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Conditional Prediction Intervals of Wind Power
Generation

Pierre Pinson, George Kariniotakis,Member, IEEE

Abstract—A generic method for the providing of prediction
intervals of wind power generation is described. Prediction inter-
vals complement the more common wind power point forecasts,
by giving a range of potential outcomes for a given probability,
their so-called nominal coverage rate. Ideally they inform of
the situation-specific uncertainty of point forecasts. In order to
avoid a restrictive assumption on the shape of forecast error
distributions, focus is given to an empirical and nonparametric
approach named adapted resampling. This approach employs
a fuzzy inference model that permits to integrate expertiseon
the characteristics of prediction errors for providing conditional
interval forecasts. By simultaneously generating prediction in-
tervals with various nominal coverage rates, one obtains full
predictive distributions of wind generation. Adapted resampling
is applied here to the case of an onshore Danish wind farm,
for which three point forecasting methods are considered as
input. The probabilistic forecasts generated are evaluated based
on their reliability and sharpness, while compared to forecasts
based on quantile regression and the climatology benchmark.
The operational application of adapted resampling to the case of
a large number of wind farms in Europe and Australia among
others is finally discussed.

Index Terms—Wind power, forecasting, uncertainty, nonlinear,
nonstationary, fuzzy inference, resampling.

NOMENCLATURE

α Nominal proportion of quantile forecasts.
α, ᾱ Nominal proportions of the lower and upper

bounds of prediction intervals.
A Fuzzy set.
(1 − β) Nominal coverage of interval forecasts.
B Number of bootstrap replications.
c Forecast condition.
C Set of forecast conditions.
D Support of a fuzzy set.
ǫ Forecast error.
ξ Indicator variable for quantile forecasts.
f, f̂ Probability density function, density forecast.
F, F̂ Cumulative distribution function (cdf), esti-

mated/predictive cdf.
hf Fuzzy inference model.
i, j, l, b Common indices.
Î Interval forecast.
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k Forecast horizon.
n Size of the error sampleS.
N Size of dataset used for evaluating probabilistic

forecasts.
ν Function permitting to identify the subsets of

forecast conditions.
Ω Set of forecast errors.
q, q̂ Quantile, quantile forecast.
S Sample of forecast errors.
Sc Scoring rule for probabilistic forecast evaluation.
SSc Skill score for probabilistic forecast evaluation.
t Time index.
τ Membership function of a fuzzy set.
û Wind speed forecast.
v Influential variable.
V Set of values for an influential variable.
w Weight in the combination of probability density

functions.
y, ŷ Wind power measurement, forecast.
z(α) Number of hits when evaluating the quantile

forecasts with nominal proportionα.

I. I NTRODUCTION

FORECASTS of wind power output are traditionally pro-
vided in the form of point forecasts. They have the

advantage of being easily understandable because this single
number is expected to tell everything about future power gen-
eration. In practice though, they just tell about the conditional
expectation of the power production process for each look-
ahead time. It is known that the accuracy of such forecasts
is highly variable, and fairly low on average. One of the
priorities in wind energy research in the short to medium-
term relates to the improvement of wind power forecasting
methodologies [1]. A large part of research efforts is actually
still focused on point forecasting only, with the main objective
of increasing forecast accuracy. A review of the state of the
art in wind power forecasting is available in [2], [3]. Even
though such efforts may lead to a better understanding and
modeling of both the meteorological and power conversion
processes, there will always be an inherent and irreducible
uncertainty in every prediction. This epistemic uncertainty
originates from the incomplete knowledge one has of the
processes that influence future events [4].

For the communication of forecast uncertainty, [5] has
introduced two complementary approaches, which consist of
providing forecast users with skill forecasts based on risk
indices [6], or with probabilistic forecasts. The present paper
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focuses on the latter form of uncertainty estimates, which
may be either derived from meteorological ensembles [7], [8],
based on physical considerations [9], or finally produced from
one of the numerous statistical methods that have appeared
in the literature, see [10]–[13] among others. They may
take the form of quantile, interval or density forecasts. If
appropriately incorporated in decision-making methods, they
permit to significantly increase the value of wind generation.
Recent developments in the literature support this claim. A
first example relates to dynamic reserve quantification, for
which the optimal reserve level to be defined by the system
operator is a function of the combined uncertainty of load
and wind power forecasts, as well as of the outage rates
of the conventional power plants [14], [15]. In a similar
manner, information about wind power forecast uncertainty
has been shown to be beneficial for the optimal operation of
combined wind-hydro power plants [16]. Finally if considering
the design of trading strategies in liberalized electricity pools,
the optimal bid of wind power producers has been shown to
be a specific quantile of probabilistic forecasts, which canbe
determined through stochastic optimization methods [17].The
method introduced here is of the statistical type, and is referred
to as adapted resampling since it is inspired by the general
class of resampling (and bootstrapping) methods extensively
described in [18].

A primary objective that motivated the development of
the adapted resampling method relates to the possibility of
complementing any wind power point forecasting method with
prediction intervals in an operational environment. In that
sense, it has an empirical and nonparametric nature: prediction
intervals are directly based on past errors made by the point
forecasting method considered, without assuming any shape
of error distributions. Point forecasts can consequently be
“dressed” with a set of prediction intervals with different
nominal coverage rates in order to obtain full predictive
distributions of wind power. Such an approach also permits to
accommodate two important characteristics of the wind power
generation process that are its nonstationarity and nonlinearity.
More particularly for the last point, the adapted resampling
method integrates a fuzzy inference model allowing to ad-
ditionally rely on expert knowledge of forecast uncertainty
characteristics, consequently making the issued prediction
intervals conditional to forecast conditions. The background
idea of adapted resampling has originally been introduced
in [5]. Since then, this method has been fully developed,
evaluated on a number of offline and online test cases, and
used operationally as an integrated module of the ANEMOS
wind power prediction platform, installed in various locations
worldwide, including some European countries and Australia
among others.

The empirical and nonparametric approach to the estima-
tion of prediction intervals, which comprises the core of
the adapted resampling method, is introduced in Section II.
The way expert knowledge is integrated via classification of
forecast conditions, and through the design of a fuzzy infer-
ence model, is described in Section III. This inference model
defines conditional prediction intervals based on a combination
of empirical error distributions for various sets of forecast

conditions. The method is subsequently applied in Section IV
to the test case of an onshore wind farm in Denmark, for
which point forecasts are available from three different state-
of-the-art methods. Evaluation results include a comparative
analysis with a common benchmark (climatology), as well
as with another state-of-the-art method, time-adaptive quantile
regression (described in [12]). Our experience with application
of the method to a number of wind farms worldwide allows us
to discuss certain operational aspects in Section V. Concluding
remarks end the paper in Section VI.

II. EMPIRICAL AND NONPARAMETRIC APPROACH TO THE

ESTIMATION OF PREDICTION INTERVALS

The nonlinearity of the wind power generation process,
mainly due to the power curve [9], makes that assumptions
that prediction errors follow a known parametric family of
distributions appear as weak assumptions. It has especially
been shown that such conditional distributions cannot be con-
sidered Gaussian [19]. This then motivates the development
of nonparametric approaches. In parallel, if using an empirical
approach relying on past forecast errors of a point forecasting
method of interest only, no assumption is made about the
underlying model employed for issuing point forecasts. A
nonparametric and empirical approach to forecast uncertainty
estimation can consequently be suitable for application topoint
forecasting methods either of the statistical or physical type, or
even if being the result of some combination procedure [12],
[13], [21].

An important shortcoming of nonparametric approaches
based on quantile regression (as described in [10], [12], [13],
[21]) however, is that a specific model needs to be set-up and
trained for each quantile of the predictive distribution tobe
issued. This may lead to a large number of models for building
the whole predictive distributions, thus raising computational
costs. And, since models are independently trained, this may
also yield inconsistent results in certain situations i.e.crossing
quantiles, which is not desirable from both theoretical and
practical point of views. In contrast here, the proposed adapted
resampling method permits modeling the whole distributionat
once, thus avoiding the potential problem of crossing quantiles.
Important definitions related to nonparametric probabilistic
forecasting are given first, followed by a description of the
basis empirical approach.

A. Basics of Nonparametric Probabilistic Forecasting

Denote byyt the power production measured at timet which
corresponds to a realization of the random variableYt. Then
write ft and Ft the probability density function and related
cumulative distribution function ofYt, respectively. Formally,
provided thatFt is a strictly increasing function, the quantile
q
(α)
t with proportionα ∈ [0, 1] of the random variableYt is

uniquely defined as the minimum value ofx such that

P(Yt < x) = α, (1)

or equivalently as
q
(α)
t = F−1

t (α). (2)
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Then, a quantile forecast̂q(α)
t+k|t with nominal proportionα is

an estimate ofq(α)
t+k produced at timet for lead timet + k,

given the information setΩt up to timet.
Interval forecasts (equivalently referred to as prediction

intervals) give a range of possible values within which the
true effectyt is expected to lie with a certain probability, its
nominal coverage rate(1−β), β ∈ [0, 1]. A prediction interval
Î
(β)
t+k|t issued at timet for time t + k is defined by its lower

and upper bounds, which indeed are quantile forecasts,

Î
(β)
t+k|t = [q̂

(α)

t+k|t, q̂
(ᾱ)
t+k|t], (3)

whose nominal proportionsα and ᾱ are such that

ᾱ − α = 1 − β. (4)

This general definition of prediction intervals makes that a
prediction interval is not uniquely defined by its nominal
coverage rate. It is thus also necessary to decide on the way
they should be centered on the probability density function.
Commonly, it is chosen to centre (in probability) the intervals
on the median, so that there is the same probability that an
uncovered true effectpt+k lies below or above the estimated
interval. This translates to

α = 1 − ᾱ = β/2. (5)

Such prediction intervals are commonly referred to as central
prediction intervals. A discussion on the other types of pre-
diction intervals whose bounds can be defined from Eqs. (3)
and (4) is given in [19].

For a wide range of decision-making problems related to
wind power management, a single quantile forecast is not
sufficient for making optimal decisions. It is instead necessary
to have the whole information about the random variableYt+k

for each look-ahead time. A nonparametric forecastf̂t+k|t of
the density function of the variable of interest (i.e. wind power
production) can be generated by gathering a set ofm quantile
forecasts

f̂t+k|t = {q̂
(αi)
t+k|t | 0 ≤ α1 < . . . < αi < . . . < αm ≤ 1}, (6)

that is, with chosen nominal proportions spread over the unit
interval. Such probabilistic forecasts are hereafter referred to
as predictive distributions.

B. Description of the Basis Empirical Approach

The development and successful application of empirical-
type approaches to prediction interval estimation can be traced
back to [22]. Variants of this method have been applied to
some other forecasting exercises for which prediction errors
proved to be non Gaussian. Especially, one of those variants
has been employed for estimating prediction intervals asso-
ciated to point forecasts of electricity load produced witha
neural-network-based method [23].

The first step consists of collecting forecast errors that
the point forecasting method under consideration has made
in the recent past, thus allowing to rely on the most recent
information about the method’s performance. For that purpose,
a window in the past (a certain number of hours) is defined and

used as a sliding window for storing the errors. When a power
measurement is received, it is compared with all the past pre-
dictions made for that time. Note that in the following hourly
predictions are considered for the sake of example, without
limiting the applicability of the method to different temporal
resolutions. The sizen of the sliding window determines the
size of the samples of errors. At timet, a separate sample
St,k is defined for each prediction horizonk (i.e. for 1-hour
ahead, 2-hour ahead, and so on) since prediction uncertainty
significantly varies depending upon look-ahead time. Write
Ωt,k the set of past prediction errors associated tok-step ahead
point predictions up to current timet,

Ωt,k = {ǫt−i+k|t−i, i ∈ N, i ≥ k}, (7)

where ǫt−i+k|t−i is the normalized prediction error related
to the point forecast̂yt−i+k|t−i. Since the wind generation
process is bounded, we will hereafter only deal with normal-
ized errors and predicted values (both normalized by nominal
capacity Pn). Straightforwardly, by renumbering the elements
of Ωt,k, an error sampleSt,k containing the lastn k-step ahead
point prediction errors at timet is given as

St,k = {ǫi ∈ Ωt,k, i = 1, . . . , n}. (8)

If a given sample is full when aiming at adding a new
error value, the most aged error value is discarded while
replaced by the most recent one. This idea is motivated by
the nonstationary aspect of wind power prediction errors.

The empirical distribution function̂f ǫ
t,k of errors, at timet

and for horizonk, is defined as the discrete distribution that
puts probability1/n on each element ofSt,k. It can be shown
that f̂ ǫ

t,k is the nonparametric maximum likelihood estimate of
the true distribution function of errorsf ǫ

t,k (see the definition
of nonparametric maximum likelihood in [18, p. 310], as well
as the proof of the above), meaning that the likelihood is
maximized, but without making any parametric assumption
about the error process. Consequently, any parameterθ̂(f̂ ǫ

t,k)

estimated fromf̂ ǫ
t,k is the nonparametric maximum likelihood

estimate of the parameterθ(f ǫ
t,k). For practical use, we intro-

duce the cumulative distribution function̂F ǫ
t,k(x), which gives

the fraction of errors less than or equal tox

F̂ ǫ
t,k(x) =

1

n
#{ǫi ∈ St,k | ǫi ≤ x}. (9)

In the above, ‘#’ is the cardinality mathematical operator,
which returns the number of elements of the set it is applied
to.

An underlying assumption of the empirical approach is that
future uncertainty can be expressed from the recently wit-
nessed behavior of the point prediction method. This translates
to saying that the empirical distribution function of errors
f̂ ǫ

t,k can be seen as an estimate of the distribution of errors
associated to the point forecastŷt+k|t. Therefore, an empirical
predictive distributionf̂t+k|t of wind power output at lead time
t + k can be constructed as following:

f̂t+k|t → {ŷt+k|t + ǫi, ǫi ∈ St,k}, (10)

with an equal probability1/n associated to each element of
f̂t+k|t.
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Since the bounds of the central prediction intervalÎ
(β)
t+k|t

with nominal coverage rate(1−β) are defined as the quantiles
with proportionsα andᾱ of the predictive distribution̂ft+k|t,
as defined in Eq. (5), they are given by:

q̂
(α)

t+k|t = ŷt+k|t + F̂ ǫ
t,k

−1(α) (11)

q̂
(ᾱ)
t+k|t = ŷt+k|t + F̂ ǫ

t,k
−1(ᾱ). (12)

Such a construction of the predictive distribution̂ft+k|t

of wind generation from recent performance implicitly as-
sumes the representativeness of the sample data. This type
of assumption is actually made by any type of forecasting
procedure. This means that issued prediction intervals may
only provide a lower bound on real forecast uncertainty. This
will be illustrated in Section IV.

At this stage, one may consider building prediction in-
tervals directly based on empirical distributions themselves,
or alternatively by employing kernel smoothing techniques.
The former option is preferred here, since for the applica-
tion considered empirical distributions can be defined by a
large number of data points, thus diminishing the interest of
kernel smoothing. In addition, employing kernel smoothing
techniques would require the introduction and estimation of
an additional parameter, namely the kernel bandwidth. Thisis
not desirable in view of our main objective which is to propose
a model-free and empirical method. Note though that further
research may envisage this possibility.

III. C ONDITIONAL PREDICTION INTERVALS WITH A

FUZZY INFERENCEMODEL

For the specific case of wind power forecasting, a number
of variables may influence the characteristics of forecast error
distributions, which will be referred to as influential variables.
They obviously include predicted power [9], but they may also
include predicted wind speed and direction, etc.

Prediction intervals issued with the empirical approach
described above would be the same whatever the level of
influential variables: they actually are unconditional interval
forecasts. It is unlikely that samples of prediction errors
would be representative of the current–and thus conditional–
uncertainty. Consider the following illustrative example. Over
the previousn hours, all forecasts and measurements were
in the low power range, therefore translating to the samples
St,k containing small forecast errors only. At the present
time however, wind power forecasts are in the medium power
range, where forecast uncertainty is much higher. Prediction
intervals derived from the samplesSt,k would therefore be
too narrow and not reflect the current forecast uncertainty.As
a consequence, it is necessary to propose a more dynamic
approach that would be appropriate for issuing conditional
prediction intervals.

The idea of classification of forecast conditions is intro-
duced in the first stage, followed by the description of a fuzzy
inference model permitting to issue conditional prediction
intervals. The fuzzy inference model conceptually defines
distributions of prediction errors as a weighted combination of
the empirical error distributions obtained for various subsets

of forecast conditions. Such combination is finally performed
via the use of a multi-sample resampling scheme.

A. Classification of Forecast Conditions

Let us define a forecast conditionct,k at timet and horizon
k as a set of values of the considered influential variables.
Denote byvl the lth influential variable (say that we consider
L different variables, hencel = 1, . . . , L), andvl

t,k its value at
time t and for horizonk. For instance, one can definev1

t,k =
ŷt+k|t andv2

t,k = ût+k|t, with ût+k|t the wind speed forecast
used as input to the point forecasting method. These will be the
two influential variables considered in the illustrative example
of the mapping of the power curve presented hereafter. It is
assumed that influential variables are bounded, since values of
meteorological variables or power production must stay in a
certain physical range, and can thus be normalized,

vl
t,k ∈ Vl = [0, 1] ∀l, t, k. (13)

Note that forecast errors are also normalized and bounded,
though they lie in the range[−1, 1].

A forecast condition at timet for lead timet+k is uniquely
defined by the association of the values of each of theL
influential variables,

ct,k = {v1
t,k, v2

t,k, . . . , vL
t,k}, ct,k ∈ C = V1 × . . .×VL, (14)

whereC is the set of possible forecast conditions at any time
t and look-ahead timek.

Then, C is mapped with a finite number of subsets to
which are associated different kinds of characteristics of
prediction error distributions. For that purpose, consider Jl

ranges of possible values for each of the influential variablesvl

(l = 1, . . . , L). Consequently, defineV jl

l the subset ofVl that
contains the variable values in thejl

th range. By construction,
Vl is the union of all of its subsets

Vl = V 1
l ∪ V 2

l ∪ . . . ∪ V Jl

l , ∀l, (15)

such that none of these subsets are overlapping

V i
l ∩ V j

l , = ∅, ∀l, i, j, i 6= j. (16)

Now that the sets of possible values for the various influ-
ential variables are split into subsets accounting for different
characteristics of prediction error distributions,C can also be
split into all possible associations of the subsets for the various
influential variables. Write

C({(l, jl)}) = C ((1, j1), . . . , (L, jL))

= V j1
1 × V j2

2 × . . . × V jL

L , ∀jl (17)

these subsets corresponding to thejl
th range of values for

each of theL different influential variables. This hence yields
Ns subsets, where

Ns =
L

∏

l=1

Jl. (18)

As an illustrative example, let us again consider forecast
wind power and forecast wind speed as influential variables.
Three subsets are defined on the range of forecast wind power,
while two are only defined on the range of forecast wind
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Fig. 1. Example mapping of the forecast uncertainty inducedby the power curve (normalized by the nominal capacity Pn). The range of possible predicted
power values is divided into three ranges (‘low’, ‘medium’ and ‘high’), to which are associated three trapezoidal fuzzysets, in order to account for the
nonlinearity induced by the power variable. Similarly, therange of possible forecast wind speed values is divided intotwo ranges (‘no cut-off risk’ and ‘cut-off
risk’), owing to the nonlinearity induced by the cut-off, towhich are associated two trapezoidal fuzzy sets.

speed. Such a situation is represented in Fig. 1, where this
classification reflects the influence of both the nonlinear and
bounded nature of the power curve and its cut-off. The exam-
ple subset of forecast conditionsC((1, 1), (2, 1)) corresponds
to the case for which both predicted wind speed and power
lie in their first subset, and for which forecast uncertaintyis
expected and known to be low. In parallel,C((1, 2), (2, 1))
relates to the case where predicted wind speed lies in its
first subset, while predicted power is in the medium range.
In contrast, forecast uncertainty is known to be significantly
high there. A classification of forecast conditions with different
related characteristics of prediction error distributions, such as
the example one discussed here, can only be the result of a
thorough analysis of the error-generating process. Analyses of
forecasting errors are often very informative (see e.g. [19]),
and allow the analyst to gain expertise about the prediction
problem at hand. Note that for the case study of Section IV, the
level of predicted power will be seen as the unique influential
variable, following our analysis of the forecast uncertainty
characteristics, and supported by works on forecast error
analysis [19] or wind power probabilistic forecasting model
building [12], [13].

In order to associate specific characteristics of prediction
error distributions to each subset ofC, the empirical approach
described above is extended by associating a collection of
recent prediction errors to each of these subsets. As introduced
in Eq. (7),Ωt,k is the set of all the pastk-step ahead prediction
errors up to timet. Define nowΩt,k({(l, jl)}) the subset of
past prediction errors corresponding to the subset of forecast
conditionsC({(l, jl)})

Ωt,k({(l, jl)}) = {ǫt−i+k/t−i ∈ Ωt,k | ct−i,k ∈ C({(l, jl)})}.
(19)

And finally, as was done in Eq. (8), we can extract from
each subsetΩt,k({(l, jl)}) a sampleSt,k({(l, jl)}) of size n
containing the lastn forecasting errors, but in similar forecast
conditions

St,k({(l, jl)}) = {ǫi ∈ Ωt,k({(l, jl)}), i = 1, . . . , n}. (20)

Therefore, each of the subsetsC({(l, jl)}) is character-
ized by its own empirical distribution function̂f ǫ

t,k({(l, jl)}),
drawn from a different sample of past errors.f̂ ǫ

t,k({(l, jl)}) is
thus a conditional distribution function since it is an estimate
of the distribution function of prediction errors given that ct,k

is an item ofC({(l, jl)}). This empirical distribution function
puts probability1/n on each element ofSt,k({(l, jl)}):

f̂ ǫ
t,k({(l, jl)}) → {ǫi, ǫi ∈ St,k({(l, jl)})}. (21)

B. The Fuzzy Inference Model

The previously described classification is the basis for
deriving an empirical and distribution-free method that pro-
vides conditional prediction intervals, given particularforecast
conditions. The choice of the influential variables, as wellas
the splitting of the sets of possible values into various subsets
with different characteristics of related prediction error distri-
butions, are the result of the expertise one has of the process
of interest. A fuzzy inference modelhf (ct,k) is introduced
here, which conceptually defines conditional distributions of
prediction errorsf̂ ǫ

t,k(ct,k) given the forecast conditionct,k.
Fuzzy logic is an alternative paradigm to that of binary

logic. It considers that to each event a degree of truth being
a continuous function between 0 and 1 can be associated. A
nice introduction to fuzzy logic theory can be found in [24].In
Section III-A, the setC of possible forecast conditions has been
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mapped with several subsetsC({(l, jl)}) related to different
forecast uncertainty characteristics. Particularly, a given subset
C({(l, jl)}) is defined as the association of the subsetsV jl

l

(l = 1, . . . , L) for the various considered influence variables,
see Eq. (17). Here, a fuzzy setAjl

l is associated to each of
theseV -subsets, as is done in the illustrative example of Fig. 1
where the mapping of forecast conditions is based on the
known nonlinearities induced by the power curve. A fuzzy set
is characterized by a membership functionτ jl

l , which defines
the degree of truth ofvl

t,k being an element ofV jl

l ,

τ jl

l : vl
t,k → τ jl

l (vl
t,k) ∈ [0, 1]. (22)

The subset of forecast conditionsC({(l, jl)}) is defined as
the association of theL subsetsV jl

l . Therefore, the degree
of truth of a given forecast conditionct,k = {vl

t,k}l=1,...,L

being an element ofC({(l, jl)}) is given by the product of the
membership values for every influential variable,

τ(ct,k, {(l, jl)}) = τ (ct,k ∈ C({(l, jl)})) =
L

∏

l=1

τ jl

l (vl
t,k).

(23)
The fuzzy inference model introduced here relies on fuzzy

rules of the type

“ IF v1
t,k ∈ D(Aj1

1 ) and . . . andvL
t,k ∈ D(AjL

L )

THEN ǫt+k|t ∼ F ǫ
t,k({(l, jl)})” . (24)

whereD(Ajl

l ) stands for the support of the fuzzy setAjl

l . The
‘IF’ part is referred to as the premise of the rule, whereas the
‘THEN’ part is called the conclusion. Note that the above rule
is equivalent to

“ IF ct,k ∈ D(AC({(l, jl)})) THEN ǫt+k|t ∼ F̂ ǫ
t,k({(l, jl)})” .

(25)
where

D (AC({(l, jl)})) = D(Ajl

1 ) × . . . ×D(AjL

L ). (26)

Actually, the rule of Eq. (25) states that if the forecast
condition ct,k can be considered as being an element of a
given subsetC({(l, jl)}) of C, then the prediction errorǫt+k|t

follows the distributionF ǫ
t,k({(l, jl)}).

Subsequently, a rule base is composed by rules similar to
that given by Eq. (25), which span all the possible subsets
of C. The number of fuzzy rules is hence given by the
number of subsetsNs used to map the set of possible forecast
conditions. For convenience, an indexi is associated to each
of the Ns subsets, and we introduce the functionη(i) that
returns the{(l, jl(i))}l=1,...,L pairs that serve to identify the
corresponding subset

η : i ∈ {1, . . . , Ns} → {(l, jl(i))}l=1,...,L, (27)

such that each of the{(l, jl(i))}l=1,...,L pairs is given by a
unique value ofi. The ith rule of the fuzzy rule base is of the
form

“ IF ct,k ∈ D(AC(η(i))) THEN ǫt+k|t ∼ F ǫ
t,k(η(i))” , (28)

where

D(AC(η(i))) = D(A
jl(i)
1 ) × . . . ×D(A

jL(i)
L ). (29)

The inference procedure based on this fuzzy logic model
consists of applying the rule-base to the forecast condition
ct,k in order to provide the overall conclusion as the weighted
average of the conclusion of each rule. The weightwi for each
rule is given by the degree of truth of the related premise,
normalized by the sum of the weights for each rule

wi(ct,k) =
τ(ct,k, η(i))

∑Ns

i=1 τ(ct,k, η(i))
, i = 1, . . . , Ns, (30)

with τ(ct,k, η(i)) defined by Eq. (23).
By doing so, the fuzzy inference model tells what the

contribution of each of the error distributionsf ǫ
t,k(η(i)) in the

error distributionf ǫ
t,k is, given the current forecast condition

ct,k. The fuzzy inference model can finally be written as

hf : ct,k → ǫt+k|t ∼ f ǫ
t,k =

Ns
∑

i=1

wi(ct,k)f ǫ
t,k(η(i)). (31)

C. Combining Error Distributions with a Multi-Sample Re-
sampling Scheme

Given a specific forecast conditionct,k, The inference model
hf defines the distributionf ǫ

t,k of prediction errorsǫt+k|t as a
combination of several empirical distributions corresponding
to the various subsets of forecast conditions. One should then
propose a method for such a combination, similarly to the
issue of summarizing expert opinions in a single combined
distribution, see review of that problem in [25]. With that
combination objective in mind, we hereafter employ a method
based on a multi-sample resampling scheme. This method
has been shown to be superior to the more classical linear
opinion pool for the wind power forecasting application [19].
A description of the linear opinion pool is available in [26].

Write S = {ǫj}j=1,...,n a random sample from a proba-
bility distribution f . The observationsǫj are assumed to be
i.i.d. (independent and identically distributed). Following the
terminology of the bootstrapping literature (see e.g. [18]), the
plug-in estimate of a parameterθ = h(f) is defined to be
θ̂ = h(f̂). This means that we estimate the true parameter of
f by applying the same function to the empirical distribution
function f̂ . This is what is performed in Eqs. (11) and (12)
for estimating the lower and upper bounds of the prediction
intervals. The elements ofS are used for setting up an estimate
F̂ of the cumulative distribution function associated withf .

Denote byX = {xj}j=1,...,n a random sample that is
i.i.d. U [0, 1]. Probability theory tells us that the sample
{F−1(xj)}j=1,...,n is i.i.d. f . Then, the idea of resampling
states that sincêF is an estimate of the true cumulative distri-
bution function, one can use it for drawing alternative samples
that would lead to other empirical distribution functions of
the true distributionf . In practice, this alternative sample
S(b) (b = 1, . . . , B), called bootstrap sample, is obtained
by picking randomly and with replacementn values out of
the original sampleS. θ̂(b) is a bootstrap replication of theθ
statistic. The obtained set of bootstrap replications may then
be employed for statistical inference on the true parameterθ.

The basic idea of resampling is employed here for estimat-
ing a given parameterθ of a combined probability distribution,
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by having an interpretation of the combination given by the
fuzzy inference model of Eq. (31) slightly different from that
of the linear opinion pool. Remember that the fuzzy inference
model assigns a weight to each of theNs distributions
f ǫ

t,k(η(i)). The distributionsf ǫ
t,k(η(i)) can be approximated

by the empirical distributionŝf ǫ
t,k(η(i)). The linear opinion

pool approach states that these weights can be seen as proba-
bilities and that one can construct a combined distributionby
associating these probabilities to each sample. The difference
introduced here is that these weightswi (i = 1, . . . , Ns) are
to be used for defining the share of each of the representative
samples of errorsSt,k(η(i)) in a representative sample drawn
from the combined distribution. This interpretation leadsto
generatingB bootstrap sampleS(b)

t,k and compute a bootstrap

replicationθ̂(b) for each of them. Givenn the size of the error
samples, a bootstrap sampleS

(b)
t,k (also of sizen) is constructed

as following

S
(b)
t,k = {S

(b)
t,k(η(i))}i=1,...,Ns

, (32)

such that, fori = 1, . . . , Ns,

S
(b)
t,k (η(i)) = {ǫj | ǫj ∈ St,k(η(i))}j=1,...,win, (33)

where the items ofS(b)
t,k (η(i)) are picked randomly and with

replacement fromSt,k(η(i)). Note that the number of elements
in the subsampleS(b)

t,k (η(i)) is win, wherewi is the weight
given by the fuzzy inference model of Eq. (31).

The parameters of interest are the quantiles of the combined
probability distributionf̂ ǫ

t,k. Write F̂
ǫ,(b)
t,k the related cumula-

tive distribution function (following the definition of Eq.(9)).
The bootstrap replications of the lower and upper bounds of
the interval forecast̂I(β)

t+k|t with nominal coverage rate(1−β)
are given by

q̂
(α)(b)

t+k|t = ŷt+k|t + F̂
ǫ,(b)
t,k

−1(α) (34)

q̂
(ᾱ)(b)
t+k|t = ŷt+k|t + F̂

ǫ,(b)
t,k

−1(ᾱ). (35)

The bootstrap expectation is subsequently obtained by tak-
ing the mean of all the bootstrap replications, and yields an
estimate of the interval bounds

q̂
(α)

t+k|t =
1

B

B
∑

b=1

q̂
(α)(b)

t+k|t (36)

q̂
(ᾱ)
t+k|t =

1

B

B
∑

b=1

q̂
(ᾱ)(b)
t+k|t . (37)

By constituting theseB bootstrap samples, we actually
use all the information included in the individual samples
by drawing alternative scenarios. Also, while it is explained
in [18, pp. 124-126] that the bootstrap expectation serves
for calculating the bias associated to the original estimate
of a distribution parameter from a single sample, it has a
completely different meaning here, since we apply that form
of resampling for a multi-sample problem. The overall method
for issuing conditional prediction intervals of wind poweris
referred to as adapted resampling owing to its similaritieswith
the original resampling approach.

IV. A PPLICATION AND RESULTS

A. Description of case-studies

The test case of an onshore Danish wind farm located
in Klim, North Jutland, is considered. Its nominal capacity
is defined as Pn = 21MW. Series of wind power point
forecasts are available from 3 statistical forecasting methods:
Sipreólico [27], Armines Wind Power Prediction System (AW-
PPS, [28]), and Wind Power Prediction Tool (WPPT, [29]).
They use the same meteorological forecasts of wind speed
and direction from HIRLAM (High Resolution Limited Area
Model) as input. Corresponding wind power measurements are
also available. The period covered by these point forecasts
and corresponding measurements is from the 1st of March
2001 until the 2nd of May 2003. For confidentiality reasons,
the results presented in the following are not attached to any
specific point prediction method. They are related to point
prediction methods M1, M2 and M3 instead. This should not
be seen as an issue, since what we aim for is to evaluate
the set of probabilistic forecasts generated from these point
predictions, not the point predictions themselves. Both fore-
casts and measurements have an hourly temporal resolution.
Forecasts are up to 43 and 48 hours ahead (depending on the
point forecast method), and updated hourly. For consistency,
we only perform a comparative evaluation for horizons up to
43 hours ahead. Since the first 2000 forecast series are used
for initialization of the probabilistic forecasting method, we
are left with an evaluation set composed of 16937 series of
wind power point forecasts and associated prediction intervals.
Extensive description of this dataset, related results, aswell as
results from other datasets, is available in [19]. Note thatwe do
not consider any benchmark intervals based on a parametric as-
sumption about the shape of error distributions. The superiority
of adapted resampling against the assumption of Gaussian
andβ error distributions has already been discussed, see [19]
and references therein. An example comparison of adapted
resampling with time-adaptive quantile regression [12], which
is another nonparametric method, will be given here. An
extensive comparison of these two state-of-the-art methods can
be found in [32].

Regarding the mapping of forecast uncertainty, since the
dataset available only exhibits very few occurrences of cut-
off events (14 occurrences over the whole dataset), it has not
appeared appropriate to consider that nonlinearity. This could
be done in the future when treating other datasets with more
cut-off events. This would only imply a different mapping of
the power curve, though the overall methodology would stillbe
the same. However, as for any existing statistical method for
wind power probabilistic forecasting, the relative infrequent
occurrence of cut-off events may directly impact the quality of
resulting probabilistic forecasts. It would actually be difficult
to evaluate them anyways, as evaluation would also be based
on a few occurrences of such events. In parallel after extensive
analysis of the dataset available, we have made the choice to
disregard the potential effect of other meteorological variables,
like wind direction for instance, on forecast uncertainty.This
is because their influence has not been found significant.
Therefore, focus is only given to the influence of the level of
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Fig. 2. Example of wind power point predictions associated with a set of interval forecasts. The point predictions are given by M2 and the central interval
forecasts are estimated consequently with the adapted resampling method. Nominal coverage rates range from 10 to 90%. These sets of predictions and
intervals were issued on the 27th January 2001 at 18:00, for the Klim wind farm in North Jutland, Denmark.

predicted power on forecast uncertainty. Note though that point
forecasts of wind power generation are a function of these
meteorological variables. Their effect on forecast uncertainty
is thus indirectly considered by relying on wind power point
forecasts as influential variable. This is actually in line with
some other investigations on probabilistic forecasting ofwind
power generation, that also considered the wind power point
forecast as the main explanatory variable for their probabilistic
forecasting models [12], [13].

Following the guidelines given in [19], the range of power
values is divided in 5 equal ranges, associated with trapezoidal
fuzzy sets of the form of those depicted in Fig. 1. In parallel,
the error sample size is set to 300 elements, and the number
of bootstrap replications to 50. Fig. 2 depicts an episode
consisting of a set of point forecasts provided by M2, issuedon
the 27th January 2003 at 18:00 for the Klim wind farm, along
with corresponding power measurements. A set of interval
forecasts generated with the adapted resampling method is
associated to the point predictions, in the form of a fan chart,
thus yielding predictive distributions. The nominal coverage
rates for these intervals were set to 10, 20,. . ., 90%, as
will be the case for all prediction intervals evaluated in the
following. Following Eqs. (5) and (6), the resulting predictive
densities are then defined by a set of 18 quantile forecasts,
whose nominal proportions range from 5% to 95%, with 5%
increments, except for the median. Note that the resulting
predictive densities are censored densities, meaning thatif
the forecasted probabilities of events outside of the rangeof
possible generation are not null, such probabilities are then
transformed into a probability mass on the related bound, as
discussed in [30], [31] for instance.

It has been explained in Section II-A that emphasis is
here on nonparametric central prediction intervals. From the
example of Fig. 2, one clearly sees that interval forecasts
are not symmetric around the point forecasts, and that for
low nominal coverage rates, they may not even cover them.

Point forecasts relate to the mean of predictive distributions,
while interval forecasts are centered on the median. When
the asymmetry of predictive distributions is more pronounced
(for low and high predicted power values for instance), the
difference between mean and median becomes larger. This is
clear here for horizons 3 to 15, or 33 to 43 hours ahead.
Moreover, the effects of both the lead time and the level
of predicted power can be seen from the Figure. Prediction
intervals are fairly tight for the very first horizons, due tothe
low level of predicted power and also due to higher forecast
accuracy of statistical methods for short-range horizons.Then,
they become rather wide when predicted power is in the
medium-range: forecast uncertainty is higher in such a case.
They then become narrower again for horizons between 20
and 25 hours ahead, since predicted power is again at a low
level. They finally are slightly wider as forecast horizons get
closer to 2 days ahead.

The evaluation framework presented in [32] is employed
here for assessing the quality of the predictive distribu-
tions obtained with adapted resampling. This framework is
somehow based on the paradigm of ‘maximizing sharpness
of predictive distributions subject to reliability’ introduced
in [33]. Reliability corresponds to the probabilistic correctness
of the forecasts, while sharpness relates to the concentration
of probabilities, or alternatively to their ability to provide a
situation specific assessment of forecast uncertainty. Focus is
given first to reliability, followed by an assessment of the
sharpness of predictive distributions, through evaluation of
their overall skill.

B. Reliability evaluation

Following [32], reliability is evaluated as a form of proba-
bilistic correctness with reliability diagrams giving thedevia-
tion between observed (â(α)) and nominal (α) proportions of
quantile forecasts — the closest to zero the better. Remember
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Fig. 3. Reliability diagrams evaluating the reliability ofprobabilistic forecasts obtained when adapted resamplingis applied to the 3 different point prediction
methods M1, M2 and M3. Figures in the legend correspond to theaverage absolute deviation from the ideal case. Example comparison is made with the case
where probabilistic forecasts originate from the application of time-adaptive quantile regression to the point forecasts of M2.

that these nominal proportions range from 5% to 95%, with
5% increments, except for the median. In practice, if focusing
on the quantile forecasts with nominal proportionα, this
deviation is defined as

â(α) − α =
z(α)

N
− α, (38)

whereN is the total number of observations, whilez(α) is
the number of hits, that is, the number of times wind power
observations actually lie below the quantile forecasts with
nominal proportionα. The reliability diagrams employed here
summarize these deviations for the various nominal propor-
tions of the quantile forecasts defining predictive distributions.

Fig. 3 depicts the reliability evaluation results for predictive
distributions obtained after application of adapted resampling
to point forecasts issued by M1, M2 and M3, and after appli-
cation of time-adaptive quantile regression to point forecasts
issued by M2. These reliability diagrams are for the whole
forecast length. This means that all probabilistic forecasts for
the various look-ahead times are indifferently used for calcula-
tion of deviations between nominal and observed proportions.
In Fig. 3, thex-axis gives the nominal probabilities of quantile
forecasts, and the various curves display the deviation (in
percent) from ‘perfect reliability’, as expressed by Eq. (38).
This ideal situation of perfect reliability is representedby the
dash-dot straight line. Then, a 1%-deviation for the quantile
with nominal proportion 20%, for the example case of M3 in
Fig. 3, actually shows that the observed proportion is equalto
21%. Figures in the legend correspond to the average absolute
deviation from the ideal case, over the range of nominal
proportions (and also over the forecast length). They can be
seen as the overall probabilistic bias of these probabilistic
forecasts.

One observes from Fig. 3 that the deviations from perfect
reliability are contained in a±1.5% envelope whatever the
considered point prediction method, and subsequent proba-

bilistic forecasting method are. In parallel, the average absolute
deviation values are contained between 0.32% and 0.5%. Such
small differences among deviations may not obviously be
due to lower and higher reliability of probabilistic forecasts,
but may be due to sampling and serial correlation effects
instead [34]. In general, the reliability of the intervals could
be expected to be lower for low and high nominal proportions
since it is harder to model the very tails of error distributions.
This is not the case here. One notices however a general trend,
which is that quantiles for proportions below 50% tend to
be overestimated while those above the median tend to be
underestimated. Prediction intervals are slightly too narrow on
average. This goes along our comment in Section II-B such
that methods of estimating future uncertainty usually relyon
past experience of a given model performance and therefore do
not integrate the additional uncertainty of predicting newdata.
In a global manner, it may still be appraised that evaluated
probabilistic forecasts appear sufficiently reliable (andthis
whatever the point forecasts used as input to adapted resam-
pling), thus allowing us to move on to sharpness evaluation.An
important point is that both adapted resampling and quantile
regression appear to have a similar, and acceptable, level of
reliability.

C. Sharpness evaluation

When reliability of probabilistic forecasts has been assessed,
a sharpness evaluation of these forecasts can be performed
through the study of their overall skill. Skill encompassesall
aspects of probabilistic forecast quality. Following [32], the
skill of predictive distributions is studied based on a proper
scoring rule which, for a given predictive distribution̂ft+k|t

and corresponding realizationyt+k writes

Sc(f̂t+k|t, yt+k) =

m
∑

i=1

(

ξ(αi) − αi

)

(yt+k − q̂
(αi)
t+k|t), (39)
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Fig. 4. Skill score as a function of the horizon, for probabilistic forecasts obtained when adapted resampling is applied to the 3 different point prediction
methods M1, M2 and M3. Example comparison is made with the case where probabilistic forecasts originate from the application of time-adaptive quantile
regression to the point forecasts of M2.

with ξ(αi) an indicator variable for the quantile forecastq̂
(αi)
t+k|t,

being equal to 1 if the observation is beloŵq(αi)
t+k|t, and 0

otherwise. Over an evaluation set withN forecast series, the
above scoring rule can be applied to evaluate the skill of
predictive distributions as a function of the look-ahead time
k, with

Sck =
1

N

N
∑

t=1

Sc(f̂t+k|t, yt+k). (40)

This scoring rule is positively oriented — the higher the better,
and admits a maximum value of0 for perfect probabilistic
predictions.

In order to appraise the actual skill of predictive distri-
butions, they should be evaluated with respect to a relevant
benchmark. The most common benchmark for probabilistic
forecasts of weather variables and weather-related processes
(such as wind power generation) is climatology. The climatol-
ogy predictive distribution is given by the distribution ofall
available observations, and is thus a unique and unconditional
probabilistic forecast. Note that the climatology probabilistic
forecasts are by definition probabilistically reliable. Ifdenoting
by Sc0k the scoring rule value for climatology for a given look-
ahead timek, one then defines the skill score,

SSck = 100
Sc0k − Sck

Sc0k
, (41)

giving the improvement (in percent) of the probabilistic fore-
casting method considered over the climatology benchmark.

Fig. 4 depicts the evolution of this skill score as a functionof
the look-ahead time, for predictive distributions obtained with
adapted resampling (with input the point forecasts from M1,
M2 and M3) and with quantile regression (with input from
M2). The skill score steadily decreases with the look-ahead
time, meeting the general statement that it is harder to predict
for lead times further in the future, as is also the case for point
forecasts. The improvements over climatology are positive

over the whole forecast length, highly significant for short
look-ahead times, and steadily decreasing for further ones. An
interesting point is that the choice of a given point prediction
method as input has an influence on the quality of the resulting
predictive distributions. It appears that considering M1 leads
to better probabilistic forecasts for the very first look-ahead
times, whereas considering M2 is better for further ones.
One also sees that the difference between adapted resampling
and quantile regression is negligible (the lines are almoston
top of each other). This is while adapted resampling has the
advantage of being model-free, and only requiring a single set-
up to produce full predictive densities, in contrast to the 18
models that are needed to be proposed for quantile regression
(i.e. one for each of the quantiles).

Note that since predictive distributions actually relate to
estimates of the error distributions of the point forecasts, a
point prediction method with sharper error distributions will
yield sharper probabilistic forecasts. This comment is of course
valid only if the prediction interval estimation approach has
a real ability to reflect the error distribution associated to a
given point forecast. For the test case of the present paper,we
observe a significant difference in skill among the probabilistic
forecasts generated from the various point forecasts used as
input. And in view of comparison with other application
test cases documented in [19] for instance, it appears that
one may also expect significant differences in the skill of
probabilistic forecasts depending of the site characteristics, in
terms of terrain, size of the wind farm(s), offshore or onshore
conditions, etc., which can be explained by inherently higher
or lower predictability at this particular site.

V. D ISCUSSION ONOPERATIONAL ASPECTS

The developed approach has been implemented into an
operational module and integrated in the ANEMOS wind
power forecasting system developed in the frame of an EU-
funded project under the same [35]. This module produces
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prediction intervals for point predictions coming from classical
wind power prediction models or for the combination of such
predictions. The advantage of this two-step approach is that
it permits to maintain the classical deterministic physical or
statistical models within the modeling chain. These point
forecasting models are especially designed and trained, and are
the result of several years of research and improvements. An
alternative approach would be a one-step approach where the
modeling chain contains only one model that directly generates
the whole probability density function of wind production for
each look-ahead time. This two-step approach is also straight-
forwardly applicable to produce prediction intervals for the
aggregated production of a group of wind farms which is often
an operational requirement. This is done by considering the
aggregated wind power prediction as input to the uncertainty
module. Such a solution is preferable to that consisting of
generating probabilistic forecasts for each individual wind
farms and then aggregating the estimates. This is because this
aggregation would then correspond to summing nonparametric
densities of interdependent random variables (both spatially
and temporally), which can be a complex task. Note that
some developments towards the understanding and modeling
of complex temporal and spatial interdependence structurein
wind power forecast uncertainty have been initiated in [36].

The module has been operationally applied to several real
world cases including SONI, the TSO of Northern Ireland,
UK, and the Market and System Operator of Australia AEMO
(ex Nemmco), as well as others. In these cases prediction
intervals are produced for all wind farms in the area of
these operators as well as for several aggregation levels. An
important issue that appears in an operational environmentis
how to handle situations where there is ‘down-regulation’ of
power (i.e. controlled reduction of the wind farm output) due
to network or other constraints. The consideration of scheduled
maintenance of wind turbines within a wind farm is also a
challenge. A solution can be to proceed with a simple scaling
of the prediction intervals, this scaling being influenced by
the operational constraints, or by the number of wind turbines
out of order. In practice, this translates to considering that the
wind farm (or group of wind farms) has a potentially varying
nominal capacity.

VI. CONCLUSIONS

Adapted resampling is a generic method suitable for the
online assessment of forecast uncertainty of state-of-the-art
wind power point forecasting methods in operational condi-
tions. It permits to provide conditional prediction intervals
based on recent observed accuracy of a point forecasting
method of interest, while accounting for expert knowledge
of forecast uncertainty characteristics. The method relies on
a classification of recent forecast errors, a fuzzy inference
model, and a multi-sample resampling scheme for combination
of probability distributions. A great advantage of this method
is that it permits to “dress” point forecasts with predictive dis-
tributions informing of their situation-dependent uncertainty,
in a consistent and computationally inexpensive manner.

The quality of the resulting probabilistic forecasting ap-
proach has been illustrated based on the test case of an onshore

Danish wind farm, while it has been explained that other
evaluation results exist for a number of offline case-studies,
as well as for a large number of operational ones. This is due
to the fact that adapted resampling is integrated in the formof
a module in the ANEMOS wind power forecasting platform,
installed and operated in a number of European countries
and in Australia. Adapted resampling appears to be (prob-
abilistically) reliable. In parallel, the sharpness of predictive
distributions issued from this method is bounded by the quality
of the point predictions they complement. This follows from
the fact that probabilistic forecasts are based on the modeling
of the point forecast error distributions. The sharper these
distributions, the sharper the resulting probabilistic forecasts.
As a consequence, it may be advised that future methods for
probabilistic forecasting of wind power generation do not rely
on point forecasts as input, but directly consider the modeling
of predictive distributions from meteorological conditions.

It is unlikely that in the near future probabilistic forecasts
will be fully integrated into the wide range of decision-making
problems related to wind power management, trading, and
integration into the electricity network. This is even though
it can be shown that for a large class of decision-making
problems, decisions based on traditional point forecasts only
prove to be suboptimal. Efforts in that direction will have
to be concentrated on appropriate research, demonstrationof
resulting benefits, and transfer of knowledge via training of
relevant personnel.
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