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Sampling informative/complex a priori
probability distributions using Gibbs sampling
assisted by sequential simulation

Thomas Mejer Hansen, Klaus Mosegaard, and Knud Skou Cordua’

'Center for Energy Resources Engineering, Department of Informatics and Mathematical Modelling, DTU,
Richard Petersens Plads, Building 321, 2800 Lyngby, Demmark. E-mail: tmeha@imm.dtu.dk

Abstract

Markov chain Monte Carlo methods such as the Gibbs sampler and the Metropolis algorithm
can be used to sample the solutions to non-linear inverse problems. In principle these
methods allow incorporation of arbitrarily complex a priori information, but current methods
allow only relatively simple priors to be used. We demonstrate how sequential simulation can
be seen as an application of the Gibbs sampler, and how such a Gibbs sampler assisted by
sequential simulation can be used to perform a random walk generating realizations of a
relatively complex random function. We propose to combine this algorithm with the Metropolis
algorithm to obtain an efficient method for sampling posterior probability densities for non-
linear inverse problems.

Keywords: Monte Carlo, prior, sequential simulation, inverse problem.

1. INTRODUCTION

Consider a typical forward problem
(1) d=g(m)

where a function g relates a subsurface model m to observational data d. Inverse problem
theory deals with the problem of inferring properties of m from a specific dataset d, using
equation (1) and some prior information on m. Tarantola (2005) and Mosegaard(2006)
formulate a probabilistic approach to solving inverse problems where a priori information is
described by the a priori probability density function (pdf) p,, (m), and the data fit associated

to a given model is given by the likelihood, L(m). The solution to such an inverse problem is

the a posteriori probability density, which is proportional to the product of the prior and the
likelihood
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() oy (m)=p, (m) L(m)

where k is a normalization factor. In case g is a linear function, and both p,, (m) and L(m) can

be described by Gaussian statistics, Hansen et al. (2006) propose an efficient, non-iterative
approach, using sequential simulation, to generate samples of the a posteriori pdf. Hansen
and Mosegaard (2008) relax the Gaussian assumption and allow an a priori model with a non-
Gaussian distribution.

In practice, g is often a nonlinear operator, and L(m) and p, (m) are non-Gaussian.

Mosegaard and Sambridge (2002) summarize and discuss a number of Monte Carlo based
methods for sampling the solution to such problems. Among these we find the rejection
sampler, the Gibbs sampler, and the Metropolis algorithm. Each of these methods is
guaranteed to sample the a posteriori pdf asymptotically, although the computational efficiency
may differ significantly.

They allow an arbitrarily complex noise model and arbitrarily complex a priori information to be
used, but they differ in the way the content of the a priori model is presented to the algorithm.
A short description of each of these methods, and their demands on the a priori model, is
given here.

Rejection sampler
The rejection sampler is perhaps the simplest method for sampling the posterior probability
density function, p,, (m) in Egn. 2. It allows inclusion of complex a priori information, and any

black box that generates independent realizations from the a priori probability density function
can be used. Rejection sampling works by filtering a list of independent realizations of the a
priori model. Each proposed model is accepted with probability

(3) pa(,’(,‘ (mpropUSe ) = L(mpropuse ) /M

where M is larger than (or equal to) the maximum likelihood of all the proposed models. In
many cases the maximum likelihood is not known, and one must set M to a large value. For
large-dimensional problems this typically causes the acceptance probability p . to be very

small, and hence the algorithm to be very inefficient.

Metropolis algorithm

The Metropolis algorithm is a Monte Carlo sampling method based on Markov chains
(Metropolis & Ulam, 1949). Mosegaard and Tarantola (1995) describe a generalized
Metropolis algorithm that allows analysis of non-linear inverse problems with complex a-priori
information. The prior information must be quantified in such a way that the prior probability
density can be sampled in the model space. Furthermore, in order to control the efficiency of
the algorithm one must be able to control the exploratory nature of the random walk, i.e., one
must be able to control its the step length.

Each iteration of the Metropolis algorithm, starting in model m, consists of two stages: a)
exploration and b) exploitation. In the exploration stage, one step of a random walk, sampling
the prior, is performed. In other words, an unconditional realization m,.; of the a priori pdf
p,,(m) in the vicinity of m, is generated. This is followed by the exploitation stage where the
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likelihood of the proposed model is evaluated. Assume that the likelihood of m, and my.; with
respect to the observed data is L(m,) and L(mn+), respectively. Then m,.; is accepted with
probability Paccept:

(4) Paccept = IL ifL(mrH—l) > L(mn)
(m

P

accept

)>L(m,) otherwise

n+l

If my+s is accepted, m,+s becomes the current model. Otherwise the model m,.; is rejected,
and m, remains the current model. Performed iteratively this algorithm will sample the a
posteriori pdf, in the sense that models are accepted with a frequency proportional to their a
posteriori probability.

The computational efficiency of the Metropolis algorithm of course depends on the complexity
of the posterior distribution to sample. In addition, it is strongly dependent on the exploratory
nature of the prior sampler, i.e. the 'step length’ of the prior sampler. No theoretical correct
step length can be found, but Gelman et al. (1996) suggest that a step length giving rise to an
acceptance ratio of the Metropolis sampler of about 25-50% is reasonable. In any case, for a
successful application of a specific choice of method for performing a random walk in the prior
model space, one must be able to adjust the exploration rate.

Gibbs sampler

The Gibbs sampler (Geman and Geman, 1984) is - as the Metropolis algorithm - a random
walk algorithm that can be used to sample the a posteriori pdf. It differs from the Metropolis
algorithm in that at each step in the random walk, a model parameter mi is selected at
random. Then the conditional probability density function, given that the rest of the model
parameters are held constant, is computed. Finally, a realization of mi is drawn from the
conditional pdf.

An important property of the Gibbs sampler is that no models are rejected, as is the case for
the Metropolis sampler. The main computational task of applying the Gibbs is most often to
actually compute and draw realization from the conditional pdf. Note, that one does not strictly
need to compute the local conditional distribution. A method for generating realizations from
the conditional distribution will suffice.

In order to ensure that both the Metropolis algorithm and the Gibbs sampler will end up
sampling the correct a posteriori distribution, a number of conditions must be satisfied. First,
the sampling algorithm must reach an equilibrium distribution. This is satisfied in a simple way
if each pair of neighboring sample points, are in detailed balance: The probability that a jump
takes place from model my, to m; must be equal to the probability that a jump takes place from
model m;, to my:

®)  Plmx—mi|my) L p, (M) =P(m— me|m) p,, (m)

In addition, aperiodicity and irreducibility must be satisfied to ensure that the equilibrium
distribution is actually the a priori distribution p,,(m) (Mosegaard and Sambridge, 2002).

In this manuscript we will focus on ways to quantify complex a priori information such that it
can be used with the rejection sampler, the Metropolis algorithm and the Gibbs sampler. We
will demonstrate how geostatistical algorithms, based on sequential simulation and capable of
simulating geological reasonable structures, can be used to quantify prior information. These
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algorithms can be used directly with the rejection sampler. We will show that the Gibbs
sampler and sequential simulation are closely related. Specifically we will demonstrate an
application of the Gibbs sampler that will enable generating realizations from any stochastic
model that can be simulated using sequential simulation. Further we will demonstrate that this
sampling algorithm honors microscopic reversibility, such that it will actually sample the
stochastic model intended. We suggest to use this method, which we refer to as sequential
Gibbs sampling, to handle the exploratory part of the Metropolis algorithm. This not only leads
to the formulation and solution of inverse problems with complex a priori information, but can
also have dramatic effect on the computational efficiency of the Metropolis sampling algorithm

2 QUANTIFYING PRIOR INFORMATION USING
GEOSTATISTICS

Generally speaking geostatistics is an application of random functions to describe spatial
phenomena, typically in form of spatial variability in earth models. Geostatistical simulation
algorithms have been developed to efficiently generate realization of a number of random
function models. Geostatistical simulation algorithms can be divided into two groups, where
the underlying random function model is based on 2-point and multiple-point statistics,
guardiano1993multivariate,Strebelle. 2-point based geostatistical algorithms take into account
spatial variability between sets of 2 data locations. In case the distribution of the model
parameters are Gaussian, one can completely define the underlying random function model
using a Gaussian pdf.

(6) Py (m)=c exp(=0.5(m—m,,,.)' C;;Mm (m—m,,,.))
where Mo is the a priori mean, and Ca}l,,,,-o, is the a priori covariance model.

Multiple point based geostatistical models have no parametric description. Instead the multiple
point statistics are inferred from a training image. The methodology was initially proposed by
Guardiano and Srivastava (1993). Strebelle (2002) developed the first computationally feasible
algorithm for categorical training images. Zhang et al., 2006, and Wu et al., (2008) suggested
another multiple point based algorithm where patterns from a continuous or categorical
training image are used to generate stochastic realizations with features from the training
image. Using these techniques one can generate realization of random function models that
reproduce geologically realistic spatial variability. State of the art implementation of these
algorithms are available through SGeMS (Remy et al., 2008).

2.1 Sequential simulation

Consider N sampling points u4, uz, ... uy and a random field Z(u) describing the spatial
relations between the sampling points, then one realization of the vector

(7)  Z(u) = (Z(uq), Z(up), ..., Z(un), Z(Un+1), ... Z(un))
can be simulated as z(u) = (z(uq), z(u2), ... z(un)) using sequential simulation as follows.

Sequentially visit all locations and draw a value z(u;) from Z(u;), by randomly drawing a value
from the conditional probability density function
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(8) S2(z 2y 2,)

for i = n+1,..., N. That this is true follows from the identity f(s|?) f(¢)=f(s,t), which (in the
general multivariate case) yields

Fr Gz 120002,) = f1 (2 |2, 0.2,)

:fZ(ZrHZ |Zl "'Zn+1)

9)
=f2(zy 12,2y )

When all locations have been visited one realization of Z(u) is generated as z(u). Thus to
apply sequential simulation one must a) build a local conditional pdf (conditional to the
previously simulated data), and b) draw a realization of this local pdf. Considerable effort have
been made in the geostatistical community to efficiently compute conditional probability
density functions, based on the 2-point and multiple stochastic models presented earlier.

2.2 Sequential Gibbs sampling

Recall that the Gibbs sampler, just as the sequential simulation method, is dependent on an
efficient method to generate a local conditional probability distribution. Consider z(u) as a
known realization of the random function Z(), obtained using sequential simulation. If we now,
at random, select a model parameter, z , compute the local conditional pdf

(10) Sy (2 20200 2 1nZiy e,

and draw a value from it, we get a new realization of the random field Z(u). If this is repeated
iteratively, this will be an application of the Gibbs sampler (Geman and Geman, 1984). The
cost of using the Gibbs sampler is that one must be able to generate a realization of the local
conditional pdf, which can be done very effectively using sequential simulation. We refer to this
combination of sequential simulation and Gibbs sampling as sequential Gibbs sampling.

If such sequential Gibbs sampling should be used to sample prior information, in conjunction
with the generalized Metropolis algorithm, to sample the posterior of inverse problems, then
some flexibility of the amount of perturbation is needed, i.e. some control of the ’step-length’ of
the prior sampler is needed, in order to control the computational efficiency of the generalized
Metropolis sampler. We suggest to consider not just one model parameter at each step of the
Gibbs sampler, but a set of model parameters. Say the model parameters we wish to update
belongs to /, then we need to generate a realization of the conditional pdf

(11) J2(Zier |2ie1)

Recall that we do no need to explicitly calculate the complete local conditional distribution in
eqgn. 11, but only be able generate a realization from it. For this we can make use of the
sequential simulation approach of eqn. 9, which involves computing only the conditional
probability density function for each model parameter in / in random order.
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We suggest to use a Gibbs sampler to sample the prior information quantified by random
function models that can be simulated using sequential simulation. For such random function
models, sequential simulation can be used to efficiently draw a value from the local conditional
pdf, which is needed by the Gibbs sampler.

Microscopic reversibility

Mosegaard and Sambridge (2002) demonstrate that the Gibbs sample respects microscopic
reversibility. As the Sequential Gibbs sampler is an application of the Gibbs sampler this,
microscopic reversibility is also ensured for the sequential Gibbs sampler. This means that the
random walk performed by running the sequential Gibbs sampler will end up sampling exactly
the same random function as samples running sequential simulation!

Algorithm for sequential Gibbs sampling

Implementing the sequential Gibbs sampler amounts to implementing a Gibbs sampler, where
in each iteration, a realization of the conditional probability density function associated to a
specific set of model parameters is calculated using sequential simulation:

1. In the current model m;, select a region in the model space, and denote all model
parameters in this area as unknown, mj(u). The rest of the model parameters are considered
known mj(k).

2. Perform sequential simulation of mj(u), conditioned to mj(k). This generates a new
model m;.4, which is also a realization of the prior model. This step is identical to drawing a
value from the conditional probability density function in egn. 11.

3. Set m; = mjxs and go to 1.

Such an algorithm was proposed by Hansen et al. (2008). They did however not make the link
to the Gibbs sampler. They provided no proof that the resulting algorithm would sample an
equilibrium distribution, nor that such a equilibrium distribution would in fact be the requested a
priori model.

2.3 Gradual deformation

Gradual deformation techniques that allow a gradual deformation between two realizations of
random function has been developed for both 2-point based Gaussian random function
models (Gradual Deformation Method, GDM) (Hu, 2000; Le Ravalec et al., 2000) and multiple
point based random function models (Probability Perturbation Method, PPM) (Caers and
Hoffman, 2006). The main use of gradual deformation have been as part of an optimization
algorithm for data calibration, where iterative gradual deformation have been used to gradually
change a starting model until the forward response from the model match observed data to
some satisfactory degree, Caers and Hoffman (2006). It has been suggested that running
such an application several times, generating a set of models that all fit the data, can be used
to describe posterior uncertainty. This is however not the case. The variability apparent in such
a set of models, reflects the choice of optimization algorithm and the level chosen for
acceptable data fit. An effort to address this is issue was made by Le Ravalec-Dupin and
Noetinger (2002).

If GDM and PPM honors microscopic reversibility they could though be used to perform a
random walk in the a priori probability space. They could also be used in conjunction with the
sequential Gibbs sampler to allow a gradual perturbation to the currently visited model, and
thus allow for a more detailed control of the perturbation.
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3 CONCLUSIONS

We have demonstrated the how the Gibbs sampler and the method of sequential simulation
are close related. We have proposed an efficient sampling algorithm combing these two
methods called sequential Gibbs sampling, that can perform a random walk in an a priori
model parameter space described by random function models based on both 2-point and
multiple point based statistics. We have shown that this algorithm honors microscopic
reversibility and that the equilibrium distribution is in fact the probability density function
described by the a priori choice of random model. The sequential Gibbs sampler can be run
with arbitrarily step lengths. The longest step length result in a new realization from the a prior
distribution that is uncorrelated to the previous model. A step length of zero returns the same
realization as the previous model. This make the sequential Gibbs sampler well suited acting
as a method to perform a random walk in the prior model parameter space, which is needed to
quantify such complex a priori information for use with the Metropolis sampler.

Utilization of the sequential Gibbs sampler will allow relatively efficient analysis of the solution
to nonlinear inverse problems with complex a priori information.
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