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IMPROVED VELOCITY POTENTIAL FORMULATIONS OF HIGHLY
ACCURATE BOUSSINESQ-TYPE MODELS.

Harry B. Bingham∗, Allan P. Engsig-Karup∗, David R. Fuhrman∗,

and Per A. Madsen∗

Abstract

Several theoretical and numerical aspects concerning the highly accu-
rate Boussinesq-type equations of Madsen et al. (2003, 2006); Jamois
et al. (2006) are discussed. A re-derivation of the model recently pre-
sented by Bingham et al. (2009) is outlined. This provides a more gen-
eral framework for the model establishing the correct relationship be-
tween a velocity formulation and a velocity potential formulation and
correcting previous errors in the potential formulation. A new shoal-
ing enhancement operator is introduced which enables the derivation
of new models which differ from the existing ones at O(∇h). The per-
formance of the new formulation is validated using computations of
linear and nonlinear shoaling problems. The behaviour on a rapidly
varying bathymetry is also checked using linear wave reflection from
a shelf and Bragg scattering from an undulating bottom. A new sta-
ble discretization scheme around structural corners within the fluid
domain is also presented.

INTRODUCTION

The most accurate Boussinesq-type formulations for nonlinear water waves
yet derived are those originally presented by Madsen et al. (2002, 2003) and
recently extended to rapidly varying bathymetry by Madsen et al. (2006).
These methods achieve superior performance by time-stepping the fully non-
linear free-surface conditions, using a mid-depth expansion level, and retain-
ing the vertical velocity variable as an unknown. Many applications have
been presented over the past few years where the method has been used to
analyse and elucidate interesting nonlinear wave phenomena. Most of this
work has used the original formulation which is in terms of the surface eleva-
tion η, a vertical velocity utility variable ŵ and a two-component horizontal
velocity utility variable û. In the work of Jamois et al. (2006) however,
the method was re-cast in terms of a horizontal velocity potential utility

∗Department of Mechanical Engineering, Technical University of Denmark, DK-2800

Kgs. Lyngby, Denmark

1



variable φ̂ to replace û. The motivation for this re-formulation was mainly
numerical efficiency as it reduces the size of the linear system by 1/3. The
velocity potential formulation used in this work was obtained by ignoring
all terms at order ∇ẑ in the flow kinematics (a mild-slope approximation)
as was also done in the original formulation. It turns out that although the
neglect of these terms does not affect the shoaling properties of the velocity
formulation, it completely destroys the performance of the potential formu-
lation. This paper presents a corrected derivation of the method in terms
of a utility velocity potential which retains terms proportional to ∇ẑ. This
allows the potential formulation to achieve a similar shoaling performance
to the original velocity formulation. The full details of the new derivation,
as well as more complete validation results appear in Bingham et al. (2009).

The second topic of this contribution is concerned with finite differ-
ence discretizations of the Boussinesq method around piecewise rectangular
structures. A new stable procedure for including such structures within the
fluid domain is described. More details on this and other numerical aspects
will appear in Bingham and Engsig-Karup (2009).

Formulation

Consider the irrotational flow of an incompressible inviscid fluid with a free
surface. A Cartesian coordinate system is adopted, with the horizontal axes
x = [x, y] located on the still-water plane and the z-axis pointing vertically
upwards. The fluid domain is bounded by the sea bed at z = −h(x) and
the free surface at z = η(x, t). Following Zakharov (1968), the free surface
boundary conditions are written in terms of the velocity potential φ̃ =
φ(x, η, t) and the vertical velocity w̃ = (φz)z=η defined directly on the free
surface

ηt + ∇η · ∇φ̃− w̃(1 + ∇η · ∇η) = 0, (1)

φ̃t + gη +
1

2
(∇φ̃)2 −

1

2
w̃2(1 + ∇η · ∇η) = 0, (2)

where ∇ = [∂/∂x, ∂/∂y] is the horizontal gradient operator and g the gravi-
tational acceleration. Partial differentiation is indicated when the indepen-
dent variables appear as subscripts. Integrating η and φ̃ forward in time
from initial conditions requires a means of computing the associated w̃ such
that the flow satisfies the Laplace equation in the fluid domain

∇
2φ+ φzz = 0 (3)

and the kinematic boundary condition on the sea bottom

w + ∇h · ∇φ = 0, z = −h(x). (4)

This closure will be solved by means of a Boussinesq-type Taylor series
expansion of the velocity potential about an arbitrary level z = ẑ(x).
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Boussinesq-type expansion about a rapidly varying level ẑ

We outline here the derivation of an infinite series solution for the interior
flow problem in terms of a velocity potential. The solution is obtained in
a slightly different way than that originally used by Madsen et al. (2002,
2003) and more generally by MFW2006, but the results can be shown to
be identical up to first-order in δ when ẑ(δx) is a slowly varying function of
the horizontal coordinates.

The Taylor series expansion of the solution φ(x, z, t) about an arbitrary
vertical position z = ẑ(x) is given by

φ(x, z, t) = φ̂+ ψŵ +
1

2
ψ2φ̂(2) +

1

6
ψ3φ̂(3) + ... (5)

where

φ̂ = φ̂(0) = φ(x, ẑ, t), ŵ = φ̂(1) = ∂φ(x,z,t)
∂z

∣

∣

∣

z=ẑ
(6)

φ̂(n) =
∂nφ(x, z, t)

∂zn

∣

∣

∣

∣

z=ẑ

, for n = 2, 3, ...,∞.

and ψ = z − ẑ has been introduced for brevity. Two derivatives of φ are
now taken in each of the three coordinate directions and the result inserted
into the Laplace equation. Coefficients are then collected for each power of
ψ and set individually to zero to obtain the following recursion relation for
φ̂(n)

φ̂(n) =
1

1 + ∇ẑ2

(

−∇
2φ̂(n−2) + 2∇ẑ · ∇φ̂(n−1) + ∇

2ẑφ̂(n−1)
)

,

n = 2, 3, ...,∞. (7)

This is a generalisation of the well known constant expansion level recursion
relation to an arbitrary level ẑ. Successive solution of this relation for
n = 2, 3, ... provides the exact infinite series solution in terms of φ̂ and
ŵ. The number of terms involved increases rapidly with n however, and a
straightforward truncation of the series corresponds to assuming that the
spatial variations of ẑ and (φ̂, ŵ) are similar, which is not necessarily the
case. Instead we will assume that ẑ is a slowly varying function of the
horizontal coordinate to obtain a more convenient solution for practical
implementation.

The slowly varying ẑ solution

To simplify the solution, we insert ẑ(δx) into (7), assuming that δ ≪ 1, and
collect terms at each order of δ. Dropping terms above O(δ) in the recursion

relation and solving successively for n = 2, 3, ...,∞ we express each φ̂(n) in
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terms of φ̂ and ŵ. With these solutions inserted into (5) the following O(δ)
solution is obtained

φ(x, z, t) = Cos(ψ∇) φ̂+ Sin(ψ∇)∇−1 ŵ (8)

+∇ẑ ·
[

(

ψCos(ψ∇) − Sin(ψ∇)∇−1
)

∇φ̂+ ψ Sin(ψ∇)∇−1 ∇ŵ
]

.

This compact form is obtained by associating each infinite series operator
with the Taylor series expansion of an irrational function. For example, the
first two infinite series operators appearing here are

Cos(ψ∇) ≡ 1 −
1

2
ψ2

∇
2 +

1

24
ψ4

∇
4 + ... (9a)

Sin(ψ∇)∇−1
≡ ψ −

1

6
ψ3

∇
2 +

1

120
ψ5

∇
4 + ... (9b)

The convention adopted here is to express all infinite series operators in
terms of even (hence scalar) derivatives which should be understood to act
independently on each component when applied to a vector. Thus e.g.

∇2 ∇ŵ ≡ [∇2ŵx,∇
2ŵy].

The fluid velocities are now given by derivatives of (8). This potential
formulation can be converted to an equivalent velocity formulation using
the relation ∇φ̂ = û+∇ẑ ŵ. This manipulation recovers the corresponding
Method I expressions obtained by Madsen et al. (2006, 2003) up to first
order in δ.

Dispersion and shoaling enhancement

The accuracy of the truncated approximation can be significantly improved
by applying an enhancement technique to the differential operators. This
is done by defining an enhancement operator L(ẑ∇), along with new (non-

physical) expansion variables φ̂∗, ŵ∗ such that

φ̂ = Lp(ẑ∇)φ̂∗, ŵ = Lw(ẑ∇)ŵ∗. (10)

In previous work only one dispersion enhancement operator was used:

L0(ẑ∇) =

2N
∑

n=0

λ2n ẑ
2n
∇

2n (11)

with coefficients λi obtained by setting to zero all terms with powers of
2N + 2 to 4N + 1 in the product of L0 and the Taylor series expansions
up to order 4N + 1 of the operators Sin(ẑ∇) and Cos(ẑ∇). The goal here
is to double the accuracy of the truncated expansions, giving the resultant
dispersion operator a Padé expansion form. The first two such operators
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are

L0(ẑ∇) = 1 + (ẑ∇)2

10 + (ẑ∇)4

120 , N = 1 (12)

L0(ẑ∇) = 1 + (ẑ∇)2

18 + (ẑ∇)4

504 + (ẑ∇)6

15120 + (ẑ∇)8

362880 , N = 2. (13)

Here we extend the idea by defining two additional shoaling enhancement

operators such that

Lp = L0 + ∇ẑ · L1∇, Lw = L0 + ∇ẑ · L2∇ (14)

L1(ẑ∇) =
N+1
∑

n=1

a2n−1 ẑ
2n−1

∇
2n−2, L2(ẑ∇) =

N+1
∑

n=1

b2n−1 ẑ
2n−1

∇
2n−2

The coefficients ai, bi appearing in the new shoaling enhancement operators
L1 and L2 are then chosen to optimise the linearised shoaling behaviour of
the resultant method.

The enhanced definition of the expansion variables (10) is now inserted
into the flow solution (8). When the series operators in this equation act
on the L-operator they modify the coefficients of the original series as well
as generating new terms. The new terms are collected into powers of δ and
terms at order δ2 and higher are dropped. The final result has the form

φ(x, z, t) = (J01 + δ∇ẑ · J11p∇) φ̂∗ + (J02 + δ∇ẑ · J12p∇) ŵ∗. (15)

The fluid velocities are obtained by differentiating (15) and this leads to a set
of consistency relations between all the operators (see Bingham et al. (2009))
which provide a convenient check that mass conservation is achieved to the
truncation order of the scheme. Analogous mass conservation constraints
for a velocity formulation are also given there.

To obtain a truncated method for practical implementation, we apply
the above described enhancement strategy to (8) and it’s derivatives to de-
rive all of the J-operators, retaining derivatives at least up to 2N + 2. All
operators acting on φ̂ are then truncated at derivative order 2N + 2 while
those operating on ŵ are truncated at 2N + 1. The resultant N = 1 and
N = 2 operators are rather lengthy and not given here but can be found in
Bingham et al. (2009). In that reference, the N = 2 enhanced potential for-
mulation is also shown to recover the original velocity formulation (without
shoaling optimisation) when converted to a velocity formulation.

Analysis of linear shoaling The performance of this new model with
respect to linear shoaling is shown in Figure 1 where it is compared to the
exact solution from linear theory. Three model results appear in this fig-
ure. The curve marked “O(0)” shows the model without ∇ẑ terms which
was discussed by Jamois et al. (2006). This curve shows the behaviour of
the O(0) in δ model without any attempt to optimise for linear shoaling,
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Figure 1: Left: The linear shoaling gradient for the N = 1 model. O(0)
is the model used by Jamois et al. (2006). The other two curves show
the new O(δ) model with and without using the shoaling enhancement
operators L1 and L2. Right: Relative error for the enhanced model.

but we have so far found no way to significantly improve the result without
including terms at O(δ). Thus, the claimed ability to shoal waves out to
κ = 10 with the potential formulation of Jamois et al. (2006) is incorrect.
The optimised coefficients given there were in fact obtained from the O(0)
in δ velocity formulation by incorrectly assuming that the two formulations
behaved in the same way with respect to linear shoaling. The curve marked
“Default” is the new O(δ) model without the shoaling enhancement op-
erators L1 and L2, i.e. setting all the ai, bi coefficients to zero. The curve
marked “Enhanced” is obtained by using the values listed by Bingham et al.
(2009) which have been determined via minimisation of the shoaling errors
over the range 0 ≤ κ0 ≤ 10 with ẑ = −h/2.

Numerical solution using finite-differences

A general purpose, finite difference based, numerical solution of the above
described Boussinesq-type model has been implemented in nearly the same
manner as that described in detail by Fuhrman and Bingham (2004); Fuhrman
et al. (2004); Jamois et al. (2006). The new implementation improves on
earlier solutions in several ways which will be described in detail by Bing-
ham and Engsig-Karup (2009). Here we briefly summarise the numerical
discretization procedure and describe the new method for inserting piece-
wise rectangular structures into the fluid domain.
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Old Method New Method

Figure 2: The old and new discretization procedures around structural
corners within the fluid domain. Open circles show grid points within
the fluid domain and the solid circles show how coefficients are reflected
about the boundary when using a 7-point stencil in each direction.

A structured grid of Nx by Ny points is distributed over the rectangular
still water plane. One arbitrarily spaced set of points is taken along each
coordinate direction, and 1D finite difference operators of order r−1 are de-
veloped at each point for the first four or six derivatives using Taylor series
expansion. The point where the derivative is desired is always included, so
r is an odd integer. To maintain a consistent order of accuracy, r points are
used for first- and second-derivatives, but 2[(r−1)/2+1]+1 points for third-
and fourth-derivatives, etc. Homogeneous Neumann boundary conditions at
the side walls of the domain are imposed by reflecting the finite-difference
coefficients for a function which is symmetric about the boundary, thus all
schemes are effectively centred. 2D cross-derivative operators are then ob-
tained via multiplication of the 1D discrete operators (successive application
of the schemes.)

Equations (1) and (2) are evolved forward from initial conditions at each
grid point using the classical explicit fourth-order Runge-Kutta scheme. All
terms on the right hand side of these equations can be directly computed
using the above described finite-difference operators, except w̃. The Boussi-
nesq model is applied to find this quantity by expressing φ̃ using (15) at
z = η, and the bottom boundary condition (4). This leads to a sparse lin-
ear system of equations of rank 2n where n = NxNy. This system is solved
using the GMRES iterative scheme, preconditioned on the left by an in-
complete LU-factorisation of the linearised, lowest-order accurate version of
the system matrix as discussed in detail by Fuhrman and Bingham (2004).

This gives φ̂∗ and ŵ∗ at which point w̃ is computed from the z-derivative
of (15) applied at z = η to close the problem.

New discretization procedure around corners In Fuhrman et al.
(2005); Jamois et al. (2006) piecewise rectangular structures extending uni-
formly through the depth of the fluid were introduced into the fluid domain
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by simply reflecting the finite difference coefficients about these boundaries.
In that work, the boundaries were taken to lie midway between grid points
as shown in the left-hand plot in Figure 2. This led to an ambiguity about
how to reflect coefficients for grid points near external corners (i.e. first in
x and then in y or the reverse), and an average of the two possibilities was
taken. The resultant numerical scheme turned out to be generally unstable
(more and more so as the problem became more and more nonlinear) and
often required large amounts of filtering near external corners. The new dis-
cretization scheme shown to the right in this figure, has no negative effect
on the stability of the overall method. In this scheme, the boundaries and
corners are taken to lie on the grid points. Discrete 1D derivative operators
are then developed in each coordinate direction where there is no ambiguity
about reflection of the coefficients. Finally, mixed-derivative operators are
obtained by multiplication of the uni-directional operators. As these 1D
derivative operators do not in general commute, we take the average of the
two possible products.
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Figure 3: Linear shoaling wave elevation amplification factor on a
smooth beach geometry with average slope of 5% covering the range
10 ≥ kh ≥ .25.

Model calculations

In this section we present numerical calculations for several test cases of
wave transformation on a variable depth fluid. More extensive applications
can be found in Bingham et al. (2009); Bingham and Engsig-Karup (2009).
Sixth-order accurate finite difference approximations and a Courant number
Cr = L/T ∆t/∆xave = 1/2 been used for all calculations, where ∆xave

is the average grid spacing and L/T the deep water wave speed. Wave
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Figure 4: Nonlinear waves on a semi-circular shoal, T = 1s case. Nx =
798, Ny = 53, Cr = 1/2. Harmonic amplitudes along the tank centre line.

generation and absorption is done using relaxation-zones of approximately
two wavelengths.

Linear shoaling on a mildly sloping beach In order to confirm the
analysis of the linear shoaling properties of the model we consider the evo-
lution of very small amplitude waves on a plane beach of mild slope. The
smooth beach profile shown in Figure 3 provides local relative depths run-
ning from 10 ≥ kh ≥ .25 and a maximum slope of approximately 8%. The
deep water wavelength is L and the domain is of length 32L. At the shallow
end the wavelength has reduced to L1 = .28L. Nx = 443 grid points have
been used, distributed along the tank based on the local water depth to
give approximately eight to ten grid points per wavelength everywhere in
the domain. These calculations were run until a steady-state was reached
and the local wave amplitude amplification factor (normalised by the deep
water wave height H) is compared to the exact result from linear theory in
Figure 3. The errors can be seen to be small and generally consistent with
the analysis shown in Figure 1.

Nonlinear waves on a semi-circular shoal To test the performance of
the model for nonlinear refraction-diffraction problems we consider the case
investigated experimentally by Whalin (1971). Nearly linear plane waves
are incident from the left and encounter a semi-circular shoaling region and
subsequent shelf. The semi-circular shoal region causes the waves to refract,
steepen and focus, finally releasing higher harmonics on the shelf to create an
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irregular, short-crested 3D pattern. We show here results from the case with
T = 1s, and H = 0.0390m. A harmonic analysis of the steady-state time
series along the centre line of the tank is shown in Figure 4. A uniform grid
spacing has been applied, with the number of grid points chosen to ensure
that the free third-harmonic wave is resolved with four to six grid points
per wavelength on the shallow shelf. The comparison with the measured
data is generally good.
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Figure 5: Reflection coefficient of linear shallow water waves from a
plane step plotted vs. step length.

Reflection from a plane slope We now test the performance of the
model on a rapidly varying bathymetry by considering the reflection of
linear monochromatic waves from a plane slope and subsequent shelf. The
first case, originally suggested by Booij (1983), concerns two constant depth
regions at h = 0.6m and h = 0.2m connected by a plane slope of width b0.
The width b0 ranges from 6.4m to 0.4m corresponding to slopes of 1/16 to
1. A linear wave of period T = 2s is incident from the deep water region for
each case which gives relative water depths of kh = .9 and kh = .4 in the
deep and shallow regions, thus a relatively shallow test case. We take ẑ =
−.3h to the left and ẑ = −.45h to the right of the slope, joining these values
with a straight line, and smoothing the result. The grid spacing is taken to
be uniform with ∆x = 0.04m. Figure 5 compares the resultant reflection
coefficients with the solutions of Suh et al. (1997) who used the extended
mild-slope equation. We conclude from this that the new methods can treat
shallow water reflection problems up to bottom slopes of approximately one.

The second case considers the same problem but in intermediate to deep
water. The geometry consists of a a deep region with h2 = 20m and a shal-
low region with h1 = 5m, connected by a steep plane with slope 0.5. For the
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(2003), points are the current calculations.

intermediate to deep water cases with k2h2 > 1 we set ẑ = −h/2 at the deep
end and ẑ = −.45h at the shallow end, connect them with a straight line,
and smooth the result. The incoming waves may travel in either direction,
and the wave period is varied to cover the range 0.1 ≤ k2h2 ≤ 6 corre-
sponding to .05 < k1h1 < 1.62. Figure 6 compares the resultant reflection
and transmission coefficients with calculations using the method of Bender
and Dean (2003) who used a step-wise modal decomposition approach. The
agreement is reasonably good.

Bragg scattering from an undulating bottom As a final example,
we consider the reflection of plane waves from an undulating bottom. The
case considered here is for Class I Bragg resonance in 2D for which the
resonance condition k1 = −k2 = K

2 , and ω1 = ω2. where k1, k2, and
K are the incident, reflected, and bottom wave numbers respectively, and
ω1, ω2 are the corresponding frequencies. Calculations are compared with
the experimental measurements of Davies and Heathershaw (1984) for the
case with ten bottom ripples at Kd = 0.31 and d/h0 = 0.16, with the
bottom defined by h(x) = h0 + d sin (Kx) over the ripple patch and by
h = h0 elsewhere. A constant grid spacing corresponding to twenty points
per bottom wave length have been used with ẑ = −.5h0. The comparison
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is shown in Figure 7, and the agreement is good.

Acknowledgements

We are grateful for funding from the Danish Research Council for Tech-
nology and Production grant no. 274-06-0030 and for supercomputing re-
sources made available by the Danish Centre for Scientific Computing.

References

Bender, C. J., Dean, R. G., 2003. Wave transformation by two-dimensional
bathymetric anomalies with sloped transitions. Coastal Engineering 50,
61–84.

Bingham, H. B., Engsig-Karup, A. P., 2009. High accuracy Boussinesq
methods for wave-structure interaction (In preparation).

Bingham, H. B., Madsen, P. A., R., F. D., 2009. Velocity potential formu-
lations of Boussinesq-type models. Coastal Engineering To Appear.

Booij, N., 1983. A note on the accuracy of the mild-slope equations. Coastal
Engineering 7, 191–203.

12



Davies, A. G., Heathershaw, A. D., 1984. The reflection of wave energy by
undulations on the seabed. J. Fluid Mech. 144, 419–443.

Fuhrman, D. R., Bingham, H. B., 2004. Numerical solutions of fully non-
linear and highly dispersive Boussinesq equations. Int. J. Num. Methods
in Fluids 44 (3), 231–255.

Fuhrman, D. R., Bingham, H. B., Madsen, P. A., 2005. Nonlinear wave-
structure interaction with a high-order Boussinesq model. Coastal Engi-
neering 52, 655–672.

Fuhrman, D. R., Bingham, H. B., Madsen, P. A., Thomsen, P. G., 2004.
Linear and non-linear stability analysis for finite difference discretizations
of high-order Boussinesq equations. Int. J. Num. Methods in Fluids 45 (7),
751–774.

Jamois, E., Fuhrman, D. R., Bingham, H. B., Molin, B., 2006. Wave-
structure interactions and nonlinear wave processes on the weather side
of reflective structures. Coastal Engineering 53, 929–945.

Larsen, J., Dancy, H., 1983. Open boundaries in short wave simulations - a
new approach. Coastal Engineering 7, 285–297.

Madsen, P. A., Bingham, H. B., Liu, H., 2002. A new Boussinesq method
for fully nonlinear waves from shallow to deep water. J. Fluid Mech. 462,
1–30.

Madsen, P. A., Bingham, H. B., Schäffer, H. A., 2003. Boussinesq-type
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