti and D. Olmedilla, “Driving and monitoring provi-
sional trust negotiation with metapolicies,” in Proceedings of the
6th IEEE International Workshop on Policies for Distributed Sys-
tems and Networks, POLICY’05. IEEE Computer Society, 2005,
pp. 14–23.

[BS04] M. Y. Becker and P. Sewell, “Cassandra: Flexible trust manage-
ment, applied to electronic health records,” in Proceedings of the
17th IEEE Computer Security Foundations Workshop, CSFW’04.
IEEE Computer Society, 2004, pp. 139–154.

[Can02] Canadian Institutes of Health Research, Secondary Use of Per-
sonal Information in Health Research: Case Studies. Pub-
lic Works and Government Services Canada, 2002, located at
http://www.cihr-irsc.gc.ca/e/1475.html.

[CCBR06] F. Cuppens, N. Cuppens-Boulahia, and T. Ramard, “Availability
enforcement by obligations and aspects identification,” in Proceed-
ings of the The 1st International Conference on Availability, Re-
liability and Security, ARES’06. IEEE Computer Society, 2006,
pp. 229–239.

[CH05] A. W. Colman and J. Han, “Coordination systems in role-based
adaptive software,” in Proceedings of the 7th International Con-
ference on Coordination Models and Languages, COORDINA-
TION’05, ser. LNCS, vol. 3454. Springer, 2005, pp. 63–78.

http://www.cihr-irsc.gc.ca/e/1475.html

146 BIBLIOGRAPHY

[Che05] F. Chen, “Java-MOP: A monitoring oriented programming envi-
ronment for Java,” in Proceedings of the 11th International Con-
ference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’05, ser. LNCS, vol. 3440. Springer, 2005, pp.
546–550.

[Chi98] S. Chiba, “Javassist-a reflection-based programming wizard for
Java,” in Proceedings of OOPSLAâ98 Workshop on Reflective Pro-
gramming in C++ and Java, 1998.

[CM04] A. Charfi and M. Mezini, “Aspect-oriented web service composi-
tion with AO4BPEL,” in Proceedings of the European Conference
on Web Services, ECOWS’04, ser. LNCS, vol. 3250. Springer,
2004, pp. 168–182.

[CN04] S. Chiba and K. Nakagawa, “Josh: an open AspectJ-like lan-
guage,” in Proceedings of the 3rd International Conference on
Aspect-Oriented Software Development, AOSD’04. ACM, 2004,
pp. 102–111.

[CSZ04] S. Capizzi, R. Solmi, and G. Zavattaro, “From endogenous to ex-
ogenous coordination using aspect-oriented programming,” in Pro-
ceedings of the 6th International Conference on Coordination Mod-
els and Languages, COORDINATION’04, ser. LNCS, vol. 2949.
Springer, 2004, pp. 105–118.

[CW09] B. Cannon and E. Wohlstadter, “Enforcing security for desktop
clients using authority aspects,” in Proceedings of the 8th ACM
international conference on Aspect-oriented software development,
AOSD’09. ACM, 2009, pp. 255–266.

[Dah01] M. Dahm, “Byte code engineering with the BCEL API,” Freie
Universitat Berlin, Technical Report, 2001.

[Dan00] Danish Data Protection Agency, The Act on Processing of Per-
sonal Data, 2000, located at http://www.datatilsynet.dk/english/
the-act-on-processing-of-personal-data/.

[Dan07] D. S. Dantas, “Analyzing security advice in functional aspect-
oriented programming languages,” Princeton University, Phd Dis-
sertation, 2007.

[DD77] D. Denning and P. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp.
504–513, 1977.

 http://www.datatilsynet.dk/english/the-act-on-processing-of-personal-data/
 http://www.datatilsynet.dk/english/the-act-on-processing-of-personal-data/

BIBLIOGRAPHY 147

[DDLS00] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “A language
for specifying security and management policies for distributed
systems,” London: Department of Computing, Imperial College,
Tech. Rep., 2000.

[Dep03a] Department of Health, UK, Integrated Care Records ser-
vice: Output Based Specification version 2, 2003, located
at http://www.dh.gov.uk/en/Publicationsandstatistics/
Publications/PublicationsPolicyAndGuidance/DH_4118312.

[Dep03b] Department of Health, UK, NHS Code of Practice-
Confidentiality, 2003, located at http://www.dh.
gov.uk/en/Publicationsandstatistics/Publications/
PublicationsPolicyAndGuidance/DH_4069253.

[DeT02] J. DeTreville, “Binder, a logic-based security language,” in Pro-
ceedings of the 2002 IEEE Symposium on Security and Privacy,
SP’02. IEEE Computer Society, 2002, pp. 105–113.

[DFP98] R. De Nicola, G. L. Ferrari, and R. Pugliese, “KLAIM: A kernel
language for agents interaction and mobility,” IEEE Transactions
on Software Engineering, vol. 24, no. 5, pp. 315–330, 1998.

[DFP00] R. De Nicola, G. L. Ferrari, and R. Pugliese, “Programming ac-
cess control: The KLAIM experience,” in Proceedings of the 11th
International Conference on Concurrency Theory, CONCUR’00,
ser. LNCS, vol. 1877. Springer, 2000, pp. 48–65.

[DFPV00] R. De Nicola, G. L. Ferrari, R. Pugliese, and B. Venneri, “Types
for access control,” Theoretical Computer Science, vol. 240, no. 1,
pp. 215–254, 2000.

[DGH+08] R. De Nicola, D. Gorla, R. R. Hansen, F. Nielson, H. R. Nielson,
C. W. Probst, and R. Pugliese, “From flow logic to static type
systems for coordination languages,” in Proceedings of the 10th
International Conference on Coordination Models and Languages,
COORDINATION’08, ser. LNCS, vol. 5052. Springer, 2008, pp.
100–116.

[DHS07] C. Duma, A. Herzog, and N. Shahmehri, “Privacy in the semantic
web: What policy languages have to offer,” in Proceedings of the
8th IEEE International Workshop on Policies for Distributed Sys-
tems and Networks, POLICY’07. IEEE Computer Society, 2007,
pp. 109–118.

[dOWKK07] A. S. de Oliveira, E. K. Wang, C. Kirchner, and H. Kirchner,
“Weaving rewrite-based access control policies,” in Proceedings of

http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_4118312
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_4118312
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_4069253
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_4069253
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_4069253

148 BIBLIOGRAPHY

the 2007 ACM workshop on Formal methods in security engineer-
ing, FMSE’07. ACM, 2007, pp. 71–80.

[EB04] M. Evered and S. Bögeholz, “A case study in access control re-
quirements for a health information system,” in Proceedings of
the second workshop on Australasian information security, Data
Mining and Web Intelligence, and Software Internationalisation,
ACSW Frontiers’04. Australian Computer Society, Inc., 2004,
pp. 53–61.

[ES00] Ú. Erlingsson and F. B. Schneider, “IRM enforcement of Java stack
inspection,” in Proceedings of the 2000 IEEE Symposium on Se-
curity and Privacy, SP’00. IEEE Computer Society, 2000, pp.
246–255.

[ET99] D. Evans and A. Twyman, “Flexible policy-directed code safety,” in
Proceedings of the 1999 IEEE Symposium on Security and Privacy,
SP’99. IEEE Computer Society, 1999, pp. 32–45.

[FAH99] E. Freeman, K. Arnold, and S. Hupfer, JavaSpaces principles, pat-
terns, and practice. Addison-Wesley, 1999.

[FF05] R. E. Filman and D. P. Friedman, “Aspect-oriented programming
is quantification and obliviousness,” in Aspect-Oriented Software
Development. Boston: Addison-Wesley, 2005, pp. 21–35.

[FLZ06] R. Focardi, R. Lucchi, and G. Zavattaro, “Secure shared data-
space coordination languages: a process algebraic survey,” Science
of Computer Programming, vol. 63, no. 1, pp. 3–15, 2006.

[GDY+04] S. Gao, Y. Deng, H. Yu, X. He, K. Beznosov, and K. Cooper, “Ap-
plying aspect-orientation in designing security systems: A case
study,” in Proceedings of the 16th International Conference on
Software Engineering & Knowledge Engineering, SEKE’04, 2004,
pp. 360–365.

[Gel85] D. Gelernter, “Generative communication in Linda,” ACM Trans.
Program. Lang. Syst., vol. 7, no. 1, pp. 80–112, 1985.

[GLZ06] R. Gorrieri, R. Lucchi, and G. Zavattaro, “Supporting secure coor-
dination in SecSpaces,” Fundamenta Informaticae, vol. 73, no. 4,
pp. 479–506, 2006.

[Gol99] D. Gollmann, Computer Security, 1st ed. John Wiley & Sons,
1999.

BIBLIOGRAPHY 149

[GRF02] G. Georg, I. Ray, and R. B. France, “Using aspects to design a
secure system,” in Proceedings of the 8th International Confer-
ence on Engineering of Complex Computer Systems, ICECCS’02).
IEEE Computer Society, 2002, pp. 117 – 126.

[Ham06] K. W. Hamlen, “Security policy enforcement by automated
program-rewriting,” Cornell University, Phd Dissertation, 2006.

[HJ08] K. W. Hamlen and M. Jones, “Aspect-oriented in-lined reference
monitors,” in Proceedings of the third ACM SIGPLAN workshop
on Programming languages and analysis for security, PLAS’08.
ACM, 2008, pp. 11–20.

[HNN09] C. Hankin, F. Nielson, and H. R. Nielson, “Advice from belnap
policies,” in Proceedings of the 22nd IEEE Computer Security
Foundations Symposium, CSF’09. IEEE Computer Society, 2009,
pp. 234–247.

[HNNP08] R. R. Hansen, F. Nielson, H. R. Nielson, and C. W. Probst,
“Static validation of licence conformance policies,” in Proceedings
of the The Third International Conference on Availability, Relia-
bility and Security, ARES’08. IEEE Computer Society, 2008, pp.
1104–1111.

[HNNY08] C. Hankin, F. Nielson, H. R. Nielson, and F. Yang, “Advice for co-
ordination,” in Proceedings of the 10th International Conference on
Coordination Models and Languages, COORDINATION’08, ser.
LNCS, vol. 5052. Springer, 2008, pp. 153–168.

[Hoa78] C. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, p. 677, 1978.

[HPN06] R. R. Hansen, C. W. Probst, and F. Nielson, “Sandboxing in myK-
laim,” in Proceedings of the The First International Conference on
Availability, Reliability and Security, ARES’06. IEEE Computer
Society, 2006, pp. 174–181.

[HR03] R. Handorean and G. Roman, “Secure sharing of tuple spaces in ad
hoc settings,” Electronic Notes in Theoretical Computer Science,
vol. 85, no. 3, pp. 122–141, 2003.

[JJR03] R. Jagadeesan, A. Jeffrey, and J. Riely, “A calculus of untyped
aspect-oriented programs,” in Proceedings of the 17th European
Conference on Object-Oriented Programming, ECOOP’03, ser.
LNCS, vol. 2743. Springer, 2003, pp. 54–73.

150 BIBLIOGRAPHY

[KFJ03] L. Kagal, T. W. Finin, and A. Joshi, “A policy based approach to
security for the semantic web,” in Proceedings of the Second In-
ternational Semantic Web Conference, ISWC’03, ser. LNCS, vol.
2870. Springer, 2003, pp. 402–418.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An overview of AspectJ,” in Proceedings of
the 15th European Conference on Object-Oriented Programming,
ECOOP’01, ser. LNCS, vol. 2072. Springer, 2001, pp. 327–353.

[Kic03] G. Kiczales, “The fun has just begun,” Keynote AOSD, 2003.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in
Proceedings of the European Conference on Object-Oriented Pro-
gramming, ECOOP’97. Springer, 1997, pp. 220–242.

[KRH04] G. Kniesel, T. Rho, and S. Hanenberg, “Evolvable pattern im-
plementations need generic aspects,” in Proceedings of the Work-
shop on Reflection, AOP, and Meta-Data for Software Evolution,
RAM-SE’04. Fakultät für Informatik, Universität Magdeburg,
2004, pp. 111–126.

[LCX+01] T. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasudevan,
S. Landis, P. Davis, B. Khavar, and P. Bowman, “Hitting the
distributed computing sweet spot with TSpaces,” Computer Net-
works, vol. 35, no. 4, pp. 457–472, 2001.

[Ler01] X. Leroy, “Java bytecode verification: an overview,” in Proceedings
of the 13th International Conference on Computer Aided Verifica-
tion, CAV’01, ser. LNCS, vol. 2102. Springer, 2001, pp. 265–285.

[LJ06] B. Lagaisse and W. Joosen, “True and transparent distributed
composition of aspect-components,” in Proceedings of the ACM/I-
FIP/USENIX 2006 International Conference on Middleware,
Middleware’06. Springer, 2006, pp. 42–61.

[LY99] T. Lindholm and F. Yellin, Java(TM) Virtual Machine Specifica-
tion. Addison-Wesley Professional, 1999.

[Mil82] R. Milner, A calculus of communicating systems. Springer, 1982.

[MK03] H. Masuhara and K. Kawauchi, “Dataflow pointcut in aspect-
oriented programming,” in Proceedings of the 1st Asian Sympo-
sium on Programming Languages and Systems, APLAS’03, ser.
LNCS, vol. 2895. Springer, 2003, pp. 105–121.

BIBLIOGRAPHY 151

[MKD03] H. Masuhara, G. Kiczales, and C. Dutchyn, “A compilation and
optimization model for aspect-oriented programs,” in Proceedings
of the 12th International Conference on Compiler Construction,
CC’03s, ser. LNCS, vol. 2622. Springer, 2003, pp. 46–60.

[MPW92] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile pro-
cesses, i,” Information and computation, vol. 100, no. 1, pp. 1–40,
1992.

[MZZ+01] A. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom,
“Jif: Java information flow,” Software release., 2001, located at
http://www.cs.cornell.edu/jif.

[Nat03] National Board of Health, National IT Strategy 2003-2007 for the
Danish Health Care Service. The Ministry of the Interior and
Health, 2003.

[NCT04] M. Nishizawa, S. Chiba, and M. Tatsubori, “Remote pointcut: a
language construct for distributed AOP,” in Proceedings of the
3rd International Conference on Aspect-Oriented Software Devel-
opment, AOSD’04. ACM, 2004, pp. 7–15.

[Nec97] G. C. Necula, “Proof-carrying code,” in POPL’97. ACM, 1997,
pp. 106–119.

[NN02] H. R. Nielson and F. Nielson, “Flow Logic: a multi-paradigmatic
approach to static analysis,” The essence of computation, pp. 223–
244, 2002.

[NN07] H. R. Nielson and F. Nielson, Semantics with applications: an
appetizer. Springer, 2007.

[NNH05] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis, 2nd ed. Berlin, Germany: Springer, 2005.

[NSV+06] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. D. Fraine,
and D. Suvée, “Explicitly distributed AOP using AWED,” in Pro-
ceedings of the 5th International Conference on Aspect-Oriented
Software Development, AOSD’06. ACM, 2006, pp. 51–62.

[Oak98] S. Oaks, “Java security,” O’Reilly & Associates, Inc. Sebastopol,
CA, USA, p. 456, 1998.

[OMB05] K. Ostermann, M. Mezini, and C. Bockisch, “Expressive point-
cuts for increased modularity,” in Proceedings of the 19th Euro-
pean Conference on Object-Oriented Programming, ECOOP’05,
ser. LNCS, vol. 3586. Springer, 2005, pp. 214–240.

 http://www. cs. cornell. edu/jif

152 BIBLIOGRAPHY

[OT00] H. Ossher and P. Tarr, “Hyper/J: multi-dimensional separation
of concerns for Java,” in Proceedings of the 22nd international
conference on Software engineering, ICSE’00. ACM, 2000, pp.
734–737.

[PGA02] A. Popovici, T. Gross, and G. Alonso, “Dynamic weaving for
aspect-oriented programming,” in Proceedings of the 1st in-
ternational conference on Aspect-oriented software development,
AOSD’02. ACM, 2002, pp. 141–147.

[Plo81] G. Plotkin, “A structural approach to operational semantics. Re-
port DAIMI FN-19,” Computer Science Department, Aarhus Uni-
versity, 1981.

[PS08] P. H. Phung and D. Sands, “Security policy enforcement in the
OSGi framework using aspect-oriented programming,” in Proceed-
ings of the 32nd Annual IEEE International Computer Software
and Applications Conference, COMPSAC’08. IEEE Computer
Society, 2008, pp. 1076–1082.

[PSD+04] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry,
and L. Martelli, “JAC: an aspect-based distributed dynamic frame-
work,” Software Practice and Experience, vol. 34, no. 12, pp. 1119–
1148, 2004.

[QZW+85] L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. Mahajan, “Trusted
computer system evaluation criteria,” National Computer Security
Center, 1985.

[RPW06] R. Ramachandran, D. J. Pearce, and I. Welch, “AspectJ for
multilevel security,” in Proceedings of the 5th Workshop on As-
pects, Components, and Patterns for Infrastructure Software,
ACP4IS’06. University of Virginia, 2006, pp. 1–5.

[SBH+07] C. Safran, M. Bloomrosen, W. Hammond, S. Labkoff, S. Markel-
Fox, P. Tang, and D. Detmer, “Toward a National Framework for
the Secondary Use of Health Data: An American Medical Infor-
matics Association White Paper,” Journal of the American Medi-
cal Informatics Association, vol. 14, no. 1, pp. 1–9, 2007.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access control models,” IEEE Computer, vol. 29, no. 2,
pp. 38–47, 1996.

[Sch00] F. B. Schneider, “Enforceable security policies,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 3, no. 1,
pp. 30–50, 2000.

BIBLIOGRAPHY 153

[SM03] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 1, pp. 5– 19, 2003.

[SMH01] F. B. Schneider, J. G. Morrisett, and R. Harper, “A language-
based approach to security,” in Informatics - 10 Years Back. 10
Years Ahead, ser. LNCS, vol. 2000. Springer, 2001, pp. 86–101.

[SMH09] H. Sadat-Mohtasham and H. Hoover, “Transactional pointcuts:
designation reification and advice of interrelated join points,” in
Proceedings of the 8th international conference on Generative pro-
gramming and component engineering, GPCE’09. ACM, 2009,
pp. 35–44.

[TJSJ08] E. Truyen, N. Janssens, F. Sanen, and W. Joosen, “Support for dis-
tributed adaptations in aspect-oriented middleware,” in Proceed-
ings of the 7th international conference on Aspect-oriented soft-
ware development, AOSD’08. ACM, 2008, pp. 120–131.

[TT06] E. Tanter and R. Toledo, “A versatile kernel for distributed aop,” in
In Proceedings of the IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS 2006, ser. LNCS,
vol. 4025. Springer, 2006, pp. 316–331.

[UES00] Úlfar Erlingsson and F. B. Schneider, “SASI enforcement of secu-
rity policies: a retrospective,” in Proceedings of the workshop on
New security paradigms, NSPW’99. ACM, 2000, pp. 87–95.

[VBO03] J. Vitek, C. Bryce, and M. Oriol, “Coordinating processes with
secure spaces,” Science of Computer Programming, vol. 46, no.
1-2, pp. 163–193, 2003.

[VPDW+05] T. Verhanneman, F. Piessens, B. De Win, E. Truyen, and
W. Joosen, “Implementing a modular access control service to
support application-specific policies in caesarj,” in Proceedings
of the 1st workshop on Aspect oriented middleware development,
AOMD’05. ACM, 2005.

[VRCG+99] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot-a Java bytecode optimization framework,” in Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies
on Collaborative research. IBM Press, 1999, p. 13.

[Wan01] M. Wand, “A semantics for advice and dynamic join points in
aspect-oriented programming,” in Proceedings of the 2nd Interna-
tional Workshop on Semantics, Applications, and Implementation
of Program Generation, SAIG’01, ser. LNCS, vol. 2196. Springer,
2001, pp. 45–46.

154 BIBLIOGRAPHY

[Win05] K. T. Win, “A review of security of electronic health records,”
Electronic Health Records: security, safety and archiving, vol. 34,
no. 1, pp. 13–18, 2005.

[WJP02] B. D. Win, W. Joosen, and F. Piessens, “Developing secure appli-
cations through aspect-oriented programming,” in Aspect-Oriented
Software Development. Addison-Wesley, 2002, pp. 633–650.

[WVD01] B. D. Win, B. Vanhaute, and B. D. Decker, “Security through
aspect-oriented programming,” in Proceedings of the IFIP TC11
WG11.4 First Annual Working Conference on Network Security.
Kluwer, 2001, pp. 125–138.

[WZL03] D. Walker, S. Zdancewic, and J. Ligatti, “A theory of aspects,” in
Proceedings of the 8th ACM SIGPLAN International Conference
on Functional Programming, ICFP’03. ACM, 2003, pp. 127–139.

[YAM+] F. Yang, T. Aotani, H. Masuhara, F. Nielson, and H. R. Nielson,
“AspectKE*:Aspects with High-level and Efficient Program Anal-
ysis for Securing Distributed Systems,” submitted to a conference.

[YHNN] F. Yang, C. Hankin, F. Nielson, and H. R. Nielson, “Aspect-
oriented access control of tuple spaces,” submitted to a journal.

[YMA+10a] F. Yang, H. Masuhara, T. Aotani, F. Nielson, and H. R. Nielson,
“AspectKE*:security aspects with program analysis for distributed
systems,” in Proceedings of the 9th Workshop on Aspects, Compo-
nents, and Patterns for Infrastructure Software, ACP4IS’10. Uni-
versity of Potsdam, 2010, pp. 27–31.

[YMA+10b] F. Yang, H. Masuhara, T. Aotani, F. Nielson, and H. R. Nielson,
“AspectKE*:security aspects with program analysis for distributed
systems,” in Demonstration track of the 9th International Confer-
ence on Aspect-Oriented Software Development, AOSD’10, 2010.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Preliminary Summary
	1.2 Dissertation Outline

	2 Setting the Scene
	2.1 Research Background and Related Work
	2.2 KLAIM
	2.3 Concluding Remarks

	3 AspectKE: Trapping Actions
	3.1 Syntax
	3.2 Semantics
	3.3 Advice for Access Control Models
	3.4 Concluding Remarks

	4 AspectKE: Trapping Processes
	4.1 Extended Syntax and Semantics
	4.2 Advice for Data Usage
	4.3 Concluding Remarks and Related Work

	5 AspectK: Generalization
	5.1 Syntax and Semantics
	5.2 Advice for Access Control with Logging
	5.3 Open Joinpoints and Other Language Extensions
	5.4 Concluding Remarks

	6 AspectKE*: Programming Language
	6.1 The AspectKE* Programming Language
	6.2 A Secure Distributed Chat Application
	6.3 Highlight of the Language Features
	6.4 Concluding Remarks

	7 AspectKE*: Implementation
	7.1 Overview of the System
	7.2 AspectKlava Runtime System
	7.3 Static Analysis of Process in AspectKlava
	7.4 Concluding Remarks

	8 Demonstration and Evaluation
	8.1 Demonstration
	8.2 Evaluation
	8.3 Concluding Remarks and Related Work

	9 Conclusion
	9.1 Contributions
	9.2 Future Work

