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Abstract: Unmanned Aerial Vehicles need a large degree of tolerance to faults. One of the most
important steps towards this is the ability to detect and isolate faults in sensors and actuators in
real time and make remedial actions to avoid that faults develop to failure. This paper analyses
the possibilities of detecting faults in the pitot tube of a small unmanned aerial vehicle, a fault
that easily causes a crash if not diagnosed and handled in time. Using as redundant information
the velocity measured from an onboard GPS receiver, the air-speed estimated from engine
throttle and the pitot tube based airspeed, the paper analyses the properties of residuals. A
dedicated change detector is suggested that works on pre-whitened residuals and a generalised
likelihood ratio test is derived for a Cauchy probability density, which the residuals are observed
to have. A detection scheme is obtained using a threshold that provides desired quantities of
false alarm and detection probabilities. Fault detectors are build based on raw residual data
and on a whitened edition of these. The two detectors are compared against recorded telemetry
data of an actual event where a pitot tube defect occurred. c©2010 IFAC
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1. INTRODUCTION

Defects on sensors can have catastrophic consequences for
airplanes, specially smaller airplanes, which do not have
the same sensor redundancy that is available on larger
aircraft. It is therefore important to be able to detect
whether a sensor defect has occurred. One of the most
important sensors is the pitot tube that measures airspeed
of the vehicle. This sensor is very exposed because of its
position in the airstream and can easy be clogged by dust
or water particles that freeze at higher altitudes, when
they come in contact with the airplane body.

The solution to these clogging problems usually employed
on larger aircrafts is to install several pitot tubes with
build in heating devices to have a redundant system that
can accommodate icing. Because of weight and space lim-
itations, adding more sensors is usually not an option
on smaller unmanned aerial vehicles (UAV). Therefore, a
different approach must be taken to diagnose and accom-
modate faults. One way could be to have artifact readings
detected and replaced with estimated values. Detection
of faults and fault-tolerance for UAVs has a lot of focus
and, as described in Ducard (2009), many parts of the
aircraft control and operation can benefit from using fault
tolerant methods. A systematic approach to fault detec-
tion is described in Fravolini et al. (2009) and some of the
applications of these methods are, detection of mechanical
defects, like stuck control surfaces. These were studied
in Bateman et al. (2009) and Park et al. (2009) where

active methods were used to isolate faults. Observer based
fault diagnosis was investigated in e.g. Heredia et al.
(2008). Nonlinear models that describe the aircraft can
also be used in fault diagnosis, this was demonstrated on
small helicopters in Freddi et al. (2009).

This paper investigates the use of GPS velocity measure-
ments and propeller thrust readings to generate speed
information that is redundant compared to the pitot tube
airspeed. Residual values are formed from which defects on
the pitot tube can be isolated. The detection is done using
statistical information gathered from telemetry records
from a Banshee UAV (see fig. 1). Advantage is taken
of availability of real data to derive probability density
functions and establish spectral properties of data. Dedi-
cated change detection is derived based on observed signal
properties and detectors are convincingly tested on real
data from an incident involving icing of the pitot tube.

2. PLATFORM

The UAV studied in this paper is a Banshee target drone
build by the British company Meggitt Defence System.

The airplane is controlled by an autopilot and the operator
sends set-point requests to height, speed and heading.
Telemetry data are send from the plane and logged at a
ground station. These data are the basis for the investiga-
tions presented in this paper.



The Banshee is a delta wing aircraft equipped with a small
rear mounted engine. The thrust is delivered by a two-
bladed wooden propeller. It is launched from a catapult
system (see fig. 1) and lands by parachute. It is therefore
not equipped with any landing gear.

Fig. 1. Banshee UAV ready for launch at the Danish Naval
Weapons School at Sjællands Odde. (Foto: VFD)

3. MODEL

The airplane is modelled by the dynamic and kinematic
equations, which describe its motion through the air. In
order to describe these concepts mathematically, a number
of reference frames are needed. These are the ECEF (Earth
centred earth fixed) frame, the VCE (Vehicle carried earth)
frame, the body frame and the wind frame, see e.g Stevens
and Lewis (2003) for details.

3.1 Airplane motion parameters

The airplane’s motion is described by its velocities in the
body coordinate system

vb = [u, v, w]
T
, (1)

and the rotational rate about the body axes,

ω = [p, q, r]
T
. (2)

The Euler angles used to describe the rotation between
the vehicle carried coordinate frame and the body frame
of the aircraft are,

Φ = [φ, θ, ψ]
T
. (3)

This is also the attitude and heading information.

3.2 Kinematics

The kinematics of the airplane relates the angular veloci-
ties ω to the rate of change in the Euler angles Φ̇, which are
used in the rotation between body and the VCE coordinate
system. This is given by the following relation

Φ̇=L(Φ)ω (4)

L(Φ) =

[
1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

]
(5)

The change in position in the ECEF reference frame can
be described by rotating the translational velocities vb to

the navigation frame. The transformation matrix involved
in this depends on Φ.

3.3 Dynamics

The airplane is seen as a rigid body moving through
the air. Newton’s and Euler’s laws for linear and angular
momentum relate forces and moments acting on the rigid
body to linear and angular velocities and accelerations.
Since the UAV is flying at low speed and height over a
relatively small area, we assume that the Earth is flat, and
Coriolis forces and the centripetal force from the curvature
of the Earth can be neglected.

The airplane is affected by a thrust from the engine F T ,
an aerodynamic force FA arising from the lift and drag
from the airplane body and, naturally, the gravitational
force from Earth FG. With mass m,

d

dt
(mvb) =

∑
F = F T + FA + FG (6)

Since this equation is expressed in the inertial frame (the
Earth system) the equation of Coriolis is used to find the
derivative,

mv̇b + ω ×mvb = F T + FA + FG (7)

For an in depth description of airplane dynamics see for
instance Stevens and Lewis (2003).

3.4 Thrust

The Banshees’ thrust is delivered by a rear mounted in-
ternal combustion engine that drives a 2 bladed wood pro-
peller. The actual force delivered depends on the physical
dimensions of the propeller, the engines revolutions and
the density of the air. Given a propeller with diameter dp
rotating at n revolutions per second the thrust force is
given by:

FT = kT %n
2d4p (8)

where kT is the thrust coefficient and % is the density of air.
Wind tunnel tests (see Lesley (1939)) of propellers of the
used type show that the thrust coefficient is approximately
linear with the advance ratio J as seen in Lesley (1939)
figure 5. The advance ratio is given by:

J =
v

ndp
. (9)

In nominal flight the advancement ratio is in the range 0.9
to 1.1.

Propellers are usually characterised by their diameter dp
and pitch Pp. These values can be combined to a non-
dimensional pitch given by:

P ′ =
Pp

dp
(10)

In Nissen (2002) the following scaling for the thrust
coefficient was proposed.

kT (J) ' kT,ref(J − (P ′ − P ′
ref)) (11)

where kT,ref and P ′
ref is the thrust coefficient and non-

dimensional pitch of the reference signal respectively. The
reference signals originates from different propellers tested
in Lesley (1939). Since the 26× 30 inch propeller used on
the Banshee has P ′, which is equal to one of the tested
propellers, the characteristics of this propeller is used from



this point on.
The thrust coefficient can be expressed in two terms
describing the linear area seen in figure 5 in Lesley (1939).

kT = kT0 + kT1J (12)

By calculating the lift force of the propeller it was shown
in Blanke (1981) that the thrust can be expressed by:

FT = Tnnn
2 + Tnunu (13)

Tnn = kT0%d
4 (14)

Tnu = kT1%d
3 (15)

The thrust force works in the x-direction of the body
system. This gives rise to the following force equation in
the x-direction by using Equation (7):

mu̇+m (qw − rv) = FTx + FAx +mg sin θ (16)

The aerodynamic force FAx is a combination of lift and
drag forces on the airplane body. Since the angle of attack
α is usually small this force primarily consists of the drag
on the airplane. This is modelled on basis of recorded data
to vary with θ. It is assumed that the engine is aligned with
the airplane body and therefore FTx = FT . In straight and
level flight with no accelerations present we can estimate
the forward air speed of the plane by inserting the thrust
expression from equation 13.

û =
−Tnnn

2 − FAx −mg sin θ

Tnun
(17)

While this simple estimate was found to suffice for the pur-
pose of fault diagnosis, more elaborate and sophisticated
nonlinear observers and estimators have been suggested in
the literature. Zhou and Blanke (1989) described a way to
estimate state and parameters in nonlinear systems with a
structure similar to the thrust equation here, Blanke et al.
(1998) applied an adaptive observer scheme and Pivano
et al. (2009) showed nonlinear observer designs for thrust
estimation.

4. SIGNAL ANALYSIS

The airspeed of the UAV is measured by pressure differ-
ences between the pitot tube input and the static vent in-
put. This gives the difference between the stagnation pres-
sure and the static pressure which, according to Bernoulli’s
theorem, is the dynamic pressure q̄,

q̄ = 1
2%V

2 (18)

From this the planes airspeed V can be calculated.

In order to detect an error in the airspeed indicator this
sensor value must be compared to similar measurements.
The GPS receiver gives a speed from its internal Kalman
filter. This corresponds to the speed in an ECEF reference
frame, but using knowledge about the wind speed and
direction it can be transformed to airspeed measured in
the pitot tube.

As seen in the previous chapter the speed in the body
x-direction can be derived from the thrust equations
developed by the engine, by using equation 17. This
measure can also be converted to match the airspeed
measured by the pitot tube system.

The estimation of the wind direction and wind speed
are crucial for the correctness of these conversions. These

values are also hard to estimate with common means.
However the wind is measured at the ground station, and
also estimated during takeoff where the airplane always
climbs into the wind direction. These estimates prove to
give good results in practice.

The simplest way of comparing the three airspeed mea-
surements are by subtracting them from each other. This
creates three residual signals which in the nominal case
should have a values around 0. If we denote the airspeed
measured by the pitot tube vairspeed, the airspeed calcu-
lated from the GPS vgps and the airspeed calculated from
the engine velocity vthrust the following parity matrix can
be formed:

vairspeed vgps vthrust
R1 s s 0
R2 s 0 s
R3 0 s s

(19)

An ’s’ in list 19 means that errors on this value is strongly
detectable by the given residual. All the residual are
generated from the difference between measurements of
the airspeed velocity. This means that if the residual is
different from zero it indicates a fault, on one of the
signals. Therefore an detection of a DC-signal of unknown
magnitude, different from zero, in the residual, would
indicate an error.

Since only R1 and R2 contains pitot pressure information
only these two residuals are analysed onwards, however the
same methods are applied to R3 to obtain fault isolation.
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Fig. 2. Time development and histogram for residual R1

and R2 in the fault free case.

Figure 2 shows a time history and a histogram for R1 and
R2 in the fault free case.

As seen from the power spectrum densities in figure 3
the noise present at the residual signals are not white.
Since white noise is one of the requirements for most
statistical change detectors to perform optimal, the low-
pass filtered nature of the noise should be removed. One
solution of dealing with coloured noise is to filter white
noise through a suitable filter function to take into account
the correlations present in the coloured noise. This can be
created from a large record of data where all the signals
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properties are present. As indicated on figure 3 the power
spectrum density of the two residuals consists of a part
which decreases with 40 dB/decade and a part which
decreases with 80 dB/decade.

A filter function H which converts a white noise input to
a coloured noise output according to

Srr(ω) = |H(ω)|2 Sww(ω) = H(jω)H∗(jω)Sww(ω) (20)

can be created. The function should satisfy the shape given
in figure 3 and satisfy that

1

2π

∫ ∞

−∞
Srr(ω)dω = σ2

r (21)

where σ2
r is the variance of the residual noise. In order to

satisfy the shape in the following PSD function is chosen.

P(ω) = K
τ1ω

2 + 1

(τ1ω2 + 1)2
τ2ω

2 + 1

(τ2ω2 + 1)2
(22)

where τ1 is the reciprocal cut-off frequency between
the 0 dB/decade and the −40 dB/decade parts and
τ2 is the time constant between −40 dB/decade and
−80 dB/decade parts, and K is the magnitude. This
corresponds to the following filter function.

P(ω) = H(jω)H∗(jω) = (23)
√
K

√
τ1jω + 1(√
τ1jω + 1

)2
√
τ2jω + 1(√
τ2jω + 1

)2 ×

√
K

−√
τ1jω + 1(−√
τ1jω + 1

)2
−√

τ2jω + 1(−√
τ2jω + 1

)2
The constants in the equation are found by optimising
H(jω) to fit the actual spectra.

Expressing the filter function function in terms of s gives

H(s) =
√
K

√
τ1s+ 1(√
τ1s+ 1

)2
√
τ2s+ 1(√
τ2s+ 1

)2 (24)

The filter is implemented digitally using an IIR represen-
tation. Since filtering white noise through H(s) should
create a noise signal with a power spectrum similar to
the one in figure 3 filtering R1 and R2 through H−1(s)

should create a signal with a flat power spectrum. Figure 5
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residual R1 and R2 in the fault free case.
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shows the result of the whitening. Both residuals features
now white noise. In figure 4 the time development and
the histogram is plotted. Neither of the residuals are now
Gaussian distributed. Instead they follow the Cauchy dis-
tribution (equation 34) very well as indicated by the green
dotted line in the histogram. The Gaussian nature that
the residuals has before whitening comes from the effect
of the low-pass filtering, which creates the power spectra
observed. When this is removed during the whitening
process the Gaussianity is also removed.

5. DETECTORS

Two approaches to change detection is investigated. In the
first one the raw residual signals are used and the next one
the whitened signals are used.



5.1 Raw residual detector

If the vocabulary from statistical change detection is used
the scenario that it is desirable to analyse is: Detect an
unknown DC-level in Gaussian white noise. If the signal
is denoted x we wish to distinguish between the following
two hypotheses:

H0 : x[n] =w[n]

H1 : x[n] =A+ w[n] (25)

The unknown parameters are: The DC-level A and the
variance of the noise σ2

w. The GLRT (Generalised Likeli-
hood Ratio Test) for a linear model formulation can be
used to solve such a problem. However, GLRT algorithm
assumes that the signal noise is white. As emphasised, this
is not the case for the raw residual. However, the algorithm
is tested anyway using the raw residual, to see how it
performs. The general GLRT detector is given by

LG(x) =
p
(
x; Θ̂1

)

p
(
x; Θ̂0

) > γ (26)

If the ration is larger than the threshold γ this decides
H1. Θ̂i is the maximum likelihood estimate (MLE) of the
parameters when hypothesis Hi is true. In general the
GLRT test for the following two hypotheses:

H0 : AΘ= b, σw > 0

H1 : AΘ 6= b, σw > 0 (27)

The linear model is given by x = HΘ+w. The problem
given by equation 25 can be transformed to this problem
if we choose Θ = [A], A = [1] and b = [0]. The matrix H
is chosen to be a column of 1 corresponding to the window
size N .

T (x)=(N−1)
(AΘ̂1−b)T(A(HTH)−1AT)

−1
(AΘ̂1−b)

xT(I−H(HTH)−1HT)x
(28)

Inserting the values of A, b, H and Θ̂1 gives

T (x) = (N − 1)
x̄2

σ̂w
2 (29)

Where x̄ is the sample mean and the MLE of the variance
is given by:

σ̂w
2 =

1

N
x>

(
I −H

(
H>H

)−1

H>
)
x (30)

which just ends up with being the variance of the test data.
The final test statistic is therefore

T (x) = (N − 1)
x̄2

var(x)
> γ′ (31)

A more elaborate derivation of the detector can be found
in Kay (1998). The probability of false alarms PFA and
the probability of detection PD is given by:

PFA = QFr,N−p
(γ′) (32)

and

PD = QF ′
r,N−p

(ς)(γ
′) ; ς =

N A2

σ2
w

(33)

where Q denotes the right tail probability.

5.2 Pre-whitened residual detector

The second detector works on the whitened residuals.
Since these are distributed according to a Cauchy distri-
bution (as seen from figure 4) the following probability
distribution function most be used

p(x;xo, β) =
β

π (x− xo)
2
+ β2

(34)

The two parameters is the half-width half-maximum scal-
ing, β, and the offset xo. The hypotheses are the same as
in the nonwhite case, is a DC-level present in the noise or
not. The GLRT test statistic becomes

LG(x) =

∏N
i=1 p

(
xi; x̂o, β̂

)

∏N
i=1 p

(
xi; 0, β̂

) > γ (35)

The MLEs of β̂ and x̂o is found by fitting the data to
equation 34.

The performance can be calculated using these formulas:

PFA = Qχ2(γ′) (36)

and

PD = Qχ2(λ)(γ
′) ; λ =

N A2

σ2
w

(37)
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Fig. 6. Performance of the two detectors plotted as the
difference between probability of detections and false
alarms. Note that the value of γ and γ′ can not be
compared numerically.

Using the performance equations the compare value γ can
be found. A plot of the detection performance minus the
probability of false alarms for both the detector using the
raw residual values and the one working on the whitened
residuals are shown. For both performance curves a DC-
level of 5 m/s has been chosen as the value wanted
to be detected. Difference below this can be down to
inaccuracies in the estimation of parameters in the velocity
calculations.

6. RESULTS

To test the two detectors, they were exposed to a data
record containing a pitot tube defect. The results are
shown together with the residuals in Figures 7 and 8.
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t = 1140 s the clogging of the pitot tube occurs
(marked with the red vertical line).
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Fig. 8. Residuals and detector output. At approximately
t = 1140 s the clogging of the pitot tube occurs
(marked with the red vertical line).

As seen on the figures both detectors perform very well
with the given data. They raise an alarm, indicated by a
value of 1, about 14 seconds after the incident occurs. In
order to get the raw residual detector to perform as shown
in figure 7 the comparison value γ′ must be chosen 100
times larger than the one shown as maximal value in the
top plot of figure 6. The reason for this is the coloured
noise degrading the performance.

7. CONCLUSION

The UAV’s airspeed sensor faults were detected in this
paper using a setup where inherent redundancies were used
to generate residuals. Information from an onboard GPS
receiver and the air speed estimated from engine thrust we
used as sources of redundant information. Statistical prop-
erties of residuals were investigated and a whitening filter
was designed to pre-whiten the residuals before applying

a change detector. A dedicated detector was derived as a
generalised likelihood ratio test for the log-likelihood ratio
of probability density functions with and without faults.
Change detection was obtained with thresholds calculated
for the Cauchy distribution that pre-whitened residuals
were found to follow. Detection thresholds were deter-
mined to find an optimal balance between probabilities
for correct detection and false alarms. Two detectors were
designed and tested against data records from an UAV
with a pitot tube defect that developed while the UAV
was in the air. Both detectors were able to detect the fault
within an acceptable time frame and demonstrated that a
hard landing could have been avoided with the proposed
diagnostic system.
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