

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Facilitating a generic communication interface to distributed energy resources
Mapping IEC 61850 to RESTful services

Pedersen, Anders Bro; Hauksson, Einar Bragi; Andersen, Peter Bach; Poulsen, Bjarne; Træholt,
Chresten; Gantenbein, Dieter
Published in:
First IEEE International Conference on Smart Grid Communications (SmartGridComm), 2010

Link to article, DOI:
10.1109/SMARTGRID.2010.5622020

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pedersen, A. B., Hauksson, E. B., Andersen, P. B., Poulsen, B., Træholt, C., & Gantenbein, D. (2010).
Facilitating a generic communication interface to distributed energy resources: Mapping IEC 61850 to RESTful
services. In First IEEE International Conference on Smart Grid Communications (SmartGridComm), 2010 IEEE.
DOI: 10.1109/SMARTGRID.2010.5622020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13736452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/SMARTGRID.2010.5622020
http://orbit.dtu.dk/en/publications/facilitating-a-generic-communication-interface-to-distributed-energy-resources(09de10dc-240e-42c2-ae6d-1cfb1c2de2dc).html

 Abstract—As the power system evolves into a smarter and more
flexible state, so must the communication technologies that support
it. A key requirement for facilitating the distributed production of
future grids is that communication and information are
standardized to ensure interoperability. The IEC 61850 standard,
which was originally aimed at substation automation, has been
expanded to cover the monitoring and control of Distributed
Energy Resources (DERs). By having a consistent and well-defined
data model the standard enables a DER aggregator, such as a
Virtual Power Plant (VPP), in communicating with a broad array of
DERs. If the data model of IEC 61850 is combined with a set of
contemporary web protocols, it can result in a major shift in how
DERs can be accessed and coordinated. This paper describes how
IEC 61850 can benefit from the REpresentational State Transfer
(REST) service concept and how a server using these technologies
can be used to interface with DERs as diverse as Electric Vehicles
(EVs) and micro Combined Heat and Power (µCHP) units.

I. INTRODUCTION
everal standards are currently under development that can
facilitate communication with DERs in a smart grid
constellation. Among these are OpenARD [1], OpenAMD

[2] and EMIX [3] as well as the IEC 61850 standard, on which
this paper will focus. The standard is thoroughly researched and
has been described in several papers [4] [5]. The standard offers
a structural decomposition of the units to which it communicates.
This means that each subcomponent of a DER can be described
by the information model of IEC 61850. This makes the standard
suitable for scenarios in which an aggregator needs a fine-
grained knowledge and control of the state, structure and
operation of a DER. The standard is a good match for the virtual
power plant concept, in which an intermediate entity represents
an aggregated group of DERs in the power system and on the
market. Apart from the syntactic level, the standard also defines
the protocols that carry the data over a network. Without
providing any recommendations on the medium used, the
standard proposes the use of the TCP/IP protocols to enable
internet communication. On the upper part of the ISO OSI stack,
the standard describes the use of the Manufacturing Message

Specification (MMS) standard as an application-level protocol
[6]. Replacing MMS with REST services will, however, have
certain advantages. A REST service is a special flavor of web
services which are connected to the concept of a Service
Oriented Architecture (SOA). As REST services represent both a
simple and well- documented concept for achieving a high
degree of interoperability, they are a good candidate for use in
the IEC 61850 protocol stack. The next chapter describes IEC
61850 and REST in greater detail. Then, the paper describes how
an IEC 61850 server was developed based on the above
technologies, and finally a case is defined for interfacing with a
µCHP unit and an electric vehicle. The IEC 61850 via REST
implementation suggested in this paper is used in the Danish
EDISON project [7], where a VPP-like aggregator should
coordinate the charging of electric vehicles, as well as in the
Danish Generic Virtual Power Plant project, where µCHPs are
coordinated to support the grid.

II. THE IEC 61850 STANDARD
The IEC-61850 standard was designed to enable

interoperability between different devices in the substation
environment, and to facilitate the adaptation of future networking
technologies. One of the cornerstones of the standard is a layered
data model (see Figure 1), which has been designed to closely
model the physical substation environment.

A. Data model
The logical device is a virtual representation of a physical device
within the substation. It is comprised of a name, a path to the
object itself and a list of logical nodes. A logical device contains
one or more logical nodes, which represent various components
in the physical device.

As an example, the setup tested contains a logical node called
MMXN1. The MMXN part of the name refers to the type of the
node, which in this case is “Non-phase-related measurements”
[8]. Apart from the name, the MMXN class must also contain all
the data classes defined by the Logical Node Class defined by
the standard [8]. Beside this, instances of the MMXN class can

Facilitating a Generic Communication
Interface to Distributed Energy Resources

Mapping IEC 61850 to RESTful Services

Anders Bro Pedersen
Technical University of Denmark

Einar Bragi Hauksson
Technical University of Denmark

Peter Bach Andersen
Technical University of Denmark

Bjarne Poulsen
Technical University of Denmark

Chresten Træholt
Technical University of Denmark

Dieter Gantenbein
IBM Research, Zurich

S

978-1-4244-6511-8/10/$26.00 ©2010 IEEE 61

include a list of optional data classes and attributes. The data
classes represent meaningful information inside the nodes and
are declared recursively.

An attribute can either be a simple type, such as FLOAT32,
INT24 or BOOLEAN, or it can consist of both other simple and
complex attributes.

Figure 1 – IEC 61850 data model hierarchy [9]

B. Data-Sets
The logical nodes can contain data-sets, which contain sets of
data that have a natural association [10]. Data-sets are primarily
used for reporting and logging [10], but can also be requested
directly. Included in the data-sets are properties stating when a
report/log should be triggered. An example of a triggering
condition is “Data Change”.

C. Logging and reporting
The IEC 61850 outlines a reporting mechanism, which is
essentially a payload-carrying event that is sent back to the
subscribing clients when triggered. Reporting is directly linked
to data-sets as it is the data attributes in the data-sets that specify
the trigger conditions. Closely related to reporting is logging.
They both rely on the data-sets for triggering, but the reports are
sent back to the clients, whereas the logs are persisted locally
[10].

D. Object references
Any object within the data model can be referred to directly

via its object path [10]. Because of the tree-like properties of the
model, this path resembles a fully-qualified file-name notation.
The path lists all the objects on the route from the root of the
model to the object in question. Where fully-qualified file-name
notation usually has a fixed delimiter between object names, the
IEC-61850 references use a slash to separate the logical device
from the rest of the path, which is then separated by periods.

Figure 2 – Illustration of an IEC 61850 reference [9]

Included in the object reference is a filtering mechanism called
functional constraints (FC), which is used to group the data-
attributes. The functional constraints are usually specified at the
end of an object reference, incased in square brackets. For the
DC example, this would result in the path:

CHP1/MMXN1.Watt.mag.f[DC]

Because the paths resemble a fully-qualified file-name
notation, they can easily be mapped to a URL, which makes the
data model near perfect for REST. As the physical device and
the server are not referred in the object path, a REST URL could
look something like:

http://hostname/device/node/class/attribute

Included in IEC 61850 is also a service specification called the
Abstract Communication Service Interface (ACSI) [11], which
outlines a set of methods that are used when communicating with
the system. These methods have been mapped to REST.

III. REST SERVICES
The REST architectural style was first described in 2000 in a

Ph.D. dissertation by Roy Fielding [12]. The industry did,
however, not embrace REST right away, probably because at
about the same time, the Single Object Access Protocol (SOAP)
[13] was embraced by most of the large software vendors and
therefore got a lot of attention. As time passed and SOAP grew,
adding numerous extensions, people started looking for a lighter,
more web-centric alternative. Today many big web companies
provide REST services for others to interact with their systems.
These include companies such as Amazon, Google, Yahoo and
Facebook.

Where SOAP comes complete with a seemingly ever-growing
suite of extensions, the primary aim of REST is to stick closer to
the basic functionality of the HTTP protocol on which the web is
based. Unlike SOAP, there is no standard available that describes
REST. Instead, developers should follow the REST principles
when creating a RESTful [14] service.

The most important REST principle is to expose the resources
in a RESTful service as unique URLs. An example of this might
be a library service where the whole book catalog could be
accessed by using the URL http://library.com/books/ whereas a
single book could be accessed using the URL
http://library.com/books/123 (where 123 is the ID of the book).
As opposed to SOAP services, where you would issue a method
call such as createBook, deleteBook, RESTful services utilize the

62

HTTP methods, GET, POST, PUT and DELETE for reading,
creating, updating and deleting resources, respectively.

The REST principles do not define any specific format for
request or response data. Most common, however, is the XML
format, but other formats such as JavaScript Object Notation
(JSON) [15] are becoming increasingly popular, especially in
Asynchronous JavaScript And XML (AJAX) services. Ideally the
client is able to ask for specific representation by setting the
Accept request header to the desired format name.

Like the HTTP protocol itself, RESTful services are stateless,
meaning that no state should be stored on the server between
requests from the client. Each request should therefore contain
all the information necessary to serve the client. RESTful
services also embrace other aspects of the HTTP protocol, such
as status codes, conditional get and caching.

Status codes are sent along with any HTTP response and
indicate the type of the response. Examples of common status
codes are 200 (OK) for a successful request and 404 (NOT
FOUND) for a request for a non-existing resource. HTTP defines
status codes in the range 1xx to 5xx.

Conditional Get allows the client to ask the server whether the
requested resource has changed since it was last retrieved. This is
achieved either by sending the If-Modified-Since header with its
value set to the time of the last retrieval or by sending the eTag
header that came with the last response. If the resource has not
been modified the server only returns status code 304 (NOT
MODIFIED). This can be important for performance, as
unchanged data does not need to be re-sent.

Another closely related header is the cache header, sent along
with the response from the server. The cache header allows the
server to tell the client whether and for how long the client
should cache the response. This improves performance as it
saves the client from requesting the same data again, if it is not
expected to change. This is mainly used for static resources, such
as images on the web, but can also be utilized in RESTful
services.

The functionality of RESTful services is very closely related
to the functionality of the web, which has been extremely
successful over the last couple of decades. This is mainly due to
its scalability, interoperability and the fact that it is simple and
easy to understand. HTTP and the WWW are used for a wide
variety of tasks ranging from personal home pages to secure
internet-banking and e-commerce. HTTP already has a built-in
authentication mechanism but since many, if not all of the tasks
mentioned call for strict security, several protocols have
developed to add things like encryption to HTTP. Among some
of the more well-known ones are open standards, such as the
TSL/SSL [16] protocols. Because of technologies like these and
the needs from which they arose, the idea of using REST for
communication in electrical systems, as is the case with the VPP
and the distributed energy resources, could surely be considered
safe.

IV. RESTFUL INTERFACE FOR IEC 61850
As mentioned, the IEC 61850 reference paths resemble a

fully-qualified file-name notation or a URL. This simplifies the
task of creating a RESTful interface for the IEC 61850 data
model. The idea is that the various objects in the data model
hierarchy can be thought of as resources, which can be accessed
by using the IEC 61850 object reference. As an example the data
attribute

CHP1/MMXN1.Watt.mag.f

belonging to logical device “CHP1”, logical node “MMXN1”
and so on would have the URL

CHP1/MMXN1/Watt/mag/f

and the entire “Watt” data object could be retrieved with the
URL CHP1/MMXN1/Watt. For getting data, as in the example
above, an HTTP GET request would be used. The server would
then respond with the requested data in XML format as shown in
Figure 3. For setting data, the same URL would be used, but
with the HTTP method POST instead of GET.

Figure 3 - REST communication overview.

The ACSI interface described in IEC 61850-7-2 enables
clients to inspect the data model, to read and write data, and to
access data-sets, logs and more. To do so, the client calls
methods such as GetDataValues and SetDataValues. These
methods resemble traditional methods in a programming
language with input arguments and return values. As described
above, the REST architecture guidelines define services as a set
of resources instead of methods as in the case of ACSI.

To make a resource-oriented interface for the IEC 61850
standard, a mapping from the ACSI methods to URL and HTTP
method-pairs has been defined. The mapping for the data model
of the IEC 61850 standard is shown in Table 1.

Mappings for data-sets, reporting, logging, setting-groups and
substitutions can be made in a similar manner. These mappings
are presented in full detail in [9].

The first column in Table 1 shows the URL template of a
resource, the second column shows the HTTP method used to get
or set the URL, and the third column shows the ACSI services
this resource replaces. The response from the GET requests to
the resources shown in Listing 1 can be modified by using query
string parameters. Three query string parameters have been
defined: expandLevel, fc and includeValues.

63

The expandLevel parameter controls how big a portion of the
data model is retrieved. The default value of this parameter is
zero, which results in only the requested level of the data model
being retrieved, as can be seen in Listing 1. Setting the
expandLevel parameter to a higher number or to the value “all”,
allows the client to retrieve bigger portions of the data-model
hierarchy, as seen in Listing 2. By retrieving the whole data
model, the client can easily inspect an entire logical device and a
single URL can therefore replace multiple ACSI services.

The two remaining parameters accepted by the RESTful
service are fc and includeValues. The fc parameter is used for
filtering the data-model hierarchy to include only data attributes
with the specified functional constraint. The includeValues
parameter specifies whether the data values should be included
in the response in addition to the data model.

TABLE 1 - ACSI TO REST MAPPING

Url Meth. ACSI equivalent
/ GET GetServerDirectory

(GetAllDataValues)
(GetDataValues)

/[LD]/ GET GetLDDirectory
(GetAllDataValues)
(GetDataValues)

/[LD]/[LN] GET GetLNDirectory
(GetAllDataValues)
(GetDataValues)

/[LD]/[LN]/[DO] GET GetDataDirectory
GetDataDefinition
(GetAllDataValues)
(GetDataValues)

/[LD]/[LN]/[DO]/[DA] GET (GetAllDataValues)
(GetDataValues)

/[LD]/[LN]/[DO]/[DA] POST SetDataValues

As Figure 3 illustrates, the response format of the RESTful

service is in XML. Because of XMLs ability to model arbitrary
data structures it is possible to represent the hierarchical IEC
61850 data model in a concise and readable format.

To show this, two URLs and their resulting output are given.
Listing 1 shows a response containing a single value; Listing 2 is
an example of what a larger view of the data model might look
like.

1. <DA Name="f" Type="FLOAT32"
Ref="EV1/ZCEV1/MaxRtDchPwr/setMag/f">16800</DA>

Listing 1 - Response for URI: /EV1/ZCEV1/MaxRtDchPwr/setMag/f

As seen in Listing 2, a request for an entire data hierarchy can
be quite verbose and might not be suitable for frequent use in a
production environment. This kind of request is, however, very
useful during the configuration and development phase when
new devices need to be discovered. As the RESTful interface
uses standard HTTP GET request, it is even possible to use a
web browser to discover an IEC-61850-enabled device. As with

ACSI methods such as GetServerDirectory and GetLDDirectory,
the RESTful interface also enables clients to programmically
discover devices in a generic manner.

1. <DO Name="MaxRtDchPwr" Type="ASG"
Ref="EV1/ZCEV1/MaxRtDchPwr">

2. <DA FC="SP" Name="setMag" Type="Struct"
Ref="EV1/ZCEV1/MaxRtDchPwr/setMag">

3. <DA Name="f" Type="FLOAT32"
Ref="EV1/ZCEV1/MaxRtDchPwr/setMag/f">16800</DA>

4. </DA>
5. <DA FC="CF" Name="units" Type="Struct"

Ref="EV1/ZCEV1/MaxRtDchPwr/units">
6. <DA Name="SIUnit" Type="Enum"

Ref="EV1/ZCEV1/MaxRtDchPwr/units/SIUnit">Watt</DA>
7. <DA Name="multiplier" Type="Enum"

Ref="EV1/ZCEV1.MaxRtDchPwr/units/multiplier">Item</DA>
8. </DA>
9. <DA FC="DC" Name="dU" Type="Unicode255"

Ref="EV1/ZCEV1/MaxRtDchPwr/dU">Maximum rated discharging
power</DA>

10. </DO>
Listing 2 - Response for URI: /EV1/ZCEV1/MaxRtDchPwr/?expandLevel=all

Although XML has been chosen as the output format in the
example above, the RESTful interface could just as well use
other output formats. Thanks to the Accept header discussed
above, the same RESTful service could both accept and output
XML and JSON. One argument for using the JSON format is
that it is designed for serializing common objects, lists and scalar
values found in virtually all programming languages and can
therefore easily be deserialized by those languages. And without
the verbose declarations, it is definitely more compact. JSON
libraries exist for all major programming languages/frameworks,
including Java, .Net, C++, Python etc [17].
 As discussed in Section II, the IEC 61850 standard defines a
reporting mechanism. Because of the connection-less nature of
HTTP, and thereby of REST, implementing reporting callbacks
to the client is not entirely straightforward. However, such
mechanisms exist, for example the WebHooks model [18]
proposed by Jeff Lindsay, NASA Ames Research Center. The
approach is to have the IEC 61850 server enable clients to
subscribe to reporting events, similar to the approach described
in IEC 61400-25-3[19], and pass along with that subscription
request a callback URL which the IEC server can use for sending
reports to the client as HTTP POST requests. Security must be
kept in mind using this approach, because the client must be able
to validate that the callbacks received do indeed come from the
server. This could be solved using HTTP-basic authentication or
X.509 client certificates [20].

V. CASE STUDIES
To test the usefulness of REST for mapping to the IEC 61850

standard, a server complying with both of these has been

64

implemented. The server was designed “from sc
multiple devices and to test the scalability
implementation. The server has been written e
the .NET framework.

To facilitate the deployment to embedded
support for non-Windows systems, a small
process web server was chosen to host the
Except for the logging and reporting mechanism
the background, the server waits for request
clients. When a request is received for a given
looks up the requested object in its internal repr
data model. If the request is a “write” the se
return a status code as confirmation. In the c
however, the requested object is serialized to X
to the client. One of the benefits of this appr
relatively simple to return not just the requeste
entire sub-model. In fact, if a request is receive
device the server is able to return the ent
including all the values, using a single response.

The goal of these case studies is to test the REST
against different DERs, namely,

• to describe the µCHP setup and briefly
communication has been mapped

• to touch upon the challenges of mappin
vehicles and what was needed to accom

A. Case study: Interfacing with a µCHP
The server was designed using a modular plu
with a generic interface, which enables easie
installation of virtually any type of device.

Among the IEC-61850-enabled devices is
µCHP units from Senertec. The Dachs acc
different commands over the RS232 line an
commands returns a different set of values. The
electrical and temperature measurements. W
REST request is received, i.e., more than one
requested, the IEC 61850 server requests eac
from the Dachs module. The Dachs module
requested value in the set of values returned
commands. As the values are requested from th
one at a time, the module caches the result of ea
a fraction of a second to avoid having to is
multiple times for each REST request.

Figure 4 - µCHP module RS232 communication.

D
ac

hs

P
lu

g-
in

IE
C

61
85

0
S

er
ve

r
cratch” to support
y of the REST
entirely in C# for

devices and add
open-source in-
REST interface.

ms, which run in
ts from potential
n URL, the server
resentation of the
erver will simply
case of a “read”,

XML and returned
roach is that it is
ed object but the
ed for the logical
tire data model,
.

T mapping

show how the

ng the electric
mplish this.

ug-in architecture
er adaptation and

a pair of Dachs
epts a series of

nd each of these
ese values include

When a complex
e data attribute is
ch required value

then locates the
d by each of its
he Dachs module
ach command for
ssue a command

Two client applications were de
system and to facilitate testing. One
a web client showing the various de
as well as all the measurements
screenshot from the client showing
seen in Figure 5.

Figure 5 - Screenshot of the web client.

B. Case study: Interfacing with a
Another example of a plug-in ma

charging-spot. As no real vehicles w
development, the plug-in was ma
instead, which further illustrates th
The simulation includes both a char
contains a simulated battery. When
charging spot an EV aggregator-serv
to control the charging using sched
REST interface. Such an EV aggr
EDISON project [21].

Figure 6 - Setup showing simulated EV and c

The charging spot therefore acts a
in accordance to [9] and [21] and
need a wireless connection for bein
server. Because of this, even thoug
vehicle are simulated as individual e
the charging spot as the logical
connected EV represented as a lo
server, or any other client, can re
charging-spot and the EV via the I

eveloped to demonstrate the
of these demo applications is
evices attached to the server,
 and controls available. A
g one of the µCHPs can be

n EV
de for the server is for an EV
were available at the time of
apped to an EV simulation
he versatility of the system.
rging-spot and an EV, which
n the EV is plugged into the
ver can tell the charging spot

dules sent via the IEC 61850
regator-server is used in the

charging-spot.

as a proxy for the EV. This is
means that the EV does not

ng utilized by the aggregator
gh the charging spot and the
entities, they are mapped with
l device and the currently
ogical node. The aggregator
ead various values from the
IEC 61850 interface, such as

65

the current power usage, the phases in use and the current state
of charge.

There is an addition to the IEC 61850 standard, the IEC
61850-7-420 [22], that deals specifically with DERs. After
having analyzed the requirements for the charging spot and EV,
it became apparent that this standard needed further extension.
Logical nodes for charging-spots (ZCHS) and for EVs (ZCEV)
have been defined. These nodes contain essential attributes such
as the state-of-charge of the EV, power limits and battery
capacity. For controlling charging and discharging of the EV, the
logical nodes for energy schedule, defined in [22], have been
utilized. Since these extensions are outside the scope of this
paper and subject for a later publication they will not be further
described here.

C. Case study conclusion
Although µCHPs and EVs differ significantly in both function
and composition, the cases presented in this section show how
IEC 61850 with the REST interface can support communication
with both types of DERs. The units can be monitored and
controlled to optimize their behavior in relation to energy prices,
user requirements and the state of the power system.

VI. CONCLUSION
The main aim of this paper has been to demonstrate how
RESTful services, in conjunction with the data model of IEC
61850, can be used to increase interoperability and simplicity in
DER communication. The IEC 61850 standard has a large and
well-defined set of logical notes describing the various
components and values of a DER unit. This paper has shown that
the object reference path of the IEC 61850 data model can easily
be mapped to the URL format in the resource-oriented approach
used by REST. Besides offering an intuitive way of accessing
information, REST also provides better interoperability and
simplicity by shedding much of the complexity present in SOAP-
based web services. The advantages of using IEC 61850 with
REST have been demonstrated by building an IEC 61850 server
and describing its functionality in two case studies.

There is no doubt that the ambition of actively integrating
DERs into a smart grid constellation will rely on the utilization
of contemporary web concepts and standards. This paper serves
as an input to the identification of the ICTs capable of satisfying
the communication requirements for the power system of the
future.

REFERENCES
[1] OPENADR - Outreach Collaborative homepage.

http://www.openadrcollaborative.org/
[2] OPENAMD – standard sponsor. UCA International Users Group.

http://www.ucaiug.org/
[3] EMIX – standard sponsor. OASIS Blue Initiative. http://www.oasis-blue.org/

[4] "Communication networks and systems in substations," Commission

Electrotechnique Internationale (IEC), vol. 1, July 2003.

[5] S. Heights, R. Mackiewicz, "Technical overview and benefits of the IEC
61850," Oct. 2006.

[6] "Manufacturing Message Specification (MMS)", Partl:Service Definition,
Part2: Protocol Specification,International Standard IS0 9506, 1989.

[7] Edison project homepage. http://www.edison-net.dk/

[8] "IEC 61850-7-4, Basic communication structure - Compatible logical node
classes and data object classes".

[9] E. B. Hauksson, A. B. Pedersen, "Enabling distributed energy resources in a
virtual power plant using IEC-61850," Department of Informatics and
Mathematical Modeling at the Technical University of Denmark, Master
Thesis 2010.

[10] "IEC 61850-7-1, Basic communication structure for substation and feeder
equipment Principles and models".

[11] "IEC 61850-7-2, Basic communication structure for substation and feeder
equipment - Abstract communication service interface (ACSI),".

[12] R. T. Fielding, "Architectural Styles and the Design of Network-based
Software Architectures," PhD Thesis 2000. University of California, Irvine

[13] SOAP Specification. http://www.w3.org/TR/soap/
[14] IBM developerWorks, A. Rodriguez. RESTful Web services: The basics.

https://www.ibm.com/developerworks/webservices/library/ws-restful/

[15] The application/json Media Type for JavaScript Object Notation.
http://tools.ietf.org/html/rfc4627

[16] The Transport Layer Security (TLS) Protocol.
http://tools.ietf.org/html/rfc5246

[17] JSON. http://www.json.org/

[18] WebHooks. http://www.webhooks.org/
[19] "IEC 61400-25-3, Communications for monitoring and control of wind power

plants - Information exchange models".
[20] Internet X.509 Public Key Infrastructure: Certification Path Building.

http://tools.ietf.org/html/rfc4158
[21] C. Binding, D. Gantenbein, B. Jansen, O. Sundström,

P. Andersen, F. Marra, B. Poulsen, and C. Træholt, "Electric Vehicle Fleet
Integration in the Danish EDISON Project - A Virtual Power Plant on the
Island of Bornholm," IEEE Power & Energy Society, 2010 General Meeting ,
July 25-29, 2010, Minneapolis, Minnesota, USA.

[22] "IEC 61850-7-420, Basic communication structure - Distributed energy
resources logical nodes".

66

