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Abstract in English

Over the next few years, a new generation of x-ray sources is going online. These free-
electron lasers will provide extremely bright subpicosecond x-ray pulses. Traditionally,
x-ray diffraction has the advantage of directly determining the atomic positions within
a sample. With these new machines, it becomes feasible to exploit this concept for
ultrafast processes; in effect, we can study chemical reactions as they occur.
This thesis deals with theoretical aspect of ultrafast time-resolved x-ray diffraction
(TRXD). We derive general formulas for calculating the diffraction signal that are closely
related to those encountered in time-independent diffraction. We also specify the approx-
imations that are required to obtain these formulas, and embed the technique of TRXD
in the wider frame of time–domain pump–probe experiments for the study chemical
reactions.
Furthermore, we study new opportunities arising in the context of TRXD. We give a
detailed treatment of the anisotropies that persist after exciting molecules with an optical
pump laser, and specify how to setup an experiment and analyze the diffraction patterns
in an optimal way.

Resumé p̊a Dansk

Inden for de næste f̊a år bliver en ny generation af røntgenkilder operationsklare. Disse
fri-elektron-lasere vil generere meget intensive røntgenpulse af mindre end et pikosekunds
længde. Røntgenspredning har i lang tid været en god metode til at bestemme atomernes
position i en prøve. Med disse nye apparater kan vi anvende dette koncept til ultrahurtige
processer, hvor vi studerer kemiske reaktioner, mens de finder sted.
Denne afhandling beskæftiger sig med teoretiske problemer omhandlende tidsopløst rønt-
genspredning (TORS). Vi udleder generelle formler til beregning af spredningsmønstre.
Formlerne er næsten de samme, som findes i tidsuafhængig spredning. Vi angiver ogs̊a
approksimationerne, som er nødvendige for udledningen af disse formler, og viser hvilken
forbindelse der er mellem TORS og andre tidsopløst pumpe-probe experimenter, som
ogs̊a undersøger kemiske reaktioner.
Desuden undersøger vi nye muligheder, som opst̊ar omkring TORS. Vi giver en detaljeret
beskrivelse af anisotropier, som opst̊ar efter man eksiterer molekyler med en optisk
pumpe laser, og viser hvordan man opsætter et experiment, og hvordan man analyserer
spredningsmønsterne p̊a den mest optimale m̊ade.
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1 Introduction

In 1913, Friedrich, Knippling and Laue published an article [3], in which they described
for the first time an x-ray diffraction experiment with a modern interpretation of the
diffraction pattern. As Laue explicitly points out, the diffraction patterns are of the same
nature as those obtained with optical gratings, such as a double slit. The incoming x-ray
wave can be scattered at each atom in the illuminated sample. At the detector plate,
the scattered waves from each atom interfere, and produce a diffraction pattern that is
highly sensitive to the relative position of the atoms with respect to each other. For the
simplest example of a diatomic molecule with fixed geometry, this is demonstrated in
Fig. 1.1.
This basic mechanism of x-ray diffraction is still valid nowadays, although one would use

Figure 1.1: Diffraction pattern of a Br2 molecule with different bond length. Two
Bromine atoms were placed along the horizontal direction with an inter-
nuclear distance of 3Å (left image) or 5Å (right image). The x-ray beam is
unpolarized, and hits the molecule perpendicular to the molecular axis. For
each pixel, the corresponding scattering vector q was constructed, and the
squared molecular form factor was evaluated with equation (2.25). Atomic
form factors were taken from [4].
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1 Introduction

a slightly different formal derivation. Using scattering theory, we find that x-rays are
dominantly diffracted by the electrons, and the diffraction pattern encodes the electron
density distribution of the sample [5]. However, the majority of the electrons assemble in
shells of fixed form around the single nuclei, so we can approximate the electron density
distribution by that of the respective independent atoms (the so-called independent atom
model (IAM)). The diffraction pattern then encodes the position of these atoms in the
sample, which is identical to the interpretation of Laue.
This feature of x-ray diffraction sets it apart from many spectroscopy techniques, where
one probes molecular properties such as optical resonances, oscillator strengths or elec-
tron kinetic energy distributions. These properties depend strongly on the structure of
the outer valence electrons, and indirectly on the position of the atomic nuclei as well.
Such spectroscopic methods therefore provide an indirect way of determining the atomic
arrangement. However, linking the properties of the valence electrons to nuclear geom-
etry requires either a good model, or expensive electronic structure calculations. If we
are only interested in the nuclear arrangement, x-ray diffraction seems to be the superior
method. However, an invaluable advantage of optical techniques is the widespread avail-
ability of femtosecond light sources, which enable the study of not only static equilibrium
structures, but also the time-evolution of molecular dynamics (see for example [6–9]).
This situation is expected to change soon. In the near future, next generation x-ray
sources, so called x-ray free electron lasers, are becoming operational. The Linear Co-
herent Light Source (LCLS) [10, 11] has opened for the first experiments this year, the
Spring-8 Compact Sase Source (SCSS) [12] is to be commissioned in 2010, and the Eu-
ropean XFEL [13] is scheduled for user operation in 2015. These facilities will provide
pulses with subpicosecond duration, and a photon flux orders of magnitude above that
of current synchrotron facilities. Both parameters make it feasible to use the tradi-
tional advantages of x-ray diffraction, the direct determination of the nuclear geometry,
for time-resolved studies of ultrafast processes, thereby creating the new field of time-
resolved x-ray diffraction (TRXD). The aim of this thesis is to study theoretical aspects
within TRXD.
Before we touch the subject of x-ray diffraction itself, it is necessary to introduce
some basic theory. Almost all modern theoretical chemistry is built around the Born-
Oppenheimer approximation [14] or its extension, the Born-Huang representation [15].
Within this framework, only the atomic nuclei move around, while the electrons are pas-
sive spectators that adapt to the nuclear geometry. Knowledge of this geometry enables
(almost) complete reconstruction of the whole molecular wave function. Splitting up the
molecular degrees of freedom into those of the electrons and nuclei allows us to include
the IAM in a natural way into the framework. The formal introduction of these concepts
is the content of chapter 2.
With this basic theory in place, we can set out to study x-ray diffraction, especially with
respect to time-resolved measurements. A first task will be the derivation of general for-
mulas for TRXD in chapter 3. In traditional time-independent x-ray diffraction theory,
it is usually assumed that the scattering is always “elastic”. We will demonstrate that
this assumption is in general wrong and not required; dropping it simplifies especially
the derivation of the time-dependent signal considerably.
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Finally, in chapter 4, we focus on molecular ensembles, and study some new issues that
arise in a time-dependent context. A first new phenomenon is molecular alignment. The
strength of the interaction between a molecule and a polarized laser field depends on the
relative orientation of the molecule with respect to the polarization vector. Consequently,
the laser-molecule interaction produces aligned ensembles of molecules, and probing these
ensembles with TRXD produces anisotropic diffraction patterns. We will study how to
systematically decompose and interpret these patterns. Another new effect that we
briefly study are delocalized wave packets after photoexcitation. Typically, in a ground-
state molecule, the constituent atoms are strongly bound, and the nuclear wave function
is strongly localized around a specific bound-state geometry. When we excite such a
molecule, we frequently observe wave–packet dispersion; the initially well-defined bond
lengths give rise to a continuous distribution of bond lengths.

Conventions

In the following, I list a few conventions that are used throughout the text.

x,x,x(f) Vectors are denoted by bold font, the length of the vector is de-
noted by the normal italic character. To distinguish normal three-
dimensional vectors from general f -dimensional vectors, the latter
get the number of dimensions as superscript. This explicit super-
script can be dropped if there is no ambiguity.

〈f(x)|Â|f(x)〉y Partial integration of the expression f∗(x, y)Âf(x, y) over the coor-
dinate y only.

∼= the left and right hand side of the equation match apart from what
I deem uninteresting constant prefactors.

x̃, x̃, σ2(x̃) Random variables are distinguished from ordinary variables by plac-
ing a tilde on top. This notation is exclusively considered in the
discussion of noisy data in section 4.4. Expectation values of func-
tions of random variables are denoted by an additional bar on top.
Variances are denoted with a σ2

3
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2 Background concepts

2.1 Born-Oppenheimer approximation and beyond

When we nowadays describe small atom-scale systems, we usually employ quantum
mechanics. The molecular wave function Ψ(R, r, t) is a function of the set of nuclear
coordinates R and the electronic coordinates r, and its time evolution is described by
the time-dependent Schrödinger equation (TDSE)

i~Ψ̇ = ĤΨ . (2.1)

For the following manipulations, we decompose the Hamiltonian Ĥ of the unperturbed
molecule into the kinetic energy of the nuclei T̂R, the kinetic energy of the electrons T̂r,
and all Coulomb potentials between nuclei and electrons V̂C , with the latter two forming
the electronic Hamiltonian ĥ,

Ĥ = T̂R + ĥ = −~2

2
∇2

R + T̂r + V̂C . (2.2)

To simplify the notation, we use scaled nuclear coordinates throughout this section, so
that the associated masses become unity. The full Schrödinger equation in the form of
(2.1) is only solved for simple molecules, such as H+

2 or H2 in intense laser fields (for
example [16, 17]). For larger systems, the computational cost explodes, mainly because
of the large number of electronic coordinates.
To circumvent this problem, Born and Oppenheimer invented a method of separating the
electronic and nuclear wave function [14]. This method is more transparently expressed
in the later formulation by Born and Huang [15,18,19], which we adopt here.
As basic idea, we use a special decomposition of the total wave function Ψ into products
of electronic and nuclear wave functions

Ψ(R, r, t) =
∑
i

Λi(R, t)λi(r; R) . (2.3)

This decomposition is exact if the electronic wave functions λi form a complete basis in
the electronic subspace. Note that we choose a different expansion for each nuclear co-
ordinate R. However, we require the λi(r; R) to be orthonormal and twice differentiable
with respect to R.
One of the most popular choices for the λi are the adiabatic states
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2 Background concepts

ĥ(r; R)λadi
i (r; R) = Vi(R)λadi

i (r; R) . (2.4)

Inserting the expansion (2.3) with the adiabatic states (2.4) into the TDSE (2.1), mul-
tiplying with λadi∗

j , and integrating over all electronic coordinates gives a set of coupled
equations for the nuclear wave functions Λj

i~Λ̇j(R, t) =
(
T̂R + Vj(R)

)
Λj(R, t)

−
∑
i

(
2Fji(R)

[
∇RΛi(R, t)

]
+Gji(R)Λi(R, t)

)
, (2.5)

where the non-adiabatic couplings are defined as

Fji(R) =
~2

2
〈λadi
j (R)|∇R|λadi

i (R)〉r (2.6)

Gji(R) =
~2

2
〈λadi
j (R)|∇2

R|λadi
i (R)〉r . (2.7)

These equations suggest a simple and intuitive way of describing the molecular dynamics.
If we only consider the first line of (2.5), we have a set of Schrödinger equations, each
of which describes the nuclei moving on a potential energy surface Vj . This surface is
“spanned” by the electrons, and depends on the electronic quantum number j.
The second line in (2.5) produces some energy shifts, and describes the non-adiabatic
couplings, which connect the nuclear wave functions of different electronic states. In
many cases of interest, they can either be neglected (the Born-Oppenheimer approxima-
tion), or they are restricted to certain ranges of nuclear structures R, and few states only.
In consequence, the simple picture of uncoupled nuclear wave functions holds most of
the time; we also need to consider only a handful of electronic states (typically between
one and three) instead of all the electronic coordinates in (2.1).
We should point out that the nuclear wave functions carry all the information that is
necessary to reconstruct the molecular wave function. The adiabatic electronic states
can be calculated via (2.4) (other choices of λi have similar defining equations), and the
total wave function can then be assembled from (2.3).
As a side note, we can also solve the time-independent Schrödinger equation to obtain
the eigenstates of the Hamiltonian,

ĤΨx = ExΨx . (2.8)

If we are determined to use the Born-Oppenheimer approximation and neglect the non-
adiabatic couplings between different electronic states, we can drop the general decom-
position of the form (2.3) in favor of a special choice,
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2.1 Born-Oppenheimer approximation and beyond

Ψij(R, r) = Λi(R)λj(r; R) , (2.9)

so that each eigenstate is determined by a nuclear quantum number i and an electronic
quantum number j. The Λi and the eigenenergies Eij are then determined by

(
T̂R + Vj(R)

)
Λi(R) = Eij Λi(R) . (2.10)

To get a complete description for molecules excited by an electric field, we can add an
interaction Hamiltonian Ĥint with an electric field to (2.2). Within the semi-classical
electric dipole approximation, we use

Ĥint = ε(t) · µ̂ = ε(t) ·
#particles∑

i=1

qi r̂i , (2.11)

where ri is the position vector of the i-th particle, qi its charge, and ε(t) is the time-
dependent electric field. If we repeat the derivations, we end up with a set of equations
similar to (2.5), but where the right hand side gets an additional term

∑
i

ε(t)Dji(R)Λi(R, t) (2.12)

with the dipole coupling

Dji(R) = 〈λadi
j (R)|µ̂|λadi

i (R)〉r . (2.13)

An electric field can thus couple different nuclear wave functions Λi, which suggests using
laser pulses for populating excited electronic states.
This completes the basics of the modern picture of molecular dynamics. To demonstrate
this powerful and intuitive description, we can study a one-dimensional model of NaI (i.e.,
neglecting rotation) excited by a short laser pulse. NaI is one of the simplest molecules
that exhibits dynamics that go beyond the Born-Oppenheimer approximation [7,20,21].
The wave–packet dynamics were calculated with the WavePacket code [22], and the
calculated wave function at different times is displayed in figure 2.1. 1 Some details of
the calculation method can be found in appendix B.
Initially, the molecule is in the electronic and vibrational ground state, which is strongly
localized around the minimum of the ground state potential energy surface at 3Å. When
we turn on the laser, the electronic ground and first excited state are coupled by the

1It should be noted that I simulated the laser pulse by manually transfering the wave function to
the excited state. This corresponds to the limit of an infinitely short pulse within a perturbation
approach, which was chosen mainly for aesthetic reasons, a more realistic laser pulse would either
excite only a small part of the wave function or significantly broaden the wave packet.
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Figure 2.1: Sketch of the potential energy surface and the nuclear dynamics of NaI
excited by a short laser pulse at t = 0. Thin lines are the potential energy
surfaces Vi, the thick lines are the respective nuclear densities |Λi|2 with
the expectation value of the potential energy Vi as baseline. (a) Nuclear
wave function before the laser pulse (t = 0), (b) shortly after the laser pulse
(t = 10fs), (c) subsequent dynamics (t = 100fs) (d), after passing the avoided
crossing around 7Å (t = 200fs).

electric field, and part of the wave function is transfered to the electronically excited
state. The ground state wave function basically stays where it is, but the excited state
wave function starts to move on the corresponding excited state surface, which we can
describe as a vibration of the Na-I bond. Within the Born-Oppenheimer approximation,
the time evolution of the ground and excited state nuclear wave function are uncoupled.
In the case of NaI, this approximation is violated, and there is a strong non-adiabatic
coupling at R ≈ 7 Å. Consequently, when the excited state wave function passes this
region, part of it is transfered back to the ground state.
It is not difficult to extrapolate the dynamics to longer time scales. The excited state
wave function will continue to oscillate between approximately 3 and 10 Å, and whenever
it passes the avoided crossing, some part is transfered to the electronic ground state. This
continues until the excited state is completely depleted.
After we have excited a molecule with a (pump) laser pulse, we can try to measure the
subsequent dynamics. This can be done by measuring how the system changes a suitably
chosen probe, such as another laser pulse or an x-ray pulse, at a well-defined delay time
after the excitation. Such setups are called pump–probe experiments. As mentioned
earlier, once we have settled for an electronic basis set, we obtain all information about
the molecular wave function if we can retrieve the set of nuclear wave functions.
For simplicity, let us choose the adiabatic states, and assume that our probe measurement
gives the expectation value of a purely electronic operator â at a specific point in time.
While this model is too crude, and not applicable to practical situations, it can serve
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2.1 Born-Oppenheimer approximation and beyond

as a didactive introduction to simple time-resolved measurements such as TRXD. Using
the expansion (2.3), we obtain

〈â〉(t) =
∫

dR
∑
i,j

Λ∗i (R, t)Λj(R, t) 〈λadi
i (R)|â|λadi

j (R)〉r . (2.14)

There is often no significant overlap Λ∗iΛj between nuclear wave functions on different
electronic states (see figure 2.1). For this reason, and to further simplify the discussion,
we drop these cross terms. The remaining expression is

〈â〉(t) =
∫

dR
∑
i

|Λi(R, t)|2 〈λadi
i (R)|â|λadi

i (R)〉r . (2.15)

This simplified measurement now reveals only the squared amplitudes |Λi|2, which can
be interpreted as the probability density of finding a certain nuclear geometry with a
given electronic quantum number, while all the phase information was contained in the
cross terms that we have dropped.
Equation (2.15) contains the basic problem we need to solve. Given one or more sets of
experimental data 〈â〉(t), and being able to calculate in principle the electronic matrix
elements aii(R) = 〈λadi

i (R)|â|λadi
i (R)〉r, we need to invert (2.15) to obtain information

about the nuclear wave functions.
It is clear that the matrix elements aii(R) should ideally fulfill two requirements:

Uniqueness

Different nuclear geometries R should yield different values aii. Otherwise, the
measurement might not be sensitive to the actual nuclear motion, and it can be
difficult or impossible to extract the amplitudes from the experiment.

Fast evaluation

At the end of the day, we have to search for geometries R where the nuclear
densities |Λi|2 are substantial. For larger molecules, this search can take place
in a high-dimensional space, and the matrix elements need to be evaluated for
many different nuclear geometries. For this reason, we prefer operators whose
matrix elements can either be evaluated analytically, or which do not require a
high-quality electronic wave function.

As an example for a time-resolved spectroscopic method, we can study femtosecond
transition-state spectroscopy (FTS) [6, 7]. Simply put, one probes the molecule by ex-
citing it to a reference electronic state λadi

ref with a short laser pulse, and measures the
absorption of the pulse, which corresponds to the number of excited molecules. This pro-
cess is only efficient for resonant conditions. In an idealized model, we can approximate
the matrix elements as δ-functions,

9



2 Background concepts

aFTS
ii (R) ≈ δ

{
~ω −

[
Vref(R)− Vi(R)

]}
, (2.16)

with ω being the frequency of the probing pulse.
In the experiment by Rose, Rosker, and Zewail [7], this method was applied to NaI, and
two different probe wavelengths were chosen. One frequency corresponded to a resonant
transition of a free Na atom. The idea behind this choice was that the electronic ground
state λadi

GS corresponds for large internuclear distances R ≥ R0 to a free Na, and a free I
atom, so we can approximate

aFTS,Na
ii (R) ≈ δi,GS Θ(R−R0) (2.17)

with the Heaviside step function Θ. The signal (II in figure 2.2) shows a stepping form,
that we can understand from the dynamics in figure 2.1. Whenever the excited state
passed the avoided crossing, some part of the wave packet makes a transition to the
ground state, and moves towards R → ∞. So the photodissociation proceeds in steps,
which we can observe in the experimental signal.
The other wavelength was detuned from the Na resonance, with the understanding that
now the excitation to a resonant state is only efficient for a “perturbed” Na atom, which

Figure 2.2: FTS signal for NaI and different choices of ω, i.e., the probed electronic
state and internuclear distance. I: the excited state at Rexc(ω) > 7Å, II: the
ground state at large distance, III: FTS signal for NaBr (not discussed in
the text). Reprinted with permission from [7]. Copyright 1988, American
Institute of Physics
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2.2 Independent atom model

is roughly the situation of the excited state for internuclear distances smaller than the
avoided crossing at 7 Å. That is, one can “assume” [20] that

aFTS, NaI∗

ii (R) ≈ δi,exc Θ(7Å−R) . (2.18)

In the excited state, the wave packet bounces back and forth, and is depleted over time,
so the experimental signal (I in figure 2.2) shows a damped oscillation.
This simple example serves to demonstrate a common problem in optical spectroscopy:
the indirect link between the measured signal and the underlying nuclear geometry.
While the matrix elements are certainly somewhat unique, already the simple hand-
waving argument for the definition of the aii(R) requires a lot of detailed knowledge
about the electronic structure and the dynamics of the system. For more quantitative
data processing, we would need high-quality expressions for the potential energy surfaces
that are used in (2.16) (of course, it would also be appropriate to use a more realistic
model of the experiment in this case). However, the calculation of good potential energy
surfaces is rather expensive, and might not be feasible for larger molecules.
In the next section, we contrast this with the electronic matrix elements that typically
occur in x-ray diffraction. Within the independent atom model, we obtain an analytic
approximation of these matrix elements.

2.2 Independent atom model

As we will see in the next chapter, x-ray diffraction measurements always involve the
electronic scattering operator

L̂ =
#electrons∑

i=1

eiqr̂i , (2.19)

where ri is the position of the i-th electron, and q is the scattering vector. This operator
is more conveniently rewritten in terms of the electronic density. We first write L̂ in
a basis of one-electron orbitals φP (r), using the appropriate creation and annihilation
operators â†P , âP as [23]

L̂ =
∑
P,Q

LPQ â†P âQ (2.20)

with

LPQ =
∫

d3x φ∗P (x) eiqx φQ(x) . (2.21)

From the action on an arbitrary state, we can identify
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2 Background concepts

%̂(x) =
∑
P,Q

φ∗P (x)φQ(x) â†P âQ (2.22)

as the density operator, whose expectation value gives the electronic density at position
x. 2 This allows us to rewrite

Fi(q) ≡ 〈λadi
i (R(3N))| L̂|λadi

i (R(3N))〉r

=
∫

d3x 〈λadi
i (R(3N))| %̂(x) eiqx|λadi

i (R(3N))〉r

=
∫

d3x %i(x; R(3N)) eiqx . (2.23)

%i(x; R(3N)) is the electronic density of the state λadi
i , and N is the number of atoms in

the sample. The quantity Fi is called the molecular form factor; as we argue below, it
is only weakly dependent on the electronic state, so that we can drop the subscript.
X-ray scattering is sensitive to all electrons in a sample, not just the valence electrons;
this can be seen in (2.23), where the total electronic density contributes. Most of the
electrons usually stick to their parent atom, and move around with it, the exception
being a handful of valence electrons that pair to form valence bonds or get transferred
directly to neighboring atoms to make ionic bonds. This gives rise to the crude, but
successful independent atom model (IAM) (e.g., [24]).
Within the IAM, we assume that all atomic nuclei have the same electron cloud that an
isolated atom of this species has. If we denote the electron density of an isolated atom
A as %A, and the position of the nucleus within the system with RA, the approximation
can be formally written as

%i(x; R(3N)) =
N∑
A=1

%A(x−RA) . (2.24)

Inserting this into (2.23) yields

Fi(q) =
N∑
A=1

fA(q) eiqRA (2.25)

2%̂(x) must be a one-electron operator, since it makes sense to apply it to states with a single electron.
In second quantization, it therefore has the form [23] %̂(x) =

P
PQ %PQâ

†
P âQ, where %PQ is a linear

functional of φ∗P and φQ.
To determine the %PQ, we calculate the density of a single-electron state ψ(r) = φ1(r) +φ2(r), and

compare the results from forming the absolute square |ψ(x)|2, and from applying %̂(x).
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with the atomic form factor

fA(q) =
∫

d3x %A(x) eiqx . (2.26)

Analytical approximations for the atomic form factors fA can be found in standard
tabulations [4]. Within the IAM, the electronic matrix elements (2.25) can be calculated
analytically, and are basically Fourier transforms of the atomic positions. If the electronic
density distributions (and thus the form factors) are sufficiently different from each other,
we can expect that these matrix elements are also sensitive to the nuclear geometry of
a molecule.
While it is relatively easy to introduce the IAM, it is rather difficult to give general
estimates of the errors of this model. Qualitatively, we have ignored all effects from
chemical binding, by introducing three approximations:

1. Polarization effects have been neglected, i.e., changes of the electronic density
around an atom due to the electric field from the other atoms. The most ob-
vious polarization effect is that a free atom has a spherically symmetric density
distribution due to rotational degeneracies, while this is usually not the case for
bound atoms; especially valence p- or d-orbitals should show a strong directional
preference.

2. Correlations between the electronic shells of different atoms have been neglected.
Due to the Pauli principle, a significant distortion of the electron wave function
should occur when occupied orbitals of different atoms overlap. Thus, we have
indirectly assumed that the overlap of the electronic shells of different atoms is
negligible.

3. We assumed that the electronic density distribution is the same for each electronic
state. For chemically relevant processes, the electronic states only differ by the
rearrangement of few valence electrons. Since the IAM already assumes that the
behavior of the valence electrons is not important, this approximation seems a
natural extension.

I want to conclude this section with some general remarks. As can be seen from (2.25),
the matrix elements are in general complex quantities. When we insert this into (2.15)
introduced in the last section, we get a complex measured value, which seems odd. It
signals that the idea of describing a time-resolved measurement as the expectation value
of an electronic operator, while appealing and able to capture many essential points,
is ultimately wrong. In the next chapter, we will employ formal scattering theory and
show that the absolute square of the matrix elements is measured.
Furthermore, it is instructive to study the value of the atomic form factor at q = 0. We
obtain

fA(q = 0) =
∫

d3x %A(x) , (2.27)
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which is just the number of electrons of the atom. We can infer that for small enough
q, the signal is dominated by the heavy atoms in a sample. That is, x-ray scattering
is especially suited for molecules consisting of heavy atoms (Pt, Ir, I) in a light-atom
framework (C, O, H). In a first approximation, we can ignore the light atoms, and only
“see” the motion of the heavy atoms.
As a convenient side effect, the approximations are easier fulfilled for heavy atoms. The
(core) electrons are tighter bound and less susceptible to polarization effects, and there
are relatively less valence electrons that are poorly described by the IAM.
Finally, electronic structure calculations are more expensive and less reliable for heavy
atoms, due to the need for larger basis sets, relativistic corrections etc. Thus, spectro-
scopic measurements, which typically require some knowledge of the electronic structure,
can be especially difficult to interpret for molecules containing heavy atoms, whereas x-
ray diffraction is especially well-suited for such samples.
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In this chapter, we will derive general formulas for TRXD, that is, we will investigate
the scattering of x-ray pulses from a system that is just described by an abstract wave
function, and interpret the results in the context of the Born-Huang representation.
The chapter can be understood as a supplement to paper 1, which itself draws on a
previous article by my supervisors [25]. These two articles already introduce a self-
contained description of TRXD, so I will mostly focus on what I consider the most
important aspects of the formal theory. I will also adopt a number of simplifications
that limit the range of validity of the derivation, but hopefully make the equations
easier to read.
A proper derivation should generally use a density–operator formalism. With this for-
malism, we can describe the dynamics of complex quantum system and write them down
with equally complex formulas. However, in an effort to make formulas simple, I drop
this formalism in favor of a wave function formalism throughout this chapter. Also, it
is difficult to measure for example decoherence effects, which would require a density–
operator description, because of the properties of standard x-ray free electron lasers
(coherence time of about 1 fs), so if we represent the system with a density operator, we
can just sum up the signals of its eigenstates. When the wave function is factorized into
a nuclear and electronic wave function, I will usually employ the Born–Oppenheimer
approximation. Finally, I stick to the Schrödinger picture throughout the text.
We start with a formal introduction into time-independent x-ray diffraction in section
3.1, and continue with a discussion of elastic and inelastic scattering in section 3.2,
which is identical in the time-dependent and time-independent context. This discussion
forms the core content of paper 1. The chapter concludes with a brief derivation of the
time-resolved diffraction signal in 3.3.

3.1 Introduction to time-independent x-ray diffraction

In a time-independent context, x-ray diffraction is usually derived from standard pertur-
bation theory [5,26]. The key idea is to rephrase the question “How many photons hit a
given detector pixel?” in a more formal way. This is done by first defining a rate Γ for
a transition from an initial state I to one or more final states F due to a perturbation
(i.e., interaction Hamiltonian Ĥint), then choosing the states and the perturbation to
reflect the diffraction of x-rays.
With some calculation, standard perturbation theory yields Fermi’s Golden Rule, which
in lowest order perturbation reads [26,27]
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3 Theory of TRXD

Γ =
2π
~
∑
F

|〈F |Ĥint|I〉|2 δ(EF − EI) . (3.1)

Higher order perturbations can be included. However, they are usually only important
for special diffraction schemes (see for example anomalous scattering further below),
or they correspond to nonlinear scattering events that contribute only in the case of
extreme photon fluxes or highly efficient scattering, both of which we will not discuss
here.
As initial state, we choose a product of the studied system in some eigenstate ψi with
energy εi, and an incoming photon with wave vector k0 and polarization ν0,

|I〉 = |ψi〉S|k0, ν0〉P . (3.2)

The subscripts S, P denote the system and photon degrees of freedom, respectively.
In a similar way, each final state consists of the electronic system in some eigenstate ψf ,
and an outgoing photon that hits the detector pixel. That is, the photon has a wave
vector k′s with a certain direction and polarization νs

|F 〉 = |ψf 〉S|k′s, νs〉P . (3.3)

The energies are then given by

EF − EI = εf − εi + ~(ω′s − ω0) (3.4)

with ω′s = k′sc. Inserting (3.2), (3.3) and (3.4) into (3.1), we obtain

Γ =
2π
~

∑
f,k′s,νs

∣∣∣〈k′s, νs|〈ψf | Ĥint |ψi〉S|k0, ν0〉P
∣∣∣2 δ[εf − εi + ~(ω′s − ω0)

]
, (3.5)

which is rather difficult to handle because of the awkward k′s-summation. To get rid
of this, imagine that the detector pixel covers a solid angle ∆Ωpixel that is so small
that the matrix elements do not vary noticeably. In this case, we could replace k′s by a
representative wave vector ks in the direction Ωpixel of the pixel, and the sum over k′s
by the number of outgoing photon modes that would hit the detector. More formally,
we introduce a differential transition rate dΓ/dΩ, and integrate it over the solid angle
of the detector pixel

Γ =
∫

pixel

dΓ
dΩ

(Ω) dΩ ≈ dΓ
dΩ

(Ωpixel) ∆Ωpixel . (3.6)
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3.1 Introduction to time-independent x-ray diffraction

Note further that in (3.4), the energy of the outgoing photon ω′s, and of the final state
are coupled, so the outgoing photons can also have different energies. Repeating the
same procedure, we can introduce a double-differential transition rate

dΓ
dΩ

(Ω) =
∫ ωmax

ωmin

d2Γ
dΩdωs

(Ω, ωs) dωs . (3.7)

Here, [ωmin, ωmax] is the range of angular frequencies that is accepted by the detector.
The double-differential transition rate is then

d2Γ
dΩdωs

(Ω, ωs) =
2π
~
ρ(Ω, ωs)

∑
f,νs

∣∣∣〈ks, νs|〈ψf | Ĥint |ψi〉S|k0, ν0〉P
∣∣∣2

× δ
[
εf − εi + ~(ωs − ω0)

]
, (3.8)

where ks is the “representative” wave vector whose direction is given by the solid angle
Ω, and whose length is determined by ωs, and

ρ(Ω, ωs)dΩdωs =
V

(2π)3c3
ω2
sdΩdωs (3.9)

is the number of photon modes whose angular frequency and direction is in an infinites-
imal region dΩdωs. V is the quantization volume, and c the speed of light. In the
following, I will always suppress the arguments of differential quantities. Also, since the
transition rate for a given detector pixel is trivially related to the differential transition
rate (3.6), we will continue studying only the latter.
The final ingredient for the calculation of the rates is the interaction Hamiltonian that
tells about how the system proceeds from the initial to the final state. This requires a
small detour before we assemble the final equations.

3.1.1 Matter-photon interaction

When treating the combined matter-photon system in non-relativistic theory, we can
impose Coulomb gauge ∇xÂ(x) = 0 on the electric field and obtain as starting point
the minimal coupling Hamiltonian of the form [27]

Ĥ =
A∑
α=1

1
2mα

(
p̂α − qαÂ(r̂α)

)2
+ V (r̂1, . . . , r̂A) +

∑
k,ν

~ωk â
†
k,ν âk,ν . (3.10)

In writing down the Hamiltonian, we have neglected the coupling between particle spins
and photons. The first sum runs over all A charged particles with mass mα and charge
qα, whose canonical momentum and coordinate operators are given as p̂α and r̂α. The
operators â†k,ν (/âk,ν) are the creation (/annihilation) operators of a photon with po-
larization ν, wave vector k and corresponding angular frequency ωk. The function V
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3 Theory of TRXD

contains all static Coulomb interactions between the charges, and Â is the vector poten-
tial given by

Â(x) =
∑
k,ν

ek,ν

√
~

2ε0V ωk

(
âk,ν eikx + â†k,νe−ikx

)
. (3.11)

ek,ν describes a unit vector in the polarization direction, and V is the cavity volume. If
we expand the square, we can rewrite the Hamiltonian as

Ĥ = Ĥ0 + Ĥint , (3.12)

where

Ĥ0 =
A∑
α=1

p̂2
α

2mα
+ V (r̂1, . . . , r̂A) +

∑
k,ν

~ωk â
†
k,ν âk,ν (3.13)

does not couple the photon and system degrees of freedom (i.e., forms the unperturbed
Hamiltonian), and the interaction Hamiltonian reads

Ĥint =
A∑
α=1

{
q2
α

2mα
Â2(r̂α)− qα

mα
p̂αÂ(r̂α)

}
. (3.14)

Here, we used the Coulomb gauge to commute p̂α and Â(r̂α). As first step in condensing
the interaction Hamiltonian, we note that the prefactors of q/m and q2/m are much
larger for electrons than nuclei, so we can restrict the sum over the electrons only.
Let us consider the first term in (3.14). From (3.1) with the appropriately defined
initial and final states, we can see that the interaction Hamiltonian has to remove the
incoming and create the scattered photon to give a nonzero contribution to the transition
rate. If we combine the A2-term with the definition (3.11), we can see that only those
contributions survive that include one photon creation and one annihilation operator,
so that we obtain for the first term

Â2(r̂α) −→ ~
2ε0V

∑
k1,ν1
k2,ν2

√
1

ω1ω2
ek1,ν1ek2,ν2

(
â†k2,ν2

âk1,ν1
+ âk1,ν1

â†k2,ν2

)
ei(k1−k2)r̂α

=
~
ε0V

∑
k1,ν1
k2,ν2

√
1

ω1ω2
ek1,ν1ek2,ν2 â

†
k2,ν2

âk1,ν1
ei(k1−k2)r̂α +

∑
k,ν

~
2ε0V ωk

[âk,ν , â
†
k,ν ] . (3.15)

The first sum represents a scattering event, where a photon with wave vector k1 and
polarization ν1 is transformed into a photon with wave vector k2 and polarization ν2.
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3.1 Introduction to time-independent x-ray diffraction

The second sum with the commutator adds an infinite contribution to all calculations.
Since this contribution is an infinite, but constant number, independent of the exact
photon or system state, we just discard it.
If we insert (3.11) into the second expression of (3.14), we get

p̂αÂ(r̂α) =
∑
k,ν

√
~

2ε0V ωk
p̂αek,ν

(
âk,ν eikr̂α + â†k,ν e−ikr̂α

)
. (3.16)

The action of this operator on a given state (electron + electric field) can be described
as follows: A photon is either created or destroyed (â†k,ν , âk,ν), the recoil is transferred
to the electron (exp(±ikr̂)), and this process takes place preferably if the electron ends
up with a large momentum along the photon’s polarization vector (p̂ek,ν).
This interaction has obvious importance for photoelectron spectroscopy. However, in a
second-order perturbation, this process also contributes to scattering by first absorbing
a photon, and later emitting a photon with a different wave vector, and is well-known
under the term “anomalous scattering” (see, e.g., [28,29]). For small-angle scattering and
within the independent atom model, it is formally included by augmenting the atomic
form factor f(q) from (2.26) with dispersion corrections f ′, f ′′ [26, 28,29]

f̃(q, ω0) = f(q) + f ′(ω0) + if ′′(ω0) , (3.17)

which, for incident energies of typically about 10 keV and elements with Z > 18, modify
the atomic form factors by a few percent. This is the same order of magnitude we would
intuitively expect from the incorrect description of the electronic density of the valence
electrons by the IAM, so we will also discard these terms.

3.1.2 Putting it all together

We can now insert the only remaining contribution of the interaction Hamiltonian from
(3.15) into (3.8). Integrating over the photon coordinates gives k1 = k0, ν1 = ν0, k2 = ks
and ν2 = νs. If we also clean up the prefactors, we obtain

d2Γ
dΩdωs

= σT
~c
V

ωs
ω0

∑
f

∣∣∣〈ψf | L̂ |ψi〉S∣∣∣2 δ[εf − εi + ~(ωs − ω0)
]
, (3.18)

where σT is the Thomson cross section

σT =
(

e2

4πc2meε0

)2∑
νs

(eks,νsek0,ν0)2 , (3.19)

and the scattering operator

L̂ =
∑
α

eiqr̂α =
∑
α

eiqr̂α (3.20)

has the form used in equation (2.19).
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3 Theory of TRXD

3.2 Elastic and inelastic scattering

In the literature that is concerned with theory of TRXD, one regularly finds as a critical
point that x-ray diffraction can be elastic or inelastic [24,25,30,31]. This can be deduced
from (3.18). In the case of elastic scattering, we have ψf = ψi, and consequently, through
the delta-function ωs = ω0. However, there are no principal obstacles for having a
different final state of the system (inelastic scattering), which leads to scattered x-ray
photons with a different frequency than that of the incoming photons.
The same basic problem of whether x-ray diffraction is elastic or inelastic also occurs
in the time-independent context, where we can treat the core problem without various
complications arising from the time-dependent structure of the x-ray pulses from free
electron lasers.
Technically, we start with (3.18), choose the ground state ψi = ψ0 as initial state (i.e.,
neglect temperature for simplicity), and restrict the choice of final states to some subsets
of all allowed states to arrive at scattering that leaves all quantum numbers intact (fully
elastic scattering), does not change the electronic quantum number (electronically elastic
scattering), or has no restrictions whatsoever (inelastic scattering).
I want to point out that this line of argument, going from elastic to inelastic scattering,
is partly motivated by an article by Liu and Lin [32], which deals with the equivalent
problem in ultrafast electron diffraction.

3.2.1 Purely elastic scattering

As a first step, let us assume that the scattering process does not change a single quantum
number. In this case, the summation in (3.18) reduces to the case f = i. If we assume
infinite boundaries for all practical purposes, the energy integration in (3.7) can be
performed immediately, and we obtain apart from various constant prefactors

dΓelastic

dΩ
∼=
∣∣∣〈ψ0| L̂ |ψ0〉S

∣∣∣2 . (3.21)

To evaluate the bracket, we employ the Born-Oppenheimer approximation, and write
the ground state of N nuclei and Ne electrons as

ψ0(R(3N), r(3Ne)) = Λ0(R(3N))λ0(r(3Ne); R(3N)) . (3.22)

The integration over the electronic coordinates can be evaluated with the independent
atom model (see section 2.2), and produces the molecular form factor F of (2.23). We
write out the integration over the nuclear coordinates to obtain

dΓelastic

dΩ
∼=
∣∣∣∣∫ d3NR |Λ0(R(3N))|2F (q; R(3N))

∣∣∣∣2 (3.23)

=
∫

d3NR1

∫
d3NR2 |Λ0(R(3N)

1 )|2 |Λ0(R(3N)
2 )|2F ∗(q; R(3N)

1 )F (q; R(3N)
2 ) .
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We can immediately see that this equation is too complex for practical use. Instead of
obtaining information about |Λ0|2 (i.e., the probability density of finding certain nuclear
arrangements), we get an expression resembling some correlation function that is much
harder to invert. We conclude that purely elastic scattering is not what we are looking
for.

3.2.2 Electronically elastic scattering

As a next step, we can assume that the electronic quantum number is not changed by
the scattering event, but all the other (vibrational, rotational, etc.) quantum numbers
associated with the nuclear wave function may change freely, that is, we allow all final
states of the type

ψf (R(3N), r(3Ne)) = Λf (R(3N))λ0(r(3Ne); R(3N)) (3.24)

in the summation (3.18), where Λf is a solution of the time-independent Schrödinger
equation using the electronic ground state surface. Combining this with the integration
in (3.7), and dropping uninteresting prefactors gives us for the differential transition rate

dΓ
dΩ
∼=
∫ ωmax

ωmin

dωs
ωs
ω0

∑
f

∣∣∣〈ψf |L̂|ψ0〉S
∣∣∣2 δ[εf − εi + ~(ωs − ω0)

]
. (3.25)

Let us further assume that we collect all photons. Formally, we can set ωmin → −∞,
ωmax →∞, and the integration effectively fixes the value of ωs to some value ωs(f) de-
pending on the final state through the delta-function. If we then write out the integration
over the nuclear coordinates, we obtain

dΓel. elastic

dΩ
∼=
∫

d3NR1

∫
d3NR2 Λ∗0(R(3N)

1 )
∑
f

Λf (R(3N)
1 )Λ∗f (R(3N)

2 )Λ0(R(3N)
2 )

× ωs(f)
ω0

F ∗(q; R(3N)
1 )F (q; R(3N)

2 ) (3.26)

Note that the scattering vector q depends in principle on the final state ψf through
the value of ωs(f). However, for highly excited final states, the overlap Λ∗0Λf becomes
negligible. Thus, the dominant contribution to the transition rate comes from states
with low excitation energies, which for nuclear excitation means that εf − εi is of the
order 1 eV or less, and much smaller than the photon energy ~ω0 ≈ 10 keV. We can
ignore these problems, and set ωs(f) ≈ ω0 for all purposes to obtain

dΓel. elastic

dΩ
∼=
∫

d3NR |Λ0(R(3N))|2 |F (q; R(3N))|2 . (3.27)
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The states Λf form a complete basis in the space of the functions of the nuclear coordi-
nates, so the summation produces a delta-function that simplifies the result.
Equation (3.27) has a form similar to (2.15), and allows us in principle to reconstruct
the nuclear density |Λ0|2 from the diffraction pattern. However, while the theoretical
interpretation is simple, it is rather difficult to do electronically elastic scattering in
practice.
One problem is that if we impose a separation of the electronic and vibrational energy
scales, we exclude systems with close-lying potential energy surfaces, NaI being a simple
example, especially when we later go on to time-resolved diffraction. Furthermore, once
we assume that inelastic x-ray scattering is possible, there is no physical basis for assum-
ing that the electronic quantum number must be preserved, as we have done in (3.24).
In fact, tabulations for single atoms show that electronically inelastic components can
dominate for large scattering angles [33].
So the electronic elasticity must be ensured by the experimental setup. If we now assume
that there is an energy gap between vibrational, rotational etc. excitation on one side
(∆ε� 1 eV), and electronic excitation on the other side (∆ε > 1 eV), we can choose to
collect only photons from electronically elastic scattering events.
For this, we first monochromatize the incoming beam, so that the energy spread of the
incoming photons is well below the electronic excitation energy. After the scattering
region, we monochromatize again, and cherry-pick all photons whose energy deviates
from that of the incoming beam by less than 1 eV. Through the delta function of (3.18),
we are then guaranteed that we collected only data from electronically elastic scattering.
The main drawback of this method, though, is a huge loss of photon flux.
To monochromatize an x-ray beam, it is usually scattered from a crystal [5]. For each
photon energy, there exist certain outgoing wave vectors where the Bragg condition is
fulfilled, and photons with this energy are scattered with a large cross section. We
can then put our sample or detector at the corresponding position. There are two loss
mechanisms here. First, we loose a lot of photons that are scattered in the “wrong”
directions. Second, if we monochromatize the photons after they hit the target, we can
only tune the monochromator to photons scattered in a certain direction; this setup is
incompatible with a pixelated area detector. Both mechanism lead to a loss of flux of
several orders of magnitude, which is why this setup is hardly used in practice. 1

To fix this inconsistency requires us to allow for electronically inelastic scattering events
as well, which is what we do next.

3.2.3 Inelastic scattering

For the most general treatment, we allow all possible final states in the summation of
(3.18). Inserting again (3.18) into (3.7), we obtain (3.25), only with the summation
running over all states.

1Such a setup is, however, used in the context of non-resonant inelastic x-ray scattering, see for example
[34, 35]. Although interesting in itself, it requires a different approach in theory and experiment, so
we will not discuss this technique further.
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3.3 Time-dependent theory

We first assume again that we accept all scattered photons irrespective of their frequency,
that is, we set ωmin → −∞ and ωmax →∞. At this point, we note again that the vectors
ks point into the same direction Ω, and their lengths depend on the exact excitation
in question through the delta function. As a consequence, the vector q hidden in the
scattering operator L̂ also depends on the final state f .
However, we can assume that all important inelastic scattering events have excitation
energies that are small compared to ~ω0, and set for all practical purposes ωs ≈ ω0. This
is the widely-used “static approximation” [36]; as with the independent atom model, it
is rather difficult to quantify the approximation properly. The problem is that the range
of accessible final states and the relation q(ωs) depend on the scattering angle in a
non-trivial manner. A not too conclusive attempt is done in appendix B of paper 1.
If we adopt this approximation, (3.25) condenses to

dΓinelastic

dΩ
∼=
∑
f

|〈ψf | L̂ |ψ0〉S |2 = 〈ψ0| L̂†L̂ |ψ0〉S

=
∫

d3NR |Λ0(R(3N))|2 〈λ0(R(3N)| L̂†L̂ |λ0(R(3N)〉r , (3.28)

where we first exploited the completeness of the set of states ψf , and then used the Born-
Oppenheimer approximation. Formally, this is similar to the result from electronically
elastic scattering, but with a difficult to handle two-electron operator.
However, as is shown in greater detail in appendix B of paper 1, within the indepen-
dent atom model, these matrix elements reduce to the ordinary squared form factor
〈λ0| L̂†L̂|λ0〉r ≈ |〈λ0| L̂|λ0〉r|2 apart from two correction terms. The first correction is
independent of the position of the atoms, and can be removed by difference diffraction
techniques, while the magnitude of the second term depends on the overlap between
occupied atomic orbitals around different atoms; since we assumed this overlap to be
small when introducing the IAM, it is only consistent to neglect this term as well.
In consequence, we arrive at the same expression as the one we obtained for electronically
elastic scattering, but without the problems with the experimental design. However,
while this whole derivation might seem like a purely academic exercise, we have to keep
in mind that the two formulations are only equal within the IAM! As soon as we go
beyond this model, for example, when imaging atomic orbitals with x-rays [37], we
either have to impose electronically elastic scattering conditions, or we need to treat the
explicit two-particle operator.

3.3 Time-dependent theory

Here, I will briefly write down the derivation of the time-resolved diffraction signal.
Although, as mentioned before, reference [25] and paper 1 have essentially the same
content, I redo the derivation here for several reasons:

1. With the time-independent treatment already laid out, it is possible to derive an
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3 Theory of TRXD

expression for the signal in a more compact way than what is scattered over the
two articles.

2. Both articles use a slightly different notation. For example, the definition of the
intensity in [25] deviates from that used in paper 1.

3. There are some minor improvements one can do over the references. For example,
it is possible to extend the treatment to more general photon states. Also, some of
the approximations (for example, that of evaluating the field only at the position
of the sample) can be introduced in a more thorough way.

3.3.1 Introduction

Before we start with the derivation in terms of formulas, it might be helpful to first specify
which type of experiments we have in mind; after all, the choice of the experimental setup
strongly determines which approximations we will use.
The basic pump–probe setup is shown in figure 3.1. In addition to the experimental
layout, we will assume that the sample consists of many identical quantum systems,
such as one can find in solutions or molecular beams.
The general idea is the same as before: We want to calculate how many photons hit
a given detector pixel. By analogy to the time-independent case, we can introduce a
double-differential signal as the number of photons scattered into a certain solid angle
with a given angular frequency, which reads

τ

time

E

k
0

kS

sample
laser

x−ray δ ϑ

Figure 3.1: Scheme of the experimental setup. An optical pump laser brings the sample
into an excited state. After a tunable delay time τ , an x-ray pulse is scat-
tered from the sample, and produces a diffraction pattern. Also included are
several angles mainly used in section 4.4.
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3.3 Time-dependent theory

d2S

dΩdωs
= ρ(ωs) lim

t→∞
t0→−∞

〈Ξ(t0)|Û †(t, t0)
∑
νs

â†ks,νs âks,νs Û(t, t0)|Ξ(t0)〉 . (3.29)

The formula reads as follows: At some time t0 prior to the scattering, we have an initial
state Ξ that consists of our sample, and the x-ray pulse moving towards the sample. We
let this state evolve in time, denoted by the time evolution operator Û , and after what
is for all practical purposes an infinite time, we measure how many scattered photons
with wave vector ks and polarization νs have been created. Here, we do not care about
the polarization of the scattered photons. Finally, we multiply this by the density of
photon modes ρ from (3.9) to get the signal per solid angle and final frequency.
To convert (3.29) into something more instructive, we next introduce the initial state
and the time evolution operator in some more detail, then we will integrate over the
photon degrees of freedom, which leaves us with some simple functions that describe the
x-ray pulse. Some further algebraic manipulations lead us to the final result.

3.3.2 The initial state

The initial state is a product of the sample in some state state ψ, and an x-ray pulse η
on its way to the target,

|Ξ(t0)〉 = |ψ(t0)〉S |η(t0)〉P . (3.30)

At this point, we can assume a rather general x-ray pulse that is only characterized by
a few properties.
First, we assume that η has a definite polarization ν0. This is purely for convenience; the
polarization will eventually be hidden in the Thomson cross section, which allows an easy
extension to unpolarized pulses. Second, the pulse does not contain the scattered photon
mode, that is âks,νs |η(t)〉 = 0. Finally, we assume that the pulse is approximately a
monochromatic plane wave. The European XFEL, for example, has a small divergence on
the order of 1µrad, and a spectral bandwidth of the order of 10−4 [13]. Consequently, for
photon modes k contributing appreciably to η, we will occasionally do the replacements

ek,ν0 ≈ ek0,ν0 ωk ≈ ω0 k ≈ k0 , (3.31)

where k0 is the central wave vector, and ω0 = ck0 the corresponding angular frequency.

3.3.3 The propagator

Following standard perturbation theory [18, 38], we separate the Hamiltonian Ĥ into
a noninteracting part Ĥ0 and an interacting part Ĥint, and write the time evolution
operator as an expansion in powers of Ĥint
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3 Theory of TRXD

Û(t, t0) ≈ Û0(t− t0)− i
~

∫ t

t0

dt′ Û0(t− t′)Ĥint(t′)Û0(t′ − t0)

− 1
~2

∫ t

t1

dt2
∫ t

t0

dt1 Û0(t− t2)Ĥint(t2)Û0(t2 − t1)Ĥint(t1)Û0(t1 − t0) + · · · , (3.32)

where Û0(t2, t1) is the propagator that propagates the noninteracting system from t1 to
t2, and can be further decomposed into the propagator of the system and the photon
state

Û0(t, t0) = ÛP (t, t0)ÛS(t, t0) = e−iĤP (t−t0)/~ T e−i
R t
t0
ĤS(t′)dt′/~

. (3.33)

T denotes the time-ordering operator, and the operators have been mostly introduced
in section 3.1.1 as

ĤS(t) =
A∑
α=1

p̂2
α

2mα
+ V (r̂1, . . . , r̂A) + Ŵ (r̂1, . . . , r̂A, t) (3.34)

ĤP =
∑
k,ν

~ωk â
†
k,ν âk,ν (3.35)

Ĥint =
~
ε0V

∑
k1,ν1
k2,ν2

√
1

ω1ω2
ek1,ν1ek2,ν2 â

†
k2,ν2

âk1,ν1
ei(k1−k2)r̂α . (3.36)

The new operator Ŵ describes the action of the pump pulse on the sample. It is necessary
to explicitly include this term since, in contrast to [25], we place our start time t0 now
at −∞.
Furthermore, if we measure the scattered x-ray photons away from the beam direction,
we need to convert the incoming photons at some point into scattered photons. Since
the non-interacting contribution Û(t, t0) does not do this, it gives no contribution to the
cross section, and we can drop it.
Making use of these simplifications, and keeping only the first order of the interaction
in (3.32), we can finally replace the propagator in (3.29)

Û(t, t0) −→ − i
~

∫ t

t0

dt′ ÛP (t, t′)ÛS(t, t′) Ĥint ÛP (t′, t0)ÛS(t′, t0) . (3.37)

Note that the interaction Hamiltonian removes a single photon from one of the modes
of the incoming beam, and creates one new photon in some other mode. That is, if we
apply the propagator (3.37) on the initial state (3.30), we get a final state at time t that
contains at most one scattered x-ray photon.
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3.3 Time-dependent theory

This forms the underlying approximation, that the quantum system creates on average
less than one scattered photon. The equations we will derive are therefore only valid in
the limit of sufficiently low intensity. If we want more scattered photons, we can add
more quantum systems (gas phase or solute molecules); for sufficiently low densities,
they do not interfere with each other, and we can just add the signal from the single
molecules. We can always check that this approximation is fulfilled by requiring

∫
dΩ
∫

dωs
d2S

dΩdωs
< 1 . (3.38)

3.3.4 Removing the photon brackets

If we insert (3.9), (3.30), (3.37) into (3.29), we obtain after some manipulations

d2S

dΩdωs
= σT

c

2πV
ωs
ω0

∫ ∞
−∞

dT
∫ ∞
−∞

dδ e−iωsδ gR(T, δ)

× 〈ψ(T +
δ

2
)| L̂† Û(T +

δ

2
, T − δ

2
) L̂ |ψ(T − δ

2
)〉S . (3.39)

σT is the Thomson cross section of (3.19), and R is the position of the sample. Further-
more, we used the shorthand notation |ψ(t)〉 = ÛS(t, t0)|ψ(t0)〉, and

gR(T, δ) = 〈η(T )|
∑
k1

â†k1,ν0
e−ik1R

∑
k2

âk2,ν0
eik2R ei

ω1+ω2
2

δ|η(T )〉P (3.40)

with a similar definition for η(t).
In deriving this result so far, we used a couple of approximations. First, for each mode
k that contributes to η, we replaced

√
1/ωk ≈

√
1/ω0, and ek,ν0 ≈ ek0,ν0 . Then, for

each such mode, we assumed

ei(k−k0)r̂α |ψ(t)〉S = ei(k−k0)R̂sei(k−k0)(r̂α−R̂s)|ψ(t)〉S
≈ ei(k−k0)R̂s |ψ(t)〉S ≈ |ψ(t)〉Sei(k−k0)R . (3.41)

R̂s denotes some degree of freedom that describes the location of the system (e.g., the
nuclear center of mass of a molecule), and commutes with the electronic operator r̂α.
The physical content of this approximation is the assumption that the typical spatial
variation of the x-ray pulse, approximately given by 2π/max(|k − k0|), is much larger
than the extension of the system, which is roughly what we get from applying the
operator r̂α − R̂s to the state ψ. If we further assume that the system is confined to
some small region around R, we can replace the operator by this vector (it is also possible
to integrate out the coordinate Rs explicitly, but we do not do this here for simplicity).
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3 Theory of TRXD

To arrive at the formulation (3.40), we used

eiĤP t/~ âk,ν e−iĤP t/~ = âk,νe−iωkt , (3.42)

and a similar equation for â†k,ν . This equation can be easily verified by applying the left
and right hand side of (3.42) to an arbitrary photon number state.
Finally, if t1, t2 are the time integration variables when inserting (3.37) into (3.29), we
made a transformation

T =
t1 + t2

2
δ = t1 − t2 . (3.43)

It should be pointed out that up to normalization issues, gR is related to the first-order
coherence function of the x-ray pulse [39]. However, we mostly do not need to dwell
explicitly on this relation, and will discuss the important properties in the next section.
After that, we go back to (3.39). It would seem as if the details of the function gR,
especially its dependence on δ have a major impact on the way the signal looks like.
However, for all but a few exotic cases, we can show that using the inelastic limit of
x-ray diffraction washes out all details.

3.3.5 Properties of the photon state

Now let us have a deeper look at the function gR(T, δ). The intensity of the approxi-
mately plane wave η at position R and time t is given by [39]

I ′(R, t) =
c

V
〈η(t)|

∑
k1

√
~ωk1 â

†
k1,ν0

e−ik1R
∑
k2

√
~ωk2 âk2,ν0

eik2R |η(t)〉P . (3.44)

If we approximate again ωk1 ≈ ωk2 ≈ ω0, and compare (3.44) with (3.40), we find for
the photon number intensity

I(R, t) ≈ I ′(R, t)
~ω0

=
c

V
gR(t, 0) . (3.45)

For the further manipulations, it will be more convenient to write

gR(T, δ) =
V

c
I(R, T )C(T, δ) , (3.46)

where C(T, 0) = 1. Correspondingly, the Fourier-transform

CF(T, ω) =
1

2π

∫ ∞
−∞

dδC(T, δ) e−iωδ (3.47)
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3.3 Time-dependent theory

is a normalized function
∫

dωCF(T, ω) = 1, and from (3.40) and the properties of η, we
can determine that it is strongly localized at ω = ω0.
A last point that we will not prove is that C(T, δ) typically decays within some coherence
time δc. This is in line with other derivations [24,25,30], which also assume that C(T, δ)
is a coherence function independent of T .

3.3.6 Final result

To cast (3.39) into a different form, we now assume that the system’s time evolution for
the typical durations δ can be approximated by that of a time-independent system,

ÛS(T +
δ

2
, T − δ

2
) ≈ e−iĤeff(T )δ/~ . (3.48)

with an “effective Hamiltonian” Ĥeff. This holds obviously if the preparation of the
system and the scattering of the x-rays are well separated in time. Otherwise, we need to
assume adiabatic conditions, possibly combined with, e.g., Floquet theory (see appendix
A of paper 1). We can then expand the wave function in eigenstates of Ĥeff

|ψ(T + δ)〉 =
∑
i

ci(T ) |ψi(T )〉 e−iEi(T )δ/~ , (3.49)

where Ĥeff(T )|ψi(T )〉 = Ei(T ) |ψi(T )〉 . (3.50)

If we insert this into (3.39), and integrate over ωs to get the differential signal strength,
some algebra gives us

dS
dΩ

= σT

∫ ∞
−∞

dT I(R, T )
∑
i,j,k

c∗i (T )cj(T )
∫ ωmax

ωmin

dωs
ωs
ω0

× 〈ψi(T )| L̂† |ψk(T )〉S〈ψk(T )| L̂ |ψj(T )〉S CF

(
T,

1
~

[
Ek −

Ei + Ej
2

]
+ ωs

)
. (3.51)

Note that the whole integration over ωs is similar to (3.25). Instead of a delta-function,
we have a function CF that is only relevant for frequency arguments close to ω0; instead of
eigenstates of the unperturbed Hamiltonian we have introduced parametric eigenstates,
and we can have contribution from coherence terms i 6= j.
Since CF(T, ω) is strongly localized around ω = ω0, the integrand is only different from
zero for 1/~[Ek − (Ei + Ej)/2] + ωs = ω0. If we further apply the static approximation
from section 3.2.3 that the brackets are negligible unless Ek − (Ei + Ej)/2 � ~ω0, the
ωs-integration only gives a contribution for ωs ≈ ω0.
Consequently, we can set ωs/ω0 ≈ 1, assume that q, and thus L̂, is independent of ωs,
and move the brackets out of the integration to get

29



3 Theory of TRXD

dS
dΩ

= σT

∫ ∞
−∞

dT I(R, T )
∑
i,j,k

c∗i (T )cj(T )〈ψi(T )| L̂† |ψk(T )〉S〈ψk(T )| L̂ |ψj(T )〉S

×
∫ ωmax

ωmin

dωs CF

(
T,

1
~

[
Ek −

Ei + Ej
2

]
+ ωs

)
. (3.52)

If the range [ωmin, ωmax] is large enough to contain the dominant part of CF for all
contributing i, j, k, we can approximate

∫ ωmax

ωmin

CF

(
T,

1
~

[
Ek −

Ei + Ej
2

]
+ ωs

)
≈
∫ ∞
−∞

dωs CF(T, ωs) = 1 (3.53)

independent of the value of i, j, k. After this, we can piece the system’s wave function
together again, and remove the summation over k, which just gives a 1, to obtain

dS
dΩ

= σT

∫ ∞
−∞

dT I(R, T )〈ψ(T )| L̂†L̂|ψ(T )〉S . (3.54)

By introducing the Born-Huang representation (2.3), and integrating explicitly over the
nuclear coordinates, we get

dS
dΩ

= σT

∫ ∞
−∞

dT I(R, T )

×
∑
i,j

∫
d3NR Λ∗i (R

(3N), T )Λj(R(3N), T )〈λi(R(3N))| L̂†L̂|λj(R(3N)〉r . (3.55)

The electronic matrix elements with i = j can be converted into the squared molecular
form factor as detailed in section 3.2.3. The non-diagonal elements i 6= j can be ne-
glected; in a Hartree-Fock world and a second quantization description, at least one of
the two creation/annihilation pairs that make up the operator L̂†L̂ has to transfer an
electron from one fixed orbital to another one (see also appendix B in paper 1), which
gives less terms and thus negligible weight in the summation.
As a final step, we can reorganize the terms, and normalize the signal to obtain the
differential cross-section

dσ
dΩ

=
1
I0

dS
dΩ

= σT

∫
d3NR %̄(R(3N))

∣∣∣F (q; R(3N))
∣∣∣2 , (3.56)

where the time-averaged nuclear density is

%̄(R(3N)) =
∫

dT
I(R, T )
I0

∑
i

∣∣∣Λi(R(3N), T )
∣∣∣2 (3.57)
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has the exact interpretation of the probability density of finding a system described by
the coordinates R(3N), averaged over the x-ray pulse, and I0 =

∫
dT I(R, T ) is the

number of photons that hit the sample.
Note, however, that (3.56) only holds up to terms independent of the nuclear geometry.
To get rid of these terms, we illuminate two samples with an identical x-ray pulse, one
with a pump laser turned on, giving an averaged density %̄(on), and one without a pump
laser, giving %̄(off). By subtracting the resulting diffraction patterns, all these additional
terms cancel, and we get for the difference cross section

∆
dσ
dΩ

=
dσ(on)

dΩ
− dσ(off)

dΩ
= σT

∫
d3NR ∆%̄(R(3N), τ)

∣∣∣F (q; R(3N))
∣∣∣2 , (3.58)

where we introduce the averaged difference density ∆%̄ = %̄(on)−%(off) of finding a certain
nuclear geometry R(3N). In practice, we repeat the diffraction with multiple delay times
τ between the pump pulse and the x-ray probe, which can be trivially incorporated by
making the density dependent on this pump-probe delay time.
Note finally that the squared molecular form factor is invariant under space inversion,
|F (q;−R(3N))|2 = |F (q,R(3N))|2, so that only the even contribution of the difference
density contribute to the diffraction pattern. We will exploit this relation in the next
chapter.
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4 Applications - Diffraction from special
quantum systems

In this chapter, we will consider slightly more application-oriented aspects of TRXD.
One new effect that we need to take into account when we go to subpicosecond time
resolution is diffraction from aligned ensembles. This has been treated before [40, 41]
and is discussed extensively in paper 2, so again, I will not repeat the article, but present
supplementary information. However, in contrast to chapter 3, the presented material
is not self-contained, but relies heavily on concepts introduced in the paper.
Section 4.1 presents an alternative introduction into the concept of aligned molecules
and the principal idea of how to approach diffraction from such ensembles. The link
between the aligned ensemble and the resulting diffraction pattern is presented in 4.2,
which mainly presents the previous derivations with the formalism used in this thesis.
These two sections can be understood as an introduction into paper 2.
The other two sections provide supplementary information on the article. Section 4.3
discusses the problem of how to parameterize the difference density, and presents prelim-
inary results on the performance of what we call the “stick model”. Finally, in section
4.4, we study in detail how the difference diffraction pattern should be analyzed, and
what geometry is best for experiments if the diffraction pattern is distorted by random
noise.

4.1 Aligning molecules

Imagine you are asked to calculate the dynamics of a molecular system within the Born-
Huang expansion. Typically, as a first step, you would probably remove the angular and
center-of-mass (CM) degrees of freedom. That is, if we consider a sample with N atoms,
we divide the 3N degrees of freedom into the CM vector Rs, three Euler angles (α, θ, γ)
that specify the orientation of the system, and 3N−6 “internal” coordinates (3N−5 for
a strictly linear system, but this case will be thoroughly excluded from all the following
considerations; see, however, appendix B for diatomics).
Rs simply describes a movement of the whole system, and does not influence the other
degrees of freedom except for high velocities, where it contributes to the non-adiabatic
coupling between electronic states. We will always silently drop these coordinates in this
chapter. The same argument holds for the rotational degrees of freedom. Substantial
rotation can modify the internal dynamics of the system, with the classical centrifugal
force being an obvious example, however, we can entirely neglect these effects for most
problems.
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Figure 4.1: Sketch of a two-dimensional molecule consisting of two different atom types
(“blue” and “red”) with and without alignment. Left: The molecule in the
molecule-fixed frame with a well-defined geometry. Middle: The isotropic
distribution of molecules in the laboratory frame. Right: The rotational
distribution of the molecule in the laboratory frame when it is partially
aligned. Note that because of the restriction to two dimensions, all axes are
aligned at once; in a three dimensional world, only one axis is aligned by a
linearly polarized laser pulse.

This leaves us with the internal coordinates, for example bond lengths or bond angles,
which are sufficient to calculate and express the fundamental dynamics of the system,
such as the formation or cleavage of bonds within a molecule. All quantities we extract
from a calculation are thus expressed with such internal coordinates.
However, if we want to compare the results of our calculations with experiments, we
need to take the orientation of the molecules into account. In thermal equilibrium, the
corresponding distribution is completely isotropic. For a two-dimensional world, this is
depicted in a simplistic way in figure 4.1.
Obviously, an experiment performed in the laboratory frame (i.e., after including rota-
tional degrees of freedom) gives less detailed information than we can calculate in the
molecule-fixed frame (i.e., when fixing the rotational coordinates).
A solution is to restrict the rotation by aligning the molecule. As sketched in figure
4.1, this enables us to recover more detailed information from the molecule-fixed frame.
There are two different forms of alignment.
We can align molecules with a non-resonant laser pulse (dynamic alignment) [42, 43].
Here, the laser–molecule interaction is treated perturbatively, and creates an effective
potential that depends on the angle between the laser polarization axis and the most po-
larizable axis of the molecule, leading to molecular alignment, ideally without vibrational
or electronic excitation.
Since the molecule is not excited, we can then try to obtain the ground–state structure of
the molecule [44]. We can also excite the molecule afterwards in an attempt to follow the
nuclear dynamics directly in the molecule-fixed frame. However, imaging ground state
structures without prior information seems to be a formidable challenge, and the method
we will develop in the next section is not easily applied to strongly-aligned systems with
multiple structures because a large number of unknown rotational coefficients enter the
equations. So while all the following results and derivations apply in principle to the
case of dynamic alignment, they might not be useful in practice.

34



4.1 Aligning molecules

Besides dynamic alignment, molecules are always aligned as a side effect of the excitation,
which leads to geometric alignment. If, for example, we excite molecules with a linearly
polarized laser pulse, then, in a classical view, the excitation probability depends on
the angle between the polarization axis and an appropriate transition dipole vector
defined in the molecule-fixed frame. So if we prepare a sample of excited molecules from
an isotropic distribution of ground–state molecules, this sample always has a preferred
orientation with respect to the laser polarization axis.
If we use the long (100 ps) x-ray pulses currently produced by synchrotrons, all geometric
alignment is usually lost through dephasing. The ensemble is on average isotropic, and
one can use the well-known Debye formula for isotropic distributions [45]. While we lose
all explicit angular information, we still obtain information on the atom-atom distances,
which can be enough for following molecular dynamics (see, e.g., [46]).
However, as we go to subpicosecond dynamics, we need to take geometric alignment into
account. In the closely-related field of electron diffraction, attempts have been made
to treat the resulting anisotropic diffraction pattern with models based on the Debye
formula [41, 47], mostly with poor results. For example, in a simple photodissociation
of I2, substantial bond breakage at around 1 Å is predicted (the equilibrium distance of
the iodine atoms is approximately 2.5 Å) [47]. Similarly, for the dissociation of CF3I
into CF3 + I, some extracted curves predict the breakage of bonds at odd distances [41].
Consequently, it is necessary to go beyond the Debye formula and study in a systematic
way the link between alignment and the diffraction pattern. The essential results have
been derived before [40,41], and we will mostly interpret, refine and build on them.
The principal idea, however, can be expressed in a very simple and general way. We take
the difference density of (3.58) as a function of the coordinates R(3N) in the laboratory
frame, and expand it in Wigner rotation matrices DJ

MK , which form a complete basis
for the Euler angles

∆%̄(R(3N), τ) =
∑
J,M,K

∆%̄JMK(r(3N−6), τ) DJ
MK(α, θ, γ) . (4.1)

This expansion is actually not terribly useful, unless we have the difference density given
from start (see the calculation of diffraction patterns for NaI in appendix B), since it is
difficult to relate the ∆%̄JMK to the underlying dynamics of the system.
However, if we assume that the vibration of the molecule (described by the coordinates
r(3N−6)) and the rotation (given by the Euler angles α, θ, γ) are approximately uncoupled,
the difference density can be written as a product of a “rotational” part that describes the
rotation of the whole molecule, and a “vibrational” density that includes all structural
changes within the molecule

∆%̄(R(3N), τ) = ∆%̄rot(α, θ, γ, τ) ∆%̄vib(r(3N−6), τ) . (4.2)
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If we then expand in the basis DJ
MK , we get

∆%̄(R(3N), τ) =
∑
J,M,K

cJMK(τ)∆%̄vib(r(3N−6), τ)DJ
MK(α, θ, γ) , (4.3)

which is equivalent to

∆%̄JMK(r(3N−6), τ) = cJMK(τ)∆%̄vib(r(3N−6), τ) , (4.4)

that is, all the ∆%̄JMK describe the same “fundamental” time evolution ∆%̄vib, and
differ only in a real-valued rotational coefficient cJMK . Our goal is then to express the
differential cross section as a function of the coefficients and the vibrational difference
density.
In what follows, we will focus exclusively on symmetric top molecules excited by a linearly
polarized laser with a transition dipole moment along the figure axis. In this case, the
difference density depends only on the angle θ between the laser polarization axis and
the transition dipole moment, and (4.1), (4.3) become the much simpler expression

∆%̄(R(3N), τ) =
∑
n

∆%̄n(r(3N−6), τ)Pn(cos θ) (4.5)

=
∑
n

cn(τ)∆%̄vib(r(3N−6), τ)Pn(cos θ) (4.6)

with Pn the n-th order Legendre polynomial. In principle, we only need the sum to
run over all even n; the density components with odd n are antisymmetric under space
inversion, and drop out when calculating the differential cross section.
As we will show in the next section, the differential cross section can be expanded into
products of Legendre polynomials and diffraction curves Sn(q) such, that the n-th curve
is linked to the n-th rotational coefficient. As a special case, we recover the Debye
formula for isotropic ensembles, which connects the “isotropic” part of the diffraction
pattern to the vibrational difference density.

4.2 Anisotropic signals

Let us start with a few technicalities surrounding rotating molecules. If we consider a
fixed orientation of the molecule, we can introduce three coordinate systems:

1. A laboratory system J , whose z-axis is defined by the laser polarization axis.

2. Another laboratory system J ′ that takes the direction of the scattering vector as
z-axis. This is used purely for convenience when evaluating integrals.

3. A molecule-fixed system JM , whose z-axis is defined by the symmetry axis of the
symmetric top.
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γ

z
e e

z,M

Figure 4.2: Sketch of the three Euler angles. To transform from the laboratory frame
to the molecule-fixed frame, we first rotate the coordinate axes around ez by
an angle α. In a second step, a rotation around the new y-axis by an angle
θ transforms ez into the z-axis of JM , ez,M . A third rotation around ez,M
by an angle γ concludes the process.

The x and y-axes can be defined freely, the end result does not depend on a partic-
ular choice. The transformation from the laboratory frame J into the molecule-fixed
frame JM is defined by three Euler angles α, θ, γ. We will use the convention of [48]
(active-sense, right-screw, z-y-z convention) for the Euler angles, see figure 4.2 for an
illustration. Obviously, each set of the Euler angles corresponds to a certain orientation
of the molecule.
In addition, we specify the rotation that transforms J ′ into JM by the Euler angles
α′, θ′, γ′, and the rotation transforming J into J ′ by αq, θq, γq. Now let us insert (2.25)
and (4.5) into (3.58), and obtain

∆
dσ
dΩ

= σT
∑
a,b

f∗a (q)fb(q)
∫

d3N−3R
∑
n

∆%̄n(r(3N−6), τ)Pn(cos θ) eiqRab

= σT
∑
a,b

f∗a (q)fb(q)
∫

d3N−6r
∑
n

∆%̄n(r(3N−6), τ) Fabn(q) , (4.7)

where

Fabn(q) =
∫ 2π

0
dα′

∫ π

0
dθ′ sin θ′

∫ 2π

0
dγ′ Pn(cos θ) eiqRab . (4.8)

Rab = Rb−Ra is the vector pointing from atom a to atom b, and Fabn collects all terms
that depend on the rotation of the molecule.
What we have done is to represent a given molecular geometry not by the position of
all of its atoms, but by the orientation (α′, θ′, γ′) of the molecule, and some internal
coordinates r(3N−6) (bond lengths etc.) whose value does not change if we rotate the
whole molecule. We have split off the integration over all possible orientations of the
molecule together with all terms that depend on the Euler angles. Obviously, this

37



4 Applications - Diffraction from special quantum systems

includes the rotational distribution, or the Legendre polynomials as expansion basis.
Also, the vector Rab is defined in the molecule-fixed frame JM , and thus dependent
on the Euler angles; when we rotate the molecule, we also rotate the atoms a, b, thus
changing the value of Rab.
Now let us extract the explicit dependence on the integration variables. First, we can
use the addition theorem for Legendre polynomials. With e being the unit vector in the
direction of the laser polarization, and d being the unit vector along the symmetry axis
of the molecule, we get

Pn(cos θ) = Pn(e · d) =
4π

2n+ 1

n∑
m=−n

Y ∗nm(−θq,−αq)Ynm(θ′, α′) . (4.9)

Similar, with some algebra, we transform q into the coordinate system JM to evaluate
the scalar product

qRab = q(− sin θ′ cos γ′xab − sin θ′ sin γ′yab + cos θ′zab) , (4.10)

where xab, yab, zab are the components of the vector Rab in JM . Inserting (4.9), (4.10)
into (4.8), we get

Fabn(q) =
∫ π

0
dθ′ sin θ′ eiqzab cos θ′

∫ 2π

0
dα′

4π
2n+ 1

n∑
m=−n

Y ∗nm(−θq,−αq)Ynm(θ′, α′)

×
∫ 2π

0
dγ′ eiq(− sin θ′ cos γ′xab−sin θ′ sin γ′yab) . (4.11)

The integrations can now be solved one at a time. For the integration over α′, we use
that

∫ 2π

0
dα′ Ynm(θ′, α′) = 2πYnm(θ′, 0)δm0 , (4.12)

which also collapses the sum over m. The integration over γ′ is solved by using the
identity [40,41]

∫ 2π

0
dγ′ eiA cos γ′+iB sin γ′ = 2πJ0(

√
A2 +B2) , (4.13)

where J0 is the zeroth Bessel function. Applying these integrations converts (4.11) into

Fabn(q) = (2π)2Pn(cos θq)
∫ π

0
dθ′ sin θ′Pn(cos θ′) eiqzab cos θ′J0(

√
x2
ab + y2

ab q sin θ′) .

(4.14)
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For even n, we note that the integral gives a real number, so we can add the complex
conjugate to the integrand, which effectively replaces the complex exponential by a
cosine. Furthermore, we can rewrite the components of the ab-vector as zab = rab cosϑab,√
x2
ab + y2

ab = rab sinϑab, where rab is the length of the vector Rab, and ϑab its enclosing
angle with the symmetry axis.
The thus modified integral can be found in standard integral tables [41, 49], and we
obtain

Fabn(q, θq) = 2(2π)2Pn(cos θq)(−1)n/2Pn(cosϑab)jn(qrab) . (4.15)

We exploited the fact that the Gegenbauer polynomial in our case is just a Legendre
polynomial, C1/2

n = Pn, and applied the definition of the spherical Bessel functions
jn(x) =

√
π/2xJn+1/2(x).

Combining (4.15) with (4.7) gives us the set of final equations

∆
dσ
dΩ

= 2(2π)2σT
∑
n even

(−1)n/2Pn(cos θq)Sn(q) (4.16)

Sn(q) =
∑
a,b

f∗a (q)fb(q)
∫

d3N−6r ∆%̄n(r(3N−6), τ)Pn(cosϑab)jn(qrab) . (4.17)

Equation (4.16) tells us that the difference diffraction pattern is a function of q and θq
only. The dependence on the angle is through some Legendre-polynomials, and we can
resolve it to obtain a set of diffraction curves Sn. As can be seen from equation (4.17),
these curves only depend on q, and carry all the physical information about the system.
It should be pointed out that we did not formally require a symmetric top. We only
required a difference density distribution in the form of (4.5), which is independent of
α and γ, and has no stray terms of sin θ; this is fulfilled by symmetric tops, see the
appendix of paper 2 and appendix A. So if, for example, a molecule that is initially a
symmetric top is excited to some state that renders the molecule asymmetric, the results
(4.16), (4.17) are still valid as long as the rotational distribution can be expanded in the
form of (4.5).
If we can further assume that the rotation and vibration are uncoupled, equations (4.2),
(4.6), we can bring (4.17) into the form

Sn(q) = cn(τ)
∑
a,b

f∗a (q)fb(q)
∫

d3N−6r ∆%̄vib(r(3N−6), τ)Pn(cosϑab)jn(qrab) , (4.18)
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Figure 4.3: Angle-resolved densities of NaI, R2∆%̄(R, θ, τ), at different delay times be-
tween the laser pump and x-ray probe. The same calculation as in paper
2 has been used, and the resulting density has been convoluted with a sin2

x-ray pulse of 100 fs FWHM. See appendix B for computational details. The
laser polarization axis is along the vertical direction. Note the rotation of
the hole term at long delay times, which is extensively discussed in paper
2. The difference density in this figure is related to the components ∆%̄n in
figure 3 of paper 2 by ∆%̄(R, θ, τ) = ∆%̄0(R, τ) + P2(cos θ)∆%̄2(R, τ)
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Figure 4.4: Diffraction patterns for the densities in figure 4.3. See appendix B for
computational details. A perpendicular setup (i.e., incoming x-ray beam
perpendicular to laser polarization axis) has been used. The projection of
the laser polarization axis is vertical in the images.
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that is, the single diffraction curves differ in information content only by the rotational
coefficient cn. In general, (4.2) does not hold, though. In figure 4.3, for example, we can
see that the excited-state wave packet always remains aligned with the laser polarization
axis, while the depleted ground state changes its orientation. This complication can be
formally overcome by separating the difference density into summands, each describing
a “species”, and requiring (4.2) to hold for each such species. This is spelled out in detail
in paper 2 found in the appendix.
The article also deals with the more technical details of how to express (4.16), (4.18)
using atom-atom pair distribution functions, presents direct inversion schemes to extract
the components ∆%̄n from (4.18). It also demonstrates how to decompose the diffraction
pattern into the single curves, which I will continue in section (4.4). Finally, the article
shows with the example of NaI that one should be careful with a-priori assumptions
about the rotational coefficients.

4.3 Stick models and wave functions

Up to now, we have represented the physical content of the diffraction pattern in the
form of a vibrational difference density ∆%̄vib, or by an expansion into ∆%̄n. For cal-
culations of NaI, we can extract the ∆%̄n from the full quantum calculations. Also, for
diatomic molecules, we can directly invert the diffraction curves (see paper 2). However,
for practical applications that involve more complex molecules, we have to use some
parameterized model for the difference density, and fit for the parameters within this
model.
In the simplest model, we assume that all atoms have a well-defined position in the
molecule-fixed frame. Since this is similar to the ball-and-stick models than are com-
monly used to illustrate molecular structures, we will refer to this approximation as the
“stick model”.
On a more explicit level, the model is probably best introduced using difference pair
distribution functions, see equations (15), (16) in paper 2. We approximate

∆gSab(r, ϑ, τ) =
fS(τ)
r2

δ
[
r − rSab(τ)

]
δ
[
cosϑ− cosϑSab(τ)

]
. (4.19)

fS is a real-valued prefactor whose sign determines if the given species was populated
(positive sign) or depleted (negative sign), and whose absolute value gives the magnitude
of the population/depletion. rSab(τ), ϑSab(τ) give the length of the ab-vector and its
enclosed angle with the symmetry axis. Inserting this into equation (15) of paper 2 gives
the relation

Sn(q, τ) =
∑
S

cSn(τ)fS(τ)
∑
a,b

f∗a (q)fb(q) Pn
(

cosϑSab(τ)
)
jn

(
qrSab(τ)

)
. (4.20)

For molecules in the ground state or in long-lived excited states, the nuclear densities
are often strongly localized around the minimum of the corresponding potential energy
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surfaces, see figure 4.5 for an example. In this case, the stick model provides a simple
approximation of the molecular structure.
However, when we use ultrashort x-ray pulses to follow the molecular wave–packet dy-
namics, and take into account the finite duration of the x-ray pulse, which further smears
out the dynamics, we would intuitively expect the difference pair distributions ∆gSab to
be poorly represented by a delta function. To check if this was indeed the case, we tested
the performance of the stick model for a NaI wave–packet calculation.
We used the NaI calculation described in paper 2. With the techniques described in
appendix B, I calculated the isotropic difference density

∫ 1
−1 d(cos θ)R2∆%̄(R, cos θ, τ)

and the corresponding isotropic difference diffraction curve S0 for five different delay
times τ . The chosen difference densities are plotted in figure 4.6.
The isotropic difference diffraction curves were sampled on a grid from q = 0.1 Å−1 to
10 Å−1 with a step size of 0.05 Å−1, and were then processed by Kristoffer Haldrup with
a fitting procedure [50–52] that uses a maximum likelihood estimation with a stick model
(4.19). In detail, it was assumed that the NaI ground state was depleted at R = 2.6Å,
and another structure was populated at some R0, that is, the (isotropic) difference pair
distribution function was assumed to be

gNaI(R, τ) = f(τ)δ(R−R0(τ))− f(τ)δ(R− 2.6Å) , (4.21)

where f is the excitation probability. For each of the five difference diffraction curves, a
likelihood function of f,R0 was calculated. The results are shown in figures 4.7 and 4.8.
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Figure 4.5: Nuclear density of the vibrational ground state of NaI as a function of
the Na-I distance R. The thin line is the adiabatic electronic ground state
potential energy.
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Figure 4.6: Isotropic difference densities for five different pump–probe delay times. Each
difference density has a negative contribution similar of the form of the
ground state density in figure (4.5).

Our main conclusions from this preliminary study are:

• The likelihood functions can significantly deviate from the actual difference densi-
ties, and should not be used as an approximation to the latter.

• However, the stick model is able to estimate the overall position of the wave packet
correctly (see figure 4.7). The width of the wavepacket is only estimated qualita-
tively correctly in most cases. Relatively large error bars for the parameters are
to be expected, and should be reported.

Finally, we want to stress that this was just a simple, preliminary study using calculations
and tools we already had available. It should be repeated using a more complex molecule,
and with more realistic parameters; it is rather unusual that atoms with an internuclear
distance of about 10 Å contribute significantly to the diffraction pattern, or that the
difference pair distribution function (i.e., difference density for diatomics) is spread out
over a distance of as much as 4 Å.
However, given the shortcomings of this model system, the stick model performed better
than we initially expected, which gives some confidence that it will be possible to follow
real wave–packet dynamics with it.
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Figure 4.7: Upper image: peak position and width of the likelihood function when
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calculated excited wave packet (red). Lower image: Peak position and width
of the likelihood function when varying f in (4.21). Data for each of the
difference densities in figure 4.6. Note that the drop in the population of
sample 4 comes from the fact that the positive difference density of the
excited state and the negative difference density of the depleted ground state
partly overlap and cancel. Courtesy of Kristoffer Haldrup.

Figure 4.8: Likelihood as a function of the parameter R0 for each of the difference diffrac-
tion curves calculated from the difference densities in figure 4.6. Courtesy of
Kristoffer Haldrup.
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4.4 Data evaluation and optimal experiments

We will now change focus and discuss how to do experiments and process the data
optimally. We will narrow our scope to experiments that involve excitation by single
photon absorption. In this case, the difference density is a second order polynomial
of cos θ, and only the terms n = 0, 2 contribute to (4.16), (4.18), see appendix A for
a proof. Apart from being accessible to an analytic treatment, this should also be the
most interesting process in practice because one-photon excitations often have the largest
excitation probabilities.
The basic idea put forward extensively in paper 2, and encoded in equations (4.16),
(4.18) is that of a two-step process. First, we separate the difference diffraction pattern
∼= ∆dσ/dΩ into a set of diffraction curves Sn. In a second step, we fit a given guess
for the rotational coefficients cn and the structure ∆%̄vib to all the diffraction curves at
once.
When we consider the separation of the difference diffraction pattern, the basic idea is
obvious. The diffraction curves only depend on the length of the scattering vector q,
and they are mixed together depending on the value of the angle θq. The way to go is
then to take all points on the detector with a fixed value of q (corresponding to a circle
on the detector), assigning each of the thus selected points its value of θq, and then use
some fitting method to extract S0(q), S2(q). This is shown in figure 4 of paper 2, and
works equally well for (almost) any setup.
However, in practice, we will have significant random noise in the diffraction pattern.
In this case, we would expect that such a fit gives better results, i.e., smaller error bars
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Figure 4.9: Difference diffraction patterns for laser-excited NaI for different angles δ of
π/2 (left image) and π/6 (right image). The same parameters as in paper 2
were used, the time delay τ is 250 fs.
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on the fitted curves, if we span a large range of different angles θq. This range is linked
to the experimental setup via the angle δ between the wave vector k0 of the incoming
x-ray beam and the laser polarization vector E (see figure 3.1). If ϑ is the scattering
angle defined by

sin
ϑ

2
=

q

2k0
, (4.22)

if we assume that the detector plane is orthogonal to k0, and if we introduce φ as the
angle between the projections of q and E on the detector plane, we can obtain from
geometrical considerations

cos θq = sin
ϑ

2
cos δ + cos

ϑ

2
cosφ sin δ . (4.23)

We see that the decomposition is impossible for δ = 0 (the “parallel” setup), and the
range becomes larger as δ goes to π/2. As an illustration, figure 4.9 shows difference
diffraction patterns for two different values of δ.
However, it would be nice if we could express more quantitatively how the angle δ
influences the “error bars” of the extracted scattering curves for difference diffraction
patterns with random noise. As a side effect and second goal, we will introduce a
recipe of how to obtain a best fit of the structure ∆%̄vib and the coefficient c2, and the
corresponding uncertainties from such a noisy pattern.
After introducing some basic concepts about probability theory in section 4.4.1, we will
discuss how to guess the isotropic and anisotropic diffraction curves S0, S2 in section
4.4.2. This yields the requested quantitative relationship between the experimental
geometry δ and the uncertainty of the extracted curves. In section 4.4.3, we finally
demonstrate that the extracted curves have an actual meaning for the fitting process.
For this, we construct a statistical problem around these diffraction curves, and show
that this yields the same likelihood function as a fitting procedure that takes the full
diffraction pattern as input.

4.4.1 Sampling theory and maximum likelihood estimators

The following introduction of the elementary concepts of probability theory is heavily
based on [53].
Central for the application of probability theory to practice is the concept of a random
experiment. We do some experiment, such as tossing a coin or counting the number
of scattered x-ray photons, that yields some event A from a given set. We can assign
each event a probability P (A) that tells us how frequently this event turns up in the
experiment.
Let us assume for convenience that there are uncountably infinite possible events, and let
us further associate each event with a real number. For example, different outcomes of
some measurement (events) can be labelled by their measured value. Then each event is
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characterized by a possible value of a random variable x̃. We now introduce a cumulative
distribution function of x̃ by

F (x) = P (x̃ < x) . (4.24)

F (x) gives the probability of obtaining an event that is associated with a real number
smaller than x. Forming the derivative of F (if possible) yields the probability density
f(x) = dF (x)/dx, which gives the probability of obtaining an event x ≤ x̃ < x+dx. For
what follows, it is useful to think of a random variable as the set of all possible outcomes
of the random experiment, or equivalently, as a placeholder for the actual result of the
random experiment.
We can also introduce functions of random variables

H̃ = H(x̃) , (4.25)

which are again random variables, but with a different probability density. In addition
to the normal properties of a function, we can define the expectation value of H as

H(x̃) = H̃ =
∫
H(x)f(x) dx (4.26)

with f the probability distribution of x̃. This expectation value gives us the average
value that we obtain when doing the random experiment often and calculating the value
of H of the resulting event. As a crude measure of the squared average deviation of the
value of H from the expectation value, we introduce the variance

σ2(H(x̃)) = σ2(H̃) =
(
H(x̃)−H(x̃)

)2
. (4.27)

With these basic elements introduced, we can fast-forward to the foundations of sampling
theory. We define a sample of size K as a set of K random variables x̃ = (x̃1, . . . , x̃K)
with distribution function f(x). Let us assume that the single variables are uncorrelated,
that is, f(x) = f1(x1) · · · · · fK(xK) (although this is not strictly required, and we will
drop it in section 4.4.3).
For example, repeating a random experiment K times would give us a sample of size
K. In many cases of practical interest, we are doing measurements, whose outcome is
the exact value of the measured parameter plus some random error, and it is our task
to make an educated guess for the exact value. Put in a more abstract form, this leads
to the concept of parameter estimation.
Let us assume that the form of the probability density is known, but the exact function
depends on some parameter λ0 = (λ1, . . . , λp), that is f(x) = f(x;λ0). A set of functions
{ξK(x̃)}K∈N that try to infer the value of λ0 from a sample of size K is called an
estimator.
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An estimator is unbiased if, for any K,

ξ̃K = λ0 , (4.28)

that is, on average over all possible samples, the estimator returns the true value of λ0.
We call an estimator consistent if

lim
K→∞

σ2(ξ̃K) = 0 . (4.29)

It can be shown that there is a lower limit to the variance σ2(ξ̃K) depending on the bias
of the estimator. Estimators that fulfill this lower limit are called minimum variance
estimators.
For many problems, we are interested in unbiased, minimum variance estimators. Un-
fortunately, finding such estimators is often difficult. To create estimators that are
approximately unbiased with minimum variance, let us assume we have some sample x̃.
Then, in hindsight, the probability of drawing this sample is

dP̃ = f(x̃;λ0) dKx , (4.30)

which requires the knowledge of λ0. However, in a twist of thought, we can reinterpret
this equation, if we allow an arbitrary value for λ. In this case, dP̃ gives the “likelihood”
of getting exactly this sample given a certain value for the parameters. We can then
introduce a likelihood function for the possible parameters

L(λ; x̃) = f(x̃;λ) =
K∏
i=1

fi(x̃i;λ) . (4.31)

Although the likelihood function is at first just an arbitrary function, it has a very
intuitive interpretation. Imagine, we had to decide between two parameters. For λ = 0,
the probability densities fi(x) are strongly peaked around x = 0, for another value
λ = 1, the fi(x) are only significant around 1. Now we perform the random experiment,
and get a specific sample, i.e., set of numbers x that are all close to 1. Intuitively, we
would consider this as a definite proof for λ = 1. If we formally calculate the likelihood
function, it is easily seen that L(1; x)� L(0; x).
If we play around with some other configurations (only zeros, half zeros and half ones
etc.), it becomes clear that we can interpret the likelihood function as some sort of
“quantifiable gut feeling”. We could then take the value of λ that maximizes the like-
lihood function as a guess for λ0. If such a maximum exists, we can thus introduce a
maximum likelihood estimator
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ξML
K (x̃) = arg max

λ
L(λ; x̃) = arg max

λ
l(λ; x̃) (4.32)

l(λ; x̃) = lnL(λ; x̃) =
K∑
i=1

ln fi(x̃i;λ) . (4.33)

Since the logarithm is a monotonous function, it does not matter if we consider the
likelihood function or its logarithm. Furthermore, we can scale the likelihood function
by a function G(x̃), or equivalently add constants g = lnG to the logarithmic likelihood
function without changing the estimator. We will generously exploit this property later
by dropping terms independent of λ.
Under quite general conditions, the maximum likelihood estimator is an unbiased, min-
imum variance estimator in the limit K →∞ [54]. In practice, however, we always deal
with finite samples; so we can only hope that that ξML

K is sufficiently unbiased with a
reasonably low variance.
Last, it should be mentioned that it is usually not feasible to calculate the variance
σ2(ξ̃ML

K ) explicitly. As a workaround, we can report the width of the likelihood function,
which can serve as a quantitative measure of the faith that we have in the estimate.

4.4.2 Extracting the scattering curves

Now let us apply these concepts to x-ray diffraction. We scatter an x-ray beam from
N0 identical systems, measure the resulting diffraction pattern with a pixelated area
detector, and subtract the diffraction pattern without pump pulse from that with pump
pulse. Our sample is then formed by the difference photon count at each pixel.
If we add some counting “noise”, the difference photon count y of some pixel is a random
number that can be written as the theoretically predicted count rate plus some random
error ε̃.

ỹ = ∆
dσ
dΩ

(q, θq) N0 I0 ∆Ωpixel + ε̃ , (4.34)

where ∆dσ/dΩ is given by (4.16), I0 is the number of incoming photons, and ∆Ωpixel is
the solid angle covered by the detector pixel (we assume that each pixel is small enough
that the cross section is constant over its area). As a first step, we divide by all the
uninteresting constants

ỹ′ =
ỹ

I0N0∆Ωpixel2(2π)2σT
= S0(q)− P2(cos θq)S2(q) + ε̃′ . (4.35)

In the following, we will only work with the primed quantities, but drop the prime
for ease of notation. For definiteness, and to allow a simple analytic treatment of this
problem, we introduce a couple of idealizing assumptions:
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1. We assume that the difference photon count can take any real number to avoid
complications associated with discrete random variables.

2. For definiteness, we assume that the positions of the pixels form a rectangular grid.
That is, each detector pixel can be assigned a double index (i, j) with 1 ≤ i ≤ Z
and 1 ≤ j ≤ N , so that it represents the position with q = qi, φ = 2πi/N . With
(4.23), we can alternatively assign each pixel a value of xij = P2(cos θq(qi, φj)).
This allows us to rewrite (4.35) in the form

ỹij = S0(qi)− xijS2(qi) + ε̃ij = S0i − xijS2i + ε̃ij , (4.36)

and declare the set ỹij as our sample of size NZ.

3. We assume that the error depends only on the value of q, that is, ε̃ij = ε̃i. The
background of this idea is that the fraction of molecules that we excite is small
[46], and that the main source of the error are counting statistics. Consequently,
both the diffraction pattern with and without laser excitation are approximately
isotropic, as should be the counting errors. Note, however, that the Thomson cross
section in (4.35) contains polarization terms that depend on the value of φ and
might modify this argument; for simplicity we will assume that the x-ray beam is
unpolarized, in which case this dependence vanishes. We further assume that the
ε̃i have a Gaussian distribution with a variance of σ2(ε̃i) = σ2

i and a mean value
of zero.

The parameters we want to estimate now are the isotropic and anisotropic curves, that is
the Z values of S0i, and those of S2i. For a given guess, we can write down the likelihood
function as

L
(
{S0i, S2i}; {ỹij}

)
=

Z∏
i=1

N∏
j=1

exp
(
−(S0i − xijS2i − ỹij)2

2σ2
i

)
, (4.37)

and the logarithmic likelihood function as

l
(
{S0i, S2i}; {ỹij}

)
= −

Z∑
i=1

1
2σ2

i

N∑
j=1

(S0i − xijS2i − ỹij)2 . (4.38)

By forming the derivatives, we find that this function is maximized for

SML
0i =

∑
j

cij ỹij (4.39)

SML
2i =

1∑
j xij

(
NSML

0i −
∑
j

ỹij

)
, (4.40)
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where the cij are defined as

cij =
∑

k xik(xij − xik)
(
∑

k xik)2 −N
∑

k x
2
ik

. (4.41)

They fulfill a number of useful properties:

∑
j

cij = 1 (4.42)

∑
j

xijcij = 0 (4.43)

∑
j c

2
ij

N
∑

j c
2
ij − 1

=

∑
j x

2
ij

(
∑

j xij)2
. (4.44)

Equations (4.39) and (4.40), understood as functions of the random variables ỹij , are
then the maximum likelihood estimators for the diffraction curves. Note, though, that
they are only well-defined if the denominators in (4.40), (4.41) are nonzero, which we
silently assume in the following. 1

Because the sampling problem (4.36) and the estimators (4.39), (4.40) have such a simple
form, we can analytically calculate the expectation values, variances, and covariances:

S̃ML
0i =

(∑
j

cij

)
S0i −

(∑
j

cijxij

)
S2i +

(∑
j

cij

)
ε̃i = S0i (4.45a)

S̃ML
2i = S2i (4.45b)

σ2(S̃ML
0i ) =

∑
j

c2
ijσ

2
i (4.45c)

σ2(S̃ML
2i ) =

( 1∑
j xij

)2(
N2
∑
j

c2
ij −N

)
σ2
i (4.45d)

cov(S̃ML
0i , S̃

ML
2i ) = (S̃ML

0i − S̃ML
0i )(S̃ML

2i − S̃ML
2i ) =

1∑
j xij

(
N
∑
j

c2
ij − 1

)
σ2
i . (4.45e)

With these final results, we are in a position to determine which experimental geometry is
“best”. Obviously, we would like to have a minimal variance of the estimated scattering
curves, so we just have to calculate these variances for different values of qi and δ. The
result of such a calculation is displayed in figure 4.10.
Overall, the variance of the estimator for the isotropic curve is largely independent of
the experimental setup as long as we avoid parallel or almost parallel setups δ < 40◦.
If, in addition, we want to minimize the variance of the estimated anisotropic curve, we
should always use a perpendicular setup δ = 90◦.

1One important case where this method fails is the parallel setup. It is easily seen that, if the incoming
beam is parallel to the laser polarization, the value of xij is independent of j. As a direct consequence,
the denominator of cij in (4.41) is zero, that is, we cannot decompose the difference diffraction pattern
into the diffraction curves.
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Figure 4.10: Plot of the standard deviation σ(x̃) ≡
√
σ2(x̃) of the estimator for (a)

the isotropic signal S̃ML
0 , and (b) the anisotropic signal S̃ML

2 as a func-
tion of the scattering angle ϑ, and the angle δ between laser polarization
axis and wave vector of the incoming photons. (c): Plot of the corre-
lation corr(S̃ML

0 , S̃ML
2 ) = cov(S̃ML

0 , S̃ML
2 )/σ(S̃ML

0 )σ(S̃ML
2 ). For all calcula-

tions, N = 40; however, different values of N show the same qualitative
behavior. The horizontal line shows the position of the “magic angle” setup
δ = acos

√
1/3 ≈ 55◦

So far, we found that we should use a perpendicular setup if we want to use both the
isotropic and the anisotropic curve for data fitting. If we only want to use the isotropic
curve, for example because we have not upgraded our fitting algorithm, and it only
implements the Debye-formula (i.e., calculation of S0), we only need to make sure that
the angle δ is not too small.

However, there is a third graph in figure 4.10 that shows the correlation of the two
estimates. This quantity is a crude measure for the probability that an overestimation of
S0 coincides with an overestimation of S2 (or underestimation for negative correlation).
One important consequence is that for correlated random variables, the variance of
the single variables is a poor measure of how much they actually deviate from their
expectation values.

As can be seen in figure 4.10, the correlation between the two scattering curves dif-
fers from zero except for the “magic angle” setup. We therefore recommend doing
experiments either in the perpendicular geometry if both scattering curves are used for
structure determination, or, as the inferior solution, the magic angle geometry if only
the isotropic scattering curve is used further.
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4.4.3 Extracting the structural information

In the last section, we only estimated the scattering curves without taking into account
that they encode information about the system’s structure, that is, about the internal
difference density distribution ∆%̄vib and rotational coefficients c2 in (4.18)). To correct
this, let us now discuss how to set up a maximum likelihood estimator for the structure.
We will not go through all the derivation, but just write down the equations for the
likelihood function.

The two-dimensional problem

First, we write down the likelihood function for the case where we estimate the structure
directly from the two-dimensional diffraction pattern. We start with (4.36), but take into
account explicitly that the scattering curves are functions of the rotational coefficients
and the ∆%̄vib

2

ỹij = S0(∆%̄vib; qi)− xijS2(∆%̄vib, c2; qi) + ε̃i = S0i − xijS2i + ε̃i , (4.46)

where the second shorthand notation will be used in the following. We can immediately
write down the likelihood function as

L(∆%̄vib, c2; ỹij) =
Z∏
i=1

N∏
j=1

exp
(

(S0i − xijS2i − ỹij)2

2σ2
i

)
, (4.47)

and the logarithmic likelihood function becomes after dropping all terms that are inde-
pendent of c2, ∆%̄vib

l(∆%̄vib, c2; ỹij) = −
∑
i

N

2σ2
i

S2
0i −

∑
i

∑
j x

2
ij

2σ2
i

S2
2i +

∑
i

∑
j xij

σ2
i

S0iS2i

+
∑
i

∑
j ỹij

σ2
i

S0i −
∑
i

∑
j xij ỹij

σ2
i

S2i . (4.48)

So the generic way for estimating the structure ∆%̄vib and the rotational coefficient c2

is to calculate for each value qi the isotropic and anisotropic scattering curves S0i, S2i,
calculate the logarithmic likelihood function via (4.48), and pick those structures and
coefficients where the likelihood is maximized. Due to the non-trivial dependence of the
logarithmic likelihood on the parameters, we can in general not use an analytic formula,
but have to maximize the likelihood with some numerical scheme.

2In fact, they are functionals; but let us assume that the difference density is parameterized within
some model, then the scattering curves are functions of these parameters. To avoid this additional
layer of formalism, we will always talk about ∆%̄vib when we actually mean “the set of parameters λ
that specify ∆%̄vib in our model”

54



4.4 Data evaluation and optimal experiments

The one-dimensional problem

Alternatively, we can study another closely related problem, where we obtain two sets
of random variables

S̃0i = S0(∆%̄vib; qi) + η̃0i (4.49)

S̃2i = S2(∆%̄vib, c2; qi) + η̃2i , (4.50)

where the probability density of the η̃ is

f(η0i, η2i) = A exp
(
− N

2σ2
i

η2
0i −

∑
k x

2
ik

2σ2
i

η2
2i +

∑
k xik
σ2
i

η0iη2i

)
(4.51)

with A some normalization constant, and all other variables defined as before. The prob-
ability density has been chosen such that η̃0i, η̃2i have the same variance and covariance
as the maximum likelihood estimators in (4.39), (4.40).
Analogous to all the occurrences before, we can again calculate the logarithmic likelihood
function for a given difference density and rotational coefficient. After dropping all terms
that do not depend on ∆%̄vib, c2, we obtain

l(∆%̄vib.c2; {S̃0i}, {S̃2i}) = −
∑
i

N

2σ2
i

S2
0i −

∑
i

∑
j x

2
ij

2σ2
i

S2
2i +

∑
i

∑
j xij

σ2
i

S0iS2i

+
∑
i

(
N

σ2
i

S̃0i −
∑

j xij

σ2
i

S̃2i

)
S0i +

∑
i

(∑
j x

2
ij

σ2
i

S̃2i −
∑

j xij

σ2
i

S̃0i

)
S2i . (4.52)

If we now insert for S̃0i, S̃2i the expressions for the maximum likelihood estimators,
equations (4.39), (4.40), we recover after some algebra the likelihood function (4.48).

Conclusion

Now let us step back a bit and ponder what we have shown. The ultimate goal of the
data evaluation procedure is to extract the “best fit” for ∆%̄vib and c2; we have chosen to
use the maximum likelihood method, where we assign a likelihood value to each possible
structure and rotational constant.
The generic way to do so is to start with the difference diffraction pattern, (4.46), which
ultimately leads to the logarithmic likelihood function (4.48). Alternatively, we calculate
from the diffraction pattern two new sets of random variables, (4.39), (4.40), and treat
the thus calculated numbers as if we had drawn them from the random experiment
described by equations (4.49), (4.50), (4.51). Applying the maximum likelihood method
yields for each diffraction pattern and each set ∆%̄vib, c2 the same likelihood up to
constant factors.

55



4 Applications - Diffraction from special quantum systems

This leads to two results. First and foremost, the variances and covariances that we used
in section 4.4.2 to argue for optimal experimental setups are not just arbitrary numbers,
but they can be assigned an actual meaning within the alternative random experiment
in (4.51). As a side result, we have introduced a simple way (4.48), and a complicated
way (equations (4.39), (4.40), (4.52)) for calculating the same logarithmic likelihood.
So why should we prefer one or the other way? Obviously, calculating the logarithmic
likelihood function directly from the difference diffraction pattern is more robust as it
does not involve denominators that might become zero. If, for example, we decide for
some strange reason to perform a diffraction experiment in the parallel geometry, (4.48)
is the way to go for calculating the likelihood function.
On the other hand, the first step in the complicated procedure, equations (4.39), (4.40),
condenses the NZ data points of the diffraction image into the two scattering curves,
each of which consists of Z data points with “error bars” (plus the covariances). With
these curves, it becomes much easier to judge the quality of the scattering data or the
impact of further data processing intuitively than if we have to deal with the whole
two-dimensional diffraction pattern.
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Appendix A

Proof that n-photon absorption produces
2n-th order Legendre polynomials

In this appendix, I want to prove some relations for symmetric tops excited by an electric
field (i.e., laser pulse). After introducing the topic of the rotation of symmetric tops, I
will prove that exciting a symmetric top molecule along the symmetry axis by an electric
field gives, in first order, a rotational distribution that is a second order polynomial of
cos θ. The core of this proof is given in [55], we only need to go beyond some random
phase approximation used in the reference. After that, we will discuss the extension of
the proof to higher order excitations.
I would like to point out that I have used a simple brute-force approach that involves
expanding the wave function in rotational eigenstates, and showing that each term gives
an appropriate polynomial. The advantage is that this approach requires few formal
arguments from angular momentum theory; at the same time, it is rather inelegant and
requires a lot of bookkeeping.
One of the consequences is that I will not extend this proof to the case where the transi-
tion dipole moment is perpendicular to the symmetry axis. While playing around with
the formulas suggests that the end result will be the same, a detailed treatment becomes
rather forbidding; it involves multiple rotation matrices in the interaction Hamiltonian
as well as multiple degenerate electronic transitions.

A.1 Introduction

To simplify the notation, we write out only the rotational coordinates of the molecule,
that is, we drop electronic and vibrational coordinates; they are not required for the
arguments presented here. Similar to section 4.2, we then define a laboratory-fixed
coordinate system, whose z-axis is defined by the laser polarization axis, and a molecule-
fixed coordinate system, whose z-axis is defined by the symmetry axis of the symmetric
top. The other two axes can be defined arbitrarily. The orientation of the molecular
frame with respect to the laboratory frame is determined by the Euler angles α, θ, γ also
introduced in section 4.2.
The molecule is now subject to a Hamiltonian

Ĥ = Ĥ0 + Ĥint (A.1)
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consisting of the Hamiltonian Ĥ0 of the field-free molecule, and the molecule-field inter-
action Ĥint. Initially, the molecule is in some eigenstate of Ĥ0

Ĥ0|JKM〉 = EJK |JKM〉 . (A.2)

Each rotational eigenstate is characterized by three quantum numbers: the total angular
momentum J , a quantum number M associated with a rotation around the laser po-
larization axis, and K associated with a rotation around the symmetry axis. Note that
the energy does not depend on the quantum number M , which we will exploit later. Up
to normalization, the eigenstates are the Wigner rotation matrices D, and can also be
expressed by the reduced rotation matrices d

√
8π2

2J + 1
〈αθγ|JKM〉 = DJ

MK(α, θ, γ) = e−iMαe−iKγdJMK(θ) . (A.3)

For the interaction Hamiltonian, we use the dipole approximation with a semi-classical
laser field, and obtain

Ĥint(t) = −E(t)µ̂ = −E(t)µ cos θ = −E(t)µ D1
00(α, θ, γ) . (A.4)

Note that the electric field vector E is parallel to the laboratory frame’s z-axis, while
the transition dipole moment µ is parallel to the z-axis in the molecule-fixed frame.
The dependence on the orientation of the molecule can be trivially found and expressed
as a rotation matrix. We assume that the molecule stays a symmetric top throughout
the interaction with the laser pulse, which is reasonable for a pump pulse that is short
compared to the molecular dynamics.
We are interested in the n-th order perturbative regime, where the time evolution can
be approximated by applying Ĥint n times to the system state (see equation (3.32)).
Eventually, we want to prove that the density is a 2n-th order polynomial of cos θ, so
we also introduce the density

%rot(α, θ, γ, t) =
∑
J,K

gJK %
J
K(α, θ, γ, t) =

∑
J,K

gJK
∑
M

∣∣∣ψJKM (α, θ, γ, t)
∣∣∣2 . (A.5)

The gJK are the Boltzmann factors, which are the population of the initial states |JKM〉
in thermal equilibrium, and ψJKM are the time-dependent wave functions that arise from
the initial state |JKM〉.
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We will finally use some relations for the rotation matrices: [48]∑
M

DJ∗
MKD

J
MK′ = δKK′ (A.6)

DJ∗
MK = (−1)M−KDJ

−M−K (A.7)

d1
00(θ) = cos θ d1

01(θ) = −d1
0−1(θ) =

sin θ√
2

(A.8)

D1
00D

J
MK = (−1)M−K

J+1∑
C=J−1

(2C + 1)
(

1 J C
0 M −M

)(
1 J C
0 K −K

)
DC
MK

(A.9)

DC
MK

(
1 J C
0 M −M

)
= (−1)M−K

∑
n

(
1 J C
n K − n −K

)
D1

0nD
J
M K−n , (A.10)

where the 3-j symbols in equations (A.9), (A.10) are real-valued numbers. I want to
point out that (A.10) corresponds to equation (B.2) in [55] for q = 0 and expressed with
3j-symbols instead of Clebsch-Gordan coefficients.

A.2 First-order perturbation

First, we consider only a single occurrence of the interaction Hamiltonian (A.4). We
obtain for the time-dependent wave functions

ψJKM (α, θ, γ, t) = 〈αθγ| − i

~

∫
dt′Û0(t− t′)Ĥint(t′)Û0(t′ − t0)|JKM〉

=
J+1∑

C=J−1

aCJK(t)
(

1 J C
0 M −M

)
DC
MK(α, θ, γ) . (A.11)

The first field-free propagation Û0 produces a complex phase that depends on the quan-
tum numbers J,K, the interaction Hamiltonian (A.4) multiplies the result with another
Wigner matrix, which we can contract with (A.9), and the remaining unperturbed time
evolution gives another phase depending on the quantum numbers C,K. In consequence,
we can expand the wave function into products of a time-dependent coefficient indepen-
dent of M , a 3j-symbol that depends explicitly on M , and a rotation matrix.
When we next calculate the density (A.5), we obtain

%JK(α, θ, γ, t) =
∑
C,C′

a∗C′JK(t)aCJK(t)
∑
M

×DC′∗
MK(α, θ, γ)

(
1 J C ′

0 M −M

)(
1 J C
0 M −M

)
DC
MK(α, θ, γ) . (A.12)
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We can repeatedly use the contraction (A.10) to get rid of the 3j-symbols, and reduce
the expression to

%JK(α, θ, γ, t) =
∑
C,C′

a∗C′JK(t) aCJK(t)
∑
n1,n2

bJKC′Cn1n2D
1∗
0n1

(α, θ, γ)D1
0n2

(α, θ, γ)

×
∑
M

DJ∗
MK−n1

(α, θ, γ)DJ
M K−n2

(α, θ, γ) , (A.13)

where we absorbed all the M -independent 3j-symbols in another coefficient b. Using
(A.6), the summation over M can be reduced to δn1n2 . If we expand the remaining
Wigner rotation matrices with (A.3), we find that the γ-dependent phases cancel, and
from (A.8), the remaining reduced rotation matrices |d1

0n|2 give either cos2 θ or 0.5 sin2 θ,
which is in any case a second order polynomial of cos θ.

A.3 Higher-order perturbation

The argument is easily extended to higher-order perturbations. To obtain a detailed
insight into this, it is sufficient to go to second-order perturbation theory. So we use
the part of the propagator (3.32) with two applications of Ĥint, and in the same way as
before obtain for the time-dependent wave function

ψJKM (α, θ, γ, t) =
J+1∑

C1=J−1

C1+1∑
C2=C1−1

aJKC1C2(t)

×
(

1 J C1

0 M −M

)(
1 C1 C2

0 M −M

)
DC2
MK(α, θ, γ) (A.14)

with M -independent coefficients a. Again, we can calculate the density components

%JK(α, θ, γ, t) =
J+1∑

C′1=J−1

C′1+1∑
C′2=C′1−1

J+1∑
C1=J−1

C1+1∑
C2=C1−1

a∗JKC′1C′2
(t)aJKC1C2(t)

×
∑
M

D
C′2∗
MK(α, θ, γ)

(
1 C ′1 C ′2
0 M −M

)(
1 J C ′1
0 M −M

)
×
(

1 J C1

0 M −M

)(
1 C1 C2

0 M −M

)
DC2
MK(α, θ, γ) . (A.15)

To keep things simple, let us consider only a single summand Ci, C
′
i, and drop the first

line of (A.15). We can apply (A.10) multiple times, and obtain
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A.3 Higher-order perturbation

∑
n1,n′1
n2,n′2

b D1∗
0n′1
D1∗

0,n′2
D1

0n2
D1

0n1

∑
M

DJ∗
MK−n′2−n′1

DJ
M K−n2−n1

, (A.16)

where b holds all constant factors, and we have suppressed the angle arguments of the
rotation matrices.
Before we simplify this term, let us briefly reflect what we have done. We have first
applied the interaction Hamiltonian n times on the wave function, which in general,
changes the rotational quantum number J , and adds some factors from the field-free
propagation (A.14). However, when we need to calculate the density, we can use the
contraction (A.10) to sort of invert this change in the rotational quantum number. As
a side effect, each contraction (i.e., each application of Ĥint in first place) leaves some
rotation matrix D1

0n or the appropriate complex conjugate.
Now if n = 0, this matrix just reduces to a cos θ. If n = ±1, the matrix gives some phase
exp(∓iγ), and a sin θ. However, when we use the sum rule (A.6), we get δn1+n2,n′1+n′2
in (A.16). That is, each contribution D1

0±1 must be matched by the same complex
conjugate, which removes the γ-dependent complex exponential, and ensures that we
always have products of two sin θ-terms.
It is not difficult to perceive that these arguments are not limited to the lowest order
perturbation, but also hold for higher orders, or when mixing different orders (e.g. first
order for the bra, and second order for the ket) in the density calculation. The order
of the polynomial of cos θ depends on the number of interactions of the ket plus the
bra. For a general n-th order perturbation on the wave function level, we obtain then a
polynomial of cos θ of order 2n.
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Appendix B

Wave packet methods

Here, I want to present some details on the wave packet calculation of NaI. This appendix
is divided into three parts. The first is a brief introduction into the DVR method.
Implementing this method has been my major contribution to the WavePacket code
[22], and it forms the natural basis for propagating the wave function and evaluating
diffraction patterns later on. In the second part, we will briefly study the propagation of
the wave packet for the case of the NaI molecule. The third part presents the numerical
details of the calculation of the diffraction pattern of NaI.

B.1 The DVR method

The DVR method is an efficient method for evaluating the action of special operators
on a wave function, and is in principle applicable for an arbitrary basis expansion [56].
Though it can be discussed in the more general context of a pseudo-spectral basis [18],
we will only discuss the simplest version, in which we expand the wave function in a
basis of Legendre polynomials.
The fundamental building block for the polynomial DVR method is the Gaussian quadra-
ture [18]. It states that for each interval [a, b], weight function w(x) and order N , we
can find N points xi and weights wi such that

∫ b

a
w(x)f(x)dx =

N∑
i=1

wif(xi) (B.1)

is exact if f is a polynomial of degree up to 2N − 1. For the simplest case of a Gauss-
Legendre quadrature, w(x) = 1 and the boundaries are a = −1, b = 1.
To apply this theorem, let us assume that we have expanded a one-dimensional wave
function ψ(x) into normalized Legendre polynomials

ψ(x) =
L−1∑
l=0

flP̃l(x) , (B.2)

where P̃l(x) =
√

(2l + 1)/2Pl(x), and x can take values from −1 to 1. If we choose
N > L grid points, we can calculate the coefficients fl as
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fl =
∫ 1

−1
P̃l(x)ψ(x)dx =

N∑
i=1

wiP̃l(xi)ψ(xi) . (B.3)

This relation tells us that there are two equivalent representations of ψ. We can either
describe the wave function by the coefficient vector f = {fl}l=0,...,L−1 (called the finite
basis representation, FBR), or we can use the value of the wave function at the quadrature
points ψ = {ψ(xi)}i=1,...,N (called the discrete variable representation, DVR). Equation
(B.2) with x = xi and equation (B.3) provide the transformation between these two
representations.
Now let us go a step further and apply an operator Â = A(x̂) to the wave function. We
obtain a new wave function ψ′ = Âψ. Now the DVR method is the relation

ψ′(xi) = A(xi)ψ(xi) , (B.4)

that is, I obtain the DVR of ψ′ by multiplying the value of A with the wave function ψ
at each grid point. The underlying approximation can be easily seen if we look at ψ′ in
the FBR

ψ′(x) =
∑
l

f ′l P̃l(x) . (B.5)

Within the DVR method, I calculate the coefficients f ′l by a combination of (B.3) and
(B.4), which yields

f ′l =
∑
i

wiP̃l(xi)ψ′(xi) =
∑
i

wiP̃l(xi)A(xi)ψ(xi) . (B.6)

On the other hand, I can also calculate the f ′l without any approximation as

f ′l =
∫ 1

−1
P̃l(x)ψ′(x)dx =

∫ 1

−1
P̃l(x)Âψ(x)dx =

∫ 1

−1
P̃l(x)A(x)ψ(x)dx . (B.7)

So within the DVR method, we replace

∫ 1

−1
P̃l(x)A(x)ψ(x)dx −→

∑
i

wiP̃l(xi)A(xi)ψ(xi) . (B.8)

Since P̃l and ψ are by definition polynomials of order L− 1, the DVR method is exact if
A(x) is a polynomial of order 2N − 2L+ 1. In this case, applying the operator Â in the
form of (B.4) is much more convenient than explicitly calculating the matrix elements
(B.7), and gives the same results.
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B.2 NaI calculation

As a side note, the DVR method can be easily extended to use various other polynomi-
als. For example, we can rewrite an expansion of a rotational wave function in spherical
harmonics Ynm(θ, ϕ) with fixed quantum number m as an expansion in normalized as-
sociated Legendre functions P̃mn (x = cos θ). These can be written as [57]

P̃mn (x) = (x2 − 1)m/2fn,m(x) , (B.9)

where f is a polynomial of order n−m. The factor (x2− 1)m forms the weight function
when applying the Gaussian quadrature, leading to the Gauss-Jacobi quadrature.
Also, we can also expand the wave function in plane waves, which leads to the Fourier
method [58]. This method is also a special DVR method, where the Gaussian quadrature
is replaced by analogous properties of the discrete Fourier transformation, and we have
to assume that the function A(x) is sufficiently band-limited.
The original WavePacket code [59] implemented only the Fourier method. The Gauss-
Jacobi quadrature was implemented by Martin Winter, Burkhard Schmidt and me in
2007, which ultimately required a major rewrite of the code.

B.2 NaI calculation

To calculate the dynamics of the NaI molecule, we first set up the Schrödinger equation
for the nuclear coordinates as described in section 2.1, especially equation (2.5). If we
drop the nuclear center-of-mass motion, we are left with the relative position vector
R, which we can express with the internuclear distance R, the angle θ between the
molecular axis and the laser polarization vector, and the angle ϕ that describes the
rotation of the molecular axis around the laser polarization vector. Furthermore, we
modified the Scrödinger equation (2.5) in two ways.
First, we did not use an adiabatic electronic basis, but the diabatic basis. In this
basis, the non-adiabatic couplings are replaced by diabatic, potential-like couplings [18].
Second, we did not propagate the nuclear wave functions Λdia

i , but made a contact
transformation Φi = RΛdia

i . The Schrödinger equation for the Φi is then

i~Φi(R, θ, ϕ, t) =
[
− ~2

2m
d2

dR2
+

L̂2

2mR2
+ V dia

ii (R)
]
Φi(R, θ, ϕ, t)

+
∑
j

[
V dia
ij (R)− ε(t)Ddia

ij (R) cos θ
)

Φj(R, θ, ϕ, t) . (B.10)

m is the reduced mass of the molecule, L̂ is the angular momentum operator, ε(t) the
electric field of the laser. The polarization axis has been chosen to be parallel to the
z-axis, and the transition dipole moment is parallel to the molecular axis. The diabatic
potentials are defined by

V dia
ij (R) = 〈λdia

i (R)| ĥ |λdia
j (R)〉r , (B.11)
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and the dipole moments are

Ddia
ij (R) = 〈λdia

i (R)| µ̂ |λdia
j (R)〉r . (B.12)

The diabatic potentials and dipole moments were taken from [60]. Only two diabatic
states have been included in the calculation; they are coupled by a transition dipole
moment parallel to the molecular axis.
As a first step in solving (B.10), we expand the wave functions in a set of plane waves
(with periodic boundary conditions) and spherical harmonics

Φi(R, θ, ϕ, t) =
∑
k.l

cikl(t) eikR Ylm(θ, ϕ) . (B.13)

In this basis, the kinetic energy operators are diagonal

d2

dR2
eikR = −k2eikR L̂2Ylm(θ, ϕ) = l(l + 1)Ylm(θ, ϕ) . (B.14)

Note that m is a conserved quantum number. For NaI excited from the rotational ground
state, we have m = 0, and there is no explicit ϕ-dependence Up to constant factors, we
can then replace Yl0(θ, ϕ) by the normalized Legendre polynomials P̃l(cos θ).
To summarize, the Φi can now be expressed with plane waves and normalized Legendre
polynomials, in which basis the kinetic energy is diagonal, and they can also be trans-
formed in the appropriate DVR (discrete points (Ri, cos θj)), where the potentials and
dipole moments are trivially applied by the DVR method.
To avoid the implicit periodic boundary conditions when expanding the wave function in
plane waves, we added a negative imaginary term to the radial potential that absorbed
the wave function before it hit the boundary.
For the actual propagation, we used the symmetric split operator method, changing
between the FBR and DVR depending on which part of the Hamiltonian we evaluate.
The details of the propagation are explained in [61].

B.3 Calculation of diffraction patterns

Finally, we can calculate the difference diffraction pattern. The derivation is similar to
that in section 4.2, however, I choose to redo it for two reasons.
In chapter 4, we discussed the problem of how to deduce the structural information from
the diffraction pattern. To simplify this problem, we uncoupled the internal from the
rotational degrees of freedom, and dropped the latter. When we do the wave packet
calculation, we are in a different situation where we already know the correct (full)
difference density, and it is actually difficult to impose the approximation (4.2), so we
want to avoid the notion of rotational coefficients, and use the full expansion of (4.5)
instead. Also, with little effort, we obtain formulas where the propagated wave function
can be directly plugged in.
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B.3 Calculation of diffraction patterns

The starting point is equation (3.58) with the form factor (2.25). Using real atomic form
factors [4], we get for NaI

∆
dσ
dΩ

(τ) = σT fNa(q)fI(q)
∫

d3R ∆%̄(R, τ)
(

eiqR + e−iqR
)
. (B.15)

The exponentials can be directly transformed as [57]

eiqR = eiqR cos θ′ =
∞∑
n=0

(2n+ 1)(−1)n/2Pn(cos θ′)jn(qR) , (B.16)

where cos θ′ is the angle between the vectors q and R. The Legendre polynomial can be
further rewritten using the addition theorem for spherical harmonics

Pn(cos θ′) =
4π

2n+ 1

n∑
m=−n

Y ∗nm(θq, ϕq)Ynm(θ, ϕ) (B.17)

with θq, ϕq as the angular coordinates of q. If we now plug (B.16), (B.17) into (B.15),
and write out the integration over the spherical coordinates, we get

∆
dσ
dΩ

= 2σT fNa(q)fI(q)
∑
n even

(−1)n/2(2n+ 1)
∫ ∞

0
dR
∫ π

0
dθ sin θ R2∆%̄(R, θ, τ)

× jn(qR)
4π

2n+ 1

n∑
m=−n

Y ∗nm(θq, ϕq)
∫ 2π

0
dϕ Ynm(θ, ϕ) . (B.18)

Note that terms with odd n cancel during the expansion (B.16). The integration over
ϕ returns 2πYn0(θ, 0)δm0. With some more algebra, and replacing x = cos θ, we then
obtain the final result

∆
dσ
dΩ

= 4πσT fNa(q)fI(q)
∑
n even

(−1)n/2(2n+ 1)Pn(cos θq)

×
∫ ∞

0
dR
∫ 1

−1
dx R2∆%̄(R, x, τ)Pn(x)jn(qR) . (B.19)

For the evaluation of this expression, we note that the difference density at each DVR
grid point (Ri, xj) can be easily obtained from the absolute square of the wave function
via (see (3.57))

R2∆%̄(Ri, xj , τ) =
∫

dt I(t− τ)
∑
m

(∣∣∣Φm(Ri, xj , t)
∣∣∣2 − ∣∣∣Φref

m (Ri, xj)
∣∣∣2) (B.20)
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with I(t) describing the shape of the x-ray pulse intensity. The difference density is a
polynomial of x, and a band-limited function of R. If we have chosen enough grid points,
it is therefore possible to reuse the DVR grid, and evaluate the integrals in (B.19) by
the DVR method. The value of q and θq can be calculated for each detector pixel from
equations (4.22), (4.23).
I finally want to point out that the scripts used for the calculation of the difference
diffraction signal are rather generous with all the prefactors. Especially, the Thomson
cross section σT , equation (3.19), is not included in the calculated cross sections. As it
contains products of polarization vectors of the incoming and scattered photon, adding
it would slightly distort the diffraction signals in; however, this contribution can easily
be removed from an experimental signal.
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Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the
diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate
that the resulting inelastic limit applies to a wider variety of experimental conditions than similar, previously
derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals.
Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam.
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I. INTRODUCTION

Since its discovery, x-ray diffraction has become a major
tool for studying the structure of matter. Its key virtue is that,
in a time-independent framework [1], the differential cross
section for elastic scattering is just the Fourier transform of
the electronic density �e,

dσ

d�
=

∣∣∣∣
∫

d3r �e(r) eiqr

∣∣∣∣
2

, (1)

where we neglected the weak scattering from the nuclei and
expressed the cross section in units of the scattering of a
free electron. This gives almost direct access to real-space
information of the electronic structure. In contrast to optical
photons, x rays interact with all electrons, which makes the
cross section insensitive to minor variations of valence orbitals.
One can therefore often go further and use the independent
atom model (IAM), in which one models �e by the density of
the isolated atoms. Within this approximation, the diffraction
pattern becomes a function of the atomic positions in the
probed system.

It is therefore not surprising that currently, much work is
spent on the development of intense, pulsed, femtosecond
x-ray sources, namely, free electron lasers (FELs). After
exciting a system with an optical pump pulse, the subsequent
dynamics can be followed in time by a femtosecond x-ray
pulse with variable time delay. If the time-resolved scattering
can be described by a formula similar to Eq. (1), this allows
us to directly follow atomic rearrangements without the need
for complex electronic structure calculations that link the
experimental signal to the molecular dynamics. However,
similar to modern ultrafast optical pump-probe experiments,
we require an extension of the conventional static theory.

The previous work on the theoretical foundations of time-
resolved x-ray diffraction (TRXD) can be roughly divided into
two categories. In one approach, the conventional expression
(1) is used as the starting point [2–8]. Essentially, the electronic
density gets an additional time variable, and the result is
convoluted with the time-dependent intensity of the x-ray
beam to obtain the signal as a function of the delay time.
However, Eq. (1) is typically derived from Fermi’s Golden

*ulf.lorenz@kemi.dtu.dk
†klaus.moller@kemi.dtu.dk
‡neh@kemi.dtu.dk

Rule [1,6]. In the derivation of the Golden Rule, the initial state
is assumed to be an eigenstate of the unperturbed Hamiltonian,
that is, to have no intrinsic time dependence. An alternative
derivation of (1) uses classical electromagnetic theory for
the treatment of the x-ray field [4]. Here, it is assumed
that the electric current in the target system is exclusively
induced by the incoming x-ray field, which again requires a
negligible time evolution. Furthermore, the (classical) x-ray
field and the (quantum) target system are coupled via the
dielectric constant. This quantity, however, is obtained from
time-independent perturbation theory and can therefore be
assigned only to time-independent states, not to wave packets.
Strictly speaking, formulas obtained by these derivations are
thus not valid for describing ultrafast, coherent wave-packet
motion. However, they have been applied successfully to
subpicosecond TRXD experiments [8], which suggests that,
though the derivation is different, the formulas for TRXD
should have a form similar to that of the time-independent
theory.

In another approach, one evaluates the interaction between
the studied nonstationary quantum system and the x-ray photon
field, usually within first-order perturbation theory. This has
been done with a wave-packet [9,10] or density-operator
formalism [11–13].

In general, the interaction between the x rays and
the target system can be either elastic, leaving the state of
the target systems unchanged, or inelastic, thereby changing
the population of the individual energy eigenstates. With the
exception of [12,13], previous work focused on a hybrid
“electronically elastic” scattering. It was assumed that the
scattering process is inelastic with respect to nuclear modes but
elastic with respect to electronic states, or that contributions to
electronically inelastic diffraction can be removed by special
experimental setups. It is interesting to note that the same
approximation of electronically elastic scattering has also been
used in the closely related field of time-resolved electron
diffraction (e.g., [14]). However, this approach is different
from the earliest treatments on x-ray diffraction [15], which
explicitly considered electronically inelastic components. In
this paper, we want to review the theory for TRXD without
such a hybrid scheme. We obtain a less restrictive, more
general formulation, which also permits the use of symmetry
arguments in the evaluation of the diffraction signal.

In Sec. II, we outline and discuss the general system-
independent formulation. We then focus on molecular systems
in Sec. III, and connect our results to those derived previously.
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Section IV summarizes our findings and provides an outlook
on further research. In the appendices, we discuss an extension
of the theory to systems with time-dependent Hamiltoni-
ans,and discuss in more detail some of the approximations
used in the derivations.

II. GENERAL THEORY

The key quantity of interest in x-ray diffraction is the
differential signal strength dS/d�, which we define as the
number of scattered photons arriving in a certain solid angle.
If we allow these photons to have frequencies ωs that are
different from the central frequency ω0 of the incoming beam,
we can write

dS

d�
=

∫ ω2

ω1

dωs

d2S

d�dωs

, (2)

to express it in terms of the double-differential signal strength.
This quantity is then defined as

d2S

d�dωs

= ρ(ωs) lim
t→∞〈�0|Û †(t, t0)n̂ks ,εs

Û (t, t0)|�0〉. (3)

The initial state �0 is a direct product consisting of a target in
a prepared nonstationary state � and a photon state ψuk0 that
describes the x-ray pulse on its way to the target. They interact,
and after essentially infinite time, the scattered photons hit a
detector that is modeled by the photon number operator n̂ks ,εs

,
and counts the number of photons with wave vector ks and
optionally polarization εs . Multiplication by the density of
photon states ρ yields the number of scattered photons per
solid angle. If the propagation is carried out with first-order
perturbation theory for the interaction between the target and
the x rays, we obtain (see [10] for the details)

d2S

d�dωs

=
(

dσ

d�

)
Th

ωs

ω0
s(q, ω0 − ωs), (4)

where

s(q, ω) = 1

2π

∫
dt I (t)

∫
dδ C(δ)eiωδ

×
〈
�

(
t + δ

2

) ∣∣∣∣L̂†Û

(
t + δ

2
, t − δ

2

)
L̂

∣∣∣∣�
(

t − δ

2

)〉
.

(5)

Here, (dσ/d�)Th is the classical Thomson cross section of a
free electron,

I (t) = 2ε0c

h̄ω0

〈
ψuk0

∣∣Ê(−)Ê(+)
∣∣ψuk0

〉
(6)

is the photon number intensity of the incoming beam,

L̂ =
#electrons∑

i=1

eiqr̂i (7)

is the scattering operator with q = k0 − ks being the scattering
vector, and

C(δ) =
∫

dω′F (ω0 + ω′)eiω′δ (8)

defines the coherence function of the x-ray beam in terms of the
normalized power spectrum F , which is centered around ω0.

The typical decay time Tc of the coherence function is inversely
proportional to the width �ω0 of F . Note that the convention
for some of the symbols differs from [10] for convenience, and
to be more in line with the classic literature.

As discussed in [10], the result is also valid for the important
practical case where the x-ray beam is not a coherent photon
state but described by incoherent ensembles. This result was
derived using two important assumptions. We assumed that
the beam is fully characterized by its intensity and power
spectrum. This only holds for special cases, such as FELs in the
linear regime [16] or ensembles of identical Gaussian pulses.
Furthermore, we have neglected wave-vector dispersion of
the x-ray beam. In the classical limit, this translates to the
substitution of the electric field

E(r, t) = E0h(r, t)ei(k0r−ω0t) ≈ E0h(R, t)ei(k0r−ω0t), (9)

that is, the envelope function h is only evaluated at the position
R of the target system. The incoming beam is thus assumed
to have a fixed wave vector k0, but varying frequencies.
The idea is that the wave vector of the incoming photon
only enters through the scattering vector q, whose variations
can be neglected. We discuss this approximation in the next
subsection when we also vary the length of the wave vector of
the scattered photon, ks .

In the following, we will discuss the limit of inelastic
diffraction in more detail, using an analysis similar to the work
of Cao and Wilson [9]. For more convenient manipulation, we
start by transforming (5) to an energy eigenstate representation.
If the Hamiltonian Ĥ of the probed system is time independent
(for time-dependent systems, see Appendix A), the wave
function can be expanded as

�(t) =
∑

i

ciϕie
−iEi t/h̄, Ĥϕi = Eiϕi. (10)

Inserting this and performing standard manipulations yields

s(q, ω0 − ωs) =
∫

dt I (t)
∑
ijk

c∗
i cj e−i(Ej −Ei )t/h̄L∗

kiLkj

×F

(
ωs + 1

h̄

(
Ek − Ei + Ej

2

) )
, (11)

with Lik = 〈ϕi |L̂|ϕk〉.

A. Inelastic limit

Let us first consider the limit of elastic diffraction Lij =
δijLii . Equation (11) simplifies to

s(q, ω0 − ωs) =
∑

i

|ci |2|Lii |2F (ωs)
∫

dtI (t), (12)

and the diffraction image becomes independent of time. The
reason is that the interference terms i �= j in (11) hold the
information about the time evolution of the quantum system,
but they do no contribute here. We conclude thus that we are not
interested in purely elastic scattering, but we have to include
inelastic terms.
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To do so, we insert (11) and (4) into (2) and change the
order of integration and summation, which yields

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

∑
ijk

c∗
i cj e

−i(Ej −Ei )t/h̄

×
∫ ω2

ω1

dωs L∗
kiLkj

ωs

ω0
F

(
ωs+1

h̄

(
Ek − Ei+Ej

2

) )
.

(13)

This expression is difficult to simplify because the summation
over i, j, k, and the integration over ωs are entangled. This
happens through the argument of F , but also through the
scattering operator L̂, since ks , and thus q, is a function
of the frequency ωs . However, this problem is not unique
to time-resolved diffraction. For systems in their stationary
ground state, ci = cj = δi0, Eq. (13) corresponds to time-
independent diffraction, and the entanglement of the remaining
k summation and the ωs integration is still in there. In this
context, a solution for this problem is well known under the
name “static approximation” [15,17]. To get an insight into the
approximations and limitations when applying this to TRXD,
we shall go through the derivation in some detail.

The probed target system is in a nonstationary state whose
energy spread is at most a few eV, that is, |Ei − Ej | 	 h̄ω0.
Furthermore, the basis of the static approximation is the
assumption that the matrix elements Lik can be neglected
unless |Ek − Ei | 	 h̄ω0, which we discuss in detail in
Appendix B. Thus, although we formally retain the unre-
stricted sums over i, j, k, only those summands with |�E| =
|Ek − (Ei + Ej )/2| 	 h̄ω0 contribute to the signal.

To exploit this relation, we require the interval [ω1, ω2]
to include ω0. We also assume that the power spectrum
F has a not too large width �ω0 	 ω0. The integrand is
then dominated by contributions with |ωs − ω0| <∼ |�E|/h̄ +
�ω0 	 ω0, otherwise, either F or the matrix elements Lki ,
Lkj vanish.

As a result of this, we find that the scattering vector remains
almost constant when integrating over ωs . For example, we find
from geometric relations that∣∣∣∣q2

q2
0

− 1

∣∣∣∣ �
∣∣∣∣�E

h̄ω0

∣∣∣∣ +
∣∣∣∣�ω0

ω0

∣∣∣∣
2

+
∣∣∣∣�ω0�E

h̄ω2
0

∣∣∣∣
+

( |�E| + 2h̄�ω0

h̄cq0

)2

, (14)

where q0 is the magnitude of the scattering vector for
elastic scattering ks = k0, and c is the speed of light. For
typical FEL parameters h̄ω0 ≈ 10 keV, �ω0/ω0 = 10−3 [18],
and assuming |�E| � 100 eV (see Appendix B), and q0 =
0.5–8 Å−1, the relative variation |q/q0| is less than 3%.

Since the length of the scattering vector stays almost
constant, and diffraction patterns are usually not overly
sensitive to the value of q (see, e.g., examples in [1] and
discussion in [10]), we now replace the scattering operator L̂

by the elastic version L̂0 = L̂(q|ks = k0), and move its matrix
elements outside of the integral. Using all the approximations
so far, and setting ωs/ω0 ≈ 1, the remaining integral∫ ω2

ω1

dωs F

(
ωs + 1

h̄

(
Ek − Ei + Ej

2

))
(15)

gives a constant of unity for all i, j, k, if ω1 → 0 and ω2 → ∞,
i.e., if the detector collects all photons. We can then rewrite
the differential signal strength as

dS

d�
=

(
dσ

d�

)
Th

∫
dt I (t)〈�(t)|L̂†

0L̂0|�(t)〉. (16)

This is the inelastic limit of x-ray diffraction. A similar
expression has been derived in the context of TRXD be-
fore [9,10]. However, the previous works do not stress its
fundamental importance for time-resolved diffraction. As our
more detailed derivation shows, (16) is the relevant limit if the
static approximation is valid, and the following experimental
conditions hold:

1. The system evolves freely during the scattering process.
2. Only states with low energies are excited, that is, |Ei −

Ej | 	 h̄ω0, which should be fulfilled for all but a few
exotic experiments.

3. The incoming x-ray beam has a sufficiently narrow
bandwidth �ω0 	 ω0.

4. We collect all scattered photons, ω1 → 0, ω2 → ∞.

Since these resemble typical experimental conditions, we
conclude that the inelastic limit should be generally chosen
as the starting point for further theory. This limit also has
properties that are of special importance in the context of
time-resolved diffraction.

First, it is not restricted to a special representation of the
wave function. This allows us to use the same basic formula
(16) for different tasks such as mapping atomic orbitals [2] or
measuring atomic rearrangements within a molecule. We can
also trivially recast the result using a density operator �̂. If
we neglect decoherence (i.e., statistical mixing with a thermal
bath) during the interaction with the x-ray pulse, we can write
directly

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)Tr[�̂(t)L̂†

0L̂0]. (17)

For completeness, we want to point out that a more detailed
derivation would show that this density-operator formulation
holds as long as we can neglect decoherence during the
coherence time of the x-ray pulse, which is at most about
a femtosecond [19]. For this, we first rewrite (5) with a density
operator [see also Eq. (42) in [12]]. If decoherence can be
neglected during the coherence time, an expansion equivalent
to (10) can be performed. The rest of the discussion about the
static approximation only involved matrix elements of L̂, and
it is equally valid for all representations of the quantum state.

The only restriction we had to put on the target system is
a time-independent Hamiltonian. By examining carefully why
and how we did this, we can find a simple extension of the
theory to systems irradiated by lasers if the laser parameters
change sufficiently slowly. This is detailed in Appendix A.

Finally, the operator L̂
†
0L̂0 is symmetric under space

inversion, which allows the use of symmetry arguments in
the evaluation of expectation values. This is in contrast to the
operator L̂ that has no trivial symmetry properties.

023422-3



LORENZ, MØLLER, AND HENRIKSEN PHYSICAL REVIEW A 81, 023422 (2010)

B. Symmetry considerations

In many experiments, we study systems whose total
Hamiltonian is symmetric under space inversion, for example,
free molecules in the gas phase. The energy eigenstates, which
are typically the initial states for the pump-probe experiments,
also obey this symmetry. If we assume that spin is a good
quantum number, they are either even or odd functions with
respect to the inversion of all (nuclear and electronic) space
coordinates.

The same argument holds for systems in contact with
a thermal bath, such as small sections in a liquid sample.
In thermal equilibrium, the density operator of the system
commutes with the Hamiltonian [Ĥ , ρ̂] = 0. In the absence
of degeneracies, and for Hamiltonians symmetric under inver-
sion, each eigenstate of this density operator (or, equivalently,
each member of the thermal ensemble) is then an even or odd
function of the coordinates.

The excitation of the system with a linearly polarized pump
laser involves the dipole operator µ̂, which is odd under space
inversion. It is known from elementary group theory that each
application then changes the symmetry of the state. If we excite
the system by absorption of an odd number of photons, we thus
create a coherent superposition of a ground state �g and an
excited state wave packet �e

|�(t)〉 = |�g(t)〉 + |�e(t)〉, (18)

with �g,�e transforming differently under space inversion.
When calculating (16), contributions of the form

〈�g(t)|L̂†
0L̂0|�e(t)〉 = 〈�g(t)|

Ne∑
i �=j

eiq(r̂i−r̂j )|�e(t)〉 (19)

are zero, because the operator L̂
†
0L̂0 is invariant under space

inversion. The diffraction image is thus an incoherent sum of
the images of the ground and excited state wave function.

However, this argument does not hold under certain
circumstances:

1. If the Hamiltonian is not symmetric under inversion,
the eigenstates have no symmetry properties, and the
previous argument is void. The typical example here are
molecules at interfaces.

2. For systems that are oriented prior to the arrival of the
pump pulse, the symmetry of the initial state is destroyed
by the orientation.

3. If the excitation includes an even number of photons,
�g,�e have the same symmetry properties.

In these cases, the interference terms (19) also show up in
the diffraction pattern, which is now the coherent sum of the
two states. We thus have the possibility to include or exclude
specific contributions to the signal.

III. APPLICATION TO MOLECULES

We use the well-known Born-Huang representation [20] to
apply the theory to molecules. For this, we decompose the
system into nuclei and electrons and denote their collective
coordinates as R and r. The total wave function is factorized

into “nuclear” and “electronic” wave functions

�(R, r, t) =
∑
m

�m(R, t)λm(r; R). (20)

For each R, the electronic states λm are chosen to form an
orthonormal basis set in the electronic subsystem

〈λm(R)|λn(R)〉r = δmn. (21)

Here and in the following, we use the subscript r to denote an
integration over only the electronic coordinates. Furthermore,
we will drop the explicit R dependence of λm. For most
applications, only a few electronic states need to be considered,
which greatly reduces the dimensionality of the quantum
system.

We can directly insert the Born-Huang representation (20)
into (16) and obtain the diffraction signal of a molecule.
Writing out the integration over the nuclear coordinates
explicitly, we obtain

dS

d�
=

(
dσ

d�

)
Th

∫
dt I (t)

∑
n,m

×
∫

dR �∗
m(R, t)�n(R, t) smn(R), (22)

smn(R) = 〈λm|L̂†
0L̂0|λn〉r . (23)

For density operators, the Born-Huang representation corre-
sponds to the expansion

�̂(t) =
∑
mn

�̂mn(t)|λn〉〈λm|, (24)

where the operators �̂mn act on the nuclear degrees of freedom
only. We write out the trace over the electronic degrees of
freedom explicitly and evaluate the trace over the nuclear
coordinates in a local basis. Equation (17) becomes then

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

∑
m,n

∫
dR�mn(R, t)smn(R),

(25)

�mn(R, t) = 〈R|�̂mn(t)|R〉. (26)

The terms �mm(R) are the nuclear densities and define the
probability density of finding a nuclear configuration R with
a certain electronic state |λm〉. The nondiagonal terms �mn(R)
are the nuclear coherences; the corresponding terms describe
interferences between the different electronic states in the
diffraction pattern.

For practical use, and to gain more insight, we shall now
consider additional approximations to connect the general
result (25) to those derived previously [9–11].

A. Connection to other derivations

While the results so far are applicable to an arbitrary
electronic basis λm, we now restrict our choice to the adiabatic
basis. If we write the Hamiltonian as a sum

Ĥ = T̂R + ĥ (27)

of the kinetic energy T̂R of the nuclei and an “electronic
Hamiltonian” ĥ, the adiabatic basis are those electronic states
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that diagonalize ĥ. This is a common choice and has been
selected by other authors we wish to compare our results to.

We start by having a closer look at the coherences �mn(R).
For slow nuclear motion, they oscillate with a frequency of
roughly the inverse electronic energy spacing. If the length of
the x-ray pulse and the timing jitter between the pump and
probe pulses are small enough to resolve these oscillations,
the coherences show up as “beating” patterns in the diffraction
image.

However, these terms can often be neglected. For well-
separated electronic states, the time resolution needs to be on
the order of single femtoseconds to measure them. If one of
the states m, n is populated through excitation from the other
state by absorbing an odd number of photons, the coherence
terms between these two states will not contribute due to
the symmetry arguments outlined earlier. Most importantly,
we argue in Appendix B that for many systems, the matrix
elements smn are significantly smaller than the diagonal terms
smm, thus reducing the contribution from the coherences.

If we drop the contributions of the nuclear coherences, only
a single sum in (25) is left. To simplify the evaluation of the
remaining matrix elements smm(R), we use a resolution of
identity 1r = ∑

n |λn〉〈λn| to formally separate them into an
elastic and a purely inelastic contribution

smm = |〈λm|L̂0|λm〉r |2 +
∑
n�=m

|〈λn|L̂0|λm〉r |2. (28)

Inserting this into (25) yields, after neglecting the nuclear
coherence terms,

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

∑
m

×
∫

dR �mm(R, t)|〈λm|L̂0|λm〉r |2 + Sinel. (29)

The first term gives the “electronically elastic” scattering and
has a simple interpretation. The matrix element 〈λm|L̂0|λm〉
is the Fourier transform of the electronic density of state
m. Thus, the first term is similar to the standard result of
x-ray diffraction [see Eq. (1)] weighted by a time-averaged
distribution of nuclear geometries. Sinel denotes the purely
inelastic contribution to the signal. Its interpretation and
evaluation is much more cumbersome, so we wish to remove
it in one way or the other.

Two solutions have been proposed in the literature. In one
approach [5], it is assumed that the inelastic contribution can be
neglected because the nondiagonal elements 〈λn|L̂0|λm〉r are
small compared to the diagonal terms. This general result stems
from the fact that only a single orbital contributes to the matrix
element (see Appendix B), while all electrons contribute to
the elastic scattering. However, this argument is problematic
because, even though the single matrix elements are small
(see Appendix B), the sum in (28), and thus Sinel includes many
terms. For atoms, this inelastic scattering contribution has been
tabulated (e.g., [21]). Even for heavy species, such as iodine,
the elastic and inelastic contributions are similar in magnitude
for q >∼ 6 Å−1, so this seems too crude an approximation.

Other references suggested an energy-scale separation
(vaguely described in [9], implicitly used in [10], and
explicitly pointed out in [11]). For this, we note that (11)

only gives a significant contribution if the argument of F is
approximately ω0. The intuitive picture that emerges is that
each excitation of the system leads to a corresponding energy
loss of the outgoing photon. For a nearly monochromatic
source, F (ω) ≈ δ(ω − ω0), the energy of the outgoing photons
exhibits a peak for each resonance. We can now use the
Born-Oppenheimer approximation, and we assume that energy
levels corresponding to an excitation of nuclear modes (which
we wish to include) have much smaller energy spacing than
the electronic states (which we want to remove). By filtering
out the latter contributions (i.e., photons deviating from ω0

by more than, say, 1 eV) before they reach the detector, we
can remove all electronically inelastic components from the
diffraction pattern, so that Sinel = 0.

However, this argument has several problems as well. The
energy-scale separation becomes meaningless for close-lying
electronic states. Thus, this line of thought excludes nonadia-
batic transitions, which are very common in photochemistry.
Furthermore, the required excessive filtering of the incoming
and outgoing photons might reduce the signal by orders of
magnitude, which makes this setup somewhat unattractive.

However, we note that practical experiments often use
difference diffraction techniques for TRXD (e.g., [4,22]).
That is, two diffraction images are taken, one with the
pump laser turned on and off, respectively, and the two
signals are subtracted to yield a difference signal. If we are
interested in the difference signal, we do not have to require
that the inelastic contribution vanishes. If it is independent
of the atomic arrangement, and the electronic state, the
corresponding terms cancel already due to norm conservation.
Furthermore, in many experiments, the scattering signal is
evaluated using the independent atom model (IAM) (e.g.,
[1,9,10]) for the description of the electronic densities. The
IAM approximates the electronic structure of a molecule by
that of its independent constituent atoms. It does therefore
not describe the reorganization of electronic densities due to
chemical binding. As detailed in Appendix B, we can show
that Sinel is roughly independent of the molecular structure
within the limit of the IAM, and it can thus be ignored in
difference diffraction images. A similar argument has been
used previously for the case of gas-phase electron diffraction
by Liu and Lin [23]. This solution allows us to approximate
the scattering with molecular targets as being electronically
elastic, solves all of the problems mentioned earlier, but still
allows us to employ, for example, symmetry rules derived in
the inelastic limit.

We finally assume that the scattering from all electronic
states is similar, as only a few valence orbitals are rearranged,
and replace the matrix elements by the IAM form factor (see,
e.g., [9,10], and Appendix B3)

〈λm|L̂0|λm〉r ≈ fIAM(q; R) =
#atoms∑

α

fα(q) eiqRα , (30)

with the atomic form factors

fα(q) =
∫

d3r�α(r)eiqr, (31)

and �α and Rα the ground-state electronic density and position
of atom α. Since we deal with difference patterns, we
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further denote by ��mm the difference densities between our
diffraction pattern and a reference pattern (e.g., obtained by
turning the excitation laser off). Equation (29) gives

d�S

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

×
∫

dR

[∑
m

��mm(R, t)

]
|fIAM(q; R)|2. (32)

The quantity in brackets is the difference in the probability
density of finding a certain nuclear geometry R at time
t . Within the limit of the IAM and neglect of coherence
terms, the diffraction signal is therefore just the product
of the “time-averaged difference distribution of geometries,”∫

I (t)
∑

m ��mm(R, t) dt , and the IAM form factor, integrated
over all geometric configurations R. This final result closely
resembles the time-independent theory but with a distribution
function that depends on the pump-probe delay time.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we reviewed the general result of our previous
work on time-resolved x-ray diffraction for nonstationary
systems [10] and reformulated it in a form that is more in
line with the standard results for time-independent systems.

We argued that in the context of scattering on non-
stationary systems, it is essential to allow for inelastic
scattering processes in the target system but that the scat-
tering operator only connects states whose energy differ-
ence is small compared to the energy of the incoming
photons (the “static approximation”). Furthermore, under
typical experimental conditions, we can replace the scat-
tering operator by its elastic version. This leads to the
central result for the differential signal strength given in
Eq. (16).

We applied this formalism to molecules and obtained
expressions that contain nuclear coherences between different
electronic states. This implies that the diffraction patterns are
not equal to the classical incoherent sum of signals from each
of the involved electronic states, but involve fast-oscillating
“beating” contributions [9]. We argued, however, that in many
situations, these coherences can be neglected, even for closely
spaced electronic states. Employing further results from the
widely used independent atom model, the calculation of
difference diffraction patterns can be condensed into a simple
and appealing form, Eq. (32).

Having established the formalism allows future investi-
gation of new questions. It is, for example, well known
that wave packets created by ultrashort laser pulses can
show strong dispersion. In contrast to vibrational ground
states typically encountered in stationary systems, these wave
packets can easily span distances of several Ångströms. The
impact of this on the obtainable information from diffraction
patterns is basically unknown. Furthermore, we argued that
the nuclear coherence terms can be usually neglected. For
systems composed of light atoms, however, they might show
up in diffraction patterns. Identifying promising systems and
describing the resulting diffraction patterns requires a more
detailed quantitative analysis.
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APPENDIX A: SYSTEMS WITH TIME-DEPENDENT
HAMILTONIAN

In the course of our formal derivations, we required that
the system evolves under a time-independent Hamiltonian,
Eq. (10). In this appendix, we review this restriction. As it turns
out, this restriction can be relaxed to encompass systems driven
by a laser with slowly varying parameters. We first employ
Floquet theory to formally remove the periodic oscillation of
the electric field, then we use the adiabatic theorem to treat
nonperiodic (pulsed) laser fields.

The limit of an overlapping laser and x-ray pulse is
important for two reasons. First, by illuminating molecules
with a laser, we can create nonequilibrium structures that
can then be probed by the x-ray beam. For example, it has
been proposed to align gas-phase molecules with a laser while
scattering off them [11]. Since the distribution of molecular
orientations is then no longer isotropic, this would yield
additional information about the structure. Second, we find
that the final result has the same basic form as in the case
of time-independent Hamiltonians, so if the x-ray pulse and
the excitation pulse happen to overlap, the corresponding
diffraction images do not need to be discarded or treated in
any special way.

1. Floquet theory

Within semiclassical theory and electric-dipole approxima-
tion, the Hamiltonian of a system under the influence of a
continuous-wave laser with amplitude ε0 is

Ĥ (t ; θ ) = Ĥ0 + µ̂ε0 cos(ωt + θ ), (A1)

where Ĥ0 is the time-independent Hamiltonian of the unper-
turbed system, and µ̂ the dipole operator. Our goal is to trans-
form this time-dependent problem into a time-independent
description by using Floquet theory [24–27]. As the basic idea,
the Schrödinger equation with Hamiltonian (A1) is solved for
all initial phases θ simultaneously. For this, one first defines
an enlarged Floquet space [26]

K = H ⊗ L2(S1; dθ/2π ) (A2)

as the direct product of the original Hilbert space H and the
space of square-integrable, 2π -periodic functions of θ . This
space is equipped with a natural scalar product

〈〈ξ |η〉〉 = 1

2π

∫ 2π

0
dθ 〈ξ (θ )|η(θ )〉 . (A3)

The single brackets 〈|〉 denote the scalar product in H. We now
lift the initial state that we wish to propagate, ϕ0(x) = ϕ(x, t0),
to K by

ξ0(θ ) = ϕ0 ⊗ 1θ , (A4)

and propagate ξ0 such that

ϕ(x, t ; θ0) ≡ ξ(x, θ0 + ω(t − t0), t) (A5)
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is the solution when propagating ϕ0 with the Hamiltonian
Ĥ (t ; θ0) from (A1). It can be shown [26] that the propagator ÛK

of ξ is generated by a time-independent Floquet Hamiltonian

K̂(θ ) = Ĥ (t = 0; θ ) − ih̄ω∂θ . (A6)

The time dependence of the original Hamiltonian is hidden
in the mapping K → H for fixed initial phase. To formally
remove this time dependence, we can evaluate expectation
values directly in K. Any operator Â that is independent of the
phase θ can be trivially lifted to the Floquet space. Calculating
the expectation value then gives

〈〈ξ (t)|Â|ξ (t)〉〉 = 1

2π

∫ 2π

0
dθ 〈ϕ(t ; θ )|Â|ϕ(t ; θ )〉. (A7)

Thus, by using Floquet theory, we can formally remove any
periodic time dependence in the Hamiltonian at the cost of
an integration over all initial phases. The scattering of x-ray
photons is described by the scattering operator L̂, which is not
correlated with the excitation laser, so Eq. (5) can be retained
with all scalar products evaluated in K, and propagators
replaced by the Floquet propagators ÛK .

This leaves open the problem of evaluating the phase
average (A7). Qualitatively, the averaging removes laser-
induced oscillations ∼ cos nωt (n ∈ Z), and is therefore often
referred to as averaging over a period of the laser (e.g., [28],
where the derived Hamiltonian can also be obtained from
Floquet perturbation theory [25]).

2. Adiabatic Hamiltonians

Floquet theory itself removes only the periodic time
dependence. In practice, however, we encounter lasers with
a time-dependent amplitude and possibly a chirp, which are
not strictly periodic. In this case, we can separate out the
central frequency as periodicity and write the Hamiltonian in
(A1) with a time-dependent field strength ε0 = ε0(t). While
we can still evaluate Eq. (5) in the Floquet space, and thereby
remove oscillations ∼ cos nωt , the Floquet Hamiltonian is
now time-dependent K̂(θ, t). This leads to a problem, because
the discussion leading to the inelastic result (16) revolved
around an expansion of the wave function in the basis of energy
eigenstates.

To solve this problem, we make use of the adiabatic theorem
[29]. For this, we first expand the wave function in the basis
of instantaneous eigenstates of K̂ in analogy to (10)

|�(t)〉〉 =
∑

i

ci(t)|ϕi(t)〉〉 (A8)

with

K̂(t)|ϕi(t)〉〉 = Ei(t)|ϕi(t)〉〉. (A9)

The transformation to an eigenstate basis was done by inserting
various resolutions of identity into (5). The instantaneous
eigenstates also form a complete set of eigenstates, so we

can do the same here to obtain

∑
ijkl

c∗
i (t)cj (t)

〈
〈ϕi(t)| ÛK

(
t, t + δ

2

)
L̂†

∣∣∣∣ϕk

(
t + δ

2

)〉〉

×
〈〈

ϕk

(
t + δ

2

) ∣∣∣∣ ÛK

(
t + δ

2
, t − δ

2

) ∣∣∣∣ϕl

(
t − δ

2

)〉〉

×
〈〈

ϕl

(
t − δ

2

) ∣∣∣∣ L̂ ÛK

(
t − δ

2
, t

)
|ϕj (t) 〉

〉
. (A10)

If the laser parameters, and thus the Floquet Hamiltonian K̂(t)
change slowly in time with respect to the coherence time
of the beam (i.e., the value of δ), we can use the adiabatic
approximation [29]

ÛK (t ± δ, t)|ϕi(t)〉〉 ≈ |ϕi(t ± δ)〉〉e∓iEi (t)δ/h̄

≈ |ϕi(t)〉〉e∓iEi (t)δ/h̄. (A11)

Inserting (A10) and (A11) into (5) yields

s(q, ω0 − ωs) =
∫

dt I (t)
∑
ijk

c∗
i (t)cj (t)

×〈〈ϕi(t)|L̂†|ϕk(t)〉〉〈〈ϕk(t)|L̂|ϕj (t)〉〉

×F

(
ωs + 1

h̄

[
Ek(t) − Ei(t) + Ej (t)

2

])
,

(A12)

which is just Eq. (11) lifted to the Floquet space, and with
time-dependent energies and states. If the intensity of the
laser is not too strong, and the photon energy not too high,
we can expect the instantaneous Floquet states to be “well-
behaved” and fulfill all important restrictions (e.g., the static
approximation). All derivations can be performed as in the
time-independent case with all expectation values or traces
evaluated in K. Especially, Eqs. (17) and (32) maintain their
form and interpretation.

Note, however, that formally all eigenstates in (A12)
have to change adiabatically, those that are occupied as well as
those that can be occupied due to inelastic scattering events.
Because of the energy scales involved in these scattering
events, the adiabatic approximation (A11) cannot be rigorously
validated in practice but has to be assumed to hold. Also,
we want to point out that although (A12) uses a formally
inconvenient time-dependent expansion of the wave function,
the final representation-independent result (16) still holds.

X-ray scattering from laser-aligned molecules has been
described previously by Ho and Santra [11], who implicitly
used adiabatic Floquet theory by employing the alignment
Hamiltonian of Friedrich and Herschbach [28]. As our formal
approach demonstrates, for the special cases of periodic and
adiabatic perturbations, the scattering theory is not different
from that for time-independent Hamiltonians. Furthermore, we
want to point out that because of our more general formulation
of the diffraction process, we do not need any further
assumptions about the Hamiltonian as in [11]; specifically,
the formalism is equally valid for resonant and nonresonant
laser parameters.
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APPENDIX B: QUALITATIVE EVALUATION
OF MATRIX ELEMENTS

In this appendix, we review the static approximation,
consider the electronic cross terms of Eq. (23), and discuss how
the basic ideas of the IAM can simplify the evaluation of the
inelastic matrix elements in Eq. (28). We use the formalism of
second quantization [30] and drop nuclear and spin coordinates
for easier notation. Given a single-electron basis φp, denoting
the usual creation and annihilation operators in this basis as
â
†
p and âp, and the vacuum state as |0〉, the set of Slater

determinants
|�I〉 = â

†
I1

· · · â†
INe

|0〉 (B1)

forms an orthonormal basis in the space of Ne electrons. We
can expand electronic states in this basis

|λm〉 =
∑

I

c
(m)
I |�I〉. (B2)

The scattering operators can be written as [30]

L̂0 =
∑
pq

Lpqâ
†
pâq, (B3)

L̂
†
0L̂0 = Ne +

∑
pqrs

Lpqrs â
†
pâ†

r âs âq , (B4)

with

Lpq =
∫

d3xφ∗
p(x)eiqxφq(x), (B5)

Lpqrs = LpqL
∗
sr . (B6)

We suppress the summand Ne in (B4) in the following because
it only gives rise to a homogeneous background signal. We also
suppress the subindex 0 from the scattering operators unless
explicitly referring to the elastic scattering operator.

1. Static approximation

In the course of the derivation of the inelastic limit, we
have assumed that matrix elements 〈λk|L̂|λi〉 are zero unless
the energy difference |Ek − Ei | is sufficiently small. This static
approximation can be deduced from qualitative considerations
and inferred from somewhat limited experimental and theoret-
ical data (e.g., [31–35]).

For the qualitative discussion, we assume that each energy
eigenstate is made up of a single Slater determinant. Using the
second quantization prescriptions (B1) and (B3), we obtain for
two different eigenstates or Slater determinants

〈�K|L̂|�I〉 =
{

Lki, if |�K〉 = â
†
kâi |�I〉,

0, otherwise,
(B7)

since the single-particle operator L̂ can only change one
electronic orbital at a time. We can thus restrict the discussion

to properties of the single-electron basis. As a side note,
we want to point out that each of these inelastic matrix
elements is typically much smaller than the corresponding
elastic term 〈�K|L̂|�K〉. That is because Eq. (B7) only
contains contributions from a single electron, while the elastic
matrix element is the sum of the scattering from all occupied
orbitals.

If we choose EI < EK, the orbital φi typically represents
a bound state, while φk is some excited orbital. If EK − EI
is much larger than the binding energy Ei of the bound (core
or valence) orbital φi , then φk is essentially a plane wave
with kinetic energy p2/2me ∼ EK − EI − Eion. The matrix
element

Lki =
∫

d3rei(p+q)rφi(r) (B8)

is the high-momentum component of the bound orbital φi ,
which decays exponentially on a typical scale ∝ √

meEion. As
the density of states only grows with the energy according to a
power law (∝ E1/2 for plane waves), the contribution of states
φk to the summation in (13) decreases exponentially in the
limit of high energies.

In the extreme case, the vectors q and p can point in opposite
directions, from which we obtain a qualitative estimate for the
cutoff

|EK − EI|max = q2

2me

+ 2Ei. (B9)

For typical values of q, the right-hand side of Eq. (B9) varies
from tens to a few hundreds of eV. However, we can obtain
more accurate and reliable values from experimental data or
more elaborate calculations. As these are usually done for the
ground state, we have to assume tacitly that the results will not
change drastically for optically excited states.

The matrix elements |〈λk|L̂|λ0〉|2 occur in the context
of generalized oscillator strengths (e.g., [36] and references
therein) and are observables for inelastic scattering methods,
such as electron energy loss spectroscopy [31]. However,
the focus is often not on convergence properties, and the
experimental data are somewhat scattered. Nevertheless, the
available literature (e.g., [31–35]) also suggests a cutoff of at
most a few 100 eV, which decreases for smaller values of q.

2. Nondiagonal matrix elements of L̂†
0 L̂0

After we introduced molecular systems, we rapidly dropped
the coherence terms that connect different electronic states.
Here, we want to discuss the specific argument that nondi-
agonal terms smn defined in (23) are much smaller than the
diagonal terms smm.

We first calculate the matrix elements of L̂
†
0L̂0 for single

Slater determinants. The result is

〈�K|L̂†
0L̂0|�I〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
q,r,q �=r Lqqrr − Lqrrq, |�K〉 = |�I〉,∑
q �=i Lkiqq + Lqqki − Lkqqi − Lqikq, |�K〉 = â

†
kâi |�I〉, k �= i,

Lk1i1k2i2 + Lk2i2k1i1 − Lk1i2k2i1 − Lk2i1k1i2 , |�K〉 = â
†
k1

â
†
k2

âi2 âi1 |�I〉, k1/2 �= i1/2,

0, otherwise,

(B10)
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where the sums run over all occupied orbitals of determinant
�I. From this equation, we can deduce that the sum for the case
K = I contains N2

e terms, while for different determinants,
we only sum at most over Ne terms. This can be understood
intuitively because at least one pair of creation and annihilation
operators has to lift an electron from an orbital occupied in �I
to another one solely occupied in �K.

We can then calculate the nondiagonal matrix elements for
the electronic states, which might consist of multiple deter-
minants (B2). We also introduce two further approximations
based on (B10):

1. If we assume that the matrix Lpqrs is well balanced,
matrix elements 〈�K|L̂†

0L̂0|�I〉 with I = K will be
significantly larger than for different determinants.
Under this assumption, we can choose to retain only
matrix elements that involve the same determinants I, K.
The error that we introduce by this approximation should
then compare to the signal as 1/Ne.

2. We assume that all Slater determinants give the same
contribution 〈�I|L̂†

0L̂0|�I〉 = F . The underlying idea
is that all important Slater determinants differ only by
a rearrangement of a few valence electrons, which is
insignificant compared to the contribution of the core
electrons. Correspondingly, we would expect the error
to be of the order of the ratio between the number of
valence electrons and the total number of electrons.

With these approximations, we obtain

smn = 〈λm|L̂†
0L̂0|λn〉 =

∑
I,K

c
(m)∗
K c

(n)
I 〈�K|L̂†

0L̂0|�I〉

= F
∑

I

c
(m)∗
I c

(n)
I = 0, (B11)

since the latter expression is just the scalar product between
the two orthogonal electronic states.

We can therefore expect the nondiagonal elements to be
small compared to the diagonal contributions smm unless the
approximations made earlier fail. The approximations might
fail especially for molecules built of light atoms, which have
a large fraction of valence electrons.

3. Independent atom model

The IAM is usually used in the context of elastic scattering.
To apply it to the inelastic contributions, we first point out
the underlying approximations in more detail. For simplicity,
we ignore rotational averaging of the single atomic shells. To
simplify notation, we also drop the index of the electronic
state.

Obviously, as a first step, we have to assign the electrons
to specific atoms. For this, we assume that the single-electron
Hilbert space can be split up into subspaces Hi that are large
enough to hold the wave function of the isolated atom i.
We also assume that all these subspaces can be chosen to
be orthogonal.

It should be pointed out that these two requirements are mu-
tually exclusive. For practical molecular geometries, orbitals
of different atoms have nonzero overlap. The corresponding
subspaces can then not be chosen to be orthogonal and

contain the wave function of the isolated atoms. However,
assuming nonorthogonal subspaces significantly complicates
the following algebra, and as we discuss at the end of this
section, this overlap must be negligible for most orbitals
anyway if the IAM is valid, so we will ignore this detail for
simplicity.

We now introduce an orthonormal basis {φp}p∈N , where
the orbital φp shall belong to the subspace or atom Hi if p is
the element of some set Si ⊆ N. The orbitals are understood
to have a fixed form and to move around with their respective
atoms. That is,

φp(r) = gp(r − Ri), p ∈ Si, (B12)

where Ri is the position of the ith atom, and gp is the fixed
functional form of the atomic orbital.

Next, we define states of the independent atoms as

|ξi〉 = Ĉ
†
i |0〉, (B13)

where Ĉ
†
i is a (sum of) strings of creation operators â

†
p (p ∈ Si).

The electronic structure of the independent atom i shall be
independent of the position of the atom, which requires Ĉ

†
i to

be independent of Ri as well.
With the notation fixed, the IAM can now be formulated as

|λ〉 ≈ |λ′〉 =
(

Na∏
i=1

Ĉ
†
i

)
|0〉. (B14)

Here, Na is the number of atoms in the molecule. Writing out
the scattering amplitude and using the orthonormality of the
atomic subspaces, we can bring this approximation into a more
instructive form

〈λ|L̂0|λ〉 ≈
Na∑
i=1

〈ξi |L̂0|ξi〉, (B15)

that is, the molecular form factor [left-hand side of (B15)] is
the sum of the atomic form factors, where we have not factored
out the atomic coordinates explicitly. Within the IAM, we thus
neglect electronic correlations between different atoms, which
would lead to atomic cross terms.

Some identities that may help with the preceding and further
manipulations are

Lpq(Ri) = Lpq(Ri = 0)eiqRi , p, q ∈ Si, (B16)

[Ĉ†
i , âp]+ = Ĉ

†
i âp + âpĈ

†
i = 0, p /∈ Si, (B17)

[Ĉ†
i , Ĉj ]+ = 0, i �= j. (B18)

The first identity uses (B12) to factor out the geometry-
dependent complex phase from matrix elements; the second
and third relations follow from the orthogonality of the atomic
subspaces.

We now employ (B4), (B5), and (B14) to evaluate directly
the matrix elements smm in Eq. (28):

〈λ|L̂†
0L̂0|λ〉 ≈ 〈λ′|L̂†

0L̂0|λ′〉

=

⎛
⎜⎝∑

i

∑
p,q,r,s∈Si

+
∑
i �=j

∑
p,q∈Si
r,s∈Sj

+
∑
i �=j

∑
p,s∈Si
r,q∈Sj

⎞
⎟⎠

× LpqL
∗
sr〈λ′|â†

pâ†
r âs âq |λ′〉, (B19)
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where we used the orthogonality relation (B17). It ensures
that only those matrix elements contribute, where the creation
operators act on the same subspaces as the annihilation
operators.

The first summand in (B19) only involves orbitals around
a single atom. The geometry-dependent phases of Lpq and
L∗

sr then cancel, so that this contribution is independent of the
nuclear geometry.

The second summand can be shown to be identical to the
elastic term |〈λ′|L̂0|λ′〉|2 [i.e., the first term in (28)] apart from
geometry-independent contributions. To demonstrate this, use
(B15) together with (B17), and compare this to the second
summand in (B19) after insertion of (B14) and extensive use
of the commutation relations (B17) and (B18).

The last summand in (B19) contains matrix elements of
orbitals around different atoms. It is therefore sensitive to the
nuclear geometry but cannot be evaluated without detailed

knowledge of the orbital shapes and the electronic structure of
the single atoms. However, if it would contribute appreciably
to the diffraction pattern, then matrix elements of the form (B6)
and thus products φ∗

p(x)φq(x) with p ∈ Si, q ∈ Sj have to be
significant for many occupied orbitals. In this case, mutual
Coulomb repulsion between electrons of different atoms is
also significant, leading to strong correlations between many
electrons of different atoms and hence to a breakdown of
the IAM. If the IAM level of theory is sufficient to fit the
elastic part of Eq. (29), these correlations can be neglected,
usually because the scattering is dominated by tightly bound,
uncorrelated core electrons. As a consequence, the third
summand in (B19) can then be neglected for the purpose of
x-ray diffraction. The inelastic part of the diffraction pattern
Sinel in Eq. (29) is thus roughly independent of the nuclear
geometry.
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1. Introduction

Almost 100 years ago, Friedrich, Knipping, and Laue published an article [1] in which

they described intensity maxima after sending an x-ray beam through crystals, and

interpreted these in terms of diffraction of x-rays at the atomic sites. Ever since, x-ray

diffraction has been an indispensable tool in determining the atomic structure of matter.

To a good approximation, x-ray diffraction patterns are simple functions of the atomic

species and the relative positions of the nuclei with respect to each other, that is, they

directly encode the nuclear geometry. This is a big advantage of diffraction over most

other techniques, e.g., optical spectroscopy; these usually measure properties of the

electronic structure, and infer the nuclear geometry indirectly from models or extensive

electronic structure calculations.

For a chemist, the natural next step after resolving the structure of reactants and

products in a chemical reaction would be to “film” the reaction itself, which leads to

Time-Resolved X-ray Diffraction (TRXD). In this field, the commonly used technique

is pump–probe difference diffraction. A pump laser initiates the chemical reaction, and

after a specific delay time, the x-ray probe pulse produces a diffraction pattern. From

this time-dependent diffraction pattern, a reference pattern of the unexcited sample is

subtracted to yield a difference pattern; this technique removes all contributions that
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do not depend on the time-dependent nuclear geometry, such as incoherent scattering,

or the scattering from the major portion of the molecules that have not been excited.

The difference patterns, or rather their encoded structures, can then be ordered by the

pump-probe delay time to produce a “molecular movie” of the chemical reaction. While

the use of a pump laser means that only photochemical processes can be studied, this

is to some extend unavoidable; for most reactions, only laser technology provides a fast

enough clocking mechanism.

Alas, up to date, there was a distinct lack of suitable x-ray sources for ultrafast TRXD

experiments. Existing synchrotron sources produce pulses of about 50 picoseconds; this

is fast enough to study, for example, short-lived transient states in liquid ( [2, 3] and

references therein) or crystalline samples ( [4] and references therein). However, many

processes require a sub-picosecond time resolution. While such a time resolution can be

obtained with slicing [5, 6] or plasma sources [7, 8], they only yield a low photon flux,

making such setups unattractive for many experiments.

This situation is expected to change with the availability of X-Ray Free Electron Lasers

over the next few years [9–12]. They will provide x-ray pulses of 100 femtoseconds

duration or less, and with intensities exceeding that of current synchrotron facilities by

orders of magnitude. With the experimental facilities soon to be available, it is the task

of the theoretician to provide support in the design of experiments and interpretation

of results. This aid can take various forms.

On a fundamental level, we can study what information is encoded in time-resolved

diffraction patterns. While this may seem at first like a purely academic exercise, the

need for such studies becomes apparent if we recall that standard textbook derivations

are only applicable for time-independent systems; for example, they employ time-

independent scattering expressions, or assume negligible electric currents (i.e., stationary

systems). Studies of the theoretical foundations of TRXD have been conducted by

various authors [13–21], and mainly differ in the type of systems studied, description of

the interaction, and thoroughness of the derivation.

Most of the results for the difference cross section can be cast into the form

∆
dσ

dΩ
(q, τ) = σT

∫

d3NR ∆¯̺(R(3N), τ) |Fmol(R
(3N),q)|2 (1)

with σT being the classical Thomson scattering cross section from a free electron. q is

the scattering vector (difference of wave vectors of incoming and outgoing photon) and

R denotes the manifold of nuclear coordinates. As a convention throughout this article,

we notate an n-dimensional vector x as x(n), and drop the superscript for n = 3. N

specifies the number of atoms in the molecule. The time-averaged difference density of

nuclear geometries ∆¯̺ as a function of the pump–probe delay time τ is the convolution

of the difference density ∆̺ with the intensity profile I of the x-ray pulse,

∆¯̺(R(3N), τ) =
∫

dt I(t− τ)∆̺(R(3N), t) . (2)

For brevity, we will use the term difference density to denote both of them. Physically,

∆̺(R
(3N)
0 , t)d3NR is the difference probability of finding a molecule whose molecular
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geometry is in an infinitesimal volume d3NR around R
(3N)
0 . The squared molecular form

factor |Fmol|
2 specifies the signal for a fixed nuclear geometry. Within the independent

atom model, it can be written in terms of the atomic form factors fa and bond vectors

Rab as

|Fmol(R
(3N),q)|2 =

N
∑

a,b

f ∗

a (q)fb(q) eiqRab (3)

Equation (1) has a close resemblance to ordinary x-ray diffraction; the result from

time-independent theory can essentially be obtained by replacing the time-dependent

difference density with the time-independent density of the stationary system. However,

there are distinct differences in the interpretation of the results.

In stationary molecules, the electronic potential energy surface usually exhibits one (or

more) deep wells that correspond to stable geometries, and the nuclear density is strongly

localized at these minima. It is then permissible to replace the density distribution by a

delta-function (or sum thereof); this removes the integration in (1), and the diffraction

pattern is basically the molecular form factor (or a sum of such form factors) for the

well-defined molecular structure(s). This approximation is not always possible, though.

In bulk liquids, for example, the distance between two atoms of the same species is not

well-defined, and it is more useful to operate with distribution functions instead (see,

e.g., [3]).

In general, we expect the approximation of well-defined molecular geometries to fail

in TRXD experiments, even at T = 0K. One reason is apparent from (2): the finite

duration of the x-ray pulse smears out all dynamics. On a more fundamental level,

however, the wave function of the nuclear coordinates that has been excited by the

pump laser is no longer in the minimum of a deep potential well. As a result, we observe

quantum-mechanical wavepacket dispersion (see for example [22–24]); the difference

density becomes delocalized, and an x-ray diffraction measurement yields a whole

distribution of molecular structures.

Another wave function aspect that is different from typical time-independent diffraction

is alignment of molecules, where for example the pump laser preferentially excites

molecules that are aligned with respect to the polarisation axis. Typical difference

densities on ultrashort timescales then consist of contributions from the excited wave

function, and from the “hole” due to the depletion of the ground state, both of which

are partially aligned with respect to the laser polarisation axis.

In section 2, we review and discuss the processing of anisotropic diffraction patterns.

Sections 3 and 4 presents the details and the results of our calculation on NaI excited

from the ground state by a uv laser. These calculations serve to illustrate the procedures

and caveats detailed before. Our findings are summarized in section 5, and an outlook

for further research is presented.
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2. Anisotropic distributions

Anisotropic diffraction patterns have been analysed in several previous studies. For

diatomic molecules, the inversion of the diffraction pattern has been studied by Ben-

Nun et al. [14]. In another paper, Cao and Wilson [15] studied the inversion from a

cylindrically symmetric sample assuming constant atomic form factors. Several formulas

in these articles are related to those we present here. However, for polyatomic molecules,

it is rather difficult to generalise the procedure in [14], or the approximations are

too crude, and it is difficult to assign a simple physical picture to the internuclear

distribution function in [15].

Alternatively, we note that the formalism of x-ray and electron diffraction is identical

within the independent atom model. For a systematic treatment of the class of

symmetric top molecules, we can then draw on experience from the field of ultrafast

electron diffraction. Kohl and Shipsey [25] calculated diffraction patterns from molecules

selected to be in specific rotational quantum states. Similar to our own interest,

the Zewail group studied diffraction patterns arising from aligned ensembles [26, 27],

which resulted in a systematic description of the anisotropies [28]. In the following, we

summarize their derivations, and discuss the obtained results in some depth.

Throughout this text, we will use the integral notation (1). This is in contrast to [25–28],

where the averaging procedure is mostly hidden in brackets. Although this introduces

some overhead in the notation, we think that the manipulations in this section are more

transparent when formally applied to a density distribution.

We restrict our attention to symmetric tops (which includes linear molecules as a special

case) that are excited by a linearly polarized laser pulse from a thermal ensemble.

This already encompasses experiments on a range of symmetric molecules, see for

example [2, 4, 25, 28]. We further only consider the case where the transition dipole

moment (i.e., the molecule-fixed vector that is aligned) is parallel to the symmetry axis.

The difference density can then be decomposed exactly as (see the appendix)

∆¯̺(R(3N), τ) = ∆¯̺(θ, r(3N−6), τ) =
∑

n even

Pn(cos θ) ∆¯̺n(r(3N−6), τ) (4)

where Pn are the Legendre polynomials, and r denotes the internal coordinates of the

molecule (i.e., excluding centre of mass (CM), and rotational coordinates) in a molecule-

fixed frame. For linear molecules, there are 5 CM and rotational coordinates; to keep

the discussion simple, we only consider the general nonlinear case in the following. The

angle θ is defined in figure 1. Note that the difference density depends only on one

of the three Euler angles. Terms with odd n are antisymmetric under space inversion,

and give no contribution when calculating the diffraction pattern (1), so we drop them.

Using the orthogonality of the Legendre polynomials, the inverse relation reads

∆¯̺n(r(3N−6), τ) =
2n+ 1

2

∫ π

0
dθ sin θ ∆¯̺(θ, r(3N−6), τ) Pn(cos θ) (5)

Note that here and in the following, we always drop the integration over the two

remaining Euler angles, and the CM coordinates. As the difference density is



On the interpretation of time-resolved anisotropic diffraction patterns 5

D
E

q

θ θq
b

a
D

ab
ϑ

Figure 1. Definition of the various angles used in the formulas. Left image: angles

defined in the laboratory-fixed frame. The z-axis is defined by the laser polarisation

vector E. Right image: angles defined in the molecule-fixed frame. The z-axis in this

frame is given by the transition dipole vector D, which is assumed to be parallel to

the symmetry axis of the symmetric top.

independent of them, these integrations just give rise to additional normalisation factors;

however, we always have to carry the sin θ-factor from the Jacobi determinant around.

As detailed in [25,28], a difference density of the form (4) leads to a difference diffraction

signal (1) of the form

∆
dσ

dΩ
(q, τ) = ∆

dσ

dΩ
(q, θq, τ) = 2(2π)2σT

∑

n even

(−1)n/2Pn(cos θq)Sn(q, τ)(6)

with

Sn(q, τ) =
N
∑

a,b

f ∗

a (q)fb(q)
∫

d3N−6r ∆¯̺n(r(3N−6), τ) Pn(cosϑab)jn(qrab) (7)

in terms of spherical Bessel functions jn, and with rab as the distance between atoms

a and b and ϑab the angle between the ab-vector and the transition dipole moment as

defined in figure 1. At this point, the link between the integration and the variables rab,

ϑab is somewhat opaque; we will detail the integration scheme later on.

In the simplest anisotropic case, we only consider the terms n = 0, 2, and the density is

a second-order polynomial of cos θ. This is what we get whenever we excite molecules

from thermal equilibrium by one-photon absorption [29]. The diffraction pattern (6) is

then a simple sum of S0 (the “isotropic” curve), and S2 (the “anisotropic” curve). If we

consider a fixed delay time τ and a fixed length of the scattering vector q, we can assign

each detector pixel on the resulting circle a value of P2(cos θq) and a value of ∆dσ/dΩ.

The decomposition of ∆dσ/dΩ into S0 and S2 turns into a simple linear fitting problem,

whose slope gives the anisotropic, and whose y-intercept gives the isotropic curve [14].

Alternatively, we can obtain the isotropic signal by “magic angle detection” [28]. If

the angle α between the incoming x-ray beam and the laser polarisation axis fulfills

cos2 α = 1
3
, the isotropic signal can be obtained by directly integrating over the azimuthal

angle on the detector plate.
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Up to now, we have merely rewritten the general equation (1). To grasp the full potential

of (6), (7), we now turn our attention to the density components ∆¯̺n and their relation

to some “fundamental” density distributions.

2.1. Density distributions

Whenever a molecule interacts with a photon, its rotational quantum number changes.

During the laser-matter interaction, a molecule that starts out with a well-defined

rotational quantum number becomes an ensemble (coherent superposition) of states

with different rotational quantum numbers. These quantum numbers influence the

subsequent time evolution through ro-vibrational coupling (e.g., centrifugal distortion).

However, in many practical applications, this coupling can be neglected. That is, the

rotational motion of the molecule and its internal evolution are uncoupled, and we can

approximate

∆¯̺(θ, r(3N−6), τ) = ̺rot(θ, τ) ∆¯̺vib(r
(3N−6), τ) (8)

We have to extend this ansatz in the case of multiple species, where we understand

species as well-defined, mutually distinguishable configurations that contribute to the

signal. For example, there might be a “hole” term (depletion of the stable ground state)

and an excited state wavepacket, both of which exhibit different rotational motion due

to different moments of inertia (see also the example of NaI in the subsequent sections).

We assume in analogy to (8) that for each well-defined species S, the rotational motion

and internal evolution are uncoupled, so that we can write

∆¯̺(θ, r(3N−6), τ) =
∑

S

̺S
rot(θ, τ) ∆¯̺S

vib(r
(3N−6), τ)

=
∑

S

∑

n even

Pn(cos θ)cSn(τ) ∆¯̺S
vib(r

(3N−6), τ) . (9)

Comparison with (4) show that each density component ∆¯̺n is built up from

fundamental “vibrational” difference densities ∆¯̺S
vib that describe the time-dependent

structure of the single species, and (real-valued) coefficients cSn that arise from an

expansion of the angular distribution in Legendre polynomials, and thus describe the

angular distribution of the species. If we do not know the exact angular distribution,

these coefficients appear as additional fitting parameters.

With this in mind, we can construct a general analysis procedure for the class of

anisotropic diffraction patterns presented here. We first use (6) to decompose the two-

dimensional diffraction pattern ∆dσ/dΩ into a set of one-dimensional diffraction curves

Sn. In a second step, we guess the vibrational difference densities and coefficients, and

build up the single density components ∆¯̺n via (9). This guess is compared to the

diffraction curves (7), and subsequently improved through some iterative scheme. For

the special case of diatomics, the scattering curves can be directly inverted, see (19)

below.
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We point out that (6), (7) contains the special case of isotropic densities, where only

the n = 0 term contributes. The diffraction pattern (6) is isotropic, and if we write out

the Legendre polynomial and spherical Bessel function in (7), the isotropic scattering

curve is given by

S0(q, τ) =
∫

d3N−6r ∆¯̺0(r
(3N−6), τ)

N
∑

a,b

f ∗

a (q)fb(q)
sin(qrab)

qrab
(10)

which is the well-known Debye formula for isotropic ensembles [30] (where again the

integration is often suppressed).

From the case of purely isotropic signals we can extract a number of relations that

are also useful for anisotropic patterns. Using distributions ̺S
rot with norm 1 and the

orthogonality of the Legendre polynomials, we obtain

cS0 (τ) =
1

2

∫ π

0
dθ sin θ ̺S

rot(θ, τ)P0(cos θ) =
1

2
(11)

This is just the trivial result that for an isotropic distribution, we do not have to care

about molecular rotation. Furthermore, we can calculate the difference probability

density ∆Γ of finding a specific molecular structure, that is, a certain value of r(3N−6),

by integrating ∆¯̺ over the remaining angular degree of freedom

∆Γ(r(3N−6), τ) =
∫ π

0
dθ sin θ ∆¯̺(θ, r(3N−6), τ) =

∑

S

∆¯̺S
vib(r

(3N−6), τ)(12)

where we used (5), (9) (with P0(x) = 1), and (11). The vibrational difference densities

∆¯̺S
vib are thus exactly the difference probability distributions of the molecular structures

for the corresponding species S.

Equations (11), (12) are, in fact, valid for arbitrary difference densities. The

orthogonality of the Legendre polynomials ensures that all but the isotropic components

(cS0 ,∆¯̺0) vanish during the θ-integration. This leads to an important conclusion: If we

decompose the signal according to (6), and focus only on the isotropic component S0, we

can ignore the rotational coefficients, and interpret the resulting density as a (difference)

probability distribution, that is, we can process the curve S0 and interpret the results as

if we had an isotropic ensemble in the first place.

In the theory involving isotropic ensembles, (10) is often recast in a form that

involves atom-pair–distribution functions (see, e.g., [3]), which removes the cumbersome

integration over r(3N−6). We first calculate the difference probability density ∆Γab for

the distance between atoms a, b being r0. In the spirit of (12), we take the probability

density of finding some structure r(3N−6), and integrate it over all internal coordinates

except the ab distance. Formally, we choose the internal coordinates to be the spherical

coordinates ϑab, φab, rab of the ab vector, and some 3N − 9 other internal coordinates

xab, and obtain

∆Γab(r0, τ) = r2
0

(

∫ π

0
dϑab sinϑab

∫ 2π

0
dφab

∫

d3N−9xab

∑

S

∆¯̺S
vib(ϑab, φab,x

(3N−9)
ab , τ ; rab = r0)

)

= r2
0 ∆gab(r0, τ) (13)
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thereby defining a difference pair distribution ∆gab of the ab distance. The same

integration scheme can be used to evaluate (10), and we can express the signal through

the pair-distribution functions as

S0(q, τ) =
N
∑

a,b

f ∗

a (q)fb(q)
∫

∞

0
dr r2 ∆gab(r, τ)

sin(qr)

qr
. (14)

Note that pair-distribution functions can be defined in different ways. To reduce the

number of summands, the sum sometimes only runs over all atom types, and the

distribution function is defined per pair of atom types. In liquid scattering experiments,

it is more convenient to convert the pair distribution into a dimensionless quantity called

the radial distribution function [3].

The concept of using the spherical coordinates of the ab vector for the integration, and

hiding most integrations in the definition of some distribution function can be extended

to the anisotropic components. From (7) and (9), we obtain

Sn(q, τ) =
N
∑

a,b

f ∗

a (q)fb(q)
∫

∞

0
dr r2

∫ π

0
dϑ sinϑ

×
(

∑

S

cSn(τ) ∆gS
ab(r, ϑ, τ)

)

Pn(cosϑ)jn(qr) (15)

where the species-dependent angle-resolved difference pair distributions ∆gS
ab are

∆gS
ab(r, ϑ, τ) =

∫ 2π

0
dφab

∫

d3N−9xab ∆¯̺S
vib(φab,x

(3N−9), τ ; rab = r, ϑab = ϑ)(16)

Note that we now have one pair distribution per species in (15), while we had a single

pair distribution in (13). This is caused by the different species having different angular

distributions, which we account for by the rotational coefficients. Only if all species

have the same angular distribution, or if all rotational coefficients are identical, can we

sum up the species-dependent pair distributions to a global pair distribution.

Finally, we want to remark that the method presented here might only be feasible for

weak alignment, as induced by few photon absorption. The stronger the alignment,

the higher the order of the Legendre polynomials that appear in the decomposition (4),

(6). Especially in the case of multiple species, this leads to a large number of rotational

coefficients that, in general, have to be guessed.

2.2. Direct inversion

In the following, we study the behaviour of the single density components ∆¯̺n of NaI.

NaI has the internuclear distance r as the single internal coordinate, which greatly

reduces the complexity. Also, the relevant transition dipole moment is parallel to

the molecular axis, so that Pn(cosϑNaI) = 1. Choosing real atomic form factors for

convenience, (7) simplifies to

Sn(q, τ) = 2f1(q)f2(q)
∫

dr r2 ∆¯̺n(r, τ) jn(qr) . (17)
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For a diatomic, it is possible to invert the scattering curves directly to obtain ∆¯̺n(r, τ).

The spherical Bessel functions have an orthogonality relation [33]
∫

∞

0
dq q2jn(uq)jn(vq) =

π

2u2
δ(u− v), (18)

so that, up to constant factors,

∆¯̺n(r, τ) =
∫ qmax

0
dq q2 Sn(q, τ)

f1(q)f2(q)
jn(qr) e−kq2

(19)

(a related formula is (30) in [15]). Since real-world data is only collected for q ≤ qmax <

∞, the inverted density using [0, qmax] for the integral boundaries exhibits high-frequency

oscillations, which are here suppressed by applying the exponential factor with k > 0.

Again, applying this to the isotropic contribution (n = 0) gives the well-known inversion

formula for isotropic samples [26].

For isotropic distributions, the inversion formula can also be used for studying

polyatomic molecules [26–28, 34]. Let us assume that all atomic form factors have

the same functional form, fa(q) = Zaf(q), with Za the number of electrons of atom

a, insert (14) into (19) and use (18). We obtain up to constants the expression
∑

a,b ZaZb∆gab(r, τ). This function has a peak or dip whenever r roughly equals some

relevant atom-atom distance that has been established (peak) or removed (dip) during

the excitation. While the underlying assumptions are too crude for a quantitative

analysis, this inversion is still useful for qualitative estimates of the dynamics.

Direct inversion schemes have also been applied previously to anisotropic diffraction

patterns. In [27], a mixture of S0 and S2, which is obtained when the laser polarisation

axis is parallel to the incoming beam, was inverted using (19) with n = 0. In [28],

the same procedure was applied to the diffraction pattern along specific lines on the

detector (roughly corresponding to different values of θq) [28]. As is shown in the

references, these procedures can lead to artefacts in the resulting distribution functions,

such as predicting breakage of non-existent bonds.

Therefore, we should always decompose the diffraction pattern into the single curves Sn,

and then invert the isotropic signal using j0, and the anisotropic signal using j2, where

care has to be taken when interpreting the latter. Comparison with (15) shows that

the inversion procedure extracts not only a sum of the angle-resolved difference pair

distributions, but also includes contributions from the ϑ-integration and the rotational

coefficients, both of which can change the amplitude and sign of the single peaks.

3. The NaI molecule

To illustrate the general decomposition outlined in the last section, we have calculated

the dynamics of NaI excited by a uv photon. The relevant potential energy surfaces

and nuclear dynamics of NaI after photo-excitation are shown in figure 2. We chose NaI

because it is an extensively studied molecule [22–24, 35–37], and because the excited
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Figure 2. Potential energy surfaces and sketch of the relevant nuclear motion of NaI.

By absorbing a uv photon, NaI is vertically excited from the X1Σ+ ground state to the

A1Σ+ first excited state, which exhibits a shallow minimum. The nuclei then vibrate

on the excited state surface with bond distances ranging from approximately 3 to 12 Å.

Through the avoided crossing at 7 Å, parts of the wave packet can make a transition

to the electronic ground state, and dissociate.

wave packet oscillates with large amplitudes, so we can easily distinguish the two species,

which are the excited state, and the depleted ground state (the “hole”).

We used the WavePacket program package [38] for the calculation, which comes with

potential energy curves, and dipole moments for NaI based on [36]. The wave function as

function of the bond vector R was expanded into radial wave functions ψl, and Legendre

polynomials as

Ψ =
∑

e

Ψe(R, t) |e〉 =
∑

le

ψle(r, t)

r
Pl(cos θ) |e〉 (20)

where the bracket notation is used for the electronic coordinates, or states. The

rotational ground state is symmetric under a rotation around the laser polarisation

axis, and this symmetry is preserved on excitation with a linearly polarized laser, so we

drop the azimuth angle.

From this expansion, we obtain the nuclear density by integrating over the electronic

coordinates

̺(R, t) =
∑

e

|Ψe(R, t)|
2 =

∑

n

̺n(r, t)Pn(cos θ) . (21)

which is the form (4) we used for the analysis in the last section. In general, the

density components ̺n depend on the radial wave functions ψle in a non-trivial manner.

However, for the lowest-order perturbation from the rotational ground state, they can

be calculated analytically (see next the section).
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In the electric dipole approximation for the molecule-field interaction, the Hamiltonian

can be written as

Ĥ = Ĥ0 + ε(t)µ̂(r) cos θ (22)

where the field-free Hamiltonian Ĥ0 conserves the rotational quantum number l, and

the dipole operator in the second term is responsible for the initial switching of the

electronic state with an amplitude depending on the internuclear distance r and the

electric field strength ε.

The molecule was initially placed in the electronic, vibrational, and rotational ground

state by a propagation in imaginary time [39]. It was subsequently excited by a laser

with a wavelength of 328 nm (this value was taken from previous calculations [23, 24]),

a sin2 shape with 10 fs FWHM, and an intensity of 1011 W/cm2. The propagation was

carried out by employing a Gauss-Legendre DVR in θ, and a plane-wave expansion for

the radial wave functions, and using the split operator method for the time evolution

as detailed in [40]. For simplicity, we carried out the propagation non-perturbatively;

however, the laser intensity was chosen such that first-order effects dominate, that is,

only the terms with n = 0, 2 contribute in (21). The details of the calculation, and the

scripts used for data processing can be found in a supplement to this article.

We note in passing that the valence electron in NaI undergoes a substantial

reorganisation whenever the internuclear distance passes the avoided crossing [24].

This, however, does not invalidate the independent atom model used to represent the

molecular electron density, since the vast majority of the electrons can be considered as

core electrons associated with a specific atom.

4. Results

4.1. Dynamics of laser-excited NaI

Figure 3 shows the isotropic and anisotropic difference density of NaI calculated via

equation (5). We can immediately identify several features that we discussed earlier. We

have two well-defined species: the oscillating excited state wave packet and the ground

state “hole”, which shows minor vibrations. Qualitatively, both difference densities are

similar, and encode the same “fundamental” time evolution. We can also see that the

hole contribution changes sign in ∆¯̺2 at τ = 1.5 ps. From the discussion in section

2, especially from comparing (9) with (21), we recall that the density components for

each species contain some universal vibrational density, and a rotational coefficient that

describes the orientation of the species. In our calculation, the sign change of the

anisotropic density component comes from a sign change of chole
2 , that is, a change of the

rotational distribution of the hole. This does not happen to the excited state wavepacket,

thus emphasizing the need to assign different rotational coefficients to different species.

We can deduce from (22) that the excitation is proportional to cos θ on the wave function,

and cos2 θ on a density level. In a simple “classical” picture, we can interpret this such

that the laser excites the molecules ∼ cos2 θ, and leaves a “hole” in the ground state
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Figure 3. Isotropic ∆¯̺0(r, τ) (left) and anisotropic ∆¯̺2(r, τ) (right) difference density

(in arbitrary units) weighted by r2 as a function of the pump–probe delay time τ and

internuclear distance r.

∼ − cos2 θ. In the lowest order perturbation, only the states l ≤ lmax = 2 contribute,

which gives a smallest rotational period of T = 2πh̄/Blmax(lmax + 1) ≈ 45 ps. However,

the quantum-mechanical calculation suggests significant rotation of the hole already

after 1.5 ps, which demonstrates that this simple picture is wrong.

4.1.1. Interpretation of the dynamics A deeper physical insight into this process can

be obtained by analysing the NaI dynamics with an analytic model. In a perturbation

theory interpretation, the molecule is always subject to the field-free Hamiltonian, and

interacts with the electric field at a random time once, and at two random times for

second-order effects. With this in mind, we can explicitly write down expressions for

the difference density. For simplicity, we neglect the non-adiabatic transition, so that

Ĥ0 propagates each radial wave function ψle independently.

If the laser is turned off, the molecule remains in the electronic, vibrational, and

rotational ground state, that is

Ψoff(R, t) =
ψGS(r, t)

r
|X〉 . (23)

ψGS denotes the vibrational ground state function, whose sole time-dependence is a

complex phase. The corresponding nuclear density is

r2̺off(R, t) = |ψGS(r)|
2 P0(cos θ) . (24)

If the laser is turned on, and we assume no significant rotation during the laser pulse,

the wave function at the end of the laser pulse te can be written up to second order as
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Ψon(R, te) =
1

r

[

a0ψGS(r, te)|X〉 + a1ψexc(r, te) cos θ|A〉

+ a2ψhole(r, te) cos2 θ|X〉
]

. (25)

A major portion of the wave function is not excited at all, and stays in the original ground

state ψGS. By absorbing a photon, the molecule can switch to the excited electronic

state and move on the corresponding surface, which is described by the wave function

ψexc. Due to the form of the interaction Hamiltonian, it acquires an angular factor of

cos θ. After the molecule is excited, it may become deexcited by emitting a photon,

thereby falling back to the electronic ground state. The resulting wave function ψhole is

the result of a two-photon process, and consequently has an orientation dependence of

cos2 θ.

For easier comparison of the magnitude of various terms, we have split up each

contribution into a complex-valued, normalized wave function ψi, and a real-valued

coefficient ai. If the one-photon excitation probability is given by p≪ 1, then we would

expect a2
0 ≈ 1 − p, a2

1 = p, and a2
2 ≈ p2, since the two-photon process arises from

deexcitation from the excited subset of the wave function. However, the interference

term between ψhole and ψGS scales with a0a2 ≈ p, and thus has the same order of

magnitude as the wave function on the excited state surface. In fact, this term describes

the detailed dynamics of the created hole in the ground state, and has to be included

for a correct treatment.

As the field-free Hamiltonian does not couple states with different rotational quantum

numbers, we rewrite (25) using Legendre polynomials, and obtain an expression that is

valid for times t > te

Ψon(R, t) =
1

r

[

a0ψGS(r, t)P0(cos θ)|X〉 + a1ψexc(r, t)P1(cos θ)|A〉 (26)

+
a2

3
ψhole,0(r, t)P0(cos θ)|X〉 +

a2

3
ψhole,2(r, t)P2(cos θ)|X〉

]

where ψhole,0(r, te) = ψhole,2(r, te) = ψhole(r, te) from (25), and with separate time

dependencies for each radial wave function. Using (24) and (26), we can now calculate

the difference density. The expansion (21) into Legendre polynomials can be done

analytically, and we obtain the expression

r2∆̺(R, t) = r2∆̺0(r, t)P0(cos θ) + r2∆̺2(r, t)P2(cos θ) (27)

with the isotropic difference density

r2∆̺0(r, t) =
a2

1

3
|ψexc(r, t)|

2 + (a2
0 − 1)|ψGS(r)|

2 +
2a2

3
ℜ
[

ψ∗

hole,0(r, t)ψGS(r, t)
]

(28)

and the anisotropic difference density

r2∆̺2(r, t) =
2a2

1

3
|ψexc(r, t)|

2 +
4a2

3
ℜ
[

ψ∗

hole,2(r, t)ψGS(r, t)
]

, (29)
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In deriving these, we only collected terms up to order p, and approximated a0a2 ≈ a2.

The first term in (28) and (29) describes the wavepacket corresponding to the

excited state species. It performs the large amplitude oscillations in figure 3, and

one readily observes that the contribution is identical for both difference density

components. The remaining terms describe the hole; the second term in (28) describes

the static population depletion of the ground state, and gives a negative contribution

to the difference density around r = 3Å, while the last terms are the coherence or

interference terms between the unexcited ground state wave function, and the second-

order perturbed wave function. If we assume for the moment that the latter is a real

eigenstate ψx of the unperturbed Hamiltonian, we can write

ℜ
[

ψ∗

x(r, t)ψGS(r, t)
]

= ℜ
[

ψx(r)ψGS(r) eiϕx+i(Ex−EGS)t/h̄
]

= 2ψx(r)ψGS(r) cos
[

(Ex −EGS)t/h̄+ ϕx

]

. (30)

The product of the two stationary wave functions gives some characteristic density

distribution, which then oscillates in time as described by the cosine. The hole wave

functions can be expressed as the result of an absorption of a photon from the ground

state, propagation on the excited state surface for a certain time, and subsequent

emission of the photon. Consequently, the phase ϕx is an arbitrary number that depends

on the details of the system and the excitation process.

In general, the hole wave functions ψhole,i can be written as sums of eigenstates, and the

full time-dynamics are a superposition of single interference terms of the form (30). In

our calculation, we found the most important contributions to ψhole,i to be the vibrational

ground state and first excited state ψ0, ψ1 (we neglect ro-vibrational coupling that would

make these states dependent on the rotational quantum number).

Let us first consider the isotropic coherence terms in (28). Since we started in the

vibrational ground state, ψ0ψGS = |ψGS|
2, and E0 = EGS. Consequently, the coherence

term ∼ ψ0ψGS is time-independent, has the same form as the depletion of the ground

state, and effectively only serves to modify the prefactor of the second term in (28). The

product ψ1ψGS, in contrast, is a function with one node, and localized around r = 3Å.

The energy difference E1−EGS is about 32 meV for NaI, corresponding to an oscillation

of 130 fs duration. This interference term causes a small oscillation of the difference

density around r = 3Å in figure 3. However, the overall difference density remains

negative at all times due to the ground state depletion.

Essentially the same oscillation is seen in the anisotropic difference density, which we

can also trace back to the interference between ψGS and the first vibrationally excited

state in (29). We also find ψ0ψGS = |ψGS|
2, which gives a contribution similar to the

depletion of the ground state in the isotropic difference density. However, since ψhole,2

describes the time evolution of the rotationally excited wave function, the time evolution

contains an additional rotational energy term, so that El=2
0 −EGS is now approximately

0.1 meV, corresponding to a slow oscillation of 45 ps duration.
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Figure 4. Left: Calculated two-dimensional difference diffraction pattern in arbitrary

units for NaI at a pump-probe delay time of 500 fs. The laser polarisation axis and the

wave vector of the x-ray beam are perpendicular to each other, and the projection of

the polarisation axis is vertical in the image. Middle: Plot of ∆dσ/dΩ as a function of

P2(cos θq) (q = 1.5Å−1, points correspond to those of the left image). Right: Isotropic

and anisotropic curves Sn(q, τ) encoded in the two-dimensional pattern. Also shown

is the result from an azimuthal integration over the detector surface.

That means, ∆̺2 has a contribution of the form c2(t)|ψGS|
2, where the prefactor c2

comes from the cosine in (30), and oscillates slowly. From (9), it is then natural to

assign −|ψGS|
2 to the vibrational difference distribution of the hole species, c2(t) to the

rotational coefficient, and describe the slow oscillation as the rotation of the hole.

We can then wonder what the rotational distribution of the hole at the end of the laser

pulse is. Obviously, from (30), this is determined by the value of ϕl=2
0 , which in turn

depends on the molecule and the laser parameters. That is, while the hole species rotates

with an overall period of 45 ps, the initial orientation is determined by the details of

the excitation process. For our calculation, we found a phase shift of slightly less than

−π/2, so the hole starts out weakly aligned with the polarisation axis, and the sign of

the interference term changes the first time after only 1.5 ps.

4.2. X-ray diffraction from laser-excited NaI

For all results, we assumed an x-ray beam with a sin2-pulse shape, and a half-width of

100 fs, which should roughly correspond to the situation at the Linear Coherent Light

Source (LCLS) including timing jitter [10]. Atomic form factors were taken from [41].

A typical diffraction pattern is shown in figure 4. As detailed in section 2, this rather
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Figure 5. Inversion of the diffraction signal at a pump–probe delay time of 1650

fs. (a): Difference diffraction curves for the isotropic and anisotropic signal; (b):

comparison between the original isotropic difference density r2∆¯̺0 and the inversion

via (19); (c): same for the anisotropic density r2∆¯̺2. The upper curve is the original

difference density, the other curves are reconstructions with different values of qmax

and k.

complex pattern is built up from two diffraction curves (here calculated from (17)), which

encode the internal dynamics of the two species, and their rotational coefficients. From

section 2, equation (6), we know that for one-photon excitation, the difference signal

is up to constant factors given by ∆dσ/dΩ = S0(q) − P2(cos θq)S2(q). Consequently, if

we keep q fixed, and look at different pixels corresponding to different θq (crosses for

q = 1.5Å−1), we can plot the cross section as a function of P2(cos θq), and obtain S0(q)

and S2(q) from the offset and negative slope, respectively.

Using this procedure for all q gives the two scattering curves. In the case of noisy

experimental data, a least squares fit should also yield some measure for the error of the

diffraction curves. The isotropic curve can be compared with various approximations,

such as an azimuthal integration over the detector plane, which gives surprisingly good

results (see [28] for a discussion of this and other approximation schemes). However,

we want to point out that the correct decomposition itself is simple enough, so one can

easily avoid the loss of accuracy inherent in the approximate scheme.

Formally, we can assign each detector pixel a value of q and θq, where the latter

depends on the angle between the wave vector of the incoming x-ray beam and the

laser polarisation axis. Consequently, we get different diffraction patterns if we vary

this angle. However, this only affects how well we can decompose the pattern into the

single curves Sn, the curves themselves are independent of the experimental setup. For

the figures presented here, we assumed a perpendicular setup where the anisotropy is
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most pronounced.

In figure 5, we compared the real difference densities to an inversion from the diffraction

data using (19). We used a pump–probe delay time of 1650 fs because the vibrational

interference pattern is most pronounced in the anisotropic difference density at this time.

We assumed LCLS beam parameters of 8 keV photon energy; with a maximum scattering

angle of 60 degrees, only scattering vectors up to q ≈ 4Å
−1

are collected. We find that

this range of scattering vectors is too small to resolve, in particular, the vibrational

interference terms, whereas perfect agreement with the original density distribution is

obtained with a larger range of scattering vectors as indicated in the figure.

Up to now, we have only studied NaI in the rotational ground state. In practice, one

usually starts with a Boltzmann distribution of initial rotational states. However, our

basic findings still hold in this case. The orientation of the hole is still determined by an

interference term between the unexcited molecular wave function, and a second-order

wave function, and the phase between them (i.e., orientation of the hole) depends on the

detailed dynamics of the latter. We also find two additional effects that do not occur in

the ground-state calculation.

First, we point out that if the molecule absorbs a photon in the rotational ground state,

the resulting excited state wave function ψexc consist of a single rotational quantum

state with l = 1; the density |ψexc|
2 is always preferentially oriented towards the laser

polarisation axis. This is a special case; for a nonzero initial rotational quantum number

l0, ψexc is composed of contributions with l0 + 1 and l0 − 1. As a consequence, its

contribution to the difference density also includes rotational interference terms, and

the anisotropic density can show amplitude or sign changes that we can interpret as

rotation of the excited molecule.

A second effect that we expect to occur is rotational dephasing [27,31,34]. The rotational

interference terms for ensemble members with different initial angular momentum

oscillate with different time scales. When performing the ensemble average some time

after the excitation, the different anisotropic contributions typically cancel. In effect,

the diffraction pattern becomes almost isotropic on a timescale of few picoseconds with

alignment revivals at certain times.

5. Conclusions

Whenever we excite molecules with a linearly polarized laser, we prepare anisotropic

ensembles. When we probe the subsequent sub-picosecond dynamics with TRXD, the

resulting difference diffraction patterns also show a pronounced anisotropy. It has

been demonstrated that such signals can be decomposed into an isotropic and one

or more anisotropic diffraction curves. For alignment through one-photon absorption,

the decomposition turns into a linear fitting procedure, and gives an isotropic and an

anisotropic curve. These curves can be processed independently of each other, and they

encode the same basic information about the non-equilibrium molecular structure.

The isotropic curve is described by the usual Debye formula [30], and gives the same
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signal as we would obtain from an isotropic ensemble. The anisotropic curve contains

additional coefficients that describe the rotational distribution of the molecule, which

makes data extraction more difficult. On the other hand, it is related to an angle-resolved

pair distribution, that is, it also includes explicit information about the orientation of

the single bonds with respect to the transition dipole moment, which might be used to

supplement the information extracted from the isotropic curve.

We have calculated the diffraction patterns and difference densities for the diatomic NaI

molecule excited from the rotational, vibrational, and electronic ground state. We have

demonstrated both numerically and analytically that the density distribution can be

extracted through an exact inversion procedure.

By interpreting the dynamics with a simple analytic model, we could explicitly

demonstrate that the orientation of the hole species is strongly dependent on the details

of the excitation process. This should serve as a warning that the orientation of the

single species cannot be guessed from simple models that omit quantum-mechanical

interference terms (for example, equation (32) in [28] assumes that, when molecules are

preferentially excited along the laser polarisation axis, the hole is also oriented in this

direction).

Apart from applying the formalism presented here to larger systems, one possible

route for expansion is molecular imaging. It has been proposed to align molecules

in their stable ground state in the gas phase by a non-resonant laser to extract their

structure [20, 42, 43]. In principle, this can be included in the treatment of anisotropic

diffraction patterns presented here. However, the problem remains if and how one can

create a convergent algorithm to extract the structure of the molecule.
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Appendix A. Density distribution of symmetric tops

In the following, we demonstrate that, for general excitation with a linearly polarized

laser, and assuming a symmetric top initial state, the difference density can be expressed

as a polynomial of cos θ for all delay times.

If we excite the system from a thermal ensemble, the density at an arbitrary time can

be written as

̺(α, β, γ, t) =
∑

JMN

wJ
N |Ψ

J
MN(α, β, γ, t)|2 . (A.1)

The Euler angles α and γ correspond to a rotation around the laboratory-fixed z-axis,

and the body-fixed symmetry axis, respectively. β is the inclination angle of these two

axes. If we define the laboratory z-axis to be the laser polarisation axis, and assuming
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the transition dipole moment to be along the symmetry axis, the inclination angle is

identical to θ defined in figure 1. There is some liberty in defining the signs of α, γ, and

we use the convention of [44]. The ensemble average is done with Boltzmann factors wJ
N ,

and ΨJ
MN(t) is the ensemble member that starts as an eigenstate of the free Hamiltonian

with total angular momentum J , and projections M on the laser polarisation axis, and

N on the body-fixed symmetry axis. Note that N is only a good quantum number if

the molecule in question is a symmetric top.

To show that (A.1) is a polynomial of cos θ, we consider only a single summand. Within

the electric dipole approximation, the Hamiltonian of the system has the form of (22).

It consists of a field-free molecular Hamiltonian that preserves all rotational quantum

numbers , and the dipole interaction operator ∼ cos θ that preserves the quantum

numbers M,N . During the time evolution, these quantum numbers thus do not change,

and the time-dependent wave function can be expanded as

ΨJ
MN(α, θ, γ, t) =

∑

J ′

cJ,J ′(t)DJ ′

MN (α, θ, γ) (A.2)

where a complete basis set for rotational wave functions is formed by the eigenstates of

a symmetric top Hamiltonian

DJ
MN(α, θ, γ) = e−i(αM+γN)dJ

MN(θ) (A.3)

with quantum numbers J,M,N defined previously. For the density, we obtain

|ΨJ
MN(α, θ, γ, t)|2 =

∑

J1,J2

c∗J1
(t)cJ2

(t)dJ1

MN(θ)dJ2

MN(θ) . (A.4)

The d matrices can be expressed as [44]

dJ
MN(θ) =

′
∑

t

xt(cos
θ

2
)2J+M−N−2t (sin

θ

2
)2t+N−M (A.5)

where the sum is restricted, and allows only non-negative powers. It can be seen that

every product of d matrices in (A.4) reduces to a sum of even powers of cos(θ/2) and

sin(θ/2). Together with standard addition formulas for trigonometric functions, this

translates into powers of cos θ.
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