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Abstract— We report on a broadband m

imaging system based on fiber-coup
photoconductive emitters and detectors. 32 
emitters are arranged in a planar array. 
reconstruction algorithms are employed to reco
in the imaging plane. 

I. INTRODUCTION AND BACKGRO

HZ IMAGING is today largely carrie
consuming raster-scanning techniques 

concept of our broadband multi-element THz
is inspired by phased array and synthetic
imaging systems operating in the mi
Combining the large knowledge on data anal
capabilities of these systems in a new mu
system will give a novel possibility of fast im
thus avoiding time-consuming raster scann
features an in-plane emitter-detector array 
emitters and 32 receiver units (see Figure 1).  

 

Figure 1: Sketch of the planar array imaging struc
detectors illuminating a target. The emitters are radiatin
along the blue lines and the detectors are receiving th
from the target (red lines). The emitter and detector spa
possible resolution without introducing ambiguities/gratin

 
The technology used in every single unit 

the standard THz-TDS systems ma
photoconductive switches driven by a femtos
train. A novel concept is the all-fiber lase
network.  By avoiding all free-space optics, 
space dispersion compensation unit, the 
robustness, which is of great importance for
from the laser laboratories and towards r
applications. 
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II. RESULT

It is a nontrivial task to distribute
laser pulses to 32 THz emitters an
fiber. We have designed a fiber lin
pulses are first stretched, then sp
finally compressed to approximate
they reach the emitters and dete
efficient terahertz generation. The 
design is a system that is very stab
vibrations and temperature fluctuat
and fiber components are splice
splicing and no further alignment is 

When a laser pulse propagates in
either stretched or compressed depe
the fiber and nonlinear effects bec
handle the high optical power and to
we first stretch the pulse for as large
as possible. We do this by stretchi
lasers in a dispersion compensating
OFS Fitel (EWBDK) with normal d
a sketch of the fiber link of a 
delivering short pulses to either the
The normal dispersion of the DC
anomalous dispersion of the sta
(SMF). The stretched laser pulse 
portions in a 1 × 32 power splitter b
to a FWHM pulse length of sub-100

 
Figure 2 Fiber link for the delivery of sub-1
coupled photoconductive emitters and dete
compensated fiber (normal dispersion), SM
(anomalous dispersion). 

 
The laser system delivering pulse
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around 1550 nm with a 90-MHz pul
femtosecond lasers are locked to the
active control, and the relative tim
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ely 100 fs duration when 
ctors, in order to obtain 
advantage of an all-fiber 

ble with respect to external 
tions. The different fibers 
ed together using fusion 
then needed. 

n an optical fiber it will be 
ending on the dispersion of 
come an issue. In order to 
o keep the peak power low 
e a fraction of the fiber link 
ing the output of the fiber 

g fiber (DCF) module from 
dispersion. Figure 2 shows 

pulse distribution setup, 
e emitter or detector array. 

CF is compensated by the 
andard single-mode fiber 

was split into 32 equal 
before it was recompressed 
0 fs [2]. 
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electronically between 0.0–1.0 ns This feature enables 
electronically controlled optical sampling (ECOPS).  

Figure 3 shows an autocorrelation of the pulses compressed 
in the fiber link setup sketched in Figure 2. The pulses are here 
launched from one of the two lasers of the system into the 
fiber link and the measured FWHM of the autocorrelation is 
99 fs (~ 80 fs pulse length). The pulse energy of the initial 1 ps 
laser output pulse is here 3.25 nJ and the pulse energy after the 
splitter is 0.06 nJ (corresponding to 5 mW average power). 
The optimal fiber link length e.g. shortest pulse length is 
investigated by a fiber cut-back measurement. 

 

 
Figure 3 Measured autocorrelation of the compressed pulse at the end of the 
fiber link. The FWHM of the autocorrelation is 99.2 fs ~70 fs pulse length. 

 
 
The THz antennas are low temperature-grown InGaAs-

based photoconductive switches designed for 1550 nm [3]. 
The material is commercially available from Menlo Systems 
GmbH. A generated and detected THz pulse in the time 
domain and in the frequency domain from the all-fiber system 
is depicted in Figure 4. The THz transient has a near-single-
cycle appearance in the time domain, and a corresponding 
smooth frequency spectrum spanning the range 0.1-2 THz. 

The spectral amplitude of the generated THz signal has a 
peak dynamic range of approximately 100, corresponding to 
40-dB dynamic range in power. The measurement was done 
by lock-in detection and chopping of the bias voltage on the 
emitter at a frequency of 1 kHz. 

 
 
 
 
 

 

 
Figure 4 (top) THz pulse in the time domain and (bottom) its frequency 
spectrum generated and detected in photoconductive switches excited by 
compressed pulses from the fiber link.  

 
The generated THz radiation is collimated out of the THz 

antenna by an integrated substrate lens and directed towards a 
target 0.3 m away from the emitter/detector plane.  

 
 
 
 



Figure 5 3-D rendering of the realized antenna moun
planar array. The receivers are stacked in the inner part s
the transmitters are in the outer part spaced by 80 mm.  

 
Figure 5 shows a sketch of how the 32 rece

in a 6 × 6 grid (corners omitted due to the ava
splitters) in the inner part of the array and sp
The transmitter units are placed in the outer p
80 mm. All units are fitted into a 20 mm × 50
aluminum mounting structure and pointing to
scene at 0.3 m from the structure. 

 
The array in Figure 5 is implemented as a
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antennas. For a target in the far-field, each 
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equivalent monostatic element at the midpoin
and RX elements. Hence, the element layout 
an equidistant multistatic element spacing o
physical RX spacing and an effective apertu
half the physical TX aperture size. 

In the cross-range direction, a passive d
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where  is the wavelength of the incident ra
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is half of that in (1) [4], whereas, for a multi
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where N is the effective number o
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Figure 6: Cross-range slice of 3 simulated 
back-projection.  Color scale is decibel relativ
 
 
We will show the recent progress 
THz imaging system. 
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