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Abstract. This paper proposes a new method of solving certain classes of
systems of multivariate equations over the binary field and its cryptanalytical
applications. We show how heuristic optimization methods such as hill climb-
ing algorithms can be relevant to solving systems of multivariate equations.
A characteristic of equation systems that may be efficiently solvable by the
means of such algorithms is provided.
As an example, we investigate equation systems induced by the problem of
recovering the internal state of the stream cipher Trivium. We propose an
improved variant of the simulated annealing method that seems to be well-
suited for this type of system and provide some experimental results.
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1 Introduction

Cryptanalysis focuses on efficient ways of exploiting, perhaps unexpected, structure
of cryptographic problems. It could be a difference which propagates with a high
probability through the cipher as used in differential cryptanalysis [6, 2] or a linear
approximation of the non-linear parts of a cipher that holds for many of the possible
inputs as it is the case with linear cryptanalysis [20].

More recently, the so-called algebraic attacks have received much attention. They
exploit the fact that many cryptographic primitives can be described by sparse mul-
tivariate non-linear equations over the binary field in such a way that solving these
equations recovers the secret key or the initial state in the case of stream ciphers.
In general, solving random systems of multivariate non-linear Boolean equations is
an NP-hard problem [12]. However, when the system has a specific structure, we can
hope that more efficient methods may exist.

One technique to tackle such equation systems is linearisation, where each non-
linear term is replaced by an independent linear variable. It works only if there are
enough linear independent equations in the resulting system. Courtois et al [7] pro-
posed the XL algorithm which increases the number of equations by multiplying them
with all monomials of a certain degree. It has been refined to the XSL algorithm [9],
which, when applied to the AES, exploits the special structure of the equation system.
Neither the XL nor the XSL algorithm have been able to break AES but algebraic
attacks were successful in breaking a number of stream cipher designs [8, 1].

In this paper we also investigate systems of sparse multivariate equations. The
important additional requirement we make is that each variable appears only in a
very limited number of equations. The equation system generated by the key stream
generation algorithm of the stream cipher Trivium [10] satisfies those properties and



will be examined in this paper as our main example. The fully determined Trivium
systems consists of 954 equations in 954 variables. Solving this system allows us to
recover the 288-bit initial state.

Our approach considers the problem of finding a solution for the system as an
optimization problem and then applies an improved variant of simulated annealing
to it. As opposed to the XL and XSL algorithms, the simulated annealing algorithm
does not increase the size of the problem, it does not generate more nor change the
existing equations. The only additional requirement is an objective function, called
the cost function, that should be minimized.

Simulated annealing has been studied in the context of cryptography before. Knud-
sen and Meier [19] presented an attack on an identification scheme based on the per-
muted perceptron problem (PPP). They found an appropriate cost function which
enabled them to solve the simpler perceptron problem as well as the PPP using a
simulated annealing search. The attack showed that the recommended smallest pa-
rameters for the identification scheme are not secure. The same identification scheme
was later a subject to an improved attack by Clark and Jacob [5]. They used simu-
lated annealing to solve a related problem that had solutions highly correlated with
the solution of the actual problem. They also made use of timing analysis where the
search process is monitored and one can observe that some variables are stuck at
correct values at an early state and never change again.

With our current experiments, we are not able to break Trivium in the crypto-
graphic sense which means with a complexity equivalent to less than 280 key setups
and the true complexity of our method against Trivium is unknown. However, if we
consider the Trivium system purely as a multivariate quadratic Boolean system in 954
variables then we are able to solve the system significantly faster than brute force,
namely in around 2210 bit flips which is roughly equivalent to 2203 evaluations of the
system. This shows that our variant of simulated annealing seems to be a promising
tool for solving non-linear Boolean equation systems with certain properties.

2 Hill climbing algorithms

Hill climbing algorithms are a general class of heuristic optimization algorithms that
deal with the following optimization problem. We have a finite set X of possible con-
figurations. Each configuration is assigned a non-negative, real number called cost,
or, in other words, we have a cost function defined as f : X → R. For each config-
uration x ∈ X a set of neighbours η(x) ⊂ X is defined. The aim of the search is to
find xmin ∈ X minimizing the cost function f(x), f(xmin) = min{f(x) : x ∈ X}, by
moving from neighbour to neighbour depending on the cost difference between the
neighbouring configurations.

Johnson and Jacobsen [15] presented a unified view of many hill climbing algo-
rithms by describing conditions on accepting a move from one configuration to an-
other. The transition probability pk(x, y) of accepting a move from x to y ∈ η(x) is
defined as the product of a configuration generation probability gi(x, y) and a config-
uration acceptance probability Pr[Rk(x, y) ≥ f(y)−f(x)], where Rk(x, y) is a random
variable and k is an iteration index that is increased by one after a fixed number of
moves. Algorithm 1 presents a general form of a hill climbing algorithm.

Note that when Rk(x, y) = 0, we obtain a local search algorithm as only moves
that decrease the cost are accepted.



Algorithm 1 General formulation of hill climbing algorithms
xbest ← x
while stopping criterion not met do

k ← 0 � set the outer loop counter
while k < K do

for m = 0, . . . ,M − 1 do
generate a neighbour y ∈ η(x) with probability gk(x, y)
compute the cost function f(y) of the candidate
if Rk(x, y) ≥ f(y)− f(x) then

x← y � accept the move
if f(x) < f(xbest) then

xbest ← x � store the best configuration
end if

end if
end for
k ← k + 1

end while
end while

Simulated annealing Classical simulated annealing algorithm [18] is a special case
of the general hill climbing algorithm presented above with a particular definition of
the transition probability. The inspiration and the name comes from the process used
in metallurgy to improve the durability of steel and alloys. When a metal is heated
above its recrystallization temperature, the atoms break from their initial positions in
the crystals and are able to relocate to other places. When slowly cooling down, the
atoms are most likely to stay in new positions guaranteeing a lower total energy of
the system, improving its regular structure and thus also the mechanical properties.

The simulated annealing algorithm uses a key parameter called the temperature
t. The configuration generation probability is taken to be uniform, i.e. each neighbour
is equally likely to be picked from each state. The acceptance probability depends on
the difference f(y)−f(x) in cost function between the current state x and the selected
neighbour y and the current temperature tk. The move is always accepted when it
decreases the cost and with probability e−(f(y)−f(x))/tk when the cost increases. In
terms of the general formulation presented above, we get this behaviour when we
define Rk(x, y) = −tk ln(U), where U is a uniform random variable on [0, 1].

Note that when the temperature tk is high, many cost-increasing moves are ac-
cepted. When the temperature is lower, worsening moves are less and less likely to be
accepted.

The way the “temperature” tk of the system decreases over time (k) is called the
cooling schedule. The condition necessary for the global convergence of the method
is that tk ≥ 0 and limk→∞ tk = 0. In practice, two most commonly used cooling
schedules are the exponential cooling schedule tk = α · βk for some parameter 0 <
β < 1 and the logarithmic cooling schedule tk = α/ log2(k+1) proposed in [13], where
α is a constant corresponding to the starting temperature.

3 Trivium system as an optimization problem

Trivium [10] is an extremely simple and elegant stream cipher that was submitted to
the ECRYPT eStream project. It successfully withstood significant cryptanalytical
attention [21–23, 3] and became part of the portfolio of the eStream finalists.



To our knowledge, there is no attack on Trivium faster than the exhaustive key
search so far. However, several attacks have been proposed which are faster than the
naive guess-and-determine attack with complexity 2195 which was considered by the
designers [10]. A more intelligent guess-and-determine attack with complexity 2135

using a reformulation of Trivium has been sketched in [17]. Furthermore, Maximov
and Biryukov [21] described an attack with complexity 285.5 and Raddum proposed a
new algorithm for solving non-linear Boolean equations and applied it to Trivium in
[22]. The attack complexity was 2164. There have been further attacks on the small
scale variant called Bivium as well as fault attacks on Trivium but we do not go into
the details here.

Trivium has an 80-bit key, an 80-bit IV and 288 bits of the internal state (s1, . . . , s288).
At each clock cycle it updates only three bits of the state and produces one bit of the
key stream using the following procedure.

for i = 1, 2, . . . do
zi ← s66 + s93 + s162 + s177 + s243 + s288 � Generate output bit zi
ti,1 ← s66 + s93 + s91 · s92 + s171
ti,2 ← s162 + s177 + s175 · s176 + s264
ti,3 ← s243 + s288 + s286 · s287 + s69
(s1, s2, . . . , s93)← (ti,3, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)
(s178, s179, . . . , s288)← (ti,2, s178, . . . , s287)

end for

During the key setup phase, the key is loaded into the first 80 bits of the state,
followed by 13 zero bits, then the IV is loaded into the next 80 bits of the state and
the remaining bits are filled with constant values. Then 4 ·288 clockings are computed
without producing any keystream bits. Our results do not depend on this procedure.

The initial state which is the state of the registers at the time when the key
generation starts can be expressed as system of sparse linear and quadratic Boolean
equations [22]. We consider the initial state bits as variables and label them with
s1 . . . , s288. In each clocking of the Trivium algorithm three state bits are updated.
The update function is a quadratic Boolean function of the state bits. In order to keep
the degree low and the equations sparse we introduce new variables for each updated
state bit ti,1, ti,2, ti,3. We get the following equations from the first clocking

s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 = s289

s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264 = s290

s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69 = s291

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = z

(1)

where the last equation is the key stream equation with z being the known key stream
bit.

After observing 288 key stream bits we can set up a fully determined system of
954 Boolean equations in 954 unknowns [22]. We only need to consider 954 equations
and unknowns instead of 1152 since we do not care about the last 66 state updates
for each register. These variables will not be used in the key stream equation because
the new bits are not used for the key stream generation before 66 further clockings
of the cipher. By clocking the algorithm more than 288 times we can easily obtain an
overdetermined system. We know that the initial state together with the correspond-
ing updated state bits fulfills all the generated equations (1). On the other hand,
for a random point each equation is satisfied with probability 1

2 . If we consider the



problem of solving the Trivium equation system as an optimization problem which is
suitable for hill climbing algorithms (cf. Section 2) X = {0, 1}954 is the set of possible
configurations. As a cost function f : X → R we count the number of not satisfied
equations in the system. We know that the minimum of the cost function is 0 and that
the initial state of the Trivium system is a configuration for which the cost function
is minimal. Of course there might be other optimal solutions. However, it is easy to
check if the solution we found is the desired one. That a configuration is an optimal
solution for the discrete optimization problem means that it generates the same first
288 bits of keystream than the initial state we are looking for. But it is unlikely that
the keystream will be the same for the following keystream bits. Therefore we can
check if a solution is the desired one by observing a few more keystream bit and
comparing them to the keystream generated by the solution. In our experiments it is
unlikely that multiple solutionss occur because we set some of the variables to there
correct values and consider therefore a highly overdetermined equation system.

4 Properties of Trivium landscapes

Hill climbing algorithms are sensitive to the way in which the cost function changes
when moving between configurations. Best results are obtained when a move from a
configuration x ∈ X to one of the neighbours η(x) does not change the value of the
cost function too much.

In our case we move from one configuration to another by flipping the value of a
single variable. But each variable appears in at most 8 equations and in 6 equations on
average, so when moving to a neighbour of the current configuration the cost function
will change by at most 8. Furthermore, changing the value of a single variable will
change the value of the equation with probability 1 if the variable appears in a linear
term and with probability 1

2 if the variable appears in a quadratic term. In the latter
case flipping the value of a variable will just change the outcome of the equation if
the other variable in the quadratic term is assigned to ’1’. If a variable appears in the
maximum of eight equations it appears in two equations in the quadratic term only.
(Here it is important to note that each variable appears only once in an equation.)
The expected number of equations which change their outcome is 7. Additionally it
is unlikely that flipping the value of a variable changes the outcome of all equations
which contain this variable in the same direction or respectively it is unlikely that
all equations which contain the variable have the same outcome for the configuration
before the flip. (Of course the case that a lot or even all equations have the same
outcome will appear with higher probability the closer we are to the minimum.)

From these observations we infer that even if we move from a configuration x to
one of its neighbours by flipping the value of a variable which appears in 8 equations
we do not expect that the value of the cost function changes by 8 in almost all of the
cases.

We confirmed this by the following experiment. We generated a Trivium system
for a random key and calculated the cost function for a random starting point. Then
we chose a neighbour configuration of our starting point and recorded the absolute
value of the change in the cost function. To simulate being close to the minimum we
set a number of bits to the correct solution but we allowed those bits to be flipped to
move to a neighbouring configuration. The results are summarized in Table 1.

These properties of Trivium cost landscapes can be captured more formally using
the notion of NK-landscapes and landscape auto-correlation as follows.



Table 1. Change of the cost function when moving to a neighbour configuration:
The first row denotes the number of preassigned bits we use to simulate different distances
from the minimum. We count how often out of 10000 trials the cost function changes by 0
to 8 units. The last row gives us the average change of the cost function.

i 0 100 200 300 400 500 600 700 800 900 954

0 1714 1702 1685 1560 1309 1052 944 767 601 264 0
1 3253 3246 3297 3158 2641 2143 1856 1550 1120 389 34
2 2248 2235 2240 2241 1930 1720 1385 1172 937 1001 1062
3 1557 1571 1550 1659 1821 1757 1488 1278 1258 1515 1537
4 675 665 668 754 1024 1020 911 810 741 596 648
5 386 400 380 409 691 940 1088 1078 1024 1068 1160
6 127 128 130 164 409 916 1372 1630 1866 2002 2049
7 32 44 41 46 165 439 837 1352 1854 2297 2534
8 8 9 9 9 10 13 119 363 599 868 976

average change 1.81 1.824 1.814 1.9 2.32 2.83 3.32 3.85 4.38 4.97 5.3

4.1 Trivium systems and NK-landscapes

NK-landscapes were introduced by Kaufmann [16] to model fitness landscapes with
tunable “ruggedness”. An NK-landscape is a set of configurations X = {0, 1}n to-
gether with the cost function defined as

f(x) =
n∑

i=1

fi(xi;xπi,1 , . . . , xπi,k
) ,

where each πi is a tuple of k distinct elements from the set {1, . . . , n} \ {i}. In other
words, the cost function of an NK-landscape is a sum of n local cost functions fi, each
one of them depending on the main variable xi and a set of k other variables. In a
random neighbourhood model, the k indices are selected randomly and uniformly for
each fi. Depending on the value of k, we get either smooth landscapes with relatively
few local minima when k is small and rugged landscapes for large values of k.

The Trivium optimization problem can be seen as such combinatorial landscape.
Consider the basic system of equations. We define each fi as the contribution of i-th
equation (either 0 or 1 depending on whether it is satisfied). Each equation depends
on six distinct variables, we verified by a computer program that indeed we can always
pick one of them as the main variable leaving exactly five other ones for each equation.
Trivium optimization problem can thus be seen as an instance of NK-landscape with
n = 954 and k = 5, a rather small value hinting at a certain smoothness of this
landscape.

4.2 Landscape auto-correlation

Another measure of landscape ruggedness is the notion of landscape correlation in-
troduced by Weinberger [24]. We will follow the exposition by Hordijk [14]. The main
idea is to perform a random walk on the landscape via neighbouring points. At each
step, the cost function yt is recorded. That way a sequence (yt)t=1...T is obtained and
we compute its auto-correlation coefficients.

The auto-correlation of a sequence (yt) for the time lag i is defined as

ρi = Corr(yt, yt+i) =
E[yt · yt+i]− E[yt]E[yt+i]

V ar[yt]



where E means the expected value and V ar variance of a random variable. Estimates
ri of these auto-correlations ρi are

ri =

∑T−i
t=1 (yt − ȳ)(yt+i − ȳ)
∑T

t=1(yt − ȳ)2

where ȳ means the mean value of yt. Here a large auto-correlation coefficient corre-
sponds to a smooth landscape. An important assumption that has to be made for
such analysis to be meaningful is that the landscape is statistically isotropic. This
means that the statistics of the time series generated by a random walk are the same,
regardless of the starting point. Only then a random walk is “representative” of the
entire landscape. By computing correlation coefficients for many random walks start-
ing at different points we experimentally verified that the Trivium landscape can be
seen as isotropic.

Selected correlation coefficients computed for a basic version of Trivium system
and overdefined versions are presented in Table 2. Clearly, generating the overdefined
system makes the landscape smoother.

Table 2. Correlation coefficients for landscapes generated by Trivium systems of different
sizes. n denotes the number of variables in the system.

keystream length n r(1) r(10) r(20) r(30) r(40) r(50)

288 954 0.989 0.896 0.803 0.720 0.646 0.580
576 1818 0.994
1152 3546 0.997

5 Solving Trivium system with modified simulated annealing

The properties of landscapes generated by the Trivium system of equations suggest
that it might be possible to employ stochastic search methods such as simulated
annealing to try to find a global optimum and thus recover the secret state of the
cipher. In this section we report the results of our experiments in this direction.

Initial experiments with standard simulated annealing were not very encouraging.
To be able to solve the Trivium system in reasonable time, we needed to simplify
the initial system by setting around 600 out of 954 variables to their correct values
throughout the search.

We experimented with the algorithm and its various modifications and found one
that yielded a significant improvements over the standard algorithm. The algorithm
works as follows. As with standard simulated annealing, we randomly generate a
neighbour. If the cost decreases, we accept this move. If not, instead of accepting
with probability related to the current temperature, we pick another neighbour and
test that one. If after testing a certain number of neighbours we cannot find any
cost decreasing move, we accept the increasing move with some probability, just as
in the plain simulated annealing. The parameter of this procedure is the number of
additional candidates to test before accepting cost increase.

If the parameter is zero, we get plain simulated annealing. On the other end of the
spectrum, if we test all possible neighbours, it is easy to see that we get an algorithm
that is equivalent to local search, we look for any possible decreasing move and we
follow it. When we are in a local minimum, we enter a loop, we finally accept one



of the cost increasing candidates but in the next move we always go back to the
local optimum we found. Setting the parameter between those extremes yields an
intermediate algorithm.

In practice, we used a probabilistic variant of this approach that randomly selects
neighbours until it finds one with smaller cost or it exceeds the number of tests defined
as a parameter nochangebound. This algorithm is presented in Alg. 2.

Algorithm 2 Modified version of simulated annealing
xbest ← x
T ← α � initial temperature parameter is α
k ← 0 � set the outer loop counter
while T > 1 do

for m = 0, . . . ,M − 1 do � parameter M is the number of inner runs
generate a neighbour y ∈ η(x) uniformly
if f(y) < f(x) then � if cost decreased

x← y � accept the move
if f(x) < f(xbest) then � found a new best value

xbest ← x � store the best configuration
nc← 0 � reset the neighbor counter
if f(xbest) = 0 then � if we found a solution

return xbest � finish and return it
end if

end if
else � the candidate cost is higher

nc← nc+ 1
if (nc > nochangebound) ∧ (exp((f(y)− f(x))/T > rnd[0, 1]) then

x← y � accept the move
nc← 0 � reset the counter of tested neighbours

end if
end if

end for
k ← k + 1
T = α/ log2(k ·M) � Logarithmic cooling schedule

end while

The relationship between the number of neighbours tested and the time it took
to find a solution (measured in the number of neighbours tested) is presented in
Fig 1. Values of nochangebound below 25 result in running times exceeding 240 flips.
It suggests that the proper choice of nochangebound is critical for the efficiency of the
simulated annealing, in particular, it cannot be too small.

6 Experimental results

In this section we report results of our computational experiments with the basic
equation system generated by the problem of recovering internal state of Trivium.
We took the fully determined system with 954 equations and variables obtained after
observing 288 bits of the keystream.

We made some comparisons between exponential and logarithmic cooling schedules
and from our limited experience the logarithmic cooling schedule performed better in
more cases, so we decided to pick that one for our further tests.



25

26

27

28

29

30

31

32

0 50 100 150 200 250 300 350 400

nochangebound

α = 31

��

��

��

��

��

��

��

��

��

��

��

α = 33
+

+

+

+

+

+

+

+

+

+

+

+

α = 35

��

��

��

��

��

��

��

��

��

��

��

��

32

33

34

35

36

37

38

39

40

50 100 150 200 250 300 350 400

nochangebound

α = 31
��

��

��

��

��

��

��

��

��

��

��

��

α = 33

+

+

+

+

+

+

+

+
+

+

+

α = 35

��

��

��

��

��

��

��
��

��

��

��

��

Fig. 1. Influence of nochangebound parameter on the efficiency of simulated annealing ap-
plied to basic Trivium system for three values of initial temperature α. Other parameters
are M = 1024 (cf. Alg. 2), averages are over 10 tests. In the top figure we guessed 200 first
bits of the state, in the bottom one 180 bits.

The values of α were picked based on empirical observations. Too large α resulted
in prolonged periods of almost-random walks where there was no clear sign that any
optimization might occur. Too small values gave the behavior similar to a simple local
search when the process was getting stuck in some shallow local optima. After a few
trials we decided to use the initial temperature parameter α = 35.

For each number of bits of the state fixed to their correct values (preassigned) we
ran ten identical tests with different random seeds testing various values of nochange-
bound parameter (from the set 100, 150, 175, 200, 250, 300). After the test batch
finished, we picked that value of nochangebound that yielded lowest search time. We
managed to obtain optimal values for nochangebound for 200, 195, 190, 185, 180, 175
and 170 preassigned bits where we set the values of the first bits of the internal state.
We use this optimal nochangebound to estimate the total complexity of the attack.
The graph is presented in Fig. 2. The total complexity is the product of the num-



ber of guesses we would need to make (2preassigned) multiplied by the experimentally
obtained running time of the search for the solution.
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Fig. 2. Running times of the attack based on modified simulated annealing depending on
the number of guessed bits. The numbers on the vertical axis are base two logarithms of
the total number of moves necessary to find the solution. Crosses represent results of single
experiments, the line connects averages.

The results show that the running time of the attack decreases with the smaller
number of guessed bits since the increase in time of the search procedure is smaller
than the decrease due to the smaller number of bits we have to guess. If the curve
goes down below the complexity level corresponding to 280 key setups of Trivium,
it would constitute a state-recovery attack. However, our problem is that due to
limited computational power we were not able to gather enough results for values of
preassigned smaller than 170. Our program running on 1.1GHz AMD Opteron 2354
was able to compute 235 bit flips per hour and tests with preassigned = 170 required
around 238 ∼ 239 bit flips.

It seems that trying to extrapolate the running times is rather risky, since we do
not have any analytical explanation of the complexities we get as often is the case with
heuristic search methods. Therefore we do not claim anything about the feasibility of
such an attack on full Trivium. We can only conjecture that there might be a set of
parameters for which such attack may become possible.

Due to the computational complexity, our experimental results are so far based
on only rather small samples of runs for the fixed set of parameters. Therefore, they
cannot be taken as a rigorous statisticial analysis but rather as a reconnaissance
of the feasibility of this approach. However, we have noticed that for overwhelming
fraction of all the experiments, the running times for different runs with the same set
of parameters do not deviate from the average exponent of the bit flips by more than
±2, i.e. most of the experiments have the number of flips between 2avg−2 and 2avg+2.
Therefore, we believe that the results give some reasonable impression of the actual
situation.



7 Some variations

The previous section presented the set of our basic experiments. However, there is
a multitude of possible variations of the basic setup which could possibly lead to
better results. In this section we mention some variations of the search problem we
considered while looking for possible optimizations.

7.1 Guessing strategy

In order to lower the complexity of solving the equation system we set some of the
variables to their correct values. However, the search complexity depends on which
variables we choose.

We used different guessing strategies for pre-assigning variables and compared the
influence on the running time of our algorithm. We used the following strategies to
guess subsets of the state bits:

1. Select the first variables of the initial state.
2. Select the first variables of each register of the initial state.
3. Select the last variables of the initial state.
4. Select the last variables of the each register of the initial state.
5. Select the most frequent variables. These are the variables which are introduced

by the update function at the beginning of the key stream generation. We guess
values for variable s289 and the consecutive ones in this case.

6. An adaptive pre-assignment strategy which is similar to the ThreeFour strategy
in [11] (see Subsection 7.1).

7. Select the variables in such a way that the equation interdependence measure is
minimal. (see Subsection 7.1).

It turns out that the best guessing strategy of the ones we tested is to guess the first
bits of the initial state. In addition to a pre-assignment of variables we can determine
the value of further variables by considering the linear and quadratic equations (see
below). We use this technique in the adaptive pre-assignment strategy.

Table 3. Running time for different pre-assignment strategies. nochangebound=110, 190 bits
are preassigned, average taken over ten runs.

first bits of the
initial state

most frequent
bits

first bit of
every register

last bit of the
initial state

last bit of
each register

average 29.5 33.0 34.5 31.2 36.4

Adaptive pre-assignment strategy In this pre-assignment strategy we use the
fact that assigning 5 of the variables in a linear equation will uniquely determine the
6th variable. Starting with an arbitrary linear equation we guess and pre-assign 5 of
the 6 variables, determine the value of the remaining variable and assign this to its
value. We know that a large fraction of the variables appear in two linear equations.
So in the next round of pre-assignment we pick an equation in which at least one
variable is already assigned. That means we only have to guess at most 4 variable to
get one for free. We continue until we have made the maximum number of guesses or
we cannot find an equation in which one variable is already assigned. In the latter case



we just have to pick an equation without preassigned variables and run the algorithm
again until we made the maximum number of guesses.

Additionally we also use the quadratic equations to determine the value of vari-
ables.

The advantage of this pre-assignment strategy is that we can assign many more
variables than we actually have to guess. Table 4 gives us an impression of this ad-
vantage.

Table 4. The table shows how many bits additional to the guessed bits can be assigned
using the adaptive pre-assignment strategy.

# guessed bits # assigned bits additional assigned bits in %

5 6 20%
50 66 32%

100 135 35%
200 281 40.5%

The disadvantage is that we instead of making the equations sparser we fix some
equations to be zero. That means that there are less equations left which contain free
variables but the maximum number of equations in which a variables appears is still
8. Therefore a variable influences a higher percentage of equations.

Minimizing equation interdependency If all the equations used different sets of
variables, it would be trivial to solve the system by a simple local search. However,
variables appear in many equations and changing the value of one of them influences
other equations at the same time. This suggests the idea of guessing (pre-assigning)
bits to minimize the number of variables shared by many equations and thus reduce
the degree of mutual relationships between equations.

Capturing this intuition more formally, let Ei be an equation and let V(Ei) denote
the set of not preassigned variables that appear in the equation. We can define the
measure of interdependence of two equations Ei, Ej as

IntrDep(Ei, Ej) = |V(Ei) ∩ V(Ej)| .
If the measure is zero, equations use different variables and we can call them separated.
Note that pre-assigning any bit that is used by both equations decreases the value of
interdependence.

To capture the notion of equations interdependence in the whole system of Trivium
equations E, the following measure could be used

∑

e,g∈E,e�=g

|V(e) ∩ V(g)|2 . (2)

We used the sum of squares to prefer systems with more equations with only few
active (non-preassigned) variables over less equations that have more active variables,
but it is possible to use an alternative measure without the squares,

∑

e,g∈E,e�=g

|V(e) ∩ V(g)| . (3)

The algorithm for pre-assigning bits to minimize the above measure is rather
simple. We start with computing the initial interdependence of the system. Then, we



temporarily pick a free variable and assign it to compute the new interdependence of
the system. If this value is smaller than the current record, we remember it as a new
record. After we test all possible candidates, we pick the record one and assign it for
good. We repeat this procedure until we get the required number of preassigned bits.

We performed an experiment that compared the results of the reference pre-
assignment strategy fixing the first 190 bits of the state with two variants minimizing
(2) and (3). Results presented in Table 5 are interesting. It seems that in spite of
significant smoothening of the landscape indicated by higher values of the coefficient
ξ the first strategy minimizing (2) significantly worsens the running time. A pos-
sible explanation may be that the landscape became more like “golf-course” with
large areas without any direction and only very small attraction basins leading to
global solution(s). Another possibility is that for such systems, different parameter
of nochangebound is preferred. The second variant minimizing (3) seems to be only
slightly better than setting the first bits, but more tests would be needed for more
parameters to decide any definite advantage.

Table 5. Running times and landscape auto-correlation coefficients ξ for bit pre-assignment
strategies minimizing equation interdependence. Experiments used α = 33, M = 1024,
nochangebound = 110.

strategy: reference Case 1 Case 2

avg: 29.34 38.9 28.72

ξ 90.1 97.4 96.1

7.2 Using overdefined systems

Results on landscape auto-correlation suggest that using overdefined systems may
yield landscape with better structural properties. However, this happens at the ex-
pense of a larger set of variables and equations we have to deal with. Our experimental
results on overdefined systems suggest that the gain we get from a better landscape
is offset by the larger system size so search times are actually not better.

7.3 Variable persistence

According to [4, 5] while using simulated annealing to some optimization problems,
one can observe a bias in the frequency of assigning values to variables during the
simulated annealing procedure. This bias is related to the solution of the system and
observing it can give some information on the solution we are looking for.

We made some experiments that investigated if configurations of local minima
(states we run into after a long cooling run) have variables correlated with the global
minimum state. In our limited experiments with the basic Trivium system we did not
observe any such correlations.

8 Conclusions and future directions

We presented a new way of approaching the problem of solving systems of sparse,
multivariate equations over the binary field. We represent them as combinatorial op-
timization problems with the cost function being the number of not satisfied equations



and then we apply some heuristic search methods, such as simulated annealing to solve
them.

We showed that such systems may be relevant in cryptography by giving an ex-
ample of the system generated by the problem of recovering the internal state of the
stream cipher Trivium.

Our experimental results were focused on Trivium system and they seem to be
promising but for now they do not seem to pose any real threat to the security of this
algorithm.

We hope that this paper will serve as a starting point for further research in this
direction. There are many open problems in this area, the most obvious ones are the
selection of better parameters of the search procedures and analytically estimating
the possible complexity of such algorithms.

The other interesting direction seems to be the investigation of alternative cost
functions. In all our experiments we use the simplest measure counting the number of
not satisfied equations. However, many results in heuristic search literature suggest
that the selection of a suitable cost function may dramatically change the efficiency
of a search. The question of determining whether in our case there exist measures
better than the one we used is still open.
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