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Abstract

Illumination conditions have an explicit effect on the performance of face recognition systems. In partic-

ular, varying the illumination upon the face imposes such complex effects that the identification often fails

to provide a stable performance level. In this paper, we propose an approach integrating face identity and

illumination models in order to reach acceptable and stable face recognition rates. For this purpose, Active

Appearance Model (AAM) and illumination model of faces are combined in order to obtain an illumination

invariant face localization. The proposed method is an integrated Active Illumination and Appearance Model

(AIA) which combines identity, illumination and shape components in a single model and allows us to control

them, separately. One of the major advantage of the proposed AIA model is that efficient model fitting is

achieved, whilst maintaining performance against illumination changes. In addition to model fitting, images

illuminated from different directions can easily be synthesized by changing the parameters related to illumi-

nation modes. The method provides a practical approach, since only one image with frontal illumination

of each person for training, is sufficient. There is no need to build complex models for illumination. As a

result, this paper has presented a simple and efficient method for face modeling and face alignment in order

to increase the performance of face localization by means of the proposed illumination invariant AIA method

for face alignment, such as the Active Appearance Models, invariant to changes in illumination. From the

experimental results, we showed that the proposed AIA model provides higher accuracy than classical Active

Appearance Model for face alignment in a point-to-point error sense.

Key Words: AIA, alignment, illumination, face modeling, sub-spaces, active appearance.

1. Introduction

Face recognition is an active research topic in image processing and computer vision. Increasing numbers of
studies have been observed in face recognition systems under real life condition However, profound difficulties
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still need to be studied, including i) changes in pose, ii) changes in illumination source direction and strength,

iii) changes in scale, iv) real-time constraints, and v) search in large face databases. The proposed algorithms
in the literature can be classified into three categories as sketch-based, feature-based and appearance-based
methods. Most of these algorithms assume that the face is imaged on a constant background, or that the
face is already segmented from the background. Further, many methods require a frontal view of the face lit
using homogeneous illumination. In particular, illumination variation is a challenging and a crucial problem for
face recognition because the same individual with the same facial expression may have dramatically different
appearances under various illumination conditions [1].

In this paper, we focus on the problems induced by varying illumination. Our primary aim is to eliminate
the negative effect of illumination on the face recognition system performance through illumination-invariant
face modeling. Several recent studies have centered around this issue: symmetric shape from shading [2], for

the illumination cones method [3] theoretically explained the property of face image variations due to light
direction changes. In this algorithm, both self shadow and cast-shadow were considered and its experimental
results outperformed most existing methods. The main drawbacks of the illumination cone model are the
computational cost and the strict requirement of seven input images per person.

Other directions in photometric stereo in face recognition include introducing a more general illumination
model. Ramamoorthi [4] has proposed a spherical harmonic representation for face images under various lighting

conditions. Basri [5] employs lighting using a spherical harmonic basis, and shows a low-dimensional linear
subspace is quite effective for recognition. The harmonic images can easily be computed analytically given
surface normals and the albedos. Zhou [6] extended a photometric stereo approach to unknown light sources.

Lee [7] empirically found a set of universal illumination directions, images under which can be directly used as
a basis for the 9 dimensional illumination subspace.

Shashua [8] employ a very simple and practical image ratio method to map the face images into different
lighting conditions. This method is suitable for modeling the variation in facial appearance caused by diffuse
reflection and the proposed method is simply the ratio of albedo between a face image and linear combination
of basis images, for each pixel. Wang et al. [9] developed reflectance estimation methods by using the idea of

the ratio of the original image and its smooth version. In the same research direction Zhang [10] and An [11]
proposed new methods to extract an illumination invariant representation of a face images from a raw facial
images.

Even though the proposed photometric normalization based representations increase recognition perfor-
mance, it is not suitable to say that these representations provide complete invariance against illumination.
There are many recent works on illumination invariant face recognition. An extensive review of illumination
invariant face recognition approaches is given by Zou [12]. The most successful methods for the particular

problem of face recognition under varying illumination are image-based [13] [14] [15] [16] [17]. Image-based
methods are increasingly used in illumination invariant face recognition due to their robustness with respect
to illumination variations [18]. In general, appearance-based methods require training images of individuals

taken under different illumination conditions. A method proposed by Sim and Kanade [13] overcomes this
restriction by using a statistical shape-from-shading model, in which images are generated for each individual
under different lighting conditions, creating a database of images in a recognizer based on principal component
analysis (PCA) [19].

Face alignment is also a very important step to extract good facial features to obtain high performance
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in face recognition, expression analysis and face animation applications. Several face alignment methods have
been propose. For shape alignment Kass et al [20] introduced Active Contour Models which is based on

energy minimization; Kirby and Sirovich [21] described statistical modeling of grey-level appearance; Active

Shape Models (ASM) [22] and Active Appearance Models (AAM) [23] [24], proposed by Cootes et al, are two
successful models for object localization.

ASM uses local appearance models in order to find the candidate shape and a global model to constrain the
searched shape. AAM combines constraints on both shape variation and texture variation in its characterization
of facial appearance. In searching for a solution, it assumes linear relationships between appearance variation
and texture variation and between texture variation and position variation. These two linear regression models
are learned from training data. In the context of this paper, texture means the intensity patch contained in the
face shape after warping to the mean face shape

Blanz [25] extended the standard AAM to a 3D morphable model (3DMM). The vertices in a 3DMM
shape are much more dense than an AAM shape. The 3DMM achieved promising results for illumination
invariant face recognition. However, fitting a dense model requires much higher computational effort, which is
not suitable for real-time face recognition systems.

Standard AAM is sensitive to illumination, particularly if the lighting during testing is significantly
different from the lighting during training [26]. To overcome the problem, we propose a general framework
for face modeling under varying illumination conditions. The overview of the proposed method is depicted in
Figure 1. We present a robust Active Appearance Model, called AIA, in which face illumination and a face
identity sub-spaces are used to model the appearance of the image. Our proposed model combines constraints
not only on both shape and texture variation but also on illumination variation in its characterization of facial
appearance.

The rest of the paper is structured as follows: Section 2 introduces the identity and illumination modeling
methodology to build AIA Model. The experimental results and the conclusion are presented in Sections 3 and
4, respectively.

2. Modeling of facial variations

One perspective on the problems induced by varying illumination is that commonly used linear normalization
is no longer sufficient to counter-balance the illumination which can be perceived as an undesired noise con-
tamination of the signal of interest: the face geometry and appearance, and ultimately the identity. In general,
the illumination problem is quite difficult in face recognition literature. In the case of face recognition many
approaches for this problem have been proposed [18].

In principal, the face localization and recognition problem is preferred to be robust to illumination,
rotation variations, etc. In this study, we specifically address how to reduce the dependency on variation in
illumination on localization performance. We treat the problem as an advanced normalization process, being
able to estimate the contribution of a light source to a face image. The final aim of this work is to embed the
illumination model into an Active Appearance Model and thus able to estimate and compensate for the actual
light conditions. Since the subspace of illumination, identity and shape variations are merged upon AAM in
order to obtain illumination-invariant localization of faces, the following subsection is devoted to present AAM
in brief. The aim of later subsections is to present the individual variation sub-spaces and the method of
combining each of the subspaces the Active Illumination and Appearance Model framework.
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Figure 1. Overview of proposed method.

2.1. Active appearance model

Active Appearance Models are generative models capable of synthesizing images of a given object class. By
estimating a compact and specific basis from a training set, model parameters can be adjusted to fit unseen
images and hence perform image interpretation. The modeled object properties are usually shape and pixel
intensities (which we denote as texture). AAM aims to find the optimal model parameters to represent the
target image that belongs to the same object class by using an iterative scheme.

Training objects are defined by marking up each image with points of correspondence. Relying upon the
landmarks, a triangulated mesh is produced for the reference position and orientation of the object. Before
modeling variations, all shape vectors are normalized to a common reference shape frame by using Procrustes
Analysis [27]. After obtaining the reference shape vector, all of the training images are warped to the reference

shape by using a piecewise affine warping [28] which is defined between corresponding triangles to obtain
normalized texture vectors.

Using prior knowledge of the optimization space, AAMs can rapidly be fitted to unseen images with
given a reasonable initialization. AAM uses principal component analysis (PCA) to model the variations of the
shapes and textures of the images. Usage of PCA representation allows AAM to model and represent a certain
image with very small number of parameters.

AAM works according to the following principle: An image is marked with n landmark points. The
content of the marked object is analyzed based on a Principal Component Analysis (PCA) of both texture and
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shape. The shape is defined by a triangular mesh and the vertex locations of the mesh. Mathematically the
shape model is represented as follows:

x0 = ((x1, x2, x3, ..., xK) , (y1, y2, y3, ..., yK)) ∈ R2n. (1)

Texture is the intensities on these landmarks (color pixel values normalized to shape) and is represented
with the vector, g . Shape is reduced to a more compact form through PCA such that,

x = x̄ + Φsbs. (2)

In this form, x is the synthesized shape in the normalized frame, Φs is a matrix that contains the t

eigenvectors corresponding to the largest eigenvalues and bs is a t−dimensional vector of shape coefficients. By
varying the parameters in bs , the synthesized shape can be varied. All training images warped to the reference
shape and sampled into a vector to obtain the texture vectors. Prior to the PCA modeling of the texture we
need to normalize all texture vectors. The aim of this normalization is to obtain zero mean and unit variance
texture vectors. Texture model can now be obtained by applying PCA to the normalized textures,

g = ḡ + Φg bg, (3)

where g is the synthesized texture, ḡ is the mean texture and bg is a k− dimension vector of texture
parameters. In the linear model of texture, Φg is a set of orthogonal modes of variation.

To remove the correlation between shape and texture model parameters, a third PCA is applied on the
combined model parameters, giving a further model,

b = Q c (4)

where Q is the eigenvectors and c is a vector of appearance parameters controlling both the shape and the
texture of the model. Note we do not use a mean vector in this model since the shape, texture and appearance
model parameters have to zero mean. Due to the linear nature of the model, the shape and texture vectors can
be expressed in terms of the appearance parameters c as

x = x̄ + Φs W s Qs c (5)

g = ḡ + Φg Q g c (6)

where b =
[

W sbs bg

]T and Q =
[

Qs Qg

]T . In this form, W s is a diagonal matrix of weights for

each shape parameter, allowing for the difference in units between the shape and the grey models. Generally
W s is the square root of the ratio of the total intensity variation to the total shape variation. An example
image can be synthesized for a given c appearance vector by generating the shape normalized image from the
vector g and warping it using the control points described by x vector. Appearance parameters vector, c , is
controls both the shape and the grey-levels of the model. Qs and Qg are the eigenvectors of the shape and

texture models respectively. An image can be represented by a vector p which is given as p =
[

x g c
]T .

It’s possible to synthesize a new image by changing parameter p .
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(a) (b) (c)

Figure 2. Example training image. (a) Input training image. (b) Annotated training image using 73 points. (c)
Shape-compensated training image warped to a reference shape.

2.2. Building active illumination and appearance model

An identity and illumination model can be established after eliminating variation stemming from pose and
shape of face dataset. Such an elimination method can be achieved by

• annotating prominent facial features and

• filtering out effects stemming from pose (translation, rotation and scaling) and shape by a piece-wise affine
warp onto a given reference shape.

After carrying out the above steps, the undesired variations are removed from the face images. Therefore,
the shape-compensated face images are obtained by which we intend to model the illumination and identity
variations. Figure 2 shows the method of undesired affine variation removal process. Figure 2(b) shows an

annotated training image and Figure 2(c) depicts the shape compensated face relying upon the method of piece-
wise affine warp onto a given reference shape. Shape-compensated face images still have main variations which
are illumination and identity. These variations are modeled by statistical analysis methods. In particular,
Principal Component Analysis is used for the modeling. The resulting principal scores thus give a compact
representation of both illumination and identity variations.

The appearance of a frontal facial image from a fixed view point is determined primarily by identity
and illumination—two independent factors. It is conceivable that the 3D structure of the face may result
in correlation between illumination pattern and the identity. However, since faces have roughly the similar
geometry, any face image should have shadows at similar locations with similar 3D shapes caused by an unique
point light source. Based on the principle of having similar geometry on faces, we choose to neglect this
interaction between illumination and identity, thus allowing for a simple additive model. This simpler model,
excluding the identity and illumination interaction, is assumed to have superior predictive power.

We assume an additive model for variations in facial texture due to different identities and different
illuminations. Furthermore, we assume independence between identity and illuminations patterns leading to
the texture model

g = μ + Φ id b id + Φ ilb il . (7)

Here, μ denotes the average facial texture of a frontally illuminated face, Φ id spans the space of texture

variation, frontally illuminated face due to different identities, and Φil spans the space due to illumination

682
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Figure 3. Face images of same person, under 27 different lighting conditions (Yale B).

variation, frontally illuminated face. The first five PCA basis eigen-images of identity and illumination subspaces
are shown in Figure 5. In order to estimate these parameters we used a training set from the Yale B facial
database, which is comprised of two subsets, Set 1 and Set 2. We estimate μ and Φid from Set 1 that contains

frontally illuminated faces of different identity (Figure 4). We can assume that b il = 0 for Set 1. Therefore, μ

can be estimated as the mean texture and Φ id as the set of p id eigenvectors of the texture covariance matrix

corresponding to the largest eigenvalues.

Set 2 contains the illumination variations for a single individual (Figure 3). By subtracting the frontally
illuminated face texture from all others we have, according to our model, removed all identity variations from
this data set. Therefore, we can estimate a set of base vectors spanning this variation Φ∗

il as the set of p il
eigenvectors of the texture covariance matrix of these difference images corresponding to the largest eigenvalues.
However, because our model requires independence between the identity and illumination texture space we must
ensure that the estimates of Φid and Φ∗

il span orthogonal subspaces. This is achieved by projecting Φ∗
il into

the the orthogonal subspace of Φid , i.e.

Φil = [I − Φ id ΦT
id ]Φ∗

il (8)

For technical reasons we choose to project the observed illumination differences to the identity-orthogonal
subspace prior to estimation of the illumination covariance, i.e.

dil = [I − Φ id ΦT
id ]d∗

il (9)

However, this is entirely equivalent to the procedure outlined above. The combined illumination and
identity model in Equation (7) can be rewritten,

g = μ + Φ comb b comb (10)

where Φcomb = [Φ id Φ il ] . The shape variation is estimated for the Yale B data set 1 in the usual way [23]

and a combined shape and texture model is constructed. Figure 6 shows the first three modes of variation for
(a) identity and (b) illumination parts of the model.
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Figure 4. Identity face images of the Yale B dataset for ten individuals.

2.3. Optimization of AIA model

To fit the active appearance model automatically to the target image, we need to solve an optimization problem.
AAM and AIA use same method for model searching. The search is treated as an optimization problem in which
the difference between the synthesized image by the model and an input image is to be minimized. The method
works by learning from an annotated set of training example. For each example in the training set, a number
of known model displacements are applied and the corresponding difference vector recorded. Then multivariate
regression is applied to model the relationship between image residual and the model displacement. The learnt
regression model is then used to predict a movement of the target image model likely to give a better match.
By adjusting the AIA parameters ( bcomb ) the model texture, gm , can be deformed to fit the image, g i . In

this case the quadratic error norm is applied as optimization criterion which is proposed by Cootes [23]:

Error =
n∑

i=1

(gi − gm)2 =
n∑

i=1

(δgi)
2 = ‖δg‖2 = ‖r(p)‖2 (11)

Here, n denotes the number of pixel samples of the shape-free texture vector. The method starts with the
initial value for parameter vector p0 . By minimizing the difference between the target image and the image
synthesized by the model, the method try to converge to optimal parameters popt for each iteration. We can

re-write the r(p) using Taylor expansion as

r(p+δp) ∼= r(p)+
∂r
∂p

∂p. (12)

Finally, to find optimal δp , to minimize ‖r(p + δp)‖2 , we can define δp as

∂r
∂p

δp = −r(p) (13)

We wish to choose δp so as to minimize ‖r(p + δp)‖2 . By equating equation 12 to zero we can obtain
the solution

δp = −Rr(p), where R =
(

∂rT

∂p

∂r

∂p

)−1
∂rT

∂p
(14)

In the AAM and AIA search procedure, ∂r/∂p is defined as a fixed gradient matrix which is estimated at
the optimal p for each training images and then all the parameters estimates are averaged to obtain one fixed
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Figure 5. The first five PCA basis images of the identity and illumination subspaces. Upper row is the identity, and
the lower row shows the illumination eigenfaces.

array. Since the fixed gradient matrix R is estimated once at model building time, then AIA use pre-computed
R in all subsequent searches with the model. In practice the fixed gradient matrix R is estimated by a set
of experiments on the training set. In the AIA and AAM search procedure, this estimation scheme is applied
iteratively to both model and shape perturbation parameters.

3. Experimental results

We tested the proposed method on the Yale B Face Database [29]. The first experiment is implemented in order
to show illumination modeling can be successfully achieved by means of the face images of only one individual
which are taken from different lighting condition, whereas the poses are kept at frontal view. We choose just
the frontal subset from the Yale B dataset, containing 300 images from 10 persons, each person has 30 frontal
images under 30 different lighting conditions. To have a reasonable range of light source directions, we selected
the light directions between ±60 degrees in the azimuth angle and ±45 degrees in the elevation angle.

To compare the performance of AAM and AIA methods, we choose the most ideally illuminated face
image of each individual. The ideally illuminated face should be shadowless, and therefore it is required to
use the frontally illuminated one as the identity information. The remaining 29 images under different lighting
conditions are used for testing. In order to build up the identity subspace of the AIA, at least one single face
being frontally illuminated is required for each individual. On the other hand, illumination part of the AIA
is built using the remaining 29 images under different lighting conditions of each individual from the Yale B
Dataset. To build illumination subspace of the AIA we used difference images which are aligned to the mean
shape and then the frontally illuminated face image for each identity has been subtracted to remove identity
information of each images to provide a data set primarily showing effects of varying illumination. In our
experiments, we used same training and test images for AAM and AIA to provide a benchmark.

We manually labeled 300 images with the size of 640× 480 pixels. To establish the models 73 landmarks
were placed on each face image; 14 points for the mouth, 12 points for the nose, 9 points for the left eye, 9
points for the right eye, 8 points for the left eyebrow, 8 points for the right eyebrow and 11 points for the chin.
The warped images have approximately 33000 pixels inside the facial mask. Using normalized textures, we
construct an 8-dimensional texture space to represent approximately 95% of the observed variation.

After building the identity and illumination subspaces of the AIA model, it is possible to synthesize a
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(a) (b)

Figure 6. Mode variation plots of the identity and illumination model. (a) Three largest identity modes from top to

bottom: bi = −3
√

λj , bi = 0, bi = +3
√

λj , (b) Three largest illumination modes from top to bottom: bi = −3
√

λj ,

bi = 0, bi = +3
√

λj .

new face with different identities by only changing the identity parameters of the model as shown in Figure 6(a).
Illumination models constructed from the face images belonging to one single individual which are taken under
different lighting conditions, can be used to model the face lighting conditions of the other individuals’ face
images, as shown in Figure 6(b). This characteristic gives us a chance to estimate the lighting conditions and
identify of a person by using the AIA model representation.

We can also synthesize faces for various illumination cases by tuning the parameters of the illumination
model to obtain the re-lighted version of these faces. This is shown in Figure 7. The uppermost row of the
Figure 7 presents an example of how the relighting aspect of AIA model works on mean face which is actually
the average of the faces in Figure 4. The other two rows represent the same relighting process for different two
identities. This paper demonstrates how an illumination subspace can be learned by applying lighting variations
to just one individual and how this can be combined with a face sub space model learned from a database of
frontally lit faces. This in fact constitutes an easily applicable way of adapting already learned face models to
new lighting conditions.

The manually annotated landmarks are considered as the ground truth shape information. For each
image the landmarks derived by the methods are compared by ground truth landmarks. A distance measure,
D(xgt, x), gives a scalar interpretation of the fit between two shapes, the ground truth, xgt , and the actual
shape, x . To evaluate the performance using landmarks two distance measures are used. One of them is point
to point error, defined as the Euclidean distance between each corresponding landmark. This distance measure
is hence forth abbreviated to the point to point error (pt.pt.). Average pt.pt. error is expressed in the following
equation:

Dpt.pt. =
∑ √

(xi − xgt,i)2 + (yi − ygt,i)2. (15)
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Figure 7. Face re-lighting using combined model.

Figure 8. Four different initializations to test the sensitivity of localization performance of AIA and AAM to poor
initialization.

The other distance measure is point to curve error, defined as the Euclidean distance between a landmark
of the fitted shape, x , to the closest point on the border given as the linear spline, r(t) = (rx(t), ry(t)), tε[0; 1] ,

of the landmarks from the ground truth, xgt . This distance measure is abbreviated to the point to curve error

(pt.crv.). Average point to associated border error is given as

Dpt.crv. =
1
n

n∑
i=1

min
t

√
(xi − ry(t))2 + (yi − rx(t))2. (16)

The optimization scheme of AAM is inherently sensitive to initialization. AAM converges to the correct
solution if it is correctly initialized. To calculate the accuracy of the alignment, we applied the same initial-
izations to AAM and AIA. As initialization the ground truth pose is systematically displaced, ± 20 pixels
in x and y coordinates (See Figure 8), at each step the average distance of all initializations are calculated.
The comparative results are given in Table 1. It can be easily seen that AIA considerably outperforms original
AAM. To match a given image and the model, an optimal vector of parameters are searched by minimizing the
difference between synthetic image and input image. Figure 9 and Figure 10 illustrate the optimization and
search procedures for fitting the model to the input images.

Examples of the optimization/search results of the proposed method are shown in Figure 9 where the
first column is the arbitrarily illuminated unseen images from test dataset and the remaining images are the
optimization iterations and rendering of the fitting results for each iteration. The last column presents final
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(a) (b) (c) (d) (e) (f)

Figure 9. AIA model results while optimizing the appearance parameters for test images (unseen) and arbitrarily
illuminated faces: (a) input image, (b)–(f) optimization iterations of the AIA.

model approximation for the input images. It can be observed from the last columns that the synthesized faces
are very close to input faces.

The AIA optimization is performed as a set of iterations, in each iteration, the model, predicts a set of
changes in model parameters leading to a better model to image fit. Using equation equation (14) we can suggest
a correction to make in the model parameters based on a measured residual r . This allows us to construct
an iterative algorithm for solving our optimization problem. This procedure is repeated until no improvement

is made to the error, ‖r(p)‖2 . This iterative search procedure is repeated until termination condition is met.
Convergence is declared when an error measure is less than a suitable threshold or maximum iteration number
is occurred. The minimized error is the sum of the quadratic errors between real image and generated model
on each pixel. Usually AIA model would converge in 5–10 iterations; in our implementation a maximum of 30
iterations was allowed in the optimization procedure. We set the convergence level threshold as 0.01 to declare
convergence of the algorithm. The optimization scheme of AIA is inherently sensitive to initialization. Please
notice that AIA and AAM converge to the correct solution if they are correctly initialized. The complexity of
the proposed algorithm is O( bcomb × gm ). Computation complexity is also measured by computation time of

the algorithm. All the computations are performed on Intel Centrino Duo machine (Toshiba Tecra A7, 2GHz

with Windows XP) and the AIA search took about 2 seconds.

4. Discussion and conclusion

This paper proposes an approach that combines the face identity and face illumination models, and embeds
them into the widely used Active Appearance Model framework as an augmentation to the texture model in
order to obtain illumination-invariant localization of faces. In classic AAM formulation there are only two
variations, texture and shape. We add illumination variation into the AAM framework in order to build a new
combined model containing both identity and illumination. Experimental results using the Yale B database
demonstrated the feasibility of the proposed method, showing a significant increase in face localization accuracy.
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(a) (b) (c) (d) (e) (f)

Figure 10. AIA model results while optimizing the appearance parameters for extremely illuminated faces: (a) input
image, (b)–(f) optimization iterations of the AIA.

Table 1. Face segmentation results for test images (640×480).

Standard AAM Proposed AIA
Mean pt.-pt. Error 23.90± 0.38 8.85± 0.64
Mean pt.-crv. Error 14.70± 0.24 5.60± 0.46
Median pt.-pt. Error 21.62 5.53

Median pt.-crv. 14.29 3.54

The comparative alignment results of the standard AAM and proposed AIA are given in Figure 11 for extremely
illuminated test images.

The experiments show that our AIA model can synthesize extremely illuminated faces successfully. For
recognition purpose there is no need to use full combined parameters; one needs only the identity part of the
final converged combined parameter vector. So, after the AIA is converged, it is easy to re-construct face images
using only identity part. In addition to this, we have also illumination parameters. The illumination vector can
be used to analyze global lighting (location of light source etc.) and the AIA model can be used to re-light of
arbitrarily illuminated input faces.

The method is simple to implement when the basic AAM elements is at hand, e.g. shape alignment,
piece-wise affine warping, PCA etc, is also computationally efficient to apply. By being driven by traditional
2D face images in a controlled light setup the method does not require the complex machinery of 3D face
model to estimate and synthesize the effects of varying illumination. However, this obviously comes at the cost
of establishing a sophisticated controlled light setup for training the system. Luckily, such data sets are now
readily available. Hence, we cannot stress our appreciation enough of the Yale B dataset employed in this work.

In this study, a novel method is proposed to automatically align a face image from an image captured
under arbitrary lighting conditions. The method requires only one image with frontal illumination of each person
for training, which means that it is very practical. There is no need to build complex models for illumination. We
demonstrate how an illumination subspace can be learned by applying lighting variations to just one individual
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Figure 11. Standard AAM alignment results are shown in the first two rows, AIA results are shown in the last two
rows respectively for extremely illuminated test images.

and how this can be combined with a face (sub)space model learned from a database of frontally (or if you

wish identically) lit faces. This in fact constitutes an easily applicable way of adapting already learned face
models to new lighting conditions. As a result, this paper has presented a simple and efficient method for face
modeling and face alignment with the primary application of rendering current state-of-the-art methods for face
localization, such as the Active Appearance Models, invariant to changes in illumination.
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