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Abstract

Since 1999 the French Operations Research Society, Recherche Opérationnelle et d’Aide à
la Décision (ROADEF), has organized the so-called ROADEF challenge, and international op-
erations research contest in which participants must solve an industrial optimization problem.
In 2010 it was jointly organized for the first time with the European Operational Research
Society (EURO) and was run in collaboration with Electricité de France (EDF), one of the
largest utility companies in the world, and required contestants to solve a large scale energy
management problem with varied constraints. The challenge focused on the nuclear power
plants, which need to be regularly shut down for refueling and maintenance, and asked con-
testants to schedule these outages such that the expected cost of meeting the power demand
in a number of potential scenarios is minimized.

We present a Benders decomposition based framework for solving the problem. Because
of the nature of the problem, not all constraints can be modelled satisfactorily as linear con-
straints and the approach is therefore divided into two stages: in the first stage Benders
feasibility and optimality cuts are added based on the linear programming relaxation of the
Benders Master problem, while in the second stage feasible integer solutions are enumerated
and a procedure is applied to each solution in an attempt to make them satisfy the constraints
that are not included in the mixed integer program. A number of experiments are performed
on the available benchmark instances. These experiments show that the approach is com-
petitive on the smaller instances, but not for the larger ones. We believe the exact approach
gives insight into the problem, and additionally makes it possible to find lower bounds on the
problem, which is typically not the case for the competing heuristics.

1 Introduction

Every two years1 since 1999 the French Operations Research Society, Recherche Opérationnelle et
d’Aide à la Décision (ROADEF), has organized the so-called ROADEF challenge, an international
operations research contest in which participants must solve an industrial optimization problem.
Given the success of previous contests, this year it was jointly organized for the first time with
the European Operational Research Society (EURO) and known as the ROADEF/EURO 2010
challenge. The competition was run in collaboration with Electricité de France (EDF), one of
the largest utility companies in the world, and required contestants to solve a large scale energy
management problem with varied constraints.

EDF’s power generation facilities in France stand for a total of 98.8 GW of installed capacity,
most of which is produced using thermal, and in particular nuclear, power plants. In 2008 thermal
power plants accounted for 90% of its total electricity production, 86% of which was delivered by
nuclear power plants. This year’s challenge focused on the nuclear power plants, since these need
to be regularly shut down for refueling and maintenance, and asked contestants to schedule these
outages in such a way that the various constraints regarding safety, maintenance, logistics, and

1Except for 2009-2010.
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plant operation were satisfied, while minimizing the expected cost of meeting the power demand
in a number of potential scenarios. The problem thus consisted of the following two dependent
subproblems

1. Determine a schedule of nuclear power plant outages. This entails determining when the
nuclear power plants should be taken offline and how much fuel should be reloaded at each.
An outage lasts for some predefined (plant specific) period of time during which the nuclear
power plant cannot be used for power generation. The coupling of an outage followed by a
production period (until the next outage) for a nuclear power plant is termed a cycle and
it is not uncommon to have to schedule up to six cycles for each nuclear power plant. In
determining an outage schedule one must obey several safety requirements as well as observe
restrictions arising from the limited resources available to perform the fuel reloading.

2. Given an outage schedule, determine a production plan for each of the online power plants,
i.e. the quantity of electricity to produce in each time step, for each possible demand scenario.
The power plants are divided into two categories termed type 1 and type 2, respectively.
Type 2 power plants refer to the nuclear power plants and must be reloaded with fuel,
while type 1 power plants represents thermal power plants, which can be supplied with fuel
continuously, such as coal, gas, and oil powered plants. Several technical constraints govern
the possible levels of power production at each power plant. Due to the stochastic nature of
power markets, one is required to consider multiple demand scenarios.

The concepts of cycles, outages, and production plans for three power plants are illustrated in
Figure 1. The gray area indicates the time steps during which the plants are offline.

Figure 1: Outages, Cycles, Production Plans

One important aspect of this years competition is handling the size of the problem: There are
approximately one hundred power plants and scenarios, and the planning horizon is in the order
of years, with a granularity down to hours. Which means that a solution alone can contain in the
order of 108 variables.

The remainder of the paper is organized as follows. Section 2 gives an overview of the problem
constraints, while Section 3 presents a mixed integer programming (MIP) model for (parts of)
the problem. In Section 4 we give a general outline of the proposed procedure and present the
Benders decomposed model. Section 5 gives techniques for how the problem size can be reduced,
and Section 6 describes a number of additional constraints that we add to the model in an attempt
to reduce the number of infeasible subproblems. In Section 7 we present a procedure for taking a
solution, which does not satisfy all the constraints, and making it do so. Extensive computational
results are reported in Section 8 and conclusions from this research are drawn in Section 9.
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2 Overview of problem constraints

Table 1 gives a brief overview of the different constraints of the problem. Due to space consid-
erations, we do not include a full description of each constraint, but instead refer the reader to
the official competition document by Porcheron et al. (2009). We first introduce a number of sets
and constants, which will be used to state the mathematical model in Section 3. Additionally, we
define some sets and variables that will only be used to describe the constraints in this section.

Sets

• I: Set of type 2 plants (nuclear). Indexed by i.

• J : Set of type 1 plants (other thermal). Indexed by j.

• T : Set of time steps. Indexed by t.

• W : Set of weeks. Indexed by w.

• S: Set of scenarios. Indexed by s.

• Ki: Set of cycles for each plant i ∈ I.

Constants

• Lik: Length in weeks of the outage for cycle k ∈ Ki at plant i ∈ I.

• Rik: Minimum reload amount for plant i ∈ I in cycle k ∈ Ki.

• Rik: Maximum reload amount for plant i ∈ I in cycle k ∈ Ki.

• Pmax
it : Maximum production for plant i ∈ I at time step t ∈ T

• Ft: Conversion factor between power and fuel in time step t ∈ T .

• Dts: Required power in time step t ∈ T of scenario s ∈ S.

• Bik: Fuel stock level at which shutdown curve must begin in cycle k at plant i ∈ I.

• Qik: Proportion of fuel that can be kept during reload in cycle k at plant i ∈ I, Q̃ik := Qik−1
Qik

.

• Smax
ik : Maximum permitted fuel after reload in cycle k at plant i ∈ I, Mi := maxk S

max
i,k .

• Amax
ik : Maximum permitted fuel prior to reload in cycle k at plant i ∈ I.

• P it: Maximum production capacity of plant i ∈ I at time step t ∈ T .

• P jts: Maximum production capacity for plant j ∈ J at time step t ∈ T in scenario s ∈ S.

• P jts: Minimum production capacity for plant j ∈ J at time step t ∈ T in scenario s ∈ S.

• Xi: Starting stock of plant i ∈ I

• TO
ik : First possible outage week for cycle k ∈ Ki for i ∈ I.

• TA
ik: Last possible outage week for cycle k ∈ Ki for i ∈ I.
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Constraint-specific variables and sets

• ha(i, k) : the first week of the outage of cycle k ∈ Ki of plant i ∈ I.

• p(j, t, s) : production of plant j ∈ J during the time step t ∈ T of scenario s ∈ S.

• p(i, t, s) : production of plant i ∈ I during the time step t ∈ T of scenario s ∈ S.

• r(i, k) : reload performed during the outage of cycle k ∈ Ki of plant i ∈ I.

• x(i, t, s) : stock of fuel of plant i ∈ I at time step t ∈ T for scenario s ∈ S.

• ec(i, k) : set of time steps composing the production campaign of cycle k ∈ Ki of plant i ∈ I.

• ea(i, k) : set of weeks composing the outage of cycle k ∈ Ki of plant i ∈ I.

Table 1: Overview of the constraints of the problem

Name Description

CT1 Constraint coupling load and production: during every time step t ∈ T of every
scenario s ∈ S, the sum of production of type 1 and type 2 power plants has to be
equal to the demand:

∑

i∈I

pits +
∑

j∈J

pjts = Dts, ∀(t, s)

CT2 Bound on production: During every time step t ∈ T of every scenario s ∈ S, production
of plant j ∈ J has to be between minimum and maximum bounds:

P jts ≤ pjts ≤ P jts, ∀(j, t, s)

CT3 Offline power: During every time step t ∈ T of every scenario s ∈ S where plant i ∈ I

is offline, its production is equal to zero:

t ∈ ea(i, k) ⇒ p(i, t, s) = 0, ∀(i, t, s)

CT4 Minimum power: During every time step t ∈ T of every scenario s ∈ S where plant
i ∈ I is online, its production is non-negative:

0 ≤ p(i, t, s), ∀(i, t)

CT5 Maximum power before activation of imposition of power profile constraint (see CT6):
During every scenario s ∈ S and every time step t ∈ T of the production campaign of
cycle k ∈ Ki, if the current fuel stock of plant i ∈ I is greater than or equal to Bik,
the production level has to be equal or less than its maximum bound:

t ∈ ec(i, k) ∧ x(i, t, s) ≥ Bik ⇒ p(i, t, s) ≤ P it, ∀(i, t, s)
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Table 1: Continued – Overview of the constraints of the problem

Name Description

CT6 Maximum power after activation of imposition of power level constraint: During every
scenario s ∈ S and every time step t ∈ T of the production campaign of cycle k ∈ Ki,
if the current fuel stock of plant i ∈ I is inferior to Bik, production has to follow
the power profile Pik : R → [0; 1] with a tolerance ǫ, where Pik is a piecewise linear
function of the stock level:

t ∈ ec(i, k) ∧ x(i, t, s) ≤ Bik ⇒ p(i, t, s) ≈ Pik(x(i, t, s)), ∀(i, t, k, s)

CT7 Bounds on refueling: The reload performed during cycle k ∈ Ki of plant i ∈ I has to
be inside its minimum and maximum bounds:

Rik ≤ r(i, k) ≤ Rik, ∀(i, k)

CT8 Initial fuel stock:
x(i, 0, s) = Xi, ∀(i, s)

CT9 Fuel stock variation during a production campaign of a cycle:

t ∈ ec(i, k) ⇒ x(i, t+ 1, s) = x(i, t, s)− p(i, t, s) · Ft, ∀(t, i, k, s)

CT10 Fuel stock variation during an outage: In the process of refueling a type 2 power plant
at time t ∈ T , i.e., t is the first timestep of an outage, a certain amount of unspent
fuel has to be removed to make the addition of new fuel possible:

x(i, t+ 1, s) = Q̃ik · (x(i, t, s)−Bi,k−1) + r(i, k) +Bik, ∀(i, k, s)

CT11 Bounds on fuel stock at the instant, t ∈ T , of outage and after refueling (t+ 1):

x(i, t, s) ≤ Amax
ik , x(i, t+ 1, s) ≤ Smax

ik , ∀(i, k, s)

CT12 Constraint on maximum modulation over a cycle: Modulating the power output of
a type 2 power plant leads to a certain amount of wear on the equipment involved.
Therefore frequent power modulations at type 2 power plants are undesirable:

∑

t∈{t′∈ec(i,k):x(i,t′,s)≥Bik}

(P it − p(i, t, s)) · Ft ≤ Mmax
ik , ∀(i, k, s)
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Table 1: Continued – Overview of the constraints of the problem

Name Description

CT13 Constraint on the earliest and latest date of an outage: Outage of cycle k ∈ Ki of
plant i ∈ Ki has to start during a given interval:

TO
ik ≤ ha(i, k) ≤ TA

ik, ∀(i, k),

ha(i, k + 1) ≥ ha(i, k) + Lik, ∀(i, k)

If no CT13 constraint is present, then scheduling the corresponding cycle is optional,
but the cycle must still be scheduled in order for any subsequent cycle k′ > k to be
scheduled.

CT14 Constraint on the minimum spacing/maximum overlapping between outages: a set of
outages, A14

m , have to be spaced by at least S14
m weeks, with m = 1, . . .M14:

ha(i, k)−ha(i′, k′)−Li′k′ ≥ S14
m ∨ha(i′, k′)−ha(ik)−Lik ≥ Sm, ∀(i, k), (i′, k′) ∈ A14

m

CT15 Minimum spacing/maximum overlapping between outages during a specific period: a
set of outages, A15

m , that intersect an interval [Um;Vm] have to be spaced by at least
or can overlap by at most S15

m weeks, with m = 1, . . .M15:

Um − Lik + 1 ≤ ha(i, k) ≤ Vm ∧ Um − Li′k′ + 1 ≤ ha(i′, k′) ≤ Vm

⇒ ha(i, k)− ha(i′, k′)− Li′k′ ≥ S15
m ∨ ha(i′, k′)− ha(ik)− Lik ≥ Sm,

∀(i, k), (i′, k′) ∈ A15
m

CT16 Minimum spacing constraint between decoupling dates: decoupling dates of of a set of
outages, A16

m , have to be spaced by at least S16
m weeks, with m = 1, . . .M16:

|ha(i, k)− ha(i′, k′)| ≥ S16
m , ∀(i, k), (i′, k′) ∈ A16

m

CT17 Minimum spacing constraint between dates of coupling: Coupling dates of a set of
outages, A17

m , have to be spaced by at least S17
m weeks, with m = 1,M17:

|ha(i, k) + Lik − ha(i′, k′)− Li′k′ | ≥ S17
m , ∀(i, k), (i′, k′) ∈ A17

m

CT18 Minimum spacing constraint between coupling and decoupling dates: coupling and
decoupling dates for a set of outages, A18

m , have to be spaced by at least S18
m weeks,

with m = 1, . . .M18:

|ha(i, k) + Lik − ha(i′, k′)| ≥ S18
m , ∀(i, k), (i′, k′) ∈ A18

m
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Table 1: Continued – Overview of the constraints of the problem

Name Description

CT19 Resource constraint: the use of resources on a given set of outages, A19
m , is subject to

constraints due to their limited availability, with Uikm, and Vikm indicating the start
and the length of the resource usage period with m = 1, . . .M19:

∑

(i,k)∈A19
m

δ(t, i, k) ≤ Qm, ∀w,

where δ(t, i, k) = 1 ⇐⇒ t ∈ [ha(i, k) + Uikm;ha(i, k) + Uikm + Vikm]

CT20 Constraint on the maximum number of overlapping outages during a given week:
At most Nm(w) outages of A20

m (w) can overlap during the weekw ∈ W , with
m = 1, . . .M20:

∑

(i,k)∈A20
m

δ(t, i, k) ≤ Nm(w), ∀w,

where δ(t, i, k) = 1 ⇐⇒ t ∈ [ha(i, k);ha(i, k) + Lik].

CT21 Constraint on the offline power capacity of a set of power plants during a time period:
For a given period, [Um;Vm] the power capacity of the set of plants C21

m that are offline
has to be inferior to a maximum bound, Imax

m , with m = 1, . . . ,M21:

∑

i∈C21
m

∑

w∈[Um;Vm]∩ec(i,k)

∑

t∈w

P it ≤ Imax
m

3 Model

As the approach to solving the problem will be based on applying mixed integer programming
(MIP), we now give a MIP model of the problem. Before stating the model we introduce some
additional sets, constants, and variables.

Sets

• W o
ik: Set of allowed outage weeks for cycle k ∈ Ki of plant i ∈ I.

• W
p
ik: Set of weeks where cycle k ∈ Ki of plant i ∈ I could be in a production campaign.

• T
p
ik: Set of time steps where cycle k ∈ Ki of plant i ∈ I could be in a production campaign.

• Ki(w): Set of cycles for plant i ∈ I which could be in a production campaign at in week w.

• w(t): Week containing time step t

• Tw: Set of time steps in week w

• M21: Set of CT21 constraints

• Cm: Set of type 2 power plants associated with m ∈ M21
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Constants

• cjt: Cost of producing a unit of power at plant j ∈ J in time step t ∈ T .

• c
f
i : Price of remaining fuel at plant i ∈ I.

Variables

• yiwk: Binary variable indicating if cycle k for plant i begins in week w ∈ W o
ik

• rik: The amount of fuel reloaded in cycle k for plant i

• xb
iks: Stock at the beginning of cycle k for plant i ∈ I in scenario s ∈ S.

• xe
iks: Stock at end of cycle k for plant i ∈ I in scenario s ∈ S.

• x
f
is: Final stock for plant i ∈ I in scenario s ∈ S.

• pitks: Amount of power produced at plant i ∈ I in cycle k at time step t ∈ T in scenario
s ∈ S.

• pjts: Amount of power produced at plant j ∈ J in time step t ∈ T in scenario s ∈ S.

•

ρ(i, w, k) :=







1−
∑

w′≤w yi,w′,k+1, k = 0
∑

w′≤w−Lik
yi,w′,k, k = |Ki| − 1

∑

w′≤w−Lik
yi,w′,k −

∑

w′≤w yi,w′,k+1, otherwise

Note that ρ(i, w, k) is not a variable, but is included for ease of exposition. The following
relation holds ρ(i, w, k) = 1 ⇐⇒ cycle (i, k) is in a production campaign in week w.
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Model

min
∑

i∈I

∑

k∈K

cikrik +
1

|S|

∑

s∈S

(
∑

t∈T

∑

j∈J

cjtsFtpjts −
∑

i∈I

c
f
i x

f
is) (1)

s.t. rik ≥ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (2)

rik ≤ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (3)

∑

w∈Wik

yiwk ≥
∑

w∈Wi,k+1

yi,w,k+1 ∀i ∈ I,∀k ∈ Ki (4)

∑

i∈Cm

∑

k∈Ki

∑

w∈ITm

w
∑

w′=w−Lik+1

yiw′k ·

t(w+1)−1
∑

t=t(w)

Pmax
it ≤ Imax

m ∀m ∈ M21, ∀w ∈ W (5)

∑

(iwk)∈H

yiwk ≤ KH ∀H ∈ H (6)

xe
iks = xb

iks −
∑

t∈T

pitks · Ft ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (7)

xb
iks = rik +Bik

∑

w∈Wo
ik

yiwk + Q̃ik



xe
i,k−1,s − Bi,k−1

∑

w∈Wo
ik

yiwk



 ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (8)

xe
iks ≤ Amax

i,k+1 +



1−
∑

w∈Wo
ik

yi,w,k+1





(

M1
i − Amax

i,k+1

)

∀i ∈ I,∀k ∈ Ki,∀s ∈ S (9)

xb
iks ≤ Smax

ik +



1−
∑

w∈Wo
ik

yiwk



 (Mi − Smax
ik ) ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (10)

x
f
is ≤

∑

k′>k

∑

w∈Wo
ik

yiwk′Mi + xe
iks ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (11)

pitks ≤ P it · ρ(i, w(t), k) ∀i ∈ I,∀k ∈ Ki,∀t ∈ T
p

ik
,∀s (12)

P jts ≤ pjts ≤ P jts ∀j ∈ J,∀t ∈ T,∀s ∈ S (13)
∑

i∈I

∑

k∈Ki(w(t))

pitks +
∑

j∈J

pjts = Dts ∀t ∈ T,∀s ∈ S (14)

yiwk ∈ {0, 1} ∀i ∈ I,∀k ∈ Ki,∀w ∈ W o
ik (15)

All variables other than yiwk are continuous and non-negative. The objective (1) minimizes the
sum of the costs of the reloading pattern and the sum of the production costs for each scenario,
reduced by the profit for any remaining fuel for a scenario. Constraints (2) and (3) ensure the
reloaded amount in any cycle is always within the possible reloading bounds. Constraints (4)
ensure that if a cycle for a plant is set, then all preceding cycles must be set. Constraints (5)
model CT21, and all other CT13-C20 constraints are modelled in the form of (6). These typically
have a right hand side of one (i.e. give pairwise conflicts), but in some cases can exceed this
(in the case of CT19 and CT20). Constraints (7) ensure stock level consistency between the
starting stock level of a cycle and its end stock level (taking into account any production), while
constraints (8) reflect the requirement that some fuel is lost as a plant goes through a reload.
The CT11 constraints are enforced by constraints (9) and constraints (10) respectively, and (11)
ensures the stock at the end of the last cycle is the plant’s final stock level. Maximum and
minimum production required by the respective plants are enforced by (12) and (13). Constraints
(14) ensure all demand in each time step is met.

Two constraints, CT6 and CT12, are too complicated to include in the MIP model. The first
states that once the fuel stock level at a given nuclear power plant falls below a certain threshold
production must follow a piecewise linear decreasing function, while the second tries to ensure
a high utilization of the nuclear power plants by stipulating that the average deviation of the
production cannot be more than a certain tolerance from the maximum possible production level
(however, only prior to the aforementioned threshold). As a result, these constraints are not
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enforced in the model, but rather in a post-processing step that attempts to repair a solution.
This is described in Section 7.1.

4 Methodology

In this section we present a Benders Decomposition based framework to solve the compact for-
mulation (1)-(15). We begin by providing a short introduction to Benders Decomposition in
general before describing the Benders reformulation of (1)-(15). Once the necessary models have
been introduced, we discuss, in detail, the components of the algorithm developed to solve this
reformulation.

4.1 Benders Decomposition

Benders Decomposition is a well-known technique for solving large scale mixed integer program-
ming (MIP) problems that have a special block structure (see Benders, 1962). It is commonly
found in stochastic applications where one is required to make a so-called first stage decision and
then, upon the realization of some random event, solve a second problem that ameliorates the first
stage decision. This is often the case in the power industry, where the demand is highly stochas-
tic. Recent applications of Benders in the power industry include (see Canto, 2008; Santos and
Diniz, 2009; Cabero et al., 2010; Wu and Shahidehpour, 2010). However, it has also been applied
in a variety of other areas including telecommunication network design (see Naoum-Sawaya and
Elhedhli, 2010), staff scheduling (see Guyon et al., 2010), aircraft routing and crew planning (see
Mercier et al., 2005), and uncapacitated hub location (see Contreras et al., 2010).

The Benders approach decomposes the original problem into a mixed integer master prob-
lem and one or more independent, linear subproblems. Consider the following formulation as an
example.

µ = min cTx+ fT y

s.t. Ax = b (16)

Bx+Dy = d (17)

x ∈ X ⊆ R
p, y ∈ Y ⊆ R

q,

where x and y are vectors of decision variables with dimension p and q, X and Y are polyhedrons,
A, B, and D are matrices, and c, f , b, and d are vectors (all with appropriate dimensions). The
first set of constraints, (16) restrict the values of x, while the second set, (17) restrict the values
of both x and y. With Benders Decomposition this problem is decomposed into the following two
smaller problems, P1 and P2.

P1 : min cTx+ z(x)

s.t. Ax = b

x ∈ X

P2 : z(x) = min fT y

s.t. Dy = d− Bx (18)

y ∈ Y

Observe that P1 is an optimization problem in terms of the x variables only, where z(x) is the
objective function value of P2 given the solution to P1. If one assumes that P2 is not unbounded,
then one can also calculate z(x) by solving it’s dual formulation. If u denotes the vector of dual
variables associated with constraints (18), then the dual formulation of P2 can be stated as:

D2: max uT (d− Bx)

s.t. DTu ≤ f
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The feasible region of this optimization problem is completely independent of the values of x,
which only affect the objective function. Assuming that the feasible region of D2 is not empty,
then exactly one of two cases will occur when solving D2 for a given solution x̂ ∈ X . Either D2 is
unbounded from above, or D2 has a finite optimal solution. In the first case there must exist an
extreme ray rj such that rTj (d − Bx̂) > 0, while in the second case there must exist an extreme

point uj of the feasible region such that z(x̂) = uT
j (d − Bx̂). If we denote the set of all extreme

rays of D2 as R and the set of all extreme points of D2 as U , then D2 can be restated as follows.

D2*: min z

s.t. (ri)
T (d− Bx) ≤ 0 ∀ri ∈ R (19)

(ui)
T (d− Bx) ≤ z ∀ui ∈ U (20)

P2 now consists of the single variable z. The first set of constraints, (19), restricts the set of
solutions to P1 to those which are also feasible for P2 (termed feasibility cuts), while the second
set, (20), restrict the set of solutions to P1 to those that minimize the objective function value of
P2 (termed optimality cuts). Hence, the original problem can be restated as:

RMP: min cTx+ z

s.t. Ax = b

(ri)
T (d− Bx) ≤ 0 ∀ri ∈ R

(ui)
T (d− Bx) ≤ z ∀ui ∈ U

x ∈ X

Since there can be an exponential number of constraints of the form (19) and (20), it is
impractical to generate them all and include them initially. The so-called Restricted Master
Problem (RMP) starts with a subset of these and dynamically identifies violated ones as needed.
Thus, one usually adopts an iterative process where at any iteration a candidate solution (x∗, z∗) is
found. The subproblem is then solved to calculate z(x∗). If z(x∗) = z∗, the algorithm terminates,
otherwise a violated feasibility or optimality cut exists. One adds the respective cut to the RMP
and iterates again. In what follows we provide the Benders reformulation of (1)-(15).

4.2 Benders Reformulation

For the problem under consideration one can observe that once the reload dates and reload amounts
have been fixed, one can independently solve each scenario and find the cheapest way of supplying
the respective power demand power of each. That is, the problem naturally decomposes into n

independent subproblems, where n is the number of different possible scenarios. Thus, the role of
the master problem in this context is to identify good outage/reloading schedule. We model this
as a MIP since it contains binary decision variables, which govern reload dates, and continuous
variables that reflect the corresponding reload amounts. The Benders RMP (without the addition
of any feasibility and optimality cuts) can be stated as follows.
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Master problem

min
∑

i∈I

∑

k∈K

cikrik +
1

|S|

∑

s∈S

θs (21)

s.t. rik ≥ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (22)

rik ≤ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (23)

∑

w∈Wik

yiwk ≥
∑

w∈Wi,k+1

yi,w,k+1 ∀i ∈ I,∀k ∈ Ki (24)

∑

i∈Cm

∑

k∈Ki

∑

w∈ITm

w
∑

w′=w−Lik+1

yiw′k ·

t(w+1)−1
∑

t=t(w)

P
max
it ≤ I

max
m ∀m ∈ M21,∀w ∈ W (25)

∑

(iwk)∈H

yiwk ≤ KH ∀H ∈ H (26)

rik ≥ 0 ∀i ∈ I,∀k ∈ Ki (27)

yiwk ∈ {0, 1} ∀i ∈ I,∀k ∈ Ki,∀w ∈ W
o
ik, (28)

Associated with each scenario s ∈ S is a decision variable θs that reflects the cost of supplying
the power demanded in scenario. The constraints are as described in Section 3. In addition to
the constraints described here, a number of additional constraints, which will be described in
Section 6, are added to the master problem. Given a candidate solution (r, y, θ) to this problem,
one can solve |S| power production subproblems to separate any violated feasibility and optimality
cuts. The structure of the subproblems that must be solved is given below

Subproblem (for given s ∈ S)

min
∑

t∈T

∑

j∈J

cj,tFtpj,t −
∑

i∈I

ci,|T |+1x
f
i (29)

s.t. xe
iks = xb

iks −
∑

t∈T

pitks · Ft ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (30)

xb
iks = rik +Bik

∑

w∈Wo
ik

yiwk + Q̃ik



xe
i,k−1,s − Bi,k−1

∑

w∈Wo
ik

yiwk



 ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (31)

xe
iks ≤ Amax

i,k+1 +



1−
∑

w∈Wo
ik

yi,w,k+1





(

M1
i − Amax

i,k+1

)

∀i ∈ I,∀k ∈ Ki,∀s ∈ S (32)

xb
iks ≤ Smax

ik +



1−
∑

w∈Wo
ik

yiwk



 (Mi − Smax
ik ) ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (33)

x
f
is ≤

∑

k′>k

∑

w∈Wo
ik

yiwk′Mi + xe
iks ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (34)

pitks ≤ P it · ρ(i, w(t), k) ∀i ∈ I, k ∈ Ki, t ∈ T
p

ik
,∀s (35)

Pjts ≤ pjts ≤ P jts ∀j ∈ J, ∀t ∈ T,∀s ∈ S (36)
∑

i∈I

∑

k∈Ki(w(t))

pitks +
∑

j∈J

pjts = Dts ∀t ∈ T,∀s ∈ S (37)

Again each constraint is as described in Section 3. Each subproblem is modelled as a linear
program (LP) and determines how much each power plant should produce in each time step so
that the demand in each time step for the given scenario is satisfied and the various constraints
regarding fuel stock levels are respected. In addition to this one must respect several production
level bounds at each power plant. We remind the reader that two constraints, CT6 and CT12, were
too complicated to include in the LP formulation and are instead enforced in a post-processing
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step that attempts to repair the subproblem solution. This is as mentioned earlier described in
Section 7.1.

In typical Benders Decomposition fashion, optimality cuts are separated using solutions to
each of the subproblems and are added to the master problem to direct it towards more promising
outage/reloading schedules. In order to minimize the need for feasibility cuts to the master
problem, constraints are preemptively added to the master problem and try to enforce CT11.
These constraints also partly enforce CT6 and are discussed in Section 6.

4.3 Solution Approach

In this section we provide an overview of the algorithm we propose for solving the Benders refor-
mulation. Here we simply provide a sketch of the approach, more detailed discussions on certain
components of the algorithm are provided in the subsequent sections. The algorithm can be
separated into three distinct phases, and we discus each in turn.

Stage 1 In this stage, the root node of the relaxed master problem is solved. The relaxed
master problem is obtained by removing the integrality restriction on the yiwk variables. Solving
the root node is an iterative procedure between the master problem and the subproblems, where
the subproblems are used to separate any violated feasibility and optimality cuts given a solution
to the master problem. Note that we do not solve all subproblems per Benders iteration since this
would simply take too long. A round robin approach is adopted in which only one subproblem is
solved per Benders iteration. Since even solving a single instance of the subproblem can be quite
time consuming, an aggregated version is used (see Section 5.2). In the aggregated subproblem,
the time step is considered to be weeks as opposed to days or even hours. When no optimality
cut has a magnitude of violation greater than some prespecified epsilon, or some predetermined
time limit is reached, this stage terminates. Cplex 12.1 is used to solve both the master and the
subproblems.

Stage 2 In the final stage of the algorithm the master problem is solved to integrality without
the addition of anymore optimality cuts using a standard branch-and-bound technique. Cplex’s
populate routine is used to collect integeral solutions found in the branch-and-bound tree. Once
a certain number of integer solutions have been found, all subproblems are solved to obtain a
complete solution. However, the complete solution may violate CT6 and CT12. To remedy this,
the solution to each subproblem is repaired so that CT6 and CT12 are satisfied. The routine to
do this is described in Section 7.1. Once a complete solution satisfying all constraints has been
found, a heuristic is used to improve its quality. This is detailed in Section 7.2. The best found
solution is retained. Stage 2 continues until either all integer solutions from the branch-and-bound
tree are enumerated, or a prespecified time limit is reached. The pseudo code for the complete
methodology is given in Algorithm 1.

5 Reducing the problem size

As the problems may contain a huge number of variables, it is an advantage both with respect
to computational time and memory consumption to reduce the problem size. In the following we
describe two such reduction procedures.

5.1 Preprocessing

For the master problem employed, there is a yiwk variable for each possible week w the outage of
cycle k for plant i can occur. Because many of the constraints (CT13-CT21) concern these outage
dates, many of them are infeasible, and removing them in a preprocessing step will reduce the size
of the master problem. In the following we present a simple, yet effective preprocessing procedure.
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Algorithm 1 Core Methodology

Preprocess problem instance
{Stage 1}
repeat
Solve relaxed master problem
Solve next aggregated subproblem
Separate violated optimality/feasibility cut and append

until No violated optimality/feasibility cuts exist or time limit exceeded
{Stage 2}
Convert to MIP and run branch-and-bound
repeat
Populate integral solution pool with a certain number of solutions
for s ∈ S do
Solve subproblem associated with scenario s

Repair subproblem solution
Run 2-opt heuristic to improve solution quality

end for
if A feasible solution is found for each subproblem then
Update best known solution if total cost is better than that of the current best solution

end if
until All integer solutions have been enumerated or time limit exceeded

Let G = (V,E) be a graph, where each node v ∈ V corresponds to the outage date, wv of
some cycle, kv, of plant iv. There is an edge (u, v) ∈ E, if there is a conflict between the two
corresponding outage dates, i.e., it is infeasible for cycle ku to start its outage in week wu while
cycle kv starts its outage in week wv. How the conflicts are derived is explained later. For a set
S ⊆ V let N(S) = {v ∈ V \S : ∀u ∈ S : ∃(u, v) ∈ E}, i.e., the set of nodes incident to all nodes in
S. Now if S ⊆ V is a set of nodes, for which it is known that at least one of the corresponding
outage dates must be chosen in any solution, then the set N(S) may be removed from the graph,
as the corresponding outage dates can never be used. As it is known from the input data that
some of the cycles must be scheduled, the set of nodes corresponding to the outage dates of these
cycles can be used to perform the above described elimination.

Conflicts between outage dates are derived as follows:

1. All outage dates of the same cycle are in conflict.

2. Assume that the outage of cycle k of plant i occurs in week w, then the outage of any
following cycle of the same plant must occur after week w + Lik − 1 (see constraint CT13).
This can be represented as conflicts between the individual outage dates.

3. Similarly assume that the outage of cycle k of plant i occurs in week w. Because of constraint
CT11, the stock must be below Amax

i,k+1 before the outage of the next cycle can occur, and
be below Smax

i,k+1 after the reload. Let LB be a lower bound on the stock at the beginning
of cycle k, and let UB(w0, w1) be an upper bound on the production capacity from week
w0 to week w1 for plant i. A lower bound on the stock at any time after w, may then be
calculated as LBS(w1) = LB − UB(w,w1). The outage of cycle k + 1 must occur after

wmin = argmin{w1 : LBS(w1) ≤ Amax
i,k+1 ∧ LBS(w1) ≤ f(Smax

i,k+1, Ri,k+1)},

where f(x, r) returns the stock after a reload of r given end stock x, as specified by CT10.
We set LB = Rik, and UB(w0, w1) is calculated by assuming a production of P it as long
as the stock is above Bik, and then the shutdown curve is followed. Again this can be
represented as conflicts between the individual outage dates.

4. Constraints CT14-CT18 can be represented as conflicts between individual outage dates.
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5. (Optional) The previous methods are exact in the sense that only outage dates which are
infeasible are removed. These methods derive a large number of conflicts, and as a con-
sequence a large number of outage dates may be removed. Even so, for some less tightly
constrained instances (see Section 8 on computational results) this may not reduce the size
of the problems enough and we thus include a heuristic for deriving conflicts. The working
assumption for this heuristic is that it is not optimal to have a type 2 plant without stock for
too long before the next reload occurs. Assume that the outage of cycle k of plant i occurs
in week w. Let UB be an upper bound on the stock at the beginning of cycle k, and let
LB(w0, w1) be a lower bound on the stock which must be consumed from week w0 to week
w1. Note that this lower bound is not zero because of constraint CT12. Let

wmax = (1 + α) argmin{w1 : UB − LB(w,w1) ≤ 0},

where α ≥ 0. We add conflicts between w and all outage dates w′ > w of the following cycle
k + 1 for the same plant. The value α controls how long we allow a plant to lay idle in the
worst case. As UB we use Smax

ik , and LB(w0, w1) is calculated by assuming a production of
zero until CT12 is violated, then production at P it as long as the stock is above Bik, and
then the shutdown curve is followed.

In addition to the above conflicts we remove certain outage date as follows: Let k be a cycle
that does not necessarily have to be scheduled. Let w = TA+Lik be the latest point in time
the production campaign of cycle k can start, let wmax be defined as above. We remove all
outage dates w′ > w for the following cycle k+1. This may remove additional outage dates.

Additional conflicts can be deduced by the calculation described in point 3 above if the Amax
ik ,

Smax
ik , or Rmax

ik values can be tightened. For any i ∈ I and k ∈ Ki the values may be tightened as
follows:

Amax
ik :=min{Amax

ik , f̃(Smax
ik , Rik})

Smax
ik :=min{Smax

ik , f(Amax
ik , Rik)}

Rik :=min{Rik, f̂(0, S
max)}

where f(x, r) is as earlier, f̃(y, r) gives the end stock which results in stock y after a reload of r

as specified by CT10, and f̂(x, y) gives the reload which results in stock y given end stock x, as
specified by CT10.

All conflicts of the conflict graph are added to the mater problem as clique constraints,
which thus include the constraints CT13–CT18, and only CT19 and CT20 are included using
the form (26). The complete preprocessing algorithm is sketched in Algorithm 2.

Algorithm 2 Preprocessing of outage dates

Tighten Amax and Smax values.
Construct conflict graph G.
repeat
for all i ∈ I do
for all cycles, k, of i which must be scheduled do
Eliminate vertices of G.

end for
end for

until No vertices could be eliminated

5.2 Aggregation

Unlike the preprocessing technique described in Section 5.1, which attempts to remove as many
redundant variables as possible from the master problem, the aggregation technique focuses on the
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subproblem and reduces the size of this problem by aggregating the individual time step production
variables into variables that determine the weekly production level for each power plant (both type
1 and type 2). Since the time discretization of the master problem is weekly, one does not need
the production levels for each individual time step (which can be as short as 4 hours) when solving
the subproblem in the cutting phase of our methodology. This simple aggregation approach can
dramatically reduce the size of the subproblem; the number of production variables can be reduced
by a factor 42 at best. This primarily allows faster Benders iterations to be performed; however,
it can also be used to determine the likelihood of finding a feasible solution to the subproblem.
If the aggregated version is infeasible, then the disaggregated version will also be infeasible. The
reverse, however, is not true. In Section 8 we assess the impact of using the aggregated version in
the repair phase of the algorithm. Next, we formalize how both the aggregation and the necessary
disaggregation are performed.

Minimal changes are required to model (29)-(37) in order to obtain the aggregated version. In
introducing the weekly production variables piwks and pjws, one is required to update the minimum
and maximum production levels for each power plant, i.e. (35) and (36), the demand constraints,
i.e. (37), and the production cost for each plant of type 2 to reflect the weekly structure. That is,
(35), (36), and (37) become

piwks ≤ ρ(i, w, k) ·
∑

t∈wt

P it ∀(i, k, w ∈ W
p
ik, s) (38)

∑

t∈wt

P jt ≤ pjws ≤
∑

t∈wt

P jts ∀(j, w, s) (39)

∑

i∈I

∑

k∈Ki(w)

piwks +
∑

j∈J

pjws ≥ Dws, ∀(w, s) (40)

where Dws =
∑

t∈wt
Dts. The cost of each piwks variable is assumed to be the average cost of

production for the aggregated time intervals, and we assume that the number of time steps per
week is constant.

In order to provide a feasible solution to the subproblem in stage 2, any aggregated solution
must be disaggregated (if this is possible). This routine works in a similar way to the repair
heuristic described in Section 7.1. In an aggregated solution one has the weekly production levels
of each plant which must be disaggregated into time step production levels in such a way that the
demand of each time step is satisfied. Since each type 1 plant has a certain minimum production
level in each time step, the procedure begins by first identifying the type 1 plant contribution to the
demand in each of the time steps. The respective time step demands are then reduced accordingly.
Next, the type 2 power plants are considered in order and an attempt is made to disaggregate their
weekly production levels in each of their scheduled cycles. In this disaggregation step one proceeds
by assigning the plant’s maximum production level in each of the time steps, or the remaining
demand for that time step, whichever is the smaller. If disaggregation fails (i.e. the assigned
weekly production level for the plant cannot be met), an attempt is made to identify a time step
(or as many as required) within the week for which there is unmet demand and for which the plant
is currently not producing. If this cannot consume the surplus fuel, one repeats this process but
looks across the weeks in the cycle. Finally, an attempt is made to push the remaining fuel to the
subsequent cycle as long as CT11 is satisfied. If CT11 is violated, disaggregation is deemed not
possible, although there is no guarantee that it is actually not possible. Once disaggregation has
been successfully performed for each type 2 power plant, any unmet demand in any time step is
satisfied by the cheapest type 1 power plant.

6 Feasibility

The following so-called stock-bounding constraints are added to the master problem in order to
decrease the number of infeasible subproblems due to the CT11 constraints. One can think of
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Algorithm 3 Disaggregation Algorithm

Require: A feasible solution to an aggregated subproblem
for all j ∈ J do
for all t ∈ T do
Reduce the demand in time step t by the minimum required production level for plant j.

end for
end for
for all i ∈ I do
for all cycles k of i that must be scheduled do
for all weeks w of k do
Disaggregate weekly production level
if Surplus power remains then
Try to consume the surplus fuel in the given week. If this is not possible, try to
consume the fuel in the given cycle. If the remaining fuel still cannot be used, try to
move it to the subsequent cycle. If a CT11 violation occurs, disaggregation is deemed
impossible.

end if
end for

end for
end for

these constraints as adding an artificial stock variable to the master problem, which must satisfy
these constraints given an upper bound on production. In addition, a number of constraints, not
described here due to space consideration, are added which makes the complete solution less likely
not to be repairable because of CT6, by bounding the amount of fuel which can be consumed
between time periods when satisfying the shutdown curve.

Stock Bounding

• xb
ik: lower bound on stock at the beginning of cycle (i, k).

• xe
ik: lower bound on stock at the end of cycle (i, k).

x
e
ik ≥ x

b
ik −

∑

t∈T
p

ik

P it · Ft · ρ(i,w(t), k) ∀(i, k) (41)

x
b
ik = rik +BOik

∑

w∈Wik

yiwk +
Qik − 1

Qik



x
e
i,k−1 −BOi,k−1

∑

w∈Wik

yiwk



 ∀(i, k) (42)

x
e
ik ≤ A

max
i,k+1 +



1−
∑

w∈Wik

yi,w,k+1





(

M
1
i − A

max
i,k+1

)

∀(i, k) (43)

x
b
ik ≤ S

max
ik +



1−
∑

w∈Wik

yiwk





(

M
1
i − S

max
ik

)

∀(i, k) (44)

Similar to in the subproblem, constraints (41) ensure stock level consistency between the
starting stock level of a cycle and its end stock level assuming maximal production in all time
steps, while constraints (42) reflect the requirement that some fuel is lost as a plant goes through
a reload. The Amax bounds and Smax bounds are enforced by constraints (43) and constraints
(44) respectively.
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6.1 Stock Cuts

The Stock Cuts are introduced to enforce some of the structure of the shutdown curve on the
stock bound variables xb

ik, x
e
ik : i ∈ I, k ∈ K defined above. The cuts are divided into three sets

described in the following:

Cut-SI

x
b
ik −

∑

w′>w

yi,w′,k+1

(

UB
1
ik(w,w

′) + A
max
i,k+1

)

≤

(

1−
∑

w′>w

yi,w′,k+1

)

S
max
ik + (1− yiwk)S

max
ik ∀(i, w, k)

(45)

where UB1
ik(w,w

′) := max production from w to w′ assuming Smax
ik at time w with no intermediate

refueling. UB1
ik(w,w

′) is bounded from above by Smax
ik .

There are three parts to these cuts:

• yiwk = 0: This means that for plant i, week w is not the date of outage for cycle k. In this
case the cut evaluates to xb

ik ≤ Smax
ik + ρ with ρ being some positive number. This does not

bound xb
ik further than the already existing bound of Smax

ik .

• yiwk = 1 and
∑

w′>w yi,w′,k+1 = 0: This means that for plant i, week w is the date of outage

for cycle k and for cycle k+1 there is no outage. In this case the cut evaluates to xb
ik ≤ Smax

ik ,
which does not bound xb

ik further.

• yiwk = 1 and yi,w′,k+1 = 1 for some w′ > w: This means that for plant i, week w is the
date of outage for cycle k and for the following cycle k + 1 week w′ is the date of outage.
In this case the cut evaluates to xb

ik − UB1
ik(w,w

′) ≤ Amax
i,k+1, which ensures that the begin

stock xb
ik of cycle k is small enough for the maximum permitted fuel prior to reload in cycle

k + 1 is not violated, assuming maximum production in cycle k and no interactions from
other plants j ∈ I : i 6= j.

Special case. For k = 0:

XI −
∑

w′>w

yi,w′ ,k+1

(

UB
1
ik(w,w

′) + A
max
i,k+1

)

≤

(

1−
∑

w′>w

yi,w′,k+1

)

XI ∀(i, 0, 0) (46)

Similar to above, several cases exist:

•
∑

w′>w yi,w′,k+1 = 0: Evaluates to XI ≤ XI, which requires no further comments.

• yi,w′,k+1 = 1 for some w′ > w: Evaluates to XI − UB1
ik(w,w

′) ≤ Amax
i,k+1. By following the

argumentation above, this can be shown to be valid.

Cut-SII

Rik −
∑

w′>w

yi,w′,k+1UB
2
ik(w,w

′) ≤ x
e
ik +

(

1−
∑

w′>w

yi,w′,k+1

)

Rik + (1− yiwk)Rik ∀(i, w, k) (47)

where UB2
ik(w,w

′) := max production from w to w′ assuming Ri,k at time w.

As for Cut-SI there are three parts to these cuts:

• yiwk = 0: In this case the cut evaluates to 0 ≤ xe
ik + ρ with ρ being some positive number.

This does not bound xb
ik further than the already existing bound of 0.

• yiwk = 1 and
∑

w′>w yi,w′,k+1 = 0: In this case the cut evaluates to 0 ≤ xe
ik, which does not

bound xb
ik further.
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• yiwk = 1 and yi,w′,k+1 = 1 for some w′ > w: In this case the cut evaluates to Rik −
UB2

ik(w,w
′) ≤ xe

ik, which ensures that the begin stock xb
ik is large enough compared to the

minimum fuel reload, assuming maximum production in cycle k and no interactions from
other plants j ∈ I : i 6= j.

Special case. For k = 0:

XI −
∑

w′>w

yi,w′,k+1UB
2
ik(w,w

′) ≤ x
e
ik +

(

1−
∑

w′>w

yi,w′ ,k+1

)

XI ∀(i, 0, 0) (48)

Similar to above, several cases exist:

•
∑

w′>w yi,w′,k+1 = 0: Evaluates to 0 ≤ xe
ik, which requires no further comments.

• yi,w′,k+1 = 1 for some w′ > w: Evaluates to XI − UB2
ik(w,w

′) ≤ xe
ik. By following the

argumentation above, this can be shown to be valid.

Cut-SIII

x
b
ik − UB

1
ik(w,w

′) ≤ x
e
ik + (2− yiwk − yi,w′,k+1)S

max
ik ∀i ∈ I,∀k ∈ K,∀w ∈ Wik,∀w

′ ∈ Wi,k+1, w < w
′

(49)

where UB1
ik(w,w

′) is defined as before.

There are two parts to these cuts:

• yiwk+yi,w′,k+1 ≤ 1: In this case the cut evaluates to xb
ik ≤ xe

ik+ρ with ρ being some positive
number, since UB1

ik(w,w
′) ≤ Smax

ik . This is clearly dominated by the constraint xb
ik ≤ xe

ik.

• yiwk = 1 and yi,w′,k+1 = 1: In this case the cut evaluates to xb
ik −UB1

ik(w,w
′) ≤ xe

ik, which
ensures that the end lower bound on stock xe

ik compared to the start lower bound on stock
is not smaller than what can be explained by a maximum production in the cycle.

7 Postprocessing

The role of the postprocessing stage is to try to convert a solution, in the following also referred to
as the reference solution, which does not satisfy the CT6 and CT12 constraints into one that does.
This process is divided in two stages: in the first stage, called the repair stage, the production
levels and reload amounts are altered in an attempt to satisfy CT6, and CT12, without violating
any other constraints. If the solution can not be repaired, it is discarded. In the second stage,
called the postoptimization stage, the production levels are shuffled between plants in an attempt
to reduce the cost of the solution. The two stages are now described in further detail.

7.1 Repair

The input to this stage is a solution that satisfies all constraints except perhaps CT6, and CT12,
i.e., the production curve may not follow the shutdown curve it should, or the maximum modu-
lation is exceeded. The assumption is that the structure of the reference solution is good, and by
making small adjustments, it is possible to make it satisfy these two additional constraints without
changing the cost too much. Thus we want alterations to be as local as possible and since changes
in start and end stock of a cycle propagates to the remaining cycles, the changes in these should
be as small as possible. Satisfying CT6 means reducing production levels in some places, while
satisfying CT12 means increasing production in some places. Changing the production levels from
the reference solution, means that the stock levels passed from one cycle to the next will change
from the reference solution. One observes that these changes in stocks can be kept small if a
decrease of production in one time step of a cycle can be absorbed by an increase in production
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in another place of the cycle (see Figure 2 for an example). Changes in production within a cycle
could also be absorbed by a change of the amount of fuel reloaded, but this is at odds with the
principle of locality, as all scenarios are affected and previously repaired scenarios would thus have
to be repaired again.

Figure 2: Example of repairing a cycle, such that the shutdown curve is respected by shuffling
production to an earlier part of the cycle, such that the end stock remains the same. The upper
think line is the production capacity, the upper dashed line is the production levels before repair,
the thick line is the repaired shutdown curve. The lower think dashed line is the stock levels in
the reference solution, while the lower thick dashed line is the stock levels assuming the shutdown
curve is followed backwards from the end stock. δ is the extra stock that must be consumed
earlier in the cycle for the end stock to remain the same. The gray area represents the increase in
production in order to consume the extra stock.

We now describe the consequences on the remaining constraints, when the production levels
are changed: Lowering the production will raise the end stock of the cycle, which may lead to
CT11 becoming violated, either for that or a later cycle. Raising production will lower the end
stock, which may lead to shortage of fuel in later cycles, where demand can no longer be met.

The repair procedure is divided in two stages: In stage 1 only type 2 plants are considered,
and the production curves of these are adjusted so that they satisfy all constraints except perhaps
the demand constraints. Then in stage 2, the production of type 1 plants is adjusted such that
demand is covered. If any of the stages fail, the entire reference solution is discarded. We now
describe these two stages in detail.

Stage 1 For each plant i ∈ I, each cycle k ∈ Ki is treated one at a time, starting with the
earliest. Each time a cycle is repaired one of two cases may happen:

1. No change in the stock levels at the start or end occurred. This means all changes of
production levels within the cycle, were absorbed by increasing of decreasing production
somewhere else within that cycle.

2. Given the repaired production levels, the end stock would be increased by δ. In this case
the algorithm has two possibilities: either backtrack and try to have δ less stock at the
beginning, i.e., consume δ more earlier, or push the stock excess to the next cycle. The
algorithm first backtracks, and if this is not possible pushes the stock to the next cycle.

The repair algorithm is sketched in Algorithm 4, where xb
ik and xe

ik is the stock at the beginning
and end of the cycle respectively, tbik and teik is the beginning and end respectively of the production
campaign of that cycle, and δik ∈ R is the amount of stock to clear, either from a backtrack from
a later cycle, or from an earlier cycle.
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Algorithm 4 Repair algorithm for a single cycle

Require: A plant i ∈ I and cycle k ∈ Ki

if is backtrack then
xe
ik := max{0, xe

ik − δik}.
else
xs
ik := xe

ik + δik.
end if
Calculate shutdown curve backwards from xe

ik. Let tB and xB be the resulting time step and
stock right before entering this shutdown curve, and let xtB be the current stock at time tB.
Set δ := xB − xtB .
Raise production by δ (if possible) in the time interval [tik; tB]. Let δ be what is left.
if δ = 0 then
Check if CT12 is violated, if so augment production. This may change the point of the
shutdown curve and the end stock. Let x be the (new) end stock.
δi,k+1 := x− xe

ik

Set is backtrack := false.
Set xe

ik := x.
Proceed with next cycle.

else
Since all production is at the upper bound, CT12 is satisfied.
if k = 0 then
Set can backtrack := false

end if
if can backtrack then
Set δi,k−1 := δ

Backtrack to previous cycle.
else
Set δi,k+1 := δ.
Set xe

ik := xe
ik + δ.

Proceed with next cycle.
end if

end if

Stage 2 This stage is quite simple. For each t ∈ T it is checked whether demand is either
oversupplied or under-supplied. If demand is oversupplied the production of the most expensive
type 1 plants are reduced, if demand is under-supplied the production of the least expensive type
1 plants are raised. It may happen that demand can not be met because of the bounds on the
production of plant type 1. If so, an attempt to shuffle production within each cycle is made in
a manner similar to the procedure described in the next section. If demand can not be met, the
reference solution is discarded.

7.2 Postoptimization

The input to this stage is a solution that satisfies all constraints, and the role of the postoptimiza-
tion is to try and reduce the cost of the solution by performing alterations, which do not lead to
any new constraint violations but reduces the overall cost. As performing alterations which result
in changes to the end stock of a cycle propagates, calculating the consequence of such alterations
can be cumbersome, and we thus restrict our attention to alterations, where this is not the case.

One such alteration is the following: Let t1 and t2 be two points in time lying before the start
of the shutdown curve within the same cycle for some i ∈ I, let j1, j2 ∈ J be two plants such that
cj1t1 < cj2t2 , and let δ = min{P it2 − pit2 , pit1 , P j1t1 − pj1,t1 , pj2,t2 − P j2t2

}, where p is the current
production level. Then updating pit1 := pit1 − δ, pit2 := pit2 + δ, pj1t1 := pj1t1 + δ, pit2 := pit2 − δ,
results in an improved cost while satisfying all constraints and not altering the end stock, nor the
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shutdowncurve of the cycle in question. The postoptimization heuristic is sketched in Algorithm 5.

Algorithm 5 Postoptimization heuristic

Require: A solution satisfying all constraints.
for all i ∈ I do
for all cycles, k, of i do
for some number of iterations do
Select at random some t1, t2 lying within k and before the start of a shutdown curve.
Select at random some j1, j2 ∈ J such that cj1t1 < cj2t2 .
δ = min{P it2 − pit2 , pit1 , P j1t1 − pj1,t1 , pj2,t2 − P j2t2

},
Update pit1 := pit1 − δ, pit2 := pit2 + δ, pj1t1 := pj1t1 + δ, pit2 := pit2 − δ

end for
end for

end for

8 Computational results

In this section we present the computational experiments performed. The challenge instances are
divided in three groups: data0–data5 are the initial instances used for the qualification phase,
data6–data10 are the instances made public after the qualification phase, finally data11–data15
are the instances used for the final ranking of the competitors. These instances were not made
available until after the end of the challenge. As only data instances data0–data10 were available,
we restrict the experiments to these 11 instances, and consider only all the instances for the final
computational results. For some experiments we further restrict our attention to a representative
sample: data1, data5, data7, data8, and data10.

Table 2 lists the characteristics of the instance, where |T | is the number of time steps, |W |
is the number of weeks, |K| is the number of cycles, |S| is the number of scenarios, |J | is the
number of plants of type 1, |I| is the number of plants of type 2, and 13–21 are the number of
corresponding CTXX constraints.

Setup The computational experiments were performed on a machine with 2 Intel(R) Xeon(R)
CPU X5550 @ 2.67GHz (16 cores in total), with 24 GB of RAM, and running Ubuntu 10.4. The
version of CPLEX used is 12.1.

Preprocessing We here examine the effect of the preprocessing described in Section 5.1. Ta-
ble 3 shows the results: It gives the total number of possible outage dates before preprocessing
(Total), and the percentage of these removed by the preprocessing (Rem.). As can be seen the
preprocessing is very effective removing 80%− 90% of the possible outage dates for all instances
except the very small instance data0, and data8 and data9. For the two latter the number of
variables is around twice as large as the largest of the other instances, and fewer variables are
removed (around 63% and 68% respectively). The reason can be gleamed from Table 2: data8
and data9 have much fewer CT13 constraints, i.e., few cycles must be scheduled, which means the
problem is less constrained and eliminating outage dates is harder.

Heuristic preprocessing As mentioned earlier, the preprocessing is very effective, but it is
still struggles on certain large instances (data8 and data9), where few cycles have to be scheduled.
For this reason the heuristic conflict detector described as point 5 in Section 5.1 is included. As
described there the value of α controls the aggressiveness of the heuristic (lower values means
more conflicts). We here examine the effect of including the heuristic preprocessing. The value
of α is fixed to 0.05 (for smaller values some instances were infeasible). Table 4 shows the per-
centage of variables removed (Rem.) and the final solution (Sol.), without the heuristic (No
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Table 2: Characteristics of the problem instances

Name |T | |W | |K| |S| |J | |I| 13 14 15 16 17 18 19 20 21

data0 623 89 2 2 1 2 4 1 0 0 0 0 0 0 0

data1 1750 250 6 10 11 10 46 7 0 1 3 0 1 1 1

data2 1750 250 6 20 21 18 84 13 0 1 3 0 1 1 1

data3 1750 250 6 20 21 18 80 10 2 1 3 2 1 1 1

data4 1750 250 6 30 31 30 122 19 0 1 3 0 1 1 1

data5 1750 250 6 30 31 28 120 18 0 1 3 0 1 1 3

data6 5817 277 6 50 25 50 222 33 40 1 3 0 1 50 5

data7 5565 265 6 50 27 48 192 31 35 1 3 0 1 50 5

data8 5817 277 6 121 19 56 114 37 45 1 3 0 1 50 5

data9 5817 277 6 121 19 56 114 37 45 1 3 0 1 50 5

data10 5565 265 6 121 19 56 235 37 45 1 3 0 1 50 5

data11 5817 277 6 50 25 50 239 33 40 1 3 0 1 50 5

data12 5523 263 6 50 27 48 207 31 35 1 3 0 1 50 5

data13 5817 277 6 121 19 56 260 37 45 1 3 0 1 50 5

data14 5817 277 6 121 19 56 256 37 45 1 3 0 1 50 5

data15 5523 263 6 121 19 56 245 37 45 1 3 0 1 50 5

Table 3: Number of variables removed by preprocessing

Name Total Rem. Name Total Rem.

data0 36 28.78% data6 24683 85.65%

data1 3920 87.53% data7 35817 80.61%

data2 7941 88.47% data8 69481 68.03%

data3 8207 89.83% data9 69136 62.70%

data4 17514 89.41% data10 30061 85.43%

data5 15415 82.13%

Heur.), and with the heuristic (Heur.) given 3600 seconds respectively. For this experiment
the stock constraints were added as described for Run 6 in Table 6, aggregation was enabled and
postoptimization was disabled. As can be seen, the effect on the final solution quality is minor
for data1–data3, for data4–data5 the solution is improved, while it is worse for data6, data7, and
data10, finally we are now able to provide a solution for data8, which was not possible earlier.

Aggregation Next we examine the effect of aggregation on the solution quality. To that effect
the algorithm is run for 3600 seconds with aggregation enabled and disabled for stage 2 (aggre-
gation is always performed for stage 1). Table 5 shows the results, where Vars. is the number of
variables in the subproblem, Cons. is the number of constraints in the subproblem, and Sol. is
the final solution. For this experiment the stock constraints were added as described for Run 7
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Table 4: Effect of using heuristic preprocessing for different values of α

No Heur. Heur.

Name Rem. Sol. Rem. Sol.

data0 28.78% 8.7371e12 28.78% 8.7371e12

data1 87.53% 1.6990e11 87.63% 1.6971e11

data2 88.47% 1.4654e11 88.64% 1.4672e11

data3 89.83% 1.5537e11 89.92% 1.5578e11

data4 89.41% 1.1342e11 89.64% 1.1309e11

data5 82.13% 1.3272e11 83.28% 1.3153e11

data6 85.65% 9.0945e10 85.72% 9.2508e10

data7 80.61% 1.2307e11 80.68% 1.3663e11

data8 68.03% – 77.15% 3.2392e12

data9 62.70% – 74.13% –

data10 85.43% 1.5303e11 85.44% 1.7455e11

in Table 6, heuristic conflicts were included with α = 0.05 and postoptimization was disabled. As
can be seen the aggregation results in a big reduction in the number of variables and constraints
of the subproblem. For data8, and data10 no solution is found without the use of aggregation.

Table 5: Effect on final solution of aggregating versus not aggregating in stage 2

Enabled Disabled

Name Vars. Cons. Sol. Vars. Cons. Sol.

data1 5514 8693 1.6971e11 37692 58871 1.6968e11

data5 16696 25199 1.3147e11 114346 170849 1.3100e11

data7 25898 34181 1.3663e11 529438 686121 1.3412e11

data8 41762 48309 3.2392e12 860182 977529 –

data10 23150 29457 1.7455e11 469330 581637 –

Stock constraints We here examine the effect of including the constraints described in Sec-
tion 6, in an attempt to ensure the feasibility of the subproblem. One can choose to include either
all the constraints, or only a subset, and to included them only in stage 2 or in both stages. Nine
runs are performed, with the settings described in Table 6. The results can be seen in Table 7.
For this experiment heuristic conflicts were included with α = 0.05, aggregation was enabled and
postoptimization was disabled. As can be seen only Run 7 and Run 10 completes for all the tested
instances. Run 10 achieves the best average results.

Postoptimization We here examine the effect of the postoptimization procedure described in
Section 7.2. For each of the 11 instances three runs are performed, with the number of iterations
respectively set to 50, 000, 150, 000, and 300, 000. The results can be seen in Table 8. For this
experiment the stock constraints were added as described for Run 10 in Table 6, heuristic conflicts
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Table 6: Description of the different settings used for the stock constraint runs

Run Description

1 No stock constraints included

2 Stock constraints (41)–(44) included in stage 1.

3 Stock constraints (41)–(44), SI and SII included in stage 1.

4 All stock constraints included in stage 1.

5 Stock constraints (41)–(44) included in stage 2.

6 Stock constraints (41)–(44), SI and SII included in stage 2.

7 All stock constraints included in stage 2.

8 Stock constraints (41)–(44) included in stage 1, SI and SII
included in stage 2.

9 Stock constraints (41)–(44) included in stage 1, remaining
included in stage 2.

10 Stock constraints (41)–(44), SI and SII included in stage 1,
remaining included in stage 2.

Table 7: Effect of including stock constraints. See Table 6 for a description of each run.

Name Run 1 Run 2 Run 3 Run 4 Run 5

data 1 1.6986e11 1.6987e11 1.6981e11 1.6986e11 1.6973e11

data 5 – 1.2656e11 1.2593e11 1.2707e11 1.3163e11

data 7 – 1.3535e11 1.0514e11 1.2517e11 1.3363e11

data 8 – – – 2.8047e12 –

data10 – 1.3055e11 1.3785e11 1.3667e11 1.1532e11

Avg. – – – –

Name Run 6 Run 7 Run 8 Run 9 Run 10

data 1 1.6972e11 1.6972e11 1.6987e11 1.6979e11 1.6977e11

data 5 1.3039e11 1.3148e11 1.2656e11 1.2654e11 1.2593e11

data 7 1.3392e11 1.3663e11 1.4035e11 1.3373e11 1.0563e11

data 8 – 3.2393e12 – – 2.1963e12

data10 1.5162e11 1.7455e11 1.4273e11 1.6093e11 1.3864e11

Avg. – 7.7034e11 – – 5.4725e11

were included with α = 0.05. The reason for the factor 10 increase in solution quality for data8
over previous results, is a newer version of the code, where the conflict graph more effectively
is added as cliques. Due to time constraints the previous tests could not be rerun. As can be
seen there is a clear correlation between the number of postoptimization iterations and the final
solution quality.
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Table 8: Effect of postoptimization procedure. The number of iterations for the runs are respec-
tively 50, 000, 150, 000, and 300, 000

Name Run 1 Run 2 Run 3

data1 1.69711e11 1.69710e11 1.69709e11

data5 1.26452e11 1.26453e11 1.26451e11

data7 1.10602e11 1.09518e11 1.09013e11

data8 2.88400e11 2.79264e11 2.75348e11

data10 1.30261e11 1.28788e11 1.28443e11

Time We finally examine the solution quality as a function of total time given to the algorithm.
Each of the 16 instance is run for respectively 3600 seconds, and 10800 seconds. The results
can be seen in Table 9, and Table 10 respectively, where the number in parenthesis is the de-
viation from the best known solutions reported on the ROADEF/EURO 2010 challenge website
(http://challenge.roadef.org/2010). For the challenge a maximum time of 1800 seconds was
allowed for the first 6 instances, and 3600 seconds for the remaining 10. Each table gives the
following information: the number of optimality cuts added (#Cuts), the number of solutions
found in stage 2(#Sols), the number of solutions found in stage 2 that were repairable (#Rep),
the solution value (Sol.), the percentage deviation from the best known solution (#Dev), and
the average deviation for the two test sets of five instances (#Avg).

As can be seen from the tables, the solution approach performs satisfactorily on instances zero
to five. These were the test instances used in the qualification phase of the contest and are less
complicated than the second and third set of instances (data6 to data10, and data11 to data15).
For the latter sets, the algorithm runs into difficulty due to the large number of binary variables,
particularly for data8 and data9 which are far from the best known solutions, and for data13 which
is not solved at all. Furthermore, formulating and solving the subproblem as an LP and repairing
its solution so that it satisfies CT6 and CT12 appears to be an expensive process, despite the
aggregation.

For the the smaller instances, many of the solutions are repairable, while for the larger instances,
there is a lot more variation. It is sunrising that for two of the instances where the algorithm
performs poorly (data8 and data13), there is a large number of solutions found but only two are
repairable in one case, while none in the other. Generally it appears that for the larger instances,
either the solutions to the master problem can not be adjusted such that they satisfy CT6 and
CT12, or the repair algorithm does a poor job.

Doubling the amount of time (Table 10) does not significantly change the results and only
data1, data5, and data6 are improved. The trend of finding many solutions which are non-
repairable remain the same.

9 Conclusion

In conclusion, we have developed a Benders Decomposition approach to solve the large scale energy
management problem posed for the ROADEF/EURO 2010 challenge. The approach includes
a MIP model of the problem along with additional constraints for ensuring feasibility of the
subproblems, a very effective preprocessing and aggregation scheme, which reduces the size of the
problem significantly, and an algorithm for repairing a solution which only satisfies a subset of the
constraints.

On the first set of instances the approach is competitive, while on the the second two set of
instances it is not. This is mainly due to the size of the problems, and the time allotted. On
the second set of instances and 5 blind instances we placed 14th out of 19 teams in the final of
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Table 9: Results for different problem instances given 3600 seconds

Name #Cuts #Sols. #Rep. Sol. Dev. Avg.

data0 5 2517 2517 8.7372e12 0.0709%

data1 6 352 312 1.6971e11 0.1008%

data2 17 82 82 1.4629e11 0.1639%

data3 14 86 86 1.5475e11 0.2050%

data4 23 36 35 1.1206e11 0.4157%

data5 21 38 37 1.2645e11 0.4997% 0.2427 %

data6 14 12 12 9.0113e10 8.0173%

data7 5 121 1 1.0901e11 34.2953%

data8 3 1486 2 2.7535e11 236.0938%

data9 9 7 3 3.5103e12 4193.8891%

data10 37 7 5 1.2844e11 62.3461% 906.9283 %

data11 61 447 11 8.8464e10 14.0143%

data12 20 12 12 8.8135e10 15.2850%

data13 16 1017 0 – –%

data14 10 8 4 1.0092e11 32.4820%

data15 46 35 2 1.5758e11 109.8220% 42.9008%

the competition. One of the few optimal methods proposed, it was unable to compete with the
heuristics given only 3600 seconds of computing time. The sophisticated approach can, however,
provide information as to the quality of solutions through the lower bound information which can
be obtained at each iteration of the Benders algorithm as well as insights into the structure on
the problem.
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Table 10: Results for different problem instances given 10800 seconds

Name #Cuts #Sols. #Rep. Sol. Dev. Avg.

data0 5 2517 2517 8.7372e12 0.0709%

data1 6 872 583 1.6971e11 0.1007%

data2 17 153 153 1.4629e11 0.1639%

data3 14 165 165 1.5475e11 0.2050%

data4 23 73 72 1.1206e11 0.4156%

data5 21 76 74 1.2643e11 0.4842% 0.2401 %

data6 14 23 23 8.9659e10 7.4733%

data7 5 481 22 1.0901e11 34.2953%

data8 3 4292 2 2.7535e11 236.0938%

data9 9 12 10 3.5103e12 4193.8891%

data10 37 10 9 1.2844e11 62.3461% 906.8179 %

data11 61 458 22 8.8464e10 14.0143%

data12 20 25 25 8.8135e10 15.2850%

data13 16 2187 0 – –%

data14 10 118 8 1.0092e11 32.4820%

data15 46 126 2 1.5758e11 109.8220% 42.9008%
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We present a Benders’ decomposition based framework for solving a large scale energy manage-
ment problem with varied constraints posed as the ROADEF/EURO 2010 challenge. Because of
the nature of the problem, not all constraints can be modeled satisfactorily as linear constraints
and the approach is therefore divided into two stages: in the first stage Benders feasibility and
optimality cuts are added based on the linear programming relaxation of the Benders Master
problem, and in the second stage feasible integer solutions are enumerated and procedure is
applied to each solution in an attempt to make them satisfy the constraints not part of the
mixed integer program. A number of experiments are performed on the available benchmark
instances. These experiments show that the approach is competitive on the smaller instances,
but not for the larger ones. We believe the exact approach gives insight into the problem and
additionally makes it possible to find lower bounds on the problem, which is typically not the
case for the competing heuristics
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