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Abstract

Major recent changes in electricity markets relate to the process for their
deregulation, along with increasing participation of renewable (stochastic)
generation e.g. wind power. Our general objective is to model how feedback,
competition and stochasticity (on the production side) interact in electricity
markets, and eventually assess what their effects are on both the participants
and the society. For this, day-ahead electricity markets are modeled as dy-
namic closed loop systems, in which the feedback signal is the market price.
In parallel, the Cournot competition model is considered. Mixed portfolios
with significant share of renewable energy are based on stochastic threshold
cost functions. Regarding trading strategies, it is assumed that generators
are looking at optimizing their individual profits. The point of view of
the society is addressed by analyzing market behavior and stability. The
performed simulations show the beneficial effects of employing long term
bidding strategies for both generators and society. Sensitivity analyses are
performed in order to evaluate the effects of demand elasticity. It is shown
that increase in demand elasticity reduces the possibility for the generators
to exploit their market power. Furthermore, the results suggest that intro-
duction of wind power generation in the market is beneficial both for the
generators and the society.
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1. Introduction

Power markets worldwide have been monopolistic for the most part of
the 20th century, but in the recent years they have undergone a signif-
icant restructuring process. In fact, since the 1980s, the trend in many
countries has been to reshape the traditional regulated power industry in
a more open way, with the aim of encouraging competition and increasing
its efficiency. Several structures for deregulated energy markets have been
proposed over the years in different countries. Among these, the power pool
(poolco type, see Garber et al. (1994)) has been the most successful one. It
is also the structure of the electricity market that is addressed by this work,
in which emphasis is on the NordPool day-ahead market (NordPoolSpot
website, 2009).

The existing literature on the subject underlines two distinctive features
of day-ahead electricity markets: they are dynamic and stochastic. Addi-
tionally to these two aspects, competition exists as the central mechanism
for market efficiency.

The first feature is basically due to the non-storability of energy in big
amounts. As a result, demand and offer of energy must be balanced at ev-
ery instant. The cost function for the GENCOs is usually increasing with
respect to the quantity produced: hence, the higher the demand, the higher
the cost. The demand has large variations over time, both on a daily and
on a seasonal scale, so will do the cost. This also holds for the case of
the NordPool day-ahead market, whose dynamic characteristics have been
well acknowledged, for instance in Erzgräber et al. (2008) and Bask et al.
(2007). The predominant approach in the literature so far has been to con-
sider the auctioning periods as independent of each other. The techniques
used span from stochastic optimization either through Markov decision pro-
cess (among the many, Song et al. (2000)) or genetic algorithm (Richter and
Sheble (1998)), to Lagrangian relaxation (Guan et al. (2001)), stochastic
dynamic programming (Ni et al. (2004)) and game theory based algorithms
(Park et al. (2001)). Generally, this approach has led to the development of
strategies that overlook the market dynamics. As a matter of fact, the period
to period interrelation between the bids and the periodicity in the demand
characteristic represent just two straightforward arguments substantiating
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the importance of modeling the energy market as a dynamic system. Never-
theless, as of now, little of the existing work has undertaken this direction;
among the few exceptions Alvarado (1997), Liu (2006) and Conejo et al.
(2002).

The second important characteristic of energy markets, besides the in-
herent dynamics, is the presence of uncertainty. This is not a brand new
issue, and has already been analyzed in the literature (among the many
Singh (2008), Liu (2006), Wen and David (2001), Swider and Weber (2006))
whose approaches can be divided into two main branches. The first one con-
siders systems in which the demand function is stochastic, as in Liu (2006).
The second approach, instead, emphasizes the difficulty of estimating pre-
cisely the competitors’ behavior and, hence, models their bids as stochastic,
as in Wen and David (2001). However, especially in the recent years, the
trend has been to increase the share of electricity generated from renewable
energy sources, as a result of the growing attention paid to environmental
issues. Renewable energy generation is by nature uncertain, although to
different extents depending on the different sources. Indeed, it turns out
(see Jónsson et al. (2009)) that its inclusion in the market on a significant
scale pushes the effect of the two aforementioned sources of uncertainty into
the background.

In this article a dynamic and stochastic model of energy markets pene-
trated by wind power production is presented. Our objective is to investigate
the unexplored topic stemming from the combination of dynamic modeling
and stochasticity in the production. We focus on the interrelation between
the bids placed for the same auctioning periods in following days, since it
represents the most relevant dynamic feature of power markets, as shown, for
instance, by the daily periodic pattern of the demand function. Regarding
the stochasticity, ideally, all sources of uncertainty should be accounted for.
Here it is decided to focus specifically on the supply side, which, as men-
tioned above, represents the dominant source of uncertainty for markets
significantly penetrated by renewable energy production e.g. wind energy.
The accounting of both these features renders our work relevant insofar as
it gives a particularly faithful description of the real markets as they have
evolved in the recent years.

The feature that makes our approach innovative is represented by the
fact that stochastic cost functions are considered for the generators. Then,
stochastic optimal control theory is used in the derivation of the dynamic
model. Our belief is that control theory represents an effective tool for
describing and modeling electricity markets. This confidence springs mainly
from two observations. Firstly, modeling the electricity market as a closed
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loop dynamic system permits developing further insight into the market e.g.
on its stability properties, which cannot be obtained through static models.
In parallel, optimal control theory allows for the development of advanced
strategies which are not conceivable in a static framework. The second
advantage of using control theory lies in the fact that it allows accounting for
the stochastic features of electricity markets, which leads to the derivation
of optimal bids in a stochastic sense, based on e.g. maximizing revenue
expectation. This finally results in implementing the interaction between
the competitive behavior of the participants, feedback and uncertainty and
how they influence the functioning of deregulated power markets.

Following a common trend in the literature (Andersson and Bergman
(1995), Kahn (1998), Hogan (1997), Willems (2002)), the Cournot com-
petition model is used. In this framework, the bid of a generator is the
quantity of energy it is willing to deliver to the market in a given auctioning
period. The popularity of this model in the existing literature has sound
motivations. On the one hand, it provides a more realistic description of
the mechanisms of electricity markets than the Bertrand competition model
(Hobbs (1986), Aghion and Bolton (1987)), in which players bid the price of
the energy they sell. On the other hand, it is relatively simple if compared to
the supply function model (studied in Klemperer and Meyer (1989), Green
and Newbery (1992), Bolle (1992), Rudkevich (1999), Baldick et al. (2002)),
fact that in the case of this work allows an analytical solution of the prob-
lem. Although not presented here, the supply function competition model
has been considered as well in our study. The interested reader is referred
to Giabardo and Zugno (2008) for a complete treatment.

The present paper is organized as follows. Section 2 presents the devel-
opment of the mathematical model for energy markets and introduces the
day ahead strategy, that is the simplest of the optimal strategies consid-
ered. In a second stage, Section 3 is dedicated to the derivation of the more
advanced bidding strategy, called long term. The implementation of the
system is subsequently presented in Section 4, along with comments on the
main results of its simulation. Conclusions are finally gathered in Section 5,
along with perspectives regarding further work.

2. Problem formulation as a dynamic stochastic system

With Alvarado (1999) and Liu (2006) as sources of inspiration, the
Cournot competition is modeled as a closed loop system, where the feed-
back signal is the price (which is always made public in restructured energy
markets) while the control signals are the individual bids of the generators,
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that is quantities. The structure of the energy market, which is divided
into hourly bidding rounds, suggests discrete time as the straightforward
framework.

A GENCO that sells energy in a deregulated market usually acts with
the objective of maximizing its profits. A firm behaving this way is said
to be rational. Rationality is a key concept in classical game theory; the
interested reader is referred to Binmore (2008) for further reading. Possible
exceptions to the pure rational behavior are found in cases in which the
GENCO’s strategy is constrained by governmental regulations. The basic
assumption in this article is that all the competitors are rational and the
collusion between them, which is forbidden by antitrust laws, is excluded.
At first, the day ahead strategy is developed, aimed to optimize the profits
of a GENCO in the successive bidding round. The main idea behind this
strategy is that each rational generator will keep on increasing its bid over
time as long as the system price is higher than its marginal cost. The system
price, in turn, is determined by the combined effect of both demand and
supply, so it is a function of the bids of the generators. Therefore, this kind
of competition is a closed loop system, in which the publicized information
(the output) is fed back to each GENCO before the next bidding round, and
used to formulate the next bid. Figure 1 gives a sketch of the system.
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Figure 1: Closed loop dynamic model for the energy market.

Let us now introduce the notation that is employed below in the formu-
lation of the problem as a dynamic system. The Cournot competition can
be modeled by a state space whose variables are the quantities bid by each
generator. For generator i, the amount of bid energy is indicated with xi. In
order to determine the behavior of a generating company, its cost function
must be defined. As a matter of fact, the cost function for a GENCO depends
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on its production mix. Basically, two production technologies dominate the
Danish electricity market, which is the main focus of this article: conven-
tional thermal production and wind power, which account for, respectively,
about 85% and 15% of the market. Generally, the existing literature on the
subject (for instance see Martini et al. (2001), Yu et al. (1998), Alvarado
(1997)) considers quadratic cost functions as a good approximation of the
costs of a generator using thermal plants. Furthermore, it is known that for
wind production plants the running cost is basically null with the exception
of the maintenance and the startup costs. Therefore, the cost function turns
out to be piecewise defined (the symbol ˜ denotes a stochastic variable):

Cpi =

aw,i(t), x̃i,t(t) ≤ x̃i,w(t)

aw,i(t) + ai(t) + bi(t)x̃i(t) +
1
2
ci(t)x̃i(t)2, x̃i,t(t) > x̃i,w(t)

(1)

where x̃i,t(t) is the quantity of energy produced in total by the i-th genera-
tor, x̃i,w(t) is the quantity of wind energy and x̃i(t) = x̃i,t(t)− x̃i,w(t) is the
quantity of energy produced with other technologies. It is straightforward
from the chosen notation that the cost of producing x̃i,w(t) is aw,i(t), which
is independent of the amount of wind energy, while the cost of producing
x̃i(t) is the quadratic function ai(t) + bi(t)x̃i(t) + 1

2ci(t)x̃i(t)
2. The coef-

ficients aw,i(t), ai(t), bi(t) and ci(t) are generally time dependent, though
later in this article they will be assumed constant. Such assumption is
motivated by the fact that the time scale of significant changes (e.g. fluctu-
ations in the cost of fuel) is much longer than the time window considered
in the optimization process. An example of a possible cost function and
the corresponding marginal cost can be found in Figure 2. As one can see,
both the functions are characterized by two properties: they are piecewise
defined and the threshold x̃i,w(t) is a stochastic process. In practice for mar-
ket participants with mixed portfolios, the successive cost functions could
be estimated based on forecasts of wind power production for each market
time unit in the coming period. This is the situation that will be considered
in the simulation test case below. In further developments however, it would
be an additional value to also account for uncertainty in those wind power
forecasts — a review of the state of the art in wind power forecasting is
available in Giebel et al. (2003) and Costa et al. (2008), scenarios of succes-
sive cost functions could be based on scenario forecasts of short-term wind
power production, see discussion by Pinson et al. (2009).

Both the features described above target at being a realistic description
of the cost for the generators. In fact, the cost function is seldom just a
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Figure 2: Example of a stochastic threshold cost function (left) for a port-
folio with significant share of stochastic generation e.g. wind power and the
corresponding marginal cost function (right).

quadratic (or constant) function of the produced quantity, as the generators
rarely employ only thermal (or wind) production but generally a mix of these
and other techniques. Furthermore, one must take care of the fact that gen-
eration technologies that are stochastic by nature (for example, again, wind
or hydro power) introduce stochastic quantities in the definition of the cost
function, such as the threshold in the case of wind production. As a matter
of fact, very little work exist in the literature in which cost functions of this
kind have been considered, although it is clear that a realistic description
of the generation costs is paramount if one aims at developing an efficient
bidding policy. The virtues of this approach extend, with null or little ef-
fort, to basically all the cases in which producers have to deal with mixed
portfolio generation, especially when one or more production technologies
involving uncertainty are used, which is the latest trend in the industry as
renewable sources are being encouraged more and more by the international
environmental policies. Other issues, such as the stochastic cost of fuel on
a long term scenario planning, can be covered with a similar approach.

The described setup leads to a high complexity in the development of
the long term strategy, insofar as the solution to the optimization problem
requires the definition of a tree including all the possible cases and the eval-
uation of the profits in each branch of the tree. Therefore, a simplification
has been introduced, consisting in assuming that the bid of a producer is
always greater or equal to the wind energy that it reckons it is going to
produce: x̃i,t(t) ≥ x̃i,w(t). This assumption is realistic since the wind, along
with hydro, is the cheapest source of energy available. Therefore, in the
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real market, the bids corresponding to wind energy are the most likely to
be accepted. Hence, the cost function of a producer becomes

Ci(x̃i(t)) = aw,i(t) + ai(t) + bi(t)x̃i(t) +
1
2
ci(t)x̃i(t)2 (2)

The optimization procedure, thus, can be carried out on the amount x̃i(t) of
energy produced with technologies other than wind power, since the quantity
x̃i,w(t) is going to be bid anyway by the producer.

As far as the demand is concerned, the existing literature (for instance
see Powell (1993) and Songa et al. (2003)) suggests to model it by means of
the linear inverse demand function

p(t) = e(t)− f(t)D(t) (3)

where p(t) is the system price, D(t) is the total demand. By definition, the
parameters e(t), f(t) are both positive, since this function is positive valued
at D(t) = 0 and decreasing. It is to be noticed that the demand function is
given by

D(t) = α(t)− β(t)p(t) (4)

where α(t) = e(t)/f(t) and β(t) = 1/f(t).
The instantaneous balance of supply and demand due to the non-storability

of energy requires

D̃(t) =
N∑
i=1

x̃i,t(t) (5)

Hence, (3) becomes

p̃(t) = e(t)− f(t)
N∑
i=1

x̃i,t(t) = e(t)− f(t)
N∑
i=1

(x̃i(t) + x̃i,w(t)) (6)

The price is now itself a stochastic quantity, along with the profit, which is
given by

π̃i(t) = p̃(t) (x̃i(t) + x̃i,w(t))− Ci(x̃i(t)) (7)

which is simply the subtraction of the production costs Ci(x̃i(t)) from the
total revenues of the firm p̃(t) (x̃i(t) + x̃i,w(t)). A rational firm, in order to
maximize the level of profits, should place the quantity bid x̃i(t) such that
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the following first order condition is satisfied

dπ̃i(t)
dx̃i(t)

= 0 (8)

This condition expressing the optimal behavior of a competitive producer
in a deregulated market is customarily used in the literature (see Alvarado
(1999) and Liu (2006)). Collaborative bidding and network effects could
also affect the players’ decisions, thus leading to a different condition for
optimality. Nevertheless they have been ruled out in this work, the former
one because it is forbidden by antitrust laws and the latter one for the sake
of simplification. Actually, it is difficult for a firm to satisfy this condition in
every bidding round since this would require it to change its energy produc-
tion level with an infinite velocity. A more realistic strategy for a GENCO is
instead based on repeated adjustments of the bid quantity x̃i(t) in successive
bidding rounds. A suitable model could be developed supposing that the
i-th generator adjusts its bid depending on the derivative of the profit π̃i at
the next bidding round with respect to the bid quantity x̃i

x̃i(t+ 1)− x̃i(t) = ki(t+ 1)
∂π̃i(t+ 1)
∂x̃i(t+ 1)

∣∣∣∣
x̃i(t+1)=x̃i(t)

, ki(t+ 1) > 0 (9)

where x̃i(t) is the quantity bid for a certain hour of the current day and
x̃i(t+ 1) is the quantity to be bid for the same hour of the next day, so that
the adjustment process is split into 24 different hourly calculations. This
split is justified by the fact that the consumption of energy, and thus the
characteristics of the demand, are basically constant at the same hour of two
successive days. Actually, the consumption during the weekend days is lower
than the consumption during the weekdays, so another split of the model
should be done, resulting in 48 distinct adjustment calculations (24 for the
weekdays, one for each hour, and 24 for the weekend days). This makes
sense since the production adjustment is most proper when calculated on
the quantity produced at the same hour of the most recent day of the same
type. The rationale for such a model consists in the fact that the energy
production is adjusted in the direction of increasing profits. The parameter
ki in the previous equation indicates a sort of speed of adjustment with which
the i-th generator alter its energy production according to the possibility of
an increase/decrease in the profit.

After some algebra, which is described in Appendix A, the day ahead
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bidding strategy can be expressed by the following equation:

x̄i(t+ 1) = [1− ki(t+ 1)(2f(t+ 1) + ci)] x̄i(t)

− ki(t+ 1)f(t+ 1)

 N∑
j=1
j 6=i

(x̄j(t) + x̄j,w(t)) + 2x̄i,w(t+ 1)


+ ki(t+ 1) (e(t+ 1)− bi)

(10)

which actually models a strategy aimed to optimize the profits in the next
round for a producer having both conventional thermal and wind production
plants. It is beneficial to specify here that the next round, in this frame-
work, actually means the same hour for the successive day of the same type
(weekend day or weekday).

The amount of conventional energy x̄i(t+1) to be bid for the subsequent
day by the i-th generator is thus a function of the quantity bid by itself x̄i(t)
and by the other generators x̄j(t), j 6= i at the previous bidding round, as
well as of the estimated wind production x̄i(t + 1) and x̄j(t). The i-th
producer can have estimates on its future wind production, while for the
competitors’ this is generally not an easy task. As far as the bids for the
conventional production are concerned, while x̄i(t) is perfectly known by
the i-th generator, x̄j(t), j 6= i are not, since the quantities assigned to the
various generators at each round are known only to the respective producer,
and not disclosed to any competitors by NordPool. Fortunately, since as
one can see in (10) only the sum of the aggregate of the conventional and
wind production for all the competitors is needed, one can determine it as

N∑
j=1
j 6=i

xj(t) + xj,w(t) = D(t)− (xi(t) + xi,w(t)) (11)

where D(t) indicates the total production at time t, information that is made
available by NordPool. Furthermore, as it is apparent in the equation above,
the decision of the bid x̄i(t + 1) involves the estimation of the coefficients
e(t+ 1) and f(t+ 1) at the next round, which can be calculated making use
of historical data.

Furthermore, Appendix A shows that the behavior of the competitors
on the electricity market can be modeled by the following stochastic state
space model:

x̃(t+ 1) = F(t)x̃(t) + ε̃ex(t) (12)
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where

x̃(t) =
[
x̃1(t) x̃2(t) . . . x̃N (t)

]T
Fii(t) =1− ki(t+ 1)(2f(t+ 1) + ci), i = 1, 2, . . . , N
Fij(t) =− ki(t+ 1)f(t+ 1), i, j = 1, 2, . . . , N , i 6= j

ε̃ex,i(t) =− ki(t+ 1)f(t+ 1)

2x̃i,w(t+ 1) +
N∑
j=1
j 6=i

x̃j,w(t)


+ ki(t+ 1) (e(t+ 1)− bi)

(13)

It is to be noticed that the uncertainty connected with the presence of
stochastic production technologies, such as wind power, is modeled this way
as an Additive White Gaussian Noise (AWGN), included in the ε̃ex,i(t) term
in (13). The additivity and the Gaussianity are implicit in the derivation of
the linear state space system, which is described step by step in Appendix
A. Furthermore, the assumption of whiteness (i.e. independence of succes-
sive residuals) is a simplification needed in order to carry out the multi-step
optimization described in the following section. As a future development it
could be interesting to introduce a more realistic description of the stochas-
ticity, dropping the assumption of Gaussianity and whiteness that are known
to not exactly model the wind power production.

3. Optimal control: long term strategy

Let us now assume that a GENCO is interested in developing a new strat-
egy, able to maximize its profits over a longer time window than the single
next bidding round. In order to develop this strategy, some assumptions
must be made on the behavior of the competitors for which the state space
model presented above is a good starting point. The procedure followed in
this section resembles that of Liu (2006), but with a different approach re-
garding the inclusion of uncertainties in the model. Basically, in Liu (2006)
a state space is defined to model the market dynamics, and then optimal
control theory is employed to obtain the long term strategy. However, while
in Liu (2006) uncertainty is included in the demand side, in this work a
stochastic cost function is considered, thus leading to a different optimiza-
tion problem. The key points in the derivation of the optimal strategy are
described in Appendix B; for a more complete treatment the reader is re-
ferred to Giabardo and Zugno (2008).
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Let us assume, without loss of generality, that the generator interested in
pursuing a long period optimization is the N -th generator. Hence its amount
of bid energy becomes the input to the system, that means performing the
substitution x̃N = u. This results in the loss of the stochastic character of
the variable, since it becomes the decision variable of the producer, and thus
deterministic. Denoting with Nh the number of days (or steps) included in
the optimization horizon, the index to be maximized is the expectation of
the sum of the profits1

JN (t) = E

{
t+Nh−1∑
τ=t

πN (τ)

}

= E

{
t+Nh−1∑
τ=t

p̃(τ) (u(τ) + x̃N,w(τ))− CN (u(τ))

} (14)

Redefining the state space as

x̃(t) =
[
x̃1(t) x̃2(t) . . . x̃N−1(t)

]T (15)

The input and the output of the system are, respectively, the quantity bid
by the N -th generator and the system price

u(t) = xN (t) , ỹ(t) = p̃(t)

Now the state space is described by the following set of equations

x̃(t+ 1) = F(t)x̃(t) + G(t)u(t) + ε̃ex(t) (16)
p̃(t) = C(t)x̃(t) +D(t)u(t) + ẽp(t) (17)

where the state space matrices are defined as follows

Fii(t) = 1− ki(t)(2f(t+ 1) + ci), i = 1, 2, . . . , N − 1 (18)
Fij(t) = −ki(t)f(t+ 1), i, j = 1, 2, . . . , N − 1, i 6= j (19)

1The optimization index could alternatively be defined in order to reflect the risk-
aversion of market participants, by accounting for the variance of the distribution of
potential profits, or with value-at-risk principles.
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G(t) =


−k1(t)f(t+ 1)
−k2(t)f(t+ 1)

...
−kN−1(t)f(t+ 1)

 (20)

C(t) =
[
−f(t) −f(t) . . . −f(t)

]
(21)

D(t) = −f(t) (22)

ε̃ex,i(t) = ki(t)f(t+ 1)

2x̃i,w(t+ 1) +
N∑
j=1
j 6=i

x̃j,w(t)


+ ki(t) (e(t+ 1)− bi) , i = 1, 2, . . . , N − 1

(23)

ẽp(t) = e(t)− f(t)

(
N∑
i=1

x̃i,w(t)

)
(24)

After some calculations, which follow the general theory of maximization
on a dynamic system with the inclusion of stochastic terms, as described in
Appendix B, one gets the following optimal control rule:

u(t) =
GT (t)S(t+ 1)F(t) + C(t)

cN − 2D(t)−G(t)TS(t+ 1)G(t)

·
(
F(t− 1)x̄(t− 1) + G(t− 1)u(t− 1) + ε̄ex(t− 1)

)
+

GT (t)
(
S(t+ 1)ε̄ex(t) + M(t+ 1)

)
− b1 + enp (t)

cN − 2D(t)−G(t)TS(t+ 1)G(t)

(25)

where S(t) and M(t) are auxiliary matrices that can be calculated through
the following backward relations:

S(t) =CT (t)
C(t)

cN − 2D(t)
+
(

CT (t)GT (t)
cN − 2D(t)

+ FT (t)
)

· S(t+ 1)
[
(cN − 2D(t))−G(t)GT (t)S(t+ 1)

]−1

·
[
(cN − 2D(t))F(t) + G(t)C(t)

] (26)
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and

M(t) = CT (t)
[−bN + enp (t)
cN − 2D(t)

+ x̄N,w(t)
]

+
(

CT (t)GT (t)
cN − 2D(t)

+ FT (t)
)

·
{

M(t+ 1) + S(t+ 1)
[
(cN − 2D(t))−G(t)GT (t)S(t+ 1)

]−1

·
[
(cN − 2D(t))ε̄ex(t) + G(t)

(
GT (t)M(t+ 1)− bN + enp (t)

)] } (27)

The final conditions S(t+Nh) = 0 and M(t+Nh) = 0 can be imposed, mean-
ing that the final state of the system has no influence on the optimization
index.

4. Implementation and simulation of the system

This section presents the main results obtained with the simulations
performed after the implementation of the system described above.

As a matter of fact, the implementation of these strategies requires some
knowledge of the market, that means having a good estimation of the pa-
rameters describing the dynamic model introduced above. Indeed, the co-
efficients of both the inverse demand function and the cost function appear
in the equations regulating both the Cournot and the long term optimiza-
tion strategies. As a matter of fact, an estimation of these parameters is
very difficult due to the understandable confidentiality policies of both the
producers and NordPool.

As far as concerns the cost function of the producers, the values ai =
10, bi = 1.5, ci = 0.0001 are a slight modification of the ones used in
Liu (2006) and should be realistic in modeling the cost function of a pro-
ducer employing conventional energy sources whose output is around 20000−
30000 MW, which is, on average, about half of the consumption in the Scan-
dinavian market. The coefficient aw,i(t) accounting for the energy produced
with wind has been set to the value 10, without any loss of generality in the
optimization procedure. As a simplification, only two generators with equal
cost functions have been included in the simulation.

As far as concerns the inverse demand function, this work simulates the
system with three different values of its slope β, in accordance to what
has been done in Ocaña and Romero (1998). In order to obtain a realistic
demand curve, an approach similar to the one used in the MARS model2

2The MARS model is a market simulation tool developed by Energinet.dk, which is
the Danish ISO. A description of it can be found in Donslund and Kristoffersen (2006).
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has been followed: the passage of the linear demand function for the point
(qm,i, py) is imposed, where py is the yearly mean price and qm,i is the
monthly average consumption of energy in NordPool at the i-th hour of
the day (data on price and consumption have been provided by NordPool).
The coefficient β in the demand function is then set to a value close to,
respectively, 1000, 1500 or 2000. Figure 3 presents an explanatory sketch of
the three cases.
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Figure 3: Sketch of three possible linear demand functions passing by the
point (qm,i, py). On the left, the least elastic one, obtained with β ≈ 1000.
In the center, the medium elasticity linear demand, obtained with β ≈ 1500.
On the right, the most elastic demand function (β ≈ 2000).

The time window considered in all the simulations performed is the whole
month of April 2007. This choice avoids the extrema, namely the cold-
est/darkest and the warmest/brightest weeks of the year, so that it is more
representative of an average behavior of the market. Furthermore, the pres-
ence of sudden spikes in the price due to unpredictable events (e.g. failure of
an interconnection in the grid), which of course also affect the consumption
of energy, was very limited in the selected period. A further investigation
and analysis of these issues can be found in Giabardo and Zugno (2008).
Figure 4 shows the dynamics of the spot price in NordPool and the wind
power production in Denmark during the considered period.

It has been deemed convenient to simulate the system in two different
conditions: the ideal one, in which the producers know exactly the quantity
of wind power they will have in the future (perfect information), and the real
one, in which the producers can only estimate this quantity by forecasting.
Power measurements and forecasts aggregated for two different groups of
wind farms in western Denmark representing geographically spread wind
portfolios have been used. In this work, WPPT (Wind Power Prediction
Tool, see Nielsen et al. (2002) and Nielsen (2002)) is employed to provide
estimates at every hour of the day up to 43 hours ahead. Every day, the
available forecasts at noon are used. This actually means that the first 12
forecasts have to be discarded, since they cover the hours from the 13th to
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Figure 4: NordPool spot price and wind power production in both the Dan-
ish market areas during April 2007.

the 24th of the current day, for which the bids have already been placed (on
the previous day). Therefore, only 31 values of forecasts are available for
use. In cases in which longer forecasts are needed, namely the simulations
involving the long term strategy, the forecast vector has been prolonged
keeping the values from the 32nd to the end equal to the 31st value, that
is the last available forecast. Figure 5 shows a possible forecast used in the
system.

Measurements and values forecasted by the WPPT are given as numbers
in the range [0 1], which indicate the quantity of wind power as a fraction of
the total installed capacity. These values have been scaled in the simulations
in order to ensure a percentage of wind power included in the range 10−20%
of the total production, which is approximately the share of power produced
by wind plants in Denmark as of now (see NordPoolSpot website (2009)).
In order to obtain such figures with the wind profile used in the simulations,

16



Figure 5: Example of WPPT forecast issued at noon. The shaded area in the
figure covers the first 12 hours ahead, which are discarded. The horizontal
line on the right side of the figure is due to the fact that WPPT predictions
reach out to 43 hours ahead: the forecasts needed in excess are kept constant
to the last predicted value.

the nominal wind power capacity for each generator has been set equal to
12000 MW.

The results of the simulations will be evaluated by means of different in-
dices, averaged over the simulation period: the produced quantity (measured
in MWh), the daily profit, the system price and the daily social welfare (all
measured in e). The definition of these indices is straightforward, excep-
tion made for the daily social welfare. Following the argument in Amelin
(2004), this is defined as the integral of the difference between the inverse
demand function and the aggregate marginal cost of all the producers over
the quantity from the origin to the total quantity cleared by the ISO, which
is the (both light and dark) gray shaded area in Figure 6. The social welfare
thus represents the overall benefit of the society, being it the summation of
the consumers’ benefit in purchasing the energy at the system price pISO
(light gray shaded area in Figure 6) and the producers’ profit in selling the
energy at the clearing price (dark gray shaded area the figure).

It is to notice that such a definition of the daily social welfare leaves one
degree of freedom, that is the constant term resulting from the integration.
Ideally, this term should account for the fixed installation costs of the gener-
ation plants, of the grid etc., all scaled by the ratio between the simulation
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time and the lifetime of each asset. This term represents a constant bias if
comparing simulations of the same system in different conditions (e.g. dif-
ferent demand elasticity), so it is obvious that it can be discarded. On the
other hand, when comparing simulations involving different systems (e.g.
with a different production mix), all the fixed installation costs should be
accounted for by this constant term for a realistic assessment of the social
welfare. One can see that this task is particularly challenging, since not
only the installation costs of the plants should be determined, but even
the installation costs of a grid able to support the decentralized production
through wind power and other less tangible issues, such as the reduction of
CO2 emissions. Although interesting, this analysis goes beyond the scope
of this paper and the definition of social welfare with null constant term is
used hereafter.

quantity

price

ISO cleared 
quantity

inverse
demand function

aggregate 
marginal cost

p
ISO

Figure 6: The social welfare (light and dark gray shaded area) is defined as
the integral between the inverse demand function and the aggregate marginal
cost of all the producers.

4.1. Bidding strategies
The simulations described in this subsection have been carried out in

order to evaluate the introduction of the strategies developed in Section 2
as models for the generators’ bidding.
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Another strategy, named “naive”, is to be defined in order to model the
behavior of a generator that does not bid strategically. This simple strategy
presupposes that the total bid at a certain hour of the day is kept constant:
xi(t+ 1) + x̄i,w(t+ 1) = xi(t) + x̄i,w(t). Therefore, assuming that the market
needs a certain amount of energy, a producer following the naive strategy
will bid τ percentage of the total energy needed, where τ is equal to its
percentage of the total installed capacity (in this simplified case: τ = 50%).
The aim is to show that, in contrast to the “naive” strategy, which represents
a non strategic way of bidding, the day ahead and the long term optimization
strategies model a more and more strategic behavior of the generators.

With regards to the discussion of the previous part of this section, the
only coefficients left to be set in the model are the speeds of adjustment
ki(t) of the generators. It is assumed that the coefficients ki(t) are constant,
since we can assume that each GENCO will develop experience and find a
steady optimal value for it. The thorough derivation of the chosen values,
which follow, can be found in Giabardo and Zugno (2008):

• ki = 500, i = 1, 2 for β ≈ 1000;

• ki = 700, i = 1, 2 for β ≈ 1500;

• ki = 900, i = 1, 2 for β ≈ 2000.

As far as the long term optimal strategy is concerned, the number Nh

of days in the horizon has been set to 3. One reason for this is that the
wind predictions are provided for less than two entire days ahead, and kept
constant to the last given value when longer forecasts are needed. Although
this prolongation is reasonable on a short term basis, its sense is lost when
the horizon extends significantly. Another reason is that the long term
strategy requires the estimation of the demand function. With an horizon
Nh > 3, the estimation of the demand would reach out to two weeks ahead in
the weekend day case. Although the weekday case is less strict, the horizon
is kept to Nh = 3 for the sake of consistency.

Table 1 summarizes the results of the simulations carried out in the case
of medium elasticity of demand (β ≈ 1500) and with generators using fore-
casts, hence the most realistic case. Qualitatively similar results could be
shown for the case of perfect prediction and can be found, once again, in
Giabardo and Zugno (2008). The trend, confirmed also by other simula-
tions performed with different values of demand elasticity, is that the switch
from the naive to the day ahead strategy is encouraged by the possibility
of achieving higher profits. In turn, the competitor is also encouraged to
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Table 1: Main results of the simulations that compare the strategies de-
scribed in Section 2. The figures represent the average values over April
2007.

Strategy Gen.1 Naive Day ahead Day ahead Long term Long term
Gen.2 Naive Naive Day ahead Day ahead Long term

Mean Quantity 20.94 27.27 25.27 34.80 34.87Gen.1 (GWh)

Mean Wind % 18.18 13.78 14.86 10.89 10.87Gen.1

Mean Quantity 20.94 20.94 25.23 20.46 34.90Gen.2 (GWh)

Mean Wind % 16.15 16.15 13.24 17.58 9.67Gen.2

Daily Profit 12.17 12.87 11.07 12.16 4.05Gen.1 (mln e)

Daily Profit 12.14 10.03 11.02 7.42 4.01Gen.2 (mln e)

Mean Price 26.18 21.98 20.47 17.28 7.55(e)

Daily Social 38.29 41.43 42.41 43.96 46.93Welfare (mln e)

switch from the naive strategy to the more advanced one by the possibility
to increase its profits. This result is not trivial, since the day ahead strategy
is optimal only in the case in which the opponent holds its bid constant
from day to day (naive). The switch from the day ahead to the long term
strategy by the first generator also leads to an increase in its profits. The
second generator in turn suffers noticeable losses but, in this case, it would
not gain from an eventual switch to the more advanced strategy. This result
is not in disagreement with the fact that the long term strategy is optimal,
since the optimality is guaranteed only if the competitor sticks with the day
ahead strategy. In the case in which both the producers follow the long
term strategy, they both bid optimally but with respect to a model of the
competitor that is not consistent, and, thus, the outcomes cannot be those
that were expected. What happens is the following: when adopting the
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long term strategy a generator (let us call it A) assumes that the opponent
(B) is bidding according to the day ahead strategy. This implies that A
takes for granted that B is marking up the price by retaining generation
capacity. Therefore A will try to sell more energy to the market, in order
to exploit the high prices. This high level of production of the generator
adopting the long term strategy is evident looking at Table 1. Hence, when
both the generators adopt the long term strategy, they reach such a high
energy output that the price gets extremely low, thus driving down their
profits. The ability of the generators to increase their individual profits by
adopting more advanced strategies can be evaluated in Figure 7(a), where
the three bidding policies are compared in their behavior against the day
ahead strategy. Besides, one can notice how the long term strategy performs
particularly well during the second and the third day, period during which
the system price rises, thus exploiting the dynamic features of the system.

Let us consider for a moment only the first three columns of Table 1. It
can be noticed that the profits are higher when both the generators follow
the naive strategy than in the case where they both follow the day ahead
strategy. This behavior clearly resembles the so called “prisoner dilemma”
(see Binmore (2008)) in game theory: one generator is encouraged to switch
from the naive to the day ahead strategy by the possibility of obtaining
higher gains; at this point the second generator, which notices the decrease
in its profits, is also encouraged to switch to the day ahead strategy; though,
in the end, they would be better off if they both stuck with the naive strategy.

Two final remarks must be done. The first one is about the price, which
decreases as the generators adopt more and more advanced strategies. This
is basically due to the higher energy output of the generators as they become
more strategic. This growth in the production is evident if looking at Figure
7(b), which shows the quantities produced by a generator when adopting the
three different strategies. In turn, the social benefit increases, since more
demand is met by the generators.

4.2. Sensitivity analysis
A sensitivity analysis has been performed on this system in order to

assess the effect on the market of different conditions in the elasticity of
demand. The main results are shown in Table 2. Only the outcomes of
the simulations in which both the generators adopt the day ahead strategy
are shown. Nevertheless, the simulations of the other setups show the same
pattern and are omitted here for the sake of compactness. As it is possible to
see, a low elasticity of demand allows the firms to exploit their market power
by withholding some of their production capacity in order to mark up the

21



20 40 60 80 100 120
3

3.5

4

4.5

5

5.5

6

6.5

7x 10
5

time [h]

pr
of

its
 [E

U
R

]

 

 

naive
day ahead
long term

(a) Profits

20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

4.5

5x 10
4

time [h]

qu
an

tit
y 

[M
W

h]

 

 

naive
day ahead
long term

(b) Quantity

Figure 7: Profits obtained and quantity delivered by a generator adopting
subsequently the three different strategies when the opponent uses the day
ahead strategy. The demand elasticity is set by β ≈ 1500 and forecasts are
used. The plotted period is the second week of April 2007 (5 weekdays).

system price and obtain more profits. An increase in the elasticity of demand
causes the market to benefit both in terms of increased energy production
and of decreased average system price. The profits of the GENCOs in turn
decrease. These results confirm the findings in Ocaña and Romero (1998),
according to which the market power exercised by the producers is inversely
coupled with the elasticity of demand.
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Table 2: Results of three simulations where both the generators employ the
day ahead strategy using forecasts, with three different conditions of demand
elasticity. The figures represent the average values over April 2007.

β ≈ 1000 ≈ 1500 ≈ 2000

Mean Quantity Gen.1 (GWh) 21.91 25.27 28.52

Mean Wind % Gen.1 17.20 14.86 13.14

Mean Quantity Gen.2 (GWh) 21.88 25.23 28.48

Mean Wind % Gen.2 15.33 13.24 11.71

Daily Profit Gen.1 (mln e) 12.23 11.07 10.80

Daily Profit Gen.2 (mln e) 12.18 11.02 10.75

Mean Price (e) 25.28 20.47 18.17

Daily Social Welfare (mln e) 47.40 42.41 40.93

4.3. Deterministic vs stochastic models
The development of a stochastic model for the electricity market allows

for a very interesting analysis: the evaluation of the effects of the introduc-
tion of wind power production. In this section three simulation setups are
considered: a deterministic one, in which production is from conventional
sources of energy, and two stochastic ones, where wind production is intro-
duced and the generators have either perfect information or forecasts on the
future wind profile. Table 3 shows the results of the simulations performed
with a demand elasticity set by β ≈ 1500 and when both the players follow
the day ahead strategy. The simulations of the cases in which the generators
adopt different combinations of bidding strategies show a pattern similar to
the one described in the previous section. As such, they are omitted in this
article; the interested reader is referred to Giabardo and Zugno (2008). A
comparison between the first and the second column of this table shows that,
with the addition of wind power production, there is a slight increase in the
quantity of energy dispatched by each of the producers. This small rise in
the production is the optimal compromise between two contrasting facts: on
one side, the lower costs due to the abundance of wind power stimulate the
generators to produce more energy; on the other side, strong increases in the
energy output are discouraged by the consequential drop in the price. At
the same time, the profits of the producers increase, which is expected since
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Table 3: Results of three simulations where both the generators employ
the day ahead strategy in the following cases: deterministic case (no wind
power), perfect prediction case, WPPT prediction case. The figures repre-
sent the average values over April 2007.

Case Deterministic Perfect WPPT
(no wind power) prediction prediction

Mean Quantity Gen.1 (GWh) 25.07 25.27 25.27

Mean Wind % Gen.1 0.00 14.85 14.86

Mean Quantity Gen.2 (GWh) 25.07 25.21 25.23

Mean Wind % Gen.2 0.00 13.24 13.24

Daily Profit Gen.1 (mln e) 10.80 11.08 11.07

Daily Profit Gen.2 (mln e) 10.80 11.02 11.02

Mean Price (e) 20.70 20.48 20.47

Daily Social Welfare (mln e) 41.63 42.41 42.41

the generators now have cheaper production techniques at their disposal.
The increment in the produced quantity also causes a decrease in the price,
which represents a benefit for the consumers. As far as the overall effects
for the society are concerned, one can notice that the daily social welfare
increases, both due to an heightened benefit for the consumers (who can
now buy more energy at a lower price) and for the producers (who increase
their profits due to lower production costs). The same considerations hold
also if comparing the first and third row of Table 3. This is due to the
aforementioned fact that the outcomes of the simulations using forecasts or
perfect information are qualitatively similar.

The fact that the wind power covers around 13-14% of the total gen-
eration while the increase in production amounts to about 1% means that
a significant share of the production switches from traditional technologies
to wind power, when the latter is available. This fact is evident if looking
at Figure 8, which shows the quantity produced by the first generator in
the case when it adopts the day ahead strategy while the second generator
employs the naive one.

As already mentioned, the results presented in this section are very gen-
eral. In fact, for each of the cases considered in the previous Subsections
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Figure 8: Quantity produced by the first generator adopting the day ahead
strategy when the second generator employs the naive one. The demand
elasticity is set by β ≈ 1500 and forecasts are used. q1,tot is the total
production, q1,w is the wind power and q1 is the power produced with other
technologies. The plotted period is the second week of April 2007.

4.1 and 4.2, it could be shown that the inclusion of wind power production
causes lower system prices, increased quantity of energy dispatched to the
market, higher profits for the producers and welfare for the society. There-
fore the analysis of these cases has been omitted in this paper for the sake
of brevity, the interested reader is referred to Giabardo and Zugno (2008).

5. Conclusions

This article addresses the functioning of oligopolistic day ahead electric-
ity markets and the issue of strategic bidding. Stochastic optimal control
theory is the main tool used for this analysis. Generator competition, aimed
at profit maximization, is in fact modeled as a dynamic feedback system,
which includes stochastic features connected with production from renew-
able energy sources.

The quantity bidding, or Cournot competition model, has been consid-
ered. In such a market, the generators tend to withhold generation capacity
in order to mark up the price and, therefore, earn more profits. The in-
troduction of advanced strategies encourages the producers to bid higher
quantities in the market while exploiting the price mark up caused by the
competitors. The simulations have proved the superiority of the long term
optimal strategy, which has the advantage of being able to take into account
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the dynamics of the system. Furthermore, the simulations performed have
highlighted an important feature that is peculiar to the Cournot competi-
tion model: the adoption of more advanced strategies by the generators has
a beneficial effect not only for the producers but also for the society. This
appears both in a decrease of the average system price and in an increase of
the social welfare, as more demand is met by the producers.

A sensitivity analysis has been carried out by simulating the model under
different conditions of demand elasticity. The resulting trend is that an
increase in the demand elasticity limits the possibility for the producers to
exploit their market power and, generally, leads to decreased profits. In
turn, the society gains in terms of lower prices and increased social benefit.
These results are in complete accordance with the literature on the subject
(for instance see Ocaña and Romero (1998)).

An evaluation of the market behavior as the wind production penetrates
electricity markets has been made possible by the development of a stochas-
tic model. It has been shown that the introduction of wind power is ad-
vantageous both for the producers and the society, in terms of, respectively,
higher profits and increased social welfare.

The model has been simulated in the cases of both perfect and estimated
information on the wind power future profile. In order to test the system in
a realistic framework, a state-of-the-art forecasting tool (WPPT) has been
employed. The simulations show analogous results on both cases. This is
because accuracy of wind power prediction tools mainly has an effect on the
need for intra-day corrections, and real-time regulation. The role of forecast-
ing has shown to be crucial however in the development of stochastic models
for energy markets significantly penetrated by stochastic renewable genera-
tion. Therefore, the availability of accurate forecasting tools is paramount if
such models intend to realistically describe the behavior of actual markets.

This work shows that control theory represents an effective tool for de-
scribing and modeling electricity markets, which by their nature are closed
loop systems, characterized by strong dynamic and stochastic properties.
Nevertheless there is room for future developments in many directions. Dif-
ferent kinds of markets could be included, such as the continuous trading
(e.g. Elbas, for the case of Scandinavia) and real-time markets, as well as
other related issues, e.g. regulation costs and transmission constraints. Fur-
thermore, the modeling of the wind dynamics, the inclusion of sources of
uncertainty different from those in the supply side and the incorporation of
other renewable energy sources all represent potential interesting enhance-
ments to the present work.
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A. Derivation of the day-ahead strategy

In this section the analytical derivation of the day-ahead strategy is
presented by making use of the same notation used in the paper.

In Section 2 the most important economic quantities have been intro-
duced: the cost and the profit for the producers and the market demand
function. These are reported here for the sake of clarity. The cost function
for a producer is defined as:

Ci(x̃i(t)) = aw,i(t) + ai(t) + bi(t)x̃i(t) +
1
2
ci(t)x̃i(t)2 (28)

where aw,i(t) is the cost coming from the production of wind energy (which is
indicated x̃i,w(t) in the paper), while ai(t)+bi(t)x̃i(t)+ 1

2ci(t)x̃i(t)
2 represents

the (quadratic) cost of producing x̃i(t), which is the quantity of energy
produced from sources other than the wind. The profit for a producer is
given by:

π̃i(t) = p̃(t) (x̃i(t) + x̃i,w(t))− Ci(x̃i(t)) (29)

which is simply the subtraction of the production costs Ci(x̃i(t)) from the
total revenues of the firm p̃(t) (x̃i(t) + x̃i,w(t)). It must be remembered,
in fact, that the total amount of energy produced by the i-th generator is
x̃i,t(t), which represents the sum of the quantity of wind energy (i.e. x̃i,w(t))
and the quantity of energy produced with other technologies (i.e. x̃i(t)).
The market demand is described by:

D(t) = α(t)− β(t)p(t) (30)

It may help to recall here the assumption of non-storability of energy re-
quired the instantaneous balance of supply and demand, which translates
into:

D̃(t) =
N∑
i=1

x̃i,t(t) (31)

Substituting in order (28), (29), (3) and (31) and carrying out the derivative
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on the right side of (9), after some calculations one gets

x̃i(t+ 1)− x̃i(t) = ki(t+ 1)
[
− f(t+ 1)

∂D̃(t+ 1)
∂x̃i(t+ 1)

x̃i,t(t+ 1)

+ e(t+ 1)− f(t+ 1)
N∑
j=1

x̃j,t(t+ 1)− bi − cix̃i(t)
]
x̃i(t+1)=x̃i(t)

= ki(t+ 1)
[
− f(t+ 1)

∂D̃(t+ 1)
∂x̃i(t+ 1)

(x̃i(t+ 1) + x̃i,w(t+ 1))

− f(t+ 1)
N∑
j=1

(x̃j(t+ 1) + x̃j,w(t+ 1))

+ e(t+ 1)− bi − cix̃i(t)
]
x̃i(t+1)=x̃i(t)

(32)

where x̃i,w(t+ 1) is the amount of wind power and e(t+ 1), f(t+ 1) are the
coefficients of the demand function, all calculated at time t+ 1. This makes
sense since the purpose of the equation is deciding the update of x̃i(t), given
the most recent estimates of the wind power and of the demand function.
As far as the estimates are concerned, forecasts of the wind power available
to the individual generator and to its competitors are used. As a matter of
fact, current forecasting tools are designed in order to provide the user with
the conditional expectation of wind power production, which makes them
appropriate for this kind of problems. For the interested reader, reviews of
state-of-the-art forecasting techniques can be found in Giebel et al. (2003)
and Costa et al. (2008). Of course, the issue of having accurate forecasts
for wind power is critical in the development of efficient bidding strategies.
From now on, it is assumed that wind power forecasts are always available
and perfect, although it is known that they have a limited level of accuracy.
This issue has been discussed in Taylor and McSharry (2008), which assesses
the accuracy for wind power forecasts to 2%-4%.

A realistic assumption is that each firm believes that the total quan-
tity produced by its competitors will approximately be the same as in the
previous period, which means the i-th producer considers

x̃j(t+ 1) + x̃j,w(t+ 1) = x̃j(t) + x̃j,w(t) , j = 1, 2, . . . , N, j 6= i (33)

The reason for this assumption lays in the fact that the change in one single
period can be neglected, since the demand function remains practically un-
changed at the same hour of two successive days (of the same type: there is
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a noticeable change between Friday and Saturday for the demand function
considered at the same hour). This once again motivates the fact that the
system should be divided in 48 subsystems, one for each hour of weekdays
and weekend days. At this point of the discussion, it might be useful to
point out that t+ 1 does not indicate the next hour, but the bidding round
at the same hour of the following day of the same type. As an example, if
the current day and time is Friday at 11am, t+1 indicates Monday at 11am,
which is the closest following weekday. The assumption above also implies

∂x̃j,t(t+ 1)
∂x̃i(t+ 1)

= 0 , j = 1, 2, . . . , N, j 6= i (34)

which from the balance of supply and demand, see (31), gives

∂D̃(t+ 1)
∂x̃i(t+ 1)

= 1 (35)

Substituting the equations above in (32), rearranging the terms and impos-
ing x̃i(t+ 1) = x̃i(t) on the right side of the equation leads to the following
expression

x̃i(t+ 1) = [1− ki(t+ 1)(2f(t+ 1) + ci)] x̃i(t)

− ki(t+ 1)f(t+ 1)

 N∑
j=1
j 6=i

(x̃j(t) + x̃j,w(t)) + 2x̃i,w(t+ 1)


+ ki(t+ 1) (e(t+ 1)− bi)

(36)

Once the state variable is defined

x̃(t) =
[
x̃1(t) x̃2(t) . . . x̃N (t)

]T (37)

it is possible to define the following state update model

x̃(t+ 1) = F(t)x̃(t) + ε̃ex(t) (38)
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where

Fii(t) =1− ki(t+ 1)(2f(t+ 1) + ci), i = 1, 2, . . . , N
Fij(t) =− ki(t+ 1)f(t+ 1), i, j = 1, 2, . . . , N , i 6= j

ε̃ex,i(t) =− ki(t+ 1)f(t+ 1)

2x̃i,w(t+ 1) +
N∑
j=1
j 6=i

x̃j,w(t)


+ ki(t+ 1) (e(t+ 1)− bi)

(39)

In the state space model (38) the variable ε̃ex(t) has been introduced to
model all the exogenous terms, including the sources of uncertainty.

The decision of the i−th generator is based on the expectation, so that
(36) becomes

x̄i(t+ 1) = [1− ki(t+ 1)(2f(t+ 1) + ci)] x̄i(t)

− ki(t+ 1)f(t+ 1)

 N∑
j=1
j 6=i

(x̄j(t) + x̄j,w(t)) + 2x̄i,w(t+ 1)


+ ki(t+ 1) (e(t+ 1)− bi)

(40)

which actually represents the one step bidding strategy of interest in Section
2 of the paper.

B. Derivation of the long term strategy

In this section the analytical derivation of the long term strategy is
presented; again the same notation introduced in the paper will be used.
In order to do that, some expressions introduced in Section 3 are needed.
Therefore let us recall the equations of the state space model, in the form
derived in the beginning of the aforementioned section:

x̃(t+ 1) = F(t)x̃(t) + G(t)u(t) + ε̃ex(t) (41)
p̃(t) = C(t)x̃(t) +D(t)u(t) + ẽp(t) (42)
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Furthermore, the optimization index introduced at the beginning of the same
section is needed:

JN (t) = E

{
t+Nh−1∑
τ=t

πN (τ)

}

= E

{
t+Nh−1∑
τ=t

p̃(τ) (u(τ) + x̃N,w(τ))− CN (u(τ))

} (43)

Now, substituting (42) into (43) and assuming that the coefficients of
the cost function are constant (the reasonableness of this assumption has
already been discussed in Section 2), after some calculations one achieves

JN (t) = E

{
t+Nh−1∑
τ=t

[(
C(τ)x̃(τ) +D(τ)u(τ) + ẽp(τ)

+D(τ)x̃N,w(τ)
)
u(τ) + C(τ)x̃(τ)x̃N,w(τ) + ẽp(τ)x̃N,w(τ)

−
(
aw,N + aN + bNu(τ) +

1
2
cNu(τ)2

)]} (44)

Letting the expectation inside the summation, and remembering that E {x̃ỹ} =
x̄ȳ + Cov(x, y), one gets

JN (t) =
t+Nh−1∑
τ=t

[ (
C(τ)x̄(τ) +D(τ)u(τ) + enp (τ)

)
u(τ)

−
(
anN (τ) + bNu(τ) +

1
2
cNu(τ)2

)] (45)

where

anN (t) = aw,N + aN −C(t)x̄(t)x̄N,w(t)− Cov(C(t)x̃(t), x̃N,w(t))
− ēp(t)x̄N,w(t)− Cov(ẽp(t), x̃N,w(t))

enp (t) = ēp(t) +D(t)x̄N,w(t) (46)

The optimization problem can now be defined as the maximization of the
index (45), constrained by the state update equation for the mean of the
state. In fact, it is the mean that appears in (45) rather than the state itself.
The update equation for the mean x̄ is obtained by taking the expectation
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on both sides of the equal sign in (41)

x̄(t+ 1) = F(t)x̄(t) + G(t)u(t) + ε̄ex(t) (47)

The Hamiltonian for this problem is then given by the following expression

H(x(t),λ(t+ 1), u(t), t) =
[ (

C(t)x̄(t) +D(t)u(t) + enp (t)
)
u(t)

−
(
anN (t) + bNu(t) +

1
2
cNu(t)2

)]
+ λT (t+ 1)

(
F(t)x̄(t) + G(t)u(t) + ε̄ex(t)

)
(48)

From now on, the substitution H(x,λ, u, t) = H(x(t),λ(t+1), u(t), t) is per-
formed for the sake of readability. The first order condition for stationarity

∂H(x̄,λ, u, t)
∂u(t)

= 0 (49)

has to be imposed. Solving this equation for the input u(t) leads to

u(t) =
GT (t)λ(t+ 1)− bN + enp (t) + C(t)x̄(t)

cN − 2D(t)
(50)

The second order derivative of the Hamiltonian turns out to be

∂2H(x̄,λ, u, t)
∂2u(t)

= 2D(t)− cN = −2f(t)− cN < 0 (51)

which ensures that the stationarity point is a maximum point, being both
f(t) and cN positive. Following the development of the classical maximum
principle for discrete systems, see for instance Ravn (1999), one can derive
the costate equation

λ(t) =
dH(x̄,λ, u, t)

dx̄(t)
= CT (t)u(t) + CT (t)x̄N,w(t) + FT (t)λ(t+ 1) (52)

Let us assume a linear relation between the Lagrangian multiplier λ(t) and
the mean state vector x̄(t)

λ(t) = S(t)x̄(t) + M(t) (53)

After some calculations involving the substitution of (50) and (53) into the
state update (47), one can achieve the update equation for the Lagrangian
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multiplier λ(t), which is given by

λ(t+ 1) = S(t+ 1)
[
(cN − 2D(t))−G(t)GT (t)S(t+ 1)

]−1

·
[
(cN − 2D(t))F(t)x̄(t) + (cN − 2D(t))ε̄ex(t)

+ G(t)
(
GT (t)M(t+ 1)− bN + enp (t) + C(t)x̄(t)

) ]
+ M(t+ 1)

(54)

The update equations for the matrices S(t) and M(t) defined in (53) are
still to be determined. By combining (52) and (53), one gets

λ(t) = S(t)x̄(t) + M(t) = CT (t)(u(t) + x̄N,w(t)) + FT (t)λ(t+ 1) (55)

The expressions (50) and (54) have to be substituted into the rightmost side
of (55). Grouping together all the elements multiplied by x̄(t), the equal
sign on the right of (55) is always true if

S(t) =CT (t)
C(t)

cN − 2D(t)
+
(

CT (t)GT (t)
cN − 2D(t)

+ FT (t)
)

· S(t+ 1)
[
(cN − 2D(t))−G(t)GT (t)S(t+ 1)

]−1

·
[
(cN − 2D(t))F(t) + G(t)C(t)

] (56)

and

M(t) = CT (t)
[−bN + enp (t)
cN − 2D(t)

+ x̄N,w(t)
]

+
(

CT (t)GT (t)
cN − 2D(t)

+ FT (t)
)

·
{

M(t+ 1) + S(t+ 1)
[
(cN − 2D(t))−G(t)GT (t)S(t+ 1)

]−1

·
[
(cN − 2D(t))ε̄ex(t) + G(t)

(
GT (t)M(t+ 1)− bN + enp (t)

)] } (57)

The sequences S(t) and M(t) can be calculated backwardly using (56), (57)
and imposing the final conditions S(t + Nh) = 0,M(t + Nh) = 0. With
the values of S(t) and M(t), (53) and (47) are substituted into (50). The
resulting equation is then solved in the variable u(t) to obtain the optimal
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control rule

u(t) =
GT (t)S(t+ 1)F(t) + C(t)

cN − 2D(t)−G(t)TS(t+ 1)G(t)

·
(
F(t− 1)x̄(t− 1) + G(t− 1)u(t− 1) + ε̄ex(t− 1)

)
+

GT (t)
(
S(t+ 1)ε̄ex(t) + M(t+ 1)

)
− b1 + enp (t)

cN − 2D(t)−G(t)TS(t+ 1)G(t)

(58)
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