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Electrodynamic tethers provide actuation for performing orbit correction of spacecrafts. When an electrodynamic
tether system is orbiting the Earth in an inclined orbit, periodic changes in the magnetic field result in a family of
unstable periodic solutions in the attitude motion. This paper shows how these periodic solutions can be stabilized by
controlling only the current through the tether. A port-controlled Hamiltonian formulation is employed to describe
the tethered satellite system and a passive input-output connection is used in the control design. The control law
consists of two parts: a feedback connection, which stabilizes the open-loop equilibrium; and a bias term, which is
able to drive the system trajectory away from this equilibrium, a feature necessary to obtain orbit adjustment
capabilities of the electrodynamic tether. It is then shown how the periodic solutions of the closed-loop system can be
approximated by power series, and a relation is found between control gain and perturbations around the open-loop
solution. Stability properties of the system are investigated using Floquet analysis, and the region of stability is found

in the plane defined by the control parameters.

Nomenclature

= system matrix of open-loop system
system matrix related to the feedback loop
system matrix related to the bias term
magnetic field of the earth, T

aligned dipole approximation of B, T
input function

short notation for cosine i

Lorentz force per unit length tether, N

= input function in port-controlled Hamiltonian
framework

= nondimensional Hamiltonian
Hamiltonian, J

current through tether, a

orbit inclination, rad

interconnection matrix

controller gain

optimal controller gain

Lagrangian, J

length of tether, m

monodromy matrix

mass of subsatellite, kg

mass of main satellite, kg

mass of tether, kg

nondimensional generalized momenta, p =[py p,]"
generalized momentum associated with 6
generalized momentum associated with ¢
nondimensional generalized force
generalized coordinates ¢ = [0  ¢]”, rad
damping matrix

unit vector along the tether

short notation for sin i

= control input
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= bias term

state vector

system output

in-plane angle, rad

collection of tether parameters, Nm

largest eigenvalue of damping matrix

standard gravitation parameter of the Earth, m? s~
strength of the magnetic field, Tm?

argument of latitude (time variable), rad

= stability-deciding characteristic multiplier
characteristic multipliers
generalized force T =[ 19
fundamental matrix
out-of-plane angle, rad
right ascension of the ascending node, rad
= orbit rate, rad/s
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1. Introduction

TETHERED satellite system (TSS) is a system of two or more

satellites connected with cables. TSSs have been proposed in
connection with numerous different tasks and for several missions,
and have therefore been the subject of much research over the last
three decades (see [1,2] for reviews). In this work we will consider a
TSS consisting of two satellites, a main satellite and a subsatellite,
connected by an electrodynamic tether (EDT). An EDT provides a
means of performing orbit maneuvers using only electrical power.
The system acts as an actuator for the orbit motion by generating an
electrodynamic force (the Lorentz force) acting along the tether. By
collecting electrons from the surrounding plasma and emitting them
from dedicated electron emitters, a current can be led through the
tether. Interaction of this current with the magnetic field of the Earth
creates a Lorentz force that influences the trajectory of the satellite.
This controllable force could be used to perform orbit adjustments,
and EDTs have been proposed for deorbiting obsolete satellites [3.4],
for altitude adjustment of the international space station [5] and for
reboosting in connection with momentum exchange between
satellites [6].

There are several control tasks associated with an EDT system.
Tether vibration control [7] damps vibration along a flexible tether;
orbit control [8,9] changes one or more of the orbit parameters; and
attitude control deals with stabilizing libration of the satellite-tether
system [10,11]. This work treats the attitude problem. Control of the
attitude motion is required in order to use the Lorentz force for the
desired orbit corrections. The attitude control problem is difficult
because control of current alone leaves the attitude dynamics under-
actuated, and instantaneous forces are always perpendicular to the
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instantaneous B-field. This problem is also well known when dealing
with attitude control using magnetic coils [12]. Common
assumptions when dealing with the attitude control problem are to
model the tether as arigid rod and ignore the orbit changes caused by
the Lorentz force. These assumptions will also be made in this study.

An EDT system was investigated in [13] assuming a constant
current was passed through the tether. In this case the Lorentz force,
acting as a periodic forcing term, was shown to give rise to unstable
periodic solutions of the attitude motion. When driven by a constant
current, energy is pumped into the attitude motion and active current
control is needed to stabilize the motion. Looking into the deorbiting
problem, a simple switching control law was presented in [14], where
the current was switched on and off depending on the level of a
Lyapunov function. Reference [15] showed that stabilization of the
open-loop equilibrium of the TSS was possible using feedback
linearization. Because of zeros in the input function, the primary
control law contained singularities. This problem was handled by
switching to a secondary control law in proximity of a singularity.
Generation of a Lorentz force and ability to influence the orbit of a
TSS is the prime purpose of an EDT. This requires the tether to carry a
nonzero current, but will also drive the attitude system away from its
open-loop equilibrium. The ability to stabilize the attitude away from
the equilibrium is therefore crucial. An commonly explored control
strategy for the attitude dynamics is stabilization of open-loop
periodic solutions. Two control laws were investigated by [10] with
this purpose. The first approach used a feedback of the difference
between the present trajectory and a reference trajectory. The second
used time-delayed autosynchronization, where the difference
between the present trajectory and a one-period-delayed trajectory
was used in the feedback loop. Stabilization was obtained using
additional actuators. Examining energy considerations, Williams
[16] stabilized the periodic solutions by synchronization between the
system energy and the energy of a reference trajectory. Considering
the combined attitude and orbit control problem using Gauss’s
planetary equations for modeling the orbit changes, the recent work
[11] used numerical predictive control and time-delayed feedback
after having discretized the system dynamics.

This paper suggests a solution to the attitude control problem for
the TSS using a passivity-based control law, based on a port-
controlled Hamiltonian (PCH) formulation of the dynamics. A
control law that adds damping to the open-loop system is shown to
make the open-loop equilibrium asymptotically stable. Itis discussed
how, by adding a bias term, open-loop periodic solutions can be
stabilized. The proposed time-varying control law is shown to have
the advantage of being static in the sense that no delayed signals or
reference trajectories are used. Properties of the closed-loop periodic
solutions are investigated and compared with the open-loop
solutions. The work presented in this paper is an extension of results
presented in [17,18].

The outline of the paper is as follows: Sec. II derives the equations
of motion for the system and formulates it as a PCH system such that
a passive input—output connection is created. Sections III and IV
consider the control design for stabilization of the open-loop
equilibrium and the open-loop periodic solutions, and bounds are
provided for the region of convergence for the time-varying
controller. Finally Sec. V offers conclusions.

The notation r” and A” will be used to denote the transpose of a
vector r or a matrix A. The derivative of a scalar or a vector function
(H or x) with respect to the argument of latitude will be denoted Hor
x. The Jacobian of a scalar function will be defined as a column

9H

vector, hence 5 is a column vector. Identity matrices are denoted 1,

where dimensions should be clear from the context.

II. Model

Consider a TSS consisting of a main satellite and a subsatellite
connected by an EDT. The satellites have masses mp and m, and are
treated as point masses. The tether has mass m, and length /. The
system will not be considered during the deployment and retrieval
phases, hence the length of the tether is assumed constant. For
simplicity it is assumed that the mass of the main satellite comprises

the main contribution to the total mass mg > m, + m,, and the
center of mass (CM) of the system can therefore be assumed to
coincide with that of the main satellite. Only the effect of the EDT on
the attitude motion is modeled, and no additional orbit-perturbing
forces are included, hence the CM follows a Keplerian orbit. Further,
the system is orbiting the Earth in an assumed circular orbit. The orbit
plane of the circular orbit can be described by two of the orbit
parameters, the right ascension of the ascending node 2 and the
inclination i, illustrated in Fig. 1. The orbit position is described by
the argument of latitude in this paper, where the orbit is circular with
nonzero inclination. The argument of latitude is denoted v, which is
measured from the direction of the ascending node. In case the
inclination was zero, the true longitude would be used instead. The
orbit rate @ =9 is constant and v is therefore adopted as the
independent variable of the model. The attitude motion is described
in the orbit frame spanned by the x, y, and z axes. The x-axis is placed
along a vector from the Earth to the CM, the y-axis is directed along
the orbit velocity, and the z-axis is normal to the orbit plane. The orbit
frame can be found from an Euler rotation of the inertial frame using
the angles €2, i and v as indicated in Fig. 1. The inertial frame does not
rotate with the Earth and is defined by the X, Y and Z axes. The X-axis
is in the direction of the vernal point, and the Z-axis coincides with
the rotational axis of the Earth. The attitude of the TSS is described by
a unit vector r from the main satellite to the subsatellite. The system
has two stable equilibria due to the gravity gradient. They occur when
r coincides with the x-axis of the orbit frame. In this paper the system
is described around the equilibrium along the negative x-axis and this
equilibrium is referred to as the open-loop equilibrium, even though
there are several. The choice of working point is, however, of no
importance due to the symmetry of the gravitational potential. Since
the tether is of constant length, the tether motion is restricted to a
sphere of radius / in the orbit frame. This sphere is described by an in-
plane angle 6 and an out-of-plane angle ¢, which are adopted as the
generalized coordinates of the system, ¢ =[6 ¢]”. The in-plane
and the out-of-plane angles are illustrated in Fig. 2. The in-plane
angle is the angle between the negative part of the x-axis and the
tether projection onto the orbit plane. The out-of-plane angle is the
angle between the projection and the actual tether position. Using the
generalized coordinates, the vector along the tether can be written as

—cos fcos @
r=| —sinfcos¢ (D
—sing

A. Equations of Motion

The Lagrangian of the system has been derived in several previous
papers (see e.g. [13]) and can be expressed as

£g.9) =y AG +cop((1 + 07 +3c080) @)

where A = 1@?I*(3m, + m,) is a constant formed by the parameters
of the system. Besides the kinetic energy, the Lagrangian includes the
gravitational potential, the Coriolis potential and the centrifugal

P =
=

Fig. 1 Orbit description of a circular orbit and the orbit frame.



LARSEN AND BLANKE 3

®

Fig. 2 Definition of the in-plane and the out-of-plane angle in the orbit
frame.

potential, represented by the terms 3 Acos*6cos?y, Afcos?g, and
%Acoszgo, respectively. In a Hamiltonian description of the system,
the states representing the generalized velocities are replaced by the
generalized momenta p=[p, pol = ‘;—‘q: From (2) these are
given by

po=A(l + B)cos’p (3a)

py=~A¢ (3b)

Using the generalized momenta, the Hamiltonian H of the system is
H(g.p) =4"p— L(q.4(q. D).

. L (. P N
H(g.p) == P2+ pg —2Apy —3A%cos?bcos’p |  (4)
2A cos“ ¢
To simplify the Hamiltonian, it is scaled by A~'. Furthermore, the
generalized momenta are scaled and shifted such that
Ps
=—=-1 5
Pe ="y (5a)

Py
Py =73 (5b)
The shift of py is introduced to place the open-loop equilibrium at the
origin of the state space. Using these coordinates, the equations of
motion are then expressed using Hamilton’s equation:

. O0H
9=75" (6a)
14
. 0H
p= ~ o +0 (6b)

where p is introduced as p=[py p,]” and Q=% is a
nondimensional version of the generalized force. The Hamiltonian is
dimensionless and independent of the system parameters:

1 2
% —2pg — 300529cos2(p) +1 (D

1
H(g.p) =35 (pé +
Here, a constant + 1 is added, without loss of generality, to create a
positive definite Hamiltonian around the origin. Inserting in (6) the
equations of motion are

. petl
6= ’Z‘;szw -1 (8a)
®=Dp, (8b)
. 30,
Pg=—5cos @sin260 + Q, (8¢)
1 3
0= IZ):Z—(p tan ¢ — §c0s29 sin2¢ + Q, (8d)

The unforced system (Q = 0) has four equilibria, which can be
determined from the critical points of the Hamiltonian. All equilibria
are situated in the orbit plane (¢p* = 0) and have zero momenta
p* = 0. The system has two stable equilibria placed at 8* = 0 and
0* = . The remaining two 0" = £ % are saddle nodes and are
unstable.

B. Actuation

The system is actuated by a current through the tether. The current
interacts with the magnetic field of Earth and gives rise to a
mechanical force acting along the tether. An essential part of the
actuator model is the modeling of the B-field of the Earth. The B-field
can be modeled using a spherical harmonic expansion (see [19,20]).
A dipole model is a spherical harmonic expansion of degree 1 and is
commonly employed for analytical derivations to avoid the
complexity of a higher order spherical harmonic expansion. The
dipole model can be written as the sum of three components, each of
which are dipoles directed along the axes in an Earth-fix coordinate
system:

B =By+By,+B, )

The main contribution to the B-field comes from the dipole B,
aligned with the rotational axis of the Earth. The remaining dipoles
cause B to be tilted from the rotational axis of the Earth. This reflects
the fact that the magnetic north pole of the Earth does not coincide
with the geographical north pole. An upper limit for the magnitude of
perturbations caused by By and B, was provided in [21]. It is
common to use B to model the B-field, because this choice leads to a
model independent of the rotation of the Earth. This study also adopts
B, as the B-field model, but B will be used in simulations to
investigate the influence of perturbations to the B-field. By
evaluating the dipole model at the origin of the orbit frame, the dipole
B is expressed in the orbit frame:

i —2sinvsini
BZ=R—'3” cosvsini (10)
cos i

where 11, is the strength of the dipole and R is the radius of the orbit.
The electrodynamic force acting on the tether is the Lorentz force,
which is proportional to the cross product between a tangent vector to
the tether and the B-field vector. Since the tether is assumed to be
rigid, the position vector r forms a tangent vector at every point along
the tether and the Lorentz force per unit length tether becomes

F,=IrxB a1

where [ is the current through the tether. In the sequel, it is assumed
that / can be controlled without limitations and the B-field is constant
over the length of the tether. To find the generalized force T =
[tp 7,]" caused by the Lorentz force, Eq. (11) is projected onto the
generalized coordinates. Inclusion of the contribution from the entire
tether requires integration along the tether:

t_d(sr)
— T
T(;—/(;Fg T ds (12a)
!
7, = [ Fro6n) g (12b)
0 dp

Using (12), the nondimensional generalized force has the affine
form:

Q =b(v.qu 13)

The input u is a dimensionless quantity proportional to the current
through the tether:

3 1
71%1

== = 14
" 23my +m; L (14)
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where p is the standard gravitation parameter of the Earth.
Considering b(g,v) =[by b,]" as input function to the system,

bg(v, q) = cos g singsini(cos vsinf — 2 sin v cos )

— cos?pcos i (15a)

b,(v, q) = sini(cos & cos v + 2 sin &sin v) (15b)
The zeros of the input function are important for the actuation and
control design of the system. The input function was analyzed and
conditions for zeros were stated in [17].

The model is under-actuated because it has two degrees of freedom
and only one control input. Consequently, the magnitude of the
Lorentz force can be controlled by the current, but the direction is
determined by the states and the direction of the magnetic field. The
system description is time-periodic, because the TSS is orbiting
through the static magnetic field. Using a more advanced model of
the magnetic field, the system description would still be time-
periodic, but the period would be a combination of the orbit period
and the period of the rotation of the Earth. It is observed that the
Hamiltonian of the system is time-invariant when the orbit is circular.

C. Passive Input—-Output Description

The control design presented in this paper is based on a passive
input—output connection, which is the subject of this section. The
equations of motion (6) can be written in a compact form as

. oH
Xx=J-—+gv.qu (16)
ox
where x=[q” pT]" is the state vector and g(v,q)=
[0T BT (v,q)]". The square matrix J is the symplectic identity:
0 I
J= [_ / 0] (17)

In a general context, the formulation can be expanded to include
damping and an output y:

. oH
x=J—-R)--+gv.qQu (18a)
0x
oH
=g"(v,q)— 18b
y=g .9~ (18b)
The matrix J = —J7 is called the interconnection matrix and R =

R” > 0 is the damping matrix. Both matrices can be functions of
state variables and time. The matrix J describes how the system is
interconnected which in case of a mechanical system like the EDTs is
given as (17), and R describes the damping in the system. In the
present model damping, e.g., air drag is not taken into account, but
the matrix will occur later to describe the damping added in the
closed-loop system. This system formulation is called a PCH (see
[22]) and a salient feature is that the input—output connection is
passive. The input u and the output y is called the port power
variables. The product yu describe instantaneous power flow of the
system due to the control action. This can be seen from the time
derivative of the Hamiltonian which are

H=— (BH) Ra—H—i-uy (19)
ox

The first term describe the power flow due to the damping. From (19)
itis also seen that # and y forms a passive input—output connection, if
the Hamiltonian has a lower bound. This section has presented the
system for a single input, but it is similar for the multi-input case.

III. Stabilization of Open-Loop Equilibrium

Having formulated the system with a passive input—output
relation, the stabilization of the origin can be obtained under

conditions described next, by the simple feedback law (see [22]
Corollary 3.3.1, p. 44):

u = —ky, k>0 (20)
This can be seen by using the Hamiltonian H as a Lyapunov function.
The quantity H has been defined as a positive definite function
around the open-loop equilibrium and its derivative with respect

to v is
. OH\T o0H oH
H= (8 ) Jf-i-(a ) g, Qu = —ky* (21)

Hence, the derivative of H is negative semidefinite. The first term
vanishes due to the structure of the interconnection matrix. If the
system is zero-state observable, the derivative will be negative
definite and asymptotic stability is guaranteed. The zero-state
observability condition can be relaxed to zero-state detectability,
following [22]. Zero-state observability can be formulated as: A
lasting zero in the output (y = 0) of the unforced dynamics (u = 0)
implies that the system is at the zero-state x = 0. Because of the
definition of y, the zeros of the input function (15) are essential to
fulfill the zero-state observability condition. The zeros induced by
the time-varying input have no influence on the zero-state
observability because these are countable. The zeros induced by the
generalized coordinates have no influence either, which is best seen
by writing the output as

y=b"(v,9)q = by(v.q)0 + b,(v,9)¢ (22)

If ¢ induces a zero in the input function when ¢ # 0, the open-loop
dynamics will lead the system trajectory away from this point,
because the origin is the only equilibrium in the region of interest.
This also shows that § = 0 cannot induce a lasting zero, except for the
open-loop equilibria. The inclination i can also cause a zero in by and
b, for equatorial (i =0°) or polar orbits (i = 90°), respectively.
These situations are hard to handle because either the in-plane or the
out-of-plane dynamics are unactuated. However, these conditions are
not of great practical importance because they occur as an effect of
simplifying the model of the magnetic field. Using the control law
(20), the closed-loop dynamics can be written as a Hamiltonian
system with additional damping using the open-loop Hamiltonian H:

. oH
x=(J—kR)— (23)
ox
Here, the positive semidefinite damping matrix can be written as
0 0
_ T _
R=g00g 0= o ] o4

The matrix D = b(v, q)b” (v, q) describes damping added by the
controller to the system. The matrix D has one positive eigenvalue
Amax and one equal to zero, except in the case where b = 0. The lack
of full of rank of D is a consequence of the system being under-
actuated. The energy flow of the closed-loop system becomes

H= aH J - kR) =—k DaH
317 ap
= —kthé > —kkmaxlltivll2 (25)

The energy flow is nonpositive and has a lower bound determined
from the nonzero eigenvalue of D.

One of the advantages of the control law in Eq. (20) is that the zeros
in the input function do not lead to singularities in the control. This
could potentially lead to a large region of attraction (ROA) for the
closed-loop system.

A. Closed-Loop Analysis

The closed-loop description of the system will be time-periodic
due to the periodic changes in the input function. To investigate the

Q4



LARSEN AND BLANKE 5

stability and performance of such a system, Floquet analysis can be
used if the system is linear. Linearizing the closed-loop system
around the origin leads to the description

x= AI(V)x (26)

where the system matrix A, (v) is a T = 25 periodic function. The
system matrix can be written as

A (V) =A-kA(v) 27)

where A is the open-loop system matrix and A,(v) is the part
originating from the feedback loop:

0 0O 1 0
0 0 0 1
A= -3 0 0 0 (28)
0 -4 0 O
0 0 0 0
0 0 0 0
A =19 o cos?i —1sin(2i) cosv (29)
0 0 —isin(2i)cosv sin’icosv

According to Floquet theory, a fundamental matrix ®(v) of (26)
fulfills

dPWv+T)=o(v)M (30)
where the monodromy matrix M can be written as
M = &1 (0)®(T) 31

The stability of the system can be determined from the eigenvalues p;
of M, which are referred to as the characteristic multipliers. The
system (26) is asymptotically stable if all p; are placed inside the unit
circle. The multiplier p = p; where j = arg max,|p,| is denoted the
stability-deciding multiplier. Remembering that the fundamental
matrix fulfills the differential equation:

d(v) = A,(1)®(v) 32)

itis seen from (31) that the monodromy matrix can be found from an
integration of (32) over one period of time from the initial conditions
®(0) = I. The multipliers can be expanded in a power series around
a value of k where the multipliers are known [23,24]. In this case
around k = 0, where the system equals the unforced open-loop
system. To do this, the monodromy matrix is expanded in a power
series as well. The open-loop system is time-invariant and the
multipliers and the monodromy matrix are therefore easily found for
k = 0. The expansions of p; and p, are difficult to find because they
are equal for k = 0. The geometric multiplicity equals two, hence in
this case there are two independent eigenvectors corresponding to the
eigenvalues p; = p; = 1. The expansion becomes even more
complicated because the eigenvalues do not cross at kK = 0 but only
share a tangent. This means that the expansions of p; and p, are equal
in a linear approximation. The expansion of the characteristic
multipliers becomes

pra = €2V (1 — etk + l—ﬂzc?(&rc? =S j«/§)k2) +... (33)

4
pra=1— gs,?k + ;_%(12”2 + 50 4. (33b)

where j is the imaginary unit and ¢; and s; are short notation for cos i
and sin i, respectively. The multipliers p;, and p; 4 are associated
with the in-plane and the out-of-plane motion, respectively, and their
magnitude can be written as

2
|p1Y2|:1—c?nk+c§‘%k2+... (34a)

2
4T

PRt (34b)

T
[3.4] :l—s%zk—i—s

Itis seen that the system is asymptotically stable for small k£ > 0. One
problem of the expansion is that the radius of convergence is limited.
Another problem is that it can be hard to find higher order terms due
to difficulties of finding the higher order terms of the monodromy
matrix.

An alternative way of finding the characteristic multipliers is to use
numerical integration to determine the monodromy matrix from (31).
Figure 3 shows the characteristic multipliers p; found numerically for
increasing controller gain k plotted in the complex plane. The
corresponding magnitudes are shown in Fig. 4. The solutions placed
on the unit circle for £ = 0 correspond to the open-loop solutions
where the in-plane and the out-of-plane dynamics have a natural
frequency of /3 and 2 as indicated by the eigenvalues of A in (28). It
is seen that there exists an optimal controller gain k* which
minimizes |p|. The existence of k* is also indicated by (34). For
k > k* the stability-deciding multiplier is seen to converges toward
the unit circle. It is noted that p stays inside the unit circle for all
k > 0, hence the system is asymptotically stable for all kK > 0, which
is in agreement with the result found using H as a Lyapunov function.

Figure 5 shows the stability-deciding multiplier as a function of the
controller gain for different inclinations. The qualitative behavior of
the multiplier shown in Fig. 5 follows the behavior seen in Fig. 4,
with the exception of a polar or an equatorial orbit. In these cases the

N
Piie \ ~. i
0.8 “ 1 ~.
d N
0.6 , ’ | \,\
. 1 -
a 04r K 1 \,\

! | .
£ 0.2t ! ' ks
e i ! X
2, \ F-T TS ®
- of 1 =
2 ! ;
5 —0.2 \ i
< \ ,

\
_o6l \\’ —_— Mult?pl?ers pPra2
N —— Multipliers p3 4
-0.8 \'\‘ O  Startpoints, k =0
RS - % Endpoints, k = 50
-1 -05 ) 05 1
Real part Re p

Fig. 3 Characteristic multipliers p; as function of k for a fix inclination
of i =45°.
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Fig. 4 Absolute value of p; as function of k for a fix inclination of
i=45°
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Fig. 5 Absolute value of the stability-deciding multiplier for different
inclinations.

stability-deciding multiplier lies on the unit circle for all k as a
consequence of the unactuated in-plane and out-of-plane dynamics,
respectively. This is also confirmed from the expansion (34) where
higher order terms of the in-plane and the out-of-plane multipliers are
multiplied by a factor cos?i and sin’i, respectively.

The proposed control law preserves all four open-loop equilibria,
so the closed-loop system can only be asymptotically stable, global
asymptotical stability can not be obtained. An estimation of the ROA,
the range of initial conditions x, for which the system will converge
to the origin, is therefore crucial in the evaluation of the control
design. In this connection it is important to observe that the control
law is the same for the two stable equilibria. It is therefore expected
that the state space is divided equally between the regions of
attraction around the two stable equilibria.

An obvious way to estimate the ROA is to use the Hamiltonian of
the system. If the trajectory gets trapped in the potential well around
the origin, the nonincreasing energy level guaranteed by the
controller will lead the trajectory to the origin. To be able to escape
the potential well, the energy level must be greater than the energy
level H* of the separatrices in state space. The energy level can be
found from the energy at the saddle nodes that divides the potential
wells of the stable equilibria (see Fig. 6). All initial conditions (g,
Po) around the equilibrium with H(q,, py) < H* lie in the ROA for
the equilibrium. Since the Hamiltonian is independent of the orbit
inclination, the estimation of the ROA will be independent of
inclination as well. Figure 6 shows the estimate of the ROA in the
configuration space for ¢ = 0 along with the level curves of H.

80F s [ Hamiltonian ROA
Numerical ROA

Out-of-plane ¢, [°]

(o]

-100 -50 0 50 100
In-plane angle 6, [°]

Fig. 6 ROA shown in the configuration space for ¢ = 0.

Figure 6 also shows the ROA found numerically for the initial time
vy = 0. The shape of the numerically determined ROA is similar for
other initial times. The ROA more or less equals the lower hemi-
sphere of the configuration space. The configuration space is divided
equally between the ROA of the upper and the lower equilibrium, as
expected.

Figure 7 shows two simulations of the convergence toward the
energy minimum for different initial times. The initial state is set to
go=1[% Z]” and §, = 0. The dashed curves in the Figure show
simulations using the nonaligned dipole to model the B-field, with
different initial positions of the perturbation dipoles. Itis seen that the
perturbation of the B-field results in energy levels slightly perturbed
compared with the nominal model, but the converges is unaffected by
the perturbation.

The control strategy can handle even more complicated models of
the magnetic field, provided that sufficient information on the model
is available to the controller. The bound on the energy flow shown in
Fig. 7 equals A, ||¢||?, which is a scaled version of the lower bound
given in (25). It is seen that the energy level of the system is only
decreasing when the limit on the energy flow is larger than zero.

IV. Stabilization of Periodic Solutions

Since it is necessary to lead a nonzero current through the tether to
generate a Lorentz force on the system, and this current will force the
system away from its open-loop equilibrium, it is necessary to find a
closed-loop solution that can stabilize the attitude motion with a
nonzero tether current. Stabilization about an arbitrary point in the
configuration space is not possible due to the under-actuated nature
of the system. Only the control signal # = 0 will lead to equilibria in
the equations of motion. Any other control signal will lead to time
variations in either the in-plane or the out-of-plane momentum. Since
the closed-loop system describes a continuous vector field, the
system trajectory cannot converge to points other than the equilibria.
An alternative to a stabilization of a point in the configuration space is
to stabilize a periodic trajectory. The periodic open-loop solutions
found in [13] are obvious candidates for such trajectories. This
strategy was investigated in several papers [10,11,16].

To lead the trajectory away from the open-loop equilibrium and
stabilize the open-loop periodic solutions, a bias term v is added to
the control law (20):

u=—ky+v, k>0 (35)

This control law is motivated by the creation of the open-loop
periodic solutions when k = 0. The unstable open-loop periodic
solutions were seen to evolve from the marginally stable open-loop
equilibrium when the system was perturbed by a constant input. The
intention of the control law is then to create similar periodic solutions
from the asymptotically stable closed-loop equilibrium. One could
expect that the periodic solutions would inherit the stability

1r Energy level
E — — — Perturbed energy levels
[
§ Bound on energy flow
7 0.5F
g
=
=
0
0 0.5 1 1.5 2 25 3
1r —— Energy level
% — — = Perturbed energy levels
E) Bound on energy flow
25 0.5F
8
=
=
0 w
0

Time, [orbits|

Fig. 7 Simulated energy flow for vy = 0 and vy = 7.
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properties of the closed-loop equilibrium. However, stable periodic
solutions only exist for some combinations of the controller gain k
and the bias term v. The reason is that the two variables will influence
the energy flow to the system, and thereby the stability, in different
directions.

A. Closed-Loop Analysis

Using the control law (35), the linear approximation of the closed-
loop system becomes

= A,(V)x + b, (Vv (36)

where b,(v) is a T = 27 periodic forcing term originating from the
bias:
0
0
b.)=1 _ cosi 7
sinicosv

The system matrix A, (v) is also T = 27 periodic and can be written
as

A,(v)=A—kA,(v) + vA,(v) (38)

where A and A;(v) are given in (28) and (29), respectively, and
A, (v) is given as

0 0 0 0
0 0 0 0

A,) = 0 —2sinisinvy 0 0 %)
2sinisinv 0 0 0

The periodic solutions x,, can be approximated by a power series
in the parameters k and v using a perturbation method. The solutions
for small k and v are approximated around the known solution for
k = v =0. This is obtained by writing the system matrices and the
solution as power series in the parameters. The resulting differential
equation is split according to each power and solved, based on the
known solution. This approach is a trivial extension of the method
presented in [25]. The expansions of the solutions are, to the third
order,

¢ §2 §2
O(v) = ——v + —§1n(2v)v + '6’ sin(2v)vk

2, st s?
Zeis? 2
+9c,s, (cos( v) + )v + (260

7 2 1 I\,
+3(c ~ 355 )cos(2v)—§(c +Zs,))vk

§2 [ 52 1 13
L (S 0s(4v) + — (c,2 + —sz) cos(2v) + —— 57 )vk2

13 30 216
(40a)
2¢;8; 3 3
o(v) = —cos(v)v _ s sin(v)v? + ;—’6( § sin(3v) + sm(v)) vk
3 3 2
43 3 cos(3v) + cos(v) |v* + Cidi —=cos(3v)
9 9 5
3 /2
2 _ Si (50 2 E 2
+ 2cos(v)) k 30 (56005(51)) + (cl + 120 s,) cos(3v)

(40b)

When no damping is added to the system (k = 0), the solutions (40)
coincide with the open-loop periodic solutions found by Peldez et al.
[13]. The solutions can be approximated with higher precision by
taking the nonlinearities into account. This is done by replacing the
nonlinearities with their Taylor expansions and again writing the
solution as a power series. The improved solutions are given as

L4 2
(v) = —%v + %sin(Zu)vz + %sin(Zv)vk

i (23 , 4
+E(?sicos(2v)+( 9c, +s))

2
+ 3 (;’5 cos(4v) + 20(c T 92) cos(2v) — %912) v’k

o

18 150
7 13 1 13 )
( 20° os(4v) + — (c +%s )c0§(2v) + 2165 )vk
(41a)

o(v) == cos(v)v -

. 3
2c g‘s' sin(v)v? + ;—’6 (—%sin(?;v) + sin(v)) vk

i (58 1
+i(15 ,2cos(3v)+ (c? +4s2)cos(v))

c;s? H

87 3 5 h, S
+ 9 ( 500s(3v)+3cos(v))vk 30

1 1
+ (c,2 + %s ) cos(3v) — g (c2 ~30% ) cos(v)) vk>  (41b)

The solutions (41) agree with the one found in [13] for k = 0, which
illustrates that the closed-loop solutions are perturbed by the
controller gain k compared with the open-loop solutions. Note that
the in-plane solutions only consist of even multiples of the basic
frequency, while the out-of-plane only consists of odd multiples.
Consequently, 0(v) =0(v+ m) and @(v) = —¢(v + m), which
geometrically means that the solutions are mirrored in the 6-axis. The
solutions are seen to collapse to a point on the -axis for an equatorial
orbit (i = 0°). The approximations of the periodic solutions are
found as an eight order power series, which is used when referring to
a series approximation.

The solutions (40) and (41) are only valid for small values of k and
v due to the convergence properties of the power series. Periodic
solutions exist, however, for larger values as well. These solutions
can be found by numerical simulations. To investigate the stability of
the solutions, the variable n(v) =x(v) —x,(v) is introduced to
describe a deviation from a periodic solution. Inserting in (36) it is
seen that n(v) obeys the differential equation:

=A,(v)y (42)

The equation can be investigated by means of Floquet analysis,
which is carried out in the same manner as in the previous section.
Using a power series the multipliers become

87
(% cos(5v)

1o = V37 ( 1 — ek + I—’Tzc-%(ﬁnc,? T V3K

3
+iste; n;/—k”) " “3a)
P3a=1—15s; *k + f(l2n2 + j5m)k?
:I:js,?c kv + js? gv +. (43b)
The magnitudes of the multipliers are
2
[o12] =1—C?nk+c§‘%k2+.., (44a)
2
lpsal =1— zk-l—s‘-‘ﬂ—l<2+ (44b)

i5 ig

The magnitudes are unchanged compared with (34) by the bias in the
second order approximation. This shows that the periodic solutions
are asymptotically stable for small £ > 0 and small v. The region of
stable periodic solutions (|p| < 1) is shown in the parameter plane
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Bias v

0 1 2 3 4 5 6 7 8 9
Controller gain k&

Fig. 8 Stable region in the parameter space for i = 45°.

defined by k and v in Fig. 8. The Figure is based on stability-deciding
multipliers found numerically. Stable periodic solutions are seen to
exist in a region in the parameter plane and, in agreement with the
result from the previous section, the line v = 0 is included in this
region. For each controller gain the bias term has lower and upper
limits, which are related to energy flow into the system. However, the
relations are quite complex and further scrutiny is not within the
scope of this paper.

The approximating series are convenient to show the existence and
basic properties of the periodic solutions, as well as to determine
initial conditions for simulations. To investigate how well the power
series approximates the periodic solution, the error ¢ is introduced:

e=or [ 180) = 5,0l d 4s)

where ¥, is the series approximation. The solution X is found from a
nonlinear simulation that has converged to a periodic solution. The
error is shown for different parameter values for a third and an eighth
order approximation in Figs. 9 and 10. In the case v = 0, where the
solution collapses to the origin, the approximation is exact. The
investigation of accuracy of the approximating series requires that the
solution is stable and also that the parameters are in the region of
converge of the series. Another obstacle is that for k close to zero,
convergence of the solution is so slow that computational efforts
makes it impractical to determine the magnitude of error. Apart from
these limitations, Figs. 9 and 10 show that the approximating series
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Fig. 9 Error associated with the third order approximation.
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Fig. 10 Error associated with the eighth order approximation.

can be used with reasonable accuracy for parameter ranges shown. It
is noted that the limitations associated with the approximating series
do not limit the general investigation in this paper as the general
results were based on full simulations of the nonlinear system.

Figures 11-14 show simulations of the system for v = 1, and an
inclination of i = 45°. Figure 11 illustrates a simulation of the open-
loop system (k=0) with an initial value found from the
approximated periodic solution. It is seen that this open-loop
periodic solution is unstable, even though the instability evolves
quite slowly. Figures 12 and 13 shows a simulation of the closed-loop
system with k = %, illustrated in the configuration space and as
function of time, respectively. It is seen that the system trajectory
converges toward a periodic solution, which resembles the solution
approximated by the power series. The stabilized solution is
perturbed from the open-loop solution due to the damping injection.
Figure 14 shows a simulation of a periodic solution for k = % using
tilted and nontilted dipole models of the magnetic field of the Earth.
Focus on the periodic solution is obtained by removing an initial
transient. To avoid a quasi-periodic solution, the simulation was
carried out for a satellite with an orbit period of 90 min, hence the
periodicity of the system is increased from 27 to 327, due to the
rotation of the Earth. The simulations verify that the controller is able
to stabilize a periodic solution with the new period, which is bounded
in a region around the unperturbed solution. Since the controller
contains no information of a reference solution, the solution is given
entirely by the variation in the magnetic field. The mismatch between
the B-field model used in the controller and the actual one has no
significant influence on the stability of the solution.

30 .
—— Simulated solution \

25H = = = Open-loop approx.
O Initial point

20

Out-of-plane ¢, [°]

-40 -30 -20 -10 0 10 20
In-plane angle 0, [°]

Fig. 11 Open-loop simulation of unstable periodic solution for k = 0
andv = 1.
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Fig. 13 Converges toward periodic solution for k = %
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Fig. 14 Periodic solution using different models of the magnetic field.

V. Conclusions

This paper developed a control law for stabilizing periodic
solutions in the attitude of an EDT system. The time-varying control
law was shown to stabilize a family of periodic solutions, which were
found to be perturbed versions of a known family of unstable open-
loop periodic solutions. The control design was based on a passive

input—output connection obtained by formulating the equations of
motion as a PCH system. The passivity-based formulation allowed
zeros in the input function to be handled in a simple manner, without
introducing singularities in the control law. The first part of the
control law gave stabilization of the open-loop equilibrium. A large
ROA was demonstrated for this control law, and it was shown that an
optimal control gain exists, providing the fastest convergence toward
the equilibrium. An attractive feature of the total control law was
shown to be its independence of reference signal and delayed signals.
The shapes of the stabilized periodic solutions were investigated
using series approximations and numerical simulations. The periodic
solutions were found to form symmetric curves around points in the
orbit plane, whose distances to the origin were increasing with a bias
term in the controller. Stability properties of the controller were
investigated by Floquet analysis and the allowable parameter range
for stable solutions was determined. The work assumed a simple
model of the magnetic field, but the sensitivity to perturbations in the
magnetic field was briefly studied. The control law was shown to give
an asymptotically stable closed-loop system for all relevant orbits.
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