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Abstract

In this thesis a study of analytical and numerical models of coupled oscillating systems,
perturbed by delta-correlated noise sources, is undertaken. These models are important
for the attainment of a qualitative understanding of the complex dynamics seen in various
physical, biological, electronic systems and for the derivation of fast and computationally
efficient CAD routines. The text concentrates on developing models for coupled electronic
oscillators. These circuit blocks find use in RF/microwave and optical communication
systems as coherent multi-phase signal generators, power combiners and phase-noise fil-
ters; to name but a few of the possible applications areas.

Taking outset in the established single-oscillator phase-macro model, a novel numer-
ical algorithm for the automated phase-noise characterization of coupled oscillators, per-
turbed by noise, is developed. The algorithm, which is based on stochastic integration
and Floquet theory and is independent of circuit topology and parameters, proceeds by
deriving the invariant manifold projection operators. This formulation is easily integrated
into commercial CAD environments, such as SPICE™ and SPECTRE™. The algorithm
improves the computational efficiency, compared to brute-force Monte-Carlo techniques,
by several orders of magnitude.

Unilateral ring-coupled oscillators have proven a reliable and power efficient way to
create coherent multi-phase signal generators in the RF/microwave frequency range. A
complete and self-contained study of this complex multi-mode system is undertaken.
The developed model explains the existence of a so-called dominant mode, ensuring a
consistent signal phase pattern following start-up. A linear response model is derived
to investigate linear stability and noise properties. It is shown that a linear coupling
transconductor will cancel the coupling induced noise contribution in the single-side band
phase-noise spectrum. This phenomena was not discussed in any of the previous pub-
lications considering this circuit. The model gives a general insight into the qualitative
properties of unilateral ring-coupled oscillators, perturbed by white noise.
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Resumé

I denne afhandling vil der blive udført et studie af mulige analytiske og numeriske mod-
eller af koblede oscillerende systemer. Disse modeller er vigtige med henblik på at
opnå et kvalitativt overblik, mht. den komplekse dynamik der observeres i diverse fy-
siske, biologiske, elektroniske systemer og for udviklingen af hurtige, beregnings-effektive
simulerings-routiner. Teksten koncentrerer sig om modellering af elektroniske koblede
systemer. Disse kredsløbs-blokke finder anvendelse i RF/mikrobølge og optiske kommu-
nikations systemer som multi-fase signal-kilder, power combiners og fase-støjs filtre; for
bare at nævne nogle få eksempler.

Med udgangspunkt i den allerede eksisterende enkelt-oscillator phase-macro model vil
der blive udviklet en ny algoritme med henblik på at finde en automatiseret, topologi og
parameter uafhængig fase-støjs beskrivelse af koblede oscillatorer. Denne algoritme, som
bygger på stokastisk integration og Floquet teori, er baseret på udledningen af ortogonale
projektions operatorer, der afbilder støj-responsen ned på den invariante manifold. På
denne form er algoritmen meget velegnet til at blive integreret i kommercielle kredsløbs
simulations-platforme, så som SPICE™ og SPECTRE™. Algoritmen er flere størrelsesor-
dner hurtigere ift. en simple Monte-Carlo fremgangsmåde.

Unilateral ring-kobling af oscillatorer har vist sig at være en pålidlig og effektiv måde
at frembringe multi-fase signaler i RF/mikrobølge frekvens-området. Et komplet studie
af dette komplekse multi-mode system vil blive udført. Den udviklede model forklarer
eksistensen af en såkaldt dominant mode, der sikre at et konsistent fase-mønster altid
følger efter opstart. En linear respons model er udviklet med henblik på at undersøge
linær stabillitet og støj egenskaber. Det vil blive vist, hvordan linær kobling vil resultere
i, at det ekstra koblings inducerede bidrag til enkelt-sidebånd fase-støj spektrumet vil
blive fjernet. Dette fænomen er ikke nævnt i nogle af de tidligere publikationer på dette
felt. Den udviklede model giver et generelt indblik i de kvalitative støj-egenskaber af
unilateralle ring-koblede oscillatorer.
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Introduction

The physical phenomena of synchronization, also known as frequency locking or just
locking 1, was discovered by Dutch scientist Christian Huygens in the year 1665. Huygens
was onboard a ship, conducting longitude measurement 2 sea-trials of the pendulum-
clocks which he had invented, when he fell sick. From his sick-bed he had plenty of time
to observe two pendulum clocks suspended from a wooden beam in the room in which
he lay. The two clocks seemed to always swing in tune and always with a 180o phase
difference between the swings, also known as anti-phase swing. Even if prepared in an
arbitrary asymmetric initial state, (i.e. different swing period and initial phase), the
system would return to this equilibrium state after a short transient interval. Huygens
surmised that the two clocks interacted though the wooden beam, onto which they were
both attached, even though this interaction was imperceptible! This discovery was, to say
the least, revolutionary; a model explaining how such a weak, almost non-existing, cause
could provoke this clearly visible effect would escape science for more than two centuries.
Even to this day, this concept probably seems very strange to many people. It is not
impossible to imagine a person, without a scientific background, who, when confronted
with a scenario whereby two mechanical systems seem to communicate with each-other
through some invisible channel, would suggest some-kind of magic trick.

Although it is claimed that the Huygens’s problem was only recently solved by Kurt
Wiesenfeld and his co-workers [2], a mathematical model explaining the qualitative traits
of oscillator synchronization has been around for some time. The branch of applied
mathematics, known as dynamical systems theory, was pioneered by people like Jules
Henri Poincaré who in the late part of the 19’th century worked on solving different
problems in celestial mechanics. This framework was then developed throughout the
20’th century and, with the introduction of chaos theory in the early 1960’s, remains a
very active area of research to this day. The theory explains how some systems are situated
on a border-line in parameter-space where any small persistent perturbation leads to a
so-called bifurcation; a term used to describe a qualitative, sometimes dramatic, change
in the dynamics. The canonical model of an oscillator is a rotation in the complex plane

1in this report we shall sometimes refer to synchronization as just locking which is then used in
sentences like : "the two systems are locked ...". This syntax is not strictly correct since locking can refer
to both phase locking and frequency locking. However, in this report we only consider frequency locking
thus, hopefully, removing any confusion.

2at the time when Huygens lived there did not exist an exact method of sea navigation; something
which prevented safe long distance travel and resulted in many lost lives due to shipwrecks. While the
latitude was relatively easy to determine from measurements of the pole star elevation, the only real way
of determining longitude was by a procedure known as dead reckoning ; which was highly unreliable. It
had long been known that the longitude could be calculated by reading the time off a very reliable clock.
Say you started out in London at noon, then by measuring the time at noon locally (i.e. the time when
the sun is highest in the sky) the clock would always tell you how far away from London noon you were.
If e.g. the clock read midnight, then you would know that you were half way around the earth. Several
prominent scientist like Huygens and Newton had a go at solving this problem which was considered one
of the most important of its time. It was solved by English clockmaker John Harrison around 1761 [1].
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INTRODUCTION 7

where the oscillator state is referenced by an amplitude and a phase. While the amplitude
is a stable state variable, corresponding to a negative Floquet characteristic exponent, the
oscillator phase is by definition a so-called neutrally stable variable. By this we take to
mean that the phase will follow any perturbation passively; that is, without reacting to it.
Neutrally stable variables are special since they lie on the above mentioned bifurcation
borders and are hence susceptible to the slightest changes in the environment caused
by external influences. Considering a scenario whereby two oscillators are bilaterally 3

coupled; for zero coupling the two sub-systems swing with different periods/frequency and
hence also without any specific phase relation. As we now introduce a small coupling, the
neutrally stable phase variables bifurcate in a so-called saddle-node bifurcation creating a
new synchronized system where the two oscillators/clocks move with a common rhythm.
Actually, two new solutions, also called modes, are created, the anti-phase and the in-
phase modes, however, baring some-kind of multi-mode oscillation, only one of these
will survive. Although the bilaterally coupled oscillators may seem to behave in similar
fashion to what was described for the coupled pendulum system above, we should be
careful to make comparisons. In this report we study the coupling of asymptotically
stable oscillators, implying that the systems to be coupled are dissipative. However,
Huygens original pendulum setup is a so-called Hamiltonian system where dissipation is
so weak that it’s almost non-existent. The analysis of these systems lies well beyond the
scope of this report 4 and we instead refer the interested reader to [2] and it’s references.

Had Huygens lived today he would most certainly be in awe when confronted with
the scope of his invention and range of application that it has found. Basically, the
concept is used to explain any kind of scenario whereby several autonomous distinct
parts come together an act as a single entity. Such behavior is surprisingly abundant in
nature and new examples are continually being discovered. Situations can be observed
in social gatherings where the applause after a (classical) concert or theater play will
start completely incoherent and then move into synchronicity or in a crowd crossing a
bridge 5. In biology and physiology synchronization, plays a role in connection with the
concept of biological clocks, possessed by many plants and most animals allowing them to
synchronize their rhythm to the 24 hour Earth cycle, pacemaker cells responsible for the
regular beating of the heart and many other examples too numerous to mention. Finally,
we also note that synchronization is key to understanding the neurological processes in
the most autonomous dynamical system known to man : the human brain.

In electrical engineering the benefits of synchronization were being developed in the
1920’s by people like W.H. Eccels, J.H Vincent, Nobel prize laureate E. Appleton and
the famous electrical engineer B. van der Pol. Besides his celebrated work on oscillator
theory and it’s application to physiological systems, Balthasar van der Pol was also one
of the pioneers in the applications of synchronized signal generators. He showed how
one could stabilize high power triode signal generators by injecting a weak but precise
reference at some appropriate circuit node. Stabilized, high power signal sources was,
and is, one of the main design challenges of wireless communication systems. Most

3bilateral coupling means that the coupling from port 1 to port 2 is equal to the coupling in the other
direction (port 2 to port 1). The opposite of bilateral coupling is unilateral coupling ; a subject which we
shall study in detain in chapter 4.

4a short discussion is however included in section 1.2, on page 28, where we consider averaging applied
to single and coupled oscillators.

5people crossing a bridge will in general try to synchronize their footfalls. When the London Millen-
nium Bridge opened in June of 2000 people nicknamed it the "Wobbly Bridge" due to swaying motion
of the structure when loaded to its full capacity. Initial small resonances in the construction were being
amplified by the crowd on the bridge who seemed to be encouraged to synchronize their gait with the
sway [3].
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people probably remember van der Pol for his iconic oscillator model which is ubiquitous
in various different areas of science, such as applied mathematics, electrical engineering,
biology etc., where modelling of periodic behavior is considered. Almost all new proposed
oscillator models can in some way be traced back to his original work; the ones in this
report being no exception to that rule.

Today coupled/injection locked oscillators / lasers find various applications within
wireless / fiber-optic communication systems, radar and satellite equipment etc. Often
these circuits are employed in order to achieve one of the following objectives

1. the creation of a coherent multi-phase pattern.

2. analog frequency multiplication and division.

3. stabilization of a noise-corrupted carrier signal.

4. coherent power combining of several signal generators.

Modern wireless receivers such as the zero-IF, the Low-IF and image-reject archi-
tectures such as the Hartley and Weaver all rely on quadrature, also known as I/Q,
signals [4]. The quadrature signals are also used at the transmitter side in e.g. direct
conversion transmitters. In optical communication systems these signals are used in the
implementation of data clock recovery (DRC) circuit blocks. The I/Q constellation can
be generated very effectively by coupling two oscillator unilaterally in ring configuration,
with a 180o explicit phase shift in one of the coupling branches [5], [6], [7], [8]. This circuit
structure, known here as the cross-coupled quadrature oscillator (CCQO), was invented
in 1996 by Rofougaran et al. [5] and it will receive detailed attention in section 4.7 of
this report. Multi-phase modes are used in phased array antenna systems [9], in beam
scanning antenna arrays [10], fractional-N synthesizers [11], high speed samplers and sub-
harmonic mixers. In the past such signals where often produced by ring oscillators or by
using poly-phase filters, however, as is well known, these designs suffer from a very poor
noise-to-power ratio [8]. As will be discussed in chapter 4, ring-coupled oscillators have
been proven to be an attractive and reliable alternative.

By locking the carrier to the sub/super harmonic of the reference, analog frequency
multiplication/division can be achieved. Compared to digital division/multiplication,
this is a very compact and low-power alternative which is often used in modern PLL
structures [12].

Since the pioneering work of van der Pol and co-workers, it has been known that we
can stabilize the phase of a high-power, noise-corrupted carrier signal by injecting a weak
but precise reference signal. The slave/carrier oscillator is forced to follow the phase of
the master/refference oscillator to maintain the equilibrium condition of oscillation, also
known as Barkhausen’s criterion. This then implies that the high stability of the master
is to a certain degree inherited by the slave. In practical applications, such a phase filter
is often implemented by injecting a weak signal from a quartz oscillator operating at
some subharmonic of the carrier oscillator. The unilateral injection locked configuration
is however not the only kind of locked system exhibiting this phase-filtering behavior.
When coupled sub-systems/oscillators synchronize it means that they have decided on
a common frequency which is some function of the individual oscillator frequencies. As
a noise pulse then arrives and disturbs this steady-state frequency, the oscillators will
"work together" to regain the equilibrium condition of synchrony. In the case of n all-
to-all coupled oscillators, this means that the oscillator, perturbed by a noise pulse,
will not fell the full brunt the disturbance but instead only a factor 1/n. Since the noise
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sources of the different oscillators are uncorrelated this leads to the well known factor 1/n
multiplying the noise-to-power ratio, corresponding to a 10 log(n) decrease, in dBc, in the
single sideband (SSB) phase-noise spectrum 6; a phenomena seen in many other coupled
oscillator structures as well [13]. In this report we shall develop models which will help
us understand this cooperative behavior of coupled, noise-forced oscillators. The analysis
considers the asymptotic or steady-state dynamics perturbed by delta-correlated noise
sources and hence only pays attention to the state of the system after synchronization
has been achieved. The interesting, but challenging, topic of locking transient analysis
is not considered in this report. Noise calculations are made relatively easy by the fact
that one considers the response to small perturbations. We are then allowed to linearize
the inherent oscillator non-linearities since the state of the system is never driven very
far away from equilibrium conditions. This type of analysis is known as linear response
theory, a topic which is tightly linked with the core-purpose of this report. In fact, if asked
to introduce the text in the next four chapters, a fitting description wold be : "linear
response theory applied to autonomous single and coupled oscillating systems perturbed
by delta-correlated stochastic sources".

This report documents the introduction of two novel models considering coupled os-
cillators perturbed by noise; with the aim of characterizing the phase-noise performance
and asymmetry response of these systems. In chapter 3 we shall consider the phase
macro-model, which is a projection methodology originally devised for the single oscil-
lator phase-noise characterization; applied here to general coupled oscillator structures.
Then in chapter 4 we describe a canonical normal-form formulation pertaining to n uni-
laterally ring-coupled harmonic oscillators.

The search for faster, less memory consuming and increasingly rigorous circuit aided
design (CAD) routines for the simulation of nonlinear electric circuits is an ongoing
effort and a very active area of research. With regard to phase-noise characterization
of single/free-running oscillators, many people, including this author, believe that this
search ended with the introduction of the phase macro-model by Demir et al. [14], [15],
[16]. The method is based on a projection formalism, originally proposed by Kaertner
in [17], with the projection operators being numerically derived using a Floquet theoretic
decomposition. The algorithm only requires a numerically derived steady-state and the
circuit monodromy matrix (MM), which is a special state-transition-matrix (STM), to
work and is hence completely independent of circuit topology and parameters. After
numerically integrating the linear response equations for a single oscillator period and
with the correct initial conditions, the phase-noise characterization is complete. The
formulation is very rigorous, being based on stochastic integration techniques and Floquet
theory. It is very hard to imagine a more rigorous or computational efficient routine for the
simulation of single oscillator phase-noise and it is, without a doubt, a "near-optimum"
formulation, considering the problem it is trying to solve. With regard to a possible
algorithm for the numerical phase-noise characterization of coupled oscillators it then
seems only natural to turn to the solid foundation offered by the Demir model and try
to extend it to encompass coupled systems. Chapter 3 hence documents the attempt
of this author towards the derivation of a novel coupled oscillator model, based on the
above mentioned projection formalism. Essentially, the procedure consists of defining n
projection operators corresponding to the n-dimensional invariant manifold on which the

6since the response to the perturbation is multiplied by a factor 1/n the output noise power will
multiplied by a factor 1/n2. This then has to multiplied by a factor n to account for n uncorrelated noise
sources (uncorrelated noise add in power), thus leading to the factor 1/n. Note that a decrease in dB
below the carrier (dBc), refers to a increase in the stability of the signal and that this improvement is a
close-to-carrier effect [6].
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solution resides.
By re-using the work of Demir et. al we of course get all the computational effective-

ness of their model for "free" and we furthermore save a lot of time since we do not have
to re-invent the wheel, so to speak. At present time, most noise simulations of coupled
oscillator and phase-locked systems are done using brute-force Monte Carlo techniques.
The computational savings gained by switching to a projection formalism, like the one
described in chapter 3, would be several orders of magnitude. Other schemes exist, like
the mixing method, used in e.g. Advanced Design Systems (ADS), which is based on con-
version matrix calculations and the sensitivity method where the response at each node
is calculated based on a numerically estimated sensitivity. The paper [18] documents a
projection formalism for the calculation of oscillator phase noise based on a harmonic
balance (HB) steady-state techniques. Both the mixing, sensitivity and the projection
formalism in [18] are frequency domain models which do not consider stochastic inte-
gration techniques for solving the oscillator ODE forced by noise. This in turn implies
that a SSB phase-noise spectrum proportional to 1/fxm will result, where fm is the offset
frequency away from the carrier and x is a number between 1 and 3, depending on the
power-density spectrum of the noise sources. The singular behavior of this spectrum, for
offset frequencies close to zero, of-course has nothing to do with the physical situation.
Methods based on stochastic integration correctly prescribe a Lorentzian spectrum which
is everywhere finite. Finally, we note that Kaertner’s original proposal in [17] lies very
close to the phase-macro model formulation in [14]. However, in this report we have cho-
sen to only consider the Demir method since the algorithm is much simpler to implement
in program-code, while being based on just as rigorous theory.

Applied mathematical models can very coarsely be divided into two main constituents
: qualitative and quantitative. While a quantitative model aims to emulate the physical
system to as high a degree as possible, a qualitative model makes several approximations
in order to simplify the system by considering only parameters and degrees-of-freedom
which are "vital" in the quest to capture the "essential" behavior of the system. Certainly,
the projection formalism described in chapter 3 is of a quantitative nature and this is
then followed in chapter 4 by an example of a qualitative model. Here we consider the
derivation of the canonical amplitude/phase state-equations describing the dynamics of a
system of n unilaterally ring-coupled harmonic oscillators; with the aim of investigating
stability, phase-noise performance and asymmetry response of this complex multi-mode
system. As discussed above, an I/Q signal constellation, as is generated by the CCQO,
is used in many modern transceiver architectures to remove any spurious image signal
and as part of the modulation scheme. However, unavoidable asymmetry between the
two oscillator blocks, or in the coupling network, will cause the output to deviate from
quadrature. This, in-turn, will limit the image rejection properties of the receiver. At
the transmitter such imbalance would reduce the dynamic range and decrease the bit-
error-rate (BER). In a phased array antenna system, imbalance in the phase relation
would lead to spurious effects in radiation pattern. The phase-noise of the sources are
specified to maintain receiver sensitivity and avoid reciprocal mixing and transmitter
interference. Often these very strict phase-noise specifications will make the design of
low-noise signal sources the bottleneck of the overall transceiver architecture. The need
for models explaining how the different circuit parameters affect the noise and asymmetry
performance should be obvious to everyone. As we shall explain in chapter 4 the design
of optimum ring-coupled signal generators are complicated by the fact that there seems
to exist a trade-off between optimum noise and asymmetry operation in these circuit
structures.

We end this introduction with a short overview of the different chapters and appen-
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dices found in this report.

Chapter 1 "Basic Theory" : a detailed introduction to the concepts of equivalence
theory, averaging methods and the symmetry formalism. The methods and techniques
developed in this chapter will be used throughout the rest of the report.

Chapter 2 "Single Oscillators Perturbed by White Noise - Inhomogeneous Phase Dif-
fusion" : a thorough description of the single oscillator phase noise problem and a
review of three popular models from the literature. The text tries to simplify the com-
plex notation found in the original solution to problem, posed by Demir et al in [14].
A new, intuitive, less mathematical explanation regarding the asymptotic statistics of a
free-running oscillator, perturbed by delta-correlated noise sources, is included.

Chapter 3 "A Phase Macro Model for Coupled Systems with Γ × S1 Symmetry" :
this chapter describes the development of a novel projection based formalism used to
characterize the phase-noise of coupled oscillators, numerically. A model prescribing the
phase-noise spectrum of a sub-harmonic injection locked oscillator perturbed by white
noise is developed. Given so-called normally hyperbolic conditions, it is possible to identify
2 Floquet projection operators from the n possible choices which are then used to set up
the stochastic differential equations defining the noise-forced system, tangentially to the
invariant manifold. These equations are solved using stochastic integration techniques.

Chapter 4 "n Unilaterally Ring-Coupled Harmonic Oscillators Perturbed by White
Noise" : this chapter contains a complete and self-contained text discussing every as-
pect regarding the steady-state analysis of the unilateral ring-coupled oscillator system.
We explain why the system always chooses the same mode, known here as the domi-
nant mode, at startup and we investigate linear stability and noise response. Starting
from the linear response equations and using the concepts of diagonal phase and effective
diffusion constant, which was introduced in chapter 2, we are able to derive a novel qual-
itative expression for the close-to-carrier phase-noise of this coupled structure. Special
attention is paid to the special CCQO configuration which has been the subject of three
papers [6],[19],[20] written by the author during the course of this project.

Appendix A "The Noise Appendix - Narrow-band Noise / Stochastic Integration /
The Fokker-Planck Equation" : this report considers the effects of noise forcing on au-
tonomous ordinary differential equations (ODE). The solution is then formulated through
stochastic integration techniques. This appendix includes an easy to read introduction
to the concept of stochastic integration and the Fokker-Planck equation.

Appendix B "Deriving the Averaged Stochastic Differential Equations for a General
Class of Second Order Oscillators" : this is a easily readable introduction to field of
averaged stochastic differential equations, also known here as Kurokawa theory.

Appendix C "Various Derivations" : as the name suggest, this appendix contains
derivations, to large to be included in the main text.

Appendix D "Floquet Theory" : Floquet theory is used in the model formulation in
chapter 3 and in the original phase macro model in [14]. Using this theory we can define a
monodromy matrix (MM), which is a special state-transition matrix (STM), mapping the
oscillator state one period forward in time. This map is returned by the CAD program’s
steady-state routine and hence contains all the information available to us about the
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solution. A detailed understanding of this matrix is therefore very important. It will
be shown that we can approximated the MM map by considering the averaged state
equations.



Chapter 1

Basic Theory

This chapter reviews analytical tools and techniques that will be used in the models
described throughout the next 3 chapters. The procedures generally allow for a significant
simplification and classification of the, often, complex and diverse dynamical systems;
with the aim of extracting qualitative behavioral models of coupled oscillators perturbed
by noise. We shall investigate three main methodologies

• equivalence theory

• averaging methods

• the symmetry formalism/group theory

The generalized theoretic discussion will become clearer when applied to an example.
We consider the prototype electrical oscillator 1

L
∂iL
∂t

= −vC (1.1)

C
∂vC
∂t

= iL − vC
R

+Gmo(vC)vC (1.2)

where vC is the voltage across the capacitor C, iL is the current through the inductor
L, R = 1/G is the resistive loss and Gmo(vC) = g0 + g1vC + g2v

2
C is the nonlinear

energy restoring circuit element. Equations (1.1)-(1.2) are often referred to as a van der
Pol unit. It will be shown that this system contains sufficient degrees-of-freedom (2) to
capture any qualitative behavior of an arbitrary higher dimensional harmonic oscillator
without inherent frequency control (i.e. varactors).

1.1 Equivalence Theory

Equivalence theory considers asymptotic dynamics as the orbits have settled on an in-
variant manifold; expressed in a "rotated" coordinate system, constructed to reduced the
complexity of the manifold equations as much as possible. Equivalence theory naturally
divides into two main constituents

1the oscillator in (1.1)-(1.2) is used several places throughout this report. For a schematic of this
circuit see figure 4.1, on page 80, or figure B.1 in appendix B.

13
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• center-manifold reduction : this procedure projects the state equations onto the
invariant manifold; the so-called center-manifold. Considering only the center-
manifold dynamics allows for a significant reduction in the dimensionality of the
system under investigation.

• normal form transformation : applying a nonlinear rotation to the state-space
coordinate system we can achieve a coordinate frame where all nonlinearities, ex-
cept the "essentials", are removed. The rotated equations are thus written on a
standard/normal form implying that the qualitative behavior of a whole class of
dynamical systems can be treated by considering only a single set of normal equa-
tions.

Two standard textbooks on the above subjects are [21] and [22]. The general results
on the center-manifold theory and the normal-form methods included in this chapter
are all taken from [21]. The review paper by Crawford [23] is a popular reference with
many authors. The books by Goloubitsky et al. [24], [25] are also very educational, but
we should caution that they use a different, slightly more complex, notation compared
to what will be included in this report. Finally, the book by Hoppensteadt et al. [26]
considers equivalence theory with special attention being paid to the analysis of coupled
oscillators.

We proceed in section 1.1.1 below by considering equivalence theory as it applies to
single oscillators and then, in section 1.1.2, we move on to investigate coupled structures.

1.1.1 Single Oscillators - The Andronov-Hopf Normal-Form

The free-running oscillator is described by a k ≥ 2 dimensional autonomous ODE

ẋ = f(x, µ) (1.3)

where x(t) : R→ Rk is the state vector, f(·, ·) : Rk×R→ Rk is the vector field and µ
is a dedicated bifurcation parameter 2. We assume that x = 0 is a stable equilibrium/fixed
point 3 of (1.3) for µ < 0 which becomes unstable as µ becomes greater than zero. As µ
crosses the bifurcation boundary µ = 0, a so-called Andronov-Hopf bifurcation will take
place whereby two imaginary eigenvalues of the Jacobian matrix, J ∈ Rk×k, where

Jij =
∂fi
∂xj

∣∣∣∣
xj=0

(1.4)

will cross the imaginary axis with finite speed. All other eigenvalues of the Jacobian
are assumed to have real parts less than zero.

The Center-Manifold Theorem

At µ = 0 the state space is hence split into a center subspace Ec and a stable subspace Es

as Rk = Ec ⊕ Es. By this division we can write (1.3) as

v̇ = Av + fc(v, y, µ) (1.5)
ẏ = By + fs(v, y, µ) (1.6)
µ̇ = 0 (1.7)

2this section describes the Andronov Hopf bifurcation which is a co-dimension 1 bifurcation [21]. This
means that only one parameter is needed to unfold the equations.

3an arbitrary fixed point x = a is easily brought back to zero by the linear transformation x → x− a.
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where v ∈ Ec, y ∈ Es, A is 2 × 2 matrix with imaginary eigenvalues and B is a
(k − 2)× (k − 2) matrix having only eigenvalues with negative real parts. The functions
fc and fs contain all the nonlinear terms of the original state equations 4. Using simple
similarity transformations we can write the two matrices in (1.5)-(1.6) as

A =
[
0 −ω
ω 0

]
(1.8)

B =

⎡⎢⎢⎢⎣
λ1s 0 · · · 0
0 λ2s · · · 0
...

...
. . .

...
0 0 · · · λ(k−2)s

⎤⎥⎥⎥⎦ (1.9)

where ω ∈ R and �{λis < 0} for all i ∈ [1; k − 2]. The following statements can now
be made [21]

• there will exist a smooth center-manifold given by v + yc where yc = h(v, µ) and h
is a smooth function which satisfies h(0, 0) = 0 , dh(0, 0)/dx = 0.

• this manifold is invariant and will contain all bifurcating solutions.

• all orbits in phase space will approach this invariant manifold exponentially with
time.

Thus in order to study the qualitative dynamics we can restrict our attention to the
two dimensional (for a fixed µ) center-manifold v+h(v, µ). The derivation of the function
yc = h(v, µ) is a standard procedure explained in many of the references mentioned in
the beginning of this chapter 5. We will not go into specifics here but simply assume that
this map has been derived somehow.

Since the center-manifold for an Andronov-Hopf bifurcation is 2-dimensional, the
equations are most naturally described using complex variables. Introducing the notation
v = [v1 v2]T , we then define the z ∈ C as

z = v1 + jv2 (1.10)

The v and z representations are related through the linear transformation[
v1

v2

]
=

1
2

[
1 1
−j j

] [
z
z

]
(1.11)

where the z refers to the complex conjugate of z. Inserting y = h(v, µ) into (1.5) and
using the above transformation, we can then write the center-manifold dynamics as

ż = λ(µ)z + F (z, z, µ) (1.12)

ż = λ(µ)z + F (z, z, µ) (1.13)

where the eigenvalue λ is defined through
4note that according to (1.7) µ should now be consider as a state variable which means that terms of

the form µv, µ2v etc. are no longer linear, but non-linear terms.
5see e.g. [23, pp. 1009-1014].
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λ = ρ(µ) + jω = ρr(µ) + jρi(µ) + jω (1.14)
λ(0) = jω (1.15)
dρr
dµ

> 0 (1.16)

with ω being defined in (1.8) and the functions F and F are complex conjugates which
hold all the nonlinear terms.

At this point we return to our example oscillator in (1.1)-(1.2). The system is two
dimensional and can therefore be consider the result of a k dimensional oscillator, as
defined in (1.3), projected onto the center-manifold, with v1 = iL and v2 = vC . The
Jacobian of the vector field in (1.1)-(1.2) is found, using (1.4), as

J =
[

0 − 1
L

1
C g0 −G

]
(1.17)

The two complex conjugate eigenvalues are found to be

λ =
1

2C
(g0 −G)± j

2

√
4ω2

0−
(
g0 −G
C

)2

≈

(g0 −G)
2C

∓ j (g0 −G)
8C

(g0 −G)
G

± jω0

(1.18)

Comparing with (1.14) we see that we can make the identification

ρr =
(g0 −G)

2C
(1.19)

ρi = −(g0 −G)
8C

(g0 −G)
G

(1.20)

ω = ω0 (1.21)
µ ∝ g0 −G (1.22)

where

ω0 =
1√
LC

(1.23)

Using the substitutions

c1 =
g0 −G
C

(1.24)

c2 =
√

4ω2
0 − c21 (1.25)

the eigenvectors of the matrix in (1.17) are written as columns in the transformation
matrix T

T =
[− 2

L
1

c1+jc2
− 2
L

1
c1−jc2

1 1

]
(1.26)

T−1 =
1

2c2

[−j2ω2
0L c2 − jc1

j2ω2
0L c2 + jc1

]
(1.27)



1.1. EQUIVALENCE THEORY 17

T

T -1

Figure 1.1: the normal form method in the linear domain. T rotates the coordinates
to produce the simplest possible representation of the dynamical system. For the linear
saddle system shown here, this simply corresponds changing the basis vectors. We hence
see that all saddle systems are equivalent and we a free to study the least complex
representation, which is clearly given by the system in the right part of the figure.

We can then define the new complex parameters z as[
iL
vC

]
= T

[
z
z

]
(1.28)

Using this transformation, (1.1)-(1.2) are written as

[
ż
ż

]
=

1
2c2

[−j2ω2
0L c2 − jc1

j2ω2
0L c2 + jc1

] [
0 − 1

L
1
C g0 −G

] [− 2
L

1
c1+jc2

− 2
L

1
c1−jc2

1 1

] [
z
z

]
+

1
2c2

[−j2ω2
0L c2 − jc1

j2ω2
0L c2 + jc1

] [
0

g1
C vC(z, z)2 + g2

C vC(z, z)3

]
=[

λ 0
0 λ

] [
z
z

]
+

1
2c2

[
(c2 − jc1){g1C (z2 + z2 − 2zz)− g2

C (z3 − z3 + 3zz2 − 3z2z)}
(c2 + jc1){g1C (z2 + z2 − 2zz)− g2

C (z3 − z3 + 3zz2 − 3z2z)}
] (1.29)

which is on the form (1.12)-(1.13). As (1.29) stands, we are really no better off
compared to the original state equations in (1.1)-(1.2). After having reduced the dimen-
sionality from k to 2 with the center manifold theorem, we now need a tool that will
reduce the complexity/non-linearity of these center manifold equations.

The Normal-Form Method.

The normal form method describes a non-linear transformation that will "rotate" the
coordinate system, in such a way that the state equations in the rotated frame will
contain the fewest possible non-linear terms. The linear equivalent of this operation is
represented by a change of basis vectors as illustrated by the operation T in figure 1.1. One
only needs to study the clean/standard form on the right side of figure 1.1. The results
obtained in this coordinate system are then transformed back to the original skewed
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coordinate system, on the left, by the inverse transformation T−1. More importantly,
letting T represent an arbitrary rotation in the plane R2, we can study the whole system
class 6 simultaneously while considering only the simple normal form on the right side
of figure 1.1. When introducing nonlinearity into the formulation, the eigenvectors are
no-longer represented by simple Euclidian basis vectors but are instead constructed from
homogeneous polynomials named monomials 7, which span the infinite dimensional space
of nonlinear vector functions. We should, however, keep the linear representation in
figure 1.1 in mind, when we try to understand the non-linear transformations. Firstly, it
provides a good mental picture of what the normal-form method "does"; namely, some
kind of rotation of the coordinate system. Secondly, it illustrates, very effectively, what
we are trying to achieve by this exercise; that being, a clean/simple representation which
is equivalent to all other skewed/complex members within the system class.

In this section we shall discuss the so-called Elphick-Tirapegui-Brachet-Coullet-Iooss
normal form which is formulated in terms of system symmetry. The first step in the
procedure consist of writing (1.12)-(1.13) as

ż = Jz + F2(z) + F3(z) + · · ·Fr−1(z) +O(|z|r) (1.30)

where r > 3 is an arbitrary integer and we have introduced the compact notation
z = [z z]T . The terms Fk contain monomials of order k

Fk = zm1zm2 (1.31)

where m1 +m2 = k. We also write Fk ∈ Hk, with Hk being the vector space of k’th
order monomials in z and z.

As shown in appendix C.1, by introducing a close to unity change of coordinates

z = w + hk(w) (1.32)

where w ∈ C and hk(·) : C→ Hk, we can write (1.30) as

ẇ = Jw︸︷︷︸
first order term

+ F2(w)︸ ︷︷ ︸
second order term

+ · · ·+ L
(k)
J (hk) + Fk(w)︸ ︷︷ ︸
k’th order term

+

F̃k+1(w)︸ ︷︷ ︸
k+1 order term

+ · · ·+ F̃r−1(w)︸ ︷︷ ︸
r-1 order term

+ O(|w|r)︸ ︷︷ ︸
r order term

(1.33)

where we have defined the Lie bracket L(k)
J (·) : Hk → Hk

L
(k)
J (hk) = [hk(z), Jz] = −(Dhk(z)Jz − Jhk(z)) (1.34)

In (1.33), the tilde symbol F̃k+1 illustrates that the coordinate change in (1.32) has
affected the higher order monomials in some unspecified way. More importantly, the
operation has left the lower order terms untouched. Referring to equation (1.33), the
k’th order monomial in (1.30), Fk, can be removed if we can find a transformation, hk,
in (1.32), such that L(k)

J (hk) = −Fk(w). Since the transformation has no impact on the
lower order terms we can work our way through (1.30), term by term, without destroying
earlier obtained results. Considering the j’th term, Fj(w), in (1.30), the Lie bracket in

6in figure 1.1 the orbits represent solutions of a linear saddle system where one of eigenvalues have
positive real part while the other is negative. It follows that all linear saddle systems are equivalent.

7where a k’th order polynomial has the form akxk + ak−1x
k−1 + · · · a1x + a0, a k’th order monomial

is written axk.
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(1.34) can only remove the monomials which lie in it’s image, ImL(j)
J (hj), also called it’s

range, while it is forced to leave the terms residing in the complement space, KerL(k)
J∗ 8,

behind, since it cannot reach them. Here, KerL(k)
J∗ , refers to the kernel of the Lie bracket

L
(k)
J∗ and J∗ is the Hermitian (transposed + complex conjugated) of the system Jacobian,

J , in (1.30). The normal-form equations are hence made up of k’th order monomials
residing within the vector space KerL(k)

J∗ , for an arbitrary k < r. One refers to the terms
which can be removed by the operator in (1.34) as non-resonant monomials while those
that are left behind are termed resonant monomials [21].

As shown in appendix C.1, the terms contained in KerL(k)
J∗ are equivariant with regard

to the group actions of the one parameter group eJ∗s. A vector field, f(x), is equivariant
with respect to operations of a group, Γ, if

γf(γx) = f(x) ∀γ ∈ Γ (1.35)

applies. Assuming that x(t) is a solution to

ẋ = f(x) (1.36)

then γx is also a solution 9. The normal-form solution of an ODE with the Jacobian
J will hence possess a symmetry defined by the one parameter continues group eJ∗s (s is
the parameter).

In this chapter we consider harmonic oscillators as represented by the Andronov-Hopf
bifurcation. From (1.12)-(1.13), (1.14)-(1.16) on page 16 and footnote 4, on page 15, we
see that we can write the Hermitian Jacobian as

J∗ =
[−jω 0

0 jω

]
(1.37)

The one parameter group from the above discussion then gets the form

eJ
∗s =

[
exp(−jωs) 0

0 exp(jωs)

]
(1.38)

As an example, consider the two vectors zz and z2z; performing the above discussed
rotation we get

exp(jθ)
(
z exp(−jθ)z exp(jθ)

)
= zz exp(jθ) �= zz (1.39)

exp(jθ)
(
z exp(−jθ)z exp(jθ)

)
z exp(−jθ) = z2z (1.40)

where θ = ωs is now a arbitrary angle. From the above equations we see that while
z2z is equivariant with regard to the operation in (1.38), the term zz is not; implying
that zz can be removed (non-resonant monomial) while the term z2z stays (resonant
monomial). From the above discussion and examples we can summarize the results as
follows

8this is discussed in appendix C.1.
9this is seen by inserting γx into (1.36) and the subsequently using (1.35).
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note 1.1 In order for a monomial in (1.12)-(1.13) to re-
main in the Andronov-Hopf normal-form (resonance) it has
to be equivariant with regard to a rotation in the complex
plane; hence, the orbits, corresponding to solutions of the
normal-form equations, are angular symmetric. This rota-
tional symmetry of the equations, and the corresponding so-
lutions, is represented by the continuous one parameter group
eJ

∗s which is equivalent to S1, where S1 is known as the circle
group.

A thorough investigation of all terms up to order 4 would show that all second and
fourth order terms are resonant and hence removable. All third order terms can also be
removed, except the non-resonant term z2z. We can therefore write the Andronov-Hopf
normal form of the system in (1.12)-(1.13) up to fifth order

ż = (ρr(µ) + jρi(µ) + jω)z + c(µ)z2z +O(|z|5) (1.41)

ż = (ρr(µ)− jρi(µ)− jω)z + c(µ)z2z +O(|z|5) (1.42)

where we have used (1.14)-(1.15) and c(µ) is some unspecified complex parameter
resulting from the normal-form transformations. Often these equations are written on
polar form with z = A exp(jφ). Setting c(µ) = d(µ) − jb(µ), dropping the explicit
dependence on µ and ignoring the O(|z|5) terms, we can write for the amplitude

dA2

dt
= 2AȦ =

d

dt
zz = żz + zż = 2ρrzz + 2d(zz)2 (1.43)

and for the phase

φ̇ =
d

dt
arctan

(
−j z − z

z + z

)
=

−j
1− ( z−zz+z

)2 (z + z)(ż − ż)− (z − z)(ż + ż)
(z + z)2

=

−j
2zz

(żz − zż) = ω + ρi − bzz
(1.44)

Using zz = A2 we get the final form of the third order Adronov-Hopf normal form
equations

dA

dt
= ρrA− dA3 = ρr

[
1−

(
d

ρr

)
A2

]
A (1.45)

dφ

dt
= ω + ρi − bA2 (1.46)

We now return to the complex state equations for the van der Pol oscillator which
were written in (1.29). Repeating the above procedure which led to (1.45)-(1.46) on this
set of equations, we find the following parameters
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ω = ω0 (1.47)

ρr =
(g0 −G)

2C
(1.48)

ρi = −(g0 −G)
8C

(g0 −G)
G

(1.49)

b =
3g2
C

c1
2c2

=
3g2
C

g0 −G
2
[
ω0 − (g0−G)

8C
(g0−G)
G

] ≈ 3g2
(g0 −G)

G
(1.50)

d =
3g2
2C

(1.51)

where we have used the definitions from (1.19)-(1.21).
Substituting these parameters in (1.45)-(1.46) we find the van der Pol normal form

equations

dA

dτ
= µo

[
1−

(
A

α

)2]
A (1.52)

dφ

dτ
= 2Q− 1

4
µ2
o − 3g2µoA2 (1.53)

where we have introduced the slow time

τ =
ω0

2Q
(1.54)

and the definitions

Q = ω0CR = R

√
C

L
=

R

ω0L
(1.55)

µo =
g0 −G
G

(1.56)

α =

√
g0 −G

3g2
(1.57)

In the above definitions, Q is the oscillator Q-factor, 2µo is the absolute value of
the second Floquet characteristic exponent 10 of the limit cycle solution and α is the
stable amplitude of the oscillator. The parameter b in (1.50) describes how the oscillator
frequency depends on the amplitude. We see that this parameter is controlled by µo
and g2 together. For a moderately non-linear characteristic Gmo in (1.2), on page 13,
both of these parameters are small. In this case we can approximate b ≈ 0 and we say
that (1.52)-(1.53) represents an isochronous oscillator. The parameter µ0 in (1.56) and
(1.52)-(1.53) will play an important role for the derivations in the next section, as well
as in the model of the unilateral ring coupled oscillators described in chapter 4. From
(1.48), (1.55) and (1.56) we see that we can write

10the second Floquet characteristic exponent controls the relaxation time of the amplitude. We refer
to appendix D for an introduction to Floquet theory.
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µo = ρr
2Q
ω0

(1.58)

Since µo is proportional to the bifurcation parameter ρr (see equation (1.14)) we see
that oscillations are initialized by µo crossing the boundary µo = 0. Furthermore, taking
the derivative around the solution branch A = α in (1.52) we see that the Floquet char-
acteristic exponent, which describes the relaxation time-constant of orbits approaching
the limit cycle, is given by −2µo. Finally, we note that µo can be seen as indicatory
of oscillator dissipation. For a fixed overdrive g0 − G > 0 we see that µ0 ∝ 1/G = R
which means that the larger the dissipation the larger µo and the smaller the limit cycle
amplitude relaxation time constant

note 1.2 The oscillator dissipation as represented by the pa-
rameter µo controls the amplitude relaxation time-constant of
the stable limit cycle. The larger the dissipation the tighter
orbits are locked to this limit set.

The above derivations illustrated how the qualitative dynamics of an arbitrary k-
dimensional (k ≥ 2) harmonic oscillator could be represented by a simple 2 dimensional
system with rotational symmetry. When we say that the center manifold normal form
equations represents the dynamics of the more complex "real" oscillator, what is meant
is that any qualitative behavior which one would expect to observe in the original k di-
mensional system can be captured by (1.45)-(1.46). Another way of saying this is that
(1.45)-(1.46) contains the minimum number of parameters needed to fit all qualitative
dynamics in the original system to a rotation in the complex plane. The important
conclusion is therefore that by studying the normal form (1.45)-(1.46) we simultaneous
investigate all sinusoidal oscillators. Hence, there is no need to study systems more com-
plex than (1.45)-(1.46) since no new information would be gained. This is an extremely
powerful result which allows us to keep the analysis general while keeping the algebra
manageable.

With respect to the van der Pol unit in (1.52)-(1.53), we can therefore draw the
following important conclusion

note 1.3 the van der Pol normal-form in (1.52)-(1.53) de-
scribe the simplest possible representation of a harmonic
limit cycle. This model will hence be representative of the
qualitative behavior generated by the system class of har-
monic oscillators with no internal frequency control (i.e. var-
actors).

which is a result that we shall use many times in this report.
There exist a connection between stable sub-manifolds and the symmetry of the gov-

erning the equations. As explained above in note 1.1, on page 20, the fact that the
solutions have symmetry represented by the group S1 implies, that if x(t) is a solution,
then x(t+θ), where θ ∈ [0; 2π], is also a solution; illustrating that we are dealing with an
oscillator (periodic solution). The limit cycle which all orbits approach asymptotically
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with time will then constitute a stable sub-manifold11 inside the center-manifold. This
sub-manifold is also known as a ω-limit set [21]. Since this set is invariant under the
operation S1 it must be a circle. That this is the case is easily seen from (1.45)-(1.46)
where the amplitude of the circle is seen to be Â =

√
ρ/d = α.

In the limit µo →∞ the amplitude can be adiabatically removed 12 from normal form
equations in (1.52)-(1.53) and we hence get the phase-only representation of the van der
Pol oscillator

dφ

dτ
= 2Q− 1

4
µ2
o − 3g2µoα2 (1.59)

Hence, for large dissipation 13 the oscillator is modelled by a single angular coordinate,
the oscillator phase, moving with a uniform speed on the sub-manifold S1.

1.1.2 Coupled Oscillators - The Synchronized State

In the previous section it was shown how normal form theory allowed us to reduce the
dimension of the autonomous system in (1.3) from k to 2. Based on this result, one could
make the obvious conjecture that the same procedure applied on n coupled oscillators
would reduce the dimension from nk to 2n. As we shall continue to show, this will indeed
be the case provided we consider weakly coupled units. What exactly constitutes a weak
coupling is of-course not immediately obvious and much of the text in this section will be
concerned with clarifying this concept. In the following we shall draw on the derivations
made in the previous section which dealt with equivalence theory of single oscillators.
The center manifold theorem was thoroughly discussed here. The analytical machinery
involved in the derivation of a center manifold of coupled units does not differ from what
was shown for single oscillators in the previous section. We shall therefore not include a
separate discussion of this subject.

Let us write dynamic equations for the n coupled k-dimensional oscillators as

ẋ = f(x, λ) + κx (1.60)

where x(·) : R→ Rnk and f(·, ·) : Rnk×Rn → Rnk is the vector field, λ ∈ Rn is vector
containing n bifurcation parameters λ = [λ1 λ2 · · · λn]T and κ ∈ Rn×n is the coupling
matrix

κ =

⎡⎢⎢⎢⎣
κ11 κ12 · · · κ1n

κ21 κ22 · · · κ2n
...

...
. . .

...
κn1 κn2 · · · κnn

⎤⎥⎥⎥⎦ (1.61)

where κij describes the coupling from the j’th to the i’th oscillator. Although we only
consider linear coupling here, the scope could easily be extended to include non-linear
coupling functions 14. We consider a scenario where the units are uncoupled (κij = 0) and

11by this we simply mean a set of points which all orbits, corresponding to any initial condition, will
approach asymptotically with time. For a more technical definition see [21].

12in the limit µo → ∞ we will have A = Â = α on all time scales, as is seen from (1.52).
13obviously, (1.59) has problems with the limit µo → ∞, since this would imply an infinite oscillator

frequency. Instead we simply use the term "large" without specifying the exact size.
14the effects of non-linear coupling are examined in chapter 4 where we investigate the dynamics of a

unilateral ring of n harmonic oscillators.
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let λ cross the border λ = 0 15. As explained above in connection with the single oscillator,
the Jacobian of each of the oscillators will have 2 eigenvalues crossing the imaginary
axis with finite speed. Since the units are uncoupled, the Jacobian J , corresponding
to the vector field in (1.60), will then have n pairs of complex conjugate eigenvalues,
simultaneously crossing the imaginary axis with finite speed. This is known as a multiple
Andronov-Hopf bifurcation [21]. As discussed above for the single oscillator, using center
manifold reductions and normal-form transformations we can reduce the dynamics of the
each oscillator to the form 16

dAj
dt

= ρr,j

[
1−

(
dj
ρr,j

)
A2
j

]
Aj j = 1, 2, · · ·n (1.62)

dφj
dt

= ωj + ρi,j − bjA2
j j = 1, 2, · · ·n (1.63)

The symmetry of (1.62)-(1.63) is described by the n parameter group Tn = S
1 × S

1 · · · × S
1︸ ︷︷ ︸

n times
which is known as the n-torus group. This is easily explained since the symmetry of the
single units were S1 17, then because the units are uncoupled, the symmetry group for
the whole system is found by multiplying the groups of the individual systems. Another
way of saying this is as follows

note 1.4 for the case of the single harmonic oscillator, as
described through the Andronov-Hopf bifurcation, we were
free to rotate the coordinate system in the complex plane
through an arbitrary angle. With the Multiple Andronov-
Hopf bifurcation we consider n coordinate systems and since
they are all uncoupled we can rotate each of them indepen-
dently of the rest. We can therefore describe the symmetry
using a n parameter group which rotates each of the n co-
ordinate systems independent of the rest. This group is the
n-torus group Tn.

As was the case with the limit cycle of the single oscillator, the stable sub-manifold
must be invariant to the operations contained in system symmetry group; this implies
that all orbits approach the n-torus Tn, asymptotically with time. The sub-manifold Tn

is hyperbolic 18 for κij = 0 and will therefore persist if perturbed. However, as seen from
(1.63), with bi = 0 19, the phase variables are neutrally stable and a perturbation will
hence cause a bifurcation in these variables. The manifold will persists perturbations
because it is defined in terms of the oscillator amplitudes in (1.62), which are stable state
variables. Hence, the vector field normal to the surface of the invariant center mani-
fold, which specifies the amplitude dynamics, will remain unaffected while the tangential
dynamics (phase dynamics) will simply follow any perturbation.

15we assume here that all n bifurcation parameters λi are identical which implies that they cross the
border λi = 0 simultaneously, for all i.

16see (1.45)-(1.46) on page 20.
17see discussion in 1.1.1.
18the n-torus is hyperbolic because the individual oscillator solutions are represented by a hyperbolic

limit cycle, as seen from (1.62). The persistence towards perturbations follow directly from this hyperbolic
property[21].

19if bi �= 0 we have to define a new phase variable which is then neutrally stable. See discussion in
section 2.2.3, on page 54, for an example of this.
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The Synchronized State

We now introduce very weak coupling |κij |  1 between the units. As explained
above, the solution will stay on Tn, however, under the correct circumstances 20 a
frequency-locked or synchronized solution will bifurcate creating a new one-dimensional
sub-manifold/ω-limit set on the n-torus. The first thing we note about this bifurcation
is that it must be a saddle-node type bifurcation since it is a co-dimension 1 steady-state
bifurcation in the phase variables in (1.63). Secondly, the bifurcation must change the
symmetry of the solution. With κij = 0 the oscillators where uncoupled and the sym-
metry was given by Tn = S

1 × S
1 · · · × S

1︸ ︷︷ ︸
n times

representing the fact that the phases of the

different oscillators were independent; implying that a rotation in one plane did not af-
fect the dynamics in the other planes. After the locking bifurcation the oscillators are all
synchronized and we can therefore not rotate in one plane without performing the same
rotation in the remaining n−1 planes. Assuming that the coupling network is symmetric
as prescribed by the group Γ we therefore have the result

note 1.5 the symmetry of the uncoupled normal form equa-
tions on the n-torus is Tn. When coupled through a Γ sym-
metric network, and assuming the creation of a synchronized
solution through a saddle-node bifurcation, the symmetry of
the normal form equations are given by the group Γ× S1.

When we say that the coupling network has symmetry Γ we mean that the units
in (1.62)-(1.63) can be permuted according to the operations/actions contained in this
group 21. For the linear coupling scheme in (1.60) this implies that the coupling matrix
commutes with the operations in Γ

γκ = κγ ∀γ ∈ Γ (1.64)

According to the above note the normal form equations of the n coupled units will
take the form 22

dAi
dτi

= µo,i

[
1−

(
Ai
αi

)2]
Ai + Λi(A1, · · · , An, φ1, · · · , φn;κij) i = 1, 2, · · ·n (1.65)

dφi
dτi

=
2Qi
ωi

∆ωi + Φi(A1, · · · , An, φ1, · · · , φn;κij) i = 1, 2, · · ·n (1.66)

where ∆ωi = ωi − ω1, with T1 = 2π/ω1 representing the period of the solution, and
we have time normalized the equations as explained in connection with (1.52)-(1.53) in
the previous section. The coupling parameter κij includes all the non-zero terms from

20the oscillators will only synchronize if the deviation in the oscillator frequency distribution is on the
same order as the coupling strength [27].

21some possible coupling structures include the symmetric group Γ = Sn which corresponds to identical
all-all coupling, Γ = Dn, the Dihedral group, which corresponds to bilateral ring coupling and Γ = Zn,
the cyclic group, which represents unilateral ring coupling. We refer to the discussion in section 1.3 for
thorough discussion of symmetry as it finds application in the analysis of coupled oscillators.

22in the following we consider the special case of isochronous oscillators (bi = 0), in order to simplify
the expressions as much as possible without loosing sight of the main qualitative points of the analysis.
Non-isochronous oscillators are easily included in the formulation as explained in footnote 19.
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the i’th row of the coupling matrix in (1.61). In the following we shall assume symmetric
oscillators ( i.e. ρr,i = ρ, di = d etc.) and symmetric coupling which implies that κij = κ
for all i, j which involve non-zero contributions. Which terms are non-zero depends on
the coupling symmetry Γ. It then follows from the above discussion that Ai and Φi are
both Γ× S1-equivariant 23.

It is important to understand that the functions, Λi(·), Φi(·), in (1.65)-(1.66) are not
derived from the uncoupled system (1.62)-(1.63) by simply adding them to the righthand-
side of the equations. Instead, they are the result of a nonlinear mixing process which
initiates the synchronized state. The multiple Andronov-Hopf normal-form considers the
loss of stability at a fixed point in state space whereafter the oscillators settle on Tn. At
this point there is no phase relation between the individual oscillators. We then introduce
a small coupling |κ|  1; the different tones will mix in the oscillator nonlinear energy
restoring circuit component; modelled here by the first term on the righthand side of
(1.62). Eventually, if the coupling is weak, and if the asymmetry of the oscillators is
even weaker, this system will find an equilibrium synchronized state represented by the
symmetry S. This system is then modelled by (1.65)-(1.66). In order to illustrate this let
us consider the multiple Andronov-Hopf normal-form in (1.62)-(1.63) where the resonant
monomials, for the i’th equation, had the form

zi z2
i zi z3

i z
2
i ect. (1.67)

The normal-form equations of the synchronized system in (1.65)-(1.66) will also con-
tain these terms. However, because of the S1 symmetry, caused by the frequency-lock,
this normal form will also have terms on the form

κzj κz2
i zj κ2zizjzj κ2z3

i z
2
j ect. (1.68)

where the subscript i again refers to the oscillator under consideration and j represents
an oscillator unit that is coupled to this cell. Let us consider the first term in (1.68),
κzj . We now add the new coupled oscillator resonant terms to (1.65)-(1.66), written on
complex form 24, which then gets the form

żi = · · ·+ κzj (1.69)
żi = · · ·+ κzj (1.70)

by copying the procedure which led to the single oscillator amplitude/phase equations
in (1.43)-(1.44) we can find the two coupling functions in (1.65)-(1.66) as follows

Λi =
1

2Ai

{
żizi + ziżi

}
=

1
2Ai

{
κzjzi + ziκzj

}
=
κAj
2
{
exp

(
j[φj − φi]

)
+ exp

(
j[φi − φj ]

)}⇒
Λi = κAj cos(φj − φi) (1.71)

Φi =
−j
2A2

i

{
żizi − ziżi

}
=

−j
2A2

i

{
κzjzi − ziκzj

}
=
κAj
2Ai

{
exp

(
j[φj − φi]

)− exp
(
j[φi − φj ]

)}⇒
23see (1.35) on page 19 for a definition of vector field equivariance.
24see discussion in connection with the derivation of (1.12)-(1.13), on page 15.
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Φi = κ
Aj
Ai

sin(φj − φi) (1.72)

where we have set zi = Ai exp(jφi) and zj = Aj exp(jφj). The expressions in
(1.71)-(1.72) should look familiar to anyone acquainted with qualitative coupled oscillator
analysis. In particular, (1.72) constitutes the functional form of the famous Kuramoto
model [27], which considers all-to-all coupled (Γ = Sn) harmonic oscillators. Often the
expressions in (1.71)-(1.72) are derived through averaging procedures [6], [28], illustrating
that averaging is a "short-cut" to deriving the normal-form equations; an issue we shall
discuss further in the next section of this chapter. However, normal-form calculations
supplies us with something that a simple averaging procedure could never bring - a clear
view of the "big picture" of qualitative coupled oscillator behavior.

At this point we return to the subject of weak coupling which was introduced in the
introduction to this section. Throughout the development, which eventually lead to the
statements in note 1.5, we were assuming a persisting n-torus Tn, which were connected to
the hyperbolic amplitude state equations in (1.65). However, the hyperbolic amplitude
equations can of-course only be ensured if the perturbing term (i.e. the coupling) is
smaller than the eigenvalue determining the linear stability of the amplitude branch
A = α. This eigenvalue is also know as the Floquet characteristic component, and from
note 1.2 on page 22 we know that this is equal to 2µo. If |κ| > 2µo then the coupling
function Ai will potentially control the amplitude dynamics in (1.65) which means that
the n-torus could possibly be destroyed. Alternatively, the strong coupling could lead to
amplitude death [27]. Let us just for a brief moment consider the general case where the
oscillators have different parameters in (1.65)-(1.66). If the condition

µo = min
i
{µo,i} � max

j
{κij/2} (1.73)

is upheld for the normal form equations (1.65)-(1.66), then we say that the invariant
manifold of the solutions is the normally hyperbolic n-torus Tn. The term "normally
hyperbolic" refers to the time-constants governing the tangent-space dynamics. If (1.73)
applies, then the dynamics normal to the torus are characterized by the fast time-constant
2µo. The dynamics tangential to the torus, which represent the phase orbits, is seen from
(1.66) to be characterized by a slow time-constant on the order O(|κ|).

Imagine that we create N initial values, off the torus, in the laboratory. If (1.73)
is fulfilled the orbits corresponding to each of these initial values will do a very quick
approach onto Tn and once on the torus they will be governed by the slow dynamics of
(1.66). On the observable time scales it will then look as if the orbits where initially
on the manifold. We therefore almost only observe the slow tangent phase dynamics in
(1.66). A good mental picture would be to imagine the points in state-space as sticking
to the n-torus. We summarize the above discussion as

note 1.6 the n-torus Tn and the state equations describing
the synchronized solution are normally hyperbolic if (1.73)
is fulfilled. Weak coupling implies normal hyperbolicity and
hence refers to a scenario where the slow phase orbits domi-
nate the fast amplitude dynamics on all time scales of prac-
tical importance. A normal hyperbolic manifold implies that
the coupling is weaker than the dissipation.
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In the above note we used the notation from note 1.2 on page 22 to link µo in (1.73)
with the concept of dissipation. Normal hyperbolicity will play a significant role in the
construction of a projection formalism for the numerical characterization of coupled os-
cillators perturbed by noise, as described in chapter 3.

This section concludes with a brief discussion of what is known as the phase-only
representation of n coupled oscillators. Let us consider the theoretic limit µo → ∞
in (1.65)-(1.66). No matter how strong coupling we introduce : on all observable time
scales, we will only be able to observe the phase dynamics while the amplitude will be
unobservable. We can therefore adiabatically remove the amplitude equations in (1.65)
from the system 25. We hence arrive at the following phase-only, representation of n
coupled harmonic oscillators [29]

dφi
dτi

=
2Qi
ωi

∆ωi + Φi(α1, · · · , αn, φ1, · · · , φn;κij) i = 1, 2, · · ·n (1.74)

where Φ = [Φ1 · · ·Φn] is Γ × S1 equivariant. Note that (1.74) is "approximately"
representative of the full system dynamics if the normally hyperbolic condition in (1.73)
is fulfilled.

1.2 Averaging Theory

The classical formulation of oscillator averaging theory is discussed in the paper [30],
which was written by Peter Ashwin. Here we consider the general second order lossless
system perturbed by a weak dissipative force

ẍ+
dU

dx
= εF (x, ẋ) (1.75)

where x ∈ R is the state variable, U(x) : R → R is the circuit potential, |ε|  1 is
a small parameter representing the weakness of the dissipation as given by F (x, ẋ). For
zero dissipation (ε = 0), the solutions of (1.75), z(α, ψ), represents constant energy orbits

ω

2

(
∂z

∂ψ

)2

︸ ︷︷ ︸
kinetic energy

+ U(z)︸ ︷︷ ︸
potential energy

= α︸︷︷︸
total energy

(1.76)

where α is the energy of the solution, z(α, ψ), which is 2π periodic in ψ, and ω is the
period of the solution before time-normalization. Equation (1.76) is also known as the
Hamiltonian 26 of the system and an analytic solution, for a given set of initial conditions,
can be found by integrating this expression 27.

The introduction of a small dissipative perturbation suggests that the total energy
of the system will no longer be constant on the orbits corresponding to the solutions of
(1.75), which then instead take the form

x(t) = z(α(t), ψ(t)) (1.77)
25by which we mean that we set each variable Ai equal to its steady-state value αi.
26in the introduction to this report we considered the coupled pendulum scenario which originally led

Huygens to discover the phenomena of synchronization (see discussion on page 6). As mentioned, this
system was almost loss-free and could hence be described as an Hamiltonian system.

27this requires the use of so-called Jacobian integrals; a topic well beyond the scope of this report. We
refer the interested reader to [30].
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where the energy α and the phase ψ are now slowly varying functions of time. This
slowness follows directly from (1.75) and the smallness of ε. In [30] it shown how the
energy and phase variables obey the equations

α̇ = εω

(
∂z

∂ψ

)
F (α, ψ) (1.78)

ψ̇ = ω − εω
(
∂z

∂α

)
F (α, ψ) (1.79)

where we have set F (α, ψ) ≡ F (z(α, ψ), ż(α, ψ)). The solution of (1.78)-(1.79) can
be expanded in powers of ε

α(ϕ) = α(0) + ε
(
α(1) + β(1)(ϕ)

)
+O(ε2) (1.80)

ψ(ϕ) = ϕ+ εφ(1)(ϕ) +O(ε2) (1.81)

where ϕ is the linear phase of the unperturbed solution of (1.76) and both β(1) and
φ(1) are 2π periodic functions of their arguments. Inserting (1.80)-(1.81) into (1.78)-
(1.79), equating terms of same power of ε, and averaging the resulting equations, we get
the so-called persistence conditions [31], from which we can find the unknown parameters
and functions in (1.80)-(1.81). The procedure is easily extended to coupled oscillators by
introducing a new perturbing function, ε2G(x, ẋ), in (1.75), where x now represents the
vector x = [x1 x2 · · · xn] and we have assumed that the coupling is one order weaker
than the dissipation 28.

Although the above method is very general and mathematical rigorous, this comes at
a price; in order to reach any kind of usable results one has to go through several lengthy
and tedious calculations. In this report we shall therefore opt for a more user-friendly
formulation which only deals potentials of the form

U(x) ∝ x2 (1.82)

implying a harmonic solution. We shall refer to the methods and techniques connected
with averaging of harmonic oscillators as Kurokawa theory, since K. Kurokawa introduced
this formulation in [32]. This particular averaging approach has become a standard
for qualitative analysis of electrical coupled harmonic oscillators [6],[10],[13],[32]. The
publications [32], [33] contain the original work of Kurokawa. Another, more recent,
contribution can be found in the work of Vanassche et al. [34],[35]. In appendix B, on
page 142, we have included thorough and easy-to-read introduction to Kurokawa theory.
This text is recommended as good introduction for persons unfamiliar with the subject.

Assume that the state equations have been projected onto the center-manifold, as
described in section 1.1.1. We then consider the general second order system 29

L
∂iL
∂t

= −vC (1.83)

C(vC)
∂vC
∂t

= iL − vC
R

+Gmo(vC)vC (1.84)

28this is necessary to ensure a normally hyperbolic n-torus T
n. See discussion in section 1.1.2 and note

1.6 on page 27 for an explanation.
29the physical circuit represented by these equations is depicted in figure B.1 on page 142.
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where the different parameters and variables were discussed in connection (1.1)-(1.2),
on page 13, and we have included a nonlinear capacitance/varactor C(vC) = c0 + c1vC +
c2v

2
C . As was shown in (1.77), the solution can be written as the constant energy solution,

which for the potential in (1.82) implies a sinusoid cos(ω0t), with a slow modulation of the
energy/amplitude and phase. We therefore write the following quasi-sinusoidal solution
of (1.83)-(1.84)

vC(t) = A(t) cos(ω0t+ φ(t)) (1.85)

where A and and φ are the slow envelope and phase of the quasi-sinusoidal solution.
Equation (1.85) can only be a good approximation of the true solution if the higher
order harmonics are sufficiently suppressed This must mean that the frequency discrimi-
nator/resonator 30 must be high-Q , [4], [36]. We put these observations into a note

note 1.7 the Kurokawa method assumes a quasi-sinusoidal
/ harmonic solution of the center-manifold equations. This,
in-turn, implies a high-Q oscillator.

This statement should come as no surprise, as weak dissipation was also implied in
the more general formulation which led to the perturbed solution in (1.77).

The actually averaging procedure, applied to the system in (1.83)-(1.84), is rather
extensive and is therefore referred to appendix B, where the noise forced oscillator is
investigated. Ignoring the noise forcing current source in, and re-defining the oscillator
phase as φ→ φ+ ω0t, we can write (B.36)-(B.37), on page 146 in appendix B, as

1
Â

dA

dτ
= s

[
1−

(
A

α

)2]A
Â

(1.86)

dφ

dτ
= 2Q+ rA2 (1.87)

where the different parameters are listed in (B.38)-(B.39) on page 146. If we, fur-
thermore, assume a constant capacitance C(vC) = c0 then we get r = 0 and s = µo.
Comparing the above system with normal-form equations in (1.52)-(1.53), on page 21,
we see that they are similar in form. However, from (B.43) we get the following amplitude
for the averaging method αavr =

√
4(g0 −G)/(3g2), while the normal-form method gives

the result αnf =
√

(g0 −G)/(3g2). We see that αavr/αnf = 2.
In section 4.3, on page 90, we derive the averaged equations n oscillators coupled in

a unilateral ring with an implicit phase shift β. The synchronized state is represented
mathematically by the group Z

β
n × S1. Assuming linear coupling 31, the equations take

the form

dAi
dτi

= µo,i

[
1−

(
Ai
αi

)2]
Ai +

gc0
GLi

cos
(
φi−1 − φi + βδ1i

)
Ai−1 (1.88)

dφi
dτi

=
2Qi
ω0i

∆ωi +
gc0
GLi

sin
(
φi−1 − φi + βδ1i

)Ai−1

Ai
(1.89)

i ∈ {1, 2, · · · , n|i = 1⇒ i− 1 = n}
30see figure B.1 on page 142.
31this means that we set Gmc,i(Ai−1) = gc0,i − 3

4
gc2,iA

2
i in (4.47), on page 93, equal to gc0.
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By comparing (1.88) and (1.89) with the normal form results in (1.71) and (1.72),
respectively, we see that (1.88)-(1.89) has the same form as the normal-form equations in
(1.65)-(1.66) on page 25 32.

Based on the above derivations in (1.86)-(1.87) and (1.88)-(1.89), we can state the
following observation

note 1.8 the averaging method can be seen as short-cut to
deriving the normal-form state equations. The two proce-
dures will lead to equations which are similar in form, while
the specific parameter expressions may differ.

1.3 Symmetry Considerations

The theory of symmetrically coupled Adronov-Hopf bifurcations was developed by Gol-
ubitsky et al. in the book [25] 33. Later, in the paper [29], Ashwin simplified the for-
mulation, by investigating the problem using the phase-only representation of n coupled
oscillators, which was derived in (1.74) on page 28.

Apart from being an introduction to group theory, as it applies to the analysis of
coupled oscillators, this section is concerned with answering the question

Given n identical oscillators and a symmetric coupling network, which possible frequency-
locked solutions, also known as modes, exist.

and although we shall not derive the actual analytical expressions we do intend to
review some of the general results from [29] which will allow us to calculate the modes
for a given coupling structure. These results are then used in chapter 4, where we set
out to investigate the possible modes of an unilateral ring of n coupled oscillators with
an explicit phase shift.

Before we start, let us address a concern often voiced when it comes to symmetry
calculations. Briefly, the argument goes as follows

Since the concept of perfect symmetry, i.e. identical oscillators, coupling etc., are
mathematical thought-experiments, the calculations made using such definitions have no
physical relevance.

While it is certainly true that perfect symmetry does not exist in nature, it is however
quite reasonable to argue in favor of the benefits of symmetry calculations applied to
the analysis of nearly symmetric systems. We suppose that the Jacobian of the state
equations, with regard to the system parameters, is non-singular. The implicit function
theorem34 then guarantees that the solution curves, as a function of these parameters,

32the explicit phase shift β is not important here and can be ignored. Comparing with the normal-form
in (1.65)-(1.66) it is seen that we have defined the coupling strength as κi = gc0/GLi and, furthermore,
that we have chosen the non-resonant monomial zj as zj = zi−1 which follows from the symmetry Γ = Zn.

33as far as this author can tell; see also [37].
34the implicit function theorem, in 1 dimension, states that if the derivative of a function f(x, ε) :

R × R → R, with respect to the parameter ε, is different from zero then there exist a branch of solution
curves x(ε) to the equation f(x, ε) = 0 (we assume that f(x, 0) = 0 has a solution), in a small region
around ε = 0. This also holds for higher dimensional systems where the derivative should now be
substituted for the vector field Jacobian [25], [37].
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will be continuous. Thus, as the parameters disperse around their symmetric mean,
the solution curves will disperse in a similar fashion; continuously away from perfect
symmetry. However, since we assume that the variance of the parameter dispersion is
small, it follows that the solution will stay close to the original symmetric solutions. In
the words of Golubitsky et al. [37]

note 1.9 the nearly symmetric solutions still have much
more in common with the perfectly symmetric orbits, than
they do a solution from a system with no symmetry.

The phase-only equations of n coupled oscillators were derived in (1.74) in section
1.1.2. For symmetric oscillators we get

dφi
dτi

= Φi(φ1, · · ·φn;κij) i = 1, 2, · · ·n (1.90)

As discussed in section 1.1.2, the phase vector function Φ = [Φ1 · · ·Φn] is Γ × S1

equivariant. By normalizing the oscillator amplitudes αi in (1.74), we can write the
normally hyperbolic n-torus, on which the orbits descibed by (1.90) live, as

T
n = S

1 × S
1 · · · × S

1︸ ︷︷ ︸
n times

= {z ∈ C
n | |zi| = 1} (1.91)

On Tn, as it is defined above, the individual oscillators are represented by a unit
amplitude phasor zi = ejφi in the complex plane C.

The symmetry of a solution is given by its isotropy subgroup, which is a selection of
operations/actions, contained in Γ × S1, which preserve the synchronized phase config-
uration in question. As shown in [29], these subgroups will inherit the structure of the
original coupled oscillator symmetry Γ × S1. This group has a spatial part, Γ, which
concerns the permutation of the n identical oscillators, and a temporal part, S1, which
concerns the combined phase shift of the synchronized solution35. Any subgroup Σ can
hence also be divided into a spatial part πs

(
Σ
)

and a temporal part πt
(
Σ
)
. We then

write any action, contained in this group, as

(σ,w) ∈ Σ ; σ ∈ πs
(
Σ
)

; w ∈ πt
(
Σ
)

(1.92)

Since the states, by definition, are fixed by an action contained in the isotropy sub-
group, we get

zi = (σ,w)zi = wzσ(i) (1.93)

As an example of an action σ ∈ πs
(
Σ
)
, consider 4 coupled oscillators and the operation

σ = (12)(34) which states "switch oscillator 1 and 2 and switch oscillator 3 and 4"

σ(z1, z2, z3, z4) = (zσ(1), zσ(2), zσ(3), zσ(4)) = (z2, z1, z4, z3) (1.94)

We can also define σ−1 which refer to the inverse mapping
35and autonomous dynamical system is independent of a constant phase-shift. For the coupled oscillator

configuration studied here, this means that all n oscillators should be shifted an equal amount. This
combined phase-shift is also known as the diagonal phase (see discussion in section 4.5.1).
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(z1, z2, z3, z4) = σ−1(z2, z1, z4, z3) =
(
zσ−1(2), zσ−1(1), zσ−1(4), zσ−1(3)

)
(1.95)

and we therefore see that σ ∈ πs
(
Σ
)

must be a isomorphism 36. Another example is
given by the n-cycle

σ = (1, 2, · · · , n) (1.96)

which works by permuting the n oscillators in a cyclic fashion. For this group we can
also define σk as

σ0 = I

σ1 = (1, 2, 3 · · · , n)

σ2 = (n, 1, 2, · · · , n− 1)
...

σn−1 = (2, 3, 4 · · · , 1) (1.97)

This action has special importance to this report since it serves as generator for the
cyclic group Zn. In chapter 4 we shall consider the analysis of a system of harmonic
oscillators with coupling symmetry Γ = Zn.

Any action σ ∈ πs
(
Σ
)

will divide the n oscillators into l disjoint partitions of lengths
kj , j = 1, 2 · · · , l. As an example, consider 9 coupled oscillators and the operation

σ = (1→ 3, 2→ 1, 3→ 4, 4→ 2)(5, 6, 7)(89) (1.98)

where (5, 6, 7) refers to the 3-cycle as defined in (1.96)-(1.97) and (89) refers to the
switching of oscillators 8 and 9 (see discussion in connection with (1.94)). As illustrated
in figure 1.2, this action divides the 9 oscillators into 3 disjoint sets with k1 = 4, k2 = 3
and k3 = 2. The figure illustrates, that if zi is member of partition j, then we have

σkjzi = zi (1.99)

Using the result in (1.99), we can write (1.93) as

zi = wkjz
σkj (i)

= wkjzi (1.100)

which means that we must have

wkj = 1 ; w ∈ πt
(
Σ
)

(1.101)

However, since
∑

j kj = n (see figure 1.2) we can derive the important result

wn = w
∑
kj =

∏
wkj = 1 (1.102)

This is interpreted to mean that the temporal projection of Σ is represented by sub-
group of Zn [29]. We can therefore write πt

(
Σ
) ≡ Zm for some m which divides n.

We summarize the above results as follows

36a map f is an isomorphism if it is bijective i.e. one-to-one (injective) and onto (surjective) and if
both f and f−1 are structure-preserving (homeomorphisms).
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σ2

σ

σ3

σ4

k1= 4 k2= 3 k3= 2

Figure 1.2: The 9 coupled oscillators are divided into 3 disjoint sets by the action σ
defined in (1.98). The sets have lengths k1 = 4, k2 = 3 and k3 = 2. The individual
oscillators are represented by colored dots : #1 = •, #2 = •, #3 = • etc. The dotted
boxes encapsulates the original configuration of the 3 sets and also signal the return to
this state after a certain number of operations. Set number 1, consisting of oscillators
#1−#4, returns to the original state after 4 operations, set number 2 (#5−#7) after 3
operations and set number 3 (#8−#9) after 2 and 4 operations. From the above example
it is seen that if oscillator #i, as represented by the phasor zi (see (1.91)), belongs set j,
then we have that σkjzi = zi [29].
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note 1.10 The modes of the Γ × S1 symmetric system of
n coupled oscillators constitute spatio-temporal symmetries
which represent the fixed spaces of the isotropy subgroups Σ.
The actions contained in these subgroups are written (σ,w)
where σ ∈ πs

(
Σ
)

and w ∈ πt
(
Σ
)
. The spatial projection

πs
(
Σ
)

must be a subgroup of the coupling symmetry Γ and
the temporal projection πt

(
Σ
)

must be a subgroup of Zn

From the above text we see that we can write w ∈ πt
(
Σ
)

as

w = ωm = ej2π
m
n (1.103)

where m divides n and we have used the notation

ω = ej
2π
n (1.104)



Chapter 2

Single Oscillators Perturbed by
White Noise - Inhomogeneous Phase
Diffusion
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Figure 2.1: Illustrating the effects of oscillator noise in the frequency and time domains.
The oscillator spectrum, as measured with a spectrum analyzer, is shown in the two
top screens of the figure. Without noise (left screen), the spectrum consist of a series of
impulses at the harmonics of the solution. With noise (right screen), the spectrum spreads
out, resulting in a Lorentzian characteristic [38], [14]. The time domain waveform, as
measured with an oscilloscope, is shown in the two lower screens. Without noise (left
screen), the waveform has DC (zero) crossing with perfect timing. With noise (right
screen), the uncertainty in timing of the zero crossings increases linearly with time [14].

The subject of this chapter concerns the formulation of a linear response model for the
stochastic phase dynamics of a free-running oscillator perturbed by white noise sources.
The main interest in this regard centers around the effects of phase diffusion, which
is measured in the time domain as jitter and in the frequency domain as phase noise.

36
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Phase noise/jitter is a consequence of the inescapable shot and/or thermal noise sources
1, present in all dissipative circuit structures, modulating the oscillator phase. This phase
modulation will result in a broadening of the frequency-domain spectrum, which without
noise, would be a series of impulses at the harmonics of the carrier. In the time-domain,
jitter manifests itself as an increased spread in the zero-crossings of the wave-forms over
time. Figure 2.1 attempts to illustrate the above discussion, where the screens on the
left-hand side considers a frequency/time-domain measurement without noise, which is
then added on the right-hand side.

The noise driven oscillator phase will be identified as an inhomogeneous diffusion
process, where by inhomogeneous we take to mean that the diffusion constant will depend
both on time and the oscillator phase. Understanding the asymptotic properties of this
process turns out to be a non-trivial task which will occupy the first part of this chapter.
The goal of these introductory investigations will be to extract the effective diffusion
constant Deff which will allow us to identify the asymptotic statistics with a Wiener
process, which is a trivial homogeneous diffusion process. In sections 2.2.1, 2.2.2 and
2.2.3 we give short introductions to three well-established methodologies for the analysis
of single oscillators perturbed by noise. It is subsequently shown how Deff is derived
within each of these different frameworks.

2.1 A Linear Response Theory for Noise Forced Limit Cycle
Solutions

A free-running oscillator, with n internal degrees of freedom, is described mathematically
through the autonomous ordinary differential equation

ẋ = f(x) (2.1)

where x(t) : R→ Rn is a vector in n dimensional state space and f(·) : Rn → Rn is the
vector field of the autonomous system. Equation (2.1) has a periodic solution xss(t+2π) =
xss(t), where a period of 2π is the result a time normalization t→ tω0, with T0 = 2π/ω0

being the true period of the solution. Furthermore, since the oscillation is assumed
asymptotically stable, any orbit corresponding to an arbitrary set of initial conditions
will approach this solution asymptotically with time. Mathematically speaking, we say
that there exist a ω-limit set γ ≡ {xss(φ)|φ ∈ [0, 2π]} which in this case is also known
as a limit cycle. From the above definition of γ we see that points in the limit cycle
are indexed by a single periodic state variable φ which is referred to as the phase of the
oscillator.

For all purposes, noise, as it exists in room temperature electrical circuits, can be
modelled as a small signal when compared to the steady-state signal of any practically
relevant oscillator. The complete response of (2.1), forced by noise, can therefore be
written as the sum of a noiseless steady state and a small signal noise response

x(t) = xss(t) + y(t) (2.2)

where |y|/|xss|  1 for all time t. The branch of ODE perturbation analysis which
considers solutions of the form (2.2) is known collectively as linear response theory. This
name refers back to the condition of small perturbative noise signals which allows for the
use of linearization techniques to approximate the solution.

1we will not consider colored noise as e.g. 1/f -noise, although this would be possible within the
framework presented here. See the paper [16] for a discussion of this issue.
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We have split the text in this section up into two subsections. In 2.1.1 we consider the
derivation of relevant stochastic differential equation (SDE) which is then used in 2.1.2
to produce the relevant Fokker-Planck equation; a parabolic partial differential equation
which solves for the time dependent probability density of the stochastic oscillator phase.

2.1.1 Deriving the Oscillator Phase Stochastic Differential Equation

Using the notation in (2.2), we can write (2.1) as

ẋss + ẏ = f(xss + y) ≈ f(xss) +A(t)y (2.3)

where the ≈ sign in the above equation refers to fact that we cut the Taylor expansion
of f at the first term 2. In (2.3), A(t) : R → Rn×n is the 2π periodic Jacobian of the
vector field, taken at every point of the limit cycle γ, indexed by time t

A(t) =
df

dx

∣∣∣∣
x=xss(t)

(2.4)

which is a 2π periodic n×n matrix. Inserting ẋss = f(xss), which follows from (2.1),
into (2.3), we get

ẏ = A(t)y (2.5)

Inspecting (2.5), we see that the noise response, y, is solved for by the first variational
of (2.1); this constitutes the essence of linear response theory.

We now consider the Jacobian at a fixed point on the limit cycle A(t0). As will be
established, there exist an eigenvector of the Jacobian A(t0) in the direction tangent
to the limit cycle, which is the direction of the oscillator phase increase. Furthermore,
the eigenvalue corresponding to this eigenvector is zero, resulting in a neutrally stable
phase variable. From (2.1), it is seen that the vector field in question is autonomous,
which means that the solution will not depend on the absolute time but only on the
elapsed/relative time, given the initial conditions. By perturbing tangentially to the limit
cycle γ we stay on the same orbit, albeit with new initial conditions. The system in (2.5)
does not counteract this change of initial conditions since this event simply resets the
origin of absolute time which, as discussed above, is inconsequential when considering
linear response of autonomous vector fields. From the above description, it should be
clear that a tangential perturbation/shift implies a zero response from the variational
equation in (2.5). Consider a state-space vector y1, which represents the part of y(t0)
in (2.5) which lies in a direction tangential to γ. Using (2.5), we find for a tangential
perturbation at time t = t0

ẋss(t0 + s) = f(xss(t0 + s)) +A(t0)y1 (2.6)

illustrating that the response to the perturbation still lies on the orbit xss but now
with an added phase shift, s, representing the new initial conditions. However, since the
system in (2.1) is autonomous we have that

ẋss(t0 + s) = f(xss(t0 + s)) (2.7)

which, when used in (2.6), must mean that

A(t0)y1 = 0 (2.8)
2this means that the solution will be correct up to order O(|y|2).



2.1. A LINEAR RESPONSE THEORY FOR NOISE FORCED LIMIT
CYCLE SOLUTIONS 39

We see that the tangent perturbation, y1, lies in the null space, or kernel, of A(t0)
which is another way of saying that y1 is an eigenvector of A(t0) with eigenvalue 0.

State space volume/area outside the limit cycle will contract while volume/area inside
γ will expand. This follows from the assumption of a stable limit cycle γ which implies
that any perturbation of the steady state in a direction normal to γ will relax back to the
limit cycle. Furthermore, since the response to small noise-like signals is modelled by the
linear equation in (2.5), this relaxation will be exponential. From the above discussion
we then conclude that A(t0) will have n − 1 eigenvectors in directions normal to γ and
the corresponding eigenvalues must all have real parts less than zero. Furthermore, A(t0)
has one, and only one, eigenvector with eigenvalue zero corresponding to the eigenvector
tangential to γ. Since the time index t0 in the above derivations was arbitrarily chosen,
we can generalize the results to hold for all times t. We summarize as follows

note 2.1 the phase of a free-running oscillator is without
reference since the solution corresponding to an autonomous
vector field does not depend on the absolute time or, equiva-
lently, since Barkhausen’s criterion is upheld for any phase
offset. The degree of freedom introduced by an arbitrary oscil-
lator phase leaves the Jacobian matrix, A(t), singular with
rank n − 1. The null space of this matrix is spanned by a
vector tangential to the oscillator limit cycle γ at the phase
φ; corresponding to the time t. The remaining eigenvalues
of A(t), corresponding to directions normal to γ, all have
negative real parts.

φ}

r

r
φ

x

y

a) b)

γ

γ

Figure 2.2: a) : an asymptotically stable oscillator represented by the limit cycle γ.
State space volume inside the limit cycle expands while that outside contracts. This
is illustrated by the two orbits with initial conditions, as represented by the symbol ⊗,
inside and outside γ, respectively. The oscillator state is symbolized by a solid dot •. b)
: a view the parallel to the complex plane C with the origin being place at limit cycle γ.
Here, a curve representing a Lyapunov function [21], is superimposed onto the plot. This
function represents the potential responsible for the asymptotic stability of the oscillator.
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In figure 2.2 we illustrate some of the points made above for a 2 dimensional oscilla-
tor 3. In part a) of the figure, the limit cycle γ is plotted in the complex plane C, where
the oscillator steady-state, as represented by a solid dot •, is referenced by an amplitude
and a phase z(t) = r(t) exp(jφ(t)). In part b) we make a cut in the complex plane, letting
the cut run through the limit cycle γ. From this cut we can then plot a view parallel to
the plane C, with the origin of the coordinate system being placed at γ. Onto this, we
superimpose a curve representing the state-space potential which is responsible for the
contraction/expansion of volume in the two regions of state space separated by γ. This
function is sometimes called the Lyaponov function of the system [21]. The oscillator
state is still represented by a solid dot •.

The figure, together with the previous discussion, as summarized in note 2.1, paves
the way for a particular simple mechanical analogy of the qualitative dynamics of an
arbitrary free-running oscillator. Imagine a plane surface, wherein a furrow/channel has
be carved. In figure 2.2 a) we see this furrow from above, and in b) we have changed the
perspective so that we now view along the channel. The oscillator state is represented
by a ball; initially at rest somewhere in this carved furrow/channel. If we give this ball a
short push in a direction along the channel, it will move, and then come to rest at another
point further down the channel. The ball has moved to a new equilibrium, illustrating
the neutrally stable response of perturbations tangent to the limit cycle. However, if we
give a short push in the direction normal to the channel then the ball will, pulled by the
potential force (gravity), relax back to the point of origin; illustrating the asymptotic
stability of perturbation normal to the limit cycle. The model sketched above, albeit too
simple to pass for a realistic representation of a specific oscillator, does supply us with
a good qualitative understanding of basic oscillator dynamics. More importantly, the
mathematical rigorous results obtained using equivalence theory, as reviewed in section
1.1, ensures us, that if we understand this simple mechanical model we have understood
the qualitative important dynamics of all isochronous oscillators 4.

As explained in [14], noise-forcing can be introduced into the formulation in (2.1) by
adding to the right-hand side, a vector

B(xss(t))χ(t) (2.9)

where χ(·) : R → Rp is a p × 1 column vector consisting of p uncorrelated, zero
mean, unit variance, Gaussian white noise sources and B(·) : Rn → Rn×p is a n × p
matrix accounting for the modulation of the noise sources by the steady-state solution.
Furthermore, this matrix also contains information pertaining to the powers/variances of
the individual noise sources in χ(t). From the above description, it is seen that (2.9) is a
n× 1 stochastic column vector.

The noise perturbations will continuously reset the initial condition of the orbit, which
means that we now operate with a time-dependent oscillator phase φ(t). However, since
we consider a time-normalized formulation we now introduce the oscillator time variable
α(t), as

φ(t) = ω0α(t) (2.10)

where ω0 is steady-state frequency of the oscillator in radians. Although α have
units of time, we choose to refer to it as the oscillator phase. The time-dependent phase

3referring to the center-manifold theorem, which was discussed in 1.1, we know that the 2 dimensional
oscillator constitutes a prototype system. Any qualitative behavior, observed in higher order "real"
oscillators, can thus also be modelled by the system in figure 2.2

4an isochronous oscillator describes a system where the frequency is independent of the amplitude.
See also discussion in section 1.1.1, on page 21.
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behavior witnessed from (2.10) means that we can no-longer talk about the oscillator
phase as an absolute entity; but this means that we can no-longer refer to the time as an
absolute entity. Instead we have to introduce the concept of instantaneous time/phase s

s = t+ α(t) (2.11)

corresponding to the instantaneous frequency ω

ω = ω0

(
1 +

dα

dt

)
(2.12)

We can then write the left-hand side of (2.3) as

ẋss(t+ α(t)) + ẏ(t) = ẋss(s)
(

1 +
dα

dt

)
+ ẏ(t) (2.13)

Equating (2.13) to the right-hand side of (2.3), with the noise vector in (2.9) added,
we get

ẋss(s)
(

1 +
dα

dt

)
+ ẏ(t) = f

(
xss(s)

)
+A(s)y(t) +B(xss(s))χ(t)⇔

ẋss(s)
dα

dt
+ ż(s) = A(s)z(s) +B(xss(s))χ(t)

(2.14)

where we in the last line have used ẋss(s) = f
(
xss(s)

)
, which follows from (2.1) and

we have introduced the new state vector z, as

z(s) = y(t) (2.15)

Furthermore, since dα/dt is on the order O(|y|), we find that

dz

dt
=
(

1 +
dα

dt

)
dz

ds
≈ dz

ds
(2.16)

since the second order term dz/ds× dα/dt can be ignored 5.
Let us assume that we, by some means, have created an orthogonal projection opera-

tor 6 P (·), which projects onto the direction tangential to γ at the phase point indexed
by its argument. The noise forcing function B(xss(s))χ(t) is a state vector that can be
split up into normal and tangential components, with respect to the limit cycle γ. Using
the operator P we can hence write (2.14) as 7

ẋss(s)
dα

dt
+ż(s) = (1− P (s))

{
A(s)z(s) +B(xss(s))χ(t)

}︸ ︷︷ ︸
normal component

+P (s)B(xss(s))χ(t))︸ ︷︷ ︸
tangential component

(2.17)

5in the original linear response formulation derived in (2.3) we also ignored terms on the order O(|y|2)
implying that the approximation in (2.16) is legal within this framework.

6a projection operator P defines two subspaces U and V such, that if x is an arbitrary vector in
the vector space X, then we have Px ∈ U and (1 − P )x ∈ V . The projection is orthogonal if we can
write the vector space as the direct sum of the two subspaces X = U ⊕ V . This must then mean that
P (1 − P ) = 0 ⇒ P 2 = P . The noise response y in (2.5) lives on the so-called tangent space of the
manifold γ referring to the fact that y models the linear response of the oscillator. On this tangent space
P takes the form of an n × n matrix.

7referring to footnote 6, the operator P will divide a vector x into component normal to γ, as given
by (1 − P )x, and a component tangential to γ, given by Px. These two components will be orthogonal.
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In the above we have used the calculation 8

P (s)A(s)z(s) = A(s)P (s)z(s) = 0 (2.18)

which follows because P (s)z(s) is a vector tangential to γ and this vector lies in the
null space of A(s), as explained in note 2.1 on page 39. This mean that we in (2.17) can
write

A(s)z(s) = A(s)z(s)− 0 = A(s)z(s)− P (s)A(s)z(s) = [1− P (s)]A(s)z(s) (2.19)

Since the right-hand side of (2.17) splits up into these two orthogonal projections,
the same must apply for the left-hand side. However, from (2.1) we have that ẋss(s) =
f(xss(s)) and since the state-space vector field f , by definition, lies tangential to the
orbits and, furthermore, since the limit cycle γ is just another orbit, we have that the
vector ẋss(s) must lie tangential to γ 9. This implies that ż(s) is a vector normal to γ
(i.e. P (s)ż(s) = 0) and we can hence write (2.17) as

P (s)ẋss(s)
dα

dt
+ (1− P (s))ż(s) =

(1− P (s))
{
A(s)z(s) +B(xss(s))χ(t)

}
+ P (s)B(xss(s))χ(t)

(2.20)

The p × 1 noise vector χ(t) is written explicitly as χ(t) = [χ1(t) χ2(t) · · ·χp(t)]T ,
where

〈
χi(t)χj(t)

〉
= δij . From the above description, and footnote 7, P (s)B(xss(s))χ(t)

must be a vector proportional to ẋss(s) and we can therefore write (see footnote 9)

P (s)B(xss(s))χ(t) = P (s)ẋss(s)
∑
i

ρi(s)χi(t) (2.21)

where ρi : R → R are a set 2π periodic real functions. Since a sum of uncorrelated
Gaussian noise source is statistically identical to a single Gaussian noise source, we can
write the sum of modulated noise sources in (2.21) in terms of an equivalent single macro
source [14] 10

∑
i

ρi(s)χi(t) �
√∑

i

(ρi(s))2ξ(t) = ρ(s)ξ(t) (2.22)

where ξ(·) : R→ R is a zero mean, unit variance, scalar macro Gaussian white noise
source and ρ(·) : R→ R is a 2π periodic modulation function. The identification in (2.22)
follows from the fact that the two representations have the same power and hence the
same statistics 11

〈(∑
i

ρi(s)χi(t)
)2〉

=
∑
i

ρi(s)ρj(s)δij =
∑
i

ρi(s)2 (2.23)

where we used that the individual noise components, χi(t), are uncorrelated. Oper-
ating with P on both sides of (2.20), with the definitions in (2.21) and (2.22) inserted,
we get 12

8P will commute A i.e. PA = AP . This follows since P projects onto the null space of A.
9i.e. P (s)ẋss(s) = ẋss(s).

10by the symbol � we take to mean that while the expressions on either side are not equal they are
"equal by definition".

11a Gaussian noise source is fully described by it’s mean and variance/power.
12here it is used that if P is a orthogonal projection operator which implies P (1− P )x = Px− P 2x =

Px − Px = 0 and P 2x = Px for all vectors x. See footnote 6 on page 41. Furthermore, from the above
discussion we have P (s)ẋss(s) = ẋss(s).
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ẋss(s)
dα

dt
= ẋss(s)ρ(s)ξ(t) (2.24)

In coordinate form, this vector equation leads to the following stochastic differential
equation (SDE) for the oscillator phase α(t)

dα

dt
= ρ(t+ α)ξ(t) (2.25)

where we have used the definition of s in (2.11). The above equation illustrates that
the phase of a free-running oscillator α is a neutrally stable variable since the righthand
side only consist of a stochastic forcing function.

2.1.2 Deriving the Oscillator Phase Asymptotic Statistics - the Fokker-
Planck Equation

As discussed in appendix A.3, according to the Stratonovich formulation, starting from
the SDE in (2.25), we can write the following Fokker-Planck equation [39]

∂p(x, t|x′, t′)
∂t

=
[
∂

∂x
ρ(t+ x)

∂ρ(t+ x)
∂x

+
1
2
∂2

∂x2
ρ2(t+ x)

]
p(x, t|x′, t′) (2.26)

a partial differential equation which solves for the time-dependent probability den-
sity of stochastic oscillator phase variable α(t), condition on sharp (deterministic) initial
values α(t′) = x′ at time t = t′

p(x, t|x′, t′) =
〈
δ(α(t)− x)〉∣∣∣∣

α(t′)=x′
(2.27)

where
〈·〉 denotes the ensemble average. Throughout this section we shall assume the

problem is characterized in terms of natural boundary conditions

lim
x→±∞ p(x, t|x′, t′) = 0 for all t (2.28)

From (2.27) we get the following initial density

p(x, t′|x′, t′) = δ(x− x′) (2.29)

implying that the phase of the oscillator is known at the start of the experiment.
Before we start to investigate possible solutions to (2.26), we shall digress and look at

a simplified version of this equation. Often, one find examples in the literature [40],[41]
where it is claimed that the phase dynamics of a noise perturbed oscillator is described
by the diffusion equation

∂p(x, t|x′, t′)
∂t

= D
∂2p(x, t|x′, t′)

∂x2
(2.30)

with the diffusion constant D being a positive real number. This equation is trivial
and the solution is easily found as [39]

p(x, t|x′, t′) =
1√

4πD(t− t′) exp
(
−(x− x′)2
D(t− t′)

)
(2.31)
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Equation (2.31) describes a so-called Wiener Process which is characterized by a con-
stant mean and a variance that increases linearly with time. In figure 2.3, we plot (2.31)
for four different times. The plot illustrates how probability mass diffuses out to either
side, with increasing time, causing the distribution to approach a uniform characteristic,
asymptotically with time. We can interpret the curves in figure 2.3 by noting that the
diffusion equation in (2.30) models the integration of white noise with power D 13. This
can be viewed as the limit process of a sum of zero mean, uncorrelated, Gaussian vari-
ables with power D. Since the terms are uncorrelated, the power of the sum will equal
the sum of the powers of the individual terms resulting in an variance which increases
linearly with time.

Figure 2.3: The Wiener Process for four different times. The plots illustrate how the
variance of the Wiener process increases linearly with time [39], [42].

Unlike (2.30), equation (2.26) is non-trivial and an analytical solution is not easily
achieved. From equation (2.26), and the discussion in appendix A.3, we see that we can
define a drift coefficient

Dα(t+ x) ≡ lim
τ→0

1
τ

〈
(α(t+ τ)− α(t)

)〉∣∣∣∣
α(t)=x

= ρ(t+ x)
∂ρ(t+ x)

∂x
(2.32)

and a diffusion coefficient

Dαα(t+ x) ≡ lim
τ→0

1
τ

〈
(α(t+ τ)− α(t)

)2〉∣∣∣∣
α(t)=x

= ρ2(t+ x) (2.33)

which are both periodic with period 2π. Furthermore, any periodic function multiplied
with its own derivative will have zero DC and we therefore have

1
2π

2π∫
0

Dα(η)dη = 0 (2.34)

The diffusion coefficient in (2.33) will, however, have a nonzero mean 14, and we write
13see appendix A.2 on page 137 for a discussion of stochastic integration.
14this follows from the fact that ρ2 is a positive function and a periodic function. Thus this function

is either zero or there exist a DC level sufficient to keep it positive at all times.
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ρ2(t+ x) = ρ0 + ρ1(t+ x) (2.35)

where ρ1 is a 2π periodic function, implying that

1
2π

2π∫
0

Dαα(η)dη = ρ0 (2.36)

From (2.32) and (2.33) it is seen that the drift coefficient controls the dynamics of
the mean of the distribution while the diffusion coefficient controls the evolution of the
variance. We can then make the following heuristic observation

note 2.2 the distribution, solving the inhomogeneous diffu-
sion equation in (2.26), with boundary conditions in (2.28)
and initial distribution (2.29), will oscillate around the initial
mean value α(t′) = x′, while a finite time average diffusion
will cause the distribution to approach a uniform character-
istic, asymptotically with time.

From the above note we can write the asymptotic solution to the inhomogeneous
solution as

lim
t→∞ p(x, t|x′, t′) = 0 (2.37)

implying that after all the transients have died out the distribution is completely
uniform on the real line.

In [14], Demir et al. derive the asymptotic statistics using some rather complicated
calculations, involving a Fourier expansion of the characteristic function 15. Equation
(23) in [14, p. 663] gives the following result for the asymptotic value of the oscillator
phase characteristic function

lim
t→∞C(ω, t) = exp

(
jωm− 1

2
ρ0t

)
(2.38)

where m is a real constant 16 and we have used the notation from (2.36). Since a
characteristic function of the form

C(ω) = exp
(
jωµ− 1

2
σ

)
(2.39)

implies a Gaussian distribution with mean µ and variance σ, the authors of [14] use
the result in (2.38) to state the following result

Theorem 2.1 (Theorem 7.7 in [14], p. 663) the solution of the inhomogeneous dif-
fusion equation in (2.26) becomes Gaussian, asymptotically with time; with a constant
mean and a variance that increases linearly with time according to σ(t) = ρ0t.

15the characteristic function C(ω, t) of a stochastic process ξ(t) with probability density p(x, t) is
defined as C(ω, t) =

〈
exp(jωξ(t))

〉
=
∫∞
−∞ exp(jωx)p(x, t)dx. [39]

16although it is not discussed in [14], it seems reasonable to assume that m = x′, where x′ is the initial
value of the phase α, as seen from (2.29).
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where ρ0 is defined in (2.36). Comparing the above statement with our discussion
on the homogeneous diffusion equation, theorem 2.1 expresses that the solution to (2.26)
approaches the Wiener process asymptotically with time.

Theorem 2.1 and the expression in (2.38) can be very confusing. Basically, (2.38)
is saying the same as (2.37); that is, that the distribution becomes completely uniform,
asymptotically with time. The expression in (2.38) only makes sense with the introduction
of an effective diffusion constant, something which was not properly explained by the
authors of [14]. The asymptotic statistics of the process α(t) are hence described in
terms of an effective diffusion constant Deff and using the result from theorem 2.1 we
can then write

Deff = lim
t→∞

〈
(α(t)− α(0))2

〉
2t

= ρ0 (2.40)

Re-normalizing time t → t/2π × T0, where T0 is the oscillator period, and using the
notation from (2.36), we get the final result

Deff = D̄αα =
1
T0

T0∫
0

Dαα(η)dη (2.41)

The oscillator phase φ(t) was related to the time variable α(t) in (2.10), on page 40.
We can also define the effective diffusion constant in terms of this variable

Deff = D̄φφ = ω2
0D̄αα (2.42)

We note that the results in (2.41) and (2.42) characterize the asymptotic statistics
of the phase variables α(t) and φ(t) using the trivial Wiener process with a constant
unspecified mean and with a diffusion constant which is calculated from the DC value of
the original time periodic diffusion constant.

2.1.3 Calculating the Oscillator Spectrum

Having identified the asymptotic statistics of the oscillator phase α(t) with the trivial
Wiener process, with power Deff = D̄αα and mean m, we can write 17

E
[
α(t+ τ)α(t)

]
= m2 + D̄αα min(t, t+ τ) (2.43)

which follows from the fact that disjoint intervals of the Wiener process are uncorre-
lated as discussed in appendix A.2. We then define the new phase variable βik through

βik(t, τ) = iα(t)− kα(t+ τ) (2.44)

where i and k represent integers. Using the result from theorem 2.1 and equation
(2.43) we can then find the asymptotic statistics of the Gaussian variable βik. First we
find the mean 18

17see appendix A.2 for a more in-depth discussion of the Wiener process and for an explanation of the
calculations included in this section.

18in the following E[X] refers to the ensemble mean of X and V [X] = E[X2] − (E[X])2 refers to the
ensemble variance.
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lim
t→∞E

[
βik(t, τ)

]
= (i− k)m (2.45)

and then the variance

lim
t→∞V

[
βik(t, τ)2

]
= E

[
βik(t, τ)2

]− (E[βik(t, τ)])2 =

i2E
[
α(t)2

]
+ k2E

[
α(t+ τ)2

]− 2ikE
[
α(t+ τ)α(t)

]− (i− k)2m2 =

i2(m2 + D̄αα(t)) + k2(m2 + D̄αα(t+ τ))− 2ik(m2 + D̄αα min(t, t+ τ))− (i− k)2m2 =

i2D̄ααt+ k2D̄αα(t+ τ)− 2ikD̄αα min(t, t+ τ) = (i− k)2D̄ααt+ k2D̄αατ − 2ikD̄αα min(0, τ)
(2.46)

where we have used that min(t, t+ τ) = t+ min(0, τ). The spectrum is calculated as
the Fourier transform of the autocorrelation function R(t, τ), which is defined as

R(t, τ) = E[xss(t+ α(t))x∗ss(t+ τ + α(t+ τ))] =
∞∑

i=−∞

∞∑
k=−∞

XiX
∗
k exp(jω0(i− k)t) exp(−jω0kτ)E[exp(jω0βik(t, τ))]

(2.47)

where we have written the Fourier decomposition of the steady-state oscillator solution
xss(t), as

xss(t) =
∞∑

n=−∞
Xn exp(jnω0t) (2.48)

The term E[exp(jω0βik(t, τ))] in (2.47) is the characteristic function for the stochastic
variable βik (see footnote 15, on page 45). According to (2.46) the variance of this variable
will be infinite, asymptotically with time, for i �= k resulting in a zero characteristic
function (see (2.39)). Therefore only the terms i = k will survive asymptotically in (2.47)
and we can write

lim
t→∞R(t, τ) =

∞∑
i=−∞

XiX
∗
i exp(−jω0kτ) exp

(
−1

2
i2ω2

0D̄αα|τ |
)

(2.49)

where we have used the expression for the characteristic function of a Gaussian vari-
able, given in (2.39), and we have written (2.46) for i = k as

i2D̄αατ − 2i2D̄αα min(0, τ) = i2D̄αα|τ | (2.50)

By Fourier transforming (2.49) we then finally find the oscillator power-density spec-
trum as

S(ω) =
∞∑

i=−∞
XiX

∗
i

ω2
0i

2D̄αα

(1
2ω

2
0i

2D̄αα)2 + (ω + iω0)2
(2.51)

showing the expected Lorentzian characteristic at each harmonic [14].
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Figure 2.4: A qualitative illustrations of the ensemble oscillator phase evolution. The
plots are based on the qualitative remarks in note 2.2, on page 45. The ensemble starts
with a fixed phase as shown in the top left-hand part of the figure. Following the arrows
it is then seen how the phase approaches an uniform distribution, asymptotically with
time.

2.1.4 An Alternative Model of the Asymptotic Phase Statistics of a
Free-Running Oscillator.

What follows here is an alternate derivation of the asymptotic oscillator statistics which
avoids the complex and tedious calculations which led to theorem 7.7 in [14], as repeated
in theorem 2.1, on page 45. In this report we choose to interpret the results in (2.38)
(and (2.37)) very simply, as follows

note 2.3 the oscillator phase becomes completely random,
corresponding to a uniform distribution, asymptotically with
time.

In figure 2.4 we illustrate how the oscillator phase approaches a uniform distribution,
asymptotically with time. Assume that we start with an ensemble of N oscillators all
placed the phase α(0) = 0, corresponding to the initial distribution in (2.29), for x′ = 0.
Because of the non-zero DC diffusion component ρ0, the distribution for the N oscillator
ensemble will start to distribute itself on the circle (see note 2.2 on page 45). Assume
now that the distribution is completely diffused as described by (2.37). Then, if the limit
cycle in figure 2.4 is divided into M "phase-points", there will be N/M oscillators at each
point. This follows from the fact that at each phase-point φ there are oscillators which
have phase φ+2kπ where k ∈ Z. This means that there will be an ensemble of oscillators
at each phase point of the limit cycle in figure 2.4.

We now consider the variable βik which was first defined in (2.44)

βik = iα(t+ τ)− kα(t) (2.52)
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For i �= k the above variable will be completely uniform on the circle since both
terms will be uniform and since not all of this is removed by the "asymmetric" difference.
This will then correspond to the asymptotic distribution in (2.37) which results in a zero
characteristic function, as seen from the discussion in the previous section in connection
with equation (2.39). The terms i �= k will then not contribute to the correlation function
in (2.47) and hence neither to the spectrum. We therefore only need to consider (2.52)
for i = k and we define the oscillator self-referenced phase (SR-P) as

∆α(t, τ) = α(t+ τ)− α(t) (2.53)

This variable is not uniform since the randomness is removed by the "symmetric"
difference. The oscillator phase drift and diffusion coefficients first written in (2.32) and
(2.33), are repeated here

Dα(t+ x) ≡ lim
τ→0

1
τ

〈
(α(t+ τ)− α(t)

)〉∣∣∣∣
α(t)=x

= ρ(t+ x)
∂ρ(t+ x)

∂x
(2.54)

Dαα(t+ x) ≡ lim
τ→0

1
τ

〈
(α(t+ τ)− α(t)

)2〉∣∣∣∣
α(t)=x

= ρ2(t+ x) (2.55)

Assuming that we knew the value limt→∞ α(t), that is, if limt→∞ α(t) was sharp, then
we could directly use (2.54)-(2.55) to describe the asymptotic evolution of the mean and
variance of the SR-P. However, as witnessed from the above discussion and as summarized
in note 2.3 and figure 2.4, the oscillator phase becomes completely random asymptotically
with time. As explained above, if we divide the limit cycle γ into M points then there
would be N/M oscillators at each point. In the following we assume that the M phase
points are contained in the set Π and that these points are uniformly distributed. From
(2.54) and (2.55) it is then seen that the oscillator ensemble mean and power would evolve
as (see footnote 18, on page 46)

lim
t→∞

dE[∆α(t, τ)]
dτ

= lim
M,N→∞

1
N

∑
x∈Π

N

M
Dα(t+ x) =

2π∫
0

Dα(t+ x)dx = D̄α = 0 (2.56)

lim
t→∞

dV [∆α(t, τ)]
dτ

= lim
M,N→∞

1
N

∑
x∈Π

N

M
Dαα(t+ x) =

2π∫
0

Dαα(t+ x)dx = D̄αα = ρ0

(2.57)

where we can equate the integrals in the phase variable x with the time averages, as
both Dα and Dαα are symmetric in these variables (i.e. they are invariant with respect to
x↔ t). Also note that we can use (2.54)-(2.55) to describe the evolution of the statistics
since there are an ensemble of oscillators, and not just one, at each of the M points in
Π. This follows from the asymptotic distribution from (2.37) where the oscillator phase
is completely flat on the real line implying that there is an ensemble at each phase φ,
corresponding to the oscillators at · · · , φ − 4π, φ − 2π, φ, φ + 2π, φ + 4π, · · · . The main
points of the above discussion are illustrated in figure 2.5 where an arbitrarily derived
ρ(·) function is considered.

We can now write the following asymptotic probability density for the single oscillator
SR-P
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lim
t→∞ p(∆α(t, τ)) = lim

t→∞
〈
δ(∆α(t, τ)− x)〉 =

1√
4πρ0|τ |

exp
(
− x2

ρ0|τ |
)

(2.58)

The above derivation hence find the result that, asymptotically with the time, the
single oscillator SR-P becomes a Gaussian variable with zero mean and power σ(t) = ρ0t.
This is essentially the same result as was predicted in theorem 2.1 (Theorem 7.7 in
[14], p. 663), on page 45, however, the above derivation avoids the lengthy and
tedious calculations which were necessary to derive this result in [14] and,
more importantly, it provides a clearer, more intuitive understanding of the
situation. A short paper or letter which considers the simplified formulation of the single
oscillator noise problem derived in the above text, is currently being prepared [43].

2.2 Review of 3 Popular Oscillator Phase Noise Methodolo-
gies

The previous two sections showed how, starting from the general state space ODE’s,
a stochastic differential equation governing the dynamics of the noise perturbed free-
running oscillator’s phase was derived. This equation was then treated using the Fokker-
Planck formalism and we showed how the asymptotic statistics of the original inhomo-
geneous diffusion equation was described by a simple Wiener process with the effective
diffusion constant being equal to the average diffusion constant, as shown in (2.41).

In this section we shall investigate how these very general results translate into practi-
cal algorithms for the calculation of phase noise spectra of free-running oscillators. There
exist numerous different models in the literature, and many variants within each model,
however, three main categories are easily identified

• Phase Macro Models

• Linear Time Varying Phase-Filters

• Averaging Methods

The text in the two previous sections was heavily inspired by the work of Demir et
al. who developed the so-called phase macro model in [14]. The paper [14], gives a
practical algorithm for the numerical characterization of the phase noise spectrum of an
oscillator perturbed by white noise. Starting from the circuit net-list, the formulation
assumes only that an asymptotically stable limit cycle exist for the particular choice of
circuit parameters. The formulation is hence very general, being independent of circuit
topology, parameters and encompassing all types of oscillators (harmonic, ring, relaxation
etc.). In this author’s opinion, the work by Demir et al. represents the most complete
oscillator phase-noise model, based on rigorous theory and formulated to allow for easy
integration into commercial CAD systems, published to date19. In section 2.2.1 we shall
give a short introduction to phase macro model.

19with regard to the theory outlined in [14], it is only fair to mention that not all of it is new. Both
Edson [44] and, perhaps more importantly, Lax [45] had already developed much of the theory of phase
diffusion in self-sustained oscillators. Furthermore, Kaertner [17] had formulated the problem using a
projection formalism which has many similarities with the model in [14]. However, the authors of [14]
were the first to use Floquet theory thus obtaining a formulation that could be integrated into CAD
environments like SPICE™ and SPECTRE™.
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γ ρ(  )
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x
x

Dα(  )
Dαα (  )

Figure 2.5: in the limit t→∞ the oscillator phase ensemble (N realizations) is completely
diffused, corresponding to a uniform distribution on the limit cycle γ, as illustrated in the
top left part of figure. Here the oscillator phase is represented by M = 9 phase-points, as
illustrated using colored dots. Assuming N = 900, there will be N/M = 100 oscillators
at each of the points •, •, • etc. In the top right part of the figure, the ρ(·) function (see
(2.25), on page 43), as a function of the limit cycle phase x, is shown. From this function
one can derive the drift and diffusion coefficients, Dα(·) and Dαα(·), respectively, as seen
from (2.54)-(2.55). In the bottom left part of the figure Dα(·) is plotted while the curve
in the bottom right part of the figure illustrates Dαα(·). Each of the arrows beneath
the plots represents the evolution of the mean and variance (see (2.54)-(2.55)) for the
M/N = 100 oscillators initially placed at the phase-point corresponding to the colored
dot. As is seen from the Dα(·) plot, the ensemble at some phase-points experience an
increase (→) in the mean while others are decreased (←); the sum result for all N = 900
realizations/oscillators being zero, since the mean of Dα(·) is zero (see (2.56)). From the
Dαα(·) plot, however, we see that at all the M phase-points the ensemble experience
an increase (→) in the spread/variance; the sum result being equal to the mean ρ0 (see
(2.57)).
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Section 2.2.2 reviews an earlier model, developed by Hajimiri [46], which treats the os-
cillator as a linear periodic time varying (LPTV) filter. This model has proven extremely
popular with circuit designers due to its rather heuristic, non-mathematical, formulation.
Demir calls it a phenomenological model [47], thus hinting at the complete lack of any
discussion regarding stochastic process theory. The model contains a parameter qmax
which represents the maximum charge displacement across the capacitor on the node
considered [46].

Finally, in section 2.2.3 we investigate averaging theory as applied to a noise forced
free-running harmonic oscillators. This method was introduced by Kurokawa in [32].
Since the formulation only concerns harmonic/sinusoidal oscillators the Kurokawa method
does not attain the high level of generality possessed by the two previously described mod-
els. Furthermore, the procedure can not easily be used for numerical characterization. We
include the model here, since no review of phase noise methodologies would be complete
without a mention of averaging procedures, but also because we shall use this formulation
later in chapter 4, where we investigate a ring of coupled harmonic oscillators.

No matter how one choose to express the problem it is clear from the discussion in the
previous sections, that the end-result must involve the derivation of the effective diffusion
constant, as shown in (2.41). The following three sections will hence illustrate how this
constant is found within each of the three different formulations.

2.2.1 Demir’s Phase Macro Model

In [14] Demir introduced the concept of a phase macro model. The model extends earlier
contributions by Kaertner and Lax [17] by applying Floquet theory 20 to the analysis
hence obtaining a formulation that lends itself well to numerical characterization and
which is easily integrated into standard CAD environments such as SPICE™ and SPEC-
TRE™. The model is based on a numerically derived steady-state and its corresponding
mondromy matrix (MM), which is a special state transition matrix (STM). If the shooting
method [48] is used to derive the steady-state then the MM is automatically calculated
as part of the procedure. This then means that the phase noise calculation is almost free
once a steady-state solution has been found.

The phase macro model has its origin in a single ordinary differential equation (ODE)
forced by white noise

ẋ = f(x) +B(x)χ(t) (2.59)

where x(t) : R → Rn is a vector in n dimensional state space, f(·) : Rn → Rn

is the vector field of the autonomous system containing an asymptotically stable limit
cycle, χ(t) : R→ Rp is vector of p uncorrelated white noise sources and B(·) : Rn → Rn×p

describes the modulation of the noise by the state variables. The small noise perturbations
in (2.59) results in equally small variations around the limit cycle and this response is
then solved, to a first order approximation, through the variational equation

ẇ = A(t)w +B(xss)χ(t) (2.60)

with x = xss + w, where xss(t+ T0) = xss(t) is the asymptotically stable solution of
noise free equation (2.59), w = x− xss is the response of the system to the perturbation
caused by the noise sources and A(t) : R → Rn×n is the Jacobian of the vector field f
as defined in (2.4). Having derived the set of nonhomogeneous linear time varying ODEs

20see appendix D for an introduction to the Floquet theoretic concepts discussed here.
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in (2.60) which solves for the linear noise response w, the authors use Floquet Theory to
propose a solution for the homogenous part

w(t) = Φ(t, t0)w0 (2.61)

where the initial condition at t = t0 is given by w0 and Φ(·, ·) : R× R→ Rn×n is the
state transition matrix (STM)

Φ(t, t0) = exp
{ t∫
t0

A(η)dη
}

; Φ(t0, t0) = I (2.62)

where I is and n× n identity matrix. We hence see that the STM is simply a Greens
function of the system in (2.60). Using Floquet theory, it is shown in [14] how the STM
can be formulated in the form

Φ(t, t0) =
n∑
i

ui(t) exp(µi(t− t0))vTi (t0) (2.63)

where the vectors ui, vi : R → Cn are the Floquet eigenvectors and µi ∈ C are the
Floquet exponents. The Floquet eigenvectors constitute a bi-orthogonal set

vi(t)Tuj(t) = δij for all t (2.64)

Since we are dealing with a linear system in (2.60), it should be clear that we can find
the particular solution corresponding to any initial condition using the Greens function
in (2.63). With respect to phase-noise analysis, the key observation is that one of the
Floquet exponents must be zero. This follows from the discussion in section 2.1.1 where
we showed that oscillator phase was characterized as a neutrally stable state variable (see
note 2.1 on page 39). If we denote µ1 = 0 we see that the projection operator in the
direction of the phase is given by

P (s) = u1(s)vT1 (s) (2.65)

where s = t + α(t) is the instantaneous time introduced in (2.11), on page 41. Note
that (2.65) is the unspecified orthogonal projection operator discussed earlier in section
2.1.1. Using the notation vT = vT1 B(xss) : R→ Rp we can derive the following stochastic
differential equation

dα

dt
= vT (t+ α(t))χ(t) = vT (s)χ(t) (2.66)

Using (2.33) and (2.41), with vT = ρ, we can identify the effective/averaged diffusion
coefficient as

D̄αα =
1
T0

T0∫
0

vT (η)v(η)dη =
1
T0

T0∫
0

vT1 (η)B
(
xss(η)

)
v1(η)BT

(
xss(η)

)
dη (2.67)

An inherent problem with the phase macro model lies with the premise that the
state transition matrix has a single unique eigenvalue equal to 1. Theoretically this
of course has to hold for a stable oscillation, however, numerically speaking this could
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represent a problem. In high Q oscillators, a large number of eigenvalues often cluster
around the value 1 + j0 in the complex plane, making the identification of the correct
eigenvalue/eigenvector difficult. This problem and a possible solution was addressed in
[16].

2.2.2 Hajimiri’s Impulse Sensitivity Function

In [46], Hajimiri introduced the following vector impulse response function

hφ(t, τ) = u(t− τ)Γ(ω0τ)
qmax

, (2.68)

where h(·, ·) : R×R→ Rp, t is the absolute time, τ is arrival time of the noise impulse,
u(·) : R → R is a unit step function, Γ(·) : R → Rp is the so-called impulse sensitivity
function (ISF) [46], ω0 = 2π/T0 is the steady-state frequency and qmax is a normalization
constant. In (2.68), we have assumed that the state equations where perturbed by a
vector of uncorrelated white noise sources χ(t) : R → Rp, as was the case in the last
section (see (2.59)).

The representation in (2.68) can be derived from the SDE in (2.25) since the neutral
stability of the phase variable is included in the unit step function u and the periodic
weight function ρ is now given by Γ(ω0(t + 2π)) = Γ(t). However, this way of treating
an SDE using linear filter theory is a very heuristic approach which completely ignores
stochastic process theory (see discussion in appendix A.2).

The response function in (2.68) describes a LPTV filter, were the input signals are
the white noise sources χ and the output is the oscillator phase

φ(t) =
1

qmax

t∫
−∞

[
Γ(ω0τ)

]T
χ(τ)dτ , (2.69)

Equation (2.69) can of also be written as a first order differential equation with peri-
odic coefficients

dφ(t)
dt

=
1

qmax

[
Γ(ω0t)

]T
χ(t) . (2.70)

which is seen to be identical, in form, with our SDE in (2.25). Using the results in
(2.70) and (2.41) we can derive the averaged diffusion coefficient for the ISF theory as

D̄φφ =
1
T0

1
q2max

T0∫
0

[
Γ(ω0η)

]TΓ(ω0η)dη (2.71)

2.2.3 Kurokawa’s Model - Harmonic Oscillators

In this section we shall discuss averaging theory of noise forced harmonic oscillators. The
term harmonic oscillator can either refer to a loss-free (Hamiltonian), linear oscillator or
to a situation where the higher harmonics are so well suppressed that the solution, to a
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Figure 2.6: a) Splitting the feedback oscillator up into two parts. b) the solution is quasi
sinusoidal which implies a harmonic carrier with slowly moving amplitude and phase
transients.

good approximation, can be called harmonic/sinusoidal. Considering the last alternative,
we can write the solution using a quasi-sinusoidal 21 function

v(t) = A(t) cos(ω0t+ φ(t)) = �{A(t) exp(j[ω0t+ φ(t)])
}

(2.72)

where both the envelope A and phase φ are slowly moving functions of time. These
two functions represent the response of the system to small noise perturbations. The
slowness of these response-functions is a direct result of a narrowband/high Q circuit in
the feedback path, which is implied by the assumption of higher harmonic cancellation.

The premise of slow amplitude and phase transients means that we can set

dnφ

dtn
=
dnA

dtn
≈ 0 for n > 1 (2.73)

and using this together with the definition in (2.72) we find

dnv

dtn
= �

{[
j

(
ω0 +

dφ

dt

)
+

1
A

dA

dt

]n
Aejωt+φ

}
(2.74)

Comparing the result in (2.74) with the effect of carrying out the same operation on
an arbitrary harmonic solution z = �{r exp(jωt)} we see that we can define the effective
frequency of the quasi-sinusoidal solution through

ω →
(
ω0 +

dφ

dt

)
− j 1

A

dA

dt
(2.75)

which is also known as Kurokawa’s substitution [32], [33]. We now divide the oscillator
circuit up into a passive resonance circuit admittance Yf and a nonlinear admittance Ya
which represents the action of energy restoring circuit element as illustrated in figure 2.6.
Barkhausen’s criterion is then written as

[Yf (ω,A)− Ya(A)]v = 0 (2.76)

In appendix B we show how to derive the averaged amplitude/phase state equations
starting from an equation like (2.76). Linearizing the amplitude/phase equations around
the steady-state solution we find the following two coupled first order ODE’s

21we refer to the text in section 1.2 for a more detailed discussion of averaging theory and the quasi-
sinusoidal approximation
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dδA

dτ
= sGLδA+Gn, (2.77)

dδφ

dτ
= rGLδA+Bn (2.78)

where it is assumed that the state variables can be written as φ = φ̂+δφ, A = Â+δA,
with the constants (φ̂, Â) describing the steady-state limit cycle and (δφ, δA) modelling
the linear noise response. The noise admittance Yn = Gn + jBn is a complex stochastic
variable which models the white noise sources in the circuit. The statistics of these
variables are thoroughly described in appendix A.1. In (2.77)-(2.78) we have furthermore
introduced the time normalization τ = ω0/(2Q)× t.

As discussed in appendix B, in order to arrive at the system (2.77)-(2.78) we have
already applied an averaging procedure and we therefore note that the averaged phase
diffusion coefficient D̄φφ from (2.42) can be derived directly from the ODE in (2.77)-
(2.78). All we have to do is identify the neutrally stable state variable. From (2.78), we
see that the phase φ is not neutrally stable since the righthand side of (2.78) depends on
δA. This coupling from the amplitude to the phase is the result of a nonlinear reactive
impedance which results in AM to PM conversion. Instead, we now introduce the new
phase variable δψ through

δψ = δφ−
(
r

s

)
δA (2.79)

Using (2.77)-(2.78), the dynamic equation for this variable can be written

dδψ

dτ
= Bn −

(
r

s

)
Gn (2.80)

This equation, with only uncorrelated noise functions on the righthand side, is on the
form an averaged (2.25) and we can write the averaged phase diffusion coefficient directly
from this equation

D̄φφ =
(
ω0

2Q

)2{
1 +

(
r

s

)2}N0

P0
(2.81)

where we have re-normalized time t = 2Q/ω0τ and N0/P0 is the noise to signal
ratio (see appendix A.1). Inspecting (2.81), we see that it differs from the two earlier
definitions of the effective diffusion constant in (2.67) and (2.71) by not including an
averaging operation. As explained above, equation (2.80) is already averaged and so this
procedure is implicitly included in the definition (2.81). Furthermore, we note that (2.81)
includes a finite AM-PM noise component and that this part is proportional to the factor
(r/s)2. This is a quite general result which we shall discuss further in chapter 4 where
we investigate ring coupled oscillators, perturbed by white noise.



Chapter 3

A Phase Macro Model for Coupled
Oscillator Systems

The single oscillator phase macro model, which was introduced by Demir et al. in [14] 1,
prescribes an algorithm for the numerical derivation of the phase-noise characteristics
of an asymptotically stable limit cycle solution perturbed by white noise sources. The
formulation is unified ; it only assumes an asymptotically stable limit cycle and can there-
fore be applied to all kinds of oscillators. Furthermore, since the noise characterization is
derived numerically, the model is independent of circuit topology and parameters. The
algorithm proceeds by calculating the eigenvalues and eigenvectors of the monodromy
matrix, which represents a return map for the limit cycle, and is a special state transition
matrix (STM) 2. This map is derived as a part of the steady-state calculation [14], [48].
The vector corresponding to the eigenvalue λ = 1 is then identified with the direction in
state space tangential to the limit cycle. By integrating the Jacobian of the vector field
for one period, with this tangential vector as initial condition, one obtains a set of vectors
all pointing in directions tangential to the limit cycle. These vectors are in turn used to
create an orthogonal projection operator which will collect the component of the system
noise, at the various phase points, pointing in a direction along the limit cycle. Using
this formulation, one can set up a stochastic differential equation (SDE) for the oscillator
phase which can then be solved through stochastic integration techniques 3.

A projection formalism, for the single oscillator phase noise characterization, was
formulated 11 years prior to [14], in the paper [17] by Kaertner. Still, the formulation in
[14] has become much more widespread 4. This is most likely due to a more user-friendly
notation and, perhaps more importantly, the fact that the Demir formulation can be
easily integrated into standard CAD environments such e.g. SPICE™ and SPECTRE™.
Finally, we should mention the early work of Lax [45] on noise in oscillators, which served
as inspiration for the authors of both [14] and [17].

The purpose of this chapter is to introduce an extension of the single oscillator projec-
tion formalism [14], [17], which intends to enlarge the scope of the model to incorporate
coupled oscillators. Since coupled oscillators, assuming synchronization has taken place,

1the phase macro model was reviewed in section 2.2.1 on page 52.
2we refer to appendix D for a discussion of STM’s and the Monodromy Matrix.
3see the discussion in chapter 2 and appendix A.2, on page 137, for further information on the single

oscillator phase macro model and stochastic integration.
4a quick check in Google Scholar™ reveals that the Demir formulation has been cited by 208 papers,

the Kaertner paper has 33 citations and the Kurokawa method, described in section 2.2.3, has around 200
citations ([32]+[33]). None of these can however match the Hajimiri phase noise paper [46] (see section
2.2.2 on page 54) which has been cited 471 times.
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also represent an asymptotically stable periodic solution, one could be led to the conclu-
sion that a limit cycle representation would suffice as a model for the system dynamics.
We would then not need new theory to handle these elaborate systems; instead, we could
use the formulation in [14] directly. However, as will now be shown, with regard to the
system noise response, this assumption would lead to loss of information. We start with
a formal definition of the concept of phase-noise

Definition 3.1 The concept of phase-noise pertains to the contribution of the total noise
envelope which cannot be removed by an ideal limiter circuit.

which then leads to the theorem

Theorem 3.1 All noise tangential to the invariant manifold constitutes phase-noise.

The theorem is proven by noting that an ideal limiter responds to amplitude/energy
of the input signal while the invariant manifold is a topological construction related to the
phase/timing characteristic of the waveform. The theorem says directly that in order to
calculate the phase-noise of a noise perturbed steady-state, one has to take into account
the manifold on which this solution resides. From the discussion in section 1.1.2, on page
23, we know that the orbits of the symmetric n-coupled oscillator solution approach the
n-torus Tn = S

1 × S
1 · · · × S

1︸ ︷︷ ︸
n times

, asymptotically with time.

Previous Work

The phase noise macro model has been applied to the modelling of locked systems in the
following previous publications

• [49] A. Mehrotra 2002 : The full PLL noise problem is analyzed using elements
from the original phase macro-model. The paper proceeds by setting up a linear
first-order stochastic differential equation for the system; the so-called Ornstein-
Uhlenbeck equation, which is then solved for the spectrum of the noise perturbed
PLL. We note the following differences between that paper and our contribution

1 The theory is not general to locked systems, but relies on a very specific PLL-
model containing a certain set of components (i.e. filters, phase comparators
etc.)

2 Since the model is not a state-space form, the theory outlined in that paper
cannot be directly integrated into a CAD environment such as SPICE. The
model relies on the user dividing the different circuit components into cate-
gories. This is very different from the original phase macro model in [14] where
the process of calculating the spectrum was only based on the CAD program
supplying a steady-state solution.

• [50] X. Lai & J. Roychowdhury 2004 : In this paper the phase macro model is used
to study the nonlinear behavior of injection locked systems. The model does not
include noise but instead the locking signal takes the place of a perturbing signal.

• [47] A. Demir 2006 : Here the author discusses how to include 1/f -noise sources
into the phase macro model formulation. The paper also discuses the PLL noise
problem, but as with [49], it relies on a specific PLL model and not on a state space
formulation.
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3.1 The General Model Formulation

We consider the m dimensional, noise forced, autonomous system, representing n coupled
oscillators perturbed by white noise sources

ẋ = f(x) +B(x(t))χ(t) (3.1)

where x(t) : R → Rm is the state vector, f(·) : Rm → Rm is the vector field,
B(·) : Rm → Rm×p represents the modulation of the noise sources by the signal and
χ(·) : R → Rp is a column vector containing p zero mean, unit variance, uncorrelated
Gaussian white noise sources (see discussion in connection with (2.9), on page 40). Since
we consider the coupling of n separate parts we can write the state vector x(t) as

x(t) =

⎡⎢⎢⎢⎣
x1(t)
x2(t)

...
xn(t)

⎤⎥⎥⎥⎦ (3.2)

where xi(t) : R → Rni is the state sub-vector belonging to the i’th oscillator and we
have

n1 + n2 + · · ·nn = m (3.3)

The vector field can also be divide into smaller parts

f(x) =

⎡⎢⎢⎢⎣
f1(x1;κx)
f2(x2;κx)

...
fn(xn;κx)

⎤⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎣
f1(x1)
f2(x2)

...
fn(xn)

⎤⎥⎥⎥⎦+ κ

⎡⎢⎢⎢⎣
h11(x1) h12(x1) · · · h1n(x1)
h21(x2) h22(x2) · · · h2n(x2)

...
...

. . .
...

hn1(xn) hn2(xn) · · · hnn(xn)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1

x2
...
xn

⎤⎥⎥⎥⎦ (3.4)

where fi(·) : Rn → Rni represents the vector field of the i’th oscillator, κ ∈ R is a small
parameter (|κ|  1) representing the weakness of the coupling and hij(·) : Rnj → Rni

denotes the first order Taylor approximation of the coupling from the j’th to the i’th
oscillator, where

hij =
∂fi
∂xj

∣∣∣∣
κ=0

(3.5)

The noise vector in (3.1) is written as

χ(t) =

⎡⎢⎢⎢⎣
χ1(t)
χ2(t)

...
χn(t)

⎤⎥⎥⎥⎦ (3.6)

where χi(·) : R→ Rpi is the system noise of the i’th oscillator and

p1 + p2 + · · ·+ pn = p (3.7)

This notation means that we can write the modulation matrix, B, as 5

5the vector in (3.6) and the matrix in (3.8) does not include the possibility of noise in the coupling
circuitry. This will suffice for modelling unilaterally coupled oscillators like the injection locked oscillator
architecture that we shall investigate in the following section. For bilaterally coupled oscillators the
formulations in (3.6) and (3.8) will probably have to be updated.
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B =

⎡⎢⎢⎢⎣
B11(x1;κx) 0 · · · 0

0 B22(x1;κx) · · · 0
...

...
. . .

...
0 0 · · · Bnn(xn;κx)

⎤⎥⎥⎥⎦ (3.8)

where Bij(·) : Rni → Rni×pj models the noise-coupling of j’th oscillator to it’s i’th
counterpart. The system in (3.1), without the noise forcing function, will contain a
periodic solution xss(t+ T ) = xss(t), where T = 2π/ω is the period of the solution

xss(t) =

⎡⎢⎢⎢⎣
xss,1(t)
xss,2(t)

...
xss,n(t)

⎤⎥⎥⎥⎦ (3.9)

where xss,i(t) : R → Rni is the component of the T periodic steady-state solution
belong to the i’th oscillator domain. Due to the noise perturbation in (3.1) the phase of
the oscillator will represent an unspecified, although monotonic [14], function of time. If
we write the phase of the i’th oscillator as

φi(t) = ωαi(t) (3.10)

then steady-state solution, after time normalization 6, can be written

xss(t+ αd(t)) = xss(t+ α1(t) + α2(t) + · · ·+ αn(t)) (3.11)

where

φd = ωαd =
n∑
i=1

φi (3.12)

is the so-called diagonal phase 7. We now introduce the instantaneous time, s, as

s = t+ αd(t) (3.13)

Using the same derivations which led to (2.14) on page 41 we derive the following
linear response system

ẋss(s)
dαd
dt

+ ẏ(t) = A(s)y(t) +B(xss(s))χ(t) (3.14)

where y(t) : R → Rm is the linear response vector, which is formally defined as the
difference between the state space solution and the steady-state solution

y(t) = x(s)− xss(s) (3.15)

and A(t) : R→ Rm×m is the system Jacobian which is calculated as the first derivative
of the vector field f . Comparing the above equation with (2.14) in section 2.1.1 we see
that they are identical if we substitute αd for α. Following the derivations in section 2.1.1
we then find that ẋss(s) lies in the null space of the Jacobian, A(s), which means that
we can write the following SDE for the neutrally stable αd

6by normalizing the time we now have a 2π periodic solution vector xss(t + 2π) = xss(t).
7see section 4.5.1, on page 105, where the concept of diagonal phase is applied to the linear response

analysis of unidirectional ring of n oscillators perturbed by noise.
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dαd
dt

= ρ(t+ αd)ξ(t) (3.16)

where ρ(·) : R → R is a 2π periodic function and ξ(·) : R → R is a zero mean,
unit variance Gaussian macro noise source. The equation in (3.16) is similar to (2.25),
derived in section 2.1.1 and is hence solved in a similar way, using stochastic integration,
as illustrated in section 2.1.2 and 2.1.4. So far, nothing new, compared to the single
oscillator formulation, has been introduced. This just illustrates the fact that

note 3.1 in the direction of the diagonal phase φd = ωαd,
as defined in (3.12), the coupled system acts like a single
oscillator.

According to theorem 3.1, we need to find the projection operators which will project
the linear response system

ẏ(t) = A(s)y(t) +B(xss(s))χ(t) (3.17)

onto the manifold Tn. Following the formulation in [14] we now define

z(s) = y(t) (3.18)

as well as the approximation

dz(s)
dt

=
dz(s)
ds

(
1 +

dαd
dt

)
=
dz(s)
ds

+O(|y|2) (3.19)

since dαd/dt = O(|y|). Linear response theory is a first order approximation which
means that second, and higher, order terms are neglected. Using (3.19) we can then write
(3.17) as

ż(s) = A(s)z(s) +B(xss(s))Ψ(s) (3.20)

where we have define Ψ(s) = χ(t). As explained in appendix D, the solution of
(3.20), with initial condition z(s0), can be specified by the so-called state-transition matrix
(STM) Φ(s, s0)

z(s) = Φ(s, s0)z(s0) +

s∫
s0

Φ(s, η)B(xss(η))Ψ(η)dη (3.21)

which is a map that brings the initial condition z(s0) forward in time to z(s). A steady-
state algorithm, like the shooting method [48], will return the special STM Φ(2π, 0), known
as the monodromy matrix (MM) 8, and this map hence constitutes all the information
available to the CAD program about the properties of the solution and the manifold on
which it lies. As was shown in appendix D, the monodromy matrix represents a return
map which brings the linear response solution z(s) one period forward in time. Since
z(s) represents the linearization around a asymptotically stable solution, xss(t), one of
the eigenvalues of this map will be zero, corresponding to the phase shift invariance of

8in the paper [14] it is also explained how to derive Φ(2π, 0) when the steady-state is found using
Harmonic Balance (HB) techniques.
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the diagonal phase φd. As explained on page 162 in appendix D the monodromy matrix
can be written as

Φ(2π, 0) =
m∑
i=1

λiPi (3.22)

where Pi = ui(0)vTi (0) = ui(2π)vTi (2π) ≡ uiv
T
i are a set of orthogonal projection

operators, ui(t), vi(t) : R → Rm are the 2π periodic Floquet eigenvectors and dual
eigenvectors, respectively, and λi = exp(µi2π) is the Floquet multipliers with µi being
the Floquet characteristic components 9. Referring to theorem 3.1, on page 58, in order
to characterize phase noise of the n coupled oscillator case we then need n orthogonal
projection operators Pi which will project onto the manifold Tn.

We start by stating the following theorem

Theorem 3.2 (Existence) the monodromy matrix representing the linearized dynamics
of n weakly coupled oscillators will have n eigenvectors ui spanning the tangent space of
the invariant manifold.

proof : The invariant manifold M � Tn of the uncoupled oscillators is normally
hyperbolic (see discussion in section 1.1.2, on page 23). This follows from the fact that we
consider coupling of asymptotically stable oscillators. Hence, assuming weak coupling,
there will exist a slightly perturbed invariant manifold for the coupled oscillators Mε,
where Mε � Tn + O(|ε|). Here epsilon is a small number |ε|  1 representing the
weak coupling. Since there exist an invariant manifold Mε for the coupled case there
will exist an invariant tangent space TMε. The eigenvectors {ui}mi=1 span the invariant
tangent and normal spaces in Rm and there will hence exist n monodromy eigenvectors
uk =

{
k ∈ [1, 2, · · · ,m] |uk ∈ TMε

}
, spanning the tangent space TMε.

Corollary 3.1 There will exist n unique orthogonal projection operators operators Pi
projecting onto the invariant manifold tangent space TMε. These orthogonal projection
operators are chosen as Pk = ukv

T
k =

{
k ∈ [1, 2, · · · ,m] |uk ∈ TMε

}
One of the above described operators will correspond to the neurally stable variable

φd. Letting P1 = u1v
T
1 represent this case, we see that this operator is easily found since

we will have λ1 = 1 10. Furthermore, as explained in connection with (3.14), ẋss lies in
the null-space of the Jacobian which mean that it is a Floquet vector with eigenvalue
λ = 1. From the above discussion it is then seen that we can set

u1(t) = ẋss(t) (3.23)

We then need the remaining n− 1 vectors : uk =
{
k ∈ {2, · · · ,m}|uk ∈ TMε

}
. Two

obvious questions now arise

1. how do we identify these remaining vectors?

2. how do we interpret the equations resulting from the projection onto TMε?
9for an explanation of these parameters we refer to appendix D.

10this identification is unique since only one eigenvalue can be equal to 1 + j0 for an asymptotically
stable periodic solution. The derivation of the projection operator P1 essentially constitutes the single
oscillator characterization. See the discussion in section 2.1.1 on page 38.
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The answers to the above questions will depend on the specific coupling scenario
(bilateral, unilateral, ring, all-to-all etc.) under consideration. We shall hence deal with
these problems on a case-to-case basis.

Although the proposed algorithm includes all types of coupled oscillators we shall
only investigate the special case of a sub-harmonic injection locked oscillator (S-ILO), as
described in the paper [51]. A paper is being prepared that will describe the general case
[52].

3.2 A Phase Macro Model for the Sub-Harmonic Injection
Locked Oscillator (S-ILO)

M-OSC S-OSC

Gmi

Figure 3.1: The Injection Locking Scenario : the coupling is one-way (unilateral) from
the master oscillator (M-OSC) to the slave oscillator (S-OSC).

In this section we investigate the case of two unilaterally weakly coupled oscillators,
where the coupling direction is from the master oscillator (M-OSC) to the slave oscillator
(S-OSC). This scenario is also known by the name injection locked oscillator (ILO) and
we illustrate this setup in figure 3.1. Injection locking is used frequently in RF and optical
design architectures as low-power frequency multipliers/dividers [12] or in the place of
a full PLL structure [53] which is often a costly and power-expensive way to realize
synthesizers at RF frequencies. Injection locking is also used in phase-noise measuring
equipment [54]. As was mentioned in the introduction to this report, it has also long been
known that the injection of a low-noise reference can be used as a method of cleaning the
phase of a noisy carrier [32], [55], [56], [57]. This property is explained, briefly, by noting
that the master imprints its pattern on the slave counterpart which then inherits all of
its frequency related properties including jitter.

In this text the frequency of the M-OSC is denoted ω1 and the frequency of the S-OSC
is denoted ω2. The sub-harmonic injection locked (S-ILO) scenario then stipulates

ω2 = Nω1 −∆ω (3.24)

where ∆ω is a small frequency difference between fundamental harmonic of the S-
OSC and the N’th harmonic of the M-OSC. The solution xss hence oscillates with period
ω1 and in the following we shall assume that time normalization, with respect to this
frequency, has been carried out. The Γ × S1 symmetric steady-state solution 11 lies on
the invariant manifold T2, as illustrated in figure 3.2.

Referring to the block diagram in figure 3.1 and the discussion in the previous section,
we can divide the state-space into two components : x1 belonging to the M-OSC and x2

11see the text in section 1.1.2 for a discussion on symmetrically coupled oscillators. Here Γ refers to
the unidirectional coupling from the M-OSC to the S-OSC and S

1 refers to the offset invariance of the
solution along the diagonal phase αd.
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TM

M
φd

φs

φm

φe

φs= (0,1)= (0,1)

φm= (1,0)= (1,0)

Figure 3.2: The two-torus T1 = S1×S1 is an invariant manifold M in the Γ×S1 symmetric
canonical domain (see discussion in section 1.1.2). Orbits on the torus will approach the
ω-limit set which is shown as a heavily drawn line. Points on the torus use the canonical
basis φm = (1, 0), φs = (0, 1) and these vectors span the tangent space TM. The two
other vectors shown is the diagonal phase φd = (1, 1) and the error phase φe = (1,−1).

belonging to the S-OSC. This means that we write x(t) = [x1(t) x2(t)]T , where x(t) : R→
Rn, x1(t) : R→ Rn1 , x2(t) : R→ Rn2 and n1 + n2 = n. Furthermore, we split the vector
field and noise sources in (3.1) as f = [f1 f2]T , f1(·) : Rn1 → Rn1 , f2(·) : Rn → Rn2 ,
χ(t) = [χ1(t) χ2(t)]T , χ1(t) : R→ Rp1 , χ2(t) : R→ Rp2 , p1 + p2 = p. Since the coupling
is assumed unilateral the noise modulation matrix B can be written as

B(x) =
[
B11(x1) 0

0 B22(x1, x2)

]
(3.25)

where B11(·) : Rn1 → Rn1×p1 , B22(·) : Rn → Rn2×p2 . We can then write the general
expression (3.1), for the S-ILO as

ẋ1 = f1(x1) +B11(x1)χ1(t) (3.26)
ẋ2 = f2(x2;κx1) +B22(x)χ2(t) (3.27)

In (3.27) |κ|  1 is a small parameter representing the weak coupling between the
two sub-systems. We assume that the system of equations (3.26)-(3.27), without noise,
supports a stable periodic steady-state solution which we denote xss(t) = [xm(t) xs(t)]T ,
where xm(t) : R→ Rn1 , xs(t) : R→ Rn2 .

3.2.1 Deriving the Torus Projection Operators for the S-ILO

In order to gain a qualitative understanding of the situation we start by deriving an
analytical representation of the monodromy matrix (MM), or return-map, Φ(2π, 0) from
the simple Γ × S1 symmetric normal-form/averaged equations (see discussion in section
1.1.2). As explained in appendix D.1, this map can be derived from the normal-form
Jacobian matrix. We then move on to consider the asymmetric canonical equations.
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Finally we discuss how the canonical projection operators can be interpreted in the "real"
physical domain.

According to the discussion in section 1.1.2, on page 23, and section 1.2, on page 28,
the normal form/averaged state equations will have the form

dAi
dτ

= µo,i

[
1−

(
Ai
α

)2]
Ai + κΛi(Am, As, φm, φs) i = m, s (3.28)

dφi
dτ

=
2Qi
ωi

∆ωi + biA
2
i + κΦi(Am, As, φm, φs) i = m, s (3.29)

where we refer to the discussion in the above mentioned sections for an explanation of
the different parameters. In (3.28)-(3.29) we have labelled the M-OSC and S-OSC state
variables by subscriptsm and s, respectively. Since the M-OSC in figure 3.1 is not coupled
to the S-OSC we find that Λm = Φm = 0. Following the discussion in section 1.1.2, on
page 23, and section 1.2, on page 28, it is seen, that using either normal-form or averaging
methods, one obtains (for harmonic locking) Λs(Am, As, φm, φs) = Am cos(φm − φs) and
Φs(Am, As, φm, φs) = Am

As
sin(φm − φs). Furthermore, we have ∆ωm = 0 and ∆ωs = ∆ω,

as seen from (3.24). We can then write (3.28)-(3.29) as

dAm
dτ

= µo,m

[
1−

(
Am
α

)2]
Am (3.30)

dφm
dτ

= 2Qm + bmA
2
m (3.31)

dAs
dτ

= µo,s

[
1−

(
As
α

)2]
As + κAm cos

(
N [φm − φs]

)
(3.32)

dφs
dτ

=
2Qs
ω1

∆ω
N

+ bsA
2
s + κ

Am
As

sin
(
N [φm − φs]

)
(3.33)

where we consider the N ’th subharmonic of the S-OSC phase φs → Nφs. We can
now derive the linear response system by considering first order Taylor expansion of
(3.30)-(3.33) around the steady-state (Âi, φ̂i) (i = m, s) 12

1
Â

dδAm
dτ

= −2µo,m
δAm

Â
(3.34)

dδφm
dτ

= 2bmÂ2 δAm

Â
(3.35)

1
Â

dδAs
dτ

= −2µo,s
δAs

Â
+Nκ cos

(
N∆φ̂

)δAm
Â
−Nκ sin

(
N∆φ̂

)
(δφm − δφs) (3.36)

dδφs
dτ

= 2bsÂ2 δAs

Â
+Nκ sin

(
N∆φ̂

)(δAm
Â
− δAs

Â

)
+Nκ cos

(
N∆φ̂

)
(δφm − δφs)

(3.37)

where ∆φ̂ = φ̂m − φ̂s and we have assumed Âm ≈ Âs ≈ α 13. The system in (3.34)-
(3.37) can be written on matrix form as

12we refer here to the discussion in section 4.5, on page 103, where we study the unidirectional ring,
for an example of how these linear response equations are derived from the normal-form/averaged state
equations.

13this approximation will serve to simplify the formulation without decreasing the range of this, already,
very qualitative model.
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ż = Jz (3.38)

where J ∈ R4×4 is the Jacobian of the averaged system and z is the linear response
vector

z =
[
δAm

Â
δφm

δAs

Â
δφs
]T

(3.39)

As explained in appendix D.1, on page 163, it is possible to derive an analytical
expression for the monodromy matrix (MM) eigenvectors ui and dual eigenvectors vi, by
calculating the eigenvector of the normal-form Jacobian J . The eigenvalues of J will then
equal the characteristic multipliers µi of the MM. From (3.34)-(3.37), we write Jacobian
matrix as

J =

⎡⎢⎢⎣
α1 0 0 0
ρ1 0 0 0
ζ γ α2 −γ
−γ ζ γ + ρ2 −ζ

⎤⎥⎥⎦ (3.40)

where

α1 = −2µo,m (3.41)
α2 = −2µo,s (3.42)

ρ1 = 2bmÂ2 (3.43)

ρ2 = 2bsÂ2 (3.44)

γ = −Nκ sin(N∆φ̂) (3.45)

ζ = Nκ cos(N∆φ̂) (3.46)

If we assume that the system is close to symmetry so that ∆φ̂ ≈ 0, γ ≈ 0 and
that we have no AM-to-PM conversion (i.e. ρ1 = ρ2 = 0), then find the following
eigenvector/eigenvalue pairs by inspection 14

µ =

⎡⎢⎢⎣
0
α1

α2

−ζ

⎤⎥⎥⎦ ; U =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
1 0 0 1

⎤⎥⎥⎦ (3.47)

where the eigenvalues are written in the column vector µ = [µ1 µ2 µ3 µ4]T and the
eigenvector corresponding to the eigenvalue µi is written in the i’th column of the matrix
U . The eigenvalue of the diagonal phase φd = [0 1 0 1]T is seen to have the Flouquet
characteristic component µ1 = 0 corresponding to the characteristic multiplier λ1 = 1.
It is seen that two of the eigenvectors lie in the two-torus tangent space TM (see figure
3.2); namely, φd = [0 1 0 1]T and φs = [0 0 0 1]T with corresponding eigenvalues 0 and
−ζ respectively. We have therefore found the following T2 Floquet eigenvectors for the
Γ× S1 symmetric case

u1(t) = φd(t) (3.48)
u2(t) = φs(t) (3.49)

14the two eigenvectors corresponding to eigenvalues α1, α2 are only approximate. These vectors are
not important at this point in the analysis.
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We now consider the transpose matrix

JT =

⎡⎢⎢⎣
α1 ρ1 ζ −γ
0 0 γ ζ
0 0 α2 γ + ρ2

0 0 −γ −ζ

⎤⎥⎥⎦ (3.50)

Using the same approximations as above, we then find the following eigenvector/eigenvalue
pairs by inspection (see footnote 14)

µ

⎡⎢⎢⎣
0
α1

α2

−ζ

⎤⎥⎥⎦ ; V =

⎡⎢⎢⎣
0 1 0 0
1 0 0 −1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (3.51)

We see that the two dual Floquet eigenvectors corresponding to the eigenvectors in
(3.48)-(3.49) are the M-OSC phase φm = [0 1 0 0]T and the error phase φe = [0 −1 0 1]T .
We have therefore found the following Floquet dual eigenvectors for the Γ×S1 symmetric
case

v1(t) = φm(t) (3.52)
v2(t) = φe(t) (3.53)

From the discussion in connection with (3.22) and in appendix D, we see that we can
derive the following two-torus orthogonal projection operators

P1 = u1v
T
1 = φdφ

T
m (3.54)

P2 = u2v
T
2 = φsφ

T
e (3.55)

We summarize as follows

note 3.2 The range of P1 is the diagonal phase φd while
the null-space of the operator is the S-OSC phase φs. This
should interpreted as the M-OSC distributing its phase to
the S-OSC. The range of P2 is the S-OSC phase φs while the
null-space is the diagonal phase φd. We see that perturbations
tangent to T2 and diagonal to φd transfers to the S-OSC
phase while the M-OSC is left unaffected due to the unilateral
coupling.

We now impose a structure on the canonical state-space manifolds and hence on the
canonical solutions

Definition 3.2 Let µo,s be a parameter that describes the strength of attraction of the
S-OSC amplitude to it’s limit cycle. Furthermore, let bs represent curvature of the
isochrones at the S-OSC limit cycle. Finally, let γ be parameter on the order of the
coupling strength O(N |κ|).
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We shall say that the canonical S-ILO lies on a normally hyperbolic manifold, iff the
following condition

ε =

√
γ
(
2bs + γ

)
2µo,s

 1

is satisfied.

For bs = 0 this condition reverts to the well-known form (N = 1)

µo,s � 1
2
O(|κ|) (3.56)

which was the original definition of a normally hyperbolic manifold, first stated (1.73),
on page 27, in chapter 1. This normal hyperbolic attribute is derived from the assumption
of weak coupling, as stated in note 1.6 on page 27. It is a necessary condition in order to
ensure stability of the orbits and the manifold on which they lie.

Using the above definition we can state the theorem

Theorem 3.3 There exist two unique Floquet eigenvectors u1(t) = φd and u2(t) =
φs+O(|ε|) to the asymmetric canonical normal-form equations in (3.30)-(3.33) and these
vectors will span the tangent space of the perturbed canonical invariant manifold. The
two corresponding dual Floquet vectors v1(t) and v2(t) will correctly represent the added
AM-to-PM noise contribution introduced by asymmetry and non-isochronous operation.
The two orthogonal normal form projection operators P1(t) = u1(t)vT1 (t) = φd(t)vT1 (t)
and P2(t) = u2(t)vT2 (t) = φs(t)vT2 (t) will hence project onto the invariant manifold.

proof : the proof follows from theorem 3.2 and corollary 3.1, on page 62, and the
calculations in appendix C.4, on page 153.

We now move from the canonical, over into the physical domain where the solution
orbits of (3.26)-(3.26) "live". The following definition states the condition for a normally
hyperbolic manifold in the physical domain

Definition 3.3 Let µ correspond to the Floquet characteristic exponent of the S-OSC
which was original 0 in uncoupled scenario. Let µx be the Floquet characteristic exponent,
different from µ, with the largest real part. Furthermore, let γ be a parameter on the order
of the asymmetry between the M-OSC and S-OSC.

We shall say that the S-ILO lies on a normally hyperbolic manifold, iff the following
condition

ε =
γ

|µx|  1

is satisfied.

The following theorem, which is stated without a proof 15, was inspired by theorem
3.3 and the calculations in appendix C.5, on page 156

Theorem 3.4 If the steady-state solution of the autonomous ODE in (3.26)-(3.27) rep-
resents an ILO solution, then there will exist two unique Floquet eigenvectors u1 =
[u11 u12]T = [ẋm ẋs]T = ẋss, u2 = [u21 u22]T = [0 ẋs]T + O(|ε|)[0 y]T , y ∈ Cn2 ,
||y||2 ≤ 1, and these vectors will span the tangent space of the invariant manifold. The sec-
ond Floquet exponent µ2 represent the effective coupling strength. The corresponding dual

15the author was not able to complete the proof within the deadline for this report. A proof is however
being worked on.
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Floquet eigenvectors can be written as v1 = [v11 0]T and v2 = [−v11 v22]T +O(|ε|)[z1 z2]T
and z1 ∈ Cn1 , z2 ∈ Cn2 ||z1||2, ||z2||2 ≤ 1. The two projection operators P1 = ẋss(t)vT1 (t)
and P2 = [0 ẋs(t)]T vT2 (t) will correctly represent the ILO phase-noise scenario.

3.2.2 The Stochastic Differential Equations

From the discussion in the previous section we consider two projection operators P1

and P2. P1 projects onto the neutrally stable direction as represented by the Floquet
exponent µ1 = 0 and P2 maps onto the subspace represented by the Floquet exponent
µ2 < 0. We now return to the noise-forced state equations set up in (3.26)-(3.27). The
noise contribution which results when P1 is applied to the right-hand side of (3.26) is
denoted w1 : R→ R1×p1

w1(t) = vT11(t)B11(xm(t)) (3.57)

where we have used the expression from theorem 3.4. Likewise the noise that results
when P2 is applied to the right-hand side of (3.27) is denoted w2 : R→ R1×p = w22−w21.
Here w21 : R→ R1×p1 and w22 : R→ R1×p2 are defined as

w21(t) = vT21(t)B11(xm(t)) (3.58)

w22(t) = vT22(t)B22(xss(t)) (3.59)

where we again have used the notation from theorem 3.4. The phase variables αd
was used in section 3.1 in connection with the definition of an instantaneous time. In the
following we shall let αd represent the state-space coordinate for the "physical" vector
u1(t) = ẋss(t) and αs the coordinate for the vector u2(t) = ẋs(t). We can then write the
state space stochastic differential equations governing the dynamics of the noise perturbed
injection locked oscillator as

α̇d = w1(t+ αd)Tχ1(t) (3.60)

α̇s = |µ2|αe − w21(t+ αd)T b1(t) + w22(t+ αd)Tχ2(t) (3.61)

where αe = αm−αs. As discussed previously the M-OSC distributes its phase to the
S-OSC which explains why αd has a component in both the αm and αs direction. We
can therefore also write (3.60) as

α̇m = w1(t+ αm)Tχ1(t) (3.62)

The interpretation of the different representations in (3.62) and (3.60) will be discussed
further in this and the next section.

From (3.62) we see that the M-OSC phase is without reference and it is therefore
neutrally stable. Because the S-OSC is frequency locked to the M-OSC it is forced to
counteract any change in the injected phase to ensure Barkhausens criterion is upheld at
all times. We can then understand (3.60) as the S-OSC being neutrally stable but only in
the direction of the M-OSC phase. Due to the neutral stability, the noise perturbations in
the direction of the M-OSC phase builds up unhindered. Through the operator P1 these
perturbations are then transferred directly to the S-OSC phase. In figure 3.3(a)-3.3(b)
we illustrate some of these points. The figures show the S-OSC phase, as represented
by a ball, in the potential-well that was created in the saddle-node bifurcation, which
initiated the synchronized state. The potential in figures 3.3(a)-3.3(b) represent one of
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Figure 3.3: Illustrating the equivalence, in the S-OSC domain, of a αm and a αe directed
perturbation. The phase of the S-OSC is depicted as a ball in a potential-well of the
inclined periodic potential. Solid ball = phase before perturbation, dashed ball = phase
after perturbation. a) The M-OSC phase is perturbed and the S-OSC phase will be
removed from its equilibrium at the bottom of the well. The bottom part of the plot
shows the transient of S-OSC phase in response to the perturbation. Note that the
reference-perturbation shifts the equilibrium point of the well. b) In this figure the S-
OSC phase is perturbed in the direction of αe. The strength of the perturbation is equal
to the reference perturbation in a) but the direction is now opposite. Apart from a
constant reference the two situations are identical.
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the wells in the inclined periodic potential as illustrated in the top part of the figures.
The S-OSC phase is assumed in equilibrium at the bottom of the well. As will be further
illustrated later, the M-OSC sets the equilibrium point of the potential-well and so at
the time of perturbation this origin is shifted. The S-OSC phase, however, stays at the
position where it was before the perturbation, now illustrated by a dashed dot in figure
3.3(a). The system, which represents a stable phase locked solution, will then initiate a
transient to regain equilibrium which is shown in the lower part of the figure. After this
has happened, both the M-OSC and the S-OSC have moved a step ∆α which once again
illustrates that both oscillators are neutrally stable in the direction of the M-OSC phase.
Another way of saying this is that the M-OSC sets a phase reference that the S-OSC
must follow. In figure 3.3(b) we see the response of the S-OSC to a −∆α perturbation
generated by the operator P2. Comparing the transients in figure 3.3(a) and 3.3(b) we
see that they are identical except for the bias shift in figure 3.3(a).

3.2.3 Characterizing the Self-Referenced S-OSC Phase

Equation (3.62) describes the dynamics of the noise perturbed M-OSC phase. From the
discussion in [14], section 2.1.2, section 2.2.1 and appendix A.2 we know that, asymptot-
ically with time, this stochastic process is defined by

E[α2
m(t)] = D11t (3.63)

E[αm(t1)αm(t2)] = D11 min(t1, t2) (3.64)

where D11 = 1
T1

∫ T1

0 wT1 (η)w1(η)dη is the M-OSC diffusion constant and T1 = 2π/ω1.
For the S-OSC we define D21 = 1

T1

∫ T1

0 wT21(η)w21(η)dη. Using the same arguments as the
author in [49] we define the S-OSC diffusion constantD22 = 1

T1

∫ T1

0 exp(2|µ2|η)wT22(η)w22(η)dη.
We can now write the system (3.60)-(3.62) on the simplified form

α̇m =
√
D11b1(t) (3.65)

α̇s = |µ2|(αm − αs) +
√
D21b1(t)−

√
D22b2(t) (3.66)

α̇e = −|µ2|αe −
√
D22b2(t) (3.67)

where b1 : R → R and b2 : R → R are Gaussian unit variance delta-correlated
noise processes

〈
bi(t1)bj(t2)

〉
= δijδ(t1−t2). The system (3.65)-(3.67) illustrates the

meaning behind the term macro model coined by the authors of [14]. We see that the
model contains all the different stochastic perturbing signals in two uncorrelated noise
contributions b1 and b2. In (3.65) we have chosen the representation where αm model the
neutrally stable variable. As discussed in the previous section, the actual neutral variable
is the diagonal phase, αd. We shall return to this point later. Furthermore, since D21

may be different from D11 the error phase is no longer defined as αe = αm−αs. Instead
it simply represent the dynamics in the case where the M-OSC is silent (b1 = 0).

Our aim is to derive steady state probability density of the S-OSC self-referenced phase
(SR-P) ∆s = αsτ −αs (αi ≡ αi(t), αiτ ≡ αi(t+ τ)) which will be shown to be stationary.
One way of doing this would be to write the Fokker-Planck equation for the system (3.65)-
(3.67) and then solve this partial differential equation for the joint probability density
conditioned on sharp initial conditions [39]. However, we shall follow a different and
more intuitive approach here. Inspecting (3.66) and figures 3.3(a)-3.3(b) we see that the
S-OSC phase αs is perturbed in two distinct ways. Figure 3.3(b) represents an internal
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perturbation caused by the S-OSC noise sources, as represented by b2 in (3.66)-(3.67). In
a fixed reference frame b1 = 0, the dynamics due to this perturbation is captured by the
error phase αe in (3.67). This equation represents the S-OSC dynamics in the potential
well under the assumption of a fixed reference frame. The perturbation theory discussed
in this paper is linear in the sense that we do not consider cycle slipping [42] between
the potential wells in figure 3.3(a)-3.3(b). This means that αe ∈ [n/T1; (n+1)/T1] where
and n is an arbitrary integer. Assuming a low noise-to-signal ratio, D22, it can be shown
that the steady-state solution to (3.67) is well approximated by a Gaussian distribution
with mean zero and power σ2

e = D22/(2|µ2|) [42]. We shall subsequently assume that all
transients have died out and that this stationary distribution has been reached. Using
standard probability theory [39], [42] one then finds that ∆e = αeτ − αe is a Gaussian
stochastic variable with mean zero and power

σ2 = 2σ2
e(1− ρτ ) = (D22/|µ2|)(1− ρτ ) (3.68)

where we have defined ρτ = exp(µ2|τ |).
Figure 3.3(a) shows the response of the S-OSC phase to an external perturbation as

represented by the macro noise source b1 in (3.65)-(3.66). From inspecting (3.66) and the
transient in the lower part of figure 3.3(a) we see that the neutral stability of the M-OSC
results in a shifted bias of the potential well (relocation of equilibrium). The only model
capable of capturing this kind of neutrally stable behavior is on the form

αs =
∫
η(s)ds (3.69)

where η is an unspecified, zero mean, noise source. This once again underlines that
αd, and not αm, is the neutral variable. If we were dealing with a free-running oscillator,
η would be δ-correlated and αs would be represented by a Wiener process [14]. However,
from figure 3.3(a) it is clear that η must be a colored noise source. Since the relaxation
time constant of the potential in figure 3.3(a) is |µ2|−1 and since the M-OSC perturbations
are zero mean Gaussian with power D21, it should be clear that η is zero mean Gaussian
with an autocorrelation function which is given as [39]〈

η(t)η(t+ τ)
〉

= (D21/2|µ2|) exp(µ2|τ |) (3.70)

The process defined as the integration of the variable described through (3.70) is non-
stationary; however, its increment is a stationary Gaussian variable [47] with mean zero
and power

σ2 = D21|τ | − (D21/|µ2|)(1− ρτ ) (3.71)

Using (3.68) and (3.71) we can write the distribution function for the S-OSC SR-P,
∆s, as

p(∆s) =
exp

[
− ∆2

s
2(2σ2

s(1−ρτ )+D21|τ |)

]
√

2π(2σ2
s(1− ρτ ) +D21|τ |)

(3.72)

So ∆s is a stationary Gaussian distributed variable with mean zero and power

σ2 = 2σ2
s(1− ρτ ) +D21|τ | (3.73)

where



3.2. A PHASE MACRO MODEL FOR THE SUB-HARMONIC
INJECTION LOCKED OSCILLATOR (S-ILO) 73

M-OSC NOISE S-OSC NOISE
f

Sn(f )

CORRELATED MACRO
NOISE SOURCE

δ−

BURST NOISE MACRO
NOISE SOURCE

∼ ( ) dt( ) dt

φs(t)

f

f

Sn(f )

Figure 3.4: The ILO phase noise macro model. All M-OSC δ-correlated noise sources
in are represented by a single burst noise source which is integrated directly into the
S-OSC phase φs. All S-OSC delta correlated noise sources are represented by a single
δ-correlated macro noise source.

σ2
s = (D22 −D21)/(2|µ2|) (3.74)
ρτ = exp(µ2|τ |) (3.75)

From the above discussion it is seen that the total effect of the δ-correlated noise
sources in the S-OSC domain are combined in a δ-correlated macro noise source with
power D22. Furthermore, the M-OSC noise sources are combined in a separate macro
source. However, from (3.70) this source is not a δ-correlated but a burst (popcorn) macro
noise source. In figure 3.4 we illustrate the phase macro model of the noise perturbed
ILO.

3.2.4 The Spectrum of a Noise Perturbed Injection locked oscillator

We write the steady-state S-OSC solution using the Fourier expansion

xs(t) =
∞∑

i=−∞
Xie

jiNω1t (3.76)

where it is used that the oscillation frequency of the S-OSC is Nω1. We then define
the autocorrelation function of the noise perturbed ILO as

Γs(t, t+ τ) = E
{
xs(t+ αs(t))x∗s(t+ τ + αs(t+ τ))

}
. (3.77)

Each term in the resulting sum will contain a factor

exp(−jkNω1τ)E[exp(jNω1βik(t, τ))] (3.78)

where i, k are summing integers and we have defined the new variable

βik(t, τ) = iαs − kαsτ (3.79)

We see that we have to specify the characteristic function for this stochastic variable.
Let us first note that for i = k we have βik(t, τ) = k∆s which was proven in the last
section to be a zero mean stationary stochastic variable. Using the fact that αs = αe+αm
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we can write E[βik(t, τ)] = (i − k)m and E[βik(t, τ)2] ∝ (i − k)2t (see [14], [49]). Since
the characteristic function of a Gaussian stochastic variable with mean m and power σ2

is equal to exp(jm−0.5∗σ2) we see that all components of the characteristic function for
i �= k vanish asymptotically with time. Using the results of the above discussion together
with (3.73) we find the following asymptotically stationary autocorrelation function for
the S-OSC

lim
t→∞Γ(t, t+ τ) = Γ(τ) =

∞∑
i=−∞

|Xi|2e−jiNω1τ exp
(
−1

2
iNω1[2σ2

s(1− ρτ ) +D21|τ |]
) (3.80)

In appendix C.6 we use the result in (3.80) to find the spectral density of the S-OSC.
Using the definition of single sideband (SSB) phase noise spectrum [14]

L(ωm) = 10 log
{
S(ω1 + ωm)/(2|X1|2)

}
(3.81)

together with the identity

D21+2σ2
s |µ2| = D22 (3.82)

which can be derived from (3.74), we can write the SSB phase-noise of the S-OSC at
frequency offset ωm as

Ls(ωm) = 10 log

[
(Nω1)2D22[ω2

m+D21
D22

µ2
2]

[(1
2N

2ω2
1D21)2+ω2

m][µ2
2+ω2

m]

]
(3.83)

Letting the coupling go to zero as represented by µ2 → 0 and using (3.82) the above
expression reduces to

Ls(ωm) =
|µ2|→0

10 log

[
(Nω1)2D22

(1
2N

2ω2
1D22)2+ω2

m

]
(3.84)

which is identical to the spectrum of a free-running oscillator [14]. Furthermore, if we
let D21 = D22 while keeping a finite coupling strength |µ2| we again recover (3.84) from
(3.83). This means that the boundary D21 = D22 represents a qualitative change in the
spectral density of the ILO. Here we shall use the term locked to describe the scenario
D21 < D22 and the term tracking [56] to describe D21 > D22. The difference between
the two situations is illustrated in figure 3.5.

We can now propose the following algorithm to derive the spectrum of a noise per-
turbed ILO using the phase macro model :

1. calculate the periodic steady state and the associated monodromy matrix.

2. find the Floquet eigenvector v1 belonging to the neutral direction µ1 and check if it
has the form described in theorem 3.4, on page 69, i.e. search for an n1 such that
for all i > n1 we have v1(i)/v1(n1) < ε1

16 and v1(i) is the i’th component of v1.
16ε1 is a small number that must reflect the fact that the coupling is never 100% unilateral. We can

choose ε1 on the order 10−10.
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Figure 3.5: Figure illustrating the qualitative transition in the spectrum appearance as
the boundary D21 = D22 is crossed. The plot uses the parameters N = 1, ω1 = 2π rad/s,
D21 = 1 × 10−5, D22 = 1 × 10−7 (tracking) and D22 = 1 × 10−2 (locked). Furthermore
the locking bandwidth is chosen through the µ2 parameter as |µ2| = − log2(0.9)(2π/ω1).

3. Set u12(1 : n2) = u1(n1 + 1 : n) and normalize this vector. Search all Floquet
vectors ui (i �= 1) for which ui(k)/ui(n1 + 1) < ε1 for all k ≤ n1. Having found
such a vector for i = j, set u22(1 : n2) = uj(n1 + 1 : n) and normalize this vector.
If |uT22u12| = 1± ε2 17 then vectors are parallel and there is a possibility for an ILO
solution.

4. set u1 = ẋss(0) and u2 = ẋs(0) and normalize the projection vectors uTi vi = 1.

5. Integrate the linearized dynamics for one period with the normalized v1 and v2 as
initial conditions. Multiply by the noise modulation matrix B to create w1, w21

and w22 (see (3.57)-(3.59)). The two diffusion constant D21 and D22 are then given
as the mean of w21(t)Tw21(t) and exp(2|µ2|t)× (w22(t)Tw22(t)), respectively.

6. Calculate the SSB spectrum according to (3.83).

Finally we would like to compare (3.83) with the noise-model for the S-ILO proposed
in [55]. Using Harmonic Balance (HB) techniques the authors of of this paper derived
the following expression for the S-OSC spectrum

Ls(ωm) =
{cos(N∆φ̂)∆ωL}2N2Lm(ωm) + ∆Ω2

ω2
m + {cos(N∆φ̂)∆ωL}2

(3.85)

where Ls(ωm) and Lm(ωm) is the phase noise of the S-OSC and the M-OSC, respec-
tively, at offset frequency ωm, ∆ωL is the locking range, ∆φ̂ is a constant phase offset
between the injected tone and the S-OSC phase, and ∆Ω is related to the jitter of the
S-OSC. This expression reveals two important traits. Firstly, since Lm(ωm) ∝ ω−2

m [58],
17ε2 is a small number that must reflect the fact that u2 = ẋs + O(ε) with ε being a small bound (see

discussion in section 3.2.1 an theorem 3.2). Furthermore, we are dealing with finite precision steady-state
and eigenvalue/vector calculations. The bound ε2 will hence also depend on the truncation error of the
integration routine as well as other parameters. We set ε2 on the order 10−2.
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it is seen that the noise of the master dominates close to carrier. This represents the
phase-cleaning property of the S-ILO which was briefly discussed in the introduction to
this report. Secondly, inspecting (3.85) it is observed that the penalty for subharmonic
locking is a factor N2. The characteristics contained in the model in (3.85) have all been
experimentally verified [54],[55] and should be inherent in any model trying to capture
the main qualitative dynamics of a subharmonic ILO perturbed by noise. One flaw of
the analysis in [55] is that the model is based on linear perturbation techniques. It was
shown in [14] that these methods are incapable of capturing the correct asymptotic phase
dynamics of free-running oscillators. This statement holds for all autonomous systems
which converge to an asymptotically stable periodic solution and therefore also injection
locked oscillators.

In order to compare our result with (3.85) we have work with a definition of phase
noise in natural numbers. We can then write the phase noise of the M-OSC as

Lm(ωm) =
ω2

1D11

(1
2ω

2
1D11)2 + ω2

m

≈ ω2
1D11

ω2
m

(3.86)

where the last approximation holds for ωm � 0.5ω1D21. Using this approximation
we see that we can write (3.83) as (in natural numbers)

Ls(ωm) =
(D21/D11)N2Lm(ωm)µ2

2 + (Nω1)2D22

µ2
2+ω2

m

(3.87)

At this point it would be useful understand the physical significance of the second
Floquet exponent µ2. In the special case where M-OSC and S-OSC in figure 3.1 represent
harmonic oscillators it is possible to derive an analytical expression of the dynamics on
the torus T1 in figure 3.2. This can be done through center manifold reductions followed
by normal form transformation and the use of averaging procedures 18. In section 3.2.1
we carried out these calculations, and by inspecting (3.46) and (3.47), on page 66, we
find that one can identify |µ2| with the effective locking bandwidth

|µ2| = |ζ| = Nκ cos(Nθ̂e) = ∆ωL cos(Nθ̂e) (3.88)

where ∆ωL is the locking bandwidth. The fact that the effective locking bandwidth
can be identified as the eigenvalue pertaining to the second Floquet eigenvector u2 is
another plus of the algorithm described above. Using the result in (3.88) together with
the identification

∆Ω = Nω1

√
D22 (3.89)

we arrive at the expression (3.85) for the case D21 = D11. Since (3.83) contains the
result from [55] as an approximation we conclude that (3.83) captures all the important
relevant qualitative properties of the noise perturbed S-ILO such as the 20 log(N) penalty
for subharmonic locking, the fact that the M-OSC dominates close to the carrier etc. The
situation where D21 �= D11 is however not contained in the model described in [55].

3.2.5 Verification of the Developed Model

In [59] Demir et al. demonstrate how to calculate the autocorrelation matrix of a noise
perturbed circuit using a time domain formulation. Starting from the variational equation

18The literature pertaining to this type of analysis of coupled harmonic oscillators is vast, and we shall
not attempt to review even a small portion of it here. Representative examples can be found in [32],
[6],[38], [19]
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Figure 3.6: ILO#1 : The oscillator energy restoring circuit is modelled as a tanh nonlin-
earity : solid line = direct integration, dashed line = equation (3.73). The curves above
the bold straight line represent the locked case (TN2 = 290K) and the curves below
represents the tracking scenario TN2 = 0.001K.

and using results from the field of stochastic integration the authors derive an algorithm
for the numerical calculation of the autocorrelation matrix. Later this theory in was
extended in [60] so that it could be applied to phase noise in oscillators. We have im-
plemented a small C-program [61] that implements the algorithm described in section
3.2.4 as well as the algorithm outlined in [60]. We shall use [60] as a method for verifying
the result for the S-OSC SR-P in (3.73). Throughout this section we will assume linear
coupling Gmi (see figure 3.1). Furthermore, the noise contribution from the circuit resis-
tances R is assumed to be pure thermal noise with power density in =

√
4kT/R, where k

is Boltzmann’s constant and T is the absolute temperature, where we assume T = 290K
unless stated otherwise 19.

ILO#1 : Harmonic Oscillators

A simple LC tank oscillator is governed by the state equation

Li̇L = vC (3.90)
Cv̇C = −iL − vC/R+GM (vC) (3.91)

where vC and iL constitute the state variables in form of a capacitor voltage and a
inductor current, respectively, and C,L,R are the passive components of a parallel LCR
resonator tank circuit. Depending on the form of the energy restoring circuit component,
as represented by the transconductance GM , this system can model both harmonic as
well as relaxation oscillators 20. A common choice for GM is the tanh nonlinearity which
models the differential mode of a cross-coupled oscillator

GM (vC) = S tanh
({

Gn
S

}
vC

)
(3.92)

19we refer to the text in appendix A for a discussion on noise modelling.
20by the term relaxation oscillators we refer to periodic solution with multiple time constants and not

singular oscillators.
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Figure 3.7: ILO#2 The oscillator energy restoring circuit is modelled as a third-order
polynomial and the parameters are set to ensure a relaxation-type solution : solid line =
direct integration, dashed line = equation (3.73).

which we shall now investigate. In the following, circuit components pertaining to
the M-OSC will have subscripts 1 and S-OSC components will have subscripts 2. We
choose Si = 1/Ri, Gni = −2.5/Ri, R1 = 500Ω , R2 = 50Ω, Li = 1.59H, Ci = Li/100F .
The resonator components are chosen so that ω1 = 2π. In figure 3.6 we plot the power
of the S-OSC SR-P ∆s as a function of the observation time τ . The results of the direct
integration of the SDE formulation in [60] is shown as solid lines and the curves based on
the result in (3.73) is plotted as a dashed line. Also shown is the power of the M-OSC
SR-P which plotted as straight bold line. Since σ2

s > 0 in this case we see that the curves
initial slope is greater than the M-OSC SR-P slope and the asymptotic slope is equal
to the M-OSC SR-P. The last point is a consequence of the fact that D21 ≈ D11 (see
discussion in 3.2.3). Referring to the discussion in section 3.2.4 we know that the model
described in this paper is capable of capturing the effect of tracking. This term pertains
to a situation where the M-OSC is more noisy than the S-OSC and it is modelled here
by a very low S-OSC noise temperature TN2. In the lower part of figure 3.6 we show
the curves corresponding to the oscillator ILO#1 in tracking mode with TN2 = 0.001K.
Since σ2

s < 0 in this case we see that the curves initial slope is smaller than the M-OSC
SR-P slope.

ILO#2 : Relaxation Oscillators

Considering the system of equations (3.90)-(3.91) with

GM (vC) =
(
ai +mivC + biv

2
C

)
vC (3.93)

Unlike the differential mode oscillator in (3.92), the above function is able to model the
effects of a dynamic DC point. The parameters are given as : ai = 25.0/Ri, bi = (2/3)ai,
mi = 0.25ai, Ri = 500Ω , Li = 1.59H, Ci = Li/100F . This will ensure that the solutions
of the individual oscillators will converge onto a relaxation-type orbit with the second
Floquet character being equal to λ2 ≈ 0.04 (almost singular solution). In figure 3.7 we
compare the theoretic results in (3.73) with the direct SDE integration for this type of
oscillator. To model a situation where the S-OSC is more noisy than the M-OSC (locked
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solution) we raise the noise floor of the S-OSC by setting TN2 = 5000K. Since σ2
s > 0 in

this case we see that the curves initial slope is greater than the M-OSC SR-P slope.

ILO#3 : Third Order Ring Oscillators
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Figure 3.8: ILO#3. The oscillator energy restoring circuit is modelled as a tanh nonlin-
earity : solid line = direct integration, dashed line = equation (3.73).

In this case we have the state equations

Cv̇Ci = −vCi/R+ tanh
(
GmvCj

)
/R i ∈ {0, 1, 2} (3.94)

where j = i− 1 mod 3. We choose R1 = 1kΩ, R2 = 10kΩ, C1 = 1mF , C2 = 0.1mF
resulting in an oscillation frequency of ω1 ≈ 2π. In figure 3.8 we compare the theoretic
results in (3.73) with the direct SDE integration for this type of oscillator.



Chapter 4

n Unilaterally Ring-Coupled
Harmonic Oscillators Perturbed by
White Noise
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Figure 4.1: n unilaterally ring coupled van der Pol oscillators

Figure 4.1 shows n LC oscillators coupled unilaterally in a ring configuration with an
explicit phase shift of β radians inserted between oscillator #n and oscillator #1. In the
following we shall also refer to this structure as the unilateral ring, the unidirectional ring
or simply the ring. The structure in figure 4.1 is a multi-mode system1, implying that
the circuit can oscillate in n different frequency locked states, also called a modes. The
analysis in this chapter will concentrate on investigating the characteristics of the circuit
in figure 4.1 in the so-called dominant mode where each oscillator trails its immediate
neighbor by a fixed phase shift of −β/n radians. We shall argue, that starting from
"normal" initial conditions, the unilateral ring will always start up in this mode. Although
we shall cover many different areas with regards to the analysis of the unidirectional ring,

1note that in this report, the term "multi-mode system" does not imply a multi-mode oscillation
although this is a real possible [62],[63]. We simply mean that the circuit contains the possibility of
different modes.
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the main emphasis will be put on explaining the newly discovered coupling induced AM-
PM noise conversion phenomena [6],[19],[20].

The text can be divided into two parts, with sections 4.1-4.4 involving the various
steady-state issues while sections 4.5-4.7 discuss the linear response of the system to white
noise perturbations. We start in section 4.1 by investigating which modes are possible
with the coupling structure in figure 4.1. The natural way to approach this issue is to
take advantage of the inherent symmetry of the network and examine the configuration
using group theoretic methods, as was introduced in section 1.3. As will be shown in
section 4.1.1, using this methodology it is possible to derive a complete list of all the
modes which are flow invariant with regard to the actions contained in the symmetry
group of the circuit in figure 4.1. However, the symmetry approach is not the only option
and in section 4.1.2 we shall present an alternative steady-state procedure. Section 4.2
gives a short overview of the main areas of application for the unilateral ring, which has
been extensively studied in connection with low-power/noise RF/microwave multi-phase
signal generation.

The canonical amplitude/phase equations of the n oscillator unilateral ring are derived
in section 4.3 using an averaging approach 2. In the model described in this chapter we
assume that each oscillator cell in the coupling network can be described as a van der Pol
unit [38] [42], which is represented by the state equations

L
∂iL
∂t

= −vC (4.1)

C
∂vC
∂t

= iL − vC
R

+Gmo(vC) (4.2)

These equations model a dampened parallel LC circuit shunted by a third order
nonlinear negative resistance Gmo(vC) = g1vC + g2v

2
C + g3v

3
C , as illustrated in figure 4.1,

where vC is the capacitor voltage and iL is the inductor current. At this point a relevant
question would be :

will fixing the type of oscillator this early in the process yield a less general model?

The answer to this question is, fortunately, no! We refer here to the discussion in sec-
tion 1.1 where it was shown that the van der Pol oscillator is the simplest model that is still
be able to faithfully capture all of the qualitative dynamics of an arbitrarily higher order
isochronous harmonic oscillator. Briefly, this follows from the center-manifold theorem,
which reduces the state space of an arbitrary higher dimensional system to the complex
plane, and from the normal form method, which equates all qualitative equivalent non-
linear terms. Furthermore, as was explained in section 1.1, the averaging procedure is
nothing but an analytical shortcut to produce these normal form equations. The av-
eraged van der Pol equations are therefore the natural choice used by most authors to
model the qualitative dynamics of coupled oscillators without inherent frequency control
(varactors).

The usual approach towards a qualitative analysis of coupled oscillators is to consider
the phase-only model 3 [27],[64], [65] where the amplitude equations are neglected. How-
ever, as will be illustrated in the last three sections, in some situations, the phase-only

2averaging theory, as it is applied to harmonic oscillators, is thoroughly explained, by example, in
appendix B where a general non-isochronous second order oscillator is studied. We refer readers not
familiar with this subject to this text as an user-friendly introduction to the theory.

3the Andronov-Hopf normal form, which is the relevant normal form for harmonic oscillators, preserves
the symmetry of the circle S

1. Considering only asymptotic dynamics or assuming a very tight coupling



4.1. MODES OF N UNIDIRECTIONAL RING COUPLED IDENTICAL
HARMONIC OSCILLATORS 82

approach fails to produce a reliable 4 model. This will become apparent in section 4.4
where we investigate the linear stability of the dominant mode. Among other things, it
will be shown that the amplitude equations are necessary to predict the stability of the
configuration (n, β) = (2, π), known as the cross-coupled quadrature oscillator (CCQO),
where the phase shift equals −π/2. Then in section 4.5 we shall begin to look at the main
subject of this chapter, namely the above mentioned coupling induced AM to PM noise
conversion. The phenomena is investigated for the general n oscillator ring structure
using three different analytical methods which all lead to the same result. We end this
chapter in section 4.7 with a detailed study of the CCQO. The stochastic normal form
differential equations of this specific circuit were studied, by the author, in a series of
papers [6],[19],[20] with emphasis on characterizing the noise properties through linear
response theory. The text contains an extensive review of the model, including all those
calculations which were too bulky to be included in the papers.

4.1 Modes of n Unidirectional Ring Coupled Identical Har-
monic Oscillators

In this section we shall investigate the steady-state properties of the unidirectional ring
in figure 4.1. The steady-states are represented by frequency-locked solutions, or modes,
where the n oscillators are synchronized and there exist fixed phase shift (possible zero)
between each of the cells. We shall approach the problem from two different directions.
Section 4.1.1 investigates the method described in [29], where the system is characterized
through the isotropy subgroups corresponding to the spatio-temporal symmetries of the
different modes while section 4.1.2 describes a simpler, although less general, algorithm.
The two proposals produce different results, and this is briefly discussed in section 4.1.3.

Referring to the discussion in section 1.1, the Zn × S1 phase-only representation of
the system in figure 4.1 is written as

dφi
dt

= 1 + κΦi(φ1, · · · , φn) i = 1, 2, · · ·n (4.3)

where φi is the phase of the i’th oscillator, κ is a positive parameter representing
the coupling strength and Φ = [Φ1 Φ2 · · · Φn] is the Zn equivariant vector field. The
derivation of the system in (4.3), from the original state equations describing the physical
dynamics, was explained in detail in section 1.1 5.

4.1.1 Ashwins’s Symmetry Approach

Steady-state analysis of (4.3), based on the symmetry of the coupled oscillator network,
was pioneered by Ashwin in [29] 6. This work, in turn, was inspired by Golubitsky et

to the limit cycles it is seen that the amplitude can be adiabatically removed. In this case the orbit state
is referenced by a single variable indexing the angle on the circle S

1. This index is the so-called phase of
the oscillator.

4by reliable, we take to mean a model which faithfully captures all qualitative effects, including linear
stability and response, of the original oscillator system.

5briefly, (4.3) follows by employing the center manifold theorem and the normal form method while
insisting on a normal hyperbolic invariant manifold - the so-called n-torus T

n. A normally hyperbolic
torus implies that the coupling strength κ is around one order of magnitude smaller than the dissipation
in the individual oscillators. The discussion in this text is hence limited to the weak coupling scenario
[66],[29].

6a review of basic group theory concepts was given in section 1.3 and we refer the readers, unfamiliar
with the subject, to this text.



4.1. MODES OF N UNIDIRECTIONAL RING COUPLED IDENTICAL
HARMONIC OSCILLATORS 83

al. [25], [37]. Here we review the methods and results derived in [29] for the purpose of
identifying the spatio-temporal symmetric modes of the circuit in figure 4.1. Following
this review we attempt to extend the original formulation in [29], which only discusses
the case β = 0, to included a finite explicit phase shift (β �= 0).

Zero Explicit Phase Shift : β = 0

In section 1.3 we introduced the analytical framework of group theory, as applied to the
steady-state analysis of n identical coupled oscillators. It was shown that the modes of a
coupled cell structure, where the coupling network exhibited the symmetry Γ, was found
from the isotropy subgroups Σ of the group Γ × S1. The coupling symmetry of figure
4.1, for β = 0, is represented by the cyclic group Zn which signifies that we can rotate
the structure in one direction only (clockwise). We are therefore interested in finding the
isotropy subgroups of Zn × S1. The isotropy subgroups Σ, which represent the spatial-
temporal symmetry of the solutions, can be split up into a spatial πs(Σ) and a temporal
πt(Σ) projection, respectively. We can therefore explicitly divide any action in Σ as
follows

γ ∈ Σ⇒ γ = (σ,w) ; σ ∈ πs(Σ) ; w ∈ πt(Σ) (4.4)

In this chapter we consider Γ = Zn. The spatial projection of Σ must hence be a
subgroup of Zn. This means that it is equal to Zm for some m dividing n [21], [25], [29] 7.
We therefore assume that we can write

n︸︷︷︸
n oscillators

= m︸︷︷︸
m oscillators

× k︸︷︷︸
in k groups

(4.5)

As seen from the above equation, for m �= n we consider several groups, each contain-
ing a set of identical oscillators. This loss of coherence must be the result of a symmetry-
breaking bifurcation [37]. As explained in section 1.3 the group Zm is generated by m
cycle. However, using (4.5), this generator can also be written as σk where σ is now the
n-cycle defined in (1.96)-(1.97) on page 33. The main points of the above discussion are
explained pictorially in figure 4.2, where we consider the example n = 12. From this
figure we see that, considering only spatial symmetry, we can write the oscillators in the
ring as 8

zi = ai , ai = aj for i = j mod k (4.6)

where ai is an arbitrary unit length phasor, as represented by a colored dot in the
figure. Using (4.4), the generators of the isotropy subgroups Σ, are then written as
(σk, w). Taking the m’th power of this action, we get

(σk, w)m = (σkm, wm) = (1, wm) (4.7)

Hence, we must have that wm = 1, which means that

w = ωkp p ∈ {0, 1, 2, · · · ,m− 1} (4.8)

where we have introduced the notation
7see figure 1.2 on page 34
8as explained in section 1.3, through normalization, the state of the individual oscillators can be

described by a unit length phasor zi = exp(jφi).



4.1. MODES OF N UNIDIRECTIONAL RING COUPLED IDENTICAL
HARMONIC OSCILLATORS 84

(m,k)=(6,2) σ2σ1

σ2σ1

σ3

σ1 σ2

σ3σ4

σ1(m,k)=(12,1)

(m,k)=(4,3)

(m,k)=(3,4)

Figure 4.2: The spatial symmetry of n coupled oscillators, with Γ = Zn, will be πs(Σ) =
Zm where m divides n, which means that n = m×k. In the above figure this is illustrated
for n = 12 oscillators. This division splits the 12 oscillators up into k groups of m
oscillators each. The oscillators belonging to the same group are here represented by
colored dots : group #1 = •, group #2 = •, group #3 = • etc. The figure shows the
effect of operating on the constellation with the n-cycle σ = (1, 2, · · · , n) as symbolized
by the looped arrow �. As is seen, the operator σk brings the constellation back to its
original form. Note that the subgroup (m, k) = (2, 6) is not included due to lack of space
in the figure.
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ω = ej
2π
n (4.9)

From (4.8) we see that the temporal projection of Σ is a subgroup of Zn, as predicted
in section 1.3 (see note 1.3 on page 35). The isotropy subgroups hence get the form [29]

Zm(p) = (σk, ωkp) p ∈ {0, 1, 2, · · · ,m− 1} (4.10)

If we first consider the case p = 0, then the fixed space of (σk, 1) is simply k groups
of m in-phase oscillators, where the absolute phase of the group members is arbitrary
(depending on initial conditions). Moving on to p = 1, the fixed space of (σk, ωk) still
divides the n oscillators into k groups of m oscillators, but now the phase-shift between
two adjacent oscillators within the group must be ωk. From this description follows that
the fixed space of (4.10) consists of k groups ofm oscillators where the phase shift between
the constituents of the same groups are ωkp = exp(j2πp/m). Using (4.6), we write this
as

fix(Zm(p)) = {z ∈ T
n|zi = aiω

ip ; ai = aj for i = j mod k} (4.11)

In figure 4.8 we illustrate the modes in (4.11) for the n = 12 oscillators, where
(m, k) = (4, 3). As is seen from the figure, the p parameter controls the the relative
phase shift of the oscillators within each group.

Finite Implicit Phase Shift β �= 0

We are looking for isotropy subgroups of the symmetry Z
β
n × S1, where Z

β
n represents

the symmetry of a ring with an explicit phase shift β. This is equivalent to considering
the original symmetry Zn × S1 operating on the broken ring φ ∈ [0; 2π − β]. Using
this formulation, the spatial subgroup has not changed from the above example and we
therefore have πs(Σ) = Zm. An action of πs(Σ) can then be written as σk, where σ is
the n-cycle and n = m × k as explained in connection with (4.5). However, because of
the added explicit phase shift we must write (4.7) as

(σk, w)m = (σkm, wm) = (1, wm) = (1, e−jβ) (4.12)

since the temporal part of the action must offset the explicit phase shift added to each
oscillator, as it is rotated around the ring. This means that we have

w = γkωkp p ∈ {0, 1, 2, · · · ,m− 1} (4.13)

where ω is still given by (4.9) and

γ = e−j
β
n (4.14)

Following the same procedure which led to the derivation of (4.11), with (4.13) substi-
tuted for (4.8), we find the following fixed point space for the isotropy subgroups Z

β
m(p)

fix(Zβm(p)) = {z ∈ T
n|zi = aiγ

iωip ; ai = aj for i = j mod k} (4.15)

4.1.2 Rogge’s Method

We now turn to the analysis described in [64],[65] where an alternative approach is em-
ployed to find the different modes of the ring.
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(m,k)=(4,3)

p=0

p=1

p=2

p=3

Figure 4.3: Illustrating the fixed space in (4.11) for n = 12 and (m, k) = (4, 3). The
oscillators belonging to the same group are here represented by colored dots : group #1 =
•, group #2 = •, group #3 = •. The relative phase shift of oscillators belonging to
the same group depends on the parameter p as φ = 2π/n · k · p = 2π/m · p where
p = {0, 1, · · · ,m− 1} (see (4.11)). Hence, for p = 0 the oscillators belonging to the same
group are phase shifted φ = 0, for p = 1 the shift is φ = π/2, p = 2 gives φ = π and p = 3
gives φ = 3π/2. The solution is invariant to a constant phase shift within one group,
since the phasors ai in (4.11) are not specified (the group phase shift has no significance
in the above plots).
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Zero Implicit Phase Shift β = 0

We can write the canonical normal form in (4.3) explicitly as

dφi
dt

= 1 + κ sin(ψi) i = 1, 2, · · ·n (4.16)

where we have defined the phase differences

ψi = φi − φi−1 i = 1, 2, · · ·n− 1 (4.17)

Using the definition in (4.17), we can write (4.16) as

ψ̇i = κ
(
sin(ψi+1)− sin(ψi)

)
i = 1, 2, · · ·n− 1 (4.18)

A fixed point of (4.18) must then imply that ψi = ψi+1 or ψi = π − ψi+1 which can
be written

(ψi − ψi+1)(ψi + ψi+1 − π) = 0 (4.19)

Adding all n− 1 phase differences gives the result

n−1∑
i=1

ψi = (φ1 − φn) + (φ2 − φ1) + · · ·+ (φn − φn−1) = 0 (4.20)

The above sum, is defined modulus 2π. It is possible to lift [22] the coordinates in
the above sum off the manifold Tn−1 and onto Rn−1. Carrying out this procedure means
that we can write (4.19) as

n−1∑
i=1

ψi = 2πp p ∈ {0, 1, · · · , n− 1} (4.21)

where ψi ∈ S1. The next step of the analysis then follows from assuming that ψi is
equal to α ∈ S1 or π − α, where α is undetermined at this point. This choice, which
follows from (4.19), is then inserted into (4.21), giving us the result

mα+ (n−m)(π − α) = 2πp α ∈ S
1 , p ∈ {0, 1, · · · , n− 1} (4.22)

Finite Implicit Phase Shift β �= 0

In this case the sum of the phase differences ψi plus the implicit phase shift β must equal
zero modulus 2π. This means that we can write (4.21) as

n−1∑
i=1

ψi + β = 2πp p ∈ {0, 1, · · · , n− 1} (4.23)

Following the procedure which led to equation (4.22), with (4.23) substituted for
(4.21), gives the following result

mα+ (n−m)(π − α) + β = 2πp α ∈ S
1 , p ∈ {0, 1, · · · , n− 1} (4.24)
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4.1.3 Discussion

The modes found using Ashwin’s symmetry method are summarized in equations (4.11)
and (4.15), which lists the fixed point spaces, corresponding to the flow invariant orbits of
the structure in figure 4.1, for β = 0 and β �= 0, respectively. Likewise, equations (4.22)
and (4.24) in the previous section list the possible modes as predicted by Rogge in his
PhD thesis [65]. Unfortunately, the two methods do not produce the same results. First
of all the two methods do not even produce the same number of modes! This is perhaps
most easily seen for n = 3 where (4.11) predicts 3 possible modes while (4.22) includes
3×3 = 9 modes. More specifically, the method described in [65] predicts the existence of
the so called elementary solutions [65, p. 91] which refers to α = 0 and m �= n in (4.22)
and (4.24). These modes are not found when using the formulation in [29]. Considering
the ring, with the parameters (n, β) = (3, 0), we get following 3 modes from (4.11) : 1
in-phase and 2 rotating wave ±π/3. These modes are also found in (4.15) (in multiple
copies), however, here we furthermore get modes with one group of 2 in-phase oscillators
plus one oscillator which is phase-shifted π radians respective to this group. These are
the elementary solutions for (n, β) = (3, 0). In [8], which considers the circuit in figure
4.1 with β = π, the mode analysis is similar to what is found in [64],[65]. Here the
authors find the circuit modes, specified by n identical phase shifts α, according to the
formulation

nα+ β = 2πp p ∈ {0, 1, · · ·n− 1} (4.25)

which is identical to (4.24) with n = m. We then see that the formulation in [8]
simply ignores the elementary solutions. It seems that the methods in [29], for m = n
i.e. no symmetry breaking, and equation (4.25) leads to the same results.

It is important to note that the different modes in (4.11) and (4.15) are not the
result of a bifurcation. We assume that the Jacobian, with respect to the explicit phase
shift β, is non-singular and therefore, according to the implicit function theorem 9, the
different orbits simply represents a continuous re-mapping of the fixed points 10, as a
function of the parameter β. From this description we see that mode numbers in (4.11)
and (4.15) must correspond to the same orbit, with new fixed points. In section 4.4,
where we consider stability and start-up issues, the following points will be of significant
importance

note 4.1 the mode numbers (m, p), in (4.11) and (4.15),
represent the same two orbits, where (4.15) simply models
the re-mapping of the fixed points by the parameter β. Most
importantly the mode Zn(0), corresponding to the in-phase
mode in (4.11), is paired with the rotating wave mode Z

β
n(0)

in (4.15) where the constant phase shift around the ring is
equal to −β/n.

By using the symmetry considerations in (4.11) and (4.15) we were able to make
the above observation, something which could not be done with the less sophisticated
methods described in [8] and [65].

9see footnote 34 on page 31.
10since we here consider periodic solutions, the introduction of the term "fixed points", which is

normally connected with transient systems, could, potentially, be confusing to some. However, by looking
at the problem through the formulation of a Poincaré map [21] this notation is perfectly reasonable/legal.
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4.2 Practical Applications of the Unidirectional Ring

Below we will include a list of some of the known areas of application for the unidirectional
ring in figure 4.1. This configuration has found uses, both as an electrical device, as
well as a mathematical model for the description of complex spatio-temporal symmetries.
Compared to other forms of coupling, such as all-to-all [27] and the bilateral ring [63], the
unilateral coupled ring structure is only very rarely used as a model to describe frequency
locked behavior in physical/biological systems. This, obviously, is connected with the
abundance of bilateral coupling, and the nearly non-existence of unilateral coupling, in
nature.

Many of the references collected by the author during his thesis, mostly dealing with
the analysis and design of quadrature oscillators, are included in this text. The idea is
that the interested reader could use this reference list as a starting point towards a self-
study of the subject. For a longer list of applications and references we refer to the PhD
thesis [65].

1. Multi-phase Oscillators : In modern transceiver designs, multi-phase, and more
specifically quadrature, signals are an essential part of an efficient modulation/de-
modulation scheme. This is the case with the so-called I/Q de-modulation methods
found in zero-IF and low IF receivers as well as in the various image-reject archi-
tectures. Multi-phase sources are also used in data recovery circuits (DRC) and
in fractional N dividers [11] to mention but a few areas. With so many potential
applications the research into an efficient electronic derivation of these signals has
been intense.

In 1996 Rofougaran et al. [5] proposed a novel CMOS oscillator producing quadra-
ture outputs. This circuit consisted of two differential LC oscillators coupled uni-
laterally in a ring structure, where one of the couplings was a cross-connection, thus
introducing an explicit 180o phase shift 11. This configuration, which is known as
the cross-coupled quadrature oscillator (CCQO), has since become one of the most
popular methods of producing quadrature signals and it has been implemented in
all kinds of variations and using many different technologies. The success lies pri-
marily with a low power consumption and good phase noise performance. The
main emphasis of research, with regards to this circuit, has centered on creating
design rules which would help limit phase noise and quadrature error. It is now
well established that there exist a tradeoff between these two design goals [6], [7],
[8], [19], [20], [67], [68]. We have collected quite a few papers on this circuit and
we shall categorize them according to whether the main emphasis is on analysis or
circuit implementation.

analysis : [6], [7], [8], [19], [20], [67], [68], [69], [70], [71], [72], [73].

circuit : [5], [74], [75], [76], [77], [78], [79], [80],[81], [82], [83], [84].

There exist several alternatives to the ring coupled architecture for the derivation
of multi-phase signals. Some of these are listed below

• Polyphase filters : Polyphase filters are Hilbert-type filters which are build using
passive R−C components [85]. With a single source on the input, the two out-
puts of this all-pass filter supply the quadrature signals. The main problems

11note that the oscillators have to be differential for this to work. We see that this circuit corresponds
to figure 4.1 with the parameters (n, β) = (2, π).
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encountered in integrated designs are related to chip size, power consumption
and to a lesser extent matching and bandwidth. In order to achieve a reason-
able bandwidth, several stagger-tuned sections have to be cascaded. This in
turn requires the filters to be preceded by noisy, power-hungry buffers [86],[87].

• Frequency dividers : By dividing the frequency of a signal, operating at 2ω, by
2, quadrature signals at frequency ω will result. This architecture can be very
power hungry especially in its simplest form consisting of two D flip-flops in a
negative feedback loop. However, variants which consider injection locked LC
or ring oscillators will perform better [88],[89].

• Ring Oscillators : By construction, ring oscillators produce multi-phase signals.
Due to the low Q and relative high power consumption, this option has a very
poor power/noise product [89], [90].

• Super-Harmonic Coupling : This is a rather new proposal works by coupling
two differential oscillators in a common-mode node [91], [92]. This means
that the second harmonic of the oscillators synchronize leading to the desired
phase relationship. Of the above options, super-harmonic coupling seems,
by far, to be the superior alternative. It might even outperform the CCQO.
However, because this configuration is still very new, this issue deserves further
investigations.

2. Antenna arrays : The two papers [9], [93] by Dussopt et al. document the work on
creating a circular polarized patch antenna by feeding each patch by the output of
a four stage unidirectional ring. As discussed in the papers, this construction gives
a wide bandwidth.

3. n-legged Animal Locomotion : In the book [37], Golubitsky et al. give a rare example
illustrating the unidirectional ring model applied to explain a biological phenomena.
They consider the neural network responsible for locomotion of an n-legged animal.
In this model a single neuron, as modelled by a harmonic oscillator, is responsible
for the movement of each leg.

4.3 A Quasi-Sinusoidal Model of the Unilateral Ring

In this section we shall derive the state equations which model the dynamics of the circuit
in figure 4.1 as well as the linear response equations which will be used in stability and
noise calculations. The oscillator cells are modelled as simple damped parallel resonators
shunted by a third order negative resistance and the coupling is assumed nonlinear.
Referring to the discussion in the introduction to this chapter and in section 1.1, we
know that this particular model will faithfully capture the qualitative dynamics of any
ring coupled system of isochronous harmonic oscillators of arbitrary complexity. Several
different modes are possible with the ring configuration in figure 4.1, as was discussed in
section 4.1. However, in this chapter we shall limit our analysis to the dominant mode
(see discussion in section 4.4) which is characterized by a fixed phase shift −β/n between
neighboring cells. Assuming identical oscillators we can set up the following KCL at cell
#i in figure 4.1 12

12since we in (4.26) only consider capacitor voltages we will not use the notation vC , iL from figure 4.1
and equations (4.1)-(4.1) to indicate capacitor voltages and inductor currents. Instead we use the lighter
notation vi, where it should be clear that vi ≡ vC,i.
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Cv̇i +
(

1
R
−Gmo(vi)

)
vi +

1
L

∫
vidt = Gmc(vi−1)vi−1 i ∈ {2, 3 · · ·n} (4.26)

where vi is the capacitor voltages, C,R,L are the capacitive, resistive and inductive
parts, respectively, of a parallel LRC resonator, Gmo models the oscillator energy restoring
circuit element and Gmc is the nonlinear coupling transconductance. Here, we shall model
both nonlinear components through a second order polynomial

Gmx(v) = gx0 + gx1v + gx2v
2 x ∈ {o, c} (4.27)

We have left out oscillator #1 in (4.26), which, as is seen from figure 4.1, constitutes
a special case since the injected current is shifted by a constant phase β. We will start
by deriving the averaged equations from (4.26), ignoring oscillator #1, which will then
be included at a later point.

In this chapter we consider harmonic oscillators or nearly harmonic oscillators where
the solution is dominated by the contribution from the first harmonic. The analysis in
these chapter is hence quasi-sinusoidal/harmonic 13 by which we mean that the solution
can be modelled as a harmonic carrier modulated by slow wave amplitude and phase
signals. For this to be a valid assumption with the oscillators in (4.26) we must require
that [6], [42]

go0 −GL
GL

1
Q

=
µ0

Q
� 0.1 (4.28)

where GL = 1/R 14 and

Q = ω0RC = R

√
C

L
(4.29)

is the oscillator quality factor and

ω0 =
1√
LC

(4.30)

is the natural frequency of the LC bandpass filter.
Considering the travelling wave mode (β �= 0), we see that each oscillator cell in

figure 4.1 will be injected with an external current which is out of phase with the internal
oscillator current. The result is that each oscillator is forced to operate at a frequency
ω1 which is different from the natural frequency ω0 of the resonator. Equivalently, the
resonator will be operated at a finite phase shift ψ. An expression for ω1 as a function of
ψ follows directly from standard textbook formulas [94] for the parallel RCL circuits 15

ω1

ω0
= ±tan(ψ)

2Q
+

1
2Q

√
4Q2 + tan2(ψ) (4.31)

For a large Q-factor the above equation reduces to
13we refer the reader to section 1.2 and appendix B for a discussion of averaging techniques and

quasi-sinusoidal analysis.
14here we use the notation 1/R = GL where the subscript L refers to the "load". We do not not use the

standard notation 1/R = G due to the similar symbols for the oscillator and coupling transconductances
Gmo and Gmc, respectively.

15see also the master thesis [38].
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∆ω = (ω1 − ω0) = ±ω0
tan(ψ)

2Q
(4.32)

We now write a phasor expression for the assumed quasi-sinusoidal capacitor voltage
signals

vi(t) = Ai(t) cos
(
ω1t+ φi(t)

)
= �{Ai(t) exp(jΦi(t))} i ∈ {1, 2 · · ·n} (4.33)

where

Φi(t) = ω1t+ φi(t) (4.34)

In (4.33), A(t) and φ(t) are the slow moving, also termed quasi-static, amplitude
and phase signals, respectively. Following the framework laid out in appendix B.1.1 we
now proceed to find the single pole, or first order Taylor, approximation for the parallel
resonator

Y (ω) = GL

[
1 + jQ

(
ω

ω0
− ω0

ω

)]
≈ GL

[
1 + jQ

(
ω1

ω0
− ω0

ω1

)]
+

jGLQ

(
1
ω0

+
ω0

ω2
1

)
(ω − ω1) = GL

[
1 + j tan(ψ)

]
+ jGLQ

(
ω1

ω0
+
ω0

ω1

)
(ω − ω1)

ω1

(4.35)

where we have used [94]

tan(ψ) = Q

(
ω1

ω0
− ω0

ω1

)
(4.36)

Using (4.31) we further find

ω1

ω0
+
ω0

ω1
=
ω2

1 + ω2
0

ω1ω0
=

(±ω0 tan(ψ)
2Q + ω0

2Q

√
4Q2 + tan2(ψ)

)2 + ω2
0

ω1ω0
=

ω0
2Q2

(
tan2(ψ) + 4Q2 ± tan(ψ)

√
4Q2 + tan2(ψ)

)
±ω0 tan(ψ)

2Q + ω0
2Q

√
4Q2 + tan2(ψ)

=
1
Q

√
4Q2 + tan2(ψ)

(4.37)

The last equal sign in (4.37) follows from the identity

tan2(ψ) + 4Q2 ± tan(ψ)
√

4Q2 + tan2(ψ) =(
± tan(ψ) +

√
4Q2 + tan2(ψ)

)√
4Q2 + tan2(ψ)

(4.38)

Inserting (4.37) in (4.35) we get the following approximation for the narrow-band
RCL filter

Y (ω) ≈ GL
[
1 + j tan(ψ)

]
+ jGL

√
4Q2 + tan2(ψ)

(ω − ω1)
ω1

(4.39)

Introducing the Kurokawa substitution [32], [33], [38] which was discussed in section
2.2.3 and appendix B

ω → ω1 − j 1
Â

dA

dτ
+
dφ

dτ
(4.40)
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while using (4.33) and (4.39), equation (4.26) is written as

Yi(ω)vi −Gmo(vi)vi = Gmc(vi−1)vi−1 ⇔{
GL

(
1 + j

2Q
ω0

∆ω
)

+ jGL
2Q
ω1

[
j

1
A

dAi
dt
− dφi

dt

]}
Ai exp(jΦi) +Gmo(vi)Ai exp(jΦi) =

Gmc(vi−1)Ai−1 exp(jΦi−1)
(4.41)

where we have used (4.32) as well as the approximation√
4Q2 + tan2(ψ) ≈ 2Q (4.42)

which is valid for moderate Q and ψ values. As explained and demonstrated in
appendix B.1.1 we can then find the amplitude and phase equations by :

1. taking the real part on both sides of (4.41).

2. multiplying with cos(Φi(t)) and sin(Φi(t)), respectively.

3. averaging the resulting equations over one period T1 = 2π/ω1 of the carrier.

At this point we return to the above mentioned special case of oscillator #1 in figure
4.1. Following the above derivations, we see that this case can be taken into account
by simply exchanging exp(jΦi−1) with exp(jΦi−1 + jβ) in (4.41). There is therefore no
need for any further derivations to include this case into the formulation. We find the
following 2n coupled first order ODE’s describing the quasi-sinusoidal dynamics of the
circuit in figure 4.1 [6], [19], [20]

1
Âi

dAi
dτi

= µo,i

[
1−

(
Ai
αi

)2]Ai
Âi

+
Gmc,i(Ai−1)

GLi
cos
(
φi−1 − φi + βδ1i

)Ai−1

Âi
(4.43)

dφi
dτi

=
2Qi
ω0i

∆ωi +
Gmc,i(Ai−1)

GLi
sin
(
φi−1 − φi + βδ1i

)Ai−1

Ai
(4.44)

i ∈ {1, 2, · · · , n|i = 1⇒ i− 1 = n}

where all parameters have received a subscript i in order to allow for a possible
introduction of asymmetry at a later stage in the analysis. The parameter µo was defined
in connection with equation (4.28), δij is the Kroenecker delta function. We have defined
the slow time τ and the free running amplitude α as

τi =
ω0i

2Qi
t (4.45)

αi =

√
4
3

(go0,i −GLi)
go2,i

(4.46)

Furthermore, the transconductances Gmo and Gmc now refer to the first harmonic
describing functions

Gmx,i = gx0,i − 3
4
gx2,iA

2
i x ∈ {o, c} (4.47)
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For the purpose of stability and noise calculations we shall now proceed to derive the
linear response equations from the nonlinear system in (4.43)-(4.44). We start by defining
the amplitude and phase difference of the i’th oscillator through

Ai = Âi + δAi (4.48)

φi−1 − φi = ∆φ̂i + δφi−1 − δφi (4.49)

where δAi, δφi describe small perturbations off the steady state, (Âi, φ̂i), of the i’th
oscillator and

∆φ̂i = φ̂i−1 − φ̂i (4.50)

Although our analysis in this chapter is restricted to the dominant mode ∆φ̂i = −β/n,
where the phase shift is independent of the oscillator index i, we keep the expressions
general by using the notation ∆φ̂i. The steady-state amplitude is given by Âi and this
parameter can be found by setting (4.43) equal to zero

µo,i

[
1−

(
Âi
αi

)2]
+
Ĝmc,i(Âi−1)

GLi
cos
(
∆φ̂i + βδ1i

)Âi−1

Âi
= 0⇔(

Âi
αi

)2

= 1 +
1
µo,i

Ĝmc,i(Âi−1)
GLi

cos
(
∆φ̂i + βδ1i

)Âi−1

Âi
⇔

Âi = αi

√
1 +

1
µo,i

ζi cos
(
∆φ̂i + βδ1i

)
(4.51)

where we have assumed that Âi−1/Âi ≈ 1 which is true for all practical cases and we
have introduced the coupling strength ζi as

ζi =
Ĝmc,i(Âi−1)

GLi
(4.52)

where from (4.47) we have

Ĝmc,i(Âi) = gc0,i − 3
4
gc2,iÂ

2
i (4.53)

The dynamics of the perturbations δAi, δφi are solved, to a first order approximation,
by the first variational of (4.43)-(4.44), which we write as

1
Âi

dδAi
dτi

= δA1,i
δAi

Âi
+ δA2,i

δAi−1

Âi
+ δA3,i(δφi−1 − δφi) (4.54)

dδφi
dτi

= δφ1,i
δAi

Âi
+ δφ2,i

δAi−1

Âi
+ δφ3,i(δφi−1 − δφi) (4.55)

where we have defined the different parts of the Jacobian as
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δA1 = µo,i

[
1− 3

(
Âi
αi

)2]
= −2µo,i − 3ζi cos

(
∆φ̂i + βδ1i

)
= −µa,i (4.56)

δA2,i = ζi(1− 2µc,i) cos(∆φ̂i + βδ1i) (4.57)

δA3,i = −ζi sin(∆φ̂i + βδ1i) (4.58)

δφ1,i = −ζ sin(∆φ̂i + βδ1i) (4.59)

δφ2,i = ζi(1− 2µc,i) sin(∆φ̂i + βδ1i) (4.60)

δφ3,i = ζi cos(∆φ̂i + βδ1i) (4.61)

where we in (4.56) have used the definition in (4.51) and µc is a parameter which
indicates the nonlinearity of the coupling function

µc,i =
gc0,i − Ĝmc,i

Ĝmc,i
(4.62)

The factor ζi(1− 2µc,i) in (4.57) and (4.60) originates from the first derivative of the
term Gmc,i(Ai−1)Ai−1/GLi in (4.43)-(4.44) with respect to Ai−1. Using (4.47) and (4.52),
we can write this derivative as

gc0,i − 3× 3
4gc2,iÂ

2
i−1

GLi
=
Ĝmc,i − 2

3gc2,iÂ
2
i−1

GLi
= ζi −

2
3gc2,iÂ

2
i−1

GLi
=

ζi − 2(gc0,i − Ĝmc,i)
GLi

= ζi

(
1− 2

gc0,i − Ĝmc,i
Ĝmc,i

)
= ζi(1− 2µc,i)

(4.63)

4.4 Linear Start-Up and Stability Analysis

In this section we shall utilize the linear response equations derived in the previous section
to investigate the stability of the ring in figure 4.1. As discussed previously in section 4.1,
the ring coupled system is a multi-mode circuit, potentially being capable of oscillating
in n different phase configurations. A complete analysis would then have to consider the
stability of each of these modes; an undertaking that would inevitably lead to tedious
and complex calculations. In this report we are not interested in modes which only occur
for special initial conditions; instead, we consider a practical electric circuit where the
capacitor voltages and inductor currents are initially assumed zero. As the power is
turned on, the oscillator starts up with oscillation being induced either by inherent noise,
a DC turn-on transient spike or a small injected pulse. We therefore consider the initial
condition (vCi, iLi) = (0, 0) and we are interested in identifying the possible modes that
could occur in a small region around this point in state-space. It can be shown that the
symmetric ring 16 will always start up in the same mode, which we refer to here as the
dominant mode. For zero phase shift (β = 0), this mode is the in-phase mode Zn(0) in
(4.11). We can easily construct a heuristic "proof" for this statement as follows

in the in-phase mode the current injected into each oscillator is, as the name suggests,
in-phase with the internal oscillator current. This means that the all the injected current
goes toward increasing the amplitude/power of the oscillators. From this description it

16although we consider the analysis of the completely symmetric circuit here, the results obviously also
hold, in a slightly altered form, for the nearly symmetric circuit. As explained in note 1.9 on page 32,
this follows from the implicit function theorem.
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is obvious that the in-phase open-loop gain, of the structure in figure 4.1 linearized fixed
point (vci, iLi) = (0, 0), is larger than what can be occur for any other mode in the system.
Barring some-kind of multi-mode solution, which is not considered in this text, only the
mode with the highest open-loop gain survives [8].

In section 4.1.3 it was explained how the in-phase mode Zn(0) in (4.11), was really
the same orbit as the travelling wave mode Z

β
n(0) in (4.15), where (4.15) simply modelled

a re-mapping of the fixed points. This was summarized in note 4.1 on page 88. From
this important identification we argue, although we shall not prove it, that the start-up
mode selection of in-phase oscillations in the unilateral ring, with β = 0, is inherited by
the travelling wave mode Z

β
n(0) in (4.15), for β �= 0. The mapping of system properties,

including open-loop gain, as a function of an introduced explicit phase shift, must be
continuous. Hence, the argument is most certainly true for small β. That it remains
true for an arbitrary β cannot be proved here. However, we refer numerical experiments
done by the author and the linear open-loop calculations made in [8] for the special case
(n, β) = (3, π), which all point in this direction.

From the above arguments and definitions, we state the following

note 4.2 The in-phase mode, Zn(0) in (4.11), is dominant
for the symmetric ring with β = 0. By the term domi-
nant we imply that the symmetric ring in figure 4.1, after
noise/small pulse-induced start-up, from the initial condi-
tions (vCi, iLi) = (0, 0), always oscillates in this mode. For
β �= 0 the mode selection property is inherited by the trav-
elling wave mode Z

β
n(0) in (4.15), where each oscillator is

phase shifted −β
n .

From the description in the above note, we can write the dominant solution as

∆φ̂i =

{
∆φ̂ = −β

n i = 2, 3 · · ·n
∆φ̂− β i = 1

(4.64)

and we see that the phase-shift of the dominant mode ∆φ̂ becomes independent of i.
As can be gathered from note 4.2, we shall in the following limit the scope to n identical
oscillators (see footnote 16), which means that parameter subscripts in (4.54)-(4.55) and
(4.56)-(4.61) can be ignored.

We start this section by deriving the Jacobian of the system in (4.43)-(4.44) for the
dominant mode in (4.64). We then proceed to consider the cases β = 0 and β �= 0
separately. In section 4.4.1, we consider the in-phase mode for β = 0, while the travelling
wave mode, for β �= 0, is considered in 4.4.2. In order for a mode to be stable all
eigenvalues of the Jacobian must have negative real parts. In [65], an investigation of the
linear stability of n unidirectional ring coupled phase only oscillators was undertaken.
The strategy here was to use Gershgorin’s theorem 17 which allowed for the stability
calculations to be made for an arbitrary n. In section 4.4.1 we shall explicitly calculate
all the eigenvalues of the in-phase mode with β = 0. Although much of the information

17Gershgorin’s theorem states that the eigenvalues of a matrix can be found inside circles in the complex
plan, with centers being given by the diagonal elements and radii calculated as the sum of the absolute
row members, corresponding to the diagonal being considered [95].



4.4. LINEAR START-UP AND STABILITY ANALYSIS 97

gained in this process is a repetition of what was said in [65], we also find some new
results. More specifically, the phase-only model used in [65] predicts that the in-phase
mode will be stable for all coupling strengths while we show that instability can occur if
the nonlinearity of the coupling transconductance is sufficiently strong.

Unfortunately, neither Gershgorin’s theorem nor explicit calculation of the eigenvalues
is possible for the travelling mode with β �= 0. For small β, or large n 18, the stability is
inherited from the in-phase mode but for larger β and moderate n nothing specific can
be said from the results in 4.4.1. We are interested in the specific case β = π and the
dominant mode −π/n. This circuit finds practical use as a multi-phase RF and microwave
source 19. Because of the analytic difficulties we are forced to consider special cases. In
4.4.2 we shall therefore investigate the configuration (n, β) = (2, π), which is known as
the cross-coupled quadrature oscillator (CCQO). The asymmetry and noise properties of
the CCQO was investigated by the author in the papers [6], [19], [20] and in section 4.7
we shall review this theory in detail.

In both 4.4.1 and 4.4.2 the analytical results are verified by numerical integration
results from the C-program [61] constructed by the author. One of the procedures of
this program plots the eigenvalues of the Monodromy Matrix (MM) 20, which is a state
transition matrix (STM), as a function of some circuit parameter. Briefly, if J is the
state space Jacobian, the MM is defined as

Φ(T1, 0) = exp(JT1) (4.65)

where T1 is the oscillator period. The eigenvalues of this matrix λM , which are called
the characteristic multipliers, are related to the Jacobian eigenvalues λ through

λM = exp(λT1) (4.66)

which, for a stable solution, lies inside the unit circle |z| ≤ 1 in the complex plane
z ∈ C.

Since we consider a stable oscillator, the Jacobian will contain a zero eigenvalue 21. As
this eigenvalue is implied, we do not need to include it in the calculations. By introducing
the phase difference perturbation variables δθ, from the phase perturbation variables δφ
in (4.49), as

δθi = δφi−1 − δφi i = 1, 3, · · · , n− 1 (4.67)

we cut the dimension of the state-space system by 1. This decrease accounts for the
zero eigenvalue which is removed by this change of notation. We hence consider the
2n−1× 1 perturbation vector

δv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

δA1
...

δAn
δθ1
...

δθn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.68)

18for small β or large n we have that the rotating wave mode phase shift −β/n is close to zero. This
mode hence has the same properties as the in-phase solution.

19see discussion in section 4.2.
20we refer to appendix D for a complete tutorial on Floquet theory, STM’s and MM’s.
21see note 2.1 in section 2.1.1 on page 39.
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The linear response of the system (4.43)-(4.44) is then written as

δv̇ = Jδv (4.69)

where J is the 2n−1 × 2n−1 Jacobian of the system. We shall write this matrix on
the block form

J =
[
J11 J12

J21 J22

]
(4.70)

where the division into sub-matrices follows directly from the state vector in (4.68),
which is seen to be split into a δA and a δθ part. Using (4.54)-(4.55) and (4.56)-(4.61) we
see that these matrices can be written for the symmetric circuit (indices i are ignored)

J11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µa 0 0 0 · · · ζ(1−2µc) cos(∆φ̂)
ζ(1−2µc) cos(∆φ̂) −µa 0 0 · · · 0

0 ζ(1−2µc) cos(∆φ̂) −µa 0 · · · 0

0 0
. . . . . . · · · 0

...
... 0

. . . . . .
...

...
...

...
...

. . .
...

0 0 0 · · · ζ(1−2µc) cos(∆φ̂) −µa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.71)

where the positive parameter µa was defined in (4.56)

J12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ζ sin(∆φ̂) 0 0 0 · · · 0
0 −ζ sin(∆φ̂) 0 0 · · · 0
0 0 −ζ sin(∆φ̂) 0 · · · 0
0 0 0 0 · · · 0
...

... 0
. . . · · · ...

...
...

...
...

. . .
...

ζ sin(∆φ̂) ζ sin(∆φ̂) ζ sin(∆φ̂) ζ sin(∆φ̂) · · · ζ sin(∆φ̂)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.72)

J21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ 0 0 0 · · · β α
α γ 0 0 · · · 0 β
β α γ 0 · · · 0 0
0 β α γ · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · β α γ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.73)

α = −ζ sin(∆φ̂)− ζ(1− 2µc) sin(∆φ̂) = −2ζ(1− µc) sin(∆φ̂) (4.74)

β = ζ(1− 2µc) sin(∆φ̂) (4.75)

γ = ζ sin(∆φ̂) (4.76)
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J22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2ρ −ρ −ρ −ρ · · · −ρ −ρ
ρ −ρ 0 0 · · · 0 0
0 ρ −ρ 0 · · · 0 0
0 0 ρ −ρ · · · 0 0
...

...
...

. . . . . .
...

...
...

...
...

...
. . . . . .

...
0 0 0 · · · 0 ρ −ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.77)

where ρ = ζ cos(∆φ̂).

4.4.1 Linear Stability of In-Phase Mode for the Unidirectional Ring
with β = 0

We state the following theorem

Theorem 4.1 The in-phase mode Zn(0) for the unilateral ring of n harmonic oscillators,
with β = 0, is stable, iff the condition

µc <

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
1 + 2µo+3ζ

ζ

)
for n even

1
2

(
1 + 2µo+3ζ

ζ cos
(

π
n

)) for n uneven

is fulfilled.

proof : considering the in-phase mode, we have ∆φ̂ = 0. Inspecting (4.72) and
(4.73) it is seen that both J12 and J21, for this mode, are equal to the zero matrix. The
eigenvalues of the Jacobian are hence found as the eigenvalues of the two matrices J11

in (4.71) and J22 in (4.77). These eigenvalues are calculated in appendix C.2 and C.3,
respectively, for an arbitrary ∆φ̂. From equation (C.27) in appendix C.2 and (C.42) in
C.3, we have the following 2n−1 eigenvalues

λi =

{
−µa − ζ(1− 2µc)

{
cos
(
i2πn
)
+j sin

(
i2πn
)}

i = {1, 2, · · · , n} for n even
−µa − ζ(1− 2µc)

{
cos
(
iπn
)
+j sin

(
iπn
)}

i = {1, 2, · · · , n} for n uneven
(4.78)

λi =

{
ζ
{
cos
(
iπ
n

)− 1 + j sin
(
iπ
n

)}
i = {n+ 1, n+ 2, · · · , 2n−1} for n even

ζ
{
cos
(

2iπ
n

)− 1 + j sin
(

2iπ
n

)}
i = {n+ 1, n+ 2, · · · , 2n−1} for n uneven

(4.79)
The eigenvalues for λi for i = {n + 1, n + 2 · · · 2n − 1}, shown in (4.79), will have a

real part smaller than zero for all coupling strengths ζ. We therefore concentrate on the
eigenvalues of J11 in (4.78). Using (4.56) we can write the amplitude relaxation parameter
µa, for the in-phase mode Zn(0), as

µa = 2µo + 3ζ (4.80)

Because of the term 3ζ, the only way the real parts of λi in (4.78) can become positive
is if the factor ζ(1 − 2µc) is negative. The largest positive term occurs when i = n (n
even) and i = 1 (n uneven).
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For n even the condition for instability becomes

−2µo − 3ζ − ζ(1− 2µc) > 0⇔ µc >
1
2

(
1 +

2µo + 3ζ
ζ

)
(4.81)

while for n uneven we have

−2µo − 3ζ − ζ(1− 2µc) cos
(
π

n

)
> 0⇔ µc >

1
2

(
1 +

2µo + 3ζ
ζ cos

(
π
n

)) (4.82)

In figure 4.4 we plot the MM eigenvalues λM of the in-phase mode Zn(0), as a function
of the coupling strength, for n = 3 and n = 4. In these plots the nonlinearity of the
coupling is chosen sufficiently weak so that the stability of the system is increased with
coupling. The diagonal phase 22 is neutrally stable which accounts for the eigenvalue at
z = 1 + j0 in figures 4.4(a)-4.4(b). Then in figure 4.5 we plot the MM eigenvalues λM
of the in-phase mode Zn(0), as a function of the coupling nonlinearity, for n = 3. As
predicted by theorem 4.1 : as the coupling nonlinearity is increased, the stability
of the coupled system is decreased.

4.4.2 n=2, β = π : The Cross Coupled Quadrature Oscillator

The circuit in figure 4.1, with the particular choice of parameters (n, β) = (2, π) corre-
sponding to the dominant mode Zπ2 (0) in (4.15), is known as the cross coupled quadrature
oscillator (CCQO). This configuration is of special practical importance since it consti-
tutes a popular method of synthesizing RF quadrature signals [5], [74], which are an
essential part of modern transceiver architectures. Later in this chapter we shall investi-
gate the noise and asymmetry properties of this circuit when we in section 4.7 conduct a
detailed review of the three papers [6], [19], [20]. The stability issue was not considered
in either of these three publications since it was clear from numerical simulations that the
quadrature mode Zπ2 (0) was stable. This section corrects this deficiency by calculating
all three eigenvalues of Jacobian, which will confirm our initial assumptions of stability.

We consider the state variable

δv =

⎡⎣δA1

δA2

δθ1

⎤⎦ (4.83)

with δθ1 = δφ2 − δφ1. From (4.71)-(4.77), we get

J11 = −2µ0I2 (4.84)

where I2 is the 2× 2 identity matrix

J12 =
[−ζ sin(−π/2)
ζ sin(−π/2)

]
=
[
ζ
−ζ
]

(4.85)

J21 =
[
ζ sin(−π/2) + ζ(1− 2µc) sin(−π/2)
−ζ sin(−π/2)− ζ(1− 2µc) sin(−π/2)

]T
=
[−2ζ(1− µc)

2ζ(1− µc)
]T

(4.86)

J22 = 0 (4.87)

Collecting all the contributions in (4.70), we can write the Jacobian as
22the diagonal phase φd is defined as φd =

∑
i φi. See also discussion in section 4.5.1 and chapter 3.
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Figure 4.4: This plot concerns the in-phase mode Zn(0) of the ring in figure 4.1, for β = 0.
The figures show the MM eigenvalues λM (see (4.66)) for a) n = 3 and b) n = 4, as a
function of the coupling strength ζ. In the plots the linear coupling transconductance
gc0 is increased while the third order parameter gc2 is held constant (see (4.53)). The
parameters for the symmetric ring is chosen as : µ0 = 0.5, Q = 10.0, α = 1.0, T0 = 2π.
The starting point of the eigenvalue loci are indicated by the symbol ⊗.
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Figure 4.5: Investigating the in-phase mode Zn(0) stability of the ring in figure 4.1 for
β = 0, as function of increased coupling nonlinearity. The plot shows MM eigenvalues
λM (see (4.66)), for n = 3, as a function of the third order coupling transconductance
parameter gc2 (see (4.53)). The linear (first order) transconductance parameter gc0 is
held constant. The plot illustrates how the ring could potentially loose stability through
the increase of coupling nonlinearity, as predicted in theorem 4.1. The parameters for
the symmetric ring is chosen as : µ0 = 0.5, Q = 10.0, α = 1.0, T0 = 2π. The starting
point of the eigenvalue loci are indicated by the symbol ⊗.

J =

⎡⎣ −2µ0 0 ζ
0 −2µ0 −ζ

−2ζ(1− µc) 2ζ(1− µc) 0

⎤⎦ (4.88)

From this expression the eigenvalues are easily found

(−2µ0 − λ)
[
(−2µ0 − λ)(−λ)− 2ζ(1− µc) · −ζ

]− 2ζ(1− µc)
(−(−2µ0 − λ) · ζ) =

(−2µ0 − λ)
[
(2µ0 + λ)λ+ 2ζ2(1− µc)

]
+ 2ζ2(1− µc)(−2µ0 − λ) =

(−2µ0 − λ)
[
λ2 + 2µ0λ+ 4ζ2(1− µc)

]⇒
λ =

⎧⎪⎨⎪⎩
−2µ0

−µ0 + 1
2

√
4µ2

0 − 8ζ2(1− µc)
−µ0 − 1

2

√
4µ2

0 − 8ζ2(1− µc)
(4.89)

From the above derivation it is easily seen that all eigenvalues have real parts less than
zero, as long as µc < 1. In figure 4.6 we plot the MM eigenvalues λM , as a function of the
coupling strength, for n = 2 and n = 3. In these plots the nonlinearity of the coupling is
again chosen weak enough so that the stability of the system is increased with coupling.
In figure 4.6(a), the eigenvalues of the CCQO dominant mode, Zπ2 (0), are shown. We
see 4 loci, corresponding to the amplitude and phase of each of the two oscillators. The
diagonal phase 23 is neutrally stable which accounts for the eigenvalue at z = 1+j0. This
corresponds to the zero eigenvalue of the Jacobian which was removed by the change of
notation in (4.67). The stationary MM eigenvalue, which is easily spotted in figure 4.6(a),
corresponds to the Jacobian eigenvalue λ = −2µ0 in (4.89) and the two remaining loci
are calculated from (4.66) using the two remain complex conjugate eigenvalues in (4.89).

23the diagonal phase φd is defined as φd = φ1 + φ2. See also discussion in section 4.5.1 and chapter 3.
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Figure 4.6(b) shows the eigenvalue loci for the oscillator (n, β) = (3, π) corresponding to
the dominant mode Zπ3 (0).

4.5 Linear Response Noise Analysis - Coupling Induced AM
to PM Noise Conversion

In chapter 2, where we summarized the linear response theory for single oscillators, it was
shown how the asymptotic statistics were defined by a diffusion process, characterized by
an effective diffusion constant 24

Deff = D̄φφ (4.90)

illustrating that, in this case, the effective and the average diffusion constants are
identical. Then in section 2.2.3, we illustrated how the parameter in (4.90) could be
extracted directly from the averaged state equations of the single oscillator.

The averaged equations for the ring in figure 4.1 were written in (4.43)-(4.44) in
section 4.3. The linear response equations were then derived from this system as shown
in (4.54)-(4.55). In this section we consider the linear response of the ring of n identical
oscillators in the dominant mode ∆φ̂ = −β/n. The stability of this mode was discussed
in the previous section and we shall here assume linear stability for all n and β. In
figure 4.1, the oscillator cells are drawn with a white noise current source in in parallel
with the resonator. This stochastic signal will in the following represent all the different
noise perturbations present in the circuit. The process of lumping noise sources together
in a single source involves the introduction of a circuit noise factor F [38], [96]. Here,
the calculations are carried out for F = 1 and the results, so obtained, can then be
re-normalized with the actual noise factor afterwards. We write the available power of a
single thermal source as N0, where

N0 = 4kT (4.91)

with k being Boltzman’s constant 25 and T the absolute temperature in Kelvins. From
the above discussion we can write〈

in,i(t1)in,j(t2)
〉

= N0δijδ(t1 − t2) i, j ∈ {1, 2, · · · , n} (4.92)

where it is used that the noise sources belonging to the different cells are uncorre-
lated. If we introduce these noise sources on the righthand side of (4.41), then carry out
the averaging procedure which led to (4.43)-(4.44) and finally derive the linear response
equations in the same way we derived (4.54)-(4.55), we get the following set of equations

1
Â

dδAi
dτ

= δA1
δAi

Â
+ δA2

δAi−1

Â
+ δA3(δφi−1 − δφi) +Gn,i i = 1, 2, · · · , n (4.93)

dδφi
dτ

= δφ1
δAi

Â
+ δφ2

δAi−1

Â
+ δφ3(δφi−1 − δφi) +Bn,i i = 1, 2, · · · , n (4.94)

where
24here the "overline" symbol refers to an averaging operation f = 1

T

∫ T

0
f(η)dη.

25k = 1.38 × 10−23J/K
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Figure 4.6: This plot concerns the travelling wave mode Zπn(0) of the ring in figure 4.1, for
β = π. The figures show the MM eigenvalues λM (see (4.66)) for a) n = 2 and b) n = 3,
as a function of the coupling strength ζ. In the plots the linear coupling transconductance
gc0 is increased while the third order parameter gc2 is held constant (see (4.53)). The
parameters for the symmetric ring is chosen as : µ0 = 0.5, Q = 10.0, α = 1.0, T0 = 2π.
The starting point of the eigenvalue loci are indicated by the symbol ⊗.
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δA1 = −µa = −2µo − 3ζ cos
(
∆φ̂
)

(4.95)

δA2 = ζ(1− 2µc) cos(∆φ̂) (4.96)

δA3 = −ζ sin(∆φ̂) (4.97)

δφ1 = −ζ sin(∆φ̂) (4.98)

δφ2 = ζ(1− 2µc) sin(∆φ̂) (4.99)

δφ3 = ζ cos(∆φ̂) (4.100)

has been derived from (4.56)-(4.61) under the assumption of identical oscillators. In
(4.93)-(4.94) Gn,i and Bn,i are narrow-band noise parameters, known as noise conduc-
tances and susceptances, respectively, which result when the noise currents in (4.92) are
averaged. These narrow-band stochastic signals are thoroughly discussed in appendix
A.1 and as shown in (A.27)-(A.28) we have the following statistics

〈
Gn,i(t1)Gn,j(t2)

〉
=
N0

P0
δijδ(t1 − t2) (4.101)〈

Bn,i(t1)Bn,j(t2)
〉

=
N0

P0
δijδ(t1 − t2) (4.102)〈

Gn,i(t1)Bn,j(t2)
〉

= 0 for all i, j and t1, t2 (4.103)

where N0 is given by (4.91) and P0 is the available power of the oscillator signal

P0 =
Â2

2R
(4.104)

As explained in section 2.2.3, the effective diffusion constant can be found directly once
the neutrally stable phase variable has been identified from the averaged state equations.
As we shall now proceed to show, this variable follows from the introduction of the
diagonal flow state equations.

4.5.1 Deriving the Dynamics of the Diagonal Flow

The term diagonal flow refers to the neutrally stable flow of n coupled oscillators on
the invariant torus Tn [29]. Here, the state variables consist of n phases which can be
written on vector form φd = [φ1 φ2 · · · φn]. The neutrally stable direction then corre-
sponds to the synchronized solution which must be a vector that points along the diagonal
[1 1 · · · 1]. This direction is neutrally stable, for the phase-only model, because it points
along an orbit which is only determined up to a constant phase shift (see also discussion
in chapter 2). If we consider φj as a component along the vector [0 · · · 0 1 0 · · · 0],
where the non-zero component is at index j, we can also write

φd = φ1 + φ2 + · · ·+ φn =
n∑
i=1

φi (4.105)

For the ring in figure 4.1, in the travelling wave mode Z
β
n (β �= 0), the phase only

model is not sufficient to explain all qualitative behavior. The travelling wave mode is an
out of phase mode which means that the amplitude and phase equations are coupled and
we can therefore not simply ignore the amplitude equations. We must therefore insists
on an amplitude/phase formulation, as was derived in (4.43)-(4.44). The neutrally stable
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dynamics will still be given by the diagonal flow equations, but now these equations will
involve amplitudes as well as phases.

We start by defining the phase of the diagonal flow

φd =
1
n

n∑
i=1

φi (4.106)

corresponding to the linear response

δφd =
1
n

n∑
i=1

δφi (4.107)

Using the identities

n∑
i=1

(δφi−1 − δφi) = (δφn − δφ1) + (δφ1 − δφ2) + · · ·+ (δφn−1 − δφn) = 0 (4.108)

n∑
i=1

(δAi − δAi−1) = (δA1 − δAn) + (δA2 − δA1) + · · ·+ (δAn − δAn−1) = 0 (4.109)

together with phase equation in (4.94), we can write the linear response for the diag-
onal phase in (4.106), as

dδφd
dτ

=
1
n

∑
i

(
δφ1

δAi

Â
+ δφ2

δAi−1

Â

)
+Bn =

ζ sin(∆φ̂)
1
nÂ

∑
i

(
δAi − (1− 2µc)δAi−1

)
+Bn = 2µcζ sin(∆φ̂)

1
nÂ

∑
i

δAi +Bn =

2µcζ sin(∆φ̂)δAd +Bn
(4.110)

where we have used the parameters in (4.98)-(4.99) and defined the diagonal amplitude

δAd =
1
nÂ

n∑
i=1

δAi (4.111)

as well as the total noise susceptance

Bn =
1
n

n∑
i=1

Bn,i (4.112)

All n noise admittances are uncorrelated and they hence add in power. We can
therefore write the statistics of total noise susceptance in (4.112), using (4.102), as

〈
Bn(t1)Bn(t2)

〉
=

1
n

N0

P0
δ(t1 − t2) (4.113)

The linear response amplitude equation is given by (4.93). Using this equation, as well
as the definitions (4.95)-(4.96) and (4.108), we can write the following evolution equation
for the diagonal amplitude linear response in (4.111)

dδAd
dτ

= (δA1 + δA2)δAd +Gn = −µ1δAd +Gn (4.114)
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where we have defined the new diagonal amplitude relaxation parameter

µ1 = µa − ζ(1− 2µc) cos(∆φ̂) (4.115)

as well as the total noise conductance

Gn =
1
n

n∑
i=1

Gn,i (4.116)

Since all n noise admittances are uncorrelated they add in power and we can therefore
write the statistics of total noise conductance in (4.116), using (4.101), as

〈
Gn(t1)Gn(t2)

〉
=

1
n

N0

P0
δ(t1 − t2) (4.117)

We can now summarize the results obtained so far by writing the diagonal flow linear
response equations

dδAd
dτ

= −µ1δAd +Gn (4.118)

dδφd
dτ

= 2µcζ sin(∆φ̂)δAd +Bn (4.119)

where the total noise admittance Yn + jBn is defined through (4.113) and (4.117) as
well as 〈

Gn(t1)Bn(t2)
〉

= 0 for all t1, t2 (4.120)

which follows from using (4.103) on each product Bn,iGn,j of (4.120).
In the following three sections we shall use the diagonal flow state equations (4.118)-

(4.119) to derive the effective diffusion constant D̄φφ of the structure in figure 4.1 by
applying three different analytic techniques. In (4.5.2) we shall use the strategy first
explained in section 2.2.3 for the single oscillator problem whereas section 4.5.3 will
detail an approach entailing the derivation of a PLTV 26 impulse response function for
the coupled oscillator system. Finally, in section 4.5.4 we shall investigate the issue
using stochastic calculus. All three methods give the same result; namely, that nonlinear
coupling will lead to coupling induced AM-to-PM noise conversion 27.

4.5.2 Calculating D̄φφ (Method #1) : Rotating the Averaged Phase
Equation

Comparing the diagonal flow system (4.118)-(4.119) for the ring coupled system with the
equivalent state equations for the single oscillator which were derived in (2.77)-(2.78) in
section 2.2.3, we see that they seem very alike. The reason for this similarity lies with the
fact that the coupled structure in figure 4.1 acts like a single oscillator in the diagonal
direction.

Following the derivations made in section 2.2.3, with (4.118)-(4.119) substituted for
(2.77)-(2.78), we see that the r and s parameters can be defined as

26Periodic Linear Time Varying.
27this should be seen as an independent verification, and a generalization, of the work documented in

the three papers [6], [19], [20], which concerned the cross-coupled quadrature oscillator (n, β) = (2, π).
This work will be reviewed in section 4.7.
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s = µ1 (4.121)

r = 2µcζ sin(∆φ̂) (4.122)

We then define δψd as the diagonal flow neutrally stable state variable

δψd = δφd −
(
r

s

)
δAd = δφd − 2µcζ sin(∆φ̂)

µ1
δAd (4.123)

Differentiating with respect to time on both sides of the above equation while using
(4.118)-(4.119), we find

dδψd
dτ

= Bn − 2µcζ sin(∆φ̂)
µ1

Gn (4.124)

From the above equation it is clearly seen that δψd is a neutrally stable variable.
This should evident since the righthand side contains a sum of uncorrelated white noise
sources. Using (4.113), (4.117), (4.120), (4.45) and following the procedure laid out in
section 2.2.3, we can then directly write the effective diffusion constant for the structure
in figure 4.1 as

D̄φφ =
(
ω0

2Q

)2{
1 +

(
2µc
µ1

)2

ζ2 sin2(∆φ̂)
}
N0

nP0
=(

ω0

2Q

)2{
1 +

[
2µc

2µo + 3ζ cos
(
∆φ̂
)− ζ(1− 2µc) cos(∆φ̂)

]2

ζ2 sin2(∆φ̂)
}
N0

nP0
=

(
ω0

2Q

)2{
1 +

[
µc

µo + ζ(1 + µc) cos
(β
n

)]2

ζ2 sin2

(
β

n

)}
N0

nP0
(4.125)

where we have used that ∆φ̂ = −β/n for the dominant mode Z
β
n(0) (see discussion

in sections 4.1.1 and 4.4).

4.5.3 Calculating D̄φφ (Method #2) : A PLTV Impulse Response Char-
acterization

As explained in appendix A.1 both the noise susceptance and the noise conductance of the
i’th oscillator can be described as train of noise pulses. Since the total noise admittance
Yn = Gn + jBn as defined in (4.113), (4.117) and (4.120) consists of a sum uncorrelated
noise sources we can also express them in this way

Gn(τ) =
∑
i

ξc(τi)δ(τ − τi) (4.126)

Bn(t) =
∑
i

ξs(τi)δ(τ − τi) (4.127)

where
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〈
ξc(τi)ξc(τj)

〉
=
〈
ξs(τi)ξs(τj)

〉
= δij

N0

P0
(4.128)〈

ξs(τi)ξc(τj)
〉

= 0 for all i, j (4.129)

Since the pulse amplitude and arrival times are independent from one pulse to the next
and, further, since the susceptance and conductance contributions are uncorrelated, we
can formulate the following strategy towards the derivation of a PLTV response function

• find the linear response of the system to one noise susceptance/conductance pulse.

• calculate the time-average over all the pulses in the series (4.126)-(4.127).

• use the fact that stationary Gaussian processes are ergodic [97], [39] to substitute
the ensemble-averages in (4.128)-(4.129) for the time-averages.

• add the contributions from the orthogonal sources Bn and Gn.

In the following we shall neglect writing the time index of the noise pulses in (4.126)-
(4.127) as this is not important (since the process is stationary). This means that we
simply write ξc or ξs.

Section 4.5 detailed the derivation of a system of equations for the diagonal flow as
written in (4.118)-(4.119). We now imagine the following situation : at time τ = 0 a
noise conductance pulse ξc, as defined in (4.126), is exciting the system. Considering
a system initially at rest, it is seen from (4.118)-(4.119) that this pulse must force the
initial conditions

δAd(0) = ξc (4.130)
δφd(0) = 0 (4.131)

With the above initial conditions, equation (4.118) is easily integrated to produce the
linear response of the diagonal amplitude to the noise conductance perturbation

δAd(τ) = ξc exp(−2µ1τ) (4.132)

Inserting this result into (4.119) we get the following equation for the diagonal phase
δφd

dδφd
dτ

= 2µcζ sin(∆φ̂)ξc exp(−µ1t) (4.133)

Integrating this equation, with the initial condition (4.131), we find the following
impulse response of the diagonal phase to a noise conductance perturbation

δφd(τ) =
2µc
µ1

ζ sin(∆φ̂)ξc
{
1− exp(−2µ1τ)

}
(4.134)

Letting τ tend towards infinity and taking the ensemble average on both sides of this
equation we get

lim
τ→∞

〈
φ2
d(τ)

〉
=

N0

nP0

(
2µc
µ1

)2

ζ2 sin2(∆φ̂) (4.135)
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where we have used (4.128). The above equation describes the asymptotic mean
square response of the diagonal phase to an amplitude perturbation.

We now move on to consider the introduction of a noise susceptance pulse ξs as defined
in (4.127). From (4.118)-(4.119), this results in the following initial conditions

δAd(0) = 0 (4.136)
δφd(0) = ξs (4.137)

We then have to solve (4.119) with these new initial conditions. The solution is seen
to be given by

δφd(τ) = ξs for τ > 0 (4.138)

Taking the ensemble average we find

〈
φ2
d(τ)

〉
=

N0

nP0
for τ > 0 (4.139)

From (4.135) and (4.139) we see that asymptotically with time the total root mean
square response of the diagonal phase to the noise forcing in (4.126)-(4.127) is a step with
amplitude ∆, where

∆ =

√
N0

nP0

{
1 +

(
2µc
µ1

)2

ζ2 sin2(∆φ̂)
}

(4.140)

Such a step response is characterized stochastically as a Wiener process with diffusion
constant ∆2. Re-normalizing time according to (4.45) we find the following expression

D̄φφ =
(
ω0

2Q

)2{
1 +

(
2µc
µ1

)2

ζ2 sin2(∆φ̂)
}
N0

nP0
(4.141)

which is identically to (4.125).

4.5.4 Calculating D̄φφ (Method #3) : the Stochastic Integration Ap-
proach

In this section we will investigate the diagonal flow dynamics using stochastic integration
techniques. This procedure constitutes the correct way to treat any kind of stochastic
differential equation (SDE). Hence, unlike the two previous attempts and especially the
one in section 4.5.3, the results derived in this section are based on a rigorous and well-
established theoretic foundation. The theory of stochastic integration, as it is applied to
differential equations perturbed by white noise, was reviewed in appendix A.2.

The diagonal SDE, which was derived in equations (4.118)-(4.119) of section 4.5.1, is
repeated here

dδAd
dτ

= µ1δAd +Gn (4.142)

dδφd
dτ

= 2µcζ sin(∆φ̂)δAd +Bn (4.143)
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As explained in appendix A.2 the above system of equations can also be written on
the form 28

dδAd = µ1δAddτ + dW1(τ) (4.144)

dδφd = 2µcζ sin(∆φ̂)δAddτ + dW2(τ) (4.145)

where W1,W2 are uncorrelated Wiener processes which are defined through

〈
W1(τ1)W1(τ2)

〉
=
〈
W2(τ1)W2(τ2)

〉
=

N0

nP0
min(τ1, τ2) (4.146)〈

W1(τ1)W2(τ2)
〉

= 0 for all τ1, τ2 (4.147)

Since equations (4.144)-(4.145) are linear we can solve them using a Greens function
approach, on the condition of sharp initial values (δAd(0), δφd(0)) at time t = 0. Equation
(4.144) is then solved as

δAd(τ) = δAd(0) exp(−µ1τ) +

τ∫
0

exp(−µ1(τ − s))dW1(s) (4.148)

where the last integral involving dW1 should be seen as a Riemann-Stieltjes type
integral [39]. Since this integral is stochastic we can only characterize it through its
moments. Furthermore, it should be noted that the Ito and Stratonovich interpretations
gives the same result in this simple example [39]. The ensemble average is found as

〈
δAd(τ)

〉
= δAd(0) exp(−µ1t) +

τ∫
0

exp(−µ1(τ − s))
〈
dW1(s)

〉
= δAd(0) exp(−µ1τ)

(4.149)
where δAd(0) is the initial value of diagonal amplitude. We then find the auto-

correlation function as

〈
δAd(τ1)δAd(τ2)

〉
= δA2

d(0) exp(−µ1(τ1 + τ2))+
τ1∫

0

τ2∫
0

exp(−µ1(τ1 + τ2 − s1 − s2))
〈
dW1(s1)dW1(s2)

〉
=

δA2
d(0) exp(−µ1(τ1 + τ2)) +

N0

nP0

min(τ1,τ2)∫
0

exp(−µ1(τ1 + τ2 − 2s))ds =

δA2
d(0) exp(−µ1(τ1 + τ2)) +

N0

nP02µ1

(
exp(−µ1|τ1 − τ2|)− exp(−µ1(τ1 + τ2))

)
(4.150)

where we have used the result (f(x, y) is random function)
28Infact, (4.144)-(4.145) is the correct interpretation of the ambiguous definition in (4.142)-(4.143).

Taken at face value these equations lead to jump process as was clearly seen in the last section. The
Wiener process is continuous at all times and hence not a jump process. This subject is discussed in
appendix A.2.
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x∫
0

y∫
0

f(x′, y′)
〈
dW1(x′)dW1(y′)

〉
dx′dy′ =

N0

P0

min(x,y)∫
0

f(η, η)dη (4.151)

as explained in appendix A.2. We now turn to the solution of (4.145) which is written
as

δφd(τ)− δφd(0) = α

τ∫
0

δAd(s)ds+

τ∫
0

dW2(s) (4.152)

where we have introduced the notation

α = 2µcζ sin(∆φ̂) (4.153)

The variable φd(τ)−φd(0) is referred to as the self-referenced phase (SR-P) [16], [47].
The ensemble mean is found to be

〈
δφd(τ)− δφd(0)

〉
= α

τ∫
0

〈
δAd(s)

〉
ds = α

τ∫
0

Ad(0) exp(−µ1s)ds =

−Ad(0)
2µcζ sin(∆φ̂)

µ1

{
1− exp(−µ1τ)

} (4.154)

where we have used the result from (4.149). Similarly we define the power of the
SR-P to be

〈
(δφd(τ)− δφd(0))2

〉
= α2

τ∫
0

τ∫
0

〈
δAd(s1)δAd(s2)

〉
ds1ds2 +

τ∫
0

τ∫
0

〈
dW1(s1)dW1(s2)

〉
ds1ds2

(4.155)
From (4.150) we see that we have to calculate two types of integrals. These are

evaluated as

τ∫
0

τ∫
0

exp(−µ1(s1 + s2))ds1ds2 =
(

1− exp(−µ1τ)
µ1

)2

(4.156)

and

τ∫
0

τ∫
0

exp(−µ1|s1−s2|)ds1ds2 = 2

τ∫
0

ds1

s1∫
0

exp(−µ1(s1−s2))ds2 =
2
µ1
τ− 1

µ2
1

(1−exp(−µ1τ))

(4.157)
Also, from the above discussion and the results in appendix A.2 we can find

τ∫
0

τ∫
0

〈
dW1(s1)dW1(s2)

〉
ds1ds2 =

N0

nP0
min(τ, τ) =

N0

nP0
τ (4.158)

Inserting (4.150) into (4.155) and using (4.153), (4.156), (4.157), (4.158), we find
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〈
(δφd(τ)− δφd(0))2

〉
=
(

2µcζ sin(∆φ̂)
)2

×([
δAd(0)2 − N0

nP02µ1

]{
1− exp(−µ1τ)

µ1

}2

+
N0

nP0

{
1
µ2

1

τ − 1
2µ3

1

[1− exp(−µ1τ)]
})

+
N0

nP0
τ

(4.159)
The limit as τ goes to infinity is found to be

lim
τ→∞

〈
(δφd(τ)− δφd(0))2

〉
=

N0

nP0

{
1 +

(
2µcζ sin(∆φ̂)

µ1

)2}
τ (4.160)

For a diffusion process x, the effective diffusion constant 29 is defined through

Deff ≡ lim
τ→∞

〈
(δφd(τ)− δφd(0))2

〉
τ

(4.161)

Using the change of notation Deff → D̄φφ, together with the result in (4.160) and
the time re-normalization t = ω0/2Q, we get the final result

D̄φφ =
(
ω0

2Q

)2 N0

nP0

{
1 +

(
2µc
µ1

)2

ζ2 sin2(∆φ̂)
}

(4.162)

which is the same result found earlier in (4.125) and (4.141).

4.6 A new Definition of Oscillator Q

From the discussion in section 2.2.3 on page 54 and the results derived in the above
section, we introduce the novel single/coupled oscillator Q-factor definition

Q =
Q0√

1 +
(
r
s

)2
(4.163)

where Q0 is the DC resonator Q-factor, r is a parameter which describes the curvature
of the isochrones and s describes the amplitude relaxation time of oscillator. The new
definition in (4.163) has many advantages over previous definitions (see e.g. [41]) and
these will be discussed in the paper [98], which is currently being written.

4.7 The Cross-Coupled Harmonic Quadrature Oscillator

This section will discuss the analysis of the cross-coupled quadrature harmonic oscillator
(CCQ0) which is built from two harmonic sources coupled unilaterally in a ring with a
180o phase shift between source #2 and source #1. A practical transistor implementation
of such a structure is depicted in figure 4.7 where the individual oscillators are standard
differential pair LC units and the coupling amplifier are common emitter differential pairs.
The 180o phase-shift is derived by cross-coupling one of the connections from the CE am-
plifiers to the oscillator blocks. In the above figure the oscillators and amplifiers are built
using bipolar transistors, however, the quadrature oscillator is also often implemented

29see also the discussion in section 2.1.2, on page 43, for further discussion on the concept of effective
diffusion constants.
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Figure 4.7: A popular circuit implementation of the Cross-Coupled Quadrature Oscillator
(CCQO) using standard differential pair LC oscillators [74], [77]. The cross-coupling
is easily spotted by following the connection from the CE amplifiers to the oscillator
blocks. The CE oscillator capacitor is included improve the phase noise performance of
the individual oscillators [46].

using CMOS transistors as was the case with the original circuit proposed by Rofougraan
et al. in [5]. Understanding the noise properties of this circuit has turned out to be a
non-trivial task which has occupied the author both in his master thesis [38], as well as in
the initial part of the this thesis. This work resulted in three papers [6], [19], [20] which all
centered around the new discovery of coupling induced AM to PM noise conversion which
was discussed in the previous section for the general case of n oscillators. As explained in
section 1.1, as well as in the introduction to this chapter, the van der Pol oscillator model
is sufficiently complex to model all higher order isochronous harmonic oscillators. We
shall therefore not investigate the complex circuit in figure 4.7, but instead we consider
the equivalent canonical circuit in figure 4.8 where all transconductance blocks represent
second order non-linear functions as described in equation (4.27) of section (4.3). We
can relate the structure in figure 4.8 to the general ring of oscillators in figure 4.1 by
choosing the parameters (n, β) as n = 2 and β = π. Hence, we shall be able to re-use the
normal-form/averaged ODE equations derived earlier for the general structure.

In section 4.7.1 we set up the 4 nonlinear coupled ODE’s which describe the dynamics
of the oscillator in figure 4.8. The next two sub-sections then review the main parts of
the analysis described in [6], [19], [20]. This includes an investigation of how parameter
asymmetry will impact on the quadrature precision of the solution and a linear response
noise analysis.

4.7.1 Deriving the CCQO Amplitude/Phase Equations

Using the equations derived for the general n oscillator case in (4.43)-(4.44) of section
4.3, we can directly write cross-coupled quadrature oscillator averaged state equations as
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-1

Gmc,2Gmc,1Gmo,1 Gmo,2

R1
R2

C1 C2
L1 L2

Figure 4.8: the cross-coupled quadrature harmonic oscillator (CCQO) block diagram.
All amplifier blocks represent second order nonlinear functions as given in (4.27) on page
91. The oscillators are then standard van der Pol units [6], [42]. The above circuit is
related to the general n oscillator ring in figure 4.1 through the choice of parameters
(n, β) = (2, π).

1
Â

dA1

dτ
= µo,1

[
1−

(
A1

α1

)2]A1

Â
+
Gmc,2(A2)

GL1
cos
(
φ2 − φ1 + π

)A2

Â
(4.164)

1
Â

dA2

dτ
= µo,2

[
1−

(
A2

α2

)2]A2

Â
+
Gmc,1(A1)

GL2
cos
(
φ1 − φ2

)A1

Â
(4.165)

dφ1

dτ
=

2Q1

ω0,1
∆ω1 +

Gmc,2(A2)
GL1

sin
(
φ2 − φ1 + π

)A2

A1
(4.166)

dφ2

dτ
=

2Q2

ω0,2
∆ω2 +

Gmc,1(A1)
GL2

sin
(
φ1 − φ2

)A1

A2
(4.167)

where ω1 is the new oscillation frequency defined in (4.31) of section 4.3. Furthermore,
using (4.32) of the same section we can write

±∆ωi = ±(ω0 − ωi) =
tan(ψi)ω0

2Q
i = 1, 2 (4.168)

All other parameters in (4.164)-(4.167) have already been discussed in connection with
the derivations in section 4.3. If we now let the phases φ represent deviations around the
stable quadrature mode (see discussion in section 4.4.2) we can write (4.164)-(4.167) on
the form

1
Â

dAi
dτ

= µo,i

[
1−

(
Ai
αi

)2]Ai
Â
− Gmc,j(Aj)

GLi
sin
(
φj − φi

)Aj
Â

(4.169)

dφi
dτ

=
2Qi
ω0

∆ωi +
Gmc,j(Aj)

GLi
cos
(
φj − φi

)Aj
Ai

(4.170)

i, j ∈ {1, 2} i �= j

In the following derivations we shall need to define the new parameters
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Kx,i =
gx2,i
gx0,i

x ∈ {o, c} i ∈ {1, 2} (4.171)

The K parameters represent the level of nonlinearity in the oscillator and coupling
transconductances [6].

4.7.2 Asymmetry Considerations

The subject of asymmetry was briefly discussed in section 1.3 where we investigated the
modes of a ring of n oscillators. It was noted that the implicit function theorem [25]
ensures that there will be a continues path between the perfectly symmetric and the
(slightly) asymmetric system. Basically, this means that for small deviations we should
not expect any symmetry breaking bifurcations [37].

Since the phase variables now describe the dynamics around the quadrature mode,
we can write the steady-state solutions in figure 4.8, as

vC1 = Â1 cos(ω1t+ φ̂1) (4.172)

vC2 = Â2 sin(ω1t+ φ̂2) (4.173)

where hats, as usual, represents steady-state (constant) variables. Setting the left-
hand side in (4.169)-(4.170) equal to zero, and using (4.168), we can write

µo,i

[
1−

(
Âi
αi

)2]
Âi = ∓Ĝmc,j

GLi
sin(∆φ̂)Âj (4.174)

tan(ψi) =
Ĝmc,j
GLi

cos(∆φ̂)
Âj

Âi
(4.175)

(i, j) ∈ {1, 2} , i �= j

where ∆φ̂ = φ̂1− φ̂2 and Ĝmc,j = gc0,j − 3/4gc2,jÂ2
j as shown in (4.53) on page 94. It

should be noted that we now have that ∆φ̂ = 0 for the symmetric circuit. Dividing the
two equations represented by (4.175) above, we get

Â2

Â1

=

√√√√tan(ψ1)
tan(ψ2)

GL1

GL2

Ĝmc,1

Ĝmc,2
(4.176)

From (4.174) we can write

(
Â1

α1

)2

= 1 +
ζ2
µo,1

sin(∆φ̂)
Â2

Â1

(4.177)(
Â2

α2

)2

= 1− ζ1
µo,2

sin(∆φ̂)
Â1

Â2

(4.178)

where ζi = Ĝmc,i/GLi as seen from (4.52) on page 94. Dividing (4.177)-(4.178) we get
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(
Â1

Â2

)2(α2

α1

)2

=
1 + ζ2

µo,1
sin(∆φ̂) Â2

Â1

1− ζ1
µo,2

sin(∆φ̂) Â1

Â2

⇔

− sin(∆φ̂)
{(

Â1

Â2

)2(α2

α1

)2 ζ2
µo,1

Â1

Â2

+
ζ1
µo,2

Â2

Â1

}
= 1−

(
Â1

Â2

)2(α2

α1

)2

⇔

sin(∆φ̂) =
Â1

Â2

α2
α1
− Â2

Â1

α1
α2

ζ1
µo,2

(
Â1

Â2

)2 α2
α1

+ ζ2
µo,1

(
Â1

Â2

)2 α1
α2

(4.179)

Both (4.176) and (4.179) are too complex in their current form to be of any use.
However, if we assume only small parameter asymmetry a significantly simplified form
will result. In the following we therefore assume that we can write

Â2

Â1

= 1 + ε
g0c,1
g0c,2

= 1 + η
α1

α2
= 1 + ν

L1

L2
= 1 + εl

C1

C2
= 1 + εc

GL1

GL2
= 1 + εg

(4.180)

where |ε|, |η|, |ν|, |εl|, |εc|, |εg|  1 are small perturbations of the symmetric parameter
set. Furthermore, the scope is limited to the case where nonlinearities of the active blocks
are equal from one section to the next i.e. Kc,1 = Kc,2 = Kc and Ko,1 = Ko,2 = Ko (see
(4.171)). Using the above definitions we can write

Ĝmc,1

Ĝmc,2
=
g0c,1
g0c,2

1− 3
4KcÂ

2
1

1− 3
4KcÂ2

2

≈ (1 + η)
1− 3

4KcÂ
2
1

1− 3
4Kc(1 + 2ε)Â2

1

≈

(1 + η)
(

1 +
3
2KcÂ

2
1

1− 3
4KcÂ2

1

ε

)
≈ (1 + η)(1 + 2λε) (4.181)

where we have introduced a new variable λ through

λ =
Kc
Ko
µo

1 + (1− Kc
Ko

)µo
(4.182)

The derivation of equation (4.181) depends on the "smallness" of the parameter ε
which furthermore means that we do not need subscripts in (4.182), since this term is
multiplied by a factor |ε|  1. The first step is to write(

Â2

Â1

)2

= (1 + ε)2 ≈ 1 + 2ε (4.183)

where we have set ε2 ≈ 0. Then we use the first order Taylor expansion

1
1 + x

≈ 1− x for |x|  1 (4.184)

to write

1− 3
4KcÂ

2
1

1− 3
4Kc(1 + 2ε)Â2

1

≈ 1− 1
1− 3

4KcÂ2
1

×−3
4
Kc2εÂ2

1 = 1 +
3
2KcÂ

2
1

1− 3
4KcÂ2

1

ε (4.185)
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Using α =
√

4(go0 −GL)/3go2, Â1 ≈ α and µo = (go0 − GL)/GL and the definition
in (4.171), we get

3
2KcÂ

2
1

1− 3
4KcÂ2

1

=
2Kc

go0−GL
go2

1−Kc
go0−GL
go2

=
2Kc
Ko
µo

GL
go0

1− Kc
Ko
µo

GL
go0

=
2Kc
Ko
µo

go0

GL
− Kc

Ko
µo

(4.186)

The identity

1 + µo = 1 +
go0 −GL
GL

=
GL + go0 −GL

GL
=
go0
GL

(4.187)

means that equation (4.186) can be written

2Kc
Ko
µo

go0

GL
− Kc

Ko
µo

=
2Kc
Ko
µo

1 + µo − Kc
Ko
µo

=
2Kc
Ko
µo

1 +
(
1− Kc

Ko

)
µo

(4.188)

Inserting (4.188) into (4.186), (4.186) into (4.185) and finally (4.185) into (4.181), we
recover the last expression in (4.181).

Since we are investigating a frequency locked solution the frequency of the two os-
cillators must be identical. Considering first only inductor asymmetry and using the
approximation

L1 = L2(1 + εl)⇔ ω02

ω01
≈ 1 +

1
2
εl , |εl|  1 (4.189)

tan(ψ2)
tan(ψ1)

= 1 + κ , |κ|  1 . (4.190)

we can equate the oscillator frequencies as

tan(ψ2)
2RC

+ ω02 =
tan(ψ1)
2RC

+ ω01 ⇔(
tan(ψ2)
tan(ψ1)

− 1
)

=
2RC

(
ω01 − ω02

)
tan(ψ1)

⇔

κ =
2Q2

(
ω01 − ω02

)
tan(ψ1)ω02

≈ − Qεl
tan(ψ)

(4.191)

where, in the last line, subscripts become superfluous as |εl|  1. In the above
equation we used the definition in (4.168) to write

ω1 =
tan(ψ1)ω0,1

2Q1
+ ω0,1 =

tan(ψ2)ω0,2

2Q2
+ ω0,2 (4.192)

The above procedure can be repeated for asymmetries in the resonator capacitors and
conductors giving us the final result

κ ≈ −Q
(
εl + εc

)
tan(ψ)

+ εg , |εl|, |εc|, |εg|  1 (4.193)

Using the results in (4.181) and (4.193) and the definitions in (4.180), we can write
(4.176) and (4.179) on their final form
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Â2

Â1

= 1 + ε =

√
tan(ψ1)
tan(ψ2)

GL1

GL2

Ĝmc1

Ĝmc2
=√

(1− κ)(1 + εg)(1 + η)(1 + 2λε) ≈ 1 +
1
2
(−κ+ εg + η + 2λε)

1 +
Q(εl + εc)

2ζ
+

1
2
η + λε⇔

ε ≈ Q(εl + εc)
2(1− λ)ζ

+
η

2(1− λ)
(4.194)

sin(∆φ̂) =
Â1

Â2

α2
α1
− Â2

Â1

α1
α2

ζ1
µo,2

(
Â1

Â2

)2 α2
α1

+ ζ2
µo,1

(
Â2

Â1

)2 α1
α2

=

(1− ε)(1− ν)−(1 + ε)(1 + ν)
ζ1
µo,2

(1− ε)2(1− ν)+ ζ2
µo,1

(1 + ε)2(1 + ν)
≈

− 2ε+ 2ν
ζ1
µo,2

(1− 2ε)(1− ν)+ ζ2
µo,1

(1 + 2ε)(1 + ν)
≈ −2ε+ 2ν

2 ζ
µo

(4.195)

Inserting (4.194) into (4.195) we get the final result

sin(∆φ̂) ≈ − µo
1− λ

(εl + εc)Q
2ζ2

− µo
1− λ

η

2ζ
− µo ν

ζ
(4.196)

The inverse quadratic dependence on the coupling strength in the first term of (4.196)
was first derived in [68] using graphical phasor analysis. Note, that the effect of conductor
asymmetry is contained implicitly through ν.

Equations (4.194) and (4.196) were compared with SPECTRE Periodic Steady State
(PSS) simulations in figure 2 of the paper [6] which is repeated here in figure 4.9. Here
we have chosen an inductor asymmetry εl = 0.05%, a conductor asymmetry εg = 1% and
for the transconductance we use η = 0.275%. It is important to note that simulations
are performed on van der Pol oscillators with ideal third order coupling sections.

From figure 4.9 and (4.194), (4.196) it follows that the phase error dominates for
lower couplings. For ζ > µo

30 the amplitude error is more significant. This is an
important result as amplitude and phase error degrade the image rejection equally when
the oscillator is integrated in a receiver structure. The amplitude imbalance can however
easily be removed by following the oscillator by a limiting buffer. Another interesting
point, which can be extracted from (4.194) and (4.196), is that asymmetry in the passive
parts of the resonator is the main source of amplitude and phase error. This is because
they enter the equations multiplied by a factor Q.

30here µo = 0.5 is used. In [6] it is shown that this value of µo corresponds to a cross-coupled pair
working as an ideal limiter.
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Figure 4.9: Figure taken from the paper [6]. Phase and amplitude error (ε = Â2/Â1− 1)
as a result small mismatches (εl = 0.05%, εg = 1%, η = 0.275%) in the two resonators and
coupling sections. Simulations are for van der Pol oscillators coupled through third order
nonlinearities. Top figure - phase error (in radians): (4.196) = broken line, SPECTRE
PSS simulation = solid line. Lower figure - amplitude error: (4.194) = broken line,
SPECTRE PSS simulation = solid line.

4.7.3 Linear Response Noise Analysis

The linear response equations are derived from the nonlinear state equations in (4.169)-
(4.170), in the same way as was shown for the general system in section 4.3 31. Referring
to the discussion in that section we find the following 4 amplitude and phase equations
for the symmetric circuit

1
Â

dδAi
dτ

= µo

[
1−3

(
Â

α

)2]δAi
Â
− ζ(δφj − δφi)−Gn,i (4.197)

dδφi
dτ

= ζ
(
1−2µc

)δAj
Â
− ζ δAi

Â
−Bn,i (4.198)

(i, j) ∈ {1, 2} , i �= j

where the noise admittance Yn = Gn + jBn noise was discussed in section 4.5. Noise
sources stemming from the active parts of the oscillators are not modelled here where we
assume that the noise is modelled as a single noise current in parallel with the resonator
as seen from figure 4.8. However, this does not mean that the model is limited to fictive
circuits with noiseless amplifiers. The oscillator noise factor F , which was also discussed
in section 4.5, is defined as

F =
total available noise power

4kT
(4.199)

where N0 = 4kT is the available noise power of a thermal resistor noise source. Hence
by exchanging the current sources in figure 4.8 from sources with power 4kT to sources

31see equation (4.54)-(4.55) and (4.56)-(4.61) on page 94.



4.7. THE CROSS-COUPLED HARMONIC QUADRATURE
OSCILLATOR 121

with power 4FkT we have included the effect of all the noise in the circuit. One can
calculate this noise factor using large-signal small-signal analysis as shown in [96] and
[38].

Fourier transforming the system of equations (4.197)-(4.198) one obtains

jx
δ̃Ai

Â
= µo

[
1− 3

(
Â

α

)2] δ̃Ai
Â
−Ĝmc
GL

(
δ̃φj − δ̃φi

)−G̃ni (4.200)

jxδ̃φi =
Ĝmc
GL

(
1− 2µc

) δ̃Aj
Â
− Ĝmc

GL

δ̃Ai

Â
− B̃ni (4.201)

(i, j) ∈ {1, 2} , i �= j .

The tilde ˜ denotes a Fourier transformed variable and

x =
ωm
ω3dB

(4.202)

with ωm being the frequency offset from the carrier. The single sided power/cross-
power spectral densities of the normalized noise conductances and susceptances are eval-
uated to be

〈
G̃n,iG̃n,j

∗〉
=
〈
B̃n,iB̃n,j

∗〉
=

{
8kT
Â2GL

= N0
P0
, i = j

0 , i �= j
(4.203)

〈
G̃n,iB̃n,i

∗〉
=
〈
G̃n,i

∗
B̃n,i

〉
= 0 , i ∈ {1, 2} (4.204)

where
〈·〉 denotes ensemble average, k is Boltzman’s constant and T is the absolute

temperature. N0 is the available noise power, assuming 1Hz bandwidth, and P0 is the
signal power delivered to the load

N0 = 4kT (4.205)

P0 =
Â2G

2
. (4.206)

Equations (4.200)-(4.201) can be written on matrix form as

⎡⎢⎢⎢⎣
G̃n1

G̃n2

B̃n1

B̃n2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−2µo−jx 0 Ĝmc

GL
− Ĝmc

GL

0 −2µo−jx − Ĝmc
GL

Ĝmc
GL

− Ĝmc
GL

Ĝmc
GL

(
1−2µc

) −jx 0
Ĝmc
GL

(
1−2µc

) − Ĝmc
GL

0 −jx

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
δ̃A1

Â
δ̃A2

Â

δ̃φ1

δ̃φ2

⎤⎥⎥⎥⎥⎦ (4.207)

where

µo

[
1− 3

(
Â

α

)2]
= −2µo (4.208)
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is valid for a symmetric circuit. Inverting the 2× 2 matrix in (4.207) yields⎡⎢⎢⎢⎢⎣
δ̃A1

Â
δ̃A2

Â

δ̃φ1

δ̃φ2

⎤⎥⎥⎥⎥⎦=
1

2jµox+4
(
Ĝmc
GL

)2(1−µc)
[
N

11
N

12
N

21
N

22

]⎡⎢⎢⎢⎣
G̃n1

G̃n2

B̃n1

B̃n2

⎤⎥⎥⎥⎦ (4.209)

N
11
=

⎡⎢⎣−2jxµo+2
(

Ĝmc
GL

)2(
1−µc

)
2µo

−2
(

Ĝmc
GL

)2(
1−µc

)
2µo

−2
(

Ĝmc
GL

)2(
1−µc

)
2µo

−2jxµo+2
(

Ĝmc
GL

)2(
1−µc

)
2µo

⎤⎥⎦ (4.210)

N
12

=

[
− Ĝmc

GL

Ĝmc
GL

Ĝmc
GL

− Ĝmc
GL

]
(4.211)

N
21

=
Ĝmc
GL

[
a1 a2

a2 a1

]
(4.212)

a1 =

(
2jxµo + 4µc

(
Ĝmc
GL

)2(1− µc))
2jxµo

(4.213)

a2 =

(
2jxµo

(
2µc−1

)
+ 4µc

(
Ĝmc
GL

)2(1− µc))
2jxµo

(4.214)

N
22
=

⎡⎢⎣−2jxµo+2
(

Ĝmc
GL

)2(
1−µc

)
jx −2

(
Ĝmc
GL

)2(
1−µc

)
jx

−2
(

Ĝmc
GL

)2(
1−µc

)
jx −2jxµo+2

(
Ĝmc
GL

)2(
1−µc

)
jx

⎤⎥⎦ (4.215)

Equations (4.209)-(4.215) specify four transfer functions for each of the stochastic
variables δA1, δA2, δφ1 and δφ2. N11

, N
12
N

21
and N

22
contain the AM to AM, PM

to AM, AM to PM and PM to PM transfer functions, respectively. Circuit symmetry is
assumed, and we can discard the subscripts as the response will be identical at each node.
The input variables are random, so only the magnitude of the transfer functions need be
considered. From (4.203)-(4.204) it is seen that all four random variables are uncorrelated.
The amplitude and phase power spectra, assuming 1Hz bandwidth, are then derived by
summing the contribution from each of the four noise admittances. Using (4.203)-(4.204),
one obtains the following result

〈
δ̃A2

〉
=

N0
P0

4(µox)2+16
(
Ĝmc
GL

)4(1−µc)2
{

4x2µ2
o + 8

(
Ĝmc
GL

)4
4µ2

o

+ 2
(
Ĝmc
GL

)2
}

(4.216)

〈
δ̃φ2

〉
=

N0
P0

4(µox)2+16
(
Ĝmc
GL

)4(1−µc)2×{
8(xµo)2

(
Ĝmc
GL

)2(1+
(
2µc−1

)2)+32
(
Ĝmc
GL

)6
µ2
c

(
1−µc

)2
4(µox)2

+
4(µox)2+8

(
Ĝmc
GL

)4(1−µc)2
x2

}
(4.217)

Close to the carrier these expressions simplify to
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lim
ωm→0

〈
δ̃A2

〉
=

N0
P0

2
(
Ĝmc
GL

)2(1−µc)2
{(

Ĝmc
GL

)2 + µ2
o

4µ2
o

}
(4.218)

lim
ωm→0

〈
δ̃φ2

〉
= LC(ωm) =

[
ω1√

2
√

4Q2 + tan2(ψ)

]2[
1 +

(
µc
µo

)2

tan2(ψ)

]
N0

P0ω2
m

(4.219)

where LC(ωm) denotes phase noise of the coupled oscillator at offset ωm and N0/P0

is the noise to signal power ratio. The (µc/µo tan(ψ))2 term in (4.219) originates from
the N

21
transfer matrix, defined in (4.212), and therefore represents AM to PM noise

conversion.
Equations (4.218) and (4.219) should return to the equivalent equations for the free-

running case when the coupling tends towards zero

lim
Ĝmc, ωm→0

〈
δ̃A2

〉
=

N0

4µ2
oP0

(4.220)

lim
Ĝmc, ωm→0

〈
δ̃φ2

〉
= L(ωm) =

(
ω0

2Q

)2 N0

P0ω2
m

(4.221)

where it is used that

lim
Ĝmc→0

ω1 = ω0 (4.222)

lim
Ĝmc→0

ω3dB =
ω0

2Q
(4.223)

The results in (4.220)-(4.221) agree with those found in the literature [13], [33].
A figure comparing the theoretical results obtained here, with SPECTRE PNOISE

simulations was given in figure 3 of the paper [6]. These curves are repeated here in figure
4.10. The figure shows plots of equation (4.219), relative to equation (4.221), together
with a series of SPECTRE PNOISE simulations for six different µc/µo ratios as a function
of the coupling strength ζ. The SPECTRE simulations are done on van der Pol oscillators
coupled through third order voltage controlled current sources. In figure 4.10 we consider
phase noise at a fixed offset for a cross-coupled quadrature oscillator, and an equivalent
single oscillator unit. Figure 4.10 results when these two values, in dB, are subtracted
and further normalized for the different operating frequencies 32. The different curves in
figure 4.10 are created by fixing Kc and then varying gc0. The parameters µo and Ko

are held constant throughout. The nonlinearity of the coupling sections is determined
by Kc (see (4.171)). From figure 4.10 it is seen, that as the coupling strength increases,
AM-PM conversion deteriorates the overall noise performance of the oscillator. However,
from (4.194) and (4.196) we see that effects of circuit asymmetries are reduced through
stronger coupling. It then follows that there exists a trade-off between phase noise and

32from (4.221) it is seen that the frequency changes with the coupling strength. As phase noise is
proportional to the operating frequency squared (see (4.221)) normalization is achieved by including the
factor 20 log

(
ω1/ω0

)
.
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Figure 4.10: Figure taken from the paper [6]. The plots show (4.219) relative to (4.221) in
dB as a function of the coupling strength ζ for six different µc/µo ratios. The simulations
are of van der Pol oscillators coupled through a third order nonlinearity. SPECTRE
PNOISE phase noise simulations = �, theory = solid line. The different curves are
created by fixing Kc (see (4.171)) and hence the nonlinearity of the coupling and varying
gc0. µo = 0.5 throughout.

quadrature precision in a cross-coupled quadrature harmonic oscillator [6], [8], [19], [20],
[68], [78]. Another interesting fact, which can be extracted from figure 4.10 and equation
(4.219), is that the coupling transconductance nonlinearity impacts on the level of AM to
PM conversion. By decreasing the nonlinearity of these blocks, equation (4.219) predicts
that the close to carrier AM-PM conversion can be completely cancelled. This is the
result of coupling induced AM-to-PM noise conversion that we also discussed earlier in
section 4.5. It should however be noted that at the time when [6] was published this
was a new result not found other places in the literature. Furthermore, this result could
only be found through nonlinear analysis and is hence not be found when using linear
models [7], [8], [67], [68]. Finally, it is noted from equation (4.219) that the AM-PM
noise conversion is proportional to the square of the oscillator amplitude relaxation time
[99], [100], as represented by the parameter 1/µ2

o. This intuitively pleasing result is a
characteristic of most LC oscillators. The above results illustrate that a highly tunable
quadrature oscillator could be created, with low phase noise over the entire tuning range,
if one could find a way to minimize the product of the coupling nonlinearity and the
oscillator amplitude relaxation time.

Finally we want discuss the issue of a quadrature oscillator Q factor which was cal-
culated using linear analysis in [7], [67]. In the case where the nonlinearity of coupling
and oscillator transconductance are identical, it follows that

µc
µo

=
gc0−Ĝmc

Ĝmc

go0−Ĝmo

Ĝmo

=
Ĝmo

Ĝmc

gc2
go2

=

go0
gc0

1− 3
4KoÂ

2

1− 3
4KcÂ2

gc2
go2

=
go0
go2

gc2
gc0

=
Kc

Ko
= 1 (4.224)

where the relation G = Ĝmo has been used. We now consider the case µc/µo = 1.
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Comparing (4.219) with Leeson’s model for phase noise in single oscillators [58], we can
define a new Q-factor QC for the cross-coupled quadrature oscillator as

QC =
1√
2

cos(ψ)
√

4Q2 + tan2(ψ) ≈
√

2︸︷︷︸
Mutual
Phase

Locking

Q cos(ψ)︸ ︷︷ ︸
AM−PM

Noise
Conversion

(4.225)

It lumps together the effects of mutual phase locking and AM-PM noise conversion.
The result in (4.225) was first found in [7] 33 where a phase transfer function was derived
through linear analysis. Later, the authors of [68] also derived it using graphical phasor
analysis. In [7], it was found that phase-shifters inserted in-between the oscillator sections
were needed in-order to make noise and quadrature orthogonal entities. This statement
still holds. However, the nonlinear analysis detailed in this paper reveals a completely new
aspect. Inspecting (4.219), we see that introducing linear coupling presents yet another
way of eliminating the noise/quadrature trade-off.

33in [7] the noise-to-signal ratio is not normalized to the noise of a single oscillator. This is why the
equivalent Q2 factor in this paper includes a factor of 2 instead of a factor

√
2. Normalized to the same

noise-to-signal ratio the two results are identical.



Conclusion

Besides the obvious need for a platform to present and explain the new findings and
models investigated during the course of this project, the intention behind this report
was to provide a complete, self-contained and easy-to-read introduction to the field of
linear response analysis of coupled oscillating systems. In order to accomplish this goal
chapter 1 included a detailed review of the main methods and techniques used in the
qualitative analysis of coupled oscillators. This involved equivalence theory (pp. 13-28),
averaging methods (pp. 28-31) and an introduction to symmetry calculations using group
theory (pp. 31-35). Furthermore, an introduction to oscillator noise modelling, Kurokawa
theory and Floquet theory was given in appendices A, B and D, respectively.

One of the main themes of the text in chapter 1 concerned the apparent similarity
of noise-forced oscillator models derived using either the normal-form method or aver-
aging techniques. It follows from this discussion that we can switch between these two
formulations and expect similar results, thus allowing for the methods to complement
each other, so to speak; something which could prove important for the construction of
future coupled oscillator models. The averaging method is very easily applied to a given
problem without involving too much algebra. It is the preferred method for developing
qualitative models of coupled electrical oscillators perturbed by noise, implying that al-
most all electronic engineering literature on the subject will consider averaging. Alone for
this reason it is important to familiarize oneself with the methodology. The normal-form
method, however, is based on a rigorous analytical foundation where the transformation
between "raw" and "normal" coordinate frames are described as the removal of non-
resonant terms from the state equations. Using this procedure we are allowed a deep
intuitive understanding of why some terms are "essential", and hence must remain in the
final expression, while others are deemed redundant and, consequently, unimportant for
the qualitative understanding of the asymptotic state dynamics. Although the work in
this report on the relationship between normal-form and averaged equations was devel-
oped independently of any references, it is most certainly formally proven somewhere in
the mathematical literature 34.

The report has contributed to new understanding in the following areas

• A simplified model of the single oscillator noise problem and a new formulation
for the derivation of the asymptotic phase statistics [43], (section 2.1.1, on page
38 and section 2.1.4, on page 48) : the original work in the paper [14] was very
complex and did not lead to a deeper understanding of the problem and it’s solu-
tion. Through a simplified approach using figures and a less mathematical notation
we derived a model which explained the statistics of the asymptotic free-running
oscillator phase process, as prescribed by an inhomogeneous diffusion equation.

34apart from standard curriculum textbooks, the author of this report does not read mathematical
literature (for obvious reasons) and hence has not been able to find a reference in this case.
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• A new definition of oscillator Q based on the normal-form equations of single and
coupled oscillator structures [98], (section 4.6 on page 113): this new definition
should be seen as a redefinition of the oscillator Q originally proposed by Razavi
in [41]. Using a linear feed-back model, Razavi derived the following oscillator
Q-factor

Q =
ω0

2

√(
dA

dω

)2

+
(
dΦ
dω

)2

where H(ω) = A(ω) exp(jΦ(ω)) is the linear open-loop transfer function and ω0

is the steady-state frequency. Unlike the normal-form Q derived in this report,
the above definition does not take nonlinear effects into account. It is furthermore
the authors experience that it proves extremely difficult to use when dealing with
complex coupled oscillator systems. The novel single/coupled oscillator Q proposed
in this report is written as

Q =
Q0√

1 +
(
r
s

)2

where Q0 is resonator Q-factor, r is a parameter which describes the isochrone cur-
vature at the limit cycle and s represents the amplitude relaxation time of oscillator
corresponding to a negative Floquet characteristic exponent. As witnessed from
the discussions in section 2.2.3, on page 54, and section 4.5.1, on page 105, this
formulation is extremely easy to use once the normal-form state equations have
been derived.

• A novel model of unilateral ring-coupled oscillators explaining the phenomena of
coupling-induced added phase-noise and including the effects of nonlinear coupling
transconductors [6], [19], [20], (section 4.7.3 on page 120, equation (4.125) on page
108 and equation (4.219) on page 123): this case very clearly illustrates the points
made above, concerning nonlinear effects. The previous models [7], [68] of this
circuit structure had missed the implications of nonlinear coupling because they
were based on linear formulations. Unlike these linear schemes, the normal-form
approach guarantees that all essential dynamic behavior will be included in the final
model. It is therefore the correct foundation for the qualitative study of oscillators,
both coupled and free-running. Using the model derived here, the coupling induced
noise was identified as an AM-PM contribution originating from the de-tuning of
the resonator, a nonlinear coupling transconductor and a finite amplitude relaxation
time constant. The phase-noise of the ring-coupled structure is expressed in terms
of an effective diffusion constant

D̄φφ =
(
ω0

2Q

)2{
1 +

(
2µc
µ1

)2

ζ2 sin2(∆φ̂)︸ ︷︷ ︸
}
N0

nP0

added coupling noise

where ω0/(2Q) is the resonator 3dB bandwidth (Q and ω0 are the resonator quality
factor and natural frequency, respectively), µc is related to the coupling linearity
(linear coupling ⇒ µc = 0), µ1 is the effective amplitude relaxation time constant,
ζ is the coupling strength, ∆φ̂ is the steady-state phase shift of two neighboring
oscillators (cells) in the ring, n is the number of cells in the ring and N0/P0 is the
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noise-to-power ratio. The above expression gives a clear indication of the "cost" of
coupling oscillators in a unilateral ring structure.

• A new algorithm for the unified phase-noise characterization of coupled oscillating
systems [51],[52], (chapter 3 on page 57) : in chapter 3, a generalized, automated,
topology and parameter independent phase-noise characterization of coupled oscil-
lators, perturbed by white noise sources, was proposed. In principle, this model
could be applied to any kind of coupled system, however, due to time-constraints it
was only possible to include a discussion considering a single example in this report;
namely the subharmonic injection locked oscillator (S-ILO). It was shown how one
could identify the two orthogonal projection operators which would project onto the
invariant manifold. Using the obtained projection operators we derived two cou-
pled stochastic differential equations (SDE) which were solved for the asymptotic
probability density of the S-OSC phase. Two diffusion constants, D21 and D22,
where D21 represents the noise injected by the master oscillator (M-OSC) and D22

the S-OSC noise, completely characterize the asymptotic stochastic S-OSC phase
properties. This should be compared with the single oscillator case where only
one constant was necessary to model the system. Generally, n diffusion constants
are then necessary to describe the n oscillator coupled system, corresponding to
a n dimensional invariant manifold. Using the asymptotic probability density for
the self-referenced (SR-P) S-OSC oscillator phase, derived from the SDE system
described above, we were able to calculate the single sideband (SSB) phase-noise
spectrum of the S-ILO, as

Ls(ωm) = 10 log

[
(Nω1)2D22[ω2

m+D21
D22

µ2
2]

[(1
2N

2ω2
1D21)2+ω2

m][µ2
2+ω2

m]

]

where ωm is the offset from the S-OSC carrier frequency ω1, in radians, N is the
harmonic of the M-OSC which locks to the S-OSC fundamental, µ2 is the second
Floquet characteristic exponent which was seen to be equal to the effective locking
bandwidth (see (3.88), on page 76).

The theoretic expressions were verified against raw integration of the stochastic
differential equations and with earlier (linear) models found in the literature.

It should be stressed that the coupled oscillator phase macro-model proposed in
this report is a work-in-progress, and that the formulation presented here hence
might not constitute the "final say" in this matter, so to speak. Future work in
this respect will concentrate on solidifying the model formulation by introducing
a more rigorous mathematical treatment. Work also needs to be done in order to
improve the efficiency and robustness of the numerical algorithm implemented in
the program [61]. Finally, it is the authors intention to extend the S-ILO model,
described here, to include other coupled oscillating systems [52]. It could also
be interesting develop a formulation which included colored noise sources like 1/f
noise. In [15], Demir showed how this could be done for the single oscillator phase
macro-model.

List of Publications
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• published : [6], [19], [20], [101]
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Appendix A

The Noise Appendix : Narrow-band
Noise / Stochastic Integration / The
Fokker-Planck Equation

In section 2.2.3, chapter 4 and appendix B we consider a prototype harmonic oscillator
consisting of a dampened parallel RCL resonator, shunted by a negative resistance non-
linear energy restoring circuit component (see e.g. figure 4.1, on page 80). The active
circuits and the resonator loss resistance will introduce thermal/shot noise sources into
the problem formulation. As explained several places in this report, these noise sources
can be collected in a single white-noise current source, in parallel with the resonator, by
the introduction of a so-called noise factor F [38], [96]. Since we consider linear re-
sponse noise analysis, we can without consequence re-normalize the noise power and set
F = 1. In conclusion, given that an oscillator noise factor has somehow been derived, the
statistics of the noise forcing function is fully characterized through a single stationary 1

white-noise current source in, with correlation function

Γ(t1, t2) =
〈
in(t1)in(t2)

〉
= Γ(τ) =

4kT
R

δ(τ) (A.1)

where R is the loss resistance of the resonator, k is Boltzmanns constant 2, T is the
absolute temperature and we have defined τ = t1− t2. The double-sided spectral density
Sn is found by Fourier transforming the correlation function in (A.1)

Sn(f) =
2kT
R

(A.2)

which, according to the definition of ideal white noise, is independent of frequency 3.
We can then find the power at any frequency f0, per Hz bandwidth, as

σ2
n =

〈
in(t)2

〉
∆f

=
2

∆f
×

f0+ 1
2
∆f∫

f0− 1
2
∆f

Sn(f)df =
4kT
R

[A2 ·s] (A.3)

1a process is stationary if the statistics are independent of the absolute measurement time and hence
only depends on the time intervals between measurements. For the correlation Γ, between the two
variables in(t1) and in(t2), this means that Γ(t1, t2) = Γ(t1 − t2) [39].

2k = 1.38 × 10−23J/K.
3this is of course only an approximation since this would require an infinite energy signal [102].
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A.1 Narowband Noise

In section 1.2, chapter 4 and appendix B, we discuss averaging theory, as it is applied
to noise forced harmonic oscillators. In the averaged oscillator state equations, we no
longer consider the white-noise current source in discussed above, but instead, the two
new narrowband noise processes inc and ins

inc(t) =
2
T0

t∫
t−T0

in(η) cos(ω0η)dη (A.4)

ins(t) =
2
T0

t∫
t−T0

in(η) sin(ω0η)dη (A.5)

with T0 = 2π/ω0 being the steady-state oscillator period. It is the purpose of this
appendix to characterize the statistics of these two noise currents.

The first step in the analysis considers the creation of an periodic ensemble

1. We assume that we have measured, and stored, an infinite long time series of the
noise current in.

2. This time series is then split-up into pieces of length T .

3. Each piece is copied an infinite number of times and then glued together to form a
infinite length periodic noise signal.

4. Continuing this process for each piece, we now have an infinite number of periodic
noise signals, which consequently form a periodic ensemble

5. In the limit T → ∞ this ensemble has the same statistics as in, defined through
(A.1)-(A.3).

From the above description we can write the noise current as

in(t) = lim
f→0

∞∑
n=1

[
an cos(2πnft) + bk sin(2πnft)

]
(A.6)

where f = 1/T is the fundamental harmonic and the stochastic variables, an and bn,
must account for the statistics of the ensemble. Since we are considering a stationary
process we can calculate the power at any time. Choosing the time t so that 2nft = i,
with i being an arbitrary, even or uneven, integer, we can derive

〈
an1an2

〉
=
〈
bn1bn2

〉
= δn1,n2σ

2
n (A.7)〈

an1bn2

〉
= 0 for all n1, n2 (A.8)

where we used the notation from (A.3) and δij is the Kroenecker delta-function.
We now choose f such that it is a submultiple of the oscillation frequency f0 = Nf .

We can then write (A.6) as

in(t) = ix(t) cos(2πf0t)− iy(t) sin(2πf0t) (A.9)
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where

ix(t) = lim
f→0

∞∑
n=1

[
an cos(2π(n−N)ft) + bn sin(2π(n−N)ft)

]
(A.10)

iy(t) = lim
f→0

∞∑
n=1

[
an sin(2π(n−N)ft)− bn cos(2π(n−N)ft)

]
(A.11)

Figure A.1: The averaging operation. The averaged wide-band thermal noise source is
represented by a carrier modulated by slow amplitude/phase signals.

The actions of averaging operator in (A.4)-(A.5) is illustrated in figure A.1. It consist
of an ideal mixer followed by a filter with transfer function

h(t) =

{
1
T0

t ∈ [−T0/2;T0/2]
0 otherwise

(A.12)

corresponding to the filter response

H(f) =
sin(πfT0)
πfT0

(A.13)

which is a low-pass filter with a finite 3db bandwidth B. We therefore approximate
(A.13) as

H(f) ≈
{

1 f ∈ [−B;B]
0 otherwise

(A.14)

We now define inc and ins from the currents ix and iy in (A.10)-(A.11), including only
that part of the spectrum which lies inside a bandwidth [f0 −B; f0 +B]

inc(t) = lim
f→0

k∑
n=−k

[
an+N cos(2πnft) + bn+N sin(2πnft)

]
(A.15)

ins(t) = lim
f→0

k∑
n=−k

[
an+N sin(2πnft)− bn+N cos(2πnft)

]
(A.16)
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Figure A.2: The effect of the averaging procedure in (A.4)-(A.5), illustrated in the fre-
quency domain.

where k is an integer chosen so that kf ≤ B. Hence inc and ins are narrow-band, or
slow, signals by which we mean that they will not vary significantly over one period of
the carrier, as is also illustrated in figure A.1.

We now consider an arbitrary integer n = Q in (A.15). The spectral components of
the narrow-band current source inc, at the frequency Qf , are

aN−Q cos(2πQft)− bN−Q sin(2πQft) + aN+Q cos(2πQft) + bN+Q sin(2πQft) (A.17)

We see that it consist of 4 components, corresponding to the two sidebands ±f0±Qf ,
as illustrated in figure A.2. The process in (A.15) is stationary and we can therefore choose
calculate the power at any time t. By choosing the time such that Qft = i, with i being
and arbitrary integer, we find the power, per Hz, at Qf is equal to

PQ =
〈
a2
N−Q

〉
+
〈
a2
N+Q

〉
= 2σ2

n (A.18)

where we have used (A.7)-(A.8). We see that the power, per Hz, of inc is twice that of
in. This is explained from figure A.2, where it is seen that both the sideband at f0 + fx
and that at −f0 + fx are down-converted by the averaging procedure to the sideband at
fx, resulting in twice the power. The frequency used above was chosen arbitrarily and
the result will hence apply for all the frequencies inside the bandwidth B. Furthermore,
the discussion above, pertaining to inc in (A.15), also holds for ins in (A.16) and we can
therefore write the double-sided spectral densities of the two narrow-band currents, using
(A.2), as

Gns(f) = Gnc(f) = Sn(f − f0) + Sn(f + f0) =
4kT
R

|f | ≤ B (A.19)

Using (A.3), with (A.19) substituted for Sn(f), we can then find the power, per Hz,
of these two process as

σ2
ns = σ2

nc = 2× σ2
n =

8kT
R

(A.20)

We also find that
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〈
ins(t)inc(t)

〉
= 0 (A.21)

where we have used that an and bn are uncorrelated, as is seen from (A.8). Since
all contributions in (A.9), outside the filter bandwidth B, are eventually removed by the
averaging procedures (A.4)-(A.5), we would get the same end-results if we started with
a definition of the noise current, in, where all these redundant components were simply
neglected. This leads to the definition of the narrow-band noise current

in(t) = inc(t) cos(ω0t)− ins(t) sin(ω0t) (A.22)

Using (A.19) and (A.21) we summarize the above results as

〈
inc(t1)inc(t2)

〉
=
〈
ins(t1)ins(t2)

〉
=

8kT
R

δ(t1 − t2) (A.23)〈
ins(t1)inc(t2)

〉
= 0 for all t1, t2 (A.24)

A.1.1 The Noise Admittance Yn = Gn + jBn

Often, the narrow-noise current sources inc and ins, defined in the previous section,
are represented in the noise forced averaged equations through the noise admittance
Yn = Gn + jBn [13]. In appendix B we derive the averaged equations of a general noise
forced 2-dimensional oscillator. As is seen from these calculations, we normalize the noise-
forced amplitude/phase equations by dividing with factor AG (see (B.33)-(B.34) on page
145) and we therefore consider the new noise forcing functions inc/(AG) and ins/(AG),
respectively. Here, A is the signal amplitude and G is the resonator loss conductance.
We can write the noise perturbed oscillator amplitude as A = Â + δA, where Â is the
steady-state amplitude of the noiseless oscillator and δA is a small noise transient. Since
both ins, inc and δA are small signals of same order, we can ignore the cross products
and hence define the new noise forcing functions

Gn(t) =
inc(t)
ÂG

(A.25)

Bn(t) =
ins(t)
ÂG

(A.26)

where Gn and Bn are the narrow-band noise conductance and noise susceptance,
respectively. Using (A.23)-(A.24) we can then characterize these two noise processes
through

〈
Gn(t1)Gn(t2)

〉
=
〈
Bn(t1)Bn(t2)

〉
=

8kT
Â2G

δ(t1 − t2) =
N0

P0
δ(t1 − t2) (A.27)〈

Gn(t1)Bn(t2)
〉

= 0 for all t1, t2 (A.28)

where
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N0 = 4kT [A· V · s] (A.29)

P0 =
Â2G

2
[A· V ] (A.30)

Here N0 is the available noise power, in a 1 Hz bandwidth, and P0 is the signal power
dissipated in the loss conductance.

A.1.2 A Pulse Train Noise Model

Since in is a thermal/white noise source we can write it as train of ideal delta pulses [32],
[97]

in(t) =
∑
i

ξiδ(t− ti) (A.31)

where the pulse amplitudes ξi and pulse arrival times ti are independent from one
pulse to the next. The arrival times of the pulses are specified as a Poison process 4,
which depends on a single parameter λ, known as the rate of the process. Briefly, besides
the independence of arrival times, this implies that the chance of observing a pulse only
depends on the length of the observation interval and not on the specific measurement
time. If N(τ) specifies the number of pulses in the interval τ , we have〈

N(τ) = 1
〉

= λτ (A.32)

So, in the mean, one pulse arrives in each interval of length 1/λ. Stationary Gaussian
processes are ergodic [97], implying that the time average of (A.31) equals the ensemble
average in (A.3)

i2n = lim
Tx→∞

1
Tx

t∫
t−Tx

i2n(η)dη = lim
Tx→∞

1
Tx

t∫
t−Tx

∑
i

∑
j

ξiδ(η − ti)× ξjδ(η − tj)dη =

lim
Tx→∞

1
Tx

i2∑
i=i1

ξ2i

(A.33)

where i1 and i2 are chosen so that all pulses in the interval [t − Tx; t] are included
in the sum. In the following we specify the pulse powers through their ensemble values〈
ξ2i
〉
. From (A.32), we should expect to observe λT pulses in the interval [t − T ; t], and

so using (A.3), the ergodic property yields

4kT
R

= lim
Tx→∞

T0λ

T0

〈
ξ2i
〉⇔ 〈

ξ2i
〉

=
4kT
Rλ

[C2] (A.34)

Using (A.4) and (A.31), we can find an expression for the narrow-band noise source
inc

4the stochastic variable N(τ), which accounts for the number of events inside the interval [t− τ, t], is
specified through a Poison process if P (N(τ) = k) = (λτ)k exp(−λτ)

k!
.
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inc(t) =
2
T0

t∫
t−T0

in(η) cos(ω0η)dη =
2
T0

t∫
t−T0

∑
i

ξiδ(η − ti) cos(ω0η)dη

=
∑
i

2
T0

t∫
t−T0

ξiδ(η − ti) cos(ω0η)dη

(A.35)

in the time t ∈ [ti, ti + T0] the integral in the above equation is equal to

2
T0

t∫
t−T0

ξiδ(η − ti) cos(ω0η)dη =
2ξi
T0

cos(ω0ti) (A.36)

As explained in [32], the averaging procedure has turned the delta pulse into a pulse
of length T0. If we define a new averaged delta function δ̃ as

δ̃(t) =

{
1
T0

t ∈ [0;T0]
0 otherwise

(A.37)

then we can write (A.35) as

inc(t) =
∑
i

2ξi cos(ω0t)δ̃(t− ti) (A.38)

Likewise, we can write the narrow-band source ins as

ins(t) =
∑
i

2ξi sin(ω0t)δ̃(t− ti) (A.39)

As explained in section A.1.1, we can then define the noise admittance Yn = Gn+jBn
through

Gn(t) =
∑
i

ξc,iδ̃(t− ti) (A.40)

Bn(t) =
∑
i

ξs,iδ̃(t− ti) (A.41)

where

ξc,i =
2ξi
ÂG

cos(ω0t) (A.42)

ξs,i =
2ξi
ÂG

sin(ω0t) (A.43)

Taking the time average of Gn(t1)Gn(t2), Bn(t1)Bn(t2) and Gn(t1)Bn(t2), using
(A.40)-(A.41), (A.42)-(A.43) and (A.34), as well as the ergodicity property, we reclaim
the statistics in (A.27)-(A.28).
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A.2 Stochastic Integration

We consider the scalar 5 stochastic differential equation (SDE)

dx

dt
= h(x, t) + g(x, t)in(t) (A.44)

where in(t) is a zero mean, delta-correlated, unit power Gaussian noise current source,
which was characterized in the beginning of this appendix 6. This kind of equation occurs
naturally in the modelling of any finite dimensional system forced by noise. As is seen
from (A.44), the formulation includes the possibility of both additive and multiplicative
noise 7. Equation (A.44) is known as a Langevin equation 8 and the noise source ξ is
often referred to as a Langevin force.

Although it correctly states the dynamics being considered, the formulation in (A.44)
can lead to erroneous interpretations. Stated briefly, the problem is that the left-hand side
contains a derivative while the right-hand side contains a delta-correlated, i.e. infinitely
fast moving, forcing function. From this description, one could be led to the conclusion
that the resulting waveform x(t) is discontinuous. The fact that realizations of (A.44)
are actually continuous [39] illustrates quite clearly that we should be careful when using
(A.44).

We can get around this ambiguity by choosing to interpret (A.44) in terms of the
Riemann-Stejltes integral

t∫
t0

dx =

t∫
t0

h(x, s)ds

︸ ︷︷ ︸
standard integral

+

t∫
t0

g(x, s)dW (s)

︸ ︷︷ ︸
stochastic integral

(A.45)

where W is a standard zero mean, unit power Wiener process [39]. This process is
defined as the integration of the white noise process in

W (t)−W (t0) =

t∫
t0

in(s)ds (A.46)

In figure A.3 we illustrate this, where we have modelled the white noise source in as
a train of pulses 9

in(t) =
∑
i

ξiδ(t− ti) (A.47)

with ξ being defined in (A.34). With the aim of deriving the statistics of the process
in (A.45), we now consider the increment process

5although a treatment of vector SDE’s would produce more general results, we only consider the scalar
case here. For a more complete treatment of the subject the reader is referred to [39].

6see (A.1) and (A.3) on page 130.
7if the function g in (A.44) depends on the state variable x, then in is known as multiplicative noise.
8named after Paul Langevin who was the first person introduce this notation around 1908. In the

original work, which was the result of efforts to attempt a simplification of Einsteins famous 1905 paper
on Brownian motion, Langevin did not use the concept of white noise, but instead the similar assumption
that the state variable and the forcing function were uncorrelated at all times

〈
x(t)in(t)

〉
= 0.

9see discussion in appendix A.1.2.
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t t

(  ) dt

Figure A.3: The Wiener Process (right curve), is defined as the integration of white noise
as represented by an pulse train (↑) [32] (left curve), where the arrival time and size of
the pulses are completely independent from one occurrence to the next.

∆W (t1, t0) = W (t1)−W (t0) =

t1∫
t0

in(s)ds =
i1∑
i=i0

ξi (A.48)

where i1 and i2 are chosen so that all pulses in the interval [t0; t1] are counted. As-
suming we have two disjoint intervals R1 = [t0; t1] and R2 = [t2; t3], i.e. t1 < t2 or t3 < t0,
we easily find

〈
∆W (t1, t0)∆W (t3, t2)

〉
=
〈 i1∑
i=i0

ξi ×
i3∑
j=i2

ξj

〉
= 0 (A.49)

since

〈
ξiξj

〉
= δij

4kT
Rλ

(A.50)

as discussed in section A.1.2. From (A.49) we get the important results that two
non-overlapping Wiener increments are uncorrelated. Moving on to the case where the
two intervals overlap, we can split correlation integral up into two contributions

〈
∆W (t1, t0)∆W (t3, t2)

〉
=
{ i1∑
i=i0

〈
ξ2i
〉

+
∑
j

∑
i

〈
ξiξj

〉}
(A.51)

where i0 and i1 are chosen so as to collect the pulses in the interval t ∈ R1 ∩R2 and
the last term concerns pulses in the interval t ∈ R1 ∪ R2, but for different indices i �= j.
From (A.50) we see that the last term in (A.51) can be set to zero. The length of the
interval t ∈ R1∩R2 is equal to min(t1, t3)−max(t0, t2). From the discussion in appendix
A.1.2, we know that we should expect λ[min(t1, t3)−max(t0, t2)] pulses in this interval.
We can therefore write (A.51) as



A.2. STOCHASTIC INTEGRATION 139

〈
[W (t1)−W (t0)][W (t3)−W (t2)]

〉
=
〈 t1∫
t0

in(s1)ds1

t3∫
t2

in(s2)ds2

〉
=

t1∫
t0

t3∫
t2

〈
in(s1)in(s2)

〉
ds1ds2 = λ

〈
ξ2i
〉(

min(t1, t3)−max(t0, t2)
)

=

σ2
n

(
min(t1, t3)−max(t0, t2)

)
= min(t1, t3)−max(t0, t2)

(A.52)

since in is assumed to be a unit power process. We now consider the process in
(A.46) with t0 = 0 and the initial condition W (0) = 0. We then see that we should set
t0 = t2 = 0 in (A.52) and hence that max(t0, t2) = 0. Furthermore, the initial condition
specifies W (t0) = W (t2) = 0 and we can then write (A.52) as

〈
W (t1)W (t2)

〉
= min(t1, t2) (A.53)〈

W (t)2
〉

= t (A.54)

where (A.54) follows directly from (A.53) and we have changed the notation t3 → t2.
We now return to the original integral in (A.45). Here the first term should be

calculated using standard calculus, while the second integral is a so-called stochastic
integral which requires a special calculus (i.e. a stochastic calculus). There exist two
interpretations this type of integral, referred to as the Ito and the Stratonovich integral,
respectively [39]. The difference between these two interpretations has implications for
the process statistics, only if one considers multiplicative noise. If g in (A.45) does not
depend on x, as is the case for additive noise, then the two integrals produce the same
result. In this section we limit the scope to additive noise sources and we can therefore
write the second integral in (A.45) as

Is(t, t0) =

t∫
t0

g(s)dW (s) (A.55)

Since this is stochastic integral we can only solve it in the mean limit. Using the
initial condition W (t0) = 0 it follows from the above discussion that W is a zero mean
variable, which means that

〈
Is(t, t0)

〉
=
〈 t∫
t0

g(s)dW (s)
〉

=

t∫
t0

g(s)
〈
dW (s)

〉
= 0 (A.56)

From the definitions in (A.53)-(A.54) we then find
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〈
Is(t1, t0)Is(t2, t0)

〉
=
〈 t1∫
t0

g(s1)dW (s1)

t2∫
t0

g(s2)dW (s2)
〉

=

t1∫
t0

t2∫
t0

g(s1)g(s2)
〈
dW (s1)dW (s2)

〉
=

t1∫
t0

t2∫
t0

g(s1)g(s2)δ(s1 − s2)ds1ds2 =

min(t1,t2)∫
t0

g2(s)ds

Using min(t1, t2) = (t1 + t2 − |t1 − t2|)/2, we can therefore write

〈
Is(t1, t0)Is(t2, t0)

〉
=

(t1+t2−|t1−t2|)/2∫
t0

g2(s)ds (A.57)

Furthermore, letting t1 = t2 = t, we get

〈
Is(t, t0)2

〉
=

t∫
t0

g2(s)dt (A.58)

A.3 The Fokker-Planck Equation

In the previous section we saw how it was possible, using stochastic integration, to derive
the time-varying mean and power of the process x(t) defined through the SDE

dx

dt
= h(x, t) + g(x, t)in(t) (A.59)

The stochastic variable x(t) is described through the time varying probability density
p(y, t) =

〈
δ(x(t)− y)〉. Using that x(t) is a Markov process we can define the conditional

probability density P (y, t+ τ |y′, t) through

p(y, t+ τ) =
∫
P (y, t+ τ |y′, t)p(y′, t)dy′ (A.60)

By writing the function P (y, t+ τ |y′, t) in terms of its characteristic function 10 and
using the identity

1
2π

∞∫
−∞

(ju)n exp(−ju(y − y′))du =
(
− ∂

∂y

)n
δ(y − y′) (A.61)

10the characteristic function Cξ(u) of a stochastic variable ξ is defined as the Fourier transform of the
probability function p(x, t) = δ(ξ(t) − x) : Cξ(u) =

∫∞
−∞ p(x, t) exp(jxu)dx =

〈
exp(jξu)

〉
. This function

can also be written as [39] Cξ(u) = 1 +
∑∞

n=1(iu)nMn/n!, where Mn =
〈
ξn
〉
.
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one can easily derive [39]

P (y, t+ τ |y′, t) =
[
1 +

∞∑
n=1

1
!n

(
− ∂

∂y

)n
Mn(y, t, τ)

]
δ(y − y′) (A.62)

where Mn the n’th moment of the conditional density

Mn(y, t, τ) =
〈
(y(t+ τ)− y(t))n〉∣∣∣∣

y(t)=y′
(A.63)

Inserting (A.62) into (A.60), using the definition

p(y, t+ τ)− p(y, t) =
∂p

∂t
τ +O(τ2) (A.64)

and taking the limit τ → 0 we derive the Fokker-Planck equation

∂p

∂t
=
[
∂

∂y
D(1)(y, t) +

1
2
∂2

∂y2
D(2)(y, t)

]
p(y, t) (A.65)

where we have defined

D(n)(y, t) = lim
τ→0

1
τ

〈
(y(t+ τ)− y(t))n〉∣∣∣∣

y(t)=y′
(A.66)

which are zero for n > 2 with the noise source in (A.59) [39].
Using the Stratonovich interpretation [39] of the stochastic integral in (A.45), we can

derive the following drift and diffusion coefficients

D(1)(y, t) = h(y, t) + g(y, t)
∂

∂y
g(y, t) (A.67)

D(2)(y, t) = g2(y, t) (A.68)

The second term in (A.67) represents noise induced drift, which is an effect connected
with multiplicative noise sources that is not seen with pure additive noise. This is easily
seen, since for pure additive noise g, in (A.67)-(A.68), would be independent of y.



Appendix B

Deriving the Averaged Stochastic
Differential Equations for a General
Class of Second Order Oscillators

+

-

vC

Figure B.1: LC oscillator with nonlinear varactor.

Figure B.1 shows a prototype LC oscillator including a nonlinear tuning varactor. A
KCL at the only node of the circuit gives the following equation

C(v)v̇ +
(

1
R
−G(v)

)
v +

1
L

∫
vdt = in (B.1)

where the meaning of the different symbols should be evident from inspecting the
figure. Both the nonlinear reactance and conductance are modelled using a third order
characteristic

G(vC) = g0 + g1vC + g2v
2
C (B.2)

C(vC) = c0 + c1vC + c2v
2
C (B.3)

If the quality factor of the resonator in figure B.1 is sufficiently high we can assume
that the steady-state solution is almost sinusoidal or quasi sinusoidal. Such circuits are
amenable to the procedure of averaging as explained in note 1.2 on page 30. In this
appendix we shall derive the averaged stochastic differential equations governing the
dynamics of the noise forced circuit in figure B.1. Averaging methods applied to noise
forced electrical oscillators was pioneered by Kurokawa [32], and we shall therefore often
refer to it as Kurokawa’s theory or simply Kurokawa theory.

142
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B.1 A van der Pol Oscillator with a Varactor

The capacitor voltage in figure B.1 can be written as a Fourier series

vC = A(t) cos(ω1t+ φ(t)) + hh. (B.4)

where hh. refers to higher harmonics, which must be negligible, referring to the original
quasi-sinusoidal assumption. In (B.4), ω1 is the steady-state fundamental frequency which
may be different from the DC resonator natural frequency ω0

ω0 =
1√
c0L

(B.5)

with c0 being the DC capacitance from (B.3). The derivative of the expression in
(B.4) is easily found to be

v̇C = Ȧ cos(ω1t+ φ)−A(ω1 + φ̇1) sin(ω1t+ φ) + hh. (B.6)

Comparing this expression with the result of differentiating a sinusoid with constant
amplitude and phase, we see that we have defined the new frequency

ω1 → ω1 − j Ȧ
A

+ φ̇1 (B.7)

which is known as Kurokawa’s substitution. Using integration by parts on (B.4), we
find ∫

vC(t′)dt′ =
A

ω1 + φ̇1

sin(ω1t+ φ)−
∫
Ȧ1 sin(ω1t+ φ)dt+ hh. =

A

ω1 + φ̇1

+
Ȧ1

ω2
1

cos(ω1t+ φ)−
∫
Ä1 cos(ω1t+ φ)dt+ hh.

(B.8)

where the last integral can be set to zero since Ä1  1. Furthermore, since |φ̇1|  1
we have

A

ω1 + φ̇1

≈ A

ω1
− A

ω2
1

φ̇1 (B.9)

Using the above derivations we can write (B.8) as∫
vC(t′)dt′ =

(
A

ω1
− A

ω2
1

φ̇1

)
sin(ω1t+ φ) +

Ȧ1

ω2
1

cos(ω1t+ φ) (B.10)

Inserting the two expressions (B.6) and (B.10) into (B.1), multiplying with sin(ω1+φ),
and averaging over one cycle, we get

−Cs(ω1 + φ̇1A)−Gs +
(

1
Lω1

− 1
Lω2

1

φ̇1A

)
= ins(t)⇔(

1
Lω1

− Csω1 −Gs
)
−
(
Cs +

1
Lω2

1

)
φ̇1A = ins(t)

(B.11)

Similarly, multiplying the same expression with cos(ω1 + φ) and averaging over one
cycle, we get
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CcȦ1 +
(

1
R
−Gc

)
A+

1
L

Ȧ1

ω2
1

= inc(t)⇔(
Cc +

1
Lω2

1

)
Ȧ1 +

(
1
R
−Gc

)
A = inc(t)

(B.12)

where (T1 = 2π/ω1)

inc(t) =
2
T1

t∫
t−T1

in(t′) cos(ω1t+ φ)dt′ (B.13)

ins(t) =
2
T1

t∫
t−T1

in(t′) sin(ω1t+ φ)dt′ (B.14)

represent slow moving orthogonal envelopes of the averaged white-noise current source
in. The statistics of these two processes are discussed in detail in appendix A.1. In (B.11)
and (B.12) we have further defined the averaged capacitance and conductance parameters

Cs =
2
T1

t∫
t−T1

C(vC) sin2(ω1t+ φ)dt′ (B.15)

Cc =
2
T1

t∫
t−T1

C(vC) cos2(ω1t+ φ)dt′ (B.16)

Gc =
2
T1

t∫
t−T1

G(vC) cos2(ω1t+ φ)dt′ (B.17)

Gs =
2
T1

t∫
t−T1

G(vC) cos(ω1t+ φ) sin(ω1t+ φ)dt′ (B.18)

Inserting (B.4) into (B.2)-(B.3), using standard trigonometric calculations, we find

G(v) cos(ω1t+ φ) = dc.+ g0 cos(ω1t+ φ) +
3
4
g2A

2 cos(ω1t+ φ) + hh. (B.19)

C(v) cos(ω1t+ φ) = dc.+ c0 cos(ω1t+ φ) +
3
4
c2A

2 cos(ω1t+ φ) + hh. (B.20)

C(v) sin(ω1t+ φ) = dc.+ c0 sin(ω1t+ φ) +
1
4
c2A

2 sin(ω1t+ φ) + hh. (B.21)

where dc. refers to constant/time-independent terms. Inserting (B.19)-(B.21) into
(B.15)-(B.18) gives the result

Cs = c0 +
1
4
c2A

2 (B.22)

Cc = c0 +
3
4
c2A

2 (B.23)

Gc = g0 +
3
4
g2A

2 (B.24)

Gs = 0 (B.25)
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Using these expressions we can write (B.11) and (B.12) as

(
1
Lω1

− c0ω1 − ω1

4
c2A

2

)
−
{
c0 +

1
4
c2A

2 +
1
Lω2

1

}
φ̇ =

1
A
ins(t) (B.26){

c0 +
3
4
c2A

2 +
1
Lω2

1

}
Ȧ+

(
G− g0 − 3

4
g2A

2

)
A = inc(t) (B.27)

In the above expressions curly brackets (i.e. {} ) signify that the expression inside
these brackets are multiplied by an amplitude/phase derivative. This derivative is small,
|φ̇|, |Ȧ|  1, which follows from the assumption of quasi-sinusoidal operation. We can
write the amplitude as a steady-state Â plus a small noise/signal transient δA. The
nonlinear terms inside these brackets, which stem from the capacitance expression in
(B.22)-(B.23), can then also be written as such a sum (i.e. C = Ĉ+δC). However, terms
of order (δA, δφ) × δC are very small and will therefore be ignored. We can therefore
substitute Â for A inside the curly brackets in (B.26)-(B.27). From (B.3), and using
(B.4), we now write the steady-state average resonator capacitance C, as

C =

t∫
t−T1

C(vC(t′))dt′ = c0 +
1
2
c2Â

2 (B.28)

where we have used Â since we consider the transient-free steady-state. In the steady-
state, the inductive and capacitive energy must balance, which translates into the expres-
sion

ω1C =
1
Lω1

(B.29)

Using (B.28) and (B.29), and referring to the above discussion, we can write curly
brackets in (B.26)-(B.27), as

c0 +
1
4
c2Â

2 +
1
Lω2

1

= C − 1
4
c2Â

2 + C = 2C − 1
2
(C − c0) =

3
2
C − 1

2
c0 = c+ (B.30)

c0 +
3
4
c2Â

2 +
1
Lω2

1

= C +
1
4
c2Â

2 + C = 2C +
1
2
(C − c0) =

5
2
C − 1

2
c0 = c− (B.31)

Furthermore, using (B.29), we can rewrite the first bracket of (B.26) as

1
Lω1

− c0ω1 − ω1

4
c2A

2 =
ω1

4
c2A

2 (B.32)

Inserting (B.30)-(B.32) into (B.26)-(B.27), we get

ω1

4
c2A

2 − c+φ̇1 =
1
A
ins(t) (B.33)

c−Ȧ1 +
(
G− g0 − 3

4
g2A

2

)
A = inc(t) (B.34)

Then using the following re-normalization of the time

τ =
ω0

2Q
=

1
2RC

(B.35)

we reach the final form of the amplitude/phase equations
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1
Â

dA

dτ
= s

[
1−

(
A

α

)2]A
Â

+ Υ1Gn(t) (B.36)

dφ

dτ
= rA2 + Υ2Bn(t) (B.37)

where

s = Υ1µo (B.38)

r = Υ2
ω1c2
4G

(B.39)

Υ1 =
2C
c−

(B.40)

Υ2 =
2C
c+

(B.41)

µo =
g0 −G
G

(B.42)

α =

√
4
3

(g0 −G)
g2

(B.43)

We have also used the concept of a noise admittance Yn = Gn + jBn

Gn(t) =
inc(t)
ÂG

(B.44)

Bn(t) =
ins(t)
ÂG

(B.45)

which was discussed in appendix A.1.1.

B.1.1 A Phasor Approach

The aim of this section is to illustrate that there exist a shortcut to the derivation of
the averaged amplitude/phase equations in (B.36)-(B.37). The method relies on the
introduction of phasor notation and we hence write (B.4) as

vC = �{A exp(j[ω1t+ φ])} = �{A exp(jΦ)} (B.46)

where we from the start ignore the higher harmonics since they will not play a role in
the final result. The next step consists of writing the resonator characteristic as a single
pole approximation

Y (ω) = G+ jωC(vC)− j L
ω
≈ G+ jω1C(vC)− j L

ω1
+ j

(
C(vC) +

L

ω2
1

)
(ω − ω1) (B.47)

Using Kurokawa’s substitution in (B.7) we can write a KCL for the circuit in figure
B.1 as



B.1. A VAN DER POL OSCILLATOR WITH A VARACTOR 147

Y (ω)vC = G(vC)vC + in(t)⇔{
G+ jω1C(vC)− j L

ω1
+ j

(
C(vC) +

L

ω2
1

)[
−j Ȧ

A
+ φ̇

]}
A exp(jΦ) =

G(vC)A exp(jΦ) + in(t)

(B.48)

Taking the real part on both sides of this equation, multiplying the with cos(Φ) and
sin(Φ), respectively, and averaging the result over one period T1 = ω1/2π, we get

GA+
(
Cc +

L

ω2
1

)
Ȧ = GcA+ inc(t) (B.49)

−ω1Cs +
L

ω1
−
(
Cs +

L

ω2
1

)
φ̇ = ins(t) (B.50)

Since (B.49) and (B.50) are identical to (B.12) and (B.11), respectively, we again
reach the result in (B.36)-(B.37).

Although the phasor method and the Kurokawa method basically represent the same
averaging procedure, it should be evident from the above derivations that the phasor
method demands much less algebra to reach the same result. We shall therefore use it
throughout this report. We conclude this section with a 7 step "recipe" for the derivation
of the amplitude/phase equations of the noise perturbed LC oscillator shown in figure
B.1

1. write the state equations for the oscillator using phasor notation.

2. derive the single pole approximation of the oscillator resonator characteristic.

3. insert Kurokawa’s substitution (B.7).

4. take the real part on both sides of the equation.

5. separate orthogonal components by multiplying each side by cos(ω1t+ φ)
and sin(ω1t+ φ), respectively.

6. remove all the higher harmonics in the resulting equations by averaging over one period.

7. include the narrow band noise processes inc and ins.



Appendix C

Various Derivations

This appendix contains the various calculations which were too long to be included in
the main text.

C.1 Section 1.1.1 : Normal-Form Calculations

We consider the arbitrary nonlinear system

ż = Jz + F2(z) + F3(z) + · · ·Fr−1(z) +O(|z|r) (C.1)

The close to unity change of coordinates

z = w + hk(w) (C.2)

with w ∈ C, hk : C→ Hk and k < r, is then introduced. The left-hand side of (C.1)
transforms to

ż = ẇ +Dhk(w)ẇ =
(
I +Dhk(w)

)
ẇ (C.3)

where Dhk(w) is the Jacobian of the map hk. Since Dhk(w) is a matrix containing
k − 1 order monomials, we can write(

I +Dhk(w)
)−1 = I −Dhk(w) +O(|w|k) (C.4)

Multiplying both sides of (C.1) with
(
I + Dhk(w)

)−1, using (C.2), (C.3) and the
above identity, we get

ẇ =
(
I−Dhk(w)+O(|w|k)){J(w+hk(w))+F2(w+hk(w))+· · ·+Fr−1(w+hk(w))+O(|w|r)}

(C.5)
The nonlinear terms are transformed as

Fj(w + hk(w)) = Fj(w) +O(|w|j+k) (C.6)

which means that we have[
I −Dhk(w) +O(|w|k)]Fj(w + hk(w)) = Fj(w) +O(|w|j+k−1) (C.7)

with j + k − 1 ≥ k + 1. We therefore have the following result of applying the
transformation in (C.2) to the system in (C.1)

148
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ẇ = Jw+F2(w)+ · · ·+
{
Fk−Dhk(w)Jw+Jhk(w)

}
+ F̃k+1(w)+ · · ·+ F̃r−1(w)+O(|w|r)

(C.8)
In the above equation, F̃ signifies that terms of order larger than k are changed,

in some unspecified way, by the transformation (C.2). The specifics are not important,
unless one aims to carry-out the actual calculations; but what is very important is that
the transformation preserves the lower order terms Fi i = 2, 3, · · · , k − 1. In (C.8) we
have collected terms of order k inside a curly bracket. From this, we see that if we could
choose hk in (C.2) so that

Fk(w) = Dhk(w)Jw − Jhk(w) (C.9)

then we could completely remove Fk. Since the transformation leaves the lower order
terms unchanged we can systematically treat each function Fk without destroying the
earlier obtained results.

We now define the Lie bracket

L
(k)
J (hk) = [hk(z), Jz] = −(Dhk(z)Jz − Jhk(z)) (C.10)

Using the operator in (C.10) we will be able to remove some of the nonlinear k’th
order terms in (C.1) while we will be forced to leave others. The vector space Hk can be
written

Hk = ImL(k)
J ⊕M (C.11)

where ImL(k)
J denotes the range/image of L(k)

J and M is it’s complement space. The
range contains the section of vector space that can be reached by the operator, which in
our case means that monomials contained in ImL(k)

J can be removed by the transformation
(C.2). Those monomials which are not contained in ImL(k)

J are by definition contained in
M and these terms can never be removed by (C.2). In [21] it is shown that M ≡ KerL(k)

J∗ ,
where Ker refers to the kernel of (C.10) and J∗ is the Hermitian 1 of the Jacobian. We
can then write (C.11) as

Hk = ImL(k)
J ⊕KerL(k)

J∗ (C.12)

From the above discussion it is seen that all k’th order nonlinear terms in the normal
form are forced to lie in the vector space KerL(k)

J∗ . As shown in [21], we have

eL
(k)
J∗ shk(z) = e−J

∗shk
(
eJ

∗sz
)

(C.13)

where s ∈ R is introduced as a parameter of the group, generated by J∗. Now if
hk(z) ∈ KerL(k)

J∗ then we must have

eL
(k)
J∗ shk(z) =

{
I + L

(k)
J∗ s+

1
2
(
L

(k)
J∗ s

)2 + · · ·}hk(z) = hk(z) (C.14)

and so, using (C.13), we get the following definition of KerL(k)
J∗

KerL
(k)
J∗ = {hk(z) ∈ Hk|e−J∗shk

(
eJ

∗sz
)

= hk(z)} (C.15)

Equation (C.15) says, that if hk ∈ KerL(k)
J∗ , then hk is equivariant with regard to the

actions contained in the one-parameter group eJ∗s.
1the Hermitian of a matrix is derived by transposing the matrix followed by complex conjugation.
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C.2 Calculating the Eigenvalues of the Matrix J11 on page
98

We need to find the eigenvalues of the matrix

J11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µa 0 0 0 · · · ζ(1−2µc) cos(∆φ̂)
ζ(1−2µc) cos(∆φ̂) −µa 0 0 · · · 0

0 ζ(1−2µc) cos(∆φ̂) −µa 0 · · · 0

0 0
. . . . . . · · · 0

...
... 0

. . . . . .
...

...
...

...
...

. . .
...

0 0 0 · · · ζ(1−2µc) cos(∆φ̂) −µa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.16)

Using the substitutions

α1 = −µa (C.17)

α2 = ζ(1− 2µc) cos(∆φ̂) (C.18)

we instead consider the general n× n matrix M

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 0 0 0 · · · α2

α2 α1 0 0 · · · 0
0 α2 α1 0 · · · 0

0 0
. . . . . . · · · 0

...
...

...
. . . . . .

...
0 0 0 · · · α2 α1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.19)

The characteristic polynomial CM (λ) can be written

CM (λ) = (α1 − λ)× det(M1)− α2 × det(M2) (C.20)

where the two n− 1× n− 1 matrices M1 and M2 are given as

M1 =

⎡⎢⎢⎢⎢⎢⎢⎣
α1 − λ 0 0 · · · 0
α2 α1 − λ 0 · · · 0

0
. . . . . . · · · 0

...
...

. . . . . .
...

0 0 · · · α2 α1 − λ

⎤⎥⎥⎥⎥⎥⎥⎦ (C.21)

and

M2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 · · · α2

α2 α1 − λ 0 · · · 0

0
. . . . . . · · · 0

...
...

. . . . . .
...

0 0 · · · α2 α1 − λ

⎤⎥⎥⎥⎥⎥⎥⎦ (C.22)

It is easily found that
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det(M1) = (α1 − λ)n−1 (C.23)

Furthermore, one can derive the result

det(M2) =

{
αn−1

2 for n even
−αn−1

2 for n uneven
(C.24)

We therefore get

CM (λ) =

{
(α1 − λ)n − αn2 for n even
(α1 − λ)n + αn2 for n uneven

(C.25)

The eigenvalues are found by setting CM (λ) = 0 and we find

λi =

{
α1 − exp(ji2π/n)α2 for n even
α1 − exp(jiπ/n)α2 for n uneven

(C.26)

Using the substitutions in (C.17)-(C.18) we get the final result

λi =

{
−µa − ζ(1− 2µc) cos(∆φ̂)

{
cos(i2π/n) + j sin(i2π/n)

}
for n even

−µa − ζ(1− 2µc) cos(∆φ̂)
{
cos(iπ/n) + j sin(iπ/n)

}
for n uneven

(C.27)

C.3 Calculating the Eigenvalues of the Matrix J22 on page
99

We need to find the eigenvalues of the n− 1× n− 1 matrix

J22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ζ cos(∆φ̂)− ζ cos(∆φ̂) −ζ cos(∆φ̂) −ζ cos(∆φ̂) −ζ cos(∆φ̂) −ζ cos(∆φ̂)
ζ cos(∆φ̂) −ζ cos(∆φ̂) 0 0 0

0 ζ cos(∆φ̂) −ζ cos(∆φ̂) 0 0
0 0 ζ cos(∆φ̂) −ζ cos(∆φ̂) 0
...

... 0 0 0
...

...
...

...
...

0 0 · · · ζ cos(∆φ̂) −ζ cos(∆φ̂)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.28)

In the following we make the substitution n − 1 → n in order to ease the notation.
Taking the factor ζ cos(∆φ̂) outside, we instead consider the n× n matrix M

M =

⎡⎢⎢⎢⎢⎢⎣
−2 −1 −1 −1 −1
1 −1 0 0 0
0 1 −1 0 0
...

...
. . . . . .

...
0 0 · · · 1 −1

⎤⎥⎥⎥⎥⎥⎦ (C.29)

where the eigenvalues of J22 is found as the eigenvalues of M times a factor ζ cos(∆φ̂).
The n− 1× n− 1 matrix N is derived from M by removing the first row and column
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Nn−1 =

⎡⎢⎢⎢⎣
−1 0 0 0
1 −1 0 0
...

. . . . . .
...

0 0 1 −1

⎤⎥⎥⎥⎦ (C.30)

The characteristic polynomial CNn−1(λ) = det(Nn−1 − Iλ) is easily found to be

CNn−1(λ) = (−1− λ)n−1 (C.31)

From (C.29) it is then seen that the characteristic polynomial CM (λ) = det(M − Iλ)
can be written as

CM (λ) = (−2− λ)× CNn−1(λ)− Pn−1(λ) (C.32)

where the polynomial Pn−1(λ) derived from the sub-determinant

Pn−1(λ) =

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 −1 −1
1 −1− λ 0 0 0
0 1 −1− λ 0 0

0
...

. . . . . .
...

0 0 · · · 1 −1− λ

∣∣∣∣∣∣∣∣∣∣∣
(C.33)

From this definition we see that Pn−1(λ) = −CNn−2(λ) − Pn−2(λ). This means that
we can write

CM (λ) = (−2− λ)(−1− λ)n−1 −
0∑

i=n−2

(−1)(n−2)−i+1(−1− λ)i (C.34)

where we have used the definition

P2(λ) =
∣∣∣∣−1 −1

1 −1− λ
∣∣∣∣ = −(−1− λ) + 1 = −P1(λ) + P0(λ) (C.35)

We now define

ρ = λ+ 1⇔ λ = ρ− 1 (C.36)

which, when inserted into (C.34), gives

CM (ρ) = (−1− ρ)(−ρ)n−1 −
0∑

i=n−2

(−1)(n−2)−i+1(−ρ)i =

(−1− ρ)(−ρ)n−1 − (−1)1(−ρ)n−2 − (−1)2(−ρ)n−3 − · · · − (−1)n−2(−ρ)− (−1)n−1

(C.37)
If n is even we get

CM (ρ) = −(−1−ρ)ρn−1 +ρn−2 +ρn−3 + · · ·+ρ+1 = ρn+ρn−1 +ρn−2 +ρn−3 + · · ·+ρ+1
(C.38)

If n is uneven we get
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CM (ρ) = (−1−ρ)ρn−1−ρn−2−ρn−3−· · ·−ρ−1 = −(ρn+ρn−1+ρn−2+ρn−3+· · ·+ρ+1)
(C.39)

The eigenvalues of the matrix M in (C.29) are found as solutions to the equation
CM (ρ) = 0 and we therefore have to find the roots of the polynomial

ρn + ρn−1 + ρn−2 + ρn−3 + · · ·+ ρ+ 1 = 0 (C.40)

The roots of this polynomial are given as

ρi =

{
cos
(
iπ
n+1

)
+ j sin

(
iπ
n+1

)
i = {1, 2 · · ·n} for n even

cos
(

2iπ
n+1

)
+ j sin

(
2iπ
n+1

)
i = {1, 2 · · ·n} for n uneven

(C.41)

Using (C.36) and making the substitution n → n − 1, while remembering the factor
ζ cos(∆φ̂), we get the following eigenvalues λ for the matrix J22 in (C.28)

λi =

{
ζ cos(∆φ̂)

{
cos
(
iπ
n

)− 1 + j sin
(
iπ
n

)}
i = {1, 2 · · ·n− 1} for n even

ζ cos(∆φ̂)
{
cos
(

2iπ
n

)− 1 + j sin
(

2iπ
n

)}
i = {1, 2 · · ·n− 1} for n uneven

(C.42)
These eigenvalues have real-parts less than zero as long as |∆φ̂| < π/2.

C.4 Calculations Used in the Proof of Theorem 3.3 on page
68

The Jacobian of the averaged system, which was derived in (3.40) in section 3.2.1, is
repeated here

J =

⎡⎢⎢⎣
α1 0 0 0
ρ1 0 0 0
ζ γ α2 −γ
−γ ζ γ + ρ2 −ζ

⎤⎥⎥⎦ (C.43)

where α(1,2) = −2µo,(m,s), ρ1,2 = 2bm,sÂ2

γ = −Nκ sin(N∆φ̂) (C.44)

ζ = Nκ cos(N∆φ̂) (C.45)

We refer to the discussion in section 3.2.1, on page 64, for an explanation of the
different parameters in (C.43). Using MAPLE™ we find the following eigenvalues and
eigenvectors of the matrix in (C.43)

µ =

⎡⎢⎢⎣
0
α1

δ+
δ−

⎤⎥⎥⎦ ; U =

⎡⎢⎢⎣
0 π1 0 0
1 π2 0 0
0 π3 π4 π5

1 1 1 1

⎤⎥⎥⎦ (C.46)

where
δ± = −1

2
ζ +

1
2
α2 ± 1

2

√
(α2 + ζ)2 − 4γ(ρ+ γ) (C.47)

If we assume that we have weak coupling, then we must have
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(α2 + ζ)2 � 4γ(ρ2 + γ) for all ∆φ̂ (C.48)

The above expression refers to the condition of normally hyperbolicity as it was stated
in definition 3.2 in section 3.2.1. Using (C.48), we can then approximate

1
2

√
(α2 + ζ)2 − 4γρ2 − 4γ2 ≈ α2 + ζ

2
− γ(ρ2 + γ)

α2 + ζ
(C.49)

which means that the expressions in (C.46), (C.47) can be simplified as follows

δ+ ≈ −ζ2 +
α2

2
+
α2 + ζ

2
− γ(ρ2 + γ)

α2 + ζ
= α2 − γ(ρ2 + γ)

α2 + ζ
(C.50)

δ− ≈ −ζ2 +
α2

2
− α2 + ζ

2
− γ(ρ2 + γ)

α2 + ζ
= −ζ − γ(ρ2 + γ)

α2 + ζ
(C.51)

π4 =
γ

−δ+ + α2
≈ γ

γ(ρ2+γ)
α2+ζ

=
α2 + ζ

ρ2 + γ
(C.52)

π5 =
γ

−δ− + α2
≈ γ

α2 + ζ
(C.53)

π1 = − α1[α1(α1 − α2) + ζ(α1 − α2) + γ(γ + ρ2)]
−α1[γζ + ζ(ρ2 + ρ1) + γ(α2 − α1)]− γ2ρ1 − γρ2ρ1 + ζρ1α2

≈ −α1

γ
(C.54)

π2 =
ρ1

α1
π1 ≈ −ρ1

γ
(C.55)

π3 = − α1[γρ1 + ζα1 + ζ2γ2]
−α1[γζ + ζ(ρ2 + ρ1) + γ(α2 − α1)]− γ2ρ1 − γρ2ρ1 + ζρ1α2

≈ −α1

α2

ζ

γ
(C.56)

In the above expressions we have set second order terms like γ2 equal to zero which
is within the bounds of the theory. Furthermore, it is seen that π1 � π2, π3 and that
π1, π2, π3 � 1. In the following we assume that α2 � α1 which is the case if Qm/Qs � 1,
where Qm and Qs are the M-OSC and S-OSC Q-factors, respectively. Inserting the above
expression in (C.46), and remembering that the eigenvectors must be normalized, we find

µ ≈

⎡⎢⎢⎣
0
α1

α2

−ζ

⎤⎥⎥⎦ ; U ≈

⎡⎢⎢⎣
0 1 0 0
1 ρ1

α1
0 0

0 ε1 1 ε4
1 ε2 ε3 1

⎤⎥⎥⎦ (C.57)

where ε1 = − ζ
α1

, ε2 = γ
α1

, ε3 = ρ2+γ
α2

and ε4 = γ
α2

. By inspecting (C.44)-(C.45) it is
seen that all the epsilon parameters are on the order of the coupling and hence are small
(i.e. |εi|  1).

Inspecting (C.57) we can hence conclude that

note C.1 there exist two Floquet eigenvectors u1(t) = φd(t)
and u2(t) = φs(t) + O(|ε|) (ε = γ/α2) spanning the tangent
space of the perturbed invariant manifold. The second Flo-
quet characteristic multiplier is given as µ2 = Nκ cos(N∆φ̂)
and represents effective coupling strength.
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We now consider the transposed matrix

JT =

⎡⎢⎢⎣
α1 ρ1 ζ −γ
0 0 γ ζ
0 0 α2 γ + ρ2

0 0 −γ −ζ

⎤⎥⎥⎦ (C.58)

Using MAPLE™ we find the following eigenvalue and eigenvectors

µ =

⎡⎢⎢⎣
0
α1

α2

−ζ

⎤⎥⎥⎦ ; V =

⎡⎢⎢⎣
− ρ1
α1

1 θ1+ θ1−
1 0 θ2+ θ2−
0 0 θ3+ θ3−
0 0 1 1

⎤⎥⎥⎦ (C.59)

The different parameters are given as

θ1± = −−ρ2ρ1γ − γ2ρ1 − ρ1ζδ± + ζρ1α2 − ζδ±γ − ζδ±ρ2 + γδ2± − γδ±α2

(−δ± + α2)δ±(−δ± + α1)
≈

− −ρ1ζδ± + ζρ1α2 − ζδ±γ − ζδ±ρ2 + γδ2± − γδ±α2

(−δ± + α2)δ±(−δ± + α1)
⇒ (C.60)

θ1+ ≈ α2ζ(ρ1 + γ)(γ(ρ2+γ)
α2+ζ

)
α2(α1 − α2)

≈ α2

α1

ζ

γ
; θ1− ≈ α2ζ(ρ1 + γ)

ζ(ζ + α2)(ζ + α1)
≈ ρ1 + γ

α1

(C.61)

θ2± =
−ρ2γ − γ2 − ζδ± + ζα2

(−δ± + α2)δ±
≈ ζ

δ±
⇒ θ2+ ≈ ζ

α2
; θ2− ≈ −1 (C.62)

θ3± = − γ + ρ2

−δ± + α2
⇒ θ3+ ≈ −α2 + ζ

γ
; θ3+ ≈ −γ + ρ2

ζ + α2
(C.63)

where all higher order terms like γ2 have been deleted and we have used (C.50)-
(C.51). From the above results it should be clear that θ1+, θ3+ � θ2+, θ1+, θ3+ � 1 and
θ3+ > θ1+. We can therefore write the following eigenvalues and normalized vectors from
(C.59)

µ ≈

⎡⎢⎢⎣
0
α1

α2

−ζ

⎤⎥⎥⎦ ; V ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎣
− ρ1

α1
1 1

ρ1 + γ

α1

1 0 ε6 −1

0 0 −1 −γ + ρ2

α2

0 0 −ε6 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(C.64)

where ε6 is an unspecified constant chosen to make the u and v vectors bi-orthogonal
(see appendix D). In (C.64), the boxed contributions represent AM-to-PM. From the
above expression we see that we no longer find the simple dual vectors v1(t) = φm(t)
and v2(t) = φs(t) as was discussed in section 3.2.1 for the symmetric case. However, this
is only correct because the dual Floquet eigenvectors are supposed to cover the comple-
ment of the null-space of the projection operators. When the oscillators are symmetric
and isotropic the null-space includes the entire amplitude space; while with asymmetric
oscillators and inherent frequency control there will be a cross-over part (AM-to-PM).
We summarize as follows
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note C.2 the two Floquet dual eigenvectors v1(t) and v2(t),
corresponding to the invariant manifold vectors u1(t) and
u2(t), correctly predict the added AM-to-PM noise conver-
sion introduced by asymmetry, inherent frequency control or
non-harmonic limit cycle. This means, that under the con-
dition of a normal hyperbolic manifold, the two normal form
projection operators P1(t) = u1(t)vT1 (t) = φd(t)vT1 (t) and
P2(t) = u2(t)vT2 (t) = φs(t)vT2 (t) will correctly represent the
S-ILO phase noise scenario.

C.5 The ILO Monodromy Matrix

Due to the unilateral coupling from the M-OSC to the S-OSC in the S-ILO scenario (see
figure 3.1, on page 63) we can write the monodromy matrix (MM) as

Φ ≡ Φ(T, 0) =
[
Φ11 0
Φ21 Φ22

]
(C.65)

where Φ11 ∈ Rn1×n1 , Φ21 ∈ Rn2×n1 , Φ11 ∈ Rn2×n2 . From the discussion in appendix
D we know that we can write the following Floquet decomposition of the MM

Φ =
n∑
i=1

λiuiv
T
i =

n1∑
i=1

λ1,iu1,iv
T
1,i +

n2∑
i=1

λ2,iu2,iv
T
2,i (C.66)

where the Floquet vectors have the following form

u1,i =
[
u1m,i

u1s,i

]
(C.67)

v1,i =
[
v1m,i
0

]
(C.68)

u2,i =
[

0
u2s,i

]
(C.69)

v2,i =
[
v2m,i
v2s,i

]
(C.70)

where u1m,i, v1m,i, v2m,i ∈ Cn1 and u1s,i, u2s,i, v2s,i ∈ Cn2 . The vectors in (C.67)-
(C.70) follow from inspection of (C.65) and its transposed 2.

Comparing (C.65) and (C.66) and using (C.67)-(C.70) we see that we can write the
block matrices as

2the Floquet vectors ui are eigenvectors of the MM while the dual Floquet vectors are eigenvectors of
the transposed MM (see discussion in appendix D).
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Φ11 =
n1∑
i=1

λ1,iu1m,iv
T
1m,i (C.71)

Φ22 =
n2∑
i=1

λ2,iu2s,iv
T
2s,i (C.72)

Φ21 =
n1∑
i=1

λ1,iu1s,iv
T
1m,i +

n2∑
i=1

λ2,iu2s,iv
T
2m,i (C.73)

One of the eigenvectors of the MM will have eigenvalue 1 and have a Floquet eigen-
vector which lies parallel to the periodic orbit. We can therefore write λ1,1 = 1 and

u1,1 =
[
u1m,1

u1s,1

]
=
[
ẋm
ẋs

]
(C.74)

where the above vector by definition lies tangent to the periodic orbit xss(t) =
[xm(t) xs(t)]T . The Floquet eigenvectors and the dual Floquet eigenvectors form a bi-
orthogonal set 3 which means that

uT1,1v1,1 = 1⇔ [ẋTm ẋTs ][v1,m 0]T = ẋTmv1,m = 1 (C.75)

where we have used the expressions in (C.67)-(C.68). Since (C.74) is an eigenvector
of (C.65), with eigenvalue 1, we can write[

Φ11 0
Φ21 Φ22

] [
ẋm
ẋs

]
=
[
ẋm
ẋs

]
(C.76)

The above equation can also be expressed through two block-equations

Φ11ẋm = ẋm (C.77)
Φ21ẋm + Φ22ẋs = ẋs (C.78)

Equation (C.77) merely states that the M-OSC is a free-running oscillator. Using the
notation from (C.72)-(C.73) we can write (C.78) as

n1∑
i=1

λ1,iu1s,iv
T
1m,iẋm +

n2∑
i=1

λ2,iu2s,iv
T
2m,iẋm +

n2∑
i=1

λ2,iu2s,iv
T
2s,iẋs = ẋs ⇔

λ1,1u1s,1v
T
1m,1ẋm +

n2∑
i=1

λ2,iu2s,iv
T
2m,iẋm +

n2∑
i=1

λ2,iu2s,iv
T
2s,iẋs = ẋs

(C.79)

where we have used that

n1∑
i=1

λ1,iu1s,iv
T
1m,iẋm = λ1,1u1s,1v

T
1m,1ẋm (C.80)

since we must have that

vT1m,iẋm = δi1 (C.81)

3the two sets of Floquet vectors form a bi-orthogonal set uT
i vj = δij as discussed in appendix D.
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This follows from (C.75) and the fact that the ui and vi vectors must form a bi-
orthogonal set (see footnote 3). This means that all v1m,i, except v1m,1, must be orthog-
onal to ẋm. However, using (C.74), (C.75) and λ1,1 = 1, we can write

λ1,1u1s,1v
T
1m,1ẋm = ẋs (C.82)

which, when inserted into (C.79), gives us the following balance equation

n2∑
i=1

λ2,iu2s,iv
T
2m,iẋm +

n2∑
i=1

λ2,iu2s,iv
T
2s,iẋs = 0 (C.83)

From (C.83) we can derive the expression

vT2m,iẋm = −vT2s,iẋs for all i (C.84)

However, this also follows from the bi-orthogonality condition (see discussion in ap-
pendix D and footnote 3)

uTi vj = δij (C.85)

C.6 Computing the Spectrum of the Noise Perturbed ILO

In section 3.2.4 an expression for the asymptotically stationary autocorrelation function
Γ(τ) was found in (3.80). The spectral density function is now found by Fourier trans-
forming this expression. We shall use the approximation exp(−Nω2

1k
2σ2
s(1 − ρt)) ≈

1 − Nω2
1k

2σ2
s(1 − ρτ ) where k denotes the harmonic in question. This approximation

is valid since Nω2
1k

2σ2
s(1 − ρτ )  1 for all τ . Inserting this expression into equation

(3.80), Fourier transforming and including a frequency displacement Nω1 due to the
factor exp(jNω1τ), results in an expression for the S-OSC spectral density. Assuming
2µ2 � ω2

1D21, we can simplify this expression, leaving us with the result

Ss(ω) =
∞∑

k=−∞
|Xk|2×

(kNω1)2(D21+2σ2
s |µ2|)[(ω + kNω1)2+

D21µ2
2

D21+2|µ2|σ2
s
]

[(1
2N

2ω2
1k

2D21)2+(ω+kNω1)2][µ2
2+(ω + kNω1)2]

(C.86)



Appendix D

Floquet Theory

The text in this appendix is inspired by the derivations in [14]. We shall use the index s
to symbolize time instead of the usual t and we write the dimension of the state vectors
as m. These symbols are chosen to match the notation in chapter 3 1. The system is
assumed time normalized so that we operate with a period T = 2π.

We consider the linear homogeneous ODE

ż(s) = A(s)z(s) (D.1)

where z(·) : R → Rm and A(·) : R → Rm×m. The solution to (D.1), with initial
condition z(s0), is then written

z(s) = Φ(s, s0)z(s0) =
m∑
i=1

exp
(
µi(s− s0)

)
ui(s)vTi (s0)z(s0) (D.2)

where Φ(s, s0) is the state-transition matrix (STM)

Φ(s, s0) = exp

{ s∫
s0

A(η)dη

}
=

m∑
i=1

exp
(
µi(s− s0)

)
ui(s)vTi (s0) (D.3)

with the column vectors ui(s) : R → Cm×1 being the i’th Floquet eigenvector, the
row vectors 2 vTi (s) : R → C1×m are the i’th dual Floquet eigenvector and µi is the i’th
Floquet characteristic exponent. Both the ui and the vi vectors are 2π periodic in their
arguments. Furthermore, according to Floquet theory, we can assume that these vectors
form a complete bi-orthogonal set 3

vTi (s)ui(s) = δij for all s (D.4)

We then consider the adjoint system

ẇ(s) = −AT (s)w(s) (D.5)

and we define a STM for this system as
1here s is the instantaneous time s = t+α(t) and m =

∑n
j=1 nj with n being the number of oscillators

in the coupling structure and ni the state dimension of the i’th oscillator.
2in this report xT refers to the transposed vector. So if x(s) : R → C

m×1 then we have that xT (s) :
R → C

1×m.
3besides the condition in (D.4) this means that {ui}m

i=1 span the vector space R
m while the row vectors

{vT
i }m

i=1 span the dual vector space R
m∗.
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Ψ(s, s0) = exp

{
−

s∫
s0

AT (η)dη

}
=

[
exp

{ s0∫
s

A(η)dη

}]T
(D.6)

where we have used that
∫ b
a f(x)dx = − ∫ ab f(x)dx and furthermore that the exponen-

tial of a transposed matrix is equal to the transpose of the exponential itself. Comparing
(D.6) and (D.3) we can make the following identification

Ψ(s, s0) = Φ(s0, s)T (D.7)

With the initial conditions w(s0) we then find

w(s) = Ψ(s, s0)w(s0) = Φ(s0, s)Tw(s0) =
m∑
i=1

exp
(
µi(s0 − s)

)
vi(s)uTi (s0)w(s0) (D.8)

Using (D.2) and (D.8) and the bi-orthogonality in (D.4) we find the special solutions

z(s0) = ui(s0)⇒ z(s) = exp(µi(s− s0))ui(s) (D.9)
w(s0) = vi(s0)⇒ w(s) = exp(µi(s0 − s))vi(s) (D.10)

Which is also written

exp(µi(s− s0))ui(s) = Φ(s, s0)ui(s0) (D.11)
exp(µi(s0 − s))vi(s) = Ψ(s, s0)vi(s0) (D.12)

From (D.11)-(D.12) we see that ui and vi are eigen-modes of the STM’s Φ and Ψ,
respectively. Furthermore, since ui and vi are periodic, with period 2π, we see from
(D.11)-(D.12) that ui(s) is an eigenvector of Φ(s+ 2π, s) while vi(s) is an eigenvector of
Ψ(s+ 2π, s)

Φ(s+ 2π, s)ui(s) = λiui(s) (D.13)

Ψ(s+ 2π, s)vi(s) = Φ(s, s+ 2π)T vi(s) = λ−1
i vi(s) (D.14)

where

λi = exp(µiT ) = exp(µi2π) (D.15)

are the so-called Floquet characteristic multipliers. The special STM Φ(s + 2π, s) is
known as the monodromy matrix.

Using the definitions in (D.4), (D.7) and (D.11)-(D.12) we can then derive the follow-
ing important relationship

vTi (s)ui(s) = 1⇒

exp
(−µi(s0 − s))[Ψ(s, s0)vi(s0)

]T
exp

(−µi(s− s0))Φ(s, s0)ui(s0) =

vTi (s)Ψ(s, s0)TΦ(s, s0)ui(s0) = 1⇒ Ψ(s, s0)TΦ(s, s0) = Φ(s0, s)Φ(s, s0) = I ⇔
Φ(s0, s) = Φ(s, s0)−1

(D.16)
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Using the above derivation we can write (D.8) as

w(s) =
[
Φ(s, s0)−1

]T
w(s0)⇔ w(s0) = Φ(s, s0)Tw(s) = Ψ(s0, s)w(s) (D.17)

Assume now that we consider a 2π periodic steady state solution of some autonomous
ODE and that (D.1) represents the linear response; how should we interpret the STM
eigen-modes ui, vi?

note D.1 The solution to the linear response system in
(D.1) is written z(s) = Φ(s, s0)z(s0) where s > s0. This
should be interpreted as the STM or the Forward Time Map
(FTM) taking the initial condition z(s0) and bringing it
forward in time to the solution z(s). The solution to the
dual system in (D.5) is written w(s0) = Ψ(s0, s)w(s) =
Φ(s, s0)Tw(s) s > s0. This should interpreted as the trans-
posed STM or Backward Time Map (BTM) taking the initial
solution w(s) and bringing in backward in time to the solu-
tion w(s0).

Consider and arbitrary initial condition z(s0) to the system in (D.1). Since ui span
the space Rm (see footnote 3) we can write

z(s0) =
m∑
i=1

aiui(s0) (D.18)

where ai are the expansion coefficients. Inserting this expansion into (D.3) and using
the bi-orthogonality condition in (D.4) we find the following solution at time s0 + 2π

z(s0 + 2π) = Φ(s0 + 2π, s0)z(s0) =
m∑
i=1

λiaiui(s0) (D.19)

where we have used the formulations from (D.13)-(D.14). We see that the opera-
tor in (D.3) picks out the components in the different state-space directions, ui(s0), in
the initial condition and then brings them forward in time 2π to ui(s0 + 2π) = ui(s0)
by multiplying by a factor exp(µi2π). The selection operation is done by the terms
ui(s0 + 2π)vTi (s0) = ui(s0)vTi (s0). These terms then define a set of orthogonal projection
operators (see footnote 6, on page 41)

Pi(s0) = ui(s0)vTi (s0) (D.20)

This set is orthogonal since (see footnote 12 on page 42)

PiPj = ui(s0)vTi (s0)uj(s0)vTj (s0) = δijPi (D.21)

where we have used the bi-orthogonality condition in (D.4). We then see that we can
write the monodromy matrix Φ(s0 +2π, s0) as a series of orthogonal projection operators

Φ(s0 + 2π, s0) =
m∑
i=1

exp
(
µi2π

)
Pi(s0) =

m∑
i=1

λiPi(s0) (D.22)

Since s0 is chosen arbitrarily we can set s0 = 0
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Φ(2π, 0) =
m∑
i=1

λiPi(0) =
m∑
i=1

λiPi (D.23)

We see that Monodromy Matrix Φ(2π, 0) constitutes a return-map which bring the
solutions one period forward in time.

note D.2 the monodromy matrix Φ(2π, 0) =
∑m

i=1 λiPi
constitutes a return-map which bring the linear response so-
lutions one period forward in time. The perturbations out-
side the null-space, as determined by vTi (0), of the orthogonal
projection operator Pi = ui(0)vTi (0), will be multiplied by a
factor λi and projected onto the range ui(0).

Finally, we consider the linear inhomogeneous ODE

ż(s) = A(s)z(s) + b(s) (D.24)

where b(s) : R→ Rm is the forcing function. From standard analysis we known that
the complete solution can be written as the sum of a homogenous and an inhomogeneous
part. Furthermore, the inhomogeneous solution can be expressed as a folding integral
with the homogeneous solution. This follows by writing the forcing function as

b(s) =
∫
b(si)δ(s− si)dsi (D.25)

At each time, sj , the forcing function resets the initial condition

z(sj) = z(sj−) + b(sj) (D.26)

where sj− = limx→0 sj − x. The complete solution then reads

z(s) = Φ(s, sj)
{
z(sj−) + b(sj)

}
=

Φ(s, sj)Φ(sj−, s0)z(s0) + Φ(s, sj)b(sj) = Φ(s, s0)z(s0) + Φ(s, sj)b(sj)
(D.27)

Including the complete forcing function (D.25), and using the superposition principle
which holds for linear ODE’s, we can write the complete solution as

z(s) = Φ(s, s0)z(s0) +

s∫
s0

Φ(s, η)b(η)dη (D.28)
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D.1 Deriving the Monodromy Matrix Φ(2π, 0)

Averaging techniques were discussed in section 1.2, on page 28, and applied in chapter 4
to the analysis of oscillators coupled in a unilateral ring. The averaged state equations
work on a time scale t = T = 2π and inside this time frame we have no information
about the solution; we only receive stroboscopic signals at times t = T, 2T, 3T, · · · . If we
compare this with the description of the monodromy matrix in note D.2 we recognize an
immediate similarity.

Using (D.3) we can write the monodromy matrix as

Φ(2π, 0) = exp

{ 2π∫
0

J(η)dη

}
(D.29)

where we denote the Jacobian matrix A(·), in (D.3), as J(·), since we shall use A to
symbolize the oscillator amplitude. If we write the Jacobian of the averaged system as
Jav, we could suggest that

Jav =
1
2π

2π∫
0

J(η)dη (D.30)

This simply follows from switching the order of differentiation and averaging (inte-
gration) 4.

A mathematical proof of (D.30) could thus probably be derived relatively painlessly;
however, we shall prefer to consider a simple illustrative example. The van der Pol
oscillator unit has been used throughout this report as a simple prototype oscillator. The
state equations read

L
∂iL
∂t

= −vC (D.31)

C
∂vC
∂t

= iL − vC
R

+GM (vC) (D.32)

where GM (vC) = g1vC+g2v2
C+g3v3

C . We start by deriving the monodromy matrix for
this system which is then compared with the expression for the Jacobian of the averaged
equations. In section 1.1.1 we wrote (D.31)-(D.32) on the equivalent complex form, as
shown in (1.29) on page 17. Then in (1.43) and (1.44), on page 20 of section 1.1.1, it was
explained how we could transform this to the polar form

2AȦ = żz + zż (D.33)

φ̇ =
−j
2zz

(żz − zż) (D.34)

where we have used the notation z(t) = Aej(t+φ). From (1.29) we find

żz = λA2 +
c2 − jc1

2c2

(
g1
C

(
A3ej(t+φ) +A3e−3j(t+φ) − 2A3e−j(t+φ)

)−
g2
C

(
A4e2j(t+φ) −A4e−4j(t+φ) + 3A4e−2j(t+φ) − 3A4

)) (D.35)

4the linear response averaged system is derived by first averaging and then differentiating while the
monodromy matrix is found by first differentiating the state equations, to obtain the linear response
equation in (D.1), and then integrating (averaging) the resulting Jacobian.
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The parameters in the above expression are defined in (1.24)-(1.25), on page 16.
Inserting (D.35), and it’s complex conjugate, into (D.33)-(D.34), we obtain the equivalent
amplitude/phase state equations of the van der Pol oscillator in (D.31)-(D.32). We can
find the Jacobian, J(t), of this ODE by differentiating with respect to the state variables
A and φ (see (2.4) on page 38). What results is a complicated expression, involving
various time varying terms as seen from (D.35). However, from the definition in (D.29)
we see that all time varying terms, being periodic with period 2π, are removed by the
integration. We can hence derive the monodromy matrix by inspection from (D.35) and
(D.33)-(D.34)

Φ(2π, 0) = exp

[ 2π∫
0

J(η)dη
]

= exp

([
�{λ} − 9

4
g2
C Â

2 0
− c1
c2

6
2
g2
C Â 0

]
× 2π

)
=

exp

⎛⎜⎜⎜⎝2π
C

⎡⎢⎢⎢⎣
(g0−GL)

2

[
1− 9g2

2(g0−GL)Â
2
]

0

− 3(g0−GL)g2√
ω2

0−
(

g0−GL
C

)2 Â 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

(D.36)

where Â refers to the steady-state amplitude of the limit cycle, about which the
Jacobian is formed. The averaged state equations are easily found as

Ȧ = �{λ}A− 3
g2
2C

A3 (D.37)

φ̇ = −3
c1
2c2

g2
C
A2 (D.38)

Deriving the Jacobian of the above vector field, and comparing with the expression
in (D.36), we see that we can write the monodromy matrix in (D.29) as

Φ(2π, 0) = exp
(
2πJav

)
(D.39)

We can decompose Jav as

Jav =
∑
i

ρixiy
T
i (D.40)

where ρi is the i’th eigenvalue, xi is the i’th left eigenvector and yi is the i’th right
eigenvector. Since these vectors form a complete bi-orthogonal set we can write the
monodromy matrix (D.39) as

Φ(2π, 0) =
∑
i

exp(2πρi)xiyTi (D.41)

A comparison of this expression with (D.23) and (D.20) leads to the identifications
ρi = µi, xi = ui(0) and yTi = vTi (0). We summarize as follows

note D.3 The monodromy matrix can be written as
Φ(2π, 0) = exp

(
2πJav

)
, where Jav is the Jacobian of the av-

eraged state equations. The left and right eigenvectors of Jav
are then identified with the Floquet and dual Floquet eigen-
vectors ui(0) and vTi (0), respectively. The eigenvalues of Jav
are identified with the characteristic exponents µi.
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