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MAXIMIZING ENTROPY OF IMAGE MODELS FOR 2-D CONSTRAINED CODING
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DTU Fotonik, Technical University of Denmark,
B. 343, DK-2800 Lyngby, DENMARK, sofo@fotonik.dtu.dk

ABSTRACT
This paper considers estimating and maximizing the en-
tropy of two-dimensional (2-D) fields with application to
2-D constrained coding. We consider Markov random
fields (MRF), which have a non-causal description, and
the special case of Pickard random fields (PRF). The PRF
are 2-D causal finite context models, which define sta-
tionary probability distributions on finite rectangles and
thus allow for calculation of the entropy. We consider two
binary constraints and revisit the hard square constraint
given by forbidding neighboring 1s and provide novel re-
sults for the constraint that no uniform 2× 2 squares con-
tains all 0s or all 1s. The maximum values of the entropy
for the constraints are estimated and binary PRF satisfy-
ing the constraint are characterized and optimized w.r.t.
the entropy. The maximum binary PRF entropy is 0.839
bits/symbol for the no uniform squares constraint. The
entropy of the Markov random field defined by the 2-D
constraint is estimated to be (upper bounded by) 0.8570
bits/symbol using the iterative technique of Belief Prop-
agation on 2 × 2 finite lattices. Based on combinatorial
bounding techniques the maximum entropy for the con-
straint was determined to be 0.848.

1. INTRODUCTION

We consider problems related to determining the entropy
of image models with focus on constrained images. As-
sume we want to store data in the form of bits in a 2-D
grid (we can for simplicity start by assuming that the grid
is an M × N rectangle), subject to a constraint related
to the physical storage media. The hard-square constraint
defined as a binary image with no two 4-neighboring ones
has been studied as a simple basic 2-D constraint [1]. We
shall revisit this constraint as well as analyzing another
binary constraint.

Example 1. No 2 × 2 uniform blocks. Consider the
2-D constraint, that no 2 × 2 block contains all 0s or all
1s, i.e. no matter how we select a 2× 2 square within the
rectangular grid, it will not contain either all zeros or all
ones.

It is interesting to compute the combinatorial entropy,
or capacity, for this constraint

C = lim
M,N→∞

F (M, N)/(MN), (1)

where F (M, N) is the number of admissible configura-
tions in our M ×N rectangle subject to the constraint [2,

p. 122]. The quantity tells the capacity in terms of how
much information we can store per grid symbol. While
computing the combinatorial entropy can be a daunting
task, because it entails counting the number of configura-
tions and the problem scales exponentially with M and N ,
there is another approach that can be taken, namely a prob-
abilistic one, which hopefully also can provide guidance
towards 2-D coding techniques. In order to evaluate these
models, the problems of determining the entropy of fields
satisfying the constraint and maximizing this entropy are
addressed.

The maximum entropy gives the capacity of the 2-D
constrained field, which can be used for 2-D constrained
coding for storage applications. The maximum entropy
of the PRF provides a causal coding model of 2-D bit-
stuffing coding, but provides a slightly lower entropy than
the capacity of the constraint. A maximum entropy PRF
may also be seen as a (causal) approximation of an MRF.

We will focus on the class of binary Pickard random
fields and determine PRF for the two constraints above
and optimize the entropy. These results are compared
with other techniques for estimating the (maximum) en-
tropy including simulation of an MRF. The comparisons
can shed some light on the performance of each of the
techniques.

2. PROBABILISTIC MODELS

In general we can aim at finding a probability distribu-
tion for the symbols on our grid. Let X denote a random
variable describing the field. One goal is to maximize the
entropy H(X), which may approximate C for large rect-
angles. The entropy can be expressed by means of the
chain rule:

H(X) =
MN∑

j=1

H(xj |x1, x2, . . . , xj−1), (2)

where we assign a one-dimensional index j to each sym-
bol by reading the elements in the grid e.g. in a row-by-
row fashion. This does not comply well with the non-
causal interactions in images as e.g. expressed by Markov
random fields. We shall return to these at the end of the
section but start with the special case of Pickard Random
Fields, which are causal and in some cases can provide a
model for a 2-D constraint.



2.1. Pickard random fields

There exists one class of nontrivial stationary Markov fields
investigated by Pickard [3][4]. The so called Pickard ran-
dom fields (PRFs) have some desirable properties as causal-
ity, allowing to simulate a random field sequentially, and
the property that the symbols in rows and columns are out-
comes of irreducible Markov chains over a finite alphabet.

A PRF is stationary and its joint probability can be de-
termined by a measure on a 2 × 2 pixel-square that must
satisfy several conditions. We shall focus on the unilat-
eral PRF [4] on finite alphabets, especially binary alpha-
bets. Following this, the probability of each individual
column or row is described by a Markov chain with transi-
tion probabilities deduced from the measure on the square.
The Markov chain for rows and columns may be differ-
ent (rows from left to right and columns bottom up; the
Markov chain may be different when reversed). To define
the process of constructing PRF, let us first discuss the in-
dependence conditions.

2.1.1. Independence conditions

To simplify notation, we consider a 2 × 2 square and we
introduce the following notation:

[
Xij Xi,j+1

Xi+1,j Xi+1,j+1

]
=

[
A B
C D

]

where Xij are random variables on the 2-D grid.
A state in the two-row Markov chain is defined by a

pair of symbols, and the probability distribution of this
pair, Xi,j , Xi+1,j , is found from the Markov chain de-
scribing a single column, where i and i+1 denote the up-
per and the lower row, respectively. The conditional prob-
ability of the next symbol in the upper row, P (Xi,j+1|Xi,j),
also follows from the single-row Markov chain, but with
the important assumption that it is independent of Xi+1,j ,
P (Xi,j+1|Xi,j , Xi+1,j) = P (Xi,j+1|Xi,j), which im-
plies

P (ABC) = P (C)P (A|C)P (B|A). (3)

With this assumption, it is possible to continue to find the
conditional probabilities of the following symbols in the
upper row, and the row simply becomes a Markov chain
given by the distribution (AB). There are two ways of as-
suring that the lower row is described by the same Markov
chain. One is the condition P (Xi+1,j+1|Xi,j , Xi+1,j) =
P (Xi+1,j+1|Xi+1,j), which is symmetric to the first con-
dition and lets the lower row be continued forward in the
same way. The alternative is P (Xi+1,j |Xi,j+1, Xi+1,j+1) =
P (Xi+1,j |Xi+1,j+1), which allows the lower row to be
continued in the reverse direction using the reversed Markov
chain. In this case

P (BCD) = P (C)P (D|C)P (B|D). (4)

We will focus on the second condition (4), but PRFs based
on the first condition may be treated in the same way.

2.1.2. PRF for given Markov chains

As in [2], we start with the two Markov chains with ma-
trices R and S for rows and columns, respectively. The
Markov chains and the independence conditions (3-4) lead
to the distributions (ABC) and (BCD) as described above.
For consistency with the joint measure (ABCD) the two
distributions must have identical marginals on the pair BC.
Since the transition from C to B can be achieved in two
different ways (RS or RS) and since the transition proba-
bilities from C to B must be unique, the products RS and
SR must be equal,

RS = SR. (5)

For Markov chains satisfying this, the last requirement
is to determine P (AD|bc) consistent with P (A|bc) and
(D|bc), i.e. determine the joint conditional probability
consistent with the two marginal conditional probabilities.
For given distributions (ABC) and (BCD), this gives

∑

d

P (A,D = d|bc) = P (A|bc) (6)

∑
a

P (A = a,D|bc) = P (D|bc). (7)

Solving these for maximum entropy H(AD|bc), for each
bc, leads to the maximum entropy PRF, H(D|ABC), for
the given Markov chains S and R, as H(AD|BC) =
H(A|BC) + H(D|ABC) and H(A|BC) is fixed when
the independence requirement is satisfied for given Markov
chains. P (D|ABC) may thereafter be derived from solu-
tion to (6), P (AD|BC). Due to the independence prop-
erty (3), the dominating terms of the entropy (2) may be
expressed as

H(D|ABC) = −
∑

abcd

P (abcd) log P (d|abc). (8)

Asymptotically, the entropy of the PRF will converge to
H(D|ABC) as the terms of the interior will dominate
over those of the Markov chain boundaries [2]. For val-
ues of bc for which all combinations are valid, the pa-
rameters achieving maximum entropy are simply given by
P (D|ABC) = P (D|BC), which may be expressed by
P (d|bc) = P (bcd)/P (bc) obtained from (4).

In [5] it was pointed out that the max entropy solution
could be obtained by iterative scaling. Here for the binary
PRF examples explicit solutions are calculated.

For a binary PRF, the requirement that the two Markov
chains have identical stationary probabilities is not only
a necessary but also a sufficient condition for the matri-
ces to commute (5). The solutions for P (AD|bc) are also
straightforward. Values of bc for which all combinations
of ad are valid are treated as above. If one or more com-
binations of ad for the given bc are forbidden, there are no
(additional) free variables. If there is a solution the con-
ditional probabilities are given directly by (5). Below we
apply this to two binary 2× 2 constraints.



2.1.3. PRF for the hard square constraint

In a binary random field, the hard square constraint forbids
4-neighboring 1s; in other words, 1s must be surrounded
by 0s. Such a field can be constructed as a PRF through
two Markov chains. Normally the two chains represent
rows and columns of the field, but it is possible to use
alternative arrangements, for instance rows (left to right)
and diagonals (bottom-left to top-right). For this purpose,
the 2× 2 square introduced above is modified by shifting
the bottom row to the left by one place:

[ − A B
C D −

]

Below we consider the conditions that must be met in or-
der to construct the field correctly.

The two Markov chains must comply with the con-
straint. In a row, each 1 must be followed by a 0, while
there are no restrictions for zeros. Diagonals do not have
such restrictions because the constraint only regards 4-
neighborhoods. The transition matrices R, for lines, and
S, for diagonals, are:

R =
[

p 1− p
1 0

]
S =

[
q 1− q

1− r r

]
, (9)

where p is the probability of a zero following a zero along
a row, while q is the probability of a zero following a zero
and r the probability of a one following a one in a diago-
nal.

The stationary distribution of both chains has to be the
same. Following the definition of stationary distribution,
pr
∗ ×R = pr

∗, the result for R is

pr
∗ =

[
1

2−p
1−p
2−p

]
. (10)

Satisfying the requirement that the stationary proba-
bilities must be identical leads to the updated values of R
and S:

R =
[

p 1− p
1 0

]
S =

[
q 1− q

1−q
1−p

q−p
1−p

]
. (11)

As remarked this means that the matrices commute. This
leaves two free variables, e.g. p and q. Now r may be
expressed by p and q as r = q−p

1−p . The probability values
in S lead to the restriction in the parameter range that 0 ≤
p ≤ q ≤ 1.

Through the use of pr
∗, the Markov chains, and the

PRF independence, we calculate P (ABC) and P (BCD);
configurations that are not allowed (in this case, neighbor-
ing ones) must have probability zero, while the probabil-
ities of other configurations must be consistent with the
values of P (BC). For all four combinations of bc there is
at least one value of P (ad|bc) which is 0, therefore all val-
ues of P (AD|BC) are derived directly from the Markov
chains R and S and expressed by p and q.

The same concept can be applied to calculate the joint
probability P (ABCD). The joint probabilities P (ABCD)
and P (ABC) can finally be used to determine P (D|ABC).

For the particular case of the hard square constraint, the re-
sulting probabilities of P (D|ABC) require that q ≥ 1

1+p .
In PRF, entropy is dominated by H(D|ABC). In the

horizontal/diagonal scheme, the only ABC configurations
that do not coerce D are 000 and 010. Then, according to
the definition of conditional entropy (8), the expression of
H(D|ABC) is

H(D|ABC) = P (A0B0C0)H(D|A0B0C0) (12)
+ P (A0B1C0)H(D|A0B1C0)

= pq
2−pHb

(
1−q
pq

)
+ q(1−p)

2−p Hb

(
q−p

q(1−p)

)
,

where Hb is the binary entropy function and short notation
as A0 for A = 0 is used.

2.1.4. PRF for no uniform 2× 2 squares

For the no uniform 2× 2 squares (nus) constraint, the ba-
sic elements of the PRF are selected to cover the square
and the constraint is enforced by selecting P (0000) =
P (1111) = 0. Due to the symmetry, we select S = R,
thus the stationary probabilities are identical and (5) satis-
fied. Further, due to symmetry of the symbols, we select
P (0|0) = P (1|1) = p for S and R, which implies the
stationary distribution P (0) = P (1) = 1/2.

Due to the symmetry, we only consider bc = 00 and
bc = 01 and obtain the solutions for bc = 11 and bc = 10
by exchanging 0s and 1s. Given bc = 00, ad = 00 is
forbidden. Thus P (AD|bc = 00) is expressed directly by
the marginals, P (A|bc = 00) and P (D|bc = 00). For
P (AD|bc = 01), there are no forbidden configurations
and we have one free variable, which could be P (D =
0|A = B = 0, C = 1). The choice yielding maximum
entropy, P (D = 0|A = B = 0, C = 1) = 1/2 may be
obtained by selecting the joint probabilities P (AD|bc =
01) as the product of the marginals (6). The probabilities
of each of the four combinations of a, b and c, for which
b 6= c is p(1−p)/2. For b = c, there is only a contribution
to the entropy if a 6= b, which occurs with probability
(1 − p)2/2 and in this case the conditional probability is
p2/(1 − p)2. Thus, for given p ≤ 1/2, the maximum
entropy for the PRF satisfying nus is

H(D|ABC) = 2p(1− p) + (1− p)2Hb

(
p2

(1− p)2

)
.

(13)
Restraining from maximizing the entropy, the param-

eters could be chosen to obtain a bi-lateral PRF [3] and
thereby more symmetry. In this case, the entropy is

H(D|ABC) = 2p(1− p)Hb

(
p

(1− p)

)
(14)

+(1− p)2Hb

(
p2

(1− p)2

)
.

2.2. Belief Propagation

In this section we will consider MRF and a quite differ-
ent approach. We present Belief Propagation (BP), an al-
gorithm that performs marginalization of probability dis-
tributions. We will only give a simple introduction to



the topic. For further exploration we direct the interested
reader to the abundant relevant literature, for instance the
excellent tutorial by Loeliger [6].

When a joint probability function defined over a set of
random variables x can be factorized as:

p(x) =
1
Z

∏
a

fa(xa), (15)

where Z represents a normalization constant and xa is a
subset of the set of variables x, we can apply Belief Prop-
agation (also known as sum-product algorithm) in order
to find the marginal probabilities defined over each sin-
gle variable, pi(xi). The algorithm works over a factor
graph, namely a graph whose nodes represent either vari-
ables or factors in the factorization of (15). Connections
in the graph only occur between nodes of different type,
and an edge appears between factor fa and variable xi if
xa contains xi.

Belief Propagation consists in exchanging beliefs (or
probabilistic information) between neighboring nodes. The
process can be seen as message passing from variable nodes
to factor nodes and vice-versa. We will not get into the de-
tails of how this process works, we just mention that when
a variable xi sends a message to factor fa, this message is
the probability mass function for xi (and therefore a set
of probabilities with the same number of elements as the
cardinality of the alphabet for xi) obtained by multiplying
the probabilities coming from all neighboring factor nodes
except for fa, whereas a message from factor fa to xi is
the marginal distribution over xi computed by marginal-
izing fa after weighing it according to the beliefs related
to all the variables in xa but xi.

The algorithm is guaranteed to converge to the ac-
tual marginal distribution if the graph is a tree, mean-
ing that every pair of nodes only has one path connect-
ing them. In this case the algorithm stops when all the
variable nodes have received messages from all the neigh-
boring factor nodes, and the marginals are computed as
products of these beliefs:

pi(xi) ∝
∏

a∈n(i)

ma→i(xi), (16)

where n(i) are the factor nodes neighboring variable node
i (in other words the factors in which xi appear as a vari-
able), ma→i is the message sent from factor a to variable i,
representing the belief the factor node has about the prob-
abilities of xi, and the proportionality sign signals that the
product must be normalized to make pi a consistent prob-
ability mass function.

If the graph has loops the algorithm can still converge
after some iterations, but there is no guarantee that the
value to which it converges is the actual marginal distri-
bution.

2.2.1. Computing marginals with BP

We can upper bound the conditional entropy by removing
conditioning variables in (2).

Figure 1. The factor graph structure that models our grid

We want to find an upper bound on the symbol en-
tropy of the field by computing conditional probabilities
H(D|ABC) for squares located within a grid with rela-
tively large side N and far from the edges, where the en-
tropy is higher due to the fact that at the edges there are
fewer neighboring symbols that exert an influence on the
admissible configurations. To do this the joint probabil-
ity P (ABCD) is needed. An approximation of this value
can be found by applying Belief Propagation on a factor
graph describing our grid.

In order to take advantage of the simplicity of BP to
perform marginalization and compute the conditional en-
tropy H(D|ABC) we first need to model our N ×N grid
with a factor graph. At first sight it might seem reasonable
to associate a variable in the factor graph to each bit in
the square, and then create factors defined over 4 neigh-
boring bits in order to enforce the constraint by assign-
ing null probability to forbidden configurations. If we run
the BP algorithm on this graph, what we would get is the
marginal probability over the single nodes, hence the bits
in the grid, but we already know that 0s and 1s are equally
likely (symmetry is necessary to guarantee maximum en-
tropy), and we would fail to capture the probabilistic de-
pendence between bits in a 2 × 2 square. If we want to
compute P (ABCD) we need to define a node for each
2× 2 square, as shown in Fig. 1. Consider a 3× 3 square.
Four 2 × 2 squares can be identified within it. We de-
cided to connect three of these by means of a factor node,
namely the upper left (UL), the upper right (UR) and the
lower left (LL) squares. The probability distribution in the
factor node will serve to two purposes:

1. To enforce the consistency constraint that the sec-
ond column of UL coincides with the first column



of UR and that the second row of UL coincides with
the first row of UR;

2. To initialize the algorithm by assigning equal prob-
abilities to all admissible configurations.

The second purpose is to make sure that the system has
maximum entropy. As the BP algorithm is run over the
graph, the final probabilities (that can be read at each it-
eration by multiplying the beliefs at the factor nodes) will
deviate from a fair distribution in order to favor configura-
tions in the squares that leave more freedom when defin-
ing neighboring squares. For instance, if we are to choose
a UL square and we compare

[
0 1
1 1

]
and

[
0 1
1 0

]
,

we readily see that the square on the right leaves all pos-
sibilities open when it comes to completing UR and LL,
whereas the one on the left prevents completing them with
ones, because this would lead to a forbidden configura-
tion. A stationary distribution P (ABCD) that maximizes
the conditional probability H(D|ABC) under the given
constraints will therefore assign a higher probability to the
configuration ABCD = 0110 than to the configuration
ABCD = 0111. Intuitively, the iterations of BP push
the marginals for the squares away from a situation where
all admissible configurations have equal probabilities. At
the same time, it is proven that BP approximates a max-
entropic distribution in accordance with the ”probabilis-
tic” evidence provided by the factors in the factor graph,
which motivates our use of BP to find the distribution with
maximum entropy [7].

3. BOUNDING THE CAPACITY

In order to get tight capacity bounds, we applied the com-
binatorial bounds introduced by Calkin and Wilf [2]. Con-
sider an M by n rectangle and the possible configurations
of the first column (with index i) and the second column
(with index j). A transition matrix, T, is defined by the
admissible transitions from i to j, such that tij = 1 if
the transition is admissible and tij = 0 otherwise. For
variable n, we refer to the rectangles as a band. A lower
and an upper bound was derived for the hard square con-
straint, but these bounds actually apply to all constraints
with symmetric transition matrix [2] and thus also to the
nus constraint. A lower bound, Clow, is given by

Clow = h(2m + 2)− h(2m + 1), (17)

where h(M) = log ΛM and ΛM is the largest eigenvalue
of the transition matrix TM of a band of height M .

For the upper bound, the transition matrix is modified
by also checking the constraint on a periodic extension of
the vectors. This construction is referred to as a cylinder.
This leads to the upper bound

Cup =
log Λ′2m

2m
, (18)

where Λ′2m is the largest eigenvalue of the modified tran-
sition matrix T ′2m for the cylinder with vectors of 2m ele-
ments.

4. SIMULATIONS AND RESULTS

In this section we present simulation and numeric results
for the entropy of the two constraints.

4.1. Hard-square

For the hard-square, maximizing the entropy of the PRF
(12) over p and q gave a maximum value of Hmax =
0.5872772 bits/symbol obtained with p = 0.7090136 and
q = 0.8112441. This coincides with the result obtained
in [1], where the model was established for the specific
constraint using properties of the constraint, whereas the
model here is derived as a PRF. For comparison, the Calkin
and Wilf bounds (17,18) gave [2]

0.587891161 < C < 0.587891164.

4.2. No uniform 2× 2 blocks constraint

For the nus constraint both PRF and MRF techniques where
applied.

4.2.1. PRF entropy for nus

For the nus, maximizing the entropy of the PRF (13) over
p gave a maximum value of Hmax = 0.839 bits/symbol
for p = 0.3875. For the bilateral PRF (14), we get Hmax =
0.826 bits/symbol. The Calkin and Wilf bounds (17,18)
gives H(16) − H(15) = 0.8482624 ≤ C ≤ 0.8482626
for 2m = 16 in (18).

4.2.2. Belief propagation

In order to give a better picture of how the simulations
have been set up, we would like to describe the nature of
the factors connecting triplets of nodes. The factors are
probability functions

f(xUL, xUR, xLL). (19)

They are therefore functions of three variables, each of
these variables describing a 2 × 2 binary square. There
are 16 configurations for such a square, thus the alphabet
of each variable has cardinality 16. We associate a number
i in the set 0, . . . , 15 to each configuration, where i corre-
sponds to the decimal representation of the binary number
ABCD. For example, here are the associations for the
squares shown earlier:

[
0 1
1 1

]
= 7,

[
0 1
1 0

]
= 6.

The factor itself is created by associating 1 to each possi-
ble configuration, for instance f(3, 6, 12) = 1 (notice that
the squares have compatible edges and satisfy the con-
straint) and then by normalizing the function so that

∑
xUL

∑
xUR

∑
xLL

f(xUL, xUR, xLL) = 1. (20)



The value H(D|ABC) that we compute by means of
the procedure outlined above is an approximation (for one
reason) to an upper bound (for two reasons). It is an ap-
proximation because when BP is run on graphs with cy-
cles we are not guaranteed to converge to the correct value
for the marginal distributions; to an upper bound on one
hand because by only considering A, B and C as condi-
tioning variables we are ignoring the influence of farther
neighboring bits on D, on the other hand because we can
only model finite, NxN squares, but N should tend to in-
finity if we want to get a value for H(D|ABC) that is not
conditioned by the edges of the grid. We can mitigate this
problem by taking larger squares.

Once the BP algorithm has been running for a suffi-
cient number of times, so that further iterations do not
change the value of the marginals, what we get is the
joint probability P (ABCD) for all 24 = 16 values of
ABCD for all the squares in the grid. In order to com-
pute P (D|ABC), which is the fundamental ingredient to
compute H(D|ABC), we need to apply Bayes rule:

P (D|ABC) =
P (ABCD)∑
D P (ABCD)

. (21)

What we do is taking P (ABCD) from the square that is
furthest from the edges, namely the one in the center of
the grid. We have verified that already for grids with N as
small as 16 the value of H(D|ABC) has converged to 7
decimal figures, to the conjectured upper bound H(D|ABC) ≈
0.8569835. Although the approximation does not repre-
sent by any means a tight bound for the entropy, the re-
sults seem to be in line with those achieved by means of
the Calkin and Wilf bounds.

5. DISCUSSION

The most accurate results for the capacity of the constraints
were obtained by the Calkin and Wilf bounds through the
computation of the maximum eigenvalues of the transition
matrices. But this does not define an image model or give
insights into how efficient 2-D coding techniques could be
obtained. Furthermore, the requirement of a symmetric
transition matrix, limits the applicability as this is not the
case for constraints defined on larger squares. The PRF
provides image models and causal descriptions, which could
be the basis of simple bit-stuffing coding, but while the
PRF is close, it does not achieve capacity. For constraints
defined on larger squares, the PRF was extended to a block
PRF in [5]. MRF are max-entropic image models, but
they too do not render a coding scheme and furthermore
determining the value of the entropy is an unsolved is-
sue, which we in the examples considered can illuminate
by the results of the other techniques. As the different
approaches each have their strength and weaknesses, the
approach chosen should reflect the objective of the work.
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