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 Abstract—As the power system evolves into a smarter and more 
flexible state, so must the communication technologies that support 
it. A key requirement for facilitating the distributed production of 
future grids is that communication and information are 
standardized to ensure interoperability. The IEC 61850 standard, 
which was originally aimed at substation automation, has been 
expanded to cover the monitoring and control of Distributed 
Energy Resources (DERs). By having a consistent and well-defined 
data model the standard enables a DER aggregator, such as a 
Virtual Power Plant (VPP), in communicating with a broad array of 
DERs. If the data model of IEC 61850 is combined with a set of 
contemporary web protocols, it can result in a major shift in how 
DERs can be accessed and coordinated. This paper describes how 
IEC 61850 can benefit from the REpresentational State Transfer 
(REST) service concept and how a server using these technologies 
can be used to interface with DERs as diverse as Electric Vehicles 
(EVs) and micro Combined Heat and Power (µCHP) units.   
 

I. INTRODUCTION 
everal standards are currently under development that can 
facilitate communication with DERs in a smart grid 
constellation. Among these are OpenARD [1], OpenAMD 

[2] and EMIX [3] as well as the IEC 61850 standard, on which 
this paper will focus. The standard is thoroughly researched and 
has been described in several papers [4] [5]. The standard offers 
a structural decomposition of the units to which it communicates. 
This means that each subcomponent of a DER can be described 
by the information model of IEC 61850. This makes the standard 
suitable for scenarios in which an aggregator needs a fine-
grained knowledge and control of the state, structure and 
operation of a DER. The standard is a good match for the virtual 
power plant concept, in which an intermediate entity represents 
an aggregated group of DERs in the power system and on the 
market. Apart from the syntactic level, the standard also defines 
the protocols that carry the data over a network. Without 
providing any recommendations on the medium used, the 
standard proposes the use of the TCP/IP protocols to enable 
internet communication. On the upper part of the ISO OSI stack, 
the standard describes the use of the Manufacturing Message 

Specification (MMS) standard as an application-level protocol 
[6]. Replacing MMS with REST services will, however, have 
certain advantages. A REST service is a special flavor of web 
services which are connected to the concept of a Service 
Oriented Architecture (SOA). As REST services represent both a 
simple and well- documented concept for achieving a high 
degree of interoperability, they are a good candidate for use in 
the IEC 61850 protocol stack. The next chapter describes IEC 
61850 and REST in greater detail. Then, the paper describes how 
an IEC 61850 server was developed based on the above 
technologies, and finally a case is defined for interfacing with a 
µCHP unit and an electric vehicle. The IEC 61850 via REST 
implementation suggested in this paper is used in the Danish 
EDISON project [7], where a VPP-like aggregator should 
coordinate the charging of electric vehicles, as well as in the 
Danish Generic Virtual Power Plant project, where µCHPs are 
coordinated to support the grid. 
    

II. THE IEC 61850 STANDARD 
The IEC-61850 standard was designed to enable 

interoperability between different devices in the substation 
environment, and to facilitate the adaptation of future networking 
technologies. One of the cornerstones of the standard is a layered 
data model (see Figure 1), which has been designed to closely 
model the physical substation environment.  

A. Data model 
The logical device is a virtual representation of a physical device 
within the substation. It is comprised of a name, a path to the 
object itself and a list of logical nodes. A logical device contains 
one or more logical nodes, which represent various components 
in the physical device. 

As an example, the setup tested contains a logical node called 
MMXN1. The MMXN part of the name refers to the type of the 
node, which in this case is “Non-phase-related measurements” 
[8]. Apart from the name, the MMXN class must also contain all 
the data classes defined by the Logical Node Class defined by 
the standard [8]. Beside this, instances of the MMXN class can 
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include a list of optional data classes and attributes. The data 
classes represent meaningful information inside the nodes and 
are declared recursively. 

An attribute can either be a simple type, such as FLOAT32, 
INT24 or BOOLEAN, or it can consist of both other simple and 
complex attributes. 

 
Figure 1 – IEC 61850 data model hierarchy [9]  

B. Data-Sets 
The logical nodes can contain data-sets, which contain sets of 
data that have a natural association [10]. Data-sets are primarily 
used for reporting and logging [10], but can also be requested 
directly. Included in the data-sets are properties stating when a 
report/log should be triggered. An example of a triggering 
condition is “Data Change”. 

C. Logging and reporting 
The IEC 61850 outlines a reporting mechanism, which is 
essentially a payload-carrying event that is sent back to the 
subscribing clients when triggered. Reporting is directly linked 
to data-sets as it is the data attributes in the data-sets that specify 
the trigger conditions. Closely related to reporting is logging. 
They both rely on the data-sets for triggering, but the reports are 
sent back to the clients, whereas the logs are persisted locally 
[10]. 

D. Object references 
Any object within the data model can be referred to directly 

via its object path [10]. Because of the tree-like properties of the 
model, this path resembles a fully-qualified file-name notation. 
The path lists all the objects on the route from the root of the 
model to the object in question. Where fully-qualified file-name 
notation usually has a fixed delimiter between object names, the 
IEC-61850 references use a slash to separate the logical device 
from the rest of the path, which is then separated by periods. 

 

 
Figure 2 – Illustration of an IEC 61850 reference [9] 

Included in the object reference is a filtering mechanism called 
functional constraints (FC), which is used to group the data-
attributes. The functional constraints are usually specified at the 
end of an object reference, incased in square brackets. For the 
DC example, this would result in the path: 
 

CHP1/MMXN1.Watt.mag.f[DC]   

Because the paths resemble a fully-qualified file-name 
notation, they can easily be mapped to a URL, which makes the 
data model near perfect for REST. As the physical device and 
the server are not referred in the object path, a REST URL could 
look something like: 
 

http://hostname/device/node/class/attribute 
 

Included in IEC 61850 is also a service specification called the 
Abstract Communication Service Interface (ACSI) [11], which 
outlines a set of methods that are used when communicating with 
the system. These methods have been mapped to REST. 

III. REST SERVICES 
The REST architectural style was first described in 2000 in a 

Ph.D. dissertation by Roy Fielding [12]. The industry did, 
however, not embrace REST right away, probably because at 
about the same time, the Single Object Access Protocol (SOAP) 
[13] was embraced by most of the large software vendors and 
therefore got a lot of attention. As time passed and SOAP grew, 
adding numerous extensions, people started looking for a lighter, 
more web-centric alternative. Today many big web companies 
provide REST services for others to interact with their systems. 
These include companies such as Amazon, Google, Yahoo and 
Facebook.  

Where SOAP comes complete with a seemingly ever-growing 
suite of extensions, the primary aim of REST is to stick closer to 
the basic functionality of the HTTP protocol on which the web is 
based. Unlike SOAP, there is no standard available that describes 
REST. Instead, developers should follow the REST principles 
when creating a RESTful [14] service. 

The most important REST principle is to expose the resources 
in a RESTful service as unique URLs. An example of this might 
be a library service where the whole book catalog could be 
accessed by using the URL http://library.com/books/ whereas a 
single book could be accessed using the URL 
http://library.com/books/123 (where 123 is the ID of the book). 
As opposed to SOAP services, where you would issue a method 
call such as createBook, deleteBook, RESTful services utilize the 
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HTTP methods, GET, POST, PUT and DELETE for reading, 
creating, updating and deleting resources, respectively. 

The REST principles do not define any specific format for 
request or response data. Most common, however, is the XML 
format, but other formats such as JavaScript Object Notation 
(JSON) [15] are becoming increasingly popular, especially in 
Asynchronous JavaScript And XML (AJAX) services. Ideally the 
client is able to ask for specific representation by setting the 
Accept request header to the desired format name. 

Like the HTTP protocol itself, RESTful services are stateless, 
meaning that no state should be stored on the server between 
requests from the client. Each request should therefore contain 
all the information necessary to serve the client. RESTful 
services also embrace other aspects of the HTTP protocol, such 
as status codes, conditional get and caching.  

Status codes are sent along with any HTTP response and 
indicate the type of the response. Examples of common status 
codes are 200 (OK) for a successful request and 404 (NOT 
FOUND) for a request for a non-existing resource. HTTP defines 
status codes in the range 1xx to 5xx. 

Conditional Get allows the client to ask the server whether the 
requested resource has changed since it was last retrieved. This is 
achieved either by sending the If-Modified-Since header with its 
value set to the time of the last retrieval or by sending the eTag 
header that came with the last response. If the resource has not 
been modified the server only returns status code 304 (NOT 
MODIFIED). This can be important for performance, as 
unchanged data does not need to be re-sent.  

Another closely related header is the cache header, sent along 
with the response from the server. The cache header allows the 
server to tell the client whether and for how long the client 
should cache the response. This improves performance as it 
saves the client from requesting the same data again, if it is not 
expected to change. This is mainly used for static resources, such 
as images on the web, but can also be utilized in RESTful 
services. 

The functionality of RESTful services is very closely related 
to the functionality of the web, which has been extremely 
successful over the last couple of decades.  This is mainly due to 
its scalability, interoperability and the fact that it is simple and 
easy to understand. HTTP and the WWW are used for a wide 
variety of tasks ranging from personal home pages to secure 
internet-banking and e-commerce. HTTP already has a built-in 
authentication mechanism but since many, if not all of the tasks 
mentioned call for strict security, several protocols have 
developed to add things like encryption to HTTP. Among some 
of the more well-known ones are open standards, such as the 
TSL/SSL [16] protocols. Because of technologies like these and 
the needs from which they arose, the idea of using REST for 
communication in electrical systems, as is the case with the VPP 
and the distributed energy resources, could surely be considered 
safe. 

IV. RESTFUL INTERFACE FOR IEC 61850 
As mentioned, the IEC 61850 reference paths resemble a 

fully-qualified file-name notation or a URL. This simplifies the 
task of creating a RESTful interface for the IEC 61850 data 
model. The idea is that the various objects in the data model 
hierarchy can be thought of as resources, which can be accessed 
by using the IEC 61850 object reference. As an example the data 
attribute 

 

CHP1/MMXN1.Watt.mag.f 
 

belonging to logical device “CHP1”, logical node “MMXN1” 
and so on would have the URL 
 

CHP1/MMXN1/Watt/mag/f 
 

and the entire “Watt” data object could be retrieved with the 
URL CHP1/MMXN1/Watt. For getting data, as in the example 
above, an HTTP GET request would be used. The server would 
then respond with the requested data in XML format as shown in 
Figure 3.  For setting data, the same URL would be used, but 
with the HTTP method POST instead of GET. 

 

 
Figure 3 - REST communication overview. 

The ACSI interface described in IEC 61850-7-2 enables 
clients to inspect the data model, to read and write data, and to 
access data-sets, logs and more. To do so, the client calls 
methods such as GetDataValues and SetDataValues. These 
methods resemble traditional methods in a programming 
language with input arguments and return values. As described 
above, the REST architecture guidelines define services as a set 
of resources instead of methods as in the case of ACSI.  

To make a resource-oriented interface for the IEC 61850 
standard, a mapping from the ACSI methods to URL and HTTP 
method-pairs has been defined. The mapping for the data model 
of the IEC 61850 standard is shown in Table 1.  

Mappings for data-sets, reporting, logging, setting-groups and 
substitutions can be made in a similar manner. These mappings 
are presented in full detail in [9]. 

The first column in Table 1 shows the URL template of a 
resource, the second column shows the HTTP method used to get 
or set the URL, and the third column shows the ACSI services 
this resource replaces. The response from the GET requests to 
the resources shown in Listing 1 can be modified by using query 
string parameters. Three query string parameters have been 
defined: expandLevel, fc and includeValues. 
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The expandLevel parameter controls how big a portion of the 
data model is retrieved. The default value of this parameter is 
zero, which results in only the requested level of the data model 
being retrieved, as can be seen in Listing 1. Setting the 
expandLevel parameter to a higher number or to the value “all”, 
allows the client to retrieve bigger portions of the data-model 
hierarchy, as seen in Listing 2. By retrieving the whole data 
model, the client can easily inspect an entire logical device and a 
single URL can therefore replace multiple ACSI services.  

The two remaining parameters accepted by the RESTful 
service are fc and includeValues. The fc parameter is used for 
filtering the data-model hierarchy to include only data attributes 
with the specified functional constraint. The includeValues 
parameter specifies whether the data values should be included 
in the response in addition to the data model. 
 

TABLE 1 - ACSI TO REST MAPPING 

Url Meth. ACSI equivalent 
/ GET GetServerDirectory 

(GetAllDataValues) 
(GetDataValues) 

/[LD]/ GET GetLDDirectory 
(GetAllDataValues) 
(GetDataValues) 

/[LD]/[LN] GET GetLNDirectory 
(GetAllDataValues) 
(GetDataValues) 

/[LD]/[LN]/[DO] GET GetDataDirectory 
GetDataDefinition 
(GetAllDataValues) 
(GetDataValues) 

/[LD]/[LN]/[DO]/[DA] GET (GetAllDataValues) 
(GetDataValues) 

/[LD]/[LN]/[DO]/[DA] POST SetDataValues 

 
As Figure 3 illustrates, the response format of the RESTful 

service is in XML. Because of XMLs ability to model arbitrary 
data structures it is possible to represent the hierarchical IEC 
61850 data model in a concise and readable format.  

To show this, two URLs and their resulting output are given. 
Listing 1 shows a response containing a single value; Listing 2 is 
an example of what a larger view of the data model might look 
like. 

 

1. <DA Name="f" Type="FLOAT32" 
Ref="EV1/ZCEV1/MaxRtDchPwr/setMag/f">16800</DA> 

Listing 1 - Response for URI: /EV1/ZCEV1/MaxRtDchPwr/setMag/f 

As seen in Listing 2, a request for an entire data hierarchy can 
be quite verbose and might not be suitable for frequent use in a 
production environment. This kind of request is, however, very 
useful during the configuration and development phase when 
new devices need to be discovered. As the RESTful interface 
uses standard HTTP GET request, it is even possible to use a 
web browser to discover an IEC-61850-enabled device. As with 

ACSI methods such as GetServerDirectory and GetLDDirectory, 
the RESTful interface also enables clients to programmically 
discover devices in a generic manner. 
 

1. <DO Name="MaxRtDchPwr" Type="ASG" 
Ref="EV1/ZCEV1/MaxRtDchPwr"> 

2. <DA FC="SP" Name="setMag" Type="Struct" 
Ref="EV1/ZCEV1/MaxRtDchPwr/setMag"> 

3. <DA Name="f" Type="FLOAT32" 
Ref="EV1/ZCEV1/MaxRtDchPwr/setMag/f">16800</DA> 

4. </DA> 
5. <DA FC="CF" Name="units" Type="Struct" 

Ref="EV1/ZCEV1/MaxRtDchPwr/units"> 
6. <DA Name="SIUnit" Type="Enum" 

Ref="EV1/ZCEV1/MaxRtDchPwr/units/SIUnit">Watt</DA> 
7. <DA Name="multiplier" Type="Enum" 

Ref="EV1/ZCEV1.MaxRtDchPwr/units/multiplier">Item</DA> 
8. </DA> 
9. <DA FC="DC" Name="dU" Type="Unicode255" 

Ref="EV1/ZCEV1/MaxRtDchPwr/dU">Maximum rated discharging 
power</DA> 

10. </DO> 
Listing 2 - Response for URI: /EV1/ZCEV1/MaxRtDchPwr/?expandLevel=all 

Although XML has been chosen as the output format in the 
example above, the RESTful interface could just as well use 
other output formats. Thanks to the Accept header discussed 
above, the same RESTful service could both accept and output 
XML and JSON. One argument for using the JSON format is 
that it is designed for serializing common objects, lists and scalar 
values found in virtually all programming languages and can 
therefore easily be deserialized by those languages. And without 
the verbose declarations, it is definitely more compact. JSON 
libraries exist for all major programming languages/frameworks, 
including Java, .Net, C++, Python etc [17]. 
 As discussed in Section II, the IEC 61850 standard defines a 
reporting mechanism. Because of the connection-less nature of 
HTTP, and thereby of REST, implementing reporting callbacks 
to the client is not entirely straightforward. However, such 
mechanisms exist, for example the WebHooks model [18] 
proposed by Jeff Lindsay, NASA Ames Research Center. The 
approach is to have the IEC 61850 server enable clients to 
subscribe to reporting events, similar to the approach described 
in IEC 61400-25-3[19], and pass along with that subscription 
request a callback URL which the IEC server can use for sending 
reports to the client as HTTP POST requests. Security must be 
kept in mind using this approach, because the client must be able 
to validate that the callbacks received do indeed come from the 
server. This could be solved using HTTP-basic authentication or 
X.509 client certificates [20]. 

V. CASE STUDIES 
To test the usefulness of REST for mapping to the IEC 61850 

standard, a server complying with both of these has been 
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implemented. The server was designed “from sc
multiple devices and to test the scalability
implementation. The server has been written e
the .NET framework. 

To facilitate the deployment to embedded 
support for non-Windows systems, a small 
process web server was chosen to host the 
Except for the logging and reporting mechanism
the background, the server waits for request
clients. When a request is received for a given
looks up the requested object in its internal repr
data model. If the request is a “write” the se
return a status code as confirmation. In the c
however, the requested object is serialized to X
to the client. One of the benefits of this appr
relatively simple to return not just the requeste
entire sub-model. In fact, if a request is receive
device the server is able to return the ent
including all the values, using a single response.

 
The goal of these case studies is to test the REST
against different DERs, namely, 

• to describe the µCHP setup and briefly 
communication has been mapped 

• to touch upon the challenges of mappin
vehicles and what was needed to accom

A. Case study: Interfacing with a µCHP 
The server was designed using a modular plu
with a generic interface, which enables easie
installation of virtually any type of device. 

Among the IEC-61850-enabled devices is 
µCHP units from Senertec. The Dachs acc
different commands over the RS232 line an
commands returns a different set of values. The
electrical and temperature measurements. W
REST request is received, i.e., more than one
requested, the IEC 61850 server requests eac
from the Dachs module. The Dachs module 
requested value in the set of values returned
commands. As the values are requested from th
one at a time, the module caches the result of ea
a fraction of a second to avoid having to is
multiple times for each REST request. 

 

Figure 4 - µCHP module RS232 communication. 
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Two client applications were de
system and to facilitate testing. One 
a web client showing the various de
as well as all the measurements
screenshot from the client showing
seen in Figure 5. 
 

Figure 5 - Screenshot of the web client. 

B. Case study: Interfacing with a
Another example of a plug-in ma

charging-spot. As no real vehicles w
development, the plug-in was ma
instead, which further illustrates th
The simulation includes both a char
contains a simulated battery. When
charging spot an EV aggregator-serv
to control the charging using sched
REST interface. Such an EV aggr
EDISON project [21]. 

 

Figure 6 - Setup showing simulated EV and c

The charging spot therefore acts a
in accordance to [9] and [21] and 
need a wireless connection for bein
server. Because of this, even thoug
vehicle are simulated as individual e
the charging spot as the logical
connected EV represented as a lo
server, or any other client, can re
charging-spot and the EV via the I

eveloped to demonstrate the 
of these demo applications is 
evices attached to the server, 
 and controls available. A 
g one of the µCHPs can be 

 

n EV 
de for the server is for an EV 
were available at the time of 
apped to an EV simulation 
he versatility of the system. 
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n the EV is plugged into the 
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dules sent via the IEC 61850 
regator-server is used in the 

 
charging-spot. 

as a proxy for the EV. This is 
means that the EV does not 

ng utilized by the aggregator 
gh the charging spot and the 
entities, they are mapped with 
l device and the currently 
ogical node. The aggregator 
ead various values from the 
IEC 61850 interface, such as 
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the current power usage, the phases in use and the current state 
of charge. 

There is an addition to the IEC 61850 standard, the IEC 
61850-7-420 [22], that deals specifically with DERs. After 
having analyzed the requirements for the charging spot and EV, 
it became apparent that this standard needed further extension. 
Logical nodes for charging-spots (ZCHS) and for EVs (ZCEV) 
have been defined. These nodes contain essential attributes such 
as the state-of-charge of the EV, power limits and battery 
capacity. For controlling charging and discharging of the EV, the 
logical nodes for energy schedule, defined in [22], have been 
utilized. Since these extensions are outside the scope of this 
paper and subject for a later publication they will not be further 
described here. 

C. Case study conclusion 
Although µCHPs and EVs differ significantly in both function 
and composition, the cases presented in this section show how 
IEC 61850 with the REST interface can support communication 
with both types of DERs. The units can be monitored and 
controlled to optimize their behavior in relation to energy prices, 
user requirements and the state of the power system.    

VI. CONCLUSION 
The main aim of this paper has been to demonstrate how 
RESTful services, in conjunction with the data model of IEC 
61850, can be used to increase interoperability and simplicity in 
DER communication. The IEC 61850 standard has a large and 
well-defined set of logical notes describing the various 
components and values of a DER unit. This paper has shown that 
the object reference path of the IEC 61850 data model can easily 
be mapped to the URL format in the resource-oriented approach 
used by REST. Besides offering an intuitive way of accessing 
information, REST also provides better interoperability and 
simplicity by shedding much of the complexity present in SOAP-
based web services. The advantages of using IEC 61850 with 
REST have been demonstrated by building an IEC 61850 server 
and describing its functionality in two case studies. 

There is no doubt that the ambition of actively integrating 
DERs into a smart grid constellation will rely on the utilization 
of contemporary web concepts and standards. This paper serves 
as an input to the identification of the ICTs capable of satisfying 
the communication requirements for the power system of the 
future. 
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