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ARTICLE INFO ABSTRACT

Available online 10 April 2010 Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include
high detection efficiency and good energy resolution as well as fine position sensitivity even in three
dimensions.

We report on experimental investigations on the CZT drift detector developed DTU Space. It is
operated in the planar transverse field (PTF) mode, with the purpose of demonstrating that the good
energy resolution of the CZT drift detector can be combined with the high efficiency of the PTF
configuration. Furthermore, we demonstrated and characterized the 3D sensing capabilities of this
detector configuration.

The CZT drift strip detector (10 mm x 10mm x 2.5mm) was characterized in both standard
illumination geometry, Photon Parallel Field (PPF) configuration and in PTF configuration. The detection
efficiency and energy resolution are compared for both configurations . The PTF configuration provided
a higher efficiency in agreement with calculations. The detector energy resolution was found to be the
same (3 keV FWHM at 122 keV) in both in PPF and PTF .

The depth sensing capabilities offered by drift strip detectors was investigated by illuminating the
detector using a collimated photon beam of >’Co radiation in PTF configuration. The width (300 um
FWHM at 122 keV) of the measured depth distributions was almost equal to the finite beam size.
However, the data indicate that the best achievable depth resolution for the CZT drift detector is 90 pm
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FWHM at 122 keV and that it is determined by the electronic noise from the setup.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The upcoming X-ray astrophysics missions in the keV to MeV
band require instrumentation advanced in both spectral
and imaging capabilities of the detectors and in the capabilities
of X-ray imaging optics. The instrumentation for these types of
telescopes requires detectors of high efficiency, with energy
resolution on the order of a few keV and the capability of three
dimensional (3D) position sensitivity.

Compound room temperature semiconductor detectors such
as CdZnTe (CZT) and CdTe are good candidates for hard X-ray
(>10keV) and y-ray astronomy instrumentation. A major
drawback for these type of detectors is the ineffective charge
collection within the detector, especially for the holes which
affect and degrade the detectors’ spectral performance. At DTU
Space, the development of CZT Drift Strip detectors [1] and [2],
resulted in significant spectral performance improvements.

* Corresponding author.
E-mail address: irfan@space.dtu.dk (I. Kuvvetli).
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2. CZT drift strip detector

Fig. 1 shows the principle of CZT drift strip detectors. The
detector structure is similar to the Silicon drift detector which
was first time introduced by Emilio Gatti and Pavel Rehak in 1983
[3]. A CZT drift strip detector cell is shown between the dashed
lines marked with A and B. The structure employs a number of
drift strips (small black boxes) separating the anode readout strips
(small white boxes labeled as Q) on one side and a planar
electrode on the other. A voltage divider supplies each drift strip
with a bias of V;=V, x (i/4), (i=1,2,3,4), while the anode strips are
held at ground potential. The detector is biased such that the
electrons, produced by the photon interaction, are drifted to an
anode readout strip with their transport properties (mobility-
lifetime product, pte, up to 10~2cm?/V for CZT). The positive
charges (holes) produced by the photon interaction have a poor
mobility-lifetime product (uty,, values up to 10~°>cm?/V) in CZT
and will, with high probability, be trapped in the detector.
However, the anode signal is unaffected by the holes since the
anode strips are screened by the bias strips [1]. The anode signals
are therefore proportional to the photon energy and high
spectroscopic performance is ensured for CZT materials with
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Fig. 1. Principle of the CZT drift strip detector. A drift strip detector cell is shown between dashed lines marked with “A” and “B”. The drift strip electrodes and the planar
electrode are biased in such a way that the electrons move to the anode strips (white boxes).

good electron drift properties. Although the spectroscopic
properties of these detectors are almost independent of material
hole transport properties, they are of course very dependent on
the electron transport properties and especially, materials with
fluctuating electron trapping lengths will result in degraded
detector performance.

Not only does the drift strip readout technique provide an
improved energy determination for CZT detectors, but it also
yields information about the interaction depth of the detected
photon. The depth information (depth sensing) can be derived
from the ratio, R= Q,/Qs, where Q, is the planar electrode signal
and Qs the anode strip signal. The quantity R is almost linearly
dependent on the photon interaction depth, x, with a value close
to unity for interactions close to the planar electrode and a value
close to zero for interactions near the strip electrodes. For further
details see Ref. [1]. The depth of interaction (DOI) information can
be used to correct residual electron trapping effects on the anode
signal and improve further the detectors energy resolution.

Some of the best spectral performance figures for drift strip
detectors have been reported for full illumination over a wide
energy range in Refs. [4-6]. It is demonstrated in these reports
that the CZT drift strip detectors can achieve energy resolutions
which are within a factor of 2 to 3 of the CdZnTe Fano-limited
resolution.

3. Applications

Instruments based on CZT drift strip detector systems have
been proposed for for a number of space missions:

(1) The X-Ray Imager (XRI) on the Atmospheric X-ray Observa-
tory (AXO) [7]. The AXO mission was proposed by the Danish
Small Satellite program and was dedicated to the observation
of X-rays generated in the Earth’s atmosphere. The AXO XRI
was an imaging instrument using a coded mask and a 2D
800 cm? CZT drift strip detector.

(2) AXO XRI was developed further and proposed as the Modular
X-ray and Gamma-ray Sensor (MXGS) on board the
Atmosphere Space Interactions Monitor (ASIM) [8]. ASIM is
an accepted European Space Agency (ESA) mission for the

International Space Station. It will study giant electrical
discharges (lightning) in the high-altitude atmosphere
above thunderstorms. The discharges are seen as optical,
X-ray and Gamma-ray flashes in the stratosphere and the
mesosphere.

(3) As focal plane detector for the Gamma-Ray Imager (GRI) [9]
and [10]. The Gamma-Ray Imager was proposed for the ESA
Cosmic Vision 2015-2025 plan. It was not accepted in the first
round, but development work continues. GRI proposed for the
first time the use of novel focusing optics to concentrate high
energy photons on a small focal spot. The energy coverage of
10keV-1.3 MeV will be achieved by combining a Laue crystal
lens with a single-reflection multilayer-coated mirror. The GRI
focal plan detector contains four stacked CZT layers operated
in PTF configuration, surrounded by CZT side walls with about
the same characteristics in terms of thickness and spatial
resolution. The focal plane detector is based on 3D position-
sensitive CZT drift strip detectors and was designed to
optimize the response for the Point Spread Function
characteristics foreseen for the GRI focusing optics.

4. Detector illumination geometry

Fig. 2 shows the possible illumination geometries used for CZT
drift strip detectors. (a) Standard illumination geometry, Photon
Parallel Field (PPF). The photons enter the detector perpendicular
to the planar electrode. (b) Side illumination configuration,
Photon Transverse Field (PTF). The photons enter the detector
perpendicular to the side of the detector. This mode has the
advantage that photons can be absorbed in the full length of
the detector while the created charge at most will drift through
the thickness of the detector. Therefore this detector illumination
mode will provide high efficiency, preserving the excellent
spectroscopic performance obtained for the CZT drift strip
detectors. (c) PTF configuration as in (b) but with segmented
planar electrodes orthogonal to the strips which achieves position
sensitivity in the direction along the strips.

In this paper we report for the first time on results obtained
for CZT drift strip detectors operated in PTF configuration as
shown in (b).
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5. Experimental setup

The CZT drift strip detector was fabricated of spectroscopic
grade material from eV Products, with a size of 10mm x 10 mm
x 2.5mm. Electrodes deposited on the CZT detector material
consisted of strips with a double layer of Pt/Au electrodes and a
planar cathode with a single layer of Pt electrode. The strip
pitch was 200 pm with a 100 pm strip width. Each drift detector
cell consists of 8 drift strip electrodes (4 on each side of the anode
readout strip) and one anode readout strip. The anode readout
strips are held at ground potential and the drift strips are
negatively biased by a voltage divider providing: Vi=Vd x i/4,
(i=1,2,3,4), where Vd is the drift bias. The detector was operated
at Vp=-150V and Vd follow: V1=-30V, V2=-60V,
V3=-90V, V4= —-120V. These measurement settings were used
for all measurements in this paper.

Seven preamplifiers (eV-550) were used to read out 6 anode
strips and one planar electrode. Each preamplifier output signal
was connected to a main shaping amplifier and then fed to an ADC
of the multi-parameter data acquisition system. For the spectral
performance characterization work, data were recorded by
illuminating the detector with photons from >’Co, 24'Am '%°Cd
and '37Cs sources in both PTF and PPF configurations.

For the depth sensing capabilities, a 2D scan using a collimated
photon beam from a >’Co source (collimator hole 200 um &) was

Fig. 2. Drift strip detector illumination geometries. (a) PPF configuration, (b) PTF
configuration, (c) PTF configuration with segmented planar electrodes.
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conducted in PTF configuration. The PTF detector scan setup is
shown in Fig. 3(a). The beam collimator was moved by steps of
0.1 mm in both directions, illuminating the detector on the side
surface. The beam profile was measured for the scan setup using
1D scan of the edge of the detector, advancing the beam by steps
of 0.01 mm from the planar side to the strip side.

The beam profile data are shown in Fig. 3(b). The derivative of
the total counts registered by the planar electrode was used for
the beam profiling. The sharp edge of the detector and the
detector depletion zone, at the beam entry locations, close to the
planar electrode, were investigated using the recorded spectra.
The data showed that the detector was fully depleted and spectra
at the edge locations, close to the planar electrode demonstrated
excellent charge collection. The beam spot size on the detector
surface was measured to be 230 pum FWHM for a collimator height
of 14 cm.

6. Experimental results

6.1. Spectral performance

The detector energy resolution and efficiency for both PPF and
PTF illumination configurations were compared using recorded
detector data for full illumination with photons from °’Co, 24'Am,
109¢cd and '37Cs sources. Fig. 4(a) shows the energy resolution
as a function of energy, in both configurations. The measured
energy spectra were not corrected using the DOI method. The
results shown in Fig. 4 indicate that the CZT drift strip detector
spectral performance for PTF and PPF is equal for the observed
energy range.

Fig. 4(b) shows the normalized >’Co spectra obtained by the
detector (from strip2) using both PPF and PTF configurations. The
detector has high efficiency due to a large effective thickness of
10mm in PTF compared to the effective thickness of 2.5mm
in PPF. The energy resolution for the two spectra are equal.
The PTF configuration demonstrates both high efficiency, due
to larger effective thickness, without loosing detector’s good
energy resolution thanks to the unchanged small drift length for
the electrons.

Fig. 5 shows the count ratio Nppf/Nptf (star points) as a
function of energy. Nppf is the total number of counts under the
photopeaks (57.5, 122, 136keV) for the PPF configuration and
Nptfis the counts for the PTF for the same energies. The calculated

Counts, N <o
dN/dx X
Gaussian fit

LI S B B By B B B B B B

*

400 600

Beam position (um)

Fig. 3. 2D detector scan setup. (a) >’Co collimator setup (not to scale) and (b) photon beam profile.
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Fig. 5. The measured ratios Nppf/Nptf are shown as star points where Nppf and
Nptf are the total counts under the photopeak for the PPF and the PTF
configurations, respectively. The calculated ratio of quantum efficiencies for the
PPF and the PTF as a function of energy is shown as solid line.

ratio of quantum efficiencies is shown (solid line) in the figure for
2.5 and 10 mm CZT as a function of energy. The result shows that
the measured ratio Nppf/Nptf and calculated QE(2.5mm)/
QE(10 mm) values agree for the the observed energy range.

6.2. Depth sensing

The depth sensing capabilities of the CZT drift strip detector [2]
were investigated with the present setup. The areas of two drift
detector cells were scanned with a collimated >’Co photon beam
(230 pum &) using steps of 0.1 mm in both directions (x and y).
Fig. 6(a) shows the detector geometry used for the scan and single
line scan with the beam stepping from the planar electrode to the
anode strip. Fig. 6(b) shows the >’Co data for the selected 3 beam
positions. These three positions are representative of the 31 data
sets. Fig. 6(b) left shows the bi-parametric distributions of the
ratio, R between the planar electrode signal, Q, and the strip
signal, Q; versus Q,. Fig. 6(b) right shows the three measured
depth spectra. The derived R distributions for the 122 keV line
were fitted and the FWHM values are given with each peak.

The width of the measured depth distribution corresponds to
300 pm FWHM at 122 keV and is mainly given by the finite beam
size of 230 pm. The achievable depth resolution is determined by
the electronic noise of the Q, and Qs signals . The achievable depth
resolution as a function of the electronic noise and energy is given
in Eq. (1). Here Q, is independent of material hole collection
characteristics and therefore represents the full energy signal of
the detected photon.

1
Rhoise = Qs X anoise +R? x 2noise M

For the current detector scan setup, the electronic noise, Qpnoise,
was 3.6 keV FWHM for the planar signal Qp,, and Qspoise Was 2.1 keV
FWHM for anode strip Qs. Therefore, the achievable R resolution is
90 um FWHM at 122 keV according to Eq. (1).

Fig. 7(a) shows measured and derived R values versus depth
for energies of 57.5, 122 and 136 keV. The quantity R is linearly
dependent on the beam position x, with a value close to unity for
interactions close to the planar electrode and a value close to zero
for interaction near the strip electrodes. The minimum R value
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that can be detected depends on the low energy threshold for Q,.
For the current detector scan setup the threshold was 6 keV for
both Q, and Q. Fig. 7(b) shows the measured and calculated depth
resolution R for the 122keV line. The depth resolution is
calculated using Eq. (1) and shown with #. The finite beam size
is the dominant contribution to the R resolution and it is
quadratically added to the electronic noise contribution, shown
with o. It is remarkable that the measured depth distribution for
x-values close to zero is much narrower than the width of the
beam. We believe that only a fraction of the beam hits the
detector at the start positions and therefore is effectively more
narrow. The minimum measured width is 100 um which is close
to the depth resolution according to Eq. (1).

7. Conclusion

CZT drift strip detectors in PTF configuration are planned for
the GRI high energy focal plane detector. A CZT drift strip detector
was in this context evaluated in the PTF configuration for the
first time: 2D scans were conducted illuminating a collimated
57Co photon beam (230 pum ) on a side of a 2.5mm thick CZT
drift strip detector. The detection efficiency was measured both in
PPF (81% at 122 keV) and in PTF (99.8% at 122 keV) configurations.
The increased efficiency for the PTF configuration corresponds
well with the larger effective thickness.

The energy resolutions were measured with photons from
57Co, 241Am, 1°°Cd and '*’Cs sources in PPF and PTF. In both cases
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we achieved 3 keV FWHM at 122 keV. The CTZ drift strip detector
spectral performance for PTF and PPF are equal for the observed
energy range.

CZT drift strip detectors in PTF configuration can achieve both
high efficiency, due to the larger effective thickness, and good energy
resolution, due to the small drift length for the electrons. They are
therefore well suited for high energy astrophysics instrumentation.

The depth sensing technique of the drift strip detector was
investigated performing 2D scans in the PTF configuration. The
measured depth distributions were dominated by the beam size
and their width was 300 um FWHM at 122 keV. The calculated
minimum depth resolution is dependent on the electronic noise
on the signals and it is 90 um FWHM at 122 keV for the current
detector setup. The present data indicate that this depth
resolution is achievable. We plan to verify this at a facility where
finer X-ray beams are available.
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