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Synopsis

A filament stretching rheometer was used for measuring the startup of uni-axial elongational flow
followed by reversed bi-axial flow, both with a constant elongational strain rate. A narrow
molecular mass distribution linear polyisoprene with a molecular weight of 483 kg/mole was
subjected to the flow in the non-linear flow regime. This has allowed highly elastic measurements
within the limit of pure orientational stress, as the time of the flow was considerably smaller than
the Rouse time. A Doi–Edwards �J. Chem. Soc., Faraday Trans. 2 74, 1818–1832 �1978�� type of
constitutive model with the assumption of pure configurational stress was accurately able to predict
the startup as well as the reversed flow behavior. This confirms that this commonly used theoretical
picture for the flow of polymeric liquids is a correct physical principle to apply. © 2010 The
Society of Rheology. �DOI: 10.1122/1.3496378�

I. INTRODUCTION

In the advancement of the understanding of flow dynamics of the entangled polymer
systems, a large number of constitutive theories have been suggested during the last 40
years �Doi and Edwards �1978�; Marrucci and Grizzuti �1988�; Pearson et al. �1999�;
Mead et al. �1998�; McLeish and Larson �1998�; Fang et al. �2000�; Ianniruberto and
Marrucci �2001�; Schieber et al. �2003�; Likhtman �2005�; Wagner et al. �2005, 2008�;
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Khaliullin and Schieber �2009�; Rasmussen et al. �2009�; Dhole et al. �2009� and others�.
Theories all predict fundamentally different flow behaviors. With few exceptions the
theories are based on the idea that a given polymer chain is moving by reptation in a tube
made up effectively by the surrounding chains �de Gennes �1979��. The large number of
theories is due to the difficulties to obtain accurate and reliable experimental observations
in a homogeneous flow of a theoretically ideal system. Its observations may lay the
foundation to a more sound theoretical framework. The ideal systems in entangled poly-
mers are monodisperse polymer melts, which may be structurally complex. In shear flow,
shearbanding disturbs the homogeneous flow field �Adams and Olmsted �2009�� whereas
necking phenomena �Lyhne et al. �2009�� as well as fracturing �Joshi and Denn �2003��
may appear in extension.

The first measurements on the extension of monodisperse melts, including the startup
as well as the steady flow, were presented in 2003 �Bach et al. �2003a��. These data
removed the validity of all existing theories for the flow of polymer melts �Marrucci and
Ianniruberto �2004�� and inspired new ones to be developed. Since then several new and
more dynamical extensional measurements have been published based on the same tech-
nique as Bach et al. �2003a�. These new extensional measurements include uni-axial
extensional flow following by stress relaxation �Nielsen et al. �2008�� or bi-axial reversed
flow �Nielsen and Rasmussen �2008�� as well as large amplitude oscillatory elongation
�Rasmussen et al. �2008��. The most recent work is on architecturally complex molecules
�Rasmussen et al. �2009��.

Here, in the present study the purpose here is to take a look at the physical basis
shared by almost all models based on the concept that a given polymer chain is moving
by reptation. The intension is to experimentally evaluate if the pure configurational stress
assumption, which is the commonly used theoretical picture for the flow of entangled
polymeric liquids, is an accurate physical principle. According to our knowledge, experi-
ments capable of doing this have not been presented before.

II. CONSTITUTIVE THEORIES

Constitutive theories having the monodisperse polymer melt as model molecule were
pioneered by Doi and Edwards �1978�. They constructed a model for the dynamics of
highly entangled monodisperse polymer melts within the ideas of de Gennes �1979�.
While the original Doi and Edwards model �Doi and Edwards �1978�� has many limita-
tions, the basic idea of a confining tube is still utilized extensively in the modeling of
entangled polymer systems. In the limit of a purely orientational stress, understood as the
time of the flow is considerably smaller than the Rouse time �R, most of these models
appear similar to the Doi and Edwards model. Here we write the model as a memory-
weighted time integral over the Doi and Edwards strain tensor strain tensor, in the inde-
pendent alignment approximation �Doi and Edwards 1978��, as

�ij = �
−�

t

M�t − t��5�EinunEjmum

�E · u�2 �dt�, �1�

where the terms �ij are the integral components of the stress tensor. The angular brackets
denote an average over a unit sphere 	¯ 
=1 / �4����u�=1¯du where a tube segment of
unit length and orientation is given by the unit vector u. In the stress free state u is
deformed into E ·u in the current state. The components of the macroscopic displacement
gradient tensor is given by Eij�x , t , t��=�xi /�xj�, i=1,2 ,3 and j=1,2 ,3. �x1� ,x2� ,x3�� are the
coordinates of a given particle in the stress free reference state �time t��, displaced to
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coordinates �x1 ,x2 ,x3� in the current state �time t�. The memory function M�t− t�� is
related to the relaxation modulus as M�t− t��=dG�t− t�� /dt�.

Although experimental findings in extension seem to confirm the theoretical picture of
the independent alignment for monodisperse linear melts �Rasmussen et al. �2008�� we
include the stress based on the idea of an entangled network with instantaneous chain
retraction �Doi and Edwards �1986�� given as

�ij = �
−�

t

M�t − t��
15

4

1

	�E · u�
�EinunEjmum

�E · u� �dt�. �2�

Analytical formulas as well as theoretical concepts of the unit sphere integrals can be
found in Urakawa et al. �1995�. The time integration is performed using a numerical
integration scheme.

The only unknown in Eqs. �1� and �2� is the memory function. An understanding and
analytical theory of the memory function for monodisperse polymer melt has been pre-
sented by Milner and McLeish �1998�. Here we will apply the empirical method by
Baumgaertel et al. �1990� �BSW�, as it gives the most accurate prediction of mechanical
spectroscopical data.

Stresses in polymers are assumed to be only of entropic nature. Reversing flow ex-
periments give particular insight into the entropic state of the melt as it mounts the work
performed by the polymer. Nielsen and Rasmussen �2008� presented the first and cur-
rently the only measurements of well defined reversed elongational flow on a monodis-
perse linear polystyrene melt, applying uni-axial extensional flow followed by a bi-axial
reversed flow. They showed that constitutive models, which predict almost the same flow
behavior in the start up of uni-axial extensional flow, behave fundamentally different
during the reversed flow.

The same type of measurements as in Nielsen and Rasmussen �2008� are here applied
on a monodisperse polyisoprene �PI� melt. The presently used polyisoprene melt contains
of about 100 entanglements and a ratio between the reptation and the Rouse time of
200–300, depending on the used definitions, according to Auhl et al. �2008�. This allows
highly elastic measurements within the limit of pure orientational stress. The present
polyisoprene has a molecular weight Mw=483 kg /mole and a polydispersity Mw /Mn

=1.03. Mw and Mn are weight and mole based average molar masses, respectively. De-
tails, including mechanical spectropical data, on this melt can be found in Auhl et al.
�2008�. Particular the plateau modulus GN

0 has been determined to 470 kPa. These me-
chanical spectropical data of the polyisoprene melt are also shown in Fig. 1.

The relaxation modulus was obtained using small amplitude oscillatory shear mea-
surements and fitted �Rasmussen et al. �2000�� with a continuous BSW relaxation spec-
trum �Baumgaertel et al. �1990��

G�t − t�� = �
0

� H���
�

e�−�t−t��/��d� , �3�

H��� = neGN
0� �

�max
�ne

+  �

�c
�−ng�h�1 − �/�max� �4�

as shown in Fig. 1. h�x� is the Heaviside step function, ne is the slope of the
�log��� , log G�� curve at intermediate frequencies �, ng is the slope of �log��� , log G��
for �→�, and �c is the crossover relaxation time. The linear viscoelastic parameters are
given in Table I where the plateau modulus, GN

0 , is the one from Auhl et al. �2008�.
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III. EXTENSIONAL RHEOMETRY

The extensional experiments are performed using a filament stretching rheometer
�FSR� constructed by Bach et al. �2003b�. In this FSR, a cylindrical shaped liquid sample,
with height Li and radius Ri, is placed between two parallel solid cylinders. The separa-
tion of these cylinders will extend the sample. The FSR enables measurements of the
strain in the sample exactly at the location of the necking at the mid-filament plane of the
extended sample. This region is monitored using laser microscopy, and the distance
between the end-plates adjusted, thus obtaining a predefined stretch rate at the neck. To
ensure a correct measurement, the sample should stay symmetric across the mid-filament
plane as well as axisymmetric during extension. It is required that the gravitational
sagging should be negligible. In some cases the rheological behavior of a polymer may in
itself result in symmetry breaking �Matallah et al. �2006�� or axis-symmetric breaking
�Rasmussen and Hassager �2001�� flow. In our experiments we have assured that our
samples are axisymmetric and the mid-filament plane in the sample is the plane of
symmetry at all time, based on the methodology from Bach et al. �2003a�. For more
details, see also Nielsen et al. �2008�.

During the extension in a FSR, a load cell measures the elongational force, F�t�, and
a laser micrometer measures the filament diameter, 2R�t�, at the mid-filament plane. The
relevant strain in the elongation is the Hencky strain ���, which is defined as ��t�
=2 ln�R0 /R�t�� for filament stretching of cylindrically shaped samples. R0 is the mid-
filament radius and L0 is the length of the sample at the start of the extension, at time

𝐺“
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𝐺
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𝐺
“
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FIG. 1. Measured loss, G� �bullets; �� and storage moduli, G� �open circles; �� both as a function of the
angular frequency, �, from Auhl et al. �2008� at 23 °C. The solid lines �—� are the least-squares fittings
�Rasmussen et al. �2000�� to the BSW model in Eq. �3�.

TABLE I. Linear viscoelastic parameters of the PI at 23 °C.

GN
0 ne �max ng �c

470 kPa 0.25 75.6 s 0.7 1.3 �s
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t=0, as the sample may have been subjected to a pre-stretch. Initially, the sample is at rest
for times t�0. The elongational strain rate or stretch rate is defined as �̇=d� /dt.

With the assumption of axis-symmetric as well as a mid-filament symmetry plane, an
expression for the difference between the axial and radial stress in the mid-filament plane
was obtained by Szabo �1997�. See also Szabo and McKinley �2003�. In the absence of
inertial and surface tension effects, the remaining terms can be written in the form

	�zz − �rr
 +
1

2
	�rr − �		
 +

1

2
	r�rz
 =

F�t� − mfg/2
�R�t�2 , �5�

where F�t� is the axial force, g is the gravitational acceleration, and mf is the weight of
the polymer filament. The angular brackets, 	 . . . 
, denote the average extensional stress at
the mid-filament plane. If there are no rotation velocity of the sample �e.g., v	=0� the
second term on the left side in Eq. �5� is zero for Newtonian fluids. The second term is
therefore also zero in the linear viscoelastic flow regime due to the correspondence
principle of linear viscoelasticity �Pipkin �1972��. McKinley and Sridhar �2002� stated
that this argument may be extended to be applied for memory fluids.

It is a commonly used assumption that the stress and strain are uniform in the radial
direction in the symmetry plane allowing the angular brackets in Eq. �5� to be omitted.
This has been confirmed in a large number of computational studies by Kolte et al.
�1997�; Sizaire and Legat �1997�; Hassager et al. �1998�; Yao et al. �1998�, Rasmussen
and Hassager �1999, 2001�; Yao et al. �2000�; Bach et al. �2002�; Sujatha et al. �2006�;
Matallah et al. �2007�; Webster et al. �2008� and many more. These simulations have
considered a wide variety of constitutive model and they all confirmed that deviations
from uniform elongational flow are small at the mid-filament plane. They also confirmed
that deviations from ideal elongational flow are small, particularly at higher Hencky
strain values.

The third term on the left side of Eq. �5� may have an effect at small Hencky strain
values, when a significant shearing component is present in the sample. At small aspect
ratios Ai=Li /Ri, an extra shear contribution may add to the measured elongational force
during the startup of the flow.

The effect of the additional shear may be reduced by a correction factor as discussed
in details in the Appendix. The use of a correction factor requires an extension rate during
pre-stretch considerably lower than the inverse of the largest relaxation time in the melt,
as done in all our experiments. This is to ensure that stresses are build up in the linear
viscoelasticity range only. In this case the correction factor gives the theoretical exact
deviation from the ideal extensional stress at small strains, due to the correspondence
principle of linear viscoelasticity �Pipkin �1972��. At higher strains, where the use of a
correction factor is less accurate, the deviations from ideal extension diminish.

Here the elongational stress in the sample at the mid-plane is then calculated as

�zz − �rr =
F�t� + mfg/2

�R�t�2 ·
1

1 + �R�t�/Ri�10/3 · exp�− Ai
3�/�3Ai

2�
. �6�

This formula is an approximation of the theoretically exact correction factor. It theoreti-
cally ensures that the initial true elongational stress will stay within 3% of this corrected
stress if Ai
0.3. The initial correction factor is about 13% in all our experiments and
becomes negligible at higher strains, as Ri=2.5 mm, Li=1.5 mm, and R0 is about
1.5 mm.
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IV. REVERSED FLOW

The transient uni-axial extension is up to a Hencky strain of �0. This uni-axial stretch-
ing is followed by a transient bi-axial squeeze. During the startup of uni-axial stretching,
we define the rate as �̇+= �̇ and in the bi-axial squeeze the rate is defined as �̇−=−�̇. Both
�̇+ and �̇− will stay positive, constant, and equal ��̇+= �̇−� during the extension.

As a commonly used characteristic relaxation time for the polymers, we define

�a = �
0

�

G�s�sds��
0

�

G�s�ds � �max1 + ne

2 + ne
� = 42 s. �7�

More details can be found in Bach et al. �2002� as well as Bach et al. �2003a�. This
definition is within 5% of the Doi–Edwards reptation time. We use this relaxation time to
define a Deborah number for the elongational flow, De=�a · �̇.

Figure 2 shows the elongational stress as a function of the Hencky strain until �0

where the flow is reversed. The extension rates are all 0.01 s−1 giving a fixed De of 0.42.
The stress saturates at a strain of about unity at this Deborah number due to the relaxation
of the molecule. At low values of �0, it is possible to reverse the flow completely. One has
to keep in mind as the strain goes toward zero during the reversed flow the data are still
corrected with Eq. �6�, with an applied correction factor of maximal 13%. This may not
be the exact theoretically procedure to apply. At higher �0 values, the sample buckles due
to the compression force and a reliable stress cannot be measured for negative stresses. At
even higher �0 values, a crack is observed in the surface which gradually increases in
size, sometime followed by a complete rupture. This behavior removes the possibility to
measure the stress at higher strain values. Measurements with a crack have not been
presented in this paper. Figure 3 shows the stress variation as a function of the Hencky
strain at higher Deborah number with a maximal value of De=4.2, representing a highly
elastic deformation. �0 are all unity in this figure. The theoretical predictions found using
Eq. �1� �solid lines� and Eq. �2� �dashed lines� show an agreement which is within the

𝜖

𝜎
𝑧𝑧
−

𝜎
𝑟𝑟
[k
P
a]

21.510.50

200

100

0

-100

-200

FIG. 2. Elongational stress as a function of the Hencky strain at 23 °C. Startup and reversing elongation of the
PI with ��̇�=0.01 s−1 corresponding to a De number of De=0.42. The solid lines �—� are predictions from Eq.
�1� corresponding to the measurements. The dashed lines �– – –� are predictions from Eq. �2� corresponding to
the measurements.
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accuracy of the measurements in both figures. Notice that the extension data, in the linear
viscoelasticity regime at low Hencky strains, in both Fig. 2 and 3 agree within 10% with
the linear viscoelasticity based on the shear flow �the lines�.

In elongational flow, the Doi and Edwards strain tensor model with �Eq. �1�� or
without �Eq. �2��, the independent alignment approximation predicts an upper limit to the
extensional stress of 5 or 15/4 times the plateau modulus �GN

0 �, respectively. These values
are only about three times higher than our maximal measured extensional stress.

To include all our measurements in one figure �Fig. 4�, the “strain recovery” is shown
as a function of the maximal imposed Hencky strain where the flow is reversed �0. The
classical measurement of reversed elongational flow is the elastic recovery. Here the flow
is reversed flow by removing externally applied forces on the sample. The strain history
is unknown during the reversed flow. Both the stress and the strain history are known for
a strain recovery experiment. The strain recovery or �R is defined to be the strain at which
the stress in the filament changes sign from positive to negative stress, relative to the
maximal imposed strain. In mathematical terms this implies �R=�0−��tR� where tR is the
time at which the stress changes sign from positive to negative value, e.g., �11−�33=0. It
is the necessary bi-axial strain to reach zero extensional stress. The experimental as well
as theoretical procedure to determine the strain recovery can be found in Nielsen and
Rasmussen �2008�. The dotted line where �R=�0 represents a complete elastic retraction
of the sample which is the theoretical maximal value of �R in Fig. 4. At low De numbers,
�R saturates, whereas at De=4.5, the strain recovery continues to increase with values
much closer to a complete elastic retraction of the sample. The maximal experimentally
obtainable �0 is limited by the initiation of the sample rupture. The theoretical prediction
of the strain recovery with the assumption of pure configurational stress using Eqs. �1�
and �2� is within the accuracy of the measurements.

Outside this pure configurational stress regime, it is common to multiply a stretch
evolution function on the pure configurational stress. The values of the strain recovery are
independent of this stretch evolution function. As showed experimentally by Nielsen and

𝜖
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FIG. 3. Elongational stress as a function of the Hencky strain at 23 °C. Startup and reversing elongation of the
PI with ��̇�=0.01 s−1 �bottom�, ��̇�=0.03 s−1 �middle�, and ��̇�=0.1 s−1 �top�. The corresponding De numbers
are De=0.42 �bottom�, De=1.26 �middle�, and De=4.2 �top�. The solid lines �—� are predictions from Eq. �1�,
the dashed lines �– – –� are predictions from Eq. �2�, and the dots ��� are the corresponding measurements.
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Rasmussen �2008� and Rasmussen et al. �2009�, using the strain recovery, is this theo-
retical extension of the pure configurational stress theory not valid. These experiments
were based on linear and branched narrow molecular mass distribution polystyrene, re-
spectively.

V. CONCLUSION

The filament stretching rheometer was used for measuring the startup of uni-axial
elongational flow followed by reversed bi-axial flow in the non-linear flow regime on an
almost monodisperse polyisoprene. The time of the flow during extension was consider-
ably smaller than the Rouse time of the polyisoprene. The pure configurational stress
assumption, both used here in the independent alignment as well as in the entangled
network form, predicts stresses within the scattering of the presented data. This allow us
to conclude that the assumption of pure configurational stresses relaxed by reptation to
describe the flow of polymers melts and entangled liquids do not need any revision.
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APPENDIX

At small aspect ratios �Ai=Li /Ri�, an extra shear contribution may add to the measured
elongational force during the startup of the flow in the FSR. The effect of this shear stress
may be eliminated with the use of a correction factor. The original and-until now-only
existing correction factor was suggested by Spiegelberg et al. �1996� as

�zz − �rr =
F�t� + mfg/2

�R�t�2 ·
1

1 + �R�t�/Ri�14/3/�3Ai
2�

. �A1�

𝜖0

𝜖𝑅

21.510.50

1
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0.6

0.4

0.2

0

FIG. 4. Recovery strain value, �R, plotted as against the maximal Hencky strain, �0. The solid lines �—� are
predictions from Eq. �1�, the dashed lines �– – –� are predictions from Eq. �2�, and the circles ��� are the
corresponding measurements, at De=0.42 �bottom�, De=1.26 �middle�, and De=4.2 �top�.
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The correction factor in Eq. �A1� is written here in a potentially pre-stretched configu-
ration. This formula �A1� is based on a lubrication analysis and is analytical correct for
small strains and sample aspect ratios for all types of fluids.

We have compared this formula �A1� with corresponding numerical computations of
the correction factor �e.g., F�t� / ��R�t�2��zz−�rr��� for a Newtonian fluid in Fig. 5. �zz

−�rr is the ideal extensional stress. The numerical computations are the accurate values
to use as correction factors. The correction factor formula by Spiegelberg et al. �1996�

2𝑙𝑛(𝑅𝑖/𝑅(𝑡))

𝐹
(𝑡
)/
(𝜋
𝑅
(𝑡
)2
(𝜎

𝑧𝑧
−
𝜎
𝑟𝑟
))

2.521.510.50

10

1

FIG. 6. The correction factor �e.g., F�t� / ��R�t�2��zz−�rr��� as a function of the imposed pre-stretch. The solid
lines �—� are the numerical calculated correction factor. The dashed lines �– – –� are predictions from Eq. �6�.
The initial aspect ratios are Ai=Li /Ri are 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5 from the top to the bottom line,
respectively.

2𝑙𝑛(𝑅𝑖/𝑅(𝑡))

𝐹
(𝑡
)/
(𝜋
𝑅
(𝑡
)2
(𝜎

𝑧𝑧
−
𝜎
𝑟𝑟
))

2.521.510.50

10

1

FIG. 5. The correction factor �e.g., F�t� / ��R�t�2��zz−�rr��� as a function of the imposed pre-stretch. The solid
lines �—� are the numerical calculated correction factor. The dashed lines �– – –� are predictions from Eq. �A1�.
The initial aspect ratios are Ai=Li /Ri are 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5 from the top to the bottom line,
respectively.
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can give as much as 20% deviation from the numerical values. Due to the correspondence
principle of linear viscoelasticity �Pipkin �1972��, these numerical calculated values will
be exactly the same in the linear viscoelastic range for all types of fluids. Details of the
applied numerical method and the performing of the computations can be found in Ras-
mussen �2000� and Rasmussen and Hassager �1999�, respectively.

In Fig. 6 we have compared the our empirically based formula �6� with the corre-
sponding numerical computations of the correction factor �e.g., F�t� / ��R�t�2��zz−�rr���
for a Newtonian fluid, similar to Fig. 5. The correction factor given by formula �6� will
give less than 3% deviation from the numerical calculated values if Ai
0.3.
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