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Preface

This PhD study took place under the "Industrial PhD prograhniihe purpose of the

programme is to perform research which is interesting niytarademically but also to

the industry. The PhD candidate is employed at a private emyut the study must
be performed with strong connections to a university, whieeecandidate is expected
to be present at least half of the study time.

The PhD study was performed at the Department of Computen8ej University of

Copenhagen (DIKU) from June 2007 to February 2009 and at DHdadement En-
gineering, Technical University of Denmark from Februa@pQ to March 2010. Fur-
thermore, the work was partly conducted at GlobalConne$t Atelecommunications
company located in the outskirts of Copenhagen, DenmaieBsor David Pisinger
supervised the study, Professor Brian Vinter acted as sesgpervisor at DIKU and

CSO Niels Raun supervised at GlobalConnect A/S.

This PhD thesis consists of four introductions (Chapter,13 and 8), six research
papers (Chapter 4, 5, 6, 7, 9 and 10) and a conclusion (ChapjerThe research
papers have been written in collaboration with co-authawtsy are mentioned at the
beginning of each paper. The research papers are relasedtgontained, however,
the bibliography of each research paper is left out andaakstae bibliography for all
chapters is included at the end of the thesis.

The PhD thesis contains four parts. The first part is an intctdn split into two
chapters. The next part concerns the scheduling problemdrtgmputing and is split
into five chapters. The first is an introduction to the probkamd the remaining four
are research papers. The third part of this thesis dealsthétimulti-commodityk-
splittable flow problem, where each commodity may use at rhgsiths to route its
flow. This problem has relevance in the telecommunicati@tsos when gathering



several data packets under the same label. The third paststemf an introduction
and two research papers. The final part of this thesis cantaincluding remarks and
suggestions for future work.
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CHAPTER 1

Introduction

1.1 Motivation

This thesis is part of a general study of grid computing prenfd by DTU Management
Engineering at the Technical University of Denmark, the &é&pent of Computer Sci-
ence at Copenhagen University, GlobalConnect A/S and thididlDataGrid Facility.
The thesis is a contribution to strengthen the utilizatibgr computing by improving
the current routing and scheduling scheme.

Grid computing is a service which provides applicationsrage and computational
power. The idea is that users can access the grid by pluggéigdomputer into the
wall to access the grid; just like one gets electricity. Grisnputing is hence named
after the power grid. The home computer of a user only hasye hagood internet
connection and to display graphics, thus the user can sameymn buying a new
computer, new software etc. every few years. The user isfededl from software
and - to some extent - hardware maintenance as this is haodldde grid by grid
administrators.

The full vision of grid computing has not been implementethat point of time. In-
stead grid computing has become a tool for scientists tarobtanputational power.
A grid can therefore be viewed as a number of computer ressdrom (different) ad-
ministrative domains working together for solving largelglems. The problem size is
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generally measured in the amount of required CPU cyclesqiined data. Researchers
use grid computing to solve problems requiring more reseaititan available at each
research group, see e.g. Grgnager [96] and Shiers [176méleds presented in this
thesis will allow researchers to solve problems of largee sind scope than what is
possible today. This is highly relevant because severahseis such as biology, chem-
istry and physics are currently producing data at an expiiadeate, see e.g. Bergeron
[37], Marcotte [143] and Rickel [167].

Many different grid implementations are in use today. Théfi@ld a scheduler which
to a certain degree decides the activity in the grid, i.eictwvhesource computes what
job and when. The schedulers do, however, generally notreksork traffic into
account. When a job runs on a resource its input files mustdsept. The data must
be sent to the resource from storage. If time spent on datartigsion is not taken
into account when scheduling computation, the resultiag phay be infeasible; some
jobs may not be able to execute on time because they are aitlhg for data. In the
case of an infeasible scheduling plan, the grid may havejéztrexecution of some
jobs. Hence the grid may become an unstable computatiogesfarthe users, which
may lead to a decrease in the desire for using grid computilggmneral. Taking data
transmission into account will result in feasible schealyBolutions and in an increase
in the stability of the grid. The need for considering datfic in grid computing
is illustrated in Figuré_111. The upper figure shows reguktiork traffic, which
never exceeds 400 Mbps. But when logging on to a grid, theor&tlead explodes as
illustrated in the bottom figure; the amount of ingoing tr@ificreases to 1 Gbps. The
figure stems from the Nordic DataGrid Facility and is repnéatve for grid usage.
Looking at the bottom figure, it seems that all network catyasiused at certain times.
That is, the network constitutes a bottleneck in some psratl will thus delay the
computation of some jobs.

1.2 Solution approaches

Operations research is a discipline in applied mathematidscomputer science and
is widely used for solving planning problems. Operatiorsesrch provides a number
of tools useful for computing precise and detailed plansesEhtools include mathe-
matical modeling and programming. The interest in applypgrations research to
real-life problems has increased as more computer resphege become available.
A research area which utilizes operations research forrgplplanning problems is

telecommunications: re-occurring telecommunicatiorbfams which can be solved
using operations research include routing data throughiorks, designing networks,

and distributing job executions among several CPUs or céenpuOperations research
can thus be applied to the scheduling problem in grid computihich is a combina-

tion of routing data and of distributing job executions.
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Figure 1.1: Network traffic at the Nordic DataGrid Facilithe upper figure illustrates
regular network load and the lower figure illustrates netwoad when logged on to
the grid.
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A mathematical model can generally be said to contain a seandibles, which rep-
resent decisions in the corresponding problem. To ensateotily feasible decisions
are made, subsets of variables are gathered in mathenmedicalions. These are also
called constraints and they formulate properties of theesponding problem. Finally,
a model contains an objective function which defines theailvgoal of solving the
corresponding problem. For instance in telecommunicatio® want to establish as
many data connections (decision variables) as possibdeigira network (objective
function) such that network data does not exceed the bari\éddnstraints). That is,
a decision variable corresponds to establishing a datartr&sion, the constraints cor-
respond to setting upper bounds on the amount of data tngveti the network links,
and the objective is the total number of established datstnégsions.

A mathematical model transforms possibly weak or abstegpirements into a num-
ber of precise and detailed mathematical equations sutththaorresponding real-life
problem is well-represented. The model is global, becausmnisists of mathematical
equations and thus only can be read in one way. Also, a gooetinsbduld be kept

as simple as possible and it may be beneficial to reformulatéo more appropriate
representations. This thesis concerns both modeling dadwelation of models. In

PartTl, the grid scheduling problem with network consttais formalized in a mathe-
matical model and reformulations are applied to reach nraable representations.

Many of the problems considered in this thesis are very diffito solve, because the
set of solutions is so large that enumerating and investigaach solution is simply
not feasible. These problems are said to\j&-hard and careful considerations must
be given on selecting an appropriate solution method. Ttyees of methods are
typically employed to solvé/P-hard problems:

* Heuristic solution methods.
This approach uses rules of thumb when finding a solution. ristées often
choose the decision, which currently seems more apprepsigihout knowing
exactly how the decision affects the overall solution. Tisatheuristics give
no guarantee of the solution quality, but they are capabfending a solution
quickly. Heuristics are often used in a real-life framewarkere time usage
constitutes a bottleneck. See e.g. Rothlauf [169] for aystrdheuristic meth-
ods.
A special class of heuristics is meta-heuristics, whichstsia of general frame-
works of heuristics to be applied to many classes of problevieta-heuristics
often require more time but may also give better solutioree &g. Glover and
Lagundal[92], Goldberg [93], and van Laarhoven and Aart8]16r studies on
meta-heuristics.
This thesis considers heuristics for solving the grid scliag problem. The
heuristic methods are presented in Chalpter 2.
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» Approximation algorithms.
The approximate solution approach gives a guarantee onothdos quality.
Approximation algorithms, however, may require more tirhart the heuristic
approach. Approximation algorithms are not part of thistheand are thus not
explained further. For more information see e.g. Vazird8if].

» Exact solution methods.

Solving a problem exactly or to optimality guarantees thatliest possible so-
lution is found. This approach can be very time consumingllesotutions in
worst case must be explored. A number of different exact aggres exists;
these include decomposition methods, dynamic programmigifpods, matrix
manipulation methods, etc., see e.g. Nemhauser and WdS&Y. [Some real-
life problems may be tractable in practice despite be\fitthard, for instance
because of properties of the problem instances or becays®pérties of the
problem type. In these cases, exact methods may be appiiedt, then exact
methods may be used for benchmarking the performance ofstiear Exact
methods are also a useful tool for analyzing problem batttka and behaviour.
The grid scheduling problem and data transmission probiletetecommunica-
tions are solved to optimality in this thesis using the Dapt/olfe decompo-
sition method([54] and using standard solvers performingrisnaanipulations.
These exact solution methods are presented in Chapter 2.

1.3 Goals

The focus of this thesis is on the grid scheduling problenhwitspect to network
constraints. The main goals are summarized as:

» Formalize the scheduling problem in grid computing whestvork limitations
are taken into account.

» Use experiments to investigate the practical compleXithe problem.

* Investigate the consequences of different network tagiek specifically when
using a standard packet switched network (e.g. the infeamet when using an
optical network (which is circuit switched).

* Investigate the underlying network problem, when usingtiVRrotocol Label
Switching (MPLS) for routing data. The problem is denotesltulti-commodi-
ty k-splittable Flow Problem (MEFP) in operations research context.

The main problem of job scheduling in grid computing is irtigegted with respect
to practically relevant constraints on the underlying retwtopology. Work in the
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literature has mainly focused on solving the schedulindgplemm without network con-

straints. First a standard network topology is applied dreshta more sophisticated
optical network topology is considered. The goal is to itigege the impact of net-

work constraints in the grid scheduling problem.

By implementing a humber of algorithms the goal is to presaveral options for
solving the scheduling problem according to requirementsroe usage and solution
quality. The methods also give an impression on how diffithdtproblem is to solve
practically.

Operations research can be applied to several problenisggiristelecommunications.
The scheduling problem in grid computing is an example «.tAinother is the prob-
lem of determining routing tables when using Multi-Protdcabel Switching (MPLS).

In MPLS several data packets are gathered under the samedalkeduce routing ta-
bles and to increase quality of service. However, the cosentling data depends on
the number of.abel Switch Pathghus the number of paths should be limited for each
label. This corresponds to the the Multi-commoditgplittable Flow Problem. A goal

in this thesis is to investigate this problem and to improweent solution techniques
from the literature.

1.4 Contributions

The main contributions of this thesis are summarized below:

» The offline scheduling problem in grid computing with respto network con-
straints is formalized and proved to A&-hard. Grid components are assumed
to be connected through a packet switched network. Expeggewith heuristic
approaches are discussed and exact solution methods aspth

« Comparing the proposed exact methods with heuristic éxgerts for the off-
line grid scheduling problem using a packet switched neitvatrows that the
problem can be solved to optimality for all tested benchniskances with up
to 1000 jobs and resources.

« The offline scheduling problem in grid computing where comgnts are con-
nected through an optical network is formalized and proedstA\/P-hard. Ex-
act and heuristic solution methods are proposed.

« Comparing exact and heuristic solution methods for thenfdized offline sche-
duling problem in grid computing using an optical netwottkows that the heu-
ristics perform better. The exact solution method timesfoutnany instances,
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while the heuristics have very small running times and firalat®n with an
average solution gap of only 3%.

 The real-life grid computing network of the Nordic Datat&FHacility is formal-
ized into a mathematical formulation. Solving the formigatto optimality re-
duces network usage significantly. Practical, relevanhgba to the grid and
network functionality are added to the formulation and tfieas are analyzed.

» New exact algorithms for the Multi-commodify-splittable Flow Problem are
proposed; one for the minimum cost problem and one for theimax flow
problem. The algorithms are developed with the intentioredficing symmetry
in the solution space.

» The exact algorithms for the Multi-commoditysplittable Flow Problem out-
perform exact algorithms from the literature. The algaritheliminate a signifi-
cant amount of symmetry in the solution space and even ththighomplicates
branching, the algorithms perform very well.

The contributions are introduced further in the followireg8on and are discussed in
detail in ParE]l for the grid scheduling problem and in PHitdr the Multi-commodity
k-splittable Flow Problem.

1.5 Overview of PhD thesis

The thesis consists of the following parts:

Part[d Introduction. This part consists of two chapters: the current chapter lwhic
contains a motivation and an introduction to the thesis. S¢mnd chapter de-
scribes the overall solution methods in the thesis. The austtare heuristics
and exact methods, the latter including branch-and-boutideelumn gener-
ation, cutting planes, and stabilized column generatiome 3econd chapter is
meant as an introduction to the solution methods and may ippestt by the
advanced reader.

Part [l Scheduling in grid computing. This part considers the scheduling problem
in grid computing. The part contains four papers:

* Integrated job scheduling and network routing. This paper considers
the integrated job scheduling and network routing problehich has ap-
plication in grid computing. The problem is considered toftne, i.e., it
computes a job execution and data transfer plan in advareepdper sug-
gests three algorithms for solving the problem to optirgalithe first is a
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straight-forward branch-and-price algorithm, which rime memory and
time problems rather quickly. Thus the algorithm is extehtibea branch-
and-cut-and-price algorithm, where only violated coristsaare included
in the master problem. This reduces memory and time usag#isantly.
However, the algorithm still has room for improvement whistdone by
adding stabilized column generation. This reduces the rutiterations
in each branch-and-bound node considerably and hence ticaftyaim-
proves memory usage and running times. Instances with upQ6 jbbs
and 1000 resources are solved to optimality. The work has pessented
as follows:

— A paper co-authored with David Pisinger is in submissior].[86

— Poster presentation at the Foundations for Innovative &ekebased
Software Technologies (FIRST) Retreat, Denmark 2008 éntes:
Mette Gamst).

— An extended abstract is in Proceedings of Forskningsnefdfencen,
Denmark 2007[7/7] and the work was also presented at thiscente
(presenter: Mette Gamst).

Furthermore, the work was presented at the ALGO seminargpaifment
of Computer Science, University of Copenhagen, 2008 (pteseMette
Gamst).

A survey of the routing and wavelength assignment problemThe Rout-
ing and Wavelength Assignment problem (RWA) arises whetimguata
through an optical network. In an optical network each datanection
travels on a given path at a given wavelength. Each wavdiemgt fiber
can be used by at most one data connection because of harilwiiae
tions. RWA is the problem of finding routes and wavelengthisafaumber
of data connections. The survey presents the most commuoticsoimeth-
ods from the literature, proposes theoretical running sifioe the methods
and discusses their computational evaluations. Furthernsaggestions
for future directions are given. The work has been preseagddllows:

— A Technical Report is published at DTU Management Engimeggri
Technical University of Denmark [78].

On the integrated job scheduling and constrained network raiting
problem. This paper considers the offline job scheduling and datafean
problem in grid computing where the underlying network isicgd. The
problemis considered as a combination of the offline griegédcifing prob-
lem described in the first paper of this part, and the RWA protdescribed
in the second paper. A branch-and-price algorithm is pteseand imple-
mented. Test results show that although the algorithm gélggrerforms

better tharCPLEX it still has memory and time problems. Thus a number

of heuristics are proposed, based on merging grid hewgisfith heuristics
for the RWA problem. Test results show that the grid schedutieuristics
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have the larger impact on performance. The best heuridtiogg@erforms
well with an average solution gap of 3% and solves all insangithin
seconds. The work has been presented as follows:

— A paper is in submission [81].
— A short paper is in the Proceedings of the International Sysiym on

Combinatorial Optimization 2010 (ISCO’10) [80] and wascajze-
sented at this conference (presenter: Mette Gamst).

— Presentation at the Department of Industrial Engineef@grations
Research, UC Berkeley, 2009 (presenter: Mette Gamst).

Furthermore, the work was presented at the ORSEM seminddg ldt
Management Engineering, Technical University of Denma&.0 (pre-
senter: Mette Gamst). Preliminary work was presented aAL@&O sem-
inars at the Department of Computer Science, Universityagebhagen,
2008 (presenter: Mette Gamst).

» Analysis of internal network requirements for the distributed Nordic
Tier-1. This paper concerns the real-life grid computing systermftbe
Nordic DataGrid Facility (NDGF). The paper describes anmdnfalizes the
system. The mathematical formulation is optimized usdi}.EXand the
resulting system is analyzed. The paper shows how opesatigearch can
help utilizing real-life grid computing systems, whichuéis in more stable
and efficient grid systems. The work has been presentedlag/ol

— A paper written with Gerd Behrmann, Lars Fischer, Michaed@ger
and Josva Kleist is currently being finished.

— Early work is in Proceedings of Computing in High Energy ang N
clear Physics (CHEP) 2009, where it was also presentedgmies
Josva Kleist)[[383].

Part [ The Multi-commodity k-splittable Flow Problem. This part considers the
Multi-commodity £-splittable flow problem and contains two papers:

* Two- and three-index formulations for the multi-commodity &-split-
table flow problem. This paper considers the problem of sending a num-
ber of commodities through a network subject to edge capaaind such
that each commodity uses at maéspaths. The objective is to minimize
the total transmission cost. We present a mathematicaldiation, which
is simpler than that used in the literature. A correspondiegy branch-
and-price algorithm is proposed and is compared with thekvirmm the
literature. The simpler formulation eliminates much synmpén the so-
lution space but also complicates branching slightly. Tee algorithm
outperforms exact algorithms from the literature, bothrhwitspect to the
number of solved instances and with respect to time usage wbink has
been presented as follows:



12 Introduction

— A paper co-authored with Peter N. Jensen, David Pisinge/Cimis$-
tian Plum is published in the European Journal of Operativas
search, 2010 [83].

— A short paper co-authored with Peter N. Jensen, David Resiagd
Christian Plum is in Proceedings of the International NekvOpti-
mization 2009 (INOC’'09)[[82] and was also presented at thidfer-
ence (presenter: Mette Gamst).

Furthermore the work was presented at the ORSEM seminarBlatMan-
agement Engineering, Technical University of Denmark,2(fresenter:
Mette Gamst).

» Comparing branch-and-price algorithms for the multi-commodity k-
splittable flow problem. The final paper of this part also considers the
problem of sending a number of commodities through a netsobject to
edge capacities and such that each commodity uses atinpaghs. The
objective is to maximize the total amount of transmitted fl@le simpler
model and corresponding branch-and-price algorithm froenrhinimum
cost version are applied to the maximum flow problem, butresilts are
not as promising when comparing to a branch-and-price igfgoifrom the
literature. The reason for this is that the simpler model loimed with its
branching strategy causes a large branch-and-bound tres thie objec-
tive function is to maximize the total amount of transmitfemv. Hence
a new branch-and-price algorithm is proposed, where colgemeration
remains unchanged and where a new branching strategy atidsdhe
master problem. The new branch-and-price algorithm per$orery well
and outperforms both the former algorithm and the algoriftom the lit-
erature by solving more instances and spending less time.wiink has
been presented as follows:

— A paper is co-authored with Bjagrn Petersen and is in subonid$§4].
— An extended abstract is in the Proceedings of the Intemalti®ym-

posium of Mathematical Programming 2009 (ISMP’(9)[85] aval
also presented at the conference (presenter: Mette Gamst).

Part[[V] Conclusion. The final part of the thesis contains a summary, some conclud-
ing remarks and suggestions for future work.

Each paper is discussed further in the introductions foh geat. That is, the four
papers in Paffll are evaluated in Chapier 3 and the two pap@er{Ill are discussed
in Chaptef8.



CHAPTER 2

Introduction to solution
methods

This chapter describes the solution approaches which ackinshis thesis. Both exact
solution methods and greedy heuristics are consideredt ¢@mes an introduction
to the exact solution methods, which are based on DantzifeVlecomposition and
branch-and-bound. Afterwards follows an overview of gseleeuristics given.

2.1 Exact solution method

The exact solution approaches in this thesis are based dbahtig-Wolfe decom-
position technique used in a branch-and-bound contexttzRgkVolfe decomposition
transforms the original mathematical problem intmaster problemwhere the num-
ber of columns may be large but the number of rows is reducedmdke the new
model more tractable, columns are generated iterativetii@nhopes of only having
to include a subset of the columns in the model. This is dehotdumn generation
and consists of solving pricing problemin each iteration. When the lower bound to
the problem is found using Dantzig-Wolfe decomposition aoldimn generation in a
branch-and-bound context, the resulting method is dermtednch-and-price algo-
rithm. It may seem straight-forward to add the branch-and-boearté method to the
column generation procedure, however, several issueshauaken into account. One
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is that branching may change the structure of the pricinglpro and hence make it
significantly more difficult to solve. Another is the compitg»of the solution method

for solving the pricing problem. The pricing problem is saiha potentially large num-
ber of times, thus the corresponding solution approachldi@ave good performance.

In this thesis branch-and-price is used for solvingAie-hard scheduling problem in
grid computing context to optimality. The reason for thighat the grid scheduling
problem takes on a form, which is suitable for Dantzig-WaléEomposition and that
Dantzig-Wolfe decomposition combined with branch-andrimbshows very good re-
sults for a wide variety of problems in the literature, seg ®arnhart et al.[[27], de
Aragao and Uchoa [55] Desaulniers et al. |[57], and Lubbeakd Desrosiers [136].
Many of these problems share similarities with the grid sictieg problem considered,
e.g., a variety of multi-commodity network flow problemsesglvelos [7], Alvelos
and de Carvalha [8], Barnhart et al. [26], and Truffot and Builel [190]. Applying
other exact solution approaches such as Benders decomppsée Benders [36], or
dynamic programming, see Bellmé&n [35], would be less ditéogward. These and
many other exact solution approaches exist, but they wilbeadiscussed any further
in this chapter. Instead an overview can be seen in e.qg. @h&l], Lubbecke and
Desrosiers[[136], Martin [146], Nemhauser and Wolsey [15thrijver [174], and
Wolsey [204].

This chapter introduces the used exact solution methodssarmat meant to be an in-

depth survey but more a guide for understanding the basitiseodpproaches. For
details on the methods and examples of applications, sedegpulniers et all [56],

Lubbecke and Desrosiefs [136], and Nemhauser and Wol&2}.[The chapter is or-

ganized as follows. First Dantzig-Wolfe decompositiomisoduced in Section 2.7.1,
which is followed by column generation in Sectlon 211.2. #xdgcuts to strengthen the
mathematical formulation is discussed in Secfion 2.1.2anBhing is described in Sec-
tion[2.1.4 and overall solution methods are discussed iti@¢2.1.5. Finally, methods

for stabilizing dual variables are presented in Sedfion®2.1

2.1.1 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition was introduced by Dantzig ®alfe [54] and consists
of reformulating a problem into a master problem and a pgigroblem for improving

the tractability of large-scale problems. The master pobtypically has fewer con-
straints than the original problem, but the number of colsmmay be very large. The
pricing problem generates columns, which have the potetatienprove the current
solution.

In order to Dantzig-Wolfe decompose a problem, the condtragatrix should take on
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a certain structure and consist of a numbeindependentonstraints and a number of
connectingconstraints. The constraint matrix is block-angular, tlee matrix can be

divided into blocks with non-zero coefficients. These blbc@nstitute the independent
constraints. Connecting constraints binds the columrethag. Consider the problem:

min Z ckak (2.1)
keK
sty Ak < (2.2)
keK
Dkzk <dk  Vke K (2.3)
ek ezt VkeK (2.4)

where K is the set of blocks and* and D* constitute the constraint matrix. Con-
straintsA” are the connecting block, ar@* the independent block.

Al A2 . AP

Dl

D2

D’n

Figure 2.1: The desired matrix structure for Dantzig-Waléeomposition. The blocks
Al A% ..., A" are connecting constraints and the bloéKs D?, ..., D" are inde-
pendent constraints.

Figure[2.1 illustrates this matrix consisting of connegtamd independent constraints
as blocksA* and D¥, respectively. Now, we define the domaik$ asX* = {2* ¢
Z1*, D*z* < d*} and we can rewrite our problem into:

min Z ckak (2.5)
keK
sty Ak < (2.6)
keK
zk e X* Vk e K (2.7)

Note that this problem only contains the connecting coivgBaThe variables* must
satisfy the independent constraints, which thus are léftAccording to the theorems
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of Minkowski and Weyl[[173], eack € K can be written as a convex combination of
the extreme point§z*?} c p. and of the extreme rayis:*"},.c g

ok — Z fEkp)\kp"‘ Z xkr>\kr

pE Pk reRk

> Ay =1

pEPF
>\k;D € {07 1}
Air € Z+

This leads to a reformulation of the problem (2.5 - 12.7) @diamed the master
problem:

min Z cF Z xkp)\kp + Z 2" Aoy (2.8)

keK pe Pk rERF
st Y AR abP A+ Y af e | <D (2.9)
keK pe Pk reERF
> My =1 Vk e K (2.10)
pe Pk
Mip € {0,1} Vp € P* vk € K (2.11)
Ner € Z4 Vr € RF Yk € K (2.12)

This model holds fewer constraints than the original formtioh, but the number of
columns may be very large. How to deal with the large numbeanébles is discussed
in the next section.

ExAMPLE: Consider the Minimum Cost Multi-Commaodity unsplittabléow

Problem (MCMCuUFP), which consists of sending a number of roonlities
through a capacitated network such that the total routirsg isominimized and
such that each commodity uses exactly one path.

The network is represented as a graph with nodes and €dges$V, F). Com-
modities are represented by the gedind each commodity € L consists of a
source node, a target node, and a quanfitio route. Letc;; > 0 be the cost
of routing one unit of flow on edg@;j) € E and letd;; be the capacity of edge
(ij) € E. Finally, Ietxéj € {0,1} be a binary variable indicating whether or not
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commodityl € L visits edge(ij) € E. Now MCMCUFP can be formulated as:

min Z Z ciquxﬁj (2.13)

leL (ij)EE
s. t. > gl < dy V(ij) € E (2.14)
leL
doal— Y al, =0 viev,viel (2.15)
(ij)€E (Gi)EE
i € {0,1} V(ij) € E,Vl € L (2.16)

The objective[(2.113) minimizes the total cost of routing@mmodities. The
first constraint[(Z.14) ensures that edge capacities areiolated. In constraint
(218) letl = 1 if i is the source node of commoditylet b = —1 if i is the
target node of commodity and leth! = 0 otherwise. Constrainf{2.15) ensures
that each commodity is routed from its source node to itsetargde. Finally the
bound [2.16) makes sure that variables take on binary values

Barnhart et al.[[26] Dantzig-Wolfe decomposed MCMCuFP ghealithe pricing
problem generates a path for each commodity and the mastdepr merges the
paths into an overall feasible solution. LBtbe the set of paths and let the cost
cp of each path be defined as the sum of visited eflge; ., ci;. The binary
variablez!, € {0, 1} indicates whether or not commodity L uses patip € P.
Also, Ietél’.’j be a constant denoting whether or not patfisits edge(ij) € E.
The master problem is:

min Z Z cpqlxé) (2.17)

leL peP
s.t. Y qotal, <dy VY(ij)€E (2.18)
leL
dahb=1 Vel (2.19)
peP
zl € {0,1} Vpe PVl el (2.20)

The objective[(2.1]7) still minimizes the total cost of ragtithe commodities and
the first constrainf{2.18) makes sure that edge capacitesasisfied. Constraint
(2.19) says that each commodity can use exactly one pattharabund[(2.20)
ensures that variables take on feasible values.

2.1.2 Delayed column generation

When applying LP relaxation to the master problem, it candmuo calculate lower
bounds for the original problem. In the relaxed formulatithe variables\;, and A,
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are continuous. The number of columns may be very large,ahudea is to only in-
clude a subset of the columns. In this case we denote theedblaxsion of[(Z8)E(2.12)
therestricted master problenbecause only a subset of columns are included. Columns
are generated iteratively by solving the pricing problemly@olumns, which have the
potential to improve the current solution to the restriategister problem, are added.
This procedure is denotetélayed column generatipor simplycolumn generation

To decide whether or not a column has potential to improvectireent solution to
the restricted master problem, the dual variables of theeatisolution are considered.
Consider the restricted master problem:

min chxj
jeJ
st Y ajx;>b (2.21)
jeJ
T cX

The reduced cosfor a columnj € J is defined as:; — ya; wherey is the dual
cost vector. In minimization problems, a generated coluis fotential to improve
the current solution to the restricted master problem ifetuced cost is negative; in
maximization problems positive reduced costs are sougbty, the objective of the
pricing problem is the reduced cost and the constraintsharetlependent constraints
of the original problem:

min (¢; — ya;)z;
s.t. Dz; <d (2.22)
T € Zi

A pricing problem is generated for each blokke K of the original problem. The
pricing problems for different blocks may thus differ. Calns generated by the pricing
problem, are not necessarily part of the solution in theofwithg iteration even though
they had negative reduced costs. If one generated columomnteecpart of the next
solution then the remaining generated columns may becomnéuesting. Also, even

if a column is part of the solution in the iteration just aftsrgeneration, the column is
not necessarily part of an optimal solution.

The overall column generation procedure can now be stated as

1. Solve the restricted master problém (2.21)

2. Generate columns with the most negative reduced cost lsingahe corre-
sponding pricing problemE{2.P2)

3. If new columns are generated go to step 1, otherwise stop
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Often it is only slightly more expensive to generate seveotimns at a time. Hence
this may be beneficial, for instance when the pricing probiedifficult to solve, e.g.
NP-hard. In this case, the pricing problem can also be solvedistecally. How-
ever, when the heuristic cannot generate a column with ivegegduced cost, then
the pricing problem must be solved to optimality to ensueg the column generation
procedure eventually gives an optimal solution.

EXAMPLE (CONT). Consider the Minimum Cost Multi-Commaodity unsplittable
Flow Problem from the previous example and how the problems Bantzig-
Wolfe decomposed. This example shows how to generate calfionthe mas-
ter problem according to Barnhart et al. _[26]. The restdateaster problem
became:

min Z Z cpqlxi) (2.23)

leL peP
st > d'otal, <dy V(ij)€E (2.24)
leL
Yoab=1 Vel (2.25)
peEP
ab e {0,1}  WpePViel (2.26)

Letr;; < 0 be the dual of constraiff{Z24) antl € R be the dual of constraint
(2.28). The reduced cost for a columifior a commodityi is:

Ei): Z ql(cq;j—mj)—al

(ij)€E

The pricing problem for each columnand commaodity seeks to find columns
with negative reduced cost. Now' is known for each commodity and the re-
duced cost can be rewritten as:

Z ql(cij —7T7;j) < O'Z

(ij)eE

Let the cost of each eddéj) € E in the graph be replaced By;; —7;;), which

is non-negative becausg; > 0 andw;; < 0. The pricing problem consists
of finding the shortest path from the source node to the targe¢ of the com-
modity, such that the total (reduced) cost is minimized. e edge weights
are non-negative, the pricing problem is polynomially sblle. If the pricing
problem finds a path with total cost less thénthen the corresponding column
is priced into the master problem.
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2.1.3 Cutting planes

Solution methods adding cuts to the master formulation eovpgsed in this thesis: the
added cuts are violated original constraints in the mastdslem, which were initially
left out. For this reason, this section only gives a veryfun&oduction to cutting
planes and does not go into details about specific cuts.

A cutis a valid inequality cutting off parts of the relaxedwg@mn space which is infea-
sible to the original problem. The cut is derived from eitttes master problem or the
original problem formulation. It is not beneficial to addiddhequalities, which do not
cut off parts of the solution space, as the inequalities diaully increase the size of
the mathematical model. Cuts can be used instead of or tegeith Dantzig-Wolfe
decomposition to tighten the LP-relaxation of some coirsisdDx > d in the original
problem. If cuts are added in a column generation contegt) the pricing problem
must handle the extra dual variables stemming from the dD#ée must be taken to
avoid adding cuts, which complicate the structure of theipg problem too much.

Cuts are derived by solving separation algorithmwhich finds somer for which

Dx > dis violated in the current LP-solution. Bz > d is from the convex hull of
the integer problem, then we can add all such cuts until timeeohull has been fully
found. This cutting planes algorithm was proposed by Gonj@4y[95]. However,
deriving all cuts is as difficult as column generation witkpect to complexity, i.e., if
the pricing problem is\VP-hard then so is the separation routine, see Grotschel et al
[97]. For more details on cuts, separation routines, aatilitf cuts etc., see Desaulniers
et al. [57], Martin [146], and Wolsey [204].

ExaMPLE (CONT). Recall the Minimum Cost Multi-Commodity unsplittable
Flow Problem (MCMCuFP) from the previous examples. Thisneple shows
how to add cuts to the LP-relaxed MCMCuUFP according to Batréial. [26].
The constraint:

> d'al; <dij V(ij)€E
leL

ensures that edge capacities are never violated. In adredtolution, however,
we may have a subsét C L of commodities visiting edgéj) € F, where:

> d > dy
leC

DenoteC acover To potentially strengthen the LP-relaxed mathematical fo
mulation, we add theover inequality

> al <Cl-1

leC
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2.1.4 Branching

The branch-and-bound algorithm was first presented by Laddmig [133] and can
be illustrated as a branch-and-bound tree as shown in FgBréAn LP-relaxed prob-
lem is solved in the root note. If the solution is not feasitolethe original (not LP-
relaxed) problem, then some branching constraints aredaddhe resulting new prob-
lems are solved in the children nodes in the branch-andbtree. The branch-and-
bound procedure is repeated in edchnching child The procedure consists of three
parts:

Bounding. The problem in the current branch-and-bound iodelved.

Branching. Branching constraints are added to the curpduatisn. More details are
given below.

Pruning. A global upper bound for minimization problemsa@ bound for maxi-
mization problems) is maintained throughout the branatiHaound tree. If the
solution in the current branch-and-bound node is greatar the upper bound
for a minimization problem (smaller than the lower bound domaximization
problem) then the branch-and-bound node is discardedubedhe problem in
the node can never hold an optimal solution to the originabjam.

Figure 2.2: An example of a branch-and-bound tree. The malgbroblem is LP-
relaxed intoS and is solved in the root node. In each child node a slightlylifrex!
problems; is solved.

The purpose of branching is to systematically search thetisal space such that an
optimal solution is eventually found. Branching cuts offtgaf the solution space in
each branching child. The branching strategy must ensarrtiteness of the solution
approach and that all optimal solutions remain intact inktfech-and-bound tree. A
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simple branching strategy is to find a variable with a frazailovalue and then create
two branching children, where the variable is upper bourimetthe floored fractional
value and lower bounded by the ceiled fractional value @etygely. This may, though,
not be a very good strategy if the number of variables is venyd.

A branching strategy is to add cuts on single variables ouomssof variables. Adding
a cut on a single variable corresponds to changing the bolitie eariable. Cuts can
be imposed on sums of variables from the master problem oradahles from the
original formulation, see Desaulniers et al. [[57].

For historical overviews, examples of branching strateffiem the literature and de-
tailed discussions on branching schemes, see for instayare dhd Fostef [171], Van-
derbeck[[194] and Villeneuve et dl. [200].

ExamPLE (CONT). Recall the Minimum Cost Multi-Commodity unsplittable
Flow Problem (MCMCUuFP) from the previous examples. Therietsd master
problem is LP-relaxed into:

min Z Z cpqla:é

leL peP
sty ¢'otal, <dy V(ij)€E
leL
Z mé =1 VieL
pEP

0<azb<1 Vpe PVleL

An optimal solution to the LP-relaxed restricted masteropem may be frac-
tional and thus infeasible for the original problem. In acfranal solution, some
commodities use more than one path to send their flow throgmetwork.
Barnhart et al. [[26] suggest a branching strategy which texadly ensures an
integer solution and which does not destroy the structuteepricing problem.

Let thedivergence nodéd; be the first node which has one incoming and several
outgoing paths for commodify The outgoing visited edges are divided into two
balanced subset$(d;, al) andA(d;, a2). Two branching children are generated.
In each branching child we forbid usage of the edges in theesponding subset:

S OY md-oow XY a0
pEP ec A(dy,al) pEP ec A(d},a2)

whered? is a constant indicating whether or not pathisits edgee. The pric-
ing problem for a commodity can easily be modified into fitting the branching
strategy: forbidden edges for commoditgre simply removed from the graph.
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2.1.5 Overall exact solution approaches

Incorporating column generation in a branch-and-boundesdrgives abranch-and-
price algorithm. In each branching node, bounding is done by colgeneration. It is
important to consider which impact the branching stratesgy dn the pricing problem
in the branching children. Adding branching cuts, for ins&, affects the pricing prob-
lem. The reduced costs must consider the new dual variatdesthe branching cuts.
Thus, the branching strategy should seek to limit the impacdhe pricing problem.

Using cutting planes for bounding the problem givdsanch-and-cugalgorithm. Cuts

are added throughout the branch-and-bound tree. As steggibpsly in Sectioh 2.113
it can be very time consuming to derive all cuts such that amab integer solution

is reached for the LP-relaxed problem. The branch-andigatithm seeks a compro-
mise between reaching good bounds in each branch-and-bamaedand calculating
the bounds quickly. Successful applications of branch-@mdnclude the Traveling
Salesman Problem (TSP), see Applegate ef al. [15] and thacated Vehicle Rout-
ing Problem (CVRP), see Lysgaard et al. [141]

Using both column generation and cutting planes givdésaach-and-cut-and-price
algorithm. Which cuts to add when using this algorithm namrelee discussed: is the
algorithm a branch-andut-and-price algorithm if only branching cuts are added? Or
if the added cuts are constraints from the master problenchadre only added when
violated? In this thesis | denote the latter approach bramzhcut-and-price. In the
branch-and-cut-and-price algorithm it is important to sider how the cuts affect the
pricing problem. As argued for the branch-and-price athani added cuts should not
complicate the structure of the pricing problem too much.

2.1.6 Stabilization of dual variables

In column generation we use the values of dual variableseftthrent solution for
calculating the reduced costs. The dual variables may, Wenwveake on unfortunate
values.

ExAmMPLE: Recall the Minimum Cost Multi-Commodity unsplittable Rld’rob-
lem (MCMCuFP) from the previous examples. The pricing peatofor a com-
modity! € L is a shortest path problem with edge weights — 7;;) > 0 and
the goalis to find a path with reduced cost:

Z ql(cq;j —7Tij) —O'l <0

(ij)eE
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Q

3/1 2/1

2/1 2/1

>

Figure 2.3: A network consisting of four nodes and edges. ddst and capacity of
each edge is shown.

Consider the network in Figufe 2.3. Given is a commodityith source node
A, target nod&3 and one unit of flow to send through the netwgtk= 1. Edge
cost and capacity are displayed at each edge. The thick(ihes D — B)
represent the currently chosen path for commalditeto! = —8 and letr;; be
defined as:

Edge:| (4,C) (C,B) (A, D) (D,B)
Tij - | - -1 -3 -3

The next column to be generated contains the path C — B with negative
reduced cos8 + 2 — (-1 — 1) — 8 = —1. The path, however, will never be
part of an optimal solution as the current path is cheapestdhilized column
generation we seek to find better values for dual variablek that the number
of iterations and added columns is reduced. In this exartimeyalues of alr,
could be set te-2, which would prevent the generation of the uninterestirtg pa
A—C — B.

2.1.6.1 Stabilizing methods in the literature

Several methods for stabilizing dual variables exist inlitezature; this section pre-
sents the most common of these. The motivation for usingligiation is that dual

variables may not necessarily converge nicely toward tlesipective optimal values
but instead may take on fluctuating values; this is illustan Figurd 2.4, which is
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taken from Liubbecke and Desrosidrs [135]. A reason for tha ponvergence of the
dual variables may be that many LP-solvers return an extpaime in the dual solution

space and especially in the beginning of column generatlmrevthe master problem
holds few columns, the values of the dual variables oftertidhte, see Sigurd [177].
This is especially a problem for degenerated problems, whéve an infinite number
of dual solutions, see Rousseau et al. [170]. Stabilizimgdhal variables may thus
reduce the number of iterations and the number of generatedhos, which again

may reduce the solution time and memory usage.

x10° Instability of Column Generation; R104 ‘The Trust-Region Stabilizing Device; R104

2500 0 50 100 150 200 250 300 350 400
TIME TIME

Figure 2.4: The left figure illustrates the convergence afldariables over time. Using
stabilization of dual variables results in the convergesfatual variables illustrated in
the right figure[[135].

Stabilization methods in column generation try to prevaetdual variables from tak-
ing on values significantly different from the values in thstliteration. A stabilization
approach is to define a box covering the last values of du@blas and modifying
the master problem to ensure that future dual variablesgakealues lying in that box,
see Marsten et al[_[145]. Another method is to modify the ergstoblem such that
differences in the values of dual variables are punishezhtily, see Kim et al.[[120].
A combination of the two approaches is also possible: a balefsed and if dual
variables take on values outside the box, a penalty is add#tetobjective function,
see duMerle et al!_[60]. For more stabilization methods, @ferrto the overview and
work of Neame[[15/1] and Liibbecke and Desrosiers [135].

2.1.6.2 Interior point stabilization of dual variables

The stabilization method used in this thesis was presentdRidosseau et all [170].
The idea behind interior point stabilization is to identifynumber of extreme points
in the dual solution space and then to calculate a point Iyiitlgin the dual solution
space (arinterior point) as a convex combination of the extreme points. Theriioit
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point constitutes the dual variables and is used as basalfarlating reduced costs in
the column generation procedure. Figurd 2.5 presents an&af the stabilization
method, where the interior point is calculated as the medfidine extreme points.

Figure 2.5: An example of several extreme points in the dakit®n space and an
interior point calculated as the median of the extreme goint

To properly illustrate the interior point stabilization thed we introduce th&et Par-
titioning-problem as an example:

min Z Cry (2.27)
rCR
sit Y apz,>1 Vie{l,... N} (2.28)
rCR
z, €{0,1} VrCR (2.29)

The problem isAMP-hard and consists of finding the cheapest way of choosirgy set
r € R such that all elementse {1,..., N} are covered, see Cormen et al.[[52]. The

variables are LP-relaxed intg. > 0 and the LP-relaxed problem is denoted the Master
Problem(M). The dual probleniD) is:

max DY (2.30)
ie{l,...,N}
sst Y. Xap<c¢ VrCR (2.31)
i€{1,...,N}
A >0 vr C R (2.32)

The dual variable for constraintin (M) is denoted\;. When the primal problem is
solved, the seR* contains the setsin the current solution, i.e., with,. > 0. The setS
contains the elements for which the constraints (2.28) aréight. Using the definition
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on complimentary slackness condition [204], the dual smtuspace containing all
optimal values fon\ is defined as:

Z Xiair < ¢ Vr C R\R*

i€{1,...,N}
Z ANitir = ¢ Yr C R*
ie{l,...,N}
Ai=0 VieS
A >0 Vie{l,...,N}\S

This also defines the constraints in the stabilized duallprol§SD). The objective
function in the(SD) is manipulated into giving different extreme points in theatl
solution space. Lei be a vector containing random real numbers in the intdéval.
(SD) is defined as:

max E Ui N;

ie{l,...,N}
s. t Z Aiair < ¢ Vr C R\R"
€{1,...,N}
Z Ai@ir = ¢ Vr C R*
i€{1,...,N}
Ai =0 VieS
Ay >0 Vie{l,...,N}\S

Solving (S D) for different vectorsu gives extreme points in the dual solution space.
For each vectot, (SD) can also be solved for the correspondingto reach extreme
points far from each other. The dual solution space is carverce any convex com-
bination of extreme points yields an interior point lyingkinh the dual solution space.
The number of extreme points to generate varies from probdepnoblem; however,
Rousseau et all_[170] argued that 20 points sulffice.

Instead of solving.S D) for each extreme point, the dual@ D) can be generated. Let
(PD) denote the dual problem 66 D). (PD) is very similar to the master problem
(M) and(PD) can easily be formulated:
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min E CrTy

rCR
s. t. ZairxTZUi Vie{l,...,N}\S
rCR
Z aip Ty > —00 Vi€ S
rCR
T, >0 Vr C R\R"
. €R Vr C R*

It may not be necessary to modify all right hand sides. HedeB) may be solved
faster by re-optimizing the master probléi?) with modified right hand sides.

2.2 Greedy heuristics

Heuristics are often based on "rules of thumb” which lead solation that hopefully
is close to the optimum. Heuristics generally have smalhiog times but give no
guarantee on the solution quality. See e.g. Judea [113] cn&ltwica and Fogel [149]
for details on heuristic methods.

Heuristics are applied to the grid scheduling problem t@stigate if they provide a

satisfying alternative to exact solution approaches. @n&edy heuristics are consid-
ered, because preliminary work pointed towards medioadtewhen applying more

sophisticated meta-heuristics to the grid schedulinglprol79].

Greedy heuristics choose the next step from what appears be&t right now: the
heuristics make a locally optimal choice in hopes of reaglaim overall good or possi-
bly optimal solution. Generally, greedy heuristics workakws:

« A candidate set of feasible choices is found
* A candidate is selected greedily
< A new solution is generated

* The solution value is calculated

These steps can be repeated according to some criteriady@rearistics do generally
not work exhaustively on all combinations of selections #&mgs do not necessarily
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find optimal solutions. Early decisions may prevent findihg bverall best solution
later.

ExAmMPLE: Consider a problem consisting of scheduling jobs on mashguch
that the overall profit of scheduled jobs is maximized. A grseleeuristic assigns
the next job on the "best” available machine. The greedysstee:

« Find all available machines, the job can be assigned to
* The available machine with smallest possible time slohzsen
* The job is assigned to the chosen machine

» Add the job profit to the solution value

These steps are repeated until we have tried to assign alf¢olexecution.

Greedy heuristics are typically applied Ad°-hard problems or to polynomial prob-
lems, which are difficult to solve, e.g., because of the galihstance size or because
of modeling issues. Some polynomial problems may be solwegptimality using
greedy choices. These problems typically have in commdrattoeally optimal choice
is also globally optimaldreedy-choice properjyand that an optimal solution contains
optimal solutions to subproblemsitimal substructure

» Greedy-choice property emphasizes why the greedy apiprdiffers from dy-
namic programming. A greedy choice may be based on stepstimow but
cannot depend on future choices or future subproblems. Biym@arogramming
consists of solving subproblems in a bottom-up fashior thrgioverall problem
has been solved, where the greedy approach can be vieweldiag soe overall
problem in a top-down fashion.

» Optimal substructure is an important property both in thietext of greedy algo-
rithms and of dynamic programming. When a problem has opsoiastructure,
it can be split into subproblems. In dynamic programmingjrogl solutions
for the subproblems are eventually gathered into an ovepdilnal solution. A
greedy approach iteratively extends a (sub) solution bgdjhesolving the next
subproblem.

Proving that a greedy approach solves certain problemstimality is not necessarily
trivial; Cormen et al. [[52] propose to use theory on indegenadnatroids as a proof
for several problems. Examples are Prim’s and Kruskal'sritlgms for minimum
spanning trees.
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2.3 Summary

This chapter described the solution methods used in thEshelhe exact solution
methods are relevant in chaptet§ 4,16, 9[add 10 and the greeudiigtics in chapteid 3,
6,2 andID.

The exact solution methods were all based on the branchanded algorithm and

were extended with Dantzig-Wolfe decomposition, columnegation, cutting planes
and/or stabilized column generation. Dantzig-Wolfe deposition and column gen-
eration were presented along with examples of how to appt ba mathematical

formulations. Cutting planes were briefly introduced alovith a discussion on ben-
efits and drawbacks of adding cuts to a mathematical formounlatThe necessity of

branching was described along with a discussion on what d gaonching strategy is.

Stabilized column generation was presented as a methoaltitizt the values of dual

variables. A dual variable was said to be stabilized whevaitge did not fluctuate from

iteration to iteration in a branch-and-price scheme. Thesg@nted stabilization method
was based on finding several extreme points in the dual salspiace and then taking
the average of these extreme points. The resulting intpoorn defined the values of
the dual variables.

Greedy heuristics were shown to generally consisting af$teps: identifying feasible
candidate set, selecting a candidate, generating a solatial calculating the solution
value. Also the expected complexity and applications oedyeheuristics were dis-
cussed.
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CHAPTER 3

Introduction to the
scheduling problem in grid
computing

Grid Computing is the name of a service which provides apfibos, storage and
computational power. The idea behind grid computing wasubkars could access the
grid by plugging their computer into a grid plug in the wall thieir house; similar
to the way we get electricity by plugging an electric devieghe power grid. Grid
computing is hence named after the power grid. When usingrilerequirements for
the home computer were to be low: software applicationsagand computational
power were received from the grid. The home computer onlged¢o support a high
quality internet connection and the display of graphics.

The full vision of grid computing has not been implementethi point of time. Most
grid computing systems currently work as computational grofer researchers who
wish to run data and computationally heavy jobs. A grid canclkebe viewed as a
number of computer resources from different administeadiomains working together
for solving large problems. Here the size of a problem isdglly measured in the
number of needed CPU cycles or in the amount of needed data.

This chapter is organized as follows. First, a short intatigun to grid computing
is given in Sectio_3]1. Then in Sectibn 3.2 the problem ofedciting jobs on re-
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sources in grid computing is presented. The schedulingl@mois considered to be
either offline or online. Network topology is important whemnsidering a distributed
system like grid computing. Sectidn 8.3 discusses the ampes$ considered in this
thesis. Next, the motivation for considering schedulingrild computing is discussed
in Sectior:3.4. Then the contribution on grid schedulinghif thesis is presented in
Section 3.b. Finally, the chapter ends in Seclion 3.6 witigestions for future work
on the scheduling problem in grid computing.

3.1 Anintroduction to grid computing

A grid system consists of a number of computer resources addervers which are
connected through a network, e.g., the internet. The griccéaliffers from super
computers, because the latter consists of a number of CRUmgla local computer
bus. The grid also differs from a cluster of computers, beeaucluster is connected
through a local area network. Finally, grid computing déférom Cloud Computing;
the architecture of a grid system is defined to be resourcesented to grid servers
through a network, where the architecture of a cloud is maretretched and can be
a grid, a cluster, a supercomputer etc. A general illustnadif a grid system is seen in
Figure[3.1; though the figure illustrates a specific gridesyst the Minimum intrusion
Grid (MiG) - it applies to the general grid system becauseilitsists of resources, grid
servers (illustrated as a grid cloud), and a number of uddleqrid. A resource may
consist of several computers, which are administratedlioc¢his is denoted a Virtual
Organization. Many grids actually consist of VOs, which wtimgether and share their
competences and resources. Similarly, many grids recheie tsers to be VOs. We,
however, view a grid as consisting of users, grid serversesmlirces unless otherwise
stated.

The software of a grid system is typically divided into twasdes; the software or
middlewareon grid servers and resources and the software on the ugeridie mid-
dleware enables sharing of resources, scheduling of juossrission of data, storage
of data, and all other activity in the grid. The software oatiser side enables the user
to log on to the grid. Countless middleware implementatiexist; some of the larger
projects includé&slobus |, gLite , andARC The software on the user side matches the
middleware of the corresponding grid and typically supparsecure connection to the
grid, upload of job requests and data, and reception oftréld. For more details on
grid computing in general, including technical descripi@nd an overview of exist-
ing grid projects, we refer to the survey paper of Baker ef24l]. In the following we
briefly introduce a few grid computing systems: the Worldsvichrge Hadron Collider
Grid, SETI@HOME, Nordic DataGrid Facility and the Minimumtiusion Grid.
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Figure 3.1: An abstract model of the Minimum intrusion Grédkén from Andersen
and Vinter [10].
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The World Wide Large Hadron Collider Grid (WLCG) is a proj&dtich aims to han-
dle the massive amount of data generated by the Large HadstideZ (LHC). The
European Organization for Nuclear Research (CERN) cuyrerdrks on testing dif-
ferent predictions of high-energy physics, including thgdthesized Higgs boson.
The project is expected to generate 15 petabytes of datalyrtbius grid computing
is used for not only distributing the scientific work on thealbut also for distributing
storage and back-up of produced data. The WLCG consistsrafrbds of VOs all
over the world and uses gLite as middleware. For more inftionan the WLCG, we
refer to Shiers [176] or the project homepage [41].

The SETI@home (seti-at-home) project consists of a "Sefardbxtraterrestrial Intel-
ligence (SETI)” by analyzing radio telescope data. Thelalké& computational power
limits the frequency range and the sensitivity of the seabdtause the search re-
sults in very large amounts of data. Hence interested partsiownload a program,
which uses network bandwidth and computer CPU and disk ttyamaadio telescope
data. The user may control the amount of bandwidth, CPU askl tdi be used on
the project and when the calculations may be performed. Bjlérg outside parts to
help with analyzing data, larger searches can be perforiieel SETI@home project
comes from the Space Science Laboratory at the Universiatifornia, Berkeley,
and was launched in 1999. The middleware is BOINC (BerkelpgrOnfrastructure
Network Computing, see e.g. Anderson|[11]), which is alssdusy later projects like
Folding@home (protein folding and other disease reseaathigms, see Beberg et al.
[32]), ABC@home (mathematical computations, see the pthjgmepage [2]), Fight-
AIDS@home (HIV/AIDS research, see Chang etlal. [44]),[}téor more information

Lt is argued that projects using the BOINC middleware aregniois but instead Public Resource Com-
puting (PRC) systems. In PRC the idea is that anybody wittntamriet connection donates CPU cycles on
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on the SETI@home project, we refer to Anderson etlall [12] thedmaterial of the
project's homepagée [175].

The Nordic DataGrid Facility (NDGF) is a grid in the Nordicwaries based on col-
laboration between Denmark, Norway, Sweden and FinlandsNB used in research
context; currently the main purpose of the grid is to assistomputations for the
Large Hadron Collider (LHC) project by CERN. The NDGF is @bsrelated to the

NorduGrid project but is more operational orientated, vehdorduGrid has focus on
development. The current NDGF topology is illustrated igufe[3.2. The links be-
tween the countries are hosted by NORDUnet. NDGF mainly NgeduGrid’'s ARC

(Advanced Resource Connector) middleware. Only Virtuajaddizations (VOs) can
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Figure 3.2: A model of the Nordic DataGrid Facility displagiCPU, Disk and Tape
availability at each site.

gain access to NDGF. The ARC middleware provides resousmodery for each VO,
which then - and not the automated scheduler - places itojolppropriate resources.
For more information on NDGF, we refer to their homepage [16% presentation of
Grgnager[96] and the work of Fischer et al.1[70].

their computer for a larger project. PRC systems are said talch more unreliable and unstable than grids
because of the uncertainty of the resources, see Neves[€63]. Though we recognize this difference, we
mention SETI@home project in this section because it is &kmelwn project very closely related to grid
computing.
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The Minimum intrusion Grid (MiG) also provides research&ith computational po-
wer. MiG is illustrated in Figure_3]1 and its main purposenistipport complex com-
putations for researchers in Denmark. The idea behind Mi@ minimize software
and middleware requirements on the user and resource gideser logs on to the grid
through a secure web interface and identifies herself witmall<ertificate file. Re-
sources need to be registered at the grid and log on to theigralsecure shell (SSH)
tunnel using a small certificate for security reasons. Grididleware such as Globus
[75] and NorduGrid ARCI[63] require users and resources stalhlarge amount of
software to use the overlying grid. MiG tries to avoid thatreguiring as little as
possible from users and resources; hence the ddimienum intrusionGrid. The func-
tionality of the MiG can roughly be described as:

1. A user sends a job request to the MiG server, which putothen queue
2. Aresource requests a new job to execute

3. The grid server creates a job script from a job on queue emndssthe job script
to the resource

. The resource starts the job script

4
5. The resource requests the needed input files

6. The job is being executed once input files have arrived
7

. The resource sends output files to the grid server

When the grid server creates a job script, it has decidedhjbiz to send to the re-
source. This decision is currently based on a grdedy come first servapproach,
see Sgrensen [181]. The job assignment method of MiG is ameoallgorithm, which
schedules job execution every time a resource signalsditahility. It does not take
time spent on data transmission into account. For morernmdition on the Minimum
intrusion Grid, we refer to Andersen and Vinter[10] and ¥mnj201].

3.2 Scheduling in grid computing

Most middleware either supports job scheduling or can gasiegrate job scheduling
into its functionality. In the remainder of this chapter vei$ assume that the middle-
ware supports scheduling.

Scheduling in grid computing consists of assigning jobssources such that all job
demand arrives before job execution begins and such thabrietonstraints are sat-
isfied. Most grids hold three schedulers:
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« A global grid scheduler, which assigns job requests touness.

* A local queue scheduler at a resource, which assigns jolests| locally on
the resource. This is especially relevant, when the resocwosists of several
CPUr's, e.g., the resource is a cluster or a super computer.

* The user, who submits jobs.

The local scheduler is locally administrated and out of scimp the grid system. For
this reason, we do not consider local schedulers. User miranay delay grid perfor-
mance, e.g., when users submit erroneous job requestsri jeh where the request
does not correspond to the actual job. We do not take thissiotount but instead as-
sume correct user behaviour. Some global grid schedulesmiat assign job requests
to resources, but suggests a number of available resowrtes tiser, who then makes
the decision on which resource to assign the job to. In thsge tlae user also acts as a
scheduler. We assume that the global grid scheduler agsigmto resources instead of
only suggesting available resources to the user. Hencestirasuleft out of scheduling
decisions.

In this thesis a number of assumptions are made in the sdhgdlyorithms. First,
only one grid server is assumed. Redefining how grid servemamnicate is out
of scope, hence we assume that all resources are conneatee grid server. The
assumption may introduce some inaccuracy to the schedudesuse latency times
on copying job requests and exchanging information on alvkslresources between
grid servers are not taken into account by the solution @lyos. We, however, try
to compensate for this by including extra time buffers betwgb executions in the
schedules. Job data can be stored on resources and on gedssefo simplify the
offline problem we consider the grid server to be a resourbé&wcan never execute
jobs. A last assumption is that we assume that only job daterisbetween resources.
Job requests and job result files are generally small, thsddtr to ignore them.

Users submit job requests to the grid server, where job stgaee queued. Each job
request must include information on the submission timethadatest execution time
- together this forms the time window of the job. Each job megjumust also hold
information of the needed inputfiles, i.e., a list of reqdijeb files, their size and their
position. Finally, each job request must hold an estimateeqfiired CPU time for
execution.

When a resource signals its availability, it provides infation on how much CPU
time is available and on available bandwidth to and from #®ource. Job execution
cannot take place before all data files are present at thaittxgeesource. All data
transfers must satisfy bandwidth limitations.
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We only consider job requests, data transmissions betwesurces, and job execu-
tions on resources. Hence users are left out of the schedaloblem.

Data is copied to a resource before job execution begins. different data storage
approaches can be considered:

» Staging: copied data is deleted when job execution finishes

» Data replication: copied data is saved even after job ei@tu

Replicating data may lead to more jobs being executed andiasdler network load,
but job starvation may eventually occur. Jobs using the sdaitee may end up being
executed before jobs requiring rarely used data. Alsocatitig data may require more
storage than a resource is capable of providing. In thisghes assume that data is
deleted after job execution, i.e., staging.

The grid scheduling problem can be divided into two categgorffline and online.

In the former full knowledge on future activity in the gridassumed and a plan for
job execution is calculated prior to the start of any agtiviin the latter there is no

knowledge on future activity in the grid, hence job exeautiodetermined at job arrival
time or when a resource becomes available. In this sectiateseribe both scheduling
scenarios and give an overview of relevant work in the litea

3.2.1 Offline scheduling in grid computing

An offline scheduling algorithm in grid computing deterrsradl grid activity in ad-
vance. Hence the algorithm assumes full knowledge on resamnd job availability,
deadlines for job execution, bandwidth limitations etc.

It is interesting to investigate offline grid scheduling aese of its many applications.
An offline scheduling algorithm can be used to empty a queyels; a procedure
which grid administrators may deem necessary from timenbe tio improve overall
grid performance and to avoid job starvation. Another aggpion is advance reserva-
tion, where grid resources are reserved in advance for aeuofiblanned jobs. Finally
an offline algorithm provides an excellent strategic plagrtool, where grid admin-
istrators can analyze the effects of changes to the systéthe grid administrators
for instance wish to upgrade the grid, then an offline alponican help them decide
whether the grid needs more CPU power, better network caiomsgcmore storage etc.

The offline grid scheduling problem has not been given muemaon in the literature.
This is probably due to its more analytic nature, where thieeralgorithm can be
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directly applied in a day-to-day use in grid computing. Meaicet al. [142] considered
the problem of sharing bandwidths in the context of grid catimy. A given set of
data transmissions with time windows are to be routed thi@ugetwork. Marchal et
al. proved that the problem i§"P-hard and proposed a number of greedy heuristics.

Agarwal et al. [[3] proposed an offline scheduler, where jolst ire scheduled to
resources such that the total penalty of delayed job ex@taiis minimized. Then data
availability and data transfer is considered to decide thed Echedule.

A tabu-search algorithm was proposed by Elghirani et al|. [6de algorithm searches
through solutions by moving an executed job from one resoto@nother. If a move
is repeated often, then it is penalized to avoid cycles. df dblution has not been
improved in a given time interval, then the tabu list of p&red moves is cleared, a
random solution is found, and the algorithm starts over.

Varvaigos et al. [[196] worked on Advance Reservations id gdmputing, but only
proposed an algorithm for reserving network resources fmmba For a given data
transmission, the authors found all optimal paths and tlebected the "best” path
according to a multi-cost objective and to available nelwesources. Because only
one job is considered at a time, it can be argued that thedrigthgn is not particular
offline.

The offline scheduling problem assumes full knowledge ofsystem in advance. A
problem instance thus includes the job requests queuedeogrith server. Each job
request holds a time window, bounded by the submission asdtlaxecution times,
and an estimated execution time. Each job request also adiktof needed files, their
size and their position. A problem instance must also hdiokmation on when each
resource is available and on bandwidth availabilities. &adths may vary over time.

The offline scheduling problem is provedP-hard by reduction from thevP-hard
knapsack problemin the latter, a knapsack and a set of items with profits arergi
The goal is to pack items into the knapsack such that thepodéit of packed items is
maximized. For a survey of the knapsack problem and correipg solution methods,
see Kellerer et al[ [118] and Pisinger [160]. Packing itema knapsack is equivalent
to assigning jobs to a resource such that the total profitefeted jobs is maximized.
Hence, a solution to the offline scheduling problem, wherdata files are to be trans-
ferred, is applicable to the knapsack problem. The offlifeedaling problem is thus
NP-hard.



3.2 Scheduling in grid computing 41

3.2.2 Online scheduling in Grid Computing

An online scheduler in grid computing decides job executidren a job request is
submitted or when a resource signals its availability. Tdrenkr is typically the case
when at least one resource is available and only few jobs mrgueue. The latter
is the case when several jobs are on queue and when resotedassg. The online
scheduling problem only knows the state of the grid when dulirg takes place. It
has no knowledge on future activity or on future bandwidthilabilities.

Online scheduling is interesting because it typically ¢ibmes the main functionality
of grid systems. Almost every grid middleware has its owreskttler. The schedulers
vary from having full control over which jobs are assigneavtaich resources, to only
proposing a humber of candidate resources to the user, vamodacides where to
submit the job. This thesis does not consider online sclvegliri grid computing, but
because online scheduling is a large research field and aortamp functionality in
most grid systems, this section is dedicated to giving amview of important results
from the literature.

The online scheduling of jobs on several resources is a stetlied problem in the
literature. In the following we only consider work perforchen the scheduling prob-
lem, where data transmission is taken into account. Muctkwas been performed
on online job scheduling and data replication in grid conmmytwhere scheduling and
data replication are treated as two separate problems,.geedeellino et al. [17],
Bjerke [39], Chrabakh and WolskKi_[49], Foster and Kesselij¥d), Jiang and Yang
[112], Meyer et al.[[148], Schintke and Reinefdld [172], &deng et al. [[208]. More
recent work, however, also focuses on performing onlinesicteduling where data
replication is taken into account when scheduling.

Thain et al. [[186] presented the idea of binding executiahstarage sites together into
1/0 communities reflecting physical reality. Computatishsuld be performed mainly
within a community, where job requirements are present. Mutation study where
communities are built by hand is performed. The study shdwsthe communities
improve the throughput of the grid system.

Ranganathan and Foster [165] considered scheduling jahsegpect to data replica-
tion and data availability. Using a number of known schedyknd data replication

strategies, they investigate the performance when taliteyldcation and network lim-

itations into account. Their results show that assignifig jm resources according to
job data location and replicating often used data increddautjlization.

Chakrabarti et al[ [42] proposed an integrated data refmicand job scheduling strat-
egy. The scheduler takes the number of missing data fileshts#e into account. Data
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replication is performed at a given interval of time. Theisults show that best perfor-
mance is reached when taking data replication costs intmuetaevhen scheduling job
execution.

Cameron et al.[[40] performed simulation studies where pitscheduling and data

replication are considered. Data replication is performbénever a job is to be sched-
uled. Their results show that the scheduling strategy takinth data access and CPU
costs into account has best performance.

Baranovski et al.[[24] presented a scheduler for the SAM@tidth uses the Condor-
G technology. Previously, users had to assign their jobsgources with no help from
the Grid. The proposed scheduler decides where to exehgdased on a matchmak-
ing framework which takes CPU workload and job data files Btoount. Network
capacities and data replication are not considered. lisitiaulation results show that
the proposed scheduler mainly assigns job to resourceswah data cached.

Thysebart et al. [[188] considered simultaneous data tresgmm and job execution
where network capacities are taken into account. Grid sitesconnected through
VPNSs. Three scheduling strategies are considered:network aware, network aware
and prefer local All considers CPU workload and storage capacities, thevordt
aware also takes bandwidth limitation into account, andpiteder local strategy fur-
thermore tries to assign jobs to sites, where most or all gth @ stored. Simulation
results show that the network aware and prefer local stegday far have best perfor-
mance.

Related work by Volckaert et al!_[202] proposed more schaduhpproaches. The
first is theminimum hop count which schedules a job to the site where the num-
ber of hop counts used to transmit data is minimized. Jobd terget assigned to
sites with most or all data stored. The second isséwice differentiation

approach which analyzes each job, classifies each job as either datanggutational
heavy and assigns the job according to its classificatiosuReonce again show that
the network aware scheduling strategies have best perfmena

Huang et al.[[100] proposed job and data co-scheduling itgos. Their approach is
based on a number of steps: first data replication takes,plee jobs are assigned to
resources and finally job data files not present at the exgrtdsource are transmitted.
Data transmission is allowed to take place while the cooedjmg or any other job is
being computed. Computational results show promising\iebaand reveal that job
features and data sizes influence the performance of the grid

Tang et al. [[184] suggested a number of data replicatiotegfies and compare their
performance when using three different job scheduling odshThe replication strate-
gies build on historic data usage and replication is peréatrat a given time inter-
val. The centralized data replication strategy counts tiraber of times each file has
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been accessed, replicates the most accessed files and nglplies at the server with
enough storage, least CPU workload and best bandwidth. iStrédted data replica-
tion strategy replicates most accessed data files and plyglesa at local servers with
sufficient storage capacity. The grid scheduling strategre based oshortest
turnaround time where queuing, data transfer and execution times are taken i
accountjeast relative load where CPU workload is taken into account, and
data present  where job data location is considered. Computational ex&os
show that dynamic data replication improves performanddlaat especiallghort-

est turnaround time with centralized data replication performs well. Related
work was presented by Tang et al._[185] where the data rdjgitatrategies differ
slightly: data is replicated to being as close as possibtagaequesting jobs. Again
test results show that dynamic data replication improve®paance.

Veenugopal([198] proposed network aware scheduling whata presence and re-
source usage cost among others are taken into account.gTiddase two factors into

account improved performance compared to traditionaldyreeheduling approaches.
Also, a scheduler which either tries to minimize executiodata transfer time is pre-

sented. The scheduler is economy based and provided pnynésults.

McClatchey et al. [[147] proposed a scheduler, DIANA, whiakes CPU workloads
and network limitations into account. The scheduler caltad costs for job execution
and data transmission and schedules a job based on the simasef tAllocation of
weights on the costs is possible in the scheduler. It may heflmal to add different
weights to different parts of the grid in order to reach mgrprapriate performance.
E.g., if a job is very data heavy then weights can assure tlsatissigned to the grid
resource storing most job data. Computational results shat\DIANA performs very
well with respect to execution times and network load. Foh@dugh description,
analysis and discussion of DIANA we refer to the PhD thesig\ojfum [13]. The
thesis also discusses scheduling in grid computing in géner

Chang et al.[[45] proposed a scheduler for a cluster grid e/data transmission and
network capacities are taken into account. The schedufieredea cost function at each
cluster based on CPU workload, data availability, netwahacities within the cluster,
and network capacities on connections to the cluster. Agadssigned to the cluster
with smallest cost. Once a job is assigned to a cluster, @gpigcation is performed.
The proposed scheduler is tested on the OptorSim simuldist results show that
performance is improved when using the proposed schedtlewever, it tends to
assign the same type of jobs to the same cluster, which maytéebbad balancing
problems. Finally, Chang et al. provides a detailed ovengaéwork performed on job
scheduling and data replication.

Dang and Lim [[53] proposed a data replication method basemplacement. It
calculates the number of times a data file is requested amd-¢pdicates the most re-
quested files. For each replica and each site, the distaetesdn the requests and
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the sites are calculated. The data replica is placed at thevith smallest total dis-
tance. Initial simulation using OptorSim shows promisiaguits; the replication strat-
egy performs better than Random, Least Recently Used (LRU)Laast Frequently
Used (LFU) replication strategies.

Baraglia et al.[[2B3] proposed a heuristic which tries to filiie CPU requirements and
tries to exploit the parts of the grid network with high bandths. Costs are added
to the needed CPU time and to data transfer for each requegiere. The heuristic
considers several job requests at a time and groups redagsther according to how
many data files they share. Resources are grouped accoodivegwork availability.

Finally, each group of requests is scheduled on a suitablgpgof resources. Simula-
tion studies show that the heuristic performs well and issdéba scheduling approach.

Ferrandiz and Marangozova [68] analyzed existing schedund replica policies in

the Large Hadron Collider (LHC) grid. When a job arrives, tegource broker assigns
the job to the grid site with shortest job queue. The gridmEtpiests job files from the
storage optimizer which fetches each file and uploads aceefuithe grid site unless the
file is already available. Ferrandiz and Marangozova impleted a simulator LCGSim

to simulate LHC activity. Three different replication sgies are implemented: no
advance replication, LRU and LFU. They compared with sirtiotes obtained through

OptorSim. Their results do not show any clear pattern forcWwheplication strategy is

more beneficial.

Kokkinos et al. [[124] propose algorithms for determiningito perform data replica-
tion given a job schedule. Their algorithms take base ineangrocedures, transmis-
sion costs, job execution costs or a combination of the titerlaSimulation results
show that the best results with respect to network load andgday are reached when
taking transmission costs into account.

Abawajy [1] considers a grid system, where each grid resisra cluster. The pro-
posed scheduling algorithm focuses on assigning a growgbsfgharing the same data
files to the same cluster or clusters. Simulation resultsvsihat it is beneficial to
consider the 1/0 requirements of jobs when scheduling. Baibcation strategies and
data distribution were not considered.

3.3 Network topology

Grid computing is a distributed system, hence it is impdrtarconsider the underly-
ing network topology. So far we have assumed that the gridhoorents are connected
through a packet switched network, where we have no influendbe specific path
used between two components. An example of this is the ieterfihe considered
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bandwidth constraints cover upload, download and conmesfpeed. Hence all grid
components can be viewed as being directly connected arththdransmission prob-
lem then becomes to find a time to transmit data, such thatadhsidered bandwidth
constraints are satisfied.

Another topology to consider stems from optical networks dptical fiber carries
data at a certain wavelength. Using the wavelength-dirigialtiplexing technology,
a fiber can transmit data at several wavelengths. Howeverata connections cannot
share the same wavelength on a fiber due to network switckelions. Transmitting
data through an optical network corresponds toAfiehard Routing and Wavelength
Assignment Problem (RWA). In this section, we discuss theefies of using an op-
tical network, the RWA problem in general and why it is reletven grid computing
context. Note that an overview of work performed on the RWAhia literature is left
out because the second contributed paper in this part isseysan the RWA.

3.3.1 Optical networks

In telecommunication an increasing part of the networkastiructure consists of opti-
cal fibers. An optical fiber is predominantly made of glass eauies light along its

length at high speed and with little loss. Benefits of usinticapfibers instead of the
traditional copper telephone lines in a Wide Area NetworlA{Winclude:

» Optical fibers support much larger bandwidth speeds thppedines.

 For high frequency transmissions, light signals can frwgher than copper
lines before being amplified.

» Optical fibers and copper lines have the same cost.

Several wavelengths on a single fiber can be used to trangimitdignals, i.e., data,
by using the wavelength-division multiplexing (WDM) teaiagy. Furthermore, an
optical network is acircuit switchednetwork, i.e., the route of a data connection is
established before data can be sent, see Hzalsall [98],eTaiel Nebelind [187] or the
thesis of Jue [114] for more details.

In this thesis we consider an abstract model of the optidslark and thus omit tech-
nical details. The optical network is considered to be alg@msisting of nodes and
edges. Edges represent fibers and each fiber is capable ofdveéeral wavelengths.
A node represents any active equipment with at least onériggmd/or outgoing edge.
This could be a switch, a hub, an amplifier etc.
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3.3.2 The Routing and Wavelength Assignment problem

RWA is the problem of finding a good way of establishing datareztions and of
assigning wavelengths to the connections. A request fotaacennection consists of a
source and a target. A route and wavelength(s) are to be foetmgeen the source and
the target nodes. In RWA, paths of different data connestare to be generated such
that no two paths share the same wavelength on an edge. Thabipaths using the
same wavelength must be edge disjoint.

Variants of the RWA include limitations on wavelength corsien and on the lifetime
of connections. Wavelengths can be convertible in all npitees subset of nodes and
in no nodes at all. The first version is denoted the wavelengtivertible RWA as
each data connection can use different wavelengths orsatliges, see Ramamurthy
and Mukherje€ [163]. The second is denoted sparse wavéleogvertible RWA, see
Iness and Mukherjeé [104]. For both versions further castis can be set on the
range of possible conversions, i.e. a wavelerigttan be converted into wavelengths
li—ky---y iy .., ;1 fOr some nonnegative integét For more information on the
limited-range wavelength converters, see the work of la@ssMukherjee [104] or of
Yates et al. [[205]. Being able to convert wavelengths, tioutpes not necessarily
increase the number of established data connections, semddet al.[[108].

The lifetime of data connections is either permanent or taemy. Thestatic RWA
reserves routes and wavelengths for all future data colmmscand thus assumes full
knowledge on all future activity in the optical network. Batonnections are assumed
to last "forever”. Chlamtac et al.[ [47] shows that the st&®MW/A is AP-hard. The
dynamicRWA only reserves routes and wavelengths for data conmexctthen needed.
The route and wavelength is released once the data conméstim longer needed.
Thus only knowledge of the current state of the optical netwe needed. Because
no knowledge exists on future data connection requestgjcos$ to the dynamic RWA
are local optimums. For an overview of both the static andithmamic RWA, see Zang
et al. [206].

It may not always be possible to establish all data connesfio the static RWA. If a
connection cannot be established, it is said tbloeked The objective of the static
RWA is typically to maximize the number of established datarections or the profit
of established data connections.

Data connections may also be blocked in the dynamic RWA  ttieisbjective can also
be to maximize the number of established data connectiotieqrofit of established
data connections. Because data connections do not lasefpreavelengths may be
reused. The objective can thus also be to minimize the nupfhesed wavelengths.
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3.3.3 Optical networks in practice

Both the dynamic and the static RWA are applicable in televomications as ex-
plained. The dynamic RWA can be used to establish data ctionsmn the fly. If
an optical network is to be used as an infrastructure in eagtspf the internet, then
the network utilization can be improved by determining gathd wavelengths when
needed, rather than having to choose from a set of predetedpaths with fixed wave-
lengths. The reason for this is that the data load and thecdat@ection requests may
differ significantly from time to time.

The static RWA does not necessarily leave room for futureneotions, so it is mainly

applicable when the current data connection requests tirer éhe only requests or
have much higher priority than any other requests. If thec@minmunication company
introduces costs on network usage, then the goal of the KR8¥A becomes to mini-

mize the total cost. Network costs could depend on the nufogsed wavelengths,
the number of hops used by the connections, the number dablaivavelengths on
used fibers, the capacity of each wavelength etc. Using otteesé objectives, a so-
lution to the static RWA does not only suggest how to rout@ adainnections; it can
also be used to determine the price customers must pay tbegetiata connections
established.

RWA is also relevant in grid computing context. A projectelikhe Large Hadron

Collider (LHC) Physics Program by the European Organizefiio Nuclear Research
(CERN) is very data heavy and thus utilizes grid computingdbonly distribute the

scientific calculations, but also to store data. The grid poting system of LHC is

denoted the Worldwide LHC Computing Grid (WLCG). It is estited that the LHC

experiments generate 15 petabytes of data annually [414,ttle network connections
to and from WLCG must support large bandwidths, e.g., becapti

The main subject of this thesis is to schedule network tr&dfigrid purposes. As the
WLCG example illustrates, the infrastructure in grid coripg systems may consist
of optical fibers, hence the scheduling algorithms must teltavork constraints into
consideration. Furthermore, it is fair to assume that filbedarge grid computing

systems are bought or rented in advance such that netwoskitias are dedicated to
the project.

3.4 Motivation

Integrated scheduling and network routing in grid compyigna relevant and complex
problem. As argued in the beginning of this thesis, name{yhapte[ L, data transmis-
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sion may constitute a bottleneck, especially when workiith @Wata heavy jobs. As
grid computing is often used to handle data heavy jobs, inésson time should be
taken into account when assigning jobs to resources. Iffrest fobs may be unneces-
sarily rejected and the grid may seem unstable to users, gt&gbresources with poor
network connections are not utilized properly, if they assigned data heavy jobs.

Offline scheduling can be applied to job queue emptying. Vétienthe job queue on
the grid server reaches a certain size, the offline algortambe used to compute a
plan such that the job queue is emptied. In this way, job atarm is avoided to a great
extent and ensuring that practically all jobs are executeteases user satisfiability.
The offline algorithm can also be used to give a more homogesiead in time peri-
ods, where the grid is used extensively: jobs with late deasican be scheduled for
execution at a later time, hence making room for executibg,johich currently are
urgent. The offline algorithm also introduces the abilityptan jobs, i.e., the ability to
reserve resources in advance for executing a set of planbsdResource reservation
is a powerful tool for researchers to meet deadlines. Als®musing grid computing
commercially, resource reservation is used to guarantetemers that their jobs will
finish within a certain time period. Finally, the offline akifom can be used as a tool
to analyze grid performance. The offline algorithm is capaiflanswering questions
such as how many jobs can the grid handle within a given timegewhat happens
to grid performance if a number of extra resources are cdaddo the grid, how will
substituting dedicated high-quality data connectionsriedium-quality internet con-
nections affect grid performance, etc.

Scheduling of network traffic in grid computing is the maipitof this thesis. We have
interpreted this problem as being the integration of jokesdciting and data transmis-
sion, i.e., the grid scheduling problem. Hence this parstitutes the main contribution
of the thesis.

3.5 Contribution

The topics covered in this part are divided into the follogvpapers:

1. Integrated job scheduling and network routing.
2. A survey of the routing and wavelength assignment problem

3. On the integrated job scheduling and constrained netvauting problem.
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4. Analysis of internal network requirements for the disited Nordic Tier-1.

In the following each paper is summarized and discusseds ribted that work has
also been performed on heuristics for the offline schedwimdplem in grid comput-
ing using a packet switched network topology. The data tméssion problem was
solved using a greedy multi-commodity network flow heucistrhis was integrated
into job placement strategies resulting in four greedy Iséias. Furthermore, a local
search meta-heuristic and an adaptive large neighboudesrydh meta-heuristic were
considered. Unfortunately, the approaches only resuftedeadiocre results: solution
values were not impressive and running times were at timigs lpeng. Hence the work
is not included here but is published as a technical rep8jt [7

The first paper solves the offline scheduling problem in goichputing using a packet
switched network to optimality. A branch-and-price algjom is proposed, where the
pricing algorithm assigns a given job on a given resourceraakks sure that job data
arrives in time. The master problem merges these "sub stésdnto an overall so-
lution. The branch-and-price algorithm initially has pgmrformance, because the
discrete time representation makes the size of the mastblgon explode. Hence only
violated constraints are included. This significantly ioyas performance, but the
number of generated columns is still quite large. To redhisg $tabilized column gen-
eration is applied and the resulting performance is drarallifibetter. The improved
algorithm is capable of solving all benchmark instancesdryshort time: the largest
instance with 1000 jobs and resources is solved within 3 tegand the far majority
of instances are solved in seconds.

The second paper surveys work from the literature on soltfiedRWA, which mainly
consists of heuristics and meta-heuristics. Recentlyemark is performed on ex-
act methods for the RWA; however, there is generally a stemghasis on practical
applications hence the former methods are dominating. Theg extends previous
surveys in the literature by being updated, by providingtbk&cal running times on
the heuristics, and by discussing test instances and sesuttuch more detail.

The third paper focuses on solving the offline schedulindgplemm in grid computing
where the underlying network topology is optical. As prexty explained, this is rel-
evant as an increasingly larger part of networks consistgpti€al fibers. Especially
for larger grid projects, it is very probable that the gridness rent or buy fibers or
wavelengths and thus have an optical network dedicatedetgrid project alone. In-
corporating optical network constraints into the schedyproblem may increase per-
formance of the grid, both with respect to the amount of tratied data and scheduled
jobs but also with respect to reaching feasible and hence nobiust solutions.
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The offline scheduling problem in grid computing/ié-hard and not trivial to solve.
Adding an optical network topology only complicates thelgemn further. The pa-
per presents an exact branch-and-price algorithm, whicfoqmas better than using
CPLEXto solve the mathematical formulation. Because of the caraiphg network
topology, however, the computational results show thaettaet branch-and-price al-
gorithm has its limitations. It is capable of solving sevefiahe larger instances, but
generally it should only be applied to smaller problem ins&s because the time us-
age explodes. Hence work is also performed on solving thelgmo heuristically by
combining heuristics for the offline scheduling problemiidgomputing with heuris-
tics for the RWA. Test results show that all heuristics haag/\good practical running
times. The best heuristic setting gives an average solutibre gap of less than 3%
and solves all instances within minutes. An in-depth analg&results and problem
instance types, however, indicates that a black-box swlutiethod may not always be
appropriate. Instead the grid administrator should useledge on network and CPU
load to choose the best heuristic setting.

The fourth and final paper in this part concerns distributibnetwork traffic for the
Nordic DataGrid Facility (NDGF). In this paper, we apply optons research to a
real-life grid. The network topology of NDGF is formalizentd a mathematical for-
mulation. Then different scenarios are investigated wéspect to the maximal link
load. The scenarios are formalized and incorporated in #wbh@matical formulation,
which then is solved to optimality using CPLEX. The main gofadhe project is thus
not to propose new solution techniques, but to translateastg from NDGF into math-
ematical representations and to find the best way of diginguetwork traffic more
evenly across the network. Results show that just by reagimng job, the largest link
load is reduced with 900 Mbps - from 4.4 Gbps to 3.5 Gbps. thtoing caches at each
grid resource reduces the largest link load by another 509sMbhe results are used
to change current job placements, to decide how to expangrithé the future and to
give a good overview of where bottlenecks occur in the grid.

3.6 Future directions

We believe that future work on the grid scheduling problemusth consider network
traffic as an integrated part. In this way the stability of ¢ is increased, because
more reliable time plans are calculated.

We show that the offline grid scheduling problem using a paskéched network is

solvable in little time; hence it is worth considering if te&act algorithm could be
integrated in the day-to-day use of the grid - both for suppgradvance reservation
but also for calculating time plans for execution of jobs arege. It is even possible
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to use offline grid scheduling in a real-time environmentegia queue of jobs and a
number of resources, the best execution plan is calculst&enever a new job arrives
or resource availability changes, the execution plan isptmized. In this scenario,

the problem instance would probably never become too laygéhe proposed exact
branch-and-price algorithm. Still, we believe that suhstig an offline scheduler for

the online approach may not happen for a long time to comeussoonline schedulers
are far more easy to implement and maintain, because odjogtams generally have

much shorter running time and because grid developers blyphee more comfortable

with a well-known scheduling approach.

The exact branch-and-price algorithms could be improveshtigpducing cutting pla-
nes. Recent research shows that cuts can improve the parioensignificantly, even
though the overall problem formulation may be complicateek Desaulniers et al.
[57]. The proposed exact algorithm for the offline grid salledy using a packet
switched network performs well, but it is still interestibtg investigate heuristic ap-
proaches - especially when the problem instance size isese&arly work on heuris-
tics gave large solution gaps, thus future work should a@rsinore sophisticated ap-
proaches. For instance, the greedy heuristics could focus pn data placement and
schedule jobs to resources close to job data.

We believe that future work on the RWA problem may includeoiporating RWA
with network design in order to maximize the number of esshleld data connections.
Especially in the case of grid computing where the opticévoek is dedicated for
the project, we believe that network design can really bgddtperformance. It may
not yet be that beneficial to incorporate RWA in a grid compgitscheduling algo-
rithm, because the scheduling problem becomes much hardehve. As the support
for WDM grows, however, the stability of future grids may eéepl greatly on having
feasible routing schemes.

For the RWA problem, future work could include approximatadgorithms to benefit
from a guaranteed solution value reached in not too long.tiAlso, more work on
exact algorithms could focus on taking advantage of thelaiities between the RWA
and the Multi-commaodity unsplittable Flow Problem.

The proposed papers in this part assume that grid activitptigrolled globally and
exclusively by a grid scheduler. In real-life, howeverstisinot necessarily the case. As
described in the introduction of this chapter, the schadnlsome grids only suggests
available resources to the user, who then decides wherestuexa job. We believe
that the user should be left out of scheduling decisionso&es utilization could more
easily be increased and fairness ensured, when schedsifregformed automatically.
Also, it would make the grid more user-friendly, becauseubker would not have to
have an insight in benefits and drawbacks of the grid ressurce
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CHAPTER 4

Integrated job scheduling
and network routing

Mette Gamst
DTU Management Engineering, Technical University of Derkma

David Pisinger
DTU Management Engineering, Technical University of Derkma

We consider an integrated job scheduling and network rgytioblem which appears
in grid computing and production planning. The problem is¢bedule a number of
jobs on a finite set of machines, such that the overall profthefexecuted jobs is
maximized. Each job demands a number of resources whichtbave sent to the
executing machine through a network with limited capacityob cannot start before
all of its resources have arrived at the machine.

The scheduling problem is formulated as a MIP problem andasqu to beNP-

hard. An exact solution approach using Dantzig-Wolfe dgoosition is presented.
The pricing problem is the linear multicommodity flow profmledefined on a time-
space network. Branching strategies are presented for#met-and-price algorithm
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and three heuristics and an exact solution method are ingyitad for finding a feasible
start solution. Finally, interior point stabilization ised to decrease the number of
columns generated in the branch-and-price algorithm.

The algorithm is experimentally evaluated on job schedilivstances for a grid net-
work. The Dantzig-Wolfe algorithm with stabilization iseerly superior, being able to
solve large instances with 1000 jobs and 1000 machinesiogve4 hours of schedul-

ing activity on a grid network. The promising results inde¢hat it can be used as
an actual scheduling algorithm in the grid or as a tool folyarag grid performance

when adding extra machines or jobs.

Key words: Scheduling; Computations Grid; Production Planning; Molnmodity
Flow; Dantzig-Wolfe Decomposition;

4.1 Introduction

An exact solution approach for integrated scheduling of jiod resources in a network
is presented. The objective is to schedule a number of jolzssmt of machines, such
that the overall profit of the executed jobs is maximized.slagsumed that all jobs
are known in advance and that each job demands a set of respwigich has to be
sent through a network with limited edge capacities. A jot start before all of its
resources have arrived at the machine and it must not finishief due date.

The problem has applications in distributed productionesys, where a set of jobs can
be carried out at various plants. Each job demands that 4 setaurces are available.
In cases where the resources are bulky and the transpartsibs are limited, it is
necessary to consider both problems simultaneously. &ypigplications are in the
steel industry, where the production can be placed at vaisibes, but the transportation
of iron ore and coal constitute a substantial logistic peatl

The problem also has applications in grid computing, whieegjdbs are programs to
be executed at various grid resources and the demands areatatted for running the
programs. All components are connected through a Wide Aetavdik (WAN) and
may thus be geographically distributed. A job request ciasf a list of required
input files and their location: this is denoted the job datajolrequest also holds
information on how long it approximately takes to compute jitb and a deadline for
when the job execution must be finished. In grid computingjdserver maintains a
gueue of job requests and decides which job to send to a giddiree. In the Minimum
intrusion Grid (MiG) [10, 201] the grid server decides wharel when to send jobs
using a greedyirst come first servenline algorithm[[181], which does not take the
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time spent on data transmission into account. Thus, thesgricer may allocate a very
data heavy job to a grid resource with very poor network cotioe, which may lead to

delays. Moreover, it may result in heavy traffic during thg daurs where many jobs
are submitted. Scheduling all jobs in advance, i.e. periogroffline scheduling, may

be more beneficial. Such an offline algorithm must consideyatem constraints, i.e.,
grid resource and job availability, deadlines for job exemy bandwidth limitations

etc.

To simplify the problem, we assume that for each connectientiottleneck in the
network capacity is determined by the capacity at the enésiothis is the case in grid
computing, where two grid resources establish a VPN coioreethen transmitting
data. In road transportation, the bottleneck is frequefioiiyd at the access roads to
the highways, and in maritime transportation the ports titunts the bottleneck.

The main contribution of this paper is to model and solve tihegrated job scheduling
and network routing problem. The model is able to handleitapendent capacities,
e.g., that the network at night may provide larger amountvaflable capacity than
during the day hours. We suggest an exact solution methogtllbas Dantzig-Wolfe
decomposition, where the pricing problem is to assign dsijofp to a single resource,
and where the master problem finds an overall feasible solfir executing jobs. The
described pricing problem is a linear multicommodity flovelplem. Furthermore, we
present a heuristic to reach early feasibility and a brarghirategy based on three dif-
ferent constraints. We propose to extend the branch-aied-gdgorithm by only adding
violated constraints in the master problem, which redueesize of the master prob-
lem. Finally, stabilized column generation is added to trenbh-and-cut-and-price
algorithm to reduce the number of iterations. Computatiemaluations show that this
makes it possible to solve problems of a larger order of ntadaeithan previously.

Not much literature exists on the integrated schedulingplera with respect to band-
width limitations in grid computing. A complexity proof argteedy heuristics for
sharing bandwidths in grid computing context are presehtetMarchal e.a. [[142].
Agarwal e.a.[[3] suggest an offline scheduler, where botlejazution and data trans-
mission is taken into account. The solution method consita/o steps: first, jobs
are scheduled to grid resources such that the total penfattglayed job executions
is minimized. Data availability and transfer costs are tak#o account. Then, the
overall starting and end times of job schedules are deteuhiBlghirani e.a![64] pro-
pose a tabu search algorithm, which schedules a queue of fjobslution is defined
as a set of jobs assigned to a set of grid resources. The reigidnd of a solution
consists of moving a scheduled job to a different, availagjoie resource. Often used
moves are penalized to avoid move cycles. When no improvenaasrbeen reached in
a certain time interval, the tabu list is cleared, a new ramdolution is found, and the
tabu procedure starts all over. Varvaigos €.a. [196] cangab routing and schedul-
ing to support Advance Reservations in the context of gridmoting or Optical Burst
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Switching. Advance reservations consist of scheduling ttansmissions in a network
and the task is to reserve the appropriate network resaukgsaigos e.a. consider
one data transmission request at a time, for which they finabdilmal paths and then

select the "best” path according to a multicost objectivd emavailable network re-

sources. The work of Varvaigos e.a. is related to the intedrecheduling of jobs and
resources, however, because they only consider one jokbraeatheir algorithm can

be viewed as being an online algorithm.

The integrated job scheduling algorithm can be applied brmjjeeue emptying in a grid
network. Whenever the job queue reaches a certain sizefftime @lgorithm can be
used to compute a plan to empty the job queue. In this way,tpbation is avoided.
Moreover ensuring that practically all jobs are executenteéases user satisfiability.
The offline algorithm can also be used to give a more homogeniead in time pe-
riods, where the grid is used extensively: jobs with latedliaas can be scheduled
for execution at a later time and in this way make room for ekeg jobs, which cur-
rently are urgent. The offline algorithm also introducesahity to plan jobs, i.e., the
ability to reserve resources in advance for executing afsgaoned jobs. Resource
reservation is a powerful tool for researchers to meet deasll Also, when using grid
computing commercially, resource reservation is used &wantee customers that their
jobs will finish within a certain time period. Finally, theflifie algorithm can be used
as a tool to analyze grid performance. The offline algoriteroapable of answering
guestions such as how many jobs the grid can handle withigeandime period, what
happens to grid performance if a number of extra grid ressuace added to the grid,
how will grid performance be affected when substituting idattd high-speed data
connections for medium-speed internet connections, etc.

The proposed solution algorithms are computationallywemald on instances reflect-
ing activity in the grid over 24 hours, with up to 1000 jobs &@@D0 machines, and
time granularity as small as 30 or 15 minutes. The brancheaénd-price algo-

rithm clearly outperforms the original formulation withspect to the size of solved
instances. The evaluation reveals that when working witiserete time representa-
tion, small time intervals increase the time spent on findingoptimal solution, but

also improve the solution quality. Overall, the branch-anttand-price algorithm can
be used as an actual scheduling algorithm for planned jolsbogueue emptying in

grid computing and as a tool for analyzing grid performance.

This paper is organized as follows. First, in Seclion 4.2 jtiegrated scheduling prob-
lem is described in detail, a mathematical formulation isspnted and the scheduling
problem is proved to b&/P-hard. In Sectiol 4]3, Dantzig-Wolfe decomposition is
applied and the corresponding branch-and-price algotigtshown. The algorithm in-
cludes methods for solving the pricing problem, severahtining strategies and three
heuristics and an exact solution method for finding a feasitdrt solution. Sectidn 4.4
describes how stabilization is used to achieve faster colgeneration convergence
and discusses a number of additional improvements. All émsidered algorithms are
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computationally evaluated in Sectionl4.5, and Se¢tioh dmains final remarks on the
performance of the algorithms and on possible applicatidiise solution approach.

4.2 Problem description

We use grid terminology to describe the integrated scheduiroblem and network
routing problem. Furthermore, in the following a grid resmuis simply denoted a
resource.

The set of jobs is denotef] the set of resources i3, and the set of connections (edges)
is E. We use a discretized time horizon, with time stamps T being a part of the
problem instance input. Each jgbe J has a time windovia;, b;], the total size of the
job data filesS;, the estimated computation tingg;, the amount of data’ placed on
each resource € R, and a profit; € RT.

At each time period € T each resource € R is assigned an availability start tinag,
an end time,., and an upper bound on in- and outgoing bandwidth. The upmend
attimet € T is denoted’ _ for ingoing network traffic and’ , for outgoing network
traffic.

An edge(i, k) € E going from resourcé to resource: has bandwidthil, at time
t € T. Itis assumed that all resources are connected.

To simplify notation the time window, ., b;x| is introduced, where;;, = min{a;, ax}
andb;, = min{b;, by}, for eachi,k € R U J. Finally, two setsJ; and R; are intro-
duced. The sef, consists of jobg with a; < ¢t < b;. Similarly, the set?; consists of
resources with a,, <t <b,.

It is assumed that the only data to be sent between resowgel tdata. This ab-
straction is fair, because bandwidth consumption of joluests and job result files is
insignificant and can thus be ignored. As bandwidth consiommif job requests is
ignored, users submitting job requests are left out of tmm&b description. Instead,
we focus on where and when jobs are to be executed, and wiaer@tehen input data
is to be sent. Job execution cannot take place before alt ohgta of the job is copied
to the executing resource. The objective of the problem imaximize the profit of

executed jobs.

r

then jobj € J is executed on resourees R with execution beginning at timee 7.
If x? = 0 then the job is not executed on the resource with this begintime. The

Now, the model includes two types of variables € {0,1} andf” e RS If af =1
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non-negative variablﬁj denotes the amount of data on edge’) € E, i, € R for
job j € J attimet € T. The integrated scheduling problem can now be formulated
using an edge-based modebGE):

max Z Z Z c;x (4.1)

TERET t€[ar;,br;—Qy]

s.t. > > it <1 vieJ (4.2)
reRt€[ayj,brj—Qj ]
S pi<dns Vr € R, Vt € [ar,b/] (4.3)
JEJt i€ R \{r}
> fi<d- Vr € R, Vt € [ar,b/] (4.4)
JE€Jt i€ Re\{r}
S <dy Vr,i € R, Yt € [ari, by (4.5)
JEJt
minfle = Vj € J,Vi,r € R,
7:t — t j — .7 ,T
m] b tz_z o p] Vt € [ary, brj — Qj] (4.6)
—a;
e by i) Vj € J,Vr € R,
rt rt/ J r
Tt =1= 27 =0 4.7
’ ]'/ZEJ t/Z:t ! vt € [arj, brj — Q] @
3'#5
=5t € {0,1} Vt € larj,brj — Q;], Vi € J,Vr € R
ft7>0 VjeJ,Vr,ieR:p;->0,

Vt € [ai,«j, min(bi, bfr‘]' — Qj — 1)]

The objective functior (4]11) maximizes the profit of the axed jobs. The first con-
straint [4.2) says that each job can be executed at most Gacestraints(4]3) an@ (4.4)
make sure that in- and outgoing bandwidth limitations areyel and constraint (4.5)
ensures that connection capacities are obeyed. All job ™att be received before

execution time[(4)6). Constraihi(4.7) says that a resocaiceexecute at most one job
at a time. The two bounds ensure that variables take on apatepalues. Note, that
constraints[(4]6) and (4.7) are not linear, but can be resmris:

min(t—1,b;)

> FOI —piatt >0, Vi€ J, VEE [an, by — Q,],¥r,i € R:pl >0 (4.8)

t'=a;p;
min{t+Q],bj/T—Q;}
> 2 + Qi <Qj, Vi€ J, v €R, tE [a, b —Q;[4.9)

j'leJ t'=t

The problem isN“P-hard by reduction from th&napsack problenfl18]. Letc be
the capacity of the knapsack apfl w; the profit and weight of itenj. Construct an
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instance of the scheduling problem by setting= p}; and@; := w’;. We have only
one resource with time windowla.., b,] := [0, ¢]. All edges have unlimited capacity
d, so the task is now to pack all jobs into a limited time horizbsuch that the overall

profit is maximized.

4.3 A branch-and-price solution approach

The formulation EDGE) can be Dantzig-Wolfe decomposed [54], such that the re-
sulting pricing problem assigns a given job to a given reseur he latter is denoted a
subschedule. Each subschedule contains information arhydtb is assigned to which
resource, when and where-from data is sent, and when joligxedegins.

The master problemMASTER) computes an optimal solution by merging subsched-
ules. The model contains the decision variallgsp € P, whereP denotes the set of
subschedules:

max S > Sy (4.10)

JjeJ peEP
s.t. > sy <1 VjeJ (4.12)
peEP
S oty < diy Vie RVEE [anb]  (412)
pEP
oy, < di- Vie RVEE [aibi]  (4.13)
peP
> 6y < diy Vr,i € RVt € [air, bir] (4.14)
pEP
min{t+Qj,
b]/.,,*Q;'} Vi cJ cR
-lrll i ; ,r, ,
> > S E T Q> B <@ L b o (415
7 T t € lajr, bjr — Q]
j'ed t'=t peP pEP
3'#i
yp € {0,1} Vpe P (4.16)

Each subschedujec P has a number of constants attachép:: 1 if subschedule
assigns joly, otherwiseég; = 0. Similarly, 6{} = 1 if subschedule executes joly at
time ¢, otherwise)’ = 0. The constantg’’ > 0, 5;7‘+ > 0 andd}” > 0 denote the
amount of data going in and out of resouicand between resourceandr at timet
for subschedulg, respectively.

The objective functiorf (4.10) maximizes the profit of execljbbs. The first constraint
(4.13) ensures that each job is executed at most once. @mist{4.12),[(4.13) and
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(4.12) ensure that bandwidth limitations are obeyed. Binabnstraint[(4.I5) says that
a resource can execute at most one job at a time.

4.3.1 Pricing problem

The pricing problem decides which subschedules to add tm#ster problem. Recall,
that a subschedule consists of assigningjjab a resource. Letr; > 0 be the dual

of constraint[(4.111)w;; > 0 be the dual of constraint (4.12),; > 0 be the dual of

constraint[(4.IB)p:;» > 0 be the dual of constrairlt (4.114), ang,., > 0 be the dual of

constraint[(4.15). The reduced cost for pgirr) is rewritten into:

min{¢,
by b, ;1 —Q,r} b,
cj — i > Z (Trt + QjNjre + Z Z Njrrer) + Z Z(Wit + prir) (4.17)
t=ar; jleJ t' =max i€ERt=a;

S
iA1= Qytlay,}

The right hand side can be viewed as edge and execution chets agsigning jobh
to resource-.

To handle the time aspect in the pricing problem we transfivengraph into dime
expandedyjraph (see Figuife 4.1), as done for the single commodity flmlpm over
time by [72,.74]. In the time expanded graph, sources andaityet are connected
through a set of addetime nodeswhere each time node represents a time stamp.
Bandwidth limitations are represented as edge capachie®dge going from source

i to time nodef has capacityl;; = min{d},,d., }, and an edge going from time node

t to targetr has capacityl;, = d’._. The set of the edges, t) and(t, ) in the time
expanded graph is denotéd The edge going out of resourcet timet is denoted
(¢,t) and has reduced cos} = (wi: + puir) Per flow unit. The edge going intoat
timet is denotedt, ) and has reduced cogt. = 7, per flow unit. The sum

mil’l{t,brj/ 7Q]/ }

¢t = QjNjrt + Z Z Ajrrtr

J'€I\{j} t'=max{t—Q; +1,a;s,.}

is the reduced cost of executing jplat resource at timet. The non-negative variable
fuv, (u,v) € € holds the amount of flow from nodeto v in the time expanded graph.
Using the variabler; to indicate that johyj starts at time at resource, the pricing
problem is formulated asRICE) ;.

min Z Cit fit + Z Ctr ftr + Z CtTt (4.18)

ite€ tre& t€lar;,brj—Qj ]
st Yo fi= fur Vt € [ars, by — Q5[ (4.19)
ite& tre&
Y for = Sz Vt € [ar, brj — Q] (4.20)

t'€layj,t]
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fuv < duv V(u, 1}) €& (421)
S fu=0p; Vi € R\{r} (4.22)
t€[airj,birjl
Y om=1 (4.23)
t€lar;,byj]
z¢ €{0,1} Vt € larj, brj — Q]
fu'u Z 0 (u, ’U) e

The objective[(4.18) is to minimize the reduced cost. The dioastraint ensures flow
conservation. Constraini (4]20) says that all data mustesefore the job is executed.
Then in [4.211), edge capacities are obeyed anflin {4.22) esciurce transmits the
demanded data. Constraini(4.23) ensures that thgigbxecuted. Finally, the bounds
force variables to take on feasible values.

To overcome the problem of having to both send data and totimdptimal execution
time, the pricing problem is instead considered for eackilida execution timet €
lar;,br; — @Q;]. The later the execution time, the lower the data transonissosts are
in (4.18), because a late execution time increases the muhlays data can be sent.
Hence, we start with the latest execution time when solMirggpricing problem and
then decrease the time until a solution with positive reduest is found.

Also, the pricing problem is only solved for jobs with — 7; > 0, because otherwise
(@.17) will never be satisfied and a column with positive i@stlicost cannot be found
due to the dual variables taking on non-negative values.

The data transmission problem in the time expanded graphe@ansformed into the
polynomially solvable Linear Multicommodity Flow ProblefiFP). The amount of

data to be transmitted corresponds to the amount of flow tolted. Several data files
are to be transmitted, i.e., in the MFP representation akgemmaodities of flow must

be routed. Now, solving the pricing problem on the time exjsghgraph corresponds
to solving the MFP.

The mathematical formulation of the pricing problem vievesdan MFP is:

min Z Cit fit + Z Cer fir

ite€ tre&
st Y fu=> fo  VEE [t by —Q
ite€ tre&
fuv S duv V(u, U) cé&

Z fit = p;- VieR
t€(aj,j,bir; —Qjl

Juv 20 (u,v)eé’

Since the problem is a linear program, it can be solved inrpmtyial time. However,



62 Integrated job scheduling and network routing

Figure 4.1: An example of how a network is transformed intoreetexpanded graph.
The graph on the left hand side represents an instance tingsid three source re-
sources, with time window([3, 5], v with time window([1, 3] andw with time window
[4,6]. The target node;, has time window(1, 5]. The figure on the right hand side
shows the time expanded graph. Nodes representing times, 6 are introduced, and

u, v, andw are connected tp via nodes, representing time slots where both parts are
available.

larger instances of MFP can be difficult to solve. Proposddgtism methods in the
literature include Lagrangian methods, partition methal#somposition techniques,
dual ascent algorithms, bundle methods, interior pointioas, etc., see [18, 119] for
surveys of the problem and [134] for a review of solution t@ghes. Small instances
are typically solved using the Simplex algorithm. To theth#fsour knowledge no
straight-forward combinatorial algorithm exists for thé&M[52], therefore we choose
to solve the pricing problem heuristically whenever passib

The heuristic for the pricing problem is a greedy algoriti@iven a jobj, an executing
resource- and an execution tim& the heuristic works as follows. For each resource
containing job datai(e€ R : i # r, p;: > 0) the job data is sent to the executing
resource via edges with lowest reduced cost. Edges arerchroagyreedy manner for
each data source, i.e., the overall cost of sending all datarmot be optimal.

When the heuristic cannot find a solution with positive restlicost, the pricing prob-
lem is solved to optimality using a standard LP solver.
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Figure 4.2: lllustration of fractional and integer solutio The instance is shown in
the time expanded graph representation: A jolB given with time window(1, 10},
execution time5, and job data:4 units at resource:, 4 units at resource. Two
resources:, andv are available in time windoWl, 4] having bandwidth limitatior2
units of outgoing data per time slot, for all time slots in thee window. A resource
r is available in time windowl, 10] having bandwidth limitatior2 units of incoming
data per time slot, for all time slots in the time window. Thah on the left hand
side shows a fractional solution and the graph on the rightilsédde shows an integer
solution.

4.3.2 Reaching feasible solutions

In the branch-and-price algorithm, a linear relaxationha&f naster problem is solved
in order to find an upper bound in each search tree node. It magbessary to branch
to find an integer solution, thus a branching strategy muanipéemented. In the fol-
lowing, we present a method to reach feasibility in certgipes of fractional solutions.
Three branching strategies are also presented, which caaleinsure that integrality
is eventually achieved.

4.3.2.1 Reaching feasibility from certain fractional soltions

We may have a fractional solution where a job is executed ev@ral subschedules
and where these subschedules have the same executingceeaodrsame execution
time. The fractional subschedules only differ in the way {lata is transmitted. To
reach afeasible solution, the fractional subschedulesptaced by a new subschedule
with same executing resource and same execution time, luwombination of the
ways job data is transmitted. This is illustrated in thedaling example depicted in
Figure[4.2: a fractional solution consists of two paghsandp,, each used/2 times,
i.e., yp, = Yp, = 1/2. Using the time expanded graph representation, the fraadtio
solution is illustrated on the left hand side of Figlirel 4.hafis, pathp; sends data
from « to r in sizes2 at time 1 and 2, and fromto r in sizes 2 at time 3 and 4. Path
p2 sends data from to r in sizes2 at time 3 and 4, and fromto r in sizes 2 at time 1
and 2.
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To avoid branching on a solution, which actually is feasd#dspite the fractional vari-
ables,p; andp- are replaced with a new subschedule. Again, using the tippareded
graph representation, the new solution is illustrated enitfht hand side of Figute 4.2.
The new subschedule sends data frota r in sizes 1 attime 1, 2, 3 and 4, and it sends
data fromv to r in sizes 1 at time 1, 2, 3 and 4. In this way, a feasible soluigon
reached without branching.

4.3.2.2 Branching strategies

The branching strategies consist of three branching cainstr

Each job can be executed at most once. In a fractional salstione jobs may be
partially executed. For this reason, the following brangtstrategy is introduced:

> Sup=0 vs. > Sy,=1 jelJ (4.24)
peEP pEP

That is, jobj is either executed or not. Next, in a fractional solution la foay be
executed at several resources. This leads to the brandhategy:

> 6y =0 vs. Y &yp=1 jeJreR (4.25)

peP peP

That is, for jobj and for resource the job is either executed at the resource or not. Fi-
nally, a fractional solution may have two fractional sulehles using the same paths
for sending data but having different execution times. s teason, the following
strategy is imposed:

ST E =0 vs. S STy =1 jed telab - Q) (4.26)

t'€laj,t] peP t'€laj,t] peP

That s, for jobj and time stamp, the job is either executed before the time stamp or
not.

The branching constraints are applied in the presented,drelefirst branching candi-
dates of type[(4.24) are generated, which is followed by ickntes of typel(4.25), and
finally of type [4.26).

The branching strategies result in constraints being atmiéae master problem and
thus extra dual variables must be taken into account in tiengrproblem. For con-
straint [4.2#) the dual variables aye which can be added on all execution time for
job j on all resources. For constraifif (4.25) the dual variableg@., which can be
added on all execution times for jghon executing resouree For cut [4.26) the dual
variables are);;, which can be added to the reduced cost for executing itimet

for all executing resources.



4.4 Stabilized column generation and improvements 65

4.4 Stabilized column generation and improvements

In order to improve the basic branch-and-price algorithmmnapose a number of re-
finements. First, Sectidn 4.4.1 shows how the size of the hmdg be reduced by
only adding constraints when they are violated, making therahm a branch-and-
cut-and-price approach. Then in Secfion 4.4.2 we show htawiar-point stabilization
may limit the fluctuation in the dual variables, making th&uoan generation converge
faster. Finally, Sections 4.4.3 ahd 4]4.4 describe how we dim initial solution and
how the size of the problem instance may be decreased byomessing.

4.4.1 Reducing the size of the master problem

The number of constraints in the master problem (4.008Mniay be very large, es-
pecially as the number of time intervals grow. Having a vemgé master problem
increases the memory and time consumption of the branckpaoe algorithm, hence
it may be beneficial to reduce the size by only including wtiedeconstraints.

The first constraint’(4.11) ensures that each job is seleatedost once. Thus the
number of these constraints will always be relatively low #re constraints are always
included in the master problem. The number of remaining tcaimés [4.12){4.15)
depends on the time intervals and may thus be large. We otllyda these constraints
when violated. To decide when constraints are violated, eveldp a set of separation
routines. Each routine consists of calculating network gsburce consumption in
the current solution by investigating each column and bynta#&ing network and
resource matrices. When a constraint is violated, it is dddea cut to the current
master problem.

The dual variables of constrainfs (411P)-(4.15) are onligedncluded in the reduced
costs, when the corresponding cuts are added to the maghdepr. This is handled in
the pricing problem by investigating all added cuts whegwalting the reduced costs.

Compared to the branch-and-price algorithm, less time éntspn maintaining the
master problem in the branch-and-cut-and-price algoritBat the cut separation rou-
tines in each iteration and the cut investigation when datimg the reduced costs may
be time consuming. Thus the trade-off between the two swiutiethods lies in how
much time is spent on handling the cuts versus having a laggtenproblem.
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4.4.2 Stabilized column generation

In a branch-and-price scheme, the dual variables of theempsbblem are used for
deciding which columns to price in. The dual variables, havemay not always
converge evenly towards their optimal values [115]. Manydd®ers, for instance,
return an extreme point in the dual solution space, which leag to fluctuation in the
dual variables. Also, degenerated problems can have mamyalsolutions and thus
many different optimal points in the dual solution space.nstable” dual variables
may increase the number of iterations needed to convier@} [TBe goal of stabilized
column generation is thus to make the dual variables coevaye evenly in order to
save both memory and time consumption.

Stabilization methods generally consist of setting boumtdsiow much the values of
the dual variables may change between two iterations in tlogng process. This
can be done by setting bounding boxes for each dual varidl@] [or by linearly
punishing the distance between the former value and themruwalue of each dual
variable [61]. Rousseau e.a. [170] suggest an interiant@babilization method where
a set of extreme points in the dual solution space is fourdipdrere the dual variables
are defined as a linear combination of the extreme points.

Reconsider the master problem (4.10)-(4.16). Pétbe the set of variablegr > 0
and letS* be the set of constraints_(4]11)=(4.15), which are not tightie to the
Complementary Slackness Condition (CSC) the dual constradrresponding to the
variables inP* must be tight and the dual variables corresponding to thstraints in
S* must be set to zero. Recall the dual variables. Takih@ndS™ into account gives
the dual problem:

bi

bir bji—Qj
min ZZ (Z(Wit + Tit) + Z Z Ptir +Z Z >\jit> + 75

jeJieR \t=a; reRt=a;, JjEJ t=aj;

by

b b;
st ¢ —m5— Z Trt + Qj)\j'rt -+ Z Z Aj/rt’ — Z Z (Wit + ptir) >0

t:arj j’eJt’:a’ i€ERt=a;
i3’
Vj € J,¥r € R,Vp € P\P*

bTJ

v b;
cj — T — Z Trt + Qi Njrt + Z Z Njrepr | — Z Z (wit + ptir) =0

t=ar; jlegt'=a’ iERt=a;
J#5’
vy € J,¥r € R,Vp € P*
i, Tis A, pi = 0 Vie S*
771'77'1'7)\1'7[)1' >0 Vi € S\S*

Wherea' = max{t — Qj + 1,a;,}, b’ = min{t,b,.;; — Q;} andS is the set of all



4.4 Stabilized column generation and improvements 67

constraints in the primal problem.

The interior-point method wishes to find several extremefsoand then defines the
dual variables as a linear combination of these points. Tfitifferent extreme points
we multiply the dual objective function with a random vediok u; < 1 for each of
thei € {1,2,...,k} times the stabilized dual problem is solved. In practicait be
very time and space consuming to set up the stabilized doblgmk times, hence we
instead solve the dual of the stabilized dual problem. Tha dfithe stabilized dual
problemis:

max ch Z 8)yp
JjEJ peP
st Z §yp < u VjeJ, Vs e S\S”
peP
Sy <udls Vi € R, VEE [a,bi], Vs € S\ST
peP
> 6 yp<udi- Vi€ R, Vt € [ai,bi], Vs € S\S”
peP
> 6y <udi, Vr,i € R,Vt € [air, bir],Vs € S\S”
peEP

min{t«&»Q‘7 s
by —Q5}

i t! i VieJ, reR
SR SHID SURTESD Sl AP L LA N
= = ey = t € [ajr, bjr — Qj;],Vs € S\S
§'#i
yp € {0,1} Vp € P\P*
yp =0 Vp € P*

This model is reached by modifying the original primal perhl slightly. A solu-
tion is found by letting the LP-solver resolve the stabtizgoblem. The trade-off in
interior-point stabilization lies in the amount of time gpen finding the stabilized dual
variables and the amount of time saved by possibly decrg#isgnnumber of iterations
in the column generation.

4.4.3 Starting solution

A start solution to the problem instance must be found in otdget values for dual
variables. The scheduling problem is solved for each job arieasible start solution
is found. Three greedy heuristics are implemented for aglthie scheduling problem.

Assign homelf a job has all data placed on exactly one resource, the jakssgned
to that resource if possiblezirst come, first servefFor each resource, the algorithm
assigns the first job which can be executed on that resouBest first;: Each job is
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assigned to the resource on which the job execution finishats fihe data transmis-
sion problem is solved heuristically by taking one source titne and then using the
required time and bandwidth to transmit all job data to thigea

The heuristics do not guarantee a feasible solution evepiibblem instance is solv-
able. In the case where a heuristic solution cannot be foilnedstarting problem is
solved using a modified version of the exact algorithm fromhicing problem. Re-
duced costs are replaced with negated real costs for ergcatjob (the algorithm
seeks to minimize, hence the negation). The modified algoris denoted thexact
start solution method

We have through preliminary testing concluded that theistaalgorithm should work
as follows. The heuristics are run in the ordssign home, first come first serve, best
first until a solution is found. If the heuristics are unable toctea feasible solution,
theexact start solution methad run. If this does not result in a start solution, then the
problem instance is unsolvable.

4.4.4 Preprocessing

Preprocessing can be used to a-priori limit the solutiorcspaVe use the following
preprocessing rules:

Problem instance sizeihen a job is not available, none of the resources need to be
considered. Hence, a system start tithe= min;c s a;, and a system end timé& =
max;e s bj, are found and resource time windows are s@ttex{a,, A}, min{b,, B}|,

Vr € R. Job availability: If the job execution time is greater than the time space in
which the job is available, then the job cannot be execulleld data source availability:

If a resource containing job data is not available in the séime space as the job,
then the job cannot be executelhb data source bandwidthf a resource containing
job data does not have enough available bandwidth to sendliodata in time for
execution (beforé; — ();) and if the resource cannot execute the job itself, then the
job cannot be executedransmission of job dataFor each resource and for each job,
it is investigated whether or not all job data can be sent éorésource in time for
execution. If not, then the job cannot be executed on thatres.

The five preprocessing steps can be checked in polynomial tWiith regard to the

mathematical formulation of the problem we predict thaeeggly the first step, where
resource time windows are narrowed, can have great effechumber of edges in the
formulation is lowered, thus a subset of the capacity cairds can be left out. With

regard to finding combinations of which jobs to execute onciwhiesources, then the
remaining four steps of preprocessing have a good effect.



4.5 Computational results 69

4.5 Computational results

The proposed solution methods have been computationalya&ted as follows: first,
problem instances are generated and details regardingthgeneration are presented
in the following. Next, preprocessing is performed to lithié solution space. Finally,
the computational results are reported and discussed. dde fermulation EDGE)
was solved byCPLEX

4.5.1 Data generation

Test instances are generated to reflect activity in a grithg@4 hours. The instances
are randomly generated, but the number of jobs, resourcktharsize of time intervals
reflect actual scheduling problems. The resources are gieesuch that their start and
end times lie within the 24 hour time span. Furthermore, tietéme is set to be at
least one time slot later than the start time and bandwidihdtions are set randomly
between 0 and 10 Gh/s. Jobs are generated such that job datailsuted on up to all
resources and such that each job data source holds at moghifigef job data. The
job start time lies within the 24 hour time span, and the emet fis set to be twice the
estimated computations time of the job later than the Stag.t

We consider instances, where the number of jobs and resoigeet to 10, 20, 50,
100, 200, 500 and 1000. The exponential-like growth of jalxsr@sources will hope-
fully reveal any connection between problem instance simkthe complexity of the

scheduling problem. Two types of time granularity are us&f:and 30 minutes.

Smaller granularity is not considered since jobs taking tean 15 minutes might as
well be computed on the user's home computer. The test ioassawith 15 minute

time intervals are scaled into corresponding instancds 3@tminute time intervals in

order to show any connection between the time granularidythe complexity of the

scheduling problem.

The scaling algorithm divides all time units with 2 in ordergo from a 15 to a 30
minute time interval size. After scaling all start times #oored and all end times
are ceiled such that all time windows are of at least size lvigisly, this imposes
inaccuracy in the instances and an optimal solution valubdcscaled problem may
be greater than that of the original problem. For this reaaaroptimal solution to a
scaled problem may be infeasible for the original problem.

After scaling, the estimated computing time for a job isegibuch that each job takes
at least one time period to run. The estimated computing timag become larger,
hence the solution for the scaled problem may compute festarthan the solution of
the original problem. By computationally evaluating imstas with both time interval
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sizes, we hope to show how scaling time intervals affectsdfigtion quality.

45.2 Results

The exact solution methods have been implemented and iasted using the branch-
and-cut-and-price framewor®OIN [140]. Results are compared to test runs using
CPLEXfor solving the EDGE) formulation from Sectiof 4]12. The methods are tested
on a 2.66 GHz Intel Xeon machine with 8 Gb RAM. Note, that CPtdets in the
following stem from using one cord.OG CPLEX 10.2 is used as LP-solver.

Through preliminary results, we have decided to|3ét2 as upper bound on the num-
ber of columns computed in each iteration. Furthermoreyralhching candidates are
found when branching occurs and a best-first search strategged in the branch-and-
bound tree. Computations regarding selection of branctamglidate and branching
child are handled b OIN.

First, Tabld 4.1l shows results from solving tteDGE) model with CPLEX The in-
stances have up to 100 jobs, up to 1000 resources, and timelgrigy of 15 minutes.
We have chosen to only generate edge-based models fordestaith up to 100 jobs,
since the generated models become very large and take ugalsgigabytes of space.
This also explains whZ PLEXruns out of memory in theEDGE) model. Time usage
explodes as the number of resources increases.

Next, the three exact algorithms are analyzed. Test dat#tsder instances with 100,
200, 500 and 1000 jobs and up to 1000 resources are seen aiZladbr a 15 minute
time interval and Table_4.3 for a 30 minute time interval. BhgorithmB&P (branch-
and-price) denotes the simple branch-and-price algoniteseribed in Sectidn 4.3. Al-
gorithmB&C&P(branch-and-cut-and-price) solves the same model butrzimis are
only added when they are violated as described in Settiadl.4Hinally, algorithm
B&C&P+Ybranch-and-cut-and-price with stabilized column getiendalso includes
stabilization as described in Sectibnl4.4. The time consiamgor all test runs is
bounded by 1800 seconds.

The scaled instances generally consist of fewer constraimd columns, and the num-
ber of iterations is generally lower than for the originablplem, leading to faster so-
lution times. Furthermore, the solution values of some efdhginal instances and
of the scaled instances differ. The solution values of tladestinstance are generally
lower than or equal to those of the original instances, bortesare also greater. As dis-
cussed in Sectidn 4.3.1 solutions for scaled instancesvaitles greater than those for
the corresponding original problem, are infeasible. Whethcounting instances with
memory or time problems, solving the scaled instancestsesubpproximately 18%
infeasible solutions, approximately 10% optimal solusiemthe original problem, and
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approximately 71% solutions worse than the optimal sohgifor the corresponding
original problems.

The pure branch-and-price algorithm does not perform veti, w runs out of memory
and time even for smaller instances. The algorithm, howdsearapable of solving
larger instances thaBPLEX Reasons for the performance difficulties lie in the size
of the master problem, where the number of rows explodes. braech-and-price
algorithm also generally suffers from a large number of ouligeneration iterations.

The branch-and-cut-and-price algorithm without the ditedsd column generation has
much better performance than the branch-and-price alhgoritVhile it also sometimes
runs into memory and time problems, it is capable of solvhrgymajority of the test

instances. The number of rows in the master problem is rebsigaificantly and the

number of columns is also decreased. As was the case for ¢h@ps solution ap-

proach, the branch-and-cut-and-price algorithm suffensifa large number of column
generation iterations, which takes up much time.

Finally, we consider the branch-and-cut-and-price atboriwith stabilized column
generation. This method has by far the best performance alndssall instances
within minutes. The size of the master problem is dramdyic&lduced, especially
when comparing to the branch-and-price algorithm. Furtteee, the stabilized col-
umn generation decreases the number of column generagiaiidns significantly,
which indicates that the stabilization has a very benefiiglact on the values of the
dual variables.
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Jobs  Resources  Objective Time
10 10 8 0.00
10 20 6 0.01
10 50 8 0.04
10 100 10 0.35
10 200 10 1.03
10 500 8 6.88
10 1000 10 48.41
20 10 20 0.01
20 20 16 0.01
20 50 18 0.05
20 100 24 0.57
20 200 24 3.07
20 500 22 26.93
20 1000 30 173.28
50 10 68 0.04
50 20 52 0.16
50 50 66 0.69
50 100 46 2.96
50 200 34 8.93
50 500 66 76.20
50 1000 - out of memory

100 10 136 0.09
100 20 104 0.24
100 50 94 1.07
100 100 106 5.85
100 200 98 18.16
100 500 110 153.99
100 1000 - out of memory

Table 4.1: Test run results for solving the edge-based mosielg CPLEX. First
column is the number jobsl¢bs ), second column is the number of resources
(Resources ), third column is the objective valu®pjective ) and finally time
consumption in seconds is givemihe ). The running time includes generation and
reading of the MIP file.



B&P B&C&P B&C&P+S
Jobs Res. Rows Cols  lter. Time | Rows Cols lter. Time | Rows Cols lter. Time z
100 10 61617 628 90 94.306| 100 386 19 0.240 100 99 3 0.108| 136
100 20 103020 791 44 79.597 100 478 13 0.300 100 87 2 0.100| 104
100 50 224860 1292 28 69.724 100 820 17 1.220 100 95 2 0.164| 94
100 100 447665 1953 44 236.5471 100 1452 31 6.588 100 145 4 0.456| 106
100 200 899992 2018 42 294.906 100 1918 40 39.630 100 49 1 0.304 98
100 500 | 2339064 2357 51 spac¢ 100 2305 48 328.869 100 55 3 6.032| 110
100 1000 | 4659483 1449 29  *1818.034 100 2200 45 962.3000 100 49 1 2.328| 98
200 10 82040 631 455 1020.7332 200 397 14 0.312] 200 101 3 0.272] 184
200 20 197758 1333 46 277.457 200 777 16 0.680| 200 111 3 0.304| 184
200 50 492045 3270 92 *1800.133 200 2007 26 4.208 200 174 3 0.456| 208
200 100 970942 5000 88 *1832.179 200 3198 35 17.253] 200 197 4 0.964| 198
200 200 | 1931695 8089 85 *2307.456 200 6057 64 155.010 200 119 2 1.180( 238
200 500 - - - space 200 6992 71 spacd 200 92 2 3.768| 184
200 1000 - - - space 200 2206 22 *1808.061 200 107 2 12.057| 214
500 10 209842 1382 49  *1986.25J 500 833 23 1.780] 500 242 8 1.688| 404
500 20 432726 3161 39 *2084.099 500 1841 22 2.672| 500 291 6 1.708| 472
500 50 | 1250982 8883 54 *1913.804 500 5211 32 13.749 500 384 5 2.352| 522
500 100 | 2551162 10261 41 *2937.144 500 10494 49 71.880 500 264 4 3.032| 528
500 200 | 4910410 10243 41 *5617.423 500 17128 73 spacg 500 245 3 4.596| 490
500 500 - - - space 500 8508 34  *1820.942] 500 260 3 14.353| 520
500 1000 - - - space 500 2252 9 *1921.916| 500 254 3 42.279| 508
1000 10 416830 3543 246 spac¢ 1001 2017 57 21.877 1001 540 10 7.928| 892
1000 20 | 1057108 9205 97 space¢ 1000 5286 68 27.598 1000 766 8 6.980( 1170
1000 50 | 2424838 10510 21 *2503.764 1000 9722 45 39.110f 1000 645 7 8.008| 1042
1000 100 | 5064106 10513 21 *5082.330 1000 20819 59 170.547 1000 897 10 14.925| 1054
1000 200 - - - space | 1000 40015 93 space 1000 671 11 35.814 1026
1000 500 - - - space | 1000 8501 17  *1866.329 1000 801 4 33.006| 1008
1000 1000 - - - space 1000 3008 6 *2198.537| 1000 513 6 167.498| 1026

Table 4.2: Test run results for solving the instances witketgranularity of 15 minutes with the three algorithms. Thenber of
jobs Jobs ) is reported, as well as the number of resour&s( ). For each of the three algorithms the table holds inforomatin
the number of rowsRows) and columnsols ) in the master problem, the number of iteratioter(
and the time consumptioifime ) in seconds. The optimal objective value is reported iniwwia. An ™*’ indicates that the test ran
out of time andspace indicates that the test ran out of memory.

) in column generation
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B&P B&C&P B&C&P+S
Jobs Res. Rows Cols lter. Time | Rows Cols lter. Time | Rows Cols lter. Time z
100 10 31210 222 6 1.252] 101 222 6 0.068 101 70 3 0.080] 126
100 20 52528 295 6 2.144| 105 295 6 0.116 105 65 3 0.116| 98
100 50 115129 595 12 10.993 105 595 12 0.868 105 111 3 1.212 92
100 100 228401 1150 23 48.363 100 1150 23 5.492 100 100 2 0.384| 102
100 200 459373 1001 21 122.18¢ 100 1001 21 31.694] 100 50 1 0.984| 100
100 500 | 1189208 1258 27 621.255 100 1258 27 306.907] 100 56 1 6.584| 112
100 1000 | 2379079 1350 28 1713.42 100 1350 28 983.425 100 49 1 18.573| 98
200 10 42216 318 9 4.300] 278 329 9 0.188 249 185 6 0.364| 176
200 20 100796 452 6 7.620] 220 455 6 0.324 220 126 4 0.328| 174
200 50 251046 1290 17 97.574 217 1290 15 2.912 217 301 4 0.644| 204
200 100 495746 1797 18 167.234 209 1797 18 13.137 209 239 3 1.148| 196
200 200 985909 3921 40 852.429 214 3921 40 141.969 202 308 4 6.624| 240
200 500 | 2499760 3092 31 *1811.20§ 207 4392 44 941.383 207 92 2 30.226| 182
200 1000 | 4970713 1309 13 *1930.293 200 2209 22 *1825.454 200 109 1 45.503| 218
500 10 107427 521 23 70.900 1477 592 13 1.296| 1644 459 16 3.544] 368
500 20 222384 1130 5 33.158 813 1176 6 0.740 581 689 12 2.660( 440
500 50 637036 3511 18 369.943 706 3511 18 10.661 699 895 8 3.908| 506
500 100 | 1298170 7513 31 1409.156 575 7513 31 52.559| 516 762 5 6.300| 516
500 200 | 2502637 5245 21 *1800.117 561 9087 39 351.5020 514 875 5 24.918| 490
500 500 | 6236304 2011 8 *1846.055 530 8761 35 *1839.439 512 511 4 129.732| 520
500 1000 - - - space 555 2505 10 *1923.164 503 940 5 501.943| 510
1000 10 214426 791 5 56.272 6185 1206 10 5.080, 6344 883 12 29.882| 644
1000 20 537070 2689 18 664.286 4088 3173 22 11.765 3912 2040 29 23.301] 1006
1000 50 | 1234462 5723 22 1761.130 2256 5924 20 24.138 2257 1928 9 15.165| 954
1000 100 | 2585158 6522 13 *1951.422 1521 13728 31 157.974 1495 2427 8 29.050| 1014
1000 200 | 4943786 3513 7 *2041.944 1328 25070 57 space 1340 2999 8 72.389| 1018
1000 500 - - - space 1272 8006 16 *1845.023 1061 3506 8 421.270] 1026
1000 1000 - - - space 1072 3016 6 *2241.496] 1002 1016 3 695.603| 1030

Table 4.3: Test run results for solving the instances wittetgranularity of 30 minutes. The columns are explained He[d.2. An

** indicates that the test ran out of time asgace indicates that it ran out of memory.
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4.6 Conclusion

This paper has formalized and formulated the integratedsghteduling and routing
problem. Computational experiments showed that the sifgr@ulation EDGE)
could not be used to solve large-sized instances to optynakence three exact al-
gorithms were proposed: a branch-and-price algorithm,aadir-and-cut-and-price
algorithm and a branch-and-cut-and-price algorithm witdbized column genera-
tion. The methods are based on a new mathematical formulafidhe integrated
job scheduling and network routing problem. Furthermdne, éxact solution meth-
ods include new branching strategies. The branch-ané-pigorithm includes all
constraints of the master problem, while the branch-arneknd-price algorithms only
include violated constraints. Furthermore, the branati-e@ut-and-price algorithm is
extended with stabilized column generation, which coasistalculating the dual vari-
ables from a number of extreme points in the solution space.

The solution methods have been computationally evaluateshgtances with up to
1000 jobs and resources, 24 hour scheduling activity andraidte time granularity.
CPLEXcan only solve instances with up to 100 jobs using modblE). The branch-
and-price algorithm is capable of solving more instances,skill shows somewhat
poor performance due to large memory and time consumptibine.branch-and-cut-
and-price algorithm without stabilization performs wedblving the majority of all
instances. However, the algorithm still has some time @oisldue to many column
generation iterations. Finally, adding stabilized colugemeration to the branch-and-
cut-and-price algorithm improves performance dramdiicalhe number of column
generation iterations is reduced significantly and the ritlym solves all instances
within minutes. Furthermore, the algorithms have beeretksn instances using a
15 and 30 minute time granularity, respectively. The corapomal evaluation showed
that the time granularity affects time consumption andtsmiuquality; the larger time
granularity, the faster the instances are solved, but theigo quality decreases.

Overall, the branch-and-cut-and-price algorithm withgized column generation per-
forms particularly well. Within a few minutes, the algorithsolves instances with
1000 jobs and resources covering 24 hours of schedulingtgatiith time granular-
ity as small as 15 minutes. Hence, the algorithm can easilyskd both as an actual
scheduling algorithm for planned jobs or job queue emptyingrid computing, and
as a tool for analyzing grid performance.
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CHAPTER 5

A Survey of the Routing and
Wavelength Assignment
Problem

Mette Gamst
DTU Management Engineering, Technical University of Derkma

In an all-optical network, optical fibres are used to transmaita. An optical fibre
carries light along its length at high rates and with litded. Several wavelengths on a
single fibre can be used to transfer data, when using wavlatigision multiplexing.

In this way, several data transmissions at very high speedat@ place on a single
fibre.

When transmitting data in an all-optical network, data amtions must be established

in such a way that two or more connections never share a waytblen the same fibre.
The routing and wavelength assignment (RWA) problem ctssisfinding a path and

a wavelength for a set of data connections. The objectiwgpisdlly to maximize the
profit of established data connections or to minimize the obgstablishing all data
connections. The RWA ia/P-hard, thus much research has been conducted to finding
a good way of approaching the problem.

Technical Report, ISBN 978-87-90855-56-7, DTU, 2009



78 A Survey of the Routing and Wavelength Assignment Problem

This paper introduces the RWA and lists a number of restristifrom the literature
on the RWA and on the underlying network topology. An ovemwd heuristic, meta-

heuristic and exact solution methods is given. Runninggifoethe heuristic methods
are presented and computational results from the litezatte discussed.

5.1 Introduction

The use of optical fibres in telecommunication infrastruetis ever increasing. An
optical fibre carries light along its length at very high sagad with little loss. When
data is sent via an optical fibre, it is transmitted on a centeavelength of light. A
fibre can carry several independent transmissions, eaclulffeeent wavelength. The
wavelength-division multiplexinBVDM) technology allows multiple optical carrier
signals on a single optical fibore. WDM works on a circuit s\wéd network, i.e., in a
network where the connection between nodes and terminaktablished before use
and where the wavelength is not shared with other traffic.aRechnical overview of
optical fibres, see Halsall [98], and for more informationtioa WDM, see Thiele and
Nebeling [187] or the thesis of Jue [114].

The problem of finding a good way of establishing data conaestand of assigning

wavelengths to the different connections, is denoteddhng and wavelength assign-
ment(RWA) problem. Two or more data connections are not alloweeshiare the same
wavelength on the same fibre. Constraints can be set on whatiet wavelengths

can be converted. If wavelength conversion is possible theher constraints can be
set on where conversion may take place and on the range ofemgtks, into which a

wavelength can be converted.

The RWA problem can be considered astatic problem, where all wavelengths of
every future connection are established at all times. Agrotfewpoint is thedynamic
version of RWA, where a wavelength is not reserved beforerieieded and where the
wavelength is released when the corresponding data caonéstno longer needed.
The objective is typically to maximize the number of estsiidid connections or to
minimize the number of used wavelengths.

The RWA isAP-hard, thus several solution approaches are presented litetature.
A common approach is to decompose the RWA into two subprodldime routing
problem and the wavelength assignment problem. The coritytEithe routing prob-
lem depends on the chosen objective, while the wavelengirasent problem always
is MP-hard, see Zang et al._[206]. Another approach is to solvdRivA problem as
one problem. Methods for this include metaheuristics ateber linear programming
formulations. An overview of the proposed methods is priegbin Tabld 5.1l. The
table shows what problem each method works on, the complekéach method, and
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finally gives references to the literature. Theoreticahing times are only given for
the constructive heuristics.

Some surveys on the RWA problem exist in the literature: Zeingl. [206] present

a survey containing few routing approaches and many hagifir the wavelength

assignment problem. The latter are compared experimgn@ioi et al. [48] present

a classification of existing methods for the RWA, where apphes are argued to be
either search methods or selection methods. Furthermdrai, €& al. compare the

performance of methods, but apart from a few theoreticatingtimes, it is not clear

what the comparisons are based on.

The contribution of this survey is the presentation of a miacger variety of solution
methods than included in the surveys of Zang et al. and Chal. eThe presented
methods include recently presented approaches from énatlitre. This paper not only
considers the decomposed RWA, but also presents metateuaad exact formula-
tions of the overall RWA. Furthermore, experiments fromlttezature is gathered and
discussed. No general benchmark instances are used itettauie and the objective
of solution methods differs. For these reasons, it is naitrto decide which methods
perform better, thus this survey also presents theoreticealing times and uses these
along with test results in a performance analysis of the ggsed solution methods.
Finally, we give recommendations on future work in the RWaeaarch area.

This survey is structured as follows. First, in Secfiod $h2, RWA problem and vari-

ants hereof are defined. The network topology is presentedgonstraints on whether
or not wavelength conversion is allowed, etc. In Sediioh m&thods for solving the

RWA problem heuristically are presented. These methodalbbased on the decom-
position of RWA into the two subproblems: the routing prabland the wavelength

assignment problem. The section includes an overview dexgental results from the

literature along with theoretical running times for the stactive heuristics. In Sec-
tion[5.4 methods for the overall RWA is presented. These aietinclude metaheuris-
tics and integer linear programming formulations. Theisactontains experimental
results from the literature. Concluding remarks are giveSectio 5.5. This section
includes conclusions on the performance analysis of theepted solution methods
and our recommendations on further work on the RWA.



Approach Problem Sta./Dyn. Complexity Ref.
FIXED ROUTING Routing Both O(E+VlogV) [38,/48]
FIXED-ALTERNATE ROUTING Routing  Both O(E+ViegV + k) [22,[38]66]
ADAPTIVE ROUTING Routing  Dyn. O(E+VliogV) [206]
LEAST CONGESTEDPATH ROUTING Routing Both O(E(E+VliegV)) [43,[139]
SHORTESTPATH ADAPTIVE ROUTING Routing Both O(E(E+VliegV)) [139]
ROUTING WITH REDUCTION OF

WAVELENGTH CONTINUITY CONFLICTS Routing Both Polynomial [12%, 126]
ANT COLONY ROUTING Routing  Sta. Metaheuristic [195]
GENETICALGORITHM Routing  Sta. Metaheuristic [22]
INTEGERPROGRAMMING Routing  Sta. NP-hard [206]
GRAPH COLORING WA Both NP-hard [206]
RANDOM ASSIGNMENT WA Both O(WE) [183]
FIRST FIT ASSIGNMENT WA Both O(WE) [130]
LEASTUSEDASSIGNMENT WA Both OWlogW + WE) [150,[206]
MOSTUSEDASSIGNMENT WA Both O(WlogW + WE) [150,[206]
EXHAUSTIVE SEARCH ASSIGNMENT WA Both O(WE) [150]
MINIMUM PRODUCTASSIGNMENT WA Both O(WE) [110]
LEASTLOADED ASSIGNMENT WA Both O(WE) [117,[206]
MAXIMUM SUM ASSIGNMENT WA Both O(KkWE) [28,183
RELATIVE CAPACITY LOSSASSIGNMENT WA Both O(kWE) [207]
DISTRIBUTED RELATIVE

CAPACITY LOSSHEURISTIC WA Both O(KkWE) [206]
WAVELENGTH RESERVATIONASSIGNMENT WA Dyn. o(1) [38]
PROTECTINGTHRESHOLDASSIGNMENT WA Dyn. o(1) [38]
GENETICALGORITHM WA Sta. Metaheuristic [101]
SIMULATED ANNEALING WA Sta. Metaheuristic [101]
TABU SEARCH WA Sta. Metaheuristic [101]
BIN PACKING HEURISTIC WA Sta. Metaheuristic [179]
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ANT COLONY OPTIMIZATION RWA Sta. Metaheuristic [16]
GENETICALGORITHM RWA Sta. Metaheuristic [6,178]
MIXED INTEGERPROGRAMMING RWA Sta. NP-hard [164]
INTEGERPROGRAMMING RWA Sta. NP-hard [206]
INTEGERPROGRAMMING RWA Sta. NP-hard [156]
INTEGERPROGRAMMING RWA Sta. NP-hard [106]
INTEGERMULTICOMMODITY FLOW PROBLEM RWA Sta. NP-hard [31]
INTEGERPROGRAMMING RWA Sta. NP-hard [138]
INTEGERPROGRAMMING RWA Sta. NP-hard [107]

Table 5.1: An overview of all the methods, which are presgimethis survey.
The first column contains the name of the methods. Then fsljoreblem types:
the routing problem, the wavelength assignment problem )(VdA the RWA
problem. The third column denotes whether or not, the methoiks on the
static problem (Sta.) or the dynamic problem (Dyn.). Theteekumn contains
complexity: theoretic running times are only given for tleahistics. Finally, the

right most column gives references to the literature foheaethod.
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5.2 Problem definition

In this section, details on the RWA and on the all-opticalvoek are presented. First,
we discuss common assumptions on the network in which tbkstalata connections.
Next, the two main variants of the RWA, the static and the dyiceRWA, are further
introduced.

5.2.1 Network topology

The optical network is considered in an abstract mannehriieal details are omitted,
instead we consider metworkconsisting ofnodesandedges Edges represent fibre
links. An edge can hold several fibres, each potentiallyihgldeveral wavelengths.
Single-fibre is when each edge consists of only one fibre arti-filwe is when each
edge consists of several fibres. In this paper, we work oresififtye networks unless
else is mentioned. A node corresponds to any active equipwigman ingoing and/or
outgoing edge. This could be a switch, a hub, an amplifier &talata connection
request consists of a source and a target. A path with anneskigavelength is to be
found between the source and the target nodes. In the RWAs pétdifferent data
connections are to be generated such that no two paths $teasaine edge and the
same wavelength. That is, two paths using the same wavélangst be edge disjoint.
An example of the network representation is seen in Figdile 5.

----> Fromatob

"""" > Fromctod

Figure 5.1: An example of a network representation of ancaptietwork. Two data
connections are routed through the network using the samel@ragth. Thus, the two
paths are edge disjoint.
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When working on the RWA, some assumptionsveeivelength conversioare made.
A data connection may change wavelength when wavelengtrecians are available
at intermediate nodes of the data connection path. In teetitre, RWA works on
different networks:

» There are no wavelength converters. In this case, a waytHl@ontinuity con-
straint is imposed, see Zang et al. [206].

» Only a subset of nodes includes wavelength converterss i§hdenoted sparse
wavelength conversion, see Iness and Mukherje€g [104].

« All nodes include wavelength converters. The network id s@abe wavelength
convertible, see Ramamurthy and Mukherjee [163].

In the network representation, a switch with a wavelengtiveder attached is simply
considered as one node. Comparisons of the different typastworks have been
performed by Barry and Humblet[29], among others.

Furthermore, constraints on the usage of wavelength ctargenay be imposed. These
constraints include sharing of converters and limitingriveye of possible conversions.
Sharing converters may be beneficial. If converters arehares!, then the number of
converters at a node increases. Lee and Li[[137] have shatmtien the number of
wavelength converters at a node exceeds some threshatdthia@erformance of the
network decreases.

Some converters only support changes of wavelengths vatbartain range. E.g., the
wavelength\; can be converted to wavelengths in the rakgeyy, ..., Ai, . .., A(itr),
wherek is the range limitation factor. For more information on timeited-range wave-
length converters, see the work of Iness and Mukherje€ [@0df Yates et al.[[205].

When wavelength converters are only placed on certain nougsh research has been
conducted on network design, i.e., where to place the ctengerDutta and Rouskas
[62] present a survey and a number of heuristics for the proldf designing the net-
work. Koster and Zymolka [127, 128, 129] give lower bounds tren solve the prob-
lem of minimizing the number of required wavelength consestto optimality. A
thorough analysis on the overall design of a WDM network isqrened by Jue [114]
and an analysis on how to place the components of an optitabrieis done by Iness
[103].
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5.2.2 Variants of the RWA

In the following, we consider both the static and the dynaRWgA. Recall that in
the static RWA, all data connection requests are known iraack, they are to be
established at the same time, and they are assumed to exigefoAn instance may
hold more data connection requests than can be establishedionnection cannot
be established, it is said to H#ocked Hence, the objective of the static RWA is
typically to maximize either the number of established datanections or the profit of
established data connections. The static RWA is proved tg/bdard by Chlamtac et
al. [47]. The problem may be formulated mathematically as»aedinteger problem,
see Ranaswami and Sivarajan [164].

In the dynamic RWA, data connection requests arrive witletithey are to be estab-
lished at arrival time and they are to be shut down at a givee.tiThis means that
wavelengths can be reused; when a data connection is shu, diswvavelength is
released. As for the static case, blocking may occur. Theatibg of the dynamic
RWA is typically to maximize the number of established datarections. Because no
knowledge exists on future data connection requests,igniito the dynamic RWA
are local optimums.

The far majority of methods for solving the RWA apply to bottetstatic and the
dynamic RWA. In the following sections, solution methodsfrthe literature are pre-
sented.

5.3 Decomposition of the RWA

Both the dynamic and the static RWA are difficult to solve. Agen for this is that the
problems consist of two parts: routing data connectionsamsijning wavelength to
data connections.

Both the static and the dynamic RWA are often solved by smiitthe problem into
two subproblems: the routing problem and the wavelengtiyasgent problem, see
e.g. Arteta et al.[[16], Zang et al._[206] and Zheng and Mdu{08]. First, routes
for all connections are found. Next, wavelengths are assignhe division of the
problem makes it easier to solve, but solving the subproblirstead of the whole
problem does not guarantee an optimal solution. Inste&iidg the RWA into two

parts is a heuristic method.

Much research has been put into decomposing the RWA inte ttvas parts. In this
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section, we present some of the routing algorithms and mdstfar wavelengths as-
signment from the literature.

5.3.1 Routing

The routing problem consists of finding a path between theceoand the target of each
data connection. The complexity of the routing problem aeiseon the objective. If we

simply wish to connect a set of node pairs, then the problenbeaolved polynomially

using a shortest path algorithm. If the objective is to miagthe maximal number of

paths on an edge, then the problenM8-hard, see e.g. Zang et &l. [206].

Fixed Routing

The routing problem can be solved in polynomial time asalirpairs shortest path
problem, see Ahuja et all_|[5] for more information. This nueths denoted XED
RouTING. The definition olshortestpath varies; the length of a path may be measured
in the number of used edges, or in the number of availablewiaitics etc., see Birman
and Kershenbaum [38] and Choi et al. [[48]. IKED ROUTING, exactly one path is
found per data connection.

Fixed-Alternate Routing

Another routing method is to find several paths between tliregbaerminals for all
data connections. If the paths for a data connection aredidigént, then the approach
can be considered somewhat fault tolerant, i.e., if a caiorefail on one path, then the
corresponding data connection can be routed on the other Plais method is denoted
FIXED-ALTERNATE ROUTING, see e.g. Birman and Kershenbauml[38]. When the
number of shortest paths for each data connection is limdeld & > 0, then the
FIXED-ALTERNATE ROUTING may be referred to as theshortest path method, see
Banerjee et al.[[22] or for a generishortest path algorithm, see Eppsteéin| [66]. As
there are more paths to choose from, the risk of being unatdedign wavelengths to
certain data connection is generally lowered. The waveleagsignment may, though,
become harder to solve because of the potential many cotidisaf paths to choose
from.

Adaptive Routing

ADAPTIVE ROUTING is yet another routing method. It consists of finding path wi
respect to previously chosen paths. Given is a network witedge for each pair of
fibre and wavelength in the network. An edge has welglthen unused ancb when
used. The path of a data connection request is found as titeshpath with respect
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to edge weights. The weights of edges used by this path ate setind the next data
connection request can now be considered. If some nodesw@aatength converters,
then an appropriate cost for converting wavelengths cantbeduced. See Zang et al.
for more details[[206].

Least Congested Path Routing

Another ADAPTIVE ROUTING method is the EAST CONGESTEDPATH ROUTING,
see Chan and Yurn [43]. A sequence of paths is preselectechaedaalata connection
request arrives, theEAST CONGESTEDPATH ROUTING is chosen. Least congestion
is measured on the number of available wavelengths on eagh ek congestion of a
path is determined by the used edge with fewest availablévaiaths.

Shortest Path Adaptive Routing

Yet another method is to use thelSRTESTPATH ADAPTIVE ROUTING, which is an
extension of the methods described above. If several pathssame cost exist, then
the least congested of those paths is chosen. To detern@rleabkt congested path,
all edges on all paths for a data connection must be invastigarlhis can be time
consuming, thus Li and Somahi [139] have suggested to omglcthe first: edges.

Routing with Reduction of Wavelength Continuity Conflicts

Recall that when a node does not have a wavelength convitaehnead, then we say that
a path must have wavelength continuity in this node, i.eata pannot change wave-
length. When several paths compete for the same wavelengih edge and the start
node of that edge does not have a wavelength converter, themavwe avavelength
continuity conflict When finding paths for data connection requests, we obljious
wish to reduce the number of wavelength continuity conflideer this, Koster and
Scheffel [125] present a mathematical formulation for firgda lower bound on the
number of connections which cannot be routed without wangtte conversion. The
bound is based on the number of incident fibres and the nunfbeawelengths per
fibre as shown by Koster if [126]. The mathematical formolais a variant of the lin-
ear MULTICOMMODITY FLow PrRoBLEM (MCFP), which is polynomially solvable.
Koster and Scheffel solve the formulation using column gatien. If the routing prob-
lem is solvable, then Koster and Scheffel show that it is ipdes$o assign a wavelength
to all selected paths.

Ant Colony Routing

The ANT COLONY ROUTING approach is a metaheuristic. Ants are capable of finding
shortest paths when working together: assume that two aves éncountered some
food and that two different paths back to the nest exist. Eathakes its own path; on
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their way the ants lay pheromone for signaling. The path efitist ant to arrive at the
nest is the shorter of the two paths and it is the only path pliteromone all the way
to the nest at this moment. Once the first ant has returnee@todst, a number of ants
are sent out towards the food, all leaving pheromone on tegjr The strength of the
pheromone determines which path the ants choose. ThugsWdleventually choose
the shortest path. The behaviour of ants has inspired i1e@OLONY OPTIMIZATION
(ACO). When establishing several paths, a colony of antssigaed to each path. Ants
are only attracted to the pheromone from their own colonyeMeand Sinclair [195]
have proposed several ACOs, where ants not only are atireefgheromone of their
own colony; they are also repelled by the pheromone of otblendes.

Genetic Algorithm for Routing

Banerjee et al [22] use agBIETIC ALGORITHM (GA) for solving the routing problem

of RWA. The GA is a metaheuristic. Banerjee et al. seek to miiré the number

of used wavelengthand the average delay on a network satisfying the wavelength
continuity constraint. In GA a number of chromosomes aremjivach chromosome
consists of a number of genes.

The GENETIC ALGORITHM of Banerjee et al. works as follows:-shortest path is

used as routing heuristic. Each gene in a chromosome repses@ath. The cost of
each chromosome equals the total cost of the used edgeso3ihef @n edge depends
on the number of paths in the chromosome using that edgee lédige is only used

once, then the cost is relatively low. If the edge is used werse (different) data

connection requests, then the cost is very large. Banetjale seek to minimize the

cost of selected chromosomes. They thus seek to limit bhgak¢curring from several

paths using the same edge.

Linear programming

The routing problem is formulated mathematically by Zangle{206]. The objective
is to minimize the maximal number of paths on an edge. Zanly atgue that this is an
INTEGERMULTICOMMODITY FLOw PROBLEM (IMCFP), where a data connection
is represented by a commaodity with one amount of flow. The INPA&NP-hard,
see e.g. Barnhart et all_[26], thus Zang et al. suggest negube search space by
only considering a subset of possible paths. Furthermbes, suggest using random
rounding when solving an LP-relaxed formulation.

5.3.1.1 Performance of routing methods

So far the performance of the presented methods has not lmmrssed. In the lit-
erature, the test instances and the objective function Vamyoften used objective is
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blocking probability which gives the probability of a data connection requedtdo
blocked, because there is no available wavelength on its patthis section, we at-
tempt to give an overview of problem instances and resulespide the difference of
used test instances and of objectives, we seek to providasight into the overall
performance of the proposed methods.

Birman and Kershenbaurn [38] comparexED ROUTING and AXED-ALTERNATE
ROUTING on a single-hop mesh network with 6 nodes, 9 edges, a datactom
request for each pair of nodes, and 24 wavelengths per ethgeofijective is blocking
probability and their results show, thatdED-ALTERNATE ROUTING performs better
than AXED ROUTING. No running times are reported.

Chan and Yum [43] test theHAST CONGESTEDPATH ROUTING heuristic on a fully-
connected network with 7 nodes and with 30 wavelengths pg.ethe computational
evaluation is based on changing parameters in the algostiain the network. The
objective is blocking probability and they test the effethaving different network
topologies and different settings for wavelength conventather than comparing with
an existing routing heuristic. Running times are not mergih

Furthermore, Li and Somani [139] have compared tlEasT CONGESTED PATH
ROUTING heuristic with the shortest path algorithm orl & 4 mesh-torus network
and on the NFS network with 14 nodes and 21 edges. Their dmest blocking
probability, and the least congest path routing heurisiglest performance. Running
times are not reported.

ROUTING WITH REDUCTION OF WAVELENGTH CONTINUITY CONFLICTS is tested
by Koster and Scheffel[125] on a German, European and USonktwhere the num-
ber of eligible paths between two nodes is limited to 100. ilmber of wavelengths
per fibre is set to 40 and 80 in different test runs. In their, tbgy incorporate the rout-
ing scheme in a mathematical formulation for the RWA. Thdyesthe formulation by
usingCPLEX version 9.1 and compare different settings of the algorithstead of
comparing with other heuristics. A fixed time limit is set .00 seconds; apart from
that, time usage is not mentioned.

Varela and Sinclair [195] test their variants of th@ ACOLONY ROUTING approach
on three networks. The first has 4 nodes and 20 wavelengtless@dond has 9 nodes
and 98 wavelengths. The last network has 15 nodes and 269engttes. The ob-
jective is to minimize the number of required wavelengthd amning times are not
considered. The AT COLONY ROUTING approach is compared to a heuristic with
FIXED-ALTERNATE ROUTING like method and with RST FIT ASSIGNMENT, and
the latter has slightly better performance than the metadteu

Banerjee et al.[[22] test theEBIETIC ALGORITHM for routing on a number of net-
works. The considered simulation networks are real lifevoéts: the 20 node ARPA
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network, 18 node European optical network, 22 node UK ndtwaod 14 node NSF
network. Several sets of data connections are tested: 260480, and 100 data con-
nections. The objective is to minimize the number of reqliiravelengths. For less
than 80 data connections, theRET FIT ASSIGNMENT heuristic and the 6GNETIC
ALGORITHM perform equally well. For 80 or more data connections, tlengric
ALGORITHM finds better solutions, i.e., solutions requiring fewer alangths. Run-
ning times are not reported.

5.3.1.2 Theoretical running times

We now report theoretical running times for the presentetstractive heuristics for
the routing problem. To calculate the times, some notatiastrbe introduced. Given
a network,G, let N be the number of nodes aitithe number of edges. The number
of wavelengths is denoteld” and letk be taken from thé:-shortest path algorithm.
Running times for the heuristics for the routing problem eakeulated as the time it
takes to find path(s) for each data connection.

The AXED ROUTING and the AAPTIVE ROUTING heuristics are shortest path prob-
lems, which can be solved 8(E + V log V') time using Dijkstra’s algorithm, see e.g.
Cormen et al.[[52].

The AXED-ALTERNATE ROUTING problem finds the: shortest paths, which can be
found inO(E + VlogV + k) time, see e.g. the work of Eppstein [66].

In the literature, only very large running times are giventfte LEAST CONGESTED
PATH ROUTING and the SIORTESTPATH ADAPTIVE ROUTING problems, see [139].
Here, we thus present a somewhat naive algorithm for theslt CONGESTEDPATH
RouTING with lower running time. The problem consists of finding alpathere the
least number of available wavelengths on any used edge ignizeed. Now, given

a network and a data connection, delete the edge with fewadtable wavelengths
and set all other edge weights to 0. Solve the shortest pathlgmn using Dijkstra’s
algorithm. If the problem is solvable, then delete the edije second fewest available
wavelengths. Resolve the problem. Continue until the @molik no longer solvable.
Then we know that we have to use the just deleted edge, whilicheer available
wavelengths than the remaining edges. This very stragtwerd method has running
time O(E(E + V'logV)), which can surely be improved. The running time of the
SHORTESTPATH ADAPTIVE ROUTING problem is the same, as the problem is a mix
of the HXED-ALTERNATE ROUTING and the LEAST CONGESTEDPATH ROUTING.

ROUTING WITH REDUCTION OF WAVELENGTH CONTINUITY CONFLICTS is pre-
sented by Kostel [126] and is a variant of the polynomiallivable linear MCFP.
Koster solves the problem using column generation. To teedfeour knowledge, no
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constructive solution method for the linear MCFP existd[38 the literature, large

instances of the linear MCFP are typically solved using hagran methods, partition
methods, decomposition techniques, dual ascent algasjthondle methods, interior
point methods, etc., see Awerbuch and Leighton [18] and Keytan [119] for surveys

of the problem and Larsson and Yuan [1134] for a review of sofutechniques. Small
instances are typically solved using the Simplex algoritlm exact running time for

ROUTING WITH REDUCTION OF WAVELENGTH CONTINUITY CONFLICTS

is thus difficult to calculate; instead, we simply state thatproblem is polynomial.

5.3.2 Wavelength Assignment

When paths are found for all data connections, then wavéisngust be assigned to
each path. Wavelength assignment is\d+hard problem.

In this section, three different types of approaches arerdesi: theoretical results
on the number of needed wavelengths, an exact graph colapjmgrach, and finally a
number of heuristics and metaheuristics for the waveleagsignment problem.

The theoretical results on the number of needed wavelemndtidns depend on the net-
work topology. The research area is quite vast, so we only gishort overview here.

Solving the wavelength assignment problem to optimalityyEcally done through
a graph coloring problem. Much research has been conduatéiteograph coloring
problem; here we only show the transformation from the wevgth assignment prob-
lem to the graph coloring problem and then give referenceufther information on
solution methods.

For the heuristics, we assume that the number of availablelesagths is fixed. The
wavelength assignment problem thus consists of findinggldkasolution, rather than
finding a feasible solution which minimizes the number ofduseavelength. The
heuristics may be used for both the static and the dynamielagth assignment
problem. Each path is treated separately without payirentitin to the wavelength
assignments of other paths. Some of the heuristics work timthe single-fibre and
the multi-fibre network.

Theoretical Results on the Number of Needed Wavelengths

Once routing is done, wavelengths are to be assigned to taecdanections. Much
research is done on theoretical bounds on the number ofreghwiavelengths. Espe-
cially lower bounds on the number of wavelengths are given, given a set of paths
then at least a certain number of wavelengths are neededdigmanent of those paths.
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The bounds can be used to quickly determine whether or ndagdl connections can
be assigned wavelengths. The bounds, however, often depetite chosen routing

algorithm. Work has also been performed on upper boundsetheunds can be used
to ensure feasibility, i.e., given a routing and given a nandf available wavelengths
larger than the upper bound, then a feasible wavelengtrassint is guaranteed.

The research area of bounds on wavelengths is vast, as mukhsaone on specific
network topologies. In the following, a selection of resudtom the research area is
presented.

First, Aggarwal et al.[[4] present previous work on lower aigber bounds in wave-
length assignment and then Aggarwal et al. improve the uppends. Their bounds
apply for specific instances of the RWA. Two variants of the@ayic RWA is con-
sidered: (1) all data connections can always be rerouted2)ndo data connection
can ever be rerouted. Furthermore, they make the assunthib®ixED ROUTING

is used. The network topologies include star networks,riftaub converters or having
converters at all nodes. Aggarwal et al. find upper boundsecto previously found
lower bounds. For more details on their bounds and on eddierd bounds, see the
overview of previous work presented by Aggarwal et al.

Raghavan et al [162] present heuristic algorithms for thBcsRWA on certain net-
work topologies. The algorithms have bounds on the numberetlengths needed.
The network topologies include sparse, bounded degres, ringes, and meshes, all
with constraints on how to forward data in a node. FurtheenBaghavan et al. dis-
cuss using their algorithms for the dynamic RWA.

When calculating bounds, Barry and Humblet|[29] allow biogk that is, some data
connections may be blocked instead of the telecommunitatiovider upgrading the
network. The same applies for Ramaswami and Sivarajan [46d] Yates et al[ [205].

Gersel et al.[[91] present algorithms with known worst udpmrnds on the number of
wavelengths needed for the RWA with no blocking. Their warkm certain undirected
network topologies: line, ring networks and trees, all withwavelength converters.
Furthermore, they extend their results when wavelengthrersion is allowed. Their
algorithms are greedy heuristics, where they have addeerlewd upper bounds on
the number of wavelengths to avoid blocking.

Koster [126] solves the wavelength assignment problemansforming it into aredge
coloring problem. This transformation is only possible, when no peths more than
two edges, which is the case in a star network. Koster givesribounds on the number
of wavelengths to assign. In the case that all paths must sigresl wavelengths,
Koster gives a lower bound on the number of needed wavelagiverters.

The results in this section suffer from only working on sfiedgnstances of the RWA
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and of the underlying network. Furthermore, some resultaatdake blocking into
account. Much more work has been conducted on finding bowrdsdé number of
wavelengths, but to the best of out knowledge, all this wageahds on constraints set
on the network topology, on the paths to assign wavelengths,

Graph Coloring

The wavelength assignment problem can be solved using g@pting methods, see
e.g. Zang et al. [[206]. Garey et al._[90] prove that the graploring problem is
NP-hard. For more general information on the graph coloringbfem, see Jensen
and Toft [109]. An auxiliary grapld’ is constructed such that each path in the routing
solution is represented by a nodeG¥ and such that two nodes are connectedrin

if the corresponding paths travel on the same fibre in thamgolution. Now, the
graph coloring problem is to assign colors to all nodesinsuch that two adjacent
nodes do not share the same color. This corresponds to empigavelength to paths
such that two paths using the same fibre do not share wavhlelggraph coloring,
the chromatic numbedenotes the minimum number of needed colors. Minimizing the
chromatic number thus corresponds to minimizing the nurobeeeded wavelengths.
The graph coloring problem solves the wavelength assighpreblem to optimality.

For information on exact, heuristic and approximate graploring algorithms, we
refer to Pardalos et al. [158] and to the bibliography mairetd by Chiarandini[46].

Random Assignment Heuristic

The RaNDOM ASSIGNMENTalgorithm consists of assigning a random available wave-
length to each path. IfIKED ROUTING is used, then the RNDOM ASSIGNMENT
algorithm is straight-forward. If XED-ALTERNATE ROUTING or another routing
protocol is used, where each data connection request carsetioom several paths,
then RaANDOM ASSIGNMENTchooses a path, which can be assigned a wavelength. If
more than one path can be assigned a wavelength, then thi@élalycandomly selects
one of these.

The RANDOM ASSIGNMENTIS used by e.g. Subramaniam and Balry [183].

First Fit Heuristic

This HRST FIT ASSIGNMENT method consists of assigning the first available wa-
velength to the current path. How the first available wavgtleris defined is not that
relevant, as long as the order of wavelengths is predefined. AFIRST FIT ASSIGN
MENT heuristic is widely used, see e.g. the work of Kovacevic andmporal[130].
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Least Used Heuristic

The LEAST USED ASSIGNMENT heuristic selects the wavelength that is least used so
far. The idea is to balance the load among all wavelengthss dpproach, however,
causes trouble for longer paths, as different wavelengthsk used throughout the
network. Hence, the approach eventually only assigns wagghs to short paths. For
more details, see Mokhtar and Azizodlu [150] or Zang et &6]2

Most Used Heuristic

The MosT USED ASSIGNMENT approach is the opposite of theehsT USED As-
SIGNMENT heuristic. Instead of selecting the least used wavelertgth, heuristic
chooses the wavelength which is most used in the network. MaeT USED As-
SIGNMENT heuristic is described in details by Mokhtar and AzizoglEdLand Zang
et al. [206].

Exhaustive Search Heuristic

The EXHAUSTIVE SEARCH ASSIGNMENTalgorithm works on top of KED-ALTER-
NATE ROUTING or another routing scheme generating several paths pecdateec-
tion request. The wavelength assignment heuristic cheltlevailable wavelengths
and chooses the one, which gives the shortest path. Mokindiadzizoglu [150] argue
that the method has quite high complexity as it needs to chkekavelengths on all
paths.

Minimum Product Heuristic

The MINIMUM PRODUCT ASSIGNMENTapproach consists of minimizing the number
of fibres used in a multi-fibre network and is introduced byngeand Ayanoglu [110].
Let D;; denote the number of assigned fibres on edged for wavelengtly. Then
this heuristic calculate; D;; for all wavelengthg.

Least Loaded Heuristic

The LEAST LOADED ASSIGNMENT approach is also designed for a multi-fibre net-
work. Given a path, the heuristic finds the wavelength, wtersallest availability is
larger than that for all other wavelengths. L\t be the number of fibres on edgand

let D;; be the number of assigned fibres on edd@er wavelengthj. Then the IEAST
LoADED AssIGNMENTapproach selects the wavelengthith max; min; (M, —D;;).

For more details, see Zang et &l. [206] and Karasan and Ayaiibb7].

Maximum Sum Heuristic
Subramaniam and Barry [28, 183] present a¥MumM Sum ASSIGNMENTalgorithm
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for assigning wavelengths. Givenis a network, where pathp@selected. Now, when
a new data connection request arrives and a path is founketlréstic of Subramaniam
and Barry seeks to find a wavelength, where after assignrhenttnaining capacity
is as large as possible. Subramaniam and Barry designetytirétam for multi-fibre
network, but it also applies for single-fibre networks.

Relative Capacity Loss Heuristic

The RELATIVE CAPACITY LOSSASSIGNMENT heuristic is introduced by Zhang and
Qiao [207] and it is a variant of the MKIMUM SUM ASSIGNMENT approach. The
latter selects the wavelength, which minimizes the capdo#s (or maximizes the
remaining capacity) on all edges. Th&RTIVE CAPACITY LOSS ASSIGNMENT
chooses the wavelength which minimizes the relative cépéass, i.e., the capacity
loss divided with the available capacity.

Distributed relative capacity loss heuristic

Zang et al. [[206] propose thel®TRIBUTED RELATIVE CAPACITY LOSSASSIGN
MENT heuristic for assigning wavelength. The algorithm is aasatrbf the RELATIVE
CAPACITY LOSSASSIGNMENTheuristic. It reduces complexity of the former heuris-
tic by generating a look-up table, such that the relative tzpacity of wavelengths is
readily available. The look-up table is built by investigatthe network and by ex-
changing information between nodes in a manner similarabdhthe Bellman-Ford
shortest path algorithm, see Cormen etlal! [52] for the Bafirrord algorithm.

Wavelength Reservation Heuristic

As the name of the W/ELENGTH RESERVATION ASSIGNMENT heuristic indicates,
this method reserves wavelengths for certain data corumectiAn example is that a
wavelength) is reserved for all data going from a nod¢o nodec. If several paths
havea andc as intermediate nodes, then they compete for the reserveelength,
. Note that another wavelength assignment method must loetoisketermine which
path to select for the current data connection and which kwagéh to reserve. Birman
and Kershenbaum [38] introduce the wavelength heuristicageh for multi-hop con-
nections and they show that it reduces the blocking for Aludp connections, but it
also increases the blocking for single-hop connections.

Protecting Threshold Heuristic

Birman and Kershenbaurh [38] introduce thed@ECTING THRESHOLD ASSIGN
MENT approach, which consists of only selecting a wavelengthrthe number of
idle wavelengths on the edge is above a certain thresholde that another wave-
length assignment must be used to determine which pathdotdel the current data
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connection and which wavelength to assign to the path. Biramal Kershenbaum have
developed the heuristic for single-hop data connections.

Genetic algorithm

GENETIC ALGORITHMS (GA) try to simulate evolution of genotypes and natural se-
lection, see e.g. Goldberig [93]. Hyytia and Virtarno [10dggest a GA for solving the
wavelength assignment problem as a graph coloring problemw. chromosomes are
given, each representing a solution to the graph coloringlpm. A new chromosome

is generated from the two previous chromosomes; the reuselmfomosome depends
on the quality of the corresponding solution (which is thenber of used wavelengths).
The new chromosome represents a solution to the wavelessjtirenent problem.

Simulated annealing

SIMULATED ANNEALING (SA) is based on resolving the problem and accepting a new
and better solution with some probability. This probapitiepends on gemperature
parameter, which decreases with time. Hence, the nameatiatlahnealing For more
details, see van Laarhoven and Aalts [193]. Hyytia andavfid [101] present a SA
approach used on the wavelength assignment problem. Théeprds considered as

a graph coloring problem and the SA consists of assignirfgréifit colors to nodes,
calculating the objective cost, i.e., the number of usedelength, and then accepting
the new solution with some probability.

Tabu search

Finally, TABU SEARCH (TS) is based on a random search approach where certain
moves are forbidden daebu, see e.g. Glover and Laguna[92]. Hyytia and Virtamo
[101] suggest solving the wavelength assignment problgmesented by a graph col-
oring problem, by using ABU SEARCH. The objective is to maximize the number of
established connections rather than to minimize the nuwibesed wavelengths.

Bin Packing Heuristic

The RWA on a network with no wavelength converters can beesbby applying the
bin packing problem. For more information on the bin packingblem, see Pisinger
and Sigurd[[161]. Skorin-Kapov [179] represents the RWA bimgacking problem by
letting paths be items and by letting copies of the networkihe. Each bin represents
a wavelength, and each bin has capacity equal to the numieelges in the network.
Two items cannot be packed in the same bin if the correspgnutiths use the same
edge. Now, the bin packing problem is to pack items into astfiew as possible. This
corresponds to minimizing the number of assigned wavelengt
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5.3.2.1 Performance of wavelength assignment methods

Again, the performance of the presented methods has notdisesssed, because in
the literature the test instances and the objective funatéoy. In this section, we give
an overview of the performance of the wavelength assignmettiods, including a de-
scription of the evaluated problem instances and the qooreting evaluation results.

Kovacevic and Acampora [130] compare thR&T FIT ASSIGNMENT heuristic for
wavelength assignment with theARDOM ASSIGNMENTapproach. The test instance
isall x 11 mesh network with 5 wavelengths per edge and with varyingoetload.
The objective is blocking probability and the results shbsattthe FRST FIT As-
SIGNMENT heuristic generally gives better results than theNROM ASSIGNMENT.
Running times are not mentioned.

Mokhtar and Azizoglu compare thexXBAUSTIVE SEARCH ASSIGNMENT with the
MoST USED ASSIGNMENT algorithm, the FRST FIT ASSIGNMENT, and RANDOM
ASSIGNMENT[15Q0]. The test instances are two networks: the ARPA-2 ngtwath
21 nodes, 26 edges and 4 or 8 wavelengths, and a randomlyagesherpology with 15
nodes and 32 edges. Traffic arrives according to the Poisemegs. The objective is
blocking probability. The MST USED ASSIGNMENT, RANDOM ASSIGNMENTand
LEAST USED ASSIGNMENTheuristics are tested on both networks. Thedtt USED
ASSIGNMENTheuristic performs best, followed byARDOM ASSIGNMENT. Then the
EXHAUSTIVE SEARCH ASSIGNMENTalgorithm is compared to the 8 TUSED As-
SIGNMENT. The EXHAUSTIVE SEARCH ASSIGNMENTalgorithm gives slightly better
results, but Mokhtar and Azizoglu note that the increasedpexity of the ExHAUS-
TIVE SEARCH ASSIGNMENTovershadowsthe better resultsRET FIT ASSIGNMENT
is compared with the MsST USED ASSIGNMENT heuristic and RST FIT ASSIGN
MENT performs almost equally well to the T USED ASSIGNMENTmethod. Time
usage is not given, but theoretical complexities are coetpidr the heuristics.

Karasan and Ayanogll [117] implement theAST LOADED ASSIGNMENT heuristic.
They test it on a 30-node mesh network where traffic is disteith uniformly. The net-
work reflects the geographical location of major cities ia WS. Connection requests
arrive according to the Poisson process. The network igegimgle-fibre or multi-
fibre, each fibre having 8 wavelengths. The objective is btagkrobability. Results
show that the EAST LOADED ASSIGNMENTheuristic performs better than theddt
USED ASSIGNMENTapproach.

Subramaniam and Barry [183] test thefomM ASSIGNMENT, FIRST FIT ASSIGN
MENT, LEASTLOADED ASSIGNMENT, MOSTUSEDASSIGNMENT, MINIMUM PRO-
DUCT ASSIGNMENTand the MAXIMUM SuM ASSIGNMENTheuristics. The instances
have uniform Poisson traffic and are either a 20 node ring oré&twith 1 or 10 fibres
per edge, or & x 5 bidirectional mesh-network with 1 or 3 fibres per edge. Subra
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maniam and Barry use blocking probability as objective. iitag times are not men-
tioned. According to Subramaniam and Barry theMium PRODUCT ASSIGNMENT
heuristic performs slightly better than theddT USED ASSIGNMENT heuristic with
respect to blocking probability. Then follows theREST FIT ASSIGNMENT, LEAST
LOADED ASSIGNMENT, MAXIMUM SUM ASSIGNMENT and finally the RNDOM
ASSIGNMENTheuristics.

Zhang and Qiad [207] test thet#ST FIT ASSIGNMENT, the MAXIMUM SuM As-
SIGNMENT approach and the R ATIVE CAPACITY LOSSASSIGNMENT heuristic on
a simulation of the NFS network and ordax 4 torus network. They use blocking
probabilities to calculate their objective function valu€he RELATIVE CAPACITY
LossAssIGNMENTmethod has best performance.

Zang et al.[[206] compare a number of heuristics for waveleagsignment: RNDOM
ASSIGNMENT, FIRST FIT ASSIGNMENT, LEAST USED ASSIGNMENT, MOST USED
ASSIGNMENT, MINIMUM PRODUCTASSIGNMENT, LEAST LOADED ASSIGNMENT,
MAXIMUM SUM ASSIGNMENT, and RELATIVE CAPACITY LOSSASSIGNMENT. A
network consisting of six nodes is used for testing, wheeenthmber of wavelengths
and fibres vary. The objective is blocking probabilities analctical running times are
not mentioned. In a single fibre network, theolgir USED ASSIGNMENTheuristic per-
forms well, along with the MxIMUM SuM ASSIGNMENTand RELATIVE CAPACITY
Loss ASSIGNMENT approaches when the load is low. When the load is high, then
all heuristics have similar performance. In a multi-fiorewmrk, the MosST USED
ASSIGNMENT, MINIMUM PRODUCT ASSIGNMENTand RELATIVE CAPACITY LOSS
ASSIGNMENT methods have best performance, while trEaAET LOADED ASSIGN-
MENT and MAXIMUM SuM ASSIGNMENT heuristics work best with high load. Zang
et al. conclude, however, that the difference between themmeances of all heuristics
is quite insignificant.

Birman and Kershenbaurn [38] compare thewsLENGTH RESERVATION ASSIGN-
MENT and the ROTECTING THRESHOLD ASSIGNMENT heuristics on a single-hop
mesh networks with 6 nodes, 9 edges, a data connection tdqueach pair of nodes,
and 24 wavelengths per edge. The objective is blocking fnitityaand the results
show that the ROTECTING THRESHOLDASSIGNMENTalgorithm tends to give better
results than the W/ELENGTH RESERVATION ASSIGNMENT approach. No running
times are given.

The metaheuristics suggested by Hyytia and Virtamol[19dllide a GNETIC ALGO-
RITHM, SIMULATED ANNEALING and TABU SEARCH. The methods are compared
with each other and with aIRST FIT ASSIGNMENT heuristic, on randomly gener-
ated instances not described any further. The results shairhe greedy heuristic
has significantly better running time. TheeSETIC ALGORITHM has better running
time than the BAULATED ANNEALING, which is faster than theABU SEARCH. The
methods are also compared with respect to the number ofgexdexravelengths. Here,
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the TABU SEARCH has best performance, followed by the&ETIC ALGORITHM, the
FIRST FIT ASSIGNMENT, and finally the 8MULATED ANNEALING.

Skorin-Kapov [179] tests the IR PACKING HEURISTIC on a series of random 100-
node networks with average degrees of 3, 4, and 5. Randorofsgéta connections
requests were created for each test network with a fixed pilityaf there being a data
connection request between two nodes. The number of requases from 2054 to
9900. The objective is to minimize the number of requiredelangths along with the
length, in hops, of data connections. The results show beaheuristics find optimal
or near-optimal solutions. Running times are mentionecktoly in general: solving
an instance with 100 nodes and 9900 data connection reqakstdess than 8 minutes
on a P4 2.8 GHz processor.

Zang et al.[[206] argue that the routing algorithm has langftrence on the amount of
blocking probability, than the wavelength assignment glgm. They base this on the
performed tests, where algorithms usinga®TIVE ROUTING generally gives signif-

icantly better results than algorithms usingtED ROUTING - no matter which wave-

length assignment algorithm is used. Zang et al., howewenad take running times
into account, so even if more complicated routing algorglyive better solutions, one
could fear that the algorithms may also have larger time eisag

5.3.2.2 Theoretical running times

We now report theoretical running times for the presentedtractive heuristics for the
wavelength assignment. Recall the notation: given a nd&tw@rlet N be the number

of nodes andF the number of edges. The number of wavelengths is deridteohd

let £ be taken from thé:-shortest path algorithm. Running times for the wavelength
assignment heuristics are calculated as the time it takasgign a wavelength to a
single path.

The RANDOM ASSIGNMENT selects a random wavelength. In the case of no wave-
length converters, the heuristic investigates all edgetherpath to see if the wave-
length is available; if not, it repeats the process with hapotandomly picked wave-
length. Inthe case of wavelength converters, the heuiistéstigates if the wavelength

is available on each edge and if not, it selects another wagéh and check again. The
running time iSO(W E). The RRST FIT AssiIGNMENTonly differs in how to pick the
wavelength and it thus has the same running time.

The LEAST USEDASSIGNMENTand MosT USED ASSIGNMENT heuristics run thro-

ugh all used edges and calculate how much each wavelengikds Tihe wavelengths
are sorted according to usage and paths are assigned wgthalérom the sorted list
in a ARST FIT AssIGNMENTmanner. The running time (W logW + WE).
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The EXHAUSTIVE SEARCH ASSIGNMENT needs to check all available wavelengths
on all k paths for the current data connection. This tak¢s1 E) time.

The MINIMUM PRODUCT ASSIGNMENT heuristic calculates the produdi D;; for all
fibresi and for all wavelengthg. This takesO(WW E) time. The LEAST LOADED As-
SIGNMENT heuristic is very similar to the MiiIMumM PRODUCTASSIGNMENTMethod
and thus has the same running tilfl§ W E).

The MAXIMUM SuM ASSIGNMENT heuristic investigates how much each wavelength
is available on each edge of all the paths, the current dati@emtion can choose from.
Let the number of paths be bounded bythe running time isO(kW E). The Re-
LATIVE CAPACITY LOSSASSIGNMENT heuristic and the BBTRIBUTED RELATIVE
CAPACITY LOSSASSIGNMENT heuristic work in a similar manner and thus have the
same running timeQ (kW E).

Finally, the WAWELENGTH RESERVATION ASSIGNMENT heuristic and the ROTECG
TING THRESHOLD ASSIGNMENT heuristic are used on top of other wavelength as-
signment algorithms. Thus, their running times depend enadther heuristic: the
WAVELENGTH RESERVATIONASSIGNMENT and AROTECTING THRESHOLD
AsSIGNMENTmethods themselves have constant running tifig,).

5.4 Overall methods for solving the RWA problem

In this section, important results for solving the RWA as g@neblem are presented.
Instead of splitting the RWA into two subproblems, the fallog methods approach
the entire RWA. Methods include both metaheuristics and&oamulations.

5.4.1 Metaheuristics

In this section, metaheuristics for solving the RWA are presd. The metaheuristics
proposed in the literature areERETIC ALGORITHM (GA) and ANT COLONY OPTI-
MIZATION algorithms (ACO).

Ant Colony Optimization algorithm

Arteta et al. [[16] use aULTI-OBJECTIVE (MO) ACO metaheuristic for solving the
RWA. ACO defines a method of investigating the neighbourhabd current solu-

tion. The MO consists of optimizing the hop count and the nendf wavelength

conversions. In the ACO this means that the pheromone matrixthe probabilities
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defining which pheromone track an ant chooses, depends grathis hop count and
on the number of wavelength conversions in the path.

Arteta et al. have implemented several MOACOs: for moreildata each MOACO,
see the corresponding reference. TM@LTIPLE OBJECTIVE ANT Q ALGORITHM
(MOAQ) of Mariano and Morales [144] maintains a colony pejeaktive. TheBl-
CRITERION ANT (BIANT) of Iredi et al. [105] uses a probability matrix per jelo-
tive and hence also a colony per objectiveARBTO ANT COLONY OPTIMIZATION
(PACO) of Doerner et al.[[58] has several pheromone mattficegach objective.
The MULTI-OBJECTIVE ANT COLONY SYSTEM(MOACS) by Schaerer and Baran
[25] uses several heuristics when calculating entries enptfobability matrix. The
MULTI-OBJECTIVE MAX-MIN ANT SYSTEM (M3AS) by Pinto and Baran [159] has
a global pheromone matrix. COMPENTS (COMP) by Doerner et al.[ [59] uses
several heuristics, pheromone matrices and the colonyg s&. MULTI-OBJECTIVE
OMICRON ACO (MOA) by Gardel el al. [[88] uses a specific updating rule thee
pheromone matrices, and finaMuLTI-OBJECTIVE ANT SYSTEM(MAS) by Paciello
et al. [157] has a slightly different order of updating thepimone matrices.

Genetic Algorithms

Sinclair [178] solves the RWA through aeGETIC ALGORITHM (GA). Instead of
using the classical mutation and crossover operations in &iclair uses heuristics
to generate new solutions. The heuristics @rshortest path routing withIRST FIT
ASSIGNMENT, rerouting and reassignment of wavelengths of a subsetrofemions,
rerouting a path with high wavelength in order to reach theekt possible wavelength,
and shifting the path with the highest wavelength to havihgwer wavelength such
that all paths blocking the new low wavelength must be redut

Ali et al. [6] solve a variant of the RWA problem using &S8ETIC ALGORITHM. The
variant consists of taking power into account, i.e., theghato preserve proper power
levels on all paths. They usekashortest path method to generate routes, where power
loss is taken into account when measuring the length of a path

5.4.2 Linear programming

This section presents methods from the literature for figdiR bounds for the RWA.
Several of the methods presented in the following may begerter mixed integer
programs, but the suggested solution methods all work orelaed formulations.

Ramaswami and Sivarajan [164] present BMHGER PROGRAMMING (ILP) formu-
lation for the static RWA with no wavelength conversion anldene the objective is
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to maximize the number of established data connectionsy mhte that their model
is a variant of the MCFP. Given the data connections and spomding paths, Ra-
maswami and Sivarajan solve the problem using roundingristigas. Data connec-
tions and paths are generated randomly.

An ILP formulation of the static RWA is presented by Zang et[dD6]. Wavelength
conversion is not allowed and the objective is to minimizeiaximal edge flow. It is
noted that the model is a variant of the MCFP. Zang et al. alssgnt an overview of
a model for the static RWA with wavelength conversion, wragiain is a variant of the
MCFP.

Banerjee and Mukherjee [21] present an ILP for the RWA, whkecobjective is to
minimize the hop distance. The network allows wavelengthvecsion. They, how-
ever, solve the problem heuristically. Banerjee and Mujeeeargue that their model
can be used to design a balanced network with high utilinatibtransceivers and
wavelengths. Furthermore, it is noted, that the model ofdBlame and Mukherjee is a
variant of the MCFP, where each commodity represent a datiaemdion.

Ozdaglar and Bertsekas [156] work on an ILP formulation ef ¢uasi-static RWA.
They define quasi-static RWA to be the problem, where sewat connection re-
quests first are to be handled and then later more data coomestuests may arrive.
The formulation is a variant of the MCFP. Ozdaglar and Bédseelax the ILP and
show that the relaxed formulation yields integer solutiforsseveral network topolo-
gies including line and ring networks, with wavelength cemers at either all or no
nodes.

Jaumard et al.[ [106] present a number of different ILP foatiahs for the RWA in
WDM optical networks, using a unified notation. The variantghe RWA include
instances with symmetric and with asymmetric traffic. Jauhet al. show edge-
and path-based formulations as well as models from thetitee. Formulations for
the RWA with asymmetric traffic are shown to give the sameroalisolution value,
though the number of constraints and variables differ.

5.4.3 Integer programming

This section presents exact solution methods for the RW/. mkthods are all based
on Dantzig-Wolfe decomposing the RWA, séel[54]. The resglformulations are
solved to optimality using branch-and-price, where thetarasnd subproblems vary
according to the used Dantzig-Wolfe decompaosition.

If wavelengths may be changed in every node, the RWA probkambe reduced to the
INTEGERMULTICOMMODITY FLOW PROBLEM (IMCFP), see Beauquier et al._[31].
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The IMCFP consists of sending an amount of flow between skseuaces and targets
with respect to edge capacities, see Ahuja at &él. [5] for rdetails. When wavelengths
can be converted at all nodes, then the wavelength limitatém be described as edge
capacities: each edge can carry at niadifferent wavelengths, for some inteder- 0.
Now, we need to sentdlamount of flow between all data connection terminals without
violating edge capacities. This corresponds to the inté§@FP. The integer MCFP

is a well-studied problem with many solution approaches.ef&ample is the branch-
and-bound algorithm by Barnhart et al. [26].

Another ILP formulation for the RWA is of Lee et al. [138] whi¢s based on finding a
set of paths with the same wavelength for a subset of dateection. The formulation

maximizes the number of established data connectionsdubjthe RWA constraints.
Lee et al. propose a column generation for the formulatidrene the subproblem is
to find a set of paths with the same wavelength for some dataentions. To find an

optimal solution Lee et al. present a branch-and-pricerdtyu.

Jaumard et al.[[107] analyze column generation formulation the RWA from the
literature and present a new formulation. First a straightvard path formulation of
the RWA is presented, where a path consists of both the disitlges and the used
wavelengths. It is argued that the formulation yields syrmyneroblems with respect
to the used wavelengths. Then Jaumard et al. review the fatimo of Ramaswami
and Sivarajan_[164] where wavelength assignment and pathbles are kept sepa-
rately. Jaumard et al. propose a column generation methogefoerating paths for
the formulation, however, the method has some drawback&sitie of the subproblem
depends on the number of paths for a data connection whichoea&yxponential and
the column generation technique solves the LP relaxed flation and does thus not
return an optimal solution to the original problem. Jaunedtrdl. present the formula-
tion of Lee et al. based on finding a set of paths with the sanveleagth for a subset
of data connections. Jaumard et al. suggest solving thechlem as a multicommod-
ity linear flow problem. Based on the formulations of Ramasivand Sivarajan [164]
and Lee et al[[138], Jaumard et al. propose a new matheratickel where each col-
umn consists of a set of paths for a subset of data conneciahwhere wavelengths
are assigned in the master problem. A branch-and-priceitigois presented where
the subproblem corresponds to that of the formulation ofétesd. and the branching
strategy add cuts on the number of used wavelengths to thienpaieblem. Jaumard
et al. have implemented and tested the column generationufation of Lee et al. and
of their own model.

5.4.4 Comparison of overall solution methods

Once again, the test instances and the objective functioniuathe literature. An
overview of tested instances and corresponding resulthéooverall solution methods
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is presented in this section.

Arteta et al. [16] test their MOACO metaheuristics for salyithe RWA on the
Japanese NTT network topology. The network has 55 nodes &dedges. The
algorithms were run 10 times, each time of at most 100 i@nati The objective is to
minimize the amount of wavelength conversion and the hogtleralong with pareto
front and error. Running times are not considered. Usirgydbjective, the MOACOs
outperform simpler, greedy heuristics.

Sinclair [178] solves the RWA through ae®GETIC ALGORITHM. Five test networks
are generated, each with 15 nodes, and with 34 to 39 edgesobjbetive is to min-

imize the cost of used edges and running times are not takeragtount. Sinclair
shows that the proposed=®ETIC ALGORITHM can compete with greedy heuristics.

Ali et al. [6] solve a variant of the RWA problem using &S8ETIC ALGORITHM. They
test their algorithm on a network with 13 nodes and the ohjed$ to maximize the
number of established data connections and in time usage.piidposed GNETIC
ALGORITHM outperforms a RST FIT ASSIGNMENTIike heuristic with respect to the
number of data connections, but it spends significantly rtiore.

Ramaswami and Sivarajah [164] present an ILP. They solveptbblem using a
rounding method and they compare their bounds withresF FIT ASSIGNMENT like
heuristic. The testinstances are two networks with dataection requests arriving ac-
cording to a Poisson process and lasting for a durationsrexponentially distributed.
The networks are a 5 node pentagon and a 20 node network eafirgsa skeleton
of ARPA, respectively. First off, Ramaswami and Sivarajaove that they reach their
theoretically calculated bounds on carried traffic. Thayppare their rounding method
for the ILP with the heuristic with respect to blocking proidiy and their rounding
method gives best results. Running times are not taken atiousnt.

Banerjee and Mukherjee [21] present an ILP to derive a mihimp distance solution

in a network with wavelength converters. Two heuristicsaosed: one which at-
tempts to find paths between the node pairs, which have mtaecdanection requests
and which are only separated by a single hop. The other hiewaitempts to maximize

the number of established data connections with respeottoumber of hops between
the sources and targets. Banerjee and Mukherjee test thistiesuand the ILP on the

NFS network with a randomly generated traffic matrix. Thegvghihat the average

packet hop distance for the heuristic solutions is not famfthat obtained by the ILP.

Running times are not mentioned.

Jaumard et al.[ [106] test the models on NSF and EON networtks agiymmetrical

traffic matrices, which correspond to 268 connections feMNI$F instance and 374 for
the EON. For symmetrical traffic, the former are modified stingtt for a pair of nodes
s, d, then the selected connections are the connections §riana, unless the number



104 A Survey of the Routing and Wavelength Assignment Proble m

of connections froml to s is larger. This gives 191 connections for the NSF and 270
for the EON. Formulations are compared through computatiemaluation and they
show that benchmark problems from Krishnaswamy and Siardi31] can be solved

to optimality or with a small gap. Only bounds are comparethi;m computational
study, hence running times are not mentioned.

Lee et al. [[138] test their branch-and-price algorithm gg&st instances based on the
SONET ring topology with 10, 15 and 20 nodes and where eacle pad requires
one to three data connections. Their test results showtthdtdunds found in the root
node of the branch-and-bound tree are of good quality arichapsolutions are found
for the majority of instances. An upper bound on 20.000 bineewed-bound nodes is
applied. Small instances are solved to optimality in sespmdhile larger instances
take up to 15 minutes to solve.

In the later work of Jaumard et al._[107], the column generadilgorithm from Lee
et al. [138] and the branch-and-price algorithm for the nemnfulation proposed by
Jaumard et al. are implemented. They are tested and compihesblving an edge-
based formulation to optimality using CPLEX. The test insts are modified NSF
and EON benchmarks taken from Krishnaswamy and Sivarajati[1Some edges
are removed from the NSF instances and extra data conngetieradded to the EON
instances. Finally some test instances resembling a Brmaziketwork topology pro-
posed by Noronha and Ribeito [155] are used. The computdtiesults show that the
branch-and-price algorithm finds better bounds than thenenlgeneration method by
Lee et al. and in less time. Furthermore, the branch-argk pitgorithm is capable of
finding an optimal solution for the far majority of instan@e® thus finds more optimal
solutions than when using CPLEX on the edge-based fornonlaiRunning times for
the branch-and-price and column generation algorithms fpa less than a minute
for smaller instances up to days for the larger instances.

5.5 Conclusion

A wide variety of solution methods for the RWA have been pnésgé. Most work in
the literature is based on heuristics, more specifically iviticig the RWA into two
parts: the routing problem and the wavelength assignmeiiggm. For the main part,
the heuristics apply on both the static and on the dynamic RWA

Some work has also been concentrated on metaheuristibsfdodhe routing problem,
the wavelength assignment problem, but also for the eniiv®.Rrhe metaheuristics
work on the static RWA, as they generally seek to iterativielgrove a solution.

Less work is based on finding optimal solutions to the statMARIn the literature it
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is argued that since the RWA j¢P-hard, then finding an optimal solution is too hard.
The exact solution approaches presented and tested inetaduire, however, perform
fairly well.

In this survey, experimental results from the literaturd treoretical running times are
presented. A general issue for comparing solution methotieeiinconsistency in test
instances and objective functions.

Running times seem to be of little interest in most experimeerrformed on the pro-
posed methods. In this case, we believe that future workldHfoaus on the MCFP
representation of the problem. The RWA is a variant of thd-ateldied MCFP, thus
algorithms for the MCFP need to be modified, when solving théAR

If running times are of interest, then the heuristics fordeeomposed RWA seem to
give good results fast. All greedy heuristics run in polynaitime and their theoretical
running times are generally small.

When focusing on solution qualities, then the most usedatigeis blocking probabil-
ity. This is relevant given instances, where not all datanemtions can be established
and given that no general benchmark instances are usedkiljoprobability tries
to give a measure for the probability of the establishmerd dhta connection. We,
however, fear that this objective is difficult to comparecssrthe many different types
and sizes of problem instances. We thus recommend the usmefa instances, e.g.,
like the Solomon benchmark instances are used for the \éeRiolting Problem with
Time Windows [180]. General benchmark instances for the RWIAd be generated
randomly, be based on known problems from general graphmtheofrom some of
the widely used test instance libraries available. E.ggis¢ benchmark instances for
mixed integer problems are found in tMiPlib  (http://miplib.zib.de/ )
and a data library for fixed telecommunication network desgyfound inSNDIib
(http://sndlib.zib.de ).

As is the case in most situations dealing witfP-hard problems, the trade-off lies
between solution quality and time usage. Optimal solutamesgenerally only reached
quickly, when the problem instances are very small. A laay¢@f the networks, which
are used for testing in the literature, are not too large.theistatic RWA problem, it
may thus be beneficial to focus more on MCFP formulations efRRVA problem.
The MCFP and many variants hereof are well-studied and meangt @lgorithms with
good performance are presented in the literature. For ebearthye branch-and-price-
and-cut algorithm for theVP-hard IMCFP by Barnhart et al[_[26] solves instances
with up to nearly 93 commaodities, 29 nodes and 61 edges tonafity. As another
example, instances for the linear MCFP with up to 80.000 codities, 3600 nodes
and 14.000 edges are solved to near-optimality by a Lagaarggorithm presented
by Larsson and Di Yuan [134].
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For the dynamic RWA, the heuristics for the decomposed RWlgood performance
and we believe that any further work should concentrate tireethese heuristics or
on heuristics for the entire RWA.

In this survey, network design has been left out. From thepeative of a telecommu-
nications provider, however, network design may be impdyts optical networks are
constantly being extended in order to reach new customéesrdsearch area for net-
work design is vast, thus a separate survey for this areddheiwconsulted for further

details, see e.g. Dutta and RousKas [62], Iness|[103]/ 18} fir Zymolka[209].

Solving the RWA can be used in several contexts. A solutiondecide which data
connections to establish. The objective may be to maxinhigentimber of established
connections, to minimize the cost of setting up connectibtmsninimize delays on
established connections, to minimize blocking, etc. Femrtiore, solution methods can
be used as an analytic tool to measure performance, to neeaglich parts of the
network is subject to most usage etc. The presented solutéthods have a trade-off
between solution quality and time usage. When solving thé& RWs thus important
to decide which is more important; solution quality or tingage.
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CHAPTER 6

On the integrated job
scheduling and constrained
network routing problem

Mette Gamst
DTU Management Engineering, Technical University of Derkma

This paper examines the problem of scheduling a number sfgola finite set of ma-
chines such that the overall profit of executed jobs is mazechi Each job demands
a number of resources, which must be sent to the executingineeia constrained
paths. A job cannot start before all its demand has arrivadeatmachine. Further-
more, two resource demand transmissions cannot use theesiyaén the same time
period. The problem has application in grid computing, vereenumber of geographi-
cally distributed machines work together for solving lapgeblems. The machines are
connected through an optical network.

The problem is formulated as a MIP problem and is shown td/Behard. An exact
solution approach based on Dantzig-Wolfe decompositigréposed. Also, several

In submission 2010
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heuristic methods are developed by combining heuristicghi®job scheduling prob-
lem and for the constrained network routing problem.

The methods are computationally evaluated on test inssaadsing from telecom-
munications with up to 500 jobs and 500 machines. Resultes ¢hat solving the
integrated job scheduling and constrained network roupirgblem to optimality is
very difficult. The exact solution approach performs bettan using a standard MIP-
solver; however, it is still unable to solve several ins&scThe proposed heuristics
generally have good performance. Especially the First CBirst Serve scheduling
heuristic combined with a routing strategy, which proposegeral good routes for
each demand, has good performance with an average solatioe gap of 3%. All
heuristics have very small running times.

Key words:Job Scheduling; Network Routing; Routing and Wavelengthigrement;
Grid Computing; Heuristics; Branch-and-Bound; DantzigH# Decomposition; Col-
umn Generation;

6.1 Introduction

Heuristic and exact solution methods for The Integrated Soheduling and Con-
strained Network Routing Problem (JSCNR) are presentec JHCNR consists of
scheduling jobs on machines with respect to job demandrtrissgn in an undirected
constrained network. The objective is to maximize the paffécheduled jobs. It is

assumed that the set of jobs, the set of machines, and teeo$tae network is known

in advance; hence the problem can be viewed as lafilige Each job has a certain
demand and a time window for execution. The demand musteaatithe machine

before execution can begin. Each machine also has a timeowiadd can execute at
most one job at a time. Finally, the demand must be routedigiran undirected net-
work such that two demands do not share an edge in the samsltmé the demand

exceeds the capacity of an edge, then the demand transmisaipoccupy the edge in
several time slots.

The problem has application in distributed productioneyst where a set of jobs can
be carried out at various plants. If the total job executiwceeds the total amount of
available machines and if the transportation paths arédait is necessary to consider
both problems simultaneously. A typical application is gteel industry where the
production can be placed at various sites, but the traresjpamtof iron ore and coal by
e.g. train constitutes a substantial logistic problem.

The problem also has application in grid computing where jate to be executed at
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various grid resources (machines) and where the grid rees@re connected through
an undirected optical network. A job cannot be executedreeits input data has
arrived at the executing grid resource and two data trarséoms cannot use the same
wavelength on the same fiber at the same time.

An example is The Large Hadron Collider (LHC) Physics Pragtsy The European
Organization for Nuclear Research (CERN). It is estimated the LHC experiments
generate 15 petabytes of data annually [41], thus the projédizes grid computing
not only for distributing the scientific work, but also forsttibuting data storage. The
network connections for the grid computing system must sttgpgh bandwidth avail-
ability, like e.g. optical networks. For details on the Witwide LHC Computing Grid,
see their homepage [41]. See Bates [30] for a thorough gi¢iseriof optical networks
and its applications.

The contribution of this paper is to model and solve JSCNR ski¢av that the problem
is MP-hard and propose several heuristic and exact solutionadsthlhe exact solu-
tion method is based on applying Dantzig-Wolfe decompasitiuch that the master
problem determines where and when jobs are executed anditivegproblem calcu-
lates routing schemes. The heuristics are based on corghiméthods for The Inte-
grated Job Scheduling and Network Routing Problem (JSN&¥@nThe Constrained
Network Routing Problem (CNR).

Two types of test instances are generated: a tandem topwitigy0-200 jobs and 10-
500 machines and a real-life network topology taken froniNbedic DataGrid Facility
with 10-200 jobs and 14 machines. The suggested solutiohadstare evaluated on
the test instances. The exact solution method performertibtin applyingCPLEXon

a MIP formulation; however, itis unable to solve severaheftonsidered test instances
within a half hour time frame. The heuristics are capablebfiag all instances within
minutes. Best general heuristic performance is reached wéiag the First Come First
Serve strategy for JSNR and a routing scheme which suggestitferent paths for
each demand for CNR. This setting gives an average soluéitie\gap of 3%.

This paper is structured as follows. First JSCNR is define8ention 6.2. Related
work from the literature is also presented in this sectianglwith notation and a
mathematical model. In Sectign 6.3 heuristic methods agsqmted as combinations
of methods for JSNR and for CNR. The heuristics are presemtied to the exact
approach in Sectidn 8.4, because they are used for solvéngriting problem and for
finding a feasible start solution in the exact method. Theyested solution methods
are computationally evaluated in Section| 6.5 and final rémare given in Sectidn 8.6.
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6.2 Problem definition

This section defines The Integrated Job Scheduling and MietRouting Problem
(JSNR) and The Constrained Network Routing Problem (CNR)e problems are
combined into The Integrated Job Scheduling and Consttadietwork Routing Prob-
lem (JSCNR). For each problem an overview of work in theditere is given.

JSNR is closely related to JSCNR and only differs in the rayutif job demands. Given
is a set of jobs where each job has a certain demand, an extiytcution time, and a
time window for execution. We also have a set of machines &bach machine has an
availability time window and can execute at most one jolma¢tiJobs must be assigned
to machines and all job demand must arrive at the machinedekecution can begin.
The demand is routed through a capacitated network camgistinodes and edges; the
amount of demand on an edge in a time slot must not exceed thesponding edge
capacity. If the demand is larger than the edge capacity, tthee demand can visit the
edge in several time slots until all demand has been sentobjeetive of the problem
is to maximize the profit of executed jobs.

JSNR has application in production systems where trarsgantof goods from stor-
age to production centers may constitute a logistical gmbl The problem also has
application in telecommunications; specifically in gridmouting where jobs are ex-
ecuted on grid resources and where job input files must betse¢hé executing grid
resource through a (non-optical) network before executambegin.

A simple version of JSNR consisting of sharing bandwidthgrid computing context
was proved to beVP-hard and greedy heuristics were presented by Marchal et al.
[142].

An offline scheduler consisting of two steps was presentefigarwal et al. [3]: first
jobs were scheduled to grid resources such that the totaltyest delayed job exe-
cutions was minimized, then the overall starting and enesimf job schedules were
determined.

Elghirani et al. [[64] proposed a tabu search algorithm, Wigissigned jobs to a set
of grid resources. The solution neighbourhood consisteti@fing a scheduled job
to another available grid resource and often used movespegralized to avoid move
cycles. When no improvement was reached in a certain tineeviat, the tabu list was
cleared, a new random solution was found, and the tabu puoeethrted all over.

Varvaigos et al.[[196] considered job routing and scheduiinsupport advance reser-
vation. Advance reservation consists of reserving bantiwacid a grid resource for
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later execution of a given job. Varvaigos et al. considenee job and data transmis-
sion at a time; hence their algorithm can be viewed as beirgnne algorithm.

JSNR was shown to h&P-hard and solved to optimality by Gamst and Pisinger [86].
The solution method was based on Dantzig-Wolfe decompasitinere the pricing
problem assigned a single job to a single machine, the bisgctrategy added cuts
to strengthen the formulation, and the master problem famdverall feasible solu-
tion. Results showed that their branch-and-cut-and-ptigerithm outperformed both
simpler exact algorithms arfdPLEX The algorithm was capable of solving instances
with up to 1000 jobs and 1000 machines within minutes.

The telecommunication application of JSNR was solved Btaailly by Gamst[[79]
using a number of greedy heuristics, a swap-based metatiearid the adaptive large
neighbourhood metaheuristic. Results showed that thoghmetaheuristics found
better solution values than the greedy methods, they aldodiatively large running
times.

CNR consists of sending demand through a network such tlwetdutes never use the
same edge at the same time. Given is a network consistingdgfsnand capacitated
edges. The network takes time into account, i.e., an edgeeuaisited at different time
slots. Also given is a set of routing requests each congistirm source, a destination,
a routing time window, and an amount of demand. To satisfyudimg request, the
demand must be sent from the source to the destination vifikitime window. If the
amount of demand exceeds an edge capacity, then it takeskgwre slots to route
the demand on that edge. Two routes cannot use the same d¢tgesaime time.

CNR has application in the transportation sector. Wherimgutains through a railway

infrastructure, two trains cannot use the same sectiorilafnatracks at the same time.
Also, the length of the train determines how long it takes&vel across a stretch of
railway tracks. Each train has some starting and ending paiththe goods on the train
must arrive before a certain time.

CNR also has application in telecommunications where itesponds to th&/P-hard
static Routing and Wavelength Assignment Problem (RWA)e Phoblem is to es-
tablish a number of connections (or light paths) in an optiegwork such that each
connection travels from its source to its destination inréade time window using one
or more wavelengths. Two connections cannot use the samglemgih on the same
fiber at the same time. The RWA is static since we have full Kedge on the problem
instance in advance.

Most work on the RWA in the literature focuses on maximizihg humber of es-
tablished data connections. The underlying optical ndtistypically considered to
be one of three topologies: wavelengths cannot be conyeséedZang et al.[ [206],
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wavelengths can be converted in all nodes, see Ramamurnthiylakherjeel[1683], and
wavelengths can be converted in a subset of nodes, see hebtukherjee[104]. The
RWA was provedV/P-hard by Chlamtac et al. [47].

The RWA problem is typically solved using a heuristic decosifon which consists
of a routing problem and a wavelength assignment problera.rdating problem sug-
gests one or more paths for each data connection. The watkelassignment problem
finds an available wavelength and assigns it to one of thegzexppaths for each data
connection. An overview of heuristics from the literatuoe $olving the decomposed
RWA is presented by Zang et &l. [206].

JSCNR consists of combining JSNR and CNR: jobs must be as$tgrmachines such
that all job demand arrives at the machine before executtginis. The job demand
is routed through an undirected network such that two rougeer travel on the same
edge at the same time. The network topology connects edgagima way that the
corresponding RWA does not support wavelength converslobs must be assigned
to machines for execution such that the total profit of exegygobs is maximized.
JSCNR isMP-hard as it contains both th&P-hard JSNR and tha/P-hard CNR as
special cases.

6.2.1 Mathematical formulation

Notation from applying JSCNR in a telecommunications cehig used in the fol-
lowing formalization. This means that we consider the peabbf assigning jobs to
grid resources where job data must be routed through anabptwork. The optical
network is dedicated to the job scheduling process, henites fli@tween all terminal
nodes are known in advance.

The set of jobs is denotefl the set of resources 18, the set of edges i& and the set
of time stamps i§". Note that time is discrete, i.e., is given in time stampsT.

The set of wavelengths on ed@ek) € F is denoted\;;; and the set of all wavelengths

is denoted\. For a wavelength € A let E; denote the set of edges which are capable of
carrying data on wavelength All wavelengths on all edges have the same bandwidth
capacityd.

Let ¢,+ denote the time it takes to establish a new wavelength on g& &ad let , -
denote the time it takes to release a wavelength on an edgee@bon for introducing
these time buffers is to make the solution more robust: ifta tansmission is delayed,
then it will not be interfered by a new transmission if theegak less than, - . Further-
more, a data transmission does not start ugtiltime after the wavelength is assigned
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thus leaving even further room for the previous transmissafinish. Introducing
these extra time buffers has a drawback; the extra time tsuffi@y prevent some jobs
from being executed. When solving the problem, the grid adstrator should thus
experiment with the size of the time buffers in order to reachappropriate trade-off
between robustness and job execution.

Each jobj € J is assigned a time windofi;, b;], the estimated computation tingg;,
the total size of the job datsl;, the amount of datg’ placed on each resoureces R,
and a profit; € R™ for execution.

Each resource € R is assigned an availability start time and end timeb,.. To
simplify notation, the time windove,, b;i] is introduced, where;;, = max{a;, ax}
andb;, = min{b;, by} for i,k € RU J. For further notational convenience, two sets
are introducedJ; andR;. The setJ; consists of jobg with a; < ¢ < b;. Similarly,
the setR; consists of resourceswith a,. <t < b,.

Now, the mathematical model includes two types of variablése {0, 1} andz!, €
{0,1}. If 2" = 1 then jobj € J is executed on resouree € R with execution
beginning at timeg € T. If x” = 0 then the job is not executed on the resource with

this beginning time. 1% = 1 then edgdi,r) € E is carrying data original stored

arl T

on resourcé € R on wavelength € \;,. attimet € T for job j € J. Otherwise,
2% = 0. JSCNR is formulated as:

Lirp =

brj —Qj

max ZZ Z c;x’ (6.1)

reRjEJ t=ar;

bri = Qs
st > 2ff <1 VieJ 6.2)
TER t=ar;
Z Z Z i s [ —‘ Z it Vr € R,Vj € J, 6.3)
Trit Z j ) o ) .
IERV =a,; l€EAn; iERV{r} Vit € [aTj7ij Q]]

i Vr € R,Vj € J,
> Z > Z,?,k_[ T w%' V€ fars,bry - @) €9

i€ERKER t'=a;, LEAir

i#r k#r
brj=Q; Vk,r € R:p] >0,
o' =0= 30 @i N V=0 vieaviel, (6.5)
t=t+1 i€Ry i€ Ry vt € [ar, by

(z,r)EE,; (ri)EE;
thty iy )
t'jk tiky < V(i,r) € E,Vl € \ir
Z Z Z ( Tirl +xr7,l ) — 1 Vit € [air7bir] (66)

kER:pi>0je‘]‘ t'=t
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min{t+Qj;,
SR VieJ, reR
T ! T ) r )
SO Qe <@ J 6.7)

JeING =t t € [ajr, bjr — Q]

rt Vj e J,VreR,
| Vj e J,Vk € R,
298 € 0,1} vii,r) € B, ©9

Vi € Nir, Vt € [arj, brj]

The objective[(611) maximizes the profit of executed jobse Titst constraint[(6]2)
says that each job can be executed at most once. If a job istexkan some resource
i € R then data from all other resources R must be sent out on the netwolk{6.3).
Constraint[(6.4) says that if a job is executed at resouree R then all data must
arrive before execution time. Flow conservation is ensimg®.5). Data arriving at
some node at timemust leave the node again at time- 1 unless the job is executed
at this node. Constrairfi (6.6) forbids several paths froimguhe same wavelength on
the same edge at the same time. Finally, the last consti&if)t §ays that a resource
can execute at most one job at a time. Bounds ensure thablexritake on feasible
values.

6.3 Greedy heuristic solution approach

In this paper, we consider a heuristic approach for The hateg Job Scheduling and
Constrained Network Routing Problem (JSCNR), which combigreedy heuristics
for The Integrated Job Scheduling and Network Routing FrolJSNR) and for The
Constrained Network Routing Problem (CNR). JSNR was solvedristically by
Gamst[[79]. The data transmission part of the heuristicaiehver, must be replaced
by algorithms for the CNR. The latter has application indelamunications as the
Routing and Wavelength Assignment Problem (RWA) for whicdmssolution meth-
ods are presented in the literature, see e.g. the surveynof &aal. [206].

Let us first consider heuristics for JSNR in the literatuee(&amst [79] or Sgrensen
[181] for more details):

 First Come First Serve. The first job on queue is assignetdadsource at
which execution finishes first. LET 4,1, | denote the running time of transmitting
data. The theoretical running time for the First Come Fimstv8 heuristic is
O(]J||R||T4ata|), Since the heuristic in worst case attempts to assign eadbo jo
all resources.
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» Best First. The job with highest profit is assigned to theuvese at which job
execution finishes first. The running time®|.J| log | J|+|J || R|| Tdata|) where
| Tqata| is the running time for the data transmission problem, sjobe first are
sorted according to profit and then the heuristic in worsé ¢des to assign each
job to all resources.

« First Fit. For each resource, the job with earliest execufinish time is exe-
cuted. If a draw between several jobs are reached then thetlolighest profit
is selected. The theoretical running timeX$| R||.J|?| Tqata|) Where|Tqata| is
the running time for the data transmission problem, becéarseach resource
the heuristic assigns all pairs of jobs in order to compaeeetkecution finish
times.

» Random Fit. Randomly selected jobs are assigned to eashroes The running
time is O(]J||R||Tdata|) Where|Tqata| is the data transmission running time,
because in worst case the heuristic tries to assign eachb plbresources.

These four heuristics need to know how long it takes to tratjsim data to a resource
in order to determine execution start and end times. The itinades to transmit job
data is found by solving the CNR problem heuristically.

CNR is solved as the RWA and we propose using a subset of theéstiesi for the
RWA in the literature. When solving the RWA as part of the J$Ckhe RWA may be
solved a large number of times. Thus if the heuristic for tliédFhas high complexity,
then the overall solution procedure will suffer. The sedeldbeuristics have relatively
small running times and all divide the RWA into a routing piesh and a wavelength
assignment problem. The selected heuristics for the rguptiablem are:

» Fixed-Alternate Routing. Several paths are found for edala connection re-
guest; see Banerjee et al. or Birman and Kershenbaum [22,T38] heuristic
corresponds to thie-shortest path problem, when the number of generated paths
for the data connection correspondsitoThus the theoretical running time for
establishing a single data connection equals that oktbkleortest path problem;
O(|E| + |V]log |V | + k) where|V] is the number of nodes in the network, see
Eppstein([66].

» Adaptive Routing. This method runs a shortest path algoribn the graph
where edge costs are based on previously chosen routesarsgeeal. [[206].
The theoretical running time for establishing a single dadanection corre-
sponds to the running time for a shortest path algorithm, &¢(|E| + |V|)
log |V|) which is the running time of Dijkstra’s algorithm using a aig heap,
see Cormen et al._[52].

The selected heuristics for wavelength assignment are:
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« First Fit. The first available wavelength is assigned todheent data connec-
tion request; see Birman and Kershenbaum or Kovacevic armnfora[[38,
130]. The running time for assigning a wavelength to a sidgl& connection is
O(|A||E|) where| A is the number of wavelengths, as the heuristic in worst case
investigates the availability of each wavelength on allesdg

* Most Used. Among the available wavelengths for a data octiorerequest, the
wavelength which so far has been used the most is assignkd ttata connec-
tion request, see Subrarnaniam and Barry [183]. The theatetinning time
is O(|Allog || + |A||E|), because first the availability of all wavelengths on all
edges is found, then the wavelengths are sorted accordinsptye, and finally
the heuristic investigates the availability of each wangtl from the sorted list
on all edges.

« Random Assignment. An available wavelength is randomlgcsed and as-
signed to the current data connection request. Runningisi¥| || E'|) where
|A| is the number of wavelengths, because in worst case theskieimvestigates
the availability of each wavelength on all edges.

6.3.1 Heuiristics for JSCNR

Combining the heuristics from the previous section resultseuristics for JSCNR.
The heuristics are displayed in Tablel6.1 along with theiptietical running times. The
upper table uses Fixed-Alternate routing, the lower Adaptouting. The first row in
each part consists of the name of the JSNR heuristic. Theimargdhree rows in each
part consist of the name of the wavelength assignment ttiesrénd the corresponding
theoretical running time for combining the JSNR and CNR Istigs. The theoretical
running times in the Table are used for comparison with jraktunning times when
computationally evaluating the heuristics in Secfion 6.5.

6.4 Exact solution approach

The exact solution approach is based on Dantzig-Wolfe dposing The Integrated
Job Scheduling and Constrained Network Routing Proble@NF such that the mas-
ter problem decides where and when to execute jobs accotalidgta transmission.
The pricing problem decides when to send all data for eactaguording to the re-
duced costs. Recall the mathematical formulatfon] (6.19)(6 The master problem
includes constraint$ (6.2), (6.6), arid (6.7) and the pgigiroblem takes care of the
remaining constraints along with (6.6).
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FCFS Fixed-alternate
First fit O(J||R|(|V]log V] + k + [A||E]))
Most used O(|J||R|(|V|1log V] + k + |A|(log |[\| + |E])))
Random O(J|RI|([Vlog |V + k + AL E])
Best first
First fit O(|J|(log |J| + |R|I(|V|1og V| + &k + [A||E])))
Mostused | O(|J|(log|J| + |R|(|V|log |V|+ k + |[X|(log || + | E]))))
Random O(|J|(log |J| + |R|(|V[log |V + k) + |lIE])
First fit
First fit O(IJ2|R|([V[1og [V] + k + [N E]))
Most used O(JJ 12| R|(|V]1log |V | + k + |A|(log |A| + |E])))
Random O(IJ2|R|(|V|log |V| + k + ||| E]))
Random fit
First fit O(J)|RI(IV]log [V + ||| E]))
Most used O(|JIR|(|V|log |V| + [A|(log | A + | E])))
Random O(IJIIRI(IV|log [V| + A E]))
FCFS Adaptive
First fit O(JIRI((IE[+ [V[)log[V] + [NIE)
Most used O(JIIR|((|E| + [V) log| V| + |A|(log [A] + | E])))
Random O(JIIRI((E] + V) log [V| + [A[|£]))
Best first
First fit O[T (og[J]+ [RI((IET + [V]) log [V] + [AED)))
Mostused | O(|J|(log |J| + [RI((|E| + [V])log V| + |A|(log || + | E]))))
Random O(J|(og [J] + |RI((1E] + [V]) log [V] + [AE])))
First fit
First fit O(JPIRI((ET + [V]) log [V] + A[ED)
Most used O(IJI?|RI((|E| + |[V]) log |V | + [Al(log |\ + | EI)))
Random O(IJP2[RI((E] + V] log |[V] + [Al E])
Random fit
First fit O(JIRI((E[+ [V) log [V] + [NIET)
Most used O(JIIR|((|E| + [V) log|V| + |A|(log [A| + | E])))
Random O(J|[RI((|E| + [V]) log|V| + ||| E])

Table 6.1: Theoretical running times for all heuristics.eTnning times consist of
multiplying the running time for the grid heuristic with tlsam of the running times of
the routing and the wavelength assignment heuristics.
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Let the decision variablg/™* € {0,1} indicate if jobj is executed on resoureet time

t where job data is sent accordingitoThe pricing problem generates ways of sending
datap € P for a given job, resource and execution time according tod¢kheced cost
of the current solution. The master problem is:

brj—Qj
max Z Z Z chygrt (6.10)
j€JreR t=a,; peEP
brj —Qj
s. t. DY D wr<a VjeJ (6.11)
r€ER t=a,; pEP

t+t, _
+ty4

irl jut’ ril_ jut’ V(Z,T) € E,Vl S Air,
S X Y ety <1 N TSN 62)

jeJtueRy t'=t pEP

min{t+Qj,
SRl VjeJ VreR
i rt’ jri , VT s
S Yt Y wt< PSOIER (613
j j t € [ajr, bjr — Q]
F=PAV] t'=t peEP peEP

VjedJ, reR,

Jrt
€{0,1
Yp { } te [ajm bjr - Q]]

(6.14)
The objective[(6.7I0) maximizes the profit of executed jold®e first constrain{{6.11)
ensures that a job can be executed at most once and the secstichint[(6.1P) ensures
that each wavelength on each edge is visited by at most oaecdanhection. Finally,
constraint[(6.113) says that a resource can execute at megbbrat a time and the
bound [6.14) forces variables to take on feasible values.

6.4.1 Pricing problem

The dual variables of the master problem afe> 0, w;; > 0 andp;,, > 0 for
constraints[(6.111)[{6.12), and (6113), respectively. fdtkiced cost for a given joh
resource- and execution timeis:

min
{t,b.,V]/ *Qj/}

[
c; — 75 — Qipjirt — Z Z Pt > Z Z Z (Wfrl eriil) (6.15)

J'eI\{s} t'=max (i,r)EEIEL t'=ay,
{t*Qj/"rl,aJ/.,,}

When solving the pricing problem for a given jgbresourcer, and execution time
we wish to minimize the right hand side of the reduced costabse the value of the
left hand side is already known. Hence the pricing probleta find a way of sending
all job data for johj to resource in time for job execution at timesuch that the right
hand side of((6.75) is minimized.
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The decision variablg’ % € {0,1} is introduced to indicate data transmission in the

pricing problem. Lety;f denote whether or not data stored on resoudroe R is
travelling on edgéi, u) € E, using wavelength € \ at timet’ € [a;.., t[. The pricing
problemis:

S (whayhd +wluylih) (6.16)

kER (i,u)€E IEL t/e[a,r t[

s t. 3 Z yik > Pﬂ Vk € R (6.17)

1ERt =ap; lENL;

>y S yure[2 ﬂ 619

kER (i,r)EE t'=a;, lEX;y

pk>0
i = >yl = Vu, k € R\{r} : pl. > 0(6.19)
1€ER¢ i€ Ry
(i,u)EE, (u,i)e By,
uFEr uFEr
Vi€ NVt € [au, t]
bty 4ty '
” " V(i,u) € E,Vl € \ir,
DD DD DD DI RS ES I e (6.20)
j€Jt kER u€Ry t/ =t/ v
pl.>0
Vk e R: pi > 0,
yht € {0,1} V(i,r) e E\Vl € A, (6.21)
vt' € [air, t[

The objective[(6.16) minimizes the right hand sidelof (. T%)e first constrainf(6.17)
says that all job data must be sent from each data source. étteonstraint[(6.18)
makes sure that all job data arrives at the executing resoubefore job execution
time ¢. Constraint[(6.19) ensures flow conservation. Finally tamst (6.20) says that
no more than one data connection can use a wavelength on araedgime and the
bound [6.211) forces variables to take on feasible values.

The pricing problem is the Routing and Wavelength AssigrirReablem (RWA) over
time and isMP-hard. Hence we try to generate columns heuristically arg ssive
the pricing problem to optimality when no heuristic columwith positive reduced cost
can be found. The proposed greedy heuristics for the RWA ati@€6.3 are applied
on the pricing problem to generate columns heuristicallye feuristics are modified
slightly: when they can choose between several paths olerayths, then the cheapest
option according td (6.16) is selected.

The exact solution approach is based on solving the matleah&drmulation for the
RWA problem over time. Recall that all paths between allpafrresources are known
in advance. In the mathematical formulation we generatelanuofor each path at
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each possible start time using each wavelength. The exattsoapproach is solved
for a given jobj, an executing resouree and an execution time Let P denote the
set of columns. The variablg, € {0, 1} indicates whether or not columme P is
included in the current solution. Three constants areduced:é;’,’“”' denotes whether
or not columnp uses wavelength € X on edge(i, k) € E attimet’ € [a;,t[, 6F
denotes whether or not columproutes data stored on resoufgeandc, denotes the
reduced cost for colump The model is:

min Z Z Z Z 6Zklt/cpyp (6.22)

PEP (i,k)EE lEX t/ €lasy;,t]

s t. ST g+ o5y, <1 V(i k) € E,Vl € \,Vt' € [a;, t] (6.23)
pEP
> =1 VEE€R:pl >0 (6.24)
peEP
yp € {0,1} VpeP (6.25)

The objective function{6.22) minimizes the reduced coste Tirst constrain{{6.23)
says that each wavelength on each edge can be used at moanomeenstrain{{6.24)
ensures that all data connections are established exaxiy o

The number of columns in_(6.22)-(6]25) is polynomial in thplit size: the path be-
tween two terminal nodes is known in advance. We must decidao travel on the
path, thus we generate a path variable for each path at eaithtdg travel time and for
each wavelength. L&D (|K|) be the number of data connectiod¥,|T’|) be the num-
ber of available travel times, ar@(|\|) be the number of wavelengths; the number of
variables iSO(|\||T||K|).

6.4.2 Branching strategy

Branching ensures that variables in the LP-relaxed mastdigm eventually take on
binary values. To determine the branching strategy we tigate when variable values
may become fractional:

. Ajob is only partially executed
. Ajjob is executed on the same resource but at differenstime

. Ajob is executed on different resources

A W N B

. Ajob is executed on a given resource at a given time usiagingtimes which
differ in the latest data arrival time

5. A job is executed on a given resource at a given time usingnmg schemes
which differ in the used wavelengths
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In the first case we generate two branching children in eaethath we add the con-
straint:

D Sup=0 vs. > by, =1 (6.26)

pEP peP

which ensures that jol is either not executed or it is fully executed. The branching
constraint adds a dual variahlg, which the pricing problem must handle. Because
the pricing problem is solved for each job, the extra duailalde can be added to the
left hand side ofl(6.15) and does not interfere with the pggroblem.

The second case is handled by finding a time stamp lying betthescurrent execution
times. Two branching children are generated: in the firdtiche job must be executed
no later than the time stamp and in the second child the jolt beigxecuted after
the time stamp. In each child, columns with illegal exeautines are set to zero.
The pricing problem is altered slightly into setting boumisexecution times and not
allowing data to arrive later than the latest executiort sitzwe.

The third case is handled by choosing a resource on whiclothie partially executed.

Two branching children are generated: in the first child titemust be executed on
the resource, and in the second child the job cannot be edout the resource. In

each branching child, columns using an illegal executiisguece are set to zero. The
pricing problem is modified slightly into either forcing exdion on a certain resource
or to not allowing execution on illegal resources.

In the fourth case the data transmission times and possiblysed wavelengths differ.
The case is handled by finding a time stamp for routing. Twan&hang children are
generated: in the first child all data must arrive beforeithhe stamp and in the second
child some data must arrive after the time stamp. In eacd tid variables with illegal
routing times are set to zero. The pricing problem is modifiéal not allowing routing
at illegal times by excluding predefined columns using dleguting times.

In the fifth case the execution and data transmission timegagual for all non-zero
variables. Only the used wavelengths differ. The case igledrby choosing a wave-
length for a data transmission path. The chosen wavelengst be used by at least
one of the fractional variables in the current solution. Twanching children are gen-
erated: in the first child the chosen wavelength must be usétsochosen path, thus all
variables which use different wavelengths are set to zerthd second branching child
the chosen wavelength cannot be used on the chosen patlajithasables which use
the chosen wavelength are set to zero. The pricing problenodified into including
or excluding columns using the chosen wavelength on theechpath, respectively.
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6.4.3 Start solution

The master problem must initially hold one or more columnfeteevalues for dual
variables can be found for the pricing problem. To reach & stdution we can ap-
ply the greedy heuristics from Sectibn16.3 on the problertaime. The heuristics,
however, do not guarantee a feasible solution even if orsteexin this case, an exact
solution approach must try to assign a job to a resource. Wesghto run a modified
version of the exact solution approach for the pricing peafglinstead of minimizing
the reduced cost, the exact approach only decides whetheit iis possible to assign
a given job to a given resource.

6.4.4 Reducing the number of constraints

The master problem consists of a large number of constraspecially as time win-
dow sizes increase. Some instances may not utilize large pathe time windows;
hence it would be beneficial to leave out constraints for edusne stamps. Through
preliminary results we have noted a significant improvermé&approximately 35% on
time usage when including all constraints of type (6.11) anly violated constraints
of type [6.12) -[(6.I1). Separation routines for identifyinolated constraints consider
all non-negative variables for all possible constraintslaave polynomial running time
in the input size.

Including only violated constraints does not impose anynglea on neither the pricing
problem nor the branching strategies. When calculatingedeced costs, only dual
variables for constraints included in the master problesrcansidered.

6.4.5 Reducing the number of iterations

Preliminary results showed that the branch-and-cut-aiwalgorithm runs through
a relatively large number of iterations before finding a lolweund in a search tree
node. The reason for this may be that the dual variables talkeappropriate values,
hence the algorithm prices in many unused columns beforlyficenverging toward

the lower bound. A way to avoid this is to apply a method fobsizing the values

of dual variables. Several stabilization methods are ptesein the literature. They
typically consist of setting bounds on how much the valuethefdual variables may
change from one iteration to the next. The bounds may be irfiotime of boxes for

each dual variable, see Rousseau etlal. |[170] or by addingiatpuent in the objec-
tive function for the distance between the former and theemirvalue of each dual
variable, see DuMerle et al._[61]. Rousseau etlal. [170] saggn interior-point sta-
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bilization method where the values of dual variables arécsatlinear combination of
extreme points in the dual solution space. The stabilinati@thod can easily be ap-
plied to the master problem by changing the bounds on contsr@nd variables whose
corresponding dual variables and constraints are not tiggrtdetails, see Rousseau et
al. [170] who show how to apply the stabilization method om 8et Cover problem.
We have applied the interior-point stabilization method @reliminary results show
that the method decreases time usage with up to 67%.

6.5 Computational experiments

The proposed solution methods are tested. In this sectidirsténtroduce the gener-
ated problem instances, then a computational evaluatitmegiroposed exact method
and heuristics for JISCNR is presented.

6.5.1 Testinstances

Two types of problem instances are generated. Both instypes arise in telecom-
munications and are denoted the NDGF and the Tandem instaespectively.

NDGF

A set of instances is based on the network topology of the iddddtaGrid Facility
(NDGF), which consists of a grid computing system in the Noombuntries. Current
projects on the NDGF include handling data from the LargerbladCollider (LHC)
by the European Organization for Nuclear Research (CERM)GERN’s homepage
for more information[[41]. The NDGF network topology was geated by Grgnager
[96] and consists of 14 nodes, which are connected in a spaapd. An illustration
can be seen in Figufe ®.1. All data arrives from Europe todmgsource in Denmark,
which thus works as job data storage for all jobs. In threehefNlordic countries,
grid resources are connected through a network node. Theseaked as squares in
Figurd6.1. The grid storage in Denmark and all network hubsi@ailable at all times.

Tandem

A set of instances based ortandentopology is generated. An example of a tandem
network is given in Figure6l2. All nodes but two are conneetéth exactly two other
nodes. The two nodes in each end of the network are only cteth@éth one other
node. Hence, the number of edges in the test instances igslWa= 2(|V| — 1).
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Figure 6.1: An illustration of the NDGF network. Resources marked as filled
circles, while the squares indicate nodes unable to exguige

This set of instances is introduced in order to test how langevorks are handled. The
number of edges and nodes thus vary from instance to instance

D

Figure 6.2: An example of a tandem network. Every node is aplynected to its
neighboring nodes.

Grid activity

The number of jobs, the number of wavelengths, and the anodarmailable bandwidth
per wavelength vary from instance to instance. The size @tdtaition of job input
files, the execution time, and the time window for each jobrarelomly generated.
Similarly, the resource time windows are also randomly gateel.

6.5.2 Results

The solution methods have been implemente@++ and tested on a 2.66 GHz Intel
Xeon machine with 16 GB RAM. Note that CPU times in the follogiistem from
using one core. All test runs are given an upper time boundB®@ $econds. First we
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analyze the exact solution methods, i.e., we agfiy. EXon the mathematical formu-
lation (6.1)6.9) and compare with the branch-and-cut-price algorithm. Then the
heuristics are considered.

CPLEX

JSCNR can be solved to optimality by generating the edgedbamelel [6.1){{6.9)
for each instance and then usi@@PLEXto solve the model. Test results are seen in
Table[6.2. The results show th&PLEXruns out of memory or time even for the
smaller instances. This motivates the need for a more sigdtesd exact solution
method.

Exact

Solving JSCNR withCPLEXwas unsuccessful; hence we implemented the more so-
phisticated branch-and-cut-and-price (BCP) algorithomfiSectior 6 4. Test results
are seen in Table 8[3-6.5.

The results show that the sophisticated BCP algorithm i3 afg&ble to solve several
instances within the 1800 seconds. It does, though, gépeeaform better than when
usingCPLEX both with respect to time usage and to the number of solv&dmes.
An in-depth analysis of the test results for the BCP algaritias shown that the bot-
tleneck is solving the pricing problem to optimality. Rddhht the pricing problem is
the RWA over time, which igvP-hard. The BCP algorithm solves the pricing problem
heuristically until no columns are found at which point thecimg problem is solved
to optimality. Separating cuts, solving the master problgemerating branching can-
didates, and branching take little time and the search ¢ralviays small.

When comparing results for the tandem instances with iefuithe NDGF instances,
we see that the BCP algorithm has equal difficulty with sauiooth instance types.
The topology of the NDGF instances can be viewed as a conibmaet a tree and a
star structure and not many paths share edges. Converatig, ghare many edges in
the tandem instances. The reason why the BCP algorithm fintthsitistances hard to
solve is probably that both the scheduling and the routioglem areAP-hard, hence
if either constitutes a bottleneck then the overall probienery difficult to solve.

Heuristics

Solving JSCNR to optimality is very difficult even for smaliastances. Hence heuris-
tics for the problem may be useful when larger instancesodve solved. The proposed
heuristics in Section 8.3 have been implemented. Firstdnexompared with the ex-
act solution approach and then they are compared with e&ehn. oBee the tables at
http://www.diku.dk/ ~ gamst/tables.pdf for detailed test results.
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Jobs Res. BW/| Results Time Results Time Results Time
A=5H A=10 A=20

10 10 10 12 0.18 12 0.30 12 0.65
10 10 25 12 0.17 12 0.33 12 0.66
10 20 10 2 0.85 2 1.77 2 3.57
10 20 25 2 0.88 2 1.70 2 3.50
10 50 10 69 31.14 69 65.98 69 155.35
10 50 25 69 31.29 69 66.19 69 157.83
10 100 10 7 177.31 — oom - oom
10 100 25 7 179.32 — oom - oom
20 10 10 26 1.12 26 0.94 26 1.95
20 10 25 26 0.50 26 0.92 26 1.91
20 20 10 63 4.65 63 9.09 63 18.40
20 20 25 63 4.61 63 8.93 63 18.30
20 50 10 159 108.75 — oom - oom
20 50 25 159 108.10 — oom - oom
50 10 10 80 1.20 80 1.96 80 3.80
50 10 25 80 1.09 80 1.89 80 3.67
50 20 10 153 6.50 153 17.85 153 36.28
50 20 25 153 9.64 153 17.90 153 37.98
50 50 10 — oom — oom - oom
50 50 25 — oom — oom - oom
100 10 10 147 6.94 147 8.99 147 14.84
100 10 25 147 4.94 147 8.26 147 15.29
100 20 10 285 36.85 285 139.70 285 151.07
100 20 25 285 40.36 285 64.20 285 150.36
100 50 10 — oom — oom - oom
100 50 25 — oom — oom - oom
200 10 10 164 7.66 164 8.86 164 14.77
200 10 25 164 6.54 164 8.77 164 15.14
200 20 10 316 71.97 316 122.54 316 223.24
200 20 25 316 82.61 316 116.43 316 218.04
200 50 10 — oom — oom - oom
200 50 25 — oom — oom - oom
10 14 10 41 0.67 41 1.34 41 2.53
10 14 25 41 0.66 41 1.28 41 2.53
20 14 10 116 1.57 116 3.47 116 5.24
20 14 25 116 1.54 116 3.35 116 5.39
50 14 10 266* 1866.91* 272* 1815.78* 273* 1922.77*
50 14 25 266* 1810.28* 272* 1810.80* 273* 1808.40*

Table 6.2: Test results for thePLEXapproach. The first three columns hold informa-
tion on the number of jobs, resources and the amount of batikwihstances with 14
resources are of type NDGF; all other instances are of thdérartype. Then follows
two columns for three different wavelength settings, ineinber of wavelengths per
fiber: A\ = 5,10, and20. The two columns for each setting give the result value and
the running time in seconds. An entry with 'oom’ means thatittstance could not be
solved due to memory problems (Out Of Memory). An entry withridicates that the
instance could not be solved within 1800 seconds and thusutaf time. The best
feasible solution is then given.
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Jobs Res. BW/| Results Time Results Time Results Time
A=5 A=10 A=20
10 10 10 12.00 0.01 12.00 0.00 12.00 0.00
10 10 25 12.00 0.00 12.00 0.00 12.00 0.00
10 20 10 2.00 0.00 2.00 0.01 2.00 0.00
10 20 25 2.00 0.00 2.00 0.00 2.00 0.00
10 50 10 69.00 0.02 69.00 0.01 69.00 0.02
10 50 25 69.00 0.01 69.00 0.02 69.00 0.02
10 100 10 7.00 0.04 7.00 0.05 7.00 0.05
10 100 25 7.00 0.05 7.00 0.06 7.00 0.05
10 500 10 4.00 5.27 4.00 5.39 4.00 5.44
10 500 25 4.00 5.26 4.00 5.37 4.00 5.46
20 10 10 26.00 0.02 26.00 0.05 26.00 0.09
20 10 25 26.00 0.02 26.00 0.04 26.00 0.09
20 20 10 63.00 0.05 63.00 0.11 63.00 0.23
20 20 25 63.00 0.06 63.00 0.11 63.00 0.23

20 50 10 | 159.00 5.36 159.00 15.08 159.00 48.43
20 50 25 | 159.00 5.35 159.00 15.20 159.00 48.18
20 100 10 | 134.00 4.84 134.00 10.98 134.00 27.68
20 100 25 | 134.00 4.85 134.00 11.01 134.00 27.58

20 200 10 39.00 0.41 39.00 0.41 39.00 0.40
20 200 25 39.00 0.40 39.00 0.37 39.00 0.41
50 10 10 80.00 0.00 80.00 0.01 80.00 0.01
50 10 25 80.00 0.00 80.00 0.00 80.00 0.01

50 20 10 | 134.00 1800.28*| 148.00 1800.71*| 148.00  1800.39*
50 20 25 | 134.00 1800.18*| 148.00 1800.05*| 148.00 1800.91*
50 50 10 | 275.00 56.49 275.00 16.98 275.00 48.96
50 50 25 | 298.00 26.83 314.00 9.65 314.00 26.71
50 100 10 | 166.00 5.35 166.00 11.92 166.00 29.77
50 100 25 | 166.00 5.36 166.00 12.07 166.00 29.93
50 200 10 69.00 4.34 69.00 8.22 69.00 16.38
50 200 25 69.00 4.31 69.00 8.17 69.00 16.25

Table 6.3: Results for the exact solution approach on thdlsntandem instances.
The first two columns hold the number of jobs and resourcethfdinstance, respec-
tively. All instances are of the Tandem type. The third catugives information on
the amount of bandwidth per edge. Then follows two column#hfieee different wave-
length settings, i.e., number of wavelengths per fiber= 5,10, and20. The two
columns for each setting give the result value and the runtiine in seconds. When
time usage finishes with a star ('*'), then the test has runodtime.
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Jobs Res. BW/| Results Time Results Time Results Time
A=5 A=10 A=20

100 10 10 | 147.00 0.98 147.00 1.91 147.00 4.27
100 10 25 | 147.00 0.98 147.00 1.94 147.00 4.25
100 20 10 | 285.00 4.05 285.00 9.85 285.00 27.62
100 20 25 | 285.00 4.09 285.00 10.00 285.00 27.53
100 50 10 | 713.00 1809.70*| 738.00 1835.00*| 738.00 2001.58*
100 50 25 | 801.00 1802.84*| 807.00 1605.63| 738.00 2006.66*
100 100 10 | 810.00 1800.29*| 685.00 1800.39*| 749.00 1815.39*
100 100 25| 619.00 1800.93*| 743.00 1803.58*| 794.00 1803.44*
100 200 10 | 240.00 1801.48*| 240.00 1820.37*| 240.00 1802.53*
100 200 25| 240.00 1811.03*| 240.00 1808.99*| 240.00 1811.26*
100 500 10 | 219.00 6.00 219.00 5.96 219.00 5.33
100 500 25 | 219.00 6.02 219.00 6.04 219.00 5.90
200 10 10 | 148.00 1800.43*| 148.00 1800.51*| 148.00 1801.23*
200 10 25 | 148.00 1800.15*| 148.00 1800.04*| 148.00 1800.92*
200 20 10 | 296.00 1802.13*| 316.00 1800.37*| 316.00 1802.04*
200 20 25 | 296.00 1800.97*| 316.00 1801.71*| 316.00 1800.90*
200 50 10 | 347.00 1806.79*| 499.00 2134.76*| 626.00 5410.29*
200 50 25 | 370.00 1915.16*| 535.00 1921.21*| 669.00 4224.28*
200 100 10 | 354.00 1817.09*| 528.00 1836.88*| 480.00 2077.20*
200 100 25| 354.00 1875.56*| 486.00 1860.29*| 535.00 1912.69*
200 200 10 | 371.00 193.02 | 371.00 36.72 371.00 80.67
200 200 25 | 371.00 17.86 371.00 36.85 371.00 80.45
200 500 10 | 227.00 60.40 234.00 123.38 | 234.00 251.89
200 500 25 | 227.00 60.48 234.00 123.26 | 234.00 251.50

Table 6.4: Results for the exact solution approach on tlgefdandem instances. The
first two columns hold the number of jobs and resources foirtbance, respectively.
All instances are of the Tandem type. The third column givéerimation on the
amount of bandwidth per edge. Then follows two columns foeehdifferent wave-
length settings, i.e., number of wavelengths per fiber= 5,10, and20. The two
columns for each setting give the result value and the ryntmne in seconds. When
time usage finishes with a star ("*’), then the test has runodtime.
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Jobs Res. BW/| Results Time Results Time Results Time

A=5 A=10 A =20
10 14 10 41.00 0.00 41.00 0.00 41.00 0.00
10 14 25 41.00 0.00 41.00 0.00 41.00 0.00

20 14 10 | 116.00 0.01 116.00 0.00 116.00 0.00
20 14 25 | 116.00 0.00 116.00 0.00 116.00 0.00
50 14 10 | 295.00 0.02 295.00 0.01 295.00 0.02
50 14 25 | 295.00 0.02 295.00 0.01 295.00 0.02
100 14 10 | 555.00 8.90 555.00 14.90 555.00 28.41
100 14 25 | 555.00 8.56 555.00 14.97 555.00 28.04
200 14 10 | 668.00 2677.35*| 658.00 3736.75*| 658.00 3053.28*
200 14 25 | 668.00 2010.45*| 658.00 3777.48*| 658.00 3033.20*

Table 6.5: Results for the exact solution approach on the NDGtances. The first
two columns hold the number of jobs and resources for tharmest, respectively. All

instances are of type NDGF. The third column gives infororaton the amount of

bandwidth per edge. Then follows two columns for three déffe wavelength settings,
i.e., number of wavelengths per fibex:= 5,10, and20. The two columns for each
setting give the result value and the running time in secovd®en time usage finishes
with a star ("), then the test has run out of time.

An overview of comparing the heuristics with the branch-anttand-price algorithm
can be seen in Table 6.6. The table illustrates averagei@ohlue gaps and time
usages for instances, which the exact algorithm has sabvetimality. As can be seen
in the table, the heuristics only use a very small fractiotimé compared to the exact
approach. The solution value gap is never larger than 16%.tHeogrid heuristics,
First Come First Serve has best performance, followed bydBanFit, Best Fit and
First Fit. Fixed-Alternate Routing with 2 paths per datamection finds the smallest
gaps, followed by Fixed-Alternate with 5 paths per conrattil path per connection
and finally Adaptive Routing. No clear pattern emerges wlarsitlering wavelength
assignment. For the First Come First Serve and Random Hithgriristics, First Fit
wavelength assignment performs well. Otherwise Most Usedgood performance.

The Table only reports average gaps for a subset of the tesamence it does not
give a full picture of the performance of the heuristics. sTisi determined next when
comparing the heuristics to each other. An overview of tlimparison is seen in
Table[6.Y. The summary is based on ranking the performanteedfeuristics: the
lower the rank the better performance. The average ranKisglotion values for all
instances is given in thBolution  columns of the table and the average ranking of
running times is given in th&ime columns. An overview of actual time usage is seen
in Figure[6.3-6.b.

The ranked results and the time usage illustrations argz2e@dvith respect to each of
the main three heuristic approaches: the overall grid 8arthe routing heuristic and
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the wavelength assignment heuristic.

R=FA, p=1 R=FA, p=2 R=FA, p=5 R=A
Grid WA | Soluton Time | Soluton Time | Soluton Time | Solution  Time

FCFS FF 3.46% <1%o 2.89% <1%o 3.17% <1%o 6.63% <1%o
FCFS MU 3.46% <1%o 4.12% <1%o 4.40% <1%o 7.86% <1%o
FCFS RF 4.95% <1%o 3.01% <1%o 3.29% <1%o 7.13% <1%o
BF FF 10.06% <1%o 9.48% <1%o 10.05% <1%o 13.74% <1%o
BF MU 8.95% <1%o 8.37% <1%o 8.94% <1%o 12.63% <1%o
BF RF 9.61% <1%o 8.37% <1%o 8.94% <1%o 13.01% <1%o
FF FF 11.65% <1%o 10.80% <1%o 10.04% <1%o 15.32% <1%o
FF MU 10.54% <1%o 9.69% <1%o 8.93% <1%o 14.21% <1%o
FF RF 11.19% <1%o 9.69% <1%o 8.93% <1%o 14.59% <1%o
RF FF 4.11% <1%o 3.80% <1%o 4.52% <1%o 9.58% <1%o
RF MU 3.46% <1%o 5.60% <1%o 549% <1%o 13.22% <1%o
RF RF 6.25% <1%o 4.13% <1%o 5.03% <1%o 10.55% <1%o

Table 6.6: Performance of the heuristics compared to thetegaults. The first two
columns denote the grid and the wavelength assignmentdtiesrirespectively. Then
follows pairs of comparison results, where the differersceneasured in percent: the
first column holds the average gap between the optimal andstielsolution values
and the second column holds the average heuristic time usgger mille of the ex-
act time usageR stands for routing, and the options @A (Fixed-Alternate) and\
(Adaptive).p denotes the number of paths generated per data connection.

For the NDGF instances we see that the Best Fit grid heugstés better solution val-
ues than Random Fit, followed by the First Fit and First ConnstiServe heuristics.
The wavelength assignment heuristics perform equally. wedk the routing strategy
the best setting seems to be using Fixed-Alternate routittg 2vpaths per data con-
nection. Looking at time usage, then the First Come First&Sand Random Fit grid
heuristics perform better than both Best Fit and First Fibwidver, the graph in Fig-
urel6.3 illustrates that the time difference is small for NDi@stances. The Most Used
assignment generally requires more time than the other texelength assignment
strategies, but again the time difference is small as seéigime[6.4 for NDGF in-
stances. Finally, Adaptive routing uses less time thand-&kernate, which becomes
more time consuming as the number of generated paths pecalataction increases.
The time difference in small, see Figlirel6.5.

For the tandem instances the First Come First Serve griddteuinds the best solu-
tion values. All wavelength assignment strategies seenetipn equally well with

respect to solution values, while the Adaptive and Fixetbrlate routing with 2 paths
finds better solutions than other strategies. Looking aétireage in Figure 6.3, the
First Come First Serve and Random Fit strategies are therfgat heuristics, espe-
cially for the large instances with 500 jobs. Most Used reggimore time than the
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R=FA, p=1 R=FA, p=2 R=FA, p=5 R=A
Grid WA | Soluton Time | Soluton Time | Soluton Time | Solution — Time
FCFS FF 0.86 2.19 0.70 2.15 0.81 2.41 0.90 2.38
FCFS MU 0.99 3.06 0.86 3.23 0.92 2.88 0.94 3.75
FCFS RF 0.99 1.64 0.77 1.68 0.81 2.61 0.97 2.32
BF FF 1.97 3.45 1.79 3.53 2.09 3.83 1.37 3.52
BF MU 1.88 4.27 1.73 4.27 2.03 3.86 1.40 4.61
BF RF 1.92 2.83 1.73 3.08 2.06 3.91 1.43 3.57
FF FF 2.59 3.54 2.35 3.89 2.20 3.95 2.11 3.73
FF MU 2.48 4.30 2.34 4.36 2.18 4.01 2.13 4.71
FF RF 2.51 3.09 2.29 3.17 2.18 4.19 2.13 3.72
RF FF 1.75 2.01 1.64 1.97 1.65 2.24 1.77 2.11
RF MU 1.87 3.17 1.80 3.33 1.83 3.04 1.89 3.78
RF RF 1.96 1.38 1.76 1.40 1.74 2.35 1.90 2.10
FCFS FF 329 169 328 1.70 358 1.86 328 169
FCFS MU 329 279 328 317 358  3.35 328 276
FCFS RF 329 179 3.28  1.94 358  2.06 328 162
BF  FF 056 272 056  3.20 056  3.85 058 353
BF MU 056 5.2 056  5.00 056 536 058  4.99
BF RF 056 347 056  3.58 056  3.93 058  3.68
FF FF 2.66 4.07 2.06 4.47 2.23 4.22 2.91 4.05
FF MU 2.66 5.44 2.06 5.44 2.23 6.34 2.91 5.12
FF RF 2.66 4.65 2.06 4.08 2.23 4.69 291 3.88
RF FF 1.18 1.19 1.30 1.70 1.46 1.72 1.32 1.57
RF MU 1.45 3.59 1.15 2.94 1.19 3.48 1.20 3.11
RF RF 1.15 1.56 1.43 2.05 1.27 1.94 1.50 1.92

Table 6.7: Performance of the heuristics having been raftedakest time and solution
value for the tandem (top) and the NDGF (bottom) instancdee t@ble displays the
average rankingR stands for routing, and the options &A (fixed-alternate) ané
(adaptive) p denotes the number of paths generated per data connection.
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Figure 6.3: lllustration of time usage in seconds for thel gréuristics. The x-axis
denotes instances, where the first number indicates the euhipbs for the tandem
instances and where the last part indicates the NDGF inssaiidots for instances with
the denoted number of jobs and with 10-500 resources ara g@tveen two tics on
the x-axis.
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Plot of average time usage of RWA heuristics
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Figure 6.4: lllustration of time usage in seconds for the RWAIristics. The x-axis
denotes instances, where the first number indicates the eumfhipbs for the tandem
instances and where the last part indicates the NDGF inssaitots for instances with
the denoted number of jobs and with 10-500 resources ara getveen two tics on
the x-axis.
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Plot of average time usage of routing heuristics
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Figure 6.5: lllustration of time usage in seconds for thetirmpheuristics. The x-axis
denotes instances, where the first number indicates the enhipbs for the tandem
instances and where the last part indicates the NDGF inssaiidots for instances with
the denoted number of jobs and with 10-500 resources ara getveen two tics on
the x-axis.
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other wavelength assignment strategies and for the langieta instance, the time dif-
ference is significant as seen in Figlrel 6.4. The Fixed-A#ter becomes more time
consuming as the number of generated paths per data caméuntreases and the
Adaptive routing is even slightly slower. The time diffecerbetween routing heuris-
tics is insignificant, though, which can be seen in Figuré 6.5

Looking at general time usage, the practical running tinedect the theoretical run-
ning times from Sectioh 6.3.1. For wavelength assignmeatrtteans that the Most
Used strategy generally requires more time than First FitRandom Fit. Adaptive
routing is generally faster than Fixed-Alternate routinigose running time increases
with the number of generated paths per data connectionllyitie First Come First
Serve and Random Fit grid heuristics have smaller time ussgeBest Fit and First
Fit.

Comparing the heuristics with each other gives a slightffedént pattern than when
comparing heuristics with the exact solution results. Thiue to two reasons. 1: Not
all instances were considered when comparing with exacitsedecause the BCP
algorithm was not able to solve all instances. 2: The avegagemay be large if a
heuristic gives very poor results for few instances but goesiilts for all other in-
stances. The ranking system does not care how far off a nesyltbe and does thus
not punish very poor performance equally hard.

Overall analysis

Using a black-box strategy for solving JSCNR may not alwagghe best choice.
Instead the grid administrator should identify the curreoitlenecks with respect to
scheduling and network usage in order to find a good heuristtee Best Fit grid
heuristic utilizes available resources well for instaneéh no or little network prob-
lems. This is concluded from considering the NDGF instajabgre paths share few
edges. A reason for this is that Best Fit makes sure that jobglaced according
to them taking up as little time space in the network and orréiseurce as possible,
hence giving good resource utilization. When the networkstitutes a significant bot-
tleneck, then First Come First Serve makes sure that jobfoararded to execution
soon after arrival, which yields the best solution valuekisTis seen in the Tandem
instances, where paths share many edges. A reason for thigtithe strategy uses
network wavelengths as early as possible instead of at saieetime; when the latter
is the case, then the time slots at which wavelengths becwailalale after a subset of
jobs are assigned, may become so small that data for thengmggdbs cannot arrive
at the executing resource in time. Time usage must also le@ tako account. If the
grid system consists of many resources and/or many jobs jtheay be beneficial to
choose a more straightforward grid heuristic like First @drirst Serve, regardless of
network constraints.
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Most Used wavelength assignment may often give betterteethdin both First Fit
and Random Fit but also requires more time. The reason fdabelter results is that
by choosing the most used wavelength, more wavelengths mayvdilable for the
next data connection request. First Fit and Random Fit assgt generally perform
equally well both with respect to solution values and timages

Generally, the best routing strategies with respect tammwalues are Fixed-Alternate
routing with 2 paths per data connection closely followedAdaptive Routing and
Fixed-Alternate with 5 paths per data connection. The Fikédrnate routing consid-
ers previously routed data connection and thus has goodrpeafice when generating
more than 1 path per data connection.

A final recommendation is based on the comparison with exaatien values in Ta-
blel6.6, on the comparison of heuristics in Tdblé 6.7 androa tisage in Figuie 8[3-6.5.
We suggest using First Come First Serve grid schedulingd-&lternate routing with
2 paths per data connection and First Fit wavelength assgtrifihis setting generally
gives lower gaps compared to exact values and it also génbes best performance
when only considering the heuristics. The solution appnphowever, should be de-
cided based on an analysis of the grid topology and the esge&ePU and network
load. For small instances, an exact solution can be fourtdmitasonable time. For
larger instances some consideration should be given onhwgdrid heuristic is more
appropriate.

6.6 Conclusion

This paper introduced The Integrated Job Scheduling andt@oned Network Rout-
ing Problem (JSCNR) with application in production plargiénd telecommunication.
JSCNR was formally presented and a mathematical formulatas given. JSCNR
was shown to b&/P-hard, as it holds both th&P-hard Integrated Job Scheduling and
Network Routing Problem (JSNR) and thé-hard Routing and Wavelength Assign-
ment Problem (RWA) as special cases.

A branch-and-cut-and-price (BCP) algorithm for JSCNR wassented, where the
pricing problem assigns a job to a machine and the mastelegumoimerges the job
assignments into an overall feasible solution. Finallyumber of heuristics for ISNR
was presented along with a number of heuristics for RWA aey there merged into a
total of 24 different heuristic solution methods for JSCNR.

The proposed methods were computationally evaluated omypes of test instances:
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a tandem topology with 10-500 machines and a real-life nétwapology taken from
the Nordic DataGrid Facility with 14 machines.

Using CPLEXto solve the mathematical formulation yielded somewhatr pesults
as only smaller instances were solved due to memory and tiotdems. The BCP
algorithm was capable of solving more instances, howetstillitimed out for several
instances because its pricing problenM8-hard.

All heuristics were tested and compared with the exact aggdrand with each other.
The computational results showed that First Come FirsteSetvassignment heuristic
gave best results along with the routing strategy, whiclppses two routes for each
demand. The running times of the computational evaluatiefiscted the theoretical
running times for the heuristics well. Furthermore, alltémces were solved within
minutes.

Future work on JSCNR could concentrate on finding optimaltems. The proposed
decomposition resulted in awP-hard pricing problem, which caused time issues.
Future work could consider other decompositions with dagdess complex pricing
problems.

It would also be relevant to consider metaheuristics, égal search methods. The
heuristics presented in this work could be used as base Blmetistics. It is expected
that metaheuristics would improve the solution quality,wauld also have greater run-
ning times. Metaheuristics are expected to provide a gdedltive with performance
lying between that of the greedy heuristics and of the BCBrétyn with respect to
solution quality and time usage.
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The Nordic DataGrid Facility (NDGF) provides a grid commgtisystem connected
primarily by a Tier-1 network, i.e., a network which can bedisvithout purchasing
IP transit or paying settlements. The Tier-1 facility ogedaby NDGF differs signifi-
cantly from other Tier-1s in several aspects. It is not ledat one or a few locations
but instead distributed throughout the Nordic countriglsoAit is not under the gover-
nance of a single organization but is instead built from veses under the control of
a number of different national organizations. Being phgijcdistributed makes the
design and implementation of the networking infrastrugtchallenge. To assess the
suitability of the network usage and the capacity of thedinke present a model of the
bandwidth needs for the NDGF Tier-1 and its associated Z&tes. The model takes
different types of workload into account and calculatesdvédth requirements based
on the workload type characteristics. The model differsnfiwork in the literature,
which assumes full knowledge on each job and its data fileireopents rather than on
workload types. The model of the distributed Nordic Tieslged as a strategic tool
to calculate an optimal placement of workloads, to measwedrhpact of including
caches on different locations and to suggest better resalistributions.

Key words: Grid Computing; Scheduling; Tier-1; Mathematical Prognaimg; Opti-
mization

7.1 Introduction

Dimensioning the network for a Tier-1 is always a challenggrticularly when the
Tier-1 is distributed as is the case of the Nordic Tier-1 apsat by Nordic DataGrid
Facility (NDGF). The Tier-1 is defined as a network which canused without pur-
chasing IP transit or paying settlements - contrary to eigy-4s where IP transit must
be purchased to reach parts of the network. See Kurose arsd[RR# for more de-
tails on Tier networks. The NDGF system is built from res@srander the control of
a number of different national organizations. The NDGF -Ti@onsists of the seven
biggest Nordic compute sites (denoted the dTier-1s) witfoeiated Tier-2 resources
as far away as Slovenia, see Fischer et al. [71]. Storage@ng@wting resources are
widely scattered with a few central services. This gives ynaaivantages in redun-
dancy especially for 24x7 data taking, as reported by Fiedd §69]. Figurd 7.1l shows
the storage and compute sites participating in the NDGFesysincluding available
resources as of the second quarter of 2009.
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Figure 7.1: NDGF distributed storage and computationaiset the second quarter
of 2009. The amounts of compute, disk and tape resourcesy)fa each site are
reported. Compute resources are given in KSI2K and stoeggrirces in terabytes.
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NDGF uses a dedicated optical network between all dTieteks €ind the Slovenian
Tier-2. The remaining Tier-2 sites are connected via thénat research network.
Figure[Z.2 shows how NDGF sites are interconnected withiapemphasis on Swe-
den; red lines depict dedicated private network lines andenta lines depict public
lines. The main network infrastructure forms a star. Alladfitbm the central NDGF
router to each country travels on a single link, which makeasy to calculate the load
between the central NDGF router and the country.

HPC2N PDC NSC

== e

UPPMax
_i
IP

DK FI NO sI

UNET

Central
NDGF
Router

NORDUnet

CERN SARA Central host(s)

Figure 7.2: NDGF network layout with emphasis on Sweden. IRe depict dedi-
cated links and magenta lines depict public links.

The distributed Nordic Tier-1 is a grid computing system.dduesearch has been con-
ducted on deciding the activity in grid context; the reshamncentrates on scheduling
jobs for execution on grid sites. Especially online schiwdpils investigated in the lit-
erature, i.e., the problem of assigning a job to a site wHezeassignment takes place
at job arrival time or when the site becomes available, sgefoster and Kesselman
[76]. Work in the literature on activity in grid computingsaasnes detailed information
on where all data files are stored, on which files are requiyezhlsh job, on when each
job is executed, on when data is transmitted etc., see eegwdik of Chakrabarti et
al. [42], Ranganathan and Foster [165], and Tang et all [M%Bjen dimensioning the
distributed Nordic Tier-1 we do not have detailed inforraaton the grid activity. We
do not have a specific order of the single jobs to be executedddt site, and we do
not know the specific files required by each job. Instead, wawnkiine job type mix
at each site and the amount of data reads and writes requireddh job type. Also,
we initially do not want to change job or data placement,eathe wish to calculate
bandwidth requirements given the current activity. In thésy, this paper differs from
work in the literature performed on bandwidth requiremémtgid computing context.
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Formalizing the NDGF network provides us with a number ofaguns to calculate
the network usage. This is of the network and its capaciti&fs. gather the calcu-
lations into a mathematical model, which is used to analymnges to the activity
of the distributed Nordic Tier-1. In this way we can use therfalization to identify
bottlenecks in the network with the current activity andderitify future bottlenecks
when changing the activity. The bottlenecks can help usdggudw to extend the dis-
tributed Nordic Tier-1 with respect to storage and compesources and bandwidth
availability. Furthermore, we believe that the formaliaatcan be viewed as a general
framework, which can be applied to any distributed Tier-thwanly few changes to
match specific data reads and writes.

This paper is organized as follows. First in Secfiod 7.2, wesent the calculations
of bandwidth requirements for the distributed Nordic TlerFirst some assumptions
on activity in the network is made. Then we analyze site abdity and general job
requirements. From this we present a general frameworkdtmutating bandwidth
usage. Finally, the section presents the job types preséin¢ INDGF network. Based
on the equations from Sectifn V.2, we calculate the actuadwigth requirements in
the NDGF network in Sectidn_4.3. The results seem to reptesahlife activity well.
We gather the equations for calculating bandwidth usagesimhathematical model in
Section_’Z#. The model is used for calculating changes irattieity of the NDGF
network such that the maximal network link load is minimizedle investigate the
impact of changing the placement of jobs according to ndtwsage and according to
users of the system. We discuss and investigate the effeatdding a basic caching
mechanism, and finally we analyze if changing the distrdoutf storage and compute
resources can lower network usage. Sedfioh 7.5 discussesittectness of the model
for calculating bandwidth usage. It also summarizes theltesf imposing changes
to the network activity and suggests interesting futurdyaes. Finally, the section
proposes future work to be performed in order to ensure aggrewodel and an optimal
utilization of the distributed Nordic Tier-1.

7.2 Calculating network requirements

We wish to introduce a model to calculate an estimate of badttwequirements by
the distributed Nordic Tier-1. For this we need to analyze fammalize all data trans-
missions from workloads, data reads and data writes. Waddare divided into jobs,
where each job type has specific data requirements. In ttlioseve analyze the sites,
bandwidth requirements and job types.
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7.2.1 Basic assumptions

Before presenting a model of bandwidth usage in the NDGF orétwve need to in-
troduce some basic assumptions on placement of jobs, wlikwlaich files are trans-
mitted through the network, etc. Currently, NDGF does neehdetailed information
on which data files each job requires, or on exactly how or wjbbs are received.
This information, however, is required before bandwidtagescan be calculated. The
following assumptions compensate for the lack of inforratiThey are based on ex-
periences of NDGF administrators and should reflect réaklitivity well.

All sites are occupied up to their efficiency, i.e., we assuarsufficient amount
of job and data availability in the system at any time.

Data is randomly and uniformly distributed over all stagaifes, i.e., the amount
of data available at a specific storage site is proportianihé size of the storage
site in relation to the total amount of storage in the system.

The characteristics of the different job types is knowa,, iwe know in advance
how much data a job consumes and generates and we know howcaoapyte
resources are required for each job type.

The job mix at a site is known in advance, i.e., we know how yna@rcent a
specific job type spends of the available compute time.

Jobs are spread temporarily and uniformly across the. siteis means that we
do not have bursts of a specific job type.

Traffic flows directly between the storage site and the cdmpite where a job
is executed. No intermediate servers are involved. Thisfadt the case for the
NDGF setup.

The caching mechanism in the ARC grid middleware, see tteal. [65], is
not taken into account. The ARC middleware employed by ND@Fts AT-
LAS computations includes a caching mechanism that carifisigmtly reduce
network traffic, see Behrmann et &l. [34]. Modeling the intpafcthe caching
mechanism is difficult without any empirical evidence on wfect the cache
has on different job types.

Later in this paper we discuss how changes to those assumajitigpact the model.



7.2 Calculating network requirements 145

7.2.2 Site characteristics

For a sites, we assume to know the amount of installed tapé)( the amount of
installed disk D®), the amount of compute resources for each of the two Tiéfs (
and C*2) and the compute efficiency for each Tier in percént{( e < 1 and0 <
e’2 < 1). Some NDGF sites act as both Tier-1 and Tier-2 sites. Thidiswe allow a
site to have a number of compute resources and efficiencie¢etd, 7" and D denote
the total amount of CPU, tape and disk in the system, reshyti

7.2.3 Job characteristics

NDGF considers a number of different job types. For each yple § we assume to
know the amount of CPU required to run the jaB;{, the amount of data read from
disk while executing 1), the amount of data read from tape while executifig;{,
the amount of data written to disk while executing@;), and the amount of data
written to tape while executingZ(O;).

Each site runs a special job mix; a job typé supposed to occupy a certain fraction
of the available compute time. We |étdenote the total set of job types in the system.
Let f;’ denote the fraction for job typgon the Tiers resources at site. We assume
thatheJ f;i =1, i.e. that all jobs of each type are executed.

We can now calculate the amount of data to be read from antewtid disk and tape at
a sites. Each job typej needsD1; data from disk and runs fdg; CPU seconds (this
could be any general measurement of CPU performanceilkeSpecmarks Integer
year 2000 (KSI2K)182]). ThereforeDI;/R; denotes the amount of data a jgb
requires per CPU second. The number of CPU seconds a job égoées on a site
is calculated as‘;‘i = fj"'esi C*i, i.e., the fraction of the resource that runs jobs of
type ;7 multiplied with the efficiency times and with the total amoohcomputational
resources. Now, the amount of required data for all comjmutaibn a site is given by:

. DI
DI => Y C;ZFJ?

JjE€J ie{1..2}

Similarly, we can calculate values for tape réaff, disk write DO® and tape write
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TO? for each sites:

TR = )Y C“

jeJ ie{1..2}
Doy = > > C“

Jje€J ie{1..2}
TO:; = > > csz

jeJ ie{1..2}

7.2.4 Bandwidth requirements

Parts of the data at a sitecan be read and written locally. Assuming a uniform distri-
bution of data over the sites, the part that can be read antéwtocally corresponds

to the fraction of storage available ain relation to the total amount of storage in the
system D¢/D andT/T). The amount of data, which cannot be read locally by site

is expressed as:
. . D—D? T —=T°
BI& = DIg—F—+TI¢

Similarly, the amount of data sitemust write to other sites is formulated as:

\ D - D* T-T"
BO = DO =—5— +TO

Furthermore, other sites will read from and write to the d@iskl tape resources at site
s. Again the amount corresponds to the relation between ttaliad disk and tape
capacity ats and the total installed capacity)¢ /D andT*/T). The amount of data,
which other sites must write to siteis defined as:

BI}, = —
o= > (DO 5 + TOL >
teS\{s}
Similarly, we can calculate values for reads from sitey all other sites:
Ds Ts
BO}, = DIfp—
05- ¥ (it +riey)
teS\{s}

Finally, we need to take traffic external to NDGF into accouAgain the same ar-
guments as before apply and the amount of external traffierigpon the relation
between installed disk and total installed capacity:

DS
BI}; = Blp 7
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The input bandwidth requirements for a sitbecome:
BI* = BI} + BI3 + BIj,

For bandwidth out of a site, we derive a similar equation:

S

, \ , D
BO* = BO: + BO} + BOp —

The bandwidth requirement for a site is then the maximurB 6f and BO*.

As output the model gives the average network throughpuséegaassuming that all
compute resources are occupied up to their efficiency witktrain mix of jobs. It will
not take burst into account; neither will it include any dwead caused by transport
protocols.

7.2.5 Jobtypes

Table[Z.1 forms the basis for calculating bandwidth requeets in the distributed
Nordic Tier-1. The table holds information on how much a jgpet takes up Tier-1
and Tier-2, respectively, in percent. Furthermore, théetgives information on run
times, disk reads and writes, and tape reads. The instacicel@s no tape writes. Itis
noted that three job types are present in the distributediNdiier-1: ALICE, ATLAS
and CMS. The job types stem from the experiments performettidy arge Hadron
Collider (LHC) by the European Organization for Nuclear &ash (CERN). Each of
the three experiments is expected to generate huge amdutataphence both scien-
tific work on the data and data storage itself is distributeddvwide on grids. One of
these grids is the NDGF network. For more details on the LH@2erments, we refer
to Shiers[[176] and the project homepagel [41]. For more detai the relationship
between NDGF and CERN, we refer to Anderlik et al. [9] and tledbsite of NDGF
[154].

7.3 NDGF bandwidth requirements

The calculations of bandwidth usage from Secfion 7.2 aréexb the current NDGF
setup. The outcome can be seen in Tablé 7.2, Table 7.3 ane[1ahl Tableg 712 and
[7.3 display job and data distribution, respectively. Thelfofvs Table Z# displaying
network usage. The placement of jobs and data is given inregyaherefore the
interesting part is the resulting network usage. The ndtviaffic seems to reflect
real-life activity well. The link between the central NDG&uter and Sweden has high
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Job name Tier-1 | Tier-2 | Runtime | Diskin | Diskout | Tapein
ALICE analysis | 20% | 50% 1 1000 10 0
ALICE recon 40% 0% 5 10 100 1000
ALICE MC 40% | 50% 15 10 10000 0
ATLAS analysis| 20% | 50% 1 100 100 0
ATLAS recon 40% 0% 1 10 100 1000
ATLAS MC 40% | 50% 12 100 500 0
CMS analysis 20% | 50% 1 100 100 0
CMS recon 40% 0% 2 100 100 2000
CMS MC 40% | 50% 12 100 500 0

Table 7.1: Job information used to calculate network uskgst column holds the job
name. This is followed by the expected percentage eachkels tgp Tier-1 and Tier-2.
Then comes the expected run time, the estimated amountlofeisls and writes, and
finally the estimated amount of tape reads. The instanceshmdape writes, which
thus have been omitted from the table.

load compared to the remaining links, which is caused by thaynsites in Sweden.
Generally, network traffic is distributed according to cantgpand resource availability
in each country. To avoid network bottlenecks it is intaregto investigate if changes
to job and data placement could distribute traffic more gvaantoss the network. This
is investigated in the following section.

7.4 Analyzing changes to the distributed Nordic Tier-1
network

The distributed Nordic Tier-1 is formalized into a matheizatformulation to inves-
tigate the effects of changing different network or siteisgs, such as job placement,
data distribution, introduction of caches etc. The goalhaf tnodel is to reduce the
maximal link load in hope of distributing bandwidth requirents more evenly across
the system. The constraints ensure that job placement distéoution, bandwidth
limitations and the network topology are satisfied. The transs are formed by the
formalization of bandwidth requirements in Section] 7.2. eminimizing the maxi-
mal link load we want to impose changes on one or several afdhstraints. This is
done by introducing variables. An example is when job plasetnms not fixed. The
constraints of the mathematical model would then stateataibs must be executed
and that no compute resources are exceeded.

Considering the introduced notation, the problem of miaing the maximal network
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Tier-1 | ALICE ATLAS CMS | Total

DK 240 240 480
Fl 280 280
NO 410 348 758
SE 727 983 1710
SL

Sum 1657 1571 3228

Tier-2 | ALICE ATLAS CMS | Total

DK 0
Fl 666 666
NO 325 325
SE 624 925 1549
SL 600 450
Sum 624 1700 666| 2990
Total 2281 3271 666 6218

Table 7.2: The given distribution of job execution. The fastumn holds the name of
the compute site. Next follows the amount of compute ressiiit KSI2K dedicated
to each of the three job types. Finally, the sum of computeuess is given.

load (B > 0) can be formalized. The mathematical model is:

min B (7.1)
s.t. B > BI® Vs e S (7.2)
B > BO? Vs e S (7.3)

BI° = BI}. + BI}, + Bl Vs e S (7.4)

BO?® = BO¢ + BO{, + BO§, Vs e S (7.5)

BI¢, = DIS(D — D*)/D+TIE(T —T%)/T VYseS  (7.6)
BO{, = DOL(D — D*)/D + TOL(T —T%)/T V¥seS  (1.7)
BI5 =Y (DO -D'/D+TOL-T"/T) VseS§  (1.8)

t#s
BO; =Y (DI, -D'/D+TI,-T'T) VseS (7.9
t#£s
DI& =Y Ci"-DI;/R; Vse S (7.10)
7 )

TIG =YY C5' - TIL/R; Vse S (7.11)
7 i
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Disk Tier-1 | ALICE ATLAS CMS | Total

DK 150 150 300
Fl 97 97
NO 251 185 436
SE 310 681 991
SL 0
Sum 808 1016 0| 1824
Disk Tier-2 | ALICE ATLAS CMS | Total

DK 0
Fl 205 205
NO 91 91
SE 148 454 602
SL 200 200
Sum 148 745 205| 1098
Total 956 1761 205| 2922
Tape ALICE ATLAS CMS | Total

DK 150 150 300
Fl 127 127
NO 250 128 378
SE 578 517 1095
SL 0
Sum 1105 795 0| 1900

Table 7.3: The given distribution of data storage. First,tame of the storage site is
given. Then follows the amount of stored data for each jole typterabytes. Finally,
the amount of stored data is summed.
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Site/Country | Network load
DCSC/KU 1.5 Gbps
Denmark 1.5 Ghps
CsC 1.0 Gbps
Jyv 0.0 Gbps
Finland 1.0 Gbps
uiB 1.3 Ghps
uio 1.1 Gbps
Norway 2.2 Gbps
HPC2N 1.8 Gbps
LUNARC 0.6 Gbps
PDC 2.3 Ghps
NSC 1.8 Gbps
UPPMAX 0.6 Gbps
Sweden 4.4 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.4: Network load between sites and the NDGF main rotiee first column
holds the name of the different sites and the second coluras network loads. Note
that the total amount of traffic between each country and tB& KN main router is
given.

DOy =YY "C;"-DO;/R; Vse€S (7.12)
7 7

TOS = Z Z C:"-TO;/R; VseS (7.13)
i

B>0 (7.14)

The objective function{7]1) minimizeB8, which is the maximal network load. Con-
straints [[Z.P) and(7]3) ensure that the maximal networ#l IBas greater or equal to
all link loads in the network. The constrainis ([7.4) and)&&lculate the amount of
in- and outgoing bandwidth usage at each site. Constrafi$ 4nd [[Z.F7) define the
amount of data being read from other sites and written toraites by sites, respec-

tively. The next two constraintg (7.8) arid ([7.9) define th@ant of data being written
to and read frons by other sites, respectively. Next, we have the total amofint
disk data[(7.10) and tape dafa(4.11) to be read by asi@orrespondingly, the total
amount of disk datd (7.12) and tape d&fa (I7.13) to be writedefined. Finally, the
bound[[Z.I%) ensures that the variable indicating the maldink load is non-negative.

The model can obviously be solved in constant time; giverollpm instance, network
usage is immediately calculated and the model returns thesaamount of bandwidth
travelling on any link. In the following sections, we charje model slightly to repre-
sent changes in the problem instance. For example, givgalihgpes to be calculated
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and a fixed data placement, it is interesting to find an optjptablacement. In this
case, we must introduce some variables in the model to reprgs placements.

The resulting models of the following analyses are all stllbg CPLEXversion 10.2
[102], even though not all problems aréP-hard. The reason for this is that the
emphasis of the following analyses is on the resulting badifhusage and not on
solution techniques. The problem instances are small ansistoof eleven sites and
three job types, so eveXP-hard problems are solved very quickly.

7.4.1 Optimizing job placement

The current job placement from Sectiion]7.3 may not be optiriéthout imposing
any changes to resources on each site or to job propertiesy were-arrange the job
placement such that the maximal link load is minimized. Tdusresponds to trans-
forming 0 < f;‘i < 1into a variable, which denotes the percentage ajjtdkes up
compute resources at site Tier<. To ensure that a job is fully executed and that
compute resources at each site are not exceeded, we ingrtitkiextra constraints:

Y Cofyi=R; VielVjelJ
seS
Y Cy<Ct VielVseS
jeJ

The added variableﬁj”' and all constraints in the modél(¥.1)-(7.14) are lineathso
resulting problem is polynomial. Results of optimizing jplacement are seen in Ta-
ble[7.5 for job placement and in Taljle 7.6 for network usagee Maximal network
link load is reduced from 4.4 Gbps to 3.5 Gbps. The link betwtbe central NDGF
router and Sweden still carries more data than the othes,linkich is not surpris-
ing because Sweden has more compute resources and thugssemd produces more
data. Link loads between the central NDGF router and the irentacountries have
generally increased; minimizing the maximal link load asia more evenly distribu-
tion of data transmissions. This is beneficial for NDGF, lsegthey in this way may
avoid or decrease the risk of network bottlenecks.

7.4.2 Virtual organizations

NDGF requires all participants of the system to\higual Organizations (VOs)The
national organizations supplying resources are thustexgid as VOs. Similarly each
user of the system registers as a VO. The three job types sytemALICE, ATLAS
andCMSrequire both Tier-1 and Tier-2 resources. This is trandl@éo having six



7.4 Analyzing changes to the distributed Nordic Tier-1 netw ork 153

Tier-1 | ALICE ATLAS CMS | Total

DK 480 480
Fl 280 280
NO 130 628 758
SE 1527 183 1710
SL

Sum 1657 1571 3228

Tier-2 | ALICE ATLAS CMS | Total

DK 0
Fli 666 666
NO 325 325
SE 624 259 666| 1549
SL 450 450
Sum 624 1700 666| 2990
Total 2281 3271 666 6218

Table 7.5: The result of optimizing job placement. The tablews the job placement.
Comparing to the initial job placement in Tablel7.2 it is ribtieat all job types are fully
executed and that all compute capacities are satisfied.

Site/Country | Network load
DCSC/KU 1.8 Ghps
Denmark 1.8 Ghps
CSC 1.0 Gbps
Jyv 0.0 Gbps
Finland 1.0 Gbhps
uiB 1.4 Gbps
uio 1.2 Gbps
Norway 2.4 Gbps
HPC2N 1.9 Ghps
LUNARC 0.6 Gbps
PDC 2.0 Gbps
NSC 1.9 Gbps
UPPMAX 0.6 Gbps
Sweden 3.5 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.6: The result of optimizing job placement. The tabhlews network usage.
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users (VOs). In this analysis, we wish to assign a VO (job ypesach site. This,
however, is not possible with the current workload; henaegbal is modified into
minimizing the number of job types per site. The secondagl goto minimize the
maximal network link load. In the mathematical formulatiwe introduce an integer
variablez’ € ZZ, which denotes the number of job types using sjt&ier-i. We also
introduce the binary variablﬁ;?i € {0, 1} denoting whether or not jopis using sites,
Tier-i. The following constraints are added to the model:

[h<al VieJVseSviel

Zm‘;i—lgmi Vse S,Viel
jeJ

The first constraint says that if a job type is placed on sit€ier-;, then the variable
xj” must be set. The next constraint says tHais set to the number of job types minus
one using sites, Tier<. The first job type using the site and Tier is "free”, because w
wish to assign exactly one (or as few as possible) VO(s) th sie€.

The objective is changed such that a penalty is added foreedVO (job type) using
a site and Tier. Led be the large penalty. The objective is:

min Mzt + B
> Ma

sesiel

Adding these constraints and the new objective functionlt®én anAP-hard prob-
lem; this can be seen by reduction from the two-partitiorpngblem, see Garey and
Johnson[[89]. The problem of minimizing the number of VOs gitr was solved very
quickly, though,CPLEXfound an optimal solution in less than a second.

Results of optimizing VO distribution are seen in Tableg o jbb placement and in
Table[ 7.8 for network usage. The maximal network link loadkuced from 4.4 Gbps
to 3.7 Gbps. The link between the central NDGF router and $waestill carries the
larger network load, which is as previously described dugvteden’s larger compute
and storage capabilities. The maximal network link usagedsiced because the orig-
inal job placement was not optimal. Comparing with the optifeb placement in
Section 7,411, the maximal network link load is actuallyreased from 3.5 Gbps to
3.7 Gbps. This increase is caused by the extra constraintasing jobs according to
VOs.

Many VOs take interest in limiting the number of VOs usingleaite. The reason for
this is partly to get a better overview of activity in the grahother reason is to avoid
competing for resources with other VOs. This analysis shbasif workloads were to

be distributed according to VOs, then the VOs must accepteedse in the utilization

of the system.
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Tier-1 | ALICE ATLAS CMS | Total

DK 480 480
Fl 280 280
NO 758 758
SE 1377 333 1710
SL 0
Sum 1657 1571

Tier-2 | ALICE ATLAS CMS | Total

DK 0
Fli 666 666
NO 325 325
SE 624 925 1549
SL 450 450
Sum 624 1700 666| 2990

Total ALICE ATLAS CMS | Total
2281 3271 666| 6218

Table 7.7: The result of placing jobs according to Virtuab@mizations. The table
shows the job placement. Comparing to the initial job plagenin Table 7P it is
noted that all job types are fully executed, but the numbeliféérent job types at each
site is minimized.

Site/Country | Network load
DCSC/KU 1.8 Gbps
Denmark 1.8 Ghps
CsC 1.0 Gbps
Jyv 0.0 Gbps
Finland 1.0 Gbps
uiB 1.4 Gbps
uio 1.3 Ghps
Norway 2.6 Gbps
HPC2N 1.9 Gbps
LUNARC 0.6 Gbps
PDC 2.1 Ghps
NSC 1.9 Gbps
UPPMAX 0.6 Gbps
Sweden 3.7 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.8: The result of placing jobs according to Virtuab@mizations. The table
shows network usage.
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7.4.3 Cache considerations

In this section we analyze the effects of adding caches tméte@ork topology. So
far time has not been part of the model or the analyses. Haweten working with
caches the time dimension is important. No information @ilable on the order of
job execution. Hence we consider a discrete time represemtnd in each time slot,
the job mix given in e.g. Sectidn 7.3 is calculated. When diagi what to store on
a cache, we assume that the jobs in each time iteration aceitexkat the same time.
Cache replacement strategies such as "first in first out”,stnused”, "least used”,
"last recently used”, etc. are irrelevant with our time esg@ntation; we assume that
the cache contents never change.

This strategy does not resemble the caching mechanism iAR@ grid middle-

ware, because of the simplified time representation. As iowed previously in Sec-
tion[Z.2.1, we do not consider ARC caching. However, we hdye this simpler
caching approach gives a good picture of any potential effiecetwork usage.

First we consider how network usage is changed, when we adtsdo the current
job placement from Sectidn 7.3. This is followed by addinghes to the optimal job
placement, see Sectibn 7.4.1.

7.4.3.1 Adding caches to current topology

Assume that the first iteration of job execution in the NDGBtegn is based on the
job placement and data distribution illustrated in Sedifdh Caches of a certain size
are added to each site and data traffic is then re-calculatedding to job placement,
data distribution and data stored on caches. The conterkeafaches are assumed
to be such that the maximal network link load is minimized.eSfically, whene?,
and<?. are the amount of cache on siidor disk and tape, respectively, bandwidth
requirements for input and output data are calculated as:

B[gjzpjg&;*% _,_T[(s;%

s _ s D=D°—-¢}, s T-T°=C1
BOy, = DO 22 "% | 7og -1~

How big an impact caches have on network usage depends oiz¢hefshe caches.
We assume that the caches each can hold 200 units of dataduning caches does
not impose any new variables to the model, which hence canlbedsinO(1) time.

The results of adding caches are seen in Table 7.9. The memxéatveork link load is
reduced from 4.4 to 3.8 Gbps using cache. Generally, thectiexisize depends on the
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size of the cache: if all data is replicated and stored onaahes, the network usage
would be minimized and would only consist of generated datafjob computations.

Site/Country | Network load
DCSC/KU 1.5 Gbps
Denmark 1.5 Ghps
CsC 0.9 Gbps
Jyv 0.0 Gbps
Finland 0.9 Gbps
uiB 1.3 Ghps
uio 1.0 Gbps
Norway 2.0 Gbps
HPC2N 1.7 Gbps
LUNARC 0.5 Gbps
PDC 2.1 Ghps
NSC 1.7 Gbps
UPPMAX 0.5 Gbps
Sweden 3.8 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.9: The resulting bandwidth usage when adding caohtbe initial job place-
ment and data distribution from Taljle7.2 7.3.

7.4.3.2 Changing job execution according to cache

Assuming that the caches are included in the network, wegshfob placement such
that the maximum network link load is minimized. The modifica of bandwidth

requirements was illustrated in the previous section. Tadifitation of job placement
was illustrated in Sectidn 7.4.1. The resulting problenoilypomial; adding caches to
the model changes the calculations of bandwidth usage utithiposing new variables
and optimizing job placement introduces linear variableg @onstraints to the model.

The results of adding caches and optimizing job placemenbeaseen in Table 7110
for job placement and in Table 7]11 for bandwidth usage. Thgimal network link
load is 3.0 Gbps between the central NDGF router and Swedemp@ring with the
optimal job placement without cache, the link load is redlftem 3.5 to 3.0 Gbps
by using the caching mechanism. Again the reduction of netwraffic depends on
the size of the caches. With the 200 data unit caches, thetiedwf the maximal
link load is significant. This indicates that it is importdat the model to include the
ARC caching mechanism in order to reflect real-life netwoskge. It also indicates
that investing in caches may be a relatively inexpensive efagnsuring that network
traffic does not exceed network capacities.
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Tier-1 | ALICE ATLAS CMS | Total
DK 480 480
Fl 280 280
NO 152 606 758
SE 1505 205 1710
SL 0
Sum 1657 1571 3228
Tier-2 | ALICE ATLAS CMS | Total
DK 0
Fl 666 666
NO 325 325
SE 624 709 216| 1549
SL 450 450
Sum 624 1700 666/ 2990
Total ALICE ATLAS CMS | Total
2281 3271 666/ 6218

Table 7.10: The result of adding caches and then optimizbgpjacement. Data is
distributed as seen in Talile I7.3. The table illustrates jabgment.

Site/Country | Network load
DCSC/KU 1.7 Gbps
Denmark 1.7 Gbps
CsC 0.9 Ghps
Jyv 0.0 Gbps
Finland 0.9 Gbps
UiB 1.3 Gbps
uio 1.1 Gbps
Norway 2.3 Gbps
HPC2N 1.8 Gbps
LUNARC 0.5 Gbps
PDC 1.8 Gbps
NSC 1.8 Gbps
UPPMAX 0.5 Gbps
Sweden 3.0 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.11: The result of adding caches and then optimizbgpjacement. Data is
distributed as seen in Talile 7.3. The table shows the reguiandwidth usage.
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7.4.4 Changing data distribution and capacity

Changing the storage capacity of sites and re-arrangirggitaedistribution may reduce
the maximal network link load. The changes cannot be impasetediately to the
NDGF network because of changes to storage capacities.tkeegh the total amount
of stored data in the system is not changed, it cannot be teghtat a site is willing to
move parts of its storage to another site. Hence this asalypierformed as a strategic
tool to measure optimal disk requirements for the job plaaenof Sectioh 713. This
corresponds to transforming® > 0 and7* > 0 (data and tape stored at each site
into variables in the mathematical model, such that all datlstributed:

ZDS =D
sesS

ZTszT

ses

Only linear variables and constraints are added to the mbdate the resulting prob-
lem is polynomial.

The result of changing the data and storage distributiorés $n Tablé 7,12 for data
distribution and TablgE7.13 for network usage. The maxinedvork link load is re-
duced from 4.4 Gbps to 3.7 Gbps. The maximal network load tthbe found on the
link between the central NDGF router and Sweden. The optitatd placement does
not distribute data more evenly across sites. Sweden, fomple, has a large amount
of compute resources but no data stored. In this way, theflork the central NDGF
router to Sweden only needs to carry data required and gexddrg jobs executed on
the Swedish sites. Not storing any data in Sweden is nostealfrom the results we
can conclude that both compute and storage resources dimeaicenly distributed - it
is not beneficial to only distribute storage evenly.

7.4.5 Changing job placement and compute limits

This analysis is used in a strategic context and considereffects of removing the
limits on the amount of compute resources at each site. Thkedompute requirement
in the system is not changed, only the placement of compsatrirees is altered. As in
the case for moving storage resources, it is not immediatedgible to move compute
resources from one site to another, hence the strategicenafithe analysis. The
placement of jobs is changed such that the maximal netwokkltiad is minimized.
The data distribution described in Section] 7.3 remains anghd. We transfory <
f;‘i < 1 (percentage job takes up compute resources at sitdier-)) into a variable.
Furthermore, we ensure that each job is fully executed, duhe upper bound on
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Disk Tier-1 | ALICE ATLAS CMS | Total

DK 473 473
Fl 174 543 717
NO 634 624
SE 0
SL 0
Sum 808 1016 0| 1824
Disk Tier-2 | ALICE ATLAS CMS | Total

DK 0
Fl 148 745 205| 1098
NO 0
SE 0
SL 148 745 205| 1098
Sum 956 1761 205| 2922
Tape ALICE ATLAS CMS | Total

DK 0
Fl 0
NO 1105 795 1900
SE 0
SL 0
Sum 1105 795 0| 1900
Total 2281 3271 666/ 6218

Table 7.12: The result of changing the distribution of ddtcement and of storage
capacities. Jobs are placed as seen in Table 7.2. The talstedtes data distribution.
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Site/Country | Network load
DCSC/KU 2.1 Ghps
Denmark 2.1 Gbps
CsC 2.5 Ghps
Jyv 0.0 Gbps
Finland 2.5 Gbps
uiB 3.2 Gbps
uio 1.5 Gbps
Norway 3.5 Gbps
HPC2N 0.8 Ghbps
LUNARC 0.6 Gbps
PDC 1.2 Gbps
NSC 0.8 Gbhps
UPPMAX 0.6 Gbps
Sweden 3.7Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.13: The result of changing the distribution of ddtcement and of storage
capacities. Jobs are placed as seen in Table 7.2. The tabstesdites network usage.

compute resources at each site:

N Ui =Ry VielVjeld
seS

All added variables and resulting constraints are lineande the resulting problem
can be solved in polynomial time.

Results of changing job placement and of changing compuyiacditees can be seen
in Table[Z.14 for job placement and in Table 7.15 for netwas&ge. The maximal
network link load is reduced from 4.4 Gbps to 3.5 Gbps congbéwethe initial job
placement in Sectidn_4.3. Compared to the optimal job placein Sectiof 7.4]1, the
maximal network link load has not been reduced. Hence, dhgrige distribution of
compute resources does not reduce network usage in the N{xBHrs

7.5 Conclusion

In this paper, we have formalized network usage in the disteid Nordic Tier-1 oper-
ated by the Nordic DataGrid Facility (NDGF) into a matheroaltimodel. Using the
model we have calculated network usage subject to job plantandata requirements
and network capacities. The model and the results can ontphsidered as a first ap-
proximation of what kind of network load NDGF can expect. ®ophthe assumptions
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Tier-1 | ALICE ATLAS CMS | Total

DK 474 474
Fl 0
NO 0
SE 1657 1095 2754
SL 0
Sum 1657 1571

Tier-2 | ALICE ATLAS CMS | Total

DK 0
Fl 0
NO

SE 1700 666| 2366
SL 624 624
Sum 624 1700 666| 2990
Total 2281 3271 666/ 6218

Table 7.14: The result of changing the job placements ancotercapacities. Data is
distributed as seen in Talile I7.3. The table illustrates jabgment.

Site/Country | Network load
DCSC/KU 1.8 Gbps
Denmark 1.8 Gbps
CSsC 0.4 Ghps
Jyv 0.0 Gbps
Finland 0.4 Gbps
UiB 1.1 Gbps
uio 0.6 Gbps
Norway 1.6 Gbps
HPC2N 2.0 Gbps
LUNARC 0.2 Gbps
PDC 2.1 Gbps
NSC 2.0 Ghps
UPPMAX 0.2 Gbps
Sweden 3.5 Gbps
PIKOLIT 1.7 Gbps
Slovenia 1.7 Gbps

Table 7.15: The result of changing the job placements ancgotercapacities. Data is
distributed as seen in Tallle ¥.3. The table illustrates orktwsage.
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behind the model can rightfully be criticized for being tample. Especially the as-
sumption on the uniform distribution of job types over tim@uestionable. One way to
deal with that assumption would be to only consider the j@et§hat causes the highest
network load. This would make the model a better fit for woestecloads. However,
it will be more important to take the caching mechanism of ARtd account, as this
mechanism has been reported to have a significant impactemiamy times popular
files are downloaded to a site. In order to extend the modek®d¢aching into account,
a more in-depth analysis of the caching mechanism of ARCsiedoke performed first.

Though the model may be simplified, it still provides us witle {possibility of an-
alyzing the effects of changes to the system. We showed tthahighly beneficial
to consider job placement carefully, because network requénts heavily depend on
this. The users of the system (denoted Virtual Organizat{d®Os)) take interest in
dividing workloads on the system according to their job reixe order for them to
more easily get an overview of activity in the NDGF system. 8hewed that placing
jobs according to VOs most likely increases network requéets, thus this placement
strategy is not attractive for the overall system. As prasip mentioned, the simpli-
fied model does not consider the ARC caching mechanism. \&g toi compensate
for this by introducing a very simple cache strategy, whiethuces network traffic sig-
nificantly. Finally, we used the model to make more strategalyses of the network,
i.e., we investigated the effects of changing storage antpate capacities in the sys-
tem. Network usage is lowered when data storage is optindzedrding to a given
job placement, while changing the compute capacities doesedluce the maximal
link load.

The model has been modified to reflect the mentioned analysbe BIDGF system,
and the modifications generally increase the complexithefidroblem. In most cases
the resulting problem is polynomial, so the problems sca# and can be solved for
much larger systems than the NDGF system. Placing jobs @diogpto VOs resulted
in an A"P-hard problem, which was solved very quickly, though. Weewel that the
problem is practically tractable even for larger instandgased on this we conclude
that the model can be used as foundation for the developrmgeheral strategic tools
for grid systems. It is noted that if we wish to find the optirjudd placemenand data
distribution, then the model becomes quadratic and pgssibte difficult to solve.

In the introduction of this work, we mentioned that partstod network used by the
NDGF system were shared with other users. This was illetras the magenta lines
in Figure[Z.2. Future analyses on the NDGF system could bedoedse the amount
of traffic on the public links. If NDGF wants to maintain thghit to use these links,
NDGF must ensure that bandwidth usage on the links nevekblmat other users.

At the time of writing it is not possible to compare the conipleodel to real world
measurements. However, NDGF system administrators haeel some differences
between the model and actual grid behaviour:
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 Currently, the main bottleneck of the system is actuakylétk of bandwidth be-
tween the compute element and the network. This issue ialsielbby upgrading
the hardware at sites.

* The assumption about a uniform mix of jobs is not alwaysexirr\We observe
that jobs of certain types come in bursts.

* The ARC caching mechanism has a dramatic effect on the anofdata trans-
ferred. This is not surprising considering our calculagion including a simpli-
fied caching strategy.

NDGF is currently investigating the deployment of monitgriservices to measure
bandwidth usage. With such measurements we can test thiitwadf our model.
Once the model has been compared to actual network usag®ssitilg calibrated to
reflect this, calculations of optimal job placements andisfribhution of storage and
CPU capacities will be re-performed in order to ensure aimgtutilization of the
distributed Nordic Tier-1.
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CHAPTER 8

Introduction to the
multicommodity k-splittable
flow problem

The problem of data transmission in a network can be reptedas a multicommodity
flow problem (MCFP). Many variants of the MCFP exist in orderdflect correspond-
ing real-life telecommunication problems. Examples as ttach data transmission
can only use a certain number of paths, each path can onlystofa certain number
of edges, the amount of data sent through the network muselénized, the cost of
sending data through the network must be minimized, etc.ri&teof multicommod-
ity flow problems arising in telecommunication context aresented and discussed in
the book by Resende and Pardalos [166].

The multicommodityk-splittable flow problem (ME@FP) represents the Multiproto-
col Label Switching problem, which limits the size of rogitables by gathering data
packets under a label[67]. The MEP isAP-hard and consists of routing all com-
modities through a network such that each commodity use®atkrpaths. Edges in
the network are capacitated and all edge capacities mustiséexd. Traditionally two
variants of MCFP problems are considered: minimizing theltoost of sending alll
commodities or maximizing the total amount of flow sent tlglothe network. This is
also the variants considered for the MEP in this part.
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This chapter is organized as follows. Section 8.1 desctibesnulticommodityk-
splittable flow problem. This is followed by motivating theigtence of the problem
by giving real-life examples in Sectidn 8.2. An overview obnk in the literature
performed on the multicommodity flow problem and especialtyk-splittable flow
problems is presented in Section]8.3. The contribution isf ttesis is described in
Section 8.4 and finally we discuss future directions on warknwlticommodityk-
splittable flow problems in Sectidn 8.5.

8.1 Problem description

The family of multicommodity flow problems belongs to the gpoof network flow
problems. In graph theory, a flow network is a directed graphsisting of nodes
and capacitated edges, where flow travels on edges withoaeding edge capacities
and where the amount of flow going into a node equals the amaiunitgoing flow.
Flow is routed from a start node (source) to an end node (dg&in). The objective
is typically to maximize the amount of flow routed through tiraph or to minimize
the cost of sending a fixed amount of flow through the graphhéncase of the latter
objective, a cost per flow unit is attached to each edge of taphg The described
network flow problems are polynomially solvable.

In multicommodity flow problems (MCFP) several flows (or cooulities) must be

routed through the network. Each commaodity consists of acgoand a destination
and possibly also a fixed amount of flow to route. It is assurhatlat least two com-

modities do not share both source and destination nodeyubecdherwise the problem
reduces to a regular network flow problem. MCFP is polynonat adding extra

(practically relevant) constraints may make the probJgf+hard. Such variants in-
clude the multicommodity unsplittable flow problem (MCuF®here each commod-
ity must use exactly one path to send its flow from its sourdestestination. Another

version is the multicommoditg-splittable flow problem (MEFP), where each com-
modity can use at mogtpaths to send its flow from its source to its destination.

A flow network is illustrated in Figurie 8l 1. Costs per flow usitd capacities are given
at each edge. Two commodities are to be sent: 4 flow units frota ¢; via at most 2
paths and 3 flow units from, to ¢, via at most 3 paths.

Table[8.1 shows all possible paths and their costs for thedwomodities. The
columnsComm. 1andComm. 2report optimal solutions for commodity 1 alone
and for commodity 2 alone, respectively. ColumBemm. 1 — Comm. 2 and
Comm. 2 — Comm. 1are optimal solutions if commodity 1 has highest priority
and if commodity 2 has highest priority, respectively. Hiyan column Optimal

an overall optimal solution is given. As illustrated thesend connection between the
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Figure 8.1: Example of a flow network. Two commoditi@sand2 are to be sent
through the network. The number of flow units to ship for eammmodity is denoted
Fi,i € {1,2}, and the maximal number of paths to use for each commodisristd
k', i € {1,2}. The cost per flow unit and capacity, respectively, are gatezach edge.
The objective is to minimize the cost of shipping the comrtiedi

costs of sending either of the commodities individually éimel overall optimal solu-
tion. The example shows that both commodities must be talkteraccount at the same
time when finding an optimal solution, which is a consequesfdde problem being
NP-hard.

| Flow

| Path [ Cost ]| Comm.1] Comm.2] Comm.1— Comm.2 [ Comm.2— Comm. 1] Optimal |
a-b-d-f 4 3 - 3 1 2
a-b-c-d-f 16 0 - 0 1 0
a-b-c-e-d-f 7 1 - 1 0 0
a-b-c-e-f 9 0 - 0 2 2
c-a-b-d 3 2 0 2 1
c-d 11 0 3 0 1
c-e-d 2 1 0 1 1

[ Cost | 19 [ 8 [ 52 [ 46 [ 42 ]

Table 8.1: Overview of paths and costs for the commoditi¢sgnre 8.1

8.2 Motivation

Flow problems have wide applications in many logisticaljyemns, where commodities
must be routed through a network. This includes traffic miodeh a street or railway
network, currency regulation in electrical circuits, distition of water in pipes, data
packets in a network, etc.
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An application for the M@FP isMultiprotocol Label SwitchingMPLS), which gath-
ers several data packets under a label in order to limit théngtables and to increase
the quality of data transmission. Also, encapsulating pec&f different network pro-
tocols and only making forwarding decisions based on thel&leliminates the need
for the network to support several data link layer technigleg For more details on
MPLS, we refer to the book of Evans and Filsfils[[67]. The cdssending data in-
creases with the number béibel Switch Path§L SP). By limiting the number of used
labels (i.e. paths) the total cost can be reduced. Howewemust still ensure that all
or as much data as possible is transmitted. This corresgoritle MCkFP; given an
upper bound on the number of paths to use, we either try to aéddta at the lowest
possible cost (minimum cost M&P) or we try to maximize the total throughput in
the network (maximum flow MEFP).

Another application for the MEFP is the transportation of goods e.g. via trains, where
the number of locomotives is limited. Assuming that eachagje has: locomotives
available for sending its goods to a destination, then at makfferent routes can be
used. This corresponds to the NMEP, where the objective is either to send all ordered
goods at the lowest possible cost (minimum costie) or to maximize the total
amount of goods to send (maximum flow MEP).

Though we have not applied the MEP in a grid scheduling context, the flow problem
is still highly relevant in telecommunications and datangmission problems. The
MCEFP is applicable to the MPLS protocol, which could very wedlised for data
transmission in the grid network. The MEP can be used for finding appropriate
network routes for data connections.

8.3 Historical overview

The MCFP is polynomial, but to the best of our knowledge naight-forward combi-
natorial algorithm is currently known for the problem, sem@en et al.[[52]. Instead,
solution methods for the MCFP from the literature include:

» Cost based decomposition
» Resource based decomposition

* Interior point methods

Lagrange relaxation is an example of cost based decompmsithere constraints en-
suring capacitated flow transmission are multiplied withagtange multiplicator and
moved to the objective function. In this way, MCFP can bed#d into separate flow
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problems for each commodity; see Wolsgy [204]. Other cosetalecompositions
include Dantzig-Wolfe decomposition, see Dantzig and W¥({H4]. Barnhart et al.

[26] presented a decomposition where the pricing problenegeged paths for each
commodity and the master problem merged paths into an dgetation.

Resource based decomposition focuses on omitting edgeitiapdy introducing re-
sources. Resources are attached to each edge and the sotaceconsumption for
each commodity is bounded from above. The total commod#purce consump-
tion on each edge is smaller or equal to the corresponding edgacity. In this way
each commodity can be considered individually as resowastrained flow problems,
which again can be solved using a subgradient method, seja Ahal. [5].

MCFP can be solved using interior point algorithm. The maximflow MCFP was
formulated as a quadratic problem by Kamath and Palinon j@Zh6]Jused two interior
point algorithms. The algorithms are also capable of sgltire minimum cost MCFP.

Baier et al.[[19] introduced the Multicommodikysplittable Flow Problem and proved
that the problem is\iP-hard in the strong sense for directed graphs, even in the sin
glecommodity case. They presented approximation algostfor the single- and mul-
ticommodity versions, specifically the maximum budgetstaainedk-splittable Flow
Problem. The authors noted thatkifis greater than or equal to the number of edges,
then thek-splittable MCFP degenerates to an ordinary MCFP.

Koch et al.[122] proved that the maximum flow MEP isA/P-hard in the strong sense
for directed and undirected graphs. They also showed thappmoximation algorithm
exists which is better thagl, unlessP = N'P. Koch et al. [123] also presented a two-
stage algorithm for the MEFP. The first stage is routing, i.e., deciding whicpaths

to use for each commodity, and the second stage consistekihgai.e., on assigning
flow on the paths. They argued that whiers constant, then the packing alternatives
can be constructed in polynomial time, and wheis part of the input they present an
algorithm with approximation factdrl — ¢), e > 0.

Truffot et al. [190] presented a branch-and-price algarifor solving the maximum
flow MCKFP to optimality. An edge-path model is presented, on whibheach-and-
price algorithm is applied. The pricing problem is a shdrigsth problem, which
generates paths for each commodity and which can be solyemlynomial time. The
master problem merges the paths into an overall feasiblgisnl
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8.4 Contribution

This part of the thesis considers the WP variant of the multicommaodity flow prob-
lem, where each commaodity can use at mogiaths to route its flow. The two con-
tributed papers are:

« Two- and three-index formulations of the multicommoditgplittable flow prob-
lem

e Comparing branch-and-price algorithms for the multi-coodity k-splittable
maximum flow problem

The first paper considers the minimum cost MRP, specifically the three-index model
and corresponding branch-and-price algorithm for theddE suggested by Truffot et
al. [190]. The three indices indicate a commodity, a pathapéth index, i.e., which
of the k paths we wish to consider. The paper proposes a heuristibdahree-index
branch-and-price algorithm, which tries to merge certaithg when more thalpaths
are used for a commodity. The heuristic boosts the perfocmanthe algorithm. The
main contribution of the paper, however, is a two-index jrobformulation and a cor-
responding branch-and-price algorithm. The two indiceléciste a commodity and a
path, respectively. The algorithm includes a somewhat dioatpd branching strategy,
which in worst case causes a large search tree due to manghiomgrcombinations
and due to many branching children. However, the two-indedeheliminates large
amounts of symmetry in the solution space and hence the lii@md-price algorithm
outperforms the three-index algorithm.

The second paper on the MEP considers the maximum flow version of the prob-
lem. The work from the former paper is applied to the maximww fversion, i.e.,
the heuristic is added to a three-index branch-and-prigerélhm and the two-index
branch-and-price algorithm is slightly altered to fit thexinaum flow objective func-
tion. The two-index branch-and-price algorithm has legzrassive performance when
maximizing flow, because the objective causes an increabe inumber of branching
combinations. Hence, we propose a new two-index branchpaod algorithm, where
the branching strategy consists of forcing and forbiddimg tisage of certain paths.
Forcing the use of a path is done by adding cuts to the mode&l$teforbid the usage
of certain paths in order to eliminate symmetry in the soluspace. This new branch-
ing strategy improves the performance of the two-index@tigm dramatically, hence
making it superior to the exact algorithms from the literatu
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8.5 Future directions

In this section we focus on future work to be performed on thekFMP when using
Dantzig-Wolfe decomposition.

Our work shows that especially two bottlenecks should besiciened in the proposed
branch-and-price algorithms for the MEP: the branching strategy and how to bound
the number of used paths. Future work on branching strategigld focus on reducing
the impact on the pricing problem and on producing a smadlarch tree. The latter
is reached by generating fewer branching children and owigirgy stronger bounds
in each branching child. We believe that adding branching @ua strategy worth
exploring even further.

The second bottleneck of the branch-and-price algorittertee way the number of
used paths is bounded. Tightening the formulation wouldrawe the performance
of the algorithms significantly. Adding cuts to the relaxedster formulation is not
trivial, because the variables of the model are linear. H@wyecuts could be used
to strengthening the path bound. We believe it could be @sterg to find cuts on
the binary variables in the original edge formulation or lie {non-relaxed) master
problem formulation. These cuts could then either be tensfl into working on the
LP-relaxed master problem or some binary variables fromotiiginal model could

be kept in the LP-relaxed master problem. Desaulniers ¢52).show how cuts on

original formulations can be used in a Dantzig-Wolfe decosifion context.

Another approach is to somehow decompose the problemdiffigr The decomposi-
tion should be based on a strong formulation. Furthermbshduld not cause pricing
and branching to be too difficult in order for the decomposito be beneficial.
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Abstract

The Multicommodity Flow Problem (MCFP) considers the effidi routing of com-
modities from their origins to their destinations subjeatapacity restrictions and edge
costs. Baier et all [19] introduced the Maximum-flow Multiemodity k-splittable
Flow Problem (MGFP) where each commodity may use at mopaths between its
origin and its destination. This paper studies M@-hard Minimum Cost Multicom-
modity k-splittable Flow Problem (MCME&FP) in which a given flow of commaodities
has to be satisfied at the lowest possible cost. The problsnaalications in trans-
portation problems, where a number of commodities must beedbusing a limited
number of distinct transportation units for each commodBgased on a three-index
formulation by Truffot et al.[[191], we present a new two-&xdformulation for the
problem and solve both formulations through branch-anckepiThe three-index algo-
rithm by Truffot et al. is improved by introducing a simpleunistic method to reach
a feasible solution by eliminating some symmetry. A novelrmhing strategy for
the two-index formulation is presented, forbidding subpgah the branching children.
Though the proposed heuristic for the three-index algoritihproves its performance,
the three-index algorithm is still outperformed by the timdex algorithm, both with
respect to running time and to the number of solved testrossa

Key words:Network flows; Transportation; Decomposition; Multicomdity flow;

9.1 Introduction

Various variants of the Multicommaodity Flow Problem (MCHijve been considered.
In an MCFP we are given a netwotk= (V, E') where each edge has a certain capacity
and possibly an associated cost. Furthermore there is & setronodities each of
which has to be sent from a starting vertex to an ending veffggically the goal is
one of the following:

1. (Minimum cost A given flow for each commodity is to be routed through the
network. The goal is to minimize the cost of sending all cordities through
the network.

2. (Maximum flow The goal is to maximize the flow through the network, i.e.,
there is no fixed flow demand for the commodities. Edge costsiaimportant
because the cost of sending flow is not taken into account.
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The MCFP can be solved in polynomial time, see €.gl [52]. Dft@wever, there are
extra conditions that have to be satisfied, making the prade>-hard. An example of
such a condition is an upper bound on the length of the pattstosship the flow. This
is relevant in telecommunication networks where the pathtmat be too long as this
may lead to delays. The length-bounded flow probledviB-hard even for a single
commodity [99]. Another condition could be that all flow faeh commodity must be
sent via just one path. This type of problem, which is oftenaded theUnsplittable
MCEFP, is introduced and provexiP-hard by Kleinberg[[121]. Yet another condition
is an upper bound on the number of paths used by a commaoditig. iSlealled the
Multicommodityk-splittable Flow Problem (MEFP). We consider the Minimum Cost
MCKFP (MCMCEFP), which for instance appears in the transportation sedtere
a number of different commaodities have to be dispatched iowa destinations at the
lowest possible cost. For safety reasons, it is not desirmbtlivide the commodities
into more thark routes.

Robacker([168] considered the flow maximization versiorhefMCFP. He describes
a decomposition of the problem which he hopes may lead to oatdrial methods

for solving the multicommodity problem. Ford and Fulker§@8] suggested a variant
of the simplex method, based on column generation, whelte fatplex step consists
in finding a shortest path. This is the forerunner of the galri@antzig-Wolfe decom-

position procedure [54]. Kamath and Palmpn [116] formuate Maximum MCFP

as a quadratic problem. They solved the problem in polynbtini@ using an interior

point algorithm. Their results also apply to the Minimum CRKCFP.

Barnhart et al[[26] considered the Minimum Cost UnspligdddCFP. They presented
a branch-and-cut-and-price algorithm in which they usddmao generation to find
bounds in the branch-and-boundtree, and they proposed braeehing rule allowing
new columns to be generated effectively. They concludettiiedr cuts only work for
problems where the commodity flow is large compared to the edgacities.

The Multicommodityk-splittable Flow Problem (MEFP) was introduced by Baier et
al. [19] who presented approximation algorithms for theg&nand Multicommodity
k-splittable Flow Problems, specifically, variants of thexnaum flow problem includ-
ing the maximum budget-constraingesplittable Flow Problem. The authors proved
that the Maximum Single-commodity-splittable Flow Problem isV/P-hard in the
strong sense for directed graphs. Finally, they note thakfe- |E|, a k-splittable
(s,t) flow problem degenerates to an ordinésyt) flow problem.

Koch et al. [128] proved that the Maximum MEP isP-hard in the strong sense
for directed as well as undirected graphs. They also shohatl tinlessP = NP,

no approximation algorithm exists which is better thfanin a later paper, Koch et
al. [122] consider the Maximum MKFP as a two-stage problem consisting of the
decision on the: paths (routing) and on the amount of flow on the paths (pagkifig
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k is a constant, they show that it suffices to consider a polyalkammber of packing
alternatives, which can be constructed in polynomial tirfek is part of the input,
Koch et al. propose an approximation algorithm with appration factor(1 — ¢),
e > 0.

Truffot et al. [192] used branch-and-price to solve the Maxin MCkFP. An edge-
path model was presented to which a branch-and-price gigorivas applied. The
subproblem for the column generation is a shortest patHgmosolvable in polynomial
time. More recent work on this problem is seenlin [190], whEngfot and Duhamel
also presented a two-index model for the Maximum AR, but they concluded that
the two-index model cannot be used in an efficient way in adiraand-bound scheme.
Truffot et al. [191] also introduced the minimum cost MEP. A three-index model for
the problem was solved using a branch-and-price algoritfine. algorithm is closely
related to the one presented|in [192] and [190].

The Minimum Cost MGFP can be represented by a directed gidph (V, E), where

V is the set of vertices anfl the set of edges. Each edge F has a nonnegative cost

c. and a positive capacity. attached. The edge capacities are positive since any edge
with zero capacity can be removed from the graph. The setrofheadities is denoted

L and each commoditiye L has a source;, a destinatior;, an amount to be shipped

F!, and a maximal number of routes the commodity maykise

Baier et al.|[[19] and Koch et al. [123] showed that the maxinsimgle-commodity-
splittable flow problem is\/P-hard in directed and undirected networks, respectively.
As a consequence, it j§PP-hard even to decide whether an instance of the minimum
cost single-commodity-splittable flow problem has a feasible solution.

In this paper, we compare various formulations of the Mimm@Gost MG:FP when
solved through branch-and-price. A two-index formulat®presented and it is com-
pared to the three-index model by Truffot et al. [192]. The-twdex model is based
on the work of Barnhart et al. [26] where the formulation isiefed from unsplittable
to k-splittable. The model was introduced for the Minimum Co<EARP by Gamst et
al. [87] and for the Maximum ME&FP by Truffot and Duhamel [190].

The main contribution of this paper is the branch-and-galgerithm for the two-index
model. The algorithm consists of a sophisticated brancstiragegy and a pricing prob-
lem which handles restrictions imposed by branching. Funtore, we introduce a
heuristic for the three-index model of Truffot et dl. [191hish improves the perfor-
mance of the three-index algorithm. Despite the improventmwever, the two-index
algorithm outperforms the three-index model. The threkeinalgorithm is capable of
solving instances with up to 1085 commaodities, 400 node$,1&20 edges. The two-
index algorithm solves instances with up to 2239 commaslid®0 nodes, and 1520
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edges.

The paper is organized as follows: Section] 9.2 containshheetindex mathemati-
cal formulation of Truffot et al[[191] and the corresporgibranch-and-price solution
approach. We present a heuristic to speed up the solutiaregsan this section. In
Sectior 9.8 we introduce the two-index mathematical foatioh and solve it through
branch-and-price. Both algorithms are tested and compar&ection 9.4 showing

that the three-index algorithm is outperformed by the twdex algorithm, both with

respect to running time and to the number of solved testries Sectioh 915 con-
cludes the paper.

9.2 Three-index model

The three-index model for the MCMKEP was introduced by Truffot et al. [191]. Let
P! be the set of possible paths for commodityThe variabler)' denotes the amount
of flow on pathp for the A’th path of commodityi. The binary variableygl decides
whether pathp for the h'th path of commaodity is to be used or not. The mod@iP3)
is:

kl
: . hl
min E E E CpTy,

lEL h=1 pe P!
kl
st Y Y > all<u. VeeE (9.1)
leL h=1 pep!
ah — oyt <0 VieL,h=1 K, Vp e P 9.2
D pyp_ € ) ] ape ()
doyht<i VieLh=1,..., Kk (9.3)
pE P!
kl
> ay > F VielL (9.4)
h=1 pe P!
ap >0 VieLh=1,....k',Vpe P
yht € {0,1} VieL,h=1,...,k',¥p e P!

The objective function minimizes the total cost. The egstf a pathp € P! is defined

as the sum of edge costs on the path. Constraint(9.1) is a capacity constraint, in
which é? indicates whether or not edgeis used by path. In (9.2), u, denotes the
capacity constraint on pafhwhich is defined as, = min{u.|e € p}, hence[(QR)
forces the decision variabig!’ to be set if there is flow on the corresponding pafth
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Constraint[(9.B) ensures that at most one path is used a@stkhgath of a commaodity
1, and finally [9.4) ensures that all commaodities are shipped.

The model is relaxed into an LP-model: first the binary vadalh”’ are LP-relaxed
to0 < yi* < 1. From [3.2) and(9]3) we are given, thg} /u, < yi' <1, u, > 0.
Settingy;! = x)' /u,, does thus not violate any constraints, instead the foriionlés
simplified to only consisting of one type of variables andstoaint [9.2) is eliminated.
The modelLP3)is:

K
: E § : § : hl
min Cpl‘p

leLhzlpePl
ZZZ(SEJC <u, VeeFE
leL h=1pe P!
L
p _ l
— <1 Vie L,h=1,...,k
Up
pEP!
k’l
o> el >F Vel
h=1peP!
aht >0 VieLh=1,...,k',Ype P!

Model (MIP3), and thus als@LP3), cause symmetry in the solution space asithe
index may result in equivalent solutions being treated tisréint solutions. For exam-
ple, consider a commoditywhich uses two pathg, andp,. Now, the two solutions
zll =1, 220 =2andz,) =2, 22' = 1are treated as different solutions though they
use the same paths. To ellmlnate some of this symmetry, dfreffal. usevariable

orderingby adding constrainf(9.5) to the modé\IP3) and(LP3):

S a0t N gt <0, WeLh=1,...k 1 (9.5)
pEPl pEPl

However, [9.b) does not eliminate symmetry introduced by flariables having the
same amount of flow.

Pricing Problem

The pricing problem can be recognized as a shortest pathepnot_et7. < 0 cor-
respond to the first constraint of the primal mod€l! < 0 to the seconds’ > 0 to
the third andu™ < 0 to the symmetry constraif(9.5). Even though the primal @hod
only consists of one variable type, the dual formulation thase constraints because
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of the symmetry constrairlt (9.5). The reduced costs are:

)\hl
S 0(ce —me) = S + ol + WM Vie L,h=1,¥pe P!

ecFE Up
/\hl

> e —m) =S+ ol 4wt —w T We Lh=2,. .k ~1¥pe P

ecE p
hl

A
D F(ce —me) — = + ot =W Vi€ Lh=kvpeP
e€E Up

For each pair of valuegh, l) the task is to find a path € P! which has negative
reduced cost. If the value far, is known in advance, the problem is a shortest path
problem defined in cos{g. — 7.) > 0, which can be solved in polynomial time using
e.g. Dijkstra’s algorithm [B]. Recall, that, = min{u.|e € p}. Thatis,u, can take on
O(|E|) values; for each of th& (| E|) values ofu,, the shortest path problem is solved
on a graph, where edges wiihh < u,, are removed.

Branching Strategy

The chosen branching scheme is closely related to that pealdny Barnhart et al._[26].
For theh’th path of commaodityi, the strategy is based on dividing all edges(dy,;)
going out fromthe first divergenceodedy,;, into two subsets. The first divergence
nodedy; of a commodityl and pathk is defined as the node to which all flow of the
['th commodity is following the same path and from which thenlis using two or
more paths. The two resulting subsets of outgoing edged;,;) and ¢3 (dy;) are
disjoint and balanced. Now, we use the dichotomic branchitgyadding one of the
following two constraints:

Z (Ve’mz’l:O Z (Ve’mzl:O

e€of (dnr) e€od (dnr)

Heuristic

To decrease the running time of the branch-and-price dlgorive suggest a simple
heuristic method to reach a feasible solution by elimirgasiome symmetry. The model
(LP3) can cause problems, as the constraﬁﬁ/up < 1 will not always be tight and
hence may allow several paths to be used agitiepath of commodityl. Also, the
mathematical formulatio(LP3) does not prevent the same path for a commodity from
taking on several values @f. For these reasons, any of the two following situations
may occur:

1: For a commodity, several identical paths are used but witarént values of..
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2: More than one path is used for a single valué ébr a commaodity.

In the first case, we merge the paths into one. In the secoedeash path is assigned
a unique value of, if possible. In this way a feasible solution may be reaclzestfr.

9.3 Two-index model

In order to investigate how thk-indices affect the behavior of the branch-and-price
algorithm, we have studied another path formulation of theMCAFP without the
use ofh-indices. The moddMIP2) is:

: ol
min E E cp,

leL peP!
s.t. Z Z 653:; <u, VeeFE (9.6)
leL peP!
ah—upyl <0 VleLvVpeP (9.7)
>yl <k VielL (9.8)
pEP!
> al > F! VieLl (9.9)
pe P!
ah >0 Vie LVpe P
yh €{0,1} Vie L,Vpe P

Heremé is the total flow of commodity on pathp, and the corresponding variang

is set if and only if commodity has flow on pattp. The remaining variables have the
same meaning as in the three-index model. The objectiveiumminimizes the total
cost of routing the commodities. Constraihi {9.6) ensudggeecapacities are never
violated and constrainf (9.7) forces the decision variabl@ke on value 1, whenever
the amount of flow on the corresponding path is positive. @aimg (9.8) limits the
number of used paths for commoditio at most:! and finally constrainf{9]9) ensures
that every commodity is shipped.

The problem is relaxed in the same manner as the three-inddrlm.e., we replace
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yb, with 21, /u,, getting(LP2):

: !
min E E CpTy,

leL peP!
st. Y ) oPal,<u, VeeE (9.10)
€L peP!
ml
P l
> <k VieLl (9.11)
pE P! p
> al > F! VielL (9.12)
peP!
zh >0 vieLVpe P

Constraint[(9.7) becomes redundant and is removed fronotineullation.

Pricing Problem
Let ., A! ando! be the dual variables for equatiofis(9.10). (9.11) and j9r1@ P2).
The reduced cost for a commodity L and for a pathp € P! is given by:

l
> 8(ee —me) — o+ o 913)

ecE P

We have that,, > 0, ' < 0 and the terms- 3", 6¥m. and—\'/u,, are nonnegative
sincer, < 0 and\ < 0. The problem[{3.113) is thus equivalent to the pricing prable
for the three-index algorithm: a shortest path problem eéefin costyc. — 7.) > 0
which must be solved for each possible value.pfor each commodity.

Branching Strategy

The branching strategy from Sectibn]9.2 unfortunately domswork for the two-
index algorithm due to the lackingrindices in the formulation. Nor can we use the
original formulation from Barnhart et al. [26] since we atlaed to usek! paths for
each commodity. Thus, we have developed a novel branchiatggy for the(LP2)
formulation of the problem.

The branching strategy for the two-index algorithm cossigforbidding sequences of
edges. In the general case it does not suffice to forbid thefussingle edge or node.
Consider a divergence node for some commodity. The numbeaibfs emanating
from this node may be larger than the number of outgoing edfess, forbidding an

edge can resultin forbidding several paths. This is notrdblg, as an optimal solution
becomes unreachable when it uses all edges going out of @divee node. A similar
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situation can occur when forbidding nodes. Instead, pattaating from a divergence
node are considered.

Let v,; be the set of paths for commodityc L emanating from divergence node
and let the number of elements ip; be greater thai!. In this case, branching is
necessary. A feasible solution includes at midssf the paths iny,;. Thus, the paths

in y,; are divided intdk! + 1 branching children, and when branching, the paths in the
corresponding branching child are forbidden.

The branching strategy is feasible since any subsét péths fromy,; can be used in a
solution in at least one of the branching children. Consishgrsubset ok! paths from
~v,1. Each of the paths in the subset is forbidden in exactly oarditing child, i.e., the
total number of branching children, including at least ohéhe paths, is at mosi'.
Sincek! + 1 branching children are generated, at least one branchittresids none
of the k! paths.

When branching, the resulting solution space in each biagathild is reduced ac-
cording to the forbidden paths. The solution spaces of liragesiblings, however, are
not necessarily disjoint; a solution using less thapaths fromy,, is feasible in several
branching children. The branching strategy may thus imgegeneracy problems.

The number of columns in the master problem is possibly egptial. Thus, the
branching strategy may cause a large search tree, becausenttber of paths to forbid
can be very large.

To limit degeneracy problems and to limit the size of the cedree, the branching
strategy is changed into forbidding certain sequences gégdather than forbidding
entire paths. A path consists of a sequence of edgesk‘The, o > 1 paths iny,; may
share several edges, but two paths never share all edges.g&herating the branching
children it thus suffices to findl' + 1 different edge sequences used by the paths;in
Each edge sequence must be consecutive, i.e., it forms a&cuhsubpath, and no
two subpaths share all edges. [[gj be the set of thé' + 1 different edge sequences
derived from the paths iny,;. Let the edge sequences be derived such, that each path
in v,; uses exactly one of the edge sequences, and each edge seqoesists of as
few edges as possible. This can be done by a breadth firshsefaali edges used by
the paths iny,;. When branching, the edge sequences of the correspondinghing
child are forbidden. This is feasible by the same argumantie strategy forbidding
entire paths.

The reason for forbidding edge sequences rather than guatihs, is that a forbidden
edge sequence may cut off more of the solution space, beoawgethan one path is
possibly forbidden. This may lead to less degeneracy in taedhing children, and to
a smaller search tree size.
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An illustration of the branching strategy is seen in Figur®. 9n the figure, a graph
with four nodes is seen. A commodity with sourcand target is to be routed using at
most two paths. In the current solution three paths are ysee: {ea,ep, e}, p2 =
{ea,ec,eg} andps = {ep,ec,er}. Assume that the optimal solution consists of
pathp; andps. When branching on the current solution it is thus not fdadibforbid
the use of any single path or node. Instead; 1 subpaths are found{e4,ec},
{ea,ep} and{ep}. Now, the optimal solution is found in the branching childiefh
forbids the use of edge sequereg, ec}.

€A €c
:< }1 X: erp @
eB €ep

Figure 9.1: A graph used to illustrate the branching stsatéthe graph consists of
four nodes, the leftmost node is denotedand the rightmost node, Edges are
€A,EB,EC,ED andeg.

The branching strategy necessitates some changes to ¢irggioblem. When solv-
ing the shortest path problem, we need to ensure that we desedhe forbidden edge
sequences. The shortest path problem with forbidden patagpolynomial problem
and can be solved using a modifieeghortest path algorithm [199].

9.4 Computational results

The described branch-and-price algorithms for the two nsodere tested on a 2.66
GHz Intel Xeon machine with 8 Gb RAM. Note, that CPU times ia fbllowing stem
from using one core. The algorithms have been implemented) uke framework
COIN [14Q0] with ILOG CPLEX 10.2 as LP-solver. Computations regarding selec-
tion of branching candidate and branching child are haniye@dOIN.

When reporting the running times of the three-index model refer to our own im-
plementation of the three-index algorithm. All tests hagertbperformed with uniform
values ofk, i.e.,k! = k for all commoditied € L.

In both algorithms we have through preliminary results| [8€fided to use strong
branching[14]. We investigate all possible branching edags. A best-first search
strategy is used in the branch-and-bound tree. Also, basd87, we set the num-
ber of paths priced in per iteration €5 - | L| - k for the three-index algorithm and to
0.5-|L| for the two-index algorithm. For the three-index model wdtiply the number
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of paths priced in per iteration with because of the extraindex in the model. For
both algorithms we never price more than one path into thteictsd master problem
for each pair of valueéh, l) or for each commodity, respectively, per iteration. This
is to keep column generation simple.

The algorithms are tested on four types of problems: The i@anistances [[7], also
denotedbl , bs, and thegrid andplanar instances[[134]. The Carbin instances
are randomly generated problems. Tdre&l instances are formed as grids, and the
planar are designed to simulate problems arising in telecommtioitaNote, that

we have not performed tests on all of the instances. We haveaied the Carbin
instances with variable edge weights, because the algwsittannot handle this. For
thegrid andtheplanar instances this is due to the algorithms being unable to solve
the larger instances in reasonable time.

First, we test the branch-and-price algorithm for the thinelex model with and with-
out the proposed heuristic. Results can be seen in TaBle©¥drall, the running time
is improved significantly for the solved instances when tharlstic is included. As
can be seen in the table, this is due to achieving a smallectsé@e when using the
heuristic; the impact of the heuristic is that less brangligrequired to reach a feasi-
ble solution. Furthermore, the table shows that very ltitiee is spent on running the
heuristic. For several instances, the optimal solutioroimfl in the root node when
using the heuristic. This, however, is not the case for aflances. For the unsolved
instances, using the heuristic either leads to better boondt has no effect on the
performance. Throughout the remaining of this section hiristic is thus included
in the branch-and-price algorithm for the three-index maled the heuristic is run in
every node of the search tree.

Next, we compare the two branch-and-price algorithms wéitheother. A summary
of the results can be seen in Table]9.2. Tablé 9.3[add 9.4 skwilatl test data for
the Carbin instances, Tallle P.5 shows detailed test dathdptanar instances and
Table[9.6 shows detailed test data for gl  instances.

For k = 2, the three-index algorithm solves only three of the instances and six
of the bl instances, while the two-index algorithm is capable of sgwine out of
the eleverbs instances and all thel instances. The average running time for the
two-index algorithm is considerably better than for theethindex algorithm. Fok =

3, the three-index algorithm is unable to solve three oftikeinstances and onl
instance, where the two-index algorithm solves all to optitpn Again the two-index
algorithm shows a better average running time than thateofttree-index algorithm.
Both algorithms are capable of solving all the Carbin instanfork = 10, however,
the two-index algorithm averagely spends less time on demthan the three-index
algorithm.

The running times reflect the complexity of the correspogdgiroblem instances and
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used algorithms. Whenever the valuekoéxceeds some threshold value, the running
time for solving the instance decreases. The reason foighisat at some point;
does not impose a constraint on the problem, i.e., the instaarresponds to the lin-
ear MCFP. The value df has greater impact on the three-index algorithm. When
takes on a value greater than the mentioned threshold, threngitime of the three-
index algorithm increases, because columns are genemteddhh = 1,. .., k, and
are priced into the master problem. Generating columns alvihg a larger master
problem is time consuming. Also, even if the valuekak greater than the threshold,
the three-index algorithm may generate solutions usingerttten one path as ttéth
path, hence causing the algorithm to branch. The same iswdlyinot the case for the
two-index algorithm.

The three-index algorithm fails to solve the largalsinar instance fok = 2 andk =

3. The two-index algorithm solves all tidanar  instances. The average running time
for the algorithms shows, that the two-index algorithm parfs significantly better
than the three-index algorithm fér= 2 andk = 10, but the three-index algorithm has
smaller running time fok = 3.

For largergrid instances withk = 2, both algorithms experience problems. The
three-index algorithm solves four, and the two-index atban solves five out of seven
instances. Fok = 3, the three-index algorithm manages to solve five out of seven
instances, and the two-index algorithm solves all instan€é®rk = 10 all instances
are solved. Again, the two-index algorithm shows a betteraye running time than
the three-index algorithm fdt = 2 andk = 10, while the opposite holds for = 3.
Larsson and Yuar [134] are capable of solvinggaitl instances as the linear MCFP.
Neither of the two algorithms here presented are capableloihg instances as large
as Larsson and Yuan, which is due to our algorithms not begiagialized for the linear
MCFP.

The three-index algorithm is capable of solving instanciéls up to 2239 commaodities,
850 edges and 150 nodes (plang), and 400 commodities, 1520 edges and 400 nodes
(gridsoo0:1520:400) for £ = 10, and instances with up to 532 commodities, 1085 edges
and 100 nodes (plangg) for £k = 2. The two-index algorithm solves instances with
up to 2239 commodities, 850 edges and 150 nodes (pkand 400 commodities,
1520 edges and 400 nodes (g5igl 520.400) for £ = 10, and instances with up to 2239
commodities, 850 edges and 150 nodes (plgppfor £ = 2. Also, the three-index
algorithm is capable of solving about 76% of the test instarto optimality, while the
two-index has solved just over 96% of the test instances tionafity. Hence, for the

far majority of the problem instances, the two-index altfori outperforms the three-
index algorithm both with respect to time spent and to the Imemof instances solved

to optimality. We conclude that this is partly due to the axirindex in the three-
index model causing symmetry in the solution space, andyiue to the three-index
algorithm having: times as many variables as the two-index algorithm.
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9.5 Conclusions

In this paper we have presented a branch-and-price algofiththe MCMCkFP which
outperforms existing methods. The new branch-and-prgerdhm is based on a two-
index formulation, which unlike previous formulations deé symmetry inducing in-
dex for each of thé paths per commodity. The two-index model was independently
suggested for the Maximum Flow MEP by Truffot et al.[[191], but the authors dis-
carded the model since it complicates branching. We hawsepted a branching strat-
egy for the model which ensures that the pricing problem essoved efficiently. The
branching strategy and the algorithm for the resultingipg@roblem can also be used
for the Maximum Flow problem. Thus, our branch-and-priggathm can be viewed

as a general framework applicable for various variants ®MICkFP.

Furthermore, we have introduced a rounding heuristic ferttinee-index branch-and-
price algorithm which transforms certain fractional siwos into feasible solutions.
Though the heuristic boosts the performance of the thrdexiralgorithm, it is still
outperformed by the two-index algorithm. The three-indggodthm including the
proposed heuristic has solved 76% of the problem instamceptimality within the
available time and space, where the two-index has solved®®&é problem instances
to optimality. Further comparison of the algorithms shothat the two-index branch-
and-price algorithm also outperforms the three-indexttigm with respect to running
time.

The solution times for the Minimum Cost MGEP are larger than those of Barnhart et
al. [26] for the unsplittable MCFP. This indicates that theplittable constraints are
harder to maintain than the unsplittable constraints, giobbbecause thk-splittable
constraints increase the size of the solution space amadinte symmetry. In order
to improve the performance it could be interesting to tightee formulations through
various cuts, as done in e.g. Jepsen et al.l[111]. Also, gddinstraints which break
the symmetry might improve the solution times. The intrdgucof a good initial
heuristic will only marginally improve the running timesnee the current algorithm
generally quickly finds a good upper bound.
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Problem, k.  Heur. Time H.Time Treesize Depth Col. Gap uB
blo1, 2 no 176.28 - >48000 54 353 0.04 1549555.0
blo1, 2 yes 177.74 - >48000 54 356 0.04 1549555.0
blo1, 3 no 0.80 - 101 45 525 0.00 1548873.0
blo1, 3 yes 0.33 <0.01 35 17 525 0.00 1548873.0
blo1, 10 no 0.91 - 31 15 1740 0.00 1548873.0
blo1, 10 yes 0.12 <0.01 1 0 1740 0.00 1548873.0
bl03, 2 no 225.06 - >34000 75 422 0.23 15836.0
bl03, 2 yes 225.38 - >34000 75 417 0.23 15836.0
bl03, 3 no 2.98 - 317 49 591 0.00 15799.0
bl03, 3 yes 0.44 <0.01 1 0 591 0.00 15799.0
bl03, 10 no 217 - 63 31 2020 0.00 15799.0
bl03, 10 yes 0.13 <0.01 1 0 2020 0.00 15799.0
bs01, 2 no 212.65 - >43000 73 407 0.23 1536558.0
bs01, 2 yes 213.30 - >43000 73 408 0.23 1536558.0
bs01, 3 no 73.25 - 6295 65 579 0.00 1533606.0
bs01, 3 yes 66.15 0.32 5531 45 579 0.00 1533606.0
bs01, 10 no 5.34 - 171 45 1870 0.00 1533095.0
bs01, 10 yes 0.11 <0.01 1 0 1870 0.00 1533095.0
bs03, 2 no 0.59 - 125 28 325 0.00 16488.0
bs03, 2 yes 0.47 <0.01 97 25 325 0.00 16488.0
bs03, 3 no 0.17 - 29 14 438 0.00 16488.0
bs03, 3 yes 0.02 <0.01 1 0 438 0.00 16488.0
bs03, 10 no 1.31 - 61 25 1470 0.00 16488.0
bs03, 10 yes 0.08 0.04 1 0 1470 0.00 16488.0
bs13, 2 no 581.78 - >11000 234 1397 0.17 3259617.5
bs13,2 yes 569.69 - >11000 231 1393 0.17 3259606.0
bs13,3 no 492.96 - >10000 208 2110 0.01 3254481.25
bs13,3 yes 529.69 - >10000 168 2103 <0.01 3254331.5
bs13, 10 no 222.87 - 857 176 7039 0.00 3254081.06
bs13, 10 yes 1.42 0.01 1 0 7030 0.00 3254081.06

Table 9.1: Results for the three-index algorithm with anthwit the proposed heuris-
tic. The second columHeur., indicates whether the heuristic is included. Next follows
total time usageTime), and time spent on running the heuristit Time). The Table
gives information about the tree size and deftteé sizeandDepth), as well as the
number of columns added to the master probl@al{. Time is measured in seconds
and Gap in percent between upper and lower bound. An optimal saiusofound
whenever Gap=0.00. A non-zero gap, indicate that the testn out of memory.
Upper bounds have been rounded to two decimal precision.
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Name k  #instances 3-index 2-index
A.Mean Opt. A.Mean Opt.

bl 2 11 5.06 6/11 1.90 11/11
bl 3 11 0.43 10/11 0.21 11/11
bl 10 11 0.87 11/11 0.22 11/11
bs 2 11 41.66 3/11 0.32 9/11
bs 3 11 37.95 8/11 0.32 11711
bs 10 11 1.08 11/11 0.27 1111
planar 2 5 117.92 4/5 3.09 5/5
planar 3 5 2.58 4/5 2.75 5/5
planar 10 5 267.40 5/5 15.13 5/5
grid 2 7 1.40 a/7 0.24 5/7
grid 3 7 0.09 5/7 0.73 77
grid 10 7 7.00 7 1.31 77

Table 9.2: The number of test instances solved to optimuiitly the 3-index and 2-
index algorithms, for various values. A.Mean is the average mean time in seconds
calculated over those instances solved to optimality bi bégorithms.
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Name & 3-index 2-index
Time Gap UB Time Gap uB

blo1 2 17745 0.04 1549555.00 1.79 0.00 1549555.00
blo1 3 0.33 0.00 1548873.00 0.05 0.00 1548873.00
blo1 10 0.11 0.00 1548873.00 0.02 0.00 1548873.00
blos 2 224.00 0.23 15836.00 5.28 0.00 15836.00
blos 3 0.04 0.00 15799.00 0.04 0.00 15799.00
blos 10 0.13 0.00 15799.00 0.04 0.00 15799.00
blos 2 2.72 0.00 460698.00 9.55 0.00 460698.00
blos 3 0.73 0.00 460041.00 0.08 0.00 460041.00
blos 10 0.09 0.00 460037.00 0.02 0.00 460037.00
blo7 2 0.04 0.00 5588.00 0.04 0.00 5588.00
blo7 3 0.04 0.00 5588.00 0.03 0.00 5588.00
blo7 10 0.15 0.00 5588.00 0.04 0.00 5588.00
blog 2 11.97 0.00 6106441.00 0.99 0.00 6106441.00

blog 3 0.20 0.00 6106255.00 0.18 0.00 6106255.00
bl 10 0.75 0.00 6106255.00 0.17 0.00 6106255.00

bliq 2 2.70 0.00 68088.50 0.21 0.00 68088.50
bli1 3 0.11 0.00 68086.00 0.13 0.00 68086.00
bliq 10 0.48 0.00 68086.00 0.13 0.00 68086.00
blis 2 345.16 0.05 32237.00 77.76 0.00 32235.00
blis 3 0.24 0.00 32220.00 0.24 0.00 32220.00
blis 10 0.82 0.00 32220.00 0.26  0.00 32220.00
bli7 2 5.33 0.00 13086437.00 0.58 0.00 13086437.00

bli7 3 0.30 0.00 13086437.00 0.32 0.00 13086437.00
bli7 10 1.33 0.00 13086437.00 0.28 0.00 13086437.00
blig 2 7.59 0.00 108027.00 0.62 0.00 108027.00
blig 3 0.41 0.00 108027.00 0.42 0.00 108027.00
blig 10 1.68 0.00 108027.00 0.35 0.00 108027.00

blaq 2 463.15 0.02 5571253.00 19.27 0.00 5571239.00
bla1 3 0.55 0.00 5570292.00 0.58 0.00 5570292.00
blaq 10 2.20 0.00 5570292.00 0.55 0.00 5570292.00
blas 2 472.65 0.02 5441450 58.84 0.00 54414.50
bl23 3 429.00 <0.01 54402.00 2.14 0.00 54402.00

blas 10 1.80 0.00 54401.00 0.51 0.00 54401.00

Table 9.3: Results for the three-index and the two-indexriigms on the Carbin
instances callefl . Time is measured in seconds aGa@p in percent between upper
and lower bound. An optimal solution is found whenever Gap80 The maximal
running time is set to 1800 seconds. Results with Tkn&800, and a non-zero gap,
indicate that the testrun ran out of memory. Upper bounds baen rounded to two
decimal precision.
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Name k 3-index 2-index
Time Gap UB Time Gap uB

b1 2 21371 0.23 1536558.00 5.21 0.00 1536558.00
bso1 3 66.15 0.00 1533606.00 0.10 0.00 1533606.00
bso1 10 0.11 0.00 1533095.00 0.04 0.00 1533095.00

bs3 2 0.55 0.00 16488.00 0.10 0.00 16488.00
bs3 3 0.03 0.00 16488.00 0.02 0.00 16488.00
bsy3 10 0.08 0.00 16488.00 0.04 0.00 16488.00

bss 2 33111 0.59 410502.00 9.57 0.00 410417.00
bss 3 380.74 0.09 408496.00 0.43 0.00 408496.00
bsys 10 0.19 0.00 408114.00 0.07 0.00 408114.00

bsy7 2 273.61 0.28 5816.00 4.65 0.00 5816.00
bsy7 3 18237 0.00 5801.00 0.16 0.00 5801.00
bsy7 10 0.14 0.00 5800.00 0.06 0.00 5800.00
bsi1 2 403.03 <0.01 63381.83 0.84 0.00 63381.83
bsi1 3 0.32 0.00 63380.33 0.34 0.00 63380.33
bsi1 10 1.19 0.00 63380.33 0.21 0.00 63380.33

bsi3 2 506.64 0.17 3259573.50 523.72 0.02 3258178.50
bsi3 3 61059 <0.01 3254299.00 5.77 0.00 3254192.72
bsi3 10 1.28 0.00 3254081.06 0.35 0.00 3254081.06

bsi5 2 440.36 0.09 35392.00 62.74 <0.01 35390.00
bsis 3  499.73 <0.01 35362.00 0.77 0.00 35362.00
bsi5 10 0.78 0.00 35360.00 0.28 0.00 35360.00

bsi7 2 62.52 0.00 11323466.00 0.53 0.00 11323466.00
bsi7 3 0.33 0.00 11323427.00 0.34 0.00 11323427.00
bs;7 10 1.32 0.00 11323427.00 0.33 0.00 11323427.00
bsig 2 58.90 0.00 105449.50 0.34 0.00 105449.50
bsig 3 0.29 0.00 105449.50 0.36 0.00 105449.50
bsig 10 1.26 0.00 105449.50 0.31 0.00 105449.50
bs>1 2 658.58 0.03 5194721.00 27.37 0.00 5194297.00
bs1 3 53.54 0.00 5193164.50 0.62 0.00 5193164.50
bs>1 10 2.93 0.00 5193164.50 0.64 0.00 5193164.50

bsx3 2 61691 0.05 53994.50 652.64 0.00 53987.00
bsy3 3 0.56 0.00 53968.63 0.62 0.00 53968.63
bsx3 10 2.65 0.00 53968.63 0.68 0.00 53968.63

Table 9.4: Results for the three-index and the two-indexriigms on the Carbin
instances calletds. Time is measured in seconds a@ap in percent between upper
and lower bound. An optimal solution is found whenever Gap80 The maximal
running time is set to 1800 seconds. Results with Tkm&800, and a non-zero gap,
indicate that the testrun ran out of memory. Upper bounds ba@en rounded to two
decimal precision.
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Name k 3-index 2-index
Time Gap uB Time Gap uB

planagg 2 0.04 0.00 44350624.00 0.06 0.00 44350624.00
planago 3 0.06 0.00 44350624.00 0.06 0.00 44350624.00
planago 10 0.20 0.00 44350624.00 0.07 0.00 44350624.00
planagg 2 0.29 0.00 122199689.00 0.87 0.00 122199689.00
planago 3 0.39 0.00 122199689.00 0.55 0.00 122199689.00
planago 10 1.79 0.00 122199689.00 0.50 0.00 122199689.00
planagg 2 243.72 0.00 182438134.00 6.70 0.00 182438134.00
planago 3 2.90 0.00 182438134.00 2.42 0.00 182438134.00
planago 10 15.93 0.00 182438134.00 246 0.00 182438134.00
planarioo 2 227.61 0.00 231339582.00 10.81 0.00 231339582.00
planar oo 3 6.97 0.00 231339582.00 7.95 0.00 231339582.00
planaiop 10 37.12 0.00 231339582.00 7.64 0.00 231339582.00

planafso 2 1503.54 >1000 545566045720.00 248.59 0.00 548087089.00
planarso 3 1302.07 >1000 545566045720.00 83.24 0.00 548087089.00
planaisp 10 1281.94 0.00 548087089.00 64.99 0.00 548087089.00

Table 9.5: Results for the three-index and the two-indeprdlgms onplanar in-
stances.Time is measured in seconds a@@p in percent between upper and lower
bound. An optimal solution is found whenever Gap=0.00. Tlaimal running time

is set to 1800 seconds. Results with Tird 800, and a hon-zero gap, indicate that the
testrun ran out of memory. Upper bounds have been roundesbtdécimal precision.
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Name k 3-index 2-index
Time Gap uB Time Gap uB

gridss:80:50 2 0.03 0.00 827319.00 0.05 0.00 827319.00
gridas:s0:50 3 0.05 0.00 827319.00 0.02 0.00 827319.00
gridss:80:50 10 0.07 0.00 827319.00 0.03 0.00 827319.00
gridss:80:100 2 0.42 0.00 1705378.00 0.08 0.00 1705378.00
gridas:s0:100 3 0.08 0.00 1705378.00 0.08 0.00 1705378.00
gridss:80:100 10 0.24 0.00 1705378.00 0.06 0.00 1705378.00
grid100:360:50 2 1.06 0.00 1524657.00 0.21 0.00 1524657.00
grid100:360:50 3 0.06 0.00 1524642.00 0.05 0.00 1524642.00
grid100:360:50 10 0.18 0.00 1524642.00 0.06 0.00 1524642.00
gridi00:360:100 2 4.07 0.00 3031717.00 0.61 0.00 3031717.00
gridi00:360:100 3 0.18 0.00 3031695.00 0.20 0.00  3031695.00
grid100:360:100 10 0.61 0.00 3031695.00 0.18 0.00 3031695.00
grida2s:840:100 2 13391 <0.01 5049776.50 70.71 0.00 5049759.50
grida25:840:100 3 14.52 0.00 5049688.50 3.28 0.00  5049688.50
grida2s:840:100 10 1.84 0.00 5049688.50 0.54 0.00 5049688.50
grida2s:840:200 2 27521 <0.01 10402290.80 212.23 <0.01  10402154.75
grida25:840:200 3 30944 <o0.01 10401819.87 7.18 0.00 10401782.00
grida2s:840:200 10 12.19 0.00 10401782.00 1.92 0.00 10401782.00

grids00:1520:400 2 25251 >1000 15281128750.00 614.19<0.01 25864060.50
grids00:1520:400 3 25116 >1000 15281128750.00 28.07 0.00 25864036.57
gridsoo:1520:400 10 33.85 0.00 25864036.57 6.39 0.00 25864036.57

Table 9.6: Results for the three-index and the two-indewritlgms on thegrid in-
stances.Time is measured in seconds aG@p in percent between upper and lower
bound. An optimal solution is found whenever Gap=0.00. Tlaimal running time

is set to 1800 seconds. Results with Timd 800, and a non-zero gap, indicate that the
testrun ran out of memory. Upper bounds have been roundesbtdecimal precision.
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The Multi-Commodity k-splittable Maximum Flow Problem consists of routing as
much flow as possible through a capacitated network sucle#tdt commodity uses at
mostk paths and the capacities are satisfied. The problem haopstyibeen solved
to optimality through branch-and-price. In this paper wepmse two new exact so-
lution methods both based on an alternative decomposifitve. two methods differ

In submission 2009



Comparing branch-and-price algorithms for the multi-comm odity
196 k -splittable maximum flow problem

in their branching strategy. The first method, which brasobwe forbidden edge se-
guences, shows some performance difficulty due to largelsdeges. The second
method, which branches on forbidden and forced edge segsetiemonstrates much
better performance. The latter also outperforms a leadiagtesolution method from
the literature. Furthermore, a heuristic algorithm is preed. The heuristic is fast and
yields good solution values.

Key words:Multi-Commodity flow, k-splittable, branch-and-price, mxaig-Wolfe de-
composition

10.1 Introduction

The Multi-Commodityk-splittable Maximum Flow Problem (MEMFP) consists of
maximizing the amount of routed flow through a capacitatetvoek such that each
commodity uses at mostpaths and the capacities are satisfied. Thé&sMEP appears
in the transportation sector when a number of commoditiest foel routed using only
a limited number of transportation units, and in telecomioation for limiting the
number of used network connections.

The Multi-Commodityk-splittable Flow Problem (MEFP) was presented by Baier et
al. [19], who solved the Maximum Budget-Constrained Singled Multi-Commodity
k-splittable Flow Problems using approximation algorithriide authors proved that
the Maximum Single-Commoditi-splittable Flow Problem igv/P-hard in the strong
sense for directed graphs. Finally, they noted thakfor | E|, ak-splittable(s, t) flow
problem degenerates to an ordinésyt) flow problem.

Koch et al. [123] proved that the M&@AFP is A/P-hard in the strong sense for directed
as well as undirected graphs, and showed that wheaA AP, the best possible ap-
proximation factor is%. Koch et al. [122] considered the M®IFP as a two-stage
problem, where the first stage consists of the decision o# fteths (routing) and the
second of the amount of flow on the paths (packingk i a constant then it suffices
to consider a polynomial number of packing alternativesctvisan be constructed in
polynomial time. Ifk is part of the input, they proposed an approximation alparit
having approximation factqil — ¢), € > 0.

Truffot and Duhamel [190] used branch-and-price to soheeSingle-Commodity:-
splittable Maximum Flow Problem (S®B1FP). A 3-index edge-path model was pre-
sented to which a branch-and-price algorithm was applidte dricing problem for
the column generation is a shortest path problem solvalgelynmnomial time. Further-
more, Truffot et al.[[192] have applied their 3-index brasartd-price algorithm to the
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MCEMFP.

Gamst et al.[[83] used branch-and-price to solve the MininGost Multi-Commodity
k-splittable Flow Problem (MCMEFP). They applied the algorithm of Truffot et al.
[192] to the MCMGkFP. Furthermore, they proposed a new branch-and-pricatigo
based on a 2-index model. The latter showed very good pedimecmand outperformed
the existing branch-and-price algorithm.

The MCEMFP can be represented by a directed grépk= (V, E), whereV is the
set of vertices and’ the set of edges. A positive capacity is associated with every
edgee € E. Edge capacities are positive since any edge E with non-positive
capacity can be removed from the graph. The set of commedgidenoted. and
each commodity € L has a source; € E and a destinationy, € E. The maximal
number of routes each commodity may use is denbkted

In this paper three exact solution methods are applied tMtbeMFP and compared.
The 3-index branch-and-price algorithm (3BP) by Truffcdlef192] is extended with a
heuristic proposed by Gamst et al. [83] to reach feasiblatignls faster. The extended
3BP is compared to two algorithms based on a 2-index fornaudiy Truffot and
Duhamel[[190] which was never investigated further. Botoathms are based on the
2-index branch-and-price algorithm of Gamst etlal. [83]lmujto the MG:MFP. The
two algorithms only differ in their branching scheme. Thestfalgorithm (2BP) uses
the same branching strategy as in the literature whereicestidbpaths are forbidden
and the second algorithm (2BP’) uses a new branching syrathgre the use of certain
paths is either forced or forbidden.

The main contribution of this paper is to apply the 2BP altonito the MG:MFP and
especially to introduce the branching scheme of the 2BRirdtyn. Furthermore, a
heuristic use of the 2BP and 2BP’ algorithms is presentenbtedel 2HEUR.

The paper is organized as follows. First, the MMFP is formally introduced in Sec-
tion[I0.2. The 2BP algorithm is presented in Secfion ]10.3ickviis followed by
the 2BP’ algorithm in Section_10.4. All algorithms are tekstnd compared in Sec-
tion[10.5. Sectioh 1016 concludes the paper.

10.2 The multi-commodity k-splittable maximum flow
problem

The MCkMFP can be formulated as an edge-based model on the giafphe model
contains two types of variables: the flow variabié$ representing the amount of flow



Comparing branch-and-price algorithms for the multi-comm odity
198 k -splittable maximum flow problem

on edgee for the h’th path of commodityi and the decision variableg! indicating
whether or not edge is used by theh'th path of commodityi. A backward edge;
with unlimited capacity and with flowgl is added for each commodityto ease flow
conservation constraints. Edges) in Figure[10.1 is a backward edge.

........................ ®)
. . |

Figure 10.1: The example illustrates an infeasible patte g&thP : s - a — b —
c—>d—e— f—a— g— h— d— tcontains a subtour and the amount of flow
on used edges differs. The illustration is taken from [192].

To model flow conservation, let the set of incoming edges d@éxe be denoted (v)
and the set of outgoing edges at vertelse denoted ™ (v). For each commaodity, the
sum of ingoing edges must equal the sum of outgoing edgeshtveatex. Similarly
for each commodity, the total amount of incoming flow mustadhe total amount
of outgoing flow at each vertex. Subtours may occur, as shawrigure[10.l. The
verticess andt denote the source and destination of a given commodity stmgi
of 2 units of flow. At each edge the pair ¢!, 3!) is given. Consider the path:
s—>a—>b—>c—>d—e—>f—>a—>9g—>h—d—t— s. The pathis not
feasible because of the subtour, but flow conservation isfisat. The subtour can be
eliminated by adding a constraint saying that for & path of commodityi, each
vertex can have at most one incoming (and thus outgoing). &dueedge-based model
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now becomes:

k
max ZZ Z le (10.1)

leL h=1e€¢+(s))

st Y all= > alt WweVVieLVhe{l,. . k} (102

ecp—(v) ecpt(v)
Sooykt= > Yl weVVieLVhe{l,...,k} (10.3)
€ (v) €t (v)
SN all <ue Ve € E (10.4)
leL h=1
Vie L,Yhe{l,... k}
hl hl ) ) ) ’
x Uy <0 Ve e EU{eh) (10.5)
doykt<t Vvie LYhe{l,...,k} ,YveV (10.6)
e€p=(v)
>0 Vie L,Yhe{l,....k} ,Ve€ E
yht € {0,1} Vie L,Yhe{l,...,k} ,Ve€ E

The objective functio{1011) maximizes the total amountaafted flow. Constraints
(I0.2) and[(1013) are flow conservation constraifis, {1€nd)re that the capacity con-
straint on each edge is not violated alnd (10.5) force eadkidacrariabley, to take on
value 1 whenever the amount of flow on edgis positive. Constraint§ (10.6) prevent
subtours.

Truffot et al. [192] solved the MEMFP by applying Dantzig-Wolfe decomposition
to the edge-based modEel [54]. We denote their branch-aicd-glgorithm 3BP. The
pricing problem finds thé'th path of commodityl and the master problem merges
paths into an overall feasible solution. Here, we presentthster problem to motivate
our work on the MGMFP. In the master problem, the variablg‘ > 0 denotes the
amount of flow on pathp for the A'th path of commodityl and the binary variable
y[;l denotes whether or not pathis used as thé'th path for commodityi. The 3BP
problemis:

k
hl
S 5 9D o

leL h=1 pePl

k
s.t. ZZ Z (553:21 <wu, Veek (20.7)

leL h=1 pePl
bt —upytt <0 VieL,he{l,...,k},¥pe P' (10.8)

»
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doyht<i VieLhe{l,... k} (10.9)
pEP!

aht >0 Vie L,he{l,...,k},Vpe P!
yht € {0,1} VieL,he{l,...,k},¥pe P!

The objective function maximizes the total amount of roufted. The setP! contains
pathsp for commodityi. In capacity constraint$ (10.7)¢ indicates whether or not
edgee is used by pattp. The constant, denotes the capacity constraint on path
which is defined as,, = min{u. | e € p}. Hence, constraints (10.8) force the decision
variabley!"' to be set if there is flow on the corresponding path Constraints[(1019)
ensure that at most one path is used asittiepath of a commodity.

Gamst et al.[[83] applied the 3BP algorithm to The Minimum Josplittable Flow
Problem and argued that the path index {1, ..., k} causes symmetry in the solution
space as well as a large number of columns in the master pnoBie overcome these
problems they presented a master problem without the pdéxiand a corresponding
branch-and-price algorithm (2BP). In the following sen8owe show that the 2BP
algorithm can be applied to the M®IFP, we introduce a heuristic to possibly find
feasible solutions faster, and we present a branch-ame-glgorithm (2BP’) based on
the same master problem as in the 2BP algorithm, but with abmanching strategy.

10.3 The 2-index branch-and-price algorithm (2BP)

Applying Dantzig-Wolfe decomposition to the edge-basedielavithout using thé-
index gives a pricing problem, which generates a path fdn eammodity, and a master
problem, which merges the paths into an overall feasibletwl. Letx; > 0 denote
the amount of flow on patp for commodityl and Ietyé) € {0,1} denote whether or
not pathp is used by commodity. The master problem is:

§ E l
max xT p

leL peP!
st. Y > Pal<u. VecE (10.10)
leL peP!
ah—uyyl <0 VleLvpeP (10.11)
> <k VielL (10.12)
peP!
ah >0 Vie L,Ype P

yh e {0,1} vlie L,Vp e P!
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The objective function maximizes the total amount of roufted. Constraints[{10.10)
ensure edge capacities are never violated and constid@l|) force the decision
variables to take on value 1, whenever the amount of flow oedhesponding path is
positive. Constraint$ (10.12) limit the number of used pdtin commodityl to at most
k.

By LP-relaxing the binary variabl% to0 < yj) < 1 the model is turned into an
LP-model. Setting, = ., /u,, satisfies constraints (10]11) and (10.12) and simplifies
the formulation to only consisting of one type of variableonGtraints[(10.11) are
now redundant and can be removed from the formulation. Tlaged master problem

becomes:
max Z Z a:é (10.13)

leL peP!
st. Y Y otal<u, VeeE (10.14)
leL peP!
xl
P < VielL (10.15)
Up
peP!
zl, >0 Vi e L,Vp e P (10.16)

10.3.1 Pricing problem

Letw > 0 and) > 0 be the dual variables for constrainfs (10.14) dnd (10.18e T
reduced cost for a paghe P' for a commodityl € L is:

l
dp=1-> 6m, — A (10.17)

The pricing problems generate columns with positive redwost for each commaodity
1. Now, X! is a constant whehis fixed so finding a column with positive reduced cost
(if any exists) is equivalent to solving the shortest patbbems:
l

Zagweg—A—, vie L, Vpe P

ecFE Up
The path capacity,, is not known until the path has been generated. Hence, we set
fixed bounds on:,. We know that the capacity can be set to at md4tdifferent
values (one for each different : e € F), hence the pricing problems can be solved
by considering at mosf| shortest path problems. The pricing problems can now be
defined as solving the shortest path problem defined on @osts0 for edges with
ue > u, for each different:, : e € E. This can be done in polynomial time by using,
e.g., Dijkstra’s algorithm.
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10.3.2 Heuristic solution

We may reach solutions where more thiapaths are used for each commodity. In this
case we try to move the flow between the paths in order to findsalfke solution using
at mostk paths for each commodity. The feasible solution may rowte flew through
the network, but it can possibly improve the current upperrtabin the branch-and-
bound scheme and hence help prune parts of the search tree.

For each commodity the heuristic investigates all pathiseércurrent fractional solution
and greedily assigns flow to the path having the highest dgpathe steps of the
heuristic are:

1: for (each commodityjlo

2:  Sort all the paths in the current fractional solution acérgdo decreasing ca-
pacity

3. for (each path in the sorted list, until flow is assigned feaths)do

4 Assign as much flow as possible to the path

5: Subtract the assigned flow from the capacity of each edgeeopéth

6: end for

7: end for

In the case where commodities do not share (many) edgesethistic may result in
good solutions and hence good upper bounds.

10.3.3 Branching scheme — forbidding edge sequences

The branching scheme consists of forbidding edge sequebetethe divergence vertex
for a commodity be defined as the first vertex with one inconpath and several
outgoing paths. If the number of paths emanating from therdience vertex for some
commodityl is greater thai& then branching can be applied. For each emanating path
p we find the first edges gf, which makep different from the remaining emanating
paths. This is denoted the unique edge sequenge feach unique edge sequence is
forbidden in a branching child. If more tham+- 1 paths emanate from the divergence
vertex, then we let some branching children consist of mbas tone unique edge
sequence such that the number of branching children is alwgyal tok + 1. The
reason for this is to reduce the width of the search tree. legal to let a branching
child forbid several unique edge sequences, because ablinations ofk paths from
the emanating paths are available in at least one otherfiraqchild.

An illustration of the branching strategy is seen in FiguBe2l A graph with four ver-
tices is given and a commaodity with soureand destination is to be routed using at
most two paths. In the current solution three paths are useée: {e1,eq4,e5},p2 =
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{e1,e3,e5}, andps = {ea, e3,e5}. Assume that the optimal solution consists of path
p1 andps. Now k + 1 subpaths are foundfe;, es}, {e1,es} and{e2}. The opti-
mal solution is found in the branching child, which forbithe tuse of edge sequence

{e1,e3}.

€1 €3

€2 €4

Figure 10.2: A graph used to illustrate the branching schefte graph consists of
four vertices, the source vertex is denotednd the destination vertex Edges are
e1, €2, €3, e4, andes. The illustration is taken from [83].

The branching scheme changes the pricing problem. Wheimgdilve shortest path
problem we need to ensure that we do not use the forbidden sstgeences. The
shortest path problem with forbidden paths is a polynomialbfem and can be solved
by applying a shortest path algorithm to an extended gra@éj[1

10.4 A new 2-index branch-and-price algorithm (2BP’)

The 2BP’ algorithm only differs from the 2BP algorithm in theanching scheme. The

master probleni{10.13]=(10]16) is the same and the reduwstdscgiven by[(10.17).
The heuristic described in Section 1013.2 is also applecabl

10.4.1 Branching

The new branching scheme resembles the branching stratégyos et al. [51] and
is based on the idea of forbidding or forcing the use of a aepathp’ for a fixed
commaodityl € L. This corresponds to settimg/ =0 ory;/ = 1, respectively, in the
non-relaxed master problem. In the remainder of this seetifixed commodity € L
is assumed.

The effect of the branching scheme on the non-relaxed mpetbtem, specifically
constraint[(10.7112) is considered:
> <k

pEP
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In both the case th@lﬁ, =0 oryi,, = 1 the variable can be left out of the constraint. If
yj) = 1 then the constraint is rewritten as

> k-1
peP\{p'}

Now, the effect of the branching scheme on the relaxed mastdriem, specifically
constraint[(10.15) is considered:

S~

>

peP!

<k

§|€%

P

When pathy’ is forbidden for commoditg/thenxﬁ), = 0. When use of pat’ is forced
then we selré, > (0 and constrainf{10.15) is rewritten as

7
p

g L <E-1 (10.18)
U
peP\{p'} P

This is stronger than the original constraint whgyn < u,, hence the bound of the
branching child is strengthened in this case.

The number of branching children varies according to theesurfractional solution.
Assume that the current solution consists:ef «, a > 0 paths for commodity. If a
path in the current solution carries as much flow as poséiblex:é = up, then forcing
the use of pathy has no effect becaude (10.18) is not violated.

Since the current fractional solution is a feasible solutmthe relaxed master problem
constraints[(10.15) are satisfied. Hence, at least paths have!, < u, (otherwise the
sumzpep xé/up would exceedk). An optimal solution may consist of paths not part
of the current fractional solution. Thus, we cannot gematat 1 branching children,
where the use of exactly one path is forced in each child. &atht 2 children should
be generated: Each of the fitst+ 1 branching children forces the use of exactly one
pathp with a:é < uyp, and the last branching child forbids the use ofall 1 paths.

The firsta + 1 children cause symmetry in the solution space; severatisokiin one
branching child can also be found in the other children, eisflg when several of the
«a + 1 paths are part of the solutions. The fiest+ 1 children are thus changed into
forcing and forbidding the use of certain paths. Consider the- 1 = 3 branching
childrenby, b2, andbs, forcing the use of patp,, p2, andps, respectively. Child,

is unaltered and forces the usemgf Child b, forces the use g, and forbids the use
of p;. In this way, the solution using; andp, is only available in the subtree 6f.
Similarly, childbs forces the use gf; and forbids the use gf; andp..
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In practice we would rather add a cut than rewrite constsa[h@.15) when the use
of a path is forced. Recall inequality (10118) when forcihg tise of path’. This
inequality is now denoted the branch cut. Lgt > 0 be the dual of branch cutfor
commodityl. The resulting reduced cost for patke P! for commodityl € L is

. A Shwni
cﬁ,=1—z(sme—u—;—zp— (10.19)

U
e€E beB P

The extra dual costy, is subtracted from the reduced costs for all new paths for-com
modity!; this is similar to how); is handled. Hence, the branch cut does not affect edge
weights or path properties in the graph of the pricing probléhe pricing problem
must, however, be able to avoid using forbidden paths aséefo

10.5 Computational results

A computational evaluation is performed on a dual 2.66 GHelthXeorf® X5355
machine with 16 GB of RAM. Note that CPU times in the followisigm from using
one core only.

We have tested three algorithms; the 3BP extended with ddtieuo reach feasible
solutions faster [83, 192], the 2BP, and the 2BP’. We impletee all three algorithms
using the COIN framework [140] withLOG CPLEX 10.2 as LP-solver. Compu-
tations concerning the selection of branching candidatesbaianching children are
handled by COIN.

The three solution methods are tested on benchmark insténoce the literature [190]:
TheRandominstances are randomly generated andghénstances are generated by
the Transit Grid generator [189] using topologies from $@ortation networks. See
Table[10.1 for details.

Three different types of tests have been performed. Fiesttipact of using the heuris-
tic from Sectior 10.3]2 in the 2BP and the 2BP’ algorithmsisted. Then the three
exact algorithms are computationally evaluated on the ggegd instances and results
are compared. Finally, we examine if the 3BP and either o8B and 2BP’ algo-
rithms give good heuristic solutions by terminating eadt tean once the root node
has been computed (when omitting branching the 2BP and ti® @Borithms are
identical).
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Name VI |E|] |L]

Random5-35 5 35 1
Random10-45 10 45 1
Random15-60 15 60 1
Random20-140 20 140 1

tg10-2 12 40 1
1g20-2 22 80 1
tg40-1 42 154 1
1g40-5 42 154 1
1g80-1 82 322 1
tg100-2 102 400 1

Random10-40 10 40 3
Random11-42 11 42 11
Random?20-80 20 80 20
Random?22-56 22 56 22

Table 10.1: Sizes of test instances. First column deno&emtiance name, then fol-
lows the number of vertices, the number of edges, and finladiywumber of commodi-
ties.

10.5.1 Heuristic added to the 2BP and the 2BP’ algorithms

The 2BP and the 2BP’ algorithms are tested with and withcait#uristic from Sec-
tion[I0.3.2. The test results are included in the Appendikahle[10.§-10.710 for the
2BP and Tabl€ IO 1I-T0ON 3 for the 2BP’, since they show tiaheuristic has very
little to no impact on the performance of the results. The sizthe search tree and the
running times are neither worsened nor improved. We incthdeheuristic as it does
not negatively affect the performance and as it may helpavglower bounds.

10.5.2 Optimal approach

The three algorithms are computationally evaluated on thpgsed instances. Re-
sults for the single-commoditiRandominstances are summarized in Table 10.2 and
results for the single-commodity instances are summarized in Table 10.3. The
multi-commaodity instances are all of tiandomtype and results are summarized in
Table[I0.4.

In the tables the first column holds the name of the probletairt®, the second column
holds the value of and the third column holds the optimal value. Then follows th
size and depth of the search tree, the number of generatiethlees; the gap in percent
between the upper and lower bound, and the time in seconad spesolving the
instance for the 3BP, the 2BP, and the 2BP’ algorithms, gy, If a test run is
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marked with “-” then it has run out of memory. If the gap is alearked with
then no lower bound was found. The total number of times e&gdrithm has best

performance, is found at the bottom of each table. Also, tmheinstance the best
performance is written ibold.

The 2BP algorithm performs much better than the 3BP algoritbr the Minimum
Cost MCkFP [83]; however, this is generally not the case for theHEP. Although
the number of times the algorithm has best performancedetdor the 2BP, the 3BP
algorithm is capable of solving more instances. The chahgbjective function has a
great impact on the problem; the algorithms always try tchmsmuch flow through
the network as possible, thus potentially exploiting themewhat weakly formulated
bound on the number of used paths. The formulation has lgzadnon the minimum
cost problem because it may not always be beneficial to iserdege number of used
paths. The 2BP algorithm suffers from large search treeausecof the existence
of potentially many solutions using more thanpaths per commodity and because
the branching scheme allows much symmetry in the branchiiildren. The 2BP
algorithm, however, performs somewhat better than the BEhE multi-commodity
Randominstances with respect to running times.

The 2BP’ algorithm generally performs much better than e algorithm. Excep-
tions aretg40-5 , £k = 4 andRandom20-80, k£ = 5, which the 2BP’ algorithm
spends more time on solving. Furthermore, 2BP’ is unablentbdin optimal solution
for Random?20-80 , k = 4. For the far majority of test instances, however, the 2BP’
algorithm is capable of finding an optimal solution in littime, even when the 3BP
algorithm shows great difficulty. The 2BP’ algorithm gerigralso generates smaller
gaps for instances, which are not solved to optimality. Beasire that the search tree
sizes are generally smaller for the 2BP’, the number of Wéeiin the master problem
is smaller, and much symmetry is eliminated because of ttkérig ~-indices.

The 2BP’ algorithm generally also performs much better tt@n2BP algorithm. Ex-
ceptions ard&Rkandom20-80 , & = 4,5, and6 where the 2BP has overall best perfor-
mance. The reason for the generally superior performante&BP’ algorithm is that
the branching scheme gives better bounds in the branchildyen forcing the use of
a path is much stronger than forbidding a path. Also forbiigdhe use of all paths
with positive flow is stronger than forbidding a subset of pla¢hs.

All three algorithms suffer from the same weakness in thefdation, specifically the
bounding of the number of used paths per commodity: comssr&L0.9) for the 3BP
and [10.76) for the 2BP and the 2BP’ algorithms. Becauseltfextive is to maximize
the total amount of flow, the algorithms are very likely to eedk paths per commodity
whenever the mentioned constraints are not tight. The caing will rarely be tight,
especially when several paths share the same edges cdusiogtespondingé, Jup
to become much smaller than one. The 2BP’ reduces this profolsome extent with
the branching cuf(10.18).



3BP 2BP 2BP’
Problem k z* size depthvars  gap time size depthvars  gap time ize depthvars ~ gap time
Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3182 1 0 27 0.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.00
4223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
5 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
6 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.00
7 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00
8 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00
Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.01
3209 9 3 33 0.00% 0.02 21 3 15 0.00% 0.03 20 3 12 0.00% 0.02
4 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00%0.03
5 306 369 22 102 0.00% 0.8 23599 18 34 0.00% 44.94 40 4 20 0.00%0.07
6 345 973 26 137 0.00% 2.9 >427099 >26 39 2.36% - 135 6 26 0.00%0.22
7 381 4281 36 219 0.00% 16.5% >354551 >22 46 -% - 313 8 34 0.00%0.64
8 413 22985 43 265 0.00% 102.5]1 >431299 >29 46 2.93% - 606 9 40 0.00%1.31
9429 | >110199 >58 380 6.43% -| >388228 >26 60 -% - 2507 11 46 0.00%5.97
10 451 | >104999 >57 448 5.74% -| >456699 >41 74 6.57% - 2355 12 46 0.00%5.91
Random15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
3221 9 3 34 0.00% 0.02 41 6 15 0.00% 0.06 12 2 12 0.00% 0.02
4248 111 10 70 0.00% 0.32 >100454 >26 50 -% - 111 6 20 0.00%0.22
5 268 557 18 101 0.00% 551.83 >176599 >29 52 2.86% - 322 7 29 0.00%0.76
6 287 419 21 135 0.00% 1.59 >277801 >31 45 2.74% - 354 9 30 0.00%0.79
7 295 19097 35 194 0.00% 72.91 >387565 >23 49 -% - 836 10 27 0.00%1.74
8 301 | >88799 >47 231 2.90% -| >413343 >33 55 2.90% - 4995 11 30 0.00%41.32
9306 | >153099 >51 229 1.29% -| >547079 >28 48 -% - 2263 11 19 0.00%4.42
Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3228 1 0 30 0.00% 0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.00
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4 253 9935 31 103 0.00% 75.2% >41444 >42 68 -% - 90 18 67 0.00%1.04
5274 >39999 >41 146 1.86% -| >68299 >66 87 1.86% - 819 22 51 0.00%2.65
6 294 >30199 >61 184 1.78% -| >60299 >86 107 1.78% -| >14106 >32 113 1.78% -
7 - >28999 >70 227 1.81% -l >75894 >46 91 -% - | >14299 >32 109 1.69% -
8 319 >30599 >80 267 1.91% - >94699>101 120 1.91% - 4028 22 29 0.009%2.95
9 325 >39599 >93 315 0.84% -| >108990 >63 105 -% - 130 9 25 0.00%0.32
10 327 2907 109 326 0.00% 19.1% >272685 >49 68 0.61% - 17 3 22 0.00% 0.02
11 327 1325 86 301 0.00% 8.74 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03
Best 11 14 36

Table 10.2: Results from solving the single-commodRgndominstances exactly.
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3BP 2BP 2BP’
Problem k z* size depthvars  gap time size depthvars gap time iz depthvars gap time
tgl0-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.04
3 716 553 19 58 0.00% 0.7¢ 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.06
4 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.00
5 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
4 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.00
2 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.07
3 908 | >9999 >40 96 2.61% -| >83282 >61 94 -% -1 231 11 21 0.00% 3.32
4 994 | >7799 >57 143 1.00% -l >82770 >45 64 -% -| 893 18 33 0.00%25.15
51004 15 7 65 0.00% 0.09 703 27 20 0.00% 141 11 2 18 0.00% 0.03
6 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07
tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 | >20599 >46 80 4.11% -| >64248 >45 57 5.70% -| 144 9 23 0.00% 1.49
31062 | >17299 >59 139 0.28% -l >77103 >44 65 -% -| 276 8 22 0.00% 4.20
41078 181 47 68 0.00% 0.61 | >148934 >22 50 -% -| 1520 21 22 0.00% 26.53
51078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04f 76 20 16 0.00% 1.72
tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.02
2 984 1591 29 80 0.00% 65.23 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.72
31411 | >2199 >36 162 3.85% -| >51476 >49 107 -% -| 1914 10 38 0.009410.38
tg100-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.02
21007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
31407 | >1099 >31 115 0.39% -l >29087 >60 113 -% -l 229 6 51 0.00%29.14
41768 | >1499 >72 234 1.51% -| >56256 >40 167 -% -| 2118 9 82 0.009284.41
Best 7 12 23

Table 10.3Results from solving theg instances exactly.
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3BP 2BP 2BP’
Problem k z* size depthvars  gap time sizedepthvars  gap time ize depthvars  gap time
Random10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.01
2 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.01
3 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.06
4 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 32 0.00% 0.20
5 309 1989 30 176 0.00% 7.91 >253716 >25 56 1.24% 1.06 561 12 39 0.00% 1.06
6 318 15905 36 253 0.00% 73.84 >610006 >24 59 1.35% - 1294 13 60 0.00% 2.63
7 321 | >153199 >56 286 0.01% -| >335959 >26 54 -% - 26182 18 47 0.00%57.10
8 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.43
9 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 32 0.00% 0.02
Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00% 0.02
2 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.01
3344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
Random?20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 53 0.00% 0.04
2 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.01
3 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.45
4 601 55909 33 277 0.00% 40.03 1041 10 60 0.00% 2.02 | >81550>548 601 2.01% -
5617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.61
6 621 | >48999 >40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.08
7 626 413 37 412 0.00% 3.49 17 2 57 0.00% 0.02 116 14 57 0.00% 0.22
8 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01
Random?22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.02
2 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.01
3 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.01
4 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00
Best 7 17 14

Table 10.4: Results from solving the multi-commodity imst@s exactly.

sjnsal [euoneindwo) 0T

TT¢C



Comparing branch-and-price algorithms for the multi-comm odity
212 k -splittable maximum flow problem

10.5.3 Heuristic approach

The three exact algorithms presented can be used as hesibgtonly computing the
root node. This approach does not guarantee a polynomiairrgriime, since an
exponential number of columns potentially needs to be addéte root. In practice,
however, we expect low running times.

The heuristic usage of the 3BP algorithm is denoted 3HEURaBse no branching
occurs the heuristic usage of the 2BP and the 2BP’ algoriisrigentical and is de-
noted 2HEUR. Including the heuristic from Sectlon 10.3.#hia latter gives the final
heuristic denoted 2HEUR'.

All three heuristics are evaluated on the previously pregasstances. Test results for
the heuristic use of the exact algorithms are summarizeabile$ 10.H, 1016, and 10.7.

The first column of each table holds the name of the probletarne, the second col-
umn holds the value of, and the third column holds the optimal value. Then, follows
for each of the algorithms 3HEUR, 2HEUR, and 2HEUR’; the nemdx iterations,
the gap between the heuristic and the optimal value, andrtieeih seconds spent on
solving the instance. An entry marked with “-” indicatesttha feasible solution was
found. The average number of iterations, gap, and time usaggiven at the bottom
of each table.

The results show that the 3HEUR algorithm often gives poarrisc solutions with
gaps of up to 94%. For three multi-commodRandominstances the 3BP algorithm
is even unable to find a feasible solution in the root node. ZHEUR algorithm gen-
erally finds much better solution values than the 3HEUR digor. The 2HEUR',
however, shows superior performance by solving the mgjofithe instances to opti-
mality and with the largest gap of those not solved being 2@ heuristics have very
low running times and terminate in less than a second.
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3HEUR 2HEUR 2HEUR’

Problem k z* iter. gap time iter. gap time iter. gap time

Random5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.01
128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.00
182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.00
223 12 16.60 0.00f 10 0.00 0.00f 10 0.00 0.00
262 12 5496 0.00f 10 0.00 0.00f 10 0.00 0.00
297 13 80.37 0.00f 12 0.00 0.00{ 12 0.00 0.00
326 14 5429 0.00f 12 0.00 0.00f 12 0.00 0.00
326 13 0.00 0.01] 11 0.00 0.00f 11 0.00 0.00

Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.00

O~NO OB~ WN

2 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.00
3 209 10 22.00 0.01] 10 15.31 0.00f 10 0.00 0.00
4 260 13 65.38 0.01] 13 18.08 0.00f 13 0.00 0.00
5 306 15 75.82 0.01| 17 46.73 0.00{ 17 0.00 0.00
6 345 17 73.91 0.02] 19 43.48 0.00f 19 0.00 0.00
7 381 23 76.38 0.02| 21 47.77 0.00f 21 8.40 0.01
8 413 24 78.21 0.02] 23 48.18 0.00f 23 6.78 0.01
9 429 30 79.02 0.04| 30 37.06 0.00f 30 1.40 0.00
10 451 35 80.04 0.05| 38 36.59 0.01] 38 0.00 0.01

Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.00
221 10 55.24 0.01] 11 85.52 0.00| 11 16.74 0.00
248 13 87.50 0.01] 18 56.04 0.01f 18 10.01 0.00
268 16 57.49 0.02| 20 51.49 0.00f 20 5.97 0.00
287 18 93.38 0.02| 22 50.52 0.01] 22 6.62 0.00
295 20 85.05 0.02| 23 46.44 0.01f 23 13.90 0.00
301 19 59.47 0.01| 21 46.84 0.00| 21 17.94 0.00
306 18 60.13 0.01| 18 39.87 0.00| 18 19.93 0.00

Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00

O©Co~NoOUhr~WN

2 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.00
3 228 10 0.00 0.02| 10 0.00 0.00{ 10 0.00 0.00
4 253 12 82.48 0.03] 13 0.00 0.00f 13 0.00 o0.01
5 274 16 84.69 0.04| 16 1.46 0.01{ 16 0.00 0.01
6 294 18 84.69 0.04] 24 69.05 0.01| 24 340 0.01
9 325 22 86.15 0.04| 24 44.92 0.01f 24 031 0.01
10 327 21 86.24 0.01f 19 3.67 0.00f 19 3.67 0.00
11 327 20 86.24 0.01f 19 0.61 0.00f 19 0.61 0.00
Average 14 49.40 0.01 15 22.29<0.01 15 3.21<0.01

Table 10.5: Results from solving the single-commodRgndom instances heuristi-
cally, where each algorithm terminates after having evatlithe root node only.
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3HEUR 2HEUR 2HEUR’

Problemk  z* iter. gap time iter gap time iter. gap time
tgl0-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.00

2 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.00

3 716 9 0.00 0.00| 10 15.22 0.00{ 10 0.00 0.00

4 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.00

5 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00
tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00

2 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00

3 832 11 18.03 0.00f 10 0.01 0.00f 10 0.00 0.01

4 853 10 0.00 0.01| 10 0.00 0.00f 10 0.00 0.00
tg40-1 1 517 5 0.00 0.01 5 0.00 o0.01 5 0.00 0.01

2 750 7 7213 0.01 9 61.33 0.01 9 0.00 0.01
tg40-5 1 487| 8 0.00 0.00| 6 0.00 0.00| 6 0.00 0.01
tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.02

2 984 11 52.74 0.14| 14 1463 0.06] 14 0.00 0.06
tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.02

2 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03
Average 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01

Table 10.6: Results from solving tlg instances heuristically, where each algorithm
terminates after having evaluated the root node only.
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3HEUR 2HEUR 2HEUR’
Problem k z¢ iter. gap time iter gap time iter gap time
Random10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.00
2 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.00
3 258 | 11 80.62 0.01f 11 69.38 0.00| 11 6.59 0.00
4 293 | 14 66.21 0.02| 15 36.52 0.01| 15 7.17 0.01
5 309 | 16 67.96 0.02| 19 34.95 0.00| 19 841 0.01
6 318 | 2168.89 0.03] 25 33.02 0.00| 25 597 0.01
7 321 | 17 84.42 0.02| 21 2461 0.00| 21 156 0.01
8 323 | 218452 0.01f 20 22.29 0.00| 20 4.34 0.00
9 323| 208452 001 21 9.29 0.00f 21 0.00 0.00
Random11-421 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.01
2 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.00
3 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.00
4 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00
Random20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.01
2 553 7 35.80 0.02 7 15.91 0.01 7 0.00 0.01
3 584 9 - 0.02 9 753 0.00 9 0.00 0.01
4 601 12 - 0.03| 12 7.65 0.01| 12 0.00 0.01
5 617 | 14 - 004| 16 4.05 0.02| 16 2.27 0.00
6 621 | 125829 0.03] 14 0.64 0.01| 14 0.00 0.01
7 626 | 125863 0.03] 14 0.96 0.01| 14 080 0.01
8 626| 12 0.00 0.03] 14 0.00 0.01| 14 0.00 0.01
Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.00
2 389 6 154 0.00 5 154 0.00 5 0.00 0.00
3 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.01
4 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01
Average 9 3431 0.01 11 15.64 <0.01 11 2.34<0.01

Table 10.7: Results from solving the multi-commodisndominstances heuristically,
where each algorithm terminates after having evaluateddbienode only. Average
is only over the instances where all heuristics found a Easiolution.
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10.6 Conclusion

Two exact solution methods for the M®IFP problem have been introduced. They are
both based on Dantzig-Wolfe decomposition, where the mastblem is a 2-index
formulation merging paths for commaodities into an overalugion. The first solution
method was inspired by previous work on The Minimum Cost Mattmmodity k-
splittable Flow Problem [83]. The two methods differ in thbranching schemes:
the first method forbids subpaths (2BP), while the seconcefoor forbids the use of
certain paths (2BP’). The latter also adds branching cutseanaster problem.

The 2BP and 2BP’ algorithms have been implemented and cadpath a leading ex-
act algorithm from the literature denoted 3BP. Results gbthiat the 2BP’ algorithm
performs significantly better than the 2BP and the 3BP algms both with respect
to the number of solved instances and with respect to the disage. The main rea-
son is that using the 2BP’ algorithm gives smaller searasstreeduces the number of
variables in the master problem, and eliminates some ofytmergtry in the solution
space.

Terminating the computations after having evaluated tbémode transforms the 3BP
and the 2BP/2BP’ algorithms into heuristics denoted 3HEWR 2HEUR, respec-
tively. Because no branching occurs in this heuristic use 2BP and the 2BP’ algo-
rithms become identical. Test results for this approachvsidathat the 3HEUR does
not perform well, with the majority of the solution valuesvitey gaps of up to 94%.
The 2HEUR algorithm, however, showed very promising penfamce when including
a greedy heuristic, which transforms some fractional smhstinto feasible solutions.
In most cases optimal solutions were found and the averdgémsogaps never ex-
ceeded 4%. Both heuristics terminate in less than a secomd fested instances.

All algorithms suffer from weak formulations for boundirfgetnumber of used paths
per commodity. We believe that future work should conceatom tightening these
constraints. This could be done by somehow reformulatiegpttoblem or by adding

cuts. We believe that the focus should be on cuts violatetiénedge-based model
or the original master problem. Future work could also coftrege on finding better

branching strategies for the 2-index formulation in oraefurther reduce the size of
the search tree.
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Appendix

10.7 2BP without and with pruning heuristic

2BP 2BP+heur
Problem k z* size depthvars  gap time size depthvars gap time
Random5-35 1 66 1 0 5 0.00% 0.00 1 0 50.00% 0.00
2 128 1 0 7 0.00% 0.00 1 0 70.00% 0.00
3 182 1 0 9 0.00% 0.01 1 0 90.00% 0.00
4 223 1 0 12 0.00% 0.00 1 0 120.00% 0.00
5 262 1 0 12 0.00% 0.00 1 0 120.00% 0.00
6 297 1 0 14 0.00% 0.00 1 0 140.00% 0.01
7 326 1 0 14 0.00% 0.01 1 0 140.00% 0.00
8 326 1 0 13 0.00% 0.00 1 0 130.00% 0.01
Random10-45 1 73 1 0 5 0.00% 0.00 1 0 50.00% 0.00
2 142 4 1 9 0.00% 0.00 4 1 90.00% 0.01
3 209 21 3 15 0.00% 0.03 21 3 150.00% 0.03
4 260 411 12 24 0.00% 0.56 411 12 240.00% 0.56
5 306 23599 18 34 0.00% 45.84 23599 18 340.00% 44.96
6 345 | >427099 >26 39 2.36% -| >427099 >26 392.36% -
7 381 | >349959 >21 46 -% - | >354551 >22 46 % -
8 413 | >427699 >29 46 2.93% -| >431299 >29 46 2.93% -
9 429 | >388228 >26 60 -% -| >388228 >26 60 -% -
10 451 | >456699 >41 74 6.56%- >456699 >41 746.57% -
Random15-60 1 86 1 0 6 0.00% 0.00 1 0 60.00% 0.00
2 163 1 0 8 0.00% 0.00 1 0 80.00% 0.00
3221 41 6 15 0.00% 0.06 41 6 150.00% 0.06
4 248 | >101109 >27 50 -% - | >100454 >26 50 -% -
5268 | >176814 >29 52 2.86% -| >176599 >29 522.86% -
6 287 | >277515 >31 46 2.74% -| >277801 >31 452.74% -
7 295 | >387565 >23 49 -% - | >387565 >23 49 % -
8 301 | >406168 >35 59 2.90% -| >413343 >33 552.90% -
9 306 | >568629 >24 45 -% - | >547079 >28 48 % -
Random20-140 1 81 1 0 5 0.00% 0.00 1 0 50.00% 0.00
2 158 1 0 7 0.00% 0.00 1 0 70.00% 0.00
3 228 1 0 11 0.00% 0.00 1 0 110.00% 0.00
4 253 >41444 >42 68 -% - >41444 >42 68 % -
5 274 >68299 >66 87 1.86% -| >68299 >66 871.86% -
6 294 >60299 >86 107 1.78% - >60299 >86 107 1.78% -
7 - >76094 >46 90 -% - >75894 >46 91 % -
8 319 >94699>101 120 1.91% -l >94699>101 1201.91% -
9 325 | >114289 >47 94 -% - | >108990 >63 105 -% -
10 327 | >271899 >48 65 0.61% -| >272685 >49 680.61% -
11 327 49 3 22 0.00% 0.03 49 3 220.00% 0.03

Table 10.8: Results from solving the single commo&gndominstances without and
with the pruning heuristic.
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2BP 2BP+heur
Problemk z* size depthvars gap time size depthvars gap time
tg10-2 1 389 1 0 40.00% 0.00 1 0 40.00% 0.00
2 557 355 14 100.00% 0.22 355 14 100.00% 0.21
3 716 40981 19 200.00% 33.29 39505 20 280.00% 32.49
4 815 6 1 80.00% 0.00 6 1 80.00% 0.00
5 815 1 0 80.00% 0.00 1 80.00% 0.00
tg20-2 1 385 1 0 40.00% 0.01 1 0 40.00% 0.00
2 643 1 0 60.00% 0.00 1 0 60.00% 0.00
3 832 1 0 100.00% 0.01 1 0 100.00% 0.00
4 853 1 0 100.00% 0.01 1 0 100.00% 0.00
tg40-1 1 517 1 0 50.00% 0.00 1 0 50.00% 0.01
2 750 4 1 100.00% 0.03 4 1 100.00% 0.02
3 908 >80455 >50 83 -% - >83282 >61 94 % -
4 994 >74285 >43 63 % - >82770 >45 64 % -
51004 619 24 230.00% 1.14 703 27 200.00% 1.41
6 1004 29 3 130.00% 0.02 29 3 130.00% 0.02
tg40-5 1 487 1 0 60.00% 0.00 1 0 60.00% 0.00
2 828 >63948 >48 605.70% - >64248 >45 575.70% -
31062 >81691 >48 66 -% - >77103 >44 65 % -
41078 | >150030 >22 49 % - | >148934 >22 50 % -
51078 61 4 160.00% 0.04 61 4 160.00% 0.04
tg80-1 1 549 1 0 60.00% 0.02 1 0 60.00% 0.02
2 984 2215 22 270.00% 56.57 2308 22 250.00% 59.16
31411 >52274 >44 102 -% - >51476 >49 107 -% -
tg100-2 1 530 1 0 60.00% 0.02 1 0 60.00% 0.03
21007 1 0 80.00% 0.04 1 0 80.00% 0.04
31407 >31616 >64 108 -% B >29087 >60 113 -% -
41768 >58467 >26 168 -% - >56256 >40 167 -% -

Table 10.9: Results from solving thg instances without and with the pruning heuris-
tic.
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2BP 2BP+heur
Problem k z* size depthvars gap time size depthvars gap time
Random10-401 110 5 2 150.00% 0.01 5 2 150.00% 0.01
2 194 34 5 210.00% 0.03 34 5 210.00% 0.04
3 258 213 12 240.00% 0.15 213 6 120.00% 0.18
4 293 2956 16 410.00% 4.24 2956 16 410.00% 4.25
5309 | >232916 >25 561.24% -| >253716 >25 561.24% -
6 318 | >610056 >24 59 1.35% >610005 >24 59 1.35% -
7 321 | >329360 >27 54 % -| >335959 >26 54 -% -
8 323 2008 14 370.00% 1.2Q 2008 14 370.00% 1.23
9 323 11 1 320.00% 0.01 11 1 320.00% 0.01
Random11-421 291 7 3 280.00% 0.02 7 3 280.00% 0.01
2 343 7 2 270.00% 0.01 7 2 270.00% 0.01
3 344 1 0 260.00% 0.00 1 0 260.00% 0.00
4 344 1 0 260.00% 0.00 1 0 260.00% 0.00
Random20-801 347 3 1 510.00% 0.03 3 1 510.00% 0.02
2 553 4 1 500.00% 0.02 4 1 500.00% 0.02
3 584 57 7 590.00% 0.16 57 7 590.00% 0.16
4 601 1041 10 600.00% 2.02 1041 10 600.00% 2.02
5 617 4363 14 660.00% 7.21 4363 14 660.00% 7.35
6 621 3998 11 630.00% 6.4Q 3998 11 630.00% 6.42
7 626 17 2 570.00% 0.03 17 2 570.00% 0.02
8 626 1 0 570.00% 0.01 1 0 570.00% 0.01
Random22-561 365| 7 3 420.00% 0.02 7 3 420.00% 0.02
2 389 10 3 420.00% 0.02 10 3 420.00% 0.02
3 407 1 0 410.00% 0.00 1 0 410.00% 0.01
4 407 1 0 410.00% 0.00 1 0 410.00% 0.00

Table 10.10: Results from solving the multicommodity imstas without and with the
pruning heuristic.
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10.8 2BP’ without and with pruning heuristic

2BP’ 2BP’+heur

Problem k z* size depthvars gap time size depthvars gap time
Random5-35 1 66 1 0 50.00% 0.00 1 0 50.00% 0.00
2 128 1 0 70.00% 0.01 1 0 70.00% 0.00

3 182 1 0 90.00% 0.00 1 0 90.00% 0.00

4 223 1 0 120.00% 0.00 1 0 120.00% 0.00

5 262 1 0 120.00% 0.00 1 0 120.00% 0.00

6 297 1 0 140.00% 0.00 1 0 140.00% 0.00

7 326 1 0 140.00% 0.00 1 0 140.00% 0.00

8 326 1 0 130.00% 0.00 1 0 110.00% 0.00

Random10-45 1 73 1 0 50.00% 0.00 1 0 50.00% 0.00
2 142 8 2 90.00% 0.01 8 2 90.00% 0.01

3 209 20 3 120.00% 0.02 20 3 120.00% 0.02

4 260 34 4 200.00% 0.04 34 4 200.00% 0.03

5 306 40 4 200.00% 0.06 40 4 200.00% 0.07

6 345 98 5 260.00% 0.18 135 6 260.00% 0.22

7 381 272 7 310.00% 0.57 313 8 340.00% 0.64

8 413 602 8 390.00% 1.28 606 9 400.00% 1.31
9 429 2549 12 450.00% 6.11 2507 11 460.00% 5.97
10 451 2364 10 540.00% 6.04 2355 12 460.00% 5.91
Random15-60 1 86| 1 0 60.00% 0.00 1 0 60.00% 0.00
2 163 1 0 80.00% 0.01 1 0 80.00% 0.00

3 221 12 2 140.00% 0.02 12 2 120.00% 0.02

4 248 102 5 200.00% 0.20 111 6 200.00% 0.22

5 268 316 8 220.00% 0.71 322 7 290.00% 0.76

6 287 446 10 300.00% 1.04 354 9 300.00% 0.79

7 295 1375 11 350.00% 2.88 836 10 270.00% 1.74
8 301 4859 11 290.00% 10.73 4995 11 300.00% 11.32
9 306 1868 10 190.00% 3.67 2263 11 190.00% 4.42
Random20-140 1 8] 1 0 50.00% 0.00 1 0 50.00% 0.00
2 158 1 0 70.00% 0.00 1 0 70.00% 0.00

3 228 1 0 110.00% 0.01 1 0 110.00% 0.00

4 253 84 17 180.00% 0.89 90 18 670.00% 1.04
5 274 894 22 700.00% 14.30 819 22 510.00% 12.65

6 294 | >13588 >30 1151.78% -| >14106 >32 1131.78% -

7 - | >13442 >33 116 1.69% -| >14299 >32 109 1.69% -
8 319 2100 21 240.00% 27.73 4028 22 290.00% 52.95

9 325 121 10 250.00% 0.24 130 9 250.00% 0.32

10 327 17 3 220.00% 0.02 17 3 220.00% 0.02

11 327 20 5 200.00% 0.03 20 5 200.00% 0.03

Table 10.11: Results from solving the single commodigndominstances without
and with the pruning heuristic.
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2BP’ 2BP’+heur

Problemk  z* size depthvars gap time size depthvars gap time

tg10-2 1 389 1 0 40.00% 0.00 1 0 40.00% 0.00
2 557 37 5 120.00% 0.04 41 5 110.00% 0.04
3 716 58 5 140.00% 0.06 53 5 150.00% 0.06
4 815 5 1 80.00% 0.00 5 1 80.00% 0.00
5 815 1 0 80.00% 0.00 1 0 80.00% 0.00
tg20-2 1 385 1 0 40.00% 0.00 1 0 40.00% 0.00
2 643 1 0 60.00% 0.00 1 0 60.00% 0.00
3 832 1 0 100.00% 0.00 1 0 100.00% 0.00
4 853 1 0 100.00% 0.00 1 0 100.00% 0.00
tg40-1 1 517 1 0 50.00% 0.00 1 0 50.00% 0.00
2 750 10 3 120.00% 0.07 10 3 120.00% 0.07
3 908 175 9 210.00% 226/ 231 11 210.00% 3.32
4 994 776 16 310.00% 19.960 893 18 330.00% 25.15
51004 26 5 170.00% 0.08 11 2 180.00% 0.03
61004 43 6 130.00% 0.08 43 6 130.00% 0.07
tg40-5 1 487 1 0 60.00% 0.00 1 0 60.00% 0.00
2 828 166 9 250.00% 1.76| 144 9 230.00% 1.49
31062 308 8 320.00% 5.41 276 8 220.00% 4.20
41078 | 2292 22 220.00% 45.58§ 1520 21 220.00% 26.53
51078 72 19 160.00% 1.41 76 20 160.00% 1.72
tg80-1 1 549 1 0 60.00% 0.01 1 0 60.00% 0.02
2 984 351 11 390.00% 11.06 288 11 390.00% 8.72
31411 | 1905 9 380.00%113.39 1914 10 380.00% 110.38
tg100-2 1 530 1 0 60.00% 0.03 1 0 60.00% 0.02
21007 1 0 80.00% 0.04 1 0 80.00% 0.04
31407 240 7 100.00% 31.22| 229 6 510.00% 29.14
41768 | 2367 11 800.00% 293.2§ 2118 9 820.00% 284.41

Table 10.12: Results from solving thg instances without and with the pruning
heuristic.
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2BP' 2BP’+heur

Problem k z* size depthvars gap time size depthvars gap time

Random10-401 110| 4 1 140.00% 0.00 4 1 140.00% 0.01
2 194 4 1 180.00% 0.01 4 1 180.00% 0.01
3 258 51 6 230.00% 0.05 50 6 230.00% 0.06
4 293 150 7 310.00% 0.28 112 7 320.00% 0.20
5 309 513 12 340.00% 1.00| 561 12 390.00% 1.06
6 318 3209 15 480.00% 6.16 1294 13 600.00% 2.63
7 321 25691 19 500.00% 56.47 26182 18 470.00% 57.10
8 323 2046 16 340.00% 2.44 2051 15 360.00% 2.43
9 323 18 5 320.00% 0.02 18 5 320.00% 0.02

Random11-421 291 7 2 270.00% 0.01 7 2 270.00% 0.02
2 343 6 1 270.00% 0.01 6 1 270.00% 0.01
3 344 1 0 260.00% 0.00 1 0 260.00% 0.00
4 344 1 0 260.00% 0.00 1 0 260.00% 0.00

Random20-801 347 7 2 540.00% 0.04 7 2 530.00% 0.04
2 553 4 1 520.00% 0.02 4 1 510.00% 0.01
3 584 637 14 640.00% 2.44 1020 16 620.00% 3.45
4 601 >82274>547 2.01% -| >81550>548 601 2.01% -
5 617 | >83907 >35 870.95% - 49695 34 67 0.00% 198.61
6 621 25788 31 570.00% 74.55 32552 29 580.00% 100.08
7 626 104 14 57 0.00% 0.19 116 14 570.00% 0.22
8 626 1 0 570.00% 0.01 1 0 570.00% 0.01

Random22-561 365 4 1 410.00% 0.01 7 2 440.00% 0.02
2 389 9 3 410.00% 0.02 9 3 420.00% 0.01
3 407 1 0 410.00% 0.00 1 0 410.00% 0.01
4 407 1 0 410.00% 0.00 1 0 410.00% 0.00

Table 10.13: Results from solving the multicommodity imstas without and with the
pruning heuristic.
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CHAPTER 1 l

Conclusion

11.1 Summary

This thesis has investigated the scheduling problem ingpidputing where network
constraints are taken into account. The thesis also caesidiee data routing problem
in multi-protocol label switching, which can be applied indgcomputing context.
The scheduling problem in grid computing has been solvedrevhemponents are
connected through a packet switched network (e.g. thenetgand where components
are connected through an optical network. The main corahgsof the thesis are:

» The scheduling problem in grid computing using a packetcveid network can
be solved to optimality in little time for problems with up 1000 jobs and
resources.

» The scheduling problem in grid computing using an optiegivork should be
solved heuristically. The data transmission problem bexokP-hard, which
complicates exact solution procedures. Proposed heasriséive small running
times and a low solution value gap of 3% on average.

» Operations research can successfully be used in reajfifiesystems to reduce
network traffic. The Nordic DataGrid Facility can reduceitimeaximal link load
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with 20% by using an optimal job placement. Introducing @wlould reduce
the maximal link load with another 15%.

» The proposed algorithms for the multi-protocol label sWihg problem (also
denoted the multi-commoditi-splittable flow problem) outperform previous
work in the literature. The algorithms reveal that the twdmimottlenecks of the
problem is symmetry in the solution space and a somewhat fpmand on the
number of used paths per commodity.

Details on the results in this thesis are described in tHeviig, where each chapter
is briefly summarized.

The offline scheduling problem where components are coadetirough a packet
switched network was solved in Chapfér 4. The exact solujguroach solved all
tested instances within minutes. The algorithm was basdwtamch-and-price, where
the pricing problem assigned a job to a resource and foundyaofvaending data.
The master problem merged these "sub-schedules” into aalbgelution. Only vio-
lated constraints were included in the master problem hieamore, stabilized column
generation reduced the number of generated columns sigmtifyc

The offline grid scheduling problem was extended into hawnginderlying optical
network. This complicated routing, because sending datauth the network became
the MP-hard Routing and Wavelength Assignment Problem (RWA). RWA consists
of routing data through a network using a wavelength on et $uch that no two
data transmissions use the same wavelength on the sameMiméh work has been
conducted on the RWA problem in the literature. Hence a suof¢éhe most common
solution algorithms was presented in Chapler 5. The sumnelyded a discussion of
theoretical running times and of practical experimentefgroposed solution meth-
ods.

The offline grid scheduling where components are connettedigh an optical net-
work was solved in ChaptEt 6. An exact branch-and-pricerdlgn was proposed, but
because the pricing problem became ffe-hard RWA-problem, the exact solution
approach suffered from large time usage. A number of greedyistics were also pre-
sented. The heuristics consisted of combining grid heasistith RWA heuristics. The
grid heuristics concentrated on placing jobs on resourcesreing to criteria, such as
arrival time, execution time, finish time, etc. The RWA-histics found ways of send-
ing data through the optical network. The proposed heasisil solved the tested
instances within minutes and the best heuristic settingah2® solution value gap on
average.

The final paper on grid scheduling concerned the networkléggydrom the Nordic
DataGrid Facility (NDGF). In Chaptélt 7 we analyzed and fdireal the grid network,
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grid sites and the jobs to execute. A number of scenariogaetén this real-life grid

context were analyzed and incorporated into the mathealdtionulation. The goal
was to minimize the maximal link load. Results showed thatgisin optimal job

placement, the maximal link load was reduced from 4.4 Gbs3@&bps. Introducing
caches reduced the link load further to 3.0 Gbps. The regidésa good indication
of where and when bottlenecks occur in the NDGF network. Thagesults are not
only used for deciding how to distribute jobs, but also asratsgic tool for future

expansions.

Part{Ill concentrated on solving the multi-protocol labeitshing problem, which in
operations research is also denoted the multi-commaddiplittable flow problem.
The problem consists of sending a number of commoditiesutiir@a network, where
each commodity cannot use more thepaths. In Chaptéd9 the minimum cost version
of the problem was considered. A new decomposition was pteden parallel with
Truffot and Duhamel][190]. We also presented a correspanainv branch-and-price
algorithm, where the pricing problem generated a path foheammaodity. Branch-
ing forbade certain edge sequences, thus the pricing probé&eame the polynomial
shortest path problem with forbidden sub-paths. The algoroutperformed the exact
algorithms from the literature.

Applying this branch-and-price algorithm to the maximumvleersion of the problem,

however, did not yield good results. In Chapiel 10 we showatumber of paths to
forbid during branching explodes for this problem. Hencepr@posed a new branch-
ing strategy, which either forced or forbade usage of acegtaths. The new algorithm
outperformed our branch-and-price algorithm from Chd8tend the exact algorithms
from the literature.

11.2 Directions for future research

This thesis considered a number of different problems irctirgext of grid schedul-
ing. Each of these problems can be investigated furtheh imatependently and in
grid computing context. The grid scheduling problem suppadvance reservations,
queue emptying and provides an alternative to the onlinediding approach. Future
research on the offline problem where grid components anesmtad through a packet
switched network, could focus either on even better exdctiso approaches or on
better heuristics. The proposed branch-and-price alguritould be extended with
cutting planes. Recent research indicates that cuttingeglaan boost the performance
of exact solvers [57] and this could very well also be the das¢he offline schedul-
ing problem. New heuristics could focus more on taking déaement into account
when placing jobs on resources. When changing the undgnhgiwork topology into
being optical, the data transmission problem is complaatgnificantly and becomes
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NP-hard. The proposed exact algorithm suffers from this, bseadts pricing prob-
lem is AMP-hard and difficult to solve to optimality. Future work coudncentrate on
different decompositions, where the pricing problem wdagdmore tractable.

In our work, we assumed that the optical network was dedidatethe grid computing
system. The grid administrators have thus made some desisiowhich fibers to rent
where and when. To support these difficult decisions, ndtwlesign could be taken
into account when solving the scheduling problem. In thig,\@acompromise between
a good schedule and the cost of setting up the optical netearkl be reached.

The multi-commaodityk-splittable flow problem has successfully been solved t¢ opt
mality in this thesis. However, the proposed algorithmi Istive room for improve-
ment. The symmetry problems and cumbersome branching posklbly be reduced
by adding cuts to the master problem. Another possibilitg isonsider new decompo-
sitions of the problem with special emphasis on tightenirgliounds on the number
of used paths per commodity.



CHAPTER 12

Summary (in Danish)

Denne afhandling omhandler planleegning af data transomissgjrid computing. Grid
computing bestar af en raekke computere, som arbejder sammat Igse et stort prob-
lem. Computerne kan veere placeret over hele verden og arrfdeb via et netveerk
som for eksempel internettet. Et grid har en eller flere edmtservere, som bestem-
mer hvilke computere, der skal kare hvilke programmer (add@mer) og hvornar.
Serverne beregner planer for aktiviteten, men som det emedtages data transmis-
sion enten sletikke eller kuniringe grad i beregningerret.dd et problem, fordi nogle
programmer kraever meget data og programmet kan ikke koredt fdata er ankom-
met til computeren. Programkgrslen kan derfor blive fdestnhvilket gdelsegger de
planer, som grid serverne har beregnet. Resultatet endedygtemet bliver ustabilt.

Denne afhandling foreslar at medtage data transmissieneigming af planer. Plan-

lzegningsproblemet exP-hardt og derfor sveert at lgse. | afhandlingen foreslas fle
mader at gribe planleegningsproblemet an. Desuden &mésthingsmetoder til data
transmissionsproblemet, hvor stgrre klumper af data seafilsted ad gangen. Frem-
gangsmaden til at lzse planlaegningsproblemet og datsniasionsproblemet er an-
vendt matematik, ogsa benzevnt operationsanalyse. Dmalptigsningsmetoder i

afhandlingen er baseret pa Dantzig-Wolfe dekompositsmm opdeler problemet i

mindre bidder. De heuristiske metoder i afhandlingen er gthdige. Det vidensk-

abelige bidrag er fordelt over 5 artikler. De fgrste 3 belanglanlsegning af data

transmission i grid computing sammenhaeng. De sidste dexrrblkhandler data trans-
mission problemet, hvor stgrre maengder af data sendededidigangen.
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| kapitel[4 foreslas en metode til at finde en optimal planKarsel af programmer i
grid computing med hensyn til data transmission. Det ergettat computerne i grid
systemet er forbundet gennem et netvaerk med samme funlidgbrsam internettet.
Lasningsmetoden er baseret pa Dantzig-Wolfe dekompasttivor planlaegningsprob-
lemet opdeles i en raekke delproblemer. Hvert delproblemgesdior at planleegge
karsel af et givent program pa en given computer og kan ligebs/nomiel tid. En
raekke forbedringer mindsker stgrrelsen pa hovedprolilegegrger for at delproble-
merne giver bedre Igsninger. Derved kan metoden lgse aldeninstanser hurtigt -
de fleste i Igbet af fa sekunder og de svaereste pa underricateni

| kapitel[@ behandles planleegningsproblemet, nar gridmaaere er forbundet via
lyslederfibre (eller optiske fibre). | et optisk netvaerk er deerlige betingelser til
data transmissioner, fordi der er visse hardware begraegesni Hver data transmis-
sion bliver sendt af sted pa en lysfrekvens - hver frekvamsfiber ma hgjest anvendes
af én data transmission. En analyse og oversigt over axh@ddet\P-harde data
transmissionsproblem i optiske netveerk - kaltleé Routing and Wavelength Assign-
ment Problem er givet i kapite[5. Det tilhgrende planleegningsproblegnid com-
puting er som skrevet behandlet i kapltkl 6. To forskelligefgangsmader analyseres.
Den farste metode er optimal og baseret pa Dantzig-Wolkem@osition. Det\P-
harde data transmissionsproblem ger dog, at den optiraatérigsmetode er meget
tidskreevende. Derfor foreslar kapitlet ogsa heurigiikid hurtigt at finde en lgsning,
uden at give nogen garantier for hvor god Igsningen er. Ddstbéneuristiske indstil-
ling giver gode Igsninger, der gennemsnitligt ligger 3%desoptimale Igsninger.

| kapitel[d Igses planleegningsproblemet i Nordic DataGadilty (NDGF). Grid sys-
temet og tilhgrende netveerk anvendt af NDGF analyseresowfiseres til en matem-
atisk model. Forskellige scenarier analyseres, formaiseg lgses med henblik pa at
mindske det maksimale netveerksforbrug. Det maksimaleseiddsforbrug nedseettes
med cirka 20% (dvs. 900 Mbps) ved at eendre placeringer afranoger. Desuden
viser kapitlet at ved tilfgrsel af flere ressourcer til gydtemet, sa kan det maksimale
netvaerksforbrug reduceres med yderligere 15% (500 Mbps).

De sidste to videnskabelige bidrag i denne afhandling Idaga transmissionsprob-
lemet, narMulti-Protocol Label Switchinganvendes. Problemet gar ud pa at sende
data fra en raekke startpunkter til en raekke slutpunktégsa at kantkapaciteter over-
holdes og saledes at hver transmission bruger hijester. Problemet eNP-hardt.

| kapitel[d lgses problemet, hvor omkostningerne for at saaldiata gennem netvaer-
ket minimeres. Arbejde i litteraturen viser, at der er pesbér med meget symmetri i
lzsningsrummet. Vi foreslar en Dantzig-Wolfe dekomgosit som eliminerer meget
af den symmetri, og en dertilhgrende branch-and-priceriéhige. Pricing problemet

er et polynomielt korteste vej problem med forbudte delsigg branching strategien
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forbyder brug af visse delstier. Den nye algoritme yder bexird arbejde fra littera-
turen. | kapite[ID lgses data transmissionsproblemet, imengden af transmitteret
data sgges maksimeret. Branch-and-price algoritmen fregéokapitel fungerer ikke
tilfredsstillende, nar maengden af data gnskes maksinferédtantallet af delstier, som
kan forbydes i branching, eksploderer. Derfor foresléviny branch-and-price algo-
ritme, hvor branching strategien enten tvinger eller fadaybrug af stier. Den nye
algoritme yder rigtigt godt og udkonkurrerer tilsvarendesgde fra litteraturen.
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This thesis concerns scheduling of network traffic in grid context. Grid computing consists of a
number of geographically distributed computers, which work together for solving large problems.
The computers are connected through a network. When scheduling job execution in grid computing,
data transmission has so far not been taken into account. This causes stability problems, because
data transmission takes time and thus causes delays to the execution plan.

This thesis proposes the integration of job scheduling and network routing. The scientific contribu-
tion is based methods from operations research and consists of six papers. The first four considers
data transmission in grid context. The last two solves the data transmission problem, where the
number of paths per data connection is bounded from above.

The thesis shows that it is possible to solve the integrated job scheduling and network routing
problem to optimality for a grid, where computers are connected through a packet-switched network.
When the network topology is optical, the routing problem becomes significantly more complex

and the problem should thus be solved heuristically. Furthermore, the thesis proposes a number of
new exact methods for the data transmission problem, where the number of paths is bounded from
above. The new exact solution methods outperform existing methods from the literature,
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