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Summary. This paper describes the modeling of a rotary MR damper applying the feed-
forward back propagation neural network method. The forward and inverse MR damper 
behavior are modeled to estimate the force and to solve the force tracking task in real-time. 
The training and validation data are generated by dynamic tests of the MR damper mounted 
on a hydraulic testing machine. The training data for the forward model are velocity and 
current whereby the force is the target. The inverse modeling training data are absolute 
velocity and absolute force and the current is the target. This new approach is chosen because 
current is always positive and thereby leads to a small modeling error independently of the 
sign of velocity. The validation demonstrates that the proposed neural network approach can 
reliably represent both the forward and inverse dynamic characteristics of the rotary type MR 
damper. 

 
1 INTRODUCTION 

Magneto-rheological (MR) dampers have received considerable attention within the last 
decades mainly because of their design simplicity, low power requirements, large force range 
and robustness. Typically, a rotary type MR damper consists of a rotating disk which is 
enclosed in a rectangular metallic housing filled with the MR fluid. The MR fluid housed 
within the rotary type MR damper is operated in shear mode. The dissipative torque produced 
is transformed into a translational force through the crank shaft mechanism.  
The most common models to describe the dynamic behavior of MR dampers are the Bouc–
Wen model [1], the LuGre friction model [2] and the Dahl model [3]. These modeling 
approaches are fairly complicated due to the high degree of nonlinearities in the system under 
consideration. From a computational point of view the nonparametric neural network 
technique is very versatile in connection with most types of nonlinear problems [4]. 
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Therefore, this paper applies this method to model the dynamic behavior of the rotary MR 
damper. 

2 EXPERIMENTAL SET-UP 

The experimental test set up and its schematic diagram are shown in Fig. 1. The dSPACE 
is used to output the desired displacement going to the INSTRON controller, to output the 
desired current going to the current driver KEPCO and to acquire the measured states such as 
MR damper force, acceleration of the crank-shaft, actual displacement and current. Sinusoidal 
and triangular displacements with different frequencies from 0.5 Hz to 2.2 Hz are applied. 
Triangular displacements are used in order to perform tests at constant damper velocity. 
Constant and half-sinusoidal currents with different frequencies from 0.5 Hz to 2.2 Hz are 
also applied. The current of the MR damper under consideration is limited to 4 A and the 
maximum displacement amplitude is constraint to 10 mm due to the crank-shaft mechanism. 
The measured data is filtered to remove measurement noise and offsets in order to get the 
training data for the neural networks. 

KEPCO Current Driver

Hydraulic Actuator  

MR Damper

Load Cell 

Instron PC Unit

dSPACE
Controller Unit

Accelerometer

 

 

MR Damper

Actuator

Damper
forceLoad Cell

Current
driver

Power
Supply

Displacement
Command

dSPACE

Acceleration

Actual
Disp

 

Figure 1. Experimental set-up and its schematic view 

3 NEURAL NETWORK MODELING 

Feed forward neural network (FFNN) is capable of modeling any nonlinear behaviour with 
acceptable accuracy. One data set is use as training data and another as validation set. 

3.1 Forward MR damper modeling using FFNN 

The identification methodology for the modeling of the forward dynamics of MR damper 
using the FFNN approach is illustrated in Fig. 2. The input states are current and velocity and 
their associated delay values. The velocity is required due to its significant influence on the 
hysteretic behavior of the MR damper. It is derived by numerical differentiation of the 
measured displacement. The noise resulting from the differentiation is removed by additional 
low pass filtering. The difference between modeled and measured MR damper force, i.e. the 
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error(k), is used to adjust the weights and the biases of the neural network model until a 
defined modeling error is reached. The feed forward neural network includes 2 hidden layers 
with 12 neurons in the first layer and 6 neurons in the second. The output layer includes one 
neuron and is chosen for input-output comparison. The numbers of layers and neurons have 
been found by trial and error. The transfer functions of the neurons of the two hidden layers 
are selected as tangent sigmoid function and the transfer function of the output layer is 
selected as linear function. The training algorithm is based on the Levenberg-Marquardt 
algorithm. The detailed mathematics of the neural network method is described well in [5]. 
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Figure 2. Forward and inverse neural network modeling of MR damper 

3.2 Inverse MR damper modeling using FFNN 

The architecture of the inverse model using the FFNN method is also shown in Fig. 2. The 
number of hidden layers and their transfer functions are chosen as before but the number of 
neurons in both hidden layers is 6. The significant change compared to the forward modeling 
is that the absolute values of velocity and force are used to train the neural network to get the 
estimated current because current is always positive. This new approach leads to small 
modeling error and the modeling error does not depend on the sign of velocity and direction 
of damper displacement, respectively. 

4 MODEL VALIDATION AND DISCUSSION 

The validations of both the forward and inverse MR damper models are shown in Fig. 3. 
The error of the forward model is depicted by comparing the measured and estimated forces 
resulting from 2 A and sinusoidal displacement (0.5 Hz, 4 mm). The modeling error of the 
inverse neural network approach is shown for the case of half-sinusoidal current input 
(0.5 Hz) and sinusoidal displacement (0.5 Hz, 6 mm). The inverse neural network is tested by 
a half-sinusoidal current because this is quite close to the current time history that is expected 
when emulating linear viscous damping except that the current spike during the pre-yield 
region is missing. The validation of the forward model shows an acceptably small error. The 
current estimated by the inverse MR damper model shows spikes that result from spikes in the 
measured displacement and force due to bearing plays between crank-shaft and INSTRON 
piston. Although these spikes have been partially removed by the filters to derive the training 
data, the estimated current is still spiky. The simple approach of filtering the estimated current 
cancels the spikes but leads to a still acceptably small time delay of approximately 0.05 s. 
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5 CONCLUSIONS 

This investigation employed the back propagation feed forward neural network method to 
model the forward and inverse dynamics of an MR damper. The training data was taken on a 
prototype rotary MR damper that was connected to a hydraulic machine imposing sinusoidal 
and triangular displacements and constant and half sinusoidal current time histories. The goal 
of the forward MR damper model was to capture accurately the behavior of the MR damper 
behavior whereas the inverse MR damper model will later be used for the control force 
tracking when the MR damper will be connected to a shear frame. The novelty in the 
proposed neural network when modeling the inverse MR damper behavior is that the absolute 
values of velocity and force are used to estimate the damper current since current is always 
positive. The validations of both the forward and inverse MR damper models show that the 
applied neural network approaches capture the main MR damper dynamics with acceptable 
accuracy. However, the preliminary results demonstrate that the modeling accuracies can still 
be improved by further optimization of the filters that are used to process the measurement 
data to derive the training data for the neural network training. 
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Figure 3. Validation of forward and inverse neural network models 
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