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Abstract

Background: Although the majority of bacteria are innocuous or even beneficial for their host, others are highly infectious
pathogens that can cause widespread and deadly diseases. When investigating the relationships between bacteria and
other living organisms, it is therefore essential to be able to separate pathogenic organisms from non-pathogenic ones.
Using traditional experimental methods for this purpose can be very costly and time-consuming, and also uncertain since
animal models are not always good predictors for pathogenicity in humans. Bioinformatics-based methods are therefore
strongly needed to mine the fast growing number of genome sequences and assess in a rapid and reliable way the
pathogenicity of novel bacteria.

Methodology/Principal Findings: We describe a new in silico method for the prediction of bacterial pathogenicity, based on
the identification in microbial genomes of features that appear to correlate with virulence. The method does not rely on
identifying genes known to be involved in pathogenicity (for instance virulence factors), but rather it inherently builds families
of proteins that, irrespective of their function, are consistently present in only one of the two kinds of organisms, pathogens or
non-pathogens. Whether a new bacterium carries proteins contained in these families determines its prediction as pathogenic
or non-pathogenic. The application of the method on a set of known genomes correctly classified the virulence potential of
86% of the organisms tested. An additional validation on an independent test-set assigned correctly 22 out of 24 bacteria.

Conclusions: The proposed approach was demonstrated to go beyond the species bias imposed by evolutionary
relatedness, and performs better than predictors based solely on taxonomy or sequence similarity. A set of protein families
that differentiate pathogenic and non-pathogenic strains were identified, including families of yet uncharacterized proteins
that are suggested to be involved in bacterial pathogenicity.
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Introduction

Bacteria are found in every habitat on Earth, growing in the

most different and extreme environmental conditions, including

the bodies of live plants and animals. The gut of an adult human

contains more than a thousand different microbial species, most of

which are innocuous and a few even provide essential functions to

their host, from nutrition and development to the regulation of

immune responses both in health and disease [1]. However, other

bacteria are extremely virulent pathogens with the ability to cause

infectious diseases, including cholera (Vibrio cholerae), tuberculosis

(Mycobacterium tuberculosis), tularemia (Francisella tularensis), leprosy

(Mycobacterium leprae) and syphilis (Treponema pallidum). When

investigating the relationships between bacteria and other living

organisms, it is therefore essential to be able to separate

pathogenic organisms from non-pathogenic ones. This is compli-

cated by the fact that even the same species might contain both

pathogenic and non-pathogenic strains, so that pathogenicity

cannot be simply inferred from phylogeny.

A pathogen must have the ability to enter its host, to survive and

replicate inside it, and to avoid the normal host cell defenses [2]. It

has therefore to be endowed with a set of molecular features

comprising a combination of the following classes of factors: i)

adherence factors, which enable bacteria to attach to a host surface; ii)

invasion genes, that mediate bacterial entry into eukaryotic cells; iii)

exotoxins, secreted by the bacteria, which can destroy or affect the

function of a host cell; iv) endotoxins, that unlike exotoxins are not

secreted but are released when the bacterium is lysed; v) Several

types of secretion systems (especially type III and IV), through which

toxins can be injected directly from the bacterial cytoplasm into

the cytoplasm of its host’s cells [3]. Pathogenic E. coli, for instance,

can cause disease by a large number of different virulence factors

that can affect a wide variety of critical host cell processes like

protein synthesis, signal transduction, cytoskeletal function, cell

division, ion secretion, transcription, apoptosis, and mitochondrial

function [4]. A wide variety of virulence factors are found in many

combinations in different E. coli strains, especially driven by the

recombination of these elements through horizontal gene transfer
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[5,6]. The important of horizontally acquired features is

highlighted by the observation that virulence factors appear to

be disproportionately associated with genomic islands [7].

Apart from these features that are directly related to invading

and damaging the host, two other classes of genes are important in

determining virulence: genes that regulate expression or are

required for the activity of ‘‘true’’ virulence factors, and virulence

‘‘life-style’’ genes, acting in the phases of survival inside the host

and evasion of the host immune system [8,9]. Although these

genes act only indirectly in determining virulence, they are

essential components of the pathogenicity machinery, and their

inactivation can attenuate the virulence of a microorganism.

On the other hand, there is also evidence for features that

characterize non-pathogenic organisms, the so-called ‘‘antiviru-

lence’’ genes. When an organism becomes pathogenic through a

horizontal gene transfer event, some genes may become

incompatible with the new lifestyle and they are lost or inactivated

through pathoadaptive mutations [10,11]. These genes are

therefore still found in harmless bacteria, but missing or inactive

in pathogens.

In traditional studies, the classification of bacteria as pathogens

and non-pathogens and the differentiation of pathogens as isolates

of high or low virulence have to a large extent been based on the

verification of Koch’s postulates and, the use of animal models. In

more modern studies, we are faced with the fact that most

bacterial species are opportunistic pathogens and are hence

present also in healthy hosts, making it necessary to verify the

pathogenic potential of isolates either in model systems or based

on epidemiological studies. Especially when bacterial species or

variants are observed for the first time it is very time-consuming

and costly to determine their pathogenic potential, and also

without guarantee of success since animal models are not always

appropriate for describing the analogous biological process in

humans. When an unknown bacterium is isolated, it is hence a

highly non-trivial and costly procedure to determine its pathoge-

nicity, making the need for in-silico prediction methods apparent.

However, the development of such prediction methods cannot

only be based on phylogeny, as even the same species might

contain both pathogenic and non-pathogenic strains as a

consequence of the complex set of features described above

characterizing pathogenicity. The need to go beyond phylogeny is

emphasized by the extent of horizontal gene transfer (HGT), with

portions of genomes exchanged across different species [12].

The increasing evidence of the importance of HGT makes it

very challenging to reconstruct a single organismal lineage, with

the concept of ‘‘species’’ itself becoming blurred [13,14].

Traditionally, phylogenetic trees have been constructed on

similarity of single genes, in particular the small subunit ribosomal

RNA [15], but there is an open controversy about this traditional

way of inferring phylogenies [16,17], also considering that even

rRNA is occasionally subject to HGT [18,19]. New methods rely

on whole genome information rather than a single gene, using

diverse approaches such as the combination of multiple proteins

occurring as orthologs in different organisms [20,21], conservation

profiles [22], protein folds [17], or protein structural domains [23].

What seems to emerge from these studies is the possibility to define

a core set of genes that allow reconstructing meaningful

phylogenies, but that HGT plays a major role in genome

rearrangement and in the eventual ecological diversification of

the bacteria, including their pathogenic potential. For example,

the comparison of E. coli O157:H7 (a virulent serotype causing

haemorrhagic colitis), and non-pathogenic E. coli K-12, reveals

that they share a common backbone sequence of 4.1 megabases

(Mb), but they also contain respectively 1.34 Mb and 0.53 Mb of

introgressed DNA that they do not have in common, character-

izing the different lifestyle of the two strains [24].

Several methods have been published aiming at going beyond

the simple phylogeny-based approach for the prediction of

bacterial pathogenicity. Suen et al. [25] have described a method

for predicting the ecological niche of a bacterium, including its

potential pathogenicity based on the whole-genome similarity to

bacteria with known pathogenicity. This method maps the

proteome of each organism on the pre-computed protein families

in the Pfam database [26] and uses the Spearman’s correlation of

these mappings to establish the similarity between bacterial

genomes and cluster them into groups. Wu and Moore [27]

investigated the correlation relationship between organisms’

environmental conditions and gene distribution in certain

functional groups, and attempted to predict the environmental

conditions from gene content. A number of methods have also

been developed for the prediction of virulent proteins, using

Support Vector Machine or BLAST alignments to search a

database of known virulence factors [28–29]. As opposed to these

methods, in the approach described here we do not use a set of

pre-established families to estimate similarity between organisms,

but rather develop a method to select the families which are

consistently found only in one of the two types of organisms,

pathogens and non-pathogens, and show that this is more

powerful than using global similarity. Furthermore, our approach

is hypothesis-free and allows us, in contrast to the above methods,

to identify new proteins associated with pathogenicity even if they

do not have any similarity to any known virulence factor.

The method proposed here seeks to identify features that are

distinctive of virulence in microbial genomes of diverse species,

and group them in ‘‘protein families’’. The pathogenicity of query

bacteria is predicted based on the presence in their genomes of

proteins belonging to these families. The method is developed and

benchmarked on a large set of complete bacterial genomes with

annotated pathogenicity, and also applied for the prediction of

organisms with unknown pathogenicity.

We chose to perform the analysis on the c-Proteobacteria, a

very large and diverse class that comprises many of the most

intensively studied bacterial species. It includes human pathogens

(Salmonella enterica, Yersinia pestis), plant pathogens (Xanthomonas

campestris, Xylella fastidiosa), insect endosymbionts (Buchnera aphidi-

cola, Wigglesworthia glossinidia), as well as a large number of free-

living and commensal species. Being so widely studied for its

medical and scientific importance, there is a considerable number

of complete genomes available for this class, making it well suited

for testing our method.

Results and Discussion

The basic idea behind the method was to identify groups of

proteins (protein families) that are preferentially present in

pathogenic organisms (or non-pathogenic ones) (see Fig. 1), and

to separate virulent from commensal bacteria, based on the

presence or absence of these features. An important distinction to

be made here is that we restricted the analysis to c-Proteobacteria

that are potential human pathogens. Thus we considered as

pathogenic only organisms reported as able to infect humans, and

everything else as non-pathogenic. Families are constructed from

protein sequence similarity on a set of c-Proteobacteria genomes,

where any pair of proteins that show a significant sequence

alignment E-value are grouped into the same family. Next,

significant families are identified based on their size and the

proportion of pathogens/non-pathogens they contain (see Mate-

rials and Methods). Whether a query organism has proteins

Pathogenicity Prediction
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contained in these families determines its prediction as either

pathogenic or non-pathogenic.

Predictions on the complete set
The protein families method was optimized to achieve the

maximal Matthews correlation coefficient (MCC) in cross-

validation, obtaining MCC = 0.748 with 87% of the organisms

correctly classified. A value of MCC = 1 indicates a perfect

prediction, and a value of MCC = 0 a random prediction. The

method was also tested on an independent evaluation set (one fifth

of the dataset that was left out in the training phase), and assigned

here correctly 16 pathogens out of 17 and 10 non-pathogenic

bacteria out of 14, with MCC = 0.682 (84% correctly classified).

Distribution of predictions across the taxonomy
Fig. 2 shows how the predictions are distributed relatively to

taxonomy. Some genera seem much easier to predict, namely those

that in this dataset are only composed of pathogens (like Yersinia or

Legionella) or non-pathogens (like Buchnera, Xanthomonas). Others show

a more variegated picture and are also the most difficult to assign.

Whereas for e.g. Shewanella virulent and avirulent strains are

correctly separated, the results for Escherichia are very poor: the

method predicts all 10 strains as pathogenic although 4 of them are

not. This is most likely due to the high degree of sequence similarity

between the E. coli genomes in the dataset, making the large number

of features they have in common overcome the few ones that

discriminate the pathogenic strains from the others, even though the

method tries to only detect the latter.

By retraining the method only on the members of the

Enterobacteriaceae (which comprises E. coli), more subtle differences

between the proteomes can be detected. Whereas all the other

predictions for Enterobacteriaceae remained unchanged, 2 of the

wrongly assigned E. coli were corrected using the reduced dataset.

The correlation coefficient on this set was MCC = 0.676 in cross-

validation, and MCC = 0.770 on the test-set. Restricting the

analysis to a branch of the complete dataset is possible only when a

sufficient number of organisms is present in the subset to train the

method on. The minimum size of a subset was estimated by

running the predictor on reduced sets of Enterobacteriaceae from the

original dataset of 58 organisms. The performance in cross-

validation drops to MCC = 0.455 with 40 organisms, 0.275 with

30 organisms, and becomes close to random with 20 organisms

(MCC = 0.135).

Investigation of the species bias
Within the same class of bacteria, one can find a wide range of

organisms causing diverse diseases in different hosts, as well as

many non-virulent ones. However, it is also true that they do not

distribute evenly across the taxonomy, and some clades are highly

homogeneous and composed mainly of pathogens or mainly of

avirulent strains (see Supplementary Fig. S1 online). These

subgroups are the easiest for the predictor to assign correctly, as

they have many proteins in common and are easily clustered

together. The task is more complex on clades that comprise both

pathogenic and non-pathogenic organisms, because the predictor

should be able to only individuate the features that characterize

virulence, and separate the organisms upon the presence or

absence of these features.

The extent of the species bias can be estimated by comparing

our method to one solely based on taxonomy. Such a model

simply determines whether the closest relatives (in terms of

taxonomy classes, see Materials and Methods) of the query organism

in the dataset are pathogenic or not, and classifies the query

accordingly. The performance of this method on 10,000

bootstrapped datasets was MCC = 0.571, with standard deviation

SD = 0.047. On the same datasets the protein families method

yielded MCC = 0.722 (SD = 0.038), thus outperforming the

taxonomy-based predictor with p = 0.002. Our method was also

compared to one based on global sequence similarity, using the

BLAST alignment bitscores as illustrated in Materials and Methods.

In the same way the performance of the protein family-based

method resulted significantly better than the alignment-based

predictor with p = 0.014 (MCC = 0.620, SD = 0.045).

Global relatedness and position in the taxonomy are clearly

important factors in the distribution of pathogens. On the other hand

we have here shown that pathogenicity is often characterized by a

relatively small number of genes, so that two organisms can have

similar genomes at a global sequence level and only differ for these

few key features that discriminate virulent and avirulent bacteria. In

the case of E. coli, for instance, the acquisition of a single pathogenicity

island can be enough to transform a symbiotic strain into a virulent

one [3]. The classification of E. coli strains into pathogenic and non-

pathogenic suggests that the predictions are strongly dependent on

the taxonomic level used in the training (in this case, class vs. family),

and that finding the correct level is of major importance to detect

subtle differences between very similar genomes, and separate the

pathogenic from the non-pathogenic ones.

Figure 1. A schematic representation of genomic features shared by pathogenic (P1-Pn) and non-pathogenic (N1-Nn) organisms.
Some proteins are only specific of certain strains (A, F), others are shared by different bacteria regardless of their being virulent or not (B, C, H).
Proteins that are only (G) or mostly (E) present in pathogenic bacteria (or non-pathogenic bacteria (D)) can be used to discriminate between these
two classes, and they might have a role in determining virulence.
doi:10.1371/journal.pone.0013680.g001
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Validation on other independent data sets
The predictive power of the method was evaluated on a set of

24 genomes from diverse branches of the c-Proteobacteria class,

released after the main dataset for training was assembled. The

data set contains 14 organisms annotated as pathogenic and 10 as

non-pathogenic. The predictor assigned correctly 22 out of 24

organisms (91.7%), with a MCC of 0.837. One of the wrongly

predicted organisms is Haemophilus parasuis SH0165 (NCBI project

ID (PID) 31099), a pathogen of swine that causes the severe

systemic disease known as Glasser’s disease [30]. The other is

Salmonella enterica Serovar Gallinarum str. 287/91 (PID 30689), a

strain that causes typhoid in poultry, but is not pathogenic for

humans. S. Gallinarum has been suggested to be a recently evolved

descendent of S. Enteritidis, which is a host-promiscuous serovar of

Salmonella enterica that can also infect humans. Although the

virulence of S. Gallinarum is restricted to chicken, this strain

Figure 2. Distribution of the predictions across the taxonomy. The center of the tree corresponds to the class level (c-Proteobacteria), and
the outer levels are in succession: order, family, genus, species. The bacterial lineages were downloaded from NCBI Taxonomy (http://www.ncbi.nlm.
nih.gov/Taxonomy/) and the names of the most important clades are reported in green on the figure. The outermost circle displays the single strains
in the dataset, labeled with their PID identifier, and colored according to the prediction: Yellow - True Positives, Gray - True Negatives, Red - False
Positives, Blue - False Negatives. The figure was produced with the phylogenetic tree viewer Dendroscope [46] with manual annotation of the clade
names.
doi:10.1371/journal.pone.0013680.g002
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retains a good number of genomic regions from its human-

infecting ancestor, including many of the Salmonella pathogenicity

islands [31]. Probably the presence of these features misleads the

predictor into considering the organism as a pathogen in human.

Another evaluation set was composed of organisms that were

initially excluded from the analysis, as NCBI Genome Project does

not annotate them as either pathogenic or non-pathogenic. The

set contains 27 organisms, with a prevalence of the genera

Shewanella (10 strains) and Escherichia (6 E. coli strains), and a variety

of other species belonging to the c-Proteobacteria class. Firstly,

using the complete dataset for training, all the E. coli in this dataset

are predicted as pathogenic. As observed previously, subtler

differences can be detected by restricting the dataset to the family

level, if enough genomes are available for a particular family. This

is the case of the Enterobacteriaceae group, which contains 58

different organisms in the main dataset. Thus, the analysis was

repeated only using the Enterobacteriaceae dataset for the training,

and the same parameters that were found to be optimal in cross-

validation. With this approach, the 7 Enterobacteriaceae were now

separated into pathogenic and non-pathogenic, with 5 falling into

the first category and 2 into the latter. The two bacteria predicted

as non-pathogenic are two serovars of E. coli K-12 (W3110, PID

16351 and ATCC 8739, PID 18083), a strain widely used in

laboratory experiments for its safety and easiness to grow. It is

normally avirulent, as are also two other strains of K-12 in the

main dataset (MG1655, PID 225 and DH10B, PID 20079).

Analysis of the protein families
A very interesting by-product of the method is the set of protein

families that is built for the prediction. These families are

composed of proteins that discriminate pathogenic from non-

pathogenic organisms, and might point out interesting genomic

features that are related to virulence.

If a particular gene is consistently present in pathogens but

absent in non-pathogenic strains (or conversely, consistently

present in non-pathogenic bacteria but absent in pathogens), then

there is a high probability that this particular gene is involved in

processes that are typical of the lifestyle of a pathogen (or non-

pathogen). The strength of this approach is that it potentially does

not only identify toxins or other strict virulence factors, but also

genes that are connected to their regulation in some way, and a

thorough analysis of the protein families might potentially reveal

some unknown relationships of this sort.

On the current dataset, 381 families met the criteria of

‘‘pathogenicity family’’. The most common known functions of

members of these families are ‘‘exported proteins’’ (32 families)

and ‘‘membrane proteins’’ (30 families), but also other classical

virulence factors emerge as overrepresented in pathogenicity

families such as ‘‘secretion systems’’ (16 families) and ‘‘fimbrial’’

and ‘‘flagellar’’ proteins (respectively 11 and 6 families). On a

random sample of 381 protein families, the same functions were

found in the following number of families; 4 exported, 12

membrane proteins, 1 secretion system, 4 fimbrial, 3 flagellar.

The families were built with no prior knowledge about the known

function of their members, thus recovering a strong association of

well-established virulence factors with blindly-built pathogenicity

families supports the validity of the approach.

In Table 1 are listed the functions of the proteins that are found

in the 10 top-scoring families, ranked according to Z-scores as

described in Materials and Methods. Some of these 10 families contain

proteins that are clearly involved in pathogenicity. The members of

families rank 2 and 7 are fundamental for bacterial adherence, a

crucial step in the colonization of a new host. Pili and fimbriae are in

this class of proteins, and are hair-like appendices that provide

bacteria with an efficient mechanism to attach to host surfaces.

Other molecular attributes that can easily be linked to virulence are

type III secretion system components (family rank 10), used by

bacteria to secrete directly from the bacterial cell to the host, and

heat shock proteins (family rank 8), which can be important for the

survival of a bacterium right after it has entered its host.

Family rank 1 contains YjhT proteins, a family of proteins that are

present in many sialic acid utilizing pathogens. The presence of sialic

acid onto bacterial cell surfaces is thought to allow pathogens to

disguise themselves as host cells and elude immune response [32].

Family rank 4 groups cytochrome b562 proteins from various

different organisms. Cytochromes in bacteria are suggested to

provide some sort of protection against chemical attacks from

reactive species, such as reactive oxygen and nitrogen species, and

allow survival and growth in oxygen-limited conditions [33].

Methylation of DNA, operated by methyltransferases (family rank

6), is an important process in bacterial cells that affects the regulation

of transcription, chromosome replication, DNA segregation, mis-

match repair and transposition. Further, it is emerging from various

studies that DNA methylation has a role in regulating the expression

of various bacterial genes related to virulence in several pathogens

[34], and methyltransferase genes have been found on pathogenicity

islands [35]. 5-carboxymethyl-2-hydroxy-muconate isomerase (fam-

ily rank 9) is an enzyme that transposes C = C bonds and catalyzes

metabolic reactions [36]. There is no apparent reason why this

enzyme should be involved in pathogenicity.

Finally, two families (rank 3, and 5) are only composed of proteins

with unknown function. They are potentially even more interesting

than well-characterized virulence factors, such as toxins or fimbriae, as

they might turn out to be molecular components of bacterial virulence

apparatuses that are still completely unknown. A large number of

genes, in fact, still have unknown function even though they are highly

conserved among bacterial genomes [37]. Family rank 3 is entirely

composed of proteins with unknown function from 41 different

organisms, 38 of which (92.7%) are pathogens, and scrolling down the

list of families with lower but still significant rankings many others are

found only composed of uncharacterized proteins.

In terms of species composition of the protein families, we

observed that 32% of the families were constituted of proteins

from only one bacterial genus. However, all the largest and most

significant pathogenicity families contained proteins from two and

often more genera (Fig. 3), where also some interesting trends of

Table 1. 10 top scoring pathogenicity families, and function
of their members.

Rank Z-score P N Function of proteins in the family

1 8.29 42 4 Mutarotases, YjhT proteins

2 8.25 33 1 Fimbrial proteins, putative adhesins

3 8.12 38 3 Proteins of unknown function

4 8.02 40 4 Cytochrome b562

5 7.89 39 4 Proteins of unknown function

6 7.86 36 3 Methyltransferases

7 7.82 30 1 Fimbrial proteins, pilin proteins

8 7.56 25 0 Heat shock proteins, DNA-repair

9 7.46 36 4 5-carboxymethyl-2-hydroxymuconate
isomerase

10 7.06 25 1 Type III secretion proteins, path. island
proteins

doi:10.1371/journal.pone.0013680.t001
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co-occurrence of different organisms were observed. In particular,

Escherichia and Shigella strains were found together in 37% of the

families that contained either of these two genera (see table in

Fig. 3), as can be expected from two such closely related

organisms. Shigella strains are actually often just considered as

belonging to the Escherichia coli species [38]. More unexpected was

the high frequency of co-occurrence of Francisella and Legionella, as

phylogenetically the Francisellaceae are a quite separated family with

no close relatives. However, among human pathogens Legionella

species (together with Coxiella) are the most closely related to

Francisella, and they share similar lifestyles [39,40]. Salmonella and

Yersinia are present in many pathogenicity families, often together,

and some of the most significant families contain up to all 12

Salmonella strains and all 12 Yersinia strains in the dataset.

A case story: protein family 6758
Family 6758 is detected by the method as significant for

pathogenicity (rank 18), and contains yet uncharacterized proteins.

They come from 24 different c-Proteobacteria, 23 of them

pathogenic (Salmonella spp. and Yersinia spp.) and one non-

pathogenic (Pectobacterium atroseptisum, PID:350), with sequence

length between 179 and 195 amino acids, all annotated as

hypothetical proteins. A multiple sequence alignment shows that

the main part of the sequence is almost identical for all proteins,

and differences are observed only in the first 30–35 AAs.

Specifically, there seem to be two different kinds of N-terminal

sequences, one for Yersinia strains and one for Salmonella strains,

both predicted to be signal peptides by SignalP 3.0 [41]. Their

subcellular localization is predicted by PSORT [42] to be the

outer membrane for the Yersinia version, and either outer

membrane or periplasmic space for Salmonella. A search for

associations in the STRING database [43] indicates that proteins

in family 6758 co-occur, among others, with virulence factors and

enterotoxins (in Fig. 4 is shown the interaction network for one

representative protein in this family).

Conclusions
There is a strong need for better data-mining algorithms in the

fast growing body of genomic information. This work focuses on

such a need, presenting a new, reliable method for the prediction

of bacterial pathogenicity, based on the bioinformatics-based

identification of features in microbial genomes that appear to

correlate to virulence. The method was applied here to a large

dataset of c-Proteobacteria complete genomes, and it was

demonstrated that this approach goes beyond the species bias

imposed by evolutionary relatedness, and perform better than

predictors that only rely on taxonomy and global sequence

similarity. Furthermore, we observed that the quality of the

predictions improves as the number of genomes used for training

the method increases, promising enhanced performance as more

complete genome sequences become available.

The novelty of this approach lies in the fact that no prior

knowledge about protein function is used to identify features that

correlate with pathogenicity (like for instance virulence factors),

but rather inherently builds families of proteins that are

consistently found in pathogenic organisms, regardless of their

known function, and uses those for the predictions. These families

associated with pathogenicity include groups of proteins that are

functionally uncharacterized, but hence underlined by the method

as potential players in defining bacterial virulence as well as targets

for antimicrobial drugs and vaccines.

Methods

Pathogenic and commensal c-Proteobacteria
The analysis was performed on the c-Proteobacteria class, a

large and diverse group that comprises lots of medically important

organisms. Being so widely studied, there are many genome

projects already completed or under way for this class, including

human pathogens (Salmonella, Yersinia), plant pathogens (Xanthomo-

nas, Xylella), insect endosymbionts (Buchnera, Wigglesworthia) and a

vast number of commensal species. Out of the 182 organisms with

a complete sequence (NCBI Genome Project, http://www.ncbi.

nlm.nih.gov/genomes/lproks.cgi, accessed on 30 October 2008),

83 were annotated as able to infect human, 72 as non-pathogenic

for human, and 27 lacked annotation so they had to be excluded

from the analysis.

We considered as human pathogens all those organisms that

were reported having as host either human, mammal or animal,

the latter two classes also comprising the human species. The

‘‘non-pathogenic’’ included all the bacteria marked as non

Figure 3. Genera composition of the 50 top scoring pathogenicity families. Vertical bars in the plot represent single families, where the
height of each bar is the number of organisms per family, and the numbers on top of the bars indicate the proportion of pathogens vs. non-
pathogens. Each color represents a bacterial genus, according to the color scheme of the table in the top-right corner. The table summarizes the
frequency of co-occurrence of any pair of genera A and B, where the frequency is calculated as the number of families containing A and B, divided by
the number of families containing both A and B (the values are given as percentages).
doi:10.1371/journal.pone.0013680.g003

Figure 4. Interaction network for protein STY4152 from
Salmonella enterica CT18. STY4152 is annotated as ‘‘hypothetical
protein’’ and is assigned to the pathogenicity family 6758 by the
protein families method. The predicted functional partners are: STY2684
(putative lipoprotein); holD (DNA polymerase III subunit psi); STY1183
(hypothetical protein); srfC (putative virulence effector protein);
STY1949 (putative lipoprotein); lppA (major outer membrane protein);
lppB (major outer membrane protein); STY0374 (possible transmem-
brane regulator); fhuC (ferrichrome transport ATP-binding protein
FhuC); kdpD (sensor protein KdpD). The thickness of the connection
lines represents the degree of confidence of the interaction. Image from
the STRING database [43].
doi:10.1371/journal.pone.0013680.g004
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virulent, as well as pathogens of plant, insect, fish and any other

non human species. Plant pathogens, for instance, have likely a

very different invasion strategy than pathogens of human, and

therefore also a very different set of virulence genes. More

controversial is the case of hosts like porcine, since their pathogens

can have some features in common with human ones to some

extent. With the proposed classification criterion they are just

considered as non-pathogenic, but the molecular features they

possibly share with human pathogens might make the prediction

more difficult.

Datasets assembly
The full amino acid sequences of complete genome projects for

c-Proteobacteria available to date (30 October 2008) were

obtained from GenBank, and the coding regions of the genomes,

comprising also eventual plasmids, were extracted. The NCBI

genome project [44] assigns to each organism that has been

sequenced a numerical identifier (project ID), and reports whether

the organism is pathogenic (P) or non-pathogenic (N). The

information about diseases and hosts of c-Proteobacteria in the

dataset was extracted using html-parsing from the NCBI website.

Those with uncertain or unknown pathogenicity were removed

from the dataset and not considered in the initial analysis.

The pool of bacterial genomes was split into 5 subsets, selecting

the organisms randomly within each of the two classes P and N,

but making sure that each subset had the same proportion of

pathogenic and non-pathogenic bacteria. One of these 5 subsets

was set aside as an independent test set, while the other 4 parts

were used for cross-validation when developing the algorithms.

A database, comprising all the coding regions of the organisms

under investigation, was then constructed and preprocessed so that

it could be searched by BLAST-methods. After this operation, an

all-against-all BLAST search [45] was performed by applying

blastpgp for all the proteins in the database against the database

itself. A cutoff of 10220 on the E-value, and a maximum number of

500 hits per input protein, has been applied to limit the size of the

results file. A larger number of hits would introduce mostly

redundant data and penalize greatly the computation time. Even

reducing this number from 500 to 100 leads to a loss of only 0.16%

of the protein families, and does not affect the predictions.

Construction of the protein families
Clusters of similar proteins, that we will call ‘‘protein families’’,

are built from the BLAST results. Any two protein sequences

which align with a significant degree of similarity (E-value,10220)

will fall in the same protein family. The protein space can be

visualized as a graph-like structure, where nodes represent proteins

and a significant alignment is saved as an edge between two nodes.

Once the graph structure is built, and all proteins and relationships

between them are stored, a graph traversal algorithm explores it

and identifies the connected subsets of the graph. For any pair of

proteins F and G, if there exists a path in the graph connecting

them, they belong to the same protein family. This is equivalent to

saying that connected subsets of the graph represent protein

families.

The function annotation of each protein is extracted from the

‘‘\product’’ field of the protein’s CDS in the GenBank file,

removing from the annotation symbols and common words such

as ‘‘probable’’, ‘‘putative’’, ‘‘conserved’’ and others, to obtain a

standard dictionary of meaningful descriptions. The consensus of

the functions thus derived for each protein determines the function

associated to the families. For the top ranked families discussed in

the results manual curation was also performed to ensure optimal

annotation of the function.

Scoring of significant families and prediction of a query
organism

Significant protein families are identified following two criteria:

first, the number of organisms (ORG) which have proteins in the

family has to be bigger than a certain value (NP) for the cluster to

carry enough information; second, the ratio of the number of

pathogens having proteins in the family on the total number of

organisms in the family (Pratio) has to be higher than a given

threshold (HG) for the cluster to be considered as a ‘‘pathogenicity

family’’, or on the other hand smaller than a low number (LW) to

be mainly composed of proteins from non pathogenic organisms.

These quantities are taken into account to calculate a score for

each family according to a double-step function:

y~

{1 if PratioƒLW

0 if LWvPratiovHG

z1 if Pratio§HG

8><
>:

ð1Þ

if ORG $ NP, and y = 0 otherwise.

The proteome of a given query organism is scanned to detect

which of its proteins fall into significant families, and their scores

are summed up. If the total is bigger than zero then the prediction

is P (pathogenic), otherwise the prediction is N (non-pathogenic).

Models based on taxonomy and global similarity
A simple classifier based solely on taxonomy was designed to

estimate the extent of the species bias. It assigns a bacterium to the

P or N class according to the majority of its nearest relatives, i.e. if

the closely related organisms are mostly pathogenic or not.

Starting from the species level, if the dataset contains other

bacteria of the same species as the query, it computes the

proportion of pathogens/non-pathogens in this part of the tree,

and assigns the query according to the majority. If there is a tie, or

there are no organisms of the same species, the algorithm moves

up one step to the genus level. Again, the proportion of pathogens

in the clade determines the classification of the query, going up

one level at a time until a prediction can be made, with the class

level as the extreme case (the whole dataset).

Another null model, based on global sequence similarity,

exploits the BLAST alignment bitscores. The bitscore is a measure

of the quality of the alignment, also accounting for the length of

the sequence overlap, and any gaps that have to be introduced to

align the sequences. In this method, for any given proteome-

proteome pair in the dataset, the bitscores of all protein-protein

BLAST matches are summed up, and an average is calculated on

the length of the query proteome. The query is classified as P or N

according to the organism with the highest average bitscore.

The performance of both the above models was compared to

the protein families method using a bootstrapping technique.

Multiple datasets were built by dividing in 10,000 alternative ways

the original dataset into 4 subsets, and all three methods were run

in cross-validation on these new 10,000 datasets. For each, a

performance value in terms of MCC was calculated, and we

determined the fraction of datasets where the null models have

higher MCC than the protein families method. This is considered

as a p-value for the protein families method to have significantly

better performance.

Cross-validation to prevent overfitting
The optimal parameters were chosen using a 4-fold cross-

validation, i.e. by assessing the performance of the predictor using

a portion of dataset (one fourth) that was not included in the

training phase. This is repeated for 4 times utilizing each time a
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different fourth of dataset for testing. The test-sets are then pooled

to form a complete set of predictions, and the optimal parameters

are chosen on this set. The peak in performance is obtained with

HG = 0.85, LW = 0.04, NP = 6.

The optimized version of the method was eventually tested on a

completely independent evaluation set, that was left aside in the

analysis up to this point, and also on other additional datasets.

They were not included in the training, therefore they provide an

unbiased evaluation of the method’s performance.

Z-scores for the ranking of protein families
The significance of a protein family depends on two factors: its

size ORG and the ratio of pathogens on the total number of

organisms it contains (Pratio). A statistical measure, the Z-score (Z),

is designed to take both these indices into account. The population

of families used to calculate Z is reduced to only those with ORG $

NP. On this set it can be estimated which families have a Pratio that

deviates in a significant manner from the mean ratio of the other

families. The value of Z is a unitless measure representing by how

many standard deviations the mean x of the sample (i.e. a protein

family) is different from the mean m of the population, and is

calculated as:

Z~
x{m

SE
ð2Þ

where the standard error of the mean SE is:

SE~
sffiffiffiffiffiffiffiffiffiffiffi

ORG
p ð3Þ

The mean m represents the average of Pratio of all families in the

population, and s is the standard deviation of Pratio across these

clusters. Together, m and s permit to draw a distribution of the

ratios, so that one can infer if the Pratio of a given family deviates

significantly from the average.

Supporting Information

Figure S1 Phylogenetic tree of the 155 organisms in the main

dataset. The root corresponds to the class level (c-Proteobacteria),

and moving to the right towards the single strains the levels are

order, family, genus, species, subspecies. Pathogenic and non-

pathogenic strains are depicted in different colors (Red: patho-

genic, Blue: non-pathogenic) and show how virulent organisms

distribute across the taxonomy.

Found at: doi:10.1371/journal.pone.0013680.s001 (1.19 MB

PDF)
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