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Preface 
 

This thesis presents the results done at The Environmental Microbiology and Biotechnology 

Research Group, Biocentrum-DTU, The technical University of Denmark, in the period from 1/3-

2002 to 30/4-2005. Throughout the period Professor Birgitte K. Ahring was the super-visor. 

 

The thesis consists of a short summary and an introduction that 1) provides a background for 

understanding the most important aspects of anaerobic digestion and 2) gives an overview of the 

most important issues concerning process imbalances in bioreactors. The laboratory work during 

the project mainly focused on volatile fatty acids (VFA) dynamics during process imbalances in 

continuously stirred tank reactors and the use of VFA as indicators of process imbalances. The 

results are presented in following five papers: 

 

Paper I Nielsen HB, Ahring BK (2005) Responses of the biogas process to pulses of 

oleate. Submitted to Biotechnology and Bioengineering. 

 
Paper II Nielsen HB, Ahring BK (2005) Effect of protein and ammonia pulses on the 

biogas process. Prepared for submission to Water Research.  

 Part of the results was previously presented as:  

 Nielsen HB, Ahring BK (2004) Effect of protein and ammonia pulses on the 

biogas process. 10th World Congress on Anaerobic Digestion, AD-2004, Montreal, 

Canada, 3, 1790 −1794 

 
Paper III Nielsen HB, Ahring BK (2005) Response of the biogas process to pulses of lipids 

and meat- and bone meal. Preliminary results. 

 

Paper IV Nielsen HB, Hartmann H, Ahring BK (2005) Regulation and optimization of the 

biogas process: propionate as a key parameter. Prepared for submission to Water 

Research. Part of the results was previously presented as: 

Hartmann H, Nielsen HB, Ahring BK (2004) Optimization of the biogas process 

using on-line VFA measurement. 10th World Congress on Anaerobic Digestion, 

AD-2004, Montreal, Canada, 3, 1285 −1289 
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Paper V Nielsen HB, Mladenovska Z, Hartmann H, Ahring BK (2005) Kinetics of 

propionate degradation in anaerobic continuously stirred tank reactors. Prepared 

for submission to Applied Microbiology and Biotechnology. 
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Summary 
 

Anaerobic digestion is a widely used method for treatment of organic waste in bioreactors. The 

anaerobic digestion process depends on a finely balanced action of several microbial groups 

where the product of one group serves as the substrate for others. The growth rates and the 

sensitivity towards environmental changes differ widely between the different groups. As a 

consequence of this, an unrestrained reactor operation can lead to disturbances in the balance 

between the different microbial groups, which might lead to reactor failure. Therefore, reliable 

parameters and tools for efficient process control and understanding are necessary. The work of 

present study was directed towards this challenge.  

Initially, the response of the anaerobic digestion process to various types of process 

imbalances was investigated with special focus on volatile fatty acid dynamics (VFA), methane 

production and pH.  The experiments were carried out in lab-scale thermophilic continuously 

stirred tank reactors (CSTR) treating livestock waste.  The imbalances included inhibition by 

long chain fatty acids (LCFA), inhibition by ammonia, organic overloading with proteins and 

organic overloading with industrial waste, i.e. meat and bone meal and lipids. During the main 

part of the experiments one reactor was connected to an online VFA sensor giving a detailed 

profile of the VFA dynamics during the process imbalances. 

Based on the results it was concluded, that propionate was the most reliable single 

parameter for indication of process imbalances in biogas plants. At Danish full-scale biogas 

plants the biogas production is normally the only continuously measured parameter. In order to 

examine the usability of propionate as control parameter a reactor experiment was constructed in 

which the reactor operation either was carried out on the basis of the methane production or on 

the basis of fluctuations in the concentration of propionate. The experiment confirmed that 

propionate is a useful parameter for (1) indication of process imbalances and (2) for regulation 

and optimization of the anaerobic digestion process in CSTRs. 

In order to gain a better insight in the activity of the propionate degraders under different 

operational conditions the kinetic parameters of propionate degradation by biomass from 10 

CSTRs differing in temperature, hydraulic retention time (HRT) and substrates were estimated in 

batch substrate-depletion experiments. In general, a good relationship was observed between the 

maximum degradation rate (Amax) of propionate and the overall reactor performances while the 

half-saturation constant (Km) was found to be in the same range (<1mM). However, when 

evaluating the accuracy of the substrate-depletion tests by use of radiotracer methodology a 14-
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15% underestimation of Amax in the substrate-depletion was observed. This indicates a production 

of propionate during the experiments via degradation of higher organic compound. Therefore, 

when estimating the kinetic parameters of propionate degradation in substrate-depletion tests an 

important and difficult challenge, is to achieve a correct balance between the propionate 

concentration and biomass concentration.  
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Resumé 
 

Anaerob udrådning er en vidt udbredt metode til behandling af organisk affald. Udrådningen er 

en kompleks proces, der kræver forekomsten af et fint afbalanceret mikrobielt fødenet, hvor een 

mikroorganismes nedbrydningsprodukt tjener som substrat for de efterfølgende mikroorganismer. 

De forskellige mikroorganismegrupper, der er aktive i den anaerobe nedbrydning, har forskellige 

vækstrater og udviser forskellig affinitet og følsomhed overfor ændringer i omgivelserne. Som 

følge af dette kan en ukontrolleret reaktordrift forårsage en ubalance mellem de forskellige 

mikroorganismer, hvilket kan føre til et sammenbrud af processen. Derfor er der behov for 

forskellige parametre og værktøjer for at opnå en bedre proceskontrol og for at forøge forståelsen 

af den anaerobe nedbrydningsproces. Nærværende arbejde har derfor været rettet mod dette mål.  

Den anaerobe nedbrydningsproces’ reaktionsmønster på en række procesforstyrrelser  

blev først undersøgt i laboratorie-skala reaktorer. Et særligt blik var rettet mod dynamikken af 

flygtige fede syrer (VFA), metanproduktionen og pH. Typen af procesforstyrrelser inkluderede: 

inhibering med langkædede fede syrer (LCFA), ammoniak-inhibering, organisk overbelastning 

med protein og organisk overbelastning med industriaffald i form af kød- og benmel samt fedt. 

Under de fleste forsøg var en af reaktorerne forbundet med en online VFA- sensor, hvis brug gav 

en detaljeret profil af VFA-dynamikken i reaktorerne under forstyrrelserne. 

Udfra de opnåede resultater blev det konkluderet, at propionatkoncentrationen var den 

bedste enkeltparameter til indikation af procesubalance i biogasanlæg. Derfor blev der opstillet 

endnu et forsøg, hvor propionats brugbarhed  som kontrolparameter blev testet. Dette 

eksperiment bekræftede at 1) propionat giver en god indikation på procesubalance og, at 2) 

propionat er velegnet til regulering og optimering af den anaerobe udrådningsproces. 

Den sidste del af studiet var et screeningsforsøg, hvor de kinetiske parametre for 

nedbrydningen af propionat i biomasse fra 10 reaktorer blev bestemt. Reaktorerne varierede i 

temperatur, opholdstid og substrat. De kinetiske parametre blev bestemt i batchflasker ved direkte 

måling af propionatkoncentrationen. Generelt blev der observeret en god korrelation  mellem den 

maximale nedbrydningsrate (Amax) af propionat og reaktorernes ydeevne mens halvmætnings-

konstanterne for de enkelte reaktorer (Km) var på samme niveau (<1mM). En evaluering af den 

anvendte metode ved hjælp af tilsætning af radioaktivt mærket propionat afslørede imidlertidigt 

en 14–15% underestimering af Amax. Dette resultat indikerede et input af propionat fra 

nedbrydningen af andet organisk materiale under forsøget. Derfor er det vigtigt, at der i forsøg, 

hvor de kinetiske parametre for VFA nedbrydning estimeres ved direkte måling af VFA 
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koncentrationen, opnås en korrekt afstemning af forholdet mellem VFA koncentration og 

biomasse koncentration.  
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1. Introduction and aim of the study 
 

Anaerobic digestion of organic matter with a simultaneous production of biogas is an 

environmental attractive way for treatment of organic waste from livestock holdings, industries, 

wastewater treatment plants and households. The degradation process is complex and depends on 

a balanced action of several microbial groups consisting of hydrolytic/fermentative bacteria, 

acetogenic bacteria and methanogenic archaea. During the process biopolymers are initially 

hydrolyzed and fermented to volatile fatty acids (VFA) H2 and CO2, by the 

hydrolytic/fermentative bacteria. VFA such as propionate, butyrate and isobutyrate are 

subsequently oxidized by acetogenic bacteria producing acetate, H2 and CO2, and finally these 

products are converted to CH4, CO2 and H2O by methanogens.  

Today 20 full-scale centralized biogas plants are in operation treating approximately 1.2 

million tons of manure per year together with approximately 300.000 tons organic industrial 

waste per year. Several of these biogas plants have been exposed to process imbalances mainly 

associated with the composition of the substrate that is treated by the plants. To avoid such 

imbalances and hinder suboptimal reactor performances reliable parameters for indication of 

process disturbances and process control are necessary. During a process imbalance 

intermediates, especially in the form of VFA, will accumulate in the reactor and it has for a long 

time been recognized that VFA concentration is one of the most important control parameters. 

The inhomogeneous nature of the organic waste makes VFA measurement time consuming and 

sampling is normally only done on a daily to weekly basis if any at all. However, a recently 

developed in-situ microfiltration system at BioCentrum-DTU has now made online VFA 

measurement in reactors treating complex waste possible. This system provides the opportunity 

to get a more profound insight in the complex dynamic interactions between the different 

microorganisms involved in VFA production and consumption.   

The aim of the presented study was to examine some of the most commonly observed 

process imbalances in biogas plants with special focus on VFA dynamics. This was done in lab-

scale CSTRs connected to an online VFA sensor. Based on the results from the experiments and 

published literature the succeeding task was to evaluate which single VFA that would make the 

most reliable parameter for indication of process imbalances in biogas plants and to examine the 

usability of this parameter in a lab-scale reactor experiment. 
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2. Anaerobic digestion in methanogenic environments 
 

Biogas, which mainly consists of CH4 and CO2, is produced during anaerobic degradation of 

organic matter in the absence of inorganic electron acceptors (O2, NO3
-, SO4

2-, Fe3+, Mn4+). Thus, 

only fermentation and respiration with protons and HCO3
- as electron acceptors is possible 

(Stams 1994). A well-organized community consisting of several microbial groups, in which the 

product of one group is the substrate of the following groups, carries out the degradation (Gujer 

and Zehnder 1983). Examples of natural methanogenic environments are freshwaters such as 

paddy fields, sediments and swamps, the intestinal tract of ruminants and landfills. Furthermore, 

the anaerobic digestion process is utilized by man for treatment of organic waste in anaerobic 

bioreactors. 20 full-scale centralized biogas plants are in operation in Denmark. The main 

substrates of these plants are manure and other organic waste such as industrial waste, household 

waste and sewage sludge (Angelidaki and Ellegaard 2003). The main organic components of 

these complex wastes are biological polymers, e.g. carbohydrates, lipids and proteins and mono- 

and oligomers, e.g. sugars, long chain fatty acids, amino acids. During the degradation the main 

end products are CH4, CO2 and H2O. As illustrated in figure 1, the way of degradation is divided 

into several steps.  

 

2.1 Hydrolysis and fermentation 

During the first step biological polymers are hydrolyzed to mono- and oligomers by extracellular 

enzymes, e.g. cellulases, xylanases, proteases, lipases, excreted by hydrolytic/fermentative 

bacteria. Mono- and oligomers are subsequently fermented by the same groups of bacteria to a 

broad range of reduced organic compounds such as succinate, lactate, alcohols and VFA along 

with CO2 and H2. The large variation in fermentation products is due to the ability of the 

fermentative bacteria to change their metabolism towards the most energetically favorable 

reactions, dependent on the external conditions (Thauer et al. 1977). One important parameter for 

regulation of this branched metabolism is the H2 partial pressure of the environment. During 

glycolysis and betaoxidation glucose and fatty acids are oxidized to pyrovate and acetyl-CoA, 

respectively, while NAD+ and FAD are reduced to NADH and FADH2. During respiration NAD+ 

and FAD is regenerated by oxidation of NADH and FADH2 in a stepwise manner involving an 

electron transport chain where electrons are transported from one protein to another to a final 

external electron acceptor such as O2, NO3
- or SO4

2-. In contrast to this fermentative bacteria 
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often lack complete electron transport chains and instead the regeneration of NAD+ and FAD is 

carried out in processes where pyruvate and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Illustration of the major pathways during anaerobic digestion of organic matter. 

 

acetyl-CoA act as electron acceptors and are reduced to various acids and alcohols. These 

fermentation products are then subsequently excreted by the bacteria. However, at a H2 partial 

pressure < 10-4 atm. NADH oxidation coupled to H2 formation is possible (Wolin 1982):  

 

NADH + H+ → H2 + NAD+ 
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As a consequence of this reaction pyrovate/acetyl-CoA is retained inside the bacteria, which 

allows the bacteria to form acetate from acetyl-CoA resulting in a further energy yield. Therefore, 

at low H2 partial pressure, which is obtained by hydrogen oxidizing methanogens, the 

fermentation pattern changes towards H2, CO2 and acetate at the expense of other fermentation 

products (Schink 1988).  

2.2 Acetogenesis 

Acetate, H2, CO2, formate and other C-1 carbons produced by the fermentative bacteria can be 

directly converted into methane, CO2 and H2O by methanogens. Due to a restricted metabolism 

of the methanogens VFAs longer than two carbons and alcohols longer than one carbon needs to 

by oxidized to acetate, H2, formate and CO2 by acetogenic bacteria before methanogenesis is 

possible. The two most important acetogenic reactions are the oxidation of propionate and 

butyrate. The quantitative contribution of these VFAs to methanogenesis (via H2 or acetate) in 

cattle waste at 40oC and 60oC has been estimated to be approximately 13–17% for propionate and 

8–9% for butyrate (Mackie and Bryant 1981). The oxidation of the compounds is under standard 

conditions endothermic (energy demanding) and energetically unfeasible (table 1). However, at a 

low H2 partial pressure the processes becomes possible (Gibbs free energy, ∆Go` becomes 

negative) and the energy yield increases with decreasing H2 partial pressure (Westermann 1996). 

A low H2 partial pressure is maintained by the H2-oxidizing methanogens gaining energy 

(exothermic process) by converting H2 and CO2 to methane. Thus, acetogenesis is achieved in a 

syntrophic cooperation between acetogenic bacteria and H2-consuming methanogens where each 

microbial group benefits from the existence of the other group. However, at decreasing H2 partial 

pressure the energy yield from H2-oxidaxion is lowered and oxidation of fatty acids combined 

with methanogenesis is only possible in a certain narrow H2 partial pressure range (figure 2) 

(Stams 1994; Westermann 1996; Zinder 1993). Furthermore, the borders of the H2 partial 

pressure are affected by temperature. At increasing temperature the energy yield of 

methanogenesis via oxidation of H2 decreases while the energy yield of fatty acid oxidation 

increases, resulting in a shift of the H2 partial pressure to a higher range (Westermann 1996). 

During acetogenesis protons or bicarbonate is reduced and both H2 and formate have been 

proposed as electron carriers in syntrophic degradation (Schink 1997, Zinder 1993). The above 

described syntrophic relationship deals with interspecies hydrogen transfer. Investigations have 

presented evidence of H2 transfer by demonstrating syntrophic growth with methanogens that 

oxidize only H2. Studies of interspecies electron transfer in mesophilic and thermophilic granules  
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indicated that formate transfer was of no importance during oxidation of propionate and butyrate 

and indicated that the major electron transfer occurred via interspecies hydrogen transfer 

(Schmidt and Ahring 1993, 1995). Ahring and Westermann (1987) found that addition of H2 to 

the gas phase immediately stopped growth and butyrate degradation in an anaerobic triculture. In 

contrast to this, Inanc et al. (1999) concluded that H2 pressure had no effect on the degradation of 

propionate and butyrate in anaerobic sludge, and other studies of suspended cultures and flocs 

have indicated that formate is the major interspecies electron carrier in syntrophic associations 

(Boone et al. 1989; De Bok et al. 2002, Thiele and Zeikus 1988). The issue of interspecies 

electron transfer is, therefore, complex and seems to vary in different anaerobic systems. 

Probably, H2 transfer becomes more important with shorter interbacterial distances, in for 

instance granular sludge, while formate transfer is more favourable in suspended cultures (Stams 

1994); although results disagreeing with this consideration have been reported (Ahring and 

Westermann 1987). Irrespective of which component that acts as electron carrier in syntrophic 

degradations it is obviously that the hydrogen- and formate utilizing methanogens play an 

important role in the overall regulation of the anaerobic conversion (Schink 1997).  

Table 1 Equations and free energy changes ∆Go` of some important reactions of acetogenesis and 
methanogenesis under standard conditions (H2 and CH4 in gaseous state; all compounds in aqueous solution at 
1 M; 25oC, pH 7) (Thauer et al. 1977; Dolfing 1988; Zinder 1993). 

 Equation ∆Go` (kJ/mol) 

Acetogenesis 
  

Butyrate  →  Acetate CH3CH2CH2COO- + 2H2O   →  2CH3COO- +2H+ + 2H2  + 48.1 

Propionate  →  Acetate CH3CH2COO- + 3H2O  →  CH3COO- + H+ + 3H2 + HCO3
- + 76.1 

Ethanol  →  Acetate CH3CH2OH + H2O  →  CH3COO- + H+ + 2H2 + 9.6 

H2 + CO2  →  Acetate 4H2 + 2HCO3
- + H+  →  CH3COO- + 4H2O - 105 

Methanogenesis 
  

H2 + CO2  →  Methane 4H2 + HCO3
- + H+  →  CH4 + 3H2O - 135.6 

Formate  →  Methane 4HCOO- + H+ + H2O  →  CH4 + 3HCO3
- - 145 

Acetate  →  Methane1  CH3COO- + H2O  →  CH4 + HCO3
- - 31.0 

Acetate  →  Methane 2 a) CH3COO- + 4H2O  →  2HCO3
- + 4H2 + H+                    a) 

b) 4H2 +HCO3
- + H+  →  CH4 + 3H2O                                                 b) 

a+b) CH3COO- + H2O  →  CH4 + HCO3
-                        a+b) 

+ 104.6 

- 135.6 

- 31.0 
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The role of homoacetogenic bacteria converting H2 and HCO3
- to acetate is unclear. As 

seen in table 1 this reaction is less energetically favorable than methanogenesis from H2 and 

HCO3
- and it seems reasonably to assume that homoacetogenic bacteria have little chance to 

compete with the hydrogenotrophic methanogens at low H2 concentrations (Schink 1997). 

However, homoacetogens have an advantage of a more flexible metabolism, which allows them 

to consume two or more substrates simultaneously, e.g. sugar fermentation (Schink 1994). Some 

investigations indicate that in natural habitats with low temperatures (≈ 5°C), low acetate 

concentration (≈ 10 µM) and low H2 partial pressure (<10-4 atm.) homoacetogens may out 

compete H2-consuming methanogens (Conrad and Wetter 1990; Kotsyurbenko et al. 2001; 

Schink 1997). For anaerobic digesters operated at mesophilic and thermophilic conditions it is 

generally accepted that the affinity of homoacetogens towards hydrogen is too low to obtain a H2 

partial pressure that allows a simultaneous growth of propionate and butyrate oxidizing bacteria 

(Stams 1994; Schink 1997). 

 
Figure 2 Free energy changes of propionate oxidation and methanogenesis from H2 as a function of the H2 partial 
pressure. The free energy change was calculated for both 20°C and 37°C. The following concentrations were used 
for calculations: propionate 0.1 mM; acetate 1 mM;  HCO3

- 10 mM; H+ 10-4 mM, methane 0.6 atm. The red area 
indicates the H2 partial pressure range where propionate mineralization is possible at 20°C, while the striped area 
indicates the H2 partial pressure range where propionate mineralization is possible at 37°C. From Westermann 
(1996). 
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2.3 Methanogenesis 

Methanogens belongs to the domain Archaea, and can be divided into two major groups: the 

hydrogenotrophic methanogens and the acetotrophic methanogens. The most important methane 

precursor in anaerobic digesters is acetate, which constitutes of approximately 70% of the total 

methane produced. The remaining 30% is mainly formed from H2 or formate and to a minor 

extent other C-1 carbons (Mackie and Bryant 1981). Methanogenesis from acetate may proceed 

in two ways: 1) Aceticlastic methanogenesis where acetate is cleaved into methane and HCO3
- 

and 2) methanogenesis where acetate-oxidation is coupled to the conversion of H2 and HCO3 to 

CH4. While aceteticlastic methanogenesis is carried out by a single organism is acetate oxidation 

carried out in a two-step mechanism in which  the methyl group of acetate is oxidized to HCO3
- 

and H2, followed by a reduction of HCO3
- with hydrogen to methane (Mladenovska 1997; Zinder 

1988; Zinder and Koch 1984). The aceticlastic reaction is in general the most dominant in 

anaerobic bioreactors treating complex organic material such as manure and operated at 

conventional temperatures up to 60oC  (Mladenovska 1997). However, the dominating 

aceticlastic methanogens from moderate thermophilic biogas digesters have been found to have 

an upper limit at 60–65oC (Touzel et al. 1985; Zinder 1988; Zinder and Mah 1979) and it is 

reasonably to assume that the two-step process of acetate oxidation becomes more dominating at 

temperatures above these limits. Studies with radiolabeled acetate have also showed that the two-

step process becomes dominant at acetate concentrations lower than 1mM (Ahring 1995). 

Furthermore, Schnürer et al. (1999) found a close correlation between the degree of acetate 

oxidation and the concentration of ammonia and potassium at mesophilic temperatures.   

 

2.4 Anaerobic degradation versus aerobic degradation 

The amount of energy available for the microorganisms during anaerobic methanogenic 

degradation of organic matter is small compared to aerobic degradation. Under aerobic conditions 

oxygen is used as the final electron acceptors and the main part of the energy is made available to 

the organisms. During anaerobic degradation most of the energy is recovered in methane (figure 

3). This conservation of energy is the energetic background for commercial biogas production. 

Aerobic respiration of glucose to CO2 and H2O yields approximately 2822 kj/mol, equivalent to 

an amount of 38 mol ATP/per mol glucose. During the first anaerobic degradation step 

(fermentation) a maximum of 10% of the potential energy is available for the fermentative 

bacteria while the remaining 90% is retained in the fermentation products, mainly VFA. Of these 
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90% only 4% is available for the syntrophic bacteria and the methanogens while the last 86% is 

conserved as methane. The total energy yield under anaerobic conditions is approximately 390 

kj/mol, which correspond to 5 mol ATP/mol glucose. Compared to aerobic conditions where the 

released energy is available to only one organism, the energy released under anaerobic conditions 

is shared between the fermentative bacteria, the syntrophic bacteria and the methanogens. The 

exact distribution of energy between the different trophic levels is dependent of the H2 partial 

pressure. If the pressure is kept low by the methanogens the fermentative bacteria produces 

mainly H2, CO2 and acetate, which allow them to a maximum of 4 mol ATP/mol glucose. As a 

result of this only 1 mol ATP needs to be shared by the syntrophic bacteria and the methanogens. 

The synthesis of 1 mol ATP from ADP requires 60–70 kj. During electron transport 

phosphorylation 3 or 4 protons are required for synthesis of one ATP and the minimum amount 

of energy which living cells can make use of is 15–20 kj (Schink 2002). This amount of energy is 

exactly what’s available to the individual microbial groups during many syntrophic degradation 

processes (Stams 1994 and Schink 1997).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3. Available energy under aerobic and anaero bic degradation of glucose. From Westermann (1996).  
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The different energetics of aerobic and anaerobic degradation implies different 

advantages and disadvantage for aerobic and anaerobic treatment of waste.  As a consequence  

of a higher energy yield and corresponding high growth rates aerobic treatment of 

waste/wastewater will result in a large production of biomass (sludge). This might generate 

disposal problems. Furthermore requires stirring and aeration of waste/wastewater and biomass a 

high amount of energy. In contrast to that, are the low biomass yield and the recover of energy as 

methane regarded as being a major advantage of anaerobic waste treatment. However, the low 

growth rates of anaerobic microorganisms and the strong interdependence of the different trophic 

levels make anaerobic digestion a more susceptible process towards a broad range of changes. 

Examples of this are given in chapter 3.  

 

2.5 Anaerobic reactors 

Anaerobic reactors can in general be divided into two main groups (Pind et al. 2003a): 

 

- High-rate reactors, with a hydraulic retention time (HRT) of less than 5 days. 

- Low-rate reactors with a retention time of more than 5 days and usually more then 10 

days. 

 

Often the substrate composition decides the choice of reactor. High-rate reactors are often used to 

treat dilute wastes, such as industrial wastewater, containing easily degradable soluble organic 

material. Since this Ph.D.-thesis focus on process imbalances in CSTRs (low-rate reactor) only a 

brief description of these reactor systems will be given here. The most used high-rate reactors are 

the upflow anaerobic sludge blanket reactor (UASB), the anaerobic filter reactors and the 

expanded/fluidized bed reactor. The essence of the UASB reactor (Lettinga et al. 1980) is the 

development of high-density microbial granules. The wastewater enters the reactor from the 

bottom and the granules are thereby mixed with the up streaming water and the gas bubbles being 

produced. In the upper reactor settler screens separates gas and particulate matter. This allows the 

granules to sediment back to the bottom while suspended bacteria leaves the reactor with effluent 

(Zinder 1993, Schink 1988). In anaerobic filter reactors a support matrix is provided for the 

microorganisms to adhere and perform degradation. The filter material, which for instance may 

consists of glass or Plexiglas beads, is fixed and in contrast to the UASB and the 

expanded/fluidized bed reactor is the biomass almost completely entrapped inside the reactor 

(Alves et al. 1998). This ensures a lower risk of biomass flotation and washout (Pind et al. 
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2003a). Unfortunately anaerobic filters are prone to clogging due to low flow rates and dense 

packed material (Zinder 1993, Pind et al. 2003a). In an expanded/fluidized bed reactor the 

microorganisms is attach to a carrier material consisting of small particles. The wastewater is 

pumped fast enough (often by a recycle pump) to expand or fluidize the carrier material inside 

the reactor. The main advantage of expanded/fluidized bed reactor is the extremely large surface 

area of the carrier material, which allows a high concentration of microorganisms in the reactor 

and a corresponding low HRT. 

For treatment of inhomogeneous complex organic wastes such as manure, slaughterhouse 

waste and source sorted household waste the most commonly used reactor system is the CSTR 

(low-rate). In this system the microbes is completely suspended in the waste and are washed out 

with the effluent. Therefore, the HRT of the system needs to be higher than the generation time of 

the microbes in order to obtain a stable biogas process. In 2001 the average HRT of the 20 

centralized full-scale biogas plants in Denmark was 23 ± 4 days for mesophilic plants (36–38oC) 

and 17 ± 4 days for thermophilic plants (51–53oC) (PlanEnergi, Midtjylland 2001). The major 

advantage of CSTRs is their ability of treating substrates containing high concentrations of 

suspended matter, for instance biofibers. The inhomogeneous composition of the substrates is 

also one of the main problems associated with the CSTRs since the nature of the substrate makes 

it difficult to obtain representative samples of the reactor content, when compared to the 

described high-rate reactors. Furthermore, the sample preparation is often time consuming 

hindering online sampling. As a consequence of this is the control of full-scale CSTRs often 

based on manual sampling and human intuition rather than sophisticated control systems (Ahring 

and Angelidaki 1997; Pind et al. 2003a). This problem will be further discussed in chapter 4. 

 

2.6 Physical and chemical parameters affecting the anaerobic digestion process 

2.6.1 Nutrient requirements. For a stable and efficient degradation it is required that nutrients are 

available to the microorganisms in sufficient amounts. The nutrients can generally be categorized 

as macro- or micronutrients. Nitrogen and phosphorus are the two most important nutrients. 

Nitrogen is essential for protein synthesis and the most important nitrogen source in reactors 

treating animal manure is ammonia. However, if ammonia is presented in high concentration it 

will be inhibitory to the degradation process (discussed later).  

The requirement for phosphorus, which is found in nucleic acids, phospholipids, ATP, 

GTP, NAD and FAD, is less than nitrogen. Carbon, oxygen and H2 are of cause also important 

elements since it is the main building blocks of cell material, but since the organic waste is rich in 
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these elements they will not be limiting. Instead the ratio of carbon to nitrogen and phosphorus 

may define the requirements and. A C:N:P composition of 100:28:6 for bacterial matter in 

general and C:P ratios for methanogens varying from 16:1 to 75:1 have been suggested 

(Alphenaar et al. 1993). Kayhanian and Rich (1995) found the C:N:P ratio for a optimal process 

in a thermophilic (55oC) CSTR treating municipal solid waste, sludge and manure to be 

approximately 180:25:1.  

The sulfur requirement of the anaerobic digestion process is complex. Sulfur is used for 

synthesis of some amino acids but the methanogenes are unable to use sulfur in the oxidized 

forms, for instance SO4
-. The reduced form of sulfur (sulphide) has been shown to have a 

stimulating growth effect of various methanogens (Kayhanian and Rich 1995) but may also 

inhibit methanogenesis in even small amounts (Hansen et al. 1999). Other essential nutrients that 

are required are calcium, iron, copper, magnesium, nickel, cobalt, and potassium (Kayhanian and 

Rich 1995). The cellular role of these elements varies from being cofactors for enzyme activity 

and components in metal complexes, to supporting cellular transport of nutrients and cations by 

increasing cell wall permeability (potassium). However, some elements like nickel, calcium, 

magnesium, sodium and potassium can in too high concentrations be inhibitory while sulphide 

and phosphate can influence the concentrations and bioavailability of some elements via 

precipitation.  

It has been reported that addition of specific nutrient might improve the anaerobic 

digestion process but in general the basic nutrient requirements for a stable process are fulfilled in 

biogas plants treating animal manure (Kayhanian and Rich 1995). 

 

2.6.2 Temperature. One of the most important physical parameters affecting anaerobic 

degradation is temperature. Conventional biogas plants are often operated as one-stage systems 

under constant mesophilic (30°C–37°C) or moderate thermophilic (50°C–55°C) conditions. In 

Denmark the first plants were operated at mesophilic temperatures but today the thermophilic 

process has gained the dominating position. Using thermophilic temperatures in preference to 

mesophilic temperatures has various advantages including higher degradation rates, enabling a 

shorter treatment times, and a better sanitation effect (Buhr and Andrews 1977; Hashimoto et al. 

1981; Varel et al. 1980). Experiments have demonstrated that the microorganisms, involved in 

the anaerobic degradation process at thermophilic conditions, have different demands with 

respect to optimum growth temperature. Thermophilic hydrolytic and fermentative bacteria 

exhibit growth optimum in a broad temperature range between 55°C–75°C (Wiegel 1992; Zinder 
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1986). Thermophilic H2-oxidizing methanogens exhibit optimal growth at temperatures between 

55°C–70°C (Zinder et al. 1984; Zinder 1988; Wasserfallen et al. 2000), and some species are able 

to grow at temperatures above 90°C (Amend and Shock 2001). The majority of the thermophilic 

aceticlastic methanogens have lower growth optima in the range between 50°C to 65°C 

(Mladenovska 1997). Ahring (1994) showed that the conversion of acetate and butyrate to 

methane in cattle manure digested at 55°C is strongly reduced above 60°C, which is the optimum 

temperature for these processes, while the conversion of propionate to methane proceeds fastest 

at 55°C. According to these results it is obvious, that the total degradation potential of the 

microorganisms involved in the digestion process is not fully utilized when a reactor is operated 

at a constant thermophilic temperature. This fact has increased the interest for implementing two-

phase systems with different temperatures and HRT to obtain optimal conditions for the different 

microbial consortia involved in the degradation process. In that context it has been demonstrated 

that the implementation of an extremely thermophilic pretreatment CSTR, operated at 68°C and 3 

days HRT, before a thermophilic CSTR, operated at 55°C and 12 days HRT, resulted in a 6-8% 

higher methane yield, when compared to a conventional reactor operated at 55°C and 15 days 

HRT (Nielsen et al. 2004). 

 

2.6.3 pH. As with temperature, the various microbial consortia involved in the anaerobic 

digestion process show different optima with regard to pH. Methane formation is limited to a pH 

range of approximately 5.5–8.5 although most methanogens have a pH optimum between 6.5 and 

8.0. Comprehensive studies show that aceticlastic methanogens tends to have slightly lower pH 

optima than the hydrogenotrophic methanogens (Lowe et al. 1993; Mladenovska 1997). The 

fermentative bacteria often have lower pH optima (5–7) than the methanogens (Zinder 1986; Pind 

et al.2003a). The complexity of different pH optima makes the balancing of pH in some reactor 

systems an important operation issue. However, in biogas plants, where the main feedstock 

normally is manure the pH is often controlled by strong buffer systems. The bicarbonate system 

(CO2/HCO3
-/CO3

2-) is normally the strongest buffer but also ammonia (NH4
+/NH3) and acetate 

(CH3COOH/CH3COO-) influences the pH (Sommer and Husted 1995). As a consequence of 

these buffer systems the pH of plants treating manure is often stable and in the range from 7.5–

8.0 (Pind et al. 2003a). Since the solubility of CO2 becomes smaller at increasing temperature the 

pH is often higher in thermophilic reactors than in mesophilic reactors.  
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A part from the direct impact of pH and temperature on the growth of microorganisms, 

these parameters also affect other parameters such as the dissociation of important compounds, 

e.g. ammonia and sulphide. 
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3. Process imbalances in CSTRs 
 

Most likely process imbalances in anaerobic CSTRs are characterized by an increase in H2 partial 

pressures or acetate, for example during overload of fermentable substrate or inhibition of the 

methanogens. Under such conditions the pool of intermediates (VFA, alcohols etc) will increase 

and in case of methanogenic inhibition a lowering in methane production is observed. If the 

imbalance is allowed to proceed the increasing VFA levels may lower pH resulting in a further 

inhibition of the methanogens. In worst case scenarios this reaction pattern continuous and results 

in a complete inhibition of the entire process. Basically the causes leading to process imbalances 

in CSTRs can be divided into 4 groups:  

 

- Organic overloading 

- Hydraulic overloading 

- Changes in operation parameters 

- Addition or production of toxic/inhibitory material 

 

The boundaries between these groups can be rather indistinct since a process imbalance often is 

caused by an interaction of various factors; for instance ammonia concentration, temperature and 

pH. 

 

3.1 Organic and hydraulic overloading  

Process imbalances caused by hydraulic overloading arises when the retention time of the 

substrate/biomass becomes lower than the generation time of some of the important microbial 

groups involved in the digestion process and these are washed out of the reactor. The specific 

growth rate of fermentative bacteria is higher than the growth rates of the VFA oxidizing bacteria 

and the methanogens (Angelidaki et al. 1993; Angelidaki et al. 1999) and normally the slow-

growing fatty acid oxidizers (especially the propionate oxidizers) and the aceticlastic 

methanogens are most affected during a hydraulic overloading. Hydraulic overloading might 

occur as a consequence of a diminished reactor volume, for example due to bad stirring resulting 

in a floating layer of suspended matter. Furthermore the hydraulic retention time of a reactor can 

decrease if the feeding volume is increased. During such circumstances a combined 

hydraulic/organic overloading might occur. During an organic overloading more substrate is  
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added to the reactor than the microorganisms can degrade. As mentioned this might happen if the 

feeding volume is increased but also if the concentration/degradability of organic material in the 

feedstock is increased. During such conditions the slowest processes of the overall degradation 

acts as bottlenecks and the substrates will accumulate in the reactor.  

Due to differences in the growth rates of the microbial groups at various temperatures the 

outcome of an overload is dependent of the operation temperature. Mackie and Bryant (1995) 

exemplified this by studying combined hydraulic/organic overloading in a mesophilic (40°C) and 

a thermphilic (60°C) reactor treating cattle manure. By a stepwise increase in loading rate the 

HRT was decreased from 13 to 10, 9 and finally 5 days while the organic loading rate was 

increased from 3 to 6, 9 and 12 gVS/(l x d). During each change the methane production was 

more affected in the mesophilic reactor than in the thermophilic reactor and the accumulation of 

VFA was most pronounced in the mesophilic reactor (table 2).  

 

3.2 Changes in operation parameters 

3.2.1 Temperature. The different temperature optima of the microorganisms involved in the 

anaerobic degradation process makes anaerobic digesters sensitive to changes in temperature. 

Many investigations on this issue have been carried out and the present section only presents 

some of the more significant studies.  

The effect of temperature changes is very much dependent on the original temperature of 

the reactor (psychrophilic, mesophilic, thermophilic) and at the type of temperature change, e.g. 

upward or downward, long-term or short-term. Ahring et al. (2001) investigated the effect  

Table 2 Methane production and VFA concentrations (acetate and propionate) in a mesophilic and 
thermophilic reactor treating cattle manure at different loading rates. HRT was decreased from 13 to 10, 9 and 
5 days while the organic loading rate was increased from 3 to 6, 9 and 12 g VS/l. From Mackie and Bryant 
(1990, 1995).   

VFA HRT 

 

VS in 
feed 

Organic  
loading rate 

Reactor 
temperature  

CH4 production 

Acet. Prop. 

(days) (%) (g VS/l x d) (°C) ml/(gVS) ml/(l reactor vol) mM mM 

13 4 3 40 210 620 0.9 0.2 
13 4 3 60 240 700 1.3 0.6 

10 6 6 40 180 1090 1.6 11.5 
10 6 6 60 220 1280 1.6 3.0 

9 8 9 40 130 1180 2.3 51.9 
9 8 9 60 210 1910 3.0 13.9 

5 6 12 40 110 1270 3.3 47.7 
5 6 12 60 200 2340 2.7 11.7 
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of a long-term increase of the operation temperature from 55°C to 65°C of a CSTR treating cattle 

manure (figure 4). The result of the increase was an immediate process imbalance characterized 

by a decrease in methane production and a significant increase in VFA concentration. However, 

approximately 30 days (two HRTs) after the changes the process stabilized. The overall process 

was still inhibited, e.g. methane yield was lower and VFA levels higher than before the 

temperature change, but the overall acidification yield was in the same range as before the 

temperature shift. The study also revealed a pronounced change in the microbial composition 

(rRNA contribution) illustrated by a significant decease in the level of the domain Bacteria from 

74–79% at 55°C to 57–62% at 65°C and a corresponding increase in the domain Archaea from 

18–23% at 55°C to 34–36 at 65°C. El-Mashed (2004) studied short-term (5–10 hours) upward 

and downward temperature fluctuations in CSTRs at 50°C and 60°C treating cattle manure. Here 

the upward temperature fluctuations affected the acidogenesis and methanogenesis activity more 

severely than the downward temperature fluctuations. In contrast to Ahring et al. (2001), found 

El-Mashad et al. the acidification yield to be smaller at 60°C than at 50°C, although hydrolysis 

was in the same range. 

The importance of the original reactor temperature was studied by Ahn and Forster 

(2002), who imposed both upwards and downwards temperature changes to a mesophilic (35°C) 

and a thermophilic (55°C) upflow anaerobic filter treating simulated paper mill wastewater. Both 

reactors were first lowered by approximately 10°C for 11 days, returned to the original 

temperature to reestablish and then increased 10°C for approximately 6 days. The response of the 

reactors was different. The downward temperature changes affected the mesophilic reactor (lower 

biogas production, and accumulation of VFA) while the thermophilic reactor was unaffected. The 

upward temperature change did not show any harmful effect on the mesophilic reactor while, the 

treatment efficiency of the thermophilic digester immediately dropped.  
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3.3 Addition or production of toxic/inhibitory compounds  

  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 4 Effect of long-term temperature increase (55°C to 65°C) in a CSTR treating cattle manure. a) �: 
methane yield. b) �: pH. c) ●: total VFA. d) �: acetate; ■: propionate. e) ○: butyrate; �: isobutyrate. f) 16S 
rRNA amounts of ●: Bacteria; ○: Archaea and □: Eucarya. From Ahring et al. (2001). 
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The most commonly observed process imbalances in biogas plants are related to the substrate 

composition. The main feedstock of Danish centralized biogas plants is manure but the plants are 

difficult to run with an economically profitable result if the process is solely based on this 

substrate (Hjort-Gregersen, 1999). In order to increase the economical feasibility of the plants 

manure is, therefore, often co-digested with organic wastes from industries and municipalities. 

These wastes are often characterized by high concentrations of easy degradable organics such as 

lipids and proteins (Ahring et al. 1992; Angelidaki and Ellegaard 2003). Besides organic 

overloading caused by addition of the substrates various compounds associated with the 

substrates may inhibit the degradation process. These compounds may be directly present in the 

feedstock (exogenic inhibtion) or may be produced during the degradation (endogenic inhibition). 

 

 
Table 3 Effect of antibiotics on the anaerobic digestion process. aLevels of VFA removal after exposure of 
anaerobic sludge to antibiotics. –:  VFA removed ≤ 10%; +: 10% < VFA removed < 50%; ++: 50% < VFA 
removed < 90%; +++: VFA removed ≥ 90%. The values were compared to unexposed controls. 
bConcentrations of various antibiotics that resulted in a 20, 50 and 80% inhibition of methane production. – 
No inhibition at the highest concentration tested (500–1000 mg/l). From Sanz et al. (1996). 

 

Antiobiotic 

 

Mode of action 

 
aExtent of VFA 

removal 

 bConcentration (mg/l) inhibiting 
methane production by: 

  C2 C3 C4  20% 50% 80% 

Rifampicin RNA polymerase +++ ++ +  100 >250 – 
Β-Lactamic         
   Ampicillin Cell wall +++ ++ ++  10 – – 
   Novobiocin Cell wall +++ ++ ++  10 – – 
   Penicillin Cell wall +++ ++ ++  10 – – 
Aminoglycosides         
   Streptomycin Protein synthesis +++ + +  18 – – 
   Kanamycin Protein synthesis +++ ++ ++  100 – – 
   Gentamicin Protein synthesis +++ ++ ++  35 – – 
   Spectinomycin Protein synthesis +++ ++ ++  >20 – – 
   Neomycin Protein synthesis ++ ++ +  20 >500 – 
Tetracyclines            
   Chlortetracycline Protein synthesis – + –  5 40 152 
   Doxycycline Protein synthesis +++ +++ –  8 – – 
Macrolides         
   Tylosin Protein synthesis +++ +/++ +/++  15 – – 
   Erythromycin Protein synthesis +++ +++ +++  – – – 
Chloramphinicol Protein synthesis – – –  11 26 41 
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3.3.1 Antibiotics. Antibiotics are used as feed additives and can be found in manure, but also in 

the wastewater of pharmaceutical industries. The purpose of antibiotics is to inhibit microbial 

growth and for that reason antibiotics play a potential role as process inhibitors in biogas plants. 

Sanz et al. (1996) studied the effect of 15 different antibiotics on both acetogenesis and 

methanogenesis at 30°C and found that most antibiotics did not or only partly inhibit the 

digestion process (table 3). Furthermore, the majority of the antibiotics lacked activity against 

acetoclastic methanogens and was only active on acetogenic bacteria. Only chlortetracycline and 

chloramphinicol were powerful inhibitors of the process. The authors concluded that most of the 

antibiotics normally used in livestock farms will not drastically affect biogas production if used at 

recommended concentrations. A similar conclusion was also drawn by Massé et al. (2000) who 

studied the effect of antibiotics on psychrophillic anaerobic digestion of swine manure. 

 

3.3.2 Heavy metals. Heavy metals may be present in wastewater and accumulate in the sludge 

during treatment and finally end up in a biogas plant. Some heavy metals affect the microbial 

activity by being essential microelements necessary for microbial growth but in higher 

concentrations the same elements may be inhibitory to the microorganisms (for instance Nickel). 

The toxicity of heavy metals depends upon the concentration of the various chemical forms that 

they may take under anaerobic conditions at the present temperature and pH (Ahring and 

Westermann 1983). Codina et al. (1998) calculated the EC50 values (concentration exhibiting a 

50% reduction in microbial activity) of different heavy metals on methane formation from 

anaerobic domestic sludge at 30°C and found the relative toxicity to be Zn>Cr>Cu>Cd>Ni>Pb. 

The EC50 values of Zn, Cr, Cu, Cd and Ni were between 50–350 mg/l while the EC50 for Pb 

was higher than 1000 mg/l. Normally the concentration of dissolved heavy metals will be kept 

below toxicity level via precipitation. This together with the fact that biogas plants mainly are 

based on agricultural wastes makes process imbalances caused by heavy metals a minor problem 

(PlanEnergi Midtjylland, 2001).  

 

3.3.3 Long Chain Fatty Acids (LCFA). LCFA such as oleate and stearate may be present in high 

concentrations in for example vegetable oil and is also produced during degradation of lipids. It is 

well documented that these compounds may inhibit anaerobic microbial activity at even low 

concentration (Alves et al. 2001; Angelidaki and Ahring 1992; Cavaleiro et al. 2001; Hanaki et 

al. 1981; Hwu et al. 1996; Koster and Cramer 1987; Lalman and Bagley 2000; Lalman and 

Bagley 2001; Lalman and Bagley 2002; Rinzema et al. 1989; Rinzema et al. 1994; Shin et al. 
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2003). LCFA inhibits acetotrophic and hydrogenotrophic methanogens as well as syntrophic 

acetogens. Acetotrophic methanogens are found to be more severely affected than 

hydrogenotrophic methanogens (Hanaki et al. 1981, Lalman and Bagley 2000). The adsorption of 

LCFA to the surface of microbial cell membranes has been indicated as the reason for inhibition 

(Henderson 1973), which suggests that the inhibitory effect of LCFA is dependent on the 

LCFA:biomass ratio. Other reports indicate that the inhibitory effect of LCFA is concentration 

dependent (Angelidaki and Ahring 1992, Koster and Cramer 1987; Rinzema et. al 1994). For 

many years the mechanism of inhibition by LCFA has been ascribed to mechanisms of cell wall 

damage and bactericidal effects (Rinzema et al. 1994) but recent research suggest that the 

inhibition is due to transport limitation such as product diffusion limitation, e.g . biogas release 

(Pereira et al. 2003; Pereira et al. 2004).  

Controversy exists whether microorganisms involved in the anaerobic degradation 

process can adapt to LCFA. Based on results from batch experiments Rinzema et al. (1994) 

concluded that the acetotrophic methanogens from granular sludge are unable to adapt to capric 

acid, neither after repeated exposure to toxic concentrations, nor after prolonged exposure to non-

toxic concentrations. These results were in good agreement with those of Angelidaki and Ahring 

(1992), who found that no adaptation to oleate and stearate occurred, when biomass from a 

digester fed with cattle manure was exposed to non-inhibitory concentrations of the acids. 

However, continuous experiments with fixed-bed reactors have shown that pre-exposition of 

acetotrophic methanogens to lipids benefits the development of resistance to oleate (Alves et al. 

2001). Cavaleiro et al. (2001) found that a hydraulic shock (reduction of the hydraulic retention 

time) of oleate induced an increase in the resistance of acetotrophic methanogens to oleate; 

whereas an organic shock of oleate (increase in substrate concentration) resulted in a lower 

resistance towards oleate.  

Of the different LCFAs oleate is normally considered to be one of the more toxic. Several 

issues associated with inhibition of oleate, including VFA dynamics during inhibition (example 

given in figure 5) and adaptation, was investigated during this Ph.D. The results are presented in 

paper I of the thesis. 
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3.3.4 Ammonia (NH4

+
/NH3). Ammonia nitrogen exists in aqueous solution as either ammonium 

ion or ammonia, according to the following equilibrium reaction: 
 

 
 

The effect of ammonia nitrogen on the anaerobic digestion process has for many years been 

subject to intense studies. Ammonia is essential for bacterial growth but may – if present in high 

concentration –also inhibit the process. For unadapted methanogens ammonia inhibition has been 

observed to begin at 1.5–2.0 g-N/l (Van Velsen 1979; Hashimoto 1986) while for an adapted 

biogas process an ammonia tolerance of 3–4 g-N/l has been reported (Angelidaki and Ahring 

1993). An inhibition of the biogas process by ammonia does not necessarily stop the process but 

may lead to suboptimal performance of the reactor. In that context Hansen et al. (1998 and 1999) 

obtained a stable thermophilic degradation of swine manure at an ammonia concentration of 6 g-

N/l, characterized by a low methane yield and high concentrations of VFA. Manure normally has 

an ammonia concentration of 2–4 g-N/l but especially pig manure and chicken manure may 

contain ammonia in concentrations often higher than 4 g-N/l. Furthermore, manure contains 

compounds, e.g. protein and urea, that releases ammonia when degraded. In addition to this,  

NH4
+ NH3 + H+ 
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Figure 5 Effect of LCFA on the biogas process. A thermophilic (55°C) CSTR treating a 1:1 mixture of cattle 
and pig manure was added 2.0 g/l oleate at day 133. A severe inhibition of the process was observed 
immediately after oleate was added, illustrated by an instant drop in methane production and a significant 
increase in VFA concentration. a) �: methane production. b) �: acetate; �: propionate (Nielsen 2005, paper I 
of the thesis). 
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industrial co-substrates are often rich in proteins. From these facts it is evident that biogas plants 

treating manure in co-digestion with industrial waste often are operated close to the inhibitory 

level of ammonia. However, it should be kept in mind that a potential inhibition by ammonia 

should not be related directly to the total ammonia nitrogen concentration (NH4
+ + NH3) but to 

the concentration of free ammonia (NH3) which has been suggested to be the active component 

during inhibition (Hashimoto 1986; Koster and Lettinga 1984). The free ammonia concentration 

increases with temperature and pH and can be calculated by the following equation: 

 

where [NH3] is the free ammonia concentration, [T–NH3] is the total ammonia concentration and 

Ka is the dissociation constant. The temperature dependency is the reason why thermophilic 

reactors are more easily inhibited by ammonia and that reactors operated at high ammonia 

concentrations are more sensitive towards increases in temperature (figure 6) (Angelidaki and 

Ahring 1994). Angelidaki and Ahring (1994) reported that anaerobic digesters treating cattle 

manure was inhibited when the concentration of free ammonia exceeded 700 mg-N/l while 

Hansen et al. (1998) found, in a batch experiment, the inhibition level to be approximately 1100 

[NH3 ] = 1

[T–NH3]

[H+]
Ka

+
[NH3 ] =[NH3 ] = 1

[T–NH3]

[H+]
Ka

+

[T–NH3]

[H+]
Ka

+

  51/58°C 46/61°C 40/64°C55°C 51/58°C 46/61°C 40/64°C55°C51/58°C 46/61°C 40/64°C55°C 51/58°C 46/61°C 40/64°C55°C 51/58°C 46/61°C 40/64°C55°C 51/58°C 46/61°C 40/64°C55°C

(a) (b) 

Figure 6 Effect of temperature on the biogas yield during thermophilic digestion of cattle manure at different 
ammonia concentrations. CSTRs (55°C) were operated at an ammonia concentration of a) 2.5 g-N/l or b) 6.0 g-
N/l. After steady state was reached the temperature was either decreased (●) to 51, 46 and 40°C or increased (�) 
to 58, 61 and 64°C. As illustrated, the biogas yield was not influenced by temperature in the range from 40–55°C 
when the ammonia concentration was 2.5 g-N/l. In contrast, increasing temperature from 55–64°C resulted in a 
decrease in methane yield in both low and high ammonia reactors. However the process seemed to adapt to the 
higher temperature when the ammonia concentration was only 2.5 g-N/l. The reduction in temperature in the 
reactor operated at 6.0 g-N/l resulted in an increase in methane yield and a better process stability, indicated by a 
lowering in VFA concentrations (data not shown). From Angelidaki and Ahring (1994).  
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mg-N/l. A level of 80 mg-N/l was reported for initial inhibition of an unadapted process (Koster 

and Lettinga 1984; De Baere et al. 1984).  

During the present study the effect of protein and ammonia pulses to CSTRs treating 

cattle manure was investigated. Examples are given in figure 7 and are further discussed in paper 

II of the thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5 Sulphate and sulfide. In addition to ammonia swine manure contains a high concentration 

of sulphate resulting from a protein rich diet. Sulphate reducing bacteria can utilize sulphate as 

electron acceptor and thereby compete with acetogens and methanogens for important substrates. 

At the same time sulphate is reduced to sulphide (S2-, HS-, H2S) which can inhibit the biogas 

process at even low concentrations (≈ 23 mg/l, figure 8) (Hansen et al. 1999). The most toxic 

agent of sulphide is assumed to be H2S. At decreasing pH a higher percentage of the total 

sulphide will be in form of H2S and therefore more toxic. The toxicity of H2S itself increases with 
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Figure 7 Effect of protein (tryptone) and ammonia pulses on thermophilic digestion of cattle manure at 
different ammonia loads. Two CSTRs (53°C) were operated at an ammonia concentration of 3.0 g-N/l (R1) 
and 1.7 g-N/l (R2). a + b) 10 g/l tryptone was added at day 82. c + d) 3.0 g/l NH4Cl (0.79 g ammonia-N/l) was 
added at day 181, 183, 185 and 187. □: methane production R1;  ■: methane production R2; �: acetate 
concentration in R1; �: acetate concentration in R2; �: propionate concentration in R1; �: propionate 
concentration in R2. (Nielsen 2005, paper II of the thesis). 



 33 

increasing pH, but at pH >7.6 the H2S concentration is low due to the dissociation characteristics 

of sulphide and it seems likely that the levels of total sulphide is responsible for the inhibition 

during these conditions (O’Flaherty et al. 1998). 

 

3.3.6 VFA. Inhibition of the anaerobic digestion process by VFA is a complex issue. It is 

generally considered that high concentrations of VFA may inhibit the process. However, the 

inhibition is associated with the undissociated form of the VFAs, which are thought to freely 

permeate the cellular membrane of the microorganisms, and will be highest in systems with low 

pH (Switzenbaum et al. 1990; Mösche and Jördening 1999). Ahring et al. (1995) studied the 

effect of high concentration of individual VFA (acetate, propionate, butyrate and valerate) on 

methane production from manure at 55°C and found that the methane production rate increased 

for all VFA up to 50 mM (figure 9). A slight decrease was observed at propionate and valerate 

concentrations of 100 mM while an inhibition of acetate and butyrate not was observed until 

above 100 mM. A comparable experiment was performed by Mechichi and Sayadi (2005) with 

olive mill wastewater at 37°C. Here the maximum methane production rates were obtained at 

concentrations of 125 mM for acetate, 100 mM for propionate and butyrate and 50 mM for 

valerate. Above these concentrations the methane production decreased immediately. Both 

experiments concluded that concentrations of all VFA up to 50 mM mainly are a sign of process 

Figure 8 Methane production in thermophilic (55°C) batch vials containing pig manure as substrate and different 
concentrations (mg/l) of H2S (S), activated carbon (AC) and Fe2+. All vials had an ammonia concentration of 4.6 
g-N/l and pH of 7.7. Addition of sulphide to a total of 23 mg S2-/l or higher resulted in n inhibition. The methane 
production decreased from 165 ml/gVS in vials with 10 mg S2-/l to 100 and 62 ml/gVS in voals with 23 and 36 
mg S2-/l, respectively. The sulphide inhibition could be counteracted by adding activated carbon or Fe2+. From 
Hansen et al. (1999). 
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inhibition rather than a cause of inhibition. However, the experiments did not examine the co-

inhibitory effects of the various VFA. Taking this and the pH dependency into account no general 

assumptions on inhibitory levels of VFA is possible (Pind et al. 2003b).  

 Product inhibition by acetate has demonstrated by several authors (Ahring and 

Westermann 1988; Mösche and Jördening 1999; Pind et al 2003b). Ahring and Westermann 

(1988) found that butyrate degradation was inhibited at acetate concentrations of 25 mM, while 

Pind et al (2003b) observed a product inhibition of propionate and isovalerate degradation in a 

thermophilic CSTR following a shock load of approximately 35 mM acetate.  

 

 

Figure 9 Effect of single VFA concentrations on methane production rate from cattle manure (Ahring et al. 
1995) and olive mill wastewater (Mechichi and Sayadi 2005). a) Cattle manure at 55°C. b) Olive mill 
wastewater at 37°C. �: acetate; �: propionate; ■: butyrate; □: valerate. 
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4. Parameters for indication of process imbalances 
 

As described in chapter 2 the anaerobic degradation process consists of a series of metabolic 

reactions catalyzed by a well-organized community including several microbial populations. 

Normally during a process imbalance intermediates such as H2, VFA and alcohols will 

accumulate accompanied by fluctuations in the gas production. In theory this provides several 

parameters, which can be used as indicators of process instability. However, the complexity of 

the process has made it difficult to find a simple and suitable control parameter reflecting the 

metabolic state of the entire process. Furthermore, the hunt for reliable control parameters is 

often impeded by the complexity of the substrate that is fed the biogas plants. Examples of this is 

1) the high alkalinity which makes it possible to withstand high concentrations of VFA without 

significant drops in pH; 2) the inhomogeneous material which hinders online sampling and 3) the 

relatively low degradation rates which results in a slow response to changes in loading rate. 

These are just some obstacles that are associated with the selection of control parameters for 

biogas plants (Pind et al. 2003a). During the selection of process parameters it should also be 

considered which requirements are necessary for obtaining an adequate process control. An 

optimal process parameter would fulfil all of the following demands: 

 

- It should give a significant early warning of process imbalance but should not give an 

unnecessary warning. 

- It should give an indication of suboptimal reactor performances and not just a warning of 

a potential break down of the process. 

- It should give a good indication of when the process has stabilized following a process 

imbalance. 

- It should be simple to monitor on a real-time or online basis with a reliable, robust 

instrument that is easy to handle. 

 

The present chapter discusses the usefulness of different process parameters that has been 

suggested as the most obvious stress indicators in CSTRs. 

 

 

 

4.1 Biogas production rate and methane yield 
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4.1.1 Biogas production rate. At Danish full-scale biogas plants monitoring of the biogas 

production rate ((l biogas/(l reactor x day)) is normally the only continuously measured 

parameter. Unfortunately, this parameter cannot be used as a single parameter for direct 

indication of process imbalance since the methane production rate of an anaerobic digester not 

only reflects the state of the process but also reflects the actual loading of the reactor (Ahring et 

al. 1995). Thus, an organic overloading may first give rise to an increased biogas production 

followed by a drop when VFA or other inhibitory compounds have accumulated in the reactor. 

Indication of an organic overloading by the gas production rate will, therefore, often be too late. 

This problem is illustrated in paper III and IV of the thesis. Nevertheless, for biogas plants 

monitoring of biogas production is a vital indicator of process imbalance since the response to 

fast changes is instantaneous. However, an increase or decrease in methane production should 

always be evaluated in close relationship with other parameters, preferably VFA. Steyer et al. 

(1999) successfully used the biogas production rate for control purposes of fluidized bed reactors 

(figure 10). However, their control strategy was based on a more or less uniform substrate 

composition and included pH as a key parameter. Therefore, this strategy can hardly be 

transferred directly to biogas plants treating complex organic wastes, since the substrate 

composition is more inconsistent.  

 

4.1.2 Methane yield. Methane yield (ml/g volatile solids) is another parameter that has been 

tested as process indicator (Ahring et al 1995). It was found that the change in methane yield 

following various process imbalances was too small. In addition to this, the methane yield 

parameter requires a precise and time-consuming estimation of the organic content of the 

substrate. 
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4.2 Hydrogen 

The transfer of H2 plays an important role in the overall regulation of the anaerobic digestion 

process. This key position makes H2 an interesting control parameter. Due to its low solubility 

and ease of measurement, H2 concentration in the gas phase has been suggested as the most 

obvious control parameter by several investigators. Unfortunately, the results from experiments 

concerning H2 concentration in the gas phase have been incompatible. In some investigations a 

fast response of H2 to operational changes such as increasing loading rates has been observed, 

while other comparable investigations were unable to find any correlation between reactor 

performance and the H2 concentration (Archer et al. 1986; Hickey and Switzenbaum 1991; Kidby 

and Nedwell 1991). In a review by Switzenbaum et al. (1990) it was concluded that the 

complicated dynamics of H2 in anaerobic ecosystems and variability for given reactors and 

substrates limit the possibility of using H2 as a stand-alone factor. This complex behavior was 

  

Figure 10 Regulation of reactor operation by using gas production and pH as control parameters. By increasing 
the influent of a fluidized bed reactor treating wine distillery wastewater for a short period the extra biogas 
volume was compared with the expected biogas volume. From the results the authors concluded that three 
scenarios was possible: 1) If the measured extra gas volume was almost as the expected then the microbial 
population was able to manage an increase of the loading rate and the input flow rate was then increased by a 
certain amount. 2) If the measured extra gas volume was lower than the expected then the microbial population 
had reached its maximum treatment capacity and the input flow rate was kept constant at the value applied 
before the disturbance. 3) If the measured extra gas volume was much lower than the expected one then the 
reactor was overloaded and the input flow rate was decreased by a certain amount. When the process had 
reached a new stable state after the change in influent flow rate the methodology was applied again. pH was used 
as an alarm to stop the strategy if the value fell below a certain level. Experiments demonstrated a good 
capability of the control strategy. The figure illustrates the control strategy when the measured extra gas volume 
was almost as the expected (scenario 1). From Steyer et al. (1999). 
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exemplified by Guwy et al. (1997) in a series of experiments with a fluidized bed reactor treating 

bakers yeast wastewater (figure 11). In one experiment sharp peaks in the H2-partial pressure 

were observed following step-wise increases in the flow-rate while in another experiment two 

similar overloads gave a very different response in H2-partial pressure. Furthermore, a switch in 

batch feed from an old batch to a new batch resulted in a remarked increase in H2 partial pressure 

without any remarkable changes in other control parameters, i.e. gas production and VFA. 

The use of H2 partial pressure as a process parameter depends on a stable transfer of H2 

from liquid to gas phase. This is not always the case and it has been suggested that dissolved 

hydrogen in the liquid phase is more reliable for process monitoring. Frigon and Guiot (1995) 

found dissolved H2 to be a more attractive parameter than gaseous hydrogen due to a better 

correlation with propionate concentration. Although no control experiment was applied, Cord-

Ruwisch et al. (1997) found the use of a critical set-point level of the dissolved H2 concentration 

to be an effective tool for a stable operation of a lab-scale CSTR continuously loaded with 

glucose media. In comparison, a semi-continuous loaded industrial digester gave a much more 

complex and temporary behavior of the H2 concentration in the gas phase. In contrast to these 

results, Voolapalli and Stuckey (2001) observed that severe organic shock loads of a CSTR gave 

no significant accumulation of dissolved hydrogen. Instead VFAs accumulated in the reactor and 

the removal of these took at least 5 times longer than hydrogen. 

Figure 11 H2-concentration in the gas phase and biogas production in a high rate fluidized bed reactor (37oC) 
treating synthetic bakers yeast wastewater. During steady state the reactor was operated at a HRT of 8.7–10.2 h 
and a loading rate of 27–33 kg COD/(m3 x d). a) After a two week shut-down period the flow-rate of the influent 
was increased at points A: from 0 to 12.3 kg COD/(m3 x d); B: from 12.3 to 24.8 kg COD/(m3 x d); C: from 24.8 
to 30.8 kg COD/(m3 x d) and D: from 30.8 to 38.5 kg COD/(m3 x d). The figure shows that the H2-concentration 
gave a distinct peak following each increase in flow rate but no linear relationship between the H2-concentration 
and the flow-rate could be seen. The biogas production increased approximately proportional to each increase in 
flow-rate. b) Two organic overloads lasting for 4 h each were performed by first increasing the flow rate from 
27.1 to 57.6 kg COD/(m3 x d) and secondly from 27.1 to 64.5 kg COD/(m3 x d). At time 29 h a fresh feed was 
used. The first overload resulted in an increase in H2-concentration from 200 to 300 ppm while the change of 
feedstock resulted in a more pronounced increase from 200 to 800 ppm. Following the second overload the H2-
concentration increased from 800 to 1450 ppm. From Guwy et al. (1997). 

  (a) (b) 
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The inconsistent results involving H2 measurement excludes H2 as a sole parameter for 

indication of process instability in biogas plants since these often are subject to frequent changes 

in organic loading rate and substrate composition. The turn-over rate of hydrogen in anaerobic 

digesters is on the other hand very low and variations in H2 concentration are fast and may occur 

in response to some disturbances. This justifies the use of H2 as a control parameter although it 

should always be during simultaneous measurement of other process indicators. 

 

4.3 Carbon monoxide 

CO is a trace gas that evolves during methanonogenesis of acetate and monitoring of CO may 

give insight into the aceticlastic reaction. Hickey et al. (1991) found a fast response of CO to 

organic overloads of mesophilic (35oC) reactors treating waste-activated sludge and observed a 

strong correlation between acetate concentration in the liquid phase and CO concentration in the 

gas phase. Due to the low solubility, CO in the gas phase is easy to measure. However, to my 

knowledge CO monitoring for process control has not yet been reported. 

 

4.4 VFA 

During process imbalance a build up of catabolic intermediates such as VFA and alcohols is 

normally observed. The rate of accumulation depends on a wide range of factors such as 

operation temperature, hydraulic retention time (HRT), loading rate, substrate and the type of 

process disturbance. It is well recognized that VFA concentration is one of the most important 

parameter for accurate process control (Ahring and Angelidaki 1997; Ahring et al. 1995; Hill and 

Holmberg 1988; Hill et al. 1987). Traditionally, measurement of VFA concentration in CSTRs 

treating livestock waste has been based on manual sampling, due to the inhomogeneous nature of 

the substrate. However, lately improved technology has made online measurement of VFA in 

CSTRs treating complex organic wastes possible. Hansson et al. (2002, 2003) tested the utility of 

online near-infrared (NIR) spectroscopy for measurement of VFA dynamics in a lab-scale 

mesophilic CSTR treating the organic fraction of municipal solid waste. Regression analysis 

showed a good correlation for propionate in the range of 4–40 mM but acetate failed to give any 

correlation. The response to increases in the loading rate was reproducible and could be detected 

within 5 minutes indicating the possibility of developing an early warning biogas system based 

on NIR monitoring of propionate. Another VFA online system was developed by Pind et al. 

(2002). This method is based on an in-situ filtration technique that makes it possible to perform 

microfiltration inside the reactor system (Pind et al. 2002). The system which was tested in lab-
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scale reactors and at a full-scale biogas plant could perform automatic VFA analysis on manure at 

a frequency of 15 minutes in a measuring range from 0.1 to 50 mM. The system was also used 

during the present study (paper I and II) and is illustrated in figure 12. As described, the prepared 

sample was analyzed on a GC, which provides full information on all individual VFAs. 

Unfortunately, GC´s are expensive and often only available for research institutions. 

Alternatively, analytical methods based on titration principles can be used. These methods 

provide a cheap alternative to GC´s and several online titration techniques for determination of 

VFA concentration in wastewaters have been published (Bouvier et al. 1999; Feitkenhauer et al. 

2002; Lahav et al. 2002). However, all these methods can only be used for total VFA analysis.  

The two most abundant VFAs during digestion of animal manure are acetate and 

propionate. According to literature, an unbalanced digestion often results in a relatively high 

concentration of propionate and variations in the propionate:acetate ratio has been suggested as a 

reliable indicator of process imbalance (Hill et al. 1987; Marchaim and Krause 1993). Hill et al. 

(1987) examined the literature and proposed that a propionate:acetate ratio higher than 1.4 

indicated impending process failure. Later, other results have clearly contradicted this statement 

and found that the acetate:propionate ratio is useless for detection of process imbalance (Hill and 

Bolte 1989; Ahring et al. 1995; Pullammanappallil et al. 2001). Instead Ahring et al. (1995) 

suggested that a combined parameter reflecting the concentrations of both butyrate and 

isobutyrate could be a reliable tool for indication of process instability. Various associations 

between individual VFA concentrations and process imbalance have also been suggested. Hill et 

al. (1987) concluded that an acetate concentration higher than 13 mM would indicate process 

imbalance and Hill and Holmberg (1988) concluded that concentrations of isobutyrate and 

isovalerate higher than 0.06 mM (as acetate) was an indication of process instability and could 

provide as much as a week´s notice of failure. However, reports shows that stable reactor 

performance can occur at VFA concentrations well above these limits (Angelidaki and Ahring 

1994; Ahring et al. 2001; Nielsen et al. 2004) and no general assumptions of the dependency 

between VFA concentration levels and process instability can be made.  

From literature it appears that propionate oxidizers often are the slowest growing (Öztürk 

1991) and energetically most sensitive (Stams 1994; Schink 1997) microorganisms in the overall 

anaerobic degradation process. Accumulation of propionate is often observed following changes 

such as pulses, overloading, and feed composition due to short-term increases in H2 levels 

(Ahring et al. 1995; Pind et al. 2003b). At the same time propionate is often one of the last VFAs 

to decrease following a process imbalance (paper I, II, IV of this thesis). Therefore, for an 
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optimal performance of CSTRs treating complex organic wastes special attention should be given 

to fluctuations in propionate concentration. A successful lab-scale experiment using propionate as 

a sole control parameter was carried out during the present study. The result of this experiment is 

presented in paper IV of the thesis. 

 

4.5 pH and alkalinity 

pH measurement is easy but application of pH as control parameter in CSTRs treating livestock 

waste is not recommendable. The high alkalinity and strong buffer system of manure makes it 

possible for the system to resist even high increases in VFA without any pronounced drops in pH. 

A drop in pH will, therefore, often be too late for an early indication of a process imbalance. 

Since pH not necessarily reflects the metabolic activity in the reactor, due to the strong buffer 

systems, alkalinity measurement is a way to estimate the buffer capacity in the liquid. Especially 

the bicarbonate buffer system is interesting and bicarbonate alkalinity has received the most 

attention (Pind et al. 2003a). Furthermore, the ratio between VFA and alkalinity has been 

suggested as a control parameter (Switzenbaum et al. 1990).  

 

4.6 Organic matter reduction 

The main purpose of anaerobic digestion is the reduction of organic matter. The difference in 

organic matter content in the influent and effluent of a digester, therefore, reflects the efficiency 

of the process. For a high-rate reactor receiving a uniform substrate this method can be useful 

during steady state. However, due to long HRTs and relative low degradation rates in CSTRs the 

detection time of an acute process imbalance is too slow and the method is only useful for 

monitoring gradual changes in reactor performance. Furthermore, large fluctuations in volume 

and organic matter content of the influent of full-scale biogas plants impede the utility and reduce 

the reliability of this method. 
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Figure 12 a) Lab-scale CSTR set-up connected to an online VFA sensor (Pind et al. 2002). 1: feedstock storage; 
2: feeding pump; 3: 4.5 litre CSTR with a working volume of 3.0 liters. The reactor was stirred for one minute 
every third minute at 100 rpm and a stable operational temperature was obtained by circulating heated water 
from a water bath through the reactor jacket (not shown); 4: effluent storage; 5: gas meter; 6: rotating 
prefiltration unit placed inside the reactor and connected to an online VFA sensor; 7: stirrer for prefiltration; 8: 
sample outlet via peristaltic pumping; 9: VFA-sensor; 10: excess sample return to reactor. b) Principle 
description of the VFA sensor (9). The prefiltration unit (6) removed particles of 0.1 mm and the liquid sample 
was driven out of the reactor by a peristaltic pump (8). A recirculation pump then pumped the sample through an 
ultrafilter producing a clear permeate. Preparation of the sample was done by mixing equal amount of permeate 
and 1% H3PO4

- by a peristaltic pump. The prepared sample was then transferred by an autoinjector to a GC for 
analysis. The excess permeate from the ultrafiltration was returned to the reactor (10) ensuring a high 
recirculation of sample material. The entire procedure (sampling and GC-analysis) took approximately 15 
minutes. c) VFA dynamics in a thermophilic (55°C) lab-scale CSTR treating cattle manure following pulses of 
acetate (Pind et al. 2003b). VFA monitoring was performed using the online sensor and revealed a complex and 
fast response of the anaerobic process. 
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4.7 Microbial and molecular methods 

Classical microbiological and modern molecular-based methods are powerful tools for studying 

the microbial composition and activity in complex environments. However, all these methods are 

time-consuming and for that reason not applicable for early indication of changes in process 

stability in anaerobic reactors. So far these methods are mostly used for obtaining a better process 

understanding. The methods are numerous and in reference to some of the published reviews and 

articles concerning these techniques, the following sections provide a brief overview of some of 

the most important ones (Ahring and Angelidaki 1997; Amann et al. 1998; Muyzer 1999; Oude 

Elferink 1998; Switzenbaum et al. 1990; Sørensen and Ahring 1993; Sørensen and Ahring 1997; 

Wilderer et al. 2002). 

 

4.7.1 Microbial methods. Traditional quantification and activity measurement of microorganisms 

are mainly based on selective growth media. Two of the most commonly used methods for 

estimating the number of viable microorganisms in a sample is the most probable number (MPN) 

method and the spread plate method. During estimation of MPN a dilution series of specific 

sample are inoculated in a selective liquid media and the identification of viable cells is then 

related to development of gasses, depletion of the substrate or increase in turbidity. The method 

is often used and can give useful information on the number of microorganisms that are able to 

grow in an artificial media. However, the method is far from perfect and will underestimate the 

number of organisms that 1) are attached to solid substrates, 2) are associated to each other like 

threaded microorganism (for example acetoclastic Methanosaeta) or 3) grow in syntrophic 

consortia. In the spread plate method the sample is spread on a solid media and the quantification 

of viable cells is based on the number of colony forming units (CFU). As with the MPN this 

method is based on the microbes’ ability to grow on an artificial media and will also lead to an 

underestimation of the number of cells.   

 For estimation of microbial activity specific methanogenic activity (SMA) tests are 

widely used. In these tests the activity of various physiological groups involved in the terminal 

anaerobic process during degradation of specific substrates in an artificial media is determined by 

following the rate of accumulation of methane. The test is excellent for measuring the 

degradation rate of substrates which are directly converted to methane, for instance H2/CO2 and 

acetate, but gives only an indirect indication of the conversion rate of more complex compounds 

such as propionate and butyrate. The measurement of the conversion of these compounds should 

be based on the depletion of the compound itself and not on the methane production. 
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Furthermore, for high background levels of substrates in a reactor the SMA method was found to 

be useless. The SMA test can, therefore, only be used for monitoring the state of the 

methanogenesis during steady state or during initial process imbalances. 

Traditional microscopic analyses can be used for characterization and direct identification 

of micoorganisms, but this technique is limited by the fact that cell morphology of most 

microorganisms is very similar. However, many methanogens can be identified by 

epifluorescence microscopy by detection of coenzyme factor F-420. Attempts have been made to 

relate the methanogenic activity in an ecosystem and the F-420 content of the ecosystem biomass. 

Results show that the methanogenic activity cannot be clearly related to F-420.  

 

4.7.2 Molecular methods. Since approximately 99% of all microorganisms in nature cannot be 

cultivated and isolated in pure cultures alternative methods are necessary. Over the last decades 

many molecular techniques have been developed which now allow a much better direct 

identification of microorganisms in bioreactors. These techniques include the use of biomarkers 

such as membrane lipids (PLFA, PLEL), immunological tests such as the enzyme-linked 

immunosorbent assay (ELISA) (identification of methanogens), and, most important, nucleic acid 

based methods.  

A flow diagram showing the different steps in the analysis of microbial diversity and activity 

from nucleic acid based methods is given in figure 13. Following DNA extraction and 

amplification (PCR) and cloning of 16s rDNA genes (or 23s rDNA), DNA fragments can be 

sequenced to reveal the identity of the corresponding microorganism by comparative analysis 

with 16s rRNA sequences kept in public databases. This technique is a powerful tool to explore 

microbial diversity in anaerobic reactors but is very time-consuming and not suitable for studying 

population changes over time. Instead, from the knowledge of 16S rDNA sequences gene probes 

can be designed. The probes are short single stranded DNA sequences that are complementary for 

the rRNA of specific bacteria and will hybridize to them. For identification of the 

microorganisms the probes are either radioactively labelled by 32P or chemically linked to 

fluorescent dyes. Both types of probes have successfully been used for identification and 

quantification of methanogens in anaerobic bioreactors. In comparison to 32P labelled probes 

which are used for ex situ hybridisation (dot blot) of extracted nucleic acids, an advantage of 

fluorescently labelled probes is that they can be used for in situ hybridization to whole cells, a 

method known as FISH. The probe-targeted cells can be visualised either by traditional 

epifluorescence microscopy or confocal laser scanning microscopy (CLSM). In contrast to 
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epifluorescence microscopy, CLSM allows depth-resolved scanning making it possible to study 

the spacial organization of the microorganisms. For that reason this method has become an 

important tool for analysis and quantification of microorganisms living in flocs and biofilms. 

Besides being quantitative FISH will also, in general, confirm cellular activity since rRNA is 

degraded in inactive or dead cells. 

Another important molecular method for determination of cellular activity is 

microautoradiography (MAR). This method is based on in situ uptake of specific radioactively 

labeled (14C, 32P, 3H) compounds by the microbes, which then is detected by a photographic 

emulsion and CLSM. Combining MAR and FISH gives the opportunity of identifying specific 

microorganisms present in a sample and at the same time give a clear confirmation of their 

activity. This combination is one of the best methods today for providing information about the 

ecophysiology of single bacteria in complex microbial communities. 
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Figure 13 Flow chart for full cycle rRNAanalysis. FISH shown in boldface is recommended for routine analysis 
by testing laboratories and plant operators. The other steps in the cycle are necessary to obtain a complete picture 
of the microbial populations in a reactor. They can be performed by testing laboratories to obtain supplementary 
information regarding the diversity of bacteria present (using fingerprinting methods) and to construct nucleic 
acid probes (cloning of rRNAsequences, construction of a gene library and design of new gene probes) for more 
specific FISH analysis as needed. From Wilderer et al. (2002). 
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Genetic fingerprinting techniques can be used to obtain a profile of the microbial diversity 

in complex microbial systems. These techniques can be used to compare the microbial 

community in different samples or to follow the population dynamics of one community over 

time. Classical examples of fingerprinting techniques are denaturing gradient gel electrophoresis 

(DGGE) and temperature gradient gel electrophoresis (TGGE), which has been routinely used for 

some years. These methods are based on the melting behavior of the 16S rRNA gene on a 

polyacrylamide gel containing a gradient of DNA denaturants or a temperature gradient. Due to 

melting the mobility of the DNA fragments in the gel is significantly reduced. The melting 

behavior is dependent on the G+C content and the nucleotide sequence of the DNA. As a 

consequence of this, different DNA fragments will stop migrating at different positions in the gel 

resulting in a unique pattern in which each band corresponds to a single species (figure 14). A 

band of interest can subsequently be eluted from the gel and sequenced to identify the 

corresponding microbial species. From the sequence information an oligonucleotide probe for 

FISH can be designed and the actual abundance of a gel band that appears to be dominant after 

DGGE/TGGE analysis can be verified in situ. 

Terminal Restriction Fragment Length Polymorphism (TRFLP) is another fingerprinting 

technique. By this technique DNA is amplified with a primer set where one primer is 

fluorescently end labelled. The product is subsequently cut by restriction enzymes into smaller 

fragments. Since the restriction site of each species is different this procedure provides fragments 

diverging in size. The fluorescence pattern of the fragments is subsequently digitally analysed 

providing information of the size of the different fragments (= different species) and the 

fluorescence intensity of the individual fragments (= abundance of species). 
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Figure 14 TTGE profiles showing the diversity of (a) bacteria and (b) archaea in samples from a thermophilic 
(68oC) CSTR treating cattle manure. The reactor was inoculated with biomass from a reactor operated with cattle 
manure at 65oC and fed with cattle manure in gradually increasing volumes, corresponding 4 days HRT from 
day 10 to 45, 3 days HRT from day 46 to 172. Two different batches of cattle manure were used as feedstock. 
Batch 1 was used from day 1 to 113, and batch 2 from day 113 to 172. Arrows indicate changes in banding 
pattern (species composition). Lane 1: day 42 and 4-days HRT; lane 2: day 63 and 3-day HRT; lane 3: day 104 
and 3-day HRT; lane 4: day 154, 41 days after change of feedstock. From Nielsen et al. (2004). 
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Abstract 

 

The effect of oleate on the anaerobic digestion process was investigated. Two thermophilic 

continuously stirred tank reactors (CSTR) were fed with mixtures of cattle and pig manure with 

different total solid (TS) and volatile solid (VS) content. The reactors  were subject to increasing 

pulses of oleate. Following pulses of 0.5 and 1.0 g oleate/l, the most distinct increase in volatile 

fatty acid (VFA) concentrations were observed in the reactor with the lowest TS/VS content. This 

suggests a higher adsorption of oleate on the surfaces of biofibers in the reactor with the highest 

TS/VS and a less pronounced inhibition of the anaerobic digestion process. On the other hand, 

addition of 2.0 g oleate/l severely inhibited the process in both reactors, and a significant increase 

in all VFA concentrations combined with an immediate drop in methane production was noticed. 

However, 20 days after the reactors had been exposed to oleate both reactors showed a lower 

VFA concentration along with a higher methane production than before the pulses. This indicates 

that oleate had a stimulating effect on the overall process. The improved acetogenic and 

methanogenic activity in the reactors was confirmed in batch activity tests. In addition to this, 

toxicity tests revealed that the oleate pulses induced an increase in the tolerance level of 

acetotrophic methanogens towards oleate. When evaluating the usability of different process 

parameters (i.e. VFA and methane production) as indicators of process recovery, following the 

inhibition by oleate, propionate was found to be most suitable. 

Key words Biogas process, VFA dynamics, process imbalance, long chain fatty acids. 

 

Introduction 

 

Anaerobic digestion is a technology widely used for treatment of organic waste. In Denmark, 

several joint large-scale biogas plants combine the treatment of manure together with organic 

waste from slaughterhouses and food processing industries. Some of these codigestion mixtures 

contain a high concentration of easily degradable lipids, which have a large biogas potential. 

During the digestion process, lipids are initially hydrolysed to long chain fatty acids (LCFA) (e.g. 

oleate, stearate) and glycerol by hydrolytic/fermentative bacteria. Glycerol is subsequently 

fermented to various types of alcohols, VFA and formate (Jarvis et al. 1997; Biebl 2001) and 

LCFA are converted to acetate and H2 through β-oxidation by syntrophic acetogenic bacteria 

(Weng and Jeris 1976). Finally, acetate and H2 are converted to CH4, CO2 and H2O by 

methanogens (Schink 1988). During the anaerobic degradation of lipids, the oxidation of LCFA 
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is known to be the rate limiting step (Rinzema et al. 1994) and it is well documented that LCFA 

inhibit the anaerobic microbial activity at even low concentrations (Alves et al. 2001; Angelidaki 

and Ahring 1992; Cavaleiro et al. 2001; Hanaki et al. 1981; Hwu et al. 1996; Koster and Cramer 

1987; Lalman and Bagley 2000; Lalman and Bagley 2001; Lalman and Bagley 2002; Rinzema et 

al. 1989; Rinzema et al. 1994; Shin et al. 2003). In fact, LCFA inhibits both acetotrophic and 

hydrogenotrophic methanogens as well as syntrophic acetogens. Acetotrophic methanogens are 

found to be more severely affected than hydrogenotrophic methanogens (Hanaki et al. 1981; 

Lalman and Bagley 2000). The adsorption of LCFA to the surface of microbial cell membranes 

has been indicated as the reason for inhibition (Henderson 1973), which suggests that the 

inhibitory effect of LCFA is dependent on the LCFA:biomass ratio. Other reports indicate that 

the inhibitory effect of LCFA is concentration dependent (Angelidaki and Ahring 1992, Koster 

and Cramer 1987; Rinzema et. al 1994). For many years, the mechanism of inhibition by LCFA 

has been ascribed to mechanisms of cell wall damage and bactericidal effects (Rinzema et al. 

1994) but recent research suggest that the inhibition is due to transport limitation such as product 

diffusion limitation, e.g. biogas release (Pereira et al. 2003; Pereira et al. 2004a). Due to 

inhibition of acetogenic bacteria and methanogens, process inhibition in anaerobic digesters 

caused by LCFA will lead to both a decrease in methane production and an increase in VFA 

concentration (Cavaleiro et al. 2001). 

Controversy exists whether microorganisms involved in the anaerobic degradation process can 

adapt to LCFA. Based on results from batch experiments, Rinzema et al. (1994) concluded that 

the acetotrophic methanogens from granular sludge are unable to adapt to capric acid, neither 

after repeated exposure to toxic concentrations, nor after prolonged exposure to non-toxic 

concentrations. These results were in good agreement with those of Angelidaki and Ahring 

(1992), who found in batch that no adaptation to oleate and stearate occurred, when biomass from 

a digester fed with cattle manure was exposed to non-inhibitory concentrations of the acids. 

However, continuous experiments with fixed-bed reactors have showed that pre-exposure of 

acetotrophic methanogens to lipids benefits the development of resistance to oleate (Alves et al. 

2001). Cavaleiro et al. (2001) found that a hydraulic shock (reduction of HRT) of oleate induced 

an increase in the resistance of acetotrophic methanogens towards oleate; whereas an organic 

shock of oleate (increase in substrate concentration) resulted in a lower resistance towards oleate.  

In the present paper, we describe the effect of various pulses of oleate on the biogas process in 

thermophilic CSTR´s. The objectives of the study was: 



 60 

1) to evaluate the effect of increasing concentrations of particulate organic matter, in the 

form of biofibers, on the process stability; and 

2) to examine the tolerance of acetotrophic methanogens to oleate, before and after 

pulses of oleate. 

3) to give a precise description of the complex VFA dynamics and fluctuations in 

methane production following pulses of oleate. 

 

Materials and methods 

 

Substrates 

Two different mixtures of substrates were used. Feedstock 1 consisted of a 1:1 mixture of cattle 

and swine manure that was blended and diluted with tap water to a TS concentration of 5.5–5.6% 

(w/vol) and a VS concentration of 4.3–4.4%. Feedstock 2 was prepared the same way as 

feedstock 1 with the exception that biofibers (particular lignocellulosic material in the form of 

digested straw) were added obtaining a final concentration of 7.2–7.5% TS and 5.3–5.6% VS.  

 

Reactor set-up 

Two 4.5 litre CSTRs with a working volume of 3.0 litre (Angelidaki and Ahring 1993) were 

inoculated with effluent from a stable lab-scale reactor at 55°C operating on cattle manure. One 

reactor, R1, was fed with feedstock 1 and the other reactor, R2, was fed with feedstock 2 

resulting in organic loading rates of 2.5–2.6 and 3.1–3.3 gVS/(l reactor vol. x d), respectively. 

Due to technical problems (stirrer capacity) R2 was fed with feedstock 1 from day 150 to 160. 

Both reactors were stirred by a propeller every third minute for one minute at 100 rpm and 

operated at 55°C with a hydraulic retention time (HRT) of 17 days. Prior to initiation of 

experiments, the reactors were operated for a period of 50 days at stable reactor performance. 

Pulses of sodium oleate were added R1 on day 104 (0.5 g/l), 111 (1.0 g/l), 133 (2.0 g/l) and 161 

(2.0 g/l), while sodium oleate were added R2 on day 104 (0.5 g/l), 112 (1.0 g/l) and 132 (2.0 g/l). 

A recently developed online VFA sensor (Pind et al. 2002) was connected to the reactor on day 

132 to obtain detailed information about the fluctuations of the VFA levels in R1, caused by the 

most intense pulses.    

 

Specific Methanogenic Activity (SMA) 
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The SMA of the reactor biomass in R1 was tested on day 100 and 160 by the method of Sørensen 

and Ahring (1993). 50-ml serum bottles were added 15 ml of anaerobic basal medium 

(Mladenovska and Ahring 2000), which had been adjusted to a pH of 7.9 and flushed with 100% 

N2. The basal medium was supplemented with substrates in the following final concentrations: 

200 mM sodium formate or 50 mM sodium acetate. Substrate was omitted from control series. 

Media with or without substrates were autoclaved at 141°C for 40 min and 0.5 g/l Na2S and 10 

ml/l vitamin solution were added (DSMZ medium no. 141, DSMZ 1989). H2/CO2 was added to 

the autoclaved medium (without other substrate) by pressurizing the vials with H2/CO2 

(80%/20%) to 101kPa overpressure. Finally, all bottles were inoculated with 5 ml of reactor 

content, flushed with N2, closed with butyl rubber stoppers and aluminium crimps, and incubated 

in a shaking water bath at 55°C. After inoculation, the dilution rate of the biomass was 5:16.4. 

Methane production was measured every second hour for the first 12 hours and 3 times per day 

for 5 days. All experiments were conducted in triplicates. 

 

Kinetics of VFA-degradation 

Kinetics of VFA-degradation in reactor R1 were determined on day 100 and 160. Media was 

prepared as in the SMA experiments and substrate was added in concentrations of 50 mM sodium 

acetate, or 29 mM sodium propionate or 20 mM sodium butyrate. All bottles were inoculated 

with 5 ml reactor content and incubated in a shaking water bath at 55°C. Progress curves of 

acetate, propionate and butyrate degradation was made by withdrawing 0.3 ml of media/biomass 

mixture every 8–12 hours for 4–7 day and kinetics were determined by applying an integrated 

solution to the Michaelis-Menten equation (Ahring and Westermann 1987): 

 

Where S0 is the initial substrate concentration, St is the substrate concentration at time t and Km is 

the half-saturation constant. Vmax is the maximum substrate utilization in the vials and was 

calculated from the steepest linear decline in substrate concentration. The biomass was 

considered to be constant during the entire experiment since the theoretical increase in VS was 

too low compared to the initial VS concentration in the vials. Therefore, the maximum specific 
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substrate utilization (Amax) of the reactor biomass was derived directly from Vmax. All experiments 

were conducted in triplicates.  

 

Toxicity tests 

The effect of sodium oleate on methane production from acetate was tested in batch experiments 

before and after R1 was spiked with oleate on day 100 and 160, respectively. 50-ml serum bottles 

containing 15 ml anaerobic basal medium were inoculated with 5 ml reactor content and added 

sodium acetate to a final concentration of 50 mM. The bottles were flushed with N2/CO2 

(80%/20%), closed with butyl rubber stoppers and aluminium crimps and incubated in a shaking 

water bath at 55°C. When the methane production from acetate was increasing exponentially, 

sodium oleate in concentrations of 0.2 g/l, 0.4 g/l, 0.6 g/l, 0.8 g/l and 1.0 g/l were added. All 

experiments were conducted in triplicates. 

 

Batch experiments 

The effect of sodium oleate (0.2−1.0 g/l) on VFA-dynamics in manure diverging in TS/VS-

contents was tested in batch experiments. 25 ml of manure from feedstock 1 and feedstock 2 were 

distributed in 116 ml serum bottles and inoculated with 15 ml of reactor content from R1 and R2, 

respectively. The bottles were flushed with N2/CO2 (80%/20%), closed with butyl rubber 

stoppers and aluminium crimps and incubated at 55°C. Sodium oleate was added on day 8 when 

the methane production was increasing exponentially. 1 ml samples for determination of the VFA 

concentrations were withdrawn each bottle on day 0, 8 (before addition of oleate) and 21. All 

experiments were conducted in triplicates. 

 

Analytical methods 

TS, VS, pH and ammonia content were determined using standard methods (Greenberg et al., 

1998). CH4 production from the SMA tests and batch experiments was measured by gas 

chromatography using flame ionization detection. CH4 and CO2 production from the reactors 

were determined by gas chromatography using thermal conductivity detection. For manual VFA 

determination 2 x 1 ml of the reactor content was acidified with 30 µl 17% phosphoric acid, 

centrifuged at 10500 rpm for 20 min, and analyzed on a GC equipped with flame ionisation 

detector. Samples for ammonia determination was frozen at -20°C and measured at the end of the 

experiment. 



 63 

 

Results 

 

Reactor experiments 

From day 50–100 a stable process (i.e. stable methane production and stable VFA levels) was 

observed in both reactors. The TS and VS content of the reactor biomass were 2.9/2.1% (w/vol) 

and 5.4/4.1% (w/vol) in R1 and R2, respectively. pH was stable and between 7.9–7.93 for both 

reactors. The total nitrogen content (Kjeldahl-N) of the feedstock was in average 3.7 g-N/l while 

the ammonia-N was in average 2.5 g/l. The performance of R1 from day 100–190 and R2 from 

day 100–160 are illustrated in figure 1. Before and after addition of oleate a stable performance 

was obtained in both reactors but during the experiment an increase in the methane production 

occurred. R1 produced between 253 and 268 ml CH4/gVS before oleate addition and between 

314 and 329 ml CH4/gVS after oleate addition (day 177–189) while R2 produced between 230 

and 254 ml CH4/gVS before oleate addition and between 292 and 319 ml CH4/gVS after oleate 

addition (day 154–160). Both reactors were also subject to a lowering of all VFA levels at the 

end of the experiment.  

Addition of oleate in concentrations of 0.5 and 1.0 g/l affected the process stability in both 

reactors illustrated by increasing VFA concentrations. The increase in all individual VFAs, 

except acetate, was more distinct in R1 than R2 (table 1). At the same time both pulses had a 

positive effect on the methane production in R2 while the pulse of 1.0 g oleate/l had a negative 

effect on the methane production in R1.  

A pulse of 2.0 g oleate/l resulted in a pronounced increase in all VFA concentrations and an 

instant drop in the methane production in both reactors. As during the pulses of 0.5 and 1.0 g 

oleate/l the increase in isobutyrate, isovalerate and valerate were higher in R1 than in R2 and the 

methane production in R2 (2.4 times drop) was not as clearly affected as the methane production 

in R1 (4 times drop). However, in contrast to the pulses of 0.5 and 1.0 g oleate/l the reactors 

showed approximately the same increase in acetate and propionate concentration while the 

increase in butyrate concentration was highest in R2. The decrease in methane production after 

the first pulse of 2.0 g oleate/l was followed by a simultaneous drop in pH with a minimum of 

7.54 in R1 (day 141) and 7.81 in R2 (day 135). 

The response to a second pulse of 2.0 g oleate/l in R1 was similar but more moderate for all 

parameters compared to the first pulse of 2.0 g oleate/l. All VFAs and methane production values 
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showed a faster return to a stable level after the second pulse of 2.0 g oleate/l (table 2) and all 

VFA peaks were lower following the second pulse (table 1). 

 

SMA and VFA-kinetics 

Table 3 shows the results of the SMA tests and kinetics of VFA degradation obtained on day 100 

and 160. The consumption profile of acetate is shown in the figure 2. An increased methanogenic 

activity from H2/CO2, formate and acetate was observed on day 160. The initial degradation rate 

of acetate, propionate and butyrate increased as well but the estimated Amax of acetate and 

propionate was lowest at day 160. Amax of butyrate remained constant. The half-saturation 

constant, Km, of all VFA showed no significant changes, from day 100 to 160, although a small 

decrease was observed for acetate. 

   

Toxicity tests 

The tolerance of the acetotrophic methanogens to oleate increased during the experiment (figure 

3). On day 100 the methane production from acetate was inhibited at oleate concentrations 

between 0.2 and 0.4 g/l while the inhibitory level of oleate on day 160 was between 0.6 and 0.8 

g/l. 

 

Batch experiments  

The TS/VS content of the manure/inoculum mixtures used in the batch experiments was 

4.6/3.60% (w/vol) and 6.7/5.2% (w/vol), respectively. When adding oleate to the different 

substrates a pattern similar to the one in the reactor experiments was observed (figure 4). In the 

beginning of the experiment equal VFA concentrations were found in the different substrate 

mixtures but on day 21, after various amounts of oleate had been added on day 8, higher 

concentrations of all measured VFAs were found in the substrate with the lowest TS/VS content. 

One exception was propionate, which was found in the same concentrations when 1.0 g oleate/l 

had been added. 

 

Discussion 

 

Overall reactor performance before and after oleate addition 

The organic loading was during the entire experiment 25–27% higher in R2 than in R1. This 

resulted in an increase in the methane production rate (l/(l reactor volume x day)) in R2 compared 
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to R1 of approximately 13% before the oleate addition and 14% after the oleate addition (data not 

shown). However, as illustrated in fig 1.a and 1.b the methane yield (ml CH4/gVS) was highest in 

R1 corresponding to approximately 5–10% before the oleate addition and 6–7% higher after the 

oleate addition. These dissimilarities between organic loading, total methane production and 

relative methane production were probably due to the complex structure of the biofibers that were 

added to the feedstock of R2. Biofibers consist of lignocellulosic material that is only slowly 

degraded under anaerobic conditions (Colberg 1988) and are to some extent undegradable. 

Therefore, a relatively higher percentage of the biogas potential of feedstock 2 compared to 

feedstock 1 was unexploited resulting in a higher methane yield in R1. 

 

Effect of oleate pulses on the overall biogas process  

Addition of oleate to the reactors resulted in temporary inhibitions of the anaerobic digestion 

process but, interestingly, oleate had a stimulating effect on the overall process in both reactors. 

This was demonstrated by the higher methane yields and lower VFA concentrations at the end of 

the experiment. Furthermore, the SMA-tests and substrate-depletion tests of R1 revealed a higher 

initial degradation of all substrates from day 100 to day 160. These results indicate that the oleate 

pulses influenced the microbial biomass in the reactors. Mass balance analysis shows that the 

lowering in VFA concentration at the end of the experiment could only count for approximately 

30% of the increase in methane production. This suggests that the oleate pulses not only affected 

VFA degradation but also induced an increase in the hydrolysis.  

The addition of 2.0 g oleate/l resulted in an instant drop in methane production and a steep 

increase in all measured VFAs for both reactors. Oleate is known to inhibit acetotrophic and 

hydrogenotrophic methanogens as well as syntrophic acetogens (Hanaki et al. 1981), which is the 

most reasonable explanation for these observations. Rinzema et al. (1994) concluded that 

syntrophic acetogens and hydrogenotrophic methanogens recover before acetotrophic 

methanogens when exposed to oleate, and according to this the recovery time1 of acetate should 

be longer than the other measured VFAs. However, in the present experiment acetate together 

with butyrate was the first VFA that recovered to a stable level after the pulses of 2.0 g oleate/l. 

With acetate being a degradation product of other VFAs it is possible that the high concentrations 

of acetate in the period following the oleate addition could have caused a product inhibition 

resulting in a further increase in concentration and recovery time of other VFAs. Acetate is 

                                                
1 The recovery time of the different VFAs is defined as the period of time from when a VFA started to increase, 
following an oleate pulse, and until the VFA had declined and re-established at a stable level. 
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known to inhibit butyrate degradation at a concentration of 25 mM (Ahring and Westermann 

1988) and product inhibition of isovalerate and propionate degradation by acetate has been 

demonstrated as well (Mösche and Jördening 1999; Pind et al. 2003). On the other hand 

propionate began to decrease 1–3 days after acetate had decreased and reached a stable level, 

which indicates that the syntrophic acetogens degrading propionate was more affected by the 

oleate pulses than the acetotrophic methanogens. 

  

Effect of TS/VS content  

The variations of the VFA concentrations in the two reactors after addition of 0.5 and 1.0 g 

oleate/l indicate that the process stability was more affected in R1 than in R2 (fig 1). These 

observations were confirmed in the batch experiments where the highest concentrations of 

acetate, propionate, isobutyrate and butyrate after oleate addition were found in the substrate with 

the lowest TS/VS content (fig 4). LCFA disappear from the aqueous phase and accumulate in the 

solid phase within the first 24 hours of incubation (Hanaki et al. 1981), and the ability of LCFA 

to adsorb on surfaces of active and inactive granular sludge has been reported (Hwu et al. 1998). 

Therefore, a higher adsorption of oleate or intermediates of its degradation, for example palmiate 

(Pereira et al. 2002; Pereira et al. 2004b), on the surfaces of the biofibers in R2 with a subsequent 

lower adsorption of LCFA onto the surfaces of the microbial cells, could have minimized the 

inhibition of the microbes in R2 compared to R1. This could be the explanation for the observed 

pattern after the first two pulses of oleate. The severe process failure in both reactors after the 

pulse of 2.0 g oleate/l shows that the adsorption capacity of the biofibers in R2 was too small to 

prevent an inhibitory oleate concentration in the reactor. 

 

Adaptation of microorganisms to oleate  

The toxicity test on day 100 with inoculum from R1, showed that the methane production from 

acetate was inhibited at oleate concentrations between 0.2 and 0.4 g/l. In a similar experiment 

Angelidaki and Ahring (1992) found the inhibitory level of oleate to be between 0.1 and 0.2 g/l. 

After depletion of the biomass/substrate mixtures and a new addition of oleate and acetate, the 

authors found the inhibitory level of oleate to be the same. In the present experiment, the 

inhibitory level of oleate to acetate degradation increased from day 100 to day 160 to a 

concentration of 0.6–0.8 g/l (fig 3). This reflects an adaptation of the acetotrophic methanogens 

to oleate during the experiment. Following the inhibition period, the higher methane production 

in vials with oleate than in the control vials showed that oleate was consumed. In the reactor 
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experiments, an adaptation of the methanogenic communities to oleate was indicated by the faster 

recovery time of methane production, following the second pulse of 2.0 g oleate/l to R1.  

The inhibition level of oleate towards the acetotrophic methanogens in the reactors was higher 

than in the toxicity test. An explanation for these differences might be that in a continuously fed 

reactor, the inhibition level is only observed when the reduction of growth rate of the 

microorganisms approaches the dilution rate of the reactor (Angelidaki and Ahring 1993). In the 

toxicity test (batch conditions), oleate was added when the methane production from acetate was 

increasing exponentially and a decrease in microbial activity would be directly reflected in the 

methane production. Furthermore, the dilution of biomass in the toxicity test increased the 

oleate:biomass ratio and lowered the relative adsorption capacity of oleate on biofibers, which 

could have resulted in an increased inhibition in the toxicity test. 

Adaptations of acetogenic bacteria to oleate was not tested in batch experiments but in the 

reactors the maximum degradation rate of all VFAs, with the exception of propionate, were 

higher after the second pulse of 2.0 g oleate/l than after the first pulse of 2.0 g oleate/l (table 2). 

At the same time the peaks in all VFA concentrations were lower and the recovery time of all 

VFA levels faster after the second pulse of 2.0 g oleate/l. This indicates an increase in the 

tolerance towards oleate for most of the acetogenic microorganisms in the reactor. The observed 

pattern may also have been a consequence of an increase in the population of acetogenic bacteria 

effective in degrading oleate, reducing the concentration of oleate and moderating the exposure 

time of the acetogens to inhibitory levels of oleate. Finally, another explanation could be that the 

microbes had adapted to resist sudden increases in VFA concentrations. An explanation that was 

supported by the SMA tests and VFA kinetics, where the initial degradation of all substrate 

increased significantly from day 100 to day 160 (table 3).  

According to table 2, the maximum degradation rate of propionate in R1 was lowered following 

the second pulse of 2.0 g oleate/l when compared to the first pulse. This was supported by the 

kinetic calculations where Amax of the propionate degradation decreased from day 100 to day 160. 

The increased initial degradation of propionate in the batch experiments and the faster recovery 

of propionate after the second pulse of 2.0 g oleate/l contradict these results. However, the kinetic 

calculations were based on batch experiments where no oleate was present and do not reflect the 

conditions in the reactor following the oleate pulses. Therefore, it is plausible to suggest that the 

syntrophs degrading propionate did not adapt to oleate. The faster recovery time of propionate 

following the second pulse of 2.0 g oleate/l was probably a result of the faster recovery of acetate, 

resulting in a shorter product inhibition period of the propionate degradation.  
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Evaluation of process stability  

Control of the anaerobic biogas process and suitable indicators of process imbalance have 

received much focus the last decades. Changes in the VFA levels in anaerobic digesters treating 

cattle manure was demonstrated to be a good parameter for prediction of process instability such 

as hydraulic overloading, organic overloading and temperature increases while an evaluation of 

the biogas process based only on methane production was found to be doubtful (Ahring et al. 

1995). In the present study, process imbalance following addition of 0.5 and 1.0 g oleate/l to R1 

was only indicated by the increasing VFA concentrations. R1 showed no changes in the methane 

production after the addition of 0.5 g oleate/l and only a brief decrease after the addition of 1.0 g 

oleate/l was observed. Process inhibition following the pulses of 2.0 g oleate/l was in both 

reactors clearly indicated by a step increase in the various VFA concentrations and an instant 

drop in the methane production. For operational purposes, this could justify the use of VFA 

concentrations as well as methane production for indication of process inhibition. However, when 

using methane production as a process parameter, it should be kept in mind that lipid-containing 

organic wastes are added biogas plants with the purpose of improving the methane production. A 

higher methane production as a consequence of lipid addition may, therefore, be misleading when 

evaluating process stability. This problem was also illustrated in the present experiment were the 

addition of 0.5 and 1.0 g oleate/l to R2 resulted in an increase in the methane production while 

the increases in the VFA levels, especially propionate, indicated a slight inhibition of the biogas 

process.  
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Ahring et al. (1995) evaluated the responses of specific VFAs to changes in the biogas process 

and the changes of isobutyrate and isovalerate were found to be the fastest and most pronounced. 

In the present experiment all VFAs, with the exception of valerate, showed a fast increase 

following the pulses of oleate and no conclusions could be drawn whether, which specific VFA 

gave the best indication of the beginning of the process imbalances. However, following all 

pulses of oleate, propionate showed the longest recovery time and gave the best indication of 

when the process had stabilized after the various imbalances. In fact, propionate did not decrease 

before 2 days after acetate had dropped and stabilized.  

The fluctuation pattern of total VFA followed the pattern of acetate and the significant changes in 

propionate concentration were not reflected through that parameter. This stresses out that total 

VFA concentration is unusable for indication of process stabilization after process imbalances 

caused by oleate inhibition.  
 

Conclusions 

 

The addition of oleate to CSTRs treating mixtures of cattle and pig manure resulted in temporary 

inhibitions of the anaerobic digestion process. However, the increased methane yield and the 

lowered VFA concentrations after the process had recovered showed that oleate had a stimulating 

effect on the overall process. Following pulses of 0.5 and 1.0 g oleate/l only slight inhibitions 

were observed but the fluctuations in the VFA concentrations indicated that the process was more 

affected in R1 than in R2. Higher adsorption of oleate, or intermediates of its degradation, on the 

biofibers in R2 possibly minimized the adsorption of LCFA onto the surfaces of the microbial 

cells in the reactor. Addition of 2.0 g oleate/l led to an inhibition of the acetotrophic and 

hydrogenotrophic methanogens as well as the syntrophic acetogens illustrated by an instant drop 

in methane production and a steep increase in all measured VFA. Following the inhibitions, 

propionate showed the longest recovery time and gave the best indication of process stabilization. 

Toxicity tests before and after the pulses of oleate revealed that acetotrophic methanogens do 

adapt to oleate.  
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Figure 1. Reactor experiments. Methane yield and VFA concentrations in R1 and R2 during increasing pulses of 
oleate.   a + b) � : methane yield; c + d) � : total VFA; e + f) � : acetate, �: propionate; g + h) �: isobutyrate, �: 
butyrate, i + j) �: isovalerate, � : valerate. 
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in a final concentration of 50 mM. �: day 100; � : day 160. 
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Figure 3. Toxicity tests. Methane production from acetate under batch conditions. Biomass from R1 was diluted 
(5:16.4) in BA media and added acetate in a final concentration of 50 mM at a) day 100 and b) day 160. Oleate 
was added in various amounts at time marked with an arrow; �: 0.0 g/l; ■: 0.2 g/l; �: 0.4 g/l; �: 0.6 g/l; �: 
0.8 g/l; �: 1.0 g/l. All experiments were conducted in triplicates. 
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Figure 4. Batch experiments. The effect of various concentrations of sodium oleate (0.2–1.0 g/l) on VFA-
dynamics in manure diverg ing in TS/VS-contents. Oleate was added on day 8 of the experiment. Black 
columns: start concentration in manure/ inoculum mixture; grey columns: concentration on day 8 before 
addition of oleate; white columns concentration on day 21. Results are given as means of triplicates with 
standard deviations. 
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Table 1. Approximate increases in VFA levels in R1 and R2 caused by various pulses of oleate. ND: not 
determined. 

 Acetate 
increase 

(mM) 

Propionate 
increase (mM) 

Isobutyrate 
increase (mM) 

Butyrate 
increase (mM) 

Isovalerate 
increase (mM) 

Valerate 
increase 

(mM) 

Oleate pulse R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

0.5 g/l 5.3 9.7 6.5 3.3 0.38 0.30 0.71 0.21 0.45 0.17 ND ND 
1.0 g/l 14.0 17.2 ND 3.0 1.36 0.75 1.46 0.88 0.75 0.44 0.17 0.12 
2.0 g/l no. 1 56.4 58.5 17.0 15.2 3.75 3.10 3.56 3.86 3.30 2.29 0.80 0.59 
2.0 g/l no. 2 55.1  13.1  2.72  2.60    2.17  0.53  

Table 2 Maximum VFA degradation rates in reactor R1 and recovery time of the different VFAs after pulses 
of 2.0 g/l oleate. The recovery time of the different VFAs represents the period of time from when a VFA 
started to increase, following an oleate pulse, and until the VFA had declined and re-established at a stable 
level. 

 Pulse 1  Pulse 2 

 VFA-degradation 
(mmol/h) 

Recovery time 
(days) 

 VFA-degradation 
(mmol/h) 

Recovery time 
(days) 

Acetate  0,597 ≈ 13,50  0,705 ≈ 10,00  
Propionate  0,178 ≈ 22,00  0,103 ≈ 18,00 
Isobutyrate  0,062 ≈ 15,00  0,047 ≈   9,25 
Butyrate  0,040 ≈ 15,00  0,034 ≈   9,25 
Isovalerate  0,092 ≈ 17,25  0,045 ≈ 12,50 
Valerate  0,017 ≈ 15,75  0,008 ≈   9,25 
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Table 3. The specific methanogenic activity (SMA) and VFA-degradation activity of biomass from R1. Initial 
activity: activity within the first 12-14 hours; maximum activity: activity during exponential growth. Results 
are given as means of triplicates with standard deviations 

 SMA  VFA-degradation 

 Initial 

µmol/(gVS x h) 

Maximum 

µmol/(gVS x h) 
 Initial 

µmol/(gVS x h) 
Amax 

µmol/(gVS x h) 

Km 

mM 

Before oleate addition (day 100)      
Control 15.7 ± 1.13 15.7 ± 1.13     
H2/CO2 56.8 ± 3.25 56.8 ± 3.25     
Formate 88.1 ± 2.12 88.1 ± 2.12     
Acetate 50.8 ± 1.95 101.1 ± 11.58  16.6 ± 2.46 106.6 ± 5.56 13.81 ± 2.569 
Propionate    No degradation 29.6 ± 1.04   1.16 ± 0.677 
Butyrate    28.6 ± 1.01 38.5 ± 2.65   0.67 ± 0.306 

After oleate addition (day 160)      
Control 18.3 ± 2.60 18.3 ± 2.60     
H2/CO2 68.6 ± 5.68 68.6 ± 5.68     
Formate 145.1 ± 12.61 145.1 ± 12.61     
Acetate 68.8 ± 3.03 108.1 ± 18.94  46.2 ± 3.18 87.1 ± 1.42 8.13 ± 4.219 
Propionate    13.7 ± 3.90 25.1 ± 2.77 1.96 ± 0.877 
Butyrate    39.5 ± 1.16 39.5 ± 1.16 1.11 ± 0.120 
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Abstract  

Two thermophilic continuously stirred tank reactors (CSTR), R1 and R2, were subject to pulses 
of tryptone and ammonia. R1 was operated at an ammonia concentration of 3.0 g-N/l, 
corresponding to the average ammonia concentration in Danish centralized biogas plants. R2 was 
operated at an ammonia concentration of 1.7 g-N/l. Shock loads of tryptone (10 g/l, 10 g/l, 15 g/l) 
had an immediate stimulating effect on methanogenesis for both reactors illustrated by significant 
peaks in methane production but also lead to a hydraulic overloading illustrated by a steep 
increase in volatile fatty acids (VFA) concentration. Three days after the pulses a second peak in 
acetate concentration and a decrease in methane production indicated an ammonia-inhibition of 
the acetoclastic methanogens. During the pulses of tryptone the performance of R1 was slightly 
more affected than R2. Pulses of ammonia (0.79 g-N/l) resulted in a decrease in methane 
production of both reactors but no immediate increases in VFA concentrations was observed 
illustrating that the ammonia inhibition during this experiment was an overall inhibition of the 
biogas process and not only an inhibition of the methanogens. 
Key words Biogas process, VFA dynamics, ammonia inhibition, protein degradation, process 
imbalance. 
 

Introduction 

Anaerobic digestion is widely used for treatment of organic waste with a simultaneous 

production of energy (biogas). In Denmark 22 large-scale centralized biogas plants are in 

operation treating more than 1.2 mill tons of manure. Due to a high water content combined with 

a large fraction of lignocellulosic material – recalcitrant to degradation – the methane production 

of manure is relatively low (10–20 m3 CH4/tons manure) (Angelidaki and Ellegaard 2003). 

Biogas plants are, therefore, difficult to run with an economically profitable result if the process 

is solely based on manure (Hjort-Gregersen, 1999). To increase the methane production several 

plants combine the treatment of manure together with organic wastes rich in protein and fat (e.g. 

slaughterhouses and food processing industries). Complete mineralization of proteins to methane 



 80 

and carbon dioxide under anaerobic conditions is a multi-step process consisting of four major 

steps (Ramsay and Pullammanappallil 2001):  1) hydrolysis of the protein by extracellular 

enzymes into large organic molecules in the form of polypeptides and amino acids 2) 

fermentation of amino acids into organic acids, ammonia, carbon dioxide, and small amounts of 

hydrogen and sulphur-containing compounds 3) degradation of organic acids (acetogenesis) into 

acetate, hydrogen and carbon dioxide and finally 4) formation of methane (methanogenesis) from 

acetate or hydrogen and carbon dioxide.  Ammonia, which is produced during the degradation of 

proteins, is essential for bacterial growth but may – if present in high concentration –also inhibit 

the anaerobic digestion process. For unadapted methanogens ammonia inhibition has been 

observed to begin at 1.5–2.0 g-N/l (van Velsen 1979; Hashimoto 1986) while for an adapted 

biogas process an ammonia tolerance of 3–4 g-N/l was reported (Angelidaki and Ahring 1993). 

An inhibition of the biogas process by ammonia does not necessarily stop the process but may 

just leave to suboptimal performance of the reactor. Thus, obtained Hansen et al. (1998 and 1999) 

a stable thermophilic degradation of swine manure at an ammonia concentration of 6 g-N/l with a 

low methane yield and high concentrations of VFA. The inhibition of the biogas process is 

caused by free ammonia (NH3) (Hashimoto 1986) which concentration besides the total ammonia 

concentration (NH4
+ and NH3) also depends on temperature and pH. Thus, will an increase in 

temperature or pH lead to an increase in the free ammonia concentration. Angelidaki and Ahring 

(1994) reported that anaerobic digestors treating cattle manure was inhibited when the 

concentration of free ammonia exceeded 700 mg-N/l while a level of 80 mg-N/l was reported for 

initial inhibition of an unadapted process (Koster and Lettinga 1984; De Baere et al. 1984).  

 

The main feedstock of Danish centralised biogas plants is livestock waste, which normally has an 

ammonia concentration of 2–4 g-N/l. In the present study we visited a number of thermophilic 

Danish centralized biogas plants and found the ammonia concentration in the reactors to be in the 

same range (table 1). Although dependent on the exact temperature and pH, it is evident that the 

plants are operated closely to the inhibitory level of ammonia. As mentioned earlier is the 

treatment of manure often combined with the treatment of organic wastes containing high 

amounts of proteins, which easily releases further amounts of ammonia when degraded. A 

sudden addition of large amounts of waste rich in proteins may, therefore, cause a temporary 

increase in ammonia concentration, which could leave to an inhibition of the process. In that 

context we investigated the effect of sudden additions of protein and ammonia on methane 
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production and VFA dynamics in two CSTRs operated at different ammonia levels. 

 

Materials and methods 

Substrates 

Cattle manure was obtained from the full-scale biogas plant in Lintrup, Denmark. The manure 

was mixed with water to a total solid (TS) content of 5.9% and a volatile solid content of 4.5%. 

The total nitrogen content (Kjeldahl-N) of the diluted manure was 2.2–2.4 g-N/l while the 

ammonia-N content was 1.3–1.4 g-N/l. The diluted manure was blended 1–2 min and kept at 2°C 

until used. Tryptone, an enzymatic hydrolysate of casein, rich in peptones and amino acids was 

used as protein source. The tryptone contained 13% total-N and 4.9% amino-N. The VS content 

was 96%. The manufacturer gave no information about the sulphur content in the product. 

 

Characterisation of full-scale biogas plants 

Before setting up lab-experiments random samples were taken from 7 thermophilic Danish 

centralised biogas plants and analysed with regard to total-N content, ammonia-N content, 

temperature and hydraulic retention time (HRT). The results are given in table 1. 

 

Reactor experiments 

Two continuously stirred tank reactors (CSTR), R1 and R2, with a working volume of 3.0 l were 

inoculated with digested cattle manure from a 55°C steady-state lab-scale reactor. The reactors 

were operated at the same average conditions as the examined full-scale biogas plants, i.e. 53°C 

and a HRT of 16 days (table 1). A propeller stirred the reactors for one minute every third minute 

at 100 rpm. Circulating the heated water from a water bath through the reactor jackets ensured 

stable operational temperature. Both reactors were fed with cattle manure at an organic loading 

rate of 2.8 g VS/(l reactor vol. x d). As mentioned, was the natural ammonia concentration of the 

cattle manure between 1.3 and 1.4 g-N/l. After the reactors had been in operation for a period of 

32 days (two HRT) stable operation indicated that steady state was obtained. Subsequently, to 

obtain the same ammonia concentration in R1 as in the average biogas plant the ammonia 

concentration in the reactor was gradually raised by adding NH4Cl to the feedstock. The 

feedstock of R2 was not added NH4Cl. At day 67 the ammonia concentration was 3.0 g-N/l and 

1.7 g-N/l in R1 and R2, respectively, and the reactors were subsequently operated at these 

conditions for one HRT. Pulses of 10 g/l tryptone were added the reactors at day 82 and 89 while 

a pulse of 15 g/l tryptone were added at day 103. At day 181, 183, 185 and 187 pulses of 3.0 g 
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NH4Cl/l (0.79 g ammonia-N/l) were added the reactors and the concentration of the feedstock 

was raised with the same amount. VFA concentrations, CH4 production, ammonia concentration 

and pH were monitored during the entire experiment. During pulses of tryptone and ammonia the 

VFA dynamics in R1 were closely monitored by online VFA measurement (Pind et al. 2002). 

 

Batch experiments 

Specific Methanogenic Activity (SMA). SMA of the reactor biomass was measured at day 80 

according to the method of Sørensen and Ahring (1993). 50-ml serum bottles were added 15 ml 

of anaerobic basal medium (Mladenovska and Ahring 2000), which had been flushed with 100% 

N2 and pH had been set to 7.7. Substrates were added in the following final concentrations: 200 

mM sodium formate or 50 mM sodium acetate. Substrate was omitted from control series. Media 

with or without substrates were autoclaved at 141°C for 40 min and 0.5 g/l Na2S and 10 ml/l 

vitamin solution were added (DSMZ medium no. 141, DSMZ 1989). H2/CO2 was added to the 

autoclaved medium (without other substrate) by pressurizing the vials with H2/CO2 (80%/20%) to 

101kPa overpressure. Finally, all bottles were inoculated with 5 ml of reactor content and 

incubated in a shaking water bath at 53°C. After inoculation the dilution rate of the biomass was 

5:16.4. Methane production was measured every second hour for 14 hours. All experiments were 

conducted in triplicates. 

Effect of ammonia on methanogenesis. The effect of elevated ammonia concentrations on the 

methane production was tested in batch experiments at day 75. Effluents from the reactors were 

distributed in 116 ml vials in amounts of 50 ml and added extra ammonia in concentrations of: 

R1) 0.5, 1.0, 1.5 and 2.0 g-N/l; R2) 0.5, 1.0, 1.5, 2.0 and 3.0 g-N/l. No ammonia was added 

control vials. The vials were flushed with N2/CO2 (80/20%), closed with butyl rubber stoppers 

and aluminium crimps and incubated at 53°C for 72 hours. The methane production was 

measured frequently and the relative inhibition of the methane production in the test vials 

compared to the control vials was calculated.  

Effect of ammonia on tryptone deamination. The effect of ammonia concentration on the 

deamination capacity of the reactors was tested in batch experiments at day 81. According to the 

method of Gallert et al. (1997) effluents from the reactors were colleted over a period of 1 week 

from day 74 to day 81. At day 81 the effluents were added 10 g/l tryptone and distributed in 

portions of 100 ml in 500 ml vials. Subsequently, ammonia in the form of NH4Cl was added in 

concentrations of 0.5–3.0 g-N/l and the vials were flushed with N2/CO2 (80/20%) and closed with 

butyl rubber stoppers and aluminium crimps. Control vials were not added ammonia. All vials 
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were incubated at 53°C and samples of 3 ml were taken at the beginning of the experiment and 

after 17 h, 44 h and 120 h. The ammonia concentration of the samples was determined and the 

deamination capacity was calculated indirectly by subtracting the initial ammonia content of 

samples from the final ammonia content after incubation. All experiments were conducted in 

duplicates. 

  

Analytical methods 

TS, VS, pH and ammonia content were determined using standard methods (Greenberg et al. 

1998). CH4 production from the batch experiments was measured by gas chromatography using 

flame ionization detection. CH4 and CO2 production from the reactors was determined by gas 

chromatography using thermal conductivity detection. For determination of pH, ammonia content 

and VFA (when not measured by online sensor) samples of approximately 15-20 ml of digested 

manure were withdrawn the reactors. pH was determined immediately. For VFA determination 2 

x 1 ml of the reactor content was acidified with 30 µl 17% phosphoric acid, centrifuged at 10500 

rpm for 20 min, and analyzed on a gas chromatograph equipped with flame ionisation detector. 

Samples for ammonia determination was frozen at -20°C and measured at the end of the 

experiment. 

 

Results and Discussion 

Batch experiments 

SMA. Although the overall methane production rate in R1 and R2 was in the same range (figure 

3) when the SMA experiments were carried out the results of the experiments revealed a higher 

SMA from hydrogen and acetate in R2 compared to R1, while the activity from formate was 

highest in R1 (table 2). The reason for these dissimilarities is unknown. However, in 

continuously fed digestors an inhibition of the process is only detected when the reduction of the 

growth rates of the active biomass approaches the dilution rate of the digestor, while in batch 

experiments the reduction in growth rate of a specific trophic level will be directly reflected by 

the outcome of the experiment. When comparing the SMA of R1 to R2 the decrease in the 

activity of the hydrogenotrophic methanogens (34%) was higher than the decrease in activity of 

the acetotrophic methanogens (18%). This result is in agreement with Wiegant and Zeeman 

(1986) who suggested that hydrogen-consuming methanogens is more vulnerable towards 

ammonia than acetate consuming methanogens under thermophilic conditions but contradicts the 

results of Angelidaki and Ahring (1993) who found the opposite.   
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Effect of ammonia on methanogenesis. When increasing the ammonia concentration in the 

effluents of R1 and R2 an inhibition of the methane production was observed in both reactors 

(figure 1, a,b). The inhibition was most pronounced for R1 showing that the higher ammonia 

concentration in R1 compared to R2 led to an increased sensitivity of the biogas process to 

sudden increases in ammonia concentration. (figure 1, a). However, when relating the magnitude 

of inhibition to the absolute ammonia concentration in the vials, the process in the effluent from 

R2 was most affected (figure 1, b). This illustrates an adaptation of the biogas process in R1 to 

the elevated ammonia concentration in the reactor.  

Effect of ammonia on tryptone deamination. The effect of elevated ammonia concentrations on 

tryptone deamination in R1 and R2 is illustrated in figure 2. Apparently the deamination process 

was most effective in R1 despite the higher ammonia concentration of the reactor. During the 

first 17 hours the deamination rate of R1 was between 0.72 g-N/(l x d) for vials added 2.0 g-N/l 

and 1.20 g-N/(l x d) for the control vials, while the rate for R2 was between –0.31 g-N/(l x d) for 

vials added 3.0 g-N/l and 0.42 g-N/(l x d) for vial added 0.5 g-N/l. Gallert et al. (1997) observed 

deamination rates of 0.55 g/(l x d) for a mesophilic (37°C) reactor and 0.32 g/(l x d) for a 

thermophilic (55°C) reactor treating source-sorted biowaste. The ammonia content of the 

thermophilic reactor in that experiment was 0.43 g-N/l.  

The total-N content of the tryptone used in the present experiment was 13%, which could result 

in a maximum ammonia release of 0.13 g-N/g tryptone. The total amount of ammonia released in 

the control vials after 7 days of incubation was 0.123 g-N/g tryptone for R1 and 0.122 g-N/g 

tryptone for R2. This shows an almost complete tryptone deamination for both reactors.  

 

Reactor experiments  

Day 0–80, gradual increase of ammonia concentration. The gradual increase of ammonia 

concentration in R1, from day 32 to 67, had no impact on the overall reactor performance when 

compared to R2 (figure 3). This is in agreement with Angelidaki and Ahring (1993) who reported 

that during a gradual increase in ammonia concentration in a thermophilic (55°C) CSTR treating 

cattle manure, a concentration of 3 g-N/l did not affect the process. pH was slightly higher in R2 

than R1, despite the higher ammonia concentration in R1. This resulted in a relatively smaller 

difference in the concentration of free ammonia between the reactors. From day 70–80 the free 

ammonia concentration was between 0.38–0.40 g-N/l in R1 and 0.26–0.35 g-N/l in R2.  

Day 80–130. Effect of tryptone pulses on the biogas process.  

The addition of easily degradable tryptone had a stimulating effect on methanogenesis in both 
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reactors illustrated by the significant peaks in methane production but also lead to a hydraulic 

overloading illustrated by the increasing VFA concentrations immediately after tryptone was 

added. (figure 4). Ramsay and Pullammanappallil (2001) investigated the catabolic reaction of 

casein degradation in an anaerobic mesophilic CSTRs and found that VFA was formed in the 

following relative amounts: acetate 53–59%; propionate 3–8%; isobutyrate 6–7%; butyrate 14–

16%; isovalerate 12–15% and valerate 5–8%. In the present experiment the ratio of the VFA 

increase following pulse no. 1 and 2 was for both reactors in the same range with the exception of 

propionate and valerate (acetate 53–59%; propionate 11–18%; isobutyrate 8–9%, butyrate 4–

14%, isovalerate 12–13% and valerate 0.1–0.7%). The lower increase in valerate and higher 

increase in propionate could be explained by 1) a fast conversion of valerate to propionate 

combined with 2) an inhibition of the propionate oxidizing syntrophic bacteria from an elevated 

H2 partial pressure resulting from the increased fermentation. Pind et al (2003) observed a 

complete removal of valerate within 36 hours with a simultaneous increase in propionate 

concentration when increasing the valerate concentration from 0.05 mM to 25 mM in a 

thermophilic CSTR treating cattle manure. 

Approximately three days after tryptone was added a second peak in acetate concentration was 

observed, with the exception of the first pulse in R2. In addition to this R1 exhibited a decrease in 

methane production three days after pulse no. 2 and 3 and R2 exhibited a decrease in methane 

production three days after pulse no. 3. These patterns indicate an imbalance between the acetate-

producing and acetate-consuming microorganisms, which might be due to a periodical ammonia 

inhibition of the aceticlastic methanogens. Following each pulse of tryptone the ammonia 

concentration in the reactors increased with the following peaks: R1) 3.64 g-N/l at day 84, 4.42 

g-N/l at day 91 and 5.06 g-N/l at day 105; R2) 2.48 g-N/l at day 84, 3.16 g-N/l at day 93 and 3.90 

g-N/l at day 107. These peaks in ammonia concentration and the subsequent periodical decrease 

in methane production is in agreement with Angelidaki et al. (1993) who found the thermophilic 

(55°C) digestion of cattle manure to be inhibited at an ammonia concentration of approximately 4 

g-N/l. The free ammonia concentration in reactors increased as well exhibiting the following 

peaks:  R1) 0.84 g-N/l at day 84, 1.12 g-N/l at day 91 and 0.89 g-N/l at day 105; R2) 0.67 g-N/l 

at day 84, 0.811 g-N/l at day 93 and 0.78 g-N/l at day 107. For both reactors the highest 

concentration of free ammonia was observed following the second pulse of tryptone although the 

highest concentration of total ammonia was observed following the third pulse. The reason for 

this observation is that no increase in pH was observed following the third pulse possibly due to 

the high VFA concentrations in the reactors. No clear pattern could be observed between the free 
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ammonia concentrations and the methane production in the reactors. The free ammonia 

concentration was highest following the second pulse of tryptone but the inhibition of the 

methanogenesis was highest following the third pulse. An explanation for this observation could 

be that other compounds released through tryptone degradation could have inhibited the biogas 

process. Casein contains besides a high concentration of nitrogen some sulphate, present in 

cysteine and methionine (Ramsay and Pullammanappallil 2001), which act as electron acceptor 

of sulphate reducing bacteria. Sulphate reduction is more energetically favourable than 

methanogenesis (Zinder 1993) and high concentrations of sulphate might have resulted in a 

competition between sulphate reducing bacteria and methanogens, which could have contributed 

to the observed decrease in methane production following the third pulse of tryptone. Further 

more is sulphate metabolised to sulphide (S2-, HS-, H2S) that might inhibit the biogas process at 

concentrations around 23–50 mg S2-/l (Hansen et al. 1999; Karhadkar et al. 1987).  

Following all pulses of tryptone the increases in the VFA levels were more distinct in R1 than R2 

(table 3) with the exception of propionate following pulse no. 2 and butyrate and valerate 

following pulse no. 3. At the same time was the methane yield between 15–30 % higher in R2 

than in R1 following the first two pulses. An explanation of these differences could be that 

although the overall biogas process of R1 was adapted to an ammonia tolerance of 3.0 g-N/l were 

the methanogens under a “higher daily stress” and, therefore, had less capacity to withstand a 

sudden pulse of tryptone. This explanation was supported by the paradox observed in the batch 

experiments where 1) the inhibition of methane production by ammonia was more pronounced in 

the effluent from R1 than in R2 and 2) the production rate of ammonia from tryptone was higher 

in R1 than in R2.  

Day 180–195. Effect of ammonia pulses on the biogas process. Before addition of ammonia 

(figure 5) a stable reactor performances was re-established for both reactors although the 

ammonia concentrations had increased from day 80 to 180. Thus, were the total ammonia/free 

ammonia concentrations at day 180 3.4/0.37 g-N/l and 1.9/0.26 g-N/l in R1 and R2, respectively. 

The methane yield in R2 was 4-6% higher than in R1, although the total ammonia concentration 

and free ammonia concentration in R1 didn’t exceed the inhibitory levels of 4.0 and /0.7 g-N/l, 

respectively. (Angelidaki et al 1993 and Angelidaki et al 1994). Following each pulse of 

ammonia the free ammonia concentration in both reactors was below the inhibitory level of 0.7 g-

N/l suggested by Angelidaki and Ahring (1994): R1) 0.462 g-N/l at day 183, 0.606 g-N/l at day 

187 and 0.519 g-N/l at day 194; R2) 0.362 g-N/l at day 183, 0.500 g-N/l at day 187 and 0.450 g-

N/l at day 194. Despite that, the reactors showed a decrease in methane yield from day 180 to day 
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195 corresponding to 38% and 30% for R1 and R2, respectively. The general response of the 

biogas process to the pulses of ammonia was, however, more moderate than to the pulses of 

tryptone. The decrease in the methane yields was observed immediately after pulse no. 1 but no 

remarkable increases in the VFA concentrations was observed before pulse no. 3–4. These 

lacking/moderate increases in VFA illustrates that the ammonia inhibition was an overall 

inhibition of the biogas process and not only an inhibition of the methanogens. At the same time 

revealed the precise online measurement in R1 that the degradation of propionate was the most 

sensitive step in the conversion of VFA to methane since propionate was the first VFA to 

increase following the ammonia pulses. 

  

Conclusions 

Addition of tryptone had an immediate stimulating effect on the biogas process in both reactors 

despite the differences in ammonia concentration. However, following each pulse of tryptone the 

increase in the VFA levels was most distinct in the reactor operated at an ammonia concentration 

of 3.0 g-N/l whereas the methane yield was 15–30 % higher in the reactor operated at an 

ammonia concentration of 1.7 g-N/l following pulse no. 1 and 2. Although not significant, these 

variations illustrates that a reactor operated at an ammonia concentration corresponding to the 

ammonia concentration in the average joint biogas plants in Denmark, has less capacity to 

withstand a sudden pulse of protein when compared to a reactor operated at a lower ammonia 

concentration. Batch experiments supported this observation since the inhibition by ammonia was 

most pronounced in the effluent of the reactor operated at 3.0 g-N/l, but also revealed an 

adaptation of the process to the elevated ammonia concentration.  

Pulses of ammonia resulted in a decrease in methane production of both reactors although the 

free ammonia concentration was well below the inhibitory level previously suggested by 

Angelidaki and Ahring (1994). No immediate increases in VFA concentrations was observed 

following the ammonia pulses, which illustrates that ammonia inhibition during that experiment 

was an overall inhibition of the biogas process and not only an inhibition of the methanogens. 
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Figure 1 Batch experiments. Effect of ammonia on methanogenesis. Effluents from R1 (3.0 g ammonia-N/ l) 
and R2 (1.8 g ammonia-N/l) were distributed in vials and added various amounts of extra ammonia. No 
ammonia was added control vials. The vials were incubated at 55°C for 72 hours and the methane production 
was measured frequently. a) Relat ive inh ibition of the methane production in test vials compared to control 
vials in relation to increased ammonia concentration in the vials. Grey bars: R1; Black bars: R2. b) Relat ive 
inhibit ion of the methane production in test vials compared to the control vials of R2 (1.8 g-N/l) in relation to 
the absolute ammonia concentration in the vials �: R1, �: R2. 
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Figure 2 Batch experiments. Effect of ammonia on tryptone deamination. Effluents from R1 (3.0 g ammonia-
N/l) and R2 (1.8 g ammonia-N/l) were distributed in vials, added 10 g/l tryptone and various amounts of extra 
ammonia. No ammonia was added control vials. The vials were incubated at 55°C and the ammonia production 
was calculated by subtracting the initial ammonia content of samples from the final ammonia content after 
incubation. �: R1 control; ■: R1 + 0.5 g ammonia-N/l; �: R1 + 1.0 g ammonia-N/l; ����: R1 + 1.5 g ammonia-
N/l; ●: R1 + 2.0 g ammonia-N/l; �: R2 control; ■: R2 + 0.5 g ammonia-N/l; �: R2 + 1.0 g ammonia-N/l; �: 
R2 + 1.5 g ammonia-N/l; ●: R2 + 2.0 g ammonia-N/l; ■: R2 + 3.0 g ammonia-N/l. 
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Figure 3 Reactor experiments. The effect of gradual increasing ammonia concentration in R1. a) � : ammonia 
concentration R1, � : ammonia concentration R2; b) � : methane yield in R1, � : methane yield in R2; c) �: 
total VFA concentration in R1, � : total VFA concentration in R2, � : pH of R1, � : pH of R2; d) � : acetate 
concentration in R1, � : acetate concentration in R2, �: propionate concentration in R1, � : propionate 
concentration in R2. 
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Figure 4 Reactor experiments. The effect of tryptone pulses on the anaerobic digestion process in thermophilic 
CSTRs treating cattle manure. R1 and R2 were operated at an ammonia level of 3.0 g-N/l and 1.8 g-N/ l, respectively. 
Pulses of 10 g/l tryptone were added day 82 and 89 while 15 g/l tryptone were added at day 103. a + b) �: ammon ia 
concentration; c + d) �: methane yield; e + f) �: total VFA, �: pH; g + h) �: acetate, �: propionate; i + j) �: 
isobutyrate, �: butyrate; k + l) � : isovalerate, �: valerate. 
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Figure 5 Effect of ammonia pulses on the anaerobic digestion process in thermophilic CSTRs treating cattle manure. 
R1 and R2 were operated at an ammonia level of 3.0 g-N/ l and 1.8 g-N/l, respectively. Pulses of 0.79 g ammonia-N/ l 
were added on days marked with vertical lines. a) �: ammonia concentration R1, � : ammonia concentration R2, � : 
pH R1, �: pH R2; b) � : methane yield R1, � : methane yield R2; c) � : acetate R1, � : acetate R2, �: p ropionate 
R1, � : p ropionate R2; d) � :isobutyrate R1, �: isobutuyrate R2, �: buyrate R1, � : butyrate R2; e) � :isovalerate 
R1, � : isovalerate R2, � : valerate R1, �: valerate R2. 
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Table 1 Total-N and ammonia-N content, temperature and hydraulic retention time of 7 randomly selected 
thermophilic biogas plants in Denmark. 

Biogas plant Total-N  

(g/l) 

Ammonia-N 

(g/l) 

Temperaturea 

(°C) 

HRTa 

(days) 

Filskov 5.2 3.6 53 11 ± 1.5 
Lintrup 4.7 3.5 53 19 ± 3.0 
Studsgård 4.0 3.0 52 22 ± 3.5 
Lemvig 4.5 3.1 52.5 17 ± 1.0 
Thorsø 4.1 2.7 53 14 ± 2.0 
Sinding 3.4 2.6 51 17 ± 2.5 
Vaarst Fjellerad 4.3 3.1 53 14 ± 2.5 
Average 4.3 3.1 52.5 16.3 
aData from the biogas plants and Planenergi Midtjylland, 2001. 

Table 2 Specific Methanogenic Activity of biomass taken 
from R1 and R2 as µmol/(ml biomass x h). Results are 
given as means of triplicates with standard deviations. 

Sample R1 R2 

Control 0.52 ± 0.060 0.52 ± 0.028 
H2/CO2 0.68 ± 0.131 1.03 ± 0.026 
Formate 3.09 ± 0.645 2.33 ± 0.268 
Acetate 2.27 ± 0.021 2.78 ± 0.182 

Table 3 Approximate increase in VFA concentrations in R1 and R2 caused by pulses of tryptone. 

 VFA-tot. 
(g/l) 

Acetate 
(mM) 

Propionate 
(mM) 

Isobutyrate 
(mM) 

Butyrate 
(mM) 

Isovalerate 
(mM) 

Valerate 
(mM) 

Tryptone 
pulse 

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

10 g/l no. 1 3.4 2.6 34.0 23.3 10.0 9.7 4.6 3.9 2.2 1.8 7.5 4.9 0.26 0.23 
10 g/l no. 2 3.8 3.0 35.5 29.5 7.4 9.0 5.6 3.9 9.5 2.4 8.3 6.5 0.31 0.33 
15 g/l no. 1 5.8 3.9 61.0 37.4 14.5 9.9 7.6 5.9 5.7 6.7 12.4 9.0 0.28 0.51 
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Abstract 

The anaerobic degradation of lipids and meat and bone meal (MBM) was studied. In batch 

experiments various concentrations (1 g/l–10 g/l) of the substrates were digested and the methane 

potential was determined. Subsequently, two thermophilic continuously stirred tank reactors 

(CSTR) fed with a mixture of cattle and pig manure was subject to consecutive pulses of lipids 

and MBM (5 gVS/l). Following two pulses of lipids only 20.1% and 18.8% of the methane 

potential was utilized possibly because of flotation and washout of the lipids from the reactor. 

The utilization rate of MBM following the first two pulses was higher corresponding to 43.9% 

and 31.9% of the methane potential, but at the same time all volatile fatty acid (VFA) 

concentrations increased significantly indicating the beginning of a process imbalance. 

Consequently, a third pulse of MBM lead to a 30% decrease in methane production lasting for 

more than 20 days. The results show that MBM could be an attractive substrate for increasing the 

methane production at Danish centralized biogas plants, but that accurate process control 

including VFA measurement is essential when adding MBM to a biogas reactor. 

Keywords: Lipids, meat and bone meal, regulation of the biogas process, methane production, 

VFA. 

 

Introduction 

Today 22 centralized biogas plants are in operation in Denmark. Each plant is shared by several 

farms and the main purpose of the plants is to treat livestock manure and reuse the material as 

fertilizer (Ahring et al., 1992). The plants range in size from 550 m3 to 8500 m3 with a conversion 

capacity of 25 to 500 tons biomass per day. In 2001 the centralized biogas plants treated 
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approximately 1.2 million tons of manure (Angelidaki and Ellegaard, 2003). Unfortunately, the 

plants are difficult to run with an economically profitable result if the process is based on manure 

alone (Hjort-Gregersen, 1999). To increase the economical feasibility of the plants the manure is 

often co-digested with organic waste from food industries and municipalities. Slaughterhouse 

waste contains a high biogas potential, due to high concentrations of lipids and proteins and 

waste in the form of stomach and intestinal content has for many years been successfully applied 

to increase the methane production of the biogas plants. Recently, MBM has also received a lot 

of attention. MBM is the dried and rendered product from mammal tissues and can be fed as a 

protein source for cattle, pigs and chickens. However, the product has diminished in value due to 

the spread of bovine spongiform encephalopathy (BSE) in cattle. Besides good storage stability 

MBM contains a considerable amount of energy and could be an attractive substrate for biogas 

plants. The methane potential of MBM is approximately 570 ml/g Volatile Solids (VS) 

(Angelidaki and Ellegaard, 2003) but there is still some uncertainty about the potential of 

obtainable gas from anaerobic digestion of MBM in continuously operated reactors. To our 

knowledge there has been no investigations evaluating the usability of MBM in biogas plants.  

 

Drawbacks of adding waste products containing large amounts of lipids and proteins are the 

formation of inhibitory degradation products such as long chain fatty acids (LCFA) and 

ammonia. These compounds may destabilize the anaerobic digestion process and accurate 

process control of the biogas plants against mal-function is essential to prevent sub-optimal 

performance and process failure. Although it is well known that VFA concentration is an 

important parameter for accurate process control (Ahring et al., 1995) measurement of the biogas 

production is normally the only continuously measured parameter used at large-scale biogas 

plants. However, changes in methane yield (ml/g volatile solids) following process imbalances 

such as changes in hydraulic retention time (HRT), organic loading and temperature might be 

relatively small while measurement of the methane production rate ((l/(l reactor x day)) not only 

reflects the state of the process but also reflects the actual loading of the biogas reactor (Ahring et 

al. 1995). Consequently, detection of a change in gas production due to minor process imbalances 

may be too late for preventing complete break down of the process.  

In the present paper we present the results of experiments with two types of industrial waste 

products, i.e. lipids and MBM. The purpose of the study was to determine the methane potential 

of a lipid mixture and MBM following shock loads of the substrates to CSTRs and to relate these 
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results to the ultimate methane yield of the substrates determined in batch digestion. Furthermore, 

we evaluate the potential of adding MBM to biogas plants and discuss the usability of methane 

production and VFA as indicators of process instability in CSTRs following pulses of lipids and 

MBM.   

 

Materials and methods 

Substrates 

Raw cattle manure and pig manure was obtained from the full-scale biogas plant in Hashøj, 

Denmark. The manure was mixed in a ratio of 1:1, blended 1–2 min and kept at 2°C until used. 

Green Farm Energy, Randers, Denmark, delivered the industrial organic waste. The fat, which 

was solid at room temperature, originated from a food processing industry producing margarine 

from palm oil. Palm oil has a high content of saturated fatty acids (≈ 50%). For practical reasons 

the fat was mixed with rapeseed oil in a 1:1 ratio resulting in a thick fluid. Daka Bio-industries, 

Ringsted, Denmark, produced the MBM. The dry and finely ground product was produced from 

discarded animal parts from slaughterhouses and fallen stocks.   

 

Batch experiments 

The methane potential of the lipid mixture and MBM and the effect of these complex organic 

wastes on the anaerobic digestion process were determined in batch experiments. Effluents from 

two thermophilic CSTRs (described below) were collected over a period of one week. The 

effluents were mixed, inoculated at 55°C for 16 hours and subsequently distributed in 116-ml 

vials in portions of 50 ml. The vials were supplied with the lipid mixture, MBM and a 1:1 

mixture (w/w) of the two substrates in final concentrations of 1.0 gVS/l, 2.0 gVS/l, 5.0 gVS/l and 

10.0 gVS/l. Control vials were only added effluent. To obtain anaerobic conditions all vials were 

flushed with N2/CO2 (80/20%) and closed with butyl rubber stoppers and aluminium crimps. The 

vials were incubated at 55°C for 62 days. Methane production was frequently measured by gas 

chromatography using flame-ionization detection. The methane production of the test vials was 

corrected for the methane produced in the control vials. All experiments were conducted in 

triplicates.  

 

Reactor set-up  
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Two 4.5 litre CSTRs, R1 and R2, with a working volume of 3.0 litre (Angelidaki and Ahring, 

1993) were inoculated with cattle manure that had been digested in a stable lab-scale reactor at 

55°C. The reactors were fed every six-hour with the manure mixture. The organic loading rate of 

the reactors was 2.35 gVS/(l reactor vol. x d). Both reactors were stirred by a propeller for one 

minute every third minute at 100 rpm and operated at 55°C with a HRT of 15 days. Circulating 

the heated water from a water bath through the reactor jackets ensured stable operational 

temperature. 

Analytical methods. 

 The biogas production was measured four times a day and the CH4 content of the biogas was 

determined 1–2 times a week by gas chromatography using thermal conductivity detection. VFA 

concentrations and pH of the reactors was determined on a daily basis. 15–20 ml reactor content 

was withdrawn and pH was determined immediately. For VFA determination 2 x 1 ml of the 

reactor content was acidified with 30 µl 17% phosphoric acid, centrifuged at 10500 rpm for 20 

min, and analyzed on a GC equipped with flame ionisation detector. Total Solids (TS), VS, 

Total-N (Kjeldahl) and ammonia concentrations was determined using standard methods 

(Greenberg et al., 1998). 

 

Pulses of lipids and MBM 

After the reactors had been in operation for a period of two HRTs a stable operation, i.e. stable 

biogas production and stable VFA concentrations, indicated that steady state had been obtained. 

At day 170 a lipid pulse of 5 gVS/l were added R1 while a MBM pulse of 5 gVS/l were added 

R2. Following these pulses the methane production was used as the only parameter for indication 

of process stabilization. The VFA concentrations were not used as a control parameter of the 

reactors, although the effect of the consecutive pulses of lipid and MBM on the VFA dynamics 

was continuously evaluated. Thus, when the biogas production had returned to a level similar to 

the level before the pulses the reactors were subject to additional pulses. Consequently, R1 was 

added lipid (5 gVS/l) at day 175 while R2 was added MBM (5 gVS/l) at day 177 and 181. 

 

Results 

Substrates  

The composition of the manure mixture is shown in table 1. The TS/VS content of the lipid 

mixture was 99.6% and 99.6%, respectively, while the TS/VS content the MBM was 95.9% and 
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66.8%, respectively. Total-N and ammonia-N of the MBM was 95.4 g/l and 5.7 g/l, respectively. 

The protein and fat composition of the MBM was not determined but according to the producer 

the MBM contained 50–60% protein and 8–14% fat. Phosphorus and Calcium content of the 

MBM was 4.0–4.4% and 7.8–12.4%, respectively.  

 

Batch experiments 

The degradation profile of the lipid mixture, MBM and the lipid:MBM mixture is shown in figure 

1. An inhibition of the methane production in the beginning of the experiment was observed for 

all vials containing lipids. For all vials containing pure samples of lipid the inhibition period 

lasted for approximately 6–8 days while the inhibition period for vials containing lipid:MBM 

mixture varied more and lasted for 2–13 days. No inhibition was observed for vials only added 

MBM. The final methane potential of the organic wastes was 1145 ± 22.9 ml/gVS for the lipid 

mixture, 534 ± 10.8 ml/gVS for MBM and 853 ± 57.8 ml/gVS for the lipid:MBM mixture.  

 

Reactor experiments 

From day 30 following start-up a stable process was observed for both reactors. From day 150–

170 the methane yield of the reactors was 306.4 ± 10.8 ml/gVS for R1 and 294 ± 10.9 ml/gVS for 

R2. pH was stable and between 7.77–7.90 for both reactors. The ammonia concentration in the 

reactors was 2.8 ± 0.08 g/l. The reactor performances following pulses of lipid and MBM are 

illustrated in figure 2. The first pulse of lipids to R1 led to an immediate but short-term increase 

in methane production from 0.69 l/(l reactor volume x day) at day 170 to 1.09 l/(l reactor volume 

x day) at day 171. The second pulse of lipids at day 175 led to a more moderate increase in 

methane production from 0.77 l/(l reactor volume x day) at day 175 to 1.04 l/(l reactor volume x 

day) at day 175.5. At day 186 the methane production had stabilized at a level corresponding to 

the level before the pulses. Following the first pulse the acetate concentration of the reactor 

increased from 10.0 mM at day 170 to 26.7 mM at day 172 while the propionate concentration 

increased from 1.0 mM at day 170 to 7.8 mM at day 175. Only small increases (<1.0 mM) in the 

concentration of isobutyrate, butyrate, isovalerate and valerate was observed. No significant 

increases were observed in the VFA concentrations following the second pulse and no changes in 

pH and ammonia concentration in R1 were observed following any of the lipid pulses. 
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The first pulse of MBM showed the same but more significant trends as during the first pulse of 

lipids. The methane production increased from 0.72 l/(reactor volume x day) at day 170 to 1.16 

l/(l reactor volume x day) at day 170.5 but five days after the pulse the methane production had 

stabilized at its original level. Following the second pulse of MBM the methane production 

increased from 0.73 l/(l reactor volume x day) at day 177 to 1.12 l/(l reactor volume x day) at day 

177.5. This time the return of the methane production to the original level only lasted four days. 

After the third pulse of MBM the change in methane production was more moderate and 

increased from 0.75 l/(l reactor volume x day) at day 181 to 1.06 l/(l reactor volume x day) at day 

181.5. Two days after the pulse the methane production rate was at its original level and, 

subsequently, the production decreased until day 190 where it constituted only half of its original 

level. The inhibition continued for several days and at the end of the experiment the methane 

production had not fully recovered and constituted only for ¾ of its original level. Following the 

MBM pulses significant changes in all VFA concentrations in R2 was observed. After each pulse 

the acetate concentration increased steeply with peaks of 34 mM at day 178, 39 mM at day 173 

and 42 mM at day 183. Although the acetate concentration also tended to show a fast decrease 

following each peak, the acetate concentration never returned to its original level. The changes in 

the other measured VFA´s showed a different pattern than acetate. The increases in concentration 

were not as steep but more constant reaching a peak at day 196 of 31 mM for propionate, 7 mM 

for isobutyrate, 7 mM for butyrate, 10 mM for isovalerate and 1.9 mM for valerate. At the end of 

the experiment only butyrate had recovered to a level close to the level before MBM was added. 

Following the MBM pulses a steady increase in the ammonia concentration in R2 was observed 

from 2.8 g-N/l (0.61 g-N/l as free ammonia) at day 170 to a maximum of 4.11 and 4.15 g-N/l at 

day 183 and 197, corresponding to a free ammonia concentration of 0.85 and 0.61 g-N/l, 

respectively. pH in R2 remained constant following the first two pulses but showed a slight drop 

after the third pulse with a minimum of 7.65 at day 197. This was also the reason for the lowering 

of the free ammonia concentration from day 183 to 197.  

 

Discussion 

Batch experiments 

A good proportion between the final methane yields of the lipid mixture, the MBM and the 

MBM:lipid mixture was observed. The methane yield of MBM:lipid mixture (853 ml/gVS) 

constituted approximately the average of the lipid + MBM methane yield (1145 ml/gVS + 534 

ml/gVS = 840 ml/gVS). The estimated methane potential of the lipid mixture was however 13% 
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higher than the theoretical methane yield (1014 stp.2ml/gVS) of lipids (Angelidaki and Ellegaard, 

2003). The methane potential of the MBM, where the VS fraction mainly consists of proteins, 

was slightly higher than the theoretical yield of proteins (496 stp.ml/gVS). MBM might contain 

up to 14% fat, which easily accounts for these differences. Angelidaki and Ellegaard, (2003) 

reported a methane yield of 570 ml/gVS from MBM. These high methane potentials make MBM 

an attractive substrate for increasing the methane production of Danish centralized biogas plants.  

During anaerobic degradation lipids are initially hydrolysed to LCFA, which can inhibit 

anaerobic microbial activity at even low concentrations (Hanaki et al., 1981, Koster and Cramer, 

1987, Angelidaki and Ahring, 1992). In the present experiments the microbial growth in all vials 

containing lipid was inhibited in the beginning of the experiment illustrated by the lag phase in 

the methane production. The lag phase in vials containing the lipid mixture showed only a slight 

variation, lasting 6–8 days, while the lag phase in vials added the MBM:lipid mixture gradually 

increased with the concentration of the mixture. At 1% concentration the duration of the lag 

phase in vials containing the mixture (0.5% lipid + 0.5% MBM) exceeded the lag phase of vials 

containing 1% lipid. These observations indicate a co-inhibition of the anaerobic digestion 

process induced by the MBM and the lipid mixture. Co-inhibition of the biogas process was also 

reflected by the final methane yields where the production in vials containing 1% of the 

MBM:lipid mixture at day 62 was 766 ± 47.0 ml/gVS compared to an average of 881 ± 7.8 

ml/gVS in vials containing 0.1%, 0.2% and 0.5% of the MBM:lipid mixture. However, at the end 

of the experiment a production of methane was still observed in vials containing 1% MBM:lipid 

mixture and further incubation of the vials might have counterbalanced the dissimilarities in the 

final methane yield of the different series. Therefore, it cannot be concluded whether the 

MBM:lipid mixture exerted a irreversible inhibitory effect of the biogas process. 

 

Reactor experiments 

When relating the extra amount of methane produced by the reactors following the pulses to the 

methane potential of the lipid mixture (from literature) and the MBM (this experiment) the 

utilization rate of the two substrates can be estimated. Calculations show that only 20.1% and 

18.8% of the biogas potential of the lipid mixture was utilized during the first 5 days after the two 

pulses, and that the total utilization rate of the second pulse, calculated from day 175–189, was 

29.8%. The utilization rate of the two first MBM pulses was higher corresponding to 43.9% and 

                                                
2 Standard temperature and pressure (0°C and 1 atm.) 
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31.9% of the biogas potential. The lower utilization of the lipid mixture was probably due to the 

adsorptive character of the lipids. In UASB reactors fatty matter (LCFA) has been reported to 

adsorb on surfaces of active and inactive granular sludge (Hwu et al., 1998), which might leave to 

flotation and washout of the granules (Lettinga and Hulshoff Pol, 1992). In the present study the 

feedstock of the reactors contained a significant amount of biofibers (particular lignocellulosic 

material) and a whitish flotation layer in the effluent of R2 less than 24 hours after the pulses 

visualized a washout of lipid adsorbed onto the biofibers. This coating of the biofibers and 

subsequent flotation and washout of the lipid from the reactor also explains why no inhibition of 

the biogas process in R2 was observed (in contrast to the batch experiments) following the lipid 

pulses. In that context Hwu et al. (1998) found the critical LCFA-specific loading causing sludge 

bed washout to be far below the toxicity level of the LCFA.  

The inhibition of the process in R2 following the third pulse of MBM resulted in an average 

decrease in methane production of 30% from day 181–225, when compared to the original level. 

The reason for the inhibition is unknown but might be due to an increase in ammonia 

concentration. Angelidaki and Ahring (1994) found a free ammonia concentration of 

approximately 0.7 g-N/l to be inhibitory during digestion of cattle manure and it seems likely that 

the increase in ammonia concentration, from to 0.61 g-N/l at day 170 to 0.85 g-N/l at day 183, 

induced the inhibition. Furthermore, increasing concentrations of phosphate and calcium might 

have resulted in a precipitation of important elements which could have deteriorated the 

inhibition.  

In a previous experiment it was found that pulses of tryptone (partly digested protein) to a CSTR 

fed with cattle manure had an immediate effect on the biogas process, illustrated by a significant 

increase in methane production and VFA concentrations (Nielsen, 2005). Approximately three 

days after tryptone was added a second peak in acetate concentration was observed and the 

reactor showed a decrease in methane production three days after pulse no. 2 and 3. In the present 

study the methane production also increased significantly immediately after the pulses, but the 

inhibition following the third pulse of MBM was more severe than the inhibitions following the 

tryptone pulses. Acetate showed almost the same pattern by having a significant but short peak 

following each pulse as a result of an increased fermentation. The second peak of acetate 10–14 

days after the third pulse of MBM and the decrease in methane production indicated an inhibition 

of the acetoclastic methanogens. The constant increase of the other measured VFAs during the 

present experiment was different from the reaction pattern following pulses of tryptone. In that 
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experiment isobutyrate, butyrate, isovalerate and valerate showed a steep increase with a 

subsequent decrease following each pulse of tryptone.   

 

Evaluation of process stability  

The results of the present study clearly simplify that the methane production rate and the methane 

yield is unsuitable as sole parameters for indication of process instability in anaerobic digestors. 

The increased methane production following the pulses of MBM was only a reflection of an 

increased loading and the return of the methane production to the original level following pulse 

no. 1 and 2 excluded any indication of process imbalance. As a consequence of the insufficient 

process control R2 was severely inhibited following the third pulse of MBM. This could have 

been avoided by including the VFA-dynamics as a control parameter.  

When evaluating the usability of the individual VFAs as indicators of process stabilisation 

following the MBM pulses the significance value (z) of the change in the VFA concentrations 

can be calculated as (Ahring et al., 1995): 

 

Equation (1) 

 

where x is the VFA concentration at a specific day following the MBM pulses, y is the average 

VFA concentration during a period of one HRT before the first MBM pulse and SD is the 

standard deviation of the VFA concentrations one HRT before the first MBM pulse. The z values 

were determined at day 177 and 181 when the methane production had returned to its original 

level following pulse no. 1 and 2, and at day 196 when the methane production had stabilised 

following the third pulse and all VFA´s at the same time showed a maximum in concentration 

(table 2). All individual VFAs exhibited significant changes within a 5% confidence level (z > 

1.96) At day 177 and 181 the most significant changes was provided by isovalerate while 

butyrate showed the most significant change at day 196. However the selection of parameters for 

indication of process stabilisation cannot only be based on the relative changes in concentration 

but also the fluctuation pattern of the parameter should be considered. In that context, acetate 

gave a poor indication due to the fast decrease following each peak. Also butyrate seemed as a 

problematic indicator due to the fast decrease at the end of the experiment, when the biogas 

process was still inhibited.  
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To summarize, the high methane potential of MBM obtained in the batch experiments makes 

MBM an attractive substrate for increasing the methane production at Danish centralized biogas 

plants. However, continuous pulses of MBM to anaerobic digestors may leave to process 

imbalance and accurate process control including VFA measurement is essential when adding 

MBM to a biogas reactor. 
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Captions to Figures 

Figure 1. Batch experiments. Degradation profile of various concentrations (w/vol) of �: lipid 

mixture, �: MBM and �: MBM:lipid mixture at 55°C. a) 0.1%; b) 0.2%; c) 0.5%; d) 1.0%.  

 

Figure 2. Reactor experiments. Methane production and VFA concentrations in R1 and R2 

during pulses of lipids and MBM, respectively. a + b) �: methane yield, �: methane production 

rate; c + d) �: acetate, �: propionate; e + f) �: isobutyrate, �: butyrate, �: isovalerate, � 

valerate. The horizontal dotted lines indicate when lipid and MBM were added. Calulations of 

the methane yield was only based on the VS content of the manure and did not include the shock 

loads of lipid and MBM. 
 

Equation 1. 

 

z =
(x – y)

SD
z =

(x – y)

SD
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Table 1 Components of the cattle and pig manure 
mixture used as feedstock. 

Component Content 

Total-N (g/l) 4.45 ± 0.20 
Ammonia-N (g/l) 2.73 ± 0.05 
TS (g/l) 45.4 ± 1.34 
VS (g/l) 35.2 ± 1.25 
Total VFA (g/l)   8.2 ± 0.69 
Acetate (mM) 90.2 ± 7.52 
Propionate (mM) 26.6 ± 1.79 
Isobutyrate (mM)   4.3 ± 0.38 
Butyrate (mM) 10.2 ± 1.89 
Isovalerate (mM)   4.0 ± 0.23 
Valerate (mM)   1.6 ± 0.25 

Table 2 Significance test values (z) at day 177, 181 and 196 in R2. The z values are significant within 
a 5% confidence level (z > 1.96).  

 Acetate  Propionate  Isobutyrate  Butyrate  Isovalerate  Valerate VFA-tot. 

Day 177 5 25 9 14 44 26 15 
Day 181 17 47 29 57 99 48 33 
Day 196 33 64 65 160 147 68 63 
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Abstract 

An online volatile fatty acid (VFA) sensor was installed at a full-scale centralized biogas plant in 

Denmark. The monitoring gave a detailed profile of the VFA dynamics during steady state 

operation. During the installation of the VFA sensor, the plant was exposed to two incidents of 

process disturbances caused by accidental overloading with industrial waste. Both incidents were 

characterized by a significant increase in all individual VFA concentrations. Following the 

disturbances, the level and dynamics of the propionate concentration could best describe the 

normalizing of the process. Subsequently, in a lab-scale reactor experiment, we compared the 

prospective of using either propionate or methane production as single control parameters for 

regulation of the anaerobic digestion process. Two thermophilic continuously stirred tank 

reactors (CSTR) were fed with a mixture of cattle and pig manure together with various 

concentrations of meat and bone meal (MBM) and lipids. One reactor suffered from a severe 

process imbalance due to inadequate process control based on methane production. The 

performance of the other reactor showed that propionate could serve as an efficient indicator of 

process imbalance. 

Key words Biogas process, regulation, process imbalance, propionate, VFA. 

 

Introduction 

 

The control of full-scale biogas plants against mal-function and overloading is crucial to prevent 

sub-optimal performance and process imbalance causing economical losses. Therefore, 

development of reliable tools for evaluation and control of the biogas process is necessary. The 

biogas process is a highly complex process where organic material is degraded under anaerobic 

conditions with a simultaneous production of methane. The degradation is carried out by 

microbial consortia, consisting of bacteria and archaea, linked in a complex food web (Gujer and 

Zehnder 1983). Initially, biopolymers are hydrolyzed and fermented to short-chain VFA (e.g. 

acetate, propionate, butyrate and isobutyrate), alcohols, H2 and CO2, by hydrolytic and 

fermentative bacteria. VFA such as propionate, butyrate and isobutyrate are subsequently 

oxidized by syntrophic bacteria producing acetate, H2 and CO2, and finally these products are 

converted to CH4, CO2 and H2O by methanogens (Schink, 1988). The complexity of the process 

has made it difficult to find a simple and suitable control parameter reflecting the metabolic state 

of the entire process. At Danish full-scale biogas plants the biogas production is normally the 

only continuously measured parameter. However, this parameter does not directly indicate 
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process imbalance because the methane production rate (l/(l reactor vol. x d)) of an anaerobic 

digester not only reflects the state of the process but also reflects the actual loading of the digester 

(Ahring et al. 1995). In addition to that, changes in methane yield (ml/g volatile solids) following 

process imbalance might be relatively small (Ahring et al. 1995). During process imbalance, a 

build up of catabolic intermediates such as VFA and alcohols is normally observed. The rate of 

accumulation depends on a wide range of factors such as operation temperature, hydraulic 

retention time (HRT), loading rate, substrate and the type of process disturbance. It is well 

recognized that VFA concentration an  important parameter for accurate process control (Ahring 

and Angelidaki 1997; Ahring et al. 1995; Hill and Holmberg 1988; Hill et al. 1987; Pind 2001) 

but controversy exist whether how and which VFAs that should be applied for indication of 

process imbalances. Hill et al. (1987) suggested that a propionate/acetate ratio higher than 1.4 

indicated impending digester failure but other results have clearly contradicted this statement 

(Ahring et al. 1995; Pullammanappallil et al. 2001). Ahring et al. (1995) suggested that a 

combined parameter reflecting the concentrations of both butyrate and isobutyrate could be a 

reliable tool for indication of process instability. Various associations between the actual 

concentration of individual VFA concentrations and process imbalance have also been suggested. 

Hill et al. (1987) concluded that an acetate concentration higher than 13 mM would indicate 

process imbalance and Hill and Holmberg (1988) showed that concentrations of isobutyrate and 

isovalerate higher than 0.06 mM was an indication of process instability. However, several 

experiments in our laboratory shows that stable reactor performance can occur at VFA 

concentrations well above these limits (Angelidaki and Ahring 1994; Ahring et al. 2001; Nielsen 

et al. 2004).  

 

Traditionally measurement of VFA concentrations in anaerobic bioreactors treating livestock 

waste has been done by manual sampling methods performed on a daily basis. However, our 

recently developed in-situ microfiltration system has made on-line VFA monitoring of biogas 

reactors treating livestock waste possible (Pind et al. 2002). With the application of this new 

technique we have previously studied the VFA dynamics in thermophilic reactors during periods 

of organic overloading (addition of protein) and inhibition by long chain fatty acids (LCFA) 

(Nielsen and Ahring 2005, paper II and I). In both studies all VFAs, except valerate, increased 

rapidly following each perturbation but propionate showed the slowest recovery back to the 

original concentration and, therefore, gave the best indication of when the biogas process had 

reestablished at a stable level. This is in good agreement with kinetic studies showing that 
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propionate degraders are the slowest growing and most sensitive VFA degrading microorganisms 

in the anaerobic digestion process (Öztürk 1991, Ahring et al. 2001).  Furthermore, we studied 

the effect of sudden additions of MBM to a thermophilic CSTR and concluded that acetate and 

butyrate gave a poor indication of process recovery (Nielsen and Ahring 2005, paper III).  

 

In the present study we present the results from on-line VFA monitoring at a large-scale Danish 

biogas plant during periods of stable and unstable reactor performances. On the basis of these and 

our previous results (Nielsen and Ahring 2005, paper I–III) we investigated the prospective of 

using either methane production or propionate concentration as single parameters for regulation 

of the anaerobic digestion process in thermophilic lab-scale CSTRs treating pig and cattle manure 

together with complex organic industrial waste.  

 

Materials and methods 

 

A) Characterization of process parameters at different full-scale biogas plants 

Before selecting a full-scale biogas plant for installation of the online VFA sensor random 

samples were taken from 8 different centralized Danish biogas plants for characterization of the 

state of the biogas process at these plants. All samples were taken within the same week during a 

tour visit in February 2002. The samples were kept on ice for maximum 5 days and subsequently 

analyzed with regard to VFA levels, specific methanogenic activity (SMA) and biogas potential 

of the reactor effluent.  

Measurement of SMA was based on the method by Sørensen and Ahring (1993). 30-ml serum 

bottles were added 9 ml anaerobic basal medium (Mladenovska and Ahring 2000), which had 

been flushed with 100% N2 to achive the same pH as the various samples. The media were 

autoclaved at 141°C for 40 min and 0.5 g/l Na2S and 10 ml/l vitamin solution were added (DSMZ 

medium no. 141, DSMZ 1989). Test vials were either supplemented with sterile-filtrated sodium 

acetate (0.2-µm minisart filter, Sartorius AG, Goettingen, Germany) in a final concentration of 50 

mM or added H2/CO2 by pressurizing the vials with H2/CO2 (80%/20%) to 101kPa overpressure. 

Substrate was omitted from control series. Finally, all bottles were inoculated with 1 ml reactor 

content and incubated at the same temperature as the corresponding reactor. All reactor samples 

had been pre-incubated for approximately 16 hours before inoculation to ensure an active 

biomass. After inoculation the dilution rate of the biomass was 1:10.2 in vials containing acetate 
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and 1:9.2 in control vials and vials with H2/CO2. Methane production was measured every second 

hour for 14 hours. All experiments were conducted in triplicates. 

The biogas potential of the reactor effluents were determined by distributing portions of 50 ml 

reactor effluents into 116-ml vials. The vials were flushed with N2/CO2 (80%/20%), closed with 

butyl rubber stoppers and aluminium crimps and incubated at the same temperature as the 

corresponding reactor. The methane production was measured every 4–5 day for a period of 60 

days.  

  

B) Online VFA measurement at a full-scale biogas plant 

Based on the results from the random samples taken at the various biogas plants, which is 

discussed later, it was decided to install the on-line VFA sensor at Lintrup biogas plant in order to 

observe the VFA dynamics of the plant during continuous operation. The sensor was installed at 

the plant from December 2002 to October 2003. A detailed description of the sensor is given by 

Pind et al. (2002).  

 

C) Regulation an optimization of the biogas process in lab-scale reactors 

Substrates. The main feedstock of the reactors was raw cattle manure and pig manure, which had 

been mixed in a ratio of 1:1 and blended 1–2 min (table 1). The manure was obtained from the 

full-scale biogas plant in Hashøj, Denmark, and kept at 2°C until used. MBM and fat was 

obtained from Green Farm Energy, Randers, Denmark (table 1). The fat, which was solid at room 

temperature, originated from a food processing industry producing margarine from palm oil. 

Palm oil has a high content of saturated fatty acids (≈ 50%). For practical reasons the fat was 

mixed with rapeseed oil in a 1:1 ratio resulting in a thick fluid. Daka Bio-industries, Ringsted, 

Denmark, produced the MBM. The dry and finely ground product was produced from discarded 

animal parts from slaughterhouses and fallen stock.   

Two reactor experiments were performed:  

Experiment one. During this experiment, methane production was the only parameter used for 

indication of process stability. Still, samples for determination of the VFA concentrations in the 

reactors were taken on a daily basis. The samples were acidified with 30 µl 17% phosphoric acid 

per ml, frozen at -20°C and not measured until the end of the experiment. Two 4.5 litre CSTRs 

with a working volume of 3.0 litre (Angelidaki and Ahring 1993) were used (figure 1). One 

reactor functioned as a control reactor and the other, R1, as a test reactor. Both reactors were 

stirred by a propeller every third minute for one minute at 100 rpm and operated at 53°C with a 
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HRT of 15 days. The reactors were inoculated with cattle manure that had been digested in a 

stable lab-scale reactor at 53°C and 17 days HRT. During start-up, the reactors were fed with 100 

ml manure mixture per day. Full loading was applied from day 17 corresponding to 200 ml/d and 

2.3–2.5 gVS/(l reactor vol. x d). 1% (w/vol) MBM and 1% lipid mixture were added the 

feedstock of R1 when the methane production had stabilized (day 29). At day 49 the addition of 

MBM and lipid mixture was increased to 2% of each substrate and at day 69 both substrates were 

omitted from the feedstock. 

Experiment two. Experiment one functioned as a template for experiment two. Thus, experiment 

two was a repetition of experiment one with the exception that propionate was used as the only 

parameter for indication of process stability. Samples for determination of VFA were taken and 

analysed on a daily basis. Before start-up, the content of R1 was discarded and the reactor was re-

inoculated with the same material as used in experiment one (figure 1). The reactor was named 

R2. The operation of the control reactor was continued as previously. Start-up, initiation of full 

loading and addition of 1% MBM and 1% lipid mixture was performed at the same days as 

during experiment one. However, at day 50 MBM was omitted from the feedstock of R2 and at 

day 63 the lipid mixture was also omitted. At day 68 0.5% MBM and 0.5% lipid were added the 

feedstock. The motivations for the decisions concerning the loading of the reactor are discussed 

later. 

 

Analytical methods 

Total solids (TS), Volatile solids (VS), pH and ammonium content were determined using 

standard methods (Greenberg et al. 1998). CH4 production from the batch experiments was 

measured by gas chromatography using flame ionization detection. CH4 and CO2 production 

from the reactors and VFA were determined by gas chromatography using thermal conductivity 

detection. For manual VFA determination samples of approximately 15–20 ml of digested 

manure were withdrawn the reactors. 2 x 1 ml of the reactor content was acidified with 30 µl 

17% phosphoric acid, centrifuged at 10500 rpm for 20 min, and analyzed on a GC equipped with 

flame ionisation detector. 

 

Results and discussion 

 

A) Characterization of process parameters at different full-scale biogas plants 

The VFA concentrations in the eight different full-scale biogas plants varied from 1.4–22.8 mM 
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for acetate, 0.7–12.6 mM for propionate, 0.1–3.5 mM for isobutyrate, and 0.2–0.6 mM for 

butyrate (table 2). The range of the measured SMA was 4.9–204.3 µmol/(gVS x h) for acetate, 

9.3–28.6 µmol/(gVS x h) for H2/CO2 and 0.5–12.8 µmol/(gVS x h) for the control vials. In a 

similar experiment Ahring (1995) found the SMA in three other centralized thermophilic biogas 

plants in Denmark to be 42–625 µmol/(gVS x h) for acetate, 103–199 for H2/CO2 µmol/(gVS x 

h) and 54–169 µmol/(gVS x h) for the control series. The VFA concentrations were in the same 

range as in the present experiment. The samples in the experiment of Ahring (1995) had been 

handled in the same manner as in the present experiment and the data shows that the biomass 

activity of different biogas plants differs significantly. The methane potential of the reactor 

effluents was in the range from 1.7 to 11.9 m3/m3. The high biogas potential of the effluent of the 

reactors in Lintrup and Studsgaard was a sign of low efficiency of the process. However, no 

correlation between the VFA level, the biomass activity and the rest potential could be found. 

This shows that random samples only give a limited characterization of the state of the biogas 

process.  

 
B) Online VFA measurement at a full-scale biogas plant 

According to specifications from Lintrup biogas plant, the biogas potential of the reactor effluent 

represented approximately 38% of the total methane production of the plant at the time when the 

sample was taken (February 2002). Due to the high biogas potential of the effluent together with 

the low SMA and the relatively high VFA concentrations in the reactors it was decided to install 

the online VFA sensor at Lintrup biogas plant. In contrast to the random samples, which only 

gave a momentary value of the VFA level, the online measurement gave a detailed profile of the 

VFA dynamics in the biogas reactor. 

VFA levels at normal operation. The dynamics of the VFA during normal process operation with 

a reactor feeding every 12 h for 6 h are given in figure 2. The figure shows that the acetate 

concentration changed significantly depending on the feeding periods. During each feeding 

period a significant increase could be seen for the acetate concentration from 2-4 mM to 12-17 

mM. After the feeding of the reactor had stopped, the acetate concentration could still be high for 

up to 2 h, but the concentration generally dropped, during the 12 h when the reactor was not fed, 

to about the same level as before feeding. The top acetate concentration rose from 15.5 mM to 

16.5 mM during the week (0 – 96 h) when “fresh” substrate was fed to the reactor while stored 

substrate was fed during the weekend and at the beginning of the week.  
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The fluctuations in the propionate concentration before and after the feeding were more moderate 

than for acetate. The average level, however, rose after each feeding from 0.6 mM to 2.2 mM and 

finally to 2.9 mM. This was obviously also correlated to feeding of “fresh” substrate throughout 

the week.  

The concentration of butyrate and valerate were except for the isoform of valerate below 

detection limits for the non-disturbed process. The concentration of iso-valerate was generally 

much lower than acetate and propionate, but showed the same dynamics as acetate according to 

the feeding periods. During each feeding the iso-valerate concentration more than doubled from 

0.1 mM to 0.23 mM. 

From the VFA pattern mainly five key values could be identified for characterization of the 

process balance:  

 

• The peak acetate concentration at the end of the feeding period (12 – 15mM). 

• The slope of the acetate concentration after stop of feeding (-0.84 – -0.74 mM/h). 

• The lowest acetate concentration before start of a new feeding period (2 – 4 mM). 

• The average propionate concentration over the whole period (0.6 – 2.9 mM).  

• The slope of the propionate concentration after stop of feeding (-0.08 – -0.05 mM/h) 

 

VFA levels following process imbalances. The VFA concentrations following two incidents of 

process disturbances due to accidental overload of industrial waste are shown in figure 3. Both 

incidents were characterized by a significant increase in all VFA concentrations. The biogas 

production decreased as well but no data were delivered by the plant. The first process 

disturbance (figure 3 a, b) recovered after 4 days of not feeding the reactor and was classified as a 

minor imbalance. The second (figure 3 c, d) was a severe process inhibition. Here the reactor had 

not recovered after 8 days and had to be restarted by inoculation from another reactor.  

The minor disturbance was reflected in the following VFA concentrations: acetate > 45 mM, 

propionate > 15 mM, Iso-valerate > 2.0 mM, iso-butyrate > 1.0 mM, butyrate > 0.75 mM, 

valerate > 0.5 mM. Due to technical problems no VFA measurement was performed from hour 

36 to 72 but still a rather clear pattern of the VFA dynamics following the process imbalance was 

observed. While the levels of acetate, iso- valerate, iso-butyrate, butyrate and valerate decreased 

following the first 12 hours of not feeding the reactor, the propionate concentration stayed almost 

unchanged at 15 mM for more than 3 days. When regular feeding of the reactor was restarted 
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after 3 days, the acetate concentration followed the same “steady state” dynamics and the 

concentration of butyrate, iso-butyrate, valerate and iso-valerate fell below detection limits. 

However, the decrease of the propionate concentration was much slower and rather independent 

of the feeding periods and it took 2 more days until the propionate concentration was below 5 

mM. Therefore, the level and dynamics of the propionate concentration could best describe the 

normalizing of the process. 

The severe process inhibition was exemplified by the following VFA concentrations: acetate > 55 

mM, propionate > 15 mM, iso-valerate > 3.5 mM, iso-butyrate > 3.0 mM, butyrate > 8.0 mM, 

valerate > 1.5 mM. While the acetate concentration dropped below 30 mM during 24 h of not 

feeding the reactor, the propionate concentration stayed at a level between 10 mM and 15 mM for 

8 days. The severe process inhibition was particularly reflected by a high concentration of 

butyrate, iso-butyrate, iso-valerate and valerate. The concentration levels were 10 times, 3 times, 

1.75 times and 3 times higher than after the minor process disturbance, respectively. The 

concentration stayed unchanged at these high levels for 8 days. It lowered during feeding of the 

reactor with effluent from a second reactor for inoculation at day 8, but the levels were still high 

for 6 further days. No VFA measurement was performed from hour 30 to 120. 

 

C) Regulation an optimization of the biogas process in lab-scale reactors  

The composition of the various substrates with regard to TS and VS, total-N and ammonia-N 

content and methane potential is given in table 2. The methane potential of the substrates was 

determined in another experiment than the present (Nielsen and Ahring 2005, paper III). The 

reactor performances, pH and VFA-dynamics of the lab-scale reactors are illustrated in figure 4 

and 5.  

Experiment one. In experiment one, the regulation of the reactor operation was based only on the 

methane production of the reactor. Following start-up, a steady increase in methane production 

was observed for both R1 and the control reactor. The increase continued until day 10 where it 

stabilized at a level of 0.33–0.35 l/(l x d) corresponding to 280–300 ml/gVS. When full loading 

was applied, the methane production rate increased further until day 22 where it reached a level 

of 0.62–0.67 l/(l x d) while the methane yield decreased and ended at a level of 255–272 ml/gVS. 

The acetate concentration increased in both reactors to a level of approximately 15 mM in R1 and 

12 mM in the control reactor. The propionate concentration remained more or less the same for 

both reactors corresponding to 4–5 mM. During the rest of the experiment the methane 

production of the control reactor stayed between 243–284 ml/gVS while the acetate concentration 
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stayed between 15–20 mM. The propionate concentration showed a slow increase from day 36 

with a peak of 11mM at day 50. pH was stable and between 7.77 and 7.91. When the methane 

production in R1 had been stable for 7 days, the feedstock was supplemented with 1% MBM and 

1% lipid mixture (day 29). This resulted in an immediate steep increase in methane production 

with a maximum of 1.29 l/(l x d) and 363 ml/gVS at day 38. A minor decrease was subsequently 

observed and the methane production stabilized from day 43 at a level of 1.17–1.18 l/(l x d) and 

322–327 ml/gVS. The acetate concentration increased until it reached a level of 21–23 mM while 

the propionate concentration showed a peak of 10 mM at day 36. However, during the period 

from day 43–49 where the methane production stabilized both acids showed a further increase in 

concentration. To obtain a further increase in the methane production in R1, the feedstock was 

supplemented with 2% MBM and 2% lipid mixture from day 49. As a consequence of this, the 

methane production rate increased to a maximum of 1.43 l/(l x d) at day 58. However, following 

this peak a rapid decrease was observed and at day 66 the methane production in R1 was lower 

than the methane production in the control reactor. MBM and lipid mixture was, therefore, 

excluded from the feedstock from day 66. The concentration of acetate and propionate, which 

had started to increase at day 43, was at that point 60 mM and 31 mM, respectively. Following 

day 66, the acetate concentration continued to increase and peaked at day 72 with 74 mM, while 

the propionate stabilized and began a slow decrease from day 72. The methane production rate 

continued to decrease until day 69 where it stabilized at 0.25 l/(l x d). From day 76, the methane 

production began to improve and at day 90, it reached the same level as the control reactor.  

The reason for the process disturbance in R1 is unknown but is in all probability due to the 

addition of MBM or the lipid mixture. During the period where MBM was added the ammonia 

concentration in R1 increased from 2.7 g-N/l at day 29 to 3.81 g-N/l at day 66, corresponding to a 

free ammonia concentration of 0.53 and 0.57 g-N/l, respectively. Angelidaki and Ahring (1994) 

found the inhibition level of free ammonia to be approximately 0.7 g-N/l during digestion of 

cattle manure. According to these results, an ammonia inhibition was not the reason for the 

breakdown of the process in R1. The production of long chain fatty acids (LCFA) from the 

degradation of the lipid mixture could be another explanation. LCFA might inhibit anaerobic 

microbial activity at even low concentrations (Angelidaki and Ahring 1992). 

Experiment two. In experiment two, the regulation of the reactor operation was only based on the 

fluctuations in propionate concentration in the reactor. The performance of the control reactor is 

not illustrated but during the entire experiment the process was stable with a methane production 

of 250–280 ml/gVS, with acetate and propionate concentrations of 13–20 mM and 4.1–6.2 mM, 
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respectively. During start-up and following the initiation of full loading the performance of R2 

was very similar to the performances of R1 and the control reactor in experiment one. Only 

exceptions were a slightly higher methane production in R2 from day 1–8 and a higher acetate 

concentration in R2 during start-up. The reaction pattern of R2 following the addition of 1% 

MBM and 1% lipid mixture to the feedstock was the same as in R1; i.e. increasing methane 

production and increasing acetate and propionate concentrations. The expected increase in the 

VFA concentration reflected an imbalance between the acid-producing and acid-consuming 

microorganisms as a result of an increased hydrolysis/fermentation and possibly a short-term 

increase in H2 partial pressure. A pattern that previously has been observed when the organic 

loading rate of a reactor has been suddenly increased (Ahring et al. 1995). Therefore, no changes 

in the operation procedure were made. The acetate concentration dropped from day 21 when the 

propionate was still increasing and showed a slight stabilization from day 38. However, the 

acetate concentration continued to vary from day to day. As in experiment one, the propionate 

concentration exhibited a decrease from day 37–38, possibly because of an increased syntrophic 

activity. The decrease continued until day 45 where the concentration stabilized. However, from 

day 47 the propionate concentration suddenly started to increase again and at day 50 the 

concentration had doubled (2.5 mM to 5.1 mM). This increase was interpreted as an indication of 

a potential process imbalance. At day 50 the ammonia concentration of the reactor was 3.3 g-N/l 

corresponding to a free ammonia concentration of 0.66 g-N/l. In order to avoid a further increase, 

MBM was omitted from the feedstock from day 50. As expected, the lower organic loading rate 

resulted in a lower methane production rate, but the methane yield and utilization rate stayed in 

the same range. The acetate concentration that had increased from 11 mM at day 47 to 18 mM at 

day 50 stabilized at a level between 16 mM and 21 mM from day 50–62. However, the 

propionate concentration continued to increase and at day 63 the concentration was 16.5 mM. In 

order to avoid a breakdown of the process, as seen in experiment one, the lipid mixture was also 

excluded from the feedstock. This terminated the increase in propionate concentration and at day 

68 the concentration had dropped to about 12.5 mM. The acetate concentration dropped from 19 

mM at day 63 to 11 mM at day 66. The methane production rate decreased further and the 

methane yield decreased as well due to the exclusion of the easy degradable lipid mixture. The 

utilization rate of the feedstock showed a significant peak because the reactor still contained 

some lipid, which couldn’t be excluded from the calculations. From day 68 the feedstock was 

added 0.5% MBM and 0.5% lipid mixture. This resulted in an immediate increase in acetate 

concentration with a peak of 27 mM at day 72. However, no changes were observed in the 
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propionate concentration and from day 69–90 the concentration stayed between 9.3 mM and 12.1 

mM. The methane production of the reactor increased and from day 72–90 the methane 

production rate and methane yield was in the same as during the period when the feedstock was 

added 1% lipid. However, the utilization rate of the substrate was considerably higher than during 

any other period where MBM or lipid mixture was added. 

 

The biogas production has previously been successfully used for control purposes of anaerobic 

reactor systems. Steyer et al. (1999) used the biogas production and pH as control parameters in a 

high-rate fluidized bed reactor treating a more or less uniform wine distillery waste. Following a 

short-term increase in organic loading, it was concluded whether the microbial population was 

able to manage a permanent increase of the loading rate, by comparing the extra biogas output of 

the reactor to the expected output. Subsequently, the input flow rate of the reactor was adjusted. 

pH was used as an alarm to stop the strategy if the value fell below a certain level. The control 

strategy was suitable for safe operation of the studied system but can hardly be transferred to 

biogas plants treating manure in combination with complex organic waste because of the 

buffering capacity of the manure, the high HRT of the reactor and the unknown substrate 

composition. At Danish biogas plants the operation of the plants are normally based on a “trial 

and error” strategy and the experience of the plant operator. The biogas production is normally 

the only control parameter and no characterization of the substrate is made. In practice, this 

means that a random amount of organic matter is added the reactors and the biogas production is 

subsequently followed. The results of the present experiments clearly demonstrate that this 

strategy is unreliable and that methane production cannot be used as a single parameter for 

indication of process imbalance in reactors treating complex organic waste. This was exemplified 

from day 43–49 in experiment one. During that period the methane production of R1 showed a 

stabilization following a minor peak giving no indication of a process imbalance, while the 

increase in VFA concentration indicated the initiation of a process disturbance. As a consequence 

of the inadequate process control a further increase in the loading of the reactor was performed, 

resulting in a breakdown of the process. Any indication of process imbalance by the methane 

production was not observed until approximately day 61–62, which was too late to prevent the 

process failure. Experiment one also demonstrated that pH is unsuitable as a single parameter for 

indication of process imbalance in reactors treating manure. Before the breakdown pH was stable 

and between 7.82–7.92 but during the breakdown no changes was observed until day 65 where 

pH started to drop until it reached a level of 7.57 at day 76. Furthermore, it was demonstrated that 
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the propionate/acetate relationship cannot be used for indication of process imbalances since the 

propionate/acetate ratio during the breakdown was well below the limit of 1.4 suggested by Hill 

et al. (1987) (figure 5c).   

In contrast to experiment one, a process imbalance was effectively avoided in experiment two 

because of the precise warning by propionate from day 47–63. Furthermore, when comparing the 

reactor performances of R1 and R2 the results show that propionate in general proved to be a 

good parameter for regulation of the biogas process. During the first 50 days of the experiment, 

only small differences were observed in the methane production rate between R1 and R2 (figure 

2, table 3). The higher methane production rate in R1 from day 38–50 was only due to a higher 

VS content in the feedstock of R1 during that period. From day 50 to day 64, the methane 

production rate was significantly higher in R1 than in R2 because of the higher organic loading 

rate. Nevertheless, the process in R1 was very ineffective and the methane yield and utilization 

rate was significantly higher in R2. The methane production rate, the methane yield and the 

utilization rate were highest in R2 from day 64–90 because of the breakdown of the process in 

R1. The total methane production from day 50–90 was 85.7 and 110.2 liters in R1 and R2, 

respectively, corresponding to a difference of 29% (table 3). Therefore, we conclude that the 

overall biogas process was most efficient in R2 because of a more accurate regulation of the 

reactor operation. 

In order to obtain a simple strategy for safe operation of Danish biogas plants, the potential of 

using either methane or propionate as single control parameters was examined in the present 

study. For an improvement of the strategy, other parameters, especially hydrogen, should be 

considered. The transfer of hydrogen plays an important role in the overall regulation of the 

anaerobic digestion process and especially in the oxidation of propionate. For that reason 

hydrogen could seem as an obvious control parameter. However, complicated dynamics of 

hydrogen in anaerobic ecosystems and variability for given reactors and substrates makes 

hydrogen inadequate as a single control parameter (Switzenbaum et al. 1990). The use of 

hydrogen as a control parameter should always be during simultaneous measurement of other 

process parameters. By combining measurement of hydrogen with measurement of the biogas 

production (CH4 and CO2), VFA and pH, the thermodynamically conditions for the conversion of 

VFA can be calculated. Such analysis would result in an improved understanding of the biogas 

process during process imbalance. With respect to the results of the present study, 

thermodynamically analysis would have shown whether the increase in propionate concentration, 
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in experiment two from day 47–63, was caused by a thermodynamically inhibition of the 

propionate oxidation (caused by an increase in hydrogen partial pressure) or a kinetic inhibition 

of the propionate oxidizing bacteria. To our knowledge no control strategy including 

thermodynamic considerations has been presented for manure based CSTRs. 

 

 

Conclusions 

 

Online VFA monitoring at Lintrup biogas plant enabled characterization of the specific process 

dynamics during normal operation. Following imbalances caused by accidental overload of the 

reactors with industrial waste, the concentration level and dynamics of propionate could best 

describe the renormalization of the process. In the lab-scale experiment, where two CSTRs were 

fed with a mixture of cattle and pig manure together with various concentrations of MBM and 

lipids, it was demonstrated that propionate is a key parameter for (1) indication of process 

imbalances in biogas plants treating complex organic waste and (2) for regulation and 

optimization of the biogas process. The results also showed that the methane production cannot 

be used as a single reliable parameter for indication of process imbalances.  
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Figure legends 

 
Figure 1 Lab-scale reactor setup and operation. 

 

Figure 2 VFA online monitoring at Lintrup biogas plant. VFA dynamics during normal 

operation. a) �: acetate, �: propionate; b) �: isobutyrate, �: butyrate,  �: isovalerate, �: 

valerate. 

 

Figure 3 VFA online monitoring at Lintrup biogas plant. VFA dynamics during minor (a + b) 

and severe (c + d) process imbalances. a) �: acetate, �: propionate; b) �: isobutyrate, �: 

butyrate,  �: isovalerate, �: valerate; c) �: acetate, �: propionate; d) �: isobutyrate, �: 

butyrate,  �: isovalerate, �: valerate. 

 

Figure 4 Lab-scale reactor experiments. Reactor performances during start-up, full loading and 

addition of MBM and lipids. �: R1, �: R2 and �: the control reactor a) methane yield; b) 

methane production rate; c) utilization rate of the biogas potential of the substrate. For 

calculation of the utilization rate during periods where lipid was added the theoretical methane 

potential of lipids (1014 ml/gVS) was applied. 

 

Figure 5 Lab-scale reactor experiments. pH and dynamics of acetate and propionate during 

start-up, full loading and addition of MBM and lipids. a) �: pH in R1, �: pH in R2 and �: pH 

in the control reactor; b) �: acetate concentration in R1, �: propionate concentration in R1, �: 

acetate concentration in R2, �: propionate concentration in R2, �: acetate concentration in the 

control reactor, �: propionate concentration in the control reactor; c) �: propionate:acetate 

ratio in R1, �: propionate:acetate ratio in R2.  
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        Table 1 Components of the manure mixture, lipid mixture and MBM used as feedstock in the lab-scale reactor experiments. 
 

 
 
 

        Table 2 VFA levels, SMA and rest potential of reactor samples from 8 full-scale biogas plants in Denmark. 
 

 
Acet 
(mM) 

Prop 
(mM) 

Isobut 
(mM) 

But 
(mM) 

Total 
(VFA g/l) 

SMA Acetate 
(µmol/(gVSxh)) 

SMA H2/CO2 
(µmol/(gVSxh)) 

SMA Control 
(µmol/(gVSxh)) 

CH4 potential 
(m3/m3) 

Lintrup 22.8 3.7 0.5 0.4 1.64 10.5 ± 1.65 10.2 ± 3.81   5.0 ± 1.44   11.9 ± 0.22 
Studsgaard 12.3 1.1 0.3 0.3 0.84 7.8 17.2 ± 7.37   3.1 ± 2.45 9.6 ± 0.11 
Lemvig 8.4 1.6 0.2 0.2 0.62 60.6 ± 6.25   9.3 ± 3.76   3.4 ± 1.30 5.7 ± 0.29 

Thorsø 6.9 2.5 0.2 0.2 0.59   7.9 ± 1.07 28.6 ± 2.65   3.1 ± 0.63 3.8 ± 0.06 
Sinding 5.6 1.1 0.1 0.2 0.42    204.3 ± 7.40 16.2 ± 5.66 8.45 6.1 ± 0.28 

Århus 1.4 0.7 0.1 0.2 0.14   4.9 ± 1.01 17.2  2.4  ± 0.82 1.7 ± 0.05 
Vaarst 9.7 12.6 0.5 0.6 1.40 11.6 ± 3.82 13.4   0.5 ± 0.30 5.4 ± 0.11 
Filskov 9.1 9.7 3.5 0.2 1.35    102.1 ± 3.30 25.6 ± 1.16 12.8 ± 2.97 - 

 
 

 

 
Table 3 Total methane production (l) in R1 and R2 during 
the different operation periods.  

 

 TS               
(%) 

VS                
(%) 

Total-N       
(g/kg) 

Ammonia-N   
(g/kg) 

Methane potential 
(ml/gVS) 

Manure mixture 4.54 ± 0.145 3.52 ± 0.125  4.5 ± 0.20 2.73 ± 0.05 398 ± 20.3 
Lipid mixture 99.6 ± 0.034 99.6 ± 0.030 - - 1145 ± 22.9* 

Meat- and bone meal 95.9 ± 0.040 66.8 ± 0.271 95.4 ± 4.77   5.7 ± 0.22 534 ± 10.8 

 Reactor 

Period R1 R2 

Day 0–17 13.2 14.4 
Day 17–29 18.8 20.1 
Day 29–49 68.8 64.8 
Day 50–65 56.8 42.5 
Day 65–90 28.9 67.7 
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Abstract 

The kinetic parameters of anaerobic propionate degradation by biomass from 10 continuously 
stirred tank reactors (CSTR) operated at different temperatures, hydraulic retention times (HRT) 
and substrate conditions were investigated in substrate-depletion experiments. The maximum 
propionate degradation rate, Amax, was in the range from 18.5 to 30.8 µmol/(gVS x h) and the half 
saturation constant, Km, was in the range from 0.46–6.60 mM. The accuracy of the substrate-
depletion method was subsequently evaluated by use of radiotracer methodology. Amax was found 
to be 14–15% higher in the radioisotope experiment. This indicates an input of propionate via 
degradation of higher organic compounds, which in the substrate-depletion experiments resulted 
in an underestimation of Amax. Km was found to be 4–6 times higher in the radiotracer experiment, 
which indicates a lowered affinity of the syntrophs towards labeled propionate at low 
concentrations. 
 

Introduction 

Anaerobic digestion is an environmental attractive way of treating organic waste from 

agriculture, households and industry. In Denmark alone, more than 20 full-scale centralized 

biogas plants have been built along with a number of farm-scale plants. The anaerobic digestion 

process is highly complex and carried out by different microbial consortia linked in a complex 

food web (Gujer and Zehnder 1983). The interdependence of the different consortia is the 

keystone of the process and an exact balance between the different trophic levels is essential for 

obtaining a stable digestion process. During periods of unbalanced operation intermediates in the 

form of volatile fatty acids (VFA) will accumulate, making VFA a good parameter for early 

indication of process disturbances (Ahring et al. 1995). A change in VFA concentrations in an 

anaerobic digestor is an indirect indication of changes in the activity of the different trophic 

groups involved in the overall digestion process. Simple tests for direct measurement of the 
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activity of the different microbial groups are, therefore, important tools for efficient process 

understanding (Switzenbaum et al. 1990; Sørensen et al. 1993). Some activity tests focuses on the 

methane production from specific substrates and is excellent for measuring the activity of 

methanogens (Sørensen et al. 1993, Colleran et al. 1992; Coates et al. 1996). However, for 

measurement of VFA degradation these tests are not useful since the conversion of most VFA to 

methane is through several steps. The measurement of methane production from VFA is , 

therefore, only an indirect indication of the substrate conversion activity and may lead to wrong 

estimations of the degradation rates. Nevertheless, literature often reveals studies where these 

methods have not been used correctly. The problem of using the methane production as 

indication of syntrophic activity is exemplified in figure 1. The figure illustrates the degradation 

of butyrate and propionate to acetate and methane in batch vials at 55°C. For butyrate the 

maximum methane production rate was observed in the time period from hour 50–72. However, 

during that period butyrate had already been depleted and the concentration was below the half 

saturation constant, Km. The observed maximum methane production rate was, therefore, more a 

reflection of the maximum methane production rate from acetate and not the degradation rate of 

butyrate. A similar pattern was found for propionate. Therefore, the measurement of VFA 

degradation should be based on the depletion of the substrate itself and not the methane 

production.   

 

We have previously demonstrated that process control of thermophilic anaerobic CSTRs treating 

livestock waste can be based on the measurement of propionate concentration alone, and it is our 

believe that propionate is a key factor for developing simple and reliable methods for evaluation 

and control of the anaerobic digestion process. (Nielsen 2005). 

The aim of the present study was to estimate the kinetics parameters; Amax and Km, of propionate 

degradation in biomass taken from 10 CSTR operated at different temperatures, HRT and 

substrate conditions. This was done by substrate-depletion tests in batch vials. The results were 

related to the overall performance of the reactors. Furthermore, we verified the accuracy of the 

substrate-depletion test by measuring the conversion of radioactive labeled propionate during 

batch incubation of the biomass.  

 

Materials and methods 



 136 

Reactor experiments 

Reactor set-up one. The effect of industrial waste, containing high concentrations of lipid and 

protein, on thermophilic anaerobic digestion was studied. Four CSTRs (figure 2a) with an 

operation temperature of 53°C and a HRT of 15 days were inoculated with cattle manure that had 

been digested in a stable lab-scale reactor at 55°C. The reactors were named R1-HBN (control 

reactor), R2-HBN, R3-HBN and R4-HBN. All reactors were fed with a 1:1 mixture of cattle and 

pig manure at an organic loading rate of 2.3–2.5 gVS/(litre reactor volume x day). R1-HBN, R2-

HBN and R3-HBN was fed four times a day while R4-HBN was fed only once a day. The 

feedstock of R2-HBN was supplemented with 1% (w/vol) lipids and 1% (w/vol) meat and bone 

meal (MBM) resulting in an organic loading rate of 3.4–3.6 gVS/(litre reactor volume x day). 

The feedstock of R3-HBN was added 0.5% lipids corresponding to 2.6–2.8 gVS/(litre reactor 

volume x day).  

Reactor set-up two. In this experiment we investigated the effect of mesophilic and thermophilic 

temperatures on anaerobic digestion. Furthermore, we studied a two-stage digestion model 

(73°C/55°C) for treatment of manure and sludge. Four different CSTRs were used. R1-ZM 

(figure 2a) was operated at 55°C and 15 days HRT. The reactor was inoculated with a mixture of 

cattle manure and pig manure that had been digested in a stable lab-scale reactor at 53°C. The 

reactor was fed with cow manure, pig manure and sludge in a ratio of 4:4:2 three times a day at 

an organic loading rate of 2.6 gVS/(litre reactor volume x day). R2-ZM (figure 1a) was operated 

at 37°C and 18 days HRT with an organic loading rate of 2.2 gVS/(litre reactor volume x day). 

The reactor was inoculated with reactor content from the mesophilic biogas plant in Hashøj, 

Denmark. The substrate was the same as for R1-ZM. The two-stage set-up consisted of two 

reactors with different volume and temperature (figure 2b). The pre-treatment reactor, R3-ZM, 

was operated at 73°C and 2 days HRT. The reactor was fed with the same substrate and the same 

volume as R1-ZM and R2-ZM but due to the small reactor volume the organic loading rate was 

19.5 gVS/(litre reactor volume x day). R3-ZM was connected to R4-ZM. This reactor was 

operated at 55°C and 13 days HRT. The reactor was fed by pumping the effluent of R3-ZM 

directly into the reactor. The organic loading rate of R4-ZM was, therefore, unknown. The total 

volume and HRT of the two-stage system was the same as for R1-ZM and R2-ZM. 

Reactor set-up three. This study intended to improve the anaerobic digestion of cattle manure by 

thermal pre-treatment of the solid fraction (biofibers) of the manure. Two CSTRs (figure 2a), R1-

HWH and R2-HWH, with an operation temperature of 55°C and HRT of 17 days were inoculated 

with a 1:1 mixture of cattle manure an pig manure that had been digested in a stable lab-scale 
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reactor at 55°C. The reactors were fed with cattle manure three times a day at an organic loading 

rate of 3.0 gVS/l. The solid fraction in the feedstock of R1-HWH (obtained by centrifugation of 

the raw manure mixture at 2000 rpm for 10 min) had been autoclaved at 140°C for 40 minutes 

before feeding.    

 

Substrate-depletion experiments 

50-ml serum bottles were added 15 ml of anaerobic basal medium (Mladenovska and Ahring 

2000), which had been flushed with 100% N2 and pH had been set to the same pH as that of the 

different reactor biomass. The vials were sterilized by autoclavation at 141°C for 40 min. 

Subsequently the vials were added 0.5 g/l Na2S and 10 ml/l vitamin solution (DSMZ medium no. 

141, DSMZ 1989) and inoculated with 5 ml reactor content. The vials were flushed with N2, 

closed with butyl rubber stoppers and aluminium crimps, and pre-incubated in a shaking water 

bath at 100 rpm and the same temperature as the corresponding reactor. After 16 hours of pre-

incubation the vials were added sterile sodium propionate to a final concentration of 20 mM and 

re-incubated in the water bath. After addition of sodium propionate the dilution ratio of the 

reactor content was 5:16.4. Progress curves of propionate degradation (figure 1) were made, by 

withdrawing 0.3 ml media/reactor content mixture every 8–12 hours for 4–7 days. The samples 

was diluted with 0.7 ml BA media in Eppendorpf tubes, acidified with 30 µl 17% H3PO4
- and 

centrifuged at 10500 rpm for 20 min. The samples were analyzed on a gas chromatograph 

equipped with flame ionisation detector. When the propionate concentration was below 8 mM 

samples of 1 ml samples were analysed and the dilution step was omitted. Km were determined by 

applying an integrated solution to the Michaelis-Menten equation (Ahring and Westermann 

1987): 

 

Where S0 is the initial substrate concentration, St is the substrate concentration at time t and Km is 

the half-saturation constant. Vmax is the maximum substrate utilization in the vials and was 

calculated from the steepest linear decline in substrate concentration (figure 3 phase 3). The 

maximum specific substrate utilization (Amax) of the reactor biomass was calculated from the 

steepest linear decline in substrate concentration, which represented at the minimum 50% of the 
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initial substrate concentration (Rebac et al. 1999). All experiments were conducted in at least 

triplicates. 

  

Radioisotope experiments 

The degradation rates of propionate in reactor R1-ZM, R2-ZM and R3-ZM were also determined 

by radioisotope experiments. For each reactor eight vials were prepared with the same medium 

and substrate conditions as described earlier in the substrate-depletion experiments. Vial 1–3 

served in each experiment as controls. During the entire experiment the propionate concentration 

in these vials was measured every 8–12 hour and the kinetic parameters were determined as 

during the substrate-depletion experiments. When the concentration was approximately 75% of 

the initial concentration (≈ 15 mM) the 1-[14C]-sodium propionate (CH3CH2
14COOH) was added 

to vial 4–8 as 1 ml stock solution giving a final concentration of approximately 2.17 kBq/ml. The 

addition of propionate did not significantly affect the pool size. Vial 4 was subsequently 

autoclaved and used as killed control. Just before addition of radio labelled propionate, the 

propionate concentration in vial 5–8 was determined and immediately after addition of labelled 

propionate the radioactivity was counted. In this way the initial radioactivity could be related to 

the propionate concentration. Subsequently, the radioactivity was measured every 5–8 hours.  

For determination of labeled propionate samples of 0.3 ml were diluted with 0.7 ml BA media in 

Eppendorpf tubes. In order to remove 14CO2 from the liquid, the tubes supplemented with 44 µl 

17% H3PO4
- and allowed to equilibrate for one hour. Subsequently, the tubes were centrifuged at 

10500 rpm for 20 min and 250 µl of the supernatants were transferred to scintillation vials 

containing 4 ml BCS scintillation liquid (Amersham). The radioactivity was counted in a LKB 

1217 Rackbeta liquid scintillation counter.  

 

Results 

Reactor experiments 

The reactor operation and performance parameters of the various set-ups during steady state 

conditions are summarized in table 1.  

 

Substrate-depletion experiments 

The calculated kinetic parameters of the propionate degradation are presented in table 1. Amax was 

in the range 18.5–30.8 µmol/(gVS x h) corresponding to 0.53 µmol/(ml ino. x h) for R2-HWH to 

1.24 µmol/(ml ino. x h) for R4-HBN. No degradation was observed for R3-ZM. The half-
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saturation constant, Km, was for all reactors below 1 mM with the exception of R1-HWH. Km of 

R2-HWH could not be calculated due to a limited number of experimental points in the Km area.  

 

Radioisotope experiments  

The kinetic parameters of the propionate degradation in the radioisotope experiment and the 

second substrate-depletion experiments are presented in table 2. In all radioisotope experiments 

Amax tended to be higher than the corresponding Amax in the substrate-depletion experiments. Amax 

in the substrate-depletion experiments was in the same range as during the first substrate-

depletion experiments (table 1). Km in the radioisotope experiment was in the range from 3.96 

mM to 4.21 mM, which was higher than the Km values in the substrate-depletion experiments. 

 

Discussion 

Significant variations in the kinetic parameters of propionate degradation have been reported, 

depending on biomass composition, reactor type, substrate, temperature and HRT (table 3). In the 

present study we examined the propionate degradation in 10 different CSTRs. In the substrate-

depletion tests Km was estimated to be in the range between 0.46–0.95 mM, with the exception of 

HWH-1, and seemed only little affected by the differences in temperature and substrate 

composition. Amax showed slightly higher variation, but not as pronounced as in the literature and 

gave in general a good reflection of the reactor performances. The affinity of the biomass to 

propionate showed a pronounced variation and did not reflect the performance of the reactors 

(table 1).  

For all reactors the maximum degradation rate was lower than the degradation rate observed by 

Gavala et al. (2003) in anaerobic sludge at mesophilic and thermophilic temperatures (table 3). 

The estimation of Amax was based on the VS-concentration of the reactor content and Amax might 

have been underestimated in the present study, due to high concentrations of particulate organic 

material (dead VS) in the reactors treating manure. However, from data listed in the publication 

by Gavala et al. (2003) calculations show that the maximum degradation rate of propionate in 

that experiment was approximately 0.66 µmol/(ml ino. x h) for the mesophilic sludge  and 1.18 

µmol/(ml ino. x h) for the thermophilic sludge. These values are in the same range as found in the 

present study 

The performances of the different reactor setups will be discussed in the following sections. 
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Reactor set-up one. The only differences in the operation parameters between R1-HBN and R4-

HBN were the feeding cycle. Nevertheless, R4-HBN showed a better reactor performance, 

illustrated by the higher methane yield and the lower levels in acetate and propionate 

concentrations. The increased reactor performance was also reflected in the substrate-depletion 

experiments where Amax of the propionate degradation was higher in R4-HBN than in R1-HBN. 

The reason for these differences is unknown. The addition of easy degradable organic waste to 

the feedstock of R2-HBN and R3-HBN increased the methane yield of these reactors, when 

compared to R1-HBN. The substrate-depletion experiments did also reflect the improved 

performances of these reactors. Thus was Amax slightly higher in R2-HBN and R3-HBN when 

compared to R1-HBN. 

 

Reactor set-up two. The difference in the degradation rate of propionate and affinity observed 

between R1-ZM (55°C) and R2-ZM (37°C) is in agreement with Gavala et al. (2003) who found 

a higher ability to utilize propionate in thermophilic anaerobic sludge than in mesophilic sludge 

(table 3). The lacking degradation of propionate at 73°C (R4-ZM) was in good agreement with 

other investigations. (Ahring 1994; Van Lier et al. 1996, Ahring et al. 2001; Nielsen et al. 2004). 

Ahring (1994) demonstrated that the conversion of propionate to methane in cattle manure 

digested at 55°C was strongly reduced above 55°C, which was the optimum temperature for the 

process. Van Lier et al. (1996) observed the same tendencies for thermophilic granular sludge 

although the maximum degradation rate of propionate was at 60°C (table 3). Ahring et al. (2001) 

and Nielsen et al. (2004) found the conversion of propionate to methane to be completely 

inhibited in digestors operated at 65°C and 15 days HRT or 68°C and 3 days HRT, respectively.  

When comparing the kinetic parameters of propionate degradation in R1-ZM to R4-ZM a higher 

Amax was observed in R4-ZM.  The reason for this result is unknown but might be a result of an 

increased hydrolysis caused by the hyperthermophilc pretreatment step or the lower HRT in R4-

ZM. A similar result was reported by Nielsen et al. (2004) who found the specific methanogenic 

activity from a broad range of substrates to be higher in a CSTR operated at 55°C and 12 days 

HRT and fed with manure digested at 68°C and 3 days HRT, compared to a CSTR operated at 

55°C and 15 days HRT. Despite the higher Amax, the propionate affinity in R4-ZM was lower 

than in R1-ZM due to the lower Km. This indicates the existence of different propionate oxidizing 

bacteria in the two reactors.  
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Reactor set-up three. The less efficient digestion process in R2-HWH compared to R1-HWH, 

were directly reflected by Amax, which was significantly lower in R2-HWH. The results of the 

experiment also demonstrated a clear improvement of the methane yield from a mixture of cattle 

and pig manure as a consequence of the thermal pre-treatment of the solid fraction. The 

hydrolysis of this particulate matter is commonly recognized as being the rate-limiting step of the 

biogas process and based on the presented results thermal pretreatment of this fraction seems to 

be a promising method for improving the methane yield of manure.  

The affinity in R1-HWH was significant lower than the affinity in the other reactor set-ups. This 

could be the reason for the high propionate concentration in the reactor. 

 

When summarizing the results of the substrate-depletion experiments it can be concluded that the 

maximum degradation of propionate, Amax, in general gave a good reflection of the overall state 

of the biogas process in the reactors. Although the kinetic parameters of other VFAs were not 

estimated, the result is in good agreement with other results (Nielsen 2005) where we concluded 

that propionate is a good parameter for indication of the state of the biogas process. However, it 

should be noted that the missing syntrophic activity at temperatures above 60°C makes 

propionate useless as parameter for indication of process stability at these temperatures. 

   
Radioisotope experiments vs. substrate-depletion experiments 

The method for determination of Amax by radioactive labeled propionate was in the present 

investigation based on fact that during degradation of propionate the carboxyl group (C-1) is 

directly liberated as CO2 (Koch et al. 1983; Krylova et al. 1997). Some investigations have 

observed a conversion of propionate into higher fatty acids. For mesophilic anaerobic sludge 

Tholozan et al. (1988) estimated that about 20% of propionate was converted into butyrate while 

Lens et al. (1996) found that propionate could be converted into valerate and 2-methylbutyrate. 

Bok et al. (2001) observed for a mesophilic syntrophic co-culture that propionate was dismutated 

to acetate and butyrate via a six-carbon intermediate. Based on these observations is it possible 

that Amax in the radioisotope experiment could be underestimated since the conversion of 14C-1 in 

propionate into for example 14C-2 in butyrate (Tholozan et al. 1988) would not be registered by 

the method applied. However, during the present experiment no net production of butyrate was 

observed at any time in any vials and the concentration of butyrate decreased during the entire 

experiment showing that the consumption rate was higher than the production rate (data not 

shown). The possible underestimation of Amax was, therefore, probably of immaterial 
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significance. In the three examined biomasses Amax was found to be 14–15% higher in the 

radioisotope experiment than in the substrate-depletion experiments. This observation gives an 

evidence of an input of propionate via degradation of higher organic compounds during the 

experiment, which in the substrate-depletion experiments resulted in an underestimation of the 

degradation rate. Substrate-depletion experiments of reactor effluent from different reactors (R1-

HBN, R1-ZM, R2-ZM, R4-ZM, data not shown) showed that that an average of 4 ml methane 

was produced per ml effluent during a period of 30–60 days. Mackie and Bryant (1981) estimated 

that approximately 17% and 13% of the produced methane is formed through propionate at 

thermophilic and mesophilic conditions, respectively, and theoretically 1.75 mol methane is 

formed from 1 mol of propionate. Relating these results to the present results, calculations shows 

a theoretical background input of propionate corresponding to approximately 14–19% of the 

initial concentration in the batch vials. The half saturation constant was also found to be highest 

in the radioisotope experiments, which could be a result of lowered affinity of the syntrophic 

bacteria towards labeled propionate at low concentrations or be a result of a change in the 

degradation pathway of propionate. These results make it obvious that both examined methods 

have limitations. Therefore, when estimating the kinetic parameters of propionate degradation 

different aspects should be taken into account. 1) The inoculum concentration should be as low as 

possible in order to reduce the input of propionate from higher organic background compounds, 

but should at the same time be a precise representative of the reactor content. 2) The propionate 

concentration should be well above the Km value of the inoculum, which according to literature is 

in the range from 0.04–4.47 mM. However, a relatively low inoculum concentration compared to 

propionate concentration would give an overestimation of Amax since significant microbial growth 

would occur before the propionate is fully degraded. In the present experiment the biomass was 

considered to be constant during the entire experiment since the theoretical increase in VS was 

too low compared to the initial VS concentration in the vials (Gavala et al. 2003). This was also 

seen in practice where no changes in the degradation rate were observed during the entire phase 

three. In case of microbial growth an incorrect estimation of Amax can be avoided by continuous 

measurement of the VSS concentration in the vials during the experiment. Unfortunately, this 

would reduce the simplicity of the method especially for reactors containing a high amount of 

particulate organic material such as biofibers. A prolonged pre-incubation of the vials before 

addition of propionate would reduce the problems concerning high background input of 

propionate, but could possibly also change the microbial composition and environmental 
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conditions, for example nutrient concentrations and pH. Therefore, the most important and 

difficult factor is to achieve an exact balance between the propionate concentration and inoculum 

concentration. To ensure that no significant microbial growth or adaptation has occurred during 

the experiments, the maximum degradation rate of propionate should be linear (figure 2). It might 

be argued that the optimal estimation of Amax would be in the beginning of the experiment when 

no growth at all has occurred. However, experiments in our lab generally shows a very low if any 

degradation of propionate during the first 24 of the experiments, possibly because of a high 

sensitivity of the syntrophs towards changes in the environment.  
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Figure 1 Example of anaerobic butyrate and propionate degradation in batch vials. The vials contained 
anaerobic basal medium and inoculated inoculated with digested cattle manure from a thermophilic (55°C) 
CSTR and supplemented with a) sodium butyrate to a final concentration of 20 mM and b) sodium propionate 
to a final concentration of 33 mM. The dilution ratio of the inoculum:basal medium was 5:16.4. a) �: butyrate; 
�: acetate; ■: methane; b) �: propionate; �: acetate; ■: methane. 
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Figure 2 a) Reactor set-up used for R1-HBN, R2-HBN, R3-HBN, R4-HBN, R1-ZM, R2-ZM, R1-HW H and 
R2-HWH. 1: feedstock storage; 2: feeding pump; 3: 4.5 litre CSTR with a working volume of 3.0 litres. The 
reactor was stirred for one minute every third minute at 100 rpm and a stable operational temperature was 
obtained by circulating heated water from a water bath through the reactor jacket (not shown); 4: gas meter; 5: 
effluent storage. b) Two-stage system. 1: feedstock storage; 2: feeding pumps; 3: 0.9 litre 73°C CSTR with a 
working volume of 0.6 litres. The reactor was a g lass beaker with a double wall that was closed with a butyl 
rubber stopper. The reactor was stirred constantly at 250 rpm by a magnet. The stable operational temperature 
was obtained by circulating heated water from a water bath through the double wall; 4:  4.5 litre CSTR with a 
working volume of 2.6 lit res. The reactor was similar to the reactor described previously; 5: gas meter; 6: 
effluent storage.  
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Table 1 Reactor operation parameters, reactor performance and kinetic parameters of propionate degradation during steady state conditions. 

Reactor parameters Substrate Loading Methane 
yield 

VFA conc. 
Ac./Prop./Isobut/But 

Kinetics of propionate degradation Reactor                      

HRT 
(days) 

Temp 
(oC) 

 gVS(l x d) ml/gVS mM Amax     

µmol/(gVS x h) 

Km 

mM 
Affinity  

Amax / Km 

R1-HBN 15 53 Cow manure:pig manure (1:1) 2.3–2.5 304 ± 15.1 11.2/3.1/0.1/0.1 27.0 ± 0.95 0.64 ± 0.167 42.2 ± 0.26 

R2-HBN 15 53 Cow manure:pig manure (1:1) + 1% 
fat + 1% meat and bone meal (w/vol) 

3.4–3.6 340 ± 14.6 12.7/2.6/0.3/0.1 28.5 ± 2.48 0.64 ± 0.022 44.5 ± 0.09 

R3-HBN 15 53 Cow manure:pig manure (1:1) + 0.5% 
fat (w/vol) 

2.6–2.8 394 ± 21.9 12.6/3.3/0.3/0.2 29.0 ± 1.63 0.61 ± 0.124 47.5 ± 0.21 

R4-HBN 15 53 Cow manure:pig manure (1:1)  2.3–2.5 341 ± 17.6 3.6/0.7/0.170.1 30.8 ± 1.12 0.56 ± 0.121 55.0 ± 0.22 

R1-ZM 15 55 Cow manure : pig manure : sludge 
(4:4:2) 

2.6 240 ± 21.0 5.4/1.0/0.2/0.0 25.9 ± 4.04 0.46 ± n.d.   56.3 ±  n.d 

R2-ZM 18 37 Cow manure : pig manure : sludge 
(4:4:2) 

2.2 229 ± 32.1 2.4/0.3/0.0/0.0 22.8 ± 0.24 0.95 ± 0.081 24.0 ± 0.09 

R3-ZM 2 73 Cow manure : pig manure : sludge 
(4:4:2) 

19.5  3.5 ± 1.05 113/30.2/6.8/10.0 No  
degradation 

No 
degradation 

No 
degradation 

R4-ZM 13 55 Cow manure : pig manure : sludge 
(4:4:2). Pretreated 2 days at 73oC 

n.d. n.d. 6.2/1.0/0.1/0.0 29.1 ± 3.78 0.79 ± 0.371 36.8 ± 0.49 

R3+R4-ZM 2+13 = 
15 

73/55 Cow manure : pig manure : sludge 
(4:4:2) 

2.6 271 ± 43.9 - - - - 

R1-HWH 17 55 Cow manure : pig manure (1:1) with 
autoclaved solids (140oC, 40 min) 

3.0 250 27.1/18.4/0.6/0.3 30.7 ± 0.83 6.60 ± n.d. 4.7 ± n.d. 

R2-HWH 17 55 Cow manure : pig manure (1:1). Solids 3.0 220 27.4/21.8/1.1/0.3 18.5 ± 0.80 n.d. - 
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Table 2 Kinetic parameters of propionate degradation in batch vials estimated from substrate-depletion 
experiments and radioisotope experiments 

 Substrate-depletion experiments  Radioisotope experiments 

Reactor Amax    

 µmol/(ml ino. x h) 
Km 

mM 

 
Amax     

µmol/(ml ino. x h) 
Km 

mM 

R1-ZM   25.7 ± 4.45 0.89 ± 0.465 
 

  29.2 ± 4.79 4.10 ± 0.383  

R2-ZM   22.6 ± 2.17 0.78 ± 0.276 
 

  25.9 ± 0.57 4.21 ± 0.254 

R4-ZM   32.5 ± 1.44 0.61 ± 0.064 
 

  37.3 ± 1.54 3.96 ± 1.420 
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Table 3 Kinetic parameters of anaerobic propionate degradation found in literature.   

System and conditions Km or KS  
mM 

Degradation rate 

 
References 

Mesophilic sludge, 37°C 0.84 50 µmol/(gVS x h)  Gavala et al. (2003) 

Thermophilc sludge, 55°C 0.99 87 µmol/(gVS x h)  Gavala et al. (2003) 

Psychrophillic granular sludge, 10°C 0.06–0.13 26 µmol/(gVSS x h)* Rebac et al. (1999) 

Granular sludge, 40°C 0.98 ≈ 37µmol/(gVSS x h)* Van Lier et al. (1996) 

Granular sludge, 45°C 1.16 ≈ 89µmol/(gVSS x h)* Van Lier et al. (1996) 

Granular sludge, 50°C 0.63 ≈ 138 µmol/(gVSS x h)* Van Lier et al. (1996) 

Granular sludge, 55°C 2.51 ≈ 186 µmol/(gVSS x h)* Van Lier et al. (1996) 

Granular sludge, 60°C 2.86 ≈ 224 µmol/(gVSS x h)* Van Lier et al. (1996) 

Mesophilic sludge, 35°C 2.8 13–25 µmol/(gVSS x h)* Lens et al. (1996) 

Adapted granules, 35°C 0.04–0.06 920–1300 µmol/(gVSS x h) Wu et al. (1993) 

Adapted granules, 35°C 0.04–0.06 32–75 µmol/(ml x h) Wu et al. (1993) 

Thermophilic granules, 55°C - 70 µmol/(gVS x h) Schmidt and Ahring (1993) 

Adapted granular sludge 2.00 - Fukuzaki et al. (1990) 

Continuous enrichment culture 0.15–4.46 - Smith and McCarty (1989) 

Continuous-flow mixed cultures, 33°C 2.20 - Gujer and Zehnder (1983) 

Continuous-flow mixed cultures, 35°C, 
14.5 d HRT 

0.15 - Heyes and Hall (1983) 

Continuous-flow mixed cultures, 35°C, 
8.2 d HRT 

4.47 - Heyes and Hall (1983) 

Mesophilic sludge, 40°C, 10 d HRT - 0.09–0.31 µmol/(ml x h) Mackie and Bryant (1981) 

Thermophilic sludge, 60°C, 10 d HRT - 0.12–0.31 µmol/(ml x h) Mackie and Bryant (1981) 

Mesophilic sludge, 33°C, 40 d HRT 0.04–0.19 0.16–0.30 µmol/(ml x h) Kaspar and Wuhrmann 
(1977) 

*Value is a rough estimated subtracted from illustrated data in the publication. 


