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Abstract

This work focuses on the experimental characterization of electromag-
netic waves propagating along the interface between an insulator and
a conductive medium. Such waves are commonly known as surface
plasmon polaritons (SPPs) and might, for instance, pave the way
towards miniaturized integrated optical devices and enable strong
non-linear optical processes at very low light levels.
Thin metal stripes support almost Gaussian shaped SPP modes prop-
agating over distances of several millimeters. These modes were ef-
ficiently excited using optical beams propagating in free space and
verified by the polarization dependence of the excitation. Simulta-
neous measurements of the reflection and transmission, while tun-
ing the temperature of the sample, demonstrate standing waves on
SPP modes. Optical pulses of µs durations were used to analyze
the non-linear absorption coefficient of SPP modes. A strong power
dependency of the absorption was found and the characteristic time
constant of the underlying process was determined to be of the order
of ms, which is characteristic for thermal processes.
An optical parametric amplifier (OPA) was build as a resource of
quadrature squeezed vacuum states. These states were character-
ized by means of homodyne measurement and the density matrix
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was reconstructed using a maximum likelihood algorithm. A max-
imum squeezing level of −1.9 ± 0.1 dB below the shot noise level
was measured. Non-classical SPP modes on a thin gold stripe were
generated by exciting them with quadrature squeezed vacuum states.
After propagation and re-emission, the remaining quantum states
were characterized using the same experimental techniques as before.
It could be demonstrated that −0.7 ± 0.1 dB of squeezing survived
the plasmonic excitation, propagation, and re-emission. In contrast
to previous work, the experiment presented here characterizes SPP
modes in an infinite dimensional Hilbert space including the coher-
ence between photon number states. The impact of the SPP mode
on the quadrature squeezed vacuum state was successfully simulated
by applying a standard beam splitter model.
Recent theoretical advances motivate the excitation of quantized SPPs
by means of placing single photon emitters in their near vicinity.
A prominent representative of such emitters is the nitrogen-vacancy
(NV) center in diamond, which emits near infrared single photons at
room temperature. Single NV-centers embedded in diamond nano-
crystals were placed near thin silver wires. By monitoring the pho-
ton re-emission from the wire end facets using single-photon resolv-
ing confocal microscopy, the NV-center coupling to propagating plas-
monic modes could be verified. Due to the strong dispersion of the
propagating SPP modes and the finite wire length the measured SPP
spectrum was strongly modulated. In addition to this, second-order
correlation function measurements reveal the excitation of quantized
SPPs.



Dansk Resumé

Denne afhandling beskriver eksperimentelle undersøgelser af elektro-
magnetiske bølger, som bevæger sig p̊a overgangen mellem et isol-
erende og et ledende materiale. Disse bølger bliver normalt kaldt
”surface plasmon polaritons” (SPP), og deres fundamentale egensk-
aber kan føre til dannelsen af ekstremt høje ikke-lineariteter samt
konstruktionen af nano-skopiske integrerede optiske kredsløb.
Tynde striber af metal understøtter SPP modes, der har den specielle
egenskab at de kan udbredes flere millimeter langs metallets overflade.
Gennem m̊alinger af transmission og refleksion af s̊adanne modes for
forskellige metaltemperaturer, er det blevet p̊avist at st̊aende SPP
bølger eksiteres. Ydermere er den ikke-linære absorptionskoefficient
for SPP mode’ene blev undersøgt gennem studier af pulsudbredelser
i metallet. Det blev p̊avist at absorbtionen var stærkt afhængig af
pulseffekten og den karakteristiske tidskonstant blev fundet til at
være af størrelsesordenen millisekunder, hvilket er typisk for termiske
processer.
Hovedemnet i denne afhandling er at undersøge udbredelsen af kvan-
telys i SPP modes. To forskellige ikke-klassisk tilstande af lyset er
blevet undersøgt; s̊akaldt squeezed lys og en en-foton tilstand.
En optisk parametrisk forstærker blev brugt som kilde til generering
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af squeezed lys. Denne tilstand af lyset blev fuldt ud karakteriseret
ved brug af homodyn detektion b̊ade før og efter udbredelse i met-
allet. Gennem disse m̊alinger er det blevet vist at de ikke-klassiske
egenskaber overlever udbredelsen i metallet.
Udover den squeezed tilstand er enkelt foton-tilstande blevet gener-
eret. Kilden til udsendelsen af s̊adant lys er urenheder i meget sm̊a
diamant krystaller. Urenhederne giver anledning til en diskret en-
ergistruktur, som udsender lys i bølgepakker best̊aende af en enkelt
foton. Disse enkelt foton kilder blev placeret tæt p̊a tynde sølvtr̊ade,
som understøtter SPP modes. Gennem vekselvirkninger mellem tr̊aden
og diamanten fokuseres fotonen ned i den udbredende SPP mode.
Ved brug af konfokal mikroskopi er det blevet p̊avist at b̊ade den
oprindelige lysbølgepakke samt den eksiteret SPP bølgepakke bestod
af en enkelt foton hvilket igen demonstrerer overlevelsen af en ikke-
klassisk lystilstand p̊a overfladen af et metal.
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1
Introduction

Since their first discovery by the pioneering work of Ritchie in the
1950’s [1], surface plasmons are widely recognized in the field of sur-
face science. In contrast to all-dielectric waveguides, where the wave-
length sets a lower bound to the size to which light can be confined,
adequately shaped metallic structures can confine light to arbitrarily
small length scales. This phenomenon bears great potential in, for
instance, sub-wavelength guiding [2, 3, 4, 5], efficient single molecule
sensing [6, 7], enhanced non-linear effects [8, 9, 10], and the minia-
turization of photonic circuits [11, 12]. In addition to this, strong
interaction of quantum emitters is enabled by the small mode size
of nano-plasmonic waveguides, which may have useful applications
in quantum information. As such, miniaturized plasmonic struc-
tures might be a key building block for a single photon source on
demand [13, 14, 15] and enable strong non-linear interactions at the
level of single photons [16].
Quantum communication and information are an undeniably impor-
tant area in modern physics, highlighted by its rapid expansion in
recent years. Much interest has recently been devoted to the emer-
gent field of quantum plasmonics due to its unique capabilities in the
way electromagnetic radiation can be localized and manipulated at
the nanoscale. In particular, integrated quantum technologies based
on surface plasmons hold great promises for quantum information
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processing, since it allows for scalability, miniaturization, and coher-
ent coupling to single emitters [13, 14, 17, 15, 18]. To enable these
quantum information processing technologies with high fidelity, it is
of paramount importance, that the nonclassicality of the plasmonic
modes is preserved in propagation. The first experiment verifying the
preservation of entanglement in plasmonic nanostructures was carried
out by Alterwischer et al. [19]. They demonstrated the survival of
polarization entanglement after plasmonic propagation through sub-
wavelength holes in a metal film. The preservation of energy time
entanglement in a perforated metal film as well as in a thin conduct-
ing waveguide was later demonstrated by Fasel et al. [20]. These
experiments have witnessed the preservation of probabilistically pre-
pared entanglement (thus neglecting the coherence between photon
number states) described in a two dimensional Hilbert space.
This thesis is divided into two parts. Part I is devoted to classical
properties of SPPs and starts by a general introduction to electro-
magnetism of metals. After that, the SPP modes of metallic stripes
and their dispersive properties are described. This description is fol-
lowed by an introduction of SPP modes on nano-sized metallic cylin-
ders with a focus on the lowest order mode, the so-called Sommerfeld
mode [21]. In chapter 3 the fabrication technique of metallic stripe
waveguides is presented. These stripes with width in the µm range
are suitable for surface-plasmon propagation of several mm. Cylin-
drically shaped nano-wires were made by a polyol process. Following
the description of that, the excitation of long range SPP modes on
metal stripes is verified by the polarization dependence. Measure-
ments of both the transmission and the reflection of surface plasmon
modes on metal stripes are presented and modeled as well. The non-
linear absorption induced by surface-plasmon modes of laser pulses
with µs duration is studied in chapter 4. By analyzing these modes
in an asymmetric Sagnac interferometer, the introduced nonlinear
phase shift is measured as well.
The focus of the second part of this thesis lies on the excitation
of surface plasmons with quantized light fields. For these studies,
an optical parametric amplifier was build used for the generation
of quadrature squeezed light. By completely characterizing surface
plasmon modes excited with quadrature squeezed states of light, the
impact of the plasmonic propagation could be modeled with a stan-
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dard beam splitter. The experimental results are explained by theo-
retical arguments [22]. Chapter 6 describes the coupling of a single
photon emitter to the SPP mode of a cylindrically shaped nano-wire.
A single nitrogen vacancy (NV) center in a diamond nano-crystal is
employed as a single photon source. First, the general properties of
NV-centers are introduced. This introduction is followed by an exper-
imental study of NV-centers in a confocal microscope. Measurements
of the second order correlation function witness the emission of single
photons. By spin-coating nano-diamonds on top of the nano-wires,
coupled NV-center plasmon systems were found by fluorescence spec-
troscopy. Again, a measurement of the second order correlation func-
tion proves the excitation of a single quanta surface plasmon. This
chapter is closed with an outlook on future experimental activities.
These activities comprise an extension of the experimental set-up as
well as new structures.

Other projects

During the course of this PhD work other projects have been carried
out which are not related to the field of plasmonics and thus not
described in this thesis. For reference, these projects will be summa-
rized in the following.

Quantum correlations induced by multiple scatter-
ing of nonclassical light

In this work, spatial quantum correlations of photons that are induced
by multiple scattering of squeezed light have been demonstrated ex-
perimentally. The quantum correlation relates photons propagating
along two different light paths through the random medium and is
infinite in range. Both positive and negative spatial quantum correla-
tions were observed by varying the quantum state of light incident to
the multiple scattering medium, and the strength of the correlations
is controlled by the number of photons. The experimental results of
this work are in excellent agreement with theoretical proposals and
verified by implementing the full quantum model of multiple scatter-
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ing. The results of this work are published in

• Observation of Spatial Quantum Correlations Induced by Mul-
tiple Scattering of Nonclassical Light. S. Smolka, A. Huck, U.
L. Andersen, A. Lagendijk, and P. Lodahl, Phys. Rev. Lett.
102, 193901 (2009).

• Spatial Quantum Correlations Induced by Multiple Scattering
of Squeezed Light. S. Smolka, A. Huck, U. L. Andersen, A.
Lagendijk, and P. Lodahl, in preparation.

Demonstration of a quantum non-demolition sum
gate

The sum gate is the canonical two-mode gate for universal quantum
computation based on continuous quantum variables. It represents
the natural analogue to a qubit controlled-NOT gate. In addition, the
continuous variable gate describes a quantum non-demolition (QND)
interaction between the quadrature components of two light modes.
A QND sum gate was experimentally demonstrated by employing the
scheme of R. Filip et al. [23]. This scheme is solely based on off-line
squeezed states, homodyne measurements, and feedforward. The re-
sults are verified by simultaneously satisfying the criteria for QND
measurements in both conjugate quadratures.

• Demonstration of a Quantum Nondemolition Sum Gate. Jun-
ichi Yoshikawa, Yoshichika Miwa, Alexander Huck, Ulrik L. An-
dersen, Peter van Loock, and Akira Furusawa, Phys. Rev. Lett.
102, 250501 (2008).

Correlation measurement of squeezed light

A correlation measurement technique for the characterization of squeezed
light is nearly free of electronic noise. With two different sources of
squeezed light, it has been shown that the sign of the covariance coef-
ficient, revealed from the time-resolved correlation data, is witnessing
the presence of squeezing in the system. Furthermore, the degree of
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squeezing is determined using the correlation method and compared
to the standard homodyne measurement scheme. It was shown that
the role of electronic detector noise is minimized using the correla-
tion approach as opposed to homodyning, where it often becomes a
crucial issue. The results are published in the following articles.

• Electronic noise-free measurements of squeezed light. Leonid A.
Krivitsky, Ulrik L. Andersen, Ruifang Dong, Alexander Huck,
Christoffer Wittmann, and Gerd Leuchs, Optics Letters 33,
2395 (2008).

• Correlation measurement of squeezed light. Leonid A. Krivit-
sky, Ulrik L. Andersen, Ruifang Dong, Alexander Huck, Christof-
fer Wittmann, and Gerd Leuchs, Phys. Rev. A 79, 033828
(2009).

Continuous-variable quantum erasure correcting code

A quantum erasure-correcting code protocol for continuous variables,
which protects multi-photonic quantum information from complete
erasure was implemented for the first time. The code is surpris-
ingly simple and can therefore be realized with an optical setup
of reasonable complexity [24]. It is capable of simultaneously pro-
tecting two signal states against the erasure (or loss) of one of the
four information-carrying modes. The viability of this protocol was
demonstrated with convincing results that fit the theoretical predic-
tions. This work has been submitted.

• Quantum optical coherence can survive photon losses: a continuous-
variable quantum erasure correcting code M. Lassen, M. Sabuncu,
A. Huck, G. Leuchs, J. Niset, N.J. Cerf, and U.L. Andersen,
submitted for publication.
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Part I

Classical Properties of
Surface Plasmon

Polaritons





2
Modeling Surface Plasmon Polaritons

2.1 Electromagnetism of Metals

In general, the interaction of metals with electromagnetic fields can
be understood in a classical framework by Maxwell’s equations. The
high density of free electrons in metals leads to a minute spacing of
the electron energy levels compared to the thermal excitation kBT
at room temperature. Due to the fact that the optical properties of
metals depend strongly on the frequency of the electromagnetic field
a rich variety of optical phenomena arises. Metals are highly reflec-
tive up to the visible part of the electromagnetic spectrum. Thus,
in a broad frequency range electromagnetic waves are not allowed
to propagate through them. Towards the visible spectrum, the field
penetration into the metal increases, leading to increased dissipa-
tion of the field. At ultraviolet frequencies, metals acquire dielectric
properties and allow the propagation of electromagnetic fields, albeit
with varying degrees of attenuation depending on the details of the
electronic band structure. For noble metals such as gold or silver,
transitions between electronic bands lead to strong absorption in this
regime. The dispersive properties of metals are described via a com-
plex dielectric function ε(ω), where ω is the angular frequency of the
electromagnetic field, which is the basis for all classical phenomena
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observed on metal structures.
Maxwell’s equations of macroscopic electromagnetism are given by

∇ ·D = ρext, (2.1)
∇ ·B = 0, (2.2)

∇×E = −∂B
∂t

, and (2.3)

∇×H = Jext +
∂D
∂t

, (2.4)

which link the dielectric displacement D, the electric field E, the mag-
netic field H, and the magnetic induction B to the external charge
and current densities ρext and Jext. Here, charges and current den-
sities are divided into an external set (ρext, Jext) driving the system
and an internal set (ρ, J) responding to the stimuli. The total charge
and current densities are given by ρtot = ρext +ρ and Jtot = Jext +J,
respectively.
A link to the electric polarization P and magnetization M of the
medium is given by

D = ε0E + P, (2.5)

H =
1
µ0

B−M. (2.6)

ε0 and µ0 are referred to as the vacuum permittivity and the vacuum
permeability, respectively, and are linked to the vacuum speed of light
c via c2 = 1/ε0µ0. If the medium is linear, isotropic, and nonmagnetic
one can define the constitutive relations

D = ε0εE, (2.7)
B = µ0µH, (2.8)

where ε is called the dielectric constant and µ = 1 is the relative per-
mittivity of the non-magnetic medium. The internal current density
J and the electric field E are linked via

J = σE, (2.9)

where σ is the conductivity of the material. It can be shown, that
the dielectric function ε(k, ω) depends on the conductivity σ via

ε(k, ω) = 1 +
iσ(k, ω)

ε0ω
, (2.10)
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where k is the wave vector of the electric field.
In case the photon energy ~ω is low, the dielectric function ε(ω) can
be explained with the model of a free electron gas. This electron gas,
also called plasma sea, consists of free electrons of number density
n which move against a fixed background of positive ion cores. The
equation of motion for an electron of the plasma sea, that is subjected
to an external electric field E, is given by

mẍ + mγẋ = −eE. (2.11)

Here, x is the amplitude of the electron oscillation, m is the electron
mass, γ is the material characteristic electron collision frequency, and
e is the elementary charge. Assuming a harmonic dependence of the
driving field E(t) = E0e

−iωt and using the relation P = −nex, one
can find that

P = − ne2

m (ω2 + iγω)
E. (2.12)

Inserting this result into Eqn. (2.5) and using Eqn. (2.7), the dielectric
function of the free electron gas can be identified as

ε(ω) = 1−
ω2

p

ω2 + iγω
, (2.13)

where the plasma frequency ω2
p = ne2

ε0m has been defined. This is
the result describing the dielectric function of the free electron gas,
which is generally referred to as the Drude model. The measured
dielectric function of gold and silver (taken from Ref. [25]) are shown
in Fig. 2.1. These metals were used throughout this thesis. It can be
seen, that the Drude model (shown as red line in Fig. 2.1) describes
well the dielectric behavior over a wide range of photon energies. The
parameters for ωp and γ, which were used for the model, are sum-
marized in Table 2.1. The breakdown of the Drude model occurs in
the imaginary part of ε due to interband transitions of the electrons
taking place in the metal. The break down energy of 2 eV for gold
and 3.8 eV for silver correspond to vacuum wavelength of 620 nm and
326 nm, respectively. This is important to note since for illumination
of nanometer sized noble metal particles with light at shorter wave-
length than the before mentioned electron-hole pairs are generated,
which might lose some of their energy via various different scattering
mechanism and recombine radiatively at longer wavelength [27, 28].
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Figure 2.1: Real- and imaginary part of the dielectric function ε of
bulk gold (a) and silver (b) as a function of photon energy: The black
dots are experimental values taken from Ref. [25] and the red lines
are calculated via Eqn. (2.13) with parameters as given in Table 2.1.

2.2 Metal Stripe Insulator Interfaces

On a metal-insulator interface a bound solution of Maxwell’s equa-
tions (2.1)-(2.4) can be found for a mode propagating along the inter-
face. In general, this mode is referred to as surface plasmon polariton
(SPP) and can be understood as an electromagnetic wave coupled to
the electron density oscillations in the metal and propagating along
the interface between the insulator and the metal. SPP modes arise
because of free electrons in the metal, expressed via a negative real
part of the metals dielectric constant: Re{εmet} < 0. A non-zero
negative imaginary part of εmet on the other side only introduces
propagation losses of the SPP mode. More of practical importance,
especially with a focus on this thesis, are bound SPP modes on thin
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ωp

[
s−1

]
γ

[
s−1

]
Au 13.8 · 1015 107.5 · 1012

Ag 14.0 · 1015 32.3 · 1012

Table 2.1: Plasma frequency ωP and characteristic electron collision
frequency γ for gold and silver taken from Refs. [25, 26].

metal films corresponding to an insulator-metal-insulator interface.
In case the metal film extends to infinity in the x-direction, as illus-
trated in Fig. 2.2, an analytic SPP solution to Maxwell’s equations
exists, which was first provided by J.J. Burke et al. [29]. In this case,

Figure 2.2: Multilayer for the propagation of confined SPP-waves.

the derivation of the fields E and H is rather simple and will be briefly
summarized. Maxwell’s equations (2.1)-(2.4) have to be applied to
the geometry shown in Fig. 2.2. In absence of external charge and
current densities and under the assumption of a harmonic time de-
pendence of the electric field E(r, t) = E(r)e−iωt, the wave equation
for the electric field can be written as

∇2E + k2
0εE = 0, (2.14)

where k0 = ω/c is the wave vector in vacuum. With respect to the
metal surface the only solution to the wave equation (2.14) is a trans-
verse magnetic (TM) mode for which the electric field is polarized in
the y-z plane; a transverse electric (TE) mode is non-existing. After
solving for the TM-mode boundary conditions, a dispersion equation
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for the propagating SPP modes can be derived, which is given by

tanh (k⊥,2h)
(
ε1ε3k

2
⊥,2 + ε2metk⊥,1k⊥,3

)
+

[k⊥,2 (ε1k⊥,3 + ε3k⊥,1) εmet] = 0. (2.15)

The coefficients k⊥,i, i = {1,met, 3}, are obtained from the wave
equation as k2

⊥,i = k2
‖ − εik

2
0 with k‖ being the complex SPP modes

propagation constant and h is the height of the metal film. k⊥,1

and k⊥,3 are the coefficients determining the exponential decay of
the fields in region 1 and 3, respectively. The dispersion Eqn. (2.15)
has two solutions, a symmetric and an antisymmetric bound mode,
identified as such on their respective transversal field patterns [29].
Depending on their propagation losses, the symmetric and antisym-
metric modes are generally referred to as long-range (LR) and short-
range (SR) SPPs, respectively. For a gold film height of 14 nm,
calculating εAu(ω) using the Drude model (2.13) with the parame-
ters as specified in Table 2.1, and a symmetric surrounding dielectric
medium benzocyclobutene (BCB) with a constant refractive index
nBCB = 1.539, the LR-SPP and SR-SPP solutions of Eqn. (2.15)
are plotted in Fig. 2.3. For low photon energies, corresponding to

Figure 2.3: Calculated dispersion of a 14 nm thin gold film embedded
in BCB: photon energy versus the real- (a) and the imaginary part
(b) of the propagation constant k‖.

the infra-red and near-infra-red spectral region, the propagation con-
stants of the LR-SPP and SR-SPP modes are close to the light line
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of the insulator BCB. At higher photon energies, corresponding to
the UV-regime, the wave-vectors increase and asymptotically go to
infinity when ~ω approaches the surface plasmon energy ESP, which
is defined as ESP = ~ωP /

√
1 + εBCB. Since for photon energies ≈ ESP

the wave vectors go to infinity, the group velocity vgr → 0 and the
SPP modes acquire an electrostatic character. It should be empha-
sized that the graphs in Fig. 2.3 were calculated under the assumption
that εAu(ω) can be described by the Drude model given by Eqn. (2.13)
with parameters specified in Table 2.1, which in case of gold breaks
down for photon energies larger than 2eV, as already mentioned.
In case of a metal stripe with a finite width an analytic solution of
Maxwell’s equation does not exist. To find the mode profile and their
corresponding propagation constant k‖ = neffk0, the finite element
method software package Comsol Multiphysics has been used. The
wave equation was solved in the transverse x-y plane for the sample
geometry shown in Fig. 2.4 (a) with perfectly matched layer bound-
aries located many µm away from the metal structure. As an example
of the simulation outcome, a normalized power density plot of a zero
order TM00 LR-SPP mode on a gold stripe embedded in BCB with
a height of 14 nm and a width of 1 µm is plotted in Fig. 2.4 (b). The

Figure 2.4: (a) Sketch of the sample for propagating LR-SPP modes.
(b) Normalized power density plot of a LR-SPP mode on a gold
stripe embedded in BCB with a height and with of 14 nm and 1 µm,
respectively. The red arrows show the direction of the electric field
Ex and Ey in the transverse plane of the stripe.

red arrows indicate the direction of the electric field Ex and Ey in
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the transverse plane of the stripe and displays that the mode is TM
polarized with respect to the metal stripe surface in the x-z plane.
Fig. 2.5 shows the dependence of both the real (a) and imaginary
part (b) of neff on the stripe width. Additionally plotted are the neff

of higher order TMm0 modes, where m is an integer denoting the
number of nodes in the electric field along the x-direction. It can be
seen that for increasing stripe width neff approaches asymptotically
the value derived via Eqn. (2.15) for all modes and therefore proves
the validity of the model.

Figure 2.5: (a) Real- and (b) imaginary part of the LR-SPP effective
refractive index neff of gold stripes with a height of 14nm embedded
in BCB versus various gold stripe width.

Of experimental interest is the LR-SPP mode field diameter (MFD)
in the x- and y-direction of the transverse plane. The MFD is defined
via the 1/e2 power decay from its maximum value and obtained by
numerically evaluating power line plots through the metal stripe cen-
ter. Some results are shown in Fig. 2.6 (a). In the y-direction, the
mode profile is exponential, while in the x-direction a nearly Gaus-
sian mode profile is obtained. For various stripe width and a constant
stripe height of 14nm, the horizontal (x) and vertical (y) MFD of the
LR-SPP modes are plotted in Fig. 2.6 (b). As can be seen, for a
stripe width between 1 µm and 2 µm the horizontal and vertical
MFD are almost identical. For a stripe width of less than 2 µm the
MFD increases, thus the mode becomes more delocalized and extends
largely into the dielectric. For a stripe width larger than 2 µm the
LR-SPP mode is relatively well localized on the stripe since the MFD
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in the x-direction is only slightly larger than the corresponding stripe
width. This MFD behavior is similar to of what can be found for
standard TE dielectric wave-guides [30]. For increasing stripe width,
the MFD in the vertical (y) direction asymptotically approaches the
value obtained analytically for a gold film of infinite width.

Figure 2.6: (a) Intensity profile in horizontal and vertical direction
of the mode shown in Fig. 2.4. The grey shaded area illustrates the
width of the metal stripe. (b) MFD as a function of the stripe width.

2.3 Surface Plasmon Polaritons on Nano-
wires

The derivation and analysis of SPP modes on thin conducting wires
is the topic of this section. If the wire radius is of the order of 10th
of nanometers, these wires are usually refereed to as nano-wires.
The nano-wire structure under consideration is illustrated schemati-
cally in Fig. 2.7. It is a cylinder of radius R, which is centered around
the z-axis and surrounded by an insulating material with dielectric
constant ε1. The optical properties of the cylinder are described by
the dimensionless dielectric constant εmet. Similar to the description
in the previous section, of particular interest is the case of a con-
ducting nano-wire surrounded by a lossless dielectric medium with
Re{εmet} < 0 and Im{ε1} = 0. For solving such a system with a
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Figure 2.7: (a) Sketch of a nano-wire of radius R with dielectric
constant εmet embedded in non-conducting material with dielectric
constant ε1. (b) Normalized power density plot of the fundamental
mode m = 0 for a silver nano-wire of radius R = 50 nm surrounded by
a non-conducting material of dielectric constant ε1 = 2 for a vacuum
wavelength λ0 = 700 nm.

high degree of symmetry, one can use the separation of variables and
find field solutions E and H to Maxwell’s equations, as described for
instance in [31]. In cylindrical coordinates, with radius r =

√
x2 + y2

and azimuthal angle φ, the electric field might be written as

Ei = Ei,mEi,m (ki⊥r) eimφeik‖z, (2.16)

where i = {met,1 } denotes the regions inside and outside of the
cylinder and m is an integer describing the winding of the mode. A
normalized power density plot of the lowest order mode for a wire
of R = 50 nm is shown in Fig. 2.7 (b). The red arrows indicate the
direction of the electric field Ex and Ey. The longitudinal compo-
nent of the wave-vector k‖, which is the modes complex propagation
constant, is related to the wave vector ki =

√
εi2π/λ0 in region i

and the transverse wave vector ki⊥ via k2
i = k2

‖ + k2
i⊥. The electric

field Ei,m(ki⊥r) represents some normalized mode profiles and the
coefficients Ei,m must satisfy a set of equations that enforce the nec-
essary boundary conditions at the metal-dielectric interface r = R. A
non-trivial solution of the nano-wire structure is given by the mode
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equation [14]

m2k2
‖

R2

(
1

k2
met⊥

− 1
k2
1⊥

)2

=
[

1
kmet⊥

Jm′(kmet⊥R)
Jm′(kmet⊥R) −

1
k1⊥

Hm′(k1⊥R)
Hm′(k1⊥R)

]
×[

k2
met

kmet⊥

Jm′(kmet⊥R)
Jm′(kmet⊥R) −

k2
1

k1⊥

Hm′(k1⊥R)
Hm′(k1⊥R)

]
, (2.17)

where Jm and Hm are m-th order Bessel - and Hankel functions,
respectively. As a function of m, R, and εi, Eqn. (2.17) determines
the allowed values of k‖.

Figure 2.8: (a) Real part of the allowed plasmon modes Re{k‖} versus
the radius of the nano-wire for different mode indices m. Plotted in
the inset is Re{k‖}/Im{k‖}, which is finite as R → 0. (b) Plasmon
mode propagation length Lp =

(
2Im(k‖)

)−1. (c) Illustration of the
mode field radius rH . (d) Mode field radius versus the wire radius R
for two different ε1.
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The following solutions are being obtained for a vacuum wavelength
λ0 = 700 nm. Silver is used as a metal and the Drude model
Eqn. (2.13) is applied to calculate εmet(ω). The surrounding non-
conducting material is assumed to have a dielectric constant ε1 = 2.
In Fig. 2.8 (a), the allowed wave vectors k‖ for the three lowest order
modes m are shown as a function of the wire radius R, obtained by
solving Eqn. (2.17) numerically. For a wide range of wire radii the
structure supports higher order modes (m ≥ 1) which are cut-off at
a radius R ≈ 50 nm. For smaller wire radii only the lowest order
mode (m = 0) is supported, which is characterized by a k‖ ∼ 1/R
dependency. As an example, the mode profile as well as the po-
larization of the m = 0 mode of a wire with a radius R = 50 nm
is shown in Fig. 2.7 (b). For a decreasing wire radius the funda-
mental mode becomes more tightly confined to the metal-insulator
interface, what causes the propagation losses to increase. This is
illustrated in Fig. 2.8 (b), where the plasmon propagation length
Lp =

(
2Im(k‖)

)−1 is plotted versus R. Nevertheless, as R → 0 the
ratio Re{k‖}/Im{k‖} approaches a non-zero value, as displayed in
the inset of Fig. 2.8 (a). This means that the mode can still travel
some distance of the order of a few nm even though the mode is tightly
confined to the wire surface and very lossy. It should be noted, that
these results are based on classical calculations with the assumption
that the properties of bulk silver remain valid as R → 0.
An additional parameter of interest is the mode field radius rH of
the m = 0 mode. rH is defined through the decay of the azimuthal
component of the magnetic field Hφ,1 in region 1 and given by the
equation Hφ,1(rH) = e−1Hφ,1(R) [2]. The mode field radius rH is
illustrated schematically in Fig. 2.8 (c). In Fig. 2.8 (d), rH is plotted
versus R for two different ε1. Since rH decreases with R the mode re-
mains tightly confined to the nano-wire surface, what is a remarkable
feature since R � λ. Furthermore, for an increasing ε1 the plasmon
mode confinement to the wire-dielectric interface increases and si-
multaneously the effective plasmon mode volume Veff also decreases.
This behavior has consequences on the coupling efficiency of a single
emitter to the plasmon mode, as will be discussed in more detail in
section 6.5.1.



3
Surface Plasmon Structure Fabrication

and Testing

3.1 Sample Fabrication

The basis for experiments in the field of plasmonics are metallic nano-
structures with well defined shapes and material properties. Depend-
ing on the structures required, various different fabrication techniques
for building plasmonic micro- and nano-structures can be used, such
as UV- or electron-beam lithography followed by metal sputtering
deposition or wet chemical growth using a polyol process or elec-
trolysis. These processes are the underlying building block for the
samples being studied during this work and are described below in
more details.

3.1.1 LR-SPP Structures

Samples for studying LR-SPP propagation were prepared on Silicon
substrates. First, a uniform layer of benzocyclobutene (BCB) poly-
mer was spin coated with a thickness of 13−15 µm on the substrate,
and subsequently a layer of UV-resist was deposited. Second, the
stripe wave guides with width ranging from 1 µm to 12 µm were pat-
terned using standard UV-lithography, followed by the deposition of
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a 14 nm or 15 nm thick gold layer, and lift-off. Third, another layer
of BCB was spin coated on top of the gold structures with the same
spinning conditions as used for the first one. Ensuring a symmet-
ric structure around the metal is very important for low propagation
losses and the mode field diameter. To achieve this, the top side
and bottom side polymer BCB was cured under identical conditions
and thick enough to accommodate the EM-field, as a comparison with
Fig. 2.6 (b) shows. Finally, the waver was cut into individual samples
with metal stripe length ranging from 1 mm up to 5 mm.

3.1.2 Nano-wire Structures

The silver nano-wires for the experiments described in chapters 6
were fabricated by a polyol reduction of AgNO3 following the recipe
described in Ref. [32]. For this process, 5 ml of Ethylene Glycol (EG)
was heated in an Erlenmeyer flask with stopper to a temperature of
151.5◦C and constantly stirred at 260 rpm. A constant temperature
throughout the process is very important since a variation in tem-
perature will lead to different results of the aspect ratio of the wires.
Therefore, the Erlenmeyer flask has been placed in an oil bath. Sep-
arate solutions of 2 mg CuCl2 · 2H2O, 49 mg AgNO3, and 47.9 mg
polyvinyl pyrrolidone (PVP) were prepared each in 3 ml of EG. After
one hour waiting time 40 µl of the CuCl2 ·2H2O solution were added
to the heated EG using an electronic pipette. After additional 15
minutes 1.5 ml of the PVP solution were added to the heated EG,
and immediately after that 1.5 ml of the AgNO3 solution. Finally,
the process was run for additional 1.5 hours. During the reaction,
the following color changes were observed: Within 1 min the solution
turns yellow, within 3 min the solution turns red/orange, within 5
min the solution turns greenish, and then from greenish to brown/red.
After 1.5 hours, the end product should be opaque grey. Finally, the
end product was washed two times with acetone and one times with
distilled water using a centrifuge process. In order to characterize
the size distribution of the wires they were spin coated on a Si sub-
strate and analyzed with a scanning electron microscope (SEM). In
Fig. 3.1, the image of a single wire taken with a SEM is presented.
The respective length- and diameter distribution of a total number
of 69 wires is presented in Fig. 3.2. A majority of wires have a length
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Figure 3.1: SEM image of a single, wet chemically prepared nano-
wire.

of > 2 µm . On one side, this assures that most of the wires are long
enough to clearly resolve plasmon emission from the wire end facets
in a diffraction limited microscope. On the other side, most of the
wires are shorter than the plasmon propagation length Lp = 6 µm
for a wire radius R = 25 nm. The majority of wires have a radius
of < 50 nm, what ensures that only the fundamental mode m = 0
is supported at a vacuum wavelength around λ0 = 700 nm, as seen
from Fig. 2.8 and described before.

3.2 LR-SPPs Excitation

The excitation of SPPs on thin metal films has been intensely studied
since the late 1970’s. Excitation of bound SPP modes on thin films of
(quasi) infinite and also finite width can be achieved rather efficiently
via evanescent coupling using a prism in the Otto or Kretschmann
configuration or grating coupling [33]. For the scope of this thesis
these techniques are less preferable and ’end-fire’ coupling has been
used instead for the excitation of LR-SPP modes. This has been



40
CHAPTER 3. SURFACE PLASMON STRUCTURE

FABRICATION AND TESTING

Figure 3.2: Characterization of an ensemble of fabricated nano-wires
with respect to their length (a) and diameter (b).

proposed by Stegeman et al. [34] in 1983 and first demonstrated by
Charbonneau et al. [35] with a fiber based setup. The underlying
principle is that the LR-SPP mode profile has a very large overlap
with a TEM00 Gaussian laser beam of similar dimension. Further-
more, the small k-vector mismatch between the light line and the
LR-SPP mode allows that LR-SPPs can be efficiently excited by ’end-
fire’ coupling using free propagating laser beams. For this purpose,
the freely propagating laser field with a vacuum wavelength of 1064
nm was carefully focused on the end-facet of the metallic stripe to
ensure a good mode matching between the LR-SPP mode and the
laser mode. The re-emitted light field was either measured with an
analogue detector or imaged with a CCD camera. A typical image
of an out-coupled LR-SPP mode is shown in Fig. 3.3 (a). Fig. 3.3
(b) shows the absolute LR-SPP transmission versus the polarization
of the incident light field. 0◦ is corresponding to TM-polarized in-
cident light and 90◦ is corresponding to TE-polarized incident light
with respect to the metal stripe surface. The transmission is maxi-
mized for TM polarized light in agreement with the theory described
in section 2.2 and decreases as ∼ cos(α)2 while turning the polariza-
tion from TM to TE. For TE polarized light, only scattered as well
as higher order modes are measured at the output of the waveguide.
These higher order modes are also partly measured on the output
and explain the offset in the measurement for TE polarized incident
light.
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Figure 3.3: (a) Image of the LR-SPP output mode of a gold stripe
with a width of 2 µm , a height of 14 nm, and a length of 2 mm for
a TM-polarized incident light. (b) LR-SPP absolute transmission of
the mode shown in (a) versus the polarization of the incident light
field.

3.3 Fabry-Pérot like Resonances of LR-
SPPs

Introduction

Provided that the metal stripe end faces reflect an incident propagat-
ing SPP, a thin metal stripe can be understood as a surface plasmon
resonator. In this case, resonator modes exist whenever half an inte-
ger of the surface plasmon wavelength equals the metal stripe length.
However, due to surface plasmon propagation losses the maximum
achievable resonator length is limited by the plasmon propagation
losses. In the literature, a number of experiments were reported ob-
serving SPP resonances on silver nano-wires [4, 36, 37] and gold or
silver films with slit-grove nano-structures [38]. In all these studies,
SPPs were excited by illuminating the structures with a broad band
light source. The transmitted spectra showed clear periodic modula-
tions, which could be used, for instance, to calculate the SPP group
velocity and determine propagation losses.
In this section, the observation of Fabry-Pérot like resonances on gold
stripes supporting LR-SPP modes is reported. The cavity mirrors are
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formed by the front and end faces of the metal stripe. In a simplified
picture, the mode index difference between the plasmon mode and
free space modes can be used to calculate the reflection coefficient
according to Fresnel equations [30] under normal incidence. Instead
of observing periodic spectral fluctuations, as done in other studies,
the length of LR-SPP waveguide will be changed slightly, what is
enabled by the comparatively large coefficient of thermal expansion
of the surrounding BCB.

Experiment

A schematic diagram of the experiment is shown in Fig. 3.4 (a).
To excite the LR-SPP mode, a strong laser beam has been guided
through a highly asymmetric beam splitter with a power reflectivity
of 99%. Subsequently, the light from the low transmission port was
mode matched to the LR-SPP mode using ’end-fire’ coupling, as il-
lustrated in Fig. 3.4 (a). The sample holder itself was composed of

Figure 3.4: (a) Schematic diagram of the experimental setup to mea-
sure the transmission and reflection properties of LR-SPPs: 1/99 -
asymmetric beam splitter with a power transmissivity and reflectivity
of 1% and 99%, respectively. The sample was mounted on a peltier el-
ement to control its temperature. Not shown are the optics for mode
matching the free propagating laser beam to the LR-SPP mode. (b)
Illustration for calculating the absulute power transmission and re-
flection coefficients: r,t - reflection and transmission from a single
interface.

a thermoelectric element and a bras block on top of it, where the
sample was positioned. The thermoelectric element uses the peltier
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effect to adjust the temperature of the sample. Above the thermo-
electric element and approximately 1 mm underneath the sample, the
temperature was measured on the sample mount using a 10kΩ tem-
perature sensor1. The short distance between the sensor and the SPP
sample ensures that the recorded temperature corresponds most ac-
curately to the temperature of the sample. As illustrated in Fig. 3.4
(a), the light transmission has been measured directly behind the
sample. The re-emitted SPP mode was collimated by a lens, guided
through a pin hole in order to suppress stray light, and detected using
a pin-photodiode. The excitation of the LR-SPP mode was verified
by testing its polarization dependence according to the measurement
shown in Fig. 3.3 (b). The reflected signal has been accessed via the
highly reflecting port of the asymmetric beam splitter, as illustrated
in Fig. 3.4 (a), and recorded with a similar photodiode as used for
the transmission measurement. For all measurements carried out in
this experiment the power incident on the sample has been adjusted
to 0.5 mW. Using the effect of thermal expansion, the temperature
of the sample will be changed in order to vary the length of the gold
stripe on the order of a few µm . Due to thermal expansion of the
sample holder and the sample itself, it was necessary to re-align the
incident laser beam for every sample temperature adjustment.

Results

The measured transmission and reflection coefficients for three LR-
SPP wave-guides of length 2 mm, 4 mm, and 5 mm are presented in
Fig. 3.5. The LR-SPP wave guides were produced on the same Si wa-
ver with a gold stripe cross section of 2 µm by 14 nm. It can be seen
from Fig. 3.5 that by increasing the sample temperature the trans-
mission and reflection coefficients vary as cos2(ωT T + δT ), where T is
the temperature, ωT is the period of the variation oscillation, and δT

is a phase constant. Furthermore, the transmission maxima (minima)
overlap precisely with the reflection minima (maxima). In addition,
the amplitude decreases with increasing waveguide length. Since the
LR-SPP waveguide length increases with increasing sample temper-
ature due to thermal expansion, the observed behavior suggests that

1Epcos 8407 with R(T = 25◦C) = 10kΩ.
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the oscillation can be explained by a Fabry-Pérot cavity like effect.
The model for this is illustrated in Fig. 3.4 (b), where Ein, Er, and Et

are the electric field amplitudes of the incident mode, the reflected
mode, and the transmitted mode, respectively. r, t are the electric
field reflection and transmission coefficients obtained from neff via
r = neff−1

neff+1 and t =
√

1− r2. It is assumed that the LR-SPP is a
plane wave and the polarization dependence can be neglected. The
imaginary part of the propagation constant of the mode is expressed
as βI . As the mode propagates along the gold stripe, the electric
field amplitude decreases as ∼ e−βI l, where l is the length the mode
propagate.

Figure 3.5: Transmission and reflection through LR-SPP wave-guides
for various length versus the temperature of the wave-guide. The
stripe width and height are 2 µm and 14 nm, respectively, for all
wave-guides.

Before investigating the LR-SPP transmission and reflection, the
thermal expansion of the sample will be analyzed. Assuming that the
thermal expansion of the sample is linear, the change of the waveguide
length ∆L goes with the temperature change ∆T as

∆L = αLL∆T, (3.1)
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where αL is the coefficient of thermal expansion (CTE) and L is
the initial length of the sample. Assuming that the oscillations in
Fig. 3.5 arise from a standard Fabry-Pérot cavity like effect as de-
scribed above, one identifies the distance between two transmission
maxima m and m + 2 to be a cavity length change of ∆L = λ0/neff.
Combining this with Eqn. (3.1), one can find a linear relation between
the oscillation frequency ωT and the cavity length

ωT(L) =
αLneffL

λ0
. (3.2)

A plot of ωT(L) versus the sample length L is shown in Fig. 3.6
(a). From the fit to the data points the thermal expansion coefficient
αL is determined to be αL = 80 · 10−6 ± 1.71 · 10−6 ◦C−1, where
neff = 1.539 has been used. In the literature, the CTE of BCB is
specified to be αBCB = 42 · 10−6 ◦C−1 [39], which is comparable to
the measured value. It should be noted, that also different values
have been reported in other references, see e.g. [40], which are more
close to the value measured here. The reason why the measured CTE
is higher than other values reported in the literature is not quite clear.
Bad thermal coupling between the sample holder and the sample itself
would suggest even higher oscillation frequencies and therefore an
even larger αL. One possible reason is that the determined αL arises
from an increased temperature around the gold stripe, where due to
the LR-SPP dissipation the temperature is locally increased. The
expansion effect of the silicon substrate and the gold stripe itself can
be neglected. At room temperature the CTEs of silicon and gold are
specified to be αSi = 2.6·10−6 ◦C−1 [41] and αAu = 14·10−6 ◦C−1 [42],
which are much smaller than the αL measured here.
In the following, the transmission and reflection amplitudes will be
investigated in greater details. Solving the model of Fig. 3.4 (b) for an
infinite number of round trips, one can calculate the power reflection
and transmission coefficients for a Fabry-Pérot resonator of length L,
which are given by

R(δ) =
r2

(
1 + a4 − 2a2 cos(δ)

)
1 + (ra)4 − 2(ra)2 cos(δ)

and (3.3)

T (δ) =
a2

(
1− r2

)2

1 + (ra)4 − 2(ra)2 cos(δ)
, (3.4)
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Figure 3.6: (a) Oscillation frequency ωT versus sample length. (b)
Modeled maximum (dashed lines) and minimum (solid lines) trans-
mission (black lines) and reflection (red lines) for a lossy Fabry-
Pérot cavity with an imaginary LR-SPP propagation constant of
βI = 209.3 m−1.

where a = e−βIL describes the damping of the electric field ampli-
tude per half round trip and δ = 2k‖L is a phase factor for a given
resonator length. For an infinite resonator length L the reflection
coefficient approaches the value for a single interface RL→∞ = r2

and the transmission TL→∞ = 0. Using βI as a fitting parameter
and accounting for mode matching inefficiencies between the inci-
dent laser mode and the LR-SPP mode, these equations have been
fitted to the minimum and maximum reflection and transmission coef-
ficients, as presented in Fig. 3.6 (b). Experimentally, mode matching
inefficiencies can arise due to sample cleaving inaccuracies or differ-
ent mode field properties of the incident laser field, since the setup
needed to be slightly modified for different stripe lengths. From the
fit shown in Fig. 3.6 (b), an imaginary part of the refractive index
Im{neff} = βI/k0 = 3.54 · 10−5 is obtained, which is more than three
times larger than the value expected from the simulation presented
in Fig. 2.5 (b) for a stripe width of 2 µm and even slightly larger than
the value for a stripe of infinite width.
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Conclusion

In conclusion, oscillations of the LR-SPP transmission and reflection
have been observed upon changing the temperature of the LR-SPP
sample. From the oscillation frequency, the coefficient of thermal
expansion of the composite BCB gold structure hosting the LR-SPP
mode has been determined to be αL = 80 · 10−6 ± 1.71 · 10−6 ◦C−1,
which is bigger than the values for BCB reported in the literature.
The observed behavior is explained by a Fabry-Pérot cavity model
with LR-SPP propagation losses as a damping factor. The imaginary
part of the propagation constant has been determined to be 3.54 ·
10−5m−1, a value which is higher than obtained from a finite element
model.
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4
Non-linear Propagation of Surface

Plasmon Polaritons

4.1 Introduction

The nonlinear properties of SPP modes have been studied much less
than the linear properties although it is well known that the nonlin-
earity of metal may be significant. The second order nonlinearity of
metal surfaces has been explored already in the sixties (see, e.g. [43]).
It was shown that the second-harmonic response is strongly enhanced
if the surface is illuminated under the right angle to excite the SPP
mode due to the enhancement of the local field at the surface [44].
Later, most experiments focussed on dielectric materials with embed-
ded metallic nano-particles, thus exploiting the nonlinear response
of the metal in an otherwise transparent medium (see e.g. the re-
view [45]). Experiments exploring non-linear effects in transmission
through pure metallic and very thin samples were reported only re-
cently, e.g. [46, 47, 48]. These experimental and theoretical studies
showed that there is a strong third order χ(3) Kerr non-linearity in
metallic media, resulting in an intensity dependent refractive index.
In standard non-linear optics, the intensity dependent refractive in-
dex is described as n = n0 + 2n2|E(ω)|2, where n0 represents the
weak field refractive index and n2 = 3χ(3)

4n0
[49]. The main contribu-
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tions to the third order susceptibility χ(3) in bulk metal arises from
the immediate nonlinear response of the dipole transitions between
the valence and conduction bands (the interband contribution χ

(3)
ib )

and the heating of the electron gas (the hot electron contribution
χ

(3)
he ). The third order non-linear strength of gold were estimated

experimentally as [45]

Im χ
(3)
ib ≈ −10−8 esu and

Im χ
(3)
he ≈ +10−7 esu.

Electrons are assumed to respond fast to the excitation and due to
the positive sign of Im χ

(3)
he it is expected to observe a saturation effect

of the absorption.
In this chapter the measurement of the third order nonlinearity of a
LR-SPP mode on a thin gold film is reported. A nonlinear absorption
as well as a nonlinear phase shift is demonstrated, thus measuring
the imaginary and the real part of the Kerr coefficient, respectively.
In addition to the fast Kerr nonlinearity, a strong thermal effect is
measured which increases the LR-SPP absorption due to the absorbed
photon energy.

4.2 Non-linear Absorption of a Continu-
ous Laser Beam

A simplified schematic diagram of the experimental setup is presented
in Fig. 4.1. The incident laser beam with a vacuum wavelength of
λ0 = 1064 nm has been modulated using a fast rotating disc with
alternating transparent and absorbing elements. The rotating disc
was placed at the position of the beam waist to obtain fast switching
of the light. The input power Pin was measured before the rotating
disc. For temperature stabilization the sample has been mounted
on a piezo electric element, as explained in section 3.3. The time
dependence of the output power Pout for a 3 mm long gold stripe is
shown in Fig. 4.2 (a) for four different input powers Pin. One can
see that after the chopper wheel opening, Pout increases on a time
scale of the order of hundred µs for all input power. For larger input
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Figure 4.1: Simplified schematic diagram of the experimental setup
for measuring the non-linear properties of LR-SPPs: The laser beam
is modulator by a fast rotating disc with alternating transparent and
absorbing elements. Not shown are the optics for mode matching the
free propagating laser beam to the LR-SPP mode.

powers, the output power first increases before it slowly relaxes to
a steady-state value. From this result one can conclude that two
processes contribute to the non- linear absorption of the plasmon.
First, a fast nonlinear effect increases the transmission similar to a
saturable absorber. Second, the decrease on longer time scales might
be attributed to a slow heating effect which increases the absorption
of the gold film. However, the results in Fig. 4.2 (a) are not sufficient
to determine the timescales of the two effects due to the limited time
resolution of the detection setup. This point will be discussed in the
following sections. The following discussion focuses on the steady
state transmission on a time scale of approximately 1 ms.
Fig. 4.2 (b) shows the measured values of the transmission coefficient
T = Pout/Pin as a function of the input power for different lengths of
the stripe. One observes that the transmission first increases with the
input power due to the nonlinear saturation of the absorption. How-
ever, the transmission decreases again for larger input powers, which
is attributed to the heating of the sample. Such a light induced heat-
ing effect cannot be completely counteracted by the Peltier cooling
mechanism. This is corroborated by the fact, that the transmission
decrease is stronger for the steady state transmission Tss (shown in
Fig. 4.2 (b)) than for the peak value Tpeak (cf. Fig.4.2 (a)) right
after switching on the laser beam. Simultaneous measurements of
the Peltier current confirm a sample heating, as shown for instance
in Fig. 4.2 (c). In order to verify that the nonlinear effect originates
from the metal and not from the surrounding dielectric, the laser
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beam was also sent through pure BCB of 1 mm length. No notable
change of the transmission with the input power was observed.

Figure 4.2: (a) Time dependence of the transmission of a plasmonic
waveguide of length l = 3 mm for four different values of the input
power Pin. (b) Intensity dependence of the absorption of the LR-SPP
mode on a thin gold film of length 2 mm (black), 3 mm (red), 4 mm
(blue), and 5 mm (green) for a cw input in the steady state. The
dots are experimental values and the solid lines are a fit according to
Eqn. 4.1. (c) Peltier current, that is related to the sample tempera-
ture, versus the input power for a 4 mm long stripe.

In order to model the saturation effect the absorption is assumed to
be described by the modified Lambert-Beer law

dP (z)
dz

= α(P )P (z). (4.1)

The absorption coefficient α(P ) depends on the actual value of the
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transmitted power and is comprised of three contributions. First, a
linear absorption loss and scattering losses from surface roughness
and impurities are taken into account. These two effects are not
distinguished in the described transmission experiments and the cor-
responding absorption coefficient is denoted as ξ. Second, there are
slow thermal effects due to the heating of the sample. The temper-
ature change of the film at steady-state is proportional to the power
dissipated in the metal. It is assumed that the heating effect in-
creases the absorption coefficient by an amount given by γP. Third,
the intensity-dependence of the absorption coefficient of the metal,
i.e. the true Kerr effect, is dominated by two contributions [45]: The
saturation of electronic interband transitions and the so called ’hot
electron’ contribution. Following [50], a saturable absorber-like non-
linearity is assumed with coefficients β and Psat. Then, the total
absorption coefficient can be written as

α(P ) = ξ + γP +
β

1 + P/Psat
, (4.2)

where the parameters are determined by the experimental data. For
the fit of the output power, Eqn. (4.1) was numerically integrated
for every sample and every value of the input power. The complete
data is fitted simultaneously with the same values of the material
parameters ξ, γ, β and Psat.
Furthermore, it is assumed that the coupling to the LR-SPP mode
is not perfect so that P (z = 0) = CnPin, where Cn is the coupling
efficiency to sample n. For each sample this coupling efficiency can
be different, but it is assumed that it does not depend on the input
power. The result of the fits are compared to the measurement data
in Fig. 4.2, showing good agreement for the complete power range
and the various samples of different length. The following values for
the fit coefficients were found

ξ = 3.2× 10−7m−1,

γ = 16mW−1m−1,

β = 610m−1, and
Psat = 8.9mW.

The fitted values for the coupling efficiencies Cn all lie between 50%
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and 63%. Taking into account an in-coupling efficiency of 63%, an
imaginary part of the refractive index of 10 × 10−5 is found. This
value is about three times higher than what one expects for a gold
stripe with a height of 15 nm.

4.3 Non-linear Absorption of a Pulsed Laser
Beam

In order to further explore the nonlinear absorption of a plasmon and
to determine the time scales of the different nonlinear effects, trans-
mission measurements of laser pulses in the micro- to millisecond time
scale were studied. The laser pulses for these studies were generated
by a mode filtering cavity that is scanned through the resonance by
a movable mirror mounted on a piezoelectric crystal, as illustrated in
Fig. 4.3. This generates a Lorentzian input pulse whose peak power

Figure 4.3: Simplified schematic diagram of the experimental setup
for measuring the non-linear absorption of LR-SPPs excited with a
pulsed laser beam. The laser beam is modulated by scanning a high
Finesse cavity through the resonance. Approximately R = 2.2% were
tapped off after modulation for calibrating the input power Pin.

is given by the power of the incident cw laser. Simultaneously to the
recording of the output power Pout, the input power Pin has been
measured by tapping off approximately 2.2% of the beam after mod-
ulation. The transmission was recorded for different pulse lengths as
well as for different peak powers. In a first set of experiments the
transmission through a plasmonic mode on a thin metal stripe was
measured for short pulses with a maximum peak power of 150 mW
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and eight different values of the pulse duration. The metal stripe had
a width of 2 µm , a height of 15 nm, and a length 3 mm. Fig. 4.4 (a)

Figure 4.4: (a) Transmission of a laser pulse through a LR-SPP mode
on a 3 mm long gold film. The shape of the output pulse (blue dots,
right scale) is compared to the incident pulse (black dots, left scale).
The red line is a Lorentzian fit to the incident pulse, from which the
FWHM of this pulse was determined to be 0.457 ms. (b) Delay of
the output pulse as a function of the FWHM of the input pulse.

shows an example of the time dependence of the input and the output
pulse after transmission through the plasmon mode. Obviously, the
shape of the output pulse is significantly changed as the transmission
depends on the input power. Furthermore, a hysteresis behavior is
observed: The absorption is stronger for the falling than for the rising
part of the pulse. This proves that the nonlinear effect increasing the
absorption is not instantaneous but rather acts on a timescale in the
micro- to millisecond regime, which is typical for thermal effects in
nano-scale photonic structures [49]. A notable consequence is that
the output pulse appears to be shifted to earlier times, as shown in
Fig. 4.4 (a) and summarized for several pulses in Fig. 4.4 (b).

In order to describe this behavior quantitatively the absorption is
fitted according to Lambert-Beer’s law (4.1) as described in the pre-
vious section. However, now the non-instantaneous thermal effects
have to be taken into account. Thus, the thermal part of the nonlin-
ear absorption coefficient (4.2) is substituted with a time dependent
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Figure 4.5: Transmission of laser pulses with different durations of
1.4 ms (top), 0.6 ms (center), and 0.06 ms (bottom) through a LR-
SPP mode on a 3 mm long gold film: Left panel - output power vs.
time, right panel - transmission vs. input power. The blue dots are
the experimental data and the black solid lines are fits as described
in the text.

term and it now reads

α(z, t) = ξ +
β

1 + P (z, t)/Psat
+

γ

τ

∫ t

−∞
e(t−t′)/τP (z, t′)dt′. (4.3)

The exponential memory kernel with time constant τ in Eqn. (4.3)
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arises when it is assumed that the heat diffuses out of the sample.
The experimental data of the eight measurements was then fitted
with the time dependent absorption coefficient (4.3), the output of
which is shown in Fig. 4.5. The resulting values for the fit parameters
are given by

ξ = 294× 10−6m−1,

γ = 5.2W−1m−1,

β = 202m−1,

Psat = 1.8mW, and
τ = 0.22ms.

A good agreement of the fits and the experimental data is observed.
It is notable, that the hysteresis behavior due to the thermal effect is
most pronounced for input pulses with an intermediate duration, i.e.
when the input pulses FWHM is of the order of τ like for the central
graphs in Fig. 4.5. For longer pulses, the slow thermal nonlinearity
affects the rising and falling parts of the pulse in almost the same
way (cf. the top graphs in Fig. 4.5) while it has no significant effect
for the short pulses at all (cf. the bottom graphs in Fig. 4.5).

4.4 Non-linear Phase Shift

The real part of the third order susceptibility introduces a phase
shift on the light field propagating through the medium. In order to
measure the phase shift induced by the LR-SPP mode an interfero-
metric setup has been used, as shown in Fig. 4.6. A Lorentzian input
pulse is generated by the same modulated filter cavity and then split
on a 96/4 beam splitter to form a strong pump and a weak probe
beam. Both beams pass the interferometer in counter propagating
directions, which includes the passage through a plasmonic waveguide
with a length of l = 3 mm. Finally, the beams are recombined and
the output power is measured in order to reconstruct the interference
pattern.
Both plasmonic modes, the pump and the probe, experience a phase
shift due to the Kerr effect. However, the phase shift of the probe
beam is generated by cross-coupling from the strong pump beam
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Figure 4.6: Simplified schematic diagram of the experimental setup
for measuring the non-linear phase shift induced by of LR-SPPs. The
laser beam is modulator by scanning a high Finesse cavity through
the resonance. Approximately R = 2.2% were tapped off after mod-
ulation for calibrating the input power Pin.

and is thus twice as large. This is the so called weak-wave retarda-
tion [49], where nonlinear effects induced by the weak probe beam
are discarded. Thus, the focus lies only on the nonlinear phase shift
induced by the strong pump beam.
After the passage through the plasmon, the two beams therefore ac-
quire a phase shift which is given by

dφ(z, t)
dz

= βP (z, t) +
γ

τ

∫ t

−∞
e(t−t′)/τP (z, t′) dt′. (4.4)

Again, a fast contribution with strength β and a slow contribution
with strength γ and a time constant τ are taken into account. The
slow thermal contribution was derived as follows. The thermal part of
the change of the index of refraction is to the first order proportional
to the temperature change (cf. Eqn. (4.5.1) in [49]). The change
of the temperature in time is modeled by a relaxation ansatz based
on the heat equation (cf. Eqn. (4.5.2) in [49]). The heat outflow is
proportional to the temperature with a relaxation time τ while the
heat inflow is proportional to the laser power. Thus, the following
differential equation for the time dependence of the index of refraction
change is obtained

dn(t)
dt

= −n(t)
τ

n +
γ

τ
P (t), (4.5)
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which is readily integrated with the result given in Eqn. 4.4. Here,
a standard Kerr type nonlinearity is assumed instead of a saturable
absorber type nonlinearity. This assumption is based on the fact
that a fit with a saturable absorber type nonlinearity did not lead
to a good agreement with the experimental data1. The assumption
is further supported by the theoretical analysis of Kerr nonlinerities
in semiconductors, where the real part of the Kerr coefficient shows
almost no saturation, while the imaginary part does [51].
For simplicity it is assumed that the power distribution of the pump
beam varies only very little in time. Then, one can simply integrate
the expression (4.4) over z and write

φ(t) ≈ β̄Pin(t) +
γ̄

τ

∫ t

−∞
e(t−t′)/τPin(t′) dt′. (4.6)

This phase shift can be measured by the interference pattern of the
interferometer output.
Fig. 4.7 shows the transmission of Lorentzian pulses with different
duration through the Mach-Zehnder interferometer. In the left-hand
side panel, the output power Pout(t) is compared to a Lorentzian fit
P Lor(t), showing a pronounced interference pattern superimposed on
the Lorentzian pulse shape. This becomes even clearer by comparing
the difference between the experimental data and the Lorentzian fit,
what is shown in the right-hand side panel of Fig. 4.7. This oscillating
signal is then fitted with the function

Pout(t)− PLor(t) = cPin(t) × cos(φ(t) + φ0), (4.7)

where the phase shift φ(t) is given by Eqn. (4.6). The data from
nine experimental runs with different pulse durations has been fitted,
i.e. with the same values for β̄, γ̄, and τ . The result is plotted as
a black line in the right-hand side panel of Fig. 4.7, demonstrating
good agreement with the experimental data (blue line). The results

1Actually, a fit with a saturable absorber like nonlinearity leads to excep-
tionally large values for Psat. But then one can replace this nonlinearity by its
first-order Taylor approximation, which once again leads to a standard Kerr-type
nonlinearity.
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Figure 4.7: Interference pattern in the transmission through an asym-
metric Mach-Zehnder interferometer due to the plasmonic Kerr effect:
The left panel shows the transmitted power (blue line) compared to
a Lorentzian fit (black line). The deviation from the Lorentzian is
plotted on the right panel, showing a pronounced interference pattern
caused by the different phase shifts of the pump and the probe beam.
A fit according to Eqn. (4.7) (black line) shows a good agreement to
the experimental data (blue line).

for the fit coefficients are given by

β̄ = 9.57 mW−1,

γ̄ = 15.36 mW−1, and
τ = 0.63 ms. (4.8)
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4.5 Conclusion and Outlook

In the present chapter the Kerr effect for a long range surface plasmon
polariton mode on a thin gold film embedded in a dielectric material
(BCB) has been investigated. The nonlinearity arises from the metal-
lic stripe itself and not from the surrounding dielectric. By analyzing
the nonlinear absorption as well as the phase shift, both the real and
the imaginary part of the Kerr coefficient χ(3) was determined.
It was shown that two effects with different time scales contribute
to the nonlinear absorption. First, a slow contribution increases the
absorption, which is attributed to thermal effects in the sample. The
timescale of approximately 0.2 ms has been deduced from the hystere-
sis of the transmission curves measured with Lorentzian laser pulses
of different width. Second, the genuine nonlinearity of the absorption
coefficient occurs on timescales much faster than the pulses used in
the present experiment, i.e. below the microsecond regime. It was
shown that this effect is well described by a saturable absorber type
nonlinearity with a saturation power in the mW range.
Furthermore, the nonlinear phase shift (the actual Kerr effect) was
analyzed in an interferometric setup by observing the interference
pattern at the interferometer output. An estimate for the Kerr coef-
ficient induced by the metal requires a detailed analysis of the elec-
tromagnetic field. One has to include a geometrical factor accounting
for the portion of the electromagnetic field which is actually guided
inside the metal. This is the subject of ongoing work and will be
reported elsewhere when conclusions are drawn. Simple transmis-
sion measurements through bulk BCB are not completely sufficient
to exclude the impact of BCB, as reported in section 4.2. Dielec-
tric waveguides based on pure BCB need to be fabricated and their
nonlinear properties compared to the results obtained from LR-SPP
waveguides with similar mode fields.
All experimental results can be understood quantitatively with a
model including linear, thermal, and a saturable absorption. How-
ever, the calculated values of the fitting parameters have to be in-
terpreted with care because it is not easy to distinguish the three
different contributions from each other. For example, a change of
ξ + β has a drastic effect on the quality of the fit, whereas a simulta-
neous increase of ξ and a decrease of β has a weak effect only. This
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is especially true for the measurement of the real part of the Kerr
coefficient.
The main open problem is a careful analysis of the fast nonlinearity,
which will require ultrashort laser pulses with an appropriate wave-
length. A major challenge is to prove that the fast nonlinearity is
indeed a coherent Kerr effect which could then be used, for instance,
to generate squeezed light in an integrated plasmonic device similar
to nonlinear fiber-optic interferometers [52].
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5
SPP Excitation with Quadrature

Squeezed Light

5.1 Introduction

In the present chapter the compatibility of the quantum plasmonic
technology with the continuous variable quantum domain (described
in an infinite dimensional Hilbert space) is investigated by demon-
strating the plasmonic excitation, propagation, and detection of de-
terministically prepared quadrature squeezed vacuum states. A squeezed
vacuum state is used to excite an electron resonance on the surfaces
of a metallic gold waveguide to form a SPP. Despite linear loss and
decoherence in the plasmonic mode it is demonstrated that quadra-
ture squeezing is retained in the retrieved light state. Importantly,
the input state and output state are fully characterized by perform-
ing a complete quantum tomographic reconstruction of their density
matrixes. This is in contrast to previous experiments on plasmon
assisted quantum state transmission [19, 20], where only a certain
property of the quantum state was investigated.
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5.2 Continuous Variable Description of the
Electromagnetic Field

Before investigating the quantum properties of LR-SPPs, a brief in-
troduction to the continuous variable description of quantum optics
is given in this section. Starting point for the continuous variable
description of the electromagnetic field are Maxwell’s equations in
the absence of charges and current. After quantizing the field ampli-
tudes, a possible solution of the electric field Ê(t) with frequency ω
and at time t might be written as

Ê(t) = iâ(t)e−iωt − iâ†(t)eiωt, (5.1)

where â(t) and â†(t) are dimensionless annihilation and creation op-
erators of the quantized harmonic oscillator which satisfy the com-
mutation relation

[
â(t), â†(t)

]
= 1. The annihilation and creation

operators are non-Hermitian and therefore not directly measurable.
It is thus convenient to introduce the general quadrature operators
X̂φ(t) and Ŷ φ(t) via [53]

X̂φ(t) = eiφâ†(t) + e−iφâ(t) and (5.2)
Ŷ φ(t) = i

(
eiφâ†(t)− e−iφâ(t)

)
, (5.3)

which are often referred to as the position (X̂(t)) and momentum
(Ŷ (t)) operators of the quantized harmonic oscillator. With these
definitions, the electric field (5.1) can be written as

Ê(t) = X̂φ(t) sin(ωt)− Ŷ φ(t) cos(ωt). (5.4)

Using the commutator relation for â†(t) and â(t) it is straight forward
to show that the commutator for the quadrature operators is given
by [

X̂φ(t), Ŷ φ(t)
]

= 2i. (5.5)

This shows, that X̂φ(t) and Ŷ φ(t) form a pair of conjugate operators.
Due to Heisenberg’s inequality1

∆2X̂φ(t)∆2Ŷ φ(t) ≥ 1, (5.6)
1For a pair of Hermitian operators Â and B̂ the general form of Heisenberg’s

inequality is ∆2Â∆2B̂ ≥ 1
4

∣∣∣[Â, B̂]
∣∣∣2 .
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X̂φ(t) and Ŷ φ(t) cannot be simultaneously prepared with infinite ac-
curacy. In Eqn. (5.6), ∆2X̂φ(t) = 〈X̂φ(t)2〉−〈X̂φ(t)〉

2
is the variance

of X̂φ(t) and 〈. . .〉 denotes the expectation value for a given quantum
state. Quantum states for which Eqn. (5.6) equals one are called
minimum uncertainty states. Notable examples of such states are,
for instance, the vacuum state |0〉 and the coherent state |α〉 . The
latter is obtained by applying the displacement operator

D(α) = exp(−1
2
|α|2)

∑
n

(αâ†)n

n!
(5.7)

on the vacuum state, where α is the amplitude of the coherent state.
The uncertainty measured for any phase φ of the coherent state is
always identical and equal to one, i.e. ∆2X̂φ(t) = ∆2Ŷ φ(t) = 1. A
state for which ∆2X̂φ(t) < 1 < ∆2Ŷ φ(t) is called a squeezed state,
which is obtained by applying the one mode squeezing operator [54]

Ŝ(r, θ) = e
r
2 (e−iθ â2−eiθ â†2) (5.8)

on the coherent state |α〉. θ is the squeezing angle in the phase-
space quadrature plane and r is the squeezing parameter determining
the degree of squeezing. In contrast to the coherent state, which
after losses remains a minimum uncertainty state (just with smaller
amplitude), a pure squeezed state transforms into a mixed state with
smaller amplitude.

5.3 Squeezed Vacuum Light Field

A sketch of the experimental setup including an illustration of the
quadrature squeezed light source, the LR-SPP sample, and the char-
acterization stage is shown in Fig. 5.1. The experimental strategy is
as following. First, the squeezed light source is characterized. This
is done by removing the LR-SPP sample from the setup and directly
performing a measurement on the output of the squeezed light source.
Second, the LR-SPP sample is placed back into the setup and a LR-
SPP mode is excited by the squeezed light source. The re-emitted
quantum state will then be measured by the same characterization
technique as used before to ensure similar experimental conditions.
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These measurements are followed by a detailed analysis of the indi-
vidual quantum states.

Figure 5.1: Sketch of the experimental setup for LR-SPP excitation
with vacuum squeezed light: OPA - optical parametric amplifier,
PPKTP - periodically poled KTP crystal, OC - output coupler, SV -
squeezed vacuum, λ/2 - half-wave plate, Φ - piezo actuated mirror for
phase variation, 50:50 - symmetric beam splitter, and HD - homodyne
detection scheme.

The squeezed light field was produced by an optical parametric os-
cillator (OPO) operating below threshold. OPOs operating below
threshold are commonly referred to as optical parametric amplifiers
(OPAs). As illustrated in Fig. 5.1, the OPA cavity is composed of
four mirrors in a bow-tie configuration. Two mirrors are concave with
a radius of curvature of 25 mm and high-reflection coating at the fun-
damental wavelength of 1064 nm. The other two mirrors are plane,
one of which is high reflection coated. The second plane mirror, which
is called the output coupler (OC), has a power transmissivity of 10%.
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The two curved mirrors are separated by ≈ 31 mm and the total op-
tical round trip path length is ≈ 275 mm, resulting in a beam waist
of 19 µm in between the two curved mirrors. At the center of this
beam waist a periodically poled potassium titanyl phosphate (PP-
KTP) crystal with dimensions of 10×2×1 mm3 was placed for para-
metric down-conversion. Down-conversion to the fundamental cavity
mode was achieved by pumping the PPKTP crystal with the second
harmonic field at 532 nm, as shown in Fig. 5.1. The cavity beam
waist was chosen appropriately to satisfy the Boy-Kleinman condi-
tion for the PPKTP crystal length [55]. Further details of the OPA
design and its operation principle are summarized in Appendix A.
For characterizing the squeezed light field, the OPA output mode

Figure 5.2: Time domain data in shot noise units (SNU) (a) and
variance (b) of the squeezed vacuum mode: (a) The data contains
approximately 0.5M data points linearly distributed over a phase
variation between the signal mode and the LO from 0 to 2π. (b)
Noise power relative to the shot noise level calculated either from (a)
(black line) or from the density matrix ρ̂in (red dashed line).

was matched to the mode of a bright local oscillator (LO) emerging
from the same laser on a 50 : 50 beam splitter (BS). The contrast
C = (Imax − Imin) / (Imax + Imin) on the BS between the OPA mode
and the LO was measured to be 88.5%. After setting the LO power
to 14 mW, the two output modes of the BS were then recorded by
two analogue detectors, subtracted, amplified by 50 dB, down-mixed
at an optical side band frequency of 4.7 MHz, again amplified by 30
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dB, and finally low pass filtered with f3dB = 150 kHz. The resulting
signal was then recorded by a oscilloscope2 with a time resolution of
0.4 µs. In Fig. 5.2 (a) the resulting time domain data of the squeezed
vacuum input state containing approximately 0.5 million data points
is presented in shot noise units (SNU) for a variation of the relative
phase between the LO and the signal mode from 0 to 2π. The shot
noise unit is given by the fluctuation of the vacuum mode, which was
recorded independently by blocking the OPA mode with the before
mentioned LO power. The noise power with respect to the shot noise
level (and therefore the squeezing and anti-squeezing) of the input
state can be directly calculated from the time domain data and is
shown by the black trace in Fig. 5.2 (b). Each data point of the
variance is calculated for a time interval of 0.4 ms, thus consider-
ing ≈ 1000 quadrature data points. From this trace, the amount
of squeezing and anti-squeezing of the input state are found to be
−1.9± 0.1 dB and 6.1± 0.1 dB with respect to the shot noise level,
respectively.

After this, the data has been further analyzed by applying the max-
imum likelihood algorithm to the data in order to reconstruct the
states density matrix ρ̂in in the Fock-state representation. For this,
no additional binning has been applied to the rough data. Each
data point represents exactly one projective quadrature measure-
ment. The method of reconstructing the states density matrix using
the maximum likelihood method is described in detail in Appendix B.
Fig. 5.3 (a) shows the absolute values of the reconstructed density

2LeCroy Waverunner LT374L with 8bit resolution.
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matrix

ρ̂in =



0.70 0 −0.2 0 0.07 0 −0.03
0 0.12 0 −0.06 0 0.03 0

−0.2 0 0.09 0 −0.05 0 0.02
0 −0.06 0 0.04 0 −0.02 0

0.07 0 −0.05 0 0.03 0 −0.01
0 0.03 0 −0.02 0 0.01 0

−0.03 0 0.02 0 −0.01 0 0.01



+i



0 0 0.01 0 −0.01 0 0
0 0 0 0.01 0 0 0

−0.01 0 0 0 0 0 0
0 −0.01 0 0 0 0 0

0.01 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (5.9)

From the density matrix ρ̂in the variance of the input state can be
calculated for each quadrature X̂φ via

∆2X̂φ = Tr{X̂2ρ̂in} − Tr{X̂ρ̂in}2, (5.10)

which is shown by the red dashed line in Fig. 5.2 (b). Another

a) b)

Figure 5.3: Absolute values of the reconstructed density matrix ρ̂in

(a) and Wigner-function (b) of the input state.

way of illustrating a quantum state is given by the Wigner-function
W (X, Y ), where X = 〈X̂φ=0〉, (Y = 〈Ŷ φ=0)〉 are the amplitude
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(phase) of the light field. The Wigner-function W (X, Y ) is a so-
called quasi probability distribution because it can be negative for
some quantum states, e.g. for the single photon state |1〉 . W (X, Y )
can be calculated directly from the density matrix ρ̂ via

W (X, Y ) =
1
π~

∫ +∞

−∞
〈X +

Q

2
| ρ̂ |Y − Q

2
〉 dQ. (5.11)

Fig. 5.3 (b) shows a surface plot of the Wigner-function W (X, Y )in
of the input state ρ̂in calculated via Eqn. (5.11).

An alternative approach of analyzing the results would have been to
reconstruct W (X, Y ) by applying the inverse Radon transformation
directly on the time domain data and reconstructing ρ̂ from W (X, Y ),
as described in Ref. [56]. However, the result of that approach might
yield artifacts in the Wigner-function as well as negative diagonal
elements in ρ̂, which are clearly un-physical.

5.4 Squeezed Surface Plasmons

After characterizing the input state, the LR-SPP sample has been
inserted into the setup and the OPA mode was carefully aligned to
a gold stripe with a width, height, and length of 2 µm , 14 nm, and
2 mm, respectively, exactly following the description in section 3.2.
A transmission through the sample of 32.5% was measured for this
gold strip. The overlap between the re-emitted LR-SPP mode and
the LO mode on the 50 : 50 BS was measured to be 90.1% and
is therefore comparable to the previous measurement of the input
squeezed state. The recorded time domain data of the squeezed LR-
SPP mode as well as the noise power relative to the shot noise level
are presented in Fig. 5.4 (a) and (b), respectively. Identical settings
as for the squeezed vacuum state were used for the acquisition system.
In Fig. 5.5 (a) and (b) the absolute values of the density matrix
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Figure 5.4: Time domain data (a) and variance (b) of the LR-SPP
mode: (a) The data contains approximately 0.5M data points linearly
distributed over a phase variation between the signal mode and the
LO from 0 to 2π. (b) Noise power relative to the shot noise level
calculated either from (a) (black line) or from the density matrix
ρ̂LR−SPP (red dashed line).

ρ̂LR−SPP =



0.84 0 −0.13 0 0.02 0.00 −0.01
0 0.09 0 −0.03 0 0.01 0

−0.13 0 0.05 0 −0.01 0 0
0 −0.03 0 0.01 0 0 0

0.02 0 −0.01 0 0 0 0
0 0.01 0 0 0 0 0

−0.01 0 0 0 0 0 0


(5.12)

and the corresponding Wigner-function W (X, Y )LR-SPP of the LR-
SPP mode are shown. The amount of squeezing and anti-squeezing in
the re-emitted light field is therefore measured to be −0.7±0.1 dB and
3.2± 0.1 dB relative to the shot noise level, respectively. Therefore,
it can be concluded that the retrieved state is squeezed and that the
squeezing survived the plasmonic propagation.

5.5 Modeling the Surface Plasmon Mode

Next, it will be investigated whether the operation, that transforms
the density matrix of the input state ρ̂in to that of the output state
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a) b)

Figure 5.5: Absolute values of the reconstructed density matrix
ρ̂LR-SPP (a) and Wigner-function (b) of the LR-SPP mode.

ρ̂LR-SPP can be described by the unitary beam splitter operator

ÛBS = e
θ
2 (â†b̂eiΦ−âb̂†e−iΦ). (5.13)

Here, â and b̂ are the field operators of the beam splitter input modes,
Φ is the relative phase between the modes â and b̂, and θ is linked
to the transmission η via η = cos2( θ

2 ). The expected output state is
thus

ρ̂out(η) = Tr{ÛBS(η)ρ̂in ⊗ |0〉〈0|Û†
BS(η)}, (5.14)

where the second beam splitter input mode was assumed to be a vac-
uum mode with ρ̂vac = |0〉〈0| and the trace is taken over one of the
output modes of the beam splitter. To see whether ρ̂out(η) is similar
to the actually measured output state ρ̂LR-SPP the fidelity F (η) be-
tween the two states has been computed. Following the description
of Ref. [57], the fidelity is given by

F (η) = Tr{
√

ρ̂out(η)ρ̂LR-SPP

√
ρ̂out(η)}1/2, (5.15)

with 0 ≤ F (η) ≤ 1 and F (η) = 1 if and only if ρ̂out(η) = ρ̂LR-SPP. In
Fig. 5.6, the fidelity F is plotted as a function of the beam splitting
ration η. In the extreme cases, a value of η = 0 corresponds to the
overlap between ρ̂LR-SPP and the vacuum state ρ̂vac and a value of
η = 1 corresponds to the overlap between ρ̂LR-SPP and the incident
squeezed vacuum state ρ̂in. With respect to η, a maximum fidelity
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of F = 0.993 for η = 0.33 was found, as shown in Fig. 5.6. This
value of η coincides with the value obtained in the classical trans-
mission measurement shown in Fig. 3.3 (a), thus strongly indicating
that the plasmonic decoherence can be solely simulated by a beam
splitter interaction. For visualizing the similarity between ρ̂LR−SPP

and ρ̂out(η = 0.33), their real and imaginary parts are presented in
Fig. 5.7. Note that for both ρ̂LR-SPP and ρ̂out(η = 0.33) the imaginary
elements are close to zero.

Figure 5.6: Fidelity F between the modeled output state ρ̂η and the
LR-SPP state ρLR-SPP as a function of the transmission through a
beam splitter η.

5.6 Interpretation and Conclusion

In the following the experimental results are justified by using the-
oretical arguments. The propagation of plasmons can be considered
as photonic excitations of the electric field that are mapped onto the
(quasiparticle) excitations of the polarizable medium. One can split
the electrical polarization P̂ of the medium into positive and negative
frequency components, P̂ = P̂+ + P̂−, and expand the positive part
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Figure 5.7: Illustration of the measured LR-SPP density matrix
ρLR-SPP (a) and the modeled output density matrix ρout(η = 33%)
(b). Shown the real (top) and imaginary (bottom) parts of the den-
sity matrices.

P̂+ in terms of the electric field, Ê = Ê+ + Ê−;

P̂ (+) =
∞∑

m=0

∞∑
n=0

ĉmn({Ôi})
(
Ê(−)

)m(
Ê(+)

)n

, (5.16)

where the possibility is included that the expansion coefficient ĉmn

may depend on a set of state operators {Ôi} describing the state
of the polarizable medium, e.g. phonon operators or temperature.
The expansion coefficient cmn({Ôi}) thus gives access to information
about the nature of the excitation of the medium and, e.g., quasi par-
ticle interactions. The experiment was performed in the low intensity
limit, in which case the polarization reduces to

P (+) = ĉ00({Ôi}) + ĉ01({Ôi})Ê(+), (5.17)
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where the Ê(−) term was excluded since a negligible intensity is ob-
served when the incoming field is in vacuum. This also means that
〈ĉ†00ĉ00〉 = 0 must be required. Since the equation of motion of the
electric field is linear, the expression for P̂ (+) means that the outgoing
field Ê

(+)
out can be written as a combination of two terms

Ê
(+)
out = Ĝ({Ôi})ĉ00({Ôi}) + Ĝ({Ôi})Ê(+)

in , (5.18)

where Ĝ({Ôi}) is the Greens function of the plasmonic propagation.
If any dependence on internal state operators {Ôi} is ignored in the
expansion coefficient ĉ00 and ĉ01 in Eq. (5.16), one can find that the
input/output relation for a single mode operator â is given by

âout =
√

1− ηv̂ +
√

ηâin, (5.19)

where v̂ is a combination of the ĉ00 operators with the factor
√

1− η
separated out for convenience. Then from 〈ĉ†00ĉ00〉 = 0 it immediately
follows that 〈v̂†v̂〉 = 0 and consistency of the commutation relations
requires that [v̂, v̂†] = 1. v̂ is thus a single mode vacuum operator in
agreement with our experimental observation. The results therefore
show that the classical description P (+) = ε0(ε − 1)E(+) (where the
permittivity of the material ε is just a constant) remains valid for
the metal down to the level of single photons if a vacuum contribu-
tion to the operator equations is added. This conclusion is consistent
with the theoretical interpretation in Ref. [58] of the experiments in
Ref. [19], where it is concluded that the polarization degrees of free-
dom leaves no ”which-way” information in the solid. The present
work extends that conclusion by showing that also the presence or
absence of a photon leaves no ”which-way” information. It should be
noted, however, that even in the regime of linear optics a different
behavior occurs if the polarizability depends on fluctuating parame-
ters of the material. A notable example of this is the observation of
Brillouin scattering in optical fibers [59].
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6
Coupling Single Defects in Diamond to

Surface Plasmon Polaritons

6.1 Introduction

Spurred by recent developments in the field of quantum computing
and quantum information science, there has been a strong interest in
exploring the coherent interaction between single quantum systems
and photon fields. Such interactions could allow for long distance
quantum communication [60] and scalable quantum computers [61].
The so-called strong coupling regime in quantum electrodynamics
has been achieved for a number of physical systems like, for instance,
Cooper pairs interacting with super-conducting cavities [62], single
atoms in Fabry-Pérot cavity [63, 64], and between a single atom and
the whispering-gallery mode of a micro-resonator [65]. All these ap-
proaches are rendered possible due to a reduction of the effective
mode volume Veff of the photons.

The experiment described in this chapter aims for the coupling be-
tween a nitrogen-vacancy color center in diamond to the plasmonic
mode propagating along a nano-wire [13]. The coupling occurs, sim-
ilar to the approaches mentioned above, due to a sub-wavelength
confinement of the plasmon.
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6.2 The Nitrogen-Vacancy Defect in Di-
amond

More than 100 different types of defects in diamond are known, among
one of which is the nitrogen-vacancy center. Since its first discovery
in the 1960s it has attracted the attention of the scientific community
because of its unique properties.
The NV center is a single optical active level within the diamond band
gap of 5.50 eV [66, 67]. One area of interest arises from its non-zero
spin ground state. The ground state can be treated as a qubit and
the optical transitions can be used for qubit manipulation and read
out [68, 69, 70, 71], rendering the NV-center to a possible qubit candi-
date for quantum computing applications [72]. The NV-centers single
photon emission renders this system to a broadband source, which
might find applications in quantum cryptography [73, 74, 71, 75].
The NV center is a possible candidate for optically coupled quantum
registers [70] and distributed quantum computation [76]. As it was
shown recently, the proximal nuclear spins of adjacent atoms can be
coherently controlled via hyperfine interaction [77]. This can be used
as a basis for quantum memory with an extremely long coherence
time [78].
The electronic structure of the NV-center has been reviewed in a
number of articles, see for instance [79], and will just briefly be sum-
marized here. A simplified model describes the NV-center as a substi-
tutional nitrogen atom adjacent to a vacancy in the diamond lattice.
At room temperature, one observes a strong optical transition with
a zero phonon line (ZPL) at 637 nm (1.945 eV) accompanied by a
vibronic band at higher energy in absorption and a lower energy in
emission. Detailed analysis of the ZPL unveiled that the center has
trigonal C3v symmetry [80]. Electron parametric resonance on a point
which was correlated with the NV-center showed trigonal symmetry
with a spin polarized triplet state (S=1). This S=1 state implies
an even number of electrons. Since the substitutional nitrogen atom
has five valence electrons, the NV-center must have been charged in
these measurements. Therefore, it was assumed that the NV cen-
ter is negatively charged with an extra electron presumably donated
by isolated substitutional nitrogen defects. From detection of the
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NV center in the dark at 100K by electron parametric resonance re-
searchers have concluded that the S=1 state is the ground state of
the NV center [81]. Later on, this has been confirmed by hole burning
measurements [82], optically detected magnetic resonance [83], and
Raman heterodyne measurements [84].

Figure 6.1: (a) Energy diagram of a NV defect. Both the GS 3A and
the ES 3E are spin triplets, with a zero field splitting Dgs and Des be-
tween the mS = 0 and mS = ±1 levels. Largely spin-conserving tran-
sitions are shown by the black arrows. The dominant non-radiative
relaxations through 1A (gray arrows) is not spin conserving. (b)
Energy diagram model used as a basis for the rate-equations. Transi-
tions from the shelving state ’s’ to the ground state ’g’ are neglected.

The energy level diagram of the NV defect, as known up to now, is il-
lustrated in Fig. 6.1 (a). The ground state (GS) splitting between the
ms = 0 singlet state and the ms = ±1 doublet state was measured to
be Dgs = 2.88 GHz. Only recently, the state structure of the excited
state (ES) has been investigated experimentally, showing a zero-field
splitting of Des = 1.43 GHz [85, 86]. Optical transitions between
the GS and the ES are primarily spin conserving, as illustrated by
the black arrows in Fig. 6.1 (a) [79]. Only non-radiative transitions
through an intersystem crossing to 1A are not spin conserving, as
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illustrated by the gray arrows in Fig. 6.1 (a). Under optical pump-
ing, this allows for initialization into the ms = 0 state [79]. Since
the transition via the 1A state is non-radiative, its presence only be-
comes evident by measuring the auto-correlation function of a single
NV defect, as will be discussed in section 6.4.
Due to its high concentration in the atmosphere, nitrogen is present
as an impurity with varying concentration in diamond. Diamonds
are categorized in classes Ia to IIb, labeling different impurity con-
centrations. These different types of diamond are summarized in
Table 6.1. In diamonds with a sufficiently high nitrogen concen-
tration NV-centers can form naturally. If required, the NV-center
concentration can be enhanced by irradiating the diamonds with fo-
cused electrons of 400keV or Ga+ ions of 30keV, hereby creating
vacancies in the diamond lattice. Subsequent annealing at 750◦C
in vacuum allows the vacancies to become mobile and form NV de-
fects [87]. However, this method is only useful for creating clusters
with a large number of NV defects. Another way of creating NV-

diamond type dominating impurity
Ia nitrogen aggregates with 100 to < 1000 ppm
Ib nitrogen > 1 ppm
IIa nitrogen < 1 ppm
IIb boron

Table 6.1: Different types of diamond and their dominating impurity.

centers is by nitrogen implantation and subsequent annealing of type
IIa diamonds with an abundant nitrogen concentration of less than 1
ppm [88]. In these studies, the 15N isotope has been employed in or-
der to distinguish implanted from abundant 14N nitrogen. The yield
in these studies for single NV-center formation has been calculated to
be 2.5%. Due to NV-center electron spin interaction with other spins
and phonons in the diamond lattice, a single impurity spin will usu-
ally lose its phase quickly. Due to strong binding between low-mass
carbon atoms, diamond owes phonon-limited spin lattice relaxation
times around 102 − 104 s. Thus, the phase coherence time of elec-
tron spins is limited by dipolar interactions with other spins, i.e. the
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nuclear spin bath arising from the presence of 13C atoms. The most
abundant isotope 12C (98.9%) is spin free. By preparing NV-centers
in ultra-pure isotopically purified 12C CVD diamond, an electron spin
phase coherence time of more than 1 ms has been measured [89].
For this work, nano-crystal diamonds MSY 0-0.05 Mikron GAF from
Microdiamant AG were used. These diamonds have a mean diameter
of ≈ 30 nm and a maximum size of ≈ 50 nm. In approximately 1%
of the nano-crystals single NV defects can be found [90].

6.3 The Experimental Setup

The experimental setup used for the studies on single NV-centers as
well as NV-centers coupled to plasmonic nano-structures is illustrated
in Fig. 6.2. The samples were illuminated by either a continuous wave
laser1 or a pulsed laser2 with 8 ps pulse width and variable repetition
rate ranging from 1 MHz up to 20 MHz. Both lasers are operating
at a vacuum wavelength of 532 nm. For focusing the pump light to
a near diffraction limited spot on the sample, a standard microscope
objective3 with a numerical aperture (NA) of 0.95 and a focal length
of f = 2 mm was used. For some of the measurements, an oil immer-
sion lens with a NA = 1.4 and f = 2 mm was alternatively employed.
A piezo-actuated stage4, on which the objective was mounted, was
used to controllably scan the pump laser spot across the sample sur-
face. The fluorescence light from the sample was collected with the
same objective and split on a 50 : 50 beam splitter, as illustrated
by the red lines in Fig. 6.2 (a). The beam splitter output modes
were imaged on a pinhole for selecting a diffraction limited spot from
the probe, before being spectrally filtered and detected by avalanche
photo diodes5 (APDs). Though not specified by the manufactur-
ers data sheet, the timing resolution of the APDs is expected to be
≈ 300 ps [91]. The spectral filters were composed of a 532 nm notch-
filter and two long pass filters with cut-offs at 600 nm and 650 nm for

1Coherent Compass 215M-75 SL
2Fianium FP532-PP-01
3Olympus MPLAPO 100X/0.95
4MCL Nano-T225 with 200× 200× 50 µm3 scanning range
5Perkin Elmer SPCM-AQRH-14-FC
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suppressing reflected pump light and Raman scattered photons. One
of the beam splitter output modes first passed through a confocal
lens configuration, before being projected on the pinhole via passing
a x-y galvanometric mirror6. The galvanometric mirror scanned the
image plane formed in between the pair of confocal lenses (1st image
plane in Fig. 6.2 (a)), thereby enabling a scan of the sample around
the point of excitation within the objectives field of view. In the
same detection channel behind the pinhole, a flip mirror allowed us
to switch between detection with an APD or a grating spectrometer7,
as illustrated in Fig. 6.2 (a). A time to amplitude converter8 (TAC)
was used to witness the emission of single photons and to measure the
lifetime of NV-defects. These measurements are described in detail
in the following section. In Fig. 6.2 (b), a typical fluorescence image
of a single NV-center is shown, obtained by detecting the APD sig-
nal while scanning the objective (hence the pump laser with a power
of 544µW) across the position of the defect. In this case, the sam-
ple has been prepared by spin-coating a water solution containing
10 carat nano-diamonds and 0.5 w% polyvinyl acetate (PVA) on a
quartz substrate with 5000 rpm for 10 seconds. Prior to the deposi-
tion, the substrate was cleaned in a plasma asher to remove residual
organic dirt and to render the substrates surface hydrophilic. Clean-
ing the substrate in the plasma asher showed to be an important step
in the sample preparation. In case this cleaning step was left out the
sample surface was hydrophobic and almost no nano-diamonds were
deposited on the sample.
The spectrum of this NV defect, which is shown in Fig. 6.3 (a), is
marked by its characteristic ZPL at 637nm and a red shifted phonon
broadened emission peak.

6.4 Single Photon Emission from a Single
NV Defect

One can describe the population dynamics of the NV-center with a
rate equation of a three level system, which for this system was first

6Cambridge Technology 6240H
7Andor Shamrock SR-500 with Andor DU970N electron multiplying CCD
8PicoHarp 300
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Figure 6.2: (a) Schematic diagram of the home-build confocal micro-
scope: O - objective, BS - 50 : 50 beam splitter, P - pinhole, F -
fluorescence filter, D1,2 - avalanche photo diode, G - galvanometric
mirror, FM - flip mirror, TAC - time to amplitude converter, and Spec
- grating spectrometer. (b) Fluorescence image of a single NV-defect.

applied by Kurtsiefer et al. in 2000 [74]. The energy level labeling
and the different rates are illustrated in Fig. 6.1 (b). When neglecting
all coherences, the population dynamics of the ground (g), the excited
(e), and the shelving state (s) are governed byρ̇g

ρ̇e

ρ̇s

 =

−kge keg 0
kge −keg − kes kse

0 kes −kse

 ρg

ρe

ρs

 , (6.1)

where ρi, i = {g, e, s}, is the population probability of state i and
ρg+ρe+ρs = 1. In this model, possible non-radiative transitions from
the shelving state to the ground state are neglected because they are
about three orders of magnitude smaller than all other rates [74]. The
emission rate of a photon R is proportional to the population of the
excited state ρe, which in the steady state regime (ρ̇g = ρ̇e = ρ̇s = 0)
can be written as

ρe(t →∞) =
ksekge

kgekes + kgekse + kegkse
. (6.2)
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Figure 6.3: (a) Spectrum of a single NV-center. (b) Count-rate of
the same NV defect as a function of pump power.

This population shows a saturation behavior as a function of the
pump rate kge. The measured emission rate of the NV defect from
Fig. 6.2 (b) as a function of pump power is shown in Fig. 6.3 (b),
recorded with APD D1. The count rate R(Pin) follows a function
R(Pin) = R∞

Pin/Psat
1+Pin/Psat

, where R∞ is the rate for Pin →∞ and Psat

is the saturation pump power defined as R(Psat) = R∞/2. From
the fit in Fig. 6.3 (b), the coefficients have been determined to be
R∞ = 35k s−1 and Psat = 144µW.
The emission of a single photon from a single NV-center is witnessed
by measuring the second order correlation function g(2)(τ) in a Han-
bury Brown and Twiss (HBT) measurement setup [92, 93]. A HBT
measurement setup is composed of a beam splitter (BS) and two
APDs D1 and D2 detecting single photons at arrival times t1 = t and
t2 = t + τ, as shown in Fig. 6.2 (a). g(2)(τ) is defined as

g(2)(τ) =
〈i1(t)i2(t + τ)〉
〈i1(t)〉 〈i2(t + τ)〉

, (6.3)

where i1(t + τ) and i2(t) are the photon counts of the detectors D1

and D2, respectively, and 〈. . .〉 denotes averaging over time t. This
equation can be understood by considering that a single photon emit-
ted by a NV-center can either be transmitted or reflected on the BS.
In a particle picture, energy conservation requires that the detection
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of a single photon occurs either by detector D1 or detector D2. Prac-
tically, g(2)(τ) is measured by accumulating histograms using a time
to amplitude converter (TAC), as shown in Fig. 6.2 (a), where the
APD signal D1 was used as the start trigger and the APD signal D2

as the stop trigger of the TAC. In order to acquire negative times,
the signal of D2 was delayed by a 260 ns cable delay line. The time
resolution of the TAC, which defines the time averaging in Eqn. (6.3),
was set to 64 ps for all measurements. Thus, in case of a single pho-
ton emission no coincidences 〈i1(t)i2(t + τ)〉 are measured for τ = 0.
Finally, g(2) was normalized such that g(2)(τ = ∞) = 1. Note, that
for an N -photon Fock state g(2)(0)N = 1 − 1/N [93]. Hence, the
condition g(2)(0) < 0.5 is sufficient to prove that the emitted light is
prepared in the single photon state.
In order to derive an analytic expression for g(2)(τ) of an NV-center,
one first has to solve the rate equation (6.1), where the system is
initially prepared in the ground state, i.e. ρg(t = 0) = 1, ρe(t =
0) = ρs(t = 0) = 0. Then, g(2)(τ) is obtained by normalizing ρe(τ) to
ρe(τ = ∞) [74, 93], giving the result

g(2)(τ) =
ρe(τ)

ρe(τ = ∞)
= 1 + C2e

−|τ |/τ2 + C3e
−|τ |/τ3 , (6.4)

with the decay rates and coefficients given by

1/τ2,3 = A/2±
√

(A/2)2 −B,

C2 =
1− τ2kse

kse(τ2 − τ3)
, C3 = −1− C2,

(6.5)

with

A = kge + keg + kse + kes, and
B = kgekes + kgekse + kegkse.

(6.6)

In Fig. 6.4 the measured and modeled (using Eqn. (6.4)) second order
correlation function g(2)(τ) are plotted for a pump power of 80 µW
(a) and 576 µW (b), respectively. On a short time scale around
τ = 0, the auto-correlation function g(2)(τ) < 0.5. Hence, only a
single photon is emitted from the NV defect within the time window
where g(2)(0) < 0.5. Generally, this behavior is referred to as photon



88
CHAPTER 6. COUPLING SINGLE DEFECTS IN DIAMOND

TO SURFACE PLASMON POLARITONS

Figure 6.4: Measured (black dots) and fitted (red line) second order
correlation function g(2)(τ) of a single NV-center with a pump power
of (a) 80µW and (b) 576 µW.

anti-bunching. On a slightly longer time scale, the light field emitted
by the NV emitter bears photon bunching properties, as g(2)(τ) > 1.
This behavior is in contrast to a pure two level system and due to
the presence of the thermally coupled shelving state. As can be seen
from Fig. 6.4, the photon bunching only becomes clearly measurable
for higher excitation powers.
It is important to note that the radiative decay time of NV de-
fects depend on the refractive index n of the surrounding medium
as 1/n [94, 95]. In comparison to bulk diamond, which has a re-
fractive index of ndiamond = 2.4 and an excited state lifetime of 11.6
ns [96], the lifetime of NV-defects in nano-crystals is expected to be
higher. This is due to the fact that nano-crystals are surrounded by
air (n = 1) on one side and attached to the glass substrate (n ≈ 1.5)
on the other side. Furthermore, the NV-defect might be located at
any position within the nano-crystal, i.e. either in the crystal center
or more close to the crystal surface. Since that position is not known
and since the orientation of nano-crystals on the sample surface is
random, the refractive index that the NV defect effectively feels is
expected to follow a broad distribution. As a consequence of this,
the radiative decay time of NV-centers in nano-crystal diamonds is
expected to be broadened, too. Fig. 6.5 (a) shows the distribution of
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NV-center life-times in diamond nano-crystals, where the decay time
of a total of 31 NV defects has been measured. These measurements
were performed as follows. Single NV-centers were excited using the
pulsed laser with a repetition rate of 5 MHz. Using the TAC with
a time resolution of 64 ps, the laser trigger is start signal, and APD
counts from D2 as stop signal, lifetime histograms were obtained.
Such a lifetime histogram is shown in Fig. 6.5 (b). An exponential
fit to the data then yields the lifetime of the NV-defect under inves-
tigation. Due to possible contamination of the sample, some of the

Figure 6.5: (a) Lifetime distribution of single NV defects in diamond
nano-crystals. (b) Example lifetime measurement obtained under
pulsed excitation.

centers have a lifetime which is shorter than the one measured in bulk
diamond. However, the majority of defects decay noticeably slower
with a peak value around 17 ns.

6.5 Single Surface Plasmon Excitation

The aim of the experiment described in this section is to control the
coupling of a single NV defect to a metallic nano-structures, thereby
increasing the decay rate into the plasmon mode while simultane-
ously decreasing the relative rate into all other modes. In general,
coupling an emitter to a resonant mode will ultimately change the
life-time of the excited state of the emitter. This effect has first
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been addressed by Edward M. Purcell in 1946 [97], and is known
as the Purcell effect. In other words, it means that the emission
properties of quantum emitters such as atoms, molecules, quantum
dots, or NV centers do not only depend on their intrinsic properties,
but also on the local electromagnetic environment. This is some-
what similar to the dependence of the lifetime on the refractive index
of the medium surrounding the emitter, as has been already men-
tioned in the previous section. Modifications of the emission lifetime,
spectral distribution, and spatial emission pattern have been demon-
strated near planar interfaces [98], through resonant coupling to op-
tical micro-cavities [99, 100, 101], and recently through coupling to
metal nano-structures [102, 103, 104, 15, 105, 106, 17, 107, 90]. Most
closely related to the work discussed in this section is the coupling of
NV defects to silver nano-wires, which has been achieved only very
recently [108]. Excitation of plasmon resonances in metallic nano-
structures, which act as optical nano-antennas, leads to two kind of
effects: First, highly localized photon fields are created that enhance
the excitation rate. Second, the density of states of the final state is
increased, that enhances both the radiative and non-radiative decay
rates of nearby emitters. A key feature of the emitter-plasmon cou-
pling is the reduction of the effective mode volume Veff of photons,
which in turn results in a substantial increase of the emitter-plasmon
coupling constant g ∝ 1/

√
Veff.

6.5.1 Theory on Single Emitter Plasmon Coupling

The model illustrating the NV defect nano-wire system and the dif-
ferent decay channels are shown in Fig. 6.6. It should be noted that
even though the focus of this section is on NV defects, the theoretical
description is quite general and thus also describes the coupling of
various other emitters like, for instance, semiconductor quantum dots
or CdSe nano-crystals. In the experiment, the NV defect is positioned
in a distance d away from the nano-wire center. The dipole moment
p0 of the emitter should be aligned along along the radial direction
r of the wire to obtain a maximum overlap to the electric field Epl

of the plasmonic mode, Epl · p0. This becomes evident from the po-
larization of the fundamental mode, as discussed in section 2.3. The
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total decay rate Γtot is composed of three decay channels. The first
channel is the decay into non-radiative modes Γnon-rad due to pho-
tonic losses (IM{k‖}) in the nano-wire. The second channel is the
radiative mode Γrad corresponding to a coupling into free space. The
third and most important channel is the decay into the surface plas-
mon mode Γpl. In the following, the decays into the different channels
for realistic material parameters and dimensions will be discussed.

Figure 6.6: Model of a NV defect with dipole moment p0 positioned
in a distance d from the center of a nano-wire. The dipole moment
should be aligned along the radial component r of the wire. Illus-
trated are the decay channels Γrad, Γnon-rad, and Γpl.

Derivations of the decay rates Γrad,Γnon-rad, and Γpl are based on
classical calculations in the quasi-electrostatic limit, which were first
presented in Ref. [13] for an emitter metal nano-wire system and
further elaborated on in Ref. [14]. The spontaneous emission rate
enhancement of a single emitter placed at a distance d from the center
of a nano-wire with radius R is (Ref. [14])

Γrad

Γ0
=

∣∣∣∣1 +
ε− 1
ε + 1

R2

d2

∣∣∣∣2 , (6.7)

where ε = εmet/ε1 and Γ0 is the emission rate of the emitter in a
uniform dielectric ε1. As the emitter approaches the nano-wire the
decay into non-radiative modes Γnon-rad increase as

Γnon-rad

Γ0
=

3
16k3

0(d−R)3
Im

(
ε− 1
ε + 1

)
. (6.8)
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Γnon-rad reflects the losses in the system being present due to a non-
zero imaginary part of εmet. As it can be seen, the non-radiative
losses are diverging when the emitter approaches the wire surface as
1/(d − R)3. Thus, it is evident that losses into non-radiative modes
directly influence the efficiency of the device. The decay rate into the
fundamental (m=0) plasmon mode is given by

Γpl

Γ0
= αpl

K2
1 (k1⊥d)
(k0R)3

, (6.9)

with the coefficients

αpl =
3(ε1 − εmet)

ε
3/2
1

C2I1(C)I0(C)
dχ(C)/dx

and (6.10)

χ(x) = ε1I0(x)K ′
0(x)− εmetK0(x)I ′0(x). (6.11)

In the nano-wire limit, i.e. when the wave vector k‖ follow a ∝ 1/R
dependence, the coefficient C ≈ k1⊥R. Ij, j = {0, 1}, and K1 are
modified Bessel functions of the first and second kind, respectively.
As a function of emitter distance d, these equations describe the de-
cay rates into the respective channels for a given wire radius R and
dielectric constants εmet and ε1.
It is convenient to introduce the distance d′ = d − R from the wire
surface to the emitter and to perform all calculations in this basis.
For a realistic wire radius of R = 25 nm, the various decay rates
are plotted as an example in Fig. 6.7 (a). It can be seen, when the
emitter approaches the surface of the wire, all decay rates increase
monotonically. In a wide range of d′, Γpl is enhanced significantly
compared to Γ0 and the dominant decay channel of the emitter. Only
close to the nano-wire surface the non-radiative rate dominates over
all other decay channels. Therefore, in order to quantify the emitter
coupling efficiency into the plasmon mode it is convenient to introduce
a ”Purcell factor”

P =
Γpl

Γrad + Γnon-rad
(6.12)

and the coupling efficiency to the plasmon mode

ηpl =
Γpl

Γrad + Γnon-rad + Γpl
. (6.13)
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Figure 6.7: (a) Fluorescence rates of a NV center as a function of
emitter distance d′ from the wire surface for a nano-wire with R = 25
nm, a vacuum wavelength of λ0 = 700 nm, and ε1 = 2. The red line
shows the Purcell factor as defined in the text. (b) Coupling efficiency
to the plasmon mode ηpl as a function of d′ for the same parameters
as in (a).

For the rates shown in Fig. 6.7 (a), the Purcell factor is plotted as
the red solid line in the same graph. ηpl is plotted in Fig. 6.7 (b) for
the rates from (a). Since Γnon-rad is dominating when d′ → 0, the
plasmon excitation efficiency drops and vanishes for d′ = 0.

Considering a NV defect in a diamond nano-crystal, one has to ac-
count for the rather high refractive index of diamond with ndiamond =
2.4 This high refractive index of diamond will influence the plasmon
mode and subsequently the coupling to it. It suggests that the effec-
tive permittivity ε1,eff determining the plasmon mode locally in the
vicinity of the diamond is somewhat close to εdiamond = n2

diamond.
To illustrate the influence of an increased refractive index induced by
εdiamond, Fig. 6.8 shows 10 log10(P ) as a function of both R and d′

for two different dielectric constants ε1 = 2 (a) and ε1 = 5 (b). The
Purcell factor decreases with increasing ε1 for the whole range of pa-
rameters R and d′. To further investigate this qualitatively, in Fig. 6.9
the maximum Purcell factor (solid line) obtained by optimizing over
emitter distance d′ as well the corresponding optimum emitter dis-
tance d′opt (dashed line) defined via max{P (d′)} = P (d′opt) are plotted
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Figure 6.8: 10 log10(P ) as a function of wire radius R and NV defect
distance d′ from the surface of the wire for ε1 = 2 (a) and ε1 = 5 (b).

versus the wire radius R for ε1 = 2 (black) and ε1 = 5 (red). As can
be seen from the graph, for an increased ε1 the maximum achievable
Purcell factor decreases significantly and, in addition, the emitter has
to be placed closer to the wire surface in order to obtain the most effi-
cient coupling. This can be explained as follows. In case ε1 increases
the surface plasmon mode becomes more localized to the nano-wire
surface. This effect was shown qualitatively in Fig. 2.8 (d) for the
same parameters as used here. Consequently, in order to increase the
overlap between the plasmon mode and the NV-centers dipole mo-
ment for increasing ε1, the emitter has to be positioned closer to the
nano-wire surface, i.e. d′ has to decrease. As a consequence of this,
with decreasing d′ the decay into the non-radiative mode increases
and hence the Purcell factor drops.

6.5.2 Experiment on NV Defect Plasmon Cou-
pling

After investigating the NV defect - plasmon coupling theoretically,
the following section is devoted to its experimental realization. The
wires employed were synthesized silver nano-wires, whose fabrication
was described in detail in section 3.1. Due to the wet chemical growth
mechanism these wires are expected to be crystallographically mono
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Figure 6.9: Maximum Purcell factor P (left scale, solid lines) and
optimum distance to the emitter d′ (right scale, dashed lines) for
various wire radii and ε1 = 2 (black) and ε1 = 5 (red). The gray
shaded area illustrates the radius distribution of the fabricated wires.

crystalline and thus expected to support SPP modes with smallest
possible propagation losses.
The samples for studying NV defect - plasmon coupling were prepared
as follows. After cleaning the quartz substrate in a plasma asher, the
nano-wires were spin coated with ≈ 1000 rpm and a waiting time of
≈ 5 min a prior switching on the spinner. The waiting time depends
on the wire density in the solution as well as their adhesion to the
surface of the substrate, and was chosen appropriately to obtain sin-
gle, well separated wires on the sample. On top of the wires, a layer
of nano-diamonds was spin coated from a solution with a diamond
concentration of ≈ 10 carat/l and 0.5w% PVA. Hence, only by chance
a single nano-diamond containing a single NV defect with the right
dipole moment orientation is located on top of a nano-wire. After
mounting the sample in the confocal microscope (shown in Fig. 6.2
(a)) individual nano-wires were analyzed by fluorescence imaging. In
these images, NV defects being located on top of a wire could be iden-
tified by a significantly increased luminescence from the nano-wire
surface as well as their characteristic spectra. The radiative decay of
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the NV defect into the plasmon mode, and thus the NV defect, could
be identified by measuring the fluorescence from the nano-wire ends
directly. This was done by imaging the fluorescence of the nano-wire
with the galvanometric mirror while keeping the position of the pump
beam fixed on the NV defect side. As an example, Fig. 6.10 (a) shows
the fluorescence image of a combined NV defect - nano-wire system
obtained by exciting the NV defect (marked as center) with a pump
power of 160µW. The galvanometric fluorescence image of this NV

Figure 6.10: Fluorescence image (a) and spectra (b) of a NV defect
coupled to a silver nano-wire.

defect - nano-wire system is characterized by three strong emission
peaks. The first one is located approximately at the center of the
wire and corresponds to the radiative decay channel Γrad of the emit-
ter. Two more emission peaks appear on the wire ends corresponding
to the decay into the plasmonic channel Γpl, which are labeled as A
and B in Fig. 6.10 (a). While propagating along the nano-wire, the
plasmonic field amplitude decays as ∝ eIm{k‖}z, where Im{k‖} is
the imaginary of the plasmon propagation constant. Furthermore,
the plasmon scattering into free space modes strongly depends on
the nano-wire radius and is expected to decrease for decreasing wire
radii [15]. Because of these reasons, the measured intensity on A and
B are only proportional to Γpl.

The respective spectra measured from ’center’, ’A’, and ’B’ are pre-
sented in Fig. 6.10 (b). In comparison with an uncoupled NV defect
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(see for instance Fig. 6.3), the central emission has a very similar spec-
trum and thus confirms that this is a NV defect which is coupled to
the wire. The spectra taken at the wire ends ’A’ and ’B’ are strongly
modulated due to the fact that the nano-wire can be understood as
being a lossy Fabry-Pérot resonator with plasmon mode propagation
losses and is consistent with previously reported results [4, 37, 108].
Each end of the wire reflects an incident plasmonic mode with a reflec-
tion coefficient ρ [109, 108]. Seen from the NV defect side, a plasmon

Figure 6.11: Measured and simulated spectra of nano-wire ends. left
- wire end A, right - wire end B. Top row - measurement, bottom row
- simulation with R = 17nm.

propagating towards either end of the wire can be excited. At the
wire end A (B) the mode is reflected with an amplitude proportional
to ρ and interferes with the mode propagating towards end B (A).
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After considering an infinite number of round trips the plasmonic
field amplitudes EA and EB on end A and B, respectively, can be
expressed as

EA = E0

{
eik‖dA + ρeik‖dBeik‖d

} 1
1− ρ2e2d(ik‖)

, (6.14)

EB = E0

{
eik‖dB + ρeik‖dAeik‖d

} 1
1− ρ2e2d(ik‖)

, (6.15)

where dA and dB are the distances from the NV defect to the wire
ends A and B, respectively, d = dA + dB is the total length of the
wire, and E0 is the initial plasmonic field at the NV defect side.
The amplitude E0 = E0(ω) is assumed to be proportional to the
spectrum of the NV defect and dA = 2.1 µm and dB = 2.2 µm are
taken from the fluorescence image Fig. 6.10 (a). The calculation of ρ
is summarized in Appendix C. Due to the strong dispersive nature
of k‖ = k‖(R) (cf. Fig. 2.8), also ρ is strongly depending on the
wire radius. For instance, for very thin wire with a radius less than
30nm a reflectivity close to unity is obtained, whereas the reflectivity
drops to ≈ 7% for large R. The simulated spectra using Eqns. (6.14)
and (6.15), which were optimized for R = 17 nm, are presented in
Fig. 6.11 together with the measured spectra. This radius gives good
agreement between experiment and simulation and can be expected
from the scanning electron microscope analysis, as shown in Fig. 3.2.
As one can see from Fig. 6.11, the measured spectra are superimposed
by a smaller modulation. This could be explained by the formation of
a shorter Fabry-Pérot cavity than the wire length due to, for instance,
small silver nano-particles [37].
The auto-correlation function measured on this system did not show
any photon anti-bunching characteristics and is therefore not shown
here. This might have manifold reasons: First, the nano-crystal might
have contained more than one NV center. Second, fluorescence from
the nano-wire might have masked single photon emission by produc-
ing noise, and by this destroying the correlation signal. Third, the
coupling of the NV defect to the plasmon mode was rather strong
such that the anti-bunching dip in the auto-correlation measurement
was not resolvable for this system.
For a different NV defect - nano-wire system the anti-bunching dip
in the auto-correlation function could be resolved and is presented
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in Fig. 6.12. Both measurements shown were obtained for a pump
intensity of 160µW. Fig. 6.12 (a) shows the autocorrelation function
measured on the radiative decay channel Γrad, i.e. the galvanomet-
ric channel was aligned to the NV defect side. The autocorrelation
function shown in (b) was obtained by aligning the galvanometric
channel to one of the wire ends. Thus, this measurements show the
correlation between Γrad and Γpl. In both graphs the anti-bunching

Figure 6.12: Auto-correlation measurement of a NV defect coupled
to a nano-wire: (a) correlation between NV defect and (b) between
NV defect and wire end.

dip is clearly visible. They are both characterized by a decay time
τ2 = 3.1ns. The values of g(2)(τ = 0) are determined to be 0.26 in (a)
and 0.49 in (b) and demonstrate the excitation of single surface plas-
mons excited by a NV defect. To illustrate the coupling strength of
the NV defect to the SPP mode, the modeled auto-correlation func-
tion of an uncoupled NV defect (the same one as shown in Fig. 6.4)
is overlayed by a blue line in Fig. 6.12 (a), obtained experimentally
for exactly the same pump intensity. In this case, the autocorrelation
function of the uncoupled NV defect was characterized by a lifetime
τ2 = 18.9 ns. Since in general τ2 of uncoupled NV defects in nano-
diamonds is broadened, as explained before, this comparison only
gives a qualitative measure for the coupling strength. In addition to
this, the orientation of the nano-crystals and with this the NV defects
dipole moment are random. This fact has as a consequence that the
excitation rate kge will also be influenced by the orientation of the
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crystal and has to be taken into account.
The coupled NV defect nano-wire systems are very fragile with re-
spect to pump power and the duration of excitation. Usually, a nano-
wire which was not fluorescing at the beginning of the measurement
started to show fluorescence after pumping it for a short period of
time, which usually was of the order of a dew minutes only. As one
consequence of this, the background noise increased due to increased
fluorescence from the nano-wire and thus the anti-bunching dip in the
g(2) measurement vanished. In the following section, several ideas for
improving the experiment will be outlined.

6.6 Outlook

The model of single emitter coupling to metallic nano-wires shows
that the emitter decay into the plasmonic channel strongly depends
on the distance of the NV defect to the nano-wire surface. Further-
more, it was assumed in the model that the orientation of the emitters
dipole moment is along the radial direction of the wire. In addition,
a dependence on the dielectric property of the surrounding medium
has to be considered. Thus, future investigations of single NV de-
fect - plasmon mode coupling will have to be carried out in a more
deterministic way by controlling the positioning of the single nano-
diamond with respect to the nano-wire. For instance, this can be done
by using an atomic force microscope (AFM). In recent publications,
people showed that single diamond nano-crystals could be moved
across the sample and be placed at desired positions, for instance
on top of a photonic crystal cavity [110]. In another work, single
gold nano-spheres were moved around single diamond nano-crystals
with an AFM [90]. Motivated by these demonstrations, future in-
vestigations of the NV center - plasmon coupling might include the
following steps. First, single crystal nano-diamond will be deposited
on the sample in small quantity using a tapered fiber [110]. By us-
ing the confocal microscope in combination with an AFM operating
in tapping mode, single crystals containing one NV defect with de-
sired properties will be selected and separated from other crystals.
Second, after depositing a small quantity of nano-wires on the same
substrate, the NV center will be brought in a controlled way in the
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near vicinity of the wire by switching the AFM from tapping mode
operation to contact mode operation. By recording the fluorescence
decay lifetime, which determines the total decay rate Γtot, in combi-
nation with Γrad and Γpl this will allow to determine the optimum
NV center nano-wire coupling distance d′opt and with this the max-
imum Purcell factor, as described by the model in section 6.5.1. A
modified schematic diagram of the experimental setup for this ap-
proach is shown in Fig. 6.13. Another parameter which is required

Figure 6.13: Future experimental setup for controlled coupling of NV
defects to metallic nano-wires.

to be optimized is the size of the nano-diamonds. As calculated in
section 6.5.1, the optimum coupling distance d′opt is less than 10 nm
for a wide range of wire radii R. To open the possibility of investi-
gating the whole parameter range of d′, single digit nano-diamonds
with diameter of less than 10 nm will have to be used. Implanted NV
defects in nano-diamonds as small as 4 nm were reported for instance
in Ref. [111].
One characteristic feature of synthesized nano-wires is that their size
as well length is randomly distributed. In addition to this they can
only be spin coated on the substrate such that their position with re-
spect to other structures is random. To circumvent these points, we
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started to work on lithographic gold and silver nano-wires. As sum-
marized in Appendix D, structures grown lithographically are highly
fluorescing with a spectrum largely overlapping with the broad NV
spectrum. In addition to this, due to their poly-crystalline composi-
tion lithographically grown nano-wires have huge propagation losses
such that no propagating SPPs could be observed in the near infrared
spectral region.
The efficient single emitter excitation of surface plasmons on nano-
wires is only the first step towards single photon generation on de-
mand [13, 14] and other quantum photonic devices based on, for
instance, strong non-linear interaction at the level of single photons
like a single photon transistor [16]. In order to build such a device it
is necessary to couple the plasmonic mode of a nano-wire efficiently
to either free space modes or to a dielectric waveguide. The latter
structure has recently been described in a theoretical article on short-
range plasmon mode coupling to dielectric wave-guides [112]. In this
article it was shown that efficient coupling of the SR-SPP mode to
the mode of the dielectric waveguide can be obtained with a coupling
interaction length of a few µm with coupling losses originating only
from SPP propagation losses.

Figure 6.14: Proposal for efficient coupling of shallow implanted NV
defects to an optical fiber.

Another very interesting approach is to couple the plasmonic mode
of a tapered metallic structure directly to an optical fiber supporting
higher order Laguerre Gaussian modes [113]. Such a device, which is
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illustrated in Fig. 6.14, could be used for both, efficient single photon
generation as well as strong non-linear interaction at low light levels.
Its functionality is as follows. The pump light field is guided inside
the optical fiber in the negative z-direction and butt-coupled to the
plasmonic mode on the wide end of a metallic tip. The plasmon mode
propagates along the tapered metallic cone towards the tip [114, 115],
where it excites a single NV-center. Subsequently, the NV-defect
couples to the plasmonic mode [13, 14], which then propagates along
the metal cone in the positive z-direction, before it couples into the
fiber. As a sample base could serve an ultra-pure (110) diamond sub-
strate with shallow implanted NVs. The NV-centers symmetry axis
is along any of the four tetrahedral 〈111〉 crystallographic directions.
By chance, this direction could be the [111] or the [1̄1̄1] direction,
which has a significant component perpendicular to (110) and thus
allows coupling between the plasmon mode and the NV-center [14].
The NV center position needs to be determined accurately. For this, a
technique called stimulated emission depletion (SED) could be used.
The ability of SED for locating NV-centers with an accuracy down
to 5.8nm has been shown recently [116]. The diamond will then be
covered by a dielectric medium with a thickness of a few µm. In order
to position metallic tips on top of the NV-centers, conical holes will
need to be etched into the dielectric material with the NV center ly-
ing along the cone axis. The cones will be filled up by thermal metal
evaporation. An optical fiber, which supports higher order Laguerre
Gauss modes, will be positioned on top of the metallic cones and be
used to guide both the pump light field as well as re-emitted ’single’
photons [113].

6.7 Conclusion

In this chapter, the electronic properties of NV-centers in diamond
were described in great detail. This description was followed by a
presentation of the home-build confocal microscope used for char-
acterizing the single photon emission properties of NV-centers. The
functionality of this setup include fluorescence imaging, lifetime mea-
surement, g(2)(τ) measurement, and spectral characterization. All of
these characterization methods were described in detail. The second-
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order correlation function of a single NV-defect has been introduced
theoretically and confirmed by the experiment. Following this, the
model for single emitter coupling to the plasmonic mode of a metallic
nano-wire was presented. After this, an experiment has been per-
formed where a single NV-center was coupled to the plasmonic mode
of a chemically prepared silver nano-wire. The plasmon excitation
and re-emission was shown by a fluorescence image as well as the
according spectra. Single plasmon excitation was confirmed by a
g(2)(τ) measurement. Following this, the experimental limitations of
the presented measurements were discussed. Spin-coating is certainly
not the optimum way of preparing coupled NV-center nano-wire sys-
tems due to the resulting random orientation of the NV-centers with
respect to the nano-wire. To circumvent this problem, an improved
experimental approach using atomic force microscopy in combination
with fluorescence imaging was suggested. Finally, the functionality
and fabrication procedure of an integrated structure was presented.
This structure can be fabricated by available nano-fabrication tech-
niques and is based on bidirectional photon/plasmon coupling, adia-
batic plasmon mode propagation, and interaction between the plas-
monic mode and a single NV-center.



7
Conclusion and Outlook

In this work, the excitation and characterized of non-classical surface
plasmon modes was investigated. After a general introduction to SPP
modes on metal stripes and nm-sized cylindrical wires, the fabrication
of these structures has been presented.
The excitation of LR-SPP modes on metal stripes has been achieved
with free space optics and verified by its polarization dependency.
Fabry-Pérot like resonances of these LR-SPP modes were investi-
gated for three different wave-guide lengths by measuring simultane-
ously the transmission and reflection while tuning the temperature of
the sample. The observed oscillations could be simulated by a lossy
Fabry-Pérot cavity. By fitting the model to the experimental results,
the LR-SPP propagation losses were obtained. It was found that the
propagation losses are slightly higher than expected from theory.
Due to the third order non-linearity of gold, a power dependent ab-
sorption from LR-SPPs propagating along thin gold films is expected.
This behavior was studied in detail in Chapter 4. By measuring the
transmission of a continuous wave laser field, the steady state ab-
sorption could be analyzed and modeled by a power dependent ab-
sorption coefficient in Beer’s law. LR-SPP modes were also excited
using Lorentzian shaped laser pulses with µs to ms durations. From
these measurements, a ’slow’ thermal dependence of the absorption
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coefficient could be deduced. However, the duration of the applied
pulses is too long for the investigating fast absorption properties of
the LR-SPP mode.
The experiment described in Chapter 5 analyzes the excitation of
LR-SPP with quadrature squeezed vacuum states. In comparison to
previous work done in this field, where non-classical SPPs were ana-
lyzed in a two-dimensional Hilbert space, the analysis performed in
this work was done in an infinite-dimensional Hilbert space. The ex-
periment was carried out in two consecutive steps. First, the squeezed
vacuum state was characterized completely by reconstructing the den-
sity matrix using homodyne detection and a maximum likelihood
method. Second, a LR-SPP mode on a thin gold film embedded in
BCB was excited by the same squeezed vacuum state. The re-emitted
optical mode was then characterized using the same method. The
impact of the LR-SPP mode on the squeezed vacuum state could be
simulated by a standard beam splitter model. The result of this sim-
ulation was compared to the initial squeezed vacuum state using the
fidelity as a measure. Very good agreement between the experiment
and the LR-SPP beam splitter model was found. The experimental
results could be explained by a simple theoretical arguments and are
in agreement with previous work done in that field of research.
In Chapter 6, an experiment was described which might path the
way towards an efficient single photon source utilizing plasmonic
nano-structures and NV-centers embedded in diamond nano-crystals.
First, the single photon emission of NV-centers in diamond nano-
crystals was studied in detail using a home-build confocal microscope.
In the second part of this chapter, the coupling of NV-centers to
metallic nano-wires was described using realistic experimental param-
eters. The coupling of NV defects to plasmonic modes on synthesized
nano-wires could be shown by measuring the fluorescence from the
end facets of the nano-wire. A measurement of the second-order cor-
relation function confirmed the excitation of single surface plasmons.
The sample for these studies was prepared by means of spin-coating.
Thus, coupled NV-center plasmon systems only assembled by chance
and an optimization of the coupling was not possible. In future,
this issue might be circumvented by nano-scale manipulation using
an atomic force microscope mounted on top of the present confocal
imaging system.



Part III

Appendix





A
Generating Quadrature Squeezed Vacuum

States

A.1 Introduction

Over the past decades a various number of different sources for pro-
ducing quadrature squeezed light have been proposed and also demon-
strated. The first squeezing of the electromagnetic field has been
demonstrated with non-degenerate four-wave mixing using Na atoms
in an optical cavity by Slusher et al. in 1985 [117]. Later on, squeezed
states were obtained using degenerate optical parametric down con-
version in an optical cavity [118] and by exploiting the Kerr-effect
in optical fibers [119]. Up to now, these sources have been im-
proved further and records in quadrature squeezing were reported
with −11.5 ± 0.1 dB produced with an optical parametric oscilla-
tor [120] and −6.8±0.3 dB produced with ultrashort photonic pulses
in a single pass of a birefringent fiber [121].

Due to the availability of a continuous wave (cw) laser, an approach
for producing squeezed light with an optical paramagnetic amplifier
(OPA) has been chosen.
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A.2 The experimental setup

The laser system

The laser which has been used for the squeezed light source is an
Innolight cw Diabolo laser with a monolithic neodymium-doped yt-
trium aluminium garnet (ND:YAG) crystal lasing at a wavelength of
1064 nm. Inside the laser, approximately 90% of the light at 1064 nm
is tapped off and used for second harmonic generation (SHG) at
532 nm with a semi-monolithic lithium triborate (LBO) cavity. The
532 nm light was used as pump field for the down-conversion process
taking place inside the optical parametric amplifier (OPA).

The mode cleaning cavities

A schematic diagram of the optical experimental setup is presented
in Fig. A.1. Right after the laser, the IR beam as well as the green
beam were injected both into mode cleaning cavities (MCCs). These
MCCs had two purposes. The first one is that the MCCs act as a
mode filter on the incident laser beam to provide a spatially uniform
TEM00 beam on their output. Second, outside the cavity resonance
the MCC filters noise from the incident laser beam. Thus, the cavities
act as an optical low pass filter on the incident laser and provide shot
noise limited beams on their output.
The MCC cavities are composed out of two highly reflective (HR)
plane mirrors and one HR curved mirror with a radius of curvature of
1000 mm, as indicated in Fig. A.1. The curved mirrors were mounted
on a piezo electric actuator which was used to tune the cavities res-
onance line to the laser frequency. All cavity mirrors were housed
inside a monolithic aluminium block to increase the mechanical sta-
bility and isolate the system from air fluctuations. Both MCCs are
designed with an optical path length of 400 mm. By measuring the
MCCs free spectral range as well as the full width at half maximum
(FWHM) of a single transmission peak, the Finesse has been deter-
mined to be ≈ 194 for the IR cavity and ≈ 280 for the green cavity.
This gives a theoretical line width (half width at half maximum) of
1.9 MHz for the IR MCC cavity and 1.3 MHz for the green MCC
cavity. For stable operation on a time scale of several hours, both
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MCCs were frequency stabilized to the incident laser beam using the
Pound-Drever Hall PDH locking technique [122]. For this, the re-
spective laser beams were phase modulated at an optical side-band
frequency of 20 MHz (IR) and 19.2 MHz (green) using two electro-
optic modulators (EOMs), as shown in Fig. A.1. The locking signals
were detected by measuring the reflection from the MCCs input port.

The optical parametric amplifier

Figure A.1: Schematic diagram of the experimental setup for
squeezed vacuum generation: EOM - electro optic modulator, MCC
- mode cleaning cavity, LB - locking beam, OPA - optical paramet-
ric amplifier, OC - output coupler, LO - local oscillator, and SV -
squeezed vacuum.

The OPA built for the experiments in this work is based on a bow-
tie shaped optical cavity, as illustrated in Fig. A.1. This design is
similar to the cavities in Refs. [123, 124]. The cavity is composed of
two plane mirrors and two curved mirrors with a radius of curvature
of 50 mm. One of the plane cavity mirrors, which is acting as the
output coupler (OC) of the squeezed light field, has a transmissivity
of 10%, whereas all other mirrors are highly reflecting. The optical
round trip path length is approximately 275 mm. In between the
two curved mirrors, a periodically poled KTP (PPKTP) crystal with
dimensions 10 × 1 × 2 mm3 is placed. Via a second order χ2 non-
linear optical process this PPKTP crystal acts as an optical down-
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conversion source inside the cavity. For phase matching the PPKTP
crystal to the laser light field, the crystal was hosted inside a copper
mount and temperature stabilized with a peltier element to ≈ 31◦.
The OC has been mounted on a pre-loaded mirror holder including
a piezo electric element for fine-tuning its position. The bandwidth
of this mount was determined to be ≈ 55 kHz. Fig. A.2 (a) shows
the transmission through the OPA while linearly tuning the position
of the OC. Illustrated are the cavity FSR and the FWHM of a single
TEM00 transmission peak. From this, the OPA Finesse and the line
width are determined to be 52 and 10.5 MHz, respectively.

Figure A.2: Transmission through the OPA while linearly sweeping
the OPA round trip length. Illustrated is the free spectral range
(FSR) of the cavity as distance between two subsequent transmission
peaks as well as the full width half maximum (FWHM) of a single
peak.

For stabilizing the cavity resonance to the laser frequency, a counter
propagating beam emerging from the same laser source is launched
into the OPA, as illustrated in Fig. A.1. By using the phase mod-
ulation signal at 20 MHz and the Pound-Drever-Hall locking tech-
nique [122], the resonance frequency of the OPA could be stabilized
for up to several hours.
By injecting the 532 nm pump beam into the OPA, the inside cav-
ity field is amplified or de-amplified depending on the relative phase
between the fields. The maximum achievable amplification and de-
amplification depending on the pump beam power is presented in
Fig. A.2 (b). These results were obtained by seeding the OPA with a
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weak beam emerging directly from the IR-MCC and measuring the
power on the OPA output. At maximum, a seed de-amplification of
≈ 3.8 dB was observed, what was limited due to phase fluctuations
of the system. These gains determine the approximate achievable
vacuum squeezing and anti-squeezing values of the OPA when the
seed beam is blocked. The achievable squeezing and anti-squeezing
values for a given pump power are presented in Fig. A.3. The mea-
surements were taken at an optical side-band frequency of 5 MHz
with a resolution of 300 kHz and a video bandwidth of 300 Hz.

Figure A.3: OPA squeezing and anti-squeezing values versus the
pump power of the OPA cavity.
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B
Tomographic Quantum State

Reconstruction

B.1 Maximum Likelihood Estimation

A common problem in experimental science can be formulated in the
question: Given some observation of a system, which model can best
describe the underlying system? Usually one makes assumptions or
knows a functional relationship between independent and dependent
variables of the system y = f(x1, x2, ...), where y is the variable
being measured. The model depends on one or more parameters s,
f(x1, x2, ...; s), and these parameters should be estimated based on
the observations {yj}. One can calculate the probability pr ({yj}|s)
for the observed outcome to have happened, given the model and
parameters s. For estimation of the parameters, the data {yj} are
given and the parameters s are unknown. The probability for an
outcome to occur is considered as a function of the parameters and
is called the maximum likelihood function

L(S) ≡ pr ({yi}|s) . (B.1)

The parameters s0 which are most likely to be correct are the ones
that maximize the likelihood function for given data {yj}. This prin-
cipal is the basis for the maximum likelihood method. The parame-
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ters s0 that maximize the likelihood are called the maximum likeli-
hood estimator. If the observations {yj} are independent, the total
outcome probability is just the product of the probabilities of the
individual samples. Since a logarithm turns a product into a sum,
usually the expression

ln (L(S)) = ln
∏
j

pr (yj |s) =
∑

j

ln pr (yj |s) (B.2)

is used for the likelihood. In standard maximum likelihood estima-
tion, the maximization of the log-likelihood can be carried out in
various ways, one of which is the iterative expectation-maximization
algorithm [125]. Various variations of this algorithm have been used
for quantum state estimation, for instance [126, 127, 128].

B.2 Application to Homodyne Measure-
ments

The maximum likelihood method has been applied to characterize
squeezed states of light used in chapter 5. For continuous variable
quantum states, the maximum likelihood method has been introduced
by A. Lvovsky in [129].
The state generation was repeated a large number of times via a
continuous operation of the OPA. For each generated state of this
ensemble a marginal distribution has been recorded using homodyne
detection. The ensemble of detection outcomes correspond to the
observations {yj}, which are independent from each other. The dis-
tribution depends on the prepared state and the phase φj of the local
oscillator set for the homodyne detector. The distribution measured
for a local oscillator phase φj is determined by the density matrix
ρ̂ of the quantum state generated. Based on the observed samples,
the maximum likelihood method has been applied to reconstruct the
entries ρ̂m,n of the density matrix ρ̂ in the Fock state basis. In this
case, the matrix entries {ρm,n} play the role of the parameters s.
With the homodyne detection system, one performs a large set of von
Neumann measurements, where each measurement is projecting the
state of the system onto an eigenstate of the measurement apparatus
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|yj〉 . Here, the set of all possible outcomes {|yj〉} can be associated
with either one or several measurement bases. Let fj be the fre-
quency of occurrences for each outcome. With the system being in
the quantum state ρ̂ the likelihood of a particular data set {fj} is
then given by

L(ρ̂) =
∏
j

pr
fj

j =
∏
j

〈yj | ρ̂ |yj〉fj =
∏
j

Tr{Π̂j ρ̂}fj , (B.3)

where Π̂j = |yj〉 〈yj | is the projection operator on state |yj〉.
In order to find the ensemble ρ̂0 which maximizes the likelihood (B.3)
the iteration operator

R̂(ρ̂) =
∑

j

fj

prj
Π̂j (B.4)

is introduced. For the ensemble ρ̂0 that is most likely to be the correct
data set fj ≈ prj and since

∑
j Π̂j = 1̂ the equation

R̂(ρ̂0)ρ̂0 = ρ̂0R̂(ρ̂0) ≈ ρ̂0 (B.5)

holds as well as
ρ̂0R̂(ρ̂0)ρ̂0 ≈ ρ̂0. (B.6)

The last equation is the basis for the iterative maximum likelihood
algorithm. To find the most likely data set ρ̂0 one chooses an initial
density matrix ρ̂(0) and applies the repetitive iterations

ρ̂(k+1) = N
[
R̂(ρ̂(k))ρ̂(k)R̂(ρ̂(k))

]
, (B.7)

where N denotes normalization to unity trace. Each step monotoni-
cally increases the likelihood of equation (B.3) and will asymptotically
approach the maximum likelihood ensemble ρ̂0.
For infinitely small bins of the measurement outcome, fφj ,yj

becomes
either 0 or 1 and thus the likelihood (B.3) of a data set {(φj , yj)}
reduces to

ln (L(S)) =
∑

j

ln prφj
(yj) (B.8)
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and the iteration operator R̂(ρ̂) becomes

R̂(ρ̂) =
∑

j

Π̂(φj , yj)
prφj

(yj)
. (B.9)

In the experiment one measures the field quadratures X̂φ = X̂ cos(φ)+
Ŷ sin(φ) of a quantum state ρ̂ at various angles φ of the local oscilla-
tor, where X̂ and Ŷ are the amplitude and phase quadrature of the
light field, respectively. For a given phase φ the projection operator
is given by

prφ(y) = Tr
[
Π̂(φ, y)ρ̂

]
, (B.10)

where Π̂(φ, y) = |φ, y〉 〈φ, y| is the projector onto this quadrature
eigenstate. In the Fock state representation, the projection operator
is expressed as

Πmn = 〈m| Π̂(φ, y) |n〉 = 〈m|φ, y〉 〈φ, y|n〉 , (B.11)

where the overlap between the Fock state 〈m| and the quadrature
eigenstate |φ, y〉 is the solution for a particle in a harmonic potential

〈m|φ, y〉 = eimφ

(
2
π

)1/4
Hm(

√
2y)√

2mm!
e−y2

, (B.12)

with Hm(x) being the Hermite polynomial of degree m. Here, the
phase space is normalized such that

[
X̂, Ŷ

]
= i/2.

In general, the description of a continuous variable quantum state of
arbitrary amplitude requires an infinite dimensional Fock-state basis.
However, the quantum states usually produced in the laboratory have
a finite amplitude and thus, the dimension of ρ̂ can be truncated to
a finite number of Fock states. This is done by excluding Fock terms
above a certain threshold from the calculation. In particular, this
is valid for weekly squeezed vacuum states as used in chapter 5. In
these specific calculations, the dimension of ρ̂ has been truncated to
a maximum photon number of m = 15. This was a valid truncation
since basically all entries in ρ̂in above m = 6 were close to 0.
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B.3 Notes on the Implementation

For calculating the density matrixes produced in the experiments, the
above described maximum likelihood method has been implemented
in a Matlab code. Including the data acquisition the carried out steps
were as following. First, the shot noise level of the homodyne detector
was recorded by blocking the OPA mode with settings of the data
acquisition system as mentioned in chapter 5. The shot-noise level
is determined by the standard deviation of the recorded shot noise
data. Second, the OPA (or LR-SPP) mode was unblocked and the
marginal distributions of the produced quantum states were recorded
while linearly scanning the phase φ of the local oscillator. In a third
step, the recorded data was normalized to the shot noise level. For
simplicity, this finally obtained data will be denoted as homodyne
data in the following.
The local oscillator phase φ was scanned linearly with a large am-
plitude. Thus, the homodyne data include marginal distributions
corresponding to several rotations in the quadrature plane. In order
to find a data set corresponding to a 2π rotation in the quadrature
plane, the variance of of the homodyne data was computed. In the
variance plot, a 2π quadrature plane rotation was identified by select-
ing the data between the minima m and m+2, where m is an integer.
Such a data set containing approximately 0.5 million points is shown
in Fig. 5.2. Each data point yi of the selected set was then identified
by a phase φi, linearly distributed from 0 to 2π. This complete set
{(φi, yi)} served as the input for the maximum likelihood method.
The key step of the maximum likelihood algorithm is the calculation
of the matrix elements Rmn(ρ̂(k)) of the iteration operator R̂(ρ̂(k))
each iteration step k. Practically, the matrix elements Rmn(ρ̂(k)) are
obtained by inserting Eqn. (B.10) into Eqn. (B.9), giving the result

Rmn(ρ̂(k)) =
∑

j

〈m| Π̂(φj , yj) |n〉
prφ(y)

=
∑

j

〈m|φj , yj〉 〈φj , yj |n〉∑
u,v 〈u|φj , yj〉 〈φj , yj |v〉 ρ(k)

u,v

, (B.13)

what is readily computed for the whole data set {(φj , yj)} using
Eqn. (B.12). Now, the density matrix ρ̂(k+1) is easily obtained by
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computing R̂(ρ̂(k))ρ̂(k)R̂(ρ̂(k)) and re-normalization to unity trace.
As an initial density matrix the vacuum state was chosen, ρ̂(0) =
|0〉 〈0|, since it already has a significant overlap with the finally ex-
pected squeezed vacuum state.
Finally, the iteration was terminated if the inequality

δ >
∑
m,n

∣∣∣∣∣∣ρ(k)
m,n

∣∣∣− ∣∣∣ρ(k+1)
m,n

∣∣∣∣∣∣ (B.14)

was fulfilled for δ = 1·10−4. ρ̂(k+1) was then taken to be the maximum
likelihood estimator ρ̂0 of the quantum state under investigation.



C
Calculation of Nano-wire Reflection

Coefficients

The method for calculating the plasmon reflection coefficients from
the wire end facets is adopted from the method for an infinite wide
slab [108, 109]. A wire with radius R is assumed to be abruptly cut
at z = 0 and extends in positive z − direction, as shown in Fig. 2.7.
In all directions, the wire is surrounded by a medium with a real and
positive dielectric constant ε1. The wire is assumed to be made of
silver with εAg being calculated using the Drude model Eqn. (2.13).
For simplicity, the imaginary part of εAg is neglected in the following
calculations.

For r < R, the fields of the fundamental plasmon mode are given by

Hφ = AI1 (k⊥2r) eik‖z = HSP
φ,r<Reik‖z , (C.1)

Ez = −iA
k⊥2c

ωεAg
I0 (k⊥2r) eik‖z = ESP

z,r<Reik‖z , (C.2)

Er = A
k‖c

ωεAg
I1 (k⊥2r) eik‖z = ESP

r,r<Reik‖z , (C.3)
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and for r > R they are given by

Hφ = A
I1 (k⊥2R)
K1 (k⊥1R)

K1 (k⊥1r) eik‖z = HSP
φ,r>Reik‖z , (C.4)

Ez = iA
k⊥1c

ωε1

I1 (k⊥2R)
K1 (k⊥1R)

K0 (k⊥1r) eik‖z = ESP
z,r>Reik‖z,(C.5)

Er = A
k‖c

ωε1

I1 (k⊥2R)
K1 (k⊥1R)

K1 (k⊥1r) eik‖z = ESP
r,r>Reik‖z. (C.6)

Here, A is the plasmonic field amplitude, ω is the frequency of the
electromagnetic field, c is the vacuum speed of light, k‖ is the wave
vector of the plasmon obtained by solving Eqn. (2.17) numerically,
k⊥,1,2 =

√
k2
‖ − ε1,metk2

0, and Im and Km are m-th order modified
Bessel functions.
At z = 0 the fields on the nano-wire consist of the incoming and the
reflected wave, thus

Hφ(z > 0) = (1− ρ)HSP
φ , (C.7)

Er(z > 0) = (1 + ρ)ESP
r , (C.8)

where ρ is the complex field amplitude reflection coefficient.
For z < 0 the plasmonic mode couples to free space modes, which
might be expressed as

HFS
φ,z<0 =

∫ ∞

0

hφ(k)J1(kr)kdk, (C.9)

EFS
r,z<0 =

∫ ∞

0

er(k)J1(kr)kdk, (C.10)

where hφ(k) and er(k) are the amplitudes of the magnetic and the
electric field with wave-vectors k, respectively. er(k) is related to
hφ(k) via

er(k) =
1
√

ε1

√
1− k2

ε1k2
0

hφ(k). (C.11)

At z = 0, the azimuthal component of the magnetic field and the
radial component of the electric field have to match, giving the con-
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ditions

(1− ρ)HSP
φ = HFS

φ , (C.12)

(1 + ρ)ESP
r = EFS

r . (C.13)

Multiplying Eqn. (C.12) by J1(k′r) and integrating over r yields the
amplitude of the magnetic free space modes with the result

hφ(k) = (1− ρ)
∫ ∞

0

HSP
φ (r)J1(kr)rdr = (1− ρ)hSP

phi(k). (C.14)

Here, the orthogonality relation of Bessel functions
∫∞
0

rJm(kr)Jm(k′r) =
1
k δ(k− k′) was used with δ(x) being the Dirac delta distribution. Fi-
nally, the equation for ρ is obtained by multiplying Eqn. (C.13) with
HSP

φ and integrating over r, what gives

(1+ρ)
∫ ∞

0

ESP
r (r)HSP

φ (r)rdr = (1−ρ)
∫ ∞

0

1
ε1

√
1− k

ε1k2
0

hSP
φ (k)2kdk.

(C.15)
This equation was solved numerically in Matlab for a different wire
radii R and wavelength λ0 and thus delivers the complex reflection co-
efficient ρ. To account for the glass substrate and the PVA used in the

Figure C.1: Reflectivity |ρ|2 and reflection phase cos−1 Re{ρ}/|ρ| of a
nano-wire end facet as a function of wire radius R for three different
vacuum wavelength covering the main experimental range.

experiment, an ε1 = 1.2 was chosen in the simulation. Fig. C.1 shows
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the wire reflectivity |ρ|2 and the reflection phase cos−1 (Re{ρ}/|ρ|) as
a function of R for three different λ0 covering the relevant spectral
region of the experiment.



D
Lithographic Gold Nano-Wires

The work on lithographically fabricated nano-structures for the ap-
plication in plasmonics is motivated by the improvement of various
different micro- and nano-fabrication techniques and in conjunction
with the development of novel materials. In comparison to synthe-
sized metallic structures the main advantage of using lithography is
that this technique allows one to fabricate structures with almost any
shape and dimension. The root mean square accuracy of an electron-
beam (e-beam) lithography setup is around 4 nm, and structures with
sizes down to 30 nm can be fabricated. However, the properties of
nm sized gold stripes need to be further improved, especially for the
application in the visible and near infrared region of the spectrum.

D.1 Fabrication of the Structures

Gold nano-wires were fabricated using e-beam lithography. The fabri-
cation started by spin-coating a thin layer of e-beam resist ZEP520A
3.6% with a 1:2 ratio in anisol on a quartz substrate. The spinning
was done at 2000 rpm for 30 s resulting in a 90 nm thick resist layer.
Afterwards, the resist was cured at 180 ◦C for 2 min. This was fol-
lowed by thermal deposition of a 20 nm Al layer to avoid charging of
the waver during e-beam exposure. After this, the nano-wire struc-
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tures were written with an electron-beam1 to the resist with a dose
of 230 µC/cm2, with width from 20 nm up to 200 nm and length
from 2 µm up to 10µm. Next, the Al layer was removed in MF-322
by dipping the waver for 1 min in the solution with manual stirring.
Following this, the resist was developed in Zed-N50 for 2 min. This
step was followed by electron beam evaporative gold deposition2 of
15 nm at a rate of 0.2 nm/s and lift-off. The lift-off was done in mi-
croposit 1165 remover. As an example, Fig. D.1 (a) shows a scanning
electron microscope (SEM) image of a few 30 nm wide gold stripes
of different length. Due to proximity effects the minimum gold stripe

Figure D.1: (a) A few gold nano-wires fabricated on a quartz sub-
strate by electron-beam lithography. These stripe have a width of 30
nm and length from 1 µm up to 10 µm. (b) Close up view of a 200
nm wide gold stripe.

width which could be fabricated was 30 nm. A close up view of a
200 nm wide stripe is presented in Fig. D.1 (b). This image shows
that the nano-wire surface is rough and that the wire is composed of
nm-sized gold particles.

D.2 Fluorescence Measurements

Fluorescence measurements of the fabricated lithographic gold wires
were carried out in the experimental setup shown in Fig. 6.2 (a) with a

1JEOL e-beam lithography system with 100 keV.
2Alcatel SCM 600 E-beam metal deposition system.
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continuous wave excitation laser at λ0 = 532 nm. An fluorescence im-
age, taken with an excitation power of 32 µW, is presented in Fig. D.2
(a). It shows that the gold structures are highly fluorescing with a

Figure D.2: Fluorescence image of a lithographically fabricated gold
tip structure.

spectrum as the one shown in Fig. D.2 (b). The maximum emission
from the fluorescence lies at around 630 nm, corresponding approxi-
mately to the breakdown wavelength of the free electron gas model.
This spectrum has a large overlap with the broad spectrum of a NV
defect, thus the two spectra are practically impossible to distinguish.
In contrast to synthesized silver nano-wires, no propagating plasmons
were detected on the gold structures. Possibly, the poly-crystalline
composition of the gold structure cause the SPP propagation loss to
be tremendously large, such that the propagation length is on the
order of a few nm only. It should be noted that the propagation
length of these fabricated gold nano-wires is only ≈ 2 µm for an ideal
εAu calculated by the Drude model. As shown in Ref. [4], in case
of lithographic silver nano-wires the propagation properties are also
very poor.
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E
Picture Gallery

Figure E.1: Picture of the sample holder for LR-SPPs excitation.
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Figure E.2: Picture of the OPA cavity: Illustrated are the pump
field (green), the intracavity field (orange, solid line), and the output
squeezed vacuum field (orange, dashed line).

Figure E.3: Picture of the confocal microscope illustrating the beam
path of the pump beam and the fluorescence photons, as well as a
few optical components.
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vaux, and Thomas W. Ebbesen. Surface plasmon interferome-
try: measuring group velocity of surface plasmons. Opt. Lett.,
32(10):1235–1237, 2007.

[39] The Dow Chemical Company. Process-
ing procedures for cyclotene 3000 series resin.
http://www.dow.com/cyclotene/prod/302257.htm.

[40] S. Guo, I. Lundström, and H. Arwin. Temperature sensi-
tivity and thermal expansion coefficient of benzocyclobutene
thin films studied with ellipsometry. Applied Physics Letters,
68(14):1910–1912, 1996.

[41] Yasumasa Okada and Yozo Tokumaru. Precise determination
of lattice parameter and thermal expansion coefficient of silicon
between 300 and 1500 k. Journal of Applied Physics, 56(2):314–
320, 1984.

[42] F. C. Nix and D. MacNair. The thermal expansion of pure
metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev.,
60(8):597–605, Oct 1941.



136 BIBLIOGRAPHY

[43] N. Bloembergen. Surface nonlinear optics: a historical
overview. Applied Physics B: Lasers and Optics, 68(3):289–
293, 1999.

[44] H. J. Simon, D. E. Mitchell, and J. G. Watson. Optical second-
harmonic generation with surface plasmons in silver films. Phys.
Rev. Lett., 33(26):1531–1534, Dec 1974.

[45] C. Flytzanis, F. Hache, M.C. Klein, D. Ricard, and Ph. Rous-
signol. V nonlinear optics in composite materials: 1. semicon-
ductor and metal crystallites in dielectrics: 1. semiconductor
and metal crystallites in dielectrics. volume 29 of Progress in
Optics, pages 321 – 411. Elsevier, 1991.

[46] Guang Yang, Dongyi Guan, Weitian Wang, Weidong Wu, and
Zhenghao Chen. The inherent optical nonlinearities of thin
silver films. Optical Materials, 25(4):439 – 443, 2004.

[47] W. T. Wang, D. Y. Guan, G. Yang, G. Z. Yang, Y. L. Zhou,
H. B. Lu, and Z. H. Chen. Nonlinear optical properties of thin
iron films grown on mgo (100) by pulsed laser deposition. Thin
Solid Films, 471(1-2):86 – 90, 2005.

[48] E. Xenogiannopoulou, P. Aloukos, S. Couris, E. Kaminska,
A. Piotrowska, and E. Dynowska. Third-order nonlinear optical
properties of thin sputtered gold films. Optics Communications,
275(1):217 – 222, 2007.

[49] R.W. Boyd. Nonlinear Optics. Academic Press, 2008.

[50] F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig. The optical
kerr effect in small metal particles and metal colloids: The case
of gold. Applied Physics A: Materials Science & Processing,
47(4):347–357, 1988.

[51] F. de Rougemont and R. Frey. Two-level approach to satu-
ration properties in semiconductor materials. Phys. Rev. B,
37(3):1237–1244, Jan 1988.



BIBLIOGRAPHY 137

[52] S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and
G. Leuchs. Photon-number squeezed solitons from an asym-
metric fiber-optic sagnac interferometer. Phys. Rev. Lett.,
81(12):2446–2449, Sep 1998.

[53] Wolfgang P. Schleich. Quantum Optics in Phase Space. Wiley-
VCH, 2001.

[54] L. Mandel and E. Wolf. Optical Coherence and Quantum Op-
tics. Camebridge University Press, 1995.

[55] G. D. Boyd and D. A. Kleinman. Parametric interaction of
focused gaussian light beams. Journal of Applied Physics,
39(8):3597–3639, 1968.

[56] Ulf Leonhardt. Measuring the quantum state of light. Came-
bridge University Press, 2005.

[57] Richard Jozsa. Fidelity for mixed quantum states. Journal of
Moden Optics, 41(12):2315–2323, 1994.

[58] Esteban Moreno, F. J. Garćıa-Vidal, Daniel Erni, J. Ig-
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