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Preface

This thesis was submitted at the Technical University of Denmark (DTU), depart-
ment of Informatics and Mathematical Modelling (DTU Informatics) in partial ful-
filment of the requirement for acquiring the PhD degree in engineering. The PhD
project has been carried out as part of the project "Evolution and adaptation of an-
timicrobial resistance in bacterial populations" founded by the Danish Research
Council for Technology and Production Sciences through the grant 274-05-0117.

The main collaborating institutions on the PhD project have been the Univer-
sity of Copenhagen, Department of International Health, Immunology and Mi-
crobiology, and Technical University of Denmark, DTU Food. Half a year of the
PhD study have been carried out in Utrecht, the Netherlands in collaboration with
the University Medical Center Utrecht, Department of Medical Microbiology, and
Utrecht University, Department of Mathematics.

The topic of this thesis is application of stochastic differential equations and
discrete stochastic models to bacterial growth, evolution and spread. The The-
sis consist of a summarizing report and 7 research papers written during the PhD
study. Two research papers have been published in international journals, one pa-
per has been published as a research report at DTU Informatics and four research
papers are either submitted or under preparation for submission.
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Summary

This thesis applies mathematical modelling and statistical methods to investigate
the dynamics and mechanisms of bacterial evolution. More specifically it is con-
cerned with the evolution of antibiotic resistance in bacteria populations, which
is an increasing problem for the treatment of infections in humans and animals.
To prevent the evolution and spread of resistance, there is a need for further un-
derstanding of its dynamics.

A grey-box modelling approach based on stochastic differential equations is
the main and innovative method applied to study bacterial systems in this thesis.
Through the stochastic differential equation approach, knowledge of continuous
dynamical systems can be combined with strong statistical methods. Hereby, im-
portant tools for model development, parameter estimation, and model validation
are provided when in connection with data.

The data available for the model development consist mainly of optical den-
sity measurements of bacterial concentrations. At high cell densities the optical
density measurements will be effected by shadow effects from the bacteria lead-
ing to an underestimation of the concentration. To circumvent this problem a ex-
ponential calibration curve has been applied for all the data. This new curve was
found to perform the best calibration in a comparison with other earlier suggested
curves.

In this thesis a new systematic framework for model improvement based on
the grey-box modelling approach is proposed, and applied to find a model for
bacterial growth in an environment with multiple substrates. Models based on
stochastic differential equations are also used in studies of mutation and conjuga-
tion. Mutation and conjugation are important mechanisms for the development
of resistance. Earlier models for conjugation have described systems where the
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substrate is present in abundant amounts, but in this thesis a model for conjuga-
tion in exhaustible media has been proposed.
The role of mutators for bacterial evolution is another topic studied in this the-
sis. Mutators are characterized by having a high mutation rate and are believed
to play an important role for the evolution of resistance. When growing under
stressed conditions, such as in the presence of antibiotics, mutators are consid-
ered to have an advantages in comparison to non-mutators. This has been sup-
ported by a mathematical model for competing growth between a mutator and a
non-mutator population. The growth rates of the two populations were initially
compared by a maximum likelihood approach and the growth rates were found to
be equal. Thereafter a model for the competing growth was developed. The mod-
els show that mutators will obtain a higher fitness by adapting faster to an environ-
ment with antibiotics than the non-mutators. In another study a new hypothesis
for the long term role of mutator bacteria is tested. This model suggests that mu-
tators can work as "genetic work stations", where multiple mutations occur and
subsequently are transmitted to the non-mutator population by conjugation.

Another study in this thesis is concerned with the spread of colonization with
resistant bacteria between patients in a hospital and people in the related catch-
ment population. The resistance considered is extended-spectrum beta-lactamases,
and it is the first time a model has been developed for the spread of this type of
resistance. Different transfer mechanisms are studied and quantified with the
model. Simulations of the model indicates that cross-transfer of resistance be-
tween patients is the most important mechanism of transfer.

The mathematical models developed in this thesis have helped to an improved
understanding of the evolution and spread of resistance. They are thus a prime
example of the strength of combining microbiology and experiments with mod-
elling.
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Resume

Denne afhandling anvender matematiske modeller og statistiske metoder til at
undersøge dynamikken af og mekanismer for bakteriel evolution. Mere specifikt
omhandler den evolution af antibiotika resistens i bakterie population, som er et
stigende problem for behandlingen af infektioner i mennesker og dyr. For a hin-
dre eller forebygge evolutionen og spredningen af resistens, er der et behov for
yderligere undersøgelser af dennes dynamik.

En grå-boks modellerings fremgangsmåde baseret på stokastiske differential-
ligninger er den hovedsagelige anvendte og innovative metode benyttet til at stud-
ere bakterie systemer i denne afhandling. Viden om kontinuerte dynamiske syste-
mer kan blive kombineret med stærke statiske metoder ved at benytte stokastiske
differentialligninger. Herved bliver vigtige redskaber for model udvikling, param-
eter bestemmelse og model validering muliggjort i forbindelse med data.

Data tilgængeligt for modeludviklingen består hovedsageligt af optisk densitet
målinger af bakterie koncentrationen. Ved høje densiteter af celler vil målingerne
med optiske densitet blive påvirket af en skyggeeffekt fra bakterierne hvilket vil
medføre en underbestemmelse af koncentratioen. For at undgå dette problem er
en eksponentiel kalibrerings kurve blevet anvendt på alle datasæt. Det er fundet at
denne kalibreringskurve giver den bedste kalibrering i sammenligning med andre
tidligere foreslåede kurver.

Et nyt systematisk system for forbedringer af modeller baseret på grå-boks
modellerings metoden er foreslået og anvendt til at finde en model for bakterievækst
i et miljø med flere substrater. Modeller baseret på stokastiske differentialligninger
er også anvendt til studier af mutation og konjugation. Mutation og konjugation
er vigtige mekanismer for udviklingen af resistens. Tidligere modeller for konju-
gation har beskrevet systemer, hvor substrater er tilgængelige i rigelige mængder,
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men i denne afhandling foreslår vi en model for konjugation i udtømmeligt me-
die.
Mutator bakteriers rolle i bakterieudvikling, er et andet emne der er undersøgt i
denne afhandling. Mutatorer er karakteriseret ved en høj mutations rate og de an-
tages at spille en vigtig rolle for udviklingen af resistens. Når mutatorer gror under
stressende forhold, så som ved tilstedeværelsen af antibiotika, menes de at have
en fordel i forhold til ikke-mutatorer. Dette er blevet understøttet af en matematisk
model for konkurrerende vækst imellem en mutator og en ikke-mutator popula-
tion. Vækstraten for de to populationer er først blevet sammenlignet med en max-
imum likelihood metode, hvorved det blev fundet at vækstraterne er ens. Herefter
er en model for konkurrerende vækst blevet udviklet. Modellen viser at mutatorer
vil opnå en højere fitness end ikke-mutatorer ved at tilpasse sig hurtigere til miljøet
med antibiotika. I et andet studie bliver en ny hypotese for den langsigtede rolle
for mutator bakterier testet. Resultaterne af modellen foreslår, at mutatorer kan
virke som "genetiske arbejds stationer", hvor flere mutationer opstår og efterføl-
gende er overført til non-mutator populationen ved konjugation.

Et andet studie i denne afhandling omhandler spredningen af kolonisering
med resistente bakterier imellem patienter på et hospital og det relaterede distrikt.
Resistensen, der bliver betragtet, er extended-spectrum beta-lactamases, og det er
første gang, at en model er udviklet for denne type af resistens. Forskellige over-
førselsmekanismer er studeret og kvantificeret med modellen. Simuleringer af
modellen indikerer, at kryds-overførsel imellem patienter er den vigtigste mekanisme
for overførsel.

De matematiske modeller udviklet i denne afhandling har medvirket til en
forbedret forståelse af evolution og spredning af resistens. De er således et vigtigt
eksempel på styrken ved at kombinere mikrobiologi og eksperimenter med mod-
ellering.
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CHAPTER

1
Introduction

Treatment of tonsillitis, recovery of skin infections and prevention of infections
during surgery is a few examples of areas, where antibiotics play a major role.
Antibiotics are developed to combat "bad" bacteria populations. It should be re-
membered that not all bacteria population are bad. In our intestine for example
bacteria live, which are essential for the digestion of food. The problem arises if
the bacteria get establish outside its natural habitat, such as intestinal bacteria
causing urinary tract infections. Diseases caused by bacteria can be treated with
antibiotics, as long as the bacteria are not resistant against the antibiotic. Unfortu-
nately antibiotic resistance is increasing faster than new antibiotics are developed.
This is a major concern as it leads to failure of treatment, prolonged illness, and
in some cases death. Therefore the need for new treatment strategies or ways of
slowing down the evolution of resistance are high. The aim of this thesis is to im-
prove the understanding of the evolution process and spread of resistance, and
herewith be part of changing the longer-term effects of resistant bacteria.
New dynamical stochastic models have been developed for this thesis to support
the above goal. Stochastic continuous time models in the form of Stochastic Dif-
ferential Equations (SDEs) have to my knowledge only had very limited applica-
tion within bacterial evolution. In the following chapters and papers importance
and advantages of using SDEs is demonstrated in relation to modelling of bacterial
evolution. Discrete stochastic models have been considered for more conceptual
models for evolution and spread of resistance, where the number of bacteria or
people are so low that it is not reasonable to use a continuous sample space.
Apart from this introduction the thesis consists of seven papers, and two summa-
rizing chapters explaining important theory and placing the contributions in the
papers in relation to each other and existing literature. In Chapter 2 the focus is on
the mathematical technics used and developed for this thesis. The theory behind
SDEs is introduced and the simulation of discrete stochastic models is described
and discussed. In Chapter 3 mechanisms for growth and evolution of bacterial
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1. INTRODUCTION

populations are described, and the models developed in the papers are summa-
rized. Furthermore a common conclusion is given in Chapter 4. The papers are
ordered such that studies which form a mathematical basis for other papers are
placed before these.
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CHAPTER

2
Modelling of stochastic
systems

Stochastic Differential Equations (SDEs) are widely used as a mathematical model
for describing the dynamics of stochastic systems. SDEs are applied in a verity of
scientific fields such as insulin secretion (Mortensen et al., 2007), pharmacokinet-
ics and pharmacodynamics (Klim et al., 2009), the geolocation of fish (Pedersen
et al., 2008), heat dynamics of buildings (Madsen and Holst, 1995; Andersen et al.,
2000; Jimenez et al., 2008), water flow in a river (Jacobsen et al., 1997; Jonsdottir
et al., 2001) and stock prices (Nielsen et al., 2000). Similar to an Ordinary Dif-
ferential Equation (ODE), an SDE is a continuous time, continuous state model.
However, while the solution to an ODE is a deterministic function, the solution
to an SDEs is a stochastic process. Thus, with an ODE description of a system, it
is assumed that knowing the given state, we can exactly predict what will happen
also in the far future. By modelling a system using SDEs, we recognize that this is
not possible. In stead the SDE provide information about the systems stochastic
behavior (measured by e.g. its mean, variance, and covariance), which enables the
use of strong statistical tools for model development and validation.
The objective of this thesis is to model bacterial evolution while taking into ac-
count its stochastic nature. Bacteria populations are highly complex, and models
used to describe growth and evolution of bacteria will therefore be a simplifica-
tion of the real system, meaning that only important processes are included in the
model. When using SDEs to model the dynamics of bacterial evolution noise is
added to the deterministic part of the model, hereby accounting for those pro-
cesses not included in the model. Before explaining some of the theory of SDEs an
example of a typical data set for the growth of bacteria is given. The size, Nt , of a
bacterial population during exponential growth can be modelled as

d Nt

d t
= at Nt , (2.1)

where at is the growth rate and the subscript t indicate a time dependence of N
and a. The growth rate might change slightly over time due to some random ef-
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2. MODELLING OF STOCHASTIC SYSTEMS
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Figure 2.1: The growth of Pseudomonas aeruginosa is an example of a typical dataset for
which modelling with SDEs is required to obtain an accurate parameter estimation.

fects, e.g. change of temperature, oxygen availability and pH, which are not in-
cluded in the model. In that case the growth rate is

a =µ+"noise" , (2.2)

where µ is non-random. Once noise is added to µ, the bacteria concentration is
a random process, which means that N no longer has an unique value but can
be described e.g. by its moments. Figure 2.1 shows the concentration of Pseu-
domonas aeruginosa obtained from optical density (OD) measurements plotted
together with the ODE model and one realization of the SDE model. The data lay-
out shown in Figure 2.1 is typical. The observations do not fluctuate randomly
around the model but are repeatedly located to one side. This leads to autocor-
related residuals when fitting the model, which can be described by introducing
SDEs for describing the dynamics. The use of SDEs is especially important as it fa-
cilitates the use of prediction error methods for parameter estimation, as opposed
to traditional output error (or simulation) methods used to estimate parameters
in ODEs. An SDE combined with prediction error methods will provide estimates,
which are closer to the real values. For the example considered here the growth
rate is estimated to 2.80 using an ODE model whereas the growth rate for the SDE
model is estimated to 2.66. There is a clear difference between the two estimates,
and the SDE model gives a statistical better fit to the data. In order to understand
the methods used for estimating parameters in an SDE, the theory of SDEs will be
introduced in the following sections.
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2.1. Diffusion

2.1 Diffusion

When adding noise to an else deterministic system it is desirable that the noise re-
sembles the observed physical noise. An example of a physical system influenced
by noise is paint being dropped in a well controlled stream of water. The flow of
the drop of paint, along the stream can be described deterministically from phys-
ical laws, this is also called the drift of the system. However, the paint will not only
flow along the stream but it will also diffuse outwards in the water. This diffusion
process is caused by the noise present in the system. Due to diffusion the exact
location of the paint at a later time can not be determined, but the probability
distribution can. On a microscopic scale the diffusion of particles corresponds to
each particle performing a random walk, or said in another way the movement
of the paint particles is a stochastic process. A stochastic process in turn is a pa-
rameterized collection of random variables {X t }t∈T defined on a probability space
and assuming values in ℜ. The probability space is described by the sample space
Ω of possible outcomes, a σ-algebra F of subsets (events) of Ω and a probability
measure P which assign a probability to each event. For a fixed time t ∈ T the
stochastic process reduces to a random variable whereas fixing ω ∈Ω gives a real-
ization of X t , which is also called a path. In Figure 2.2 three paths of the stochastic
process X t are shown, and three outcomes of the random variable for one specific
time point are marked.

When considering many particles (such as the drop of paint) their location at a
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Figure 2.2: This figure shows three path of a stochastic process (which is in fact a stan-
dard Brownian motion) for t ∈ [0,10]. Each sample path represents a realization of the
stochastic process X t .
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2. MODELLING OF STOCHASTIC SYSTEMS

given time will be approximately normally distributed due to the central limit the-
orem. An important generalization of the random walk is, when the steps may
happen at any time t and when the size of the steps follow the normal distribu-
tion. This process can be constructed by considering independent steps of length
±
p
∆t taken at time intervals of length ∆t . Letting zi be the step at time i then

P (zi =−1) = P (zi = 1) = 1/2. Considering the process

Yt =
p
∆t (z1 +·· ·+ z[t/∆t ]) , (2.3)

where [t/∆t ] is the integer part of t/∆t , then the expected value E [Yt ] → 0 and
variance V [Yt ] = ∆t [t/∆t ] → t as ∆t → 0. Furthermore, the central limit theorem
implies that Yt → Wt , where Wt is a Wiener process. A Wiener process beginning
at 0, with drift µ and variance σ is a process which has the following properties

1. P {W0 = 0} = 1.

2. For all non-overlapping time intervals [t1, t2], [t3, t4] the random variables
Wt2 −Wt1 and Wt4 −Wt3 are independent.

3. For any time interval [t1, t2], Wt2 −Wt1 is gaussian distributed with

E [Wt2 −Wt1 ] =µ(t2 − t1),

V [Wt2 −Wt1 ] =σ2(t2 − t1).

If µ= 0 i.e., the mean is 0 then the process is called a Brownian motion. If in addi-
tion σ2 = 1 the process is called standard Brownian motion or a standard Wiener
process. Thus, the increment that a standard Wiener process makes over a time in-
terval t2−t1 is normally distributed with mean 0 and variance t2−t1. Note that the
Wiener process is not stationary since V [Wt ] 6= V [Ws] if s 6= t ; but the increment
Wt+h−Wt is stationary. Furthermore the Wiener process is nowhere differentiable
(Øksendal, 2007).

2.2 Itô integrals

The reason for considering the diffusion process in the previous section is to be
able to add noise to an ODE i.e. to describe equations of the form

d X t

d t
= f (t , X t )+σ(t , X t )"noise" , (2.4)

where f andσ are some given functions. It is reasonable to look for some stochas-
tic process βt to represent the noise term such that

d X t

d t
= f (t , X t )+σ(t , X t )βt . (2.5)

Based on many physical situations, one is led to believe that βt has, at least ap-
proximately these properties (Øksendal, 2007)
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2.2. Itô integrals

1. t1 6= t2 ⇒ βt1 and βt2 are independent,

2. βt is stationary,

3. E [βt ] = 0 for all t .

It turns out that there does not exist any "reasonable" stochastic process satisfying
these properties (Øksendal, 2007). The process would be a white noise process,
which is possible in the discrete time case but a mathematical abstraction in the
continuous case. According to the first property the process at two different time
points could be very far apart, but this contradicts with the property of stationarity.
A more reasonable construction is obtained by letting 0 = t0 < t1 < ·· · < tm = t and
considering a discrete version of (2.5)

Xk+1 −Xk = f (tk , Xk )∆tk +σ(tk , Xk )βk∆tk . (2.6)

We now replaceβk∆tk by∆Vk =Vk+1−Vk where {Vt }t≥0 is some suitable stochastic
process. The assumptions 1, 2, and 3 on βt suggest that Vt should have stationary
independent increments with mean 0. Such a process exists and it turns out that
the only such process with continuous paths is the standard Wiener process Wt .
Thus we put Vt = Wt and from (2.6)

Xk = X0 +
k−1∑
j=0

f (tk , Xk )∆tk +
k−1∑
j=0

σ(tk , Xk )∆W j . (2.7)

The limit of the first sum on the right hand side can be interpreted using e.g. the
Riemann sums, but the interpretation of the second sum is not straight forward.
In fact the value of the second sum depends on where in the interval [t j , t j+1] it is
evaluated. The following two choices have turned out to be the most useful ones

1. The Itô integral where the sum is evaluated at t = t j for t ∈ [t j , t j+1], i.e. the
left endpoint.

2. The Stratonovich integral where the sum is evaluated at t = (t j + t j+1)/2 for
t ∈ [t j , t j+1], i.e. the midpoint of the interval.

In the remainder of this thesis the Itô integral will be used, as this has some ad-
vantages when used for parameter estimation. Thus, the stochastic differential
equation

d X t = f (t , X t )d t +σ(t , X t )dWt , (2.8)

should be understood as a process X t , which is represented by the Itô integral

X t = X0 +
∫ t

0
f (s, Xs)d s +

∫ t

0
σ(s, Xs)dWs . (2.9)

An important property of the Itô integral is that it is a Martingale, which means
that the expected value of a process only depends on the present value and not on
future values. Furthermore it is a Markov process, as future values depends only
on the present value and not on past values.
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2. MODELLING OF STOCHASTIC SYSTEMS

2.3 Grey box modelling

If the whole dynamics of a system and the corresponding parameter values are
know, a deterministic model such as an ODE would be a good choice for mod-
elling the system. This is known as a white box model. In that case the model
will be explicitly based on physical knowledge about the system. This also implies
that the values of the states of the system can be predicted exactly for all future
time points. If the system is either too complicated to describe by physical equa-
tions, or no physical knowledge is required to fulfil the purpose of the model, then
a model based purely on data, such as an autoregressive model or neural network,
is a better choice. This is called black-box modelling as no information about the
underlying system is used. In this thesis the best of each of the two modelling
approaches are combined in the SDE framework resulting in so-called grey box
modelling. In grey-box modelling physical knowledge of a system is combined
with data and statistical methods, to get the best description of the system. If all
the states in the SDE could be measured directly without noise, then these obser-
vations could be used to estimate the parameters in the model directly. However,
observations of states are almost always encumbered with noise, which should be
separated from the system noise incorporated in the SDE. Therefore the following
continuous discrete time stochastic state space model is used (Kristensen et al.,
2004b)

d X t = f (X t ,u t , t ,θ)d t +σ(u t , t ,θ)dωt , (2.10)

Y k = h(X k ,uk , tk ,θ)+ek , (2.11)

where Equation (C.1) is the continuous time system equation (the Itô SDE) and
Equation (C.2) is the discrete time observation equation. The notation has been
extended in comparison to the previous section, to make it clear that f and σ

depends on the model parameters θ and a vector of known input variables, u t .
In the observation equation ek is an l -dimensional white noise process with e ∈
N (0,R(uk , tk ,θ)), where R is the covariance matrix for the noise. The first term of
(C.1) is called the drift term and the second term is called the diffusion term, which
can intuitively be understood from the example of paint in water previously men-
tioned.
The unknown model parameters can be found by maximizing the likelihood func-
tion

L(θ;YN ) =
(

N∏
k=1

p(Y k |Yk−1,θ)

)
p(Y 0|θ) (2.12)

with respect to a known sequence of observations

Yk = [Y k ,Y k−1, . . . ,Y 1,Y 0] . (2.13)

An exact evaluation of the likelihood function would require knowing the initial
probability p(Y 0|θ) and determining the subsequent conditional probabilities by
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successively solving Kolmogorov’s forward equation and using Bayes’ theorem,
but this approach is not computational feasible in practice (Kristensen et al., 2004b).
Provided that the sample intervals are reasonable compared to the non-linear dy-
namics of the system, the conditional probability densities p can be approximated
by Gaussian densities, as the SDE is driven by a Wiener process which has Gaus-
sian increments. This enables the use of filtering techniques to determine the con-
ditional probability densities. In this thesis the model parameters have been es-
timated by optimizing the likelihood function using an Extended Kalman Filter
(EKF) approach as described in Paper C. The software CTSM∗ (Kristensen et al.,
2004b) has been used to obtain the maximum likelihood estimates of the mod-
elling parameters. This software uses the Extended Kalman filter to compute the
log-likelihood for non-linear models and a quasi-Newton method to optimize the
log-likelihood function. CTSM is used, because it has been shown to perform well
in comparison to other methods (Kristensen et al., 2004b), and (maybe more im-
portant) it is easy to use and provides the optimized log-likelihood value, correla-
tion between parameters and uncertainties on parameter estimates.

2.4 Discrete state stochastic models

For some systems the events to be modelled are rare and the time to first event
important. It is therefore necessary to consider integer bacteria numbers in stead
of the concentration of bacteria as is described in SDEs. The number of bacte-
ria in a population should then be simulated as a discrete stochastic process. In
continuous time the Poisson process can often be used. The probability of, e.g.,
a mutation in a bacterial population can be assumed to be independent of the
history of the population; it depends only on the current population size and the
mutation rate. In Paper F a discrete stochastic model for the evolution of bacteria
is simulated using a fixed-increment time advance method. This means that for
each fixed time interval the number of events that has occurred during that inter-
val are sampled from a Poisson distribution (Law and Kelton, 2000). The events
occurring during the time interval are all considered to take place at the end of
the interval. This also means that the effect of an event on the system can not be
effectuated before the end of the interval. If the time interval is too large the result
can be, for example that a bacteria divide and die within the same interval.
Another simulation approach often used for queueing systems is discrete event
simulation. In discrete event simulations the time until the next event and the
type of event is first found, and hereafter, this event is performed which involves
random number generation. The numbers could be generated for instance from
a Poisson distribution. The discrete event simulation approach was implemented
for the model in Paper F, in order to compare with the simpler fixed-increment
time advance method. The two methods were found to give similar outcomes as
seen in Figure 2.3, which shows the amount of bacteria in two different states af-

∗www.imm.dtu.dk/∼ctsm
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Figure 2.3: Comparison of the number of bacteria with one mutation in each of the two
states: wild-type and mutator. The histogram is the result of 1000 simulations using the
fixed-increment time advance method and the red cross is the result of one run of the
discrete event simulation. The p-values for the hypothesis that the two methods gives the
same outcome is for a time step of 0.1 h: 0.48 for the wild-type and 0.33 for the mutator,
and for a time step of 0.01 h: 0.43 for the wild-type and 0.90 for the mutator.

ter one hour of simulations. To perform the discrete event simulation, however,
1.4 ·1012 events most be computed to simulate dynamics of the model for a single
model. Continuing the discrete event simulation until five days would therefore
be computationally infeasible due to the high number of events. The smaller the
time step the more alike are the two simulation methods. The time step for the
fixed-increment time advance approach was set to 0.1 h, which is around 1/6 of
the growth rate. The computational time for each simulation is low using this time
step, and it can not be rejected that the two methods perform equal outcomes (p
= 0.48 for the wild-type and p = 0.33 for the mutator).
In Paper G a model for the spread of resistant bacteria between patients in a hospi-
tal and the catchment area is considered, including also the movement of patients
to and from the hospital. Also here a fixed-increment time advance approach is
used. The time step is set to one day, which is chosen as it is reasonable to as-
sume that discharge from and admittance to the hospital happens once a day.
With regards to the transfer of resistance this is a continuous process indicating
that discrete event simulation should be the method of choice. However, the col-
onization of a person and further growth of the bacteria to reach concentrations
high enough for the bacteria to be transferred to other people is not an instant
process. A time step of one day would require that this process takes one day,
which is judged to be reasonable. To ensure that two event do not happen to the
same person, e.g. movement to another hospital ward and discharge, the events
are sampled recursively from a multinomial distribution.
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Markov chain simulation have also been considered for both studies. A Markov
process is a process for which a future value of the process is only dependent on
the present information about the process. For each iteration of the Markov chain
(or Markov jump process in discrete time) a future state would depend on the cur-
rent state and the probability of moving to each of the possible states (including
staying in the current state). If the state space is finite the transition probabilities
can be represented by a transition matrix. When modelling bacteria populations
the state space is finite, but multivariate and very large as a bacterial population
can grow from one bacteria to billions. Additionally the process is often non-linear
as the rate of e.g. conjugation depends on the number of bacteria in two popula-
tions. Modelling the population dynamics as a Markov chain would therefore be
computational infeasible.

2.5 Systematic model improvement

The use of SDEs in comparison to ODEs paves the way for several statistical meth-
ods of systematic model improvement (Kristensen et al., 2004a). The necessity of
model improvement can be revealed from the SDE framework if, e.g. the correla-
tion between two parameters is very high, or a high standard deviation is seen for
the incremental covariance of the system noise of a given state. In this way model
deficiencies can be revealed, in a way which cannot be facilitated by a determin-
istic model.
Paper C uses these ideas to introduce a new strong framework for systematic model
improvement, and successfully apply it to find a better model for bacterial growth
on rich media. The key element of the framework is SDEs, and it contains a para-
metric and a non-parametric part. The non-parametric extension to the model
can be used to dig into embedded information of the dynamics of the system. The
parametric part contains steps of model specification, parameter estimation, and
validation.
Model validation may consist of a variety of statistical tests. One way of validat-
ing a model is to compare it with another model containing more parameters to
describe the system. In this thesis several inference studies have been performed
to examine which of two models should be chosen to describe a given system (Pa-
per A, B, C, and D). For all studies a Maximum Likelihood (ML) based approach
has been used to test the models. When comparing nested models a likelihood-
ratio test is used to find the best model (Paper D and B). This approach is preferred
compared to Akaike’s Information Criterion (AIC), as the latter does not give an
estimate for how much better one model is compared to the other. However, for
un-nested models the AIC approach is a good alternative and it has been used
in Paper A and C. In Paper B it was shown that the choice of parameterizations
of the covariance matrix for the residuals of a regression model can influence the
outcome of the test. Here the ML approach provides an advantage as it enables
an simultaneous estimation of the parameters of the covariance matrix and the
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Figure 2.4: Data (left) and simulation result (right) for the concentration of Pseudomonas
aeruginosa (PAO1) and the four PAO1 mutators mutM, mutY, mutT, and mutY-mutM
when growing in Luria-Bertani media (top lines) and Luria-Bertani media with 0.1 µg/ml
ciprofloxacin (bottom lines).

model parameters.

2.6 Discussion

CTSM has been found to be a very useful program for performing the analysis and
estimations necessary for this thesis. The Kalman approach implemented in CTSM
does, however, give one disadvantage: it is not possible to include state depen-
dent noise in the system equation (Equation C.1), e.g. multiplicative noise. For
some simple models the problem with multiplicative noise can be solved by per-
forming a log-transformation of the states. For more complicated models another
approach can be taken, as has been done in Paper C, D and E. This approach
is to use the measured state variable instead of the state itself. Hereby a scaling
for the standard deviation of the system noise is obtained which corresponds to
multiplicative noise.How well this "trick" resembles a system with multiplicative
noise has not been tested in the papers. It is only for the parameter estimation that
multiplicative noise can not be used directly, whereas it can be implemented after-
wards when running the simulations. An example is given in Figure 2.4(modified
from Paper E), where a model with multiplicative noise is simulated with param-
eters estimated in CTSM. It is seen from the figure that the simulation very well
captures the variation in the data. This indicates that using observed state values
for a scaling of the system noise is a good alternative for multiplicative noise. It
should be noted, however, that several other methods of evaluating the likelihood
function exist (Ionides et al., 2006; Lele et al., 2007; Frydendall, 2009), for which
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multiplicative noise can be used, but these have not been considered here.

The biological systems considered in this thesis have been modelled either
with continuous state or discrete state models. In some situations a combination
of the two might give a more correct representation of the physical system. For
example in the study modelling the competition between two bacteria with dif-
ferent mutation rates (Paper E), where the time of occurrence of the first (whole)
bacteria can have a large effect of the dynamics. A suggestion for an improvement
of the SDE framework is therefore to incorporate a combination of discrete and
continuous states in the parameter estimation. This would allow the method to
be used on a wider class of problems.
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CHAPTER

3
Bacterial evolution and spread

This chapter seeks to give a conceptual understanding of the different mecha-
nisms involved in growth and evolution of bacteria. I will specifically focus on
the evolution of antibiotic resistance with an emphasis on the topics treated by
the mathematical models used in this thesis. This chapter is thus not a general
introduction to the microbiology of bacterial evolution, but rather a description
of the concept of bacterial evolution from the perspective of a mathematician.

3.1 Growth of bacteria

To understand and model bacterial evolution it is necessary first to understand
and be able to model bacterial growth.
Bacteria grow by dividing into two daughter cells. This process demands energy
which comes from different substrates such as glucose. The growth of a bacterial
population is typically characterized by four subsequent phases: the lag phase, the
exponential growth phase, the stationary phase, and the death phase.
The mechanisms occurring during the lag phase are not fully understood, but it
is believed that during this phase the bacteria adjust to the (new) environment,
and enzymes, RNA, and proteins are synthesized to make the bacteria ready for
cell division. The length of the lag phase depends on several factors, and includes
the time for recovery from the physical damage or shock, which the bacteria ex-
perience when they are transferred to a new media. This phase also includes the
time required for the synthesis of enzymes, which are necessary to catalyze the
consumption of the new substrates.
During exponential growth the bacterial population grows by cell division. The
rate of growth is specific for a given bacteria species and depends on the growth
conditions. The growth can be parameterized by the growth rate v or doubling
time T2 which are related by T2 = log(2)/v .
The stationary phase begins when either the substrate is depleted or when the
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Figure 3.1: The logarithm of the size of a Enterococcus population as a function of time
(dotted line) and a sketch of the three first phases of bacterial growth (full line): lag phase,
exponential growth, and stationary phase.

maximum population size for the system has been reached. During the stationary
phase the size of the population does not change anymore.
The final phase is the death phase, during which the population is reduced due to
the death of bacteria. Only the three first phases are considered in this thesis, and
experimental data after the onset of the death phase is therefore disregarded.

3.1.1 Modelling of growth

The picture drawn of bacterial growth in the previous section is simplified as shown
in Figure 3.1, where a real growth curve for Enterococcus growing in Brain Heart
Infusion (BHI) media is plotted together with an outline of the three first growth
phases. Often the growth of a bacterial population during the exponential phase
is not stationary, and different suggestions have been made to describe this non-
stationary growth mathematically. The two most common types of models differ
in the way they describe the onset of the stationary phase.
1) If the onset of the stationary phase occurs when the carrying capacity of the en-
vironment has been reached the logarithm of the bacterial concentration is typ-
ically modelled by a sigmoid curve (Baty and Delignette-Muller, 2004). The sig-
moid curves are parameterized by a lag phase, λ, a maximum growth rate, µmax,
and a maximum bacterial concentration, Nmax. Several sigmoid curves have been
suggested in literature (see Zwietering et al. (1990) and Baty and Delignette-Muller
(2004) for comparisons of different models). Especially the modified Gompertz
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curve has been broadly used, however it has been shown that the Baranyi model
gives the best fit for a variety of datasets (Baty and Delignette-Muller, 2004). The
Baranyi curve is given by

y(t ) = ymax + log

( −1+exp(µmaxλ)+exp(µmaxt )

(−1+exp(µmaxt ))+exp(µmaxλ+ ymax − y0)

)
, (3.1)

where y = log(N /N0), ymax = log(Nmax) and N is the bacterial concentration.
2) A substrate dependent model should be considered when not enough substrate
is available to reach intolerable numbers of bacteria before the growth rate de-
creases due to substrate depletion (Zwietering et al., 1990). Substrate dependent
models are typically parameterized by a maximum growth rate µmax, a yield factor
or biomass yield coefficient 1/η and parameters defining the change of the growth
rate as a function of substrate, S. This modelling framework does not include a de-
scription of the lag phase. The most widely used model applies the Monod equa-
tion for growth (µmaxS)/(κ+S), where κ is the substrate concentration for which
the growth is half of its maximum value. The model is often described by a set of
coupled ODEs

d N

d t
= µmaxS

κ+S
N (3.2)

dS

d t
=−ηµmaxS

κ+S
N (3.3)

where N is the bacterial concentration. In the experiments considered in this the-
sis it can be assumed that the growth enters stationary phase due to substrate de-
pletion, and the above set of ODEs have therefore been the starting point of the
model development carried out in Paper C. The Monod model is adequate for
describing the growth on a single substrate, but it fails to model growth on rich
media. In Paper C it is shown that growth on rich media can be better modelled
with a growth proportional to the substrate level, i.e. vS, where v is the specific
growth rate and S ∈ [0,1]. Furthermore, it is shown that an extra state E for the en-
zyme level should be added to the model, to account for the lag-phase, resulting
in the following set of SDEs

d




Bt

St

Et


=




Et vSt Bt

−ηEt vSt Bt

(v +β)St −Et Et vSt −βEt


d t +




σB ut 0 0
−ησB ut 0 0

0 0 σE


dω . (3.4)

where Bt is the bacteria concentration, ut is an input of the measured bacteria
concentration, and σB , σE , and σ are constants. The inclusion of the enzyme
level in the model is inspired by the so-called optimal model or cybernetic model,
which has been developed to describe growth on more than one substrate (Bajpai-
Dikshit et al., 2003).

Fitness is a term often used in relation to bacterial growth and evolution. It
is a measure of how fit a bacteria is, and thus how high the specific growth rate
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indeed is. The fitness of a bacteria is highly dependent on the environment, where
the growth takes place. For instance a resistant bacteria has a higher fitness than a
sensitive bacteria in an environment with antibiotics, whereas the opposite might
be the case if no antibiotics is present. In Paper B a Maximum Likelihood based
method is described, which can be used to compare the growth rate for different
bacteria in order to examine if they have a similar fitness. A bacteria can increase
or decrease its fitness to an environment by different mechanisms as described in
the next section.

3.2 Antibiotic resistance

Antimicrobial resistance is an increasing challenge resulting in difficulties for treat-
ments of bacterial infections in both animals and humans. Sensitive bacteria will
either have a low fitness or die in an environment with antibiotics. However, bac-
teria can acquire resistance by e.g. increasing the efflux pump activity or altering
the target site for the antibiotics. Genes coding for mechanisms which result in an-
tibiotic resistance can be transferred by either vertical or horizontal gene transfer.
Gene transfer is said to be vertical when a cell divides and the genetic material is
copied to the two daughter cells. By mutating a cell can acquire resistance and can
then pass it on to next generation. Mutation is discussed in Section 3.2.1, while the
process of horizontal gene transfer is discussed in Section 3.2.2 and 3.2.3.

3.2.1 Mutation and mutators

Spontaneous mutations occur in bacteria at rates of about 10−10 − 10−7 per cell
devision (Drake, 1991; Boe et al., 2000). The development of resistance requires
one or several mutations, which according to classical Darwinism each has to be
established in the population before new mutations can arise. This is a very slow
process, which by itself can not explain the actual evolution of bacteria. However,
bacteria can increase the mutation frequency for example by a mutation in the
genes responsible for DNA repair (the mismatch repair genes). Bacteria with such
an increased mutation rate are called mutators, and they are believed to play an
important role in the development of antibiotic resistance. Mutator bacteria are
found with increasing frequencies in natural and clinical environments as for in-
stance in cystic fibrosis patient. This has motivated the study in Paper E of muta-
tors in a Pseudomonas aeruginosa population. A competition experiment between
a mutator bacteria and the corresponding wild-type bacteria (bacteria with nor-
mal mutation rate) has been performed, and an SDE based model is developed to
describe the dynamics of the system. From experiments it is seen that the mutY-
mutM mutant will take over the bacterial population when in competition with
the wild-type bacteria strain. The model suggests that this is caused by a higher
rate of adaption in the mutator. Furthermore the model predicts that for the other
mutators considered in the experiment (mutM, mutT, and mutY ) a lower equilib-
rium mutator frequency will be obtained, as the equilibrium frequency is depen-
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dent on the mutator strength. The study suggests that the high ratio of mutators
found in cystic fibrosis patients can be caused be a low concentration of antibi-
otics in the lungs, to which mutators can adapt faster.
In Paper F it is shown, how mutator populations can function as "genetic work sta-
tions", where multiple mutations occur and subsequently are transmitted to the
parent population by horizontal gene transfer. Thus, a mutator population can
be seen as a way to bypass traditional Darwinian evolution. This new hypothesis
for the role of mutator bacteria in the evolution of resistance is supported by our
stochastic model.

3.2.2 Horizontal gene transfer

There are three different mechanisms of horizontal gene transfer: transduction,
transformation, and conjugation. By transduction genetic material is passed on
from one cell to another via a bacteriophage. The phage enters the first host cell
where it during replication might take up some of the cells own DNA. At some
point the bacteriophage will leave the cell ready for infecting a new host cell. When
entering a new cell the DNA from the first cell located in the bacteriophage might
be incorporated in the chromosome of the new cell during recombination. The
second mechanism, transformation, is the uptake of free DNA from the environ-
ment, such as DNA released by a dead cell. The third mechanism, conjugation,
is the transfer of small DNA molecules called plasmids from a donor to a recipi-
ent by cell-to-cell contact. The donor and recipient cells establish a mating pair
during which the plasmid is copied to the recipient, which thereby turns into a
transconjugant. Conjugation is the most effective method for the transfer of an-
tibiotic resistance provided that the resistance is located on plasmids. Therefore
conjugation is the main focus of the horizontal gene transfer considered in this
thesis and in the next section.

3.2.3 Modelling of conjugation

Conjugation can be modelled in different ways depending on the purpose of the
model and the degree of information available. Several authors (Levin and Stew-
art, 1980; Freter et al., 1983; Knudsen et al., 1988; Clewlow et al., 1990; Top et al.,
1992) model conjugation with the mass action model proposed by Levin et al.
(1979), which states that plasmid transfer is proportional to the concentrations
of donor and recipient, i.e. γDR, where γ is the conjugation rate, D is the con-
centration of donor bacteria, and R is the concentration of recipient bacteria. In
Paper F the mass action model is used to describe conjugation for a simulation
study. However, the concentration of the recipient population is assumed to be
constant for the model, which leads to a fixed conjugation rate per donor bacte-
ria. This is in agreements with studies by Andrup et al. (1998), who has shown that
the conjugation rate per donor reaches a maximum level for recipient concentra-
tion above 107 cells/ml.
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Paper D presents an alternative description for the mass action model for growth
in rich exhaustible liquid media,

γmaxS

κc +S
DR , (3.5)

For Enterococcus faecium which was examined in Paper D, the conjugation rate is
found to be maximum until the substrate is totally depleted, whereafter the rate
falls to zero. The κc value for conjugation is found to be much lower than the
κ value in the Monod growth term used to model growth. The model therefore
suggests that conjugation continues after the stationary phase has been reached.

3.3 Experimental methods

In the laboratory bacteria can grow in liquid media or on agar plates (petri dishes
containing growth media in a gel). When bacteria grow in liquid media there are
different ways of measuring the number of bacteria. An estimate of the bacterial
concentration can be made by taking a sample of a known volume and distributing
that over an agar plate. Each bacteria in the sample will grow from the nutrition
on the plate and form a so-called colony forming unit (CFU) which can be seen
by eye after approximately 12 hours. Each colony corresponds to one bacterium
in the original sample. Up to 200 colonies can be separated from each other on
the plate, which means that the sample typically will have to be diluted in order to
reduce the number of colonies. To obtain a good estimate of the concentration in
the liquid the analysis is often made in duplicate for several dilutions. The concen-
tration in the liquid can then be determined with Poisson regression as described
in Paper D. The agar plate can also be made selective for a certain bacteria strain
by adding for instance antibiotics to the plate. Bacteria can be constructed for an
experiment with different resistance patterns, such that they can be separated by
counting on different selective plates. This technique has been used for the ex-
periments described in Paper D and Paper E. While performing the experiments
for the study in Paper D we found that the donor and recipient could conjugate
for some time on the plates selecting for transconjugants, i.e. agar plates with an-
tibiotics which should kill the donor and recipient bacteria. This methodological
problem was solved by including conjugation on the plate in the measurement
equation of the model, whereby the model was used to separate conjugation in
the liquid from conjugation on the plate. To our knowledge we are the first to
recognize this problem (even though it must occur in many experiments), and a
solution is suggested, such that a correct estimate can be made for the conjuga-
tion rate.
The disadvantage of estimating concentrations by the CFU count method is the
large amount of work required for taking the samples, performing dilution and
plating. Therefore turbidimetric instruments such as bioscreens are often used to
measure the optical density (OD) of the solution and the measurements can sub-
sequently be transferred into an estimate of the bacteria concentration. Paper A
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contains a comparison of different calibration curves for the relation between the
OD and CFU values, and the study concludes that the exponential curve

OD = a · (1−exp(b ·CFU)) , (3.6)

best describes the relation. This is a very strong relation , as it is derived from
physical principles and can be extended for higher cell concentrations.
Advantages of bioscreen measurements are the fast sampling time and the possi-
bility of running several experiments simultaneously. Therefore this method has
been used for most of the experimental studies considered in this thesis.

3.4 Spread of antibiotic resistant bacteria

The evolution of antibiotic resistance is followed by an increasing prevalence of
resistance in human populations (and in animals, but this will not be considered
here). In Figure 3.2 the prevalence of E. coli resistant to 3rd generation cephalosporins
is shown for four European countries. Resistance to 3rd generation cephalosporins
can be seen as a representation of extended-spectrum beta-lactamases (ESBL)
resistance. The prevalence is seen to be increasing, which gives a challenge for
the treatment of infections. In the latest DANMAP rapport (from 2008) from the
Danish integrated antimicrobial resistance monitoring and research programme
one of the focus areas was the increasing prevalence of ESBL producing Klebsiella
pneumonia in Denmark (www.danmap.org). The report concludes that studies
are needed to improve the understanding of the spread of resistant bacteria.

The spread of ESBL producing E. coli has been the attention of the study in Pa-
per G. A model has been developed to describe the spread of ESBL producing E.
coli in a hospital and its catchment population. The model includes external in-
flow of resistance with travellers, cross-transfer of resistance, mutation and conju-
gation. The dynamics is considered only on the level of human individuals, and do
not contain any information about the number of bacteria of a certain type in each
person. This means that the more advanced models for mutation and conjugation
developed in this thesis can not be transferred directly to this study. Conjugation,
for instance, is therefore implemented as a probability of occurrence in the hu-
man intestine including the subsequent growth of the bacteria to reach detectable
amounts. This parametrization has been chosen due to a lack of data which ren-
der a more adequate model impossible. The ESBL model enables a study of the
importance of different transmission routes, and can hereby help in the ongoing
process of diminishing the spread of resistance.

3.5 Discussion

The cross-disciplinary work between a mathematician/statistician and microbi-
ologist/medical doctor has the advantage that it may provide insights beyond the
directly measurable scientific outcome of mathematical and statistical analysis. A
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Figure 3.2: The prevalence of E. coli resistant to 3rd generation cephalosporins, which can
be seen as a representation of ESBL producing bacteria.

mathematical modeller will inevitably ask a lot of questions to be able to make a
good parametrization of the biological system; in the case of this thesis: bacte-
rial evolution and spread. These questions will lead the microbiologist to consider
new explanations and tests for the dynamics of the system. The modeller on the
other hand will get new ideas for the model development, which can be tested us-
ing various statistical tools as discussed in the previous chapter. Due to benefits of
this symbiotic relation it is advisable to combine experimental studies with math-
ematical modelling whenever possible.

Based on the result from the conjugation model in Paper D it is advised to
examine for conjugation on the selective plates whenever performing a conjuga-
tion experiment, simply by mixing the donor and recipient strains directly on the
plates. If conjugation is found to occur on the plates the extended model proposed
here should be used.

The competition model developed as part of this thesis gives a good represen-
tation of the in vitro competitive growth between mutator and wild-type P. aerug-
inosa. It could be very interesting to apply the competition model on data from in
vivo studies or to adjust the mathematical model to the environments in human
lungs under treatment with ciprofloxacin.

For two studies described in this thesis there have been no or very sparse data.
This is the case with the simulation study for the transfer via a mutator subpop-
ulation (Paper F). It could be interesting to get the simulation results confirmed
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by experiments. The other study is the model for the transfer of ESBL (Paper G),
where the parameters of a model with 20 states are based on only 9 data points. It
is therefore recommended to perform a sensitivity analysis for the different model
parameters. Further simulation studies with the ESBL model could be used to ex-
amine the consequence of different interventions in the hospital, but it is advised
to confirm the reliability of the model with more extensive data, before continuing
with intervention simulation studies.
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CHAPTER

4
Conclusion

During this project it has been shown that mathematical modelling and statistics
are very useful tools for understanding the evolution of antibiotic resistance and
the spread of resistance. The use of SDEs as a grey-box modelling framework to
study bacterial populations is a new approach, which has given promising results
during this project.
SDEs can, opposed to traditionally used models based on ODEs, describe auto-
correlated residuals in the data. Not describing the autocorrelation structure by
the model could lead to false conclusions of statistical tests, as the model is not
correctly parameterized. However, using SDEs opens up for the use of strong sta-
tistical tools. Hence, in Paper C a new SDE framework for systematic model devel-
opment is made and applied to suggest a new expression for growth in rich media.

An SDE based state-space model has been developed in Paper D and it is suc-
cessfully applied to model conjugation in a broth exhaustible media. The max-
imum likelihood based framework for estimating model parameters combined
with likelihood-ratio tests and Akaike’s information criterion for inference studies
used in this paper provides strong tools for model improvements. In the same pa-
per a new expression for substrate dependent conjugation is described which can
be used to model conjugation in a broth media. During the process of developing
a suitable model for conjugation a methodological problem was encountered: the
fact that conjugation occur not only in the broth but also on the plates selecting
for transconjugants. This was solved using the grey-box modelling framework by
including plate conjugation in the observation equation. Hereby the plate conju-
gation can be separated from conjugation in the broth media. Even though this
extension to the model did not perform significantly better for the given data, it
is believed that the method will be the preferred choice if more frequent sampled
data is available for the analysis.
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A competition experiment has been successfully described with a new SDE
based model described in Paper E, from which it can be inferred that mutator bac-
teria will have an advantage in an environment with low ciprofloxacin concentra-
tions, due to their higher mutation rate and thereby ability to adjust to the envi-
ronment. The study uses OD measurements, which are converted to cell concen-
trations. The conversion is made using an exponential function based on phys-
ical principles, which has been found to give the best result compared to other
functions (Paper A). The reliability of the competition study is dependent on the
mutator and non-mutator strains to have the same specific growth rates. This was
indeed proven to be the case when the linear regression models for the bacterial
concentration containing an exponential decaying autocorrelation function and
state dependent variance was compared using a likelihood-ratio test (Paper B).
Finally the competition model was based on an earlier study (Paper C) for the im-
plementation of growth in rich media. The growth rate for bacteria growing on
minimal media is traditionally modelled using the Monod equation, but in Pa-
per C it is found that a growth rate proportional to the substrate level gives a better
fit to the data.

The model for the transfer of bacterial resistance via a mutator subpopulation
described in Paper F is an excellent example of the strength of mathematical mod-
elling. In the paper it is examined whether mutator bacteria can function as "ge-
netic work stations", where multiple mutations occur and are subsequently trans-
mitted to the non-mutator population by horizontal gene transfer. It is found that
mutator populations can be seen as a way to bypass traditional Darwinian evolu-
tion. This theory is intriguing, as it can help explain the speed by which evolution
occurs, and at the same time give a good explanation for the high ratio of mutator
bacteria found in natural environments. It has not been possible to demonstrate
the theory by experimental studies, but with our stochastic model we are able to
provide indications that this route of transfer actually does take place.

The development of antibiotic resistance provides an increasing challenge for
treatments of bacterial infections. Before being able to slow down this process, it
is necessary to understand the mechanisms leading to resistance. This thesis has
contributed to a better understanding of the evolution process, especially the role
of mutator bacteria.

A patient with a bacterial infection can in many cases obtain resistance not
only by evolution of bacteria in the body, but also from external sources, such as
other patients. In Paper G a model is proposed which shows the importance of
different routes for acquisition of ESBL resistance in E. coli. The model concludes
that cross-transfer plays a significant role in the increasing prevalence of resistant
bacteria. Thus, a good hygiene at, e.g., hospitals is a key component for reducing
the prevalence of resistant bacteria.
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PAPER

A
Comparison of calibration
curves for the relation
between optical density and
viable cell count data ‡

Abstract

Optical density is often used as a measurement of bacterial concentra-
tion. In this study five calibration curves relating optical density measure-
ments to colony-forming unit measurements of bacterial concentration are
compared for P. aeruginosa and E. coli. Using Maximum Likelihood estima-
tion and Akaike’s information criterion to compare the curves it is found that
an exponential function derived from physical principles is the best calibra-
tion curve.

In many areas of microbiology there is a need for large quantities of accurate and
high-quality data. Therefore turbidimetric instruments, e.g. bioscreens, are often
used to measure the optical density (OD) of bacteria and then provide an estimate
for the bacterial density.
In the literature, several calibration curves have been suggested for converting OD
measurement into viable count or colony-forming units (CFU). Correct conver-
sion is very important when using OD data for estimating characteristic growth
parameters such as the maximum growth rate, biomass yield coefficient or max-
imum bacterial concentration, or when using the OD data to develop new math-
ematical models. In this study we compare the following five calibration curves
suggested in earlier studies for Pseudomonas aeruginosa and Escherichia coli:
Linear (Corman et al., 1986; Augustin et al., 1999; Baty et al., 2002):

ODi = a ·CFUi +εi (A.1)

‡Submitted as: K. R. Philipsen, L. E. Christiansen, L. F. Mandsberg, H. Hasman, H. Madsen, 2010.
Comparison of calibration curves for the relation between optical density and viable cell count data.
Submitted to Applied and Environmental Microbiology.
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A. RELATION BETWEEN OD AND CFU

Second-order (McClure et al., 1993):

ODi = a ·CFUi +b ·CFU2
i +εi (A.2)

Third-order (Stephens et al., 1997):

ODi = a ·CFUi +b ·CFU2
i + c ·CFU3

i +εi (A.3)

Logarithmic (Chorin et al., 1997; Valero et al., 2006; Francois et al., 2005):

ODi = exp

(
log(CFUi )−a

b

)
+εi (A.4)

Exponential (Christiansen, 2004):

ODi = a · (1−exp(−b ·CFUi ))+εi (A.5)

Letting N be the size of each dataset, then i = 1, . . . , N , and the residual ε= [ε1, . . . ,εN ]
∼ N (0,σ2Σ) for all models. σ2Σ is the covariance matrix of the N OD measure-
ments.
The direct linear relationship between OD and CFU data is supported by Beer’s
law, which states that the amount of absorbed radiation is proportional to the con-
centration in the sample. The exponential calibration curve (A.5), which was first
introduced by Christiansen (2004), accounts for the shadow effect caused by bac-
teria at high OD values. This shadow effect results in an underestimation of the
bacterial concentration. The theoretical motivation for this new expression is that
an OD measurement is made by transmitting light through a sample so that the
OD measurement is actually made by a projection of the sample onto a plane. If a
given proportion, p, of the cross section is covered by bacteria and one additional
bacteria is added, then on average p times the cross section of the bacteria, a, is
already covered by other bacteria and thus only (1−p)a is added to the overall cov-
erage. This leads to Equation (A.5). It should be noted that when p is small, i.e. for
low cell concentrations, the relationship between OD and CFU is approximately
linear.
Experiments were made in order to obtain data to compare the calibration curves.
P. aeruginosa (PAO1 from Stover et al. (2000)) was taken from an agar plate and di-
luted in salt water (NaCl2 0.9%) until an OD600 ≈ 1.8 was reached. E.coli (MG1655)
was grown overnight whereafter the sample was spinned down and diluted to ob-
tain an OD600 ≈ 1.8. This last method enabled to reach a higher concentration.
Hereafter appropriate dilutions were made. The OD of each dilution was mea-
sured in the bioscreen (Labsystem C (Bie og Berntsen)) for two hour and the CFU
of each dilution was counted on Luria-Bertani plates. From the CFU counts, the
expected concentration in the sample was calculated by Poisson regression, as ex-
plained by Philipsen et al. (2010). From the OD measurements, the OD of a well
containing only saltwater was subtracted and the mean over the two hour mea-
surements was found.
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We use a Maximum Likelihood (ML) approach (Philipsen et al., 2008; Madsen,
2008) to estimate the curve parameters and compare the curves. Assuming that
the data is normally distributed (this should be checked by examining the distri-
bution of the residuals) the log-likelihood function to be optimized is

log(L (θ|Y )) =−1

2
N log(σ2)− 1

2
log(det(Σ))

− 1

2σ2 (OD− ÔD)TΣ−1(OD− ÔD) . (A.6)

Here ÔD is a vector of estimated OD values from a calibration curve, and OD is
a vector of the corresponding OD measurements. The residual variance σ2 is es-
timated simultaneously with the parameter estimation. The studies considering
the models, Equations (A.1)-(A.3), assume that the variance is the same for all OD
measurements, i.e. Σ= I , and therefore the problem reduces to (unweighted) least
squares. The logarithmic transformation Equation (A.4), with a linear relation be-
tween the log(OD) and the log(CFU), was originally introduced to normalize the
variance. Instead of transforming the data a concentration-dependent variance
can be included in the covariance matrix to weight the observations. The variance
of the OD measurements increases with increasing OD values, which can be im-
plemented in the covariance matrix as Σ = diag(ÔD). Both implementations of
the covariance matrix will be tested. The optimum of the log-likelihood function
is computed in R using the command ucminf (Nielsen and Mortensen, 2009).
The result of the parameter estimation for each calibration curve can be seen in
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Figure A.1: Estimates of the calibration curves for Σ= diag(ÔD).

Figure C.7. An inference study for the different curves is performed using Akaike’s
Information Criterion (AIC). AIC is chosen, as it can be used to compare non-
nested models in apposed to other methods such as the F-test (Zwietering et al.,
1990; López et al., 2004) and the likelihood-ratio test (Philipsen et al., 2008, 2010).
For all except one function, the AIC value when using a weighted estimation is
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Figure A.2: The standardized residuals for each of the two correlation matrices and for
each of the five calibration curves.

lower than for an unweighted estimation, which indicates that the weighted esti-
mation should be used. This can be further confirmed by considering the stan-
dardized residuals as a function of the estimated OD values in Figure A.2. It is seen
that the variance is indeed proportional to the estimated OD values (Figure A.2 left
column). Hence, the correlation matrix Σ= diag(ÔD) gives the best description of
the variance in the system (Figure A.2 right column).

As seen from Table A.1, the calibration curve with the lowest AIC value for
Σ =diag(ÔD) is the exponential function. For P. aeruginosa the AIC values for
the polynomials are close to the AIC for the exponential function, and all three
functions thus describe the dataset well. For E. coli the exponential function de-
scribes the data better than the other tested functions. The polynomials can not
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Table A.1: AIC for each of the five calibration curves tested.

P. aeruginosa E. coli
Σ I diag(ÔD) I diag(ÔD)
linear -99.78 -146.91 -7.81 -20.98
second-order -137.64 -178.78 -36.94 -43.46
third-order -156.73 -179.87 -67.86 -41.49
logarithmic -140.38 -158.39 -40.65 -43.50

exponential -145.49 -180.65 -70.35 -74.30

be used for extrapolation to higher cell concentrations, whereas this is possible
with the exponential function. Thus, on the basis of physical principles, the ex-
ponential curve is preferred. The estimated parameters for the exponential curve
are for P. aeruginosa: a = 2.17, b = 1.63 ·10−10, σ2 = 0.005; and for E. coli: a = 1.73,
b = 8.62 ·10−10, σ2 = 0.078. OD measurements can be translated to CFU by isolat-
ing CFU in Equation (A.5) and inserting the values for the constants a and b.
On the basis of this study, we recommend that the exponential function is applied
to convert OD measurements into CFU data. The exponential calibration curve is
based on physical principles and is found to give the best fit to the data.

This study was supported by the Danish Research Council for Technology and Pro-
duction Sciences through Grant 274-05-0117.
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PAPER

B
Maximum Likelihood based
comparison of the specific
growth rates for P. aeruginosa
and four mutator strains ‡

Abstract

The specific growth rate for P. aeruginosa and four mutator strains mutT,
mutY, mutM and mutY-mutM is estimated by a suggested Maximum Like-
lihood, ML, method which takes the autocorrelation of the observation into
account. For each bacteria strain, six wells of optical density, OD, measure-
ments are used for parameter estimation. The data is log-transformed such
that a linear model can be applied. The transformation changes the vari-
ance structure, and hence an OD- dependent variance is implemented in
the model. The autocorrelation in the data is demonstrated, and a corre-
lation model with an exponentially decaying function of the time between
observations is suggested. A model with a full covariance structure contain-
ing OD-dependent variance and an autocorrelation structure is compared
to a model with variance only and with no variance or correlation imple-
mented. It is shown that the model that best describes data is a model taking
into account the full covariance structure. An inference study is made in or-
der to determine whether the growth rate of the five bacteria strains is the
same. After applying a likelihood-ratio test to models with a full covariance
structure, it is concluded that the specific growth rate is the same for all bac-
teria strains. This study highlights the importance of carrying out an explo-
rative examination of residuals in order to make a correct parametrization
of a model including the covariance structure. The ML method is shown to
be a strong tool as it enables estimation of covariance parameters along with
the other model parameters and it makes way for strong statistical tools for
inference studies.

‡As published in: K. R. Philipsen, L. E. Christiansen, L. F. Mandsberg, O. Ciofu, H. Madsen, 2008.
Maximum likelihood based comparison of the specific growth rates for P. aeruginosa and four mu-
tator strains. Journal of Microbiological Methods 75 (3), 551-557
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B.1 Introduction

Proper estimation of growth parameters is essential in many areas, for instance
in determining the effect of antimicrobial treatment (Dalgaard and Koutsouma-
nis, 2001) or when modelling growth of bacteria in food processing and storage
(Juneja et al., 2007; Shama et al., 2005). Furthermore, it is very important to be
able to tell whether the growth of different bacteria strains is identical. This can
form the basis of in vivo or in vitro experiments, such as competition experiments
(Montanari et al., 2007), where two or more bacteria are competing to survive and
overtake the population. If the growth rates of bacteria strains are not identical in
a normal unstressed environment, this will affect the result of a competition ex-
periment carried out in a stressed environment, e.g. by adding antibiotics. Thus,
it is very important to correctly determine whether the growth rates are identical.

Bacterial growth is typically classified by the maximum growth rate µmax and
the lag time (Baty and Delignette-Muller, 2004), when the growth rate is consid-
ered to be time dependent. Alternatively the growth is described by a Monod ex-
pression (Monod, 1949), which depends on the substrate content and contains the
parameters µmax and the OD value were half the maximum growth is reached, κ50.
The Monod model should be considered when not enough substrate is available
to reach intolerable numbers of bacteria before the growth rate decreases due to
substrate depletion (Zwietering et al., 1990).

The objective of the current study is to determine whether the growth of P.
aeruginosa and four mutator strains mutT, mutY, mutM and mutY-mutM can be
regarded as identical. For this study optical density, OD, measurements are avail-
able for each strain growing in LB media. The study is motivated by a competition
experiment between P. aeruginosa and each of the four mutator strains, for which
interpretations of the results rely on the growth rates being identical. Examina-
tion of identical growth rates is relevant, as mutator strains are often considered
to have lower fitness and thereby growth rate due to a higher mutation rate and
thus more deleterious mutations. The mutation rates of the bacteria considered
are listed in Table B.1. OD measurements are used in stead of CFU count, as this
method demands less resources, and it is also the choice of measurement method
for the competition experiment made. It has been argued (Augustin et al., 1999)
that due to the detection limit of the OD measurements, the specific growth rate
estimated for these OD values will be lower than the maximum specific growth.
However, the specific growth rate is assumed to be a usable measure, for the pur-
pose of determining whether the growth is the same for the five bacterial strains.

Recent studies (Baty and Delignette-Muller, 2004; Dalgaard and Koutsouma-
nis, 2001; Fujikawa et al., 2004; Juneja et al., 2007; Lindqvist, 2006; Shama et al.,
2005) have compared the estimation of the growth rates and/or lag times obtained
by different mathematical models. All of these studies use unweighted least squares
to estimate the parameters. This paper suggests estimating the model param-
eters using the Maximum Likelihood (ML) method. This method enables us to
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Table B.1: a Mandsberg et al. (2008), b calculated using the method described by Ma et al.
(1992)

Bacteria strain Mutation rate per generation Ref.
P. aeruginosa 4.61 ·10−9 a
mutT 1.28 ·10−7 a
mutY 3.85 ·10−8 a
mutM 6.38 ·10−9 a
mutY-mutM 1.94 ·10−7 b

introduce a full model including a variance and autocorrelation structure for the
observations and to determine the related parameters along with the growth pa-
rameters. The suggested ML method enables the use of strong statistical tools
to compare models. As an example we apply the likelihood-ratio test to examine
whether the growth of the five bacteria strains can be assumed to be identical. The
study demonstrates the importance of including full information about variance
and correlation structure in a growth model.

For the estimation of µ an exponential model is considered, which means that
a linear model is fitted to the log-transformed OD curve where the slope is steepest
(Zwietering et al., 1990). More advanced models have been proposed (for a recent
review see Li et al. (2007)) to fit the growth curve, defined as the logarithm of the
number of bacteria as a function of time. These models contain both lag phase
and µmax, so it is not necessary to subjectively decide the interval for the exponen-
tial growth. However these models are limited to sigmoidal growth curves, which
do not describe well the growth of P. aeruginosa in LB media. Also the Monod
model is not appropriate for describing growth on rich media (Kovárová-Kovar
and Egli, 1998). Moreover, for the purpose of introducing a weighted estimation of
the growth parameters, it is desirable and sufficient to keep the model as simple
as possible. Therefore we consider the exponential model for growth.

B.2 Materials and Methods

B.2.1 Growth measurements

OD measurements are obtained for growth in LB media for P. aeruginosa, PAO1,
and four different mutator strains; mutT, mutY, mutM and mutY-mutM. A de-
scription of the individual mutator strains is given in Mandsberg et al. (2008). The
double mutant mutY-mutM is constructed by a method, not yet published, which
is modified in accordance with Quenee et al. (2005). The bacteria are grown over
night in LB media, after which they are adjusted to an OD600 on 0.03 and sub-
sequently diluted to 10−4. Each bacterium strain is transferred to six microtitter
wells with 280µl to each well. Measurements are made with a sampling interval
of 5 min in a bioscreen (Labsystem C (Bie og Berntsen)) at 37◦C under continuous
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shaking. The measurements are shown in Figure B.1.

0 5 10 15 20
0

0.5

1

1.5

time

O
D

 

 

PAO1
mutT
mutY
mutM
mutYM

Figure B.1: The OD measurements for the five different bacteria, corrected for the OD of
the media.

The specific growth rate occurs during exponential growth, and can be found
by estimating the slope of the log-transformed data, where the slope is steepest.
The interval for estimation of the specific growth rate shown in Figure B.2 is cho-
sen by graphical inspection. The interval comprises 11 observations.
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Figure B.2: The log-transformed OD measurements, corrected for media content, for
the five different bacteria strains. The estimation interval for the maximal growth rate
is marked by the vertical dotted lines.

Several authors (Chorin et al., 1997; Augustin et al., 1999; Baty et al., 2002) have
discussed the relation between OD and CFU measurements and the influence of
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the measurement method on the estimated growth parameters. For this study the
relation between OD and the actual bacterial concentration has been examined
experimentally, and the relation between OD and concentration is found to be
linear in the examined interval. Since the relation is linear a transformation of the
data from OD to CFU will not influence the estimate of the specific growth rate,
and therefore the following study is continued with the OD values.

B.2.2 Model

The OD measurements are initially transformed by

Bbi j = ODbi j −M j

Ybi j = log(Bbi j ), (B.1)

where ODbi j is the measured OD value for bacteria strain b (b = 1,2, . . . ,S), repe-
tition i (i = 1,2, . . . ,R) at time t j ( j = 1,2, . . . ,T ). M j is the mean of OD values for
ten wells with media without bacteria, and thus Bbi j is the OD contribution due
to growth, corrected for the media. In this study S = 5, R = 6 and T = 11.

The linear relation seen in Figure B.2 for the log-transformed data is modelled
by a general linear model of the form

Y = Xθ+ε , where Y ∈ N (Xθ,σ2Σ) , (B.2)

where X is the design matrix and θ is a set of parameters [α,µ] with α being the
intercept and µ the slope, i.e. the specific growth rate. Y is a vector of length SRT
containing all the observations in the estimation interval. To reduce the correla-
tion between the estimated values for α and µ the time series are translated such
that they starts at t1 = 0. The values contained in of α is thus the Y values at the
beginning of the estimation interval.

Two models are introduced with the purpose of determining whether all bac-
teria strains can be assumed to have the same specific growth: Model 1 where the
growth rate is different for each bacteria strain, and Model 0 where the growth rate
is the same for all repetitions of the experiment. For both models the intercept is
different for all bacteria in order to account for the small difference in initial OD
and media concentration. The following notation will be used for the vector of all
time points t = [t1, t2, . . . , tT ]T, and T is a column vector with R repetitions of the
vector t . A column vector of length T containing only ones is written in short-hand
notation as e = [1,1, . . . ,1]T and a matrix comprising R repetitions of e is defined as

E =




e 0 . . . 0

0 e
...

...
. . . 0

0 . . . 0 e




.
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Model 1:

Y (1)
bi j =αbi +µb t j +εbi j , (B.3)

or in matrix formulation

Y (1) = X 1θ1 +ε , where

X 1 =




E 0 . . . 0 T 0 . . . 0

0 E
... 0 T

...
...

. . . 0
...

. . . 0
0 . . . 0 E 0 . . . 0 T




,

θ1 =
[
α11, . . . ,α1R ,α21, . . . ,αSR ,µ1, . . . ,µS

]
T

(B.4)

Model 0:

Y (0)
bi j =αbi +µt j +εbi j , (B.5)

or in matrix formulation

Y (0) = X 0θ0 +ε , where

X 0 =




e 0 . . . 0 t

0 e
... t

...
. . . 0

...
0 . . . 0 e t




,

θ0 =
[
α11,α12, . . . ,α1R ,α21, . . . ,αSR ,µ

]
T

(B.6)

When introducing Model 1 it is assumed that the specific growth rate for each rep-
etition within a bacterium strain is the same. This is biologically plausible as the
bacteria and media mixture in each of the six wells come from the same batch cul-
ture. A third model has been considered where the specific growth rate for each
repetition is different, but the analysis indicates that there are too few data points
for each curve to give a good estimation of the model parameters. Therefore the
rest of this study continues with Model 0 and Model 1.

B.2.3 Maximum Likelihood estimation

The model parameters are estimated by maximizing the log-likelihood function.
The likelihood function is equal to the joint probability density of the data, p(Y |θ)

L(θ|Y ) = p(Y |θ) . (B.7)

As the data can be assumed to be normally distributed, the probability density for
Y is

p(Y |θ) = 1√
(2πσ2)N detΣ

· exp

(
− 1

2σ2 (Y −Xθ)TΣ−1(Y −Xθ)

)
, (B.8)
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where N is the total number of observations. The log-likelihood function for nor-
mally distributed data is thus

log(L(θ|Y )) =−1

2
N log(σ2)− 1

2
log(det(Σ))

− 1

2σ2 (Y −Xθ)TΣ−1(Y −Xθ)
(B.9)

plus a constant term (−1
2 log(2π)), which for simplicity is ignored, since it does not

depend on the parameters.
In order to parameterize Σ, an examination of the variance and autocorrela-

tion structure of the data is needed. Assuming that the variance of B is Var[B ], the
variance of the log-transformed data can be determined from

Var[ f (x)] = Var[x] f ′(x)2 (B.10)

i.e.,

Var[Y ] = Var[B ]

(
1

B

)2

=σ2
(

1

B

)2

. (B.11)

Indeed the variance depends on the inverse of the square of B , as seen in Fig-
ure B.3. The figure shows the variance of Y as calculated from six repetitions
within each bacteria strain at each time plotted, together with a fit of the theo-
retical expressions in equation (B.11) to the inverse square mean of B .
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Figure B.3: The variance of Y against Bb. j as calculated from data (symbols) plotted to-
gether with σ2(1/Bb. j )2 (lines), where Bb. j is the mean value for each time point and bac-
teria strain and σ2 is estimated by least squares regression.

A significant autocorrelation was found in earlier studies (López et al., 2004),
and should be included in the model to give a full parameterization of the data. In
order to determine the correlation structure of the residuals εbi j , a ML estimate of
Model 0 and Model 1 with Σ = I is initially examined by plotting the autocorrela-
tion function in Figure C.5. This plot indicates that the noise sequence is indeed
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correlated in time. For simplicity we suggest the following exponentially decaying
function of the time between two observations

Corr[ε j ,εk ] = ρ| j−k| (B.12)

to describe the autocorrelation (Madsen and Thyregod, 1988). This parametriza-
tion of the autocorrelation can be chosen since the observations are equidistant.
The parameter ρ now corresponds to the lag 1 correlation, i.e. the correlation be-
tween two consecutive observations.
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Figure B.4: The autocorrelation function, ACF, for the residuals of Model 0 and Model 1
with Σ being the identity matrix fitted to the measured OD values.

Three different structures of the covariance matrix Σ are examined in order
to compare the models and determine the Σ that best describes data. The most
simple is the identity matrix

I : Σ= I , (B.13)

for which the ML estimation corresponds to performing a least squares estimate of
the model parameters. On the basis of the theoretical explanation and explorative
examination of the data, it is clear that the variance depends on B as described in
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(B.11). Therefore the following variance structure for each bacterium b and each
repetition i is suggested

I I :
{
Σbi

j j

}
= 1

(Bbi j )2 , (B.14)

where Bbi j is the OD measurement of repetition i at time k for bacteria b less the
contribution from the media M j .

Furthermore, in order to include the autocorrelation as well as the variance
structure, we introduce the full Σ matrix. This is a block diagonal matrix with one
block matrix for each repetition of the experiment, thus for each bacterium b and
repetition i it is given by

I I I :
{
Σbi

j k

}
= ρ| j−k|

Bbi j Bbi k
(B.15)

where Σbi
j k is the j k element ( j = 1,2, ...,T and k = 1,2, ...,T ) of the block matrix

belonging to repetition i and bacteria b.
The total set of parameters to be estimated is thus σ,ρ and θ where θbi j con-

tains the model parameters αbi j and µbi j . In order to reduce the computation
time for the estimation, only the parameters σ and ρ are estimated by nonlinear
optimization. With these parameters given, the remaining model parameters θ
are found by the ML optimization as

θ̂ = (X TΣ−1X )−1X TΣ−1Y , (B.16)

where Σ equals one of the expressions (B.13), (B.14) or (B.15). The resulting pa-
rameter estimation is equivalent to estimating all parameters simultaneously.

The variance of the estimated parameters and the correlation between the es-
timated parameters can be calculated from the inverse Hessian, where the Hes-
sian matrix H is equal to the second order partial derivative of the log-likelihood
function, ` = log(L(θ|Y )) (B.9). Derivation of the Hessian matrix is found in Ap-
pendix B.A.

The models, the log-likelihood function and the algorithm for calculating the
Hessian matrix are implemented in Matlab 7.3.0 (R2006b). The Matlab com-
mand fminsearch is used to determine the maximum of the log-likelihood func-
tion.

B.2.4 Likelihood-ratio test

The likelihood-ratio test is used for an inference study concerning the nested mod-
els (B.3) and (B.5). The hypothesis is that the specific growth rate for each bacterial
population is identical, and it can thus be described by Model 0. This hypothesis
is biological plausible if the possibility of mutations is low within the considered
interval. The test statistic is

−2log

(
L0

L1

)
=−2(`0 −`1) , (B.17)
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which is asymptotically χ2 distributed with degrees of freedom corresponding to
the difference in number of parameters between the two models tested. Here `0

is the log-likelihood value for Model 0, and `1 is the log-likelihood value for Model
1,- both evaluated at their optimal value.

B.3 Results and discussion

The model parameters have successfully been estimated for Model 1 (B.3) and
Model 0 (B.5) for each of the three proposed covariance matrices I (B.13), II (B.14)
and III (B.15). Residuals from the estimation have been examined in Figure B.5
where the residuals are plotted as a function of index. In the first case, where
no variance structure is introduced in the model, an unclear residual structure
is seen. For the covariance matrices II and III, the variance of the residuals fol-
lows the estimated squared structure, which indicates that the variance has been
implemented correctly. The correlation structure is examined by plotting the au-
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Figure B.5: Residuals for the ML estimation of Model 0 and Model 1. Two curves are shown
for PA01 and mutY, respectively, to illustrate the correlation structure in the data.

tocorrelation of ε for the full covariance structure in Figure B.6. An exponentially
decaying correlation is observed, as initially assumed. Thus, there seems to be no
unexplained variance or correlation structure when applying the suggested full
covariance matrix.

Table B.2: Estimates of the specific growth rate µ and doubling time Td .

Growth rate [1/h] (SD) Td [min]
Σ form I II III III
PAO1 1.77 (0.032) 1.653 (0.023) 1.566 (0.045) 26.56
mutT 1.57 (0.032) 1.524 (0.023) 1.517 (0.039) 27.42
mutY 1.64 (0.032) 1.534 (0.028) 1.528 (0.049) 27.22
mutM 1.74 (0.032) 1.644 (0.025) 1.560 (0.047) 26.66
mutYM 1.74 (0.032) 1.657 (0.030) 1.621 (0.053) 25.66
All 1.69 (0.015) 1.600 (0.012) 1.546 (0.026) 26.90

The growth rates for each bacteria type estimated by Model 1 and Model 0,
are listed in Table B.2, for each of the three suggested covariance matrices I, II
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Figure B.6: Autocorrelation function for Model 0 and Model 1 with the full Σ matrix.

and III. The growth rate is generally estimated highest whenΣI is used, and lowest
when the full covariance matrix is applied. The difference in the estimated specific
growth rates shows that it is very important to use the correct covariance matrix
in order to obtain a correct estimation for the growth rates. In many studies the
doubling time Td is used instead of the growth rate. The doubling time and growth
rate are related by Td = log(2)/µ. The doubling time for the full model is given in
Table B.2 to assist comparison with other microbiological studies. It should be
noted that the specific growth rate might be smaller than the maximum specific
growth rate, as explained in the introduction. It would therefore be of interest for
a future study to repeat the estimation with a CFU count experiment, in order to
examine the difference between the two experimental methods.

Table B.3: Estimates of the standard deviation and correlation parameters σ and ρ.

Σ form Model 1 Model 0
σ(SD) I 0.0685 (0.0027) 0.0715 (0.0028)

II 0.0026 (0.0001) 0.0027 (0.0001)
III 0.0029 (0.0003) 0.0031 (0.0003)

ρ(SD) III 0.7360 (0.0553) 0.7656 (0.0550)

The log-likelihood values for each model are given in Table B.4. The models
withΣI I andΣI I I can be compared using the likelihood-ratio test, as these models
are nested. Doing this for Model 1 gives a test statistic of 148.62, which using a χ2

distribution with one degree of freedom gives a P value close to 0. The same result
is obtained by Model 0. This means that ΣI I I should be used instead of ΣI I and
indicates further that the full covariance matrix is preferable to the identity matrix
ΣI . This conclusion is further emphasized by the estimated value for ρ shown in
Table B.3, which clearly shows that there is autocorrelation in the data, and this
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should therefore be included in the model to give a correct estimate for µ. The
same table shows the estimates for σ. As expected, the variance is higher when
the identity matrix ΣI is used, than when the increased variation for smaller B
values is accounted for.

The correlations between the estimated parameters are obtained from the in-
verse Hessian matrix. If the time series are not translated as described in Sec-
tion B.2.2 a very high correlation on up to 0.999 is seen between the intercept and
the related maximal growth rate. By translating the time series, this correlation is
reduced to 0.665 for Model 1 and 0.468 for Model 0, which is why the translated
time series are used for the estimation. For the translated data none of the corre-
lations of the estimated parameters are critical. The highest correlation is found
to be between σ and ρ (0.901 for Model 1 and 0.922 for Model 0).

Table B.4: The results of the inference analysis.

Σ form log(L1) log(L0) P
I 719.69 705.74 1.30 ·10−5

II 799.94 786.18 1.56 ·10−5

III 874.25 872.89 0.607

The results of the inference analysis for the two models are summarized in
Table B.4. The result is very dependent on the choice ofΣ. ForΣI andΣI I the spe-
cific growth rate for the bacteria strains cannot be regarded as the same. However,
we have argued that the full covariance matrix ΣI I I must be used for the model
to describe the total variance and correlation structure of the data. For the full
covariance matrix, it can be concluded from the inference study that the specific
growth rate is the same for all bacteria strains.

The different results for the three different Σ highlight the importance of in-
cluding the correct covariance structure in the model. In this connection the ML
estimation is preferable to least squares estimation, as the parameters for Σ can
be estimated along with the other model parameters.

The model examined in this study is a linear model, but it can easily be re-
placed by a non-linear model (Madsen and Thyregod, 1988; Madsen, 2008). The
disadvantage of introducing a non-linear model is that this significantly increases
the complexity of the Hessian matrix, so that it might not be possible to calculate it
analytically. However many computational tools are available for calculating the
Hessian matrix numerically. Therefore, a continuation of this study could be to
introduce a non-linear model which can describe the entire growth process. This
would require the use of a substrate-dependent growth function as the growth en-
ters the stationary phase due to substrate depletion.
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B.4 Conclusions

The importance of including full variance and correlation structure in a model for
bacterial growth has been shown. The estimation of model parameters is depen-
dent on the parametrization of the covariance matrix, and disregarding the vari-
ance and correlation structure can therefore have consequences for the results of
a study.

In this study the objective was to estimate the specific growth rate for PAO1 and
four mutator strains. An explorative analysis of the OD measurements showed a
strong correlation in time. The correlation was successfully described by an ex-
ponentially decaying function of the time between observations. Additionally, a
variance structure for the log-transformed observations was implemented. An ML
approach to estimating the model parameters is used. As an example of the strong
statistical tools available with the ML method, we use the likelihood-ratio test to
determine whether the growth rates of the five bacteria strains can be assumed
to be identical. From the test it can be concluded that the specific growth rate is
indeed the same.
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B.A Derivation of the Hessian matrix

For the full model containing the covariance matrix (B.15) the Hessian is

H =



`σ,σ `σ,ρ `σ,θ
`ρ,σ `ρ,ρ `ρ,θ
`θ,σ `θ,ρ `θ,θ


 , (B.18)

where `p1,p2 is the second order derivative of ` with respect to the parameters p1

and p2. Before continuing some short-hand notation is introduced

g (ρ) = (Y −X θ̂)TΣ(ρ)−1(Y −X θ̂) ,and (B.19)

ε= Y −X θ̂ (B.20)

The first order partial derivatives for ` are

`θ = 1

σ2

(
X TΣ−1ε

)
(B.21)

`σ =−N

σ
+ 1

σ3 g (ρ) (B.22)

`ρ =−1

2
Tr

[
Σ−1Σρ (B.23)

+ 1

2σ2

(
εTΣ−1ΣρΣ

−1ε
)]

(B.24)

where

Σρ( j k) =
∂Σbi

j k

∂ρ
= | j −k| ρ

| j−k|−1

Bbi j Bbi k
(B.25)

The second order partial derivatives of ` are

`θ,θ =− 1

σ2

(
X TΣ−1X

)
(B.26)

`σ,σ = N

σ2 − 3

σ4 g (ρ) (B.27)

`ρ,ρ =−1

2
Tr

[
−Σ−1ΣρΣ

−1Σρ+Σ−1Σρ,ρ

]

+ 1

2σ2

[
εT

[
−2Σ−1ΣρΣ

−1ΣρΣ
−1+

Σ−1Σρ,ρΣ
−1

]
ε
]

(B.28)

`θ,θ =− 1

σ2

(
X TΣ−1X

)
(B.29)

`σ,ρ =− 1

σ3

[
εTΣ−1ΣρΣ

−1ε
]

(B.30)

`θ,σ =− 2

σ3

(
X TΣ−1ε

)
(B.31)

`θ,ρ =− 1

σ2

(
X TΣ−1ΣρΣ

−1ε
)

(B.32)
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where

Σρ,ρ( j k) =
∂2Σbi

j k

∂ρ2

= | j −k|(| j −k|−1)
ρ| j−k|−2

Bbi j Bbi k

(B.33)
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PAPER

C
Modelling bacterial growth in
rich media with a
non-parametric extension to
an SDE based model ‡

Abstract

In this study a systematic framework for model improvement based on
stochastic differential equations has been presented and applied to examine
the growth of bacteria in rich media. The modelling framework uses avail-
able data to dig into embedded information of the dynamic of the system by
extending the stochastic differential equation model with a non-parametric
state. The case considered is the growth of Salmonella and Enterococcus
in rich media. It is found to be necessary to include an extra state in the
model to capture the lag phase of the growth. Furthermore it is shown that
the Monod equation, which has traditionally been used to describe bacterial
growth kinetics, can be replaced by a growth rate proportional to the sub-
strate level.

C.1 Introduction

A good description of bacterial growth kinetics, i.e. the relationship between bac-
terial growth and substrate concentration is important for many applications in
microbiology, for instance for fermentation processes (Kompala et al., 1984; Pat-
naik, 1999). The Monod equation was the first suggestion for a mathematical de-
scription of the growth curve. It has been extensively discussed since its introduc-
tion in 1949 (Monod, 1949). When originally proposed, it seemed to be a "con-
venient and logical" (Monod, 1949) choice for a mathematical expression to fit
the growth curve. Several attempts have been made to formulate a mechanistic

‡Manuscript under preparation: K. R. Philipsen, L. E. Christiansen, H. Madsen, Modelling bac-
terial growth in rich media with a non-parametric extension to an SDE based model. Part of this
manuscript is included in: J. K. Møller, K. R. Philipsen, L. E. Christiansen, H. Madsen, 2010. Analysis
of diffusion in an SDE-based bacterial growth model. Submitted.
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background for the Monod equation (Lobry et al., 1992; Liu, 2006). Even though
the Monod equation is a good estimation of the growth on a single substrate, it
fails to model growth on rich media (Bajpai-Dikshit et al., 2003). Therefore several
attempts have been made to find another equation for this growth (Doshi et al.,
1997). According to Kovárová-Kovar and Egli (1998) these studies can be divided
into three methods i) Extending the Monod model with additional constants, ii)
Developing an empirical or mechanistic model from kinetic concepts, iii) Describ-
ing how the Monod growth parameters are influenced by physicochemical factors.
A problem with determining other expressions for the growth rate has been the
lack of high quality reproducible data which relates the growth rate to the sub-
strate concentration (Kovárová-Kovar and Egli, 1998). The method proposed here
makes it possible to extract these data from bioscreen measurements, and thus
limit the time and resources used on experiments significantly.
The transition from modelling using Ordinary Differential Equations (ODEs) to
using Stochastic Differential Equations (SDEs) paves the way for many strong sta-
tistical tools for model development and inference (Philipsen et al., 2010a). In
this article a model development method based on SDEs will be introduced and
used to examine the relation between growth rate and substrate concentration.
The use of SDEs enables the separation of measurement noise and system noise,
which will be used in the method. First the SDE framework will be introduced,
followed by an outline of the suggested methods for model development. In or-
der to demonstrate the method on a system with a known growth expression a
simulation study is performed. Finally the model development method is used
to study the growth expression for Salmonella and Enterococcus when growing in
BHI media.

C.2 Modelling using Stochastic Differential Equations

The method for model building introduced in this article is based on SDE model
formulations. A widely used (Kristensen et al., 2004b) continuous-discrete time
SDE-based state space model consists of a continuous time system equation (the
SDE) and a discrete time measurement equation, i.e.

d X t = f (X t ,u t , t ,θ)d t +σ(u t , t ,θ)dωt , (C.1)

Y k = h(X k ,uk , tk ,θ)+ek , (C.2)

where Equation (C.1) is the system equation and Equation (C.2) is the observa-
tion equation. X t is a vector of state variables, Y k is a vector of measured output
variables, u t is a vector of known input variables, ek is an l -dimensional white
noise process with e ∈N (0,R(uk , tk ,θ)) andωt is a standard Wiener process with
zero mean and independent Gaussian time increments with diffusion coefficient
σ(u t , t ,θ). The first part of the system equation is called the drift term and the
second part is called the diffusion term. The Wiener process adds noise to the sys-
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tem, more specifically dωt has uncorrelated random increments. Everywhere in
this article Itô interpretations of the SDEs are used (Øksendal, 2007).

C.2.1 Case: Bacterial growth on rich media

Bacterial growth is traditionally modelled using deterministic equations such as a
set of coupled Ordinary Differential Equations (ODEs)

dB

d t
=µ(S,θ)B ,

dS

d t
=−ηµ(S,θ)B ,

(C.3)

where B and S are the concentrations of the bacteria and the substrate, respec-
tively, η is the amount of substrate necessary for creation of a new bacteria by cell
division andµ(S,θ) is the substrate-dependent growth rate with parameters θ. 1/η
is in many studies called the biomass yield coefficient or yield factor. Given that
Equation (C.3) is used to describe the system, η can be calculated from data as

dS

d t
=−ηdB

d t
⇒ (C.4)

∫ Smin

S0

dS =
∫ Bmax

B0

ηdB ⇒ (C.5)

η= S0 −Smin

Bmax −B0
(C.6)

For this study S is implemented in the model as a standardized substrate content,
i.e. S ∈ [0,1]. η can therefore be estimated from

η= 1

Bmax −B0
, (C.7)

given that all the substrate has been used in the experiment as the bacteria con-
centration reaches maximum. The most frequently used mathematical equation
to describe the kinetics of bacterial growth is the Monod equation (Monod, 1949)

µ(S) = µmaxS

κ+S
. (C.8)

It is straightforward to transfer the well known ODE description of bacterial growth
into the SDE framework. The right-hand side of the ODE (C.3) corresponds to the
drift part f (·) of the SDE (C.1). The ODE can thereby be translated into an SDE
model with the state equation

d

[
Bt

St

]
=

[
µ(St ,θ)Bt

−ηµ(St ,θ)Bt

]
d t +

[
σB ut 0

−ησB ut 0

]
dωt . (C.9)

In this study a state noise proportional to the observed bacterial concentration is
used, as the variance of the system can be assumed to increase with increasing
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bacterial concentration. That is, when estimating the model parameters the in-
put ut consists of the observed bacterial concentration Yk , and when the model is
simulated ut is replaced by the state variable Bt . Due to mass balance, an increase
in the bacterial concentration driven by the diffusion term also decreases the sub-
strate content. Therefore, the term ησB B is subtracted in the diffusion term for
the substrate.
The bioscreen only measures the bacterial concentration and not the substrate
concentration, hence the measurement equation is

Yk = Bk +ek , ek ∈N (0,R) , (C.10)

where ek is the measurement error at time tk and the measurement variance R is
assumed to be constant for all times.
The software CTSM (www.imm.dtu.dk/~ctsm) is used to estimate parameters, and
generate smoothing and prediction data. CTSM is to our knowledge unique in its
ability to estimate model parameters and generate smoothing data for non-linear
SDEs observed with measurement noise at discrete points in time. A user guide as
well as detailed mathematical description of the available tools can be found on
the software website.

C.3 Method

Modelling a dynamical system often consists of several steps of parameter estima-
tion and model validation. If a model does not give a good fit to data, different
methods for model improvement may be used. In this paper a new method for
systematic model improvement extended from the framework by Kristensen et al.
(2004a) will be described and applied to study the dynamics of bacterial growth.
The steps constituting the method are shown in Figure C.1. The theory involved
in each step will be elaborated on in relation to the bacterial growth study in the
following subsections.

C.3.1 Part I (parametric)

Model specification - Step Ia

The first step when modelling a dynamical system is to suggest one or more candi-
date models which can be tested against data. It is advisable to examine the liter-
ature for existing models to use as candidate models and to use available physical
insight about the system.
As a first candidate model for the bacterial growth we will use the SDE model (C.9)
and the widely used Monod equation (C.8) to model the growth kinetics.

Parameter estimation - Step Ib

The parameters in the SDE-based model (C.1)-(C.2) are estimated by a maximum
likelihood, ML, method (Kristensen et al., 2004b) using the software CTSM. The
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Figure C.1: Schematic overview of a systematic framework for model improvement.

unknown model parameters can be found by maximizing the likelihood function

L(θ;YN ) =
(

N∏
k=1

p(Y k |Yk−1,θ)

)
p(Y 0|θ) (C.11)

with respect to a known sequence of observations

Yk = [Y k ,Y k−1, . . . ,Y 1,Y 0] , (C.12)

where θ is a vector of unknown model parameters and the initial values, if these
are to be estimated. Provided that the sample intervals are reasonable compared
to the non-linear dynamics of the system, the conditional probability densities p
can be approximated by Gaussian densities, as the SDE (C.1) is driven by a Wiener
process which has Gaussian increments. With this assumption the probability
density is

p(Y k |Yk−1,θ) =
exp(−1

2ε
T
k (Σy y

k|k−1)−1εk )
√

det
(
Σ

y y
k|k−1

)(p
2π

)l
, (C.13)

where

Ŷ k|k−1 = E[Y |Yk−1,θ] , (C.14)

Σ
y y
k|k−1 = Var[Y k |Yk−1,θ] , and (C.15)

εk = Y k − Ŷ k|k−1 . (C.16)

If prior information about all or some of the parameters is available, maximum
a posteriori (MAP) estimation can be used. Assuming that the prior probability
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density of the parameters is Gaussian, the likelihood function can be written

L(θ;YN ) =
(

N∏
k=1

p(Y k |Yk−1,θ)

)
p(Y 0|θ)

·
exp(−1

2ε
T
θ
Σ−1
θ
εθ)

√
det(Σθ)

(p
2π

)p ,

(C.17)

where

µθ = E [θ] , (C.18)

Σθ =V [θ] , (C.19)

εθ = θ−µθ , (C.20)

and p(Y k |Yk−1,θ) is given in equation (D.25). The conditional probability density
p(Y k |Yk−1,θ) is fully described by the mean and variance of the measurements,
which can be estimated recursively by means of the Extended Kalman Filter, EKF.
First some more notation is introduced

Σxx
k|k−1 = Var[X k |Yk−1,θ] , (C.21)

and

A = ∂ f

∂X t

∣∣∣∣
X=X̂k|k−1,u=uk ,t=tk ,θ

, (C.22)

C k = ∂h

∂X t

∣∣∣∣
X=X̂k|k−1,u=uk ,t=tk ,θ

, (C.23)

σ=σ(uk , tk ,θ) , and (C.24)

Rk = R(uk , tk ,θ) , (C.25)

The EKF consists of two sets of equations, namely the updating and the prediction
equations:
The updating equations are

X̂ k|k = X̂ k|k−1 +K kεk , and (C.26)

Σxx
k|k =Σxx

k|k−1 −K kΣ
y y
k|k−1K T

k , (C.27)

with the Kalman gain

K k =Σxx
k|k−1C T

k

(
Σ

y y
k|k−1

)−1
. (C.28)

The prediction equations are

d X̂ t |k
d t

= f (X̂ t |k ,u t , t ,θ) , and (C.29)

dΣxx
t |k

d t
= AΣxx

t |k +Σxx
t |k AT +σσT , (C.30)
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which is solved for t ∈ [tk , tk+1[, and finally the prediction equations for the mean
and covariance of the observations are given by

Ŷ k|k−1 = h(X̂ t |k−1,u t , tk ,θ) , and (C.31)

Σ
y y
k|k−1 =C kΣ

xx
k|k−1C T

k +R . (C.32)

The initial values for the EKF are X̂ t |t0 = X 0 and Σxx
t |t0

= Σxx
0 , which can either be

fixed or estimated along with the ML estimation.

Model validation - Step Ic

Different methods can be used to validate an SDE model. Goodness of fit can
be evaluated by considering the standardized residuals r based on the one-step
predictions Ŷk|k−1 (C.14). The predictions are generated by the extended Kalman
filter. For the bacterial growth model the standardized residuals are given by

rk = Yk − Ŷk|k−1

Σ
y y
k|k−1

. (C.33)

According to the SDE model formulation the standardized residuals should be in-
dependent normally distributed. This can be checked e.g. by the autocorrelation
function of the standardized residuals. We use the function acf in R (R Develop-
ment Core Team, 2009) to compute the autocorrelation function. Additionally r
can be plotted against e.g. time and the other state variables. If any of these plots
do not correspond well with the model assumption, this indicates that there is
something wrong with the model. For other analysis considering the residuals see
e.g. (Kristensen et al., 2004b; Madsen, 2008).
Other tests for goodness of fit exist such as the one proposed by Bak et al. (1999),
which uses simulation of trajectories between neighboring observations. How-
ever, going into details with this method is out of the scope of this article.
If the result of the validation is satisfactory, the best model has been found and
no further steps need to be executed. If the validation is not satisfactory, there are
two possibilities. If there are obvious ways of reducing (or extending) the model,
then Part I should be repeated for the suggested model. Reduction of the model
will often be related to test for significants of parameters or for reduction by set-
ting two parameters equal. Next the models should be compared in the validation
step. If the models are nested, a likelihood-ratio test can be used, which provides
a p-value on which a decision can be based. Alternatively, Akaike’s Information
Criterion (AIC) given by

AIC =−2log(L)+2p (C.34)

can be applied for non-nested models, where p is the number of parameters in the
function. The model with the lowest AIC value should be selected.
If no obvious model changes are available Part II should be performed to identify
improvements to the model.
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C.3.2 Part II (non-parametric)

Non-parametric model extension - Step IIa

The part of the model that calls for improvement may be found e.g. by identifying
the state variable with the highest diffusion coefficient. The rate parameter in the
drift part of this state should then be included as an extra state depending only on
the system noise. The rate is thus modelled by a non-parametric extension to the
SDE.
Let us consider the model (C.9). Now we want to study the functional dependence
of the growth rate on the substrate content. Therefore the growth rate is imple-
mented as a new state variable, and the total system equation becomes

d




Bt

St

µt


=




µt Bt

−ηµt Bt

0


d t +




σB ut 0 0
−ησB ut 0 0

0 0 σµ


dωt . (C.35)

The observation equation is unchanged.

Parameter estimation - Step IIb

Corresponds to the method used for parameter estimation in Step 2, see Section
C.3.1

Smoothing - Step IIc

The smoothing estimate is computed by a combination of a forward filter esti-
mate based on a few past observations, and a backward filter estimate based on
present and future observations. It can be shown (Gelb et al., 1974) that the opti-
mal smoother X̂ k|N is given by the following combination of the forward filtering
estimate X̂ k|k−1 and backward filtering estimate X k|k

X̂ k|N =Σxx
k|N

(
(Σxx

k|k−1)−1X̂ k|k−1 +
(
Σ

xx
k|k

)−1
X k|k

)
, (C.36)

where

Σxx
k|N =

((
Σxx

k|k−1

)−1
+

(
Σ

xx
k|k

)−1
)−1

. (C.37)

The forward filter estimate of the state variables, together with the covariance
Σxx

k|k−1, is determined by the EKF as described in equation (C.26)-(C.32). To deter-

mine the backward filter estimate X k|k and the corresponding covariance matrix
Σ

xx
k|k we need to first rewrite the state equation (C.1). As the backward filter starts

at the end point and moves forward towards the smoothing point, we write the
time as τ= tN − t . Thus, the state equation takes on the form

d X tN−τ =− f (X tN−τ,u tN−τ, tN −τ,θ)dτ

−σ(u tN−τ, tN −τ,θ)dωτ .
(C.38)
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In order to have well defined boundary conditions the following transformation is
applied

sk =
(
Σ

xx
k|k

)−1
X k|k . (C.39)

The smoothing estimate must equal the forward filter estimate at the end time N .
This means that

Σxx
N |N =Σxx

N |N−1 , (C.40)

which according to equation (C.37) leads to

(
Σ

xx
N |N

)−1
= 0 , (C.41)

whereby

sN = 0 . (C.42)

Applying relation (C.39) the backward filter can be described by the following equa-
tions (Gelb et al., 1974):
The updating equations for s are

sk|k = sk|k+1 +C T
k R−1

k

(
εk +C k X̂ k|k−1

)
, (C.43)

(
Σ

xx
k|k

)−1
=

(
Σ

xx
k|k+1

)−1
+C T

k R−1
k C k . (C.44)

The prediction equations for s are

d s tN−τ|k
dτ

= AT
τ s tN−τ|k −

(
Σ

xx
tN−τ|k

)−1
στσ

T
τ s tN−τ|k ,

−
(
Σ

xx
tN−τ|k

)−1 (
f (X̂ t |k ,u t , t ,θ)− AτX̂ tN−τ|k

)
(C.45)

(
Σ

xx
tN−τ|k

)−1

d t
=

(
Σ

xx
tN−τ|k

)−1
Aτ+ AT

τ

(
Σ

xx
tN−τ|k

)−1

−
(
Σ

xx
tN−τ|k

)−1
στσ

T
τ

(
Σ

xx
tN−τ|k

)−1
, (C.46)

which is solved for t ∈ [τk ,τk+1[. In the equations for the backward filter the short
hand notation

Aτ =
∂ f

∂X t

∣∣∣∣
X=X̂ tN −τ|k ,u=u tN −τ,t=tN−τ,θ

(C.47)

στ =σ(u tN−τ, tN −τ,θ) , (C.48)

is used, along with the notation for C k and Rk given in (C.23) and (C.25).
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C.3.3 Interpretation of smoothing results - step IId

The smoothing data generated as described in Section C.3.2 can be used to dig
into embedded information of the dynamics of the system by plotting the relation
between the new state variable, which in this case is the growth rate, and each of
the other states as well as time. These plots, together with physical insight about
the system, should then be used to improve the model. Either by suggesting a new
expression relating the phenomenon of interest with one or more other states, or
by introducing an extra state to the system. This new suggestion for a candidate
model should hereafter be tested by the steps in Part I.

C.4 Simulation study

A simulation study is carried out to demonstrate the steps in Part II on a growth
curve with a known growth kinetics expression. The growth kinetics description
used is the Monod equation (C.8). The set of SDEs describing the bacterial growth
in Equation (C.9), where ut is replaced by the state Bt , is solved numerically us-
ing an Euler approach implemented in Matlab with the parameters given in Fig-
ure C.2. Simulations are made in triplicates for three different initial optical den-
sity (OD) values: 0.05, 0.005 and 0.0005. To resemble observation noise, normal
distributed noise is added to the simulated data, resulting in the time series shown
in Figure C.2. The parameters of the reformulated model (C.35) are estimated for
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Figure C.2: Change of bacterial concentration over time as simulated with the SDE (C.9)
and Monod growth kinetics (C.8) for three different initial optical density (OD) values.
Normal distributed noise with a standard deviation of 0.001 is added to the simulated
data to resemble observation noise. The parameter values used for the simulation are:
v = 1.6h−1, κ= 0.2, η= 1.5, and σB = 0.05.
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Figure C.3: Smoothing results for one repetition of each initial concentration. The
smoothing data seem to capture well the Monod shape of the growth rate used for the
simulation, which is shown with the black line.

the constructed time series, and smoothing data are created. The result for one
repetition of each initial concentration is shown in Figure C.3, where the result
of the smoothing is plotted together with the known Monod expression for the
growth kinetics. The method is seen to reconstruct very well the relation between
the growth rate and the substrate level.

C.5 Data

Optical density measurements for the growth of Salmonella (S67) and Enterococ-
cus (E46) growing in BHI media are available for the analysis. For each bacteria
strain a 9-fold dilution as well as the non-diluted strain are measured in dupli-
cates. The measurements are made for 40 hours with a sampling interval of 20
minutes in a bioscreen (Microbiology Reader Bioscreen C) at 16◦C under continu-
ous shaking.
The OD measurements are preliminarily corrected for background broth mea-
surements and subsequently a correction is made for the shadow effect for high
OD values by the relation (Philipsen et al., 2010b)

ODmeas = a(1−exp(−b ·ODcorr)). (C.49)

The constants a and b are found by fitting the relation to results from an exper-
iment with Salmonella for which the OD for different concentrations has been
measured. It is assumed that the same parameters can be used for Enterococcus.
The OD measurements after corrections are shown in Figure C.4.
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Figure C.4: Growth curves for the four different bacterial populations used in the exper-
iment. The background OD has been subtracted from the measured OD and the OD has
been corrected for the shadow effect at higher OD values as given by (C.49).

From the observations we obtain estimates of η calculated from equation (C.7),

Salmonella: E [η] = 1.34 , V [η] = 0.13

Enterococcus: E [η] = 1.34 , V [η] = 0.11

This prior information about η can be used to perform a MAP estimate of this
parameter, when estimating all the parameters of the SDE model in Equation (C.9)
or Equation (C.35).

C.6 Results

C.6.1 Part I

The parameters for the SDE in Equation (C.9) using the Monod relation Equa-
tion (C.8) have been estimated and one-step predictions have been generated us-
ing CTSM. The model is validated by considering the standardized residuals. From
the autocorrelation function plotted in Figure C.5 it is seen that the standardized
residuals are not uncorrelated for all data sets. In several cases there is autocorre-
lation for lags 1 to 5. As there are no obvious model reductions we continue to Part
II.

C.6.2 Part II

The model has been reformulated as written in Equation (C.35) and the param-
eters are estimated. The results of the smoothing for the two different bacterial
growth curves can be seen in Figure C.6. The challenge is now to suggest a candi-
date model based on the result of the smoothing. By comparing Figure C.6 (bot-
tom) and Figure C.4 it is seen that the growth rate increases until after the end of
the lag phase for the growth, during which the substrate level stays constant as
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Figure C.5: Autocorrelation function for the standardized residuals from the Monod
growth.

seen in Figure C.6 (top). Due to these time-dependent dynamics of the growth
rate, it is necessary to include an extra state in the system equation. One approach
is to use the optimal model which has been introduced to model growth on multi-
ple substrates (Bajpai-Dikshit et al., 2003). This model is based on the assumption
that one enzyme is rate-limiting for catalyzing the consumption of substrate. The
dynamics of the enzyme level E is typically described as

dEt

d t
= (v +β)St

κ+St
−Et

d log(Bt )

d t
−βEt , (C.50)

for which the Monod expression has traditionally been used to model growth ki-
netics (Doshi et al., 1997; Kompala et al., 1984; Bajpai-Dikshit et al., 2003). In
the optimal model, two states for substrate and enzyme levels, respectively, are
included in the model per substrate in the experimental solution. However, the
smoothing data do not indicate that more than one state for the substrate is nec-
essary.
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Figure C.6: Smoothing data created from Equation (C.35). The growth rate as a function
of substrate (top) and time (bottom) is plotted.

C.6.3 Part I

Adding an extra state for the enzyme level to the system equation, and using the
Monod growth equation, the new candidate model is

d




Bt

St

Et


=




Et vλt Bt

−ηEt vλt Bt

(v +β)λt −Et Et vλt −βEt


d t

+



σB ut 0 0
−ησB ut 0 0

0 0 σE


dω . (C.51)

where

λt =λ0 =
St

κ+St
(C.52)

The estimated parameters for this model are given in the first two columns in
Table C.1 and the resulting simulation is compared with data in Figure C.7. The
estimates of v and κ are strongly correlated; 0.9998 and 0.9923 for Salmonella and
Enterococcus respectively. This indicates that the model is over-parameterized.
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Table C.1: Parameter values (standard deviation) for the growth model with λ0 and λ1

λ0 λ1

Salmonella Enterococcus Salmonella Enterococcus
κ 12.28 (32.56) 95.57 (37.62) - -
v 3.648 (8.969) 31.20 (12.40) 0.272 (0.010) 0.281 (0.007)
β 0.011 (0.021) 0.093 (0.038) 0.006 (0.020) 0.091 (0.043)
η 1.429 (0.051) 1.134 (0.030) 1.420 (0.051) 1.134 (0.037)

σB 0.073 (0.003) 0.042 (0.001) 0.073 (0.003) 0.042 (0.002)
σE 0.0001 (1·10−5) 0.0001 (3·10−5) 0.0001 (6·10−6) 0.0001 (9·10−6)p

R 0.0026 (0.0002) 0.0027 (0.0002) 0.0026 (0.0002) 0.0027 (0.0002)
B0 0.035 (0.001) 0.056 (0.001) 0.035 (0.001) 0.056 (0.001)

Figure C.7: Simulation of the growth model in Equation C.51 with a growth rate propor-
tional to the substrate level. One realization of the SDE model is shown together with the
confidence interval (CI). The SDE simulation is computed in Matlab with an implemen-
tation of the Euler method for numerical solution of SDEs.

Table C.2: AIC values for the different growth rate expressions

λ0 λ1

Salmonella -2884.3 -2886.0
Enterococcus -5868.8 -5872.6

Additionally the estimated κ values are high (12.277 and 95.570) compared to the
maximum value of the substrate content on 1. Hereby the substrate dependence
becomes approximately proportional. Thus, an obvious model reduction is

λt =λ1 = St (C.53)

The parameters for this reduced model are estimated and the result is given in the
last two columns of Table C.1. The models with λ0 and λ1 are tested against each
other using AIC. The result of the test is given in Table C.2, and the best model is
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found to be with λ1, i.e. a model with a growth rate proportional to the substrate
content.

In order to further validate the model with the extra state for the enzyme level
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Figure C.8: Standardized residuals for the model Equation (C.51) with λ1 = S.

and with λ1, the autocorrelation function of the standardized residuals is plotted
in Figure C.8. An improvement has been made to the autocorrelation function
in comparison to Figure C.5, as now only few lags have significant autocorrela-
tions, and the size of the autocorrelation has generally been reduced. Whether the
standardized residuals can be considered as white noise can be tested using Box-
Pierce test statistics (Madsen, 2008). For Salmonella it is found that the p-value
increases from the initial model to the new model from 0.0027 to 0.11. This means
that for the new model the hypothesis of independent standardized residuals for
Salmonella can not be rejected. For Enterococcus the hypothesis of white noise is
rejected with a p-value of 0.003, but the test statistic has been reduced by approxi-
mately half compared to the first model, which indicates a strong improvement of
the model. Further improvements of the model would demand additional data or
information about the growth process, but for now we are satisfied with the model.

C.7 Conclusion

The systematic framework for model improvement presented in this study is a
strong tool that combines physical knowledge about a system with statistical meth-
ods to obtain the best model. The framework is built on a modelling technique
based on stochastic differential equations, which facilitates identification of model
deficiencies.
We have found that the growth of bacteria on rich media can be adequately mod-
elled by including one extra state representing the rate-limiting enzyme level which
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accounts for the initial lag phase of the growth. The growth rate for bacteria grow-
ing on minimal media is traditionally modelled using the Monod equation, but we
find that a growth rate proportional to the substrate level gives a better fit to the
data.
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PAPER

D
Modelling conjugation with
stochastic differential
equations ‡

Abstract

Conjugation is an important mechanism involved in the transfer of re-
sistance between bacteria. In this article a stochastic differential equation
based model consisting of a continuous time state equation and a discrete
time measurement equation is introduced to model growth and conjugation
of two Enterococcus faecium strains in a rich exhaustible media. The model
contains a new expression for a substrate dependent conjugation rate. A
maximum likelihood based method is used to estimate the model parame-
ters. Different models including different noise structure for the system and
observations are compared using a likelihood-ratio test and Akaike’s infor-
mation criterion. Experiments indicating conjugation on the agar plates se-
lecting for transconjugants motivates the introduction of an extended model,
for which conjugation on the agar plate is described in the measurement
equation. This model is compared to the model without plate conjugation.
The modelling approach described in this article can be applied generally
when modelling dynamical systems.

D.1 Introduction

Development and spread of antimicrobial resistance in bacterial populations is of
increasing concern, as it can lead to major difficulties for the treatment of diseases.
A first step in the direction of solving this problem is to gain a better understand-
ing of the spread of resistance, and here conjugation plays a major role. Conjuga-
tion is one of several mechanisms of horizontal gene transfer by which plasmids
coding for e.g. antimicrobial resistance can be transferred between bacteria. The
use of mathematical modelling to describe the dynamics of plasmid spread and

‡As published in: K. R. Philipsen, L. E. Christiansen, H. Hasman, H. Madsen, 2009. Modelling
conjugation with stochastic differential equations. Journal of Theoretical Biology 263 (1), 134-142
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persistence was first introduced by Levin et al. (1979) and since then many stud-
ies have been made to improve the model framework and parameter estimation
and to incorporate more accurate expressions for the plasmid dynamics (Slater
et al., 2008). Most studies have used ordinary differential equations, ODE (Levin
et al., 1979; Freter et al., 1983; Clewlow et al., 1990; MacDonald et al., 1992; Willms
et al., 2006), or ordinary difference equations (Knudsen et al., 1988; Sudarshana
and Knudsen, 2006) as the modelling framework. This approach can be discussed
since a part of the complexity of conjugation, e.g. dependence on the surround-
ing environment, is not included in these models. A way of overcoming this prob-
lem is to use a stochastic modelling approach where the randomness accounts
for those processes not included in the model. Some efforts have been made to
include randomness in plasmid models (Joyce et al., 2005; De Gelder et al., 2007;
Ponciano et al., 2007). Common for these studies is that they use discrete-time
models, which is a good approximation at low bacteria densities, but not at higher
densities where growth and conjugation is a continuous process. Joyce et al. (2005)
give a first and second order moment representation of their model which requires
a derivation of the means and variances. Thus, it is not easy to transfer the method
to other models. In the study by Ponciano et al. (2007) one of the model parame-
ters is implemented as a normal distributed random variable. This paper presents
a generic modelling framework first described by Kristensen et al. (2004a), which
is based on stochastic differential equations, SDE. The SDE is connected to data
through a state-space formulation consisting of continuous-time state equations
(the SDE) and discrete-time observation equations. The applied state-space ap-
proach is in fact a continuous time hidden Markov model. The state-space formu-
lation opens up for strong statistical tools for estimating model parameters and
for inference concerning the best model (Kristensen et al., 2004a). State-space
modelling has also been used in previous plasmid studies (De Gelder et al., 2004,
2007; Ponciano et al., 2007), but our approach differs by enabling continuous-time
state equations in combination with discrete-time observations. The state-space
model enables a simultaneous estimation of the growth and conjugation param-
eters, whereby the bacterial growth is accounted for when estimating the conju-
gation rate. This is an improvement from previous studies, where the donor and
recipient concentrations were introduced as a mean value of two measurements
taken over time (Knudsen et al., 1988; Sudarshana and Knudsen, 2006) or the ex-
periment was constructed such that bacterial growth could be neglected (Mac-
Donald et al., 1992).
In this article the SDE based state-space modelling framework is applied to an-
alyze data from an in vitro experiment for conjugation between two Enterococ-
cus faecium species growing in a batch exhaustable media. This experiment was
made in order to study the transferability of vancomycin resistance in E. faecium.
To describe the experimental system a conjugation model of bacteria growing in a
broth exhaustible media is introduced, which is an expansion of previous models.
Several authors (Levin and Stewart, 1980; Freter et al., 1983; Knudsen et al., 1988;
Clewlow et al., 1990; Top et al., 1992; Willms et al., 2006; Sudarshana and Knudsen,
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2006) have modelled conjugation events with the mass action model proposed by
Levin et al. (1979). The mass action model states that the appearance of transcon-
jugants is proportional to the product of the donor and recipient concentrations.
We will introduce a new expression for the conjugation rate in an exhaustible me-
dia for which the proportionality constant of the mass action model is substrate
dependent. An inference study is made to reduce the SDE model to its minimum
form. A further extension of the model is made to treat adequately a methodolog-
ical problem: the finding that conjugation continues on the agar plates selecting
for transconjugants. In that case the observed transconjugants are a combina-
tion of transconjugants stemming from the conjugation process in the flask and
conjugation occurring on the selective plates. The models with and without con-
jugation on the selective plates are compared in order to examine which model
best describes data.

D.2 Experimental methods

A conjugation experiment was made in order to study the transferability of van-
comycin resistance in Enterococcus faecium. As recipient the E. faecium reference
strain BM4105RF was used. This strain is resistant to rifampicin (MIC > 25 µg/ml)
and fusidic acid (MIC > 25 µg/ml) due to chromosomally located mutations. As
donor, the E. faecium A17sv1 (Hasman and Aarestrup, 2002) was used. This strain
is resistant to erythromycin (MIC > 16 µg/ml) and vancomycin (MIC > 32 µg/ml)
due to the presence of the erm(B) gene and Tn1546 transposon (carrying the vanA-
gene cluster), respectively, located on a conjugative plasmid.

The conjugation experiment was performed in liquid Brain-Heart Infusion (BHI)
media (Oxoid). Bacterial counting was performed on BHI agar plates supplemented
with the following antibiotics when appropriate: rifampicin 25 µg/ml, fusidic acid
(25 µg/ml), erythromycin (16 µg/ml) and vancomycin (32 µg/ml).

D.2.1 Conjugation experiment

Over night blood agar cultures of the two strains grown at 37◦C were inoculated
in BHI media supplemented with the appropriate antibiotics as described above.
From these, 100 µl of each culture was transferred to fresh tubes containing 10 ml
preheated BHI media without antibiotics supplementation. When these cultures
reached late exponential growth (OD500 of 0.3-0.5), the number of cells in each
culture was adjusted to the same amount and 1.5 ml of each was transferred to
100 ml preheated (37◦C) BHI media in an 250 ml Erlenmeyer flask. The flask was
placed in a shaking incubator (125 rpm) at 37◦C. Four 1 ml samples were taken
immediately after the cells were added (t=0) as well as 1.50, 2.80, 3.00, 3.40, 3.80,
4.00, 4.40, 4.80, 5.00, 5.50, 6.00, 6.30 and 7.00 hours after the cells were mixed.
One of the four 1 ml samples was used to measure the OD500 of the culture. The
remaining three samples were diluted 10-fold until 10−7. From here, 100 µl of
each dilution (where appropriate) was plated onto sets of plates containing BHI
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agar supplemented with either of the following: 1) recipient plates containing 25
µg/ml rifampicin + 25 µg/ml fusidic acid, 2) Donor plates containing 16 µg/ml
erythromycin + 32 µg/ml vancomycin, and 3) transconjugant plates containing 25
µg/ml rifampicin + 25 µg/ml fusidic acid +16 µg/ml erythromycin + 32 µg/ml van-
comycin. All plates were incubated 48 hours and the colony forming units, CFU,
were counted. From these numbers the bacterial concentration in the flask was
calculated.

D.2.2 Calculating bacterial concentration

The concentrations of the different bacteria populations in the flask can be de-
termined from the plate count by a generalized linear model approach, assuming
that the CFU count for each plate is Poisson distributed with an offset correspond-
ing to the given dilution. If, for any given observation time tk , N j k is the count
number j with dilution n j , then the expected CFU count E(N j k ) can be modelled
with the generalized linear model

E(N j k ) =λ j k = n j exp(βk ) , N j k ∼ Poisson(λ j k ) (D.1)

log(λ j k ) = log(n j )+βk . (D.2)

Fitting the model to data gives an estimate for the coefficient βk and hereby an
estimate of the bacterial concentration Yk = exp(βk ) in the flask at time, tk . The
variance σ2

Y ,k of the estimated concentration at time tk can be determined from
the variance of β as

σ2
Y ,k = Var[exp(βk )] = (exp(βk )Var[β])2 . (D.3)

The concentrations Yk calculated in this way are the observations to be used for
the modelling procedure described in the reminder of this article. The command
glmfit inMatlab is used for fitting the generalized linear model (see Appendix D.A).

D.3 Model formulation

The modelling framework used in this study is a continuous-discrete time state-
space model consisting of a continuous time state equation (the SDE) and a dis-
crete time observation equation. The model has the general form (Kristensen
et al., 2004b)

d X t = f (X t ,u t , t ,θ)d t +σ(u t , t ,θ)dωt , (D.4)

Y k = h(X k ,uk , tk ,θ)+ek , (D.5)

where (D.4) is the SDE and (D.5) is the observation equation. X t is a n-dimensional
vector of state variables and Y k is a l -dimensional vector of observations. The
observations are obtained at discrete times tk with the observation noise being
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ek ∈ N (0,Σk ). θ is a vector of unknown parameters and u is a vector of input vari-
ables, i.e. variables which can be observed and have an influence on the system
dynamics. The functions f and h can be linear as well as nonlinear functions.
{ωt } is a standard Wiener process representing sources of noise in the system. The
first part on the right-hand side of the SDE (D.4) is called the drift term and the
second part is called the diffusion term. The stochastic state-space model (D.4)-
(D.5) has several advantages compared to deterministic models. For instance, the
state-space approach separates the residual noise into system noise and observa-
tion noise, where the system noise is used to e.g. compensate for those biological
processes not explicitly described by the model. The deterministic model often
leads to autocorrelated residuals, which is not a problem with the SDE. Using the
SDE based model also paves the way for strong statistical tools to estimate model
parameters and make inferences.

D.3.1 The drift term - Model for conjugation

In this study we apply the state-space modelling framework on a model for con-
jugation. The first step of the modelling procedure is to formulate the drift part of
the SDE based on microbiological knowledge of the system. A sketch of the conju-
gation dynamics is given by the flow diagram in Figure D.1, where D is the donor, R
the recipient, and T the transconjugant concentrations. The flow diagram shows

Figure D.1: Flow diagram showing the structure of the conjugation models. The donor
D can by encounter of a recipient R transfer a plasmid coding for resistance to the recip-
ient. The recipient hereby is turned into a transconjugant T , which expresses the same
antibiotic resistances as both the donor and the recipient.

how recipients can be turned into transconjugants with a rate dependent on the
concentration of donor and recipient. In earlier studies (MacDonald et al., 1992;
Knudsen et al., 1988; Sudarshana and Knudsen, 2006) the substrate concentration
and/or donor and recipient concentrations were kept constant in the experiments
and were thus held constant in the model. In order to better approximate in vivo
situations, these constraints were not applied to our E. faecium conjugation ex-
periment, and thus all three populations as well as the substrate content must
be included as state variables in the model. The drift term corresponding to the
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model shown in Figure D.1 is

f (X t ,θ) =




µD (S)D
µR (S)R −γ(S)DR
µT (S)T +γ(S)DR

−η(µD (S)D +µR (S)R +µT (S)T )


 (D.6)

where µi (S) is the growth rate for the bacterial population i (D , R or T ), and
γ(S) is the conjugation rate. X = [D,R,T,S] are the model state variables and
θ = [vD , vR , vT ,κD ,κR ,κT ,γmax,κc ,η] are the parameters for the model. The sub-
strate, S, is simulated as a normalized variable with an initial value of 1. The
amount of substrate in the solution decreases as it is utilized for bacterial growth.
The parameter η is the amount of normalized substrate used for each cell division.
Bacterial growth continues until the substrate is exhausted, and the stationary
state has been reached. The growth rate can be modelled with the well known
Monod relation (Monod, 1949)

µi (S) = vi S

κi +S
,S ∈ [0,1] , (D.7)

where S is the substrate concentration, vi is the maximum growth rate and κi is
the substrate concentration when the growth rate is half of its maximum value.
Both parameters are specific for a given bacterial population i .
The conjugation event depends on the probability of an encounter between donor
and recipient. In the original mass action model the conjugation rate γ was in-
troduced as a constant parameter. Several authors (Knudsen et al., 1988; Andrup
et al., 1998; Andrup and Andersen, 1999; Ponciano et al., 2007) have discussed this
assumption. Levin et al. (1979) showed that the mass action model presents a
good estimation of the transconjugant population during exponential growth and
under chemostatic conditions, but the model fails to describe the occurrences of
transconjugants during the lag phase and at the onset of stationary phase. Mac-
Donald et al. (1992) suggested that the conjugation rate depends on the substrate
content and stated that conjugation can not occur without the presence of nutri-
tion. However, to our knowledge this substrate dependence has not before been
implemented in a mathematical model for conjugation. We suggest a nonlinear
substrate dependent expression to model the conjugation rate

γ(S) = γmaxS

κc +S
,S ∈ [0,1]. (D.8)

This expression is similar to the Michaelis-Menten equation for enzyme kinetics
and to the Monod relation. This expression is chosen as it forces the conjugation
rate to reach a maximum value γmax when the substrate concentration is abun-
dant, and it turns to zero as the substrate is depleted. Depending on the value of
κc the conjugation rate will decrease concurrent with or after the decrease in the
bacterial growth rate.
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Some assumptions are applied to keep the conjugation model simple. (i ) Transcon-
jugants can function as donors transferring a plasmid to a recipient, but this is not
described by the model. It is assumed reasonable to omit it for the E. faecium data
set used in this study, as the concentration of transconjugants is very low com-
pared to the donor concentration, and therefore does not contribute significantly
to conjugation. (i i ) The delay on 10-15 min that has been found (Andrup et al.,
1998) between two conjugation events for the same donor is assumed to be in-
significant. During the experiment there is always a large number of donors not
involved in a conjugation event and thus ready to start the conjugation by en-
counter of a recipient. Therefore the delay is disregarded. (i i i ) It is assumed that
the maximum growth rate of the transconjugants is either the same as the maxi-
mum growth rate for the recipient or smaller due to a fitness cost of the plasmid,
i.e. vT = vR (1−α), where α ∈ [0,1[. An inference study will be made to test if α= 0.

D.3.2 The diffusion term

Depending on the system which is modelled it can be adequate to implement ad-
ditive system noise, i.e. noise independent on the state variables, or multiplicative
system noise, i.e. where the noise depends on the state variables. The choice of
the system noise depends on assumption about the system modelled. Tier and
Floyd (1981) have described how different assumption of a biological process can
lead to either demographic stochasticity (where the variance is proportional to
the state variable) or environmental stochasticity (where the variance is propor-
tional to the state variable squared). In our system the noise is implemented as
multiplicative (environmental) noise, as the random fluctuations affect the whole
population and not only the growth process. For instance the mass action model
has shown to be good during exponential growth but not during lag-phase and
stationary phase. Therefore multiplicative noise can be implemented to account
for those processes not well described by the model. The method used for evalu-
ating the likelihood function (Kristensen et al., 2004b) requires that the diffusion
term is independent of the state variables. Therefore, instead of the state variables
D , R and T , the input vectors uD , uR and uT , which contains observations for the
three states, are inserted as a scaling for the standard deviation. The noise term is

σm
c =




σD uD 0 0 0
0 σR uR 0 0
0 0 σT uT 0

−ησD uD −ησR uR −ησT uT σS


 , (D.9)

where an increment in donor, recipient or transconjugant concentration lower the
substrate content in order to keep the mass balance, and σS is introduced in order
to ensure stability and is fixed to a small value.
An additive noise term σa

c is also introduced to compare with the multiplicative
noise. This is done, as it is not sure that the data set is sufficient to make a good
prediction of the system noise, and therefore a simplification of the noise structure
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can be an advantage. The additive noise term is

σa
c =




σD 0 0 0
0 σR 0 0
0 0 σT 0

−ησD −ησR −ησT σS


 . (D.10)

D.3.3 Observation equation

The observation equation relates observations to the state variables. In that way
the state variables do not need to be measured directly and it is not necessary to
have observations related to all state variables. In this study three of the state vari-
ables (donor, recipient and transconjugant) are observed. The concentration for
the donor, recipient and transconjugant has been calculated from the CFU count
as described in Section D.2.2. We will refer to this as the observed concentration.
The observation equation, when only conjugation in the broth media is consid-
ered, is




Y1

Y2

Y3




k

=



D
R
T




k

+ek , ek ∈ N (0,Σk ) . (D.11)

The model with this observation equation is called the Broth model.
In addition to plasmid transfer in the broth, we have found that conjugation can
occur on the transconjugant plates. This is a surprising result as antibiotics on the
agar plate are traditionally considered to stop the conjugation process. However,
we have performed several experiments (data not shown), which have revealed
that conjugation does also occur on the transconjugant plates. As the experiment
is made to measure conjugation in the broth media we wish to separate conjuga-
tion on the plate from that in the flask. The following set of ODEs is suggested to
model conjugation on the plate for each observation time k

dDpk

d t
=−λDpk , (D.12)

dRpk

d t
=−λRpk −γp Dpk Rpk , (D.13)

dTpk

d t
= γp Dpk Rpk . (D.14)

The initial values for the concentration of donor, Dpk , and recipient, Rpk , on the
plate correspond to the concentrations in the flask at the time for the observation.
Due to antibiotics on the plate, the donors and recipients die with a death rate λ
and even though substrate is present in abundant amounts it is assumed that the
donor and recipient bacteria can not grow. The recipients which receives a plas-
mid on the agar plate (and thus become a transconjugants) become resistant to all
the antibiotics present and can therefore grow and form colonies on the plate. The
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plate conjugation rate γp is assumed to be independent off the substrate content
as the substrate will not be depleted before the conjugation process stops.
The plate conjugation is modelled by finding the analytical solution for the ODE
and inserting the solution in the observation equation for transconjugants equa-
tion (D.11). As the number of recipients receiving a plasmid on the plate is small,
the last term in Eq. (D.13) can be disregarded. The equation to be solved is thus

dTpk

d t
= γp Dpk (t )Rpk (t ) , (D.15)

where

Dpk (t ) = Dk0 exp(−λt ) , (D.16)

Rpk (t ) = Rk0 exp(−λt ) . (D.17)

The solution is

Tpk = γp

2λ
Dk0Rk0(1−exp(−2λt )) , (D.18)

which for t →∞ is

Tpk = γp

2λ
Dk0Rk0 . (D.19)

The limit for t → ∞ can be considered since the CFU count is made after 12-
24 hours, whereafter conjugation on the plate is very unlikely to occur due to
death of the donor and recipients. Estimating both γp and λ would be an over-
parametrization of the model. Therefore γp /λ is replaced by the parameter γ′p .
Inserting the result into Eq. (D.11) leads to the observation equation for the so-
called Broth-plate model




Y1

Y2

Y3




k

=




D
R

T + γ′p
2 DR




k

+ek , ek ∈ N (0,Σ) . (D.20)

D.3.4 Observation noise

Three different covariance matrices for the observation equation are implemented
and compared

Additive:

Σa
k =




s2
1 0 0

0 s2
2 0

0 0 s2
3


 (D.21)

Proportional:

Σ
p
k =




s2
4σ

2
D,k 0 0

0 s2
5σ

2
R,k 0

0 0 s2
6σ

2
T,k


 (D.22)
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Additive+Proportional:

Σ
a,p
k =




s2
1 + s2

4σ
2
D,k 0 0

0 s2
2 + s2

5σ
2
R,k 0

0 0 s2
3 + s2

6σ
2
T,k


 (D.23)

Hence, the observations Y1, Y2 and Y3 are assumed to be uncorrelated in all cases.
The variancesσ2

R,k ,σ2
R,k andσ2

T,k are estimates from Eq. (D.3) at time tk . The most
simple noise form is the additive noise, but it is only reasonable, if the variance
of the observations is independent of the observations. If this is not the case one
alternative is to transform the data to stabilize the variance. In this article instead a
proportional noise term is suggested, which include the estimated variance of the
observations. Additionally a covariance matrix is considered with both additive
and proportional noise.

D.3.5 Statistical methods

The modelling procedure consists of several steps of parameter estimations and
goodness of fit statistics. First the Broth model and Broth-plate models are re-
duced separately, i.e. the likelihood function is optimized for different implemen-
tation of the system noise, observation noise and drift term. The best fit for the
Broth and Broth-plate models are found applying goodness of fit statistics based
on a ML approach. The inference study is made using a likelihood-ratio test and
Akaike information criterion, AIC. After reducing the Broth and Broth-plate mod-
els they are compared, again using a likelihood-ratio test and AIC. Following the
parameter estimation the models are simulated in Matlab, by implementing a nu-
merical Euler method as described by Higham (2001).

Parameter estimation

A ML estimation method is used to determine the SDE model parameters. The
parameters are found as those maximizing the likelihood function

L (θ;YN ) =
(

N∏
k=1

p(Y k |Yk−1,θ)

)
p(Y 0|θ) (D.24)

for the sequence of observations YN = [Y N , Y N−1, . . ., Y 1, Y 0]. The conditional
probability densities p are approximated by gaussian densities motivated by the
fact that the SDE (D.4) is driven by a Wiener process having gaussian increments,
i.e.

p(Y k |Yk−1,θ) =
exp

(
−1

2ε
T
k (Σy y

k|k−1)−1εk

)

√
det

(
Σ

y y
k|k−1

)(p
2π

)l
(D.25)
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where

Σ
y y
k|k−1 = Var[Y k |Yk−1,θ] , (D.26)

εk = Y k − Ŷ k|k−1 , and (D.27)

Ŷ k|k−1 = E[Y |Yk−1,θ] . (D.28)

The conditional mean Ŷ k|k−1 and covariance Σy y
k|k−1 in the likelihood function

(D.24) and (D.25) can be estimated recursively by means of the extended Kalman
filter (Kristensen et al., 2004b). In this study we use the software CTSM, from which
the parameter estimation, correlation of the parameter estimates and the log-
likelihood values are obtained. CTSM can be downloaded from the webpage:
http://www2.imm.dtu.dk/∼ctsm/, from where a user manual is also available. CTSM
is easy to use as it has a built in graphical user interface. Recently an implementa-
tion of the method has also been made in R (Klim et al., 2009).

Goodness of fit statistics

Nested models are compared with a likelihood ratio test statistics given by

−2logΛ= 2(`(θ)−`(θ0)) , (D.29)

where the test statistics −2logΛ is asymptotically χ2 distributed with degrees of
freedom equal to the difference in dimensions between the two models. `(θ) =
log(L (θ;YN )) and`(θ0) = log(L (θ0;YN )) are the log-likelihood values of the model
and the submodel, respectively. The inference study is also performed with AIC,
which is given by

AIC =−2`(θ)+2k , (D.30)

where k is the number of parameters in the model and `(θ) is the log-likelihood
value of the model. When comparing models the preferred model is the one with
the lowest AIC value.

D.4 Results and discussion

The conjugation experiment continued for 7 h, during which samples were taken
from the broth mixture approximately every 20 min and plated on selective agar
plates. The CFUs were counted, and the bacterial concentrations in the broth were
determined by a generalized linear model approach. The experimental results can
be seen in Figure D.2.

D.4.1 Inference study

Log-likelihood values for the Broth model and the Broth-plate model tested with
respect to the state noise, the observation noise, and finally the drift term is sum-
marized in Table D.1. When estimating the model parameters only biological plau-
sible parameter intervals are considered. The multiplicative system noise term
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Figure D.2: Data from the conjugation experiment with E. faecium growing in broth cul-
ture.

Table D.1: Log-likelihood values, p-values and AIC for different versions of the Broth
model and Broth-plate model. The nested models listed below each other are tested
with the likelihood-ratio test and the p-value for the comparison is listed in the line of
the smallest of the two models tested. The proportional and additive observation noise
structures are both tested against the proportional+additive noise term.

Broth model Broth-plate model
`(θ̂) p-value AIC `(θ̂) p-value AIC

System noise:

Multiplicative -299.04 - 638.08 -298.05 - 634.09
Additive -299.19 - 634.38 -298.05 - 634.09
Additive (σD =σR =σT ) -299.19 0.9999 630.38 -298.05 0.9999 630.09
Observation noise:
Proportional+additive -299.19 - 630.38 -298.05 - 630.09
Proportional -300.52 0.4467 627.04 -299.47 0.4162 626.94
Additive -312.67 0.0006 651.34 -311.43 0.0007 650.86
Drift term:
α= 0 -300.52 0.9969 625.04 -299.47 0.9695 624.94
κT = κR -300.59 0.7014 623.19 -299.53 0.7232 623.06

(D.9) is tested against additive system noise (D.10), and it is found that there is
no significant difference. We therefore continue the study for both the Broth and
Broth-plate model with additive system noise. It would be interesting to investi-
gate the system noise structure with a ML estimation based on the particle filter
(Ionides et al., 2006), for which the multiplicative noise can be implemented di-
rectly dependent on the state variable. We will leave this for a future study. The
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additive system noise is well modelled with σ = σD = σR = σT for both the Broth
and Broth-plate models.
Both the proportional observation noise and the additive observation noise can
be tested against the proportional+additive observation noise using a likelihood-
ratio test. The model with additive observation noise is seen to perform signif-
icantly worse than the proportional+additive noise model (p-value = 0.0006 and
p-value = 0.0007), whereas data is well modelled with proportional observation
noise (p-value = 0.4467 and p-value = 0.4162). All the observation noise covari-
ance matrices can be compared using AIC, from which it is also found that data
is best modelled with proportional observation noise. This result is as expected,
as the variance of the observations increases for higher CFU counts, which is best
captured by proportional noise.
With this noise structure the two hypothesis α= 0 and κT = κR are tested. We fail
to reject both hypothesis as the p-values are high (between 0.7014 and 0.9969).
The best description of data for each of the models is thus a model with addi-
tive system noise where the standard deviation is the same for D , R and T . The
observation noise should be modelled as proportional noise and growth for the
transconjugants and recipients can be modelled with the same set of parameters.
The reduced Broth and Broth-plate models can be compared with the likelihood-
ratio test, as they are nested models with the Broth-plate model containing one
additional parameter (γ′p ) compared to the Broth model. The test statistics for this
test is 2.12, which gives a p-value of 0.1451. This is not significant on ordinary level
and thus the smaller Broth model should be chosen. However, this conclusion is
based on very few datapoints, and it might change if more data were available.
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Figure D.3: The donor and recipient concentration over time as simulated by the Broth
and Broth-plate models plotted together with data values.
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Table D.2: The result of the ML parameter estimation for the Broth model and the Broth-
plate model.

Parameter Broth model (SD) Broth-plate model (SD)
vD [h−1] 1.678 (0.113) 1.787 (0.092)
vR = vT [h−1] 1.216 (0.028) 1.261 (0.035)
κD 0.052 (0.047) 0.110 (0.047)
κR = κT 0.0034 (0.0032) 0.0364 (0.0199)
η 1.128·10−6 (0.079 ·10−6) 1.112·10−6 (0.087·10−6)
κc 4.201·10−16 (3.966 ·10−16) 5.583·10−15 (8.811·10−15)
γmax [(CFU/µl)−1h−1] 4.913·10−12 (0.636·10−12) 2.008·10−12 (0.699·10−12)
γ′p [(CFU//µl)−1] 0 - 4.096·10−12 (1.630·10−12)
σ 4.010 ·10−10 (2.828 ·10−10) 1.128 ·10−11 (2.488 ·10−11)
σ4 13.815 (5.349) 14.862 (5.575)
σ5 3.507 (1.212) 3.572 (1.304)
σ6 3.150 (1.422) 3.184 (1.280)
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(b) Broth-plate model

Figure D.4: The transconjugant concentration plotted together with simulations of the
Broth and Broth-plate models. For the Broth model the mean of the simulated transcon-
jugant concentration and its confidence interval, as estimated by CTSM, is shown. For each
model one example of the SDE simulation made in Matlab is plotted.

D.4.2 Parameters

The result of the ML parameter estimation for the reduced Broth and Broth-plate
models is shown in Table D.2, and the results of simulations with these parameters
are plotted in Figure D.3 and D.4.

The conjugation rate is estimated to 2.008 · 10−12 (CFU/µl)−1h−1 for the Broth-
plate model and 4.913·10−12 (CFU/µl)−1h−1 for the Broth model. Thus, the choice
of model influence the estimate of the conjugation rate.
The value of κc (10−16−10−15) is low compared to the κ value for the growth of the
bacteria (10−3 − 10−2). This means that the mass action model γDR in this con-
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jugation experiment gives a good description of conjugation until the substrate
is depleted. As a consequence of the low κc value the model predicts conjuga-
tion to continue after the growth of the bacteria has reached stationary phase. By
comparing the simulations of the donor and recipient concentrations Figure D.3
with simulation of the transconjugant concentration Figure D.4 we see that new
transconjugants appear until approximately one hour after initiation of the sta-
tionary growth phase.
When calculating the bacterial concentration from the CFU count it was assumed
that the data were Poisson distributed, and thus that the variance equals the mean.
If this was indeed the case each of the parametersσ2

4,σ2
5, andσ2

6 should equal one.
In this case σ2

4 is around 14 and σ2
5 and σ2

6 are around 3. This means that the data
are over-dispersed, and this over-dispersion is accounted for by σ2

4, σ2
5, and σ2

6.
These parameters are in Poisson regression also refer red to as dispersion param-
eters. Several authors have found asymmetric likelihood profiles (Dennis et al.,
2006; Ionides et al., 2006; Ponciano et al., 2007; King et al., 2008) in state-space
models for dynamical biological systems (e.g. bird growth, plasmid persistence
and cholera pandemic). In order to check the likelihood structure for our con-
jugation model, the profile-likelihood is calculated for vD and γmax. The profile
likelihoods seen in Figure D.5 are calculated by optimizing the likelihood function
for fixed values of the parameter of interest. The 95% confidence interval (CI) plot-
ted is the region of parameter values for which the profile log-likelihood value is
larger than `(θ)max −c/2, where `(θ)max is the maximum log-likelihood value and
c is defined by Prob[χ2(1) < c] = 0.95. The profile likelihoods are indeed asymmet-
ric, which also in 3 out of 4 cases leads to asymmetric CIs. This is as expected due
to the small number of observations. Furthermore it is seen that the profile likeli-
hood CI is generally wider than the CI calculated by CTSM. However, this difference
is not very large and we therefore believe that it has no or only a limited influence
on the inference study performed. It should be noted that the observation noise
seems to increase when the profile likelihood value is decreasing. This indicates
that the observation noise (and not as expected the system noise) explains the dif-
ference between observations and the model. This is due to the few observations,
which makes it difficult to adequately separate observation and system noise as
discussed by Dennis et al. (2006).
In addition to the samples directly plated on the transconjugant plates, also 10
times concentrated samples were plated for the first six time points, where transcon-
jugant concentration in the flask was low. However, an expected 100 times in-
crease in conjugation on the plate compared to the non-concentrated sample was
not observed. The reason for this is not clear. The sample is centrifuged in or-
der to make a concentrated sample, this might change the ability for the donor
and recipient to conjugate on the plate which could be one explanation. Further
experiments should be performed to support the finding of conjugation under an-
tibiotic pressure on the selective agar plate.
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Figure D.5: Profile likelihood (full line and circles) and approximate 95% confidence in-
terval for vD and γmax. The cross marks the estimated parameter value. The dotted lines
in the top plots give the standard deviation s4.

D.5 Conclusions

The proposed SDE based state-space model is shown to successfully model conju-
gation in a broth exhaustible media. The suggested substrate dependent expres-
sion for the conjugation rate satisfactory model the conjugation process, which
stops as the substrate is depleted. The ML based framework for estimating model
parameters combined with likelihood-ratio tests and AIC for inference studies pro-
vides strong tools for model improvements. It is shown that the stochasticity of the
observations is best modelled as proportional noise.
The methodological problem of conjugation occurring on the transconjugant plates
motivates the development of the Broth-plate model, which includes plate conju-
gation in the observation equation, whereby the plate conjugation can be sepa-
rated from conjugation in the broth media. However, for the given data the Broth-
plate model does not perform significantly better than the Broth-model.
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D.A Generalized linear model estimation

For any given observation time tk , the concentration Yk in the flask of a given
bacterial population can be found from the following Matlab code:

% Create a vector N_k with the CFU counts at time t_k, e.g.
N_k = [94, 152, 8, 5, 1, 3];

% Create a vector n with the dilution for each of the
% observations N_k at time t_k, e.g

n = [0.1, 0.1, 0.01, 0.01, 0.001, 0.001];

x0 = ones(length(N_k),1);
X = log(n);

% Estimating the parameter, beta, the deviance of the
% estimation, dev, and the statistics for the test
% (including standard deviation).

[beta,dev,stat] = glmfit(x0,N_k,'poisson','link','log',...
'offset',X,'constant','off');

% The concentration at time t_k is
Y_k = exp(beta);

% The standard deviation at time t_k is
sigma_Yk = Y_k*stat.se;
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PAPER

E
Mathematical model for
competitive growth of P.
aeruginosa and mutator
strains in sub-MIC
concentration of
ciprofloxacin ‡

Abstract

Pseudomonas aeruginosa mutators characterized by a high mutation rate
are found with high frequencies in the lungs of cystic fibrosis patients, and
they are believed to play an important role for the evolution of resistance.
In this study a mathematical model is suggested to describe the dynam-
ics of competitive growth between P. aeruginosa wild-type and the mutM,
mutY, mutT and mutY-mutM mutators. When growing in sub-MIC concen-
trations of ciprofloxacin (0.1 µg/ml, MIC = 0.125-0.19), the mutator popula-
tion is found to gradually take up a larger part of the total population. This
is caused by the mutators ability to adapt to the stressed environment faster,
and thereby obtain a higher fitness. The model suggests that the changes
obtained by the mutators to achieve a higher fitness are not mutations, as
the rate of adapting to the environment is much higher than the estimated
mutation rate. The equilibrium concentration of mutators is found to be
dependent on the strength of the mutator as compared to the wild-type bac-
teria.

Pseudomonas aeruginosa causes very critical and complicated infections, for
which therapy is strongly dependent on successful antibiotic treatment. In cys-
tic fibrosis (CF) patients, chronic lung infection caused mainly by P. aeruginosa

‡Manuscript under preparation: K. R. Philipsen, L. E. Christiansen, L. F. Mandsberg, O. Ciofu,
H. Madsen. Mathematical model for competitive growth of P. aeruginosa and mutator strains in
sub-MIC concentration of ciprofloxacin
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is the major cause of death (Smith and Travis, 1996; Gibson et al., 2003; Lyczak
et al., 2002). Intensive antibiotic treatment has improved the survival and clinical
condition of CF patients, however, the development of resistance to antibiotics
makes the treatment difficult. Mutators (also called hypermutators) character-
ized by high mutation rates have been found with high frequencies in CF patients
(Oliver et al., 2000; Ciofu et al., 2005). Several studies have shown that the fre-
quency of mutators increase due to hitchhiking with adaptive mutations (Mena
et al., 2008; Giraud et al., 2001; Mao and Lane, 1997; Miller and Suthar, 1999).
These findings have been supported by several mathematical models (Tenaillon
and Toupance, 1999; Travis and Travis, 2002; Tanaka et al., 2003; Travis and Travis,
2004). Thus, mutators are believed to play an important role for the evolution of
resistance (Oliver et al., 2000; Maciá et al., 2006). Recently Ferroni et al. (2009) have
shown that bacteria strains from CF patients with a higher mutation rate increase
the rate of acquisition of new antibiotic resistance. In addition, Mena et al. (2008)
have found that mutators also play an important role in the evolution and adap-
tation of the bacteria population during chronic respiratory infections.
Different studies have been performed to investigate the fitness of mutator bac-
teria relative to the wild-type (non-mutator) strains. In an experiment with mice,
Maciá et al. (2006) found a higher concentration of the mutS mutator bacteria than
the wild-type bacteria after treatment with ciprofloxacin. Ciprofloxacin is a com-
monly used antibiotic for the initial treatment of P. aeruginosa infections in CF
patients. Another competition experiment between wild-type P. aeruginosa and
the laboratory mutS mutator has been performed by Montanari et al. (2007). After
24 hours of competing growth they obtained a significantly higher wild-type con-
centration than mutator concentration. However, this result was influenced by a
lower growth rate of the mutator bacteria, giving it a disadvantage in the competi-
tion with the wild-type.
In recent studies, laboratory P. aeruginosa mutT, mutY, mutM and mutY-mutM
mutants have been constructed and characterized (Mandsberg et al., 2009, 2010).
As opposed to the strains used by Montanari et al. (2007) the growth rates of these
strains have been found to be equal when growing in Luria-Bertani (LB) media
(Philipsen et al., 2008). A competition experiment between PAO1 and the mutY-
mutM mutant in LB and LB with sub-MIC concentration of ciprofloxacin has re-
cently been described in Mandsberg et al. (2010). The study showed that the mu-
tator strains take over the population after three days of competing growth in sub-
MIC concentrations of ciprofloxacin.
Several earlier simulation studies have been performed to theoretically investi-
gate the frequency of mutator bacteria in a competing environment (?Tenaillon
and Toupance, 1999; Tanaka et al., 2003; Travis and Travis, 2002, 2004; Pal et al.,
2007). These studies all uses discrete time simulation and are either determinis-
tic (Travis and Travis, 2002, 2004) or stochastic with Poisson sampling or Binomial
Sampling (?Tenaillon and Toupance, 1999; Tanaka et al., 2003; Pal et al., 2007). To
our knowledge we are the first to apply a continuous time stochastic model in the
form of stochastic differential equations to simulate competitive growth between

96



E.1. Materials and methods

a mutator and wild-type strains, and to estimate the model parameters based on
experimental data. The mathematical model will be developed from the experi-
mental results and subsequently used to discuss the dynamics of the system.

E.1 Materials and methods

E.1.1 Growth and competition experiment

The strains included in this study have been described in previous articles (Mands-
berg et al., 2009, 2010). The reference strain used is PAO1 from Stover et al. (2000).
Competition experiments were carried out in a bioscreen (Labsystem C, Bie og
Berntsen) 2x10 wells with LB-media or with LB-media with 0.1µg/ml ciprofloxacin
(MIC = 0.125-0.19). We attempted to start with a ratio of 1:1 for PAO1 and each of
the four mutator strains mutT, mutY, mutM, mutY-mutM in each well. Growth of
PAO1, and each of the four mutator strains mutT, mutY, mutM mutY-mutM were
measured in 2x1 wells with Luria-Bertani (LB) media and with LB-media with 0.1
µg/ml ciprofloxacin simultaneously with the competition experiment. The inocu-
lum were cultures diluted to 10−2 then adjusted to approx OD600=0.035 and then
further diluted 1000 times. 140 µl of each diluted culture was mixed in microtit-
terwells and the growth was carried out at 37◦C, continuously shaking and taking
optical density (OD) measurements every 30 min for 24 hours. The start colony
forming units (CFU) was determined on LB plates. For five consecutive days (start
day 0, end day 4) the up grown culture was diluted 1000 times and transferred to
a new microtitterplate for exponential growth throughout the experiment. Each
day the up grown cultures from the competition experiment were serial diluted
and plated on LB agar and on LB agar supplemented with 30 µg/ml gentamycin.
The mutator strains were not inhibited by this concentration of gentamycin and
the actual CFU of PAO1 and the mutators were calculated; the mutators on gen-
tamycin plates and PAO1 and the mutators on LB plates. A simple subtraction
then gave the CFU for PAO1. The ratio of PAO1:mutM, PAO1:mutY, PAO1:mutT
and PAO1:mutY-mutM were followed over the five days.

E.1.2 Conversion of OD measurements to cell concentration

The mean media contribution was subtracted from the OD measurements to ob-
tain only the bacterial growth. Subsequently, the OD measurements were con-
verted to cell concentration by applying the exponential calibration curve

Conc =− 1

b
log(1− OD

a
) , (E.1)

introduced by Philipsen et al. (2010b) and using the constants a and b as estimated
in that study.
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Table E.1: Mutation rates to ciprofloxacin estimated by a fluctuation experiment and the
related mutator strength, i.e. the factor by which the mutation rate for the mutator strain
is increased in comparison to the wild-type bacteria.

Bacteria Mutation rate mutator strength
[per cell per generation]

PAO1 3.153 ·10−9
mutM mutant 4.781 ·10−9 1.5
mutT mutant 4.281 ·10−8 13.6
mutY mutant 9.845 ·10−8 31.2
mutM-mutY mutant 2.498 ·10−7 79.2

E.1.3 Modelling framework

A Stochastic Differential Equation (SDE) framework (Kristensen et al., 2004; Philipsen
et al., 2010a) was used to model the bacteria dynamics. The use of SDEs enables
several strong tools for parameter estimation and model development (Kristensen
et al., 2004; Philipsen et al., 2010c). The software CTSM (www.imm.dtu.dk/∼ctsm)
was used to estimate the model parameters and obtain information about the
standard deviation of the estimated parameters.

E.2 Results

E.2.1 Experimental results

Prior to the experiment we ensured that PAO1 and the mutators have equal growth
rates in the initial exponential growth phase in LB (p=0.607) (Philipsen et al., 2008)
and LB with ciprofloxacin (p=0.050), using a method described in Philipsen et al.
(2008). Furthermore the mutation rates were calculated based on a fluctuation ex-
periment as described in Mandsberg et al. (2009). The mutation rate, µ, for each
bacteria strain is given in Table E.1. As expected, the PAO1 mutM-mutY mutant is
the strongest mutator with a mutator strength of 79.2, e.g. a mutation rate which
is 79.2 times higher than the rate for PAO1. The mutation rate for PAO1 is 10 times
lower than the rate estimated by Maciá et al. (2006), but in accordance with previ-
ously estimated mutation rates to rifampicin (Mandsberg et al., 2009).
From the experiment with growth of single bacteria strains (Figure E.1) it is seen

that the sub-MIC concentration of ciprofloxacin results in a longer lag phase and
a longer diauxic lag as compared to the growth in LB for all the bacteria strains.
Figure E.2 shows the results of the competition experiment for growth of PAO1
and each of the four mutator strains. As expected, the pattern of the growth is very
similar to that seen for the growth of each bacterial strain individually.
The bacterial concentration in the end of each day, as estimated from OD mea-
surements (dotted lines) and the plate counts (triangles), is very similar for growth
in LB. This shows that the exponential calibration curve makes a good translation
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Figure E.1: The concentration of each of the five bacteria strains when growing in LB (dot-
ted line), and LB with ciprofloxacin (full line). On day two the lamp in the bioscreen did
not work, and there are therefore no measurements for this day.

from the OD measurements to bacterial concentrations. For growth in LB with
ciprofloxacin, however, the plate counts are consistently smaller than the corre-
sponding OD measurements. The plate counts and OD measurements are only
the same for mutY-mutM :PAO1 on day 4. We believe that the difference observed
for all the other days is due to filament structure in the bacterial populations,
which can lead to a lower CFU count (Blázquez et al., 2006). The mathematical
model will therefore be built on the result of the OD measurements.

From plate counts, the percentage of mutator bacteria in the population is cal-
culated for each day (Figure E.3). For the mutY-mutM :PAO1 competition experi-
ment, the mutator is seen to gradually overtake the population when growing in
LB with ciprofloxacin, whereas the ratio between mutator and PAO1 stays con-
stant for all days for growth in LB. This result was also reported by Mandsberg
et al. (2010). For the mutM :PAO1 competition experiment there are indications
that the mutator bacteria is present in higher concentrations than PAO1 on day 3
and 4. There is no clear increase in the mutator percentage when growing in LB
with ciprofloxacin for the other experiments.

E.2.2 Mathematical model

A mathematical model is developed based on the experimental results to describe
the growth on LB and LB with ciprofloxacin. The growth of wild-type and mutator
PAO1 on LB media and LB with ciprofloxacin is diauxic as seen from Figure E.1.
This dynamic can be described using the so-called optimal (or cybernetic) model
(Doshi et al., 1997; Kompala et al., 1984; Bajpai-Dikshit et al., 2003). We use a
growth rate proportional to the substrate content as proposed by Philipsen et al.
(2010c). The bacteria is assumed to first grow on substrate S1 which is facilitated
by enzyme E1 and subsequently on substrate S2 induced by enzyme E2. The tran-
sition between the substrates is regulated by the fraction α,

α= (1+k)S2
1

k +S2
1

, (E.2)
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Figure E.2: The total concentration of PAO1 and each of the four mutator strains mutM,
muT, mutY and mutYM when growing in LB (dotted line) and LB with ciprofloxacin (full
line). The triangles and circles mark the total bacterial concentration for growth in LB and
LB with ciprofloxacin, respectively, as measured by plate counts in the end of each day.
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Figure E.3: The percentage of the bacterial population which consists of mutators for the
initial population (Day 0) and each of the following four days of the experiment.

where k determines for which level of S1 the activation of enzyme E2 begins and
the term (1+k) ensures thatα changes from 1 (for which only substrate S1 is used)
to 0 (for which substrate S2 is fully utilized). S1 and S2 are implemented as normal-
ized states with initial values of 1. The diauxic lag is longer for growth in LB with
ciprofloxacin than for growth in LB, which means that the activation of the second
enzyme takes longer when ciprofloxacin is present. This effect can be captured in
the model by a difference in the value of k under the two growth conditions.
There is a longer lag phase on day one for growth in both LB and LB with ciprofloxacin
as compared to the subsequent days. This indicates that the bacteria need to adapt
to the new environment before growth can begin. This effect can be modelled by
including an additional adapted state, A, to the model and assuming that a bacte-
ria first can start growing when it becomes adapted. For growth in LB the transfer
to the adapted population is only modelled on day 1. On the subsequent days the
bacteria can be assumed to be adapted from the beginning of the growth. Using
SDEs the model for growth in LB is described by the following set of equations

dB =−γBd t +σB dω

d A = [γB + (v1S1E1 + (1−α)v2S2E2)A]d t +uAσAdω

dE1 = [(v1 +β)S1 − v1S1E1E1 −βE1]d t +σE dω

dE2 = [(1−α)[(v2 +β)S2 − v2S2E2E2]−βE2]d t +σE dω

dS1 =−η1v1S1E1 Ad t +σSdω

dS2 =−(1−α)η2v2S2E2 Ad t +σSdω

(E.3)
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The first term in each equation is called the drift term, and the second term is
called the diffusion term. The drift term describes the known dynamics of the sys-
tem. For example the bacteria, B , can become adapted with the rate γ, and the
adapted population grows on substrate S1 with the rate v1S1E1 and on substrate
S2 with the rate (1−α)v2S2E2. The diffusion term accounts for noise in the system
and for those biological mechanisms not included in the model. The parameters
in the drift term are the growth rates, v1 and v2, the yield factors, 1/η1 and 1/η2,
the rate γ by which the bacteria adapt to the new environment and the rate β by
which the enzyme is removed from the population. In the diffusion term, dω is
the increments of a standard Wiener process and σE , σS and σB are the standard
deviation for the increments of the Wiener process. For the adapted state, A, a
multiplicative system noise is implemented by including an input uA which is the
observed bacterial concentration. The growth parameters are the same for all bac-
teria strains and they are estimated based on the growth data for day 1. The yield
factors seem to change over time, and new values for η1 and η2 are therefore esti-
mated from the growth data from day 3, while keeping the remaining parameters
fixed.
When the bacteria grow in ciprofloxacin we assume that they can become more
fit to the environment by adaptation. We will call this new population resistant,
R, even though it will be clear later that the rate of "mutation" to the "resistant"
population is much higher than the mutation rate listed in Figure E.1. Indexing
the parameters for the resistant population with an ∗ the growth model for growth
in LB with ciprofloxacin becomes

dB =−γBd t +σB dω

d A = [γB + (1−µ)(v1S1E1 + (1−α)v2S2E2)A]d t +uAσAdω

dR = [µ(v1S1E1 + (1−α)v2S2E2)A+
(v∗

1 S1E∗
1 + (1−α∗)v∗

2 S2E∗
2 )R]d t +uRσR dω

dE1 = [(v1 +β)S1 − v1S1E1E1 −βE1]d t +σE dω

dE2 = [(1−α)[(v2 +β)S2 − v2S2E2E2]−βE2]d t +σE dω

dE∗
1 = [(v∗

1 +β∗)S1 − v∗
1 S1E∗

1 E∗
1 −β∗E∗

1 ]d t +σE dω

dE∗
2 = [(1−α∗)[(v∗

2 +β∗)S2 − v∗
2 S2E∗

2 E∗
2 ]−β∗E∗

2 ]d t +σE dω

dS1 = [−η1v1S1E1 A−η∗1 v∗
1 S1E∗

1 R]d t +σSdω

dS2 = [−(1−α)η2v2S2E2 A− (1−α∗)η∗2 v∗
2 S2E∗

2 R]d t +σSdω

(E.4)

where

α∗ = (1+k∗)S2
1

k∗+S2
1

. (E.5)

The parameter estimation for the growth in LB with ciprofloxacin is carried out in
three steps. 1) First the model without resistant bacteria is considered (similar to
the model for growth in LB), and the parameters are estimated from the data for
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day 1 (Figure E.1 left). This is possible as the number of resistant bacteria arising
during the first day can be assumed to be very small. The rate of adaptation for the
non-resistant population from day 2 is different than for the first day. This change
in rate is estimated from the growth data of PAO1 for day 3 (as the number of re-
sistant bacteria for this population can be assumed to be very low) while keeping
all other rates fixed. 2) Second, the growth parameters for the resistant population
are estimated. From the competition experiment we know that the mutY-mutM
mutator has taken over the population at day 4 (Figure E.3). It can therefore be
assumed that the mutY-mutM population at day 4 consists only of resistant bac-
teria. The growth parameters for the resistant bacteria can thus be estimated from
the growth curve of mutY-mutM on day 4 (Figure E.1 right) by using the model for
growth in LB and replacing the adapted population with a resistant population.
3) Finally the mutation rate should be estimated. The mutation rate for mutY-
mutM is fitted by eye, such that the simulation of the growth model in LB with
ciprofloxacin follows the result from the growth experiment. The mutation rate of
PAO1 and each of the three other mutator strains are adjusted accordingly to the
difference between the mutY-mutM mutation rate estimated by the model and the
rates listen in Table E.1.
In the competition experiment, PAO1 is competing with one of the mutator strains
for the same substrates. Likewise in the competition model, each of the equations
for the three bacteria populations (bacteria, adapted bacteria, and resistant bac-
teria) is repeated twice. The only parameters differing between PAO1 and each of
the four mutators are the mutation rates.

E.2.3 Estimated model parameters

The model parameters shown in Table E.2 are estimated from the growth exper-
iment as described in the previous section. It is found that β = 0 (p = 0.67), and
the model has been adjusted accordingly. The mutation rates are estimated to be
8000 times higher than those listed in Table E.1, which indicates that it is adapta-
tion rather than mutation leading to improved fitness. The result of a simulation
of the model is shown in Figure E.4, where the simulations (dotted lines) are plot-
ted together with the observed concentrations (full lines). It is seen that the model
captures the dynamics of the growth very well.

E.2.4 Simulation of the competition experiment

The competition model is simulated using the parameter values listed in Table E.2
and the results are plotted in Figure E.5. The Figure shows the total concentration,
the wild-type concentration and the mutator concentration as predicted from 10
simulations with the model. The model is seen to capture well the change in to-
tal concentration for the competition experiments, even though the model pa-
rameters were estimated from the growth experiment and not the competition
experiment. The mutator percentage as calculated from the model is shown in
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Table E.2: Parameters for growth in LB and LB with ciprofloxacin. The parameters η1 and
η2 are estimated separately for day 1-2 and for day 3-4 (values separated by comma) for
growth in LB. For the non-resistant bacteria growing in LB with ciprofloxacin γ is esti-
mated for day 1 and for day 2-4 (values separated by comma

.
LB LB with ciprofloxacin

non-resistant resistant
v1 1.56 (0.03) 1.13 (0.02) 1.30 (0.01)
v2 0.24 (0.01) 0.22 (0.01) 0.15 (0.02)
η1 x 1010 5.4 (0.12), 4.4 (0.51) 6.8 (0.85) 4.1 (1.0)
η2 x 1010 2.2 (0.51), 2.4 (0.82) 3.7 (0.83) 2.2 (0.27)
k 1.30 (2.34) 0.001 (0.0006) 0.137 (0.397)
γ 0.008 (0.001) 0.002 (0.0006), 0.662 (0.063) -
µ (mutY-mutM) - - 2 ·10−3
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Figure E.4: Simulation results for the growth of each of the five strains in LB (top dotted
lines in each subplot), and LB with ciprofloxacin (bottom dotted lines in each subplot)
plotted together with data (full line).
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Figure E.5: Simulation results and data values for the total bacterial concentration of
when in LB with ciprofloxacin. For the simulation model the concentration of PAO1 and
each of the four mutator bacteria are also plotted.
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Figure E.6: The percentage of the bacterial population which consists of mutators for the
initial population (Day 0) and for each of the following four days of the experiment as
estimated from 10 simulations with the competition model.

Figure E.6.

E.3 Discussion

Most information in this study has been gained from the mutY-mutM mutant, as
the competition experiment showed that the mutY-mutM mutator population will
take over the whole population, when growing under sub-MIC concentrations of
ciprofloxacin. The stochastic model captures the dynamics of the competition be-
tween PAO1 and mutY-mutM well. From Figure E.3 it is seen that the population
consists of a gradually higher concentration of mutY-mutM. The same result is ob-
tained from the model as seen in Figure E.6. This is not a coincidence, but is based
on a decision on how to estimate the model parameters. Initially we believed that
the mutator population would obtain a higher fitness than the wild-type due to a
mutation leading to resistance. Therefore the mutation rate was kept fixed on the
value estimated by the fluctuation experiment (Figure E.1), and the growth param-
eters were altered to obtain the best fit to data. This resulted in a higher growth
rate than for growth in LB, which seems very unlikely. But more importantly a low
mutation rate combined with a high growth rate would result in a sudden increase
in the mutator fraction of the population, and not the slow increase observed in
the experiment. Furthermore, with a low mutation rate the occurrence of the first
resistant bacteria would be a stochastic event, and we would therefore expect a
higher variability between the wells in the experiments, as was actually seen. Thus,

106



E.4. Conclusion

10
0

10
1

10
20.4

0.5

0.6

0.7

0.8

0.9

1

mutator strength

m
ax

 m
u

ta
to

r 
fr

eq
u

en
cy

Figure E.7: The equilibrium frequency of a mutator bacteria when growing in competition
with PAO1 for different values of the mutator strength. The equilibrium value is the mean
of 50 simulations of the model, with the parameters given in Table E.2.

it can be inferred from the model and the data available that it is not a mutation
but rather some kind of adaptation that leads to a higher fitness of the mutator
when growing in LB with ciprofloxacin. The mutator strains are faster to obtain
the necessary adaptations, and thus will outgrow the wild-type strain.
To further examine the relation between mutator strength and competitive growth
between a mutator and PAO1, a simulation study was made. A competition exper-
iment was simulated with an initial relation between wild-type and mutator of 1:1,
and different values of the mutation strength. The mutation rate of PAO1 was fixed
at the value estimated by the model (2.5·10−5 per cell per generation). The equilib-
rium frequency of the mutator bacteria depends on the mutator strength as seen
in Figure E.7. The equilibrium frequency was reached after 6 to 9 days depending
on the mutator strength. The higher the mutation rate of the mutator the faster
the equilibrium is reached.

E.4 Conclusion

A mathematical model, based on stochastic differential equations, for competing
growth between PAO1 and each of the four mutator strains mutM, mutY, mutT,
and mutY-mutM has been developed. The model captures the growth dynam-
ics observed in the experiments well. The mutator population is found to gradu-
ally take up a larger percentage of the total population when growing in sub-MIC
concentrations of ciprofloxacin. Our model indicates that this is due to the faster
development of adaptations in the mutator bacteria resulting in a higher fitness.
Furthermore, it is found by simulations with the stochastic model that the equi-
librium frequency of mutators depend on the mutator strength.
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PAPER

F
Mutators, a way to bypass
classical Darwinism ‡

Abstract

Evolution of antibiotic resistance and other novel bacterial phenotypes
continues to happen at such a high rate that it is difficult to explain by classi-
cal Darwinian evolution. In Darwinian evolution new mutations must have
an advantage compared to the parent type and grow in sufficient numbers to
make it plausible that new mutations occur and become established. How-
ever, nature also seems to operate an alternative route. Thus, mutators have
been suggested as important for increasing bacterial evolution (Oliver et al.,
2000; Travis and Travis, 2004; Miller et al., 2002; Denamur and Matic, 2006),
due to their high mutation rates and increasing frequencies (Oliver et al.,
2000; Mao and Lane, 1997), but their role is not well understood. Here we
introduce and model a new hypothesis which can help to explain the advan-
tage of mutator sub-populations and rapid bacterial evolution. Simulation
studies show how mutator populations can function as "genetic work sta-
tions", where multiple mutations occur and are subsequently transmitted to
the parent (wild-type) population by horizontal gene transfer. Thus, mutator
populations can be seen as a way to bypass traditional Darwinian evolution.

In classical Darwinism, evolution of new characters is a sequence of single
events that each become established in the population before new mutations arise
(Darwin, 1859 (reprinted 1998). In bacteria the rapid evolution in antibiotic resis-
tance has been an intriguing example of evolution in real time. The evolution of
antibiotic resistance in bacterial populations is also an increasing problem which
limits the options for treatment of bacterial infections in humans and animals.
Even though it has been possible to identify putative evolutionary pathways when
studying TEM genes (Weinreich et al., 2006; Barlow and Hall, 2002), not all the

‡Submitted as: K. R. Philipsen, L. E. Christiansen, H. Madsen, F. M. Aarestrup, 2009. Mutators, a
way to bypass classical Darwinism. Submitted to Nature.
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necessary intermediate genes have been observed in nature, nor has it been pos-
sible to reach all mutations studied (Barlow and Hall, 2002). For CTX-M enzymes
preliminary studies have indicated that double mutants are needed for combined
ceftazidime and cefotaxime resistance, while single mutants have reduced suscep-
tibility to one or other of the cephalosporins (Novais et al., 2008).

It is generally accepted that several of the genes conferring antibiotic resistance in
clinical bacterial isolates have their origin in the antibiotic-producing organisms.
However, the evolution from the vanA homolog in the glycopeptides producing
organism Amycolopsis orientalis to the vanA gene located on Tn1546 would re-
quire 480 single mutations each having a selective advantage above the previous
in a gene 1,048 bp in length.

In recent decades increased attention has been given to mutator bacteria (Sniegowski
and Gerrish, 2000; de Visser, 2002), due to the finding of an increased frequency
of mutators in clinical (Oliver et al., 2000) and experimental (Mao and Lane, 1997)
bacterial populations. Mutators are present in bacterial populations in natural
and clinical environments with frequencies from 10−5 (Tanaka et al., 2003), up
to 0.01 (Gross and Siegel, 1981; LeClerc et al., 1996) for pathogenic isolates and
as high as 0.30 in cystic fibrosis patients (Oliver et al., 2000). Classical theory
of evolution concludes that in a stable environment mutation rates will remain
low (Tanaka et al., 2003). However, experimental studies (Mao and Lane, 1997;
Miller and Suthar, 1999) have shown that the frequency of mutators increases if
mutations are necessary to overcome a change in the environment. These find-
ings have been supported by several mathematical models and simulation studies
with a single shift (Tenaillon and Toupance, 1999) or constantly fluctuating en-
vironments (Travis and Travis, 2004; Tanaka et al., 2003; Travis and Travis, 2002)
between two possible states. These studies describe the short-term fate of muta-
tors hitch-hiking to higher frequencies (de Visser, 2002).

The role and fate of mutators is not well understood (de Visser, 2002), but different
hypothesis especially related to development of antibiotic resistance have been
put forward as illustrated in Figure F.1. These models are generally considered for
mutations to all other phenotypes. The basic model (Figure F.1a) suggests that be-
ing a mutator is irreversible, and that it is acceptable for a population to have a
high frequency of even negative mutations and thereby a lower fitness, because
this increases the chance for the population to survive in environments with high
exposure to ,e.g., antibiotics. This has been exemplified by Pseudomonas aerugi-
nosa infections in cystic fibrosis patients (Oliver et al., 2000). A second model (Fig-
ure F.1b) suggests that after obtaining the favourable mutation the mutator geno-
type will revert to the wild-type allele by mutation, hereby decreasing the mutation
rate of the population again (Taddei et al., 1997). Several phylogenetic studies (De-
namur and Lecointre, 2000; Brown et al., 2001) argue that instead of reverting to a
low mutation rate by mutation, the bacteria can reacquire the mismatched gene

112



a, A wild-type isolate evolves into a mutator
phenotype with an increased ratio of muta-
tions to resistance (Oliver et al., 2000). The
increased mutation rate will however, also
increase the number of letal mutations.

b, The mutator genotype is obtained by mu-
tation in an anti-mutator gene such as a
mismatch repair gene. The resistant mu-
tator strain can re-establish a low mutation
rate by reversion (Taddei et al., 1997).

c The mismatch repair gene is lost causing
the wild-type bacteria to become a muta-
tor. The mismatch repair gene can be reac-
quired by the resistant mutator by horizon-
tal gene transfer (Denamur and Lecointre,
2000; Brown et al., 2001).

d, The resistance obtained by the mutator
genotype is located on a transferrable plas-
mid and can therefore be transferred to the
wild-type bacteria by horizontal gene trans-
fer [this study].

Figure F.1: Possible pathways of bacterial evolution to antibiotic resistance by mutator
populations.
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Figure F.2: The wild-type bacteria can acquire mutations via two routes. Either through
mutations in the wild-type population, or via the mutator route by receiving a plasmid
with mutations from the mutator population.

by horizontal transfer (Figure F.1c). In this study we suggest and discuss another
possible evolutionary path (Figure F.1d). Our hypothesis states that the wild-type
population will be the lasting population, which obtains the genes conferring re-
sistance by horizontal gene transfer from the mutator population. It will therefore
be an advantage for the wild-type population to continuously send out new "ge-
netic working stations" in the form of mutator sub-populations. This would also
explain the high frequency of mutators observed in wild-type populations.

We performed a simulation study with up to two consecutive mutations to ex-
amine the possibility of acquiring resistance via horizontal transfer from a mu-
tator population (mutator route) as opposed to obtaining resistance from muta-
tions in the wild-type population (wild-type route). The model (Figure F.2) was
simulated such that it resembles a possible in vivo situation, where bacteria grow
exponentially in an environment without antibiotics until a maximum popula-
tion size is reached and dilution initiated (see Methods for details). The parame-
ter values used for the simulation study were based on existing literature for Es-
cherichia coli (see Methods for the values). Since the bacteria were simulated
to grow in a competing environment, the mutator population with reduced fit-
ness eventually disappeared from the population as seen in Figure F.3 for one
simulation of the model. The simulation was run for five days with a total max-
imum population of 1012 bacteria, initial mutator frequency of 0.01, and a muta-
tor strength, m, of 1,000. The maximum number of single mutations per genera-
tion was approximately 1 ·10−8 ·9.9 ·1011 = 9,900 for the wild-type population and
1,000 ·1 ·10−8 ·8.2 ·109 = 82,000 for the mutator population. The expected maxi-
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Figure F.3: A simulated time series for the evolution of resistance by mutation and con-
jugation. The model illustrated in Figure F.2 was simulated with up to two mutations, a
mutator strength of 1,000 and a conjugation rate of 0.01. The number of wild-type bacteria
with two mutations plotted is the sum of bacteria obtained by two mutations in the wild-
type population, and bacteria obtained by conjugation from the mutator population with
two mutations. The wild-type bacteria with one mutation were obtained only by mutation
in the wild-type population.

mum number of two consecutive mutations per generation was 1 ·10−8 ·1.4 ·105 =
0.0014 for the wild-type population and 1,000 ·1 ·10−8 ·5.8 ·105 = 5.8 for the mu-
tator population. However, due to the lower fitness of the mutator bacteria there
was only a short time available to obtain the two mutations and transfer them to
the wild-type.

Not surprisingly the wild-type route was dominant when considering just one
mutation. The number of wild-type bacteria with one mutation that comes via
the wild-type route is approximately a factor of 2 higher than via the mutator route
for the simulation in Figure F.3. The number of mutations and conjugation events
leading to wild-type bacteria with a given number N of consecutive mutations can
be assumed to be Poisson distributed, and the wild-type and mutator routes can
therefore be compared by comparing the Poisson parameter for the distributions
of mutation and conjugation events. A fit was made to the Poisson distribution
obtained for two consecutive mutations from 1,000 simulations. The Poisson pa-
rameter was estimated to 0.08 (95% CI = [0.06,0.09]) for the wild-type route and
19.20 (95% CI = [18.93, 19.47]) for the route via the mutator population. Thus,
the chance of acquiring two mutations via the mutator subpopulation was signif-
icantly higher than via the wild-type route.
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Whether the wild-type or mutator route dominates depends on the initial mu-
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Figure F.4: Comparison of the wild-type route and mutator route. The set of values for
which the mutator route and wild-type route are equally dominant were found by calcu-
lating the expected number of bacteria resulting from each route (full line) and by com-
paring the Poisson parameter of the simulation study (dotted line) run for five days. a,
For one to five mutations and a conjugation rate of c = 0.01 h−1. The symbols show the
parameter values used in experimental studies (filled symbol) or simulation studies (open
symbol) for a given (typically equilibrium) frequency of mutators. The studies referred to
are: + (This study Figure F.3), 4 (Oliver et al., 2000), 5 (LeClerc et al., 1996), ¤ (Tenaillon
and Toupance, 1999), © (Travis and Travis, 2002), 3 (Taddei et al., 1997), and ä (Boe et al.,
2000). b, For two mutations and different conjugation rates. c, The probability indicated
by colour of at least one wild-type bacteria with two mutations obtained by conjugation
from the mutator population for a conjugation rate of 0.01 h−1 and simulations for five
days. The probability of mutation via the wild-type route is constant (at 0.07), whereas the
probability of transfer via the mutator route is seen to increase with increasing mutator
strength and mutator frequency.

tator frequency, the mutator strength, the conjugation rate, and the number of
consecutive mutations. One approach to relate the two routes is to compare the
Poisson distributions obtained from simulations. If the Poisson parameters are
identical it means that the two routes are equally likely, as marked with the dotted
lines in Figure F.4. However, for low mutation strength the mutator frequency can
be assumed to be constant during the five days simulated. In this case a simpli-
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fied approach is to consider the expected number of mutation and conjugation
events derived from the equilibrium model formulation. If the expected number
of events is equal the two routes are equally likely, as marked with the full lines in
Figure F.4. The two routes were compared for one to five consecutive mutations
(Figure F.4a) and for different values of the conjugation rate (Figure F.4b). The mu-
tator route becomes increasingly important when more mutations are required
and for increasing values of the conjugation rate. In Figure F.4a the parameter val-
ues from published simulation or experimental studies are marked, hereby plac-
ing the parameter values for the two routes in relation to existing literature. The
mutator route is seen to be dominant for several plausible values of the muta-
tor frequency and mutator strength. Furthermore, the mutator route becomes in-
creasingly likely for higher mutator strength and mutator frequency as seen from
Figure F.4c, where the probability of at least one conjugation event within five days
is plotted. An optimum probability is reached for a mutator strength of around
4,000, after which the mutator route becomes less likely, as increased mutator
strength is associated with a loss of fitness. The likelihood of transfer via the wild-
type route is constant for a given time period.

We have experienced a tremendous evolution of human pathogens during the last
decades. Novel pathogens have emerged and old ones have re-emerged. Further-
more, the "new" isolates have often carried novel properties, which are best ex-
emplified by the rapid emergence of antibiotic resistance. Even considering the
extreme large number of bacteria colonizing humans and animals this rapid emer-
gence might be hard to explain. Thus, E. coli are normally present in numbers of
approximately 106 to 107 per gram faeces. Even assuming an average of one kg of
faeces in each human this would only equal around 1018 to 1019 E. coli associated
with humans in the world. With an average mutation rate of 10−8, this would only
give between 100 to 1000 double mutants per generation. Assuming that these
mutants are present in a selective environment and successfully survive several
bottle-necks seems almost impossible. Our simulations and model in Figure F.4
with mutators as intermediate "genetic work stations" suggest that the emergence
of double, triple, or more consecutive mutations might be more common than so
far expected. Thus, evolution of novel features in bacteria might happen more
frequently in jumps of several consecutive mutations than we have previously ex-
pected. The model might also explain the high level of mutator bacteria observed
in wild-type populations, since it will be an evolutionary advantage for a bacterial
population to constantly create a number of "genetic work stations" where new
genes can be created and tested before being taken up by the mother population.

Whether similar mechanisms of bypassing Darwinian evolution might be present
in higher organisms also needs to be proven. However, it is noteworthy that recent
studies have indicated that horizontal gene transfer in eukaryotic cells is more im-
portant than so far expected (Keeling and Palmer, 2008).

117



F. MUTATORS, A WAY TO BYPASS CLASSICAL DARWINISM

Methods

Procedure for simulations

The model (Figure F.2) is simulated such that it resembles growth with a maximum
population size between 109 and 1012 cells, which is in accordance with bacteria
numbers in human faeces (1011 cells) and concentrations in infected tissue (109

cells/ml) (Miller et al., 2002), and liquid cultures (109 cells/ml) (Taddei et al., 1997).
The initial cell number is set to 109 cells with a frequency of mutator bacteria be-
tween 10−5 and 0.95. It is assumed that initially no bacteria with mutations are
present. When the carrying capacity is reached a dilution is made similar to the
growth rate of the sensitive wild-type population. This stochastic model is simu-
lated using a fixed-increment time advance approach (Law and Kelton, 2000) with
Poisson-distributed events. A discrete event simulation approach was tested with
similar results, but this is computationally infeasible due to the high number of
events.

Mutation, conjugation and growth rates

The growth rate v of the wild-type bacteria without any mutations is 0.6931 h−1

similar to E. coli (Carr et al., 2005). The mutation rateµ is fixed to 1·10−8 per gener-
ation (Boe et al., 2000; Tenaillon and Toupance, 1999; Taddei et al., 1997; Travis and
Travis, 2002, 2004), from which the mutation rate per hour for each bacteria strain
can be calculated as vµ. All mutations are deleterious and cause an additive fitness
loss of 0.05 h−1 (Travis and Travis, 2004; Tenaillon and Toupance, 1999; Travis and
Travis, 2002; Taddei et al., 1997). The mutation rate in the mutator population is
increased by a factor m, the mutator strength. Typical values of m lie between 100
and 10000 (Travis and Travis, 2004; Tenaillon and Toupance, 1999; Taddei et al.,
1997; Travis and Travis, 2002). It is believed that higher mutator strengths lead to
a lower growth rate due to more deleterious mutations. The literature (Tenaillon
and Toupance, 1999; Philipsen et al., 2008; Boe et al., 2000; Tanaka et al., 2003) con-
tains different estimates of the disadvantage of being a mutator. Considering that
an increased mutator strength gives a decreased growth rate and using an additive
fitness cost of 0.002 with a mutator strength of 100 (Tanaka et al., 2003), the growth
rate of the mutator can be calculated as v − (m−1) ·2 ·10−5 for m ∈ [0;104]. Conju-
gation rates between 10−5 and 10−2 per donor per hour (Fernandez-Astorga et al.,
1992; Itaya et al., 2006; Lim et al., 2008) and up to 9 per donor per hour (Andrup
and Andersen, 1999) have been found in experimental studies. The conjugation
rate in the stochastic simulation study is fixed to 0.01 h−1, whereas in the equilib-
rium model values between 10−5 and 10 h−1 are used.
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G
Dynamics of spread of
intestinal colonization with
extended-spectrum
beta-lactamases in E.coli: a
mathematical model ‡

G.1 Introduction

Extended-spectrum beta-lactamases (ESBL) are enzymes that confer resistance to
3rd generation cephalosporins. The prevalence of ESBL producing Enterobacteri-
aceae has increased drastically since it was first discovered in 1983 in Germany.
The increasing prevalence of ESBL is of major concern as it is associated with
failure of treatment, prolonged hospitalization and increased costs (Helfand and
Bonomo, 2006; Rodriguez-Bano et al., 2006; Collignon and Aarestrup, 2007). In ad-
dition, ESBL resistant bacteria often carry co-resistance to other antibiotics, fur-
ther complicating the treatment of infections (Rodriguez-Bano et al., 2006). In
other areas of antibiotic resistance, such as methicillin-resistant Staphylococcus
aureus (MRSA) (Bootsma et al., 2006) mathematical models have shown to be a
strong tool for interpreting the resistance dynamics and investigating possible in-
terventions. In this report we will attempt to develop such a model for ESBL.
The dynamics of ESBL are very complex and differs from MRSA dynamics by the
acquisition routes and type of bacteria carrying the resistance. Different types of
ESBL have been identified which can be produced by different bacterial species.
Until around 2000 mostly ESBL of type TEM/SHV was found in Europe. In Hol-
land the first ESBL of type CTX-M was detected in 1995 (Hall et al., 2002). Be-
fore the introduction of CTX-M the ESBLs reported were predominately stem-
ming from Klebsiella pneumonia (Paterson et al., 2003). The CTX-M enzyme is

‡Published as: K. R. Philipsen, M. C. J. Bootsma, M. A. Leverstein-van Hall, J. Cohen Stuart, M.
J. M. Bonten, 2009. Dynamics of spread of intestinal colonization with extended-spectrum beta-
lactamases in E.coli: a mathematical model. IMM-Technical report-2009-13.
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most frequently associated with Escherichia coli, which has caused a switch from
K.pneumoniae to E.coli as the most predominant species among ESBL produc-
ers (Markovska et al., 2008). Moreover, ESBL K. pneumonia is mainly nosocomial
acquired, whereas ESBL-producing E.coli is also found in strictly community ac-
quired infections (Cantón et al., 2008; Rodriguez-Bano et al., 2006).
In this study we suggest a new mathematical model to describe the ESBL dynam-
ics. The main objective of the study is to investigate the plausibility of different
transmission routes by comparing a mathematical model for the spread of ESBL
with data for ESBL prevalence. For instance, the increase in CTX-M ESBL preva-
lence may be due to horizontal transfer of CTX-M between species (Markovska
et al., 2008; Cantón et al., 2008). Other authors have shown the importance of
travellers returning from holiday with an ESBL bacteria colonization (Laupland
et al., 2008; Pitout et al., 2004). The model will therefore include these routes of
horizontal transfer and external acquisition of ESBL together with cross-transfer
and mutation. These pathways will be discussed in details in the next section. It
has been argued that the use of 3rd and 4th generation cephalosporins in animals
has an influence on the increase of ESBL prevalence in humans, as the drug re-
sistance may spread via food or other sources like the ground water (Collignon
and Aarestrup, 2007). However, this effect is not included as it would result in an
overparametrization of the model due to lack of data.

G.2 Model

Our model describes the spread of intestinal colonization with ESBL. Intestinal
colonization is considered, because colonization usually precedes clinical infec-
tions (Harris et al., 2007a). Moreover, most colonized patients do not develop overt
infections and, hence, it is believed that colonization is more important for the
spread than clinical infections (Harris et al., 2007b). The model considers a hos-
pital and its catchment area and consist of two levels of dynamics: 1) The flow of
patient; and 2) The flow of bacteria and resistant genes. Each of the two levels of
dynamics is described in the following sections.

G.2.1 Flow of patients

Hospitalized patients are divided into high-risk and low-risk wards for the acquisi-
tion of resistance. Hospital-based studies have suggested a number of risk factors
for the acquisition of ESBL including intensive care unit (ICU) admission, antibi-
otic usage, and mechanical devices (Laupland et al., 2008; Cantón et al., 2008). We
identify high-risk wards (ICU, Surgery, Hematology, and lung diseases) as wards at
the University Medical Center Utrecht (UMCU), the Netherlands with a high level
of ESBL colonized patients in 2008. This classification of high-risk wards is in agre-
ment with previous studies (Coque et al., 2002).
We hypothesize that frequent readmitted patients have a role in maintaining a
high ESBL prevalence in the hospital. Similar to Cooper et al. (2004) we there-
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fore allow the probability per unit time to be readmitted to decrease with the time
since the most recent hospital discharge. This is modelled by letting discharged
patients move first to core groups and from here on into a catchment population
with a lower hospitalization rate. Hence, patients discharged from the low- and
high-risk wards are separated in two different compartments (core-groups). This
flow of patients can be seen in Figure G.1. Additionally, persons can be removed
from the community, either because they die or because they move to another mu-
nicipality. This is implemented in the model by a constant removal rate from the
catchment population and the core groups. As soon as a person is removed, it will
be replaced by a new person in the catchment population, which is not colonized
with resistant bacteria.

Figure G.1: A sketch of the patient and people flow in the model. The indexes i will be
used to refer to the compartments.

G.2.2 Flow of bacteria

Election of colonization states for the model and the routes of transfer between
the states is a fine balance between keeping the model simple and including all
important states and routes. The extent of the model is further limited by avail-
able information about prevalence and rates. ESBL strains are most often found
in E.coli (EC) and other Enterobacteriaceae (EB) such as K. Pneumonia (Romero
et al., 2007; Caccamo et al., 2006). For this model we therefore consider EC and
another EB type with special focus on the EC population. EC can be ESBL posi-
tive of type TEM/SHV (+) or CTX-M (++), which are the dominant types of ESBL.
EB is included to be able to incorporate conjugation between species as one of
the transfer mechanisms, and therefore the inclusion of EB++ is very interesting
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for the model. Assuming each individual carries EC, we distinguish four intestinal
colonization states, EC, EC+, EC++ and EC/EB++. The population in each hospital
ward and community compartment is divided into these four states (Figure G.2(a)
and G.2(b)). The TEM/SHV phenotype can be obtained by cross-transmission,

(a) Hospital (b) Community

Figure G.2: Model describing the transfer of ESBL in E. coli (EC) and other Enterobac-
teriaceae (EB). The model includes the dynamics of the transfer of EC of type TEM/SHV
(EC+), EC of type CTX-M (EC++), and EB of type CTX-M (EB++) in the hospital and com-
munity. In the hospital the rate of cross-transfer, mutation and conjugation is taken to be
three times higher in the high-risk wards, than in the low-risk wards.

and mutation whereas the CTX-M phenotype can be obtained by cross-transmission,
conjugation and externally from travellers. The model is constructed on the level
of human individuals, and the number of bacteria in each individual is not mod-
elled. Whenever a person acquires resistance, the bacteria is assumed to be present
in sufficient numbers for the individual to be able to transfer the resistance. Cross-
transmission is dependent on the amount of people in the ward with the specific
bacteria species and resistance type. Cross-transmission is therefore modelled
with the mass action expression βC /N , where β is a constant which is specific
for a given bacteria species and resistant type, C is the amount of colonized peo-
ple with the given bacteria species in the ward of interest and N is the total size
of the ward. When conjugation happen from a EB++ patient it is no longer regis-
tered in the model to carry EB++. To avoid the need of an extra compartment the
cross-transfer of EB++ is based on the amount of people colonized with EB++ as
well as EC++. Acquisition of ESBL by mutation is independent of the colonization
status of other people in the ward. It occurs with a constant rate, µ. Conjuga-
tion can occur with a constant rate c, when a patient is colonized with EB++. The
rates β, µ and c at which acquisition happens are assumed to be 3 times lower
in the low-risk wards as compared to the high-risk wards. Cross-transmission is
disregarded in the community, whereas mutation and conjugation occur with half
the rate in the community as compared to the low-risk ward. After the year 2000
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there is an extra inflow of EC++ and EB++ to the catchment population from trav-
ellers carrying the strains home from holiday. This inflow is assumed to occur to
the core group 2 for EC++ and EB++ and to the catchment population for EC++
(Pitout et al., 2004). In the community colonization is lost with the rate r (recovery
rate). The decolonization rate is the same for all community groups. Whenever
possible the model parameters are found in the literature and the remaining pa-
rameters will be estimated. A description of the parameter estimation is given in
Section G.3.2.
The model is simulated as a discrete stochastic model in R (R Development Core
Team, 2009) using the fixed-increment time advance method. For each day the
following steps are carried out

• transfer between bacteria colonization states within each hospital ward or
community group.

• movement of people within the hospital and community as well as hospital
admittance and discharge.

• inflow of resistant strains from travellers.

The two first steps are computed by sampling from a Multinomial distribution, as
more events can happen to one population during one time interval. The last step
is computed by sampling from a Poisson distribution.

G.3 Parameter estimation

G.3.1 Patient flow

Data from the UMCU from 2005 to 2008 with time of admission, discharge and
movement within the hospital, including ward specification, is used to estimate
the parameters for the patient flow.

Survival analysis

Part of the data for the time between two hospital admissions is censored, and sur-
vival analysis is therefore used to calculate the time to readmission. In this context,
censored data means that only the time between discharge and the end time of the
available data set is know. Thus, only a minimum time between readmissions is
known, but there is no observed readmission. For other patients two subsequent
admissions are registered in the data set. Thus, for these patients the actual read-
mission time is known. These readmission times are also called un-censored.
People discharged from the hospital can be readmitted from either the core-group
or catchment population as sketched in Figure G.3. The survival function Si (t ), for
readmittance after discharge from the hospital compartment i is calculated as

Si (t ) = Pi (T > t ) = Pi (T =∞)+Pi (∞> T > t ) (G.1)
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Figure G.3: A sketch of the simplified patient flow from with the survival function for read-
mission time (Equation (G.4)) is calculated. λ1, λ2 and λ are readmission rates and γ1 and
γ2 are the rates by which patients are moved to the catchment population. The removal
rate, ρ, is fixed to one over the mean time of stay in the same municipality, which in the
Netherlands is 21.6 years.

where the first term corresponds to patients who are never readmitted, i.e., re-
moval from the extramural population, and the second term to a readmission at
least a time t after the previous admission.

Pi (T =∞) =
∫ ∞

0
ρexp(−(ρ+λi +γi )τ)dτ

+
∫ ∞

0
γi exp(−(ρ+λi +γi )τ)ρexp(−(ρ+λ)τ)dτ (G.2)

and

Pi (T >∞> t ) =
∫ ∞

t
λi exp(−(ρ+λi +γi )τ)dτ

+
∫ ∞

t

(∫ τ

0
γi exp(−(λi +γi +ρ)τ′)λexp(−(λ+ρ)(τ−τ′))dτ′

)
dτ (G.3)

By solving the integrals the survival function is found to be

Si (t ) = ρ

ρ+λi +γi
+ ργi

(ρ+λ)(ρ+λi +γi )
+ λi

ρ+λi +γi
exp(−(ρ+λi +γi )t )

− λγi

(λi +γi −λ)

1

(ρ+λi +γi )
exp(−(ρ+λi +γi )t )

+ λγi

(λi +γi −λ)

1

λ+ρ exp(−(λ+ρ)t ) , (G.4)

where the readmission rate λi and the rate of movement to the catchment popu-
lation γi are different for patients discharged from the low-risk (i=1) and high-risk
(i=2) wards. The readmission rate from the catchment population, λ is the same,
independently of which ward a patient was discharged from at last hospitaliza-
tion. The removal rate, ρ, is assumed to be the same in the whole community and
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Figure G.4: Fit of the survival function for people discharged from high-risk and low-risk
wards at University Medical Centre Utrecht. The data used is from 2005 to 2008. High-risk
wards are ICU, Surgery, Hematology and lung diseases, which are identified as those with
a high risk of colonization with ESBL carrying bacteria.

is kept fixed in the estimation. A person is removed from the catchment popula-
tion or core groups after a mean of 21.6 year, which corresponds to the mean time
that persons stay in the same municipality in the Netherlands. This is considered
to be a good estimate of the time period in which people might be readmitted to
the same hospital. The other parameters of the survival function are determined
by Maximum Likelihood estimation, where the log-likelihood function is

log(L) =
∑

i ∈ uncensored data
log

(
fi (ti )

Si (ti )

)
+

∑
i ∈ all data

log(Si (ti )) , (G.5)

and f (t ) = −dS(t )/d t . The likelihood function is optimized in R using the optim
function (R Development Core Team, 2009).

Results

The suggested survival function gives a good fit to the data for readmission as seen
in Figure G.4. It should be noted that the survival function does not describe to
which ward the patients are readmitted. It only states what the readmission time
is when discharged from a specific ward. Based on the UMCU patient data we find
the percentage of patients discharged from the low- or high-risk wards, which are
readmitted to either of these wards, and from here the readmission rates of the
core-groups are calculated.
The readmission rate from the catchment population to each hospital ward and
the size of the catchment population are estimated, such that the size of the hos-
pital wards are in agrement with the UMCU data. From the UMCU data the length
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Table G.1: Parameters for patient flow calculated from UMCU data with a 95% confidence
interval (CI.

Parameter Value (95% CI)
Mean length of stay:
Low-risk 5.32 (5.27 - 5.36) days
High-risk 6.68 (6.61 - 6.76) days
Mean time to admission:
From Core-group 1 247.57 (239.53 - 255.62) days
From Core-group 2 293.71 (282.29 - 305.23) days
From Catchment population 8.97 (8.63 - 9.30) years
Mean time before moving to catchment group:
Core-group 1 to catchment: 73.88 (70.56 - 77.20) days
Core-group 2 to catchment: 130.55 (122.94 - 138.16) days

Table G.2: The table shows data values for the percentage of patients that moved within
the UMCU, were discharged, or died at the UMCU between 2005 and 2008. The table also
contain the percentage of people admitted to each hospital ward from the community.

PPPPPPPPPFrom:
To:

Low-risk High-risk Discharged Dead

Low-risk - 13% 86% 1%
High-risk 24% - 73% 3%
Core-group 1 87% 13%
Core-group 2 23% 77%
Catchment population 72% 28%

of stay in each ward, the transfer between wards, and the fraction of patients which
dies at the hospital are also deduced. As soon as a person is removed from the pop-
ulation a new person, colonized with non ESBL E.coli, is assumed to appear in the
catchment population. All parameters for the patient flow are given in Table G.1
and Table G.2.

G.3.2 Bacteria flow

The duration of colonization after discharge from the hospital have recently been
examined in a study by Apisarnthanarak et al. (2008). They found a median dura-
tion of outpatient colonization with ESBL of 98 days, i.e. a mean duration of 141
days. This length of colonization will be used for all ESBL producing bacteria in
the model. The inflow of resistance from travellers is initiated in year 2000. The
inflow of EC++ and EB++ to core group 2 is fixed to 0.35 per year, and the inflow of
EC++ to the catchment population is fixed to 5 per year (Pitout et al., 2004). The
unknown parameters for the flow of bacteria are determined in three steps. First
in Section G.3.2 three values of the cross-transfer rate of EC+ are determined such
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that the basic reproduction number equals 0.50, 0.75 or 1.00. Secondly for each of
the estimations of the cross-transfer rate, the mutation rate for EC+ is estimated
based on the prevalence of ESBL in The Netherlands before the large increase in
ESBL caused by CTX-M. The prevalence of EC+ is assumed to have reached an
equilibrium level before the introduction of CTX-M. The used prevalence data is
from the study of Stobberingh et al. (1999) which found that the ESBL prevalence
at Dutch hospitals in 1997 was 0.35% for EC+. Finally, the parameters for the trans-
fer of EC++ are estimated using nosocomial ESBL prevalence data deduced from
the Dutch EARSS data (2000-2008). The EARSS prevalence is based on aggregated
data for all of the Netherlands. The parameter estimation of the model can there-
fore be based on the mean of several simulations. Thus, estimation based on the
ESBL prevalence is made by minimizing the least squares (LS) value of the dif-
ference between the simulated mean yearly ESBL prevalence based on up to 50
simulations and the data. Due to the stochasticity of the model the LS value will
be noise even when taking the mean over several simulations. Therefore the LS
estimation will be carried out using a simultaneous perturbation stochastic ap-
proximation (SPSA) algorithm explained in Section G.3.2.

Reproduction Number

The basic reproduction number, R0, is the mean number of secondary coloniza-
tions that one colonized individual will cause before it get decolonized. This num-
ber is often used in epidemiology, as it can help determine whether an infection
(or in this case colonization) will spread in a population. If R0 < 1 the infection
will die out, and if R0 > 1 the infection can spread in a population. Alternatively
the single readmission number, RA , can be calculated, which is the mean number
of secondary colonizations that one colonized individual will cause during one
hospital admissions. We calculate R0 and RA for a simplified situation where a
person can be either susceptible (i.e. in the category EC) or colonized with EC+. In
this way the initial colonization of EC+ bacteria can be studied. We only calculate
the reproduction number for cross-transmission, hence the only way of acquiring
EC+ is by cross transfer in the hospital with rate β in the high-risk wards and β/3
in the low-risk wards. The colonization can be lost in the community with the rate
r .
R0 and RA are found as the largest eigenvalue for the next-generation matrix K 0

and K A , respectively (Diekmann and Heesterbeek, 2000). Each element of K , ki j

is the expected number of new colonized people in compartment i caused by one
person colonized in compartment j either during one hospitalization (RA) or dur-
ing the whole duration of the colonization (R0). The expected number of new col-
onized people in compartment i is given by the transfer rate β multiplied with
the time, u, spend in this compartment before discharge from the hospital or loss
of colonization. The movement between compartments can be considered as a
Markov jump process containing each of the transient states and a compartment
representing the absorbing state, i.e. discharge of a patient or loss of colonization.
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The process has an intensity matrix of the form

Λ=
[

T t
0 0

]
(G.6)

where T describes the rate of movement between the transient states and t con-
tains the rates by which exit to the absorbing state takes place. The probability of
going from state i to j is written as pi j , for example the probability of going from
core group 1 to the low-risk ward is

p31 =λ31/(r +γ1 +ρ+λ31) , (G.7)

where λ31 is the readmission rate from core-group 1 to the low-risk ward, r is the
decolonization rate, γ1 is the rate of transfer from core group 1 to the catchment
population, and ρ is the removal rate of persons from the population. If we apply
this notation to the model for the patient flow shown in Figure G.1, we can write
down the complete T matrix for the case where discharges from the hospital are
considered as the absorption state

T A =


−1/T1 p12/T1 p13/T1

p21/T2 −1/T2 p23/T2

p31/T3 p32/T3 −1/T3


 (G.8)

or when loss of colonization is considered as the absorption state

T 0 =




−1/T1 p12/T1 p13/T1 p14/T1 0 0
p21/T2 −1/T2 p23/T2 0 p25/T2 0
p31/T3 p32/T3 −1/T3 p34/T3 0 0
p41/T4 0 p43/T4 −1/T4 0 p46/T4

0 p52/T5 0 0 −1/T5 p56/T5

p61/T6 p62/T6 p63/T6 0 0 −1/T6




(G.9)

In both cases 1/Ti is the mean length of stay in the given compartment i , as shown
in Figure G.1. The time until absorption τ is said to have a phase type distribution
PH(π,T ), where π is the initial distribution. It can be shown that if U = (−T )−1,
then each element ui j of the matrix U is the expected time spent in state j given
initiation in state i prior to absorption. In this way each element in the next gen-
eration matrix K can be found as

K = (−T )−1
i j β j = ui jβ j , (G.10)

where β4 = β5 = β6 = 0, as there is no cross-transfer in the community. R0 and RA

can then be found as the largest eigenvalue of K 0 and K A , respectively

Stochastic approximation

The bacteria transfer parameters will be determined by LS estimation. Due to
the stochasticity of the model the object function will be noisy even when taking
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Figure G.5: R0 and RA for different values of the cross-transfer rate in the high-risk wards.
R0 equals 1.00, 0.75 and 0.50 for β+ values of 0.122, 0.092, and 0.061, respectively. The
decolonization rate is fixed to 1/141 days−1.

the mean over several simulations. We therefore use a stochastic approximation
method to find the minimum object function. The computation of each object
function is very time consuming as the model has to be simulated repeatedly for
several years to obtain a mean value for the prevalence which can be compared
with the observations. Therefore it is desirable to keep the number of evaluations
of the object function low. When more than one parameter has to be estimated
simultaneously as is the case for the transfer of EC++, the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) method can be used. The SPSA method
uses only two measurements of the object function to approximate the gradient,
whereas the Finite Difference Stochastic Approximation (FDSA) method uses two
measurements per parameter. When only one parameter needs to be estimated
the SPSA method simply reduces to the FDSA method. For both methods the aim
is to find the set of parameters, for which the gradient of the object function equals
zero. A good description of the SPSA algorithm and its implementation can be
found in Spall (1998).

Results

The basic reproduction number, R0 and the single admission reproduction num-
ber, RA are computed in R (R Development Core Team, 2009) for difference values
of the cross-transmission rate, β. The result is plotted in Figure G.5. The cross-
transmission rate in the high-risk wards is found to be 0.122, 0.092, and 0.061 in
order to give a basic reproduction number of 1.00, 0.75, and 0.50, respectively.
The unit for the rates is day−1. For the three estimates of the cross-transmission
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Figure G.6: Estimate of the mutation rate, µ using a stochastic approximation method to
find the parameter region giving the lowest least squares (solid black line). Subsequently,
the mean of 50 evaluation of the LS for different rates in this region is computed (open
circles), and the minimum is found by fitting a second order polynomial (solid grey line) to
these values and finding the minimum. The mutation rate is found to be 2.3·10−5,5.4·10−5,
and 8 ·10−5 (dotted horizontal line) for corresponding β+ values of 0.122, 0.092, and 0.061,
respectively.

rate, the mutation rate shown in Figure G.6 is found by stochastic approxima-
tion and evaluation of the least squares value. The mutation rates are found to
be 2.3 ·10−5,5.4 ·10−5, and 8 ·10−5 for corresponding β values of 0.122, 0.092, and
0.061, respectively.
The cross-transfer rate for EC++ and EB++, and the conjugation rate is found by
evaluation the LS value for different values of the cross-transfer rate, β++, and con-
jugation rate, c, as seen in Figure G.7. The intension was to use SPSA to estimate
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Figure G.7: Least square values (colors) for different combination of the cross transfer rate,
β++, of EC++ and EB++, and the conjugation rate, c. Each estimated LS value is the mean
of 10 repetitions for which the prevalence is calculated as the mean of 50 simulations of
the model. The value of c below the line is 0, whereas it about the line are from 10−4 to 1.
The triangles marks the least square values below 3.

the parameters, but it has not been possible to find a proper implementation of
the coefficients for the SPSA method, and it was therefore chosen to compute the
LS value for a span of model parameter values.
It is seen to be difficult to separate the conjugation rate and the cross-transfer rate.
This is caused by the low amount of data available for the estimation, and the im-
plementation of the cross-transfer to the EC/EB++ colonization state in the model.
According to the least squares estimation, the conjugation rate can take on values
from 0 to 1 per day, whereas the cross transfer can take on values between 0.095
and 0.19 per day.
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G.4 Investigating the spread of resistance

The change over time in the total EC+ and EC++ prevalence and the EC++ preva-
lence is plotted in Figure G.8, for the three estimates of β+ and µ, and for each of
these three pairs of β++ and c values: β++ = 0.095 and c = 1, β++ = 0.150 and
c = 0.01, and β++ = 0.185 and c = 0. The model predicts that the total point-
prevalence will increase to values between 9.6% and 13.7% depending on the pa-
rameter values used. The prevalence in each of the hospital wards from 1990 to
2009 can be seen in Figure G.9 for one combination of model parameters. The
equilibrium prevalence for each of these wards are: low-risk ward 5.0%, high-risk
ward 18.1%, core group 1 4.1%, core group 2 14.0%, and catchment population
0.5%. The prevalence in the high-risk ward is thus 3.6 times higher than in the
low-risk ward, and similarly the prevalence in core group 2 is 3.4 times higher than
the prevalence in core group 1. This is caused by the patient flow, as patients dis-
charged from the high-risk ward is most frequently (77%) also readmitted to the
high-risk ward. The last subplot in Figure G.9 show a close-up of the total esti-
mated yearly mean prevalence for EC+ and EC++ in the hospital until year 2010.
With the parameters used for Figure G.9 the mean number of patients becoming
colonized during one day with either EC+ or EC++ in the high-risk ward in the
year 2009 has been calculated. The mean number of occupied beds in the high-
risk wards is 183. Out of these patients 0.04 and 0.01 patients per day will be col-
onized with EC+ due to cross-transfer and mutation, respectively; and 1.92 and
0.16 patients will be colonized with EC++ due to cross-transfer and conjugation,
respectively.
The relative importance of each of the three transfer mechanisms: cross-transfer,
conjugation, and mutation for the high-risk ward in the year 2009 is plotted in
Figure G.4. The model predicts that most transfers of EC++ and EC+ will happen
due to cross-transfer. Furthermore, the model predicts that a minimum of 57%
patients will acquire EC++ due to cross-transfer (for c = 1) in the high-risk ward.
However, it can not be ruled out that cross-transfer is the only transfer mechanism
for EC++ in the hospital, i.e. that c = 0.

G.5 Conclusion and outlook

In this study a mathematical model for the spread of ESBL resistant E.coli among
patients in a hospital and the surrounding catchment population has been intro-
duced and used to described prevalence data from the Netherlands. Several sta-
tistical methods have been applied to estimate the model parameters. The pa-
tient flow data was studied by survival analysis. This enabled us to get an estimate
for the time to readmission when discharged from either the low-risk or high-risk
hospital wards. It is hypothesized that readmission plays a role for the spread of
resistant bacteria. The high prevalence of EC+ and EC++ colonized patients in
the core group with patients discharged from the high-risk ward, indicates that
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Figure G.8: The mean of 50 simulations of the model for different values of the model
parameters. In the top panel β+ = 0.061 and µ = 8 ·10−5, in the middle panel β+ = 0.092
and µ= 5.4 ·10−5, and in the bottom panel β+ = 0.122 and µ= 2.3 ·10−5. A total prevalence
of EC and EC++ between 9.6% and 13.7% is predicted to be reached in year 2030 or later.
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Figure G.9: The total mean prevalence of EC+ and EC++ in each hospital ward and com-
munity compartments from 1990 to 2009 for 50 simulations. The parameters used for the
simulation was: β+ = 0.061, µ = 8 ·10−5, β++ = 0.150, and c = 0.01. The plot in the lower
right corner show the observed and simulated prevalence EC+ and EC++ prevalence in the
hospital.

especially patients readmitted to the high-risk wards contribute to the increasing
prevalence. It could be interesting in a future simulation study to further inves-
tigate the importance of readmission and the effect of different interventions on
the prevalence.
There are several theories with regards to the spread of ESBL resistant bacteria,
but the actual prevalence data is very sparse. Based on the available data we have
developed an adequate model that can explain the increase in prevalence from
year 2000. It has not been possible to separate the effect from conjugation and
cross-transfer on the ESBL prevalence of type CTX-M, as several combination of
the cross-transfer rate and conjugation rate give a good fit to data. However, the
model predicts that a minimum of 57% of the acquisition of EC++ colonization is
due to cross transfer.
The transfer rates for each hospital and community compartments are all related
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Figure G.10: The relative importance of each of the three transfer mechanisms: cross-
transfer, conjugation and mutation, for the transfer of EC+ (β++ = 0.150, c = 0.01) and
EC++ (β+ = 0.061, µ = 8 · 10−5) as measured in the high-risk ward in year 2009 from 50
simulations of the model.

by a ratio fixed in the model. Due to the high prevalence of resistant bacteria in
the high-risk ward, this ward is a central element for estimation of the model pa-
rameters. It could therefore be interesting to look at the transfer going on inside
the high-risk wards alone. A surveillance study, where the colonization status of all
patient in one or two hospital high-risk hospital wards are followed over a couple
of month, could be an idea for a better understanding of the transfer mechanisms.
The mean duration of colonization with EC+, EC++ and EB++ after discharge from
the hospital has in this study been fixed to 141 days. Whether patients readmit-
ted to the hospital are colonized with resistance bacteria is among other things
dependent on the duration of colonization. It would therefore be interesting to
investigate the effect of increased or decreased length of colonization by simula-
tion studies. Furthermore the model could be improved, if data from colonization
studies of each of the colonization states EC+, EC++ and EB++ were available.
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