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Acyl modification of the sn-2 position in phospholipids (PLs) was conducted by 

acidolysis reaction using immobilized phospholipase A2 (PLA2) as the catalyst. In the 

first stage we screened different carriers for their ability to immobilize PLA2. Several 

carriers were able to fix the enzyme and maintain catalytic activity; however the final 

choice of carrier for the continued work was a non-ionic weakly polar macroreticular 

resin. Response surface methodology was applied to evaluate the influence of substrate 

ratio, reaction temperature and water addition during acidolysis reaction between 

caprylic acid and soybean phosphatidylcholine (PC). Reaction temperature and water 

addition had significant effect on acidolysis reaction, however no effect was observed 

for substrate ratio (mol caprylic acid/mol PC) in range tested. In general an inverse 

relationship between incorporation of caprylic acid and PC recovery was observed.  

Highest incorporation obtained during acidolysis reactions was 36%. Such 

incorporation could be obtained under reaction temperature, 45°C; substrate ratio, 9 

mol/mol caprylic acid/PC; and water addition of 2%; 30 wt % immobilized enzyme; and 

reaction time, 48h. The yield under these conditions was however only 29%. 

Lysophosphatidylcholine (LPC) was the major by-product formed during the reaction. 

Incorporation of acyl donor into LPC was very low (<4%), which indicates that acyl 

migration is only a minor problem for PLA2 catalyzed synthesis reaction. Conjugated 

linoleic acid and docosahexaenoic acid were also tested as acyl donors, and were able to 

be incorporated into PC with 30 and 20%, respectively. 

Keywords: Immobilization; PLA2 catalyzed synthesis; response surface methodology; 

solvent-free system; structured phospholipids. 
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Different enzymes can be used to tailor phospholipids (PLs) with defined fatty 

acid composition at the sn-1 and sn-2 positions. Using enzymatic acyl exchange it 

would be possible to acquire PLs for specific application requirements in food, 

pharmaceuticals and cosmetics by altering the technical or physiological properties of 

the natural compounds. Most of the work in this direction focuses on incorporation of 

saturated fatty acids (including both medium chain and long chain) or polyunsaturated 

fatty acids into PLs (Hossen et al., 2005; Lyberg et al., 2005; Reddy et al., 2005; 

Vikbjerg et al., 2005).  The interest in the incorporation of saturated fatty acids is 

mainly to improve the heat stability, emulsifying properties and oxidation stability of 

the PLs (Chmiel et al., 1999; Pedersen, 2001), while the incorporation of 

polyunsaturated fatty acids is due to the claimed health promoting effects (Takahashi 

and Hosokawa, 2001).  

Compared to enzymatic acyl exchange at the sn-1 position of PLs, the enzymatic 

acyl exchange in the sn-2 position has received less attention. Porcine pancreatic 

phospholipase A2 (PLA2), which is the most commonly used enzyme for modification 

of PLs at the sn-2 position, is considerably more difficult for synthesis in comparison 

with lipases from microbial sources commonly used for modification of the sn-1 

position of PLs. Pancreatic PLA2 has requirement of calcium ions and a water activity 

above 0.2 to be catalytically active, which means that low yields can be expected 

compared to lipase-catalyzed reactions that can function in nearly anhydrous reaction 

systems without the presence of calcium ions (Pernas et al., 1990, Adlercreutz et al, 

2003).  
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Despite these problems there remains a great interest in using PLA2 for PL 

synthesis as fatty acids resided in the secondary position of PLs may have particular 

important influence on nutritional and medical functions (Takahashi and Hosokawa, 

2001). 

Commercial product of PLA2 has so far only been provided in the free form 

(liquid solution), but some attempts have previously been made to immobilize the 

enzyme (Aura et al.,1995; Doig and Diks, 2003; Härrod and Elfman, 1995; Hossen et al. 

2005; Lyberg et al. 2005). Main reason to use immobilized enzymes is the ability to 

isolate the biocatalyst from reaction mixture as well as to improve the stability. Some of 

the carriers selected in these previous studies would however not be suitable if having 

larger-scale production in mind. Enzymes immobilized on celite and certain other 

porous or powder inert materials have good initial activity, but are often difficult to 

handle or have insufficient enzymatic and physical stability in industrial processes 

(Eigtved, 1992). Dust formation, displacement of the enzyme from the carrier, and high 

pressure drops in packed bed columns are some of the problems that can occur using 

these types of carriers. Polymer or resin based carriers have been described, which 

offers strong adsorption, high activity, and stability of enzymes, which would 

accommodate enzymes and transport lipid substrate without major diffusion problems 

(Eigtved, 1992).  

Most work described for the PLA2 catalyzed synthesis of structured PLs are 

based on esterification of lyso-PLs in organic solvent (Adlercreutz et al., 2003; Guo et 

al., 2005). In order to obtain lyso-PLs for this type of reaction it would require a 

hydrolysis step of the PL and subsequent purification step to remove free fatty acids. 

Direct transesterification (acidolysis) of PL with acyl donor would avoid these 
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additional steps as reaction can be performed in a single step. Some attempts have 

previously been made for transesterification; however in general the incorporation of 

fatty acids into the sn-2 position is rather low (<15%)  (Aura et al., 1995; Hossen et al., 

2005; Park et al., 2001).  

 In this study we screened different carriers for immobilization of PLA2. A 

promising carrier was selected and further experiments were performed to maximize 

catalytic activity of the immobilized enzyme. The immobilized PLA2 was subsequently 

used for synthesis of structured PLs under solvent-free conditions. The reaction scheme 

for PLA2-catalyzed acidolysis is depicted in Fig. 1. Different parameters were examined 

for their influence on incorporation and PL distribution during PLA2 catalyzed synthesis 

of structured PLs.  Response surface methodology was used to assist the evaluation. 

 

2. Materials and Methods 

 

2.1. Materials 

 

Epikuron 200 (PC, 93%) was purchased from Degussa Texturant Systems 

Deutchland GmbH & Co. KG (Hamburg, Germany). The fatty acid composition 

(mol%) of PC can be seen in Table 1. Caprylic acid (C8:0, purity 97%) was purchased 

form Riedel-de-Haen (Seelze, Germany). Conjugated linoleic acid (CLA, purity 80%) 

consisting of 38.8% 9c,11t isomer and 38.8% 10t,12c isomer was provided by Natural 

ASA (Hovdebygda, Norway).  4,7,10,13,16,19 all cis-Docosahexaenoic acid (DHA, 

purity 99+ %) was purchased from Loradan Fine Chemicals (Malmö, Sweden). Porcine 

pancreatic PLA2 (Lecitase 10L, 10.000 U/ml) was supplied by Novozymes A/S 
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(Bagsvaerd, Denmark). Carrier materials and their suppliers are listed in table 2.  All 

solvent and chemicals were of analytical grade.  

 

2.2. Immobilization of PLA2 

 

Varying amounts of PLA2 solution was added to 5 ml buffer (10 mM Tris-HCl, 

10 mM CaCl2, pH 8) followed by the addition of 250 mg carrier. The enzyme solutions 

containing the carrier were incubated overnight by end-over-end mixing at room 

temperature followed by centrifugation at 4000 rpm for 5 minutes. The fixation level 

was estimated subtracting the protein remaining in the supernatant after binding 

compared to the initial protein concentration. Protein was determined according to the 

method of Lowry et al. (1951) using Bovine Serum albumin (BSA) as the standard. 

Enzyme preparation was removed by filtration and subsequently dried overnight in 

fume hood. Immobilized PLA2 was stored at 5°C prior to use. 

 

2.3. Hydrolytic activity of PLA2.  

 

Evaluation of the catalytic activity was determined by hydrolysis of PC as 

described by Kim et al. (2001). Reactions were carried out in an ethanol-buffer (10 mM 

Tris-HCl, 10 mM CaCl2, pH 8.0) (ratio, 70:30) with 0.4 g PC/ ml. Capped flasks 

containing the PC solution were incubated in water bath with magnetic stirring (300 

rpm) at 40°C. Hydrolysis reactions were initiated by the addition of PLA2. Samples 

were withdrawn during progress in reaction, and analyzed by TLC-FID. The activity 
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was defined as the amount of LPC produced per min, and specific activity was defined 

as the amount of LPC produced per min and mg protein.  

 

2.4. Acidolysis reaction 

 

Reactions between fatty acid and PC were carried out using a 1 g reaction 

mixture in 5 ml glass vials. Vials were incubated in a water bath with magnetic stirring 

(300 rpm) and reactions were initiated by the addition of 300 mg immobilized PLA2 

(carrier: Amberlite XAD7; 72 mg PLA2/g carrier).  After reactions, samples were 

withdrawn from the reaction mixture for analysis.  A three-level three-factor fractional 

experiment with 2 star points (17 experiments) was carried out. The three factors chosen 

were: reaction temperature (°C), water addition (wt% based on total substrate), and 

substrate ratio (mol/mol caprylic acid/PC). The incorporation of caprylic acid into PC, 

and the PL distribution (PC, LPC and glycerophosphorylcholine (GPC)) were used as 

responses. In table 1 are listed the factors used, the parameter ranges applied, and the 

responses. 

 

2.5. Analysis methods 

 

Analytical separations PL species and fatty acids were performed on Silica Gel 60 

thin-layer plates (20cm x 20cm, Merck, Darmstadt, Germany). After development in 

chloroform-methanol-water (65:35:5, v/v), the plate was sprayed with 0.2% of 2,7-

dichloroflourescein in ethanol (96%), making the lipid bands visible under UV-light. 

Bands representing PC and LPC were scraped off and methylated by BF3 for analysis 
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on a HP6890 series gas-liquid chromatograph (Hewlett-Packard, Waldbronn, Germany) 

equipped with a flame-ionization detector (FID) (Vikbjerg at al., 2005).  

Phospholipid profile analysis was performed on product mixtures from acidolysis 

reactions using thin layer chromatography coupled with flame ionization detection 

(TLC-FID). Samples were spotted onto silica gel chromarods (Chromarod SIII, Iatron 

Laboratories Inc., Tokyo, Japan) and developed in a mixture of 

chloroform/methanol/water (42:22:3, v/v/v). After developing, chromarods were dried 

at 120˚C for 5 min. Chromarods were then placed into the TLC-FID analyzer (Iatroscan 

MK6s, Iatron Laboratories Inc., Tokyo, Japan) and scanned at  a rate of 30s/rod. Flow 

rates of 160 ml/min for hydrogen and 2 l/min for air were used during analysis.  Peaks 

were identified by external standards.  

 

 

2.6. Statistical analysis  

 

Significance of the results was established at P< 0.05.Differences in the responses were 

determined by one–way analysis of variance, where 95% confidence intervals were 

calculated from pooled standard deviations (SD) using software Microsoft Office Excel 

2003 (Microsoft Corporation, Redmond, WA). The computer program Modde 6.0 

(Umetri AB, Umeå, Sweden) was used to aid the statistical design of the factorial 

experiments and to fit and analyze the data by multiple regressions. The fit of the 

models were evaluated by the coefficient of determination (R
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2) and analysis of variance 

(ANOVA).  
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3. Results and discussion 1 
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3.1. Screening for carrier materials 

 

 In order to have a practical approach for PLA2 catalyzed production of 

structured PLs the enzyme is preferred in the immobilized form.  This would make it 

possible in sight to develop a continuous process as the enzyme can easily be recovered 

and reused, and would make the process more economically feasible.  Of the various 

methods for immobilization physical absorption of the enzyme onto solid support 

remains the simplest, least expensive, and least labour-intensive procedure. Secreted 

PLA2 requires Ca2+ as co-factor; however the concentration of Ca2+ strongly influences 

the synthetic activity of these enzymes (Pernas et al., 1990). High concentrations of 

Ca2+ give rise to sever inhibition of synthesis reactions. In some cases the dependence 

of Ca2+ is simply overcome by doing the immobilization in buffer containing CaCl2 

(Egger et al., 1997; Aura et al, 1995; Lyberg et al. 2005). Pernas et al. (1990) reported 

that initial rate of PL synthesis conducted in organic solvent was dependent on the pH 

of the last aqueous solution in which the enzymes were exposed; however the maximum 

conversion was not dependent on the pH in the range 4-11. In most cases buffer has 

been adjusted to pH 8, when porcine pancreatic PLA2 have been used as catalyst.  

Conditions for the buffer used in the current study were selected based on 

recommendations from the previous studies mentioned above.    

 Seven different carriers were examined for their ability to immobilize PLA2. 

Characteristics of enzyme carriers screened are presented in table 2. In all cases, the 

immobilization procedure was the same. Table 3 shows the protein absorption to 
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different carriers. High fixation of PLA2 to the carriers was observed except for Accural 

EP100 and Lewatit VP1600. These two carriers were also very hydrophobic, and did 

not suspend in the enzyme solution as the other carriers, but floated to the top. By pre-

wetting these carriers with ethanol prior to immobilization it was possible to suspend 

these carriers in the enzyme solution, which also resulted in an increase of the fixation 

level of PLA
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2 (table 3). The three carriers immobilized with PLA2 having the highest 

protein fixation (Amberlite XAD7, Duolite A568, and Superlite DAX8) were tested for 

their hydrolytic activity (table 3). As there was seen some differences in the enzyme 

fixation, the immobilized enzymes were added to the reaction mixture with similar 

protein loading. One-way analysis of variance showed that there was significant 

difference in catalytic activity of PLA2 when immobilized on these different carriers 

(p<0.01). Having Amberlite XAD7 and Superlite DAX8 as carriers resulted in 

significant higher specific activity as compared to having Duolite A568 as the carrier; 

however there was no significant difference in the specific activity between Amberlite 

XAD7 and Superlite DAX8. Amberlite XAD7 had the highest protein fixation though, 

which means that lower dosage requirements were needed to obtain the same 

conversion degree. From considerations above Amberlite XAD7 was found to be a 

suitable carrier and was selected for the further study. 

 

3.2. Conversion efficiency of the immobilized enzyme 

 

 Binding of enzyme to the carriers and the total amount bound will depend on 

the initial concentrations of the catalyst and the carrier, and ratio of the two components. 

In Fig.2 the influence of initial enzyme /carrier ratio on fixation level to Amberlite 
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XAD7 is depicted. Protein binding to the carrier increased with increased ratio between 

enzyme and carrier. However activity only increased with increasing fixation level until 

a certain protein loading was reached; and the specific activity decreased with increase 

in fixation level of PLA
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2 (Fig. 3A). Highest specific activity was observed at low 

fixation level of PLA2. At high enzyme load only a fraction of the enzyme seems to be 

involved in the catalytic reaction. Higher enzyme load would contribute to increased 

limitation of substrate diffusion and therefore decreasing efficiency. From Fig. 3A it 

seems that an initial enzyme/carrier ratio of approximately 100 mg/g would give the 

optimal fixation of PLA2 in terms of activity. Influence of enzyme loading on activity 

and specific activity with this fixation level was examined (Fig. 3B). This was mainly to 

confirm that the results obtained above were valid, and that the decline in activity was 

not related to for example substrate limitations. As expected the activity increased with 

increased enzyme dosage, and the specific activity was constant. For the subsequent 

acidolysis reactions PLA2 was immobilized to Amberlite XAD7 with an initial 

enzyme/carrier ratio 100mg/g (72 mg/g enzyme fixed/carrier). 

 

3.3. PLA2 catalyzed acidolysis reaction 

 

Reactions were performed in a single step, having both hydrolysis and 

esterification reactions that occur simultaneously.  The fatty acids resided in the sn-2 

position of PLs will therefore be a mixture of original fatty acids and the ones to be 

incorporated. Theoretically the presence of original fatty acids can be minimized by 

having high substrate ratio (mol acyl donor/mol PL). A preliminary study was 

conducted to evaluate incorporation and PL distribution during the time course of 
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acidolysis reaction between PC and caprylic acid. Reaction conditions selected were a 

substrate ratio of 6 mol/mol caprylic acid/PC, together with 30% enzyme dosage at 

40ºC. Some water was added to the reaction mixture (0.75%), as this enzyme requires 

some water to main activity (Adlercreutz et al., 2003). The results showed that, after 

72h, it was possible to have 15% incorporation of caprylic acid into PC (Fig. 4A). 

However with increasing incorporation, the recovery of PC decreased.  Complexity of 

the acidolysis reaction makes it difficult to predict the influence of different parameters 

on incorporation and PL distribution. A statistical experimental design was therefore set 

up with the assistance of response surface methodology (RSM) to evaluate the influence 

of individual parameters, as well as their interactions, on incorporation and PL 

distribution. Reaction temperature, substrate ratio and water addition were selected as 

variables, whereas enzyme dosage and reaction time were held constant in the current 

study.  From Fig. 4B it can be observed that with a reaction more than 48h there was 

only seen a small progress in the reaction. From a process point of view it would be 

desirable to have as low a reaction time as possible. Responses and variable settings in 

Table 4 were fitted to each other with multiple regressions. The best-fitting models were 

determined by multiple regression and backward elimination, whereby insignificant 

factors and interactions were removed from the models. The statistics for the model 

coefficients and probability values for response variables are presented in table 5. The 

coefficient of determination (R
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2) of the models were 0.95, 0.99, 0.98, 0.67 for the four 

responses, i.e. incorporation into PC, PC content, LPC content and GPC content, 

respectively.  Models with acceptable qualities should have R2 > 0.8. Most of models 

therefore represent real relationship between responses and the reaction parameters.  

According to the analysis of variance there was no lack of fit for the generated models. 
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Observed and predicted values were sufficiently correlated except for experiment no.1, 

which was treated as an outlier. 

Water addition was the most significant factor on the PLA2 catalyzed acidolysis 

reactions in terms of incorporation and recovery (table 5). A continuous increase in the 

incorporation was observed until water level of 2% (Fig. 5A). Higher water addition had 

no significant effect on incorporation. The recovery of PC decreased with increased 

water addition (Fig.5B). With increase of water in the reaction system both LPC and 

GPC increased. GPC forms if acyl chain of LPC molecule migrates from the sn-1 

position to the sn-2 position, and the formed 2-acyl LPC is hydrolyzed by PLA2.  It was 

previously demonstrated that water content had no effect on the incorporation in 

solvent-free system during lipase-catalyzed acidolysis reaction (Vikbjerg et al., 2005), 

which is in contrast to PLA2 catalyzed acidolysis reaction. With both types of enzyme, 

the recovery of PC decreases with increasing water content due to parallel hydrolysis 

reaction. Water seems to have a complex role in terms of compromising enzyme 

activity, hydrolysis side reactions, reaction rate, and extent of incorporation. As PLA2 

require a higher water activity to function as compared to lipases, the yield is expected 

to be lower (Adlercreutz et al., 2003).   

Reaction temperature also had significant effect on the acidolysis reaction. 

Maximum incorporation was observed at 45°C (Fig.6A). At higher and lower 

temperatures there was a decrease in the incorporation of caprylic acid into PC. The 

lowest yield was obtained at 45°C (Fig.6B). At higher and lower temperatures PC 

content increased. In general an increase in temperature increases the rate of all 

chemical reactions, including those catalyzed by enzymes, but at the same time it 

increases the rate of denaturation of enzyme protein. These processes probably explain 
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the characteristic temperature profile of PLA2 and high value for the second order value 

in the models. Park et al. (2000) examined the effect of reaction temperature on 

transesterification of PC and ethyl esters of EPA in toluene, and found that maximum 

reaction rate and yield were at 50˚C. Enzyme activity was observed to drop sharply 

above 50˚C. Egger et al. (1997) reported that during synthesis of PC from LPC highest 

reaction rate was observed at 40˚C. At this temperature there was however observed a 

decrease in the amount of PC and LPC during the enzymatic reaction. This decrease 

was found to be due to formation of GPC.  It was claimed that at this high temperature 

GPC formation occurred due to acyl migration. In this study the temperature had an 

effect on formation of GPC. Highest content of GPC was at 45°C. With higher LPC 

content in reaction system formation of GPC seems to increase especially at elevated 

temperatures. 

Substrate ratio had no significant effect on either incorporation of caprylic acid 

or the PL distribution, and no interaction was seen for this factor. Even though no 

differences are seen in the relative PL distribution, it should be remembered that the PL 

concentration is higher at lower substrate ratios. In terms of production it would be 

recommended to have low substrate ratio.  

Highest incorporation was obtained by having reaction temperature, 45°C; water 

addition 2%; and substrate ratio, 9 mol/mol caprylic acid/PC. Under these conditions 

the PC accounted for 29% of the PL fraction. The incorporation of caprylic acid into 

LPC was also examined, however was less than 4% for all samples (data not shown), 

and therefore no attempts were made to model these data.   
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3.4. Reactivity of different fatty acids 1 
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 Different fatty acids may be applied as acyl donor for acidolysis reaction. 

However the fatty acids usually result in different reactivity, due to fatty acid specificity 

or possible inhibition effects. Under the same conditions, different fatty acids often 

result in different incorporation into PLs or different yields. Reaction rates have been 

reported to be the same for saturated fatty acids of length between 6 and 12 carbon 

atoms, but they were lower for myristic and palmitic acids (Egger et al. 1997). Highest 

reaction rate was obtained with oleic acid, but higher degree of unsaturation resulted in 

lower reaction rates. In this study we compared the incorporation of DHA and CLA 

with that of caprylic acid under similar reaction conditions (Te, 45°C; Wa, 2%; Sr, 3 

mol/mol fatty acid/PL). The incorporations of the different fatty acids into PC are 

presented in table 1. CLA resulted in the highest degree of incorporation, followed by 

caprylic acid and DHA. PLA2 showed little discrimination toward the two main isomers 

of CLA (data not shown). With CLA as acyl donor the PL distribution after reaction 

was 21, 74, and 5% for PC, LPC and GPC, respectively. With DHA as acyl donor the 

PL distribution was 22, 77, and 1% for PC, LPC and GPC respectively. Yields were 

thus lower when using CLA and DHA as acyl donors, however the formation of GPC 

was also lower as compared to reactions performed with caprylic acid (see table 4, 

experiment no.13). The results indicate that caprylic acid may cause more acyl 

migration in the reaction system compared to DHA and CLA, however further 

experiments would be required to verify this observation.   

In conclusion PC with modified fatty acid profile can be produced by PLA2 

catalyzed acidolysis. Water addition and reaction temperature were shown to have 
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significant effect on both incorporation and yield. Both reaction temperature and water 

addition had an inverse relationship between incorporation and recovery of PC. 

Substrate ratio showed no effect on the PL distribution. Incorporation of caprylic acid 

into PC could reach 36% accounting for 29% of the PL fraction. Incorporation of new 

fatty acids was shown to depend on acyl donor. Polyunsaturated fatty acids DHA and 

CLA were incorporated into PC with 30 and 20%, respectively.  

 

Acknowledgements 

 

This project was financially supported by the Danish Technical Research Council 

(STVF) and the Center for Advanced Food Studies (LMC). 

 

References 

Adlercreutz, P., Lyberg, A.-M., Adlercreutz, D., 2003. Enzymatic fatty acid exchange in 

glycerophospholipids. Eur. J. Lipid Sci. Technol. 105, 638-645. 

Aura, A.-M., Forssell, P., Mustranta, A., Poutanen K., 1995. Transesterification of soy 

lecithin by lipase and phospholipase. J. Am. Oil Chem. Soc. 72, 1375-1379. 

Chmiel, O., Melachouris, N., Tritler, H. Process for the interesterification of 

phospholipids. US Patent 5,989,599. 

Doig, S.D., Diks, R.M.M, 2003. Toolbox for exchanging constituent fatty acids in 

lecithin. Eur. J. Lipid Sci. Technol. 105, 359-367. 

Egger, D., Wehtje, E., Adlercreutz, P., 1997. Characterization and optimization of 

Phospholipase A2 catalyzed synthesis of phosphatidylcholine. Biochim. Biophys. 

Acta 1343, 76-84. 

 16



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Eigtved, P., 1992. Enzymes and lipid modification. In: Padley, F.B. (Ed.), Advances in 

applied lipid research, vol. 1, JAI Press Ltd, London, 1-64.  

Guo, Z., Vikbjerg, A. F., Xu, X., 2005. Enzymatic modification of phospholipids for 

functional applications and human nutrition. Biotechnol. Advances, 23, 203-259. 

Härröd, M., Elfman, I., 1995. Enzymatic synthesis of phosphatidylcholine with fatty 

acids, isooctane, carbon dioxide, and propane as solvent.  J. Am. Oil Chem. Soc. 72, 

641-646. 

Hossen, M., Hernandez, E., 2005. Enzyme-catalyzed synthesis of structured 

phospholipids with conjugated linoleic acid. Eur. J. Lipid Sci. Technol. 107, 730-

736. 

Kim, J., Lee, C.-S., Oh , J., Kim, B.-G., 2001. Production of egg yolk lysolecithin with 

immobilized phospholipase A2, Enzyme Microb. Technol. 29, 587-592. 

Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J., 1951. Protein measurement 

with the Folin phenol reagent. J. Biol. Chem. 193, 265-275. 

Lyberg, A. M., Adlercreutz, D., Adlercreutz, P., 2005. Enzymatic and chemical 

synthesis of phosphatidylcholine regioisomers containing eicosapentaenoic acid or 

docosahexaenoic acid.  Eur. J. Lipid Sci. Technol. 107, 279-290. 

Park, C.W., Kwon, S.J., Han, J.J., Rhee, J.S., 2000. Transesterification of 

phosphatidylcholine with eicosapentaenoic acid ether ester using phospholipase 

A2 in organic solvent. Biotechnol. Lett. 22, 147-150. 

Pedersen, K.B., 2001. Interesterification of phospholipids. US patent 6,284,501.  

Pernas, P., Oliver, J.L., Legoy, M.D., Bereziat, G., 1990. Phospholipid synthesis by 

extracellular phospholipase A2 in organic-solvents. Biochem. Biophys. Res. 

Commun. 168, 644-650. 

 17



1 

2 

3 

4 

5 

6 

7 

8 

9 

Reddy, J. R. C., Vijeeta, T., Karuna, M. S. L., Rao, B. V. S. K., Prasad, R. B. N., 2005. 

Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. 

J. Am. Oil Chem. Soc. 82, 727-730. 

Takahashi, K., Hosokawa, M., 2001. Production of tailor-made polyunsaturated 

phospholipids through bioconversions. J. Liposome Res. 11, 343-353. 

Vikbjerg, A.F., Mu, H., Xu, X., 2005. Parameters affecting incorporation and by-

product  formation during the production of structured phospholipids by lipase-

catalyzed acidolysis in solvent-free system. J. Mol. Catal. B-Enz 36, 14-21. 

 

 18



1 Table 1 Fatty acid distribution in PC and structured PCs (mol%) 

  Structured PCa

Fatty acids Soybean PC Caprylic acid enriched 

PC 

CLA enriched PC DHA enriched PC 

8:0 - 25.3 - - 

16:0 12.8 13.0 13.0 12.2 

18:0 3.9 3.2 3.0 3.2 

18:1 9.4 7.5 9.1 8.3 

18:2 65.5 45.3 38.6 48.9 

18:3 8.1 5.7 6.4 7.3 

CLA (all isomers) -  30.0 - 

22:6 -  - 20.2 

2 

3 

4 

5 

 

a Reaction conditions: Reaction temperature, 45°C, Water addition, 2%; Substrate ratio, 3 mol/mol, 

enzyme dosage, 30%; Reaction time, 48h. 
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1 Table 2. Carriers screened and their characteristics 

Carrier Supplier General description 

Amberlite XAD7 Sigma-Aldrich Chemie 

GmbH, Steinheim, Germany 

Nonionic weakly polar macroreticular resin (matrix: acylic 

ester), Particle size: 0.25-0.85 mm (wet) 

Superlite DAX8 Supelco, Bellefonte, USA Resin with moderate polarity (matrix: acrylic ester), Particle 

size: 0.25-0.45mm 

Celite 545 BHD, Poole, UK Diatomaceous Earth, Particle size: 0.02-0.1 mm 

Dowex 50W Dow Chemical Company, 

Michigan, USA 

Strongly acidic cation exchange (maxtrix:resinstyrene-

divinylbenzene; functional group: sulfonic acid), Particle size: 

0.15-0.30mm 

Lewatit VPOC1600 Lanxess AG, Leverkusen, 

Germany 

Divinyl benzene crosslinked polymer (Marix: methacrylate), 

Particle size: 0.3-1.2 mm 

Duolite A568 Rohn and Haas, Chauny, 

France 

Polymerized phenol-formaldehyde anionic exchange resin, 

Particle size: 0.15-0.85 mm 

Accurel EP 100 Akzo, Obernburg, Germany  Macroporous polypropylene, Particle size: 0.6-0.8 mm 

2 

3 
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1 

2 

Table 3. Fixation level of PLA2 on different carriers, and corresponding enzyme loading and specific 

activity. 

Carriera Enzyme loadingb

(mg protein/g support) 

Specific activityc

(μmol mg-1 min-1) 

Amberlite XAD7 49.0  0.30  

Superlite DAX8 44.4 0.28  

Duolite A568 43.3  0.24   

Dowex 50W  7.8  - 

Celite 545 3.6  - 

Accural EP 100 1.9  - 

          + Prewetting 42.5  - 

Lewatit VPOC 1600 1.3  - 

          + Prewetting 40.3  - 

3 

4 

5 

6 

 

a Pre-wetting of Accural EP 100 and Lewatit VPOC 1600 were done by addition of   0.5 ml 96% ethanol/ 

g support immediately before immobilization; b Pooled SD = 1.0 mg protein/g support; c Pooled SD = 

0.015 μmol mg-1 min-1; - n.d., not determined. 
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1 

2 

Table 4 Settings of the RSM generated experimental design for the PLA2 catalyzed acidolysis and 

measured responses. 

Factors  Responsesa

Experiment no. 
Te Wa Sr  Inc. PC LPC GPC 

1 35 1 6  8.0 70.0 22.1 7.9 

2 55 1 6  5.9 72.1 19.8 8.1 

3 35 3 6  28.3 20.6 62.4 17.0 

4 55 3 6  32.9 24.1 64.9 11.0 

5 35 1 12  11.3 62.4 28.1 9.5 

6 55 1 12  7.2 76.0 16.8 7.2 

7 35 3 12  32.1 22.4 63.8 13.8 

8 55 3 12  28.6 25.1 58.3 16.6 

9 25 2 9  9.8 54.8 40.2 5.0 

10 65 2 9  3.1 74.0 19.4 6.6 

11 45 0 9  0.6 90.0 3.0 7.0 

12 45 4 9  30.5 17.7 65.0 17.3 

13 45 2 3  25.3 29.2 62.3 8.5 

14 45 2 15  35.0 25.2 56.2 18.6 

15 45 2 9  33.5 30.7 56.4 12.9 

16 45 2 9  35.9 28.7 58.3 13.0 

17 45 2 9  33.5 30.3 60.4 9.3 

3 

4 

5 

6 

7 

8 

 

Abbreviations: Te, Reaction temperature (°C); Wa, water addition (wt% based on total substrate); Sr, 

substrate ratio (mol Caprylic acid/mol PC), Inc., Incorporation of caprylic acid (mol%), PC, 

phosphatidylcholine content; LPC, lysophosphatidylcholine content; GPC, glycerophosphorylcholine 

content.  aValues reported for the PL distribution are based on weight percentages of PC + LPC+ GPC 
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Table 5 Regression coefficients and P-values describing the influence of different parameters on 

incorporation of caprylic acid into PC and PL distribution

1 

2 a.   

 PL distribution (wt%) Incorporation of caprylic acid 

into PC (mol%)  PC  LPC  GPC 

Term 

Regression 

coefficient P-value  

Regression 

coefficient P-value  

Regression 

coefficient P-value  

Regression 

coefficient P-value 

Constant 32.38 9.97 x 10-10  28.37 1.45 x 10-9  58.72 3.58 x 10-12  12.91 9.68 x 10-7

Te -2.07 0.06  5.22 1.52 x 10-4  -4.81 6.95 x 10-4  -0.40 0.62 

Wa 8.50 5.32 x 10-6  -19.38 8.81 x 10-10  16.55 1.32 x 10-8  2.83 5.13 x 10-3

Te xTe -6.51 7.83 x 10-6  8.83 2.01 x 10-7  -7.18 4.10 x 10-6  -1.65 0.03 

Wa x Wa -4.33 2.38 x 10-4  6.19 5.34 x 10-6  -6.16 1.59 x 10-5  -0.03 0.97 

Te x Wa 1.87 0.22  -3.72 0.02  3.60 0.03  0.12 0.92 

3 
4 

5 

 
aValues reported for the PL distribution are based on weight percentages of PC + LPC+ GPC. The effect 

of each factor (linear and quadratic) and interaction effects are statistically significant when P-value<0.05. 
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Figure 1: Schematic presentation of PLA2-catalyzed acidolysis of phospholipid 

with free fatty acid. R1, R2 and R3 refer to fatty acids and x refers to 

phospholipid head group (e.g. choline). 

Figure 2: Influence of initial enzyme/support ratio on fixation level to Amberlite 

XAD7. Varying amounts PLA2 were incubated in the presence of 250 

mg carrier. Bars represents mean ± pooled SD. 

Figure 3:  Bioconversion efficiency of PLA2 immobilized Amberlite XAD7. A) 

Influence on enzymatic loading on activity and specific activity of 

immobilized system with different fixation level (mg enzyme per g 

support). B) Influence on enzymatic loading on activity and specific 

activity of immobilized system with same fixation level. Enzymatic 

assay and PLA2 activity measurement were performed according to 

procedure described in material and methods. Bars represent mean ± 

pooled SD (n=2). 

Figure 4: Time course for acidolysis reaction between PC and caprylic acid in 

solvent free system. Reaction conditions: substrate ratio, 6 mol/mol 

caprylic acid/PC, water addition, 0.75%; dosage of immobilized enzyme, 

30 wt%; and reaction temperature, 40ºC. A) Incorporation of caprylic 

acid into PC and B) PL distribution. Bars represent mean ± pooled SD 

(n=2). 

Figure 5:  Effect of water addition on PLA2 catalyzed acidolysis reaction when 

varied from low to a high level with all other factors being on their 
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1 

2 

3 

4 

5 

6 

7 

8 

average. A) Incorporation of caprylic acid into PC and B) PL 

distribution. Error bars indicate 95% confidence interval. 

Figure 6: Effect of reaction temperature on PLA2 catalyzed acidolysis reaction 

when varied from low to a high level with all other factors being on their 

average. A) Incorporation of caprylic acid into PC and B) PL 

distribution. Bars indicate 95% confidence interval. 
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1 Figure 3 
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1 Figure 4 
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1 Figure 5 
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1 Figure 6 
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