
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Application of the method of auxiliary sources in optical diffraction microscopy

Karamehmedovic, Mirza; Sørensen, Mads Peter; Hansen, Poul-Erik; Lavrinenko, Andrei

Published in:
Progress in Industrial Mathematics at ECMI 2008

Link to article, DOI:
10.1007/978-3-642-12110-4_144

Publication date:
2010

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Karamehmedovic, M., Sørensen, M. P., Hansen, P-E., & Lavrinenko, A. (2010). Application of the method of
auxiliary sources in optical diffraction microscopy. In Progress in Industrial Mathematics at ECMI 2008 (1 ed., pp.
899-905). Heidelberg, Dordrecht, London, New York: Springer. DOI: 10.1007/978-3-642-12110-4_144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13737044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-12110-4_144
http://orbit.dtu.dk/en/publications/application-of-the-method-of-auxiliary-sources-in-optical-diffraction-microscopy(e92ef8a2-6180-44b8-98b9-70c80022b97d).html


Application of the Method of Auxiliary Sources

in Optical Diffraction Microscopy
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Summary. The Method of Auxiliary Sources is used for characterisation of grating
defects. Grating profiles are characterised by best fit matching of a library of diffrac-
tion efficiencies with numerical simulated diffraction efficiencies with defects. It is
shown that the presented method can solve the inverse problem with an accuracy
usually thought to require rigorous electromagnetic theories.

1 Characterisation of Micro and Nano Structures

Embedded in Materials

Functional materials with embedded micro and nano structures find applica-
tion in such diverse areas of technology as optical telecommunication compo-
nents, self-cleaning windows, medical equipment, and the technology of mass
production of electronics and digital watermarks. The main useful proper-
ties of such materials are not intrinsic, but rather stem from the introduced
modifications on or just beneath the surface of the material. The modifica-
tions are, e.g., insertion of particles or air holes of micro or nano scale under
the material surface, and alterations of the topology of the surface, such as
the introduction of surface gratings or deposition of particles, on micro and
nano scale. The design process and industrial use of functional materials re-
quire rapid and non-destructive techniques of characterisation of the embed-
ded micro and nano structures. Among several physically distinct methods,
we focus on the combined spectroscopic and angular resolved scatterometry
technique called Optical Diffraction Microscopy (ODM) [1, 2, 5, 6, 7]. Here,
specific features of the sample under investigation are reconstructed from the
measured optical power in the scattered far field. The method thus requires
the solution of an inverse scattering problem, and ultimately of a nonlinear
optimisation problem; however, in an industrial context such as quality con-
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trol, the principal features of the scatterer may be well-known, and one needs
rapid interpretation of measurement results to identify only relatively small
perturbations, e.g., manufacturing errors, in these features. The structures of
interest are typically small in terms of the wavelength of the illuminating light,
and it is therefore relevant to address the inverse scattering problem using the
full classical electromagnetic model, rather than asymptotic formulations. The
Method of Auxiliary Sources (MAS) is an efficient numerical, non-asymptotic
technique of solution of boundary problems; see [4, 8] and references therein.
In the following, the method is used to approximate the solution of example
inverse problems which arise in Optical Diffraction Microscopy.

2 The Method of Auxiliary Sources

In the context of two-dimensional, time-harmonic forward electromagnetic
scattering, the Method of Auxiliary Sources (MAS) is a variational method
characterised by the choice of fundamental solutions of the Helmholtz equa-
tion in R

2 for the expansion vectors of the scattered field, and the Dirac delta
functions for the test vectors. Recall that, for every positive k, an outgoing4

fundamental solution of the Helmholtz equation (∆ + k2)u = 0 in R2, with

singularity at x′ ∈ R
2, is the Hankel function H

(2)
0 (k|x−x′|) of order zero and

of second kind. Figures 1 and 2 show a model time-harmonic Dirichlet scatter-
ing problem in R2 and a corresponding MAS formulation. The constant k is
the wave number 2π/λ, where λ is the operating wavelength. In MAS, all em-
ployed fundamental solutions have singularities in the interior of the scatterer.
The current sources of the approximation of the exact scattered field – the
so-called auxiliary sources – are hence Delta functions in R2 with singularities
in the interior of the scatterer, and, in the transverse electric (TE) case, the
scattered field Es is approximated in the exterior Ω by a finite linear combi-

nation of the form EMAS(x) =
∑N

j=1 CjH
(2)
0 (k|x − x′

j |), x ∈ Ω. The weights
(complex numbers Cj) occurring in the linear combination are determined by
enforcing the boundary condition at selected points xl, l = 1, . . . , N , on the
scatterer boundary Γ . The classical inverse scattering problem which arises in
the ODM consists in finding a surface Γ and a surface current distribution J
on Γ such that the corresponding radiated far field has the same power pattern
as the measured field. Evaluation of the objective function of this nonlinear
optimisation problem necessarily involves the evaluation of the intermediate
scattered far fields. In this context, the MAS representation of scattered fields
holds two major advantages over the traditional surface integrals which origi-
nate from boundary layer potential formulations of scattering problems. First,
with the MAS formulation, there is no need for numerical integration of surface
currents, whereas the electric field radiated by a z-directed, time-harmonic
electric current distribution J on a boundary Γ in R2 is proportional to the

4 That is, satisfying the outgoing radiation condition.
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Fig. 1. The geometry of a scattering problem in a subset Ω of R
2.
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Fig. 2. A MAS setup used to approximate the solution of the considered boundary
problem.

integral
∫

Γ
H

(2)
0 (k|x − x′|)J(x′)dΓ (x′), for x in the exterior of Γ . The second

major advantage of the MAS is that the scatterer topology is identified only
with the auxiliary sources, rather than with the sources and with a support-
ing boundary Γ . In the abovementioned integral, the domain of integration
Γ is, in general, a parameter of optimisation, and hence needs to be changed
with each iteration. In conclusion, when MAS is used, the optimisation prob-
lem involves an objective function which is simply a finite sum independent
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of the actual geometry of the scatterer surface, as opposed to an integral
taken over a generally variable surface. In our implementation, described in
Section 3, a number of scattered far field power patterns are stored in a li-
brary, together with the corresponding sets of auxiliary sources. (The latter
are represented by the locations x′

j , j = 1, . . . , n, and the complex amplitudes
Cj , j = 1, . . . , n; these sources radiate suitable approximations of the stored
far field patterns.) Each far field power pattern corresponds to a well-defined
perturbation of the basic topology of the scatterer. With elements x and x′ of
R2 represented by (|x|, φ) and (|x′|, φ′), respectively, in the usual cylindrical
coordinates, the function 1+i√

πk|x−x′|
e−ik|x−x′|eik|x′| cos(φ−φ′) is the asymptotic

form of the Hankel function H
(2)
0 (k|x− x′|) of order zero and of second kind,

valid for |x−x′| ≫ λ. We use the phase function eik|x′| cos(φ−φ′) of this asymp-
totic form for the auxiliary sources in our implementation. The procedure first
compares the measured far-field power pattern with the direct samples in the

library, using a distance function of the form
∑

∣

∣|Elibrary(φl)| − |Em(φl)|
∣

∣

2
,

where |Em(φl)| is the measured magnitude of the far field at angle φl. After
the best match is found, simple interpolation is used to refine this solution
of the inverse scattering problem. The auxiliary sources corresponding to the
best match, as well as those corresponding to the two entries in the library
which are closest to the best match, are fetched; these sources are represented
by complex amplitude vectors C0, C−1 and C1 in CN , respectively. The ob-

jective function, which is a finite sum of the form
∑

∣

∣|EMAS
t (φl)|− |Em(φl)|

∣

∣

2
,

is then minimised with respect to the parameter t ∈ [−1, 1]; the field EMAS
t is

radiated by the auxiliary sources represented by the complex amplitude vector
C(t) = −tC−1 + (1 + t)C0 when t ∈ [−1, 0], and by C(t) = (1 − t)C0 + tC1

when t ∈ [0, 1]. It is here assumed that the library entries are sufficiently
close such that the error is, to a good approximation, a linear function of the
perturbation of the scatterer geometry. The optimum value of the parameter
t is therefore directly interpreted as a normalised deviation of the measured
geometry from the library entries.

3 Results

Figure 3 shows the two-dimensional scattering problem considered here, and
the type of the measured deviations in the scatterer topology. The scatterer,
a piece of corrugated silicon, is immersed in air and illuminated by a time-
harmonic, uniform plane wave of transverse electric (TE) polarisation and
unit amplitude. The incident field propagates in the negative x direction. The
operating wavelength is denoted λ. We want to measure the elongation of a
specific protrusion on the scatterer. Our numerical experiment does not use
actual field measurements; rather, the amplitude of the scattered electric far
field is calculated using the COMSOL software [3, 9]. The library entries are
samples of the magnitude of the scattered electric far field, taken over the angle
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Fig. 3. The type of grating defects to be characterised.

of 30◦ symmetrically with respect to the x-axis. A total of only 12 auxiliary
sources are used for the interpolation of the far fields. Table 1 shows the
results of the numerical experiment. The actual and the estimated elongations
in the table are shown normalised with respect to the operating wavelength.
Negative (positive) elongations correspond to the specific protrusion being
shorter (longer) than the nominal one wavelength λ. Relative error 1 and
relative error 2 show the error in the estimate relative to the actual elongation
and relative to the nominal protrusion length, respectively. For the results in
Table 1, the average absolute value of relative error 1 is 14.7%, and the average
absolute value of relative error 2 is 5.4%. Of course, the elongations already
represented in the library are measured with zero error, which improves the
overall accuracy estimate for the method. However, it also turns out that the
elongations of 0.2λ, 0.4λ and 0.6λ match well the library entries of 0.875λ and
1λ, which suggests that, in general, an appropriate a priori estimate is needed
of the possible range of the elongation under measurement. After forcing the
correct initial (library) values for the three abovementioned elongations, the
interpolation produces estimates with relative error 2 at 12.5%, −18.8% and
−6.0%, respectively.
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Table 1. Accuracy of the estimates of the protrusion elongation.

actual elongation estimated elongation relative error 1 (%) relative error 2 (%)

-0.9 -0.9206 -2.3 -2.1

-0.3 -0.1800 40.0 12.0

-0.2 -0.1800 10.0 2.0

-0.1875 -0.1800 4.0 0.75

0.1 0.0681 -31.9 -3.2

0.3125 0.3250 4.0 1.3

0.8125 0.6681 -17.8 -14.4

0.9 0.9713 7.9 7.1

4 Conclusions and Further Work

It was demonstrated that the Method of Auxiliary Sources can be used for ef-
ficient numerical approximation of solution of certain inverse scattering prob-
lems occurring in two-dimensional monochromatic Optical Diffraction Mi-
croscopy. The method was tested on a number of relevant two-dimensional
inverse problems involving the elongation of a specific protrusion in a grating.
Future work includes the generalisation of the presented method to three-
dimensional measurement, and to polychromatic measurement (in time do-
main).

We acknowledge the financial support from the innovation consortium

FINST under the Danish Agency for Science, Technology and Innovation.
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