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Preface

This PhD study took place under the ”Industrial PhD programme”. The purpose of the
programme is to perform research which is interesting not only academically but also to
the industry. The PhD candidate is employed at a private company, but the study must
be performed with strong connections to a university, wherethe candidate is expected
to be present at least half of the study time.

The PhD study was performed at the Department of Computer Science, University of
Copenhagen (DIKU) from June 2007 to February 2009 and at DTU Management En-
gineering, Technical University of Denmark from February 2009 to March 2010. Fur-
thermore, the work was partly conducted at GlobalConnect A/S, a telecommunications
company located in the outskirts of Copenhagen, Denmark. Professor David Pisinger
supervised the study, Professor Brian Vinter acted as second supervisor at DIKU and
CSO Niels Raun supervised at GlobalConnect A/S.

This PhD thesis consists of four introductions (Chapter 1, 2, 3 and 8), six research
papers (Chapter 4, 5, 6, 7, 9 and 10) and a conclusion (Chapter11). The research
papers have been written in collaboration with co-authors,who are mentioned at the
beginning of each paper. The research papers are relativelyself-contained, however,
the bibliography of each research paper is left out and instead one bibliography for all
chapters is included at the end of the thesis.

The PhD thesis contains four parts. The first part is an introduction split into two
chapters. The next part concerns the scheduling problem in grid computing and is split
into five chapters. The first is an introduction to the problemand the remaining four
are research papers. The third part of this thesis deals withthe multi-commodityk-
splittable flow problem, where each commodity may use at mostk paths to route its
flow. This problem has relevance in the telecommunications sector when gathering
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several data packets under the same label. The third part consists of an introduction
and two research papers. The final part of this thesis contains concluding remarks and
suggestions for future work.
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CHAPTER 1

Introduction

1.1 Motivation

This thesis is part of a general study of grid computing performed by DTU Management
Engineering at the Technical University of Denmark, the Department of Computer Sci-
ence at Copenhagen University, GlobalConnect A/S and the Nordic DataGrid Facility.
The thesis is a contribution to strengthen the utilization of grid computing by improving
the current routing and scheduling scheme.

Grid computing is a service which provides applications, storage and computational
power. The idea is that users can access the grid by plugging their computer into the
wall to access the grid; just like one gets electricity. Gridcomputing is hence named
after the power grid. The home computer of a user only has to have a good internet
connection and to display graphics, thus the user can save money on buying a new
computer, new software etc. every few years. The user is alsofreed from software
and - to some extent - hardware maintenance as this is handledon the grid by grid
administrators.

The full vision of grid computing has not been implemented atthis point of time. In-
stead grid computing has become a tool for scientists to obtain computational power.
A grid can therefore be viewed as a number of computer resources from (different) ad-
ministrative domains working together for solving large problems. The problem size is
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generally measured in the amount of required CPU cycles or required data. Researchers
use grid computing to solve problems requiring more resources than available at each
research group, see e.g. Grønager [96] and Shiers [176]. Themethods presented in this
thesis will allow researchers to solve problems of larger size and scope than what is
possible today. This is highly relevant because several sciences such as biology, chem-
istry and physics are currently producing data at an exponential rate, see e.g. Bergeron
[37], Marcotte [143] and Ricker [167].

Many different grid implementations are in use today. They all hold a scheduler which
to a certain degree decides the activity in the grid, i.e., which resource computes what
job and when. The schedulers do, however, generally not takenetwork traffic into
account. When a job runs on a resource its input files must be present. The data must
be sent to the resource from storage. If time spent on data transmission is not taken
into account when scheduling computation, the resulting plan may be infeasible; some
jobs may not be able to execute on time because they are still waiting for data. In the
case of an infeasible scheduling plan, the grid may have to reject execution of some
jobs. Hence the grid may become an unstable computation source for the users, which
may lead to a decrease in the desire for using grid computing in general. Taking data
transmission into account will result in feasible scheduling solutions and in an increase
in the stability of the grid. The need for considering data traffic in grid computing
is illustrated in Figure 1.1. The upper figure shows regular network traffic, which
never exceeds 400 Mbps. But when logging on to a grid, the network load explodes as
illustrated in the bottom figure; the amount of ingoing traffic increases to 1 Gbps. The
figure stems from the Nordic DataGrid Facility and is representative for grid usage.
Looking at the bottom figure, it seems that all network capacity is used at certain times.
That is, the network constitutes a bottleneck in some periods and will thus delay the
computation of some jobs.

1.2 Solution approaches

Operations research is a discipline in applied mathematicsand computer science and
is widely used for solving planning problems. Operations research provides a number
of tools useful for computing precise and detailed plans. These tools include mathe-
matical modeling and programming. The interest in applyingoperations research to
real-life problems has increased as more computer resources have become available.
A research area which utilizes operations research for solving planning problems is
telecommunications: re-occurring telecommunications problems which can be solved
using operations research include routing data through networks, designing networks,
and distributing job executions among several CPUs or computers. Operations research
can thus be applied to the scheduling problem in grid computing, which is a combina-
tion of routing data and of distributing job executions.
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Figure 1.1: Network traffic at the Nordic DataGrid Facility:the upper figure illustrates
regular network load and the lower figure illustrates network load when logged on to
the grid.
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A mathematical model can generally be said to contain a set ofvariables, which rep-
resent decisions in the corresponding problem. To ensure that only feasible decisions
are made, subsets of variables are gathered in mathematicalequations. These are also
called constraints and they formulate properties of the corresponding problem. Finally,
a model contains an objective function which defines the overall goal of solving the
corresponding problem. For instance in telecommunications, we want to establish as
many data connections (decision variables) as possible through a network (objective
function) such that network data does not exceed the bandwidth (constraints). That is,
a decision variable corresponds to establishing a data transmission, the constraints cor-
respond to setting upper bounds on the amount of data traveling on the network links,
and the objective is the total number of established data transmissions.

A mathematical model transforms possibly weak or abstract requirements into a num-
ber of precise and detailed mathematical equations such that the corresponding real-life
problem is well-represented. The model is global, because it consists of mathematical
equations and thus only can be read in one way. Also, a good model should be kept
as simple as possible and it may be beneficial to reformulate it into more appropriate
representations. This thesis concerns both modeling and reformulation of models. In
Part II, the grid scheduling problem with network constraints is formalized in a mathe-
matical model and reformulations are applied to reach more tractable representations.

Many of the problems considered in this thesis are very difficult to solve, because the
set of solutions is so large that enumerating and investigating each solution is simply
not feasible. These problems are said to beNP-hard and careful considerations must
be given on selecting an appropriate solution method. Threetypes of methods are
typically employed to solveNP-hard problems:

• Heuristic solution methods.
This approach uses rules of thumb when finding a solution. Heuristics often
choose the decision, which currently seems more appropriate without knowing
exactly how the decision affects the overall solution. Thatis, heuristics give
no guarantee of the solution quality, but they are capable offinding a solution
quickly. Heuristics are often used in a real-life frameworkwhere time usage
constitutes a bottleneck. See e.g. Rothlauf [169] for a study on heuristic meth-
ods.
A special class of heuristics is meta-heuristics, which consists of general frame-
works of heuristics to be applied to many classes of problems. Meta-heuristics
often require more time but may also give better solutions. See e.g. Glover and
Lagunda [92], Goldberg [93], and van Laarhoven and Aarts [193] for studies on
meta-heuristics.
This thesis considers heuristics for solving the grid scheduling problem. The
heuristic methods are presented in Chapter 2.
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• Approximation algorithms.
The approximate solution approach gives a guarantee on the solution quality.
Approximation algorithms, however, may require more time than the heuristic
approach. Approximation algorithms are not part of this thesis and are thus not
explained further. For more information see e.g. Vazirani [197].

• Exact solution methods.
Solving a problem exactly or to optimality guarantees that the best possible so-
lution is found. This approach can be very time consuming as all solutions in
worst case must be explored. A number of different exact approaches exists;
these include decomposition methods, dynamic programmingmethods, matrix
manipulation methods, etc., see e.g. Nemhauser and Wolsey [152]. Some real-
life problems may be tractable in practice despite beingNP-hard, for instance
because of properties of the problem instances or because ofproperties of the
problem type. In these cases, exact methods may be applied. If not, then exact
methods may be used for benchmarking the performance of heuristics. Exact
methods are also a useful tool for analyzing problem bottlenecks and behaviour.
The grid scheduling problem and data transmission problemsin telecommunica-
tions are solved to optimality in this thesis using the Dantzig-Wolfe decompo-
sition method [54] and using standard solvers performing matrix manipulations.
These exact solution methods are presented in Chapter 2.

1.3 Goals

The focus of this thesis is on the grid scheduling problem with respect to network
constraints. The main goals are summarized as:

• Formalize the scheduling problem in grid computing where network limitations
are taken into account.

• Use experiments to investigate the practical complexity of the problem.

• Investigate the consequences of different network topologies, specifically when
using a standard packet switched network (e.g. the internet) and when using an
optical network (which is circuit switched).

• Investigate the underlying network problem, when using Multi-Protocol Label
Switching (MPLS) for routing data. The problem is denoted the Multi-commodi-
ty k-splittable Flow Problem (MCkFP) in operations research context.

The main problem of job scheduling in grid computing is investigated with respect
to practically relevant constraints on the underlying network topology. Work in the
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literature has mainly focused on solving the scheduling problem without network con-
straints. First a standard network topology is applied and then a more sophisticated
optical network topology is considered. The goal is to investigate the impact of net-
work constraints in the grid scheduling problem.

By implementing a number of algorithms the goal is to presentseveral options for
solving the scheduling problem according to requirements on time usage and solution
quality. The methods also give an impression on how difficultthe problem is to solve
practically.

Operations research can be applied to several problems arising in telecommunications.
The scheduling problem in grid computing is an example of this. Another is the prob-
lem of determining routing tables when using Multi-Protocol Label Switching (MPLS).
In MPLS several data packets are gathered under the same label to reduce routing ta-
bles and to increase quality of service. However, the cost ofsending data depends on
the number ofLabel Switch Paths, thus the number of paths should be limited for each
label. This corresponds to the the Multi-commodityk-splittable Flow Problem. A goal
in this thesis is to investigate this problem and to improve current solution techniques
from the literature.

1.4 Contributions

The main contributions of this thesis are summarized below:

• The offline scheduling problem in grid computing with respect to network con-
straints is formalized and proved to beNP-hard. Grid components are assumed
to be connected through a packet switched network. Experiences with heuristic
approaches are discussed and exact solution methods are proposed.

• Comparing the proposed exact methods with heuristic experiments for the off-
line grid scheduling problem using a packet switched network shows that the
problem can be solved to optimality for all tested benchmarkinstances with up
to 1000 jobs and resources.

• The offline scheduling problem in grid computing where components are con-
nected through an optical network is formalized and proved to beNP-hard. Ex-
act and heuristic solution methods are proposed.

• Comparing exact and heuristic solution methods for the formalized offline sche-
duling problem in grid computing using an optical network, shows that the heu-
ristics perform better. The exact solution method times outfor many instances,
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while the heuristics have very small running times and finds solution with an
average solution gap of only 3%.

• The real-life grid computing network of the Nordic DataGrid Facility is formal-
ized into a mathematical formulation. Solving the formulation to optimality re-
duces network usage significantly. Practical, relevant changes to the grid and
network functionality are added to the formulation and the effects are analyzed.

• New exact algorithms for the Multi-commodityk-splittable Flow Problem are
proposed; one for the minimum cost problem and one for the maximum flow
problem. The algorithms are developed with the intention ofreducing symmetry
in the solution space.

• The exact algorithms for the Multi-commodityk-splittable Flow Problem out-
perform exact algorithms from the literature. The algorithms eliminate a signifi-
cant amount of symmetry in the solution space and even thoughthis complicates
branching, the algorithms perform very well.

The contributions are introduced further in the following section and are discussed in
detail in Part II for the grid scheduling problem and in Part III for the Multi-commodity
k-splittable Flow Problem.

1.5 Overview of PhD thesis

The thesis consists of the following parts:

Part I: Introduction. This part consists of two chapters: the current chapter which
contains a motivation and an introduction to the thesis. Thesecond chapter de-
scribes the overall solution methods in the thesis. The methods are heuristics
and exact methods, the latter including branch-and-bound with column gener-
ation, cutting planes, and stabilized column generation. The second chapter is
meant as an introduction to the solution methods and may be skipped by the
advanced reader.

Part II: Scheduling in grid computing. This part considers the scheduling problem
in grid computing. The part contains four papers:

• Integrated job scheduling and network routing. This paper considers
the integrated job scheduling and network routing problem,which has ap-
plication in grid computing. The problem is considered to beoffline, i.e., it
computes a job execution and data transfer plan in advance. The paper sug-
gests three algorithms for solving the problem to optimality. The first is a



10 Introduction

straight-forward branch-and-price algorithm, which runsinto memory and
time problems rather quickly. Thus the algorithm is extended to a branch-
and-cut-and-price algorithm, where only violated constraints are included
in the master problem. This reduces memory and time usage significantly.
However, the algorithm still has room for improvement whichis done by
adding stabilized column generation. This reduces the number of iterations
in each branch-and-bound node considerably and hence dramatically im-
proves memory usage and running times. Instances with up to 1000 jobs
and 1000 resources are solved to optimality. The work has been presented
as follows:

– A paper co-authored with David Pisinger is in submission [86].

– Poster presentation at the Foundations for Innovative Research-based
Software Technologies (FIRST) Retreat, Denmark 2008 (presenter:
Mette Gamst).

– An extended abstract is in Proceedings of Forskningsnet Konferencen,
Denmark 2007 [77] and the work was also presented at this conference
(presenter: Mette Gamst).

Furthermore, the work was presented at the ALGO seminars at Department
of Computer Science, University of Copenhagen, 2008 (presenter: Mette
Gamst).

• A survey of the routing and wavelength assignment problem.The Rout-
ing and Wavelength Assignment problem (RWA) arises when routing data
through an optical network. In an optical network each data connection
travels on a given path at a given wavelength. Each wavelength on a fiber
can be used by at most one data connection because of hardwarelimita-
tions. RWA is the problem of finding routes and wavelengths for a number
of data connections. The survey presents the most common solution meth-
ods from the literature, proposes theoretical running times for the methods
and discusses their computational evaluations. Furthermore, suggestions
for future directions are given. The work has been presentedas follows:

– A Technical Report is published at DTU Management Engineering,
Technical University of Denmark [78].

• On the integrated job scheduling and constrained network routing
problem. This paper considers the offline job scheduling and data transfer
problem in grid computing where the underlying network is optical. The
problem is considered as a combination of the offline grid scheduling prob-
lem described in the first paper of this part, and the RWA problem described
in the second paper. A branch-and-price algorithm is presented and imple-
mented. Test results show that although the algorithm generally performs
better thanCPLEX, it still has memory and time problems. Thus a number
of heuristics are proposed, based on merging grid heuristics with heuristics
for the RWA problem. Test results show that the grid scheduling heuristics
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have the larger impact on performance. The best heuristic setting performs
well with an average solution gap of 3% and solves all instances within
seconds. The work has been presented as follows:

– A paper is in submission [81].

– A short paper is in the Proceedings of the International Symposium on
Combinatorial Optimization 2010 (ISCO’10) [80] and was also pre-
sented at this conference (presenter: Mette Gamst).

– Presentation at the Department of Industrial Engineering,Operations
Research, UC Berkeley, 2009 (presenter: Mette Gamst).

Furthermore, the work was presented at the ORSEM seminars atDTU
Management Engineering, Technical University of Denmark,2010 (pre-
senter: Mette Gamst). Preliminary work was presented at theALGO sem-
inars at the Department of Computer Science, University of Copenhagen,
2008 (presenter: Mette Gamst).

• Analysis of internal network requirements for the distribu ted Nordic
Tier-1. This paper concerns the real-life grid computing system from the
Nordic DataGrid Facility (NDGF). The paper describes and formalizes the
system. The mathematical formulation is optimized usingCPLEXand the
resulting system is analyzed. The paper shows how operations research can
help utilizing real-life grid computing systems, which results in more stable
and efficient grid systems. The work has been presented as follows.

– A paper written with Gerd Behrmann, Lars Fischer, Michael Grønager
and Josva Kleist is currently being finished.

– Early work is in Proceedings of Computing in High Energy and Nu-
clear Physics (CHEP) 2009, where it was also presented (presenter:
Josva Kleist) [33].

Part III: The Multi-commodity k-splittable Flow Problem. This part considers the
Multi-commodityk-splittable flow problem and contains two papers:

• Two- and three-index formulations for the multi-commodity k-split-
table flow problem. This paper considers the problem of sending a num-
ber of commodities through a network subject to edge capacities and such
that each commodity uses at mostk paths. The objective is to minimize
the total transmission cost. We present a mathematical formulation, which
is simpler than that used in the literature. A correspondingnew branch-
and-price algorithm is proposed and is compared with the work from the
literature. The simpler formulation eliminates much symmetry in the so-
lution space but also complicates branching slightly. The new algorithm
outperforms exact algorithms from the literature, both with respect to the
number of solved instances and with respect to time usage. The work has
been presented as follows:
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– A paper co-authored with Peter N. Jensen, David Pisinger andChris-
tian Plum is published in the European Journal of OperationsRe-
search, 2010 [83].

– A short paper co-authored with Peter N. Jensen, David Pisinger and
Christian Plum is in Proceedings of the International Network Opti-
mization 2009 (INOC’09) [82] and was also presented at this confer-
ence (presenter: Mette Gamst).

Furthermore the work was presented at the ORSEM seminars at DTU Man-
agement Engineering, Technical University of Denmark, 2009 (presenter:
Mette Gamst).

• Comparing branch-and-price algorithms for the multi-commodity k-
splittable flow problem. The final paper of this part also considers the
problem of sending a number of commodities through a networksubject to
edge capacities and such that each commodity uses at mostk paths. The
objective is to maximize the total amount of transmitted flow. The simpler
model and corresponding branch-and-price algorithm from the minimum
cost version are applied to the maximum flow problem, but testresults are
not as promising when comparing to a branch-and-price algorithm from the
literature. The reason for this is that the simpler model combined with its
branching strategy causes a large branch-and-bound tree, when the objec-
tive function is to maximize the total amount of transmittedflow. Hence
a new branch-and-price algorithm is proposed, where columngeneration
remains unchanged and where a new branching strategy adds cuts to the
master problem. The new branch-and-price algorithm performs very well
and outperforms both the former algorithm and the algorithmfrom the lit-
erature by solving more instances and spending less time. The work has
been presented as follows:

– A paper is co-authored with Bjørn Petersen and is in submission [84].

– An extended abstract is in the Proceedings of the International Sym-
posium of Mathematical Programming 2009 (ISMP’09) [85] andwas
also presented at the conference (presenter: Mette Gamst).

Part IV: Conclusion. The final part of the thesis contains a summary, some conclud-
ing remarks and suggestions for future work.

Each paper is discussed further in the introductions for each part. That is, the four
papers in Part II are evaluated in Chapter 3 and the two papersin Part III are discussed
in Chapter 8.



CHAPTER 2

Introduction to solution
methods

This chapter describes the solution approaches which are used in this thesis. Both exact
solution methods and greedy heuristics are considered. First comes an introduction
to the exact solution methods, which are based on Dantzig-Wolfe decomposition and
branch-and-bound. Afterwards follows an overview of greedy heuristics given.

2.1 Exact solution method

The exact solution approaches in this thesis are based on theDantzig-Wolfe decom-
position technique used in a branch-and-bound context. Dantzig-Wolfe decomposition
transforms the original mathematical problem into amaster problem, where the num-
ber of columns may be large but the number of rows is reduced. To make the new
model more tractable, columns are generated iteratively inthe hopes of only having
to include a subset of the columns in the model. This is denoted column generation
and consists of solving apricing problemin each iteration. When the lower bound to
the problem is found using Dantzig-Wolfe decomposition andcolumn generation in a
branch-and-bound context, the resulting method is denoteda branch-and-price algo-
rithm. It may seem straight-forward to add the branch-and-bound search method to the
column generation procedure, however, several issues mustbe taken into account. One
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is that branching may change the structure of the pricing problem and hence make it
significantly more difficult to solve. Another is the complexity of the solution method
for solving the pricing problem. The pricing problem is solved a potentially large num-
ber of times, thus the corresponding solution approach should have good performance.

In this thesis branch-and-price is used for solving theNP-hard scheduling problem in
grid computing context to optimality. The reason for this isthat the grid scheduling
problem takes on a form, which is suitable for Dantzig-Wolfedecomposition and that
Dantzig-Wolfe decomposition combined with branch-and-bound shows very good re-
sults for a wide variety of problems in the literature, see e.g. Barnhart et al. [27], de
Aragão and Uchoa [55] Desaulniers et al. [57], and Lübbecke and Desrosiers [136].
Many of these problems share similarities with the grid scheduling problem considered,
e.g., a variety of multi-commodity network flow problems, see Alvelos [7], Alvelos
and de Carvalho [8], Barnhart et al. [26], and Truffot and Duhamel [190]. Applying
other exact solution approaches such as Benders decomposition, see Benders [36], or
dynamic programming, see Bellman [35], would be less straightforward. These and
many other exact solution approaches exist, but they will not be discussed any further
in this chapter. Instead an overview can be seen in e.g. Chvatal [50], Lübbecke and
Desrosiers [136], Martin [146], Nemhauser and Wolsey [152], Schrijver [174], and
Wolsey [204].

This chapter introduces the used exact solution methods andis not meant to be an in-
depth survey but more a guide for understanding the basics ofthe approaches. For
details on the methods and examples of applications, see e.g. Desaulniers et al. [56],
Lübbecke and Desrosiers [136], and Nemhauser and Wolsey [152]. The chapter is or-
ganized as follows. First Dantzig-Wolfe decomposition is introduced in Section 2.1.1,
which is followed by column generation in Section 2.1.2. Adding cuts to strengthen the
mathematical formulation is discussed in Section 2.1.3. Branching is described in Sec-
tion 2.1.4 and overall solution methods are discussed in Section 2.1.5. Finally, methods
for stabilizing dual variables are presented in Section 2.1.6.

2.1.1 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition was introduced by Dantzig andWolfe [54] and consists
of reformulating a problem into a master problem and a pricing problem for improving
the tractability of large-scale problems. The master problem typically has fewer con-
straints than the original problem, but the number of columns may be very large. The
pricing problem generates columns, which have the potential to improve the current
solution.

In order to Dantzig-Wolfe decompose a problem, the constraint matrix should take on
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a certain structure and consist of a number ofindependentconstraints and a number of
connectingconstraints. The constraint matrix is block-angular, i.e., the matrix can be
divided into blocks with non-zero coefficients. These blocks constitute the independent
constraints. Connecting constraints binds the columns together. Consider the problem:

min
∑

k∈K

ckxk (2.1)

s. t.
∑

k∈K

Akxk ≤ b (2.2)

Dkxk ≤ dk ∀k ∈ K (2.3)

xk ∈ Z
nk
+ ∀k ∈ K (2.4)

whereK is the set of blocks andAk andDk constitute the constraint matrix. Con-
straintsAk are the connecting block, andDk the independent block.

A1 A2 . . . An

D1

D2

.
.

.

Dn

Figure 2.1: The desired matrix structure for Dantzig-Wolfedecomposition. The blocks
A1, A2, . . . ,An are connecting constraints and the blocksD1, D2, . . . ,Dn are inde-
pendent constraints.

Figure 2.1 illustrates this matrix consisting of connecting and independent constraints
as blocksAk andDk, respectively. Now, we define the domainsXk asXk = {xk ∈
Z
nk
+ , Dkxk ≤ dk} and we can rewrite our problem into:

min
∑

k∈K

ckxk (2.5)

s. t.
∑

k∈K

Akxk ≤ b (2.6)

xk ∈ Xk ∀k ∈ K (2.7)

Note that this problem only contains the connecting constraints. The variablesxk must
satisfy the independent constraints, which thus are left out. According to the theorems
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of Minkowski and Weyl [173], eachk ∈ K can be written as a convex combination of
the extreme points{xkp}p∈Pk and of the extreme rays{xkr}r∈Rk :

xk =
∑

p∈Pk

xkpλkp +
∑

r∈Rk

xkrλkr

∑

p∈Pk

λkp = 1

λkp ∈ {0, 1}
λkr ∈ Z+

This leads to a reformulation of the problem (2.5) - (2.7) andis named the master
problem:

min
∑

k∈K

ck





∑

p∈Pk

xkpλkp +
∑

r∈Rk

xkrλkr



 (2.8)

s. t.
∑

k∈K

Ak





∑

p∈Pk

xkpλkp +
∑

r∈Rk

xkrλkr



 ≤ b (2.9)

∑

p∈Pk

λkp = 1 ∀k ∈ K (2.10)

λkp ∈ {0, 1} ∀p ∈ P k, ∀k ∈ K (2.11)

λkr ∈ Z+ ∀r ∈ Rk, ∀k ∈ K (2.12)

This model holds fewer constraints than the original formulation, but the number of
columns may be very large. How to deal with the large number ofvariables is discussed
in the next section.

EXAMPLE : Consider the Minimum Cost Multi-Commodity unsplittable Flow
Problem (MCMCuFP), which consists of sending a number of commodities
through a capacitated network such that the total routing cost is minimized and
such that each commodity uses exactly one path.

The network is represented as a graph with nodes and edgesG = (V,E). Com-
modities are represented by the setL and each commodityl ∈ L consists of a
source node, a target node, and a quantityql to route. Letcij ≥ 0 be the cost
of routing one unit of flow on edge(ij) ∈ E and letdij be the capacity of edge
(ij) ∈ E. Finally, letxlij ∈ {0, 1} be a binary variable indicating whether or not
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commodityl ∈ L visits edge(ij) ∈ E. Now MCMCuFP can be formulated as:

min
∑

l∈L

∑

(ij)∈E

cijq
lxlij (2.13)

s. t.
∑

l∈L

qlxlij ≤ dij ∀(ij) ∈ E (2.14)

∑

(ij)∈E

xlij −
∑

(ji)∈E

xlji = bli ∀i ∈ V, ∀l ∈ L (2.15)

xlij ∈ {0, 1} ∀(ij) ∈ E, ∀l ∈ L (2.16)

The objective (2.13) minimizes the total cost of routing allcommodities. The
first constraint (2.14) ensures that edge capacities are notviolated. In constraint
(2.15) letbli = 1 if i is the source node of commodityl, let bli = −1 if i is the
target node of commodityl, and letbli = 0 otherwise. Constraint (2.15) ensures
that each commodity is routed from its source node to its target node. Finally the
bound (2.16) makes sure that variables take on binary values.

Barnhart et al. [26] Dantzig-Wolfe decomposed MCMCuFP suchthat the pricing
problem generates a path for each commodity and the master problem merges the
paths into an overall feasible solution. LetP be the set of paths and let the cost
cp of each path be defined as the sum of visited edge

∑

(ij)∈p cij . The binary

variablexlp ∈ {0, 1} indicates whether or not commodityl ∈ L uses pathp ∈ P .
Also, let δpij be a constant denoting whether or not pathp visits edge(ij) ∈ E.
The master problem is:

min
∑

l∈L

∑

p∈P

cpq
lxlp (2.17)

s. t.
∑

l∈L

qlδpijx
l
p ≤ dij ∀(ij) ∈ E (2.18)

∑

p∈P

xlp = 1 ∀l ∈ L (2.19)

xlp ∈ {0, 1} ∀p ∈ P, ∀l ∈ L (2.20)

The objective (2.17) still minimizes the total cost of routing the commodities and
the first constraint (2.18) makes sure that edge capacities are satisfied. Constraint
(2.19) says that each commodity can use exactly one path and the bound (2.20)
ensures that variables take on feasible values.

2.1.2 Delayed column generation

When applying LP relaxation to the master problem, it can be used to calculate lower
bounds for the original problem. In the relaxed formulation, the variablesλkp andλkr
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are continuous. The number of columns may be very large, thusan idea is to only in-
clude a subset of the columns. In this case we denote the relaxed version of (2.8)-(2.12)
therestricted master problem, because only a subset of columns are included. Columns
are generated iteratively by solving the pricing problem. Only columns, which have the
potential to improve the current solution to the restrictedmaster problem, are added.
This procedure is denoteddelayed column generation, or simplycolumn generation.

To decide whether or not a column has potential to improve thecurrent solution to
the restricted master problem, the dual variables of the current solution are considered.
Consider the restricted master problem:

min
∑

j∈J

cjxj

s. t.
∑

j∈J

ajxj ≥ b (2.21)

xj ∈ X

The reduced costfor a columnj ∈ J is defined ascj − yaj wherey is the dual
cost vector. In minimization problems, a generated column has potential to improve
the current solution to the restricted master problem if itsreduced cost is negative; in
maximization problems positive reduced costs are sought. Now, the objective of the
pricing problem is the reduced cost and the constraints are the independent constraints
of the original problem:

min (cj − yaj)xj

s. t. Dxj ≤ d (2.22)

xj ∈ Z
n
+

A pricing problem is generated for each blockk ∈ K of the original problem. The
pricing problems for different blocks may thus differ. Columns generated by the pricing
problem, are not necessarily part of the solution in the following iteration even though
they had negative reduced costs. If one generated column becomes part of the next
solution then the remaining generated columns may become uninteresting. Also, even
if a column is part of the solution in the iteration just afterits generation, the column is
not necessarily part of an optimal solution.

The overall column generation procedure can now be stated as:

1. Solve the restricted master problem (2.21)

2. Generate columns with the most negative reduced cost by solving the corre-
sponding pricing problems (2.22)

3. If new columns are generated go to step 1, otherwise stop
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Often it is only slightly more expensive to generate severalcolumns at a time. Hence
this may be beneficial, for instance when the pricing problemis difficult to solve, e.g.
NP-hard. In this case, the pricing problem can also be solved heuristically. How-
ever, when the heuristic cannot generate a column with negative reduced cost, then
the pricing problem must be solved to optimality to ensure that the column generation
procedure eventually gives an optimal solution.

EXAMPLE (CONT). Consider the Minimum Cost Multi-Commodity unsplittable
Flow Problem from the previous example and how the problem was Dantzig-
Wolfe decomposed. This example shows how to generate columns for the mas-
ter problem according to Barnhart et al. [26]. The restricted master problem
became:

min
∑

l∈L

∑

p∈P

cpq
lxlp (2.23)

s. t.
∑

l∈L

qlδpijx
l
p ≤ dij ∀(ij) ∈ E (2.24)

∑

p∈P

xlp = 1 ∀l ∈ L (2.25)

xlp ∈ {0, 1} ∀p ∈ P, ∀l ∈ L (2.26)

Let πij ≤ 0 be the dual of constraint (2.24) andσl ∈ R be the dual of constraint
(2.25). The reduced cost for a columnp for a commodityl is:

c̄lp =
∑

(ij)∈E

ql(cij − πij)− σl

The pricing problem for each columnp and commodityl seeks to find columns
with negative reduced cost. Now,σl is known for each commodity and the re-
duced cost can be rewritten as:

∑

(ij)∈E

ql(cij − πij) < σl

Let the cost of each edge(ij) ∈ E in the graph be replaced by(cij −πij), which
is non-negative becausecij ≥ 0 andπij ≤ 0. The pricing problem consists
of finding the shortest path from the source node to the targetnode of the com-
modity, such that the total (reduced) cost is minimized. Because edge weights
are non-negative, the pricing problem is polynomially solvable. If the pricing
problem finds a path with total cost less thanσl then the corresponding column
is priced into the master problem.
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2.1.3 Cutting planes

Solution methods adding cuts to the master formulation are proposed in this thesis: the
added cuts are violated original constraints in the master problem, which were initially
left out. For this reason, this section only gives a very brief introduction to cutting
planes and does not go into details about specific cuts.

A cut is a valid inequality cutting off parts of the relaxed solution space which is infea-
sible to the original problem. The cut is derived from eitherthe master problem or the
original problem formulation. It is not beneficial to add valid inequalities, which do not
cut off parts of the solution space, as the inequalities would only increase the size of
the mathematical model. Cuts can be used instead of or together with Dantzig-Wolfe
decomposition to tighten the LP-relaxation of some constraintsDx ≥ d in the original
problem. If cuts are added in a column generation context, then the pricing problem
must handle the extra dual variables stemming from the cuts.Care must be taken to
avoid adding cuts, which complicate the structure of the pricing problem too much.

Cuts are derived by solving aseparation algorithm, which finds somex for which
Dx ≥ d is violated in the current LP-solution. IfDx ≥ d is from the convex hull of
the integer problem, then we can add all such cuts until the convex hull has been fully
found. This cutting planes algorithm was proposed by Gomory[94, 95]. However,
deriving all cuts is as difficult as column generation with respect to complexity, i.e., if
the pricing problem isNP-hard then so is the separation routine, see Grötschel et al.
[97]. For more details on cuts, separation routines, addition of cuts etc., see Desaulniers
et al. [57], Martin [146], and Wolsey [204].

EXAMPLE (CONT). Recall the Minimum Cost Multi-Commodity unsplittable
Flow Problem (MCMCuFP) from the previous examples. This example shows
how to add cuts to the LP-relaxed MCMCuFP according to Barnhart et al. [26].
The constraint:

∑

l∈L

qlxlij ≤ dij ∀(ij) ∈ E

ensures that edge capacities are never violated. In a fractional solution, however,
we may have a subsetC ⊆ L of commodities visiting edge(ij) ∈ E, where:

∑

l∈C

ql > dij

DenoteC a cover. To potentially strengthen the LP-relaxed mathematical for-
mulation, we add thecover inequality:

∑

l∈C

xlij ≤ |C| − 1
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2.1.4 Branching

The branch-and-bound algorithm was first presented by Land and Doig [133] and can
be illustrated as a branch-and-bound tree as shown in Figure2.2. An LP-relaxed prob-
lem is solved in the root note. If the solution is not feasiblefor the original (not LP-
relaxed) problem, then some branching constraints are added. The resulting new prob-
lems are solved in the children nodes in the branch-and-bound tree. The branch-and-
bound procedure is repeated in eachbranching child. The procedure consists of three
parts:

Bounding. The problem in the current branch-and-bound nodeis solved.

Branching. Branching constraints are added to the current solution. More details are
given below.

Pruning. A global upper bound for minimization problems (lower bound for maxi-
mization problems) is maintained throughout the branch-and-bound tree. If the
solution in the current branch-and-bound node is greater than the upper bound
for a minimization problem (smaller than the lower bound fora maximization
problem) then the branch-and-bound node is discarded, because the problem in
the node can never hold an optimal solution to the original problem.

S

3

S33

S1 S2

S12S11 S31 S32

S

Figure 2.2: An example of a branch-and-bound tree. The original problem is LP-
relaxed intoS and is solved in the root node. In each child node a slightly modified
problemSi is solved.

The purpose of branching is to systematically search the solution space such that an
optimal solution is eventually found. Branching cuts off parts of the solution space in
each branching child. The branching strategy must ensure the finiteness of the solution
approach and that all optimal solutions remain intact in thebranch-and-bound tree. A
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simple branching strategy is to find a variable with a fractional value and then create
two branching children, where the variable is upper boundedby the floored fractional
value and lower bounded by the ceiled fractional value, respectively. This may, though,
not be a very good strategy if the number of variables is very large.

A branching strategy is to add cuts on single variables or on sums of variables. Adding
a cut on a single variable corresponds to changing the bound of the variable. Cuts can
be imposed on sums of variables from the master problem or on variables from the
original formulation, see Desaulniers et al. [57].

For historical overviews, examples of branching strategies from the literature and de-
tailed discussions on branching schemes, see for instance Ryan and Foster [171], Van-
derbeck [194] and Villeneuve et al. [200].

EXAMPLE (CONT). Recall the Minimum Cost Multi-Commodity unsplittable
Flow Problem (MCMCuFP) from the previous examples. The restricted master
problem is LP-relaxed into:

min
∑

l∈L

∑

p∈P

cpq
lxlp

s. t.
∑

l∈L

qlδpijx
l
p ≤ dij ∀(ij) ∈ E

∑

p∈P

xlp = 1 ∀l ∈ L

0 ≤ xlp ≤ 1 ∀p ∈ P, ∀l ∈ L

An optimal solution to the LP-relaxed restricted master problem may be frac-
tional and thus infeasible for the original problem. In a fractional solution, some
commodities use more than one path to send their flow through the network.
Barnhart et al. [26] suggest a branching strategy which eventually ensures an
integer solution and which does not destroy the structure ofthe pricing problem.

Let thedivergence nodedl be the first node which has one incoming and several
outgoing paths for commodityl. The outgoing visited edges are divided into two
balanced subsetsA(dl, a1) andA(dl, a2). Two branching children are generated.
In each branching child we forbid usage of the edges in the corresponding subset:

∑

p∈P

∑

e∈A(dl,a1)

δpex
l
p = 0 vs.

∑

p∈P

∑

e∈A(dl,a2)

δpex
l
p = 0

whereδpe is a constant indicating whether or not pathp visits edgee. The pric-
ing problem for a commodityl can easily be modified into fitting the branching
strategy: forbidden edges for commodityl are simply removed from the graph.
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2.1.5 Overall exact solution approaches

Incorporating column generation in a branch-and-bound context gives abranch-and-
pricealgorithm. In each branching node, bounding is done by column generation. It is
important to consider which impact the branching strategy has on the pricing problem
in the branching children. Adding branching cuts, for instance, affects the pricing prob-
lem. The reduced costs must consider the new dual variables from the branching cuts.
Thus, the branching strategy should seek to limit the impacton the pricing problem.

Using cutting planes for bounding the problem gives abranch-and-cutalgorithm. Cuts
are added throughout the branch-and-bound tree. As stated previously in Section 2.1.3
it can be very time consuming to derive all cuts such that an optimal integer solution
is reached for the LP-relaxed problem. The branch-and-cut algorithm seeks a compro-
mise between reaching good bounds in each branch-and-boundnode and calculating
the bounds quickly. Successful applications of branch-and-cut include the Traveling
Salesman Problem (TSP), see Applegate et al. [15] and the Capacitated Vehicle Rout-
ing Problem (CVRP), see Lysgaard et al. [141]

Using both column generation and cutting planes gives abranch-and-cut-and-price
algorithm. Which cuts to add when using this algorithm name can be discussed: is the
algorithm a branch-and-cut-and-price algorithm if only branching cuts are added? Or
if the added cuts are constraints from the master problem, which are only added when
violated? In this thesis I denote the latter approach branch-and-cut-and-price. In the
branch-and-cut-and-price algorithm it is important to consider how the cuts affect the
pricing problem. As argued for the branch-and-price algorithm, added cuts should not
complicate the structure of the pricing problem too much.

2.1.6 Stabilization of dual variables

In column generation we use the values of dual variables of the current solution for
calculating the reduced costs. The dual variables may, however, take on unfortunate
values.

EXAMPLE : Recall the Minimum Cost Multi-Commodity unsplittable Flow Prob-
lem (MCMCuFP) from the previous examples. The pricing problem for a com-
modity l ∈ L is a shortest path problem with edge weights(cij − πij) ≥ 0 and
the goal is to find a path with reduced cost:

∑

(ij)∈E

ql(cij − πij)− σl < 0
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A B

C

D

3

s

3/1 2/1

s

3

2/1 2/1

Figure 2.3: A network consisting of four nodes and edges. Thecost and capacity of
each edge is shown.

Consider the network in Figure 2.3. Given is a commodityl with source node
A, target nodeB and one unit of flow to send through the networkql = 1. Edge
cost and capacity are displayed at each edge. The thick lines(A → D → B)
represent the currently chosen path for commodityl. Letσl = −8 and letπij be
defined as:

Edge: (A, C) (C, B) (A,D) (D,B)
πij : -1 -1 -3 -3

The next column to be generated contains the pathA → C → B with negative
reduced cost3 + 2 − (−1 − 1) − 8 = −1. The path, however, will never be
part of an optimal solution as the current path is cheaper. Instabilized column
generation we seek to find better values for dual variables such that the number
of iterations and added columns is reduced. In this example,the values of allπe
could be set to−2, which would prevent the generation of the uninteresting path
A→ C → B.

2.1.6.1 Stabilizing methods in the literature

Several methods for stabilizing dual variables exist in theliterature; this section pre-
sents the most common of these. The motivation for using stabilization is that dual
variables may not necessarily converge nicely toward theirrespective optimal values
but instead may take on fluctuating values; this is illustrated in Figure 2.4, which is
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taken from Lübbecke and Desrosiers [135]. A reason for the poor convergence of the
dual variables may be that many LP-solvers return an extremepoint in the dual solution
space and especially in the beginning of column generation where the master problem
holds few columns, the values of the dual variables often fluctuate, see Sigurd [177].
This is especially a problem for degenerated problems, which have an infinite number
of dual solutions, see Rousseau et al. [170]. Stabilizing the dual variables may thus
reduce the number of iterations and the number of generated columns, which again
may reduce the solution time and memory usage.
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Figure 2.4: The left figure illustrates the convergence of dual variables over time. Using
stabilization of dual variables results in the convergenceof dual variables illustrated in
the right figure [135].

Stabilization methods in column generation try to prevent the dual variables from tak-
ing on values significantly different from the values in the last iteration. A stabilization
approach is to define a box covering the last values of dual variables and modifying
the master problem to ensure that future dual variables takeon values lying in that box,
see Marsten et al. [145]. Another method is to modify the master problem such that
differences in the values of dual variables are punished linearly, see Kim et al. [120].
A combination of the two approaches is also possible: a box isdefined and if dual
variables take on values outside the box, a penalty is added to the objective function,
see duMerle et al. [60]. For more stabilization methods, we refer to the overview and
work of Neame [151] and Lübbecke and Desrosiers [135].

2.1.6.2 Interior point stabilization of dual variables

The stabilization method used in this thesis was presented by Rousseau et al. [170].
The idea behind interior point stabilization is to identifya number of extreme points
in the dual solution space and then to calculate a point lyingwithin the dual solution
space (aninterior point) as a convex combination of the extreme points. The interior
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point constitutes the dual variables and is used as base for calculating reduced costs in
the column generation procedure. Figure 2.5 presents an example of the stabilization
method, where the interior point is calculated as the medianof the extreme points.

Figure 2.5: An example of several extreme points in the dual solution space and an
interior point calculated as the median of the extreme points.

To properly illustrate the interior point stabilization method we introduce theSet Par-
titioning-problem as an example:

min
∑

r⊆R

crxr (2.27)

s. t.
∑

r⊆R

airxr ≥ 1 ∀i ∈ {1, . . . , N} (2.28)

xr ∈ {0, 1} ∀r ⊆ R (2.29)

The problem isNP-hard and consists of finding the cheapest way of choosing sets
r ∈ R such that all elementsi ∈ {1, . . . , N} are covered, see Cormen et al. [52]. The
variables are LP-relaxed intoxr ≥ 0 and the LP-relaxed problem is denoted the Master
Problem(M). The dual problem(D) is:

max
∑

i∈{1,...,N}

λi (2.30)

s. t
∑

i∈{1,...,N}

λiair ≤ cr ∀r ⊆ R (2.31)

λi ≥ 0 ∀r ⊆ R (2.32)

The dual variable for constrainti in (M) is denotedλi. When the primal problem is
solved, the setR∗ contains the setsr in the current solution, i.e., withxr > 0. The setS
contains the elements for which the constraints (2.28) are not tight. Using the definition
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on complimentary slackness condition [204], the dual solution space containing all
optimal values forλ is defined as:

∑

i∈{1,...,N}

λiair ≤ cr ∀r ⊆ R\R∗

∑

i∈{1,...,N}

λiair = cr ∀r ⊆ R∗

λi = 0 ∀i ∈ S
λi ≥ 0 ∀i ∈ {1, . . . , N}\S

This also defines the constraints in the stabilized dual problem (SD). The objective
function in the(SD) is manipulated into giving different extreme points in the dual
solution space. Letu be a vector containing random real numbers in the interval[0, 1].
(SD) is defined as:

max
∑

i∈{1,...,N}

uiλi

s. t
∑

i∈{1,...,N}

λiair ≤ cr ∀r ⊆ R\R∗

∑

i∈{1,...,N}

λiair = cr ∀r ⊆ R∗

λi = 0 ∀i ∈ S

λy ≥ 0 ∀i ∈ {1, . . . , N}\S

Solving (SD) for different vectorsu gives extreme points in the dual solution space.
For each vectoru, (SD) can also be solved for the corresponding−u to reach extreme
points far from each other. The dual solution space is convex; hence any convex com-
bination of extreme points yields an interior point lying within the dual solution space.
The number of extreme points to generate varies from problemto problem; however,
Rousseau et al. [170] argued that 20 points suffice.

Instead of solving(SD) for each extreme point, the dual of(SD) can be generated. Let
(PD) denote the dual problem of(SD). (PD) is very similar to the master problem
(M) and(PD) can easily be formulated:
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min
∑

r⊆R

crxr

s. t.
∑

r⊆R

airxr ≥ ui ∀i ∈ {1, . . . , N}\S

∑

r⊆R

airxr ≥ −∞ ∀i ∈ S

xr ≥ 0 ∀r ⊆ R\R∗

xr ∈ R ∀r ⊆ R∗

It may not be necessary to modify all right hand sides. Hence(PD) may be solved
faster by re-optimizing the master problem(M) with modified right hand sides.

2.2 Greedy heuristics

Heuristics are often based on ”rules of thumb” which lead to asolution that hopefully
is close to the optimum. Heuristics generally have small running times but give no
guarantee on the solution quality. See e.g. Judea [113] or Michalewica and Fogel [149]
for details on heuristic methods.

Heuristics are applied to the grid scheduling problem to investigate if they provide a
satisfying alternative to exact solution approaches. Onlygreedy heuristics are consid-
ered, because preliminary work pointed towards mediocre results when applying more
sophisticated meta-heuristics to the grid scheduling problem [79].

Greedy heuristics choose the next step from what appears to be best right now: the
heuristics make a locally optimal choice in hopes of reaching an overall good or possi-
bly optimal solution. Generally, greedy heuristics work asfollows:

• A candidate set of feasible choices is found

• A candidate is selected greedily

• A new solution is generated

• The solution value is calculated

These steps can be repeated according to some criteria. Greedy heuristics do generally
not work exhaustively on all combinations of selections andthus do not necessarily
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find optimal solutions. Early decisions may prevent finding the overall best solution
later.

EXAMPLE : Consider a problem consisting of scheduling jobs on machines such
that the overall profit of scheduled jobs is maximized. A greedy heuristic assigns
the next job on the ”best” available machine. The greedy steps are:

• Find all available machines, the job can be assigned to

• The available machine with smallest possible time slot is chosen

• The job is assigned to the chosen machine

• Add the job profit to the solution value

These steps are repeated until we have tried to assign all jobs for execution.

Greedy heuristics are typically applied toNP-hard problems or to polynomial prob-
lems, which are difficult to solve, e.g., because of the problem instance size or because
of modeling issues. Some polynomial problems may be solved to optimality using
greedy choices. These problems typically have in common that a locally optimal choice
is also globally optimal (greedy-choice property) and that an optimal solution contains
optimal solutions to subproblems (optimal substructure):

• Greedy-choice property emphasizes why the greedy approach differs from dy-
namic programming. A greedy choice may be based on steps up until now but
cannot depend on future choices or future subproblems. Dynamic programming
consists of solving subproblems in a bottom-up fashion until the overall problem
has been solved, where the greedy approach can be viewed as solving the overall
problem in a top-down fashion.

• Optimal substructure is an important property both in the context of greedy algo-
rithms and of dynamic programming. When a problem has optimal substructure,
it can be split into subproblems. In dynamic programming, optimal solutions
for the subproblems are eventually gathered into an overalloptimal solution. A
greedy approach iteratively extends a (sub) solution by greedily solving the next
subproblem.

Proving that a greedy approach solves certain problems to optimality is not necessarily
trivial; Cormen et al. [52] propose to use theory on independent matroids as a proof
for several problems. Examples are Prim’s and Kruskal’s algorithms for minimum
spanning trees.
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2.3 Summary

This chapter described the solution methods used in this thesis. The exact solution
methods are relevant in chapters 4, 6, 9 and 10 and the greedy heuristics in chapters 3,
6, 9 and 10.

The exact solution methods were all based on the branch-and-bound algorithm and
were extended with Dantzig-Wolfe decomposition, column generation, cutting planes
and/or stabilized column generation. Dantzig-Wolfe decomposition and column gen-
eration were presented along with examples of how to apply both on mathematical
formulations. Cutting planes were briefly introduced alongwith a discussion on ben-
efits and drawbacks of adding cuts to a mathematical formulation. The necessity of
branching was described along with a discussion on what a good branching strategy is.
Stabilized column generation was presented as a method to stabilize the values of dual
variables. A dual variable was said to be stabilized when itsvalue did not fluctuate from
iteration to iteration in a branch-and-price scheme. The presented stabilization method
was based on finding several extreme points in the dual solution space and then taking
the average of these extreme points. The resulting interiorpoint defined the values of
the dual variables.

Greedy heuristics were shown to generally consisting of four steps: identifying feasible
candidate set, selecting a candidate, generating a solution, and calculating the solution
value. Also the expected complexity and applications of greedy heuristics were dis-
cussed.



Part II

Scheduling in grid computing





CHAPTER 3

Introduction to the
scheduling problem in grid

computing

Grid Computing is the name of a service which provides applications, storage and
computational power. The idea behind grid computing was that users could access the
grid by plugging their computer into a grid plug in the wall oftheir house; similar
to the way we get electricity by plugging an electric device to the power grid. Grid
computing is hence named after the power grid. When using thegrid, requirements for
the home computer were to be low: software applications, storage and computational
power were received from the grid. The home computer only needed to support a high
quality internet connection and the display of graphics.

The full vision of grid computing has not been implemented atthis point of time. Most
grid computing systems currently work as computational power for researchers who
wish to run data and computationally heavy jobs. A grid can hence be viewed as a
number of computer resources from different administrative domains working together
for solving large problems. Here the size of a problem is typically measured in the
number of needed CPU cycles or in the amount of needed data.

This chapter is organized as follows. First, a short introduction to grid computing
is given in Section 3.1. Then in Section 3.2 the problem of scheduling jobs on re-
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sources in grid computing is presented. The scheduling problem is considered to be
either offline or online. Network topology is important whenconsidering a distributed
system like grid computing. Section 3.3 discusses the topologies considered in this
thesis. Next, the motivation for considering scheduling ingrid computing is discussed
in Section 3.4. Then the contribution on grid scheduling of this thesis is presented in
Section 3.5. Finally, the chapter ends in Section 3.6 with suggestions for future work
on the scheduling problem in grid computing.

3.1 An introduction to grid computing

A grid system consists of a number of computer resources and grid servers which are
connected through a network, e.g., the internet. The grid hence differs from super
computers, because the latter consists of a number of CPUs sharing a local computer
bus. The grid also differs from a cluster of computers, because a cluster is connected
through a local area network. Finally, grid computing differs from Cloud Computing;
the architecture of a grid system is defined to be resources connected to grid servers
through a network, where the architecture of a cloud is more far-stretched and can be
a grid, a cluster, a supercomputer etc. A general illustration of a grid system is seen in
Figure 3.1; though the figure illustrates a specific grid system - the Minimum intrusion
Grid (MiG) - it applies to the general grid system because it consists of resources, grid
servers (illustrated as a grid cloud), and a number of users of the grid. A resource may
consist of several computers, which are administrated locally; this is denoted a Virtual
Organization. Many grids actually consist of VOs, which work together and share their
competences and resources. Similarly, many grids require their users to be VOs. We,
however, view a grid as consisting of users, grid servers andresources unless otherwise
stated.

The software of a grid system is typically divided into two classes; the software or
middlewareon grid servers and resources and the software on the user side. The mid-
dleware enables sharing of resources, scheduling of jobs, transmission of data, storage
of data, and all other activity in the grid. The software on the user side enables the user
to log on to the grid. Countless middleware implementationsexist; some of the larger
projects includeGlobus , gLite , andARC. The software on the user side matches the
middleware of the corresponding grid and typically supports a secure connection to the
grid, upload of job requests and data, and reception of result files. For more details on
grid computing in general, including technical descriptions and an overview of exist-
ing grid projects, we refer to the survey paper of Baker et al.[20]. In the following we
briefly introduce a few grid computing systems: the Worldwide Large Hadron Collider
Grid, SETI@HOME, Nordic DataGrid Facility and the Minimum intrusion Grid.
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Figure 3.1: An abstract model of the Minimum intrusion Grid taken from Andersen
and Vinter [10].

The World Wide Large Hadron Collider Grid (WLCG) is a projectwhich aims to han-
dle the massive amount of data generated by the Large Hadron Collider (LHC). The
European Organization for Nuclear Research (CERN) currently works on testing dif-
ferent predictions of high-energy physics, including the hypothesized Higgs boson.
The project is expected to generate 15 petabytes of data annually, thus grid computing
is used for not only distributing the scientific work on the data but also for distributing
storage and back-up of produced data. The WLCG consists of hundreds of VOs all
over the world and uses gLite as middleware. For more information on the WLCG, we
refer to Shiers [176] or the project homepage [41].

The SETI@home (seti-at-home) project consists of a ”Searchfor Extraterrestrial Intel-
ligence (SETI)” by analyzing radio telescope data. The available computational power
limits the frequency range and the sensitivity of the search, because the search re-
sults in very large amounts of data. Hence interested parts can download a program,
which uses network bandwidth and computer CPU and disk to analyze radio telescope
data. The user may control the amount of bandwidth, CPU and disk to be used on
the project and when the calculations may be performed. By enabling outside parts to
help with analyzing data, larger searches can be performed.The SETI@home project
comes from the Space Science Laboratory at the University ofCalifornia, Berkeley,
and was launched in 1999. The middleware is BOINC (Berkeley Open Infrastructure
Network Computing, see e.g. Anderson [11]), which is also used by later projects like
Folding@home (protein folding and other disease research problems, see Beberg et al.
[32] ), ABC@home (mathematical computations, see the project homepage [2]), Fight-
AIDS@home (HIV/AIDS research, see Chang et al. [44]), etc.1 For more information

1It is argued that projects using the BOINC middleware are notgrids but instead Public Resource Com-
puting (PRC) systems. In PRC the idea is that anybody with an internet connection donates CPU cycles on
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on the SETI@home project, we refer to Anderson et al. [12] andthe material of the
project’s homepage [175].

The Nordic DataGrid Facility (NDGF) is a grid in the Nordic countries based on col-
laboration between Denmark, Norway, Sweden and Finland. NDGF is used in research
context; currently the main purpose of the grid is to assist in computations for the
Large Hadron Collider (LHC) project by CERN. The NDGF is closely related to the
NorduGrid project but is more operational orientated, where NorduGrid has focus on
development. The current NDGF topology is illustrated in Figure 3.2. The links be-
tween the countries are hosted by NORDUnet. NDGF mainly usesNorduGrid’s ARC
(Advanced Resource Connector) middleware. Only Virtual Organizations (VOs) can

Figure 3.2: A model of the Nordic DataGrid Facility displaying CPU, Disk and Tape
availability at each site.

gain access to NDGF. The ARC middleware provides resource discovery for each VO,
which then - and not the automated scheduler - places its jobson appropriate resources.
For more information on NDGF, we refer to their homepage [154], the presentation of
Grønager [96] and the work of Fischer et al. [70].

their computer for a larger project. PRC systems are said to be much more unreliable and unstable than grids
because of the uncertainty of the resources, see Neves et al.[153]. Though we recognize this difference, we
mention SETI@home project in this section because it is a well-known project very closely related to grid
computing.
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The Minimum intrusion Grid (MiG) also provides researcherswith computational po-
wer. MiG is illustrated in Figure 3.1 and its main purpose is to support complex com-
putations for researchers in Denmark. The idea behind MiG isto minimize software
and middleware requirements on the user and resource sides.A user logs on to the grid
through a secure web interface and identifies herself with a small certificate file. Re-
sources need to be registered at the grid and log on to the gridvia a secure shell (SSH)
tunnel using a small certificate for security reasons. Grid middleware such as Globus
[75] and NorduGrid ARC [63] require users and resources to install large amount of
software to use the overlying grid. MiG tries to avoid that byrequiring as little as
possible from users and resources; hence the nameMinimum intrusionGrid. The func-
tionality of the MiG can roughly be described as:

1. A user sends a job request to the MiG server, which puts the job on queue

2. A resource requests a new job to execute

3. The grid server creates a job script from a job on queue and sends the job script
to the resource

4. The resource starts the job script

5. The resource requests the needed input files

6. The job is being executed once input files have arrived

7. The resource sends output files to the grid server

When the grid server creates a job script, it has decided which job to send to the re-
source. This decision is currently based on a greedyfirst come first serveapproach,
see Sørensen [181]. The job assignment method of MiG is an online algorithm, which
schedules job execution every time a resource signals its availability. It does not take
time spent on data transmission into account. For more information on the Minimum
intrusion Grid, we refer to Andersen and Vinter [10] and Vinter [201].

3.2 Scheduling in grid computing

Most middleware either supports job scheduling or can easily integrate job scheduling
into its functionality. In the remainder of this chapter we thus assume that the middle-
ware supports scheduling.

Scheduling in grid computing consists of assigning jobs to resources such that all job
demand arrives before job execution begins and such that network constraints are sat-
isfied. Most grids hold three schedulers:
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• A global grid scheduler, which assigns job requests to resources.

• A local queue scheduler at a resource, which assigns job requests locally on
the resource. This is especially relevant, when the resource consists of several
CPU’s, e.g., the resource is a cluster or a super computer.

• The user, who submits jobs.

The local scheduler is locally administrated and out of scope for the grid system. For
this reason, we do not consider local schedulers. User behaviour may delay grid perfor-
mance, e.g., when users submit erroneous job requests or jobs, i.e., where the request
does not correspond to the actual job. We do not take this intoaccount but instead as-
sume correct user behaviour. Some global grid schedulers does not assign job requests
to resources, but suggests a number of available resources to the user, who then makes
the decision on which resource to assign the job to. In this case the user also acts as a
scheduler. We assume that the global grid scheduler assignsjobs to resources instead of
only suggesting available resources to the user. Hence the user is left out of scheduling
decisions.

In this thesis a number of assumptions are made in the scheduling algorithms. First,
only one grid server is assumed. Redefining how grid servers communicate is out
of scope, hence we assume that all resources are connected toone grid server. The
assumption may introduce some inaccuracy to the schedules,because latency times
on copying job requests and exchanging information on available resources between
grid servers are not taken into account by the solution algorithms. We, however, try
to compensate for this by including extra time buffers between job executions in the
schedules. Job data can be stored on resources and on grid servers. To simplify the
offline problem we consider the grid server to be a resource, which can never execute
jobs. A last assumption is that we assume that only job data issent between resources.
Job requests and job result files are generally small, thus itis fair to ignore them.

Users submit job requests to the grid server, where job requests are queued. Each job
request must include information on the submission time andthe latest execution time
- together this forms the time window of the job. Each job request must also hold
information of the needed input files, i.e., a list of required job files, their size and their
position. Finally, each job request must hold an estimate ofrequired CPU time for
execution.

When a resource signals its availability, it provides information on how much CPU
time is available and on available bandwidth to and from the resource. Job execution
cannot take place before all data files are present at the executing resource. All data
transfers must satisfy bandwidth limitations.
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We only consider job requests, data transmissions between resources, and job execu-
tions on resources. Hence users are left out of the scheduling problem.

Data is copied to a resource before job execution begins. Twodifferent data storage
approaches can be considered:

• Staging: copied data is deleted when job execution finishes

• Data replication: copied data is saved even after job execution

Replicating data may lead to more jobs being executed and to asmaller network load,
but job starvation may eventually occur. Jobs using the samedata may end up being
executed before jobs requiring rarely used data. Also replicating data may require more
storage than a resource is capable of providing. In this thesis we assume that data is
deleted after job execution, i.e., staging.

The grid scheduling problem can be divided into two categories: offline and online.
In the former full knowledge on future activity in the grid isassumed and a plan for
job execution is calculated prior to the start of any activity. In the latter there is no
knowledge on future activity in the grid, hence job execution is determined at job arrival
time or when a resource becomes available. In this section wedescribe both scheduling
scenarios and give an overview of relevant work in the literature.

3.2.1 Offline scheduling in grid computing

An offline scheduling algorithm in grid computing determines all grid activity in ad-
vance. Hence the algorithm assumes full knowledge on resource and job availability,
deadlines for job execution, bandwidth limitations etc.

It is interesting to investigate offline grid scheduling because of its many applications.
An offline scheduling algorithm can be used to empty a queue ofjobs; a procedure
which grid administrators may deem necessary from time to time to improve overall
grid performance and to avoid job starvation. Another application is advance reserva-
tion, where grid resources are reserved in advance for a number of planned jobs. Finally
an offline algorithm provides an excellent strategic planning tool, where grid admin-
istrators can analyze the effects of changes to the system. If the grid administrators
for instance wish to upgrade the grid, then an offline algorithm can help them decide
whether the grid needs more CPU power, better network connections, more storage etc.

The offline grid scheduling problem has not been given much attention in the literature.
This is probably due to its more analytic nature, where the online algorithm can be
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directly applied in a day-to-day use in grid computing. Marchal et al. [142] considered
the problem of sharing bandwidths in the context of grid computing. A given set of
data transmissions with time windows are to be routed through a network. Marchal et
al. proved that the problem isNP-hard and proposed a number of greedy heuristics.

Agarwal et al. [3] proposed an offline scheduler, where jobs first are scheduled to
resources such that the total penalty of delayed job executions is minimized. Then data
availability and data transfer is considered to decide the final schedule.

A tabu-search algorithm was proposed by Elghirani et al. [64]. The algorithm searches
through solutions by moving an executed job from one resource to another. If a move
is repeated often, then it is penalized to avoid cycles. If the solution has not been
improved in a given time interval, then the tabu list of penalized moves is cleared, a
random solution is found, and the algorithm starts over.

Varvaigos et al. [196] worked on Advance Reservations in grid computing, but only
proposed an algorithm for reserving network resources for ajob. For a given data
transmission, the authors found all optimal paths and then selected the ”best” path
according to a multi-cost objective and to available network resources. Because only
one job is considered at a time, it can be argued that their algorithm is not particular
offline.

The offline scheduling problem assumes full knowledge of thesystem in advance. A
problem instance thus includes the job requests queued on the grid server. Each job
request holds a time window, bounded by the submission and latest execution times,
and an estimated execution time. Each job request also holdsa list of needed files, their
size and their position. A problem instance must also hold information on when each
resource is available and on bandwidth availabilities. Bandwidths may vary over time.

The offline scheduling problem is provedNP-hard by reduction from theNP-hard
knapsack problem. In the latter, a knapsack and a set of items with profits are given.
The goal is to pack items into the knapsack such that the totalprofit of packed items is
maximized. For a survey of the knapsack problem and corresponding solution methods,
see Kellerer et al. [118] and Pisinger [160]. Packing items in a knapsack is equivalent
to assigning jobs to a resource such that the total profit of executed jobs is maximized.
Hence, a solution to the offline scheduling problem, where nodata files are to be trans-
ferred, is applicable to the knapsack problem. The offline scheduling problem is thus
NP-hard.
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3.2.2 Online scheduling in Grid Computing

An online scheduler in grid computing decides job executionwhen a job request is
submitted or when a resource signals its availability. The former is typically the case
when at least one resource is available and only few jobs are on queue. The latter
is the case when several jobs are on queue and when resources are busy. The online
scheduling problem only knows the state of the grid when scheduling takes place. It
has no knowledge on future activity or on future bandwidth availabilities.

Online scheduling is interesting because it typically constitutes the main functionality
of grid systems. Almost every grid middleware has its own scheduler. The schedulers
vary from having full control over which jobs are assigned towhich resources, to only
proposing a number of candidate resources to the user, who then decides where to
submit the job. This thesis does not consider online scheduling in grid computing, but
because online scheduling is a large research field and an important functionality in
most grid systems, this section is dedicated to giving an overview of important results
from the literature.

The online scheduling of jobs on several resources is a well-studied problem in the
literature. In the following we only consider work performed on the scheduling prob-
lem, where data transmission is taken into account. Much work has been performed
on online job scheduling and data replication in grid computing, where scheduling and
data replication are treated as two separate problems, see e.g. Avellino et al. [17],
Bjerke [39], Chrabakh and Wolski [49], Foster and Kesselman[76], Jiang and Yang
[112], Meyer et al. [148], Schintke and Reinefeld [172], andWeng et al. [203]. More
recent work, however, also focuses on performing online jobscheduling where data
replication is taken into account when scheduling.

Thain et al. [186] presented the idea of binding execution and storage sites together into
I/O communities reflecting physical reality. Computationsshould be performed mainly
within a community, where job requirements are present. A simulation study where
communities are built by hand is performed. The study shows that the communities
improve the throughput of the grid system.

Ranganathan and Foster [165] considered scheduling jobs with respect to data replica-
tion and data availability. Using a number of known scheduling and data replication
strategies, they investigate the performance when taking data location and network lim-
itations into account. Their results show that assigning jobs to resources according to
job data location and replicating often used data increase grid utilization.

Chakrabarti et al. [42] proposed an integrated data replication and job scheduling strat-
egy. The scheduler takes the number of missing data files at each site into account. Data
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replication is performed at a given interval of time. Their results show that best perfor-
mance is reached when taking data replication costs into account when scheduling job
execution.

Cameron et al. [40] performed simulation studies where bothjob scheduling and data
replication are considered. Data replication is performedwhenever a job is to be sched-
uled. Their results show that the scheduling strategy taking both data access and CPU
costs into account has best performance.

Baranovski et al. [24] presented a scheduler for the SAMGridwhich uses the Condor-
G technology. Previously, users had to assign their jobs to resources with no help from
the Grid. The proposed scheduler decides where to execute jobs based on a matchmak-
ing framework which takes CPU workload and job data files intoaccount. Network
capacities and data replication are not considered. Initial simulation results show that
the proposed scheduler mainly assigns job to resources withmost data cached.

Thysebart et al. [188] considered simultaneous data transmission and job execution
where network capacities are taken into account. Grid sitesare connected through
VPNs. Three scheduling strategies are considered:non-network aware, network aware
and prefer local. All considers CPU workload and storage capacities, the network
aware also takes bandwidth limitation into account, and theprefer local strategy fur-
thermore tries to assign jobs to sites, where most or all job data is stored. Simulation
results show that the network aware and prefer local strategies by far have best perfor-
mance.

Related work by Volckaert et al. [202] proposed more scheduling approaches. The
first is theminimum hop count which schedules a job to the site where the num-
ber of hop counts used to transmit data is minimized. Jobs tend to get assigned to
sites with most or all data stored. The second is theservice differentiation
approach which analyzes each job, classifies each job as either data orcomputational
heavy and assigns the job according to its classification. Results once again show that
the network aware scheduling strategies have best performance.

Huang et al. [100] proposed job and data co-scheduling algorithms. Their approach is
based on a number of steps: first data replication takes place, then jobs are assigned to
resources and finally job data files not present at the executing resource are transmitted.
Data transmission is allowed to take place while the corresponding or any other job is
being computed. Computational results show promising behaviour and reveal that job
features and data sizes influence the performance of the grid.

Tang et al. [184] suggested a number of data replication strategies and compare their
performance when using three different job scheduling methods. The replication strate-
gies build on historic data usage and replication is performed at a given time inter-
val. The centralized data replication strategy counts the number of times each file has
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been accessed, replicates the most accessed files and placesreplica at the server with
enough storage, least CPU workload and best bandwidth. The distributed data replica-
tion strategy replicates most accessed data files and placesreplica at local servers with
sufficient storage capacity. The grid scheduling strategies are based onshortest
turnaround time where queuing, data transfer and execution times are taken into
account,least relative load where CPU workload is taken into account, and
data present where job data location is considered. Computational evaluations
show that dynamic data replication improves performance and that especiallyshort-
est turnaround time with centralized data replication performs well. Related
work was presented by Tang et al. [185] where the data replication strategies differ
slightly: data is replicated to being as close as possible tothe requesting jobs. Again
test results show that dynamic data replication improves performance.

Veenugopal [198] proposed network aware scheduling where data presence and re-
source usage cost among others are taken into account. Taking these two factors into
account improved performance compared to traditional greedy scheduling approaches.
Also, a scheduler which either tries to minimize execution or data transfer time is pre-
sented. The scheduler is economy based and provided promising results.

McClatchey et al. [147] proposed a scheduler, DIANA, which takes CPU workloads
and network limitations into account. The scheduler calculates costs for job execution
and data transmission and schedules a job based on the sum of these. Allocation of
weights on the costs is possible in the scheduler. It may be beneficial to add different
weights to different parts of the grid in order to reach more appropriate performance.
E.g., if a job is very data heavy then weights can assure that it is assigned to the grid
resource storing most job data. Computational results showthat DIANA performs very
well with respect to execution times and network load. For a thorough description,
analysis and discussion of DIANA we refer to the PhD thesis ofAnjum [13]. The
thesis also discusses scheduling in grid computing in general.

Chang et al. [45] proposed a scheduler for a cluster grid where data transmission and
network capacities are taken into account. The scheduler defines a cost function at each
cluster based on CPU workload, data availability, network capacities within the cluster,
and network capacities on connections to the cluster. A job is assigned to the cluster
with smallest cost. Once a job is assigned to a cluster, data replication is performed.
The proposed scheduler is tested on the OptorSim simulator.Test results show that
performance is improved when using the proposed scheduler.However, it tends to
assign the same type of jobs to the same cluster, which may lead to load balancing
problems. Finally, Chang et al. provides a detailed overview of work performed on job
scheduling and data replication.

Dang and Lim [53] proposed a data replication method based onjob placement. It
calculates the number of times a data file is requested and then replicates the most re-
quested files. For each replica and each site, the distances between the requests and
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the sites are calculated. The data replica is placed at the site with smallest total dis-
tance. Initial simulation using OptorSim shows promising results; the replication strat-
egy performs better than Random, Least Recently Used (LRU) and Least Frequently
Used (LFU) replication strategies.

Baraglia et al. [23] proposed a heuristic which tries to fulfill the CPU requirements and
tries to exploit the parts of the grid network with high bandwidths. Costs are added
to the needed CPU time and to data transfer for each request onqueue. The heuristic
considers several job requests at a time and groups requeststogether according to how
many data files they share. Resources are grouped according to network availability.
Finally, each group of requests is scheduled on a suitable group of resources. Simula-
tion studies show that the heuristic performs well and is a viable scheduling approach.

Ferrandiz and Marangozova [68] analyzed existing scheduling and replica policies in
the Large Hadron Collider (LHC) grid. When a job arrives, theresource broker assigns
the job to the grid site with shortest job queue. The grid siterequests job files from the
storage optimizer which fetches each file and uploads a replica to the grid site unless the
file is already available. Ferrandiz and Marangozova implemented a simulator LCGSim
to simulate LHC activity. Three different replication strategies are implemented: no
advance replication, LRU and LFU. They compared with simulations obtained through
OptorSim. Their results do not show any clear pattern for which replication strategy is
more beneficial.

Kokkinos et al. [124] propose algorithms for determining how to perform data replica-
tion given a job schedule. Their algorithms take base in random procedures, transmis-
sion costs, job execution costs or a combination of the two latter. Simulation results
show that the best results with respect to network load and job delay are reached when
taking transmission costs into account.

Abawajy [1] considers a grid system, where each grid resource is a cluster. The pro-
posed scheduling algorithm focuses on assigning a group of jobs sharing the same data
files to the same cluster or clusters. Simulation results show that it is beneficial to
consider the I/O requirements of jobs when scheduling. Datareplication strategies and
data distribution were not considered.

3.3 Network topology

Grid computing is a distributed system, hence it is important to consider the underly-
ing network topology. So far we have assumed that the grid components are connected
through a packet switched network, where we have no influenceon the specific path
used between two components. An example of this is the internet. The considered
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bandwidth constraints cover upload, download and connection speed. Hence all grid
components can be viewed as being directly connected and thedata transmission prob-
lem then becomes to find a time to transmit data, such that the considered bandwidth
constraints are satisfied.

Another topology to consider stems from optical networks. An optical fiber carries
data at a certain wavelength. Using the wavelength-division multiplexing technology,
a fiber can transmit data at several wavelengths. However, two data connections cannot
share the same wavelength on a fiber due to network switch limitations. Transmitting
data through an optical network corresponds to theNP-hard Routing and Wavelength
Assignment Problem (RWA). In this section, we discuss the benefits of using an op-
tical network, the RWA problem in general and why it is relevant in grid computing
context. Note that an overview of work performed on the RWA inthe literature is left
out because the second contributed paper in this part is a survey on the RWA.

3.3.1 Optical networks

In telecommunication an increasing part of the network infrastructure consists of opti-
cal fibers. An optical fiber is predominantly made of glass andcarries light along its
length at high speed and with little loss. Benefits of using optical fibers instead of the
traditional copper telephone lines in a Wide Area Network (WAN) include:

• Optical fibers support much larger bandwidth speeds than copper lines.

• For high frequency transmissions, light signals can travel further than copper
lines before being amplified.

• Optical fibers and copper lines have the same cost.

Several wavelengths on a single fiber can be used to transmit light signals, i.e., data,
by using the wavelength-division multiplexing (WDM) technology. Furthermore, an
optical network is acircuit switchednetwork, i.e., the route of a data connection is
established before data can be sent, see Halsall [98], Thiele and Nebeling [187] or the
thesis of Jue [114] for more details.

In this thesis we consider an abstract model of the optical network and thus omit tech-
nical details. The optical network is considered to be a graph consisting of nodes and
edges. Edges represent fibers and each fiber is capable of holding several wavelengths.
A node represents any active equipment with at least one ingoing and/or outgoing edge.
This could be a switch, a hub, an amplifier etc.
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3.3.2 The Routing and Wavelength Assignment problem

RWA is the problem of finding a good way of establishing data connections and of
assigning wavelengths to the connections. A request for a data connection consists of a
source and a target. A route and wavelength(s) are to be foundbetween the source and
the target nodes. In RWA, paths of different data connections are to be generated such
that no two paths share the same wavelength on an edge. That is, two paths using the
same wavelength must be edge disjoint.

Variants of the RWA include limitations on wavelength conversion and on the lifetime
of connections. Wavelengths can be convertible in all nodes, in a subset of nodes and
in no nodes at all. The first version is denoted the wavelengthconvertible RWA as
each data connection can use different wavelengths on all its edges, see Ramamurthy
and Mukherjee [163]. The second is denoted sparse wavelength convertible RWA, see
Iness and Mukherjee [104]. For both versions further constraints can be set on the
range of possible conversions, i.e. a wavelengthli can be converted into wavelengths
li−k, . . . , li, . . . , li+k for some nonnegative integerk. For more information on the
limited-range wavelength converters, see the work of Inessand Mukherjee [104] or of
Yates et al. [205]. Being able to convert wavelengths, though, does not necessarily
increase the number of established data connections, see Jaumard et al. [108].

The lifetime of data connections is either permanent or temporary. Thestatic RWA
reserves routes and wavelengths for all future data connections and thus assumes full
knowledge on all future activity in the optical network. Data connections are assumed
to last ”forever”. Chlamtac et al. [47] shows that the staticRWA is NP-hard. The
dynamicRWA only reserves routes and wavelengths for data connections when needed.
The route and wavelength is released once the data connection is no longer needed.
Thus only knowledge of the current state of the optical network is needed. Because
no knowledge exists on future data connection requests, solutions to the dynamic RWA
are local optimums. For an overview of both the static and thedynamic RWA, see Zang
et al. [206].

It may not always be possible to establish all data connections in the static RWA. If a
connection cannot be established, it is said to beblocked. The objective of the static
RWA is typically to maximize the number of established data connections or the profit
of established data connections.

Data connections may also be blocked in the dynamic RWA, thusthe objective can also
be to maximize the number of established data connections orthe profit of established
data connections. Because data connections do not last forever, wavelengths may be
reused. The objective can thus also be to minimize the numberof used wavelengths.
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3.3.3 Optical networks in practice

Both the dynamic and the static RWA are applicable in telecommunications as ex-
plained. The dynamic RWA can be used to establish data connections on the fly. If
an optical network is to be used as an infrastructure in e.g. parts of the internet, then
the network utilization can be improved by determining paths and wavelengths when
needed, rather than having to choose from a set of predetermined paths with fixed wave-
lengths. The reason for this is that the data load and the dataconnection requests may
differ significantly from time to time.

The static RWA does not necessarily leave room for future connections, so it is mainly
applicable when the current data connection requests are either the only requests or
have much higher priority than any other requests. If the telecommunication company
introduces costs on network usage, then the goal of the static RWA becomes to mini-
mize the total cost. Network costs could depend on the numberof used wavelengths,
the number of hops used by the connections, the number of available wavelengths on
used fibers, the capacity of each wavelength etc. Using one ofthese objectives, a so-
lution to the static RWA does not only suggest how to route data connections; it can
also be used to determine the price customers must pay to get their data connections
established.

RWA is also relevant in grid computing context. A project like the Large Hadron
Collider (LHC) Physics Program by the European Organization for Nuclear Research
(CERN) is very data heavy and thus utilizes grid computing tonot only distribute the
scientific calculations, but also to store data. The grid computing system of LHC is
denoted the Worldwide LHC Computing Grid (WLCG). It is estimated that the LHC
experiments generate 15 petabytes of data annually [41], thus the network connections
to and from WLCG must support large bandwidths, e.g., be optical.

The main subject of this thesis is to schedule network trafficfor grid purposes. As the
WLCG example illustrates, the infrastructure in grid computing systems may consist
of optical fibers, hence the scheduling algorithms must takenetwork constraints into
consideration. Furthermore, it is fair to assume that fibersin large grid computing
systems are bought or rented in advance such that network capacities are dedicated to
the project.

3.4 Motivation

Integrated scheduling and network routing in grid computing is a relevant and complex
problem. As argued in the beginning of this thesis, namely inChapter 1, data transmis-
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sion may constitute a bottleneck, especially when working with data heavy jobs. As
grid computing is often used to handle data heavy jobs, transmission time should be
taken into account when assigning jobs to resources. If not then jobs may be unneces-
sarily rejected and the grid may seem unstable to users. Also, grid resources with poor
network connections are not utilized properly, if they are assigned data heavy jobs.

Offline scheduling can be applied to job queue emptying. Whenever the job queue on
the grid server reaches a certain size, the offline algorithmcan be used to compute a
plan such that the job queue is emptied. In this way, job starvation is avoided to a great
extent and ensuring that practically all jobs are executed increases user satisfiability.
The offline algorithm can also be used to give a more homogeneous load in time peri-
ods, where the grid is used extensively: jobs with late deadlines can be scheduled for
execution at a later time, hence making room for executing jobs, which currently are
urgent. The offline algorithm also introduces the ability toplan jobs, i.e., the ability to
reserve resources in advance for executing a set of planned jobs. Resource reservation
is a powerful tool for researchers to meet deadlines. Also, when using grid computing
commercially, resource reservation is used to guarantee customers that their jobs will
finish within a certain time period. Finally, the offline algorithm can be used as a tool
to analyze grid performance. The offline algorithm is capable of answering questions
such as how many jobs can the grid handle within a given time period, what happens
to grid performance if a number of extra resources are connected to the grid, how will
substituting dedicated high-quality data connections formedium-quality internet con-
nections affect grid performance, etc.

Scheduling of network traffic in grid computing is the main topic of this thesis. We have
interpreted this problem as being the integration of job scheduling and data transmis-
sion, i.e., the grid scheduling problem. Hence this part constitutes the main contribution
of the thesis.

3.5 Contribution

The topics covered in this part are divided into the following papers:

1. Integrated job scheduling and network routing.

2. A survey of the routing and wavelength assignment problem.

3. On the integrated job scheduling and constrained networkrouting problem.
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4. Analysis of internal network requirements for the distributed Nordic Tier-1.

In the following each paper is summarized and discussed. It is noted that work has
also been performed on heuristics for the offline schedulingproblem in grid comput-
ing using a packet switched network topology. The data transmission problem was
solved using a greedy multi-commodity network flow heuristic. This was integrated
into job placement strategies resulting in four greedy heuristics. Furthermore, a local
search meta-heuristic and an adaptive large neighbourhoodsearch meta-heuristic were
considered. Unfortunately, the approaches only resulted in mediocre results: solution
values were not impressive and running times were at times quite long. Hence the work
is not included here but is published as a technical report [79].

The first paper solves the offline scheduling problem in grid computing using a packet
switched network to optimality. A branch-and-price algorithm is proposed, where the
pricing algorithm assigns a given job on a given resource andmakes sure that job data
arrives in time. The master problem merges these ”sub schedules” into an overall so-
lution. The branch-and-price algorithm initially has poorperformance, because the
discrete time representation makes the size of the master problem explode. Hence only
violated constraints are included. This significantly improves performance, but the
number of generated columns is still quite large. To reduce this, stabilized column gen-
eration is applied and the resulting performance is dramatically better. The improved
algorithm is capable of solving all benchmark instances in very short time: the largest
instance with 1000 jobs and resources is solved within 3 minutes and the far majority
of instances are solved in seconds.

The second paper surveys work from the literature on solvingthe RWA, which mainly
consists of heuristics and meta-heuristics. Recently, more work is performed on ex-
act methods for the RWA; however, there is generally a strongemphasis on practical
applications hence the former methods are dominating. The survey extends previous
surveys in the literature by being updated, by providing theoretical running times on
the heuristics, and by discussing test instances and results in much more detail.

The third paper focuses on solving the offline scheduling problem in grid computing
where the underlying network topology is optical. As previously explained, this is rel-
evant as an increasingly larger part of networks consists ofoptical fibers. Especially
for larger grid projects, it is very probable that the grid owners rent or buy fibers or
wavelengths and thus have an optical network dedicated to the grid project alone. In-
corporating optical network constraints into the scheduling problem may increase per-
formance of the grid, both with respect to the amount of transmitted data and scheduled
jobs but also with respect to reaching feasible and hence more robust solutions.
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The offline scheduling problem in grid computing isNP-hard and not trivial to solve.
Adding an optical network topology only complicates the problem further. The pa-
per presents an exact branch-and-price algorithm, which performs better than using
CPLEXto solve the mathematical formulation. Because of the complicating network
topology, however, the computational results show that theexact branch-and-price al-
gorithm has its limitations. It is capable of solving several of the larger instances, but
generally it should only be applied to smaller problem instances because the time us-
age explodes. Hence work is also performed on solving the problem heuristically by
combining heuristics for the offline scheduling problem in grid computing with heuris-
tics for the RWA. Test results show that all heuristics have very good practical running
times. The best heuristic setting gives an average solutionvalue gap of less than 3%
and solves all instances within minutes. An in-depth analysis of results and problem
instance types, however, indicates that a black-box solution method may not always be
appropriate. Instead the grid administrator should use knowledge on network and CPU
load to choose the best heuristic setting.

The fourth and final paper in this part concerns distributionof network traffic for the
Nordic DataGrid Facility (NDGF). In this paper, we apply operations research to a
real-life grid. The network topology of NDGF is formalized into a mathematical for-
mulation. Then different scenarios are investigated with respect to the maximal link
load. The scenarios are formalized and incorporated in the mathematical formulation,
which then is solved to optimality using CPLEX. The main goalof the project is thus
not to propose new solution techniques, but to translate requests from NDGF into math-
ematical representations and to find the best way of distributing network traffic more
evenly across the network. Results show that just by re-arranging job, the largest link
load is reduced with 900 Mbps - from 4.4 Gbps to 3.5 Gbps. Introducing caches at each
grid resource reduces the largest link load by another 500 Mbps. The results are used
to change current job placements, to decide how to expand thegrid in the future and to
give a good overview of where bottlenecks occur in the grid.

3.6 Future directions

We believe that future work on the grid scheduling problem should consider network
traffic as an integrated part. In this way the stability of thegrid is increased, because
more reliable time plans are calculated.

We show that the offline grid scheduling problem using a packet switched network is
solvable in little time; hence it is worth considering if theexact algorithm could be
integrated in the day-to-day use of the grid - both for supporting advance reservation
but also for calculating time plans for execution of jobs on queue. It is even possible
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to use offline grid scheduling in a real-time environment: given a queue of jobs and a
number of resources, the best execution plan is calculated.Whenever a new job arrives
or resource availability changes, the execution plan is re-optimized. In this scenario,
the problem instance would probably never become too large for the proposed exact
branch-and-price algorithm. Still, we believe that substituting an offline scheduler for
the online approach may not happen for a long time to come, because online schedulers
are far more easy to implement and maintain, because online algorithms generally have
much shorter running time and because grid developers probably are more comfortable
with a well-known scheduling approach.

The exact branch-and-price algorithms could be improved byintroducing cutting pla-
nes. Recent research shows that cuts can improve the performance significantly, even
though the overall problem formulation may be complicated,see Desaulniers et al.
[57]. The proposed exact algorithm for the offline grid scheduling using a packet
switched network performs well, but it is still interestingto investigate heuristic ap-
proaches - especially when the problem instance size increases. Early work on heuris-
tics gave large solution gaps, thus future work should consider more sophisticated ap-
proaches. For instance, the greedy heuristics could focus more on data placement and
schedule jobs to resources close to job data.

We believe that future work on the RWA problem may include incorporating RWA
with network design in order to maximize the number of established data connections.
Especially in the case of grid computing where the optical network is dedicated for
the project, we believe that network design can really boostgrid performance. It may
not yet be that beneficial to incorporate RWA in a grid computing scheduling algo-
rithm, because the scheduling problem becomes much harder to solve. As the support
for WDM grows, however, the stability of future grids may depend greatly on having
feasible routing schemes.

For the RWA problem, future work could include approximation algorithms to benefit
from a guaranteed solution value reached in not too long time. Also, more work on
exact algorithms could focus on taking advantage of the similarities between the RWA
and the Multi-commodity unsplittable Flow Problem.

The proposed papers in this part assume that grid activity iscontrolled globally and
exclusively by a grid scheduler. In real-life, however, this is not necessarily the case. As
described in the introduction of this chapter, the scheduler in some grids only suggests
available resources to the user, who then decides where to execute a job. We believe
that the user should be left out of scheduling decisions. Resource utilization could more
easily be increased and fairness ensured, when scheduling is performed automatically.
Also, it would make the grid more user-friendly, because theuser would not have to
have an insight in benefits and drawbacks of the grid resources.
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CHAPTER 4

Integrated job scheduling
and network routing

Mette Gamst
DTU Management Engineering, Technical University of Denmark

David Pisinger
DTU Management Engineering, Technical University of Denmark

We consider an integrated job scheduling and network routing problem which appears
in grid computing and production planning. The problem is toschedule a number of
jobs on a finite set of machines, such that the overall profit ofthe executed jobs is
maximized. Each job demands a number of resources which haveto be sent to the
executing machine through a network with limited capacity.A job cannot start before
all of its resources have arrived at the machine.

The scheduling problem is formulated as a MIP problem and is proved to beNP-
hard. An exact solution approach using Dantzig-Wolfe decomposition is presented.
The pricing problem is the linear multicommodity flow problem defined on a time-
space network. Branching strategies are presented for the branch-and-price algorithm
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and three heuristics and an exact solution method are implemented for finding a feasible
start solution. Finally, interior point stabilization is used to decrease the number of
columns generated in the branch-and-price algorithm.

The algorithm is experimentally evaluated on job scheduling instances for a grid net-
work. The Dantzig-Wolfe algorithm with stabilization is clearly superior, being able to
solve large instances with 1000 jobs and 1000 machines covering 24 hours of schedul-
ing activity on a grid network. The promising results indicate that it can be used as
an actual scheduling algorithm in the grid or as a tool for analyzing grid performance
when adding extra machines or jobs.

Key words: Scheduling; Computations Grid; Production Planning; Multicommodity
Flow; Dantzig-Wolfe Decomposition;

4.1 Introduction

An exact solution approach for integrated scheduling of jobs and resources in a network
is presented. The objective is to schedule a number of jobs ona set of machines, such
that the overall profit of the executed jobs is maximized. It is assumed that all jobs
are known in advance and that each job demands a set of resources, which has to be
sent through a network with limited edge capacities. A job cannot start before all of its
resources have arrived at the machine and it must not finish after its due date.

The problem has applications in distributed production systems, where a set of jobs can
be carried out at various plants. Each job demands that a set of resources are available.
In cases where the resources are bulky and the transportation paths are limited, it is
necessary to consider both problems simultaneously. Typical applications are in the
steel industry, where the production can be placed at various sites, but the transportation
of iron ore and coal constitute a substantial logistic problem.

The problem also has applications in grid computing, where the jobs are programs to
be executed at various grid resources and the demands are data needed for running the
programs. All components are connected through a Wide Area Network (WAN) and
may thus be geographically distributed. A job request consists of a list of required
input files and their location: this is denoted the job data. Ajob request also holds
information on how long it approximately takes to compute the job and a deadline for
when the job execution must be finished. In grid computing, a grid server maintains a
queue of job requests and decides which job to send to a grid resource. In the Minimum
intrusion Grid (MiG) [10, 201] the grid server decides whereand when to send jobs
using a greedyfirst come first serveonline algorithm [181], which does not take the
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time spent on data transmission into account. Thus, the gridserver may allocate a very
data heavy job to a grid resource with very poor network connection, which may lead to
delays. Moreover, it may result in heavy traffic during the day hours where many jobs
are submitted. Scheduling all jobs in advance, i.e. performing offline scheduling, may
be more beneficial. Such an offline algorithm must consider all system constraints, i.e.,
grid resource and job availability, deadlines for job execution, bandwidth limitations
etc.

To simplify the problem, we assume that for each connection the bottleneck in the
network capacity is determined by the capacity at the end nodes. This is the case in grid
computing, where two grid resources establish a VPN connection when transmitting
data. In road transportation, the bottleneck is frequentlyfound at the access roads to
the highways, and in maritime transportation the ports constitute the bottleneck.

The main contribution of this paper is to model and solve the integrated job scheduling
and network routing problem. The model is able to handle time-dependent capacities,
e.g., that the network at night may provide larger amounts ofavailable capacity than
during the day hours. We suggest an exact solution method based on Dantzig-Wolfe
decomposition, where the pricing problem is to assign a single job to a single resource,
and where the master problem finds an overall feasible solution for executing jobs. The
described pricing problem is a linear multicommodity flow problem. Furthermore, we
present a heuristic to reach early feasibility and a branching strategy based on three dif-
ferent constraints. We propose to extend the branch-and-pricealgorithm by only adding
violated constraints in the master problem, which reduces the size of the master prob-
lem. Finally, stabilized column generation is added to the branch-and-cut-and-price
algorithm to reduce the number of iterations. Computational evaluations show that this
makes it possible to solve problems of a larger order of magnitude than previously.

Not much literature exists on the integrated scheduling problem with respect to band-
width limitations in grid computing. A complexity proof andgreedy heuristics for
sharing bandwidths in grid computing context are presentedby Marchal e.a. [142].
Agarwal e.a. [3] suggest an offline scheduler, where both jobexecution and data trans-
mission is taken into account. The solution method consistsof two steps: first, jobs
are scheduled to grid resources such that the total penalty of delayed job executions
is minimized. Data availability and transfer costs are taken into account. Then, the
overall starting and end times of job schedules are determined. Elghirani e.a. [64] pro-
pose a tabu search algorithm, which schedules a queue of jobs. A solution is defined
as a set of jobs assigned to a set of grid resources. The neighbourhood of a solution
consists of moving a scheduled job to a different, availablegrid resource. Often used
moves are penalized to avoid move cycles. When no improvement has been reached in
a certain time interval, the tabu list is cleared, a new random solution is found, and the
tabu procedure starts all over. Varvaigos e.a. [196] consider job routing and schedul-
ing to support Advance Reservations in the context of grid computing or Optical Burst
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Switching. Advance reservations consist of scheduling data transmissions in a network
and the task is to reserve the appropriate network resources. Varvaigos e.a. consider
one data transmission request at a time, for which they find all optimal paths and then
select the ”best” path according to a multicost objective and to available network re-
sources. The work of Varvaigos e.a. is related to the integrated scheduling of jobs and
resources, however, because they only consider one job at a time, their algorithm can
be viewed as being an online algorithm.

The integrated job scheduling algorithm can be applied on job queue emptying in a grid
network. Whenever the job queue reaches a certain size, the offline algorithm can be
used to compute a plan to empty the job queue. In this way, job starvation is avoided.
Moreover ensuring that practically all jobs are executed increases user satisfiability.
The offline algorithm can also be used to give a more homogeneous load in time pe-
riods, where the grid is used extensively: jobs with late deadlines can be scheduled
for execution at a later time and in this way make room for executing jobs, which cur-
rently are urgent. The offline algorithm also introduces theability to plan jobs, i.e., the
ability to reserve resources in advance for executing a set of planned jobs. Resource
reservation is a powerful tool for researchers to meet deadlines. Also, when using grid
computing commercially, resource reservation is used to guarantee customers that their
jobs will finish within a certain time period. Finally, the offline algorithm can be used
as a tool to analyze grid performance. The offline algorithm is capable of answering
questions such as how many jobs the grid can handle within a given time period, what
happens to grid performance if a number of extra grid resources are added to the grid,
how will grid performance be affected when substituting dedicated high-speed data
connections for medium-speed internet connections, etc.

The proposed solution algorithms are computationally evaluated on instances reflect-
ing activity in the grid over 24 hours, with up to 1000 jobs and1000 machines, and
time granularity as small as 30 or 15 minutes. The branch-and-cut-and-price algo-
rithm clearly outperforms the original formulation with respect to the size of solved
instances. The evaluation reveals that when working with a discrete time representa-
tion, small time intervals increase the time spent on findingan optimal solution, but
also improve the solution quality. Overall, the branch-and-cut-and-price algorithm can
be used as an actual scheduling algorithm for planned jobs orjob queue emptying in
grid computing and as a tool for analyzing grid performance.

This paper is organized as follows. First, in Section 4.2, the integrated scheduling prob-
lem is described in detail, a mathematical formulation is presented and the scheduling
problem is proved to beNP-hard. In Section 4.3, Dantzig-Wolfe decomposition is
applied and the corresponding branch-and-price algorithmis shown. The algorithm in-
cludes methods for solving the pricing problem, several branching strategies and three
heuristics and an exact solution method for finding a feasible start solution. Section 4.4
describes how stabilization is used to achieve faster column generation convergence
and discusses a number of additional improvements. All the considered algorithms are
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computationally evaluated in Section 4.5, and Section 4.6 contains final remarks on the
performance of the algorithms and on possible applicationsof the solution approach.

4.2 Problem description

We use grid terminology to describe the integrated scheduling problem and network
routing problem. Furthermore, in the following a grid resource is simply denoted a
resource.

The set of jobs is denotedJ , the set of resources isR, and the set of connections (edges)
is E. We use a discretized time horizon, with time stampst ∈ T being a part of the
problem instance input. Each jobj ∈ J has a time window[aj , bj], the total size of the
job data filesSj , the estimated computation timeQj , the amount of dataprj placed on
each resourcer ∈ R, and a profitcj ∈ R

+.

At each time periodt ∈ T each resourcer ∈ R is assigned an availability start timear,
an end timebr, and an upper bound on in- and outgoing bandwidth. The upper bound
at timet ∈ T is denoteddt

r−
for ingoing network traffic anddt

r+
for outgoing network

traffic.

An edge(i, k) ∈ E going from resourcei to resourcek has bandwidthdtik at time
t ∈ T . It is assumed that all resources are connected.

To simplify notation the time window[aik, bik] is introduced, whereaik = min{ai, ak}
andbik = min{bi, bk}, for eachi, k ∈ R ∪ J . Finally, two setsJt andRt are intro-
duced. The setJt consists of jobsj with aj ≤ t ≤ bj . Similarly, the setRt consists of
resourcesr with ar ≤ t ≤ br.

It is assumed that the only data to be sent between resources is job data. This ab-
straction is fair, because bandwidth consumption of job requests and job result files is
insignificant and can thus be ignored. As bandwidth consumption of job requests is
ignored, users submitting job requests are left out of the formal description. Instead,
we focus on where and when jobs are to be executed, and wheretoand when input data
is to be sent. Job execution cannot take place before all input data of the job is copied
to the executing resource. The objective of the problem is tomaximize the profit of
executed jobs.

Now, the model includes two types of variablesxtrj ∈ {0, 1} andf tj
ir ∈ R

+
0 . If xtrj = 1

then jobj ∈ J is executed on resourcer ∈ R with execution beginning at timet ∈ T .
If xtrj = 0 then the job is not executed on the resource with this beginning time. The
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non-negative variablef tj
ir denotes the amount of data on edge(i, r) ∈ E, i, r ∈ R for

job j ∈ J at timet ∈ T . The integrated scheduling problem can now be formulated
using an edge-based model (EDGE):

max
∑

r∈R
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j∈J

∑
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ri ∀r, i ∈ R, ∀t ∈ [ari, bri] (4.5)

xrt
j = 1 ⇒

min{bi,t−1}
∑

t′=aij

f
t′j
ir = p

i
j

∀j ∈ J, ∀i, r ∈ R,

∀t ∈ [arj , brj −Qj ]
(4.6)

x
rt
j = 1 ⇒

∑

j′∈J

j′ 6=j

min{t+Qj,bj′r−Qj′ }
∑

t′=t

x
rt′

j′ = 0
∀j ∈ J, ∀r ∈ R,

∀t ∈ [arj , brj −Qj ]
(4.7)

xrt
j ∈ {0, 1} ∀t ∈ [arj , brj −Qj ], ∀j ∈ J, ∀r ∈ R

f
tj
ir ≥ 0

∀j ∈ J, ∀r, i ∈ R : pij > 0,
∀t ∈ [airj ,min(bi, brj −Qj − 1)]

The objective function (4.1) maximizes the profit of the executed jobs. The first con-
straint (4.2) says that each job can be executed at most once.Constraints (4.3) and (4.4)
make sure that in- and outgoing bandwidth limitations are obeyed and constraint (4.5)
ensures that connection capacities are obeyed. All job datamust be received before
execution time (4.6). Constraint (4.7) says that a resourcecan execute at most one job
at a time. The two bounds ensure that variables take on appropriate values. Note, that
constraints (4.6) and (4.7) are not linear, but can be rewritten as:

min(t−1,bi)
∑

t′=airj

f
t′j
ir − p

i
jx

rt
j ≥ 0, ∀j ∈ J, ∀t ∈ [arj , brj −Qj ], ∀r, i ∈ R : pij > 0 (4.8)

∑

j′∈J

j′ 6=j

min{t+Qj,bj′r−Q′

j}
∑

t′=t

x
rt′

j′ +Qjx
rt
j ≤ Qj , ∀j ∈ J, r ∈ R, t ∈ [ajr, bjr −Qj ](4.9)

The problem isNP-hard by reduction from theknapsack problem[118]. Let c′ be
the capacity of the knapsack andp′j, w

′
j the profit and weight of itemj. Construct an



4.3 A branch-and-price solution approach 59

instance of the scheduling problem by settingcj := p′j andQj := w′
j . We have only

one resourcer with time window[ar, br] := [0, c′]. All edges have unlimited capacity
d, so the task is now to pack all jobs into a limited time horizonc′ such that the overall
profit is maximized.

4.3 A branch-and-price solution approach

The formulation (EDGE) can be Dantzig-Wolfe decomposed [54], such that the re-
sulting pricing problem assigns a given job to a given resource. The latter is denoted a
subschedule. Each subschedule contains information on which job is assigned to which
resource, when and where-from data is sent, and when job execution begins.

The master problem (MASTER) computes an optimal solution by merging subsched-
ules. The model contains the decision variablesyp, p ∈ P , whereP denotes the set of
subschedules:

max
∑

j∈J

cj
∑

p∈P

δ
j
pyp (4.10)

s.t.
∑

p∈P

δ
j
pyp ≤ 1 ∀j ∈ J (4.11)

∑

p∈P

δ
ti+

p yp ≤ d
t
i+ ∀i ∈ R,∀t ∈ [ai, bi] (4.12)

∑

p∈P

δ
ti−

p yp ≤ d
t
i− ∀i ∈ R,∀t ∈ [ai, bi] (4.13)

∑

p∈P

δ
tir
p yp ≤ d

t
ir ∀r, i ∈ R,∀t ∈ [air, bir] (4.14)

∑

j′∈J

j′ 6=j

min{t+Qj,

bj′r−Q′

j}
∑

t′=t

∑

p∈P

δ
j′rt′

p yp +Qj

∑

p∈P

δ
jrt
p yp ≤ Qj

∀j ∈ J, r ∈ R,

t ∈ [ajr, bjr −Qj ]
(4.15)

yp ∈ {0, 1} ∀p ∈ P (4.16)

Each subschedulep ∈ P has a number of constants attached:δjp = 1 if subschedulep
assigns jobj, otherwiseδjp = 0. Similarly, δjtp = 1 if subschedulep executes jobj at

time t, otherwiseδjtp = 0. The constantsδti
−

p ≥ 0, δti
+

p ≥ 0 andδtirp ≥ 0 denote the
amount of data going in and out of resourcei, and between resourcesi andr at timet
for subschedulep, respectively.

The objective function (4.10) maximizes the profit of executed jobs. The first constraint
(4.11) ensures that each job is executed at most once. Constraints (4.12), (4.13) and
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(4.14) ensure that bandwidth limitations are obeyed. Finally, constraint (4.15) says that
a resource can execute at most one job at a time.

4.3.1 Pricing problem

The pricing problem decides which subschedules to add to themaster problem. Recall,
that a subschedule consists of assigning jobj to a resourcer. Let πj ≥ 0 be the dual
of constraint (4.11),ωit ≥ 0 be the dual of constraint (4.12),τrt ≥ 0 be the dual of
constraint (4.13),ρtir ≥ 0 be the dual of constraint (4.14), andλjrt ≥ 0 be the dual of
constraint (4.15). The reduced cost for pair(j, r) is rewritten into:

cj − πj ≥

brj
∑

t=arj

(τrt +Qjλjrt +
∑

j′∈J

j′ 6=j

min{t,
brj′−Qj′ }

∑

t′=max
{t−Qj′+1,aj′r}

λj′rt′) +
∑

i∈R

bi
∑

t=ai

(ωit + ρtir) (4.17)

The right hand side can be viewed as edge and execution costs when assigning jobj
to resourcer.

To handle the time aspect in the pricing problem we transformthe graph into atime
expandedgraph (see Figure 4.1), as done for the single commodity flow problem over
time by [72, 74]. In the time expanded graph, sources and the target are connected
through a set of addedtime nodes, where each time node represents a time stamp.
Bandwidth limitations are represented as edge capacities.An edge going from source
i to time nodet has capacitydit = min{dtir, d

t
i+
}, and an edge going from time node

t to targetr has capacitydtr = dt
r−

. The set of the edges(i, t) and(t, r) in the time
expanded graph is denotedE . The edge going out of resourcei at timet is denoted
(i, t) and has reduced costc̄it = (ωit + ρtir) per flow unit. The edge going intor at
time t is denoted(t, r) and has reduced costc̄tr = τrt per flow unit. The sum

c̄t = Qjλjrt +
∑

j′∈J\{j}

min{t,brj′−Qj′}
∑

t′=max{t−Qj′+1,aj′r}

λj′rt′

is the reduced cost of executing jobj at resourcer at timet. The non-negative variable
fuv, (u, v) ∈ E holds the amount of flow from nodeu to v in the time expanded graph.
Using the variablext to indicate that jobj starts at timet at resourcer, the pricing
problem is formulated as (PRICE)jr :

min
∑

it∈E

c̄itfit +
∑

tr∈E

c̄trftr +
∑

t∈[arj,brj−Qj ]

c̄txt (4.18)

s.t.
∑

it∈E

fit =
∑

tr∈E

ftr ∀t ∈ [arj , brj −Qj [ (4.19)

∑

t′∈[arj,t[

ft′r ≥ Sjxt ∀t ∈ [arj , brj −Qj ] (4.20)
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fuv ≤ duv ∀(u, v) ∈ E (4.21)
∑

t∈[airj,birj ]

fit = p
i
j ∀i ∈ R\{r} (4.22)

∑

t∈[arj,brj ]

xt = 1 (4.23)

xt ∈ {0, 1} ∀t ∈ [arj , brj −Qj ]

fuv ≥ 0 (u, v) ∈ E

The objective (4.18) is to minimize the reduced cost. The first constraint ensures flow
conservation. Constraint (4.20) says that all data must arrive before the job is executed.
Then in (4.21), edge capacities are obeyed and in (4.22) eachresource transmits the
demanded data. Constraint (4.23) ensures that the jobj is executed. Finally, the bounds
force variables to take on feasible values.

To overcome the problem of having to both send data and to find the optimal execution
time, the pricing problem is instead considered for each feasible execution time,t ∈
[arj , brj −Qj ]. The later the execution time, the lower the data transmission costs are
in (4.18), because a late execution time increases the number of ways data can be sent.
Hence, we start with the latest execution time when solving the pricing problem and
then decrease the time until a solution with positive reduced cost is found.

Also, the pricing problem is only solved for jobs withcj − πj > 0, because otherwise
(4.17) will never be satisfied and a column with positive reduced cost cannot be found
due to the dual variables taking on non-negative values.

The data transmission problem in the time expanded graph canbe transformed into the
polynomially solvable Linear Multicommodity Flow Problem(MFP). The amount of
data to be transmitted corresponds to the amount of flow to be routed. Several data files
are to be transmitted, i.e., in the MFP representation several commodities of flow must
be routed. Now, solving the pricing problem on the time expanded graph corresponds
to solving the MFP.

The mathematical formulation of the pricing problem viewedas an MFP is:

min
∑

it∈E

c̄itfit +
∑

tr∈E

c̄trftr

s.t.
∑

it∈E

fit =
∑

tr∈E

ftr ∀t ∈ [arj , brj −Qj [

fuv ≤ duv ∀(u, v) ∈ E
∑

t∈[airj,birj−Qj ]

fit = p
i
j ∀i ∈ R

fuv ≥ 0 (u, v) ∈ E

Since the problem is a linear program, it can be solved in polynomial time. However,
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Figure 4.1: An example of how a network is transformed into a time expanded graph.
The graph on the left hand side represents an instance consisting of three source re-
sources:u with time window[3, 5], v with time window[1, 3] andw with time window
[4, 6]. The target node,r, has time window[1, 5]. The figure on the right hand side
shows the time expanded graph. Nodes representing times1, . . . , 6 are introduced, and
u, v, andw are connected tor via nodes, representing time slots where both parts are
available.

larger instances of MFP can be difficult to solve. Proposed solution methods in the
literature include Lagrangian methods, partition methods, decomposition techniques,
dual ascent algorithms, bundle methods, interior point methods, etc., see [18, 119] for
surveys of the problem and [134] for a review of solution techniques. Small instances
are typically solved using the Simplex algorithm. To the best of our knowledge no
straight-forward combinatorial algorithm exists for the MFP [52], therefore we choose
to solve the pricing problem heuristically whenever possible.

The heuristic for the pricing problem is a greedy algorithm.Given a jobj, an executing
resourcer and an execution timet, the heuristic works as follows. For each resource
containing job data (i ∈ R : i 6= r, pij > 0) the job data is sent to the executing
resource via edges with lowest reduced cost. Edges are chosen in a greedy manner for
each data source, i.e., the overall cost of sending all data may not be optimal.

When the heuristic cannot find a solution with positive reduced cost, the pricing prob-
lem is solved to optimality using a standard LP solver.
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Figure 4.2: Illustration of fractional and integer solutions. The instance is shown in
the time expanded graph representation: A jobj is given with time window[1, 10],
execution time5, and job data:4 units at resourceu, 4 units at resourcev. Two
resourcesu andv are available in time window[1, 4] having bandwidth limitation2
units of outgoing data per time slot, for all time slots in thetime window. A resource
r is available in time window[1, 10] having bandwidth limitation2 units of incoming
data per time slot, for all time slots in the time window. The graph on the left hand
side shows a fractional solution and the graph on the right hand side shows an integer
solution.

4.3.2 Reaching feasible solutions

In the branch-and-price algorithm, a linear relaxation of the master problem is solved
in order to find an upper bound in each search tree node. It may be necessary to branch
to find an integer solution, thus a branching strategy must beimplemented. In the fol-
lowing, we present a method to reach feasibility in certain types of fractional solutions.
Three branching strategies are also presented, which combined ensure that integrality
is eventually achieved.

4.3.2.1 Reaching feasibility from certain fractional solutions

We may have a fractional solution where a job is executed via several subschedules
and where these subschedules have the same executing resource and same execution
time. The fractional subschedules only differ in the way jobdata is transmitted. To
reach a feasible solution, the fractional subschedules arereplaced by a new subschedule
with same executing resource and same execution time, but with a combination of the
ways job data is transmitted. This is illustrated in the following example depicted in
Figure 4.2: a fractional solution consists of two paths,p1 andp2, each used1/2 times,
i.e., yp1

= yp2
= 1/2. Using the time expanded graph representation, the fractional

solution is illustrated on the left hand side of Figure 4.2. That is, pathp1 sends data
from u to r in sizes2 at time 1 and 2, and fromv to r in sizes 2 at time 3 and 4. Path
p2 sends data fromu to r in sizes2 at time 3 and 4, and fromv to r in sizes 2 at time 1
and 2.
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To avoid branching on a solution, which actually is feasibledespite the fractional vari-
ables,p1 andp2 are replaced with a new subschedule. Again, using the time expanded
graph representation, the new solution is illustrated on the right hand side of Figure 4.2.
The new subschedule sends data fromu to r in sizes 1 at time 1, 2, 3 and 4, and it sends
data fromv to r in sizes 1 at time 1, 2, 3 and 4. In this way, a feasible solutionis
reached without branching.

4.3.2.2 Branching strategies

The branching strategies consist of three branching constraints:

Each job can be executed at most once. In a fractional solution some jobs may be
partially executed. For this reason, the following branching strategy is introduced:

∑

p∈P

δ
j
pyp = 0 vs.

∑

p∈P

δ
j
pyp = 1 j ∈ J (4.24)

That is, jobj is either executed or not. Next, in a fractional solution a job may be
executed at several resources. This leads to the branching strategy:

∑

p∈P

δ
rj
p yp = 0 vs.

∑

p∈P

δ
rj
p yp = 1 j ∈ J, r ∈ R (4.25)

That is, for jobj and for resourcer the job is either executed at the resource or not. Fi-
nally, a fractional solution may have two fractional subschedules using the same paths
for sending data but having different execution times. For this reason, the following
strategy is imposed:

∑

t′∈[aj,t]

∑

p∈P

δ
jt′

p yp = 0 vs.
∑

t′∈[aj,t]

∑

p∈P

δ
jt′

p yp = 1 j ∈ J, t ∈ [aj , bj −Qj ] (4.26)

That is, for jobj and time stampt, the job is either executed before the time stamp or
not.

The branching constraints are applied in the presented order, i.e., first branching candi-
dates of type (4.24) are generated, which is followed by candidates of type (4.25), and
finally of type (4.26).

The branching strategies result in constraints being addedto the master problem and
thus extra dual variables must be taken into account in the pricing problem. For con-
straint (4.24) the dual variables areψj which can be added on all execution time for
job j on all resources. For constraint (4.25) the dual variables areψjr, which can be
added on all execution times for jobj on executing resourcer. For cut (4.26) the dual
variables areψjt, which can be added to the reduced cost for executing jobj at timet
for all executing resources.
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4.4 Stabilized column generation and improvements

In order to improve the basic branch-and-price algorithm wepropose a number of re-
finements. First, Section 4.4.1 shows how the size of the model may be reduced by
only adding constraints when they are violated, making the algorithm a branch-and-
cut-and-price approach. Then in Section 4.4.2 we show how interior-point stabilization
may limit the fluctuation in the dual variables, making the column generation converge
faster. Finally, Sections 4.4.3 and 4.4.4 describe how we find an initial solution and
how the size of the problem instance may be decreased by preprocessing.

4.4.1 Reducing the size of the master problem

The number of constraints in the master problem (4.10)-(4.15) may be very large, es-
pecially as the number of time intervals grow. Having a very large master problem
increases the memory and time consumption of the branch-and-price algorithm, hence
it may be beneficial to reduce the size by only including violated constraints.

The first constraint (4.11) ensures that each job is selectedat most once. Thus the
number of these constraints will always be relatively low and the constraints are always
included in the master problem. The number of remaining constraints (4.12)-(4.15)
depends on the time intervals and may thus be large. We only include these constraints
when violated. To decide when constraints are violated, we develop a set of separation
routines. Each routine consists of calculating network andresource consumption in
the current solution by investigating each column and by maintaining network and
resource matrices. When a constraint is violated, it is added as a cut to the current
master problem.

The dual variables of constraints (4.12)-(4.15) are only tobe included in the reduced
costs, when the corresponding cuts are added to the master problem. This is handled in
the pricing problem by investigating all added cuts when calculating the reduced costs.

Compared to the branch-and-price algorithm, less time is spent on maintaining the
master problem in the branch-and-cut-and-price algorithm. But the cut separation rou-
tines in each iteration and the cut investigation when calculating the reduced costs may
be time consuming. Thus the trade-off between the two solution methods lies in how
much time is spent on handling the cuts versus having a large master problem.
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4.4.2 Stabilized column generation

In a branch-and-price scheme, the dual variables of the master problem are used for
deciding which columns to price in. The dual variables, however, may not always
converge evenly towards their optimal values [115]. Many LP-solvers, for instance,
return an extreme point in the dual solution space, which maylead to fluctuation in the
dual variables. Also, degenerated problems can have many optimal solutions and thus
many different optimal points in the dual solution space. ”Unstable” dual variables
may increase the number of iterations needed to converge [136]. The goal of stabilized
column generation is thus to make the dual variables converge more evenly in order to
save both memory and time consumption.

Stabilization methods generally consist of setting boundson how much the values of
the dual variables may change between two iterations in the pricing process. This
can be done by setting bounding boxes for each dual variable [170] or by linearly
punishing the distance between the former value and the current value of each dual
variable [61]. Rousseau e.a. [170] suggest an interior-point stabilization method where
a set of extreme points in the dual solution space is found, and where the dual variables
are defined as a linear combination of the extreme points.

Reconsider the master problem (4.10)-(4.16). LetP ∗ be the set of variablesyP > 0
and letS∗ be the set of constraints (4.11)–(4.15), which are not tight. Due to the
Complementary Slackness Condition (CSC) the dual constraints corresponding to the
variables inP ∗ must be tight and the dual variables corresponding to the constraints in
S∗ must be set to zero. Recall the dual variables. TakingP ∗ andS∗ into account gives
the dual problem:

min
∑

j∈J

∑

i∈R





bi
∑

t=ai

(ωit + τit) +
∑

r∈R

bir
∑

t=air

ρtir +
∑

j∈J

bji−Qj
∑

t=aji

λjit



+ πj

s.t. cj − πj −

brj
∑

t=arj









τrt +Qjλjrt +
∑

j′∈J

j 6=j′

b′
∑

t′=a′

λj′rt′









−
∑

i∈R

bi
∑

t=ai

(ωit + ρtir) > 0

∀j ∈ J,∀r ∈ R,∀p ∈ P\P ∗

cj − πj −

brj
∑

t=arj









τrt +Qjλjrt +
∑

j′∈J

j 6=j′

b′
∑

t′=a′

λj′rt′









−
∑

i∈R

bi
∑

t=ai

(ωit + ρtir) = 0

∀j ∈ J,∀r ∈ R,∀p ∈ P ∗

πi, τi, λi, ρi = 0 ∀i ∈ S∗

πi, τi, λi, ρi > 0 ∀i ∈ S\S∗

Wherea′ = max{t −Qj′ + 1, aj′r}, b′ = min{t, brj′ −Qj′} andS is the set of all
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constraints in the primal problem.

The interior-point method wishes to find several extreme points and then defines the
dual variables as a linear combination of these points. To findk different extreme points
we multiply the dual objective function with a random vector0 ≤ ui ≤ 1 for each of
the i ∈ {1, 2, . . . , k} times the stabilized dual problem is solved. In practice it can be
very time and space consuming to set up the stabilized dual problemk times, hence we
instead solve the dual of the stabilized dual problem. The dual of the stabilized dual
problem is:

max
∑

j∈J

cj
∑

p∈P

δ
j
pyp

s.t.
∑

p∈P

δ
j
pyp ≤ u ∀j ∈ J, ∀s ∈ S\S∗

∑

p∈P

δ
ti+

p yp ≤ u d
t
i+ ∀i ∈ R, ∀t ∈ [ai, bi], ∀s ∈ S\S∗

∑

p∈P

δ
ti−

p yp ≤ u d
t
i− ∀i ∈ R, ∀t ∈ [ai, bi], ∀s ∈ S\S∗

∑

p∈P

δ
tir
p yp ≤ u d

t
ir ∀r, i ∈ R,∀t ∈ [air, bir],∀s ∈ S\S∗

∑

j′∈J

j′ 6=j

min{t+Qj,

bj′r−Q′

j}
∑

t′=t

∑

p∈P

δ
j′rt′

p yp +Qj

∑

p∈P

δ
jrt
p yp ≤ Qj

∀j ∈ J, r ∈ R,

t ∈ [ajr, bjr −Qj ], ∀s ∈ S\S∗

yp ∈ {0, 1} ∀p ∈ P\P ∗

yp = 0 ∀p ∈ P
∗

This model is reached by modifying the original primal problem slightly. A solu-
tion is found by letting the LP-solver resolve the stabilized problem. The trade-off in
interior-point stabilization lies in the amount of time spent on finding the stabilized dual
variables and the amount of time saved by possibly decreasing the number of iterations
in the column generation.

4.4.3 Starting solution

A start solution to the problem instance must be found in order to get values for dual
variables. The scheduling problem is solved for each job until a feasible start solution
is found. Three greedy heuristics are implemented for solving the scheduling problem.

Assign home:If a job has all data placed on exactly one resource, the job isassigned
to that resource if possible.First come, first serve:For each resource, the algorithm
assigns the first job which can be executed on that resource.Best first: Each job is
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assigned to the resource on which the job execution finishes first. The data transmis-
sion problem is solved heuristically by taking one source ata time and then using the
required time and bandwidth to transmit all job data to the target.

The heuristics do not guarantee a feasible solution even if aproblem instance is solv-
able. In the case where a heuristic solution cannot be found,the starting problem is
solved using a modified version of the exact algorithm from the pricing problem. Re-
duced costs are replaced with negated real costs for executing a job (the algorithm
seeks to minimize, hence the negation). The modified algorithm is denoted theexact
start solution method.

We have through preliminary testing concluded that the starting algorithm should work
as follows. The heuristics are run in the orderassign home, first come first serve, best
first until a solution is found. If the heuristics are unable to reach a feasible solution,
theexact start solution methodis run. If this does not result in a start solution, then the
problem instance is unsolvable.

4.4.4 Preprocessing

Preprocessing can be used to a-priori limit the solution space. We use the following
preprocessing rules:

Problem instance size:When a job is not available, none of the resources need to be
considered. Hence, a system start time,A = minj∈J aj , and a system end time,B =
maxj∈J bj, are found and resource time windows are set to[max{ar, A},min{br, B}],
∀r ∈ R. Job availability: If the job execution time is greater than the time space in
which the job is available, then the job cannot be executed.Job data source availability:
If a resource containing job data is not available in the sametime space as the job,
then the job cannot be executed.Job data source bandwidth:If a resource containing
job data does not have enough available bandwidth to send outall data in time for
execution (beforebj − Qj) and if the resource cannot execute the job itself, then the
job cannot be executed.Transmission of job data:For each resource and for each job,
it is investigated whether or not all job data can be sent to the resource in time for
execution. If not, then the job cannot be executed on that resource.

The five preprocessing steps can be checked in polynomial time. With regard to the
mathematical formulation of the problem we predict that especially the first step, where
resource time windows are narrowed, can have great effect: the number of edges in the
formulation is lowered, thus a subset of the capacity constraints can be left out. With
regard to finding combinations of which jobs to execute on which resources, then the
remaining four steps of preprocessing have a good effect.
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4.5 Computational results

The proposed solution methods have been computationally evaluated as follows: first,
problem instances are generated and details regarding the data generation are presented
in the following. Next, preprocessing is performed to limitthe solution space. Finally,
the computational results are reported and discussed. The edge formulation (EDGE)
was solved byCPLEX.

4.5.1 Data generation

Test instances are generated to reflect activity in a grid during 24 hours. The instances
are randomly generated, but the number of jobs, resources and the size of time intervals
reflect actual scheduling problems. The resources are generated such that their start and
end times lie within the 24 hour time span. Furthermore, the end time is set to be at
least one time slot later than the start time and bandwidth limitations are set randomly
between 0 and 10 Gb/s. Jobs are generated such that job data isdistributed on up to all
resources and such that each job data source holds at most fiveunits of job data. The
job start time lies within the 24 hour time span, and the end time is set to be twice the
estimated computations time of the job later than the start time.

We consider instances, where the number of jobs and resources is set to 10, 20, 50,
100, 200, 500 and 1000. The exponential-like growth of jobs and resources will hope-
fully reveal any connection between problem instance size and the complexity of the
scheduling problem. Two types of time granularity are used:15 and 30 minutes.
Smaller granularity is not considered since jobs taking less than 15 minutes might as
well be computed on the user’s home computer. The test instances with 15 minute
time intervals are scaled into corresponding instances with 30 minute time intervals in
order to show any connection between the time granularity and the complexity of the
scheduling problem.

The scaling algorithm divides all time units with 2 in order to go from a 15 to a 30
minute time interval size. After scaling all start times arefloored and all end times
are ceiled such that all time windows are of at least size 1. Obviously, this imposes
inaccuracy in the instances and an optimal solution value tothe scaled problem may
be greater than that of the original problem. For this reason, an optimal solution to a
scaled problem may be infeasible for the original problem.

After scaling, the estimated computing time for a job is ceiled such that each job takes
at least one time period to run. The estimated computing timemay become larger,
hence the solution for the scaled problem may compute fewer jobs than the solution of
the original problem. By computationally evaluating instances with both time interval
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sizes, we hope to show how scaling time intervals affects thesolution quality.

4.5.2 Results

The exact solution methods have been implemented and testedin C++using the branch-
and-cut-and-price frameworkCOIN [140]. Results are compared to test runs using
CPLEXfor solving the (EDGE) formulation from Section 4.2. The methods are tested
on a 2.66 GHz Intel Xeon machine with 8 Gb RAM. Note, that CPU times in the
following stem from using one core.ILOG CPLEX 10.2 is used as LP-solver.

Through preliminary results, we have decided to set|J |/2 as upper bound on the num-
ber of columns computed in each iteration. Furthermore, allbranching candidates are
found when branching occurs and a best-first search strategyis used in the branch-and-
bound tree. Computations regarding selection of branchingcandidate and branching
child are handled byCOIN.

First, Table 4.1 shows results from solving the (EDGE) model withCPLEX. The in-
stances have up to 100 jobs, up to 1000 resources, and time granularity of 15 minutes.
We have chosen to only generate edge-based models for instances with up to 100 jobs,
since the generated models become very large and take up several gigabytes of space.
This also explains whyCPLEXruns out of memory in the (EDGE) model. Time usage
explodes as the number of resources increases.

Next, the three exact algorithms are analyzed. Test data results for instances with 100,
200, 500 and 1000 jobs and up to 1000 resources are seen in Table 4.2 for a 15 minute
time interval and Table 4.3 for a 30 minute time interval. ThealgorithmB&P(branch-
and-price) denotes the simple branch-and-price algorithmdescribed in Section 4.3. Al-
gorithmB&C&P(branch-and-cut-and-price) solves the same model but constraints are
only added when they are violated as described in Section 4.4.1. Finally, algorithm
B&C&P+S(branch-and-cut-and-price with stabilized column generation) also includes
stabilization as described in Section 4.4. The time consumption for all test runs is
bounded by 1800 seconds.

The scaled instances generally consist of fewer constraints and columns, and the num-
ber of iterations is generally lower than for the original problem, leading to faster so-
lution times. Furthermore, the solution values of some of the original instances and
of the scaled instances differ. The solution values of the scaled instance are generally
lower than or equal to those of the original instances, but some are also greater. As dis-
cussed in Section 4.5.1 solutions for scaled instances withvalues greater than those for
the corresponding original problem, are infeasible. When not counting instances with
memory or time problems, solving the scaled instances results in approximately 18%
infeasible solutions, approximately 10% optimal solutions to the original problem, and
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approximately 71% solutions worse than the optimal solutions for the corresponding
original problems.

The pure branch-and-pricealgorithm does not perform very well: it runs out of memory
and time even for smaller instances. The algorithm, however, is capable of solving
larger instances thanCPLEX. Reasons for the performance difficulties lie in the size
of the master problem, where the number of rows explodes. Thebranch-and-price
algorithm also generally suffers from a large number of column generation iterations.

The branch-and-cut-and-price algorithm without the stabilized column generation has
much better performance than the branch-and-price algorithm. While it also sometimes
runs into memory and time problems, it is capable of solving the majority of the test
instances. The number of rows in the master problem is reduced significantly and the
number of columns is also decreased. As was the case for the previous solution ap-
proach, the branch-and-cut-and-price algorithm suffers from a large number of column
generation iterations, which takes up much time.

Finally, we consider the branch-and-cut-and-price algorithm with stabilized column
generation. This method has by far the best performance and solves all instances
within minutes. The size of the master problem is dramatically reduced, especially
when comparing to the branch-and-price algorithm. Furthermore, the stabilized col-
umn generation decreases the number of column generation iterations significantly,
which indicates that the stabilization has a very beneficialimpact on the values of the
dual variables.
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Jobs Resources Objective Time
10 10 8 0.00
10 20 6 0.01
10 50 8 0.04
10 100 10 0.35
10 200 10 1.03
10 500 8 6.88
10 1000 10 48.41
20 10 20 0.01
20 20 16 0.01
20 50 18 0.05
20 100 24 0.57
20 200 24 3.07
20 500 22 26.93
20 1000 30 173.28
50 10 68 0.04
50 20 52 0.16
50 50 66 0.69
50 100 46 2.96
50 200 34 8.93
50 500 66 76.20
50 1000 - out of memory

100 10 136 0.09
100 20 104 0.24
100 50 94 1.07
100 100 106 5.85
100 200 98 18.16
100 500 110 153.99
100 1000 - out of memory

Table 4.1: Test run results for solving the edge-based modelusing CPLEX. First
column is the number jobs (Jobs ), second column is the number of resources
(Resources ), third column is the objective value (Objective ) and finally time
consumption in seconds is given (Time ). The running time includes generation and
reading of the MIP file.



4.5
C

om
putationalresults

73

B&P B&C&P B&C&P+S
Jobs Res. Rows Cols Iter. Time Rows Cols Iter. Time Rows Cols Iter. Time z
100 10 61617 628 90 94.306 100 386 19 0.240 100 99 3 0.108 136
100 20 103020 791 44 79.597 100 478 13 0.300 100 87 2 0.100 104
100 50 224860 1292 28 69.728 100 820 17 1.220 100 95 2 0.164 94
100 100 447665 1953 44 236.547 100 1452 31 6.588 100 145 4 0.456 106
100 200 899992 2018 42 294.906 100 1918 40 39.630 100 49 1 0.304 98
100 500 2339064 2357 51 space 100 2305 48 328.869 100 55 3 6.032 110
100 1000 4659483 1449 29 *1818.034 100 2200 45 962.300 100 49 1 2.328 98
200 10 82040 631 455 1020.732 200 397 14 0.312 200 101 3 0.272 184
200 20 197758 1333 46 277.457 200 777 16 0.680 200 111 3 0.304 184
200 50 492045 3270 92 *1800.133 200 2007 26 4.208 200 174 3 0.456 208
200 100 970942 5000 88 *1832.179 200 3198 35 17.253 200 197 4 0.964 198
200 200 1931695 8089 85 *2307.456 200 6057 64 155.010 200 119 2 1.180 238
200 500 - - - space 200 6992 71 space 200 92 2 3.768 184
200 1000 - - - space 200 2206 22 *1808.061 200 107 2 12.057 214
500 10 209842 1382 49 *1986.252 500 833 23 1.780 500 242 8 1.688 404
500 20 432726 3161 39 *2084.098 500 1841 22 2.672 500 291 6 1.708 472
500 50 1250982 8883 54 *1913.804 500 5211 32 13.749 500 384 5 2.352 522
500 100 2551162 10261 41 *2937.144 500 10494 49 71.880 500 264 4 3.032 528
500 200 4910410 10243 41 *5617.423 500 17128 73 space 500 245 3 4.596 490
500 500 - - - space 500 8508 34 *1820.942 500 260 3 14.353 520
500 1000 - - - space 500 2252 9 *1921.916 500 254 3 42.279 508

1000 10 416830 3543 246 space 1001 2017 57 21.877 1001 540 10 7.928 892
1000 20 1057108 9205 97 space 1000 5286 68 27.598 1000 766 8 6.980 1170
1000 50 2424838 10510 21 *2503.764 1000 9722 45 39.110 1000 645 7 8.008 1042
1000 100 5064106 10513 21 *5082.330 1000 20819 59 170.547 1000 897 10 14.925 1054
1000 200 - - - space 1000 40015 93 space 1000 671 11 35.814 1026
1000 500 - - - space 1000 8501 17 *1866.329 1000 801 4 33.006 1008
1000 1000 - - - space 1000 3008 6 *2198.537 1000 513 6 167.498 1026

Table 4.2: Test run results for solving the instances with time granularity of 15 minutes with the three algorithms. The number of
jobs (Jobs ) is reported, as well as the number of resources (Res. ). For each of the three algorithms the table holds information on
the number of rows (Rows) and columns (Cols ) in the master problem, the number of iterations (Iter. ) in column generation
and the time consumption (Time ) in seconds. The optimal objective value is reported in columnz . An ’*’ indicates that the test ran
out of time andspace indicates that the test ran out of memory.
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B&P B&C&P B&C&P+S
Jobs Res. Rows Cols Iter. Time Rows Cols Iter. Time Rows Cols Iter. Time z
100 10 31210 222 6 1.252 101 222 6 0.068 101 70 3 0.080 126
100 20 52528 295 6 2.144 105 295 6 0.116 105 65 3 0.116 98
100 50 115129 595 12 10.993 105 595 12 0.868 105 111 3 1.212 92
100 100 228401 1150 23 48.363 100 1150 23 5.492 100 100 2 0.384 102
100 200 459373 1001 21 122.180 100 1001 21 31.694 100 50 1 0.984 100
100 500 1189208 1258 27 621.255 100 1258 27 306.907 100 56 1 6.584 112
100 1000 2379079 1350 28 1713.423 100 1350 28 983.425 100 49 1 18.573 98
200 10 42216 318 9 4.300 278 329 9 0.188 249 185 6 0.364 176
200 20 100796 452 6 7.620 220 455 6 0.324 220 126 4 0.328 174
200 50 251046 1290 17 97.574 217 1290 15 2.912 217 301 4 0.644 204
200 100 495746 1797 18 167.234 209 1797 18 13.137 209 239 3 1.148 196
200 200 985909 3921 40 852.429 214 3921 40 141.969 202 308 4 6.624 240
200 500 2499760 3092 31 *1811.205 207 4392 44 941.383 207 92 2 30.226 182
200 1000 4970713 1309 13 *1930.293 200 2209 22 *1825.454 200 109 1 45.503 218
500 10 107427 521 23 70.900 1477 592 13 1.296 1644 459 16 3.544 368
500 20 222384 1130 5 33.158 813 1176 6 0.740 581 689 12 2.660 440
500 50 637036 3511 18 369.943 706 3511 18 10.661 699 895 8 3.908 506
500 100 1298170 7513 31 1409.156 575 7513 31 52.559 516 762 5 6.300 516
500 200 2502637 5245 21 *1800.117 561 9087 39 351.502 514 875 5 24.918 490
500 500 6236304 2011 8 *1846.055 530 8761 35 *1839.439 512 511 4 129.732 520
500 1000 - - - space 555 2505 10 *1923.164 503 940 5 501.943 510

1000 10 214426 791 5 56.272 6185 1206 10 5.080 6344 883 12 29.882 644
1000 20 537070 2689 18 664.286 4088 3173 22 11.765 3912 2040 29 23.301 1006
1000 50 1234462 5723 22 1761.130 2256 5924 20 24.138 2257 1928 9 15.165 954
1000 100 2585158 6522 13 *1951.422 1521 13728 31 157.978 1495 2427 8 29.050 1014
1000 200 4943786 3513 7 *2041.944 1328 25070 57 space 1340 2999 8 72.389 1018
1000 500 - - - space 1272 8006 16 *1845.023 1061 3506 8 421.270 1026
1000 1000 - - - space 1072 3016 6 *2241.496 1002 1016 3 695.603 1030

Table 4.3: Test run results for solving the instances with time granularity of 30 minutes. The columns are explained in Table 4.2. An
’*’ indicates that the test ran out of time andspace indicates that it ran out of memory.
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4.6 Conclusion

This paper has formalized and formulated the integrated jobscheduling and routing
problem. Computational experiments showed that the simpleformulation (EDGE)
could not be used to solve large-sized instances to optimality, hence three exact al-
gorithms were proposed: a branch-and-price algorithm, a branch-and-cut-and-price
algorithm and a branch-and-cut-and-price algorithm with stabilized column genera-
tion. The methods are based on a new mathematical formulation of the integrated
job scheduling and network routing problem. Furthermore, the exact solution meth-
ods include new branching strategies. The branch-and-price algorithm includes all
constraints of the master problem, while the branch-and-cut-and-price algorithms only
include violated constraints. Furthermore, the branch-and-cut-and-price algorithm is
extended with stabilized column generation, which consists of calculating the dual vari-
ables from a number of extreme points in the solution space.

The solution methods have been computationally evaluated on instances with up to
1000 jobs and resources, 24 hour scheduling activity and a 15minute time granularity.
CPLEXcan only solve instances with up to 100 jobs using model (EDGE). The branch-
and-price algorithm is capable of solving more instances, but still shows somewhat
poor performance due to large memory and time consumptions.The branch-and-cut-
and-price algorithm without stabilization performs well,solving the majority of all
instances. However, the algorithm still has some time problems due to many column
generation iterations. Finally, adding stabilized columngeneration to the branch-and-
cut-and-price algorithm improves performance dramatically. The number of column
generation iterations is reduced significantly and the algorithm solves all instances
within minutes. Furthermore, the algorithms have been tested on instances using a
15 and 30 minute time granularity, respectively. The computational evaluation showed
that the time granularity affects time consumption and solution quality; the larger time
granularity, the faster the instances are solved, but the solution quality decreases.

Overall, the branch-and-cut-and-pricealgorithm with stabilized column generation per-
forms particularly well. Within a few minutes, the algorithm solves instances with
1000 jobs and resources covering 24 hours of scheduling activity with time granular-
ity as small as 15 minutes. Hence, the algorithm can easily beused both as an actual
scheduling algorithm for planned jobs or job queue emptyingin grid computing, and
as a tool for analyzing grid performance.
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CHAPTER 5

A Survey of the Routing and
Wavelength Assignment

Problem

Mette Gamst
DTU Management Engineering, Technical University of Denmark

In an all-optical network, optical fibres are used to transmit data. An optical fibre
carries light along its length at high rates and with little loss. Several wavelengths on a
single fibre can be used to transfer data, when using wavelength-division multiplexing.
In this way, several data transmissions at very high speed can take place on a single
fibre.

When transmitting data in an all-optical network, data connections must be established
in such a way that two or more connections never share a wavelength on the same fibre.
The routing and wavelength assignment (RWA) problem consists of finding a path and
a wavelength for a set of data connections. The objective is typically to maximize the
profit of established data connections or to minimize the cost of establishing all data
connections. The RWA isNP-hard, thus much research has been conducted to finding
a good way of approaching the problem.
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This paper introduces the RWA and lists a number of restrictions from the literature
on the RWA and on the underlying network topology. An overview of heuristic, meta-
heuristic and exact solution methods is given. Running times for the heuristic methods
are presented and computational results from the literature are discussed.

5.1 Introduction

The use of optical fibres in telecommunication infrastructure is ever increasing. An
optical fibre carries light along its length at very high rates and with little loss. When
data is sent via an optical fibre, it is transmitted on a certain wavelength of light. A
fibre can carry several independent transmissions, each by adifferent wavelength. The
wavelength-division multiplexing(WDM) technology allows multiple optical carrier
signals on a single optical fibre. WDM works on a circuit switched network, i.e., in a
network where the connection between nodes and terminals isestablished before use
and where the wavelength is not shared with other traffic. Fora technical overview of
optical fibres, see Halsall [98], and for more information onthe WDM, see Thiele and
Nebeling [187] or the thesis of Jue [114].

The problem of finding a good way of establishing data connections and of assigning
wavelengths to the different connections, is denoted therouting and wavelength assign-
ment(RWA) problem. Two or more data connections are not allowed to share the same
wavelength on the same fibre. Constraints can be set on whether or not wavelengths
can be converted. If wavelength conversion is possible, then further constraints can be
set on where conversion may take place and on the range of wavelengths, into which a
wavelength can be converted.

The RWA problem can be considered as astatic problem, where all wavelengths of
every future connection are established at all times. Another viewpoint is thedynamic
version of RWA, where a wavelength is not reserved before it is needed and where the
wavelength is released when the corresponding data connection is no longer needed.
The objective is typically to maximize the number of established connections or to
minimize the number of used wavelengths.

The RWA isNP-hard, thus several solution approaches are presented in the literature.
A common approach is to decompose the RWA into two subproblems: the routing
problem and the wavelength assignment problem. The complexity of the routing prob-
lem depends on the chosen objective, while the wavelength assignment problem always
is NP-hard, see Zang et al. [206]. Another approach is to solve theRWA problem as
one problem. Methods for this include metaheuristics and integer linear programming
formulations. An overview of the proposed methods is presented in Table 5.1. The
table shows what problem each method works on, the complexity of each method, and
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finally gives references to the literature. Theoretical running times are only given for
the constructive heuristics.

Some surveys on the RWA problem exist in the literature: Zanget al. [206] present
a survey containing few routing approaches and many heuristics for the wavelength
assignment problem. The latter are compared experimentally. Choi et al. [48] present
a classification of existing methods for the RWA, where approaches are argued to be
either search methods or selection methods. Furthermore, Choi et al. compare the
performance of methods, but apart from a few theoretical running times, it is not clear
what the comparisons are based on.

The contribution of this survey is the presentation of a muchlarger variety of solution
methods than included in the surveys of Zang et al. and Choi etal. The presented
methods include recently presented approaches from the literature. This paper not only
considers the decomposed RWA, but also presents metaheuristics and exact formula-
tions of the overall RWA. Furthermore, experiments from theliterature is gathered and
discussed. No general benchmark instances are used in the literature and the objective
of solution methods differs. For these reasons, it is not trivial to decide which methods
perform better, thus this survey also presents theoreticalrunning times and uses these
along with test results in a performance analysis of the proposed solution methods.
Finally, we give recommendations on future work in the RWA research area.

This survey is structured as follows. First, in Section 5.2,the RWA problem and vari-
ants hereof are defined. The network topology is presented, i.e., constraints on whether
or not wavelength conversion is allowed, etc. In Section 5.3, methods for solving the
RWA problem heuristically are presented. These methods areall based on the decom-
position of RWA into the two subproblems: the routing problem and the wavelength
assignment problem. The section includes an overview of experimental results from the
literature along with theoretical running times for the constructive heuristics. In Sec-
tion 5.4 methods for the overall RWA is presented. These methods include metaheuris-
tics and integer linear programming formulations. The section contains experimental
results from the literature. Concluding remarks are given in Section 5.5. This section
includes conclusions on the performance analysis of the presented solution methods
and our recommendations on further work on the RWA.
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Approach Problem Sta./Dyn. Complexity Ref.

FIXED ROUTING Routing Both O(E + V log V ) [38, 48]
FIXED-ALTERNATE ROUTING Routing Both O(E + V log V + k) [22, 38, 66]
ADAPTIVE ROUTING Routing Dyn. O(E + V log V ) [206]
LEAST CONGESTEDPATH ROUTING Routing Both O(E(E + V log V )) [43, 139]
SHORTESTPATH ADAPTIVE ROUTING Routing Both O(E(E + V log V )) [139]
ROUTING WITH REDUCTION OF

WAVELENGTH CONTINUITY CONFLICTS Routing Both Polynomial [125, 126]
ANT COLONY ROUTING Routing Sta. Metaheuristic [195]
GENETIC ALGORITHM Routing Sta. Metaheuristic [22]
INTEGERPROGRAMMING Routing Sta. NP-hard [206]

GRAPH COLORING WA Both NP-hard [206]
RANDOM ASSIGNMENT WA Both O(WE) [183]
FIRST FIT ASSIGNMENT WA Both O(WE) [130]
LEAST USED ASSIGNMENT WA Both O(W logW +WE) [150, 206]
MOST USED ASSIGNMENT WA Both O(W logW +WE) [150, 206]
EXHAUSTIVE SEARCH ASSIGNMENT WA Both O(WE) [150]
M INIMUM PRODUCT ASSIGNMENT WA Both O(WE) [110]
LEAST LOADED ASSIGNMENT WA Both O(WE) [117, 206]
MAXIMUM SUM ASSIGNMENT WA Both O(kWE) [28, 183]
RELATIVE CAPACITY LOSSASSIGNMENT WA Both O(kWE) [207]
DISTRIBUTED RELATIVE

CAPACITY LOSSHEURISTIC WA Both O(kWE) [206]
WAVELENGTH RESERVATIONASSIGNMENT WA Dyn. O(1) [38]
PROTECTINGTHRESHOLDASSIGNMENT WA Dyn. O(1) [38]
GENETIC ALGORITHM WA Sta. Metaheuristic [101]
SIMULATED ANNEALING WA Sta. Metaheuristic [101]
TABU SEARCH WA Sta. Metaheuristic [101]
BIN PACKING HEURISTIC WA Sta. Metaheuristic [179]



5.1
Introduction

81
ANT COLONY OPTIMIZATION RWA Sta. Metaheuristic [16]
GENETIC ALGORITHM RWA Sta. Metaheuristic [6, 178]
M IXED INTEGERPROGRAMMING RWA Sta. NP-hard [164]
INTEGERPROGRAMMING RWA Sta. NP-hard [206]
INTEGERPROGRAMMING RWA Sta. NP-hard [156]
INTEGERPROGRAMMING RWA Sta. NP-hard [106]
INTEGERMULTICOMMODITY FLOW PROBLEM RWA Sta. NP-hard [31]

INTEGERPROGRAMMING RWA Sta. NP-hard [138]
INTEGERPROGRAMMING RWA Sta. NP-hard [107]

Table 5.1: An overview of all the methods, which are presented in this survey.
The first column contains the name of the methods. Then follows problem types:
the routing problem, the wavelength assignment problem (WA), or the RWA
problem. The third column denotes whether or not, the methodworks on the
static problem (Sta.) or the dynamic problem (Dyn.). The next column contains
complexity: theoretic running times are only given for the heuristics. Finally, the
right most column gives references to the literature for each method.
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5.2 Problem definition

In this section, details on the RWA and on the all-optical network are presented. First,
we discuss common assumptions on the network in which to establish data connections.
Next, the two main variants of the RWA, the static and the dynamic RWA, are further
introduced.

5.2.1 Network topology

The optical network is considered in an abstract manner. Technical details are omitted,
instead we consider anetworkconsisting ofnodesandedges. Edges represent fibre
links. An edge can hold several fibres, each potentially holding several wavelengths.
Single-fibre is when each edge consists of only one fibre and multi-fibre is when each
edge consists of several fibres. In this paper, we work on single-fibre networks unless
else is mentioned. A node corresponds to any active equipment with an ingoing and/or
outgoing edge. This could be a switch, a hub, an amplifier etc.A data connection
request consists of a source and a target. A path with an assigned wavelength is to be
found between the source and the target nodes. In the RWA, paths of different data
connections are to be generated such that no two paths share the same edge and the
same wavelength. That is, two paths using the same wavelength, must be edge disjoint.
An example of the network representation is seen in Figure 5.1.

d

From a to b

From c to d

a

b

c

Figure 5.1: An example of a network representation of an optical network. Two data
connections are routed through the network using the same wavelength. Thus, the two
paths are edge disjoint.
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When working on the RWA, some assumptions onwavelength conversionare made.
A data connection may change wavelength when wavelength converters are available
at intermediate nodes of the data connection path. In the literature, RWA works on
different networks:

• There are no wavelength converters. In this case, a wavelength continuity con-
straint is imposed, see Zang et al. [206].

• Only a subset of nodes includes wavelength converters. This is denoted sparse
wavelength conversion, see Iness and Mukherjee [104].

• All nodes include wavelength converters. The network is said to be wavelength
convertible, see Ramamurthy and Mukherjee [163].

In the network representation, a switch with a wavelength converter attached is simply
considered as one node. Comparisons of the different types of networks have been
performed by Barry and Humblet [29], among others.

Furthermore, constraints on the usage of wavelength converters may be imposed. These
constraints include sharing of converters and limiting therange of possible conversions.
Sharing converters may be beneficial. If converters are not shared, then the number of
converters at a node increases. Lee and Li [137] have shown that when the number of
wavelength converters at a node exceeds some threshold, then the performance of the
network decreases.

Some converters only support changes of wavelengths withina certain range. E.g., the
wavelengthλi can be converted to wavelengths in the rangeλ(i−k), . . . , λi, . . . , λ(i+k),
wherek is the range limitation factor. For more information on the limited-range wave-
length converters, see the work of Iness and Mukherjee [104]or of Yates et al. [205].

When wavelength converters are only placed on certain nodes, much research has been
conducted on network design, i.e., where to place the converters. Dutta and Rouskas
[62] present a survey and a number of heuristics for the problem of designing the net-
work. Koster and Zymolka [127, 128, 129] give lower bounds and then solve the prob-
lem of minimizing the number of required wavelength converters to optimality. A
thorough analysis on the overall design of a WDM network is performed by Jue [114]
and an analysis on how to place the components of an optical network is done by Iness
[103].
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5.2.2 Variants of the RWA

In the following, we consider both the static and the dynamicRWA. Recall that in
the static RWA, all data connection requests are known in advance, they are to be
established at the same time, and they are assumed to exist forever. An instance may
hold more data connection requests than can be established;if a connection cannot
be established, it is said to beblocked. Hence, the objective of the static RWA is
typically to maximize either the number of established dataconnections or the profit of
established data connections. The static RWA is proved to beNP-hard by Chlamtac et
al. [47]. The problem may be formulated mathematically as a mixed integer problem,
see Ranaswami and Sivarajan [164].

In the dynamic RWA, data connection requests arrive with time; they are to be estab-
lished at arrival time and they are to be shut down at a given time. This means that
wavelengths can be reused; when a data connection is shut down, its wavelength is
released. As for the static case, blocking may occur. The objective of the dynamic
RWA is typically to maximize the number of established data connections. Because no
knowledge exists on future data connection requests, solutions to the dynamic RWA
are local optimums.

The far majority of methods for solving the RWA apply to both the static and the
dynamic RWA. In the following sections, solution methods from the literature are pre-
sented.

5.3 Decomposition of the RWA

Both the dynamic and the static RWA are difficult to solve. A reason for this is that the
problems consist of two parts: routing data connections andassigning wavelength to
data connections.

Both the static and the dynamic RWA are often solved by splitting the problem into
two subproblems: the routing problem and the wavelength assignment problem, see
e.g. Arteta et al. [16], Zang et al. [206] and Zheng and Mouftah [208]. First, routes
for all connections are found. Next, wavelengths are assigned. The division of the
problem makes it easier to solve, but solving the subproblems instead of the whole
problem does not guarantee an optimal solution. Instead, dividing the RWA into two
parts is a heuristic method.

Much research has been put into decomposing the RWA into these two parts. In this
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section, we present some of the routing algorithms and methods for wavelengths as-
signment from the literature.

5.3.1 Routing

The routing problem consists of finding a path between the source and the target of each
data connection. The complexity of the routing problem depends on the objective. If we
simply wish to connect a set of node pairs, then the problem can be solved polynomially
using a shortest path algorithm. If the objective is to minimize the maximal number of
paths on an edge, then the problem isNP-hard, see e.g. Zang et al. [206].

Fixed Routing
The routing problem can be solved in polynomial time as anall pairs shortest path
problem, see Ahuja et al. [5] for more information. This method is denoted FIXED

ROUTING. The definition ofshortestpath varies; the length of a path may be measured
in the number of used edges, or in the number of available bandwidths etc., see Birman
and Kershenbaum [38] and Choi et al. [48]. In FIXED ROUTING, exactly one path is
found per data connection.

Fixed-Alternate Routing
Another routing method is to find several paths between the pair of terminals for all
data connections. If the paths for a data connection are edgedisjoint, then the approach
can be considered somewhat fault tolerant, i.e., if a connection fail on one path, then the
corresponding data connection can be routed on the other path. This method is denoted
FIXED-ALTERNATE ROUTING, see e.g. Birman and Kershenbaum [38]. When the
number of shortest paths for each data connection is limitedto k, k > 0, then the
FIXED-ALTERNATE ROUTING may be referred to as thek-shortest path method, see
Banerjee et al. [22] or for a generalk-shortest path algorithm, see Eppstein [66]. As
there are more paths to choose from, the risk of being unable to assign wavelengths to
certain data connection is generally lowered. The wavelength assignment may, though,
become harder to solve because of the potential many combinations of paths to choose
from.

Adaptive Routing
ADAPTIVE ROUTING is yet another routing method. It consists of finding paths with
respect to previously chosen paths. Given is a network with an edge for each pair of
fibre and wavelength in the network. An edge has weight1 when unused and∞ when
used. The path of a data connection request is found as the shortest path with respect
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to edge weights. The weights of edges used by this path are setto∞ and the next data
connection request can now be considered. If some nodes havewavelength converters,
then an appropriate cost for converting wavelengths can be introduced. See Zang et al.
for more details [206].

Least Congested Path Routing
Another ADAPTIVE ROUTING method is the LEAST CONGESTEDPATH ROUTING,
see Chan and Yum [43]. A sequence of paths is preselected and once a data connection
request arrives, the LEAST CONGESTEDPATH ROUTING is chosen. Least congestion
is measured on the number of available wavelengths on each edge; the congestion of a
path is determined by the used edge with fewest available bandwidths.

Shortest Path Adaptive Routing
Yet another method is to use the SHORTESTPATH ADAPTIVE ROUTING, which is an
extension of the methods described above. If several paths with same cost exist, then
the least congested of those paths is chosen. To determine the least congested path,
all edges on all paths for a data connection must be investigated. This can be time
consuming, thus Li and Somani [139] have suggested to only check the firstk edges.

Routing with Reduction of Wavelength Continuity Conflicts
Recall that when a node does not have a wavelength converter attached, then we say that
a path must have wavelength continuity in this node, i.e., a path cannot change wave-
length. When several paths compete for the same wavelength on an edge and the start
node of that edge does not have a wavelength converter, then we have awavelength
continuity conflict. When finding paths for data connection requests, we obviously
wish to reduce the number of wavelength continuity conflicts. For this, Koster and
Scheffel [125] present a mathematical formulation for finding a lower bound on the
number of connections which cannot be routed without wavelength conversion. The
bound is based on the number of incident fibres and the number of wavelengths per
fibre as shown by Koster in [126]. The mathematical formulation is a variant of the lin-
ear MULTICOMMODITY FLOW PROBLEM (MCFP), which is polynomially solvable.
Koster and Scheffel solve the formulation using column generation. If the routing prob-
lem is solvable, then Koster and Scheffel show that it is possible to assign a wavelength
to all selected paths.

Ant Colony Routing
The ANT COLONY ROUTING approach is a metaheuristic. Ants are capable of finding
shortest paths when working together: assume that two ants have encountered some
food and that two different paths back to the nest exist. Eachant takes its own path; on
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their way the ants lay pheromone for signaling. The path of the first ant to arrive at the
nest is the shorter of the two paths and it is the only path withpheromone all the way
to the nest at this moment. Once the first ant has returned to the nest, a number of ants
are sent out towards the food, all leaving pheromone on theirway. The strength of the
pheromone determines which path the ants choose. Thus all ants will eventually choose
the shortest path. The behaviour of ants has inspired the ANT COLONY OPTIMIZATION

(ACO). When establishing several paths, a colony of ants is assigned to each path. Ants
are only attracted to the pheromone from their own colony. Varela and Sinclair [195]
have proposed several ACOs, where ants not only are attracted to pheromone of their
own colony; they are also repelled by the pheromone of other colonies.

Genetic Algorithm for Routing
Banerjee et al. [22] use a GENETIC ALGORITHM (GA) for solving the routing problem
of RWA. The GA is a metaheuristic. Banerjee et al. seek to minimize the number
of used wavelengthsand the average delay on a network satisfying the wavelength
continuity constraint. In GA a number of chromosomes are given; each chromosome
consists of a number of genes.

The GENETIC ALGORITHM of Banerjee et al. works as follows:k-shortest path is
used as routing heuristic. Each gene in a chromosome represents a path. The cost of
each chromosome equals the total cost of the used edges. The cost of an edge depends
on the number of paths in the chromosome using that edge. If the edge is only used
once, then the cost is relatively low. If the edge is used by several (different) data
connection requests, then the cost is very large. Banerjee et al. seek to minimize the
cost of selected chromosomes. They thus seek to limit blocking occurring from several
paths using the same edge.

Linear programming
The routing problem is formulated mathematically by Zang etal. [206]. The objective
is to minimize the maximal number of paths on an edge. Zang et al. argue that this is an
INTEGER MULTICOMMODITY FLOW PROBLEM (IMCFP), where a data connection
is represented by a commodity with one amount of flow. The IMCFP isNP-hard,
see e.g. Barnhart et al. [26], thus Zang et al. suggest reducing the search space by
only considering a subset of possible paths. Furthermore, they suggest using random
rounding when solving an LP-relaxed formulation.

5.3.1.1 Performance of routing methods

So far the performance of the presented methods has not been discussed. In the lit-
erature, the test instances and the objective function vary. An often used objective is
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blocking probability, which gives the probability of a data connection request tobe
blocked, because there is no available wavelength on its path. In this section, we at-
tempt to give an overview of problem instances and results. Despite the difference of
used test instances and of objectives, we seek to provide an insight into the overall
performance of the proposed methods.

Birman and Kershenbaum [38] compare FIXED ROUTING and FIXED-ALTERNATE

ROUTING on a single-hop mesh network with 6 nodes, 9 edges, a data connection
request for each pair of nodes, and 24 wavelengths per edge. The objective is blocking
probability and their results show, that FIXED-ALTERNATE ROUTING performs better
than FIXED ROUTING. No running times are reported.

Chan and Yum [43] test the LEAST CONGESTEDPATH ROUTING heuristic on a fully-
connected network with 7 nodes and with 30 wavelengths per edge. The computational
evaluation is based on changing parameters in the algorithmand in the network. The
objective is blocking probability and they test the effect of having different network
topologies and different settings for wavelength converters rather than comparing with
an existing routing heuristic. Running times are not mentioned.

Furthermore, Li and Somani [139] have compared the LEAST CONGESTED PATH

ROUTING heuristic with the shortest path algorithm on a4 × 4 mesh-torus network
and on the NFS network with 14 nodes and 21 edges. Their objective is blocking
probability, and the least congest path routing heuristic has best performance. Running
times are not reported.

ROUTING WITH REDUCTION OF WAVELENGTH CONTINUITY CONFLICTS is tested
by Koster and Scheffel [125] on a German, European and US network, where the num-
ber of eligible paths between two nodes is limited to 100. Thenumber of wavelengths
per fibre is set to 40 and 80 in different test runs. In their test, they incorporate the rout-
ing scheme in a mathematical formulation for the RWA. They solve the formulation by
usingCPLEX, version 9.1 and compare different settings of the algorithm instead of
comparing with other heuristics. A fixed time limit is set to 10.000 seconds; apart from
that, time usage is not mentioned.

Varela and Sinclair [195] test their variants of the ANT COLONY ROUTING approach
on three networks. The first has 4 nodes and 20 wavelengths. The second has 9 nodes
and 98 wavelengths. The last network has 15 nodes and 269 wavelengths. The ob-
jective is to minimize the number of required wavelengths and running times are not
considered. The ANT COLONY ROUTING approach is compared to a heuristic with
FIXED-ALTERNATE ROUTING like method and with FIRST FIT ASSIGNMENT, and
the latter has slightly better performance than the metaheuristic.

Banerjee et al. [22] test the GENETIC ALGORITHM for routing on a number of net-
works. The considered simulation networks are real life networks: the 20 node ARPA
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network, 18 node European optical network, 22 node UK network and 14 node NSF
network. Several sets of data connections are tested: 20, 40, 60, 80, and 100 data con-
nections. The objective is to minimize the number of required wavelengths. For less
than 80 data connections, the FIRST FIT ASSIGNMENT heuristic and the GENETIC

ALGORITHM perform equally well. For 80 or more data connections, the GENETIC

ALGORITHM finds better solutions, i.e., solutions requiring fewer wavelengths. Run-
ning times are not reported.

5.3.1.2 Theoretical running times

We now report theoretical running times for the presented constructive heuristics for
the routing problem. To calculate the times, some notation must be introduced. Given
a network,G, letN be the number of nodes andE the number of edges. The number
of wavelengths is denotedW and letk be taken from thek-shortest path algorithm.
Running times for the heuristics for the routing problem arecalculated as the time it
takes to find path(s) for each data connection.

The FIXED ROUTING and the ADAPTIVE ROUTING heuristics are shortest path prob-
lems, which can be solved inO(E+V logV ) time using Dijkstra’s algorithm, see e.g.
Cormen et al. [52].

The FIXED-ALTERNATE ROUTING problem finds thek shortest paths, which can be
found inO(E + V logV + k) time, see e.g. the work of Eppstein [66].

In the literature, only very large running times are given for the LEAST CONGESTED

PATH ROUTING and the SHORTESTPATH ADAPTIVE ROUTING problems, see [139].
Here, we thus present a somewhat naı̈ve algorithm for the LEAST CONGESTEDPATH

ROUTING with lower running time. The problem consists of finding a path, where the
least number of available wavelengths on any used edge is maximized. Now, given
a network and a data connection, delete the edge with fewest available wavelengths
and set all other edge weights to 0. Solve the shortest path problem using Dijkstra’s
algorithm. If the problem is solvable, then delete the edge with second fewest available
wavelengths. Resolve the problem. Continue until the problem is no longer solvable.
Then we know that we have to use the just deleted edge, which has fewer available
wavelengths than the remaining edges. This very straight-forward method has running
time O(E(E + V logV )), which can surely be improved. The running time of the
SHORTESTPATH ADAPTIVE ROUTING problem is the same, as the problem is a mix
of the FIXED-ALTERNATE ROUTING and the LEAST CONGESTEDPATH ROUTING.

ROUTING WITH REDUCTION OF WAVELENGTH CONTINUITY CONFLICTS is pre-
sented by Koster [126] and is a variant of the polynomially solvable linear MCFP.
Koster solves the problem using column generation. To the best of our knowledge, no
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constructive solution method for the linear MCFP exists [52]. In the literature, large
instances of the linear MCFP are typically solved using Lagrangian methods, partition
methods, decomposition techniques, dual ascent algorithms, bundle methods, interior
point methods, etc., see Awerbuch and Leighton [18] and Kennington [119] for surveys
of the problem and Larsson and Yuan [134] for a review of solution techniques. Small
instances are typically solved using the Simplex algorithm. An exact running time for
ROUTING WITH REDUCTION OFWAVELENGTH CONTINUITY CONFLICTS

is thus difficult to calculate; instead, we simply state thatthe problem is polynomial.

5.3.2 Wavelength Assignment

When paths are found for all data connections, then wavelengths must be assigned to
each path. Wavelength assignment is anNP-hard problem.

In this section, three different types of approaches are described: theoretical results
on the number of needed wavelengths, an exact graph coloringapproach, and finally a
number of heuristics and metaheuristics for the wavelengthassignment problem.

The theoretical results on the number of needed wavelengthsoften depend on the net-
work topology. The research area is quite vast, so we only give a short overview here.

Solving the wavelength assignment problem to optimality istypically done through
a graph coloring problem. Much research has been conducted on the graph coloring
problem; here we only show the transformation from the wavelength assignment prob-
lem to the graph coloring problem and then give references for further information on
solution methods.

For the heuristics, we assume that the number of available wavelengths is fixed. The
wavelength assignment problem thus consists of finding a feasible solution, rather than
finding a feasible solution which minimizes the number of used wavelength. The
heuristics may be used for both the static and the dynamic wavelength assignment
problem. Each path is treated separately without paying attention to the wavelength
assignments of other paths. Some of the heuristics work on both the single-fibre and
the multi-fibre network.

Theoretical Results on the Number of Needed Wavelengths
Once routing is done, wavelengths are to be assigned to the data connections. Much
research is done on theoretical bounds on the number of required wavelengths. Espe-
cially lower bounds on the number of wavelengths are given, i.e., given a set of paths
then at least a certain number of wavelengths are needed for assignment of those paths.
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The bounds can be used to quickly determine whether or not alldata connections can
be assigned wavelengths. The bounds, however, often dependon the chosen routing
algorithm. Work has also been performed on upper bounds; these bounds can be used
to ensure feasibility, i.e., given a routing and given a number of available wavelengths
larger than the upper bound, then a feasible wavelength assignment is guaranteed.

The research area of bounds on wavelengths is vast, as much work is done on specific
network topologies. In the following, a selection of results from the research area is
presented.

First, Aggarwal et al. [4] present previous work on lower andupper bounds in wave-
length assignment and then Aggarwal et al. improve the upperbounds. Their bounds
apply for specific instances of the RWA. Two variants of the dynamic RWA is con-
sidered: (1) all data connections can always be rerouted and(2) no data connection
can ever be rerouted. Furthermore, they make the assumptionthat FIXED ROUTING

is used. The network topologies include star networks, having no converters or having
converters at all nodes. Aggarwal et al. find upper bounds close to previously found
lower bounds. For more details on their bounds and on earlierfound bounds, see the
overview of previous work presented by Aggarwal et al.

Raghavan et al. [162] present heuristic algorithms for the static RWA on certain net-
work topologies. The algorithms have bounds on the number ofwavelengths needed.
The network topologies include sparse, bounded degree rings, trees, and meshes, all
with constraints on how to forward data in a node. Furthermore, Raghavan et al. dis-
cuss using their algorithms for the dynamic RWA.

When calculating bounds, Barry and Humblet [29] allow blocking; that is, some data
connections may be blocked instead of the telecommunication provider upgrading the
network. The same applies for Ramaswami and Sivarajan [164], and Yates et al. [205].

Gersel et al. [91] present algorithms with known worst upperbounds on the number of
wavelengths needed for the RWA with no blocking. Their work is on certain undirected
network topologies: line, ring networks and trees, all withno wavelength converters.
Furthermore, they extend their results when wavelength conversion is allowed. Their
algorithms are greedy heuristics, where they have added lower and upper bounds on
the number of wavelengths to avoid blocking.

Koster [126] solves the wavelength assignment problem by transforming it into anedge
coloring problem. This transformation is only possible, when no pathuses more than
two edges, which is the case in a star network. Koster gives lower bounds on the number
of wavelengths to assign. In the case that all paths must be assigned wavelengths,
Koster gives a lower bound on the number of needed wavelengthconverters.

The results in this section suffer from only working on specific instances of the RWA
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and of the underlying network. Furthermore, some results donot take blocking into
account. Much more work has been conducted on finding bounds for the number of
wavelengths, but to the best of out knowledge, all this work depends on constraints set
on the network topology, on the paths to assign wavelengths,etc.

Graph Coloring
The wavelength assignment problem can be solved using graphcoloring methods, see
e.g. Zang et al. [206]. Garey et al. [90] prove that the graph coloring problem is
NP-hard. For more general information on the graph coloring problem, see Jensen
and Toft [109]. An auxiliary graphG′ is constructed such that each path in the routing
solution is represented by a node inG′ and such that two nodes are connected inG′

if the corresponding paths travel on the same fibre in the routing solution. Now, the
graph coloring problem is to assign colors to all nodes inG′ such that two adjacent
nodes do not share the same color. This corresponds to assigning wavelength to paths
such that two paths using the same fibre do not share wavelength. In graph coloring,
thechromatic numberdenotes the minimum number of needed colors. Minimizing the
chromatic number thus corresponds to minimizing the numberof needed wavelengths.
The graph coloring problem solves the wavelength assignment problem to optimality.

For information on exact, heuristic and approximate graph coloring algorithms, we
refer to Pardalos et al. [158] and to the bibliography maintained by Chiarandini [46].

Random Assignment Heuristic
The RANDOM ASSIGNMENTalgorithm consists of assigning a random available wave-
length to each path. If FIXED ROUTING is used, then the RANDOM ASSIGNMENT

algorithm is straight-forward. If FIXED-ALTERNATE ROUTING or another routing
protocol is used, where each data connection request can choose from several paths,
then RANDOM ASSIGNMENTchooses a path, which can be assigned a wavelength. If
more than one path can be assigned a wavelength, then the algorithm randomly selects
one of these.

The RANDOM ASSIGNMENT is used by e.g. Subramaniam and Barry [183].

First Fit Heuristic
This FIRST FIT ASSIGNMENT method consists of assigning the first available wa-
velength to the current path. How the first available wavelength is defined is not that
relevant, as long as the order of wavelengths is predefined. The FIRST FIT ASSIGN-
MENT heuristic is widely used, see e.g. the work of Kovacevic and Acampora [130].
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Least Used Heuristic
The LEAST USED ASSIGNMENT heuristic selects the wavelength that is least used so
far. The idea is to balance the load among all wavelengths. This approach, however,
causes trouble for longer paths, as different wavelengths are all used throughout the
network. Hence, the approach eventually only assigns wavelengths to short paths. For
more details, see Mokhtar and Azizoglu [150] or Zang et al. [206].

Most Used Heuristic
The MOST USED ASSIGNMENT approach is the opposite of the LEAST USED AS-
SIGNMENT heuristic. Instead of selecting the least used wavelength,this heuristic
chooses the wavelength which is most used in the network. TheMOST USED AS-
SIGNMENT heuristic is described in details by Mokhtar and Azizoglu [150] and Zang
et al. [206].

Exhaustive Search Heuristic
The EXHAUSTIVE SEARCH ASSIGNMENTalgorithm works on top of FIXED-ALTER-
NATE ROUTING or another routing scheme generating several paths per dataconnec-
tion request. The wavelength assignment heuristic checks all available wavelengths
and chooses the one, which gives the shortest path. Mokhtar and Azizoglu [150] argue
that the method has quite high complexity as it needs to checkall wavelengths on all
paths.

Minimum Product Heuristic
The MINIMUM PRODUCT ASSIGNMENTapproach consists of minimizing the number
of fibres used in a multi-fibre network and is introduced by Jeong and Ayanoglu [110].
Let Dij denote the number of assigned fibres on edgei and for wavelengthj. Then
this heuristic calculatesΠiDij for all wavelengthsj.

Least Loaded Heuristic
The LEAST LOADED ASSIGNMENT approach is also designed for a multi-fibre net-
work. Given a path, the heuristic finds the wavelength, whosesmallest availability is
larger than that for all other wavelengths. LetMi be the number of fibres on edgei and
letDij be the number of assigned fibres on edgei for wavelengthj. Then the LEAST

LOADED ASSIGNMENTapproach selects the wavelengthj with maxj mini(Mi−Dij).
For more details, see Zang et al. [206] and Karasan and Ayanoglu [117].

Maximum Sum Heuristic
Subramaniam and Barry [28, 183] present a MAXIMUM SUM ASSIGNMENTalgorithm
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for assigning wavelengths. Given is a network, where paths are preselected. Now, when
a new data connection request arrives and a path is found, theheuristic of Subramaniam
and Barry seeks to find a wavelength, where after assignment the remaining capacity
is as large as possible. Subramaniam and Barry designed the algorithm for multi-fibre
network, but it also applies for single-fibre networks.

Relative Capacity Loss Heuristic
The RELATIVE CAPACITY LOSSASSIGNMENT heuristic is introduced by Zhang and
Qiao [207] and it is a variant of the MAXIMUM SUM ASSIGNMENT approach. The
latter selects the wavelength, which minimizes the capacity loss (or maximizes the
remaining capacity) on all edges. The RELATIVE CAPACITY LOSS ASSIGNMENT

chooses the wavelength which minimizes the relative capacity loss, i.e., the capacity
loss divided with the available capacity.

Distributed relative capacity loss heuristic
Zang et al. [206] propose the DISTRIBUTED RELATIVE CAPACITY LOSS ASSIGN-
MENT heuristic for assigning wavelength. The algorithm is a variant of the RELATIVE

CAPACITY LOSSASSIGNMENTheuristic. It reduces complexity of the former heuris-
tic by generating a look-up table, such that the relative loss capacity of wavelengths is
readily available. The look-up table is built by investigating the network and by ex-
changing information between nodes in a manner similar to that of the Bellman-Ford
shortest path algorithm, see Cormen et al. [52] for the Bellman-Ford algorithm.

Wavelength Reservation Heuristic
As the name of the WAVELENGTH RESERVATION ASSIGNMENT heuristic indicates,
this method reserves wavelengths for certain data connections. An example is that a
wavelengthλ is reserved for all data going from a nodea to nodec. If several paths
havea andc as intermediate nodes, then they compete for the reserved wavelength,
λ. Note that another wavelength assignment method must be used to determine which
path to select for the current data connection and which wavelength to reserve. Birman
and Kershenbaum [38] introduce the wavelength heuristic approach for multi-hop con-
nections and they show that it reduces the blocking for multi-hop connections, but it
also increases the blocking for single-hop connections.

Protecting Threshold Heuristic
Birman and Kershenbaum [38] introduce the PROTECTING THRESHOLD ASSIGN-
MENT approach, which consists of only selecting a wavelength when the number of
idle wavelengths on the edge is above a certain threshold. Note that another wave-
length assignment must be used to determine which path to select for the current data
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connection and which wavelength to assign to the path. Birman and Kershenbaum have
developed the heuristic for single-hop data connections.

Genetic algorithm
GENETIC ALGORITHMs (GA) try to simulate evolution of genotypes and natural se-
lection, see e.g. Goldberg [93]. Hyytiä and Virtamo [101] suggest a GA for solving the
wavelength assignment problem as a graph coloring problem.Two chromosomes are
given, each representing a solution to the graph coloring problem. A new chromosome
is generated from the two previous chromosomes; the reuse ofa chromosome depends
on the quality of the corresponding solution (which is the number of used wavelengths).
The new chromosome represents a solution to the wavelength assignment problem.

Simulated annealing
SIMULATED ANNEALING (SA) is based on resolving the problem and accepting a new
and better solution with some probability. This probability depends on atemperature
parameter, which decreases with time. Hence, the name simulatedannealing. For more
details, see van Laarhoven and Aarts [193]. Hyytiä and Virtamo [101] present a SA
approach used on the wavelength assignment problem. The problem is considered as
a graph coloring problem and the SA consists of assigning different colors to nodes,
calculating the objective cost, i.e., the number of used wavelength, and then accepting
the new solution with some probability.

Tabu search
Finally, TABU SEARCH (TS) is based on a random search approach where certain
moves are forbidden ortabu, see e.g. Glover and Laguna [92]. Hyytiä and Virtamo
[101] suggest solving the wavelength assignment problem represented by a graph col-
oring problem, by using TABU SEARCH. The objective is to maximize the number of
established connections rather than to minimize the numberof used wavelengths.

Bin Packing Heuristic
The RWA on a network with no wavelength converters can be solved by applying the
bin packing problem. For more information on the bin packingproblem, see Pisinger
and Sigurd [161]. Skorin-Kapov [179] represents the RWA as abin packing problem by
letting paths be items and by letting copies of the network bebins. Each bin represents
a wavelength, and each bin has capacity equal to the number ofedges in the network.
Two items cannot be packed in the same bin if the corresponding paths use the same
edge. Now, the bin packing problem is to pack items into as fewbins as possible. This
corresponds to minimizing the number of assigned wavelengths.
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5.3.2.1 Performance of wavelength assignment methods

Again, the performance of the presented methods has not beendiscussed, because in
the literature the test instances and the objective function vary. In this section, we give
an overview of the performance of the wavelength assignmentmethods, including a de-
scription of the evaluated problem instances and the corresponding evaluation results.

Kovacevic and Acampora [130] compare the FIRST FIT ASSIGNMENT heuristic for
wavelength assignment with the RANDOM ASSIGNMENTapproach. The test instance
is a11×11 mesh network with 5 wavelengths per edge and with varying network load.
The objective is blocking probability and the results show that the FIRST FIT AS-
SIGNMENT heuristic generally gives better results than the RANDOM ASSIGNMENT.
Running times are not mentioned.

Mokhtar and Azizoglu compare the EXHAUSTIVE SEARCH ASSIGNMENT with the
MOST USED ASSIGNMENT algorithm, the FIRST FIT ASSIGNMENT, and RANDOM

ASSIGNMENT[150]. The test instances are two networks: the ARPA-2 network with
21 nodes, 26 edges and 4 or 8 wavelengths, and a randomly generated topology with 15
nodes and 32 edges. Traffic arrives according to the Poisson process. The objective is
blocking probability. The MOST USED ASSIGNMENT, RANDOM ASSIGNMENT and
LEAST USED ASSIGNMENTheuristics are tested on both networks. The MOST USED

ASSIGNMENTheuristic performs best, followed by RANDOM ASSIGNMENT. Then the
EXHAUSTIVE SEARCH ASSIGNMENTalgorithm is compared to the MOST USED AS-
SIGNMENT. The EXHAUSTIVE SEARCH ASSIGNMENTalgorithm gives slightly better
results, but Mokhtar and Azizoglu note that the increased complexity of the EXHAUS-
TIVE SEARCH ASSIGNMENTovershadows the better results. FIRST FIT ASSIGNMENT

is compared with the MOST USED ASSIGNMENT heuristic and FIRST FIT ASSIGN-
MENT performs almost equally well to the MOST USED ASSIGNMENTmethod. Time
usage is not given, but theoretical complexities are computed for the heuristics.

Karasan and Ayanoglu [117] implement the LEAST LOADED ASSIGNMENTheuristic.
They test it on a 30-node mesh network where traffic is distributed uniformly. The net-
work reflects the geographical location of major cities in the US. Connection requests
arrive according to the Poisson process. The network is either single-fibre or multi-
fibre, each fibre having 8 wavelengths. The objective is blocking probability. Results
show that the LEAST LOADED ASSIGNMENTheuristic performs better than the MOST

USED ASSIGNMENTapproach.

Subramaniam and Barry [183] test the RANDOM ASSIGNMENT, FIRST FIT ASSIGN-
MENT, LEAST LOADED ASSIGNMENT, MOSTUSEDASSIGNMENT, M INIMUM PRO-
DUCT ASSIGNMENTand the MAXIMUM SUM ASSIGNMENTheuristics. The instances
have uniform Poisson traffic and are either a 20 node ring network with 1 or 10 fibres
per edge, or a5 × 5 bidirectional mesh-network with 1 or 3 fibres per edge. Subra-
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maniam and Barry use blocking probability as objective. Running times are not men-
tioned. According to Subramaniam and Barry the MINIMUM PRODUCT ASSIGNMENT

heuristic performs slightly better than the MOST USED ASSIGNMENT heuristic with
respect to blocking probability. Then follows the FIRST FIT ASSIGNMENT, LEAST

LOADED ASSIGNMENT, MAXIMUM SUM ASSIGNMENT and finally the RANDOM

ASSIGNMENTheuristics.

Zhang and Qiao [207] test the FIRST FIT ASSIGNMENT, the MAXIMUM SUM AS-
SIGNMENT approach and the RELATIVE CAPACITY LOSSASSIGNMENTheuristic on
a simulation of the NFS network and on a4 × 4 torus network. They use blocking
probabilities to calculate their objective function value. The RELATIVE CAPACITY

LOSSASSIGNMENTmethod has best performance.

Zang et al. [206] compare a number of heuristics for wavelength assignment: RANDOM

ASSIGNMENT, FIRST FIT ASSIGNMENT, LEAST USED ASSIGNMENT, MOST USED

ASSIGNMENT, M INIMUM PRODUCT ASSIGNMENT, LEAST LOADED ASSIGNMENT,
MAXIMUM SUM ASSIGNMENT, and RELATIVE CAPACITY LOSS ASSIGNMENT. A
network consisting of six nodes is used for testing, where the number of wavelengths
and fibres vary. The objective is blocking probabilities andpractical running times are
not mentioned. In a single fibre network, the MOSTUSED ASSIGNMENTheuristic per-
forms well, along with the MAXIMUM SUM ASSIGNMENTand RELATIVE CAPACITY

LOSS ASSIGNMENT approaches when the load is low. When the load is high, then
all heuristics have similar performance. In a multi-fibre network, the MOST USED

ASSIGNMENT, M INIMUM PRODUCT ASSIGNMENTand RELATIVE CAPACITY LOSS

ASSIGNMENT methods have best performance, while the LEAST LOADED ASSIGN-
MENT and MAXIMUM SUM ASSIGNMENTheuristics work best with high load. Zang
et al. conclude, however, that the difference between the performances of all heuristics
is quite insignificant.

Birman and Kershenbaum [38] compare the WAVELENGTH RESERVATION ASSIGN-
MENT and the PROTECTING THRESHOLD ASSIGNMENT heuristics on a single-hop
mesh networks with 6 nodes, 9 edges, a data connection request for each pair of nodes,
and 24 wavelengths per edge. The objective is blocking probability and the results
show that the PROTECTINGTHRESHOLDASSIGNMENTalgorithm tends to give better
results than the WAVELENGTH RESERVATION ASSIGNMENT approach. No running
times are given.

The metaheuristics suggested by Hyytiä and Virtamo [101] include a GENETIC ALGO-
RITHM, SIMULATED ANNEALING and TABU SEARCH. The methods are compared
with each other and with a FIRST FIT ASSIGNMENT heuristic, on randomly gener-
ated instances not described any further. The results show that the greedy heuristic
has significantly better running time. The GENETIC ALGORITHM has better running
time than the SIMULATED ANNEALING, which is faster than the TABU SEARCH. The
methods are also compared with respect to the number of generated wavelengths. Here,
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the TABU SEARCH has best performance, followed by the GENETIC ALGORITHM, the
FIRST FIT ASSIGNMENT, and finally the SIMULATED ANNEALING.

Skorin-Kapov [179] tests the BIN PACKING HEURISTIC on a series of random 100-
node networks with average degrees of 3, 4, and 5. Random setsof data connections
requests were created for each test network with a fixed probability of there being a data
connection request between two nodes. The number of requests varies from 2054 to
9900. The objective is to minimize the number of required wavelengths along with the
length, in hops, of data connections. The results show that the heuristics find optimal
or near-optimal solutions. Running times are mentioned to be low in general: solving
an instance with 100 nodes and 9900 data connection requeststakes less than 8 minutes
on a P4 2.8 GHz processor.

Zang et al. [206] argue that the routing algorithm has largerinfluence on the amount of
blocking probability, than the wavelength assignment algorithm. They base this on the
performed tests, where algorithms using ADAPTIVE ROUTING generally gives signif-
icantly better results than algorithms using FIXED ROUTING - no matter which wave-
length assignment algorithm is used. Zang et al., however, do not take running times
into account, so even if more complicated routing algorithms give better solutions, one
could fear that the algorithms may also have larger time usage.

5.3.2.2 Theoretical running times

We now report theoretical running times for the presented constructive heuristics for the
wavelength assignment. Recall the notation: given a network,G, letN be the number
of nodes andE the number of edges. The number of wavelengths is denotedW and
let k be taken from thek-shortest path algorithm. Running times for the wavelength
assignment heuristics are calculated as the time it takes toassign a wavelength to a
single path.

The RANDOM ASSIGNMENT selects a random wavelength. In the case of no wave-
length converters, the heuristic investigates all edges onthe path to see if the wave-
length is available; if not, it repeats the process with another randomly picked wave-
length. In the case of wavelength converters, the heuristicinvestigates if the wavelength
is available on each edge and if not, it selects another wavelength and check again. The
running time isO(WE). The FIRST FIT ASSIGNMENTonly differs in how to pick the
wavelength and it thus has the same running time.

The LEAST USED ASSIGNMENTand MOST USED ASSIGNMENTheuristics run thro-
ugh all used edges and calculate how much each wavelength is used. The wavelengths
are sorted according to usage and paths are assigned wavelengths from the sorted list
in a FIRST FIT ASSIGNMENTmanner. The running time isO(W logW +WE).
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The EXHAUSTIVE SEARCH ASSIGNMENT needs to check all available wavelengths
on allk paths for the current data connection. This takesO(kWE) time.

The MINIMUM PRODUCT ASSIGNMENTheuristic calculates the productΠiDij for all
fibresi and for all wavelengthsj. This takesO(WE) time. The LEAST LOADED AS-
SIGNMENT heuristic is very similar to the MINIMUM PRODUCT ASSIGNMENTmethod
and thus has the same running time,O(WE).

The MAXIMUM SUM ASSIGNMENTheuristic investigates how much each wavelength
is available on each edge of all the paths, the current data connection can choose from.
Let the number of paths be bounded byk; the running time isO(kWE). The RE-
LATIVE CAPACITY LOSS ASSIGNMENT heuristic and the DISTRIBUTED RELATIVE

CAPACITY LOSSASSIGNMENT heuristic work in a similar manner and thus have the
same running time,O(kWE).

Finally, the WAVELENGTH RESERVATION ASSIGNMENT heuristic and the PROTEC-
TING THRESHOLD ASSIGNMENT heuristic are used on top of other wavelength as-
signment algorithms. Thus, their running times depend on the other heuristic: the
WAVELENGTH RESERVATION ASSIGNMENT and PROTECTINGTHRESHOLD

ASSIGNMENTmethods themselves have constant running time,O(1).

5.4 Overall methods for solving the RWA problem

In this section, important results for solving the RWA as oneproblem are presented.
Instead of splitting the RWA into two subproblems, the following methods approach
the entire RWA. Methods include both metaheuristics and exact formulations.

5.4.1 Metaheuristics

In this section, metaheuristics for solving the RWA are presented. The metaheuristics
proposed in the literature are GENETIC ALGORITHM (GA) and ANT COLONY OPTI-
MIZATION algorithms (ACO).

Ant Colony Optimization algorithm
Arteta et al. [16] use aMULTI -OBJECTIVE (MO) ACO metaheuristic for solving the
RWA. ACO defines a method of investigating the neighbourhoodof a current solu-
tion. The MO consists of optimizing the hop count and the number of wavelength
conversions. In the ACO this means that the pheromone matrix, i.e., the probabilities
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defining which pheromone track an ant chooses, depends on thepath’s hop count and
on the number of wavelength conversions in the path.

Arteta et al. have implemented several MOACOs: for more details on each MOACO,
see the corresponding reference. TheMULTIPLE OBJECTIVE ANT Q ALGORITHM

(MOAQ) of Mariano and Morales [144] maintains a colony per objective. TheBI-
CRITERION ANT (BIANT) of Iredi et al. [105] uses a probability matrix per objec-
tive and hence also a colony per objective. PARETO ANT COLONY OPTIMIZATION

(PACO) of Doerner et al. [58] has several pheromone matricesfor each objective.
The MULTI -OBJECTIVE ANT COLONY SYSTEM(MOACS) by Schaerer and Barán
[25] uses several heuristics when calculating entries in the probability matrix. The
MULTI -OBJECTIVE MAX-MIN ANT SYSTEM (M3AS) by Pinto and Barán [159] has
a global pheromone matrix. COMPETANTS (COMP) by Doerner et al. [59] uses
several heuristics, pheromone matrices and the colony sizes vary. MULTI -OBJECTIVE

OMICRON ACO (MOA) by Gardel el al. [88] uses a specific updating rule for the
pheromone matrices, and finallyMULTI -OBJECTIVE ANT SYSTEM(MAS) by Paciello
et al. [157] has a slightly different order of updating the pheromone matrices.

Genetic Algorithms
Sinclair [178] solves the RWA through a GENETIC ALGORITHM (GA). Instead of
using the classical mutation and crossover operations in GA, Sinclair uses heuristics
to generate new solutions. The heuristics are:k-shortest path routing with FIRST FIT

ASSIGNMENT, rerouting and reassignment of wavelengths of a subset of connections,
rerouting a path with high wavelength in order to reach the lowest possible wavelength,
and shifting the path with the highest wavelength to having alower wavelength such
that all paths blocking the new low wavelength must be rerouted.

Ali et al. [6] solve a variant of the RWA problem using a GENETIC ALGORITHM. The
variant consists of taking power into account, i.e., they wish to preserve proper power
levels on all paths. They use ak-shortest path method to generate routes, where power
loss is taken into account when measuring the length of a path.

5.4.2 Linear programming

This section presents methods from the literature for finding LP bounds for the RWA.
Several of the methods presented in the following may be integer or mixed integer
programs, but the suggested solution methods all work on LP relaxed formulations.

Ramaswami and Sivarajan [164] present an INTEGER PROGRAMMING (ILP) formu-
lation for the static RWA with no wavelength conversion and where the objective is
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to maximize the number of established data connections. They note that their model
is a variant of the MCFP. Given the data connections and corresponding paths, Ra-
maswami and Sivarajan solve the problem using rounding algorithms. Data connec-
tions and paths are generated randomly.

An ILP formulation of the static RWA is presented by Zang et al. [206]. Wavelength
conversion is not allowed and the objective is to minimize the maximal edge flow. It is
noted that the model is a variant of the MCFP. Zang et al. also present an overview of
a model for the static RWA with wavelength conversion, whichagain is a variant of the
MCFP.

Banerjee and Mukherjee [21] present an ILP for the RWA, wherethe objective is to
minimize the hop distance. The network allows wavelength conversion. They, how-
ever, solve the problem heuristically. Banerjee and Mukherjee argue that their model
can be used to design a balanced network with high utilization of transceivers and
wavelengths. Furthermore, it is noted, that the model of Banerhee and Mukherjee is a
variant of the MCFP, where each commodity represent a data connection.

Ozdaglar and Bertsekas [156] work on an ILP formulation of the quasi-static RWA.
They define quasi-static RWA to be the problem, where severaldata connection re-
quests first are to be handled and then later more data connection requests may arrive.
The formulation is a variant of the MCFP. Ozdaglar and Bertsekas relax the ILP and
show that the relaxed formulation yields integer solutionsfor several network topolo-
gies including line and ring networks, with wavelength converters at either all or no
nodes.

Jaumard et al. [106] present a number of different ILP formulations for the RWA in
WDM optical networks, using a unified notation. The variantsof the RWA include
instances with symmetric and with asymmetric traffic. Jaumard et al. show edge-
and path-based formulations as well as models from the literature. Formulations for
the RWA with asymmetric traffic are shown to give the same optimal solution value,
though the number of constraints and variables differ.

5.4.3 Integer programming

This section presents exact solution methods for the RWA. The methods are all based
on Dantzig-Wolfe decomposing the RWA, see [54]. The resulting formulations are
solved to optimality using branch-and-price, where the master and subproblems vary
according to the used Dantzig-Wolfe decomposition.

If wavelengths may be changed in every node, the RWA problem can be reduced to the
INTEGERMULTICOMMODITY FLOW PROBLEM (IMCFP), see Beauquier et al. [31].



102 A Survey of the Routing and Wavelength Assignment Proble m

The IMCFP consists of sending an amount of flow between several sources and targets
with respect to edge capacities, see Ahuja at el. [5] for moredetails. When wavelengths
can be converted at all nodes, then the wavelength limitation can be described as edge
capacities: each edge can carry at mostk different wavelengths, for some integerk > 0.
Now, we need to send1 amount of flow between all data connection terminals without
violating edge capacities. This corresponds to the integerMCFP. The integer MCFP
is a well-studied problem with many solution approaches. Anexample is the branch-
and-bound algorithm by Barnhart et al. [26].

Another ILP formulation for the RWA is of Lee et al. [138] which is based on finding a
set of paths with the same wavelength for a subset of data connection. The formulation
maximizes the number of established data connections subject to the RWA constraints.
Lee et al. propose a column generation for the formulation, where the subproblem is
to find a set of paths with the same wavelength for some data connections. To find an
optimal solution Lee et al. present a branch-and-price algorithm.

Jaumard et al. [107] analyze column generation formulations for the RWA from the
literature and present a new formulation. First a straight forward path formulation of
the RWA is presented, where a path consists of both the visited edges and the used
wavelengths. It is argued that the formulation yields symmetry problems with respect
to the used wavelengths. Then Jaumard et al. review the formulation of Ramaswami
and Sivarajan [164] where wavelength assignment and path variables are kept sepa-
rately. Jaumard et al. propose a column generation method for generating paths for
the formulation, however, the method has some drawbacks: the size of the subproblem
depends on the number of paths for a data connection which maybe exponential and
the column generation technique solves the LP relaxed formulation and does thus not
return an optimal solution to the original problem. Jaumardet al. present the formula-
tion of Lee et al. based on finding a set of paths with the same wavelength for a subset
of data connections. Jaumard et al. suggest solving the subproblem as a multicommod-
ity linear flow problem. Based on the formulations of Ramaswami and Sivarajan [164]
and Lee et al. [138], Jaumard et al. propose a new mathematical model where each col-
umn consists of a set of paths for a subset of data connectionsand where wavelengths
are assigned in the master problem. A branch-and-price algorithm is presented where
the subproblem corresponds to that of the formulation of Leeet al. and the branching
strategy add cuts on the number of used wavelengths to the master problem. Jaumard
et al. have implemented and tested the column generation formulation of Lee et al. and
of their own model.

5.4.4 Comparison of overall solution methods

Once again, the test instances and the objective function vary in the literature. An
overview of tested instances and corresponding results forthe overall solution methods
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is presented in this section.

Arteta et al. [16] test their MOACO metaheuristics for solving the RWA on the
Japanese NTT network topology. The network has 55 nodes and 144 edges. The
algorithms were run 10 times, each time of at most 100 iterations. The objective is to
minimize the amount of wavelength conversion and the hop length, along with pareto
front and error. Running times are not considered. Using this objective, the MOACOs
outperform simpler, greedy heuristics.

Sinclair [178] solves the RWA through a GENETIC ALGORITHM. Five test networks
are generated, each with 15 nodes, and with 34 to 39 edges. Theobjective is to min-
imize the cost of used edges and running times are not taken into account. Sinclair
shows that the proposed GENETIC ALGORITHM can compete with greedy heuristics.

Ali et al. [6] solve a variant of the RWA problem using a GENETIC ALGORITHM. They
test their algorithm on a network with 13 nodes and the objective is to maximize the
number of established data connections and in time usage. The proposed GENETIC

ALGORITHM outperforms a FIRST FIT ASSIGNMENT like heuristic with respect to the
number of data connections, but it spends significantly moretime.

Ramaswami and Sivarajan [164] present an ILP. They solve theproblem using a
rounding method and they compare their bounds with a FIRST FIT ASSIGNMENT like
heuristic. The test instances are two networks with data connection requests arriving ac-
cording to a Poisson process and lasting for a duration that is exponentially distributed.
The networks are a 5 node pentagon and a 20 node network representing a skeleton
of ARPA, respectively. First off, Ramaswami and Sivarajan show that they reach their
theoretically calculated bounds on carried traffic. They compare their rounding method
for the ILP with the heuristic with respect to blocking probability and their rounding
method gives best results. Running times are not taken into account.

Banerjee and Mukherjee [21] present an ILP to derive a minimal hop distance solution
in a network with wavelength converters. Two heuristics areproposed: one which at-
tempts to find paths between the node pairs, which have more data connection requests
and which are only separated by a single hop. The other heuristic attempts to maximize
the number of established data connections with respect to the number of hops between
the sources and targets. Banerjee and Mukherjee test the heuristics and the ILP on the
NFS network with a randomly generated traffic matrix. They show that the average
packet hop distance for the heuristic solutions is not far from that obtained by the ILP.
Running times are not mentioned.

Jaumard et al. [106] test the models on NSF and EON networks with asymmetrical
traffic matrices, which correspond to 268 connections for the NSF instance and 374 for
the EON. For symmetrical traffic, the former are modified suchthat for a pair of nodes
s, d, then the selected connections are the connections froms to d, unless the number
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of connections fromd to s is larger. This gives 191 connections for the NSF and 270
for the EON. Formulations are compared through computational evaluation and they
show that benchmark problems from Krishnaswamy and Sivarajan [131] can be solved
to optimality or with a small gap. Only bounds are compared inthe computational
study, hence running times are not mentioned.

Lee et al. [138] test their branch-and-price algorithm using test instances based on the
SONET ring topology with 10, 15 and 20 nodes and where each node pair requires
one to three data connections. Their test results show that the bounds found in the root
node of the branch-and-bound tree are of good quality and optimal solutions are found
for the majority of instances. An upper bound on 20.000 branch-and-bound nodes is
applied. Small instances are solved to optimality in seconds, while larger instances
take up to 15 minutes to solve.

In the later work of Jaumard et al. [107], the column generation algorithm from Lee
et al. [138] and the branch-and-price algorithm for the new formulation proposed by
Jaumard et al. are implemented. They are tested and comparedwith solving an edge-
based formulation to optimality using CPLEX. The test instances are modified NSF
and EON benchmarks taken from Krishnaswamy and Sivarajan [131]. Some edges
are removed from the NSF instances and extra data connections are added to the EON
instances. Finally some test instances resembling a Brazilian network topology pro-
posed by Noronha and Ribeiro [155] are used. The computational results show that the
branch-and-price algorithm finds better bounds than the column generation method by
Lee et al. and in less time. Furthermore, the branch-and-price algorithm is capable of
finding an optimal solution for the far majority of instancesand thus finds more optimal
solutions than when using CPLEX on the edge-based formulation. Running times for
the branch-and-price and column generation algorithms span from less than a minute
for smaller instances up to days for the larger instances.

5.5 Conclusion

A wide variety of solution methods for the RWA have been presented. Most work in
the literature is based on heuristics, more specifically on dividing the RWA into two
parts: the routing problem and the wavelength assignment problem. For the main part,
the heuristics apply on both the static and on the dynamic RWA.

Some work has also been concentrated on metaheuristics, both for the routing problem,
the wavelength assignment problem, but also for the entire RWA. The metaheuristics
work on the static RWA, as they generally seek to iterativelyimprove a solution.

Less work is based on finding optimal solutions to the static RWA. In the literature it
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is argued that since the RWA isNP-hard, then finding an optimal solution is too hard.
The exact solution approaches presented and tested in the literature, however, perform
fairly well.

In this survey, experimental results from the literature and theoretical running times are
presented. A general issue for comparing solution methods is the inconsistency in test
instances and objective functions.

Running times seem to be of little interest in most experiments performed on the pro-
posed methods. In this case, we believe that future work should focus on the MCFP
representation of the problem. The RWA is a variant of the well-studied MCFP, thus
algorithms for the MCFP need to be modified, when solving the RWA.

If running times are of interest, then the heuristics for thedecomposed RWA seem to
give good results fast. All greedy heuristics run in polynomial time and their theoretical
running times are generally small.

When focusing on solution qualities, then the most used objective is blocking probabil-
ity. This is relevant given instances, where not all data connections can be established
and given that no general benchmark instances are used. Blocking probability tries
to give a measure for the probability of the establishment ofa data connection. We,
however, fear that this objective is difficult to compare across the many different types
and sizes of problem instances. We thus recommend the use of general instances, e.g.,
like the Solomon benchmark instances are used for the Vehicle Routing Problem with
Time Windows [180]. General benchmark instances for the RWAcould be generated
randomly, be based on known problems from general graph theory, or from some of
the widely used test instance libraries available. E.g., several benchmark instances for
mixed integer problems are found in theMIPlib (http://miplib.zib.de/ ),
and a data library for fixed telecommunication network design is found inSNDlib
(http://sndlib.zib.de ).

As is the case in most situations dealing withNP-hard problems, the trade-off lies
between solution quality and time usage. Optimal solutionsare generally only reached
quickly, when the problem instances are very small. A large part of the networks, which
are used for testing in the literature, are not too large. Forthe static RWA problem, it
may thus be beneficial to focus more on MCFP formulations of the RWA problem.
The MCFP and many variants hereof are well-studied and many exact algorithms with
good performance are presented in the literature. For example, the branch-and-price-
and-cut algorithm for theNP-hard IMCFP by Barnhart et al. [26] solves instances
with up to nearly 93 commodities, 29 nodes and 61 edges to optimality. As another
example, instances for the linear MCFP with up to 80.000 commodities, 3600 nodes
and 14.000 edges are solved to near-optimality by a Lagrangian algorithm presented
by Larsson and Di Yuan [134].

http://miplib.zib.de/
http://sndlib.zib.de
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For the dynamic RWA, the heuristics for the decomposed RWA have good performance
and we believe that any further work should concentrate on either these heuristics or
on heuristics for the entire RWA.

In this survey, network design has been left out. From the perspective of a telecommu-
nications provider, however, network design may be important, as optical networks are
constantly being extended in order to reach new customers. The research area for net-
work design is vast, thus a separate survey for this area should be consulted for further
details, see e.g. Dutta and Rouskas [62], Iness [103], Jue [114] or Zymolka [209].

Solving the RWA can be used in several contexts. A solution can decide which data
connections to establish. The objective may be to maximize the number of established
connections, to minimize the cost of setting up connections, to minimize delays on
established connections, to minimize blocking, etc. Furthermore, solution methods can
be used as an analytic tool to measure performance, to measure which parts of the
network is subject to most usage etc. The presented solutionmethods have a trade-off
between solution quality and time usage. When solving the RWA, it is thus important
to decide which is more important; solution quality or time usage.
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network routing problem
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This paper examines the problem of scheduling a number of jobs on a finite set of ma-
chines such that the overall profit of executed jobs is maximized. Each job demands
a number of resources, which must be sent to the executing machine via constrained
paths. A job cannot start before all its demand has arrived atthe machine. Further-
more, two resource demand transmissions cannot use the sameedge in the same time
period. The problem has application in grid computing, where a number of geographi-
cally distributed machines work together for solving largeproblems. The machines are
connected through an optical network.

The problem is formulated as a MIP problem and is shown to beNP-hard. An exact
solution approach based on Dantzig-Wolfe decomposition isproposed. Also, several
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heuristic methods are developed by combining heuristics for the job scheduling prob-
lem and for the constrained network routing problem.

The methods are computationally evaluated on test instances arising from telecom-
munications with up to 500 jobs and 500 machines. Results show that solving the
integrated job scheduling and constrained network routingproblem to optimality is
very difficult. The exact solution approach performs betterthan using a standard MIP-
solver; however, it is still unable to solve several instances. The proposed heuristics
generally have good performance. Especially the First ComeFirst Serve scheduling
heuristic combined with a routing strategy, which proposesseveral good routes for
each demand, has good performance with an average solution value gap of 3%. All
heuristics have very small running times.

Key words:Job Scheduling; Network Routing; Routing and Wavelength Assignment;
Grid Computing; Heuristics; Branch-and-Bound; Dantzig-Wolfe Decomposition; Col-
umn Generation;

6.1 Introduction

Heuristic and exact solution methods for The Integrated JobScheduling and Con-
strained Network Routing Problem (JSCNR) are presented. The JSCNR consists of
scheduling jobs on machines with respect to job demand transmission in an undirected
constrained network. The objective is to maximize the profitof scheduled jobs. It is
assumed that the set of jobs, the set of machines, and the state of the network is known
in advance; hence the problem can be viewed as beingoffline. Each job has a certain
demand and a time window for execution. The demand must arrive at the machine
before execution can begin. Each machine also has a time window and can execute at
most one job at a time. Finally, the demand must be routed through an undirected net-
work such that two demands do not share an edge in the same timeslot. If the demand
exceeds the capacity of an edge, then the demand transmission may occupy the edge in
several time slots.

The problem has application in distributed production systems where a set of jobs can
be carried out at various plants. If the total job execution exceeds the total amount of
available machines and if the transportation paths are limited, it is necessary to consider
both problems simultaneously. A typical application is thesteel industry where the
production can be placed at various sites, but the transportation of iron ore and coal by
e.g. train constitutes a substantial logistic problem.

The problem also has application in grid computing where jobs are to be executed at
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various grid resources (machines) and where the grid resources are connected through
an undirected optical network. A job cannot be executed before its input data has
arrived at the executing grid resource and two data transmissions cannot use the same
wavelength on the same fiber at the same time.

An example is The Large Hadron Collider (LHC) Physics Program by The European
Organization for Nuclear Research (CERN). It is estimated that the LHC experiments
generate 15 petabytes of data annually [41], thus the project utilizes grid computing
not only for distributing the scientific work, but also for distributing data storage. The
network connections for the grid computing system must support high bandwidth avail-
ability, like e.g. optical networks. For details on the Worldwide LHC Computing Grid,
see their homepage [41]. See Bates [30] for a thorough description of optical networks
and its applications.

The contribution of this paper is to model and solve JSCNR. Weshow that the problem
is NP-hard and propose several heuristic and exact solution methods. The exact solu-
tion method is based on applying Dantzig-Wolfe decomposition such that the master
problem determines where and when jobs are executed and the pricing problem calcu-
lates routing schemes. The heuristics are based on combining methods for The Inte-
grated Job Scheduling and Network Routing Problem (JSNR) and for The Constrained
Network Routing Problem (CNR).

Two types of test instances are generated: a tandem topologywith 10-200 jobs and 10-
500 machines and a real-life network topology taken from theNordic DataGrid Facility
with 10-200 jobs and 14 machines. The suggested solution methods are evaluated on
the test instances. The exact solution method performs better than applyingCPLEXon
a MIP formulation; however, it is unable to solve several of the considered test instances
within a half hour time frame. The heuristics are capable of solving all instances within
minutes. Best general heuristic performance is reached when using the First Come First
Serve strategy for JSNR and a routing scheme which suggests two different paths for
each demand for CNR. This setting gives an average solution value gap of 3%.

This paper is structured as follows. First JSCNR is defined inSection 6.2. Related
work from the literature is also presented in this section along with notation and a
mathematical model. In Section 6.3 heuristic methods are presented as combinations
of methods for JSNR and for CNR. The heuristics are presentedprior to the exact
approach in Section 6.4, because they are used for solving the pricing problem and for
finding a feasible start solution in the exact method. The suggested solution methods
are computationally evaluated in Section 6.5 and final remarks are given in Section 6.6.
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6.2 Problem definition

This section defines The Integrated Job Scheduling and Network Routing Problem
(JSNR) and The Constrained Network Routing Problem (CNR). The problems are
combined into The Integrated Job Scheduling and Constrained Network Routing Prob-
lem (JSCNR). For each problem an overview of work in the literature is given.

JSNR is closely related to JSCNR and only differs in the routing of job demands. Given
is a set of jobs where each job has a certain demand, an estimated execution time, and a
time window for execution. We also have a set of machines where each machine has an
availability time window and can execute at most one job at time. Jobs must be assigned
to machines and all job demand must arrive at the machine before execution can begin.
The demand is routed through a capacitated network consisting of nodes and edges; the
amount of demand on an edge in a time slot must not exceed the corresponding edge
capacity. If the demand is larger than the edge capacity, then the demand can visit the
edge in several time slots until all demand has been sent. Theobjective of the problem
is to maximize the profit of executed jobs.

JSNR has application in production systems where transportation of goods from stor-
age to production centers may constitute a logistical problem. The problem also has
application in telecommunications; specifically in grid computing where jobs are ex-
ecuted on grid resources and where job input files must be sentto the executing grid
resource through a (non-optical) network before executioncan begin.

A simple version of JSNR consisting of sharing bandwidths ingrid computing context
was proved to beNP-hard and greedy heuristics were presented by Marchal et al.
[142].

An offline scheduler consisting of two steps was presented byAgarwal et al. [3]: first
jobs were scheduled to grid resources such that the total penalty of delayed job exe-
cutions was minimized, then the overall starting and end times of job schedules were
determined.

Elghirani et al. [64] proposed a tabu search algorithm, which assigned jobs to a set
of grid resources. The solution neighbourhood consisted ofmoving a scheduled job
to another available grid resource and often used moves werepenalized to avoid move
cycles. When no improvement was reached in a certain time interval, the tabu list was
cleared, a new random solution was found, and the tabu procedure started all over.

Varvaigos et al. [196] considered job routing and scheduling to support advance reser-
vation. Advance reservation consists of reserving bandwidth and a grid resource for
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later execution of a given job. Varvaigos et al. considered one job and data transmis-
sion at a time; hence their algorithm can be viewed as being anonline algorithm.

JSNR was shown to beNP-hard and solved to optimality by Gamst and Pisinger [86].
The solution method was based on Dantzig-Wolfe decomposition where the pricing
problem assigned a single job to a single machine, the branching strategy added cuts
to strengthen the formulation, and the master problem foundan overall feasible solu-
tion. Results showed that their branch-and-cut-and-pricealgorithm outperformed both
simpler exact algorithms andCPLEX. The algorithm was capable of solving instances
with up to 1000 jobs and 1000 machines within minutes.

The telecommunication application of JSNR was solved heuristically by Gamst [79]
using a number of greedy heuristics, a swap-based metaheuristic and the adaptive large
neighbourhood metaheuristic. Results showed that though the metaheuristics found
better solution values than the greedy methods, they also had relatively large running
times.

CNR consists of sending demand through a network such that two routes never use the
same edge at the same time. Given is a network consisting of nodes and capacitated
edges. The network takes time into account, i.e., an edge canbe visited at different time
slots. Also given is a set of routing requests each consisting of a source, a destination,
a routing time window, and an amount of demand. To satisfy a routing request, the
demand must be sent from the source to the destination withinthe time window. If the
amount of demand exceeds an edge capacity, then it takes several time slots to route
the demand on that edge. Two routes cannot use the same edge atthe same time.

CNR has application in the transportation sector. When routing trains through a railway
infrastructure, two trains cannot use the same section of railway tracks at the same time.
Also, the length of the train determines how long it takes to travel across a stretch of
railway tracks. Each train has some starting and ending point and the goods on the train
must arrive before a certain time.

CNR also has application in telecommunications where it corresponds to theNP-hard
static Routing and Wavelength Assignment Problem (RWA). The problem is to es-
tablish a number of connections (or light paths) in an optical network such that each
connection travels from its source to its destination in a certain time window using one
or more wavelengths. Two connections cannot use the same wavelength on the same
fiber at the same time. The RWA is static since we have full knowledge on the problem
instance in advance.

Most work on the RWA in the literature focuses on maximizing the number of es-
tablished data connections. The underlying optical network is typically considered to
be one of three topologies: wavelengths cannot be converted, see Zang et al. [206],
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wavelengths can be converted in all nodes, see Ramamurthy and Mukherjee [163], and
wavelengths can be converted in a subset of nodes, see Iness and Mukherjee [104]. The
RWA was provedNP-hard by Chlamtac et al. [47].

The RWA problem is typically solved using a heuristic decomposition which consists
of a routing problem and a wavelength assignment problem. The routing problem sug-
gests one or more paths for each data connection. The wavelength assignment problem
finds an available wavelength and assigns it to one of the proposed paths for each data
connection. An overview of heuristics from the literature for solving the decomposed
RWA is presented by Zang et al. [206].

JSCNR consists of combining JSNR and CNR: jobs must be assigned to machines such
that all job demand arrives at the machine before execution begins. The job demand
is routed through an undirected network such that two routesnever travel on the same
edge at the same time. The network topology connects edges insuch a way that the
corresponding RWA does not support wavelength conversion.Jobs must be assigned
to machines for execution such that the total profit of executed jobs is maximized.
JSCNR isNP-hard as it contains both theNP-hard JSNR and theNP-hard CNR as
special cases.

6.2.1 Mathematical formulation

Notation from applying JSCNR in a telecommunications context is used in the fol-
lowing formalization. This means that we consider the problem of assigning jobs to
grid resources where job data must be routed through an optical network. The optical
network is dedicated to the job scheduling process, hence paths between all terminal
nodes are known in advance.

The set of jobs is denotedJ , the set of resources isR, the set of edges isE and the set
of time stamps isT . Note that time is discrete, i.e., is given in time stampst ∈ T .

The set of wavelengths on edge(i, k) ∈ E is denotedλik and the set of all wavelengths
is denotedλ. For a wavelengthl ∈ λ letEl denote the set of edges which are capable of
carrying data on wavelengthl. All wavelengths on all edges have the same bandwidth
capacityd.

Let tλ+ denote the time it takes to establish a new wavelength on an edge and lettλ−

denote the time it takes to release a wavelength on an edge. The reason for introducing
these time buffers is to make the solution more robust: if a data transmission is delayed,
then it will not be interfered by a new transmission if the delay is less thantλ− . Further-
more, a data transmission does not start untiltλ+ time after the wavelength is assigned
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thus leaving even further room for the previous transmission to finish. Introducing
these extra time buffers has a drawback; the extra time buffers may prevent some jobs
from being executed. When solving the problem, the grid administrator should thus
experiment with the size of the time buffers in order to reachan appropriate trade-off
between robustness and job execution.

Each jobj ∈ J is assigned a time window[aj , bj], the estimated computation timeQj,
the total size of the job dataSj , the amount of dataprj placed on each resourcer ∈ R,
and a profitcj ∈ R

+ for execution.

Each resourcer ∈ R is assigned an availability start timear and end timebr. To
simplify notation, the time window[aik, bik] is introduced, whereaik = max{ai, ak}
andbik = min{bi, bk} for i, k ∈ R ∪ J . For further notational convenience, two sets
are introduced:Jt andRt. The setJt consists of jobsj with aj ≤ t ≤ bj . Similarly,
the setRt consists of resourcesr with ar ≤ t ≤ br.

Now, the mathematical model includes two types of variablesxtrj ∈ {0, 1} andxtjikl ∈
{0, 1}. If xtrj = 1 then jobj ∈ J is executed on resourcer ∈ R with execution
beginning at timet ∈ T . If xtrj = 0 then the job is not executed on the resource with

this beginning time. Ifxtjkirl = 1 then edge(i, r) ∈ E is carrying data original stored
on resourcek ∈ R on wavelengthl ∈ λir at timet ∈ T for job j ∈ J . Otherwise,
xtjkirl = 0. JSCNR is formulated as:

max
∑

r∈R

∑

j∈J
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t=arj

cjx
rt
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∑

j′∈J\j
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∀j ∈ J,∀k ∈ R,

∀(i, r) ∈ E,

∀l ∈ λir,∀t ∈ [arj , brj ]
(6.9)

The objective (6.1) maximizes the profit of executed jobs. The first constraint (6.2)
says that each job can be executed at most once. If a job is executed on some resource
i ∈ R then data from all other resourcesr ∈ R must be sent out on the network (6.3).
Constraint (6.4) says that if a job is executed at resourcer ∈ R then all data must
arrive before execution time. Flow conservation is ensuredin (6.5). Data arriving at
some node at timet must leave the node again at timet + 1 unless the job is executed
at this node. Constraint (6.6) forbids several paths from using the same wavelength on
the same edge at the same time. Finally, the last constraint (6.7) says that a resource
can execute at most one job at a time. Bounds ensure that variables take on feasible
values.

6.3 Greedy heuristic solution approach

In this paper, we consider a heuristic approach for The Integrated Job Scheduling and
Constrained Network Routing Problem (JSCNR), which combines greedy heuristics
for The Integrated Job Scheduling and Network Routing Problem (JSNR) and for The
Constrained Network Routing Problem (CNR). JSNR was solvedheuristically by
Gamst [79]. The data transmission part of the heuristics, however, must be replaced
by algorithms for the CNR. The latter has application in telecommunications as the
Routing and Wavelength Assignment Problem (RWA) for which many solution meth-
ods are presented in the literature, see e.g. the survey of Zang et al. [206].

Let us first consider heuristics for JSNR in the literature (see Gamst [79] or Sørensen
[181] for more details):

• First Come First Serve. The first job on queue is assigned to the resource at
which execution finishes first. Let|Tdata| denote the running time of transmitting
data. The theoretical running time for the First Come First Serve heuristic is
O(|J ||R||Tdata|), since the heuristic in worst case attempts to assign each job to
all resources.
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• Best First. The job with highest profit is assigned to the resource at which job
execution finishes first. The running time isO(|J | log |J |+|J ||R||Tdata|) where
|Tdata| is the running time for the data transmission problem, sincejobs first are
sorted according to profit and then the heuristic in worst case tries to assign each
job to all resources.

• First Fit. For each resource, the job with earliest execution finish time is exe-
cuted. If a draw between several jobs are reached then the jobwith highest profit
is selected. The theoretical running time isO(|R||J |2|Tdata|) where|Tdata| is
the running time for the data transmission problem, becausefor each resource
the heuristic assigns all pairs of jobs in order to compare the execution finish
times.

• Random Fit. Randomly selected jobs are assigned to each resource. The running
time isO(|J ||R||Tdata|) where|Tdata| is the data transmission running time,
because in worst case the heuristic tries to assign each job to all resources.

These four heuristics need to know how long it takes to transmit job data to a resource
in order to determine execution start and end times. The timeit takes to transmit job
data is found by solving the CNR problem heuristically.

CNR is solved as the RWA and we propose using a subset of the heuristics for the
RWA in the literature. When solving the RWA as part of the JSCNR, the RWA may be
solved a large number of times. Thus if the heuristic for the RWA has high complexity,
then the overall solution procedure will suffer. The selected heuristics have relatively
small running times and all divide the RWA into a routing problem and a wavelength
assignment problem. The selected heuristics for the routing problem are:

• Fixed-Alternate Routing. Several paths are found for eachdata connection re-
quest; see Banerjee et al. or Birman and Kershenbaum [22, 38]. The heuristic
corresponds to thek-shortest path problem, when the number of generated paths
for the data connection corresponds tok. Thus the theoretical running time for
establishing a single data connection equals that of thek-shortest path problem;
O(|E| + |V | log |V | + k) where|V | is the number of nodes in the network, see
Eppstein [66].

• Adaptive Routing. This method runs a shortest path algorithm on the graph
where edge costs are based on previously chosen routes; see Zang et al. [206].
The theoretical running time for establishing a single dataconnection corre-
sponds to the running time for a shortest path algorithm, e.g. O((|E| + |V |)
log |V |) which is the running time of Dijkstra’s algorithm using a binary heap,
see Cormen et al. [52].

The selected heuristics for wavelength assignment are:
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• First Fit. The first available wavelength is assigned to thecurrent data connec-
tion request; see Birman and Kershenbaum or Kovacevic and Acampora [38,
130]. The running time for assigning a wavelength to a singledata connection is
O(|λ||E|) where|λ| is the number of wavelengths, as the heuristic in worst case
investigates the availability of each wavelength on all edges.

• Most Used. Among the available wavelengths for a data connection request, the
wavelength which so far has been used the most is assigned to the data connec-
tion request, see Subrarnaniam and Barry [183]. The theoretical running time
is O(|λ| log |λ| + |λ||E|), because first the availability of all wavelengths on all
edges is found, then the wavelengths are sorted according tousage, and finally
the heuristic investigates the availability of each wavelength from the sorted list
on all edges.

• Random Assignment. An available wavelength is randomly selected and as-
signed to the current data connection request. Running timeis O(|λ||E|) where
|λ| is the number of wavelengths, because in worst case the heuristic investigates
the availability of each wavelength on all edges.

6.3.1 Heuristics for JSCNR

Combining the heuristics from the previous section resultsin heuristics for JSCNR.
The heuristics are displayed in Table 6.1 along with their theoretical running times. The
upper table uses Fixed-Alternate routing, the lower Adaptive routing. The first row in
each part consists of the name of the JSNR heuristic. The remaining three rows in each
part consist of the name of the wavelength assignment heuristics and the corresponding
theoretical running time for combining the JSNR and CNR heuristics. The theoretical
running times in the Table are used for comparison with practical running times when
computationally evaluating the heuristics in Section 6.5.

6.4 Exact solution approach

The exact solution approach is based on Dantzig-Wolfe decomposing The Integrated
Job Scheduling and Constrained Network Routing Problem (JSCNR) such that the mas-
ter problem decides where and when to execute jobs accordingto data transmission.
The pricing problem decides when to send all data for each jobaccording to the re-
duced costs. Recall the mathematical formulation (6.1)-(6.9). The master problem
includes constraints (6.2), (6.6), and (6.7) and the pricing problem takes care of the
remaining constraints along with (6.6).
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FCFS Fixed-alternate
First fit O(|J ||R|(|V | log |V |+ k + |λ||E|))
Most used O(|J ||R|(|V | log |V |+ k + |λ|(log |λ|+ |E|)))
Random O(|J ||R||(|V | log |V |+ k + |λ||E|))
Best first
First fit O(|J |(log |J |+ |R||(|V | log |V |+ k + |λ||E|)))
Most used O(|J |(log |J |+ |R|(|V | log |V |+ k + |λ|(log |λ|+ |E|))))
Random O(|J |(log |J |+ |R|(|V | log |V |+ k) + |λ||E|))
First fit
First fit O(|J |2|R|(|V | log |V |+ k + |λ||E|))
Most used O(|J |2|R|(|V | log |V |+ k + |λ|(log |λ|+ |E|)))
Random O(|J |2|R|(|V | log |V |+ k + |λ||E|))
Random fit
First fit O(|J ||R|(|V | log |V |+ |λ||E|))
Most used O(|J ||R|(|V | log |V |+ |λ|(log |λ|+ |E|)))
Random O(|J ||R|(|V | log |V |+ |λ||E|))

FCFS Adaptive
First fit O(|J ||R|((|E|+ |V |) log |V |+ |λ||E|))
Most used O(|J ||R|((|E|+ |V |) log |V |+ |λ|(log |λ|+ |E|)))
Random O(|J ||R|((|E|+ |V |) log |V |+ |λ||E|))
Best first
First fit O(|J |(log |J |+ |R|((|E|+ |V |) log |V |+ |λ||E|)))
Most used O(|J |(log |J |+ |R|((|E|+ |V |) log |V |+ |λ|(log |λ|+ |E|))))
Random O(|J |(log |J |+ |R|((|E|+ |V |) log |V |+ |λ||E|)))
First fit
First fit O(|J |2|R|((|E|+ |V |) log |V |+ |λ||E|))
Most used O(|J |2|R|((|E|+ |V |) log |V |+ |λ|(log |λ|+ |E|)))
Random O(|J |2|R|((|E|+ |V |) log |V |+ |λ||E|))
Random fit
First fit O(|J ||R|((|E|+ |V |) log |V |+ |λ||E|))
Most used O(|J ||R|((|E|+ |V |) log |V |+ |λ|(log |λ|+ |E|)))
Random O(|J ||R|((|E|+ |V |) log |V |+ |λ||E|))

Table 6.1: Theoretical running times for all heuristics. The running times consist of
multiplying the running time for the grid heuristic with thesum of the running times of
the routing and the wavelength assignment heuristics.
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Let the decision variableyjrtp ∈ {0, 1} indicate if jobj is executed on resourcer at time
t where job data is sent according top. The pricing problem generates ways of sending
datap ∈ P for a given job, resource and execution time according to thereduced cost
of the current solution. The master problem is:
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(6.14)

The objective (6.10) maximizes the profit of executed jobs. The first constraint (6.11)
ensures that a job can be executed at most once and the second constraint (6.12) ensures
that each wavelength on each edge is visited by at most one data connection. Finally,
constraint (6.13) says that a resource can execute at most one job at a time and the
bound (6.14) forces variables to take on feasible values.

6.4.1 Pricing problem

The dual variables of the master problem areπj ≥ 0, ωirlt ≥ 0 andρjrt ≥ 0 for
constraints (6.11), (6.12), and (6.13), respectively. Thereduced cost for a given jobj,
resourcer and execution timet is:
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When solving the pricing problem for a given jobj, resourcer, and execution timet
we wish to minimize the right hand side of the reduced cost, because the value of the
left hand side is already known. Hence the pricing problem isto find a way of sending
all job data for jobj to resourcer in time for job execution at timet such that the right
hand side of (6.15) is minimized.
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The decision variableyt
′k
iul ∈ {0, 1} is introduced to indicate data transmission in the

pricing problem. Letyt
′k
iul denote whether or not data stored on resourcek ∈ R is

travelling on edge(i, u) ∈ E, using wavelengthl ∈ λ at timet′ ∈ [air, t[. The pricing
problem is:
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(6.21)

The objective (6.16) minimizes the right hand side of (6.15). The first constraint (6.17)
says that all job data must be sent from each data source. The next constraint (6.18)
makes sure that all job data arrives at the executing resource r before job execution
time t. Constraint (6.19) ensures flow conservation. Finally constraint (6.20) says that
no more than one data connection can use a wavelength on an edge at a time and the
bound (6.21) forces variables to take on feasible values.

The pricing problem is the Routing and Wavelength Assignment Problem (RWA) over
time and isNP-hard. Hence we try to generate columns heuristically and only solve
the pricing problem to optimality when no heuristic columnswith positive reduced cost
can be found. The proposed greedy heuristics for the RWA in Section 6.3 are applied
on the pricing problem to generate columns heuristically. The heuristics are modified
slightly: when they can choose between several paths or wavelengths, then the cheapest
option according to (6.16) is selected.

The exact solution approach is based on solving the mathematical formulation for the
RWA problem over time. Recall that all paths between all pairs of resources are known
in advance. In the mathematical formulation we generate a column for each path at
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each possible start time using each wavelength. The exact solution approach is solved
for a given jobj, an executing resourcer, and an execution timet. Let P denote the
set of columns. The variableyp ∈ {0, 1} indicates whether or not columnp ∈ P is
included in the current solution. Three constants are introduced:δiklt

′

p denotes whether
or not columnp uses wavelengthl ∈ λ on edge(i, k) ∈ E at timet′ ∈ [aikj , t[, δkp
denotes whether or not columnp routes data stored on resourcek, andcp denotes the
reduced cost for columnp. The model is:
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yp ∈ {0, 1} ∀p ∈ P (6.25)

The objective function (6.22) minimizes the reduced cost. The first constraint (6.23)
says that each wavelength on each edge can be used at most onceand constraint (6.24)
ensures that all data connections are established exactly once.

The number of columns in (6.22)-(6.25) is polynomial in the input size: the path be-
tween two terminal nodes is known in advance. We must decide when to travel on the
path, thus we generate a path variable for each path at each available travel time and for
each wavelength. LetO(|K|) be the number of data connections,O(|T |) be the num-
ber of available travel times, andO(|λ|) be the number of wavelengths; the number of
variables isO(|λ||T ||K|).

6.4.2 Branching strategy

Branching ensures that variables in the LP-relaxed master problem eventually take on
binary values. To determine the branching strategy we investigate when variable values
may become fractional:

1. A job is only partially executed

2. A job is executed on the same resource but at different times

3. A job is executed on different resources

4. A job is executed on a given resource at a given time using routing times which
differ in the latest data arrival time

5. A job is executed on a given resource at a given time using routing schemes
which differ in the used wavelengths
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In the first case we generate two branching children in each ofwhich we add the con-
straint:

∑

p∈P

δjpyp = 0 vs.
∑

p∈P

δjpyp = 1 (6.26)

which ensures that jobj is either not executed or it is fully executed. The branching
constraint adds a dual variableωj , which the pricing problem must handle. Because
the pricing problem is solved for each job, the extra dual variable can be added to the
left hand side of (6.15) and does not interfere with the pricing problem.

The second case is handled by finding a time stamp lying between the current execution
times. Two branching children are generated: in the first child the job must be executed
no later than the time stamp and in the second child the job must be executed after
the time stamp. In each child, columns with illegal execution times are set to zero.
The pricing problem is altered slightly into setting boundson execution times and not
allowing data to arrive later than the latest execution start time.

The third case is handled by choosing a resource on which the job is partially executed.
Two branching children are generated: in the first child the job must be executed on
the resource, and in the second child the job cannot be executed on the resource. In
each branching child, columns using an illegal executing resource are set to zero. The
pricing problem is modified slightly into either forcing execution on a certain resource
or to not allowing execution on illegal resources.

In the fourth case the data transmission times and possibly the used wavelengths differ.
The case is handled by finding a time stamp for routing. Two branching children are
generated: in the first child all data must arrive before the time stamp and in the second
child some data must arrive after the time stamp. In each child the variables with illegal
routing times are set to zero. The pricing problem is modifiedinto not allowing routing
at illegal times by excluding predefined columns using illegal routing times.

In the fifth case the execution and data transmission times are equal for all non-zero
variables. Only the used wavelengths differ. The case is handled by choosing a wave-
length for a data transmission path. The chosen wavelength must be used by at least
one of the fractional variables in the current solution. Twobranching children are gen-
erated: in the first child the chosen wavelength must be used on the chosen path, thus all
variables which use different wavelengths are set to zero. In the second branching child
the chosen wavelength cannot be used on the chosen path, thusall variables which use
the chosen wavelength are set to zero. The pricing problem ismodified into including
or excluding columns using the chosen wavelength on the chosen path, respectively.
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6.4.3 Start solution

The master problem must initially hold one or more columns before values for dual
variables can be found for the pricing problem. To reach a start solution we can ap-
ply the greedy heuristics from Section 6.3 on the problem instance. The heuristics,
however, do not guarantee a feasible solution even if one exists. In this case, an exact
solution approach must try to assign a job to a resource. We choose to run a modified
version of the exact solution approach for the pricing problem; instead of minimizing
the reduced cost, the exact approach only decides whether ornot it is possible to assign
a given job to a given resource.

6.4.4 Reducing the number of constraints

The master problem consists of a large number of constraints, especially as time win-
dow sizes increase. Some instances may not utilize large parts of the time windows;
hence it would be beneficial to leave out constraints for unused time stamps. Through
preliminary results we have noted a significant improvementof approximately 35% on
time usage when including all constraints of type (6.11) andonly violated constraints
of type (6.12) - (6.14). Separation routines for identifying violated constraints consider
all non-negative variables for all possible constraints and have polynomial running time
in the input size.

Including only violated constraints does not impose any changes on neither the pricing
problem nor the branching strategies. When calculating thereduced costs, only dual
variables for constraints included in the master problem are considered.

6.4.5 Reducing the number of iterations

Preliminary results showed that the branch-and-cut-and-price algorithm runs through
a relatively large number of iterations before finding a lower bound in a search tree
node. The reason for this may be that the dual variables take on inappropriate values,
hence the algorithm prices in many unused columns before finally converging toward
the lower bound. A way to avoid this is to apply a method for stabilizing the values
of dual variables. Several stabilization methods are presented in the literature. They
typically consist of setting bounds on how much the values ofthe dual variables may
change from one iteration to the next. The bounds may be in theform of boxes for
each dual variable, see Rousseau et al. [170] or by adding a punishment in the objec-
tive function for the distance between the former and the current value of each dual
variable, see DuMerle et al. [61]. Rousseau et al. [170] suggest an interior-point sta-
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bilization method where the values of dual variables are setto a linear combination of
extreme points in the dual solution space. The stabilization method can easily be ap-
plied to the master problem by changing the bounds on constraints and variables whose
corresponding dual variables and constraints are not tight. For details, see Rousseau et
al. [170] who show how to apply the stabilization method on the Set Cover problem.
We have applied the interior-point stabilization method and preliminary results show
that the method decreases time usage with up to 67%.

6.5 Computational experiments

The proposed solution methods are tested. In this section wefirst introduce the gener-
ated problem instances, then a computational evaluation ofthe proposed exact method
and heuristics for JSCNR is presented.

6.5.1 Test instances

Two types of problem instances are generated. Both instancetypes arise in telecom-
munications and are denoted the NDGF and the Tandem instances, respectively.

NDGF
A set of instances is based on the network topology of the Nordic DataGrid Facility
(NDGF), which consists of a grid computing system in the Nordic countries. Current
projects on the NDGF include handling data from the Large Hadron Collider (LHC)
by the European Organization for Nuclear Research (CERN), see CERN’s homepage
for more information [41]. The NDGF network topology was presented by Grønager
[96] and consists of 14 nodes, which are connected in a sparsegraph. An illustration
can be seen in Figure 6.1. All data arrives from Europe to a grid resource in Denmark,
which thus works as job data storage for all jobs. In three of the Nordic countries,
grid resources are connected through a network node. These are marked as squares in
Figure 6.1. The grid storage in Denmark and all network hubs are available at all times.

Tandem
A set of instances based on atandemtopology is generated. An example of a tandem
network is given in Figure 6.2. All nodes but two are connected with exactly two other
nodes. The two nodes in each end of the network are only connected with one other
node. Hence, the number of edges in the test instances is always |E| = 2(|V | − 1).
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Figure 6.1: An illustration of the NDGF network. Resources are marked as filled
circles, while the squares indicate nodes unable to executejobs.

This set of instances is introduced in order to test how larger networks are handled. The
number of edges and nodes thus vary from instance to instance.

Figure 6.2: An example of a tandem network. Every node is onlyconnected to its
neighboring nodes.

Grid activity
The number of jobs, the number of wavelengths, and the amountof available bandwidth
per wavelength vary from instance to instance. The size and distribution of job input
files, the execution time, and the time window for each job arerandomly generated.
Similarly, the resource time windows are also randomly generated.

6.5.2 Results

The solution methods have been implemented inC++ and tested on a 2.66 GHz Intel
Xeon machine with 16 GB RAM. Note that CPU times in the following stem from
using one core. All test runs are given an upper time bound on 1800 seconds. First we
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analyze the exact solution methods, i.e., we applyCPLEXon the mathematical formu-
lation (6.1)-(6.9) and compare with the branch-and-cut-and-price algorithm. Then the
heuristics are considered.

CPLEX
JSCNR can be solved to optimality by generating the edge based model (6.1)-(6.9)
for each instance and then usingCPLEXto solve the model. Test results are seen in
Table 6.2. The results show thatCPLEXruns out of memory or time even for the
smaller instances. This motivates the need for a more sophisticated exact solution
method.

Exact
Solving JSCNR withCPLEXwas unsuccessful; hence we implemented the more so-
phisticated branch-and-cut-and-price (BCP) algorithm from Section 6.4. Test results
are seen in Table 6.3-6.5.

The results show that the sophisticated BCP algorithm is also unable to solve several
instances within the 1800 seconds. It does, though, generally perform better than when
usingCPLEX, both with respect to time usage and to the number of solved instances.
An in-depth analysis of the test results for the BCP algorithm has shown that the bot-
tleneck is solving the pricing problem to optimality. Recall that the pricing problem is
the RWA over time, which isNP-hard. The BCP algorithm solves the pricing problem
heuristically until no columns are found at which point the pricing problem is solved
to optimality. Separating cuts, solving the master problem, generating branching can-
didates, and branching take little time and the search tree is always small.

When comparing results for the tandem instances with results for the NDGF instances,
we see that the BCP algorithm has equal difficulty with solving both instance types.
The topology of the NDGF instances can be viewed as a combination of a tree and a
star structure and not many paths share edges. Conversely, paths share many edges in
the tandem instances. The reason why the BCP algorithm finds both instances hard to
solve is probably that both the scheduling and the routing problem areNP-hard, hence
if either constitutes a bottleneck then the overall problemis very difficult to solve.

Heuristics
Solving JSCNR to optimality is very difficult even for smaller instances. Hence heuris-
tics for the problem may be useful when larger instances are to be solved. The proposed
heuristics in Section 6.3 have been implemented. First theyare compared with the ex-
act solution approach and then they are compared with each other. See the tables at
http://www.diku.dk/ ˜ gamst/tables.pdf for detailed test results.

http://www.diku.dk/~gamst/tables.pdf
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Jobs Res. BW Results Time Results Time Results Time
λ = 5 λ = 10 λ = 20

10 10 10 12 0.18 12 0.30 12 0.65
10 10 25 12 0.17 12 0.33 12 0.66
10 20 10 2 0.85 2 1.77 2 3.57
10 20 25 2 0.88 2 1.70 2 3.50
10 50 10 69 31.14 69 65.98 69 155.35
10 50 25 69 31.29 69 66.19 69 157.83
10 100 10 7 177.31 – oom – oom
10 100 25 7 179.32 – oom – oom

20 10 10 26 1.12 26 0.94 26 1.95
20 10 25 26 0.50 26 0.92 26 1.91
20 20 10 63 4.65 63 9.09 63 18.40
20 20 25 63 4.61 63 8.93 63 18.30
20 50 10 159 108.75 – oom – oom
20 50 25 159 108.10 – oom – oom

50 10 10 80 1.20 80 1.96 80 3.80
50 10 25 80 1.09 80 1.89 80 3.67
50 20 10 153 6.50 153 17.85 153 36.28
50 20 25 153 9.64 153 17.90 153 37.98
50 50 10 – oom – oom – oom
50 50 25 – oom – oom – oom

100 10 10 147 6.94 147 8.99 147 14.84
100 10 25 147 4.94 147 8.26 147 15.29
100 20 10 285 36.85 285 139.70 285 151.07
100 20 25 285 40.36 285 64.20 285 150.36
100 50 10 – oom – oom – oom
100 50 25 – oom – oom – oom

200 10 10 164 7.66 164 8.86 164 14.77
200 10 25 164 6.54 164 8.77 164 15.14
200 20 10 316 71.97 316 122.54 316 223.24
200 20 25 316 82.61 316 116.43 316 218.04
200 50 10 – oom – oom – oom
200 50 25 – oom – oom – oom

10 14 10 41 0.67 41 1.34 41 2.53
10 14 25 41 0.66 41 1.28 41 2.53
20 14 10 116 1.57 116 3.47 116 5.24
20 14 25 116 1.54 116 3.35 116 5.39
50 14 10 266* 1866.91* 272* 1815.78* 273* 1922.77*
50 14 25 266* 1810.28* 272* 1810.80* 273* 1808.40*

Table 6.2: Test results for theCPLEXapproach. The first three columns hold informa-
tion on the number of jobs, resources and the amount of bandwidth. Instances with 14
resources are of type NDGF; all other instances are of the Tandem type. Then follows
two columns for three different wavelength settings, i.e.,number of wavelengths per
fiber: λ = 5, 10, and20. The two columns for each setting give the result value and
the running time in seconds. An entry with ’oom’ means that the instance could not be
solved due to memory problems (Out Of Memory). An entry with ’*’ indicates that the
instance could not be solved within 1800 seconds and thus ranout of time. The best
feasible solution is then given.
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Jobs Res. BW Results Time Results Time Results Time
λ = 5 λ = 10 λ = 20

10 10 10 12.00 0.01 12.00 0.00 12.00 0.00
10 10 25 12.00 0.00 12.00 0.00 12.00 0.00
10 20 10 2.00 0.00 2.00 0.01 2.00 0.00
10 20 25 2.00 0.00 2.00 0.00 2.00 0.00
10 50 10 69.00 0.02 69.00 0.01 69.00 0.02
10 50 25 69.00 0.01 69.00 0.02 69.00 0.02
10 100 10 7.00 0.04 7.00 0.05 7.00 0.05
10 100 25 7.00 0.05 7.00 0.06 7.00 0.05
10 500 10 4.00 5.27 4.00 5.39 4.00 5.44
10 500 25 4.00 5.26 4.00 5.37 4.00 5.46

20 10 10 26.00 0.02 26.00 0.05 26.00 0.09
20 10 25 26.00 0.02 26.00 0.04 26.00 0.09
20 20 10 63.00 0.05 63.00 0.11 63.00 0.23
20 20 25 63.00 0.06 63.00 0.11 63.00 0.23
20 50 10 159.00 5.36 159.00 15.08 159.00 48.43
20 50 25 159.00 5.35 159.00 15.20 159.00 48.18
20 100 10 134.00 4.84 134.00 10.98 134.00 27.68
20 100 25 134.00 4.85 134.00 11.01 134.00 27.58
20 200 10 39.00 0.41 39.00 0.41 39.00 0.40
20 200 25 39.00 0.40 39.00 0.37 39.00 0.41

50 10 10 80.00 0.00 80.00 0.01 80.00 0.01
50 10 25 80.00 0.00 80.00 0.00 80.00 0.01
50 20 10 134.00 1800.28* 148.00 1800.71* 148.00 1800.39*
50 20 25 134.00 1800.18* 148.00 1800.05* 148.00 1800.91*
50 50 10 275.00 56.49 275.00 16.98 275.00 48.96
50 50 25 298.00 26.83 314.00 9.65 314.00 26.71
50 100 10 166.00 5.35 166.00 11.92 166.00 29.77
50 100 25 166.00 5.36 166.00 12.07 166.00 29.93
50 200 10 69.00 4.34 69.00 8.22 69.00 16.38
50 200 25 69.00 4.31 69.00 8.17 69.00 16.25

Table 6.3: Results for the exact solution approach on the smaller tandem instances.
The first two columns hold the number of jobs and resources forthe instance, respec-
tively. All instances are of the Tandem type. The third column gives information on
the amount of bandwidth per edge. Then follows two columns for three different wave-
length settings, i.e., number of wavelengths per fiber:λ = 5, 10, and20. The two
columns for each setting give the result value and the running time in seconds. When
time usage finishes with a star (’*’), then the test has run outof time.



128
On the integrated job scheduling and constrained network ro uting

problem

Jobs Res. BW Results Time Results Time Results Time
λ = 5 λ = 10 λ = 20

100 10 10 147.00 0.98 147.00 1.91 147.00 4.27
100 10 25 147.00 0.98 147.00 1.94 147.00 4.25
100 20 10 285.00 4.05 285.00 9.85 285.00 27.62
100 20 25 285.00 4.09 285.00 10.00 285.00 27.53
100 50 10 713.00 1809.70* 738.00 1835.00* 738.00 2001.58*
100 50 25 801.00 1802.84* 807.00 1605.63 738.00 2006.66*
100 100 10 810.00 1800.29* 685.00 1800.39* 749.00 1815.39*
100 100 25 619.00 1800.93* 743.00 1803.58* 794.00 1803.44*
100 200 10 240.00 1801.48* 240.00 1820.37* 240.00 1802.53*
100 200 25 240.00 1811.03* 240.00 1808.99* 240.00 1811.26*
100 500 10 219.00 6.00 219.00 5.96 219.00 5.33
100 500 25 219.00 6.02 219.00 6.04 219.00 5.90

200 10 10 148.00 1800.43* 148.00 1800.51* 148.00 1801.23*
200 10 25 148.00 1800.15* 148.00 1800.04* 148.00 1800.92*
200 20 10 296.00 1802.13* 316.00 1800.37* 316.00 1802.04*
200 20 25 296.00 1800.97* 316.00 1801.71* 316.00 1800.90*
200 50 10 347.00 1806.79* 499.00 2134.76* 626.00 5410.29*
200 50 25 370.00 1915.16* 535.00 1921.21* 669.00 4224.28*
200 100 10 354.00 1817.09* 528.00 1836.88* 480.00 2077.20*
200 100 25 354.00 1875.56* 486.00 1860.29* 535.00 1912.69*
200 200 10 371.00 193.02 371.00 36.72 371.00 80.67
200 200 25 371.00 17.86 371.00 36.85 371.00 80.45
200 500 10 227.00 60.40 234.00 123.38 234.00 251.89
200 500 25 227.00 60.48 234.00 123.26 234.00 251.50

Table 6.4: Results for the exact solution approach on the larger tandem instances. The
first two columns hold the number of jobs and resources for theinstance, respectively.
All instances are of the Tandem type. The third column gives information on the
amount of bandwidth per edge. Then follows two columns for three different wave-
length settings, i.e., number of wavelengths per fiber:λ = 5, 10, and20. The two
columns for each setting give the result value and the running time in seconds. When
time usage finishes with a star (’*’), then the test has run outof time.
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Jobs Res. BW Results Time Results Time Results Time
λ = 5 λ = 10 λ = 20

10 14 10 41.00 0.00 41.00 0.00 41.00 0.00
10 14 25 41.00 0.00 41.00 0.00 41.00 0.00
20 14 10 116.00 0.01 116.00 0.00 116.00 0.00
20 14 25 116.00 0.00 116.00 0.00 116.00 0.00
50 14 10 295.00 0.02 295.00 0.01 295.00 0.02
50 14 25 295.00 0.02 295.00 0.01 295.00 0.02
100 14 10 555.00 8.90 555.00 14.90 555.00 28.41
100 14 25 555.00 8.56 555.00 14.97 555.00 28.04
200 14 10 668.00 2677.35* 658.00 3736.75* 658.00 3053.28*
200 14 25 668.00 2010.45* 658.00 3777.48* 658.00 3033.20*

Table 6.5: Results for the exact solution approach on the NDGF instances. The first
two columns hold the number of jobs and resources for the instance, respectively. All
instances are of type NDGF. The third column gives information on the amount of
bandwidth per edge. Then follows two columns for three different wavelength settings,
i.e., number of wavelengths per fiber:λ = 5, 10, and20. The two columns for each
setting give the result value and the running time in seconds. When time usage finishes
with a star (’*’), then the test has run out of time.

An overview of comparing the heuristics with the branch-and-cut-and-price algorithm
can be seen in Table 6.6. The table illustrates average solution value gaps and time
usages for instances, which the exact algorithm has solved to optimality. As can be seen
in the table, the heuristics only use a very small fraction oftime compared to the exact
approach. The solution value gap is never larger than 16%. For the grid heuristics,
First Come First Serve has best performance, followed by Random Fit, Best Fit and
First Fit. Fixed-Alternate Routing with 2 paths per data connection finds the smallest
gaps, followed by Fixed-Alternate with 5 paths per connection, 1 path per connection
and finally Adaptive Routing. No clear pattern emerges when considering wavelength
assignment. For the First Come First Serve and Random Fit grid heuristics, First Fit
wavelength assignment performs well. Otherwise Most Used has good performance.

The Table only reports average gaps for a subset of the instances; hence it does not
give a full picture of the performance of the heuristics. This is determined next when
comparing the heuristics to each other. An overview of this comparison is seen in
Table 6.7. The summary is based on ranking the performance ofthe heuristics: the
lower the rank the better performance. The average ranking of solution values for all
instances is given in theSolution columns of the table and the average ranking of
running times is given in theTime columns. An overview of actual time usage is seen
in Figure 6.3-6.5.

The ranked results and the time usage illustrations are analyzed with respect to each of
the main three heuristic approaches: the overall grid heuristic, the routing heuristic and
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the wavelength assignment heuristic.

R=FA, p=1 R=FA, p=2 R=FA, p=5 R=A
Grid WA Solution Time Solution Time Solution Time Solution Time

FCFS FF 3.46% <1‰ 2.89% <1‰ 3.17% <1‰ 6.63% <1‰
FCFS MU 3.46% <1‰ 4.12% <1‰ 4.40% <1‰ 7.86% <1‰
FCFS RF 4.95% <1‰ 3.01% <1‰ 3.29% <1‰ 7.13% <1‰

BF FF 10.06% <1‰ 9.48% <1‰ 10.05% <1‰ 13.74% <1‰
BF MU 8.95% <1‰ 8.37% <1‰ 8.94% <1‰ 12.63% <1‰
BF RF 9.61% <1‰ 8.37% <1‰ 8.94% <1‰ 13.01% <1‰
FF FF 11.65% <1‰ 10.80% <1‰ 10.04% <1‰ 15.32% <1‰
FF MU 10.54% <1‰ 9.69% <1‰ 8.93% <1‰ 14.21% <1‰
FF RF 11.19% <1‰ 9.69% <1‰ 8.93% <1‰ 14.59% <1‰
RF FF 4.11% <1‰ 3.80% <1‰ 4.52% <1‰ 9.58% <1‰
RF MU 3.46% <1‰ 5.60% <1‰ 5.49% <1‰ 13.22% <1‰
RF RF 6.25% <1‰ 4.13% <1‰ 5.03% <1‰ 10.55% <1‰

Table 6.6: Performance of the heuristics compared to the exact results. The first two
columns denote the grid and the wavelength assignment heuristics, respectively. Then
follows pairs of comparison results, where the difference is measured in percent: the
first column holds the average gap between the optimal and heuristic solution values
and the second column holds the average heuristic time usagein per mille of the ex-
act time usage.R stands for routing, and the options areFA (Fixed-Alternate) andA
(Adaptive).p denotes the number of paths generated per data connection.

For the NDGF instances we see that the Best Fit grid heuristicgives better solution val-
ues than Random Fit, followed by the First Fit and First Come First Serve heuristics.
The wavelength assignment heuristics perform equally well. For the routing strategy
the best setting seems to be using Fixed-Alternate routing with 2 paths per data con-
nection. Looking at time usage, then the First Come First Serve and Random Fit grid
heuristics perform better than both Best Fit and First Fit. However, the graph in Fig-
ure 6.3 illustrates that the time difference is small for NDGF instances. The Most Used
assignment generally requires more time than the other two wavelength assignment
strategies, but again the time difference is small as seen inFigure 6.4 for NDGF in-
stances. Finally, Adaptive routing uses less time than Fixed-Alternate, which becomes
more time consuming as the number of generated paths per dataconnection increases.
The time difference in small, see Figure 6.5.

For the tandem instances the First Come First Serve grid heuristic finds the best solu-
tion values. All wavelength assignment strategies seem to perform equally well with
respect to solution values, while the Adaptive and Fixed-Alternate routing with 2 paths
finds better solutions than other strategies. Looking at time usage in Figure 6.3, the
First Come First Serve and Random Fit strategies are the faster grid heuristics, espe-
cially for the large instances with 500 jobs. Most Used requires more time than the
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R=FA, p=1 R=FA, p=2 R=FA, p=5 R=A
Grid WA Solution Time Solution Time Solution Time Solution Time

FCFS FF 0.86 2.19 0.70 2.15 0.81 2.41 0.90 2.38
FCFS MU 0.99 3.06 0.86 3.23 0.92 2.88 0.94 3.75
FCFS RF 0.99 1.64 0.77 1.68 0.81 2.61 0.97 2.32

BF FF 1.97 3.45 1.79 3.53 2.09 3.83 1.37 3.52
BF MU 1.88 4.27 1.73 4.27 2.03 3.86 1.40 4.61
BF RF 1.92 2.83 1.73 3.08 2.06 3.91 1.43 3.57
FF FF 2.59 3.54 2.35 3.89 2.20 3.95 2.11 3.73
FF MU 2.48 4.30 2.34 4.36 2.18 4.01 2.13 4.71
FF RF 2.51 3.09 2.29 3.17 2.18 4.19 2.13 3.72
RF FF 1.75 2.01 1.64 1.97 1.65 2.24 1.77 2.11
RF MU 1.87 3.17 1.80 3.33 1.83 3.04 1.89 3.78
RF RF 1.96 1.38 1.76 1.40 1.74 2.35 1.90 2.10

FCFS FF 3.29 1.69 3.28 1.70 3.58 1.86 3.28 1.69
FCFS MU 3.29 2.79 3.28 3.17 3.58 3.35 3.28 2.76
FCFS RF 3.29 1.79 3.28 1.94 3.58 2.06 3.28 1.62

BF FF 0.56 2.72 0.56 3.20 0.56 3.85 0.58 3.53
BF MU 0.56 5.02 0.56 5.00 0.56 5.36 0.58 4.99
BF RF 0.56 3.47 0.56 3.58 0.56 3.93 0.58 3.68
FF FF 2.66 4.07 2.06 4.47 2.23 4.22 2.91 4.05
FF MU 2.66 5.44 2.06 5.44 2.23 6.34 2.91 5.12
FF RF 2.66 4.65 2.06 4.08 2.23 4.69 2.91 3.88
RF FF 1.18 1.19 1.30 1.70 1.46 1.72 1.32 1.57
RF MU 1.45 3.59 1.15 2.94 1.19 3.48 1.20 3.11
RF RF 1.15 1.56 1.43 2.05 1.27 1.94 1.50 1.92

Table 6.7: Performance of the heuristics having been rankedfor best time and solution
value for the tandem (top) and the NDGF (bottom) instances. The table displays the
average ranking,R stands for routing, and the options areFA (fixed-alternate) andA
(adaptive).p denotes the number of paths generated per data connection.
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Figure 6.3: Illustration of time usage in seconds for the grid heuristics. The x-axis
denotes instances, where the first number indicates the number of jobs for the tandem
instances and where the last part indicates the NDGF instances. Plots for instances with
the denoted number of jobs and with 10-500 resources are given between two tics on
the x-axis.
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Figure 6.4: Illustration of time usage in seconds for the RWAheuristics. The x-axis
denotes instances, where the first number indicates the number of jobs for the tandem
instances and where the last part indicates the NDGF instances. Plots for instances with
the denoted number of jobs and with 10-500 resources are given between two tics on
the x-axis.



134
On the integrated job scheduling and constrained network ro uting

problem

 0

 50

 100

 150

 200

 250

 300

 350

10 T 20 T 50 T 100 T 200 T 500 T  NDGF

T
im

e 
in

 s
ec

on
ds

Instances: (Jobs, Tandem) or (NDGF)

Plot of average time usage of routing heuristics

FA 1 FA 2 FA 3 A

Figure 6.5: Illustration of time usage in seconds for the routing heuristics. The x-axis
denotes instances, where the first number indicates the number of jobs for the tandem
instances and where the last part indicates the NDGF instances. Plots for instances with
the denoted number of jobs and with 10-500 resources are given between two tics on
the x-axis.
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other wavelength assignment strategies and for the large tandem instance, the time dif-
ference is significant as seen in Figure 6.4. The Fixed-Alternate becomes more time
consuming as the number of generated paths per data connection increases and the
Adaptive routing is even slightly slower. The time difference between routing heuris-
tics is insignificant, though, which can be seen in Figure 6.5.

Looking at general time usage, the practical running times reflect the theoretical run-
ning times from Section 6.3.1. For wavelength assignment this means that the Most
Used strategy generally requires more time than First Fit and Random Fit. Adaptive
routing is generally faster than Fixed-Alternate routing whose running time increases
with the number of generated paths per data connection. Finally, the First Come First
Serve and Random Fit grid heuristics have smaller time usagethan Best Fit and First
Fit.

Comparing the heuristics with each other gives a slightly different pattern than when
comparing heuristics with the exact solution results. Thisis due to two reasons. 1: Not
all instances were considered when comparing with exact results, because the BCP
algorithm was not able to solve all instances. 2: The averagegap may be large if a
heuristic gives very poor results for few instances but goodresults for all other in-
stances. The ranking system does not care how far off a resultmay be and does thus
not punish very poor performance equally hard.

Overall analysis
Using a black-box strategy for solving JSCNR may not always be the best choice.
Instead the grid administrator should identify the currentbottlenecks with respect to
scheduling and network usage in order to find a good heuristic. The Best Fit grid
heuristic utilizes available resources well for instanceswith no or little network prob-
lems. This is concluded from considering the NDGF instances, where paths share few
edges. A reason for this is that Best Fit makes sure that jobs are placed according
to them taking up as little time space in the network and on theresource as possible,
hence giving good resource utilization. When the network constitutes a significant bot-
tleneck, then First Come First Serve makes sure that jobs areforwarded to execution
soon after arrival, which yields the best solution values. This is seen in the Tandem
instances, where paths share many edges. A reason for this isthat the strategy uses
network wavelengths as early as possible instead of at some later time; when the latter
is the case, then the time slots at which wavelengths become available after a subset of
jobs are assigned, may become so small that data for the remaining jobs cannot arrive
at the executing resource in time. Time usage must also be taken into account. If the
grid system consists of many resources and/or many jobs, then it may be beneficial to
choose a more straightforward grid heuristic like First Come First Serve, regardless of
network constraints.
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Most Used wavelength assignment may often give better results than both First Fit
and Random Fit but also requires more time. The reason for thebetter results is that
by choosing the most used wavelength, more wavelengths may be available for the
next data connection request. First Fit and Random Fit assignment generally perform
equally well both with respect to solution values and time usage.

Generally, the best routing strategies with respect to solution values are Fixed-Alternate
routing with 2 paths per data connection closely followed byAdaptive Routing and
Fixed-Alternate with 5 paths per data connection. The Fixed-Alternate routing consid-
ers previously routed data connection and thus has good performance when generating
more than 1 path per data connection.

A final recommendation is based on the comparison with exact solution values in Ta-
ble 6.6, on the comparison of heuristics in Table 6.7 and on time usage in Figure 6.3-6.5.
We suggest using First Come First Serve grid scheduling, Fixed-Alternate routing with
2 paths per data connection and First Fit wavelength assignment. This setting generally
gives lower gaps compared to exact values and it also generally has best performance
when only considering the heuristics. The solution approach, however, should be de-
cided based on an analysis of the grid topology and the expected CPU and network
load. For small instances, an exact solution can be found within reasonable time. For
larger instances some consideration should be given on which grid heuristic is more
appropriate.

6.6 Conclusion

This paper introduced The Integrated Job Scheduling and Constrained Network Rout-
ing Problem (JSCNR) with application in production planning and telecommunication.
JSCNR was formally presented and a mathematical formulation was given. JSCNR
was shown to beNP-hard, as it holds both theNP-hard Integrated Job Scheduling and
Network Routing Problem (JSNR) and theNP-hard Routing and Wavelength Assign-
ment Problem (RWA) as special cases.

A branch-and-cut-and-price (BCP) algorithm for JSCNR was presented, where the
pricing problem assigns a job to a machine and the master problem merges the job
assignments into an overall feasible solution. Finally, a number of heuristics for JSNR
was presented along with a number of heuristics for RWA and they were merged into a
total of 24 different heuristic solution methods for JSCNR.

The proposed methods were computationally evaluated on twotypes of test instances:
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a tandem topology with 10-500 machines and a real-life network topology taken from
the Nordic DataGrid Facility with 14 machines.

Using CPLEXto solve the mathematical formulation yielded somewhat poor results
as only smaller instances were solved due to memory and time problems. The BCP
algorithm was capable of solving more instances, however, it still timed out for several
instances because its pricing problem isNP-hard.

All heuristics were tested and compared with the exact approach and with each other.
The computational results showed that First Come First Serve job assignment heuristic
gave best results along with the routing strategy, which proposes two routes for each
demand. The running times of the computational evaluationsreflected the theoretical
running times for the heuristics well. Furthermore, all instances were solved within
minutes.

Future work on JSCNR could concentrate on finding optimal solutions. The proposed
decomposition resulted in anNP-hard pricing problem, which caused time issues.
Future work could consider other decompositions with possibly less complex pricing
problems.

It would also be relevant to consider metaheuristics, e.g.,local search methods. The
heuristics presented in this work could be used as base in metaheuristics. It is expected
that metaheuristics would improve the solution quality, but would also have greater run-
ning times. Metaheuristics are expected to provide a good alternative with performance
lying between that of the greedy heuristics and of the BCP algorithm with respect to
solution quality and time usage.
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The Nordic DataGrid Facility (NDGF) provides a grid computing system connected
primarily by a Tier-1 network, i.e., a network which can be used without purchasing
IP transit or paying settlements. The Tier-1 facility operated by NDGF differs signifi-
cantly from other Tier-1s in several aspects. It is not located at one or a few locations
but instead distributed throughout the Nordic countries. Also, it is not under the gover-
nance of a single organization but is instead built from resources under the control of
a number of different national organizations. Being physically distributed makes the
design and implementation of the networking infrastructure a challenge. To assess the
suitability of the network usage and the capacity of the links, we present a model of the
bandwidth needs for the NDGF Tier-1 and its associated Tier-2 sites. The model takes
different types of workload into account and calculates bandwidth requirements based
on the workload type characteristics. The model differs from work in the literature,
which assumes full knowledge on each job and its data file requirements rather than on
workload types. The model of the distributed Nordic Tier-1 is used as a strategic tool
to calculate an optimal placement of workloads, to measure the impact of including
caches on different locations and to suggest better resource distributions.

Key words:Grid Computing; Scheduling; Tier-1; Mathematical Programming; Opti-
mization

7.1 Introduction

Dimensioning the network for a Tier-1 is always a challenge,particularly when the
Tier-1 is distributed as is the case of the Nordic Tier-1 operated by Nordic DataGrid
Facility (NDGF). The Tier-1 is defined as a network which can be used without pur-
chasing IP transit or paying settlements - contrary to e.g. Tier-2s where IP transit must
be purchased to reach parts of the network. See Kurose and Ross [132] for more de-
tails on Tier networks. The NDGF system is built from resources under the control of
a number of different national organizations. The NDGF Tier-1 consists of the seven
biggest Nordic compute sites (denoted the dTier-1s) with associated Tier-2 resources
as far away as Slovenia, see Fischer et al. [71]. Storage and computing resources are
widely scattered with a few central services. This gives many advantages in redun-
dancy especially for 24x7 data taking, as reported by Field et al. [69]. Figure 7.1 shows
the storage and compute sites participating in the NDGF system, including available
resources as of the second quarter of 2009.
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Figure 7.1: NDGF distributed storage and computational setup in the second quarter
of 2009. The amounts of compute, disk and tape resources (if any) at each site are
reported. Compute resources are given in KSI2K and storage resources in terabytes.
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NDGF uses a dedicated optical network between all dTier-1 sites and the Slovenian
Tier-2. The remaining Tier-2 sites are connected via the national research network.
Figure 7.2 shows how NDGF sites are interconnected with special emphasis on Swe-
den; red lines depict dedicated private network lines and magenta lines depict public
lines. The main network infrastructure forms a star. All data from the central NDGF
router to each country travels on a single link, which makes it easy to calculate the load
between the central NDGF router and the country.

Figure 7.2: NDGF network layout with emphasis on Sweden. Redlines depict dedi-
cated links and magenta lines depict public links.

The distributed Nordic Tier-1 is a grid computing system. Much research has been con-
ducted on deciding the activity in grid context; the research concentrates on scheduling
jobs for execution on grid sites. Especially online scheduling is investigated in the lit-
erature, i.e., the problem of assigning a job to a site where the assignment takes place
at job arrival time or when the site becomes available, see e.g. Foster and Kesselman
[76]. Work in the literature on activity in grid computing assumes detailed information
on where all data files are stored, on which files are required by each job, on when each
job is executed, on when data is transmitted etc., see e.g. the work of Chakrabarti et
al. [42], Ranganathan and Foster [165], and Tang et al. [185]. When dimensioning the
distributed Nordic Tier-1 we do not have detailed information on the grid activity. We
do not have a specific order of the single jobs to be executed ateach site, and we do
not know the specific files required by each job. Instead, we know the job type mix
at each site and the amount of data reads and writes required by each job type. Also,
we initially do not want to change job or data placement, rather we wish to calculate
bandwidth requirements given the current activity. In thisway, this paper differs from
work in the literature performed on bandwidth requirementsin grid computing context.
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Formalizing the NDGF network provides us with a number of equations to calculate
the network usage. This is of the network and its capacities.We gather the calcu-
lations into a mathematical model, which is used to analyze changes to the activity
of the distributed Nordic Tier-1. In this way we can use the formalization to identify
bottlenecks in the network with the current activity and to identify future bottlenecks
when changing the activity. The bottlenecks can help us decide how to extend the dis-
tributed Nordic Tier-1 with respect to storage and compute resources and bandwidth
availability. Furthermore, we believe that the formalization can be viewed as a general
framework, which can be applied to any distributed Tier-1 with only few changes to
match specific data reads and writes.

This paper is organized as follows. First in Section 7.2, we present the calculations
of bandwidth requirements for the distributed Nordic Tier-1. First some assumptions
on activity in the network is made. Then we analyze site availability and general job
requirements. From this we present a general framework for calculating bandwidth
usage. Finally, the section presents the job types present in the NDGF network. Based
on the equations from Section 7.2, we calculate the actual bandwidth requirements in
the NDGF network in Section 7.3. The results seem to represent real-life activity well.
We gather the equations for calculating bandwidth usage into a mathematical model in
Section 7.4. The model is used for calculating changes in theactivity of the NDGF
network such that the maximal network link load is minimized. We investigate the
impact of changing the placement of jobs according to network usage and according to
users of the system. We discuss and investigate the effects of adding a basic caching
mechanism, and finally we analyze if changing the distribution of storage and compute
resources can lower network usage. Section 7.5 discusses the correctness of the model
for calculating bandwidth usage. It also summarizes the results of imposing changes
to the network activity and suggests interesting future analyses. Finally, the section
proposes future work to be performed in order to ensure a precise model and an optimal
utilization of the distributed Nordic Tier-1.

7.2 Calculating network requirements

We wish to introduce a model to calculate an estimate of bandwidth requirements by
the distributed Nordic Tier-1. For this we need to analyze and formalize all data trans-
missions from workloads, data reads and data writes. Workloads are divided into jobs,
where each job type has specific data requirements. In this section we analyze the sites,
bandwidth requirements and job types.
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7.2.1 Basic assumptions

Before presenting a model of bandwidth usage in the NDGF network, we need to in-
troduce some basic assumptions on placement of jobs, when and which files are trans-
mitted through the network, etc. Currently, NDGF does not have detailed information
on which data files each job requires, or on exactly how or whenjobs are received.
This information, however, is required before bandwidth usage can be calculated. The
following assumptions compensate for the lack of information. They are based on ex-
periences of NDGF administrators and should reflect real-life activity well.

• All sites are occupied up to their efficiency, i.e., we assume a sufficient amount
of job and data availability in the system at any time.

• Data is randomly and uniformly distributed over all storage sites, i.e., the amount
of data available at a specific storage site is proportional to the size of the storage
site in relation to the total amount of storage in the system.

• The characteristics of the different job types is known, i.e., we know in advance
how much data a job consumes and generates and we know how manycompute
resources are required for each job type.

• The job mix at a site is known in advance, i.e., we know how many percent a
specific job type spends of the available compute time.

• Jobs are spread temporarily and uniformly across the sites. This means that we
do not have bursts of a specific job type.

• Traffic flows directly between the storage site and the compute site where a job
is executed. No intermediate servers are involved. This is in fact the case for the
NDGF setup.

• The caching mechanism in the ARC grid middleware, see Ellert et al. [65], is
not taken into account. The ARC middleware employed by NDGF for its AT-
LAS computations includes a caching mechanism that can significantly reduce
network traffic, see Behrmann et al. [34]. Modeling the impact of the caching
mechanism is difficult without any empirical evidence on what effect the cache
has on different job types.

Later in this paper we discuss how changes to those assumptions impact the model.
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7.2.2 Site characteristics

For a sites, we assume to know the amount of installed tape (T s), the amount of
installed disk (Ds), the amount of compute resources for each of the two Tiers (Cs1

andCs2 ) and the compute efficiency for each Tier in percent (0 ≤ es1 ≤ 1 and0 ≤
es2 ≤ 1). Some NDGF sites act as both Tier-1 and Tier-2 sites. This iswhy we allow a
site to have a number of compute resources and efficiencies. We letC, T andD denote
the total amount of CPU, tape and disk in the system, respectively.

7.2.3 Job characteristics

NDGF considers a number of different job types. For each job type j we assume to
know the amount of CPU required to run the job (Rj), the amount of data read from
disk while executing (DIj), the amount of data read from tape while executing (TIj),
the amount of data written to disk while executing (DOj), and the amount of data
written to tape while executing: (TOj).

Each site runs a special job mix; a job typej is supposed to occupy a certain fraction
of the available compute time. We letJ denote the total set of job types in the system.
Let f si

j denote the fraction for job typej on the Tier-i resources at sites. We assume
that

∑

j∈J f
si
j = 1, i.e. that all jobs of each type are executed.

We can now calculate the amount of data to be read from and written to disk and tape at
a sites. Each job typej needsDIj data from disk and runs forRj CPU seconds (this
could be any general measurement of CPU performance likeKilo Specmarks Integer
year 2000 (KSI2K)[182]). ThereforeDIJ/RJ denotes the amount of data a jobj
requires per CPU second. The number of CPU seconds a job type requires on a site
is calculated asCsi

j = f si
j e

siCsi , i.e., the fraction of the resource that runs jobs of
typej multiplied with the efficiency times and with the total amount of computational
resources. Now, the amount of required data for all computations on a site is given by:

DIsC =
∑

j∈J

∑

i∈{1..2}

Csi
j

DIj
Rj

Similarly, we can calculate values for tape readTIs, disk writeDOs and tape write
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TOs for each sites:

TIsC =
∑

j∈J

∑

i∈{1..2}

Csi
j

TIj
Rj

DOs
C =

∑

j∈J

∑

i∈{1..2}

Csi
j

DOj

Rj

TOs
C =

∑

j∈J

∑

i∈{1..2}

Csi
j

TOj

Rj

7.2.4 Bandwidth requirements

Parts of the data at a sites can be read and written locally. Assuming a uniform distri-
bution of data over the sites, the part that can be read and written locally corresponds
to the fraction of storage available ats in relation to the total amount of storage in the
system (Ds/D andT s/T ). The amount of data, which cannot be read locally by sites
is expressed as:

BIsC = DIsC
D −Ds

D
+ TIsC

T − T s

T

Similarly, the amount of data sites must write to other sites is formulated as:

BOs
C = DOs

C

D −Ds

D
+ TOs

C

T − T s

T

Furthermore, other sites will read from and write to the diskand tape resources at site
s. Again the amount corresponds to the relation between the installed disk and tape
capacity ats and the total installed capacity (Ds/D andT s/T ). The amount of data,
which other sites must write to sites is defined as:

BIsO =
∑

t∈S\{s}

(

DOt
C

Ds

D
+ TOt

C

T s

T

)

Similarly, we can calculate values for reads from sites by all other sites:

BOs
O =

∑

t∈S\{s}

(

DItC
Ds

D
+ TItC

T s

T

)

Finally, we need to take traffic external to NDGF into account. Again the same ar-
guments as before apply and the amount of external traffic depends on the relation
between installed disk and total installed capacity:

BIsE = BIE
Ds

D
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The input bandwidth requirements for a sites become:

BIs = BIsc +BISO +BIsE

For bandwidth out of a site, we derive a similar equation:

BOs = BOs
C +BOs

O +BOE

Ds

D

The bandwidth requirement for a site is then the maximum ofBIs andBOs.

As output the model gives the average network throughput at asite, assuming that all
compute resources are occupied up to their efficiency with a certain mix of jobs. It will
not take burst into account; neither will it include any overhead caused by transport
protocols.

7.2.5 Job types

Table 7.1 forms the basis for calculating bandwidth requirements in the distributed
Nordic Tier-1. The table holds information on how much a job type takes up Tier-1
and Tier-2, respectively, in percent. Furthermore, the table gives information on run
times, disk reads and writes, and tape reads. The instance includes no tape writes. It is
noted that three job types are present in the distributed Nordic Tier-1: ALICE, ATLAS
and CMS. The job types stem from the experiments performed bythe Large Hadron
Collider (LHC) by the European Organization for Nuclear Research (CERN). Each of
the three experiments is expected to generate huge amounts of data, hence both scien-
tific work on the data and data storage itself is distributed world-wide on grids. One of
these grids is the NDGF network. For more details on the LHC experiments, we refer
to Shiers [176] and the project homepage [41]. For more details on the relationship
between NDGF and CERN, we refer to Anderlik et al. [9] and the website of NDGF
[154].

7.3 NDGF bandwidth requirements

The calculations of bandwidth usage from Section 7.2 are applied to the current NDGF
setup. The outcome can be seen in Table 7.2, Table 7.3 and Table 7.4. Tables 7.2 and
7.3 display job and data distribution, respectively. Then follows Table 7.4 displaying
network usage. The placement of jobs and data is given in advance; therefore the
interesting part is the resulting network usage. The network traffic seems to reflect
real-life activity well. The link between the central NDGF router and Sweden has high
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Job name Tier-1 Tier-2 Run time Disk in Disk out Tape in
ALICE analysis 20% 50% 1 1000 10 0
ALICE recon 40% 0% 5 10 100 1000
ALICE MC 40% 50% 15 10 10000 0
ATLAS analysis 20% 50% 1 100 100 0
ATLAS recon 40% 0% 1 10 100 1000
ATLAS MC 40% 50% 12 100 500 0
CMS analysis 20% 50% 1 100 100 0
CMS recon 40% 0% 2 100 100 2000
CMS MC 40% 50% 12 100 500 0

Table 7.1: Job information used to calculate network usage.First column holds the job
name. This is followed by the expected percentage each job takes up Tier-1 and Tier-2.
Then comes the expected run time, the estimated amount of disk reads and writes, and
finally the estimated amount of tape reads. The instance holds no tape writes, which
thus have been omitted from the table.

load compared to the remaining links, which is caused by the many sites in Sweden.
Generally, network traffic is distributed according to compute and resource availability
in each country. To avoid network bottlenecks it is interesting to investigate if changes
to job and data placement could distribute traffic more evenly across the network. This
is investigated in the following section.

7.4 Analyzing changes to the distributed Nordic Tier-1
network

The distributed Nordic Tier-1 is formalized into a mathematical formulation to inves-
tigate the effects of changing different network or site settings, such as job placement,
data distribution, introduction of caches etc. The goal of the model is to reduce the
maximal link load in hope of distributing bandwidth requirements more evenly across
the system. The constraints ensure that job placement, datadistribution, bandwidth
limitations and the network topology are satisfied. The constraints are formed by the
formalization of bandwidth requirements in Section 7.2. When minimizing the maxi-
mal link load we want to impose changes on one or several of theconstraints. This is
done by introducing variables. An example is when job placement is not fixed. The
constraints of the mathematical model would then state thatall jobs must be executed
and that no compute resources are exceeded.

Considering the introduced notation, the problem of minimizing the maximal network
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Tier-1 ALICE ATLAS CMS Total
DK 240 240 480
FI 280 280
NO 410 348 758
SE 727 983 1710
SL
Sum 1657 1571 3228

Tier-2 ALICE ATLAS CMS Total
DK 0
FI 666 666
NO 325 325
SE 624 925 1549
SL 600 450
Sum 624 1700 666 2990

Total 2281 3271 666 6218

Table 7.2: The given distribution of job execution. The firstcolumn holds the name of
the compute site. Next follows the amount of compute resources in KSI2K dedicated
to each of the three job types. Finally, the sum of compute resources is given.

load (B ≥ 0) can be formalized. The mathematical model is:

min B (7.1)

s.t. B ≥ BIs ∀s ∈ S (7.2)

B ≥ BOs ∀s ∈ S (7.3)

BIs = BIsC +BIsO +BIsE ∀s ∈ S (7.4)

BOs = BOs
C +BOs

O +BOs
E ∀s ∈ S (7.5)

BIsC = DIsC(D −Ds)/D + TIsC(T − T s)/T ∀s ∈ S (7.6)

BOs
C = DOs

C(D −Ds)/D + TOs
C(T − T s)/T ∀s ∈ S (7.7)

BIsO =
∑

t6=s

(DOt
C ·Dt/D + TOt

C · T t/T ) ∀s ∈ S (7.8)

BOs
O =

∑

t6=s

(DItC ·Dt/D + TItC · T t/T ) ∀s ∈ S (7.9)

DIsC =
∑

j

∑

i

Csi
j ·DIj/Rj ∀s ∈ S (7.10)

TIsC =
∑

j

∑

i

Csi
j · TIj/Rj ∀s ∈ S (7.11)
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Disk Tier-1 ALICE ATLAS CMS Total
DK 150 150 300
FI 97 97
NO 251 185 436
SE 310 681 991
SL 0
Sum 808 1016 0 1824

Disk Tier-2 ALICE ATLAS CMS Total
DK 0
FI 205 205
NO 91 91
SE 148 454 602
SL 200 200
Sum 148 745 205 1098

Total 956 1761 205 2922

Tape ALICE ATLAS CMS Total
DK 150 150 300
FI 127 127
NO 250 128 378
SE 578 517 1095
SL 0
Sum 1105 795 0 1900

Table 7.3: The given distribution of data storage. First, the name of the storage site is
given. Then follows the amount of stored data for each job type in terabytes. Finally,
the amount of stored data is summed.
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Site/Country Network load
DCSC/KU 1.5 Gbps
Denmark 1.5 Gbps
CSC 1.0 Gbps
Jyv 0.0 Gbps
Finland 1.0 Gbps
UiB 1.3 Gbps
UiO 1.1 Gbps
Norway 2.2 Gbps
HPC2N 1.8 Gbps
LUNARC 0.6 Gbps
PDC 2.3 Gbps
NSC 1.8 Gbps
UPPMAX 0.6 Gbps
Sweden 4.4 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.4: Network load between sites and the NDGF main router. The first column
holds the name of the different sites and the second column holds network loads. Note
that the total amount of traffic between each country and the NDGF main router is
given.

DOs
C =

∑

j

∑

i

Csi
j ·DOj/Rj ∀s ∈ S (7.12)

TOs
C =

∑

j

∑

i

Csi
j · TOj/Rj ∀s ∈ S (7.13)

B ≥ 0 (7.14)

The objective function (7.1) minimizesB, which is the maximal network load. Con-
straints (7.2) and (7.3) ensure that the maximal network load B is greater or equal to
all link loads in the network. The constraints (7.4) and (7.5) calculate the amount of
in- and outgoing bandwidth usage at each site. Constraints (7.6) and (7.7) define the
amount of data being read from other sites and written to other sites by sites, respec-
tively. The next two constraints (7.8) and (7.9) define the amount of data being written
to and read froms by other sites, respectively. Next, we have the total amountof
disk data (7.10) and tape data (7.11) to be read by a sites. Correspondingly, the total
amount of disk data (7.12) and tape data (7.13) to be written is defined. Finally, the
bound (7.14) ensures that the variable indicating the maximal link load is non-negative.

The model can obviously be solved in constant time; given a problem instance, network
usage is immediately calculated and the model returns the largest amount of bandwidth
travelling on any link. In the following sections, we changethe model slightly to repre-
sent changes in the problem instance. For example, given thejob types to be calculated
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and a fixed data placement, it is interesting to find an optimaljob placement. In this
case, we must introduce some variables in the model to represent job placements.

The resulting models of the following analyses are all solved by CPLEXversion 10.2
[102], even though not all problems areNP-hard. The reason for this is that the
emphasis of the following analyses is on the resulting bandwidth usage and not on
solution techniques. The problem instances are small and consist of eleven sites and
three job types, so evenNP-hard problems are solved very quickly.

7.4.1 Optimizing job placement

The current job placement from Section 7.3 may not be optimal. Without imposing
any changes to resources on each site or to job properties, wetry to re-arrange the job
placement such that the maximal link load is minimized. Thiscorresponds to trans-
forming 0 ≤ f si

j ≤ 1 into a variable, which denotes the percentage a jobj takes up
compute resources at sites, Tier-i. To ensure that a job is fully executed and that
compute resources at each site are not exceeded, we introduce the extra constraints:

∑

s∈S

Csif si
j = Rj ∀i ∈ I, ∀j ∈ J

∑

j∈J

Csi
j ≤ Csi ∀i ∈ I, ∀s ∈ S

The added variablesf si
j and all constraints in the model (7.1)-(7.14) are linear, sothe

resulting problem is polynomial. Results of optimizing jobplacement are seen in Ta-
ble 7.5 for job placement and in Table 7.6 for network usage. The maximal network
link load is reduced from 4.4 Gbps to 3.5 Gbps. The link between the central NDGF
router and Sweden still carries more data than the other links, which is not surpris-
ing because Sweden has more compute resources and thus requires and produces more
data. Link loads between the central NDGF router and the remaining countries have
generally increased; minimizing the maximal link load causes a more evenly distribu-
tion of data transmissions. This is beneficial for NDGF, because they in this way may
avoid or decrease the risk of network bottlenecks.

7.4.2 Virtual organizations

NDGF requires all participants of the system to beVirtual Organizations (VOs). The
national organizations supplying resources are thus registered as VOs. Similarly each
user of the system registers as a VO. The three job types in thesystem,ALICE, ATLAS
andCMS require both Tier-1 and Tier-2 resources. This is translated into having six
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Tier-1 ALICE ATLAS CMS Total
DK 480 480
FI 280 280
NO 130 628 758
SE 1527 183 1710
SL
Sum 1657 1571 3228

Tier-2 ALICE ATLAS CMS Total
DK 0
FI 666 666
NO 325 325
SE 624 259 666 1549
SL 450 450
Sum 624 1700 666 2990

Total 2281 3271 666 6218

Table 7.5: The result of optimizing job placement. The tableshows the job placement.
Comparing to the initial job placement in Table 7.2 it is noted that all job types are fully
executed and that all compute capacities are satisfied.

Site/Country Network load
DCSC/KU 1.8 Gbps
Denmark 1.8 Gbps
CSC 1.0 Gbps
Jyv 0.0 Gbps
Finland 1.0 Gbps
UiB 1.4 Gbps
UiO 1.2 Gbps
Norway 2.4 Gbps
HPC2N 1.9 Gbps
LUNARC 0.6 Gbps
PDC 2.0 Gbps
NSC 1.9 Gbps
UPPMAX 0.6 Gbps
Sweden 3.5 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.6: The result of optimizing job placement. The tableshows network usage.
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users (VOs). In this analysis, we wish to assign a VO (job type) to each site. This,
however, is not possible with the current workload; hence the goal is modified into
minimizing the number of job types per site. The secondary goal is to minimize the
maximal network link load. In the mathematical formulationwe introduce an integer
variablexis ∈ Z

+
0 , which denotes the number of job types using sites, Tier-i. We also

introduce the binary variablexsij ∈ {0, 1} denoting whether or not jobj is using sites,
Tier-i. The following constraints are added to the model:

f si
j ≤ xsij ∀j ∈ J, ∀s ∈ S, ∀i ∈ I

∑

j∈J

xsij − 1 ≤ xis ∀s ∈ S, ∀i ∈ I

The first constraint says that if a job type is placed on sites, Tier-i, then the variable
xsij must be set. The next constraint says thatxis is set to the number of job types minus
one using sites, Tier-i. The first job type using the site and Tier is ”free”, because we
wish to assign exactly one (or as few as possible) VO(s) to each site.

The objective is changed such that a penalty is added for eachextra VO (job type) using
a site and Tier. LetM be the large penalty. The objective is:

min
∑

s∈S

∑

i∈I

Mxis +B

Adding these constraints and the new objective function results in anNP-hard prob-
lem; this can be seen by reduction from the two-partitioningproblem, see Garey and
Johnson [89]. The problem of minimizing the number of VOs persite was solved very
quickly, though;CPLEXfound an optimal solution in less than a second.

Results of optimizing VO distribution are seen in Table 7.7 for job placement and in
Table 7.8 for network usage. The maximal network link load isreduced from 4.4 Gbps
to 3.7 Gbps. The link between the central NDGF router and Sweden still carries the
larger network load, which is as previously described due toSweden’s larger compute
and storage capabilities. The maximal network link usage isreduced because the orig-
inal job placement was not optimal. Comparing with the optimal job placement in
Section 7.4.1, the maximal network link load is actually increased from 3.5 Gbps to
3.7 Gbps. This increase is caused by the extra constraint on placing jobs according to
VOs.

Many VOs take interest in limiting the number of VOs using each site. The reason for
this is partly to get a better overview of activity in the grid; another reason is to avoid
competing for resources with other VOs. This analysis showsthat if workloads were to
be distributed according to VOs, then the VOs must accept a decrease in the utilization
of the system.
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Tier-1 ALICE ATLAS CMS Total
DK 480 480
FI 280 280
NO 758 758
SE 1377 333 1710
SL 0
Sum 1657 1571

Tier-2 ALICE ATLAS CMS Total
DK 0
FI 666 666
NO 325 325
SE 624 925 1549
SL 450 450
Sum 624 1700 666 2990

Total ALICE ATLAS CMS Total
2281 3271 666 6218

Table 7.7: The result of placing jobs according to Virtual Organizations. The table
shows the job placement. Comparing to the initial job placement in Table 7.2 it is
noted that all job types are fully executed, but the number ofdifferent job types at each
site is minimized.

Site/Country Network load
DCSC/KU 1.8 Gbps
Denmark 1.8 Gbps
CSC 1.0 Gbps
Jyv 0.0 Gbps
Finland 1.0 Gbps
UiB 1.4 Gbps
UiO 1.3 Gbps
Norway 2.6 Gbps
HPC2N 1.9 Gbps
LUNARC 0.6 Gbps
PDC 2.1 Gbps
NSC 1.9 Gbps
UPPMAX 0.6 Gbps
Sweden 3.7 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.8: The result of placing jobs according to Virtual Organizations. The table
shows network usage.
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7.4.3 Cache considerations

In this section we analyze the effects of adding caches to thenetwork topology. So
far time has not been part of the model or the analyses. However, when working with
caches the time dimension is important. No information is available on the order of
job execution. Hence we consider a discrete time representation and in each time slot,
the job mix given in e.g. Section 7.3 is calculated. When deciding what to store on
a cache, we assume that the jobs in each time iteration are executed at the same time.
Cache replacement strategies such as ”first in first out”, ”most used”, ”least used”,
”last recently used”, etc. are irrelevant with our time representation; we assume that
the cache contents never change.

This strategy does not resemble the caching mechanism in theARC grid middle-
ware, because of the simplified time representation. As mentioned previously in Sec-
tion 7.2.1, we do not consider ARC caching. However, we hope that this simpler
caching approach gives a good picture of any potential effect on network usage.

First we consider how network usage is changed, when we add caches to the current
job placement from Section 7.3. This is followed by adding caches to the optimal job
placement, see Section 7.4.1.

7.4.3.1 Adding caches to current topology

Assume that the first iteration of job execution in the NDGF system is based on the
job placement and data distribution illustrated in Section7.3. Caches of a certain size
are added to each site and data traffic is then re-calculated according to job placement,
data distribution and data stored on caches. The contents ofthe caches are assumed
to be such that the maximal network link load is minimized. Specifically, whenCs

D

andCs
T are the amount of cache on sites for disk and tape, respectively, bandwidth

requirements for input and output data are calculated as:

BIsC = DIsC
D−Ds−C

s
D

D
+ TIsC

T−T s−C
s
T

T

BOs
C = DOs

C
D−Ds−C

s
D

D
+ TOs

C
T−T s−C

s
T

T

How big an impact caches have on network usage depends on the size of the caches.
We assume that the caches each can hold 200 units of data. Introducing caches does
not impose any new variables to the model, which hence can be solved inO(1) time.

The results of adding caches are seen in Table 7.9. The maximal network link load is
reduced from 4.4 to 3.8 Gbps using cache. Generally, the reduction size depends on the
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size of the cache: if all data is replicated and stored on all caches, the network usage
would be minimized and would only consist of generated data from job computations.

Site/Country Network load
DCSC/KU 1.5 Gbps
Denmark 1.5 Gbps
CSC 0.9 Gbps
Jyv 0.0 Gbps
Finland 0.9 Gbps
UiB 1.3 Gbps
UiO 1.0 Gbps
Norway 2.0 Gbps
HPC2N 1.7 Gbps
LUNARC 0.5 Gbps
PDC 2.1 Gbps
NSC 1.7 Gbps
UPPMAX 0.5 Gbps
Sweden 3.8 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.9: The resulting bandwidth usage when adding cachesto the initial job place-
ment and data distribution from Table 7.2 and 7.3.

7.4.3.2 Changing job execution according to cache

Assuming that the caches are included in the network, we change job placement such
that the maximum network link load is minimized. The modification of bandwidth
requirements was illustrated in the previous section. The modification of job placement
was illustrated in Section 7.4.1. The resulting problem is polynomial; adding caches to
the model changes the calculations of bandwidth usage without imposing new variables
and optimizing job placement introduces linear variables and constraints to the model.

The results of adding caches and optimizing job placement can be seen in Table 7.10
for job placement and in Table 7.11 for bandwidth usage. The maximal network link
load is 3.0 Gbps between the central NDGF router and Sweden. Comparing with the
optimal job placement without cache, the link load is reduced from 3.5 to 3.0 Gbps
by using the caching mechanism. Again the reduction of network traffic depends on
the size of the caches. With the 200 data unit caches, the reduction of the maximal
link load is significant. This indicates that it is importantfor the model to include the
ARC caching mechanism in order to reflect real-life network usage. It also indicates
that investing in caches may be a relatively inexpensive wayof ensuring that network
traffic does not exceed network capacities.
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Tier-1 ALICE ATLAS CMS Total
DK 480 480
FI 280 280
NO 152 606 758
SE 1505 205 1710
SL 0
Sum 1657 1571 3228
Tier-2 ALICE ATLAS CMS Total
DK 0
FI 666 666
NO 325 325
SE 624 709 216 1549
SL 450 450
Sum 624 1700 666 2990
Total ALICE ATLAS CMS Total

2281 3271 666 6218

Table 7.10: The result of adding caches and then optimizing job placement. Data is
distributed as seen in Table 7.3. The table illustrates job placement.

Site/Country Network load
DCSC/KU 1.7 Gbps
Denmark 1.7 Gbps
CSC 0.9 Gbps
Jyv 0.0 Gbps
Finland 0.9 Gbps
UiB 1.3 Gbps
UiO 1.1 Gbps
Norway 2.3 Gbps
HPC2N 1.8 Gbps
LUNARC 0.5 Gbps
PDC 1.8 Gbps
NSC 1.8 Gbps
UPPMAX 0.5 Gbps
Sweden 3.0 Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.11: The result of adding caches and then optimizing job placement. Data is
distributed as seen in Table 7.3. The table shows the resulting bandwidth usage.
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7.4.4 Changing data distribution and capacity

Changing the storage capacity of sites and re-arranging thedata distribution may reduce
the maximal network link load. The changes cannot be imposedimmediately to the
NDGF network because of changes to storage capacities. Eventhough the total amount
of stored data in the system is not changed, it cannot be expected that a site is willing to
move parts of its storage to another site. Hence this analysis is performed as a strategic
tool to measure optimal disk requirements for the job placement of Section 7.3. This
corresponds to transformingDs ≥ 0 andT s ≥ 0 (data and tape stored at each sites)
into variables in the mathematical model, such that all datais distributed:

∑

s∈S

Ds = D

∑

s∈S

T s = T

Only linear variables and constraints are added to the model; hence the resulting prob-
lem is polynomial.

The result of changing the data and storage distribution is seen in Table 7.12 for data
distribution and Table 7.13 for network usage. The maximal network link load is re-
duced from 4.4 Gbps to 3.7 Gbps. The maximal network load can still be found on the
link between the central NDGF router and Sweden. The optimaldata placement does
not distribute data more evenly across sites. Sweden, for example, has a large amount
of compute resources but no data stored. In this way, the linkfrom the central NDGF
router to Sweden only needs to carry data required and generated by jobs executed on
the Swedish sites. Not storing any data in Sweden is not realistic; from the results we
can conclude that both compute and storage resources shouldbe evenly distributed - it
is not beneficial to only distribute storage evenly.

7.4.5 Changing job placement and compute limits

This analysis is used in a strategic context and considers the effects of removing the
limits on the amount of compute resources at each site. The total compute requirement
in the system is not changed, only the placement of compute resources is altered. As in
the case for moving storage resources, it is not immediatelypossible to move compute
resources from one site to another, hence the strategic nature of the analysis. The
placement of jobs is changed such that the maximal network link load is minimized.
The data distribution described in Section 7.3 remains unchanged. We transform0 ≤
f si
j ≤ 1 (percentage jobj takes up compute resources at sites, Tier-i) into a variable.

Furthermore, we ensure that each job is fully executed, but set no upper bound on
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Disk Tier-1 ALICE ATLAS CMS Total
DK 473 473
FI 174 543 717
NO 634 624
SE 0
SL 0
Sum 808 1016 0 1824

Disk Tier-2 ALICE ATLAS CMS Total
DK 0
FI 148 745 205 1098
NO 0
SE 0
SL 148 745 205 1098
Sum 956 1761 205 2922

Tape ALICE ATLAS CMS Total
DK 0
FI 0
NO 1105 795 1900
SE 0
SL 0
Sum 1105 795 0 1900

Total 2281 3271 666 6218

Table 7.12: The result of changing the distribution of data placement and of storage
capacities. Jobs are placed as seen in Table 7.2. The table illustrates data distribution.



7.5 Conclusion 161

Site/Country Network load
DCSC/KU 2.1 Gbps
Denmark 2.1 Gbps
CSC 2.5 Gbps
Jyv 0.0 Gbps
Finland 2.5 Gbps
UiB 3.2 Gbps
UiO 1.5 Gbps
Norway 3.5 Gbps
HPC2N 0.8 Gbps
LUNARC 0.6 Gbps
PDC 1.2 Gbps
NSC 0.8 Gbps
UPPMAX 0.6 Gbps
Sweden 3.7Gbps
PIKOLIT 0.1 Gbps
Slovenia 0.1 Gbps

Table 7.13: The result of changing the distribution of data placement and of storage
capacities. Jobs are placed as seen in Table 7.2. The table illustrates network usage.

compute resources at each site:
∑

s∈S

Csif si
j = Rj ∀i ∈ I, ∀j ∈ J

All added variables and resulting constraints are linear; hence the resulting problem
can be solved in polynomial time.

Results of changing job placement and of changing compute capacities can be seen
in Table 7.14 for job placement and in Table 7.15 for network usage. The maximal
network link load is reduced from 4.4 Gbps to 3.5 Gbps compared to the initial job
placement in Section 7.3. Compared to the optimal job placement in Section 7.4.1, the
maximal network link load has not been reduced. Hence, changing the distribution of
compute resources does not reduce network usage in the NDGF system.

7.5 Conclusion

In this paper, we have formalized network usage in the distributed Nordic Tier-1 oper-
ated by the Nordic DataGrid Facility (NDGF) into a mathematical model. Using the
model we have calculated network usage subject to job placements, data requirements
and network capacities. The model and the results can only beconsidered as a first ap-
proximation of what kind of network load NDGF can expect. Some of the assumptions
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Tier-1 ALICE ATLAS CMS Total
DK 474 474
FI 0
NO 0
SE 1657 1095 2754
SL 0
Sum 1657 1571

Tier-2 ALICE ATLAS CMS Total
DK 0
FI 0
NO
SE 1700 666 2366
SL 624 624
Sum 624 1700 666 2990

Total 2281 3271 666 6218

Table 7.14: The result of changing the job placements and compute capacities. Data is
distributed as seen in Table 7.3. The table illustrates job placement.

Site/Country Network load
DCSC/KU 1.8 Gbps
Denmark 1.8 Gbps
CSC 0.4 Gbps
Jyv 0.0 Gbps
Finland 0.4 Gbps
UiB 1.1 Gbps
UiO 0.6 Gbps
Norway 1.6 Gbps
HPC2N 2.0 Gbps
LUNARC 0.2 Gbps
PDC 2.1 Gbps
NSC 2.0 Gbps
UPPMAX 0.2 Gbps
Sweden 3.5 Gbps
PIKOLIT 1.7 Gbps
Slovenia 1.7 Gbps

Table 7.15: The result of changing the job placements and compute capacities. Data is
distributed as seen in Table 7.3. The table illustrates network usage.
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behind the model can rightfully be criticized for being too simple. Especially the as-
sumption on the uniform distribution of job types over time is questionable. One way to
deal with that assumption would be to only consider the job type that causes the highest
network load. This would make the model a better fit for worst case loads. However,
it will be more important to take the caching mechanism of ARCinto account, as this
mechanism has been reported to have a significant impact on how many times popular
files are downloaded to a site. In order to extend the model to take caching into account,
a more in-depth analysis of the caching mechanism of ARC needs to be performed first.

Though the model may be simplified, it still provides us with the possibility of an-
alyzing the effects of changes to the system. We showed that it is highly beneficial
to consider job placement carefully, because network requirements heavily depend on
this. The users of the system (denoted Virtual Organizations (VOs)) take interest in
dividing workloads on the system according to their job mixes in order for them to
more easily get an overview of activity in the NDGF system. Weshowed that placing
jobs according to VOs most likely increases network requirements, thus this placement
strategy is not attractive for the overall system. As previously mentioned, the simpli-
fied model does not consider the ARC caching mechanism. We tried to compensate
for this by introducing a very simple cache strategy, which reduces network traffic sig-
nificantly. Finally, we used the model to make more strategicanalyses of the network,
i.e., we investigated the effects of changing storage and compute capacities in the sys-
tem. Network usage is lowered when data storage is optimizedaccording to a given
job placement, while changing the compute capacities does not reduce the maximal
link load.

The model has been modified to reflect the mentioned analyses of the NDGF system,
and the modifications generally increase the complexity of the problem. In most cases
the resulting problem is polynomial, so the problems scale well and can be solved for
much larger systems than the NDGF system. Placing jobs according to VOs resulted
in anNP-hard problem, which was solved very quickly, though. We believe that the
problem is practically tractable even for larger instances. Based on this we conclude
that the model can be used as foundation for the development of general strategic tools
for grid systems. It is noted that if we wish to find the optimaljob placementanddata
distribution, then the model becomes quadratic and possibly more difficult to solve.

In the introduction of this work, we mentioned that parts of the network used by the
NDGF system were shared with other users. This was illustrated as the magenta lines
in Figure 7.2. Future analyses on the NDGF system could be to decrease the amount
of traffic on the public links. If NDGF wants to maintain the right to use these links,
NDGF must ensure that bandwidth usage on the links never blocks out other users.

At the time of writing it is not possible to compare the complete model to real world
measurements. However, NDGF system administrators have noted some differences
between the model and actual grid behaviour:
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• Currently, the main bottleneck of the system is actually the lack of bandwidth be-
tween the compute element and the network. This issue is solvable by upgrading
the hardware at sites.

• The assumption about a uniform mix of jobs is not always correct. We observe
that jobs of certain types come in bursts.

• The ARC caching mechanism has a dramatic effect on the amount of data trans-
ferred. This is not surprising considering our calculations on including a simpli-
fied caching strategy.

NDGF is currently investigating the deployment of monitoring services to measure
bandwidth usage. With such measurements we can test the validity of our model.
Once the model has been compared to actual network usage and possibly calibrated to
reflect this, calculations of optimal job placements and of distribution of storage and
CPU capacities will be re-performed in order to ensure an optimal utilization of the
distributed Nordic Tier-1.
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CHAPTER 8

Introduction to the
multicommodity k -splittable

flow problem

The problem of data transmission in a network can be represented as a multicommodity
flow problem (MCFP). Many variants of the MCFP exist in order to reflect correspond-
ing real-life telecommunication problems. Examples are that each data transmission
can only use a certain number of paths, each path can only consist of a certain number
of edges, the amount of data sent through the network must be maximized, the cost of
sending data through the network must be minimized, etc. A variety of multicommod-
ity flow problems arising in telecommunication context are presented and discussed in
the book by Resende and Pardalos [166].

The multicommodityk-splittable flow problem (MCkFP) represents the Multiproto-
col Label Switching problem, which limits the size of routing tables by gathering data
packets under a label [67]. The MCkFP isNP-hard and consists of routing all com-
modities through a network such that each commodity uses at mostk paths. Edges in
the network are capacitated and all edge capacities must be satisfied. Traditionally two
variants of MCFP problems are considered: minimizing the total cost of sending all
commodities or maximizing the total amount of flow sent through the network. This is
also the variants considered for the MCkFP in this part.
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This chapter is organized as follows. Section 8.1 describesthe multicommodityk-
splittable flow problem. This is followed by motivating the existence of the problem
by giving real-life examples in Section 8.2. An overview of work in the literature
performed on the multicommodity flow problem and especiallyon k-splittable flow
problems is presented in Section 8.3. The contribution of this thesis is described in
Section 8.4 and finally we discuss future directions on work on multicommodityk-
splittable flow problems in Section 8.5.

8.1 Problem description

The family of multicommodity flow problems belongs to the group of network flow
problems. In graph theory, a flow network is a directed graph consisting of nodes
and capacitated edges, where flow travels on edges without exceeding edge capacities
and where the amount of flow going into a node equals the amountof outgoing flow.
Flow is routed from a start node (source) to an end node (destination). The objective
is typically to maximize the amount of flow routed through thegraph or to minimize
the cost of sending a fixed amount of flow through the graph. In the case of the latter
objective, a cost per flow unit is attached to each edge of the graph. The described
network flow problems are polynomially solvable.

In multicommodity flow problems (MCFP) several flows (or commodities) must be
routed through the network. Each commodity consists of a source and a destination
and possibly also a fixed amount of flow to route. It is assumed that at least two com-
modities do not share both source and destination node, because otherwise the problem
reduces to a regular network flow problem. MCFP is polynomial, but adding extra
(practically relevant) constraints may make the problemNP-hard. Such variants in-
clude the multicommodity unsplittable flow problem (MCuFP), where each commod-
ity must use exactly one path to send its flow from its source toits destination. Another
version is the multicommodityk-splittable flow problem (MCkFP), where each com-
modity can use at mostk paths to send its flow from its source to its destination.

A flow network is illustrated in Figure 8.1. Costs per flow unitand capacities are given
at each edge. Two commodities are to be sent: 4 flow units froms1 to t1 via at most 2
paths and 3 flow units froms2 to t2 via at most 3 paths.

Table 8.1 shows all possible paths and their costs for the twocommodities. The
columnsComm. 1 and Comm. 2 report optimal solutions for commodity 1 alone
and for commodity 2 alone, respectively. ColumnsComm. 1 → Comm. 2 and
Comm. 2 → Comm. 1 are optimal solutions if commodity 1 has highest priority
and if commodity 2 has highest priority, respectively. Finally, in column Optimal
an overall optimal solution is given. As illustrated there is no connection between the
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Figure 8.1: Example of a flow network. Two commodities,1 and2 are to be sent
through the network. The number of flow units to ship for each commodity is denoted
F i, i ∈ {1, 2}, and the maximal number of paths to use for each commodity is denoted
ki, i ∈ {1, 2}. The cost per flow unit and capacity, respectively, are givenat each edge.
The objective is to minimize the cost of shipping the commodities.

costs of sending either of the commodities individually andthe overall optimal solu-
tion. The example shows that both commodities must be taken into account at the same
time when finding an optimal solution, which is a consequenceof the problem being
NP-hard.

Flow
Path Cost Comm. 1 Comm. 2 Comm. 1→ Comm. 2 Comm. 2→ Comm. 1 Optimal

a-b-d-f 4 3 - 3 1 2
a-b-c-d-f 16 0 - 0 1 0
a-b-c-e-d-f 7 1 - 1 0 0
a-b-c-e-f 9 0 - 0 2 2

c-a-b-d 3 - 2 0 2 1
c-d 11 - 0 3 0 1
c-e-d 2 - 1 0 1 1

Cost 19 8 52 46 42

Table 8.1: Overview of paths and costs for the commodities inFigure 8.1

8.2 Motivation

Flow problems have wide applications in many logistical problems, where commodities
must be routed through a network. This includes traffic modeling in a street or railway
network, currency regulation in electrical circuits, distribution of water in pipes, data
packets in a network, etc.
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An application for the MCkFP isMultiprotocol Label Switching(MPLS), which gath-
ers several data packets under a label in order to limit the routing tables and to increase
the quality of data transmission. Also, encapsulating packets of different network pro-
tocols and only making forwarding decisions based on the labels, eliminates the need
for the network to support several data link layer technologies. For more details on
MPLS, we refer to the book of Evans and Filsfils [67]. The cost of sending data in-
creases with the number ofLabel Switch Paths(LSP). By limiting the number of used
labels (i.e. paths) the total cost can be reduced. However, we must still ensure that all
or as much data as possible is transmitted. This correspondsto the MCkFP; given an
upper bound on the number of paths to use, we either try to sendall data at the lowest
possible cost (minimum cost MCkFP) or we try to maximize the total throughput in
the network (maximum flow MCkFP).

Another application for the MCkFP is the transportation of goods e.g. via trains, where
the number of locomotives is limited. Assuming that each storage hask locomotives
available for sending its goods to a destination, then at most k different routes can be
used. This corresponds to the MCkFP, where the objective is either to send all ordered
goods at the lowest possible cost (minimum cost MCkFP) or to maximize the total
amount of goods to send (maximum flow MCkFP).

Though we have not applied the MCkFP in a grid scheduling context, the flow problem
is still highly relevant in telecommunications and data transmission problems. The
MCkFP is applicable to the MPLS protocol, which could very well be used for data
transmission in the grid network. The MCkFP can be used for finding appropriate
network routes for data connections.

8.3 Historical overview

The MCFP is polynomial, but to the best of our knowledge no straight-forward combi-
natorial algorithm is currently known for the problem, see Cormen et al. [52]. Instead,
solution methods for the MCFP from the literature include:

• Cost based decomposition

• Resource based decomposition

• Interior point methods

Lagrange relaxation is an example of cost based decomposition, where constraints en-
suring capacitated flow transmission are multiplied with a Lagrange multiplicator and
moved to the objective function. In this way, MCFP can be divided into separate flow
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problems for each commodity; see Wolsey [204]. Other cost based decompositions
include Dantzig-Wolfe decomposition, see Dantzig and Wolfe [54]. Barnhart et al.
[26] presented a decomposition where the pricing problem generated paths for each
commodity and the master problem merged paths into an overall solution.

Resource based decomposition focuses on omitting edge capacities by introducing re-
sources. Resources are attached to each edge and the total resource consumption for
each commodity is bounded from above. The total commodity resource consump-
tion on each edge is smaller or equal to the corresponding edge capacity. In this way
each commodity can be considered individually as resource constrained flow problems,
which again can be solved using a subgradient method, see Ahuja et al. [5].

MCFP can be solved using interior point algorithm. The maximum flow MCFP was
formulated as a quadratic problem by Kamath and Palmon [116]who used two interior
point algorithms. The algorithms are also capable of solving the minimum cost MCFP.

Baier et al. [19] introduced the Multicommodityk-splittable Flow Problem and proved
that the problem isNP-hard in the strong sense for directed graphs, even in the sin-
glecommodity case. They presented approximation algorithms for the single- and mul-
ticommodity versions, specifically the maximum budget-constrainedk-splittable Flow
Problem. The authors noted that ifk is greater than or equal to the number of edges,
then thek-splittable MCFP degenerates to an ordinary MCFP.

Koch et al. [122] proved that the maximum flow MCkFP isNP-hard in the strong sense
for directed and undirected graphs. They also showed that noapproximation algorithm
exists which is better than56 , unlessP = NP . Koch et al. [123] also presented a two-
stage algorithm for the MCkFP. The first stage is routing, i.e., deciding whichk paths
to use for each commodity, and the second stage consists of packing, i.e., on assigning
flow on the paths. They argued that whenk is constant, then the packing alternatives
can be constructed in polynomial time, and whenk is part of the input they present an
algorithm with approximation factor(1− ε), ε > 0.

Truffot et al. [190] presented a branch-and-price algorithm for solving the maximum
flow MCkFP to optimality. An edge-path model is presented, on which abranch-and-
price algorithm is applied. The pricing problem is a shortest path problem, which
generates paths for each commodity and which can be solved inpolynomial time. The
master problem merges the paths into an overall feasible solution.
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8.4 Contribution

This part of the thesis considers the MCkFP variant of the multicommodity flow prob-
lem, where each commodity can use at mostk paths to route its flow. The two con-
tributed papers are:

• Two- and three-index formulations of the multicommodityk-splittable flow prob-
lem

• Comparing branch-and-price algorithms for the multi-commodity k-splittable
maximum flow problem

The first paper considers the minimum cost MCkFP, specifically the three-index model
and corresponding branch-and-price algorithm for the MCkFP suggested by Truffot et
al. [190]. The three indices indicate a commodity, a path anda path index, i.e., which
of thek paths we wish to consider. The paper proposes a heuristic forthe three-index
branch-and-price algorithm, which tries to merge certain paths when more thank paths
are used for a commodity. The heuristic boosts the performance of the algorithm. The
main contribution of the paper, however, is a two-index problem formulation and a cor-
responding branch-and-price algorithm. The two indices indicate a commodity and a
path, respectively. The algorithm includes a somewhat complicated branching strategy,
which in worst case causes a large search tree due to many branching combinations
and due to many branching children. However, the two-index model eliminates large
amounts of symmetry in the solution space and hence the branch-and-price algorithm
outperforms the three-index algorithm.

The second paper on the MCkFP considers the maximum flow version of the prob-
lem. The work from the former paper is applied to the maximum flow version, i.e.,
the heuristic is added to a three-index branch-and-price algorithm and the two-index
branch-and-price algorithm is slightly altered to fit the maximum flow objective func-
tion. The two-index branch-and-price algorithm has less impressive performance when
maximizing flow, because the objective causes an increase inthe number of branching
combinations. Hence, we propose a new two-index branch-and-price algorithm, where
the branching strategy consists of forcing and forbidding the usage of certain paths.
Forcing the use of a path is done by adding cuts to the model. Wealso forbid the usage
of certain paths in order to eliminate symmetry in the solution space. This new branch-
ing strategy improves the performance of the two-index algorithm dramatically, hence
making it superior to the exact algorithms from the literature.
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8.5 Future directions

In this section we focus on future work to be performed on the MCkFP when using
Dantzig-Wolfe decomposition.

Our work shows that especially two bottlenecks should be considered in the proposed
branch-and-price algorithms for the MCkFP: the branching strategy and how to bound
the number of used paths. Future work on branching strategies could focus on reducing
the impact on the pricing problem and on producing a smaller search tree. The latter
is reached by generating fewer branching children and on providing stronger bounds
in each branching child. We believe that adding branching cuts is a strategy worth
exploring even further.

The second bottleneck of the branch-and-price algorithms is the way the number of
used paths is bounded. Tightening the formulation would improve the performance
of the algorithms significantly. Adding cuts to the relaxed master formulation is not
trivial, because the variables of the model are linear. However, cuts could be used
to strengthening the path bound. We believe it could be interesting to find cuts on
the binary variables in the original edge formulation or in the (non-relaxed) master
problem formulation. These cuts could then either be transferred into working on the
LP-relaxed master problem or some binary variables from theoriginal model could
be kept in the LP-relaxed master problem. Desaulniers et al.[57] show how cuts on
original formulations can be used in a Dantzig-Wolfe decomposition context.

Another approach is to somehow decompose the problem differently. The decomposi-
tion should be based on a strong formulation. Furthermore, it should not cause pricing
and branching to be too difficult in order for the decomposition to be beneficial.
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Abstract
The Multicommodity Flow Problem (MCFP) considers the efficient routing of com-
modities from their origins to their destinations subject to capacity restrictions and edge
costs. Baier et al. [19] introduced the Maximum-flow Multicommodity k-splittable
Flow Problem (MCkFP) where each commodity may use at mostk paths between its
origin and its destination. This paper studies theNP-hard Minimum Cost Multicom-
modityk-splittable Flow Problem (MCMCkFP) in which a given flow of commodities
has to be satisfied at the lowest possible cost. The problem has applications in trans-
portation problems, where a number of commodities must be routed using a limited
number of distinct transportation units for each commodity. Based on a three-index
formulation by Truffot et al. [191], we present a new two-index formulation for the
problem and solve both formulations through branch-and-price. The three-index algo-
rithm by Truffot et al. is improved by introducing a simple heuristic method to reach
a feasible solution by eliminating some symmetry. A novel branching strategy for
the two-index formulation is presented, forbidding subpaths in the branching children.
Though the proposed heuristic for the three-index algorithm improves its performance,
the three-index algorithm is still outperformed by the two-index algorithm, both with
respect to running time and to the number of solved test instances.

Key words:Network flows; Transportation; Decomposition; Multicommodity flow;

9.1 Introduction

Various variants of the Multicommodity Flow Problem (MCFP)have been considered.
In an MCFP we are given a networkG = (V,E) where each edge has a certain capacity
and possibly an associated cost. Furthermore there is a set of commodities each of
which has to be sent from a starting vertex to an ending vertex. Typically the goal is
one of the following:

1. (Minimum cost) A given flow for each commodity is to be routed through the
network. The goal is to minimize the cost of sending all commodities through
the network.

2. (Maximum flow) The goal is to maximize the flow through the network, i.e.,
there is no fixed flow demand for the commodities. Edge costs are unimportant
because the cost of sending flow is not taken into account.
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The MCFP can be solved in polynomial time, see e.g. [52]. Often, however, there are
extra conditions that have to be satisfied, making the problemNP-hard. An example of
such a condition is an upper bound on the length of the paths used to ship the flow. This
is relevant in telecommunication networks where the path must not be too long as this
may lead to delays. The length-bounded flow problem isNP-hard even for a single
commodity [99]. Another condition could be that all flow for each commodity must be
sent via just one path. This type of problem, which is often denoted theUnsplittable
MCFP, is introduced and provenNP-hard by Kleinberg [121]. Yet another condition
is an upper bound on the number of paths used by a commodity. This is called the
Multicommodityk-splittable Flow Problem (MCkFP). We consider the Minimum Cost
MCkFP (MCMCkFP), which for instance appears in the transportation sector where
a number of different commodities have to be dispatched to various destinations at the
lowest possible cost. For safety reasons, it is not desirable to divide the commodities
into more thank routes.

Robacker [168] considered the flow maximization version of the MCFP. He describes
a decomposition of the problem which he hopes may lead to combinatorial methods
for solving the multicommodity problem. Ford and Fulkerson[73] suggested a variant
of the simplex method, based on column generation, where each simplex step consists
in finding a shortest path. This is the forerunner of the general Dantzig-Wolfe decom-
position procedure [54]. Kamath and Palmon [116] formulated the Maximum MCFP
as a quadratic problem. They solved the problem in polynomial time using an interior
point algorithm. Their results also apply to the Minimum Cost MCFP.

Barnhart et al. [26] considered the Minimum Cost Unsplittable MCFP. They presented
a branch-and-cut-and-price algorithm in which they used column generation to find
bounds in the branch-and-bound tree, and they proposed a newbranching rule allowing
new columns to be generated effectively. They concluded that their cuts only work for
problems where the commodity flow is large compared to the edge capacities.

The Multicommodityk-splittable Flow Problem (MCkFP) was introduced by Baier et
al. [19] who presented approximation algorithms for the Single- and Multicommodity
k-splittable Flow Problems, specifically, variants of the maximum flow problem includ-
ing the maximum budget-constrainedk-splittable Flow Problem. The authors proved
that the Maximum Single-commodityk-splittable Flow Problem isNP-hard in the
strong sense for directed graphs. Finally, they note that for k ≥ |E|, a k-splittable
(s, t) flow problem degenerates to an ordinary(s, t) flow problem.

Koch et al. [123] proved that the Maximum MCkFP isNP-hard in the strong sense
for directed as well as undirected graphs. They also showed that, unlessP = NP ,
no approximation algorithm exists which is better than5

6 . In a later paper, Koch et
al. [122] consider the Maximum MCkFP as a two-stage problem consisting of the
decision on thek paths (routing) and on the amount of flow on the paths (packing). If
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k is a constant, they show that it suffices to consider a polynomial number of packing
alternatives, which can be constructed in polynomial time.If k is part of the input,
Koch et al. propose an approximation algorithm with approximation factor(1 − ε),
ε > 0.

Truffot et al. [192] used branch-and-price to solve the Maximum MCkFP. An edge-
path model was presented to which a branch-and-price algorithm was applied. The
subproblem for the column generation is a shortest path problem solvable in polynomial
time. More recent work on this problem is seen in [190], whereTruffot and Duhamel
also presented a two-index model for the Maximum MCkFP, but they concluded that
the two-index model cannot be used in an efficient way in a branch-and-bound scheme.
Truffot et al. [191] also introduced the minimum cost MCkFP. A three-index model for
the problem was solved using a branch-and-price algorithm.The algorithm is closely
related to the one presented in [192] and [190].

The Minimum Cost MCkFP can be represented by a directed graphG = (V,E), where
V is the set of vertices andE the set of edges. Each edgee ∈ E has a nonnegative cost
ce and a positive capacityue attached. The edge capacities are positive since any edge
with zero capacity can be removed from the graph. The set of commodities is denoted
L and each commodityl ∈ L has a sourcesl, a destinationtl, an amount to be shipped
F l, and a maximal number of routes the commodity may usekl.

Baier et al. [19] and Koch et al. [123] showed that the maximumsingle-commodityk-
splittable flow problem isNP-hard in directed and undirected networks, respectively.
As a consequence, it isNP-hard even to decide whether an instance of the minimum
cost single-commodityk-splittable flow problem has a feasible solution.

In this paper, we compare various formulations of the Minimum Cost MCkFP when
solved through branch-and-price. A two-index formulationis presented and it is com-
pared to the three-index model by Truffot et al. [192]. The two-index model is based
on the work of Barnhart et al. [26] where the formulation is changed from unsplittable
to k-splittable. The model was introduced for the Minimum Cost MCkFP by Gamst et
al. [87] and for the Maximum MCkFP by Truffot and Duhamel [190].

The main contribution of this paper is the branch-and-pricealgorithm for the two-index
model. The algorithm consists of a sophisticated branchingstrategy and a pricing prob-
lem which handles restrictions imposed by branching. Furthermore, we introduce a
heuristic for the three-index model of Truffot et al. [191] which improves the perfor-
mance of the three-index algorithm. Despite the improvement, however, the two-index
algorithm outperforms the three-index model. The three-index algorithm is capable of
solving instances with up to 1085 commodities, 400 nodes, and 1520 edges. The two-
index algorithm solves instances with up to 2239 commodities, 400 nodes, and 1520



9.2 Three-index model 179

edges.

The paper is organized as follows: Section 9.2 contains the three-index mathemati-
cal formulation of Truffot et al. [191] and the corresponding branch-and-price solution
approach. We present a heuristic to speed up the solution process in this section. In
Section 9.3 we introduce the two-index mathematical formulation and solve it through
branch-and-price. Both algorithms are tested and comparedin Section 9.4 showing
that the three-index algorithm is outperformed by the two-index algorithm, both with
respect to running time and to the number of solved test instances. Section 9.5 con-
cludes the paper.

9.2 Three-index model

The three-index model for the MCMCkFP was introduced by Truffot et al. [191]. Let
P l be the set of possible paths for commodityl. The variablexhlp denotes the amount
of flow on pathp for theh’th path of commodityl. The binary variableyhlp decides
whether pathp for theh’th path of commodityl is to be used or not. The model(MIP3)
is:

min
∑

l∈L

kl

∑

h=1

∑

p∈P l

cpx
hl
p

s.t.
∑

l∈L

kl

∑

h=1

∑

p∈P l

δpex
hl
p ≤ ue ∀e ∈ E (9.1)

xhlp − upy
hl
p ≤ 0 ∀l ∈ L, h = 1, . . . , kl, ∀p ∈ P l (9.2)

∑

p∈P l

yhlp ≤ 1 ∀l ∈ L, h = 1, . . . , kl (9.3)

kl

∑

h=1

∑

p∈P l

xhlp ≥ F l ∀l ∈ L (9.4)

xhlp ≥ 0 ∀l ∈ L, h = 1, . . . , kl, ∀p ∈ P l

yhlp ∈ {0, 1} ∀l ∈ L, h = 1, . . . , kl, ∀p ∈ P l

The objective function minimizes the total cost. The costcp of a pathp ∈ P l is defined
as the sum of edge costsce on the path. Constraint (9.1) is a capacity constraint, in
which δpe indicates whether or not edgee is used by pathp. In (9.2),up denotes the
capacity constraint on pathp which is defined asup = min{ue | e ∈ p}, hence (9.2)
forces the decision variableyhlp to be set if there is flow on the corresponding pathxhlp .
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Constraint (9.3) ensures that at most one path is used as theh’th path of a commodity
l, and finally (9.4) ensures that all commodities are shipped.

The model is relaxed into an LP-model: first the binary variablesyhlp are LP-relaxed
to 0 ≤ yhlp ≤ 1. From (9.2) and (9.3) we are given, thatxhlp /up ≤ yhlp ≤ 1, up > 0.
Settingyhlp = xhlp /up, does thus not violate any constraints, instead the formulation is
simplified to only consisting of one type of variables and constraint (9.2) is eliminated.
The model(LP3) is:

min
∑

l∈L

kl

∑

h=1

∑

p∈P l

cpx
hl
p

s.t.
∑

l∈L

kl

∑

h=1

∑

p∈P l

δpex
hl
p ≤ ue ∀e ∈ E

∑

p∈P l

xhlp
up

≤ 1 ∀l ∈ L, h = 1, . . . , kl

kl

∑

h=1

∑

p∈P l

xhlp ≥ F l ∀l ∈ L

xhlp ≥ 0 ∀l ∈ L, h = 1, . . . , kl, ∀p ∈ P l

Model (MIP3), and thus also(LP3), cause symmetry in the solution space as theh-
index may result in equivalent solutions being treated as different solutions. For exam-
ple, consider a commodityl which uses two pathsp1 andp2. Now, the two solutions
x1lp1

= 1, x2lp2
= 2 andx1lp2

= 2, x2lp1
= 1 are treated as different solutions though they

use the same paths. To eliminate some of this symmetry, Truffot et al. usevariable
orderingby adding constraint (9.5) to the models(MIP3) and(LP3):

∑

p∈P l

x(h+1)l
p −

∑

p∈P l

xhlp ≤ 0, ∀l ∈ L, h = 1, . . . , kl − 1 (9.5)

However, (9.5) does not eliminate symmetry introduced by flow variables having the
same amount of flow.

Pricing Problem
The pricing problem can be recognized as a shortest path problem. Letπe ≤ 0 cor-
respond to the first constraint of the primal model,λhl ≤ 0 to the second,σl ≥ 0 to
the third andωhl ≤ 0 to the symmetry constraint (9.5). Even though the primal model
only consists of one variable type, the dual formulation hasthree constraints because
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of the symmetry constraint (9.5). The reduced costs are:

∑

e∈E

δpe(ce − πe)−
λhl

up
+ σl + ωhl ∀l ∈ L, h = 1, ∀p ∈ P l

∑

e∈E

δpe(ce − πe)−
λhl

up
+ σl + ωhl − ω(h−1)l ∀l ∈ L, h = 2, . . . kl − 1, ∀p ∈ P l

∑

e∈E

δpe(ce − πe)−
λhl

up
+ σl − ω(h−1)l ∀l ∈ L, h = kl, ∀p ∈ P l

For each pair of values(h, l) the task is to find a pathp ∈ P l which has negative
reduced cost. If the value forup is known in advance, the problem is a shortest path
problem defined in costs(ce − πe) ≥ 0, which can be solved in polynomial time using
e.g. Dijkstra’s algorithm [5]. Recall, thatup = min{ue|e ∈ p}. That is,up can take on
O(|E|) values; for each of theO(|E|) values ofup the shortest path problem is solved
on a graph, where edges withue < up are removed.

Branching Strategy
The chosen branching scheme is closely related to that proposed by Barnhart et al. [26].
For theh’th path of commodityl, the strategy is based on dividing all edgesφ+(dhl)
going out fromthe first divergencenodedhl, into two subsets. The first divergence
nodedhl of a commodityl and pathh is defined as the node to which all flow of the
l’th commodity is following the same path and from which the flow is using two or
more paths. The two resulting subsets of outgoing edgesφ+1 (dhl) andφ+2 (dhl) are
disjoint and balanced. Now, we use the dichotomic branchingrule adding one of the
following two constraints:





∑

e∈φ
+

1
(dhl)

δpex
hl
p = 0









∑

e∈φ
+

2
(dhl)

δpex
hl
p = 0





Heuristic
To decrease the running time of the branch-and-price algorithm we suggest a simple
heuristic method to reach a feasible solution by eliminating some symmetry. The model
(LP3) can cause problems, as the constraintxhlp /up ≤ 1 will not always be tight and
hence may allow several paths to be used as theh’th path of commodityl. Also, the
mathematical formulation(LP3)does not prevent the same path for a commodity from
taking on several values ofh. For these reasons, any of the two following situations
may occur:

1: For a commodity, several identical paths are used but with different values ofh.
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2: More than one path is used for a single value ofh for a commodity.

In the first case, we merge the paths into one. In the second case, each path is assigned
a unique value ofh, if possible. In this way a feasible solution may be reached faster.

9.3 Two-index model

In order to investigate how theh-indices affect the behavior of the branch-and-price
algorithm, we have studied another path formulation of the MCMCkFP without the
use ofh-indices. The model(MIP2) is:

min
∑

l∈L

∑

p∈P l

cpx
l
p

s.t.
∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (9.6)

xlp − upy
l
p ≤ 0 ∀l ∈ L, ∀p ∈ P l (9.7)

∑

p∈P l

ylp ≤ kl ∀l ∈ L (9.8)

∑

p∈P l

xlp ≥ F l ∀l ∈ L (9.9)

xlp ≥ 0 ∀l ∈ L, ∀p ∈ P l

ylp ∈ {0, 1} ∀l ∈ L, ∀p ∈ P l

Herexlp is the total flow of commodityl on pathp, and the corresponding variableylp
is set if and only if commodityl has flow on pathp. The remaining variables have the
same meaning as in the three-index model. The objective function minimizes the total
cost of routing the commodities. Constraint (9.6) ensures edge capacities are never
violated and constraint (9.7) forces the decision variableto take on value 1, whenever
the amount of flow on the corresponding path is positive. Constraint (9.8) limits the
number of used paths for commodityl to at mostkl and finally constraint (9.9) ensures
that every commodity is shipped.

The problem is relaxed in the same manner as the three-index model, i.e., we replace
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ylp with xlp/up getting(LP2):

min
∑

l∈L

∑

p∈P l

cpx
l
p

s.t.
∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (9.10)

∑

p∈P l

xlp
up

≤ kl ∀l ∈ L (9.11)

∑

p∈P l

xlp ≥ F l ∀l ∈ L (9.12)

xlp ≥ 0 ∀l ∈ L, ∀p ∈ P l

Constraint (9.7) becomes redundant and is removed from the formulation.

Pricing Problem
Let πe, λl andσl be the dual variables for equations (9.10), (9.11) and (9.12) in (LP2).
The reduced cost for a commodityl ∈ L and for a pathp ∈ P l is given by:

∑

e∈E

δpe(ce − πe)−
λl

up
+ σl (9.13)

We have thatcp ≥ 0, σl ≤ 0 and the terms−
∑

e∈E δ
p
eπe and−λl/up are nonnegative

sinceπe ≤ 0 andλl ≤ 0. The problem (9.13) is thus equivalent to the pricing problem
for the three-index algorithm: a shortest path problem defined in costs(ce − πe) ≥ 0
which must be solved for each possible value ofup for each commodityl.

Branching Strategy
The branching strategy from Section 9.2 unfortunately doesnot work for the two-

index algorithm due to the lackingh-indices in the formulation. Nor can we use the
original formulation from Barnhart et al. [26] since we are allowed to usekl paths for
each commodity. Thus, we have developed a novel branching strategy for the(LP2)
formulation of the problem.

The branching strategy for the two-index algorithm consists of forbidding sequences of
edges. In the general case it does not suffice to forbid the useof a single edge or node.
Consider a divergence node for some commodity. The number ofpaths emanating
from this node may be larger than the number of outgoing edges. Thus, forbidding an
edge can result in forbidding several paths. This is not desirable, as an optimal solution
becomes unreachable when it uses all edges going out of a divergence node. A similar
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situation can occur when forbidding nodes. Instead, paths emanating from a divergence
node are considered.

Let γvl be the set of paths for commodityl ∈ L emanating from divergence nodev,
and let the number of elements inγvl be greater thankl. In this case, branching is
necessary. A feasible solution includes at mostkl of the paths inγvl. Thus, the paths
in γvl are divided intokl + 1 branching children, and when branching, the paths in the
corresponding branching child are forbidden.

The branching strategy is feasible since any subset ofkl paths fromγvl can be used in a
solution in at least one of the branching children. Considerany subset ofkl paths from
γvl. Each of the paths in the subset is forbidden in exactly one branching child, i.e., the
total number of branching children, including at least one of the paths, is at mostkl.
Sincekl + 1 branching children are generated, at least one branching child holds none
of thekl paths.

When branching, the resulting solution space in each branching child is reduced ac-
cording to the forbidden paths. The solution spaces of branching siblings, however, are
not necessarily disjoint; a solution using less thankl paths fromγvl is feasible in several
branching children. The branching strategy may thus imposedegeneracy problems.

The number of columns in the master problem is possibly exponential. Thus, the
branching strategy may cause a large search tree, because the number of paths to forbid
can be very large.

To limit degeneracy problems and to limit the size of the search tree, the branching
strategy is changed into forbidding certain sequences of edges rather than forbidding
entire paths. A path consists of a sequence of edges. Thekl+α, α ≥ 1 paths inγvl may
share several edges, but two paths never share all edges. When generating the branching
children it thus suffices to findkl+1 different edge sequences used by the paths inγvl.
Each edge sequence must be consecutive, i.e., it forms a connected subpath, and no
two subpaths share all edges. LetΓvl be the set of thekl + 1 different edge sequences
derived from the paths inγvl. Let the edge sequences be derived such, that each path
in γvl uses exactly one of the edge sequences, and each edge sequence consists of as
few edges as possible. This can be done by a breadth first search of all edges used by
the paths inγvl. When branching, the edge sequences of the corresponding branching
child are forbidden. This is feasible by the same argument for the strategy forbidding
entire paths.

The reason for forbidding edge sequences rather than entirepaths, is that a forbidden
edge sequence may cut off more of the solution space, becausemore than one path is
possibly forbidden. This may lead to less degeneracy in the branching children, and to
a smaller search tree size.
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An illustration of the branching strategy is seen in Figure 9.1. In the figure, a graph
with four nodes is seen. A commodity with sources and targett is to be routed using at
most two paths. In the current solution three paths are used:p1 = {eA, eD, eE}, p2 =
{eA, eC , eE} andp3 = {eB, eC , eE}. Assume that the optimal solution consists of
pathp1 andp3. When branching on the current solution it is thus not feasible to forbid
the use of any single path or node. Instead,kl + 1 subpaths are found:{eA, eC},
{eA, eD} and{eB}. Now, the optimal solution is found in the branching child which
forbids the use of edge sequence{eA, eC}.

s t

eB

eA

eD

eC

eE

Figure 9.1: A graph used to illustrate the branching strategy. The graph consists of
four nodes, the leftmost node is denoteds, and the rightmost node,t. Edges are
eA, eB, eC , eD andeE .

The branching strategy necessitates some changes to the pricing problem. When solv-
ing the shortest path problem, we need to ensure that we do notuse the forbidden edge
sequences. The shortest path problem with forbidden paths is a polynomial problem
and can be solved using a modifiedk-shortest path algorithm [199].

9.4 Computational results

The described branch-and-price algorithms for the two models were tested on a 2.66
GHz Intel Xeon machine with 8 Gb RAM. Note, that CPU times in the following stem
from using one core. The algorithms have been implemented using the framework
COIN [140] with ILOG CPLEX 10.2 as LP-solver. Computations regarding selec-
tion of branching candidate and branching child are handledby COIN.

When reporting the running times of the three-index model, we refer to our own im-
plementation of the three-index algorithm. All tests have been performed with uniform
values ofk, i.e.,kl = k for all commoditiesl ∈ L.

In both algorithms we have through preliminary results [87]decided to use strong
branching [14]. We investigate all possible branching candidates. A best-first search
strategy is used in the branch-and-bound tree. Also, based on [87], we set the num-
ber of paths priced in per iteration to0.5 · |L| · k for the three-index algorithm and to
0.5·|L| for the two-index algorithm. For the three-index model we multiply the number
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of paths priced in per iteration withk because of the extrah-index in the model. For
both algorithms we never price more than one path into the restricted master problem
for each pair of values(h, l) or for each commodityl, respectively, per iteration. This
is to keep column generation simple.

The algorithms are tested on four types of problems: The Carbin instances [7], also
denotedbl , bs , and thegrid andplanar instances [134]. The Carbin instances
are randomly generated problems. Thegrid instances are formed as grids, and the
planar are designed to simulate problems arising in telecommunication. Note, that
we have not performed tests on all of the instances. We have not solved the Carbin
instances with variable edge weights, because the algorithms cannot handle this. For
thegrid and theplanar instances this is due to the algorithms being unable to solve
the larger instances in reasonable time.

First, we test the branch-and-price algorithm for the three-index model with and with-
out the proposed heuristic. Results can be seen in Table 9.1.Overall, the running time
is improved significantly for the solved instances when the heuristic is included. As
can be seen in the table, this is due to achieving a smaller search tree when using the
heuristic; the impact of the heuristic is that less branching is required to reach a feasi-
ble solution. Furthermore, the table shows that very littletime is spent on running the
heuristic. For several instances, the optimal solution is found in the root node when
using the heuristic. This, however, is not the case for all instances. For the unsolved
instances, using the heuristic either leads to better bounds or it has no effect on the
performance. Throughout the remaining of this section, theheuristic is thus included
in the branch-and-price algorithm for the three-index model, and the heuristic is run in
every node of the search tree.

Next, we compare the two branch-and-price algorithms with each other. A summary
of the results can be seen in Table 9.2. Table 9.3 and 9.4 show detailed test data for
the Carbin instances, Table 9.5 shows detailed test data fortheplanar instances and
Table 9.6 shows detailed test data for thegrid instances.

For k = 2, the three-index algorithm solves only three of thebs instances and six
of the bl instances, while the two-index algorithm is capable of solving nine out of
the elevenbs instances and all thebl instances. The average running time for the
two-index algorithm is considerably better than for the three-index algorithm. Fork =
3, the three-index algorithm is unable to solve three of thebs instances and onebl
instance, where the two-index algorithm solves all to optimality. Again the two-index
algorithm shows a better average running time than that of the three-index algorithm.
Both algorithms are capable of solving all the Carbin instances fork = 10, however,
the two-index algorithm averagely spends less time on doingso than the three-index
algorithm.

The running times reflect the complexity of the corresponding problem instances and
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used algorithms. Whenever the value ofk exceeds some threshold value, the running
time for solving the instance decreases. The reason for thisis that at some point,k
does not impose a constraint on the problem, i.e., the instance corresponds to the lin-
ear MCFP. The value ofk has greater impact on the three-index algorithm. Whenk
takes on a value greater than the mentioned threshold, the running time of the three-
index algorithm increases, because columns are generated for eachh = 1, . . . , k, and
are priced into the master problem. Generating columns and solving a larger master
problem is time consuming. Also, even if the value ofk is greater than the threshold,
the three-index algorithm may generate solutions using more then one path as theh’th
path, hence causing the algorithm to branch. The same is obviously not the case for the
two-index algorithm.

The three-index algorithm fails to solve the largestplanar instance fork = 2 andk =
3. The two-index algorithm solves all theplanar instances. The average running time
for the algorithms shows, that the two-index algorithm performs significantly better
than the three-index algorithm fork = 2 andk = 10, but the three-index algorithm has
smaller running time fork = 3.

For largergrid instances withk = 2, both algorithms experience problems. The
three-index algorithm solves four, and the two-index algorithm solves five out of seven
instances. Fork = 3, the three-index algorithm manages to solve five out of seven
instances, and the two-index algorithm solves all instances. Fork = 10 all instances
are solved. Again, the two-index algorithm shows a better average running time than
the three-index algorithm fork = 2 andk = 10, while the opposite holds fork = 3.
Larsson and Yuan [134] are capable of solving allgrid instances as the linear MCFP.
Neither of the two algorithms here presented are capable of solving instances as large
as Larsson and Yuan, which is due to our algorithms not being specialized for the linear
MCFP.

The three-index algorithm is capable of solving instances with up to 2239 commodities,
850 edges and 150 nodes (planar150), and 400 commodities, 1520 edges and 400 nodes
(grid400:1520:400) for k = 10, and instances with up to 532 commodities, 1085 edges
and 100 nodes (planar100) for k = 2. The two-index algorithm solves instances with
up to 2239 commodities, 850 edges and 150 nodes (planar150) and 400 commodities,
1520 edges and 400 nodes (grid400:1520:400) for k = 10, and instances with up to 2239
commodities, 850 edges and 150 nodes (planar150) for k = 2. Also, the three-index
algorithm is capable of solving about 76% of the test instances to optimality, while the
two-index has solved just over 96% of the test instances to optimality. Hence, for the
far majority of the problem instances, the two-index algorithm outperforms the three-
index algorithm both with respect to time spent and to the number of instances solved
to optimality. We conclude that this is partly due to the extra h-index in the three-
index model causing symmetry in the solution space, and partly due to the three-index
algorithm havingk times as many variables as the two-index algorithm.
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9.5 Conclusions

In this paper we have presented a branch-and-price algorithm for the MCMCkFP which
outperforms existing methods. The new branch-and-price algorithm is based on a two-
index formulation, which unlike previous formulations omits a symmetry inducing in-
dex for each of thek paths per commodity. The two-index model was independently
suggested for the Maximum Flow MCkFP by Truffot et al. [191], but the authors dis-
carded the model since it complicates branching. We have presented a branching strat-
egy for the model which ensures that the pricing problem can be solved efficiently. The
branching strategy and the algorithm for the resulting pricing problem can also be used
for the Maximum Flow problem. Thus, our branch-and-price algorithm can be viewed
as a general framework applicable for various variants of the MCkFP.

Furthermore, we have introduced a rounding heuristic for the three-index branch-and-
price algorithm which transforms certain fractional solutions into feasible solutions.
Though the heuristic boosts the performance of the three-index algorithm, it is still
outperformed by the two-index algorithm. The three-index algorithm including the
proposed heuristic has solved 76% of the problem instances to optimality within the
available time and space, where the two-index has solved 96%of the problem instances
to optimality. Further comparison of the algorithms shows,that the two-index branch-
and-price algorithm also outperforms the three-index algorithm with respect to running
time.

The solution times for the Minimum Cost MCkFP are larger than those of Barnhart et
al. [26] for the unsplittable MCFP. This indicates that thek-splittable constraints are
harder to maintain than the unsplittable constraints, probably because thek-splittable
constraints increase the size of the solution space and introduce symmetry. In order
to improve the performance it could be interesting to tighten the formulations through
various cuts, as done in e.g. Jepsen et al. [111]. Also, adding constraints which break
the symmetry might improve the solution times. The introduction of a good initial
heuristic will only marginally improve the running times, since the current algorithm
generally quickly finds a good upper bound.
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Problem, k Heur. Time H. Time Tree size Depth Col. Gap UB

bl01, 2 no 176.28 - >48000 54 353 0.04 1549555.0
bl01, 2 yes 177.74 - >48000 54 356 0.04 1549555.0
bl01, 3 no 0.80 - 101 45 525 0.00 1548873.0
bl01, 3 yes 0.33 <0.01 35 17 525 0.00 1548873.0
bl01, 10 no 0.91 - 31 15 1740 0.00 1548873.0
bl01, 10 yes 0.12 <0.01 1 0 1740 0.00 1548873.0
bl03, 2 no 225.06 - >34000 75 422 0.23 15836.0
bl03, 2 yes 225.38 - >34000 75 417 0.23 15836.0
bl03, 3 no 2.98 - 317 49 591 0.00 15799.0
bl03, 3 yes 0.44 <0.01 1 0 591 0.00 15799.0
bl03, 10 no 2.17 - 63 31 2020 0.00 15799.0
bl03, 10 yes 0.13 <0.01 1 0 2020 0.00 15799.0
bs01, 2 no 212.65 - >43000 73 407 0.23 1536558.0
bs01, 2 yes 213.30 - >43000 73 408 0.23 1536558.0
bs01, 3 no 73.25 - 6295 65 579 0.00 1533606.0
bs01, 3 yes 66.15 0.32 5531 45 579 0.00 1533606.0
bs01, 10 no 5.34 - 171 45 1870 0.00 1533095.0
bs01, 10 yes 0.11 <0.01 1 0 1870 0.00 1533095.0
bs03, 2 no 0.59 - 125 28 325 0.00 16488.0
bs03, 2 yes 0.47 <0.01 97 25 325 0.00 16488.0
bs03, 3 no 0.17 - 29 14 438 0.00 16488.0
bs03, 3 yes 0.02 <0.01 1 0 438 0.00 16488.0
bs03, 10 no 1.31 - 61 25 1470 0.00 16488.0
bs03, 10 yes 0.08 0.04 1 0 1470 0.00 16488.0
bs13, 2 no 581.78 - >11000 234 1397 0.17 3259617.5
bs13, 2 yes 569.69 - >11000 231 1393 0.17 3259606.0
bs13, 3 no 492.96 - >10000 208 2110 0.01 3254481.25
bs13, 3 yes 529.69 - >10000 168 2103 <0.01 3254331.5
bs13, 10 no 222.87 - 857 176 7039 0.00 3254081.06
bs13, 10 yes 1.42 0.01 1 0 7030 0.00 3254081.06

Table 9.1: Results for the three-index algorithm with and without the proposed heuris-
tic. The second columnHeur., indicates whether the heuristic is included. Next follows
total time usage (Time), and time spent on running the heuristic (H. Time). The Table
gives information about the tree size and depth (Tree sizeandDepth), as well as the
number of columns added to the master problem (Col.). Time is measured in seconds
andGap in percent between upper and lower bound. An optimal solution is found
whenever Gap=0.00. A non-zero gap, indicate that the testrun ran out of memory.
Upper bounds have been rounded to two decimal precision.
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Name k # instances 3-index 2-index
A.Mean Opt. A.Mean Opt.

bl 2 11 5.06 6/11 1.90 11/11
bl 3 11 0.43 10/11 0.21 11/11
bl 10 11 0.87 11/11 0.22 11/11
bs 2 11 41.66 3/11 0.32 9/11
bs 3 11 37.95 8/11 0.32 11/11
bs 10 11 1.08 11/11 0.27 11/11
planar 2 5 117.92 4/5 3.09 5/5
planar 3 5 2.58 4/5 2.75 5/5
planar 10 5 267.40 5/5 15.13 5/5
grid 2 7 1.40 4/7 0.24 5/7
grid 3 7 0.09 5/7 0.73 7/7
grid 10 7 7.00 7/7 1.31 7/7

Table 9.2: The number of test instances solved to optimalitywith the 3-index and 2-
index algorithms, for variousk values.A.Mean is the average mean time in seconds
calculated over those instances solved to optimality by both algorithms.
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Name k 3-index 2-index
Time Gap UB Time Gap UB

bl01 2 177.45 0.04 1549555.00 1.79 0.00 1549555.00
bl01 3 0.33 0.00 1548873.00 0.05 0.00 1548873.00
bl01 10 0.11 0.00 1548873.00 0.02 0.00 1548873.00
bl03 2 224.00 0.23 15836.00 5.28 0.00 15836.00
bl03 3 0.04 0.00 15799.00 0.04 0.00 15799.00
bl03 10 0.13 0.00 15799.00 0.04 0.00 15799.00
bl05 2 2.72 0.00 460698.00 9.55 0.00 460698.00
bl05 3 0.73 0.00 460041.00 0.08 0.00 460041.00
bl05 10 0.09 0.00 460037.00 0.02 0.00 460037.00
bl07 2 0.04 0.00 5588.00 0.04 0.00 5588.00
bl07 3 0.04 0.00 5588.00 0.03 0.00 5588.00
bl07 10 0.15 0.00 5588.00 0.04 0.00 5588.00
bl09 2 11.97 0.00 6106441.00 0.99 0.00 6106441.00
bl09 3 0.20 0.00 6106255.00 0.18 0.00 6106255.00
bl09 10 0.75 0.00 6106255.00 0.17 0.00 6106255.00
bl11 2 2.70 0.00 68088.50 0.21 0.00 68088.50
bl11 3 0.11 0.00 68086.00 0.13 0.00 68086.00
bl11 10 0.48 0.00 68086.00 0.13 0.00 68086.00
bl15 2 345.16 0.05 32237.00 77.76 0.00 32235.00
bl15 3 0.24 0.00 32220.00 0.24 0.00 32220.00
bl15 10 0.82 0.00 32220.00 0.26 0.00 32220.00
bl17 2 5.33 0.00 13086437.00 0.58 0.00 13086437.00
bl17 3 0.30 0.00 13086437.00 0.32 0.00 13086437.00
bl17 10 1.33 0.00 13086437.00 0.28 0.00 13086437.00
bl19 2 7.59 0.00 108027.00 0.62 0.00 108027.00
bl19 3 0.41 0.00 108027.00 0.42 0.00 108027.00
bl19 10 1.68 0.00 108027.00 0.35 0.00 108027.00
bl21 2 463.15 0.02 5571253.00 19.27 0.00 5571239.00
bl21 3 0.55 0.00 5570292.00 0.58 0.00 5570292.00
bl21 10 2.20 0.00 5570292.00 0.55 0.00 5570292.00
bl23 2 472.65 0.02 54414.50 58.84 0.00 54414.50
bl23 3 429.00 <0.01 54402.00 2.14 0.00 54402.00
bl23 10 1.80 0.00 54401.00 0.51 0.00 54401.00

Table 9.3: Results for the three-index and the two-index algorithms on the Carbin
instances calledbl . Time is measured in seconds andGap in percent between upper
and lower bound. An optimal solution is found whenever Gap=0.00. The maximal
running time is set to 1800 seconds. Results with Time< 1800, and a non-zero gap,
indicate that the testrun ran out of memory. Upper bounds have been rounded to two
decimal precision.
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Name k 3-index 2-index
Time Gap UB Time Gap UB

bs01 2 213.71 0.23 1536558.00 5.21 0.00 1536558.00
bs01 3 66.15 0.00 1533606.00 0.10 0.00 1533606.00
bs01 10 0.11 0.00 1533095.00 0.04 0.00 1533095.00
bs03 2 0.55 0.00 16488.00 0.10 0.00 16488.00
bs03 3 0.03 0.00 16488.00 0.02 0.00 16488.00
bs03 10 0.08 0.00 16488.00 0.04 0.00 16488.00
bs05 2 331.11 0.59 410502.00 9.57 0.00 410417.00
bs05 3 380.74 0.09 408496.00 0.43 0.00 408496.00
bs05 10 0.19 0.00 408114.00 0.07 0.00 408114.00
bs07 2 273.61 0.28 5816.00 4.65 0.00 5816.00
bs07 3 182.37 0.00 5801.00 0.16 0.00 5801.00
bs07 10 0.14 0.00 5800.00 0.06 0.00 5800.00
bs11 2 403.03 <0.01 63381.83 0.84 0.00 63381.83
bs11 3 0.32 0.00 63380.33 0.34 0.00 63380.33
bs11 10 1.19 0.00 63380.33 0.21 0.00 63380.33
bs13 2 506.64 0.17 3259573.50 523.72 0.02 3258178.50
bs13 3 610.59 <0.01 3254299.00 5.77 0.00 3254192.72
bs13 10 1.28 0.00 3254081.06 0.35 0.00 3254081.06
bs15 2 440.36 0.09 35392.00 62.74 <0.01 35390.00
bs15 3 499.73 <0.01 35362.00 0.77 0.00 35362.00
bs15 10 0.78 0.00 35360.00 0.28 0.00 35360.00
bs17 2 62.52 0.00 11323466.00 0.53 0.00 11323466.00
bs17 3 0.33 0.00 11323427.00 0.34 0.00 11323427.00
bs17 10 1.32 0.00 11323427.00 0.33 0.00 11323427.00
bs19 2 58.90 0.00 105449.50 0.34 0.00 105449.50
bs19 3 0.29 0.00 105449.50 0.36 0.00 105449.50
bs19 10 1.26 0.00 105449.50 0.31 0.00 105449.50
bs21 2 658.58 0.03 5194721.00 27.37 0.00 5194297.00
bs21 3 53.54 0.00 5193164.50 0.62 0.00 5193164.50
bs21 10 2.93 0.00 5193164.50 0.64 0.00 5193164.50
bs23 2 616.91 0.05 53994.50 652.64 0.00 53987.00
bs23 3 0.56 0.00 53968.63 0.62 0.00 53968.63
bs23 10 2.65 0.00 53968.63 0.68 0.00 53968.63

Table 9.4: Results for the three-index and the two-index algorithms on the Carbin
instances calledbs . Time is measured in seconds andGap in percent between upper
and lower bound. An optimal solution is found whenever Gap=0.00. The maximal
running time is set to 1800 seconds. Results with Time< 1800, and a non-zero gap,
indicate that the testrun ran out of memory. Upper bounds have been rounded to two
decimal precision.
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Name k 3-index 2-index
Time Gap UB Time Gap UB

planar30 2 0.04 0.00 44350624.00 0.06 0.00 44350624.00
planar30 3 0.06 0.00 44350624.00 0.06 0.00 44350624.00
planar30 10 0.20 0.00 44350624.00 0.07 0.00 44350624.00
planar50 2 0.29 0.00 122199689.00 0.87 0.00 122199689.00
planar50 3 0.39 0.00 122199689.00 0.55 0.00 122199689.00
planar50 10 1.79 0.00 122199689.00 0.50 0.00 122199689.00
planar80 2 243.72 0.00 182438134.00 6.70 0.00 182438134.00
planar80 3 2.90 0.00 182438134.00 2.42 0.00 182438134.00
planar80 10 15.93 0.00 182438134.00 2.46 0.00 182438134.00
planar100 2 227.61 0.00 231339582.00 10.81 0.00 231339582.00
planar100 3 6.97 0.00 231339582.00 7.95 0.00 231339582.00
planar100 10 37.12 0.00 231339582.00 7.64 0.00 231339582.00
planar150 2 1503.54 >1000 545566045720.00 248.59 0.00 548087089.00
planar150 3 1302.07 >1000 545566045720.00 83.24 0.00 548087089.00
planar150 10 1281.94 0.00 548087089.00 64.99 0.00 548087089.00

Table 9.5: Results for the three-index and the two-index algorithms onplanar in-
stances.Time is measured in seconds andGap in percent between upper and lower
bound. An optimal solution is found whenever Gap=0.00. The maximal running time
is set to 1800 seconds. Results with Time< 1800, and a non-zero gap, indicate that the
testrun ran out of memory. Upper bounds have been rounded to two decimal precision.
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Name k 3-index 2-index
Time Gap UB Time Gap UB

grid25:80:50 2 0.03 0.00 827319.00 0.05 0.00 827319.00
grid25:80:50 3 0.05 0.00 827319.00 0.02 0.00 827319.00
grid25:80:50 10 0.07 0.00 827319.00 0.03 0.00 827319.00
grid25:80:100 2 0.42 0.00 1705378.00 0.08 0.00 1705378.00
grid25:80:100 3 0.08 0.00 1705378.00 0.08 0.00 1705378.00
grid25:80:100 10 0.24 0.00 1705378.00 0.06 0.00 1705378.00
grid100:360:50 2 1.06 0.00 1524657.00 0.21 0.00 1524657.00
grid100:360:50 3 0.06 0.00 1524642.00 0.05 0.00 1524642.00
grid100:360:50 10 0.18 0.00 1524642.00 0.06 0.00 1524642.00
grid100:360:100 2 4.07 0.00 3031717.00 0.61 0.00 3031717.00
grid100:360:100 3 0.18 0.00 3031695.00 0.20 0.00 3031695.00
grid100:360:100 10 0.61 0.00 3031695.00 0.18 0.00 3031695.00
grid225:840:100 2 133.91 <0.01 5049776.50 70.71 0.00 5049759.50
grid225:840:100 3 14.52 0.00 5049688.50 3.28 0.00 5049688.50
grid225:840:100 10 1.84 0.00 5049688.50 0.54 0.00 5049688.50
grid225:840:200 2 275.21 <0.01 10402290.80 212.23 <0.01 10402154.75
grid225:840:200 3 309.44 <0.01 10401819.87 7.18 0.00 10401782.00
grid225:840:200 10 12.19 0.00 10401782.00 1.92 0.00 10401782.00
grid400:1520:400 2 252.51 >1000 15281128750.00 614.19 <0.01 25864060.50
grid400:1520:400 3 251.16 >1000 15281128750.00 28.07 0.00 25864036.57
grid400:1520:400 10 33.85 0.00 25864036.57 6.39 0.00 25864036.57

Table 9.6: Results for the three-index and the two-index algorithms on thegrid in-
stances.Time is measured in seconds andGap in percent between upper and lower
bound. An optimal solution is found whenever Gap=0.00. The maximal running time
is set to 1800 seconds. Results with Time< 1800, and a non-zero gap, indicate that the
testrun ran out of memory. Upper bounds have been rounded to two decimal precision.
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The Multi-Commodityk-splittable Maximum Flow Problem consists of routing as
much flow as possible through a capacitated network such thateach commodity uses at
mostk paths and the capacities are satisfied. The problem has previously been solved
to optimality through branch-and-price. In this paper we propose two new exact so-
lution methods both based on an alternative decomposition.The two methods differ
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in their branching strategy. The first method, which branches on forbidden edge se-
quences, shows some performance difficulty due to large search trees. The second
method, which branches on forbidden and forced edge sequences, demonstrates much
better performance. The latter also outperforms a leading exact solution method from
the literature. Furthermore, a heuristic algorithm is presented. The heuristic is fast and
yields good solution values.

Key words:Multi-Commodity flow, k-splittable, branch-and-price, Dantzig-Wolfe de-
composition

10.1 Introduction

The Multi-Commodityk-splittable Maximum Flow Problem (MCkMFP) consists of
maximizing the amount of routed flow through a capacitated network such that each
commodity uses at mostk paths and the capacities are satisfied. The MCkMFP appears
in the transportation sector when a number of commodities must be routed using only
a limited number of transportation units, and in telecommunication for limiting the
number of used network connections.

The Multi-Commodityk-splittable Flow Problem (MCkFP) was presented by Baier et
al. [19], who solved the Maximum Budget-Constrained Single- and Multi-Commodity
k-splittable Flow Problems using approximation algorithms. The authors proved that
the Maximum Single-Commodityk-splittable Flow Problem isNP-hard in the strong
sense for directed graphs. Finally, they noted that fork ≥ |E|, ak-splittable(s, t) flow
problem degenerates to an ordinary(s, t) flow problem.

Koch et al. [123] proved that the MCkMFP isNP-hard in the strong sense for directed
as well as undirected graphs, and showed that whenP 6= NP, the best possible ap-
proximation factor is56 . Koch et al. [122] considered the MCkMFP as a two-stage
problem, where the first stage consists of the decision on thek paths (routing) and the
second of the amount of flow on the paths (packing). Ifk is a constant then it suffices
to consider a polynomial number of packing alternatives, which can be constructed in
polynomial time. Ifk is part of the input, they proposed an approximation algorithm
having approximation factor(1− ε), ε > 0.

Truffot and Duhamel [190] used branch-and-price to solve the Single-Commodityk-
splittable Maximum Flow Problem (SCkMFP). A 3-index edge-path model was pre-
sented to which a branch-and-price algorithm was applied. The pricing problem for
the column generation is a shortest path problem solvable inpolynomial time. Further-
more, Truffot et al. [192] have applied their 3-index branch-and-price algorithm to the
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MCkMFP.

Gamst et al. [83] used branch-and-price to solve the MinimumCost Multi-Commodity
k-splittable Flow Problem (MCMCkFP). They applied the algorithm of Truffot et al.
[192] to the MCMCkFP. Furthermore, they proposed a new branch-and-price algorithm
based on a 2-index model. The latter showed very good performance and outperformed
the existing branch-and-price algorithm.

The MCkMFP can be represented by a directed graphG = (V,E), whereV is the
set of vertices andE the set of edges. A positive capacityue is associated with every
edgee ∈ E. Edge capacities are positive since any edgee ∈ E with non-positive
capacity can be removed from the graph. The set of commodities is denotedL and
each commodityl ∈ L has a sourcesl ∈ E and a destinationtl ∈ E. The maximal
number of routes each commodity may use is denotedk.

In this paper three exact solution methods are applied to theMCkMFP and compared.
The 3-index branch-and-price algorithm (3BP) by Truffot etal. [192] is extended with a
heuristic proposed by Gamst et al. [83] to reach feasible solutions faster. The extended
3BP is compared to two algorithms based on a 2-index formulation by Truffot and
Duhamel [190] which was never investigated further. Both algorithms are based on the
2-index branch-and-price algorithm of Gamst et al. [83] applied to the MCkMFP. The
two algorithms only differ in their branching scheme. The first algorithm (2BP) uses
the same branching strategy as in the literature where certain subpaths are forbidden
and the second algorithm (2BP’) uses a new branching strategy where the use of certain
paths is either forced or forbidden.

The main contribution of this paper is to apply the 2BP algorithm to the MCkMFP and
especially to introduce the branching scheme of the 2BP’ algorithm. Furthermore, a
heuristic use of the 2BP and 2BP’ algorithms is presented, denoted 2HEUR.

The paper is organized as follows. First, the MCkMFP is formally introduced in Sec-
tion 10.2. The 2BP algorithm is presented in Section 10.3, which is followed by
the 2BP’ algorithm in Section 10.4. All algorithms are tested and compared in Sec-
tion 10.5. Section 10.6 concludes the paper.

10.2 The multi-commodity k-splittable maximum flow
problem

The MCkMFP can be formulated as an edge-based model on the graphG. The model
contains two types of variables: the flow variablesxhle representing the amount of flow
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on edgee for theh’th path of commodityl and the decision variablesyhle indicating
whether or not edgee is used by theh’th path of commodityl. A backward edgeel
with unlimited capacity and with flowxhel is added for each commodityl to ease flow
conservation constraints. Edge(t, s) in Figure 10.1 is a backward edge.

s
2,1

a

0,1

1,1

1,1

b

g

f
0,1

1,1

1,1
c

h

e

0,1

1,1

1,1

d
2,1

t

2,1

Figure 10.1: The example illustrates an infeasible path. The pathP : s → a → b →
c → d → e → f → a → g → h → d → t contains a subtour and the amount of flow
on used edges differs. The illustration is taken from [192].

To model flow conservation, let the set of incoming edges at vertexv be denotedφ−(v)
and the set of outgoing edges at vertexv be denotedφ+(v). For each commodity, the
sum of ingoing edges must equal the sum of outgoing edges at each vertex. Similarly
for each commodity, the total amount of incoming flow must equal the total amount
of outgoing flow at each vertex. Subtours may occur, as shown in Figure 10.1. The
verticess and t denote the source and destination of a given commodity consisting
of 2 units of flow. At each edgee the pair (xhle , yhle ) is given. Consider the path:
s → a → b → c → d → e → f → a → g → h → d → t → s. The path is not
feasible because of the subtour, but flow conservation is satisfied. The subtour can be
eliminated by adding a constraint saying that for theh’th path of commodityl, each
vertex can have at most one incoming (and thus outgoing) edge. The edge-based model
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now becomes:

max
∑

l∈L

k
∑

h=1

∑

e∈φ+(sl)

xhle (10.1)

s.t.
∑

e∈φ−(v)

xhle =
∑

e∈φ+(v)

xhle ∀v ∈ V, ∀l ∈ L, ∀h ∈ {1, . . . , k} (10.2)

∑

e∈φ−(v)

yhle =
∑

e∈φ+(v)

yhle ∀v ∈ V, ∀l ∈ L, ∀h ∈ {1, . . . , k} (10.3)

∑

l∈L

k
∑

h=1

xhle ≤ ue ∀e ∈ E (10.4)

xhle − uey
hl
e ≤ 0

∀l ∈ L, ∀h ∈ {1, . . . , k} ,
∀e ∈ E ∪ {ehel}

(10.5)

∑

e∈φ−(v)

yhle ≤ 1 ∀l ∈ L, ∀h ∈ {1, . . . , k} , ∀v ∈ V (10.6)

xhle ≥ 0 ∀l ∈ L, ∀h ∈ {1, . . . , k} , ∀e ∈ E

yhle ∈ {0, 1} ∀l ∈ L, ∀h ∈ {1, . . . , k} , ∀e ∈ E

The objective function (10.1) maximizes the total amount ofrouted flow. Constraints
(10.2) and (10.3) are flow conservation constraints, (10.4)ensure that the capacity con-
straint on each edge is not violated and (10.5) force each decision variableye to take on
value 1 whenever the amount of flow on edgee is positive. Constraints (10.6) prevent
subtours.

Truffot et al. [192] solved the MCkMFP by applying Dantzig-Wolfe decomposition
to the edge-based model [54]. We denote their branch-and-price algorithm 3BP. The
pricing problem finds theh’th path of commodityl and the master problem merges
paths into an overall feasible solution. Here, we present the master problem to motivate
our work on the MCkMFP. In the master problem, the variablexhlp ≥ 0 denotes the
amount of flow on pathp for the h’th path of commodityl and the binary variable
yhlp denotes whether or not pathp is used as theh’th path for commodityl. The 3BP
problem is:

max
∑

l∈L

k
∑

h=1

∑

p∈P l

xhlp

s.t.
∑

l∈L

k
∑

h=1

∑

p∈P l

δpex
hl
p ≤ ue ∀e ∈ E (10.7)

xhlp − upy
hl
p ≤ 0 ∀l ∈ L, h ∈ {1, . . . , k} , ∀p ∈ P l (10.8)
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∑

p∈P l

yhlp ≤ 1 ∀l ∈ L, h ∈ {1, . . . , k} (10.9)

xhlp ≥ 0 ∀l ∈ L, h ∈ {1, . . . , k} , ∀p ∈ P l

yhlp ∈ {0, 1} ∀l ∈ L, h ∈ {1, . . . , k} , ∀p ∈ P l

The objective function maximizes the total amount of routedflow. The setP l contains
pathsp for commodityl. In capacity constraints (10.7),δpe indicates whether or not
edgee is used by pathp. The constantup denotes the capacity constraint on pathp,
which is defined asup = min{ue | e ∈ p}. Hence, constraints (10.8) force the decision
variableyhlp to be set if there is flow on the corresponding pathxhlp . Constraints (10.9)
ensure that at most one path is used as theh’th path of a commodityl.

Gamst et al. [83] applied the 3BP algorithm to The Minimum Cost k-splittable Flow
Problem and argued that the path indexh ∈ {1, . . . , k} causes symmetry in the solution
space as well as a large number of columns in the master problem. To overcome these
problems they presented a master problem without the path index and a corresponding
branch-and-price algorithm (2BP). In the following sections we show that the 2BP
algorithm can be applied to the MCkMFP, we introduce a heuristic to possibly find
feasible solutions faster, and we present a branch-and-price algorithm (2BP’) based on
the same master problem as in the 2BP algorithm, but with a newbranching strategy.

10.3 The 2-index branch-and-price algorithm (2BP)

Applying Dantzig-Wolfe decomposition to the edge-based model without using theh-
index gives a pricing problem, which generates a path for each commodity, and a master
problem, which merges the paths into an overall feasible solution. Letxlp ≥ 0 denote
the amount of flow on pathp for commodityl and letylp ∈ {0, 1} denote whether or
not pathp is used by commodityl. The master problem is:

max
∑

l∈L

∑

p∈P l

xlp

s.t.
∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (10.10)

xlp − upy
l
p ≤ 0 ∀l ∈ L, ∀p ∈ P l (10.11)

∑

p∈P l

ylp ≤ k ∀l ∈ L (10.12)

xlp ≥ 0 ∀l ∈ L, ∀p ∈ P l

ylp ∈ {0, 1} ∀l ∈ L, ∀p ∈ P l
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The objective function maximizes the total amount of routedflow. Constraints (10.10)
ensure edge capacities are never violated and constraints (10.11) force the decision
variables to take on value 1, whenever the amount of flow on thecorresponding path is
positive. Constraints (10.12) limit the number of used paths for commodityl to at most
k.

By LP-relaxing the binary variablesylp to 0 ≤ ylp ≤ 1 the model is turned into an
LP-model. Settingylp = xlp/up satisfies constraints (10.11) and (10.12) and simplifies
the formulation to only consisting of one type of variable. Constraints (10.11) are
now redundant and can be removed from the formulation. The relaxed master problem
becomes:

max
∑

l∈L

∑

p∈P l

xlp (10.13)

s.t.
∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (10.14)

∑

p∈P l

xlp
up

≤ k ∀l ∈ L (10.15)

xlp ≥ 0 ∀l ∈ L, ∀p ∈ P l (10.16)

10.3.1 Pricing problem

Let π ≥ 0 andλ ≥ 0 be the dual variables for constraints (10.14) and (10.15). The
reduced cost for a pathp ∈ P l for a commodityl ∈ L is:

clP = 1−
∑

e∈E

δpeπe −
λl

up
(10.17)

The pricing problems generate columns with positive reduced cost for each commodity
l. Now,λl is a constant whenl is fixed so finding a column with positive reduced cost
(if any exists) is equivalent to solving the shortest path problems:

∑

e∈E

δpeπe ≤ 1−
λl

up
, ∀l ∈ L, ∀p ∈ P l

The path capacityup is not known until the path has been generated. Hence, we set
fixed bounds onup. We know that the capacity can be set to at most|E| different
values (one for each differentue : e ∈ E), hence the pricing problems can be solved
by considering at most|E| shortest path problems. The pricing problems can now be
defined as solving the shortest path problem defined on costsπ ≥ 0 for edges with
ue ≥ up for each differentue : e ∈ E. This can be done in polynomial time by using,
e.g., Dijkstra’s algorithm.
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10.3.2 Heuristic solution

We may reach solutions where more thank paths are used for each commodity. In this
case we try to move the flow between the paths in order to find a feasible solution using
at mostk paths for each commodity. The feasible solution may route less flow through
the network, but it can possibly improve the current upper bound in the branch-and-
bound scheme and hence help prune parts of the search tree.

For each commodity the heuristic investigates all paths in the current fractional solution
and greedily assigns flow to the path having the highest capacity. The steps of the
heuristic are:

1: for (each commodity)do
2: Sort all the paths in the current fractional solution according to decreasing ca-

pacity
3: for (each path in the sorted list, until flow is assigned tok paths)do
4: Assign as much flow as possible to the path
5: Subtract the assigned flow from the capacity of each edge on the path
6: end for
7: end for

In the case where commodities do not share (many) edges, the heuristic may result in
good solutions and hence good upper bounds.

10.3.3 Branching scheme – forbidding edge sequences

The branching scheme consists of forbidding edge sequences. Let the divergence vertex
for a commodity be defined as the first vertex with one incomingpath and several
outgoing paths. If the number of paths emanating from the divergence vertex for some
commodityl is greater thank then branching can be applied. For each emanating path
p we find the first edges ofp, which makep different from the remaining emanating
paths. This is denoted the unique edge sequence forp. Each unique edge sequence is
forbidden in a branching child. If more thank + 1 paths emanate from the divergence
vertex, then we let some branching children consist of more than one unique edge
sequence such that the number of branching children is always equal tok + 1. The
reason for this is to reduce the width of the search tree. It islegal to let a branching
child forbid several unique edge sequences, because all combinations ofk paths from
the emanating paths are available in at least one other branching child.

An illustration of the branching strategy is seen in Figure 10.2. A graph with four ver-
tices is given and a commodity with sources and destinationt is to be routed using at
most two paths. In the current solution three paths are used:p1 = {e1, e4, e5}, p2 =
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{e1, e3, e5}, andp3 = {e2, e3, e5}. Assume that the optimal solution consists of path
p1 andp3. Now k + 1 subpaths are found:{e1, e3}, {e1, e4} and{e2}. The opti-
mal solution is found in the branching child, which forbids the use of edge sequence
{e1, e3}.

s t

e2

e1

e4

e3

e5

Figure 10.2: A graph used to illustrate the branching scheme. The graph consists of
four vertices, the source vertex is denoteds, and the destination vertext. Edges are
e1, e2, e3, e4, ande5. The illustration is taken from [83].

The branching scheme changes the pricing problem. When solving the shortest path
problem we need to ensure that we do not use the forbidden edgesequences. The
shortest path problem with forbidden paths is a polynomial problem and can be solved
by applying a shortest path algorithm to an extended graph [199].

10.4 A new 2-index branch-and-price algorithm (2BP’)

The 2BP’ algorithm only differs from the 2BP algorithm in thebranching scheme. The
master problem (10.13)–(10.16) is the same and the reduced cost is given by (10.17).
The heuristic described in Section 10.3.2 is also applicable.

10.4.1 Branching

The new branching scheme resembles the branching strategy of Cook et al. [51] and
is based on the idea of forbidding or forcing the use of a certain pathp′ for a fixed
commodityl ∈ L. This corresponds to settingylp′ = 0 or ylp′ = 1, respectively, in the
non-relaxed master problem. In the remainder of this section a fixed commodityl ∈ L
is assumed.

The effect of the branching scheme on the non-relaxed masterproblem, specifically
constraint (10.12) is considered:

∑

p∈P

ylp ≤ k
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In both the case thatylp′ = 0 or ylp′ = 1 the variable can be left out of the constraint. If
ylp′ = 1 then the constraint is rewritten as

∑

p∈P\{p′}

ylp ≤ k − 1

Now, the effect of the branching scheme on the relaxed masterproblem, specifically
constraint (10.15) is considered:

∑

p∈P l

xlp
up

≤ k

When pathp′ is forbidden for commodityl thenxlp′ = 0. When use of pathp′ is forced
then we setxlp′ > 0 and constraint (10.15) is rewritten as

∑

p∈P l\{p′}

xlp
up

≤ k − 1 (10.18)

This is stronger than the original constraint whenxlp′ < up′ , hence the bound of the
branching child is strengthened in this case.

The number of branching children varies according to the current fractional solution.
Assume that the current solution consists ofk + α, α > 0 paths for commodityl. If a
path in the current solution carries as much flow as possible,i.e.,xlp = up, then forcing
the use of pathp has no effect because (10.18) is not violated.

Since the current fractional solution is a feasible solution to the relaxed master problem
constraints (10.15) are satisfied. Hence, at leastα+1 paths havexlp < up (otherwise the
sum

∑

p∈P x
l
p/up would exceedk). An optimal solution may consist of paths not part

of the current fractional solution. Thus, we cannot generateα + 1 branching children,
where the use of exactly one path is forced in each child. Rather,α+2 children should
be generated: Each of the firstα + 1 branching children forces the use of exactly one
pathp with xlp < up, and the last branching child forbids the use of allα+ 1 paths.

The firstα+ 1 children cause symmetry in the solution space; several solutions in one
branching child can also be found in the other children, especially when several of the
α + 1 paths are part of the solutions. The firstα + 1 children are thus changed into
forcing and forbidding the use of certain paths. Consider theα + 1 = 3 branching
childrenb1, b2, andb3, forcing the use of pathp1, p2, andp3, respectively. Childb1
is unaltered and forces the use ofp1. Child b2 forces the use ofp2 and forbids the use
of p1. In this way, the solution usingp1 andp2 is only available in the subtree ofb1.
Similarly, childb3 forces the use ofp3 and forbids the use ofp1 andp2.
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In practice we would rather add a cut than rewrite constraints (10.15) when the use
of a path is forced. Recall inequality (10.18) when forcing the use of pathp′. This
inequality is now denoted the branch cut. Letωbl ≥ 0 be the dual of branch cutb for
commodityl. The resulting reduced cost for pathp ∈ P l for commodityl ∈ L is

clp = 1−
∑

e∈E

δepπe −
λl
up

−
∑

b∈B

δbpωbl

up
(10.19)

The extra dual costωbl is subtracted from the reduced costs for all new paths for com-
modityl; this is similar to howλl is handled. Hence, the branch cut does not affect edge
weights or path properties in the graph of the pricing problem. The pricing problem
must, however, be able to avoid using forbidden paths as before.

10.5 Computational results

A computational evaluation is performed on a dual 2.66 GHz Intel® Xeon® X5355
machine with 16 GB of RAM. Note that CPU times in the followingstem from using
one core only.

We have tested three algorithms; the 3BP extended with a heuristic to reach feasible
solutions faster [83, 192], the 2BP, and the 2BP’. We implemented all three algorithms
using the COIN framework [140] withILOG CPLEX 10.2 as LP-solver. Compu-
tations concerning the selection of branching candidates and branching children are
handled by COIN.

The three solution methods are tested on benchmark instances from the literature [190]:
TheRandom instances are randomly generated and thetg instances are generated by
the Transit Grid generator [189] using topologies from transportation networks. See
Table 10.1 for details.

Three different types of tests have been performed. First the impact of using the heuris-
tic from Section 10.3.2 in the 2BP and the 2BP’ algorithms is tested. Then the three
exact algorithms are computationally evaluated on the proposed instances and results
are compared. Finally, we examine if the 3BP and either of the2BP and 2BP’ algo-
rithms give good heuristic solutions by terminating each test run once the root node
has been computed (when omitting branching the 2BP and the 2BP’ algorithms are
identical).
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Name |V | |E| |L|

Random5-35 5 35 1
Random10-45 10 45 1
Random15-60 15 60 1
Random20-140 20 140 1

tg10-2 12 40 1
tg20-2 22 80 1
tg40-1 42 154 1
tg40-5 42 154 1
tg80-1 82 322 1
tg100-2 102 400 1

Random10-40 10 40 3
Random11-42 11 42 11
Random20-80 20 80 20
Random22-56 22 56 22

Table 10.1: Sizes of test instances. First column denotes the instance name, then fol-
lows the number of vertices, the number of edges, and finally the number of commodi-
ties.

10.5.1 Heuristic added to the 2BP and the 2BP’ algorithms

The 2BP and the 2BP’ algorithms are tested with and without the heuristic from Sec-
tion 10.3.2. The test results are included in the Appendix inTable 10.8-10.10 for the
2BP and Table 10.11-10.13 for the 2BP’, since they show that the heuristic has very
little to no impact on the performance of the results. The size of the search tree and the
running times are neither worsened nor improved. We includethe heuristic as it does
not negatively affect the performance and as it may help improve lower bounds.

10.5.2 Optimal approach

The three algorithms are computationally evaluated on the proposed instances. Re-
sults for the single-commodityRandom instances are summarized in Table 10.2 and
results for the single-commoditytg instances are summarized in Table 10.3. The
multi-commodity instances are all of theRandom type and results are summarized in
Table 10.4.

In the tables the first column holds the name of the problem instance, the second column
holds the value ofk and the third column holds the optimal value. Then follows the
size and depth of the search tree, the number of generated variables, the gap in percent
between the upper and lower bound, and the time in seconds spent on solving the
instance for the 3BP, the 2BP, and the 2BP’ algorithms, respectively. If a test run is
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marked with “-” then it has run out of memory. If the gap is alsomarked with “-”
then no lower bound was found. The total number of times each algorithm has best
performance, is found at the bottom of each table. Also, for each instance the best
performance is written inbold.

The 2BP algorithm performs much better than the 3BP algorithm for the Minimum
Cost MCkFP [83]; however, this is generally not the case for the MCkMFP. Although
the number of times the algorithm has best performance is larger for the 2BP, the 3BP
algorithm is capable of solving more instances. The change of objective function has a
great impact on the problem; the algorithms always try to push as much flow through
the network as possible, thus potentially exploiting the somewhat weakly formulated
bound on the number of used paths. The formulation has less impact on the minimum
cost problem because it may not always be beneficial to increase the number of used
paths. The 2BP algorithm suffers from large search trees because of the existence
of potentially many solutions using more thank paths per commodity and because
the branching scheme allows much symmetry in the branching children. The 2BP
algorithm, however, performs somewhat better than the 3BP for the multi-commodity
Randominstances with respect to running times.

The 2BP’ algorithm generally performs much better than the 3BP algorithm. Excep-
tions aretg40-5 , k = 4 andRandom20-80 , k = 5, which the 2BP’ algorithm
spends more time on solving. Furthermore, 2BP’ is unable to find an optimal solution
for Random20-80 , k = 4. For the far majority of test instances, however, the 2BP’
algorithm is capable of finding an optimal solution in littletime, even when the 3BP
algorithm shows great difficulty. The 2BP’ algorithm generally also generates smaller
gaps for instances, which are not solved to optimality. Reasons are that the search tree
sizes are generally smaller for the 2BP’, the number of variables in the master problem
is smaller, and much symmetry is eliminated because of the lackingh-indices.

The 2BP’ algorithm generally also performs much better thanthe 2BP algorithm. Ex-
ceptions areRandom20-80 , k = 4, 5, and6 where the 2BP has overall best perfor-
mance. The reason for the generally superior performance ofthe 2BP’ algorithm is that
the branching scheme gives better bounds in the branching children: forcing the use of
a path is much stronger than forbidding a path. Also forbidding the use of all paths
with positive flow is stronger than forbidding a subset of thepaths.

All three algorithms suffer from the same weakness in the formulation, specifically the
bounding of the number of used paths per commodity: constraints (10.9) for the 3BP
and (10.15) for the 2BP and the 2BP’ algorithms. Because the objective is to maximize
the total amount of flow, the algorithms are very likely to exceedk paths per commodity
whenever the mentioned constraints are not tight. The constraints will rarely be tight,
especially when several paths share the same edges causing the correspondingxlp/up
to become much smaller than one. The 2BP’ reduces this problem to some extent with
the branching cut (10.18).
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Problem k z* size depth vars gap time size depth vars gap time size depth vars gap time

Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 182 1 0 27 0.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.00
4 223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
5 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
6 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.00
7 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00
8 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00

Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.01
3 209 9 3 33 0.00% 0.02 21 3 15 0.00% 0.03 20 3 12 0.00% 0.02
4 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00% 0.03
5 306 369 22 102 0.00% 0.80 23599 18 34 0.00% 44.96 40 4 20 0.00% 0.07
6 345 973 26 137 0.00% 2.90 >427099 >26 39 2.36% - 135 6 26 0.00% 0.22
7 381 4281 36 219 0.00% 16.55 >354551 >22 46 -% - 313 8 34 0.00% 0.64
8 413 22985 43 265 0.00% 102.51 >431299 >29 46 2.93% - 606 9 40 0.00% 1.31
9 429 >110199 >58 380 6.43% - >388228 >26 60 -% - 2507 11 46 0.00%5.97

10 451 >104999 >57 448 5.74% - >456699 >41 74 6.57% - 2355 12 46 0.00%5.91

Random15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
3 221 9 3 34 0.00% 0.02 41 6 15 0.00% 0.06 12 2 12 0.00% 0.02
4 248 111 10 70 0.00% 0.32 >100454 >26 50 -% - 111 6 20 0.00% 0.22
5 268 557 18 101 0.00% 551.83 >176599 >29 52 2.86% - 322 7 29 0.00% 0.76
6 287 419 21 135 0.00% 1.59 >277801 >31 45 2.74% - 354 9 30 0.00% 0.79
7 295 19097 35 194 0.00% 72.91 >387565 >23 49 -% - 836 10 27 0.00%1.74
8 301 >88799 >47 231 2.90% - >413343 >33 55 2.90% - 4995 11 30 0.00%11.32
9 306 >153099 >51 229 1.29% - >547079 >28 48 -% - 2263 11 19 0.00%4.42

Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 228 1 0 30 0.00% 0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.00



10.5
C

om
putationalresults

209
4 253 9935 31 103 0.00% 75.25 >41444 >42 68 -% - 90 18 67 0.00% 1.04
5 274 >39999 >41 146 1.86% - >68299 >66 87 1.86% - 819 22 51 0.00%12.65
6 294 >30199 >61 184 1.78% - >60299 >86 107 1.78% - >14106 >32 113 1.78% -
7 - >28999 >70 227 1.81% - >75894 >46 91 -% - >14299 >32 109 1.69% -
8 319 >30599 >80 267 1.91% - >94699>101 120 1.91% - 4028 22 29 0.00%52.95
9 325 >39599 >93 315 0.84% - >108990 >63 105 -% - 130 9 25 0.00% 0.32

10 327 2907 109 326 0.00% 19.15 >272685 >49 68 0.61% - 17 3 22 0.00% 0.02
11 327 1325 86 301 0.00% 8.75 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03

Best 11 14 36

Table 10.2: Results from solving the single-commodityRandominstances exactly.
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3BP 2BP 2BP’

Problem k z* size depth vars gap time size depth vars gap time size depth vars gap time

tg10-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.04
3 716 553 19 58 0.00% 0.70 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.06
4 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.00
5 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00

tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
4 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00

tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.00
2 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.07
3 908 >9999 >40 96 2.61% - >83282 >61 94 -% - 231 11 21 0.00% 3.32
4 994 >7799 >57 143 1.00% - >82770 >45 64 -% - 893 18 33 0.00%25.15
5 1004 15 7 65 0.00% 0.09 703 27 20 0.00% 1.41 11 2 18 0.00% 0.03
6 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07

tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 >20599 >46 80 4.11% - >64248 >45 57 5.70% - 144 9 23 0.00% 1.49
3 1062 >17299 >59 139 0.28% - >77103 >44 65 -% - 276 8 22 0.00% 4.20
4 1078 181 47 68 0.00% 0.61 >148934 >22 50 -% - 1520 21 22 0.00% 26.53
5 1078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04 76 20 16 0.00% 1.72

tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.02
2 984 1591 29 80 0.00% 65.22 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.72
3 1411 >2199 >36 162 3.85% - >51476 >49 107 -% - 1914 10 38 0.00%110.38

tg100-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.02
2 1007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
3 1407 >1099 >31 115 0.39% - >29087 >60 113 -% - 229 6 51 0.00% 29.14
4 1768 >1499 >72 234 1.51% - >56256 >40 167 -% - 2118 9 82 0.00%284.41

Best 7 12 23

Table 10.3:Results from solving thetg instances exactly.
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3BP 2BP 2BP’

Problem k z* size depth vars gap time size depth vars gap time size depth vars gap time

Random10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.01
2 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.01
3 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.06
4 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 32 0.00% 0.20
5 309 1989 30 176 0.00% 7.91 >253716 >25 56 1.24% 1.06 561 12 39 0.00% 1.06
6 318 15905 36 253 0.00% 73.84 >610006 >24 59 1.35% - 1294 13 60 0.00% 2.63
7 321 >153199 >56 286 0.01% - >335959 >26 54 -% - 26182 18 47 0.00%57.10
8 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.43
9 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 32 0.00% 0.02

Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00% 0.02
2 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.01
3 344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00

Random20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 53 0.00% 0.04
2 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.01
3 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.45
4 601 5599 33 277 0.00% 40.05 1041 10 60 0.00% 2.02 >81550>548 601 2.01% -
5 617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.61
6 621 >48999 >40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.08
7 626 413 37 412 0.00% 3.48 17 2 57 0.00% 0.02 116 14 57 0.00% 0.22
8 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01

Random22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.02
2 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.01
3 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.01
4 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00

Best 7 17 14

Table 10.4: Results from solving the multi-commodity instances exactly.
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10.5.3 Heuristic approach

The three exact algorithms presented can be used as heuristics by only computing the
root node. This approach does not guarantee a polynomial running time, since an
exponential number of columns potentially needs to be addedin the root. In practice,
however, we expect low running times.

The heuristic usage of the 3BP algorithm is denoted 3HEUR. Because no branching
occurs the heuristic usage of the 2BP and the 2BP’ algorithmsis identical and is de-
noted 2HEUR. Including the heuristic from Section 10.3.2 inthe latter gives the final
heuristic denoted 2HEUR’.

All three heuristics are evaluated on the previously proposed instances. Test results for
the heuristic use of the exact algorithms are summarized in tables 10.5, 10.6, and 10.7.

The first column of each table holds the name of the problem instance, the second col-
umn holds the value ofk, and the third column holds the optimal value. Then, follows
for each of the algorithms 3HEUR, 2HEUR, and 2HEUR’; the number of iterations,
the gap between the heuristic and the optimal value, and the time in seconds spent on
solving the instance. An entry marked with “-” indicates that no feasible solution was
found. The average number of iterations, gap, and time usageare given at the bottom
of each table.

The results show that the 3HEUR algorithm often gives poor heuristic solutions with
gaps of up to 94%. For three multi-commodityRandom instances the 3BP algorithm
is even unable to find a feasible solution in the root node. The2HEUR algorithm gen-
erally finds much better solution values than the 3HEUR algorithm. The 2HEUR’,
however, shows superior performance by solving the majority of the instances to opti-
mality and with the largest gap of those not solved being 20%.All heuristics have very
low running times and terminate in less than a second.
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3HEUR 2HEUR 2HEUR’

Problem k z* iter. gap time iter. gap time iter. gap time

Random5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.01
2 128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.00
3 182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.00
4 223 12 16.60 0.00 10 0.00 0.00 10 0.00 0.00
5 262 12 54.96 0.00 10 0.00 0.00 10 0.00 0.00
6 297 13 80.37 0.00 12 0.00 0.00 12 0.00 0.00
7 326 14 54.29 0.00 12 0.00 0.00 12 0.00 0.00
8 326 13 0.00 0.01 11 0.00 0.00 11 0.00 0.00

Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.00
3 209 10 22.00 0.01 10 15.31 0.00 10 0.00 0.00
4 260 13 65.38 0.01 13 18.08 0.00 13 0.00 0.00
5 306 15 75.82 0.01 17 46.73 0.00 17 0.00 0.00
6 345 17 73.91 0.02 19 43.48 0.00 19 0.00 0.00
7 381 23 76.38 0.02 21 47.77 0.00 21 8.40 0.01
8 413 24 78.21 0.02 23 48.18 0.00 23 6.78 0.01
9 429 30 79.02 0.04 30 37.06 0.00 30 1.40 0.00

10 451 35 80.04 0.05 38 36.59 0.01 38 0.00 0.01

Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
2 163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.00
3 221 10 55.24 0.01 11 85.52 0.00 11 16.74 0.00
4 248 13 87.50 0.01 18 56.04 0.01 18 10.01 0.00
5 268 16 57.49 0.02 20 51.49 0.00 20 5.97 0.00
6 287 18 93.38 0.02 22 50.52 0.01 22 6.62 0.00
7 295 20 85.05 0.02 23 46.44 0.01 23 13.90 0.00
8 301 19 59.47 0.01 21 46.84 0.00 21 17.94 0.00
9 306 18 60.13 0.01 18 39.87 0.00 18 19.93 0.00

Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.00
3 228 10 0.00 0.02 10 0.00 0.00 10 0.00 0.00
4 253 12 82.48 0.03 13 0.00 0.00 13 0.00 0.01
5 274 16 84.69 0.04 16 1.46 0.01 16 0.00 0.01
6 294 18 84.69 0.04 24 69.05 0.01 24 3.40 0.01
9 325 22 86.15 0.04 24 44.92 0.01 24 0.31 0.01

10 327 21 86.24 0.01 19 3.67 0.00 19 3.67 0.00
11 327 20 86.24 0.01 19 0.61 0.00 19 0.61 0.00

Average 14 49.40 0.01 15 22.29<0.01 15 3.21<0.01

Table 10.5: Results from solving the single-commodityRandom instances heuristi-
cally, where each algorithm terminates after having evaluated the root node only.



214
Comparing branch-and-price algorithms for the multi-comm odity

k -splittable maximum flow problem

3HEUR 2HEUR 2HEUR’

Problem k z* iter. gap time iter. gap time iter. gap time

tg10-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 716 9 0.00 0.00 10 15.22 0.00 10 0.00 0.00
4 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.00
5 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00

tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 832 11 18.03 0.00 10 0.01 0.00 10 0.00 0.01
4 853 10 0.00 0.01 10 0.00 0.00 10 0.00 0.00

tg40-1 1 517 5 0.00 0.01 5 0.00 0.01 5 0.00 0.01
2 750 7 72.13 0.01 9 61.33 0.01 9 0.00 0.01

tg40-5 1 487 8 0.00 0.00 6 0.00 0.00 6 0.00 0.01

tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.02
2 984 11 52.74 0.14 14 14.63 0.06 14 0.00 0.06

tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.02
2 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03

Average 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01

Table 10.6: Results from solving thetg instances heuristically, where each algorithm
terminates after having evaluated the root node only.
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3HEUR 2HEUR 2HEUR’

Problem k z* iter. gap time iter. gap time iter. gap time

Random10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.00
2 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.00
3 258 11 80.62 0.01 11 69.38 0.00 11 6.59 0.00
4 293 14 66.21 0.02 15 36.52 0.01 15 7.17 0.01
5 309 16 67.96 0.02 19 34.95 0.00 19 8.41 0.01
6 318 21 68.89 0.03 25 33.02 0.00 25 5.97 0.01
7 321 17 84.42 0.02 21 24.61 0.00 21 1.56 0.01
8 323 21 84.52 0.01 20 22.29 0.00 20 4.34 0.00
9 323 20 84.52 0.01 21 9.29 0.00 21 0.00 0.00

Random11-42 1 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.01
2 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.00
3 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.00
4 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00

Random20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.01
2 553 7 35.80 0.02 7 15.91 0.01 7 0.00 0.01
3 584 9 - 0.02 9 7.53 0.00 9 0.00 0.01
4 601 12 - 0.03 12 7.65 0.01 12 0.00 0.01
5 617 14 - 0.04 16 4.05 0.02 16 2.27 0.00
6 621 12 58.29 0.03 14 0.64 0.01 14 0.00 0.01
7 626 12 58.63 0.03 14 0.96 0.01 14 0.80 0.01
8 626 12 0.00 0.03 14 0.00 0.01 14 0.00 0.01

Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.00
2 389 6 1.54 0.00 5 1.54 0.00 5 0.00 0.00
3 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.01
4 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01

Average∗ 9 34.31 0.01 11 15.64 <0.01 11 2.34<0.01

Table 10.7: Results from solving the multi-commodityRandominstances heuristically,
where each algorithm terminates after having evaluated theroot node only. Average∗)

is only over the instances where all heuristics found a feasible solution.
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10.6 Conclusion

Two exact solution methods for the MCkMFP problem have been introduced. They are
both based on Dantzig-Wolfe decomposition, where the master problem is a 2-index
formulation merging paths for commodities into an overall solution. The first solution
method was inspired by previous work on The Minimum Cost Multi-Commodityk-
splittable Flow Problem [83]. The two methods differ in their branching schemes:
the first method forbids subpaths (2BP), while the second forces or forbids the use of
certain paths (2BP’). The latter also adds branching cuts tothe master problem.

The 2BP and 2BP’ algorithms have been implemented and compared with a leading ex-
act algorithm from the literature denoted 3BP. Results showed that the 2BP’ algorithm
performs significantly better than the 2BP and the 3BP algorithms both with respect
to the number of solved instances and with respect to the timeusage. The main rea-
son is that using the 2BP’ algorithm gives smaller search trees, reduces the number of
variables in the master problem, and eliminates some of the symmetry in the solution
space.

Terminating the computations after having evaluated the root node transforms the 3BP
and the 2BP/2BP’ algorithms into heuristics denoted 3HEUR and 2HEUR, respec-
tively. Because no branching occurs in this heuristic use, the 2BP and the 2BP’ algo-
rithms become identical. Test results for this approach showed that the 3HEUR does
not perform well, with the majority of the solution values having gaps of up to 94%.
The 2HEUR algorithm, however, showed very promising performance when including
a greedy heuristic, which transforms some fractional solutions into feasible solutions.
In most cases optimal solutions were found and the average solution gaps never ex-
ceeded 4%. Both heuristics terminate in less than a second for all tested instances.

All algorithms suffer from weak formulations for bounding the number of used paths
per commodity. We believe that future work should concentrate on tightening these
constraints. This could be done by somehow reformulating the problem or by adding
cuts. We believe that the focus should be on cuts violated in the edge-based model
or the original master problem. Future work could also concentrate on finding better
branching strategies for the 2-index formulation in order to further reduce the size of
the search tree.
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Appendix

10.7 2BP without and with pruning heuristic

2BP 2BP+heur

Problem k z* size depth vars gap time size depth vars gap time

Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 128 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 182 1 0 9 0.00% 0.01 1 0 9 0.00% 0.00
4 223 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
5 262 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
6 297 1 0 14 0.00% 0.00 1 0 14 0.00% 0.01
7 326 1 0 14 0.00% 0.01 1 0 14 0.00% 0.00
8 326 1 0 13 0.00% 0.00 1 0 13 0.00% 0.01

Random10-45 1 73 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 142 4 1 9 0.00% 0.00 4 1 9 0.00% 0.01
3 209 21 3 15 0.00% 0.03 21 3 15 0.00% 0.03
4 260 411 12 24 0.00% 0.56 411 12 24 0.00% 0.56
5 306 23599 18 34 0.00% 45.86 23599 18 34 0.00% 44.96
6 345 >427099 >26 39 2.36% - >427099 >26 39 2.36% -
7 381 >349959 >21 46 -% - >354551 >22 46 -% -
8 413 >427699 >29 46 2.93% - >431299 >29 46 2.93% -
9 429 >388228 >26 60 -% - >388228 >26 60 -% -

10 451 >456699 >41 74 6.56%- >456699 >41 74 6.57% -
Random15-60 1 86 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00

2 163 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
3 221 41 6 15 0.00% 0.06 41 6 15 0.00% 0.06
4 248 >101109 >27 50 -% - >100454 >26 50 -% -
5 268 >176814 >29 52 2.86% - >176599 >29 52 2.86% -
6 287 >277515 >31 46 2.74% - >277801 >31 45 2.74% -
7 295 >387565 >23 49 -% - >387565 >23 49 -% -
8 301 >406168 >35 59 2.90% - >413343 >33 55 2.90% -
9 306 >568629 >24 45 -% - >547079 >28 48 -% -

Random20-140 1 81 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 158 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 228 1 0 11 0.00% 0.00 1 0 11 0.00% 0.00
4 253 >41444 >42 68 -% - >41444 >42 68 -% -
5 274 >68299 >66 87 1.86% - >68299 >66 87 1.86% -
6 294 >60299 >86 107 1.78% - >60299 >86 107 1.78% -
7 - >76094 >46 90 -% - >75894 >46 91 -% -
8 319 >94699>101 120 1.91% - >94699>101 120 1.91% -
9 325 >114289 >47 94 -% - >108990 >63 105 -% -

10 327 >271899 >48 65 0.61% - >272685 >49 68 0.61% -
11 327 49 3 22 0.00% 0.03 49 3 22 0.00% 0.03

Table 10.8: Results from solving the single commodityRandominstances without and
with the pruning heuristic.
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2BP 2BP+heur

Problemk z* size depth vars gap time size depth vars gap time

tg10-2 1 389 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 355 14 10 0.00% 0.22 355 14 10 0.00% 0.21
3 716 40981 19 20 0.00% 33.29 39505 20 28 0.00% 32.49
4 815 6 1 8 0.00% 0.00 6 1 8 0.00% 0.00
5 815 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00

tg20-2 1 385 1 0 4 0.00% 0.01 1 0 4 0.00% 0.00
2 643 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 1 0 10 0.00% 0.01 1 0 10 0.00% 0.00
4 853 1 0 10 0.00% 0.01 1 0 10 0.00% 0.00

tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01
2 750 4 1 10 0.00% 0.03 4 1 10 0.00% 0.02
3 908 >80455 >50 83 -% - >83282 >61 94 -% -
4 994 >74285 >43 63 -% - >82770 >45 64 -% -
5 1004 619 24 23 0.00% 1.14 703 27 20 0.00% 1.41
6 1004 29 3 13 0.00% 0.02 29 3 13 0.00% 0.02

tg40-5 1 487 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 >63948 >48 60 5.70% - >64248 >45 57 5.70% -
3 1062 >81691 >48 66 -% - >77103 >44 65 -% -
4 1078 >150030 >22 49 -% - >148934 >22 50 -% -
5 1078 61 4 16 0.00% 0.04 61 4 16 0.00% 0.04

tg80-1 1 549 1 0 6 0.00% 0.02 1 0 6 0.00% 0.02
2 984 2215 22 27 0.00% 56.57 2308 22 25 0.00% 59.16
3 1411 >52274 >44 102 -% - >51476 >49 107 -% -

tg100-2 1 530 1 0 6 0.00% 0.02 1 0 6 0.00% 0.03
2 1007 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
3 1407 >31616 >64 108 -% - >29087 >60 113 -% -
4 1768 >58467 >26 168 -% - >56256 >40 167 -% -

Table 10.9: Results from solving thetg instances without and with the pruning heuris-
tic.
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2BP 2BP+heur

Problem k z* size depth vars gap time size depth vars gap time

Random10-401 110 5 2 15 0.00% 0.01 5 2 15 0.00% 0.01
2 194 34 5 21 0.00% 0.03 34 5 21 0.00% 0.04
3 258 213 12 24 0.00% 0.15 213 6 12 0.00% 0.18
4 293 2956 16 41 0.00% 4.24 2956 16 41 0.00% 4.25
5 309 >232916 >25 56 1.24% - >253716 >25 56 1.24% -
6 318 >610056 >24 59 1.35% >610005 >24 59 1.35% -
7 321 >329360 >27 54 -% - >335959 >26 54 -% -
8 323 2008 14 37 0.00% 1.20 2008 14 37 0.00% 1.23
9 323 11 1 32 0.00% 0.01 11 1 32 0.00% 0.01

Random11-421 291 7 3 28 0.00% 0.02 7 3 28 0.00% 0.01
2 343 7 2 27 0.00% 0.01 7 2 27 0.00% 0.01
3 344 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00

Random20-801 347 3 1 51 0.00% 0.03 3 1 51 0.00% 0.02
2 553 4 1 50 0.00% 0.02 4 1 50 0.00% 0.02
3 584 57 7 59 0.00% 0.16 57 7 59 0.00% 0.16
4 601 1041 10 60 0.00% 2.02 1041 10 60 0.00% 2.02
5 617 4363 14 66 0.00% 7.21 4363 14 66 0.00% 7.35
6 621 3998 11 63 0.00% 6.40 3998 11 63 0.00% 6.42
7 626 17 2 57 0.00% 0.03 17 2 57 0.00% 0.02
8 626 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01

Random22-561 365 7 3 42 0.00% 0.02 7 3 42 0.00% 0.02
2 389 10 3 42 0.00% 0.02 10 3 42 0.00% 0.02
3 407 1 0 41 0.00% 0.00 1 0 41 0.00% 0.01
4 407 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00

Table 10.10: Results from solving the multicommodity instances without and with the
pruning heuristic.
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k -splittable maximum flow problem

10.8 2BP’ without and with pruning heuristic

2BP’ 2BP’+heur

Problem k z* size depth vars gap time size depth vars gap time

Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 128 1 0 7 0.00% 0.01 1 0 7 0.00% 0.00
3 182 1 0 9 0.00% 0.00 1 0 9 0.00% 0.00
4 223 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
5 262 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
6 297 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00
7 326 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00
8 326 1 0 13 0.00% 0.00 1 0 11 0.00% 0.00

Random10-45 1 73 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 142 8 2 9 0.00% 0.01 8 2 9 0.00% 0.01
3 209 20 3 12 0.00% 0.02 20 3 12 0.00% 0.02
4 260 34 4 20 0.00% 0.04 34 4 20 0.00% 0.03
5 306 40 4 20 0.00% 0.06 40 4 20 0.00% 0.07
6 345 98 5 26 0.00% 0.18 135 6 26 0.00% 0.22
7 381 272 7 31 0.00% 0.57 313 8 34 0.00% 0.64
8 413 602 8 39 0.00% 1.28 606 9 40 0.00% 1.31
9 429 2549 12 45 0.00% 6.11 2507 11 46 0.00% 5.97

10 451 2364 10 54 0.00% 6.04 2355 12 46 0.00% 5.91

Random15-60 1 86 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 163 1 0 8 0.00% 0.01 1 0 8 0.00% 0.00
3 221 12 2 14 0.00% 0.02 12 2 12 0.00% 0.02
4 248 102 5 20 0.00% 0.20 111 6 20 0.00% 0.22
5 268 316 8 22 0.00% 0.71 322 7 29 0.00% 0.76
6 287 446 10 30 0.00% 1.04 354 9 30 0.00% 0.79
7 295 1375 11 35 0.00% 2.88 836 10 27 0.00% 1.74
8 301 4859 11 29 0.00% 10.73 4995 11 30 0.00% 11.32
9 306 1868 10 19 0.00% 3.67 2263 11 19 0.00% 4.42

Random20-140 1 81 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 158 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 228 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00
4 253 84 17 18 0.00% 0.89 90 18 67 0.00% 1.04
5 274 894 22 70 0.00% 14.30 819 22 51 0.00% 12.65
6 294 >13588 >30 115 1.78% - >14106 >32 113 1.78% -
7 - >13442 >33 116 1.69% - >14299 >32 109 1.69% -
8 319 2100 21 24 0.00% 27.73 4028 22 29 0.00% 52.95
9 325 121 10 25 0.00% 0.24 130 9 25 0.00% 0.32

10 327 17 3 22 0.00% 0.02 17 3 22 0.00% 0.02
11 327 20 5 20 0.00% 0.03 20 5 20 0.00% 0.03

Table 10.11: Results from solving the single commodityRandom instances without
and with the pruning heuristic.
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2BP’ 2BP’+heur

Problemk z* size depth vars gap time size depth vars gap time

tg10-2 1 389 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 37 5 12 0.00% 0.04 41 5 11 0.00% 0.04
3 716 58 5 14 0.00% 0.06 53 5 15 0.00% 0.06
4 815 5 1 8 0.00% 0.00 5 1 8 0.00% 0.00
5 815 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00

tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 643 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
4 853 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00

tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 750 10 3 12 0.00% 0.07 10 3 12 0.00% 0.07
3 908 175 9 21 0.00% 2.26 231 11 21 0.00% 3.32
4 994 776 16 31 0.00% 19.96 893 18 33 0.00% 25.15
5 1004 26 5 17 0.00% 0.08 11 2 18 0.00% 0.03
6 1004 43 6 13 0.00% 0.08 43 6 13 0.00% 0.07

tg40-5 1 487 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 166 9 25 0.00% 1.76 144 9 23 0.00% 1.49
3 1062 308 8 32 0.00% 5.41 276 8 22 0.00% 4.20
4 1078 2292 22 22 0.00% 45.58 1520 21 22 0.00% 26.53
5 1078 72 19 16 0.00% 1.41 76 20 16 0.00% 1.72

tg80-1 1 549 1 0 6 0.00% 0.01 1 0 6 0.00% 0.02
2 984 351 11 39 0.00% 11.06 288 11 39 0.00% 8.72
3 1411 1905 9 38 0.00% 113.39 1914 10 38 0.00% 110.38

tg100-2 1 530 1 0 6 0.00% 0.03 1 0 6 0.00% 0.02
2 1007 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
3 1407 240 7 10 0.00% 31.22 229 6 51 0.00% 29.14
4 1768 2367 11 80 0.00% 293.28 2118 9 82 0.00% 284.41

Table 10.12: Results from solving thetg instances without and with the pruning
heuristic.
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2BP’ 2BP’+heur

Problem k z* size depth vars gap time size depth vars gap time

Random10-401 110 4 1 14 0.00% 0.00 4 1 14 0.00% 0.01
2 194 4 1 18 0.00% 0.01 4 1 18 0.00% 0.01
3 258 51 6 23 0.00% 0.05 50 6 23 0.00% 0.06
4 293 150 7 31 0.00% 0.28 112 7 32 0.00% 0.20
5 309 513 12 34 0.00% 1.00 561 12 39 0.00% 1.06
6 318 3209 15 48 0.00% 6.16 1294 13 60 0.00% 2.63
7 321 25691 19 50 0.00% 56.47 26182 18 47 0.00% 57.10
8 323 2046 16 34 0.00% 2.44 2051 15 36 0.00% 2.43
9 323 18 5 32 0.00% 0.02 18 5 32 0.00% 0.02

Random11-421 291 7 2 27 0.00% 0.01 7 2 27 0.00% 0.02
2 343 6 1 27 0.00% 0.01 6 1 27 0.00% 0.01
3 344 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00

Random20-801 347 7 2 54 0.00% 0.04 7 2 53 0.00% 0.04
2 553 4 1 52 0.00% 0.02 4 1 51 0.00% 0.01
3 584 637 14 64 0.00% 2.44 1020 16 62 0.00% 3.45
4 601 >82274>547 2.01% - >81550>548 601 2.01% -
5 617 >83907 >35 87 0.95% - 49695 34 67 0.00% 198.61
6 621 25788 31 57 0.00% 74.55 32552 29 58 0.00% 100.08
7 626 104 14 57 0.00% 0.19 116 14 57 0.00% 0.22
8 626 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01

Random22-561 365 4 1 41 0.00% 0.01 7 2 44 0.00% 0.02
2 389 9 3 41 0.00% 0.02 9 3 42 0.00% 0.01
3 407 1 0 41 0.00% 0.00 1 0 41 0.00% 0.01
4 407 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00

Table 10.13: Results from solving the multicommodity instances without and with the
pruning heuristic.
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CHAPTER 11

Conclusion

11.1 Summary

This thesis has investigated the scheduling problem in gridcomputing where network
constraints are taken into account. The thesis also considered the data routing problem
in multi-protocol label switching, which can be applied in grid computing context.
The scheduling problem in grid computing has been solved where components are
connected through a packet switched network (e.g. the internet) and where components
are connected through an optical network. The main conclusions of the thesis are:

• The scheduling problem in grid computing using a packet switched network can
be solved to optimality in little time for problems with up toa 1000 jobs and
resources.

• The scheduling problem in grid computing using an optical network should be
solved heuristically. The data transmission problem becomesNP-hard, which
complicates exact solution procedures. Proposed heuristics have small running
times and a low solution value gap of 3% on average.

• Operations research can successfully be used in real-lifegrid systems to reduce
network traffic. The Nordic DataGrid Facility can reduce their maximal link load
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with 20% by using an optimal job placement. Introducing cache would reduce
the maximal link load with another 15%.

• The proposed algorithms for the multi-protocol label switching problem (also
denoted the multi-commodityk-splittable flow problem) outperform previous
work in the literature. The algorithms reveal that the two main bottlenecks of the
problem is symmetry in the solution space and a somewhat poorbound on the
number of used paths per commodity.

Details on the results in this thesis are described in the following, where each chapter
is briefly summarized.

The offline scheduling problem where components are connected through a packet
switched network was solved in Chapter 4. The exact solutionapproach solved all
tested instances within minutes. The algorithm was based onbranch-and-price, where
the pricing problem assigned a job to a resource and found a way of sending data.
The master problem merged these ”sub-schedules” into an overall solution. Only vio-
lated constraints were included in the master problem. Furthermore, stabilized column
generation reduced the number of generated columns significantly.

The offline grid scheduling problem was extended into havingan underlying optical
network. This complicated routing, because sending data through the network became
theNP-hard Routing and Wavelength Assignment Problem (RWA). TheRWA consists
of routing data through a network using a wavelength on each link, such that no two
data transmissions use the same wavelength on the same link.Much work has been
conducted on the RWA problem in the literature. Hence a survey of the most common
solution algorithms was presented in Chapter 5. The survey included a discussion of
theoretical running times and of practical experiments of the proposed solution meth-
ods.

The offline grid scheduling where components are connected through an optical net-
work was solved in Chapter 6. An exact branch-and-price algorithm was proposed, but
because the pricing problem became theNP-hard RWA-problem, the exact solution
approach suffered from large time usage. A number of greedy heuristics were also pre-
sented. The heuristics consisted of combining grid heuristics with RWA heuristics. The
grid heuristics concentrated on placing jobs on resources according to criteria, such as
arrival time, execution time, finish time, etc. The RWA-heuristics found ways of send-
ing data through the optical network. The proposed heuristics all solved the tested
instances within minutes and the best heuristic setting hada 3% solution value gap on
average.

The final paper on grid scheduling concerned the network topology from the Nordic
DataGrid Facility (NDGF). In Chapter 7 we analyzed and formalized the grid network,
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grid sites and the jobs to execute. A number of scenarios relevant in this real-life grid
context were analyzed and incorporated into the mathematical formulation. The goal
was to minimize the maximal link load. Results showed that using an optimal job
placement, the maximal link load was reduced from 4.4 Gbps to3.5 Gbps. Introducing
caches reduced the link load further to 3.0 Gbps. The resultsgive a good indication
of where and when bottlenecks occur in the NDGF network. Thusthe results are not
only used for deciding how to distribute jobs, but also as a strategic tool for future
expansions.

Part III concentrated on solving the multi-protocol label switching problem, which in
operations research is also denoted the multi-commodityk-splittable flow problem.
The problem consists of sending a number of commodities through a network, where
each commodity cannot use more thenk paths. In Chapter 9 the minimum cost version
of the problem was considered. A new decomposition was presented in parallel with
Truffot and Duhamel [190]. We also presented a corresponding new branch-and-price
algorithm, where the pricing problem generated a path for each commodity. Branch-
ing forbade certain edge sequences, thus the pricing problem became the polynomial
shortest path problem with forbidden sub-paths. The algorithm outperformed the exact
algorithms from the literature.

Applying this branch-and-price algorithm to the maximum flow version of the problem,
however, did not yield good results. In Chapter 10 we showed that number of paths to
forbid during branching explodes for this problem. Hence weproposed a new branch-
ing strategy, which either forced or forbade usage of certain paths. The new algorithm
outperformed our branch-and-price algorithm from Chapter9 and the exact algorithms
from the literature.

11.2 Directions for future research

This thesis considered a number of different problems in thecontext of grid schedul-
ing. Each of these problems can be investigated further, both independently and in
grid computing context. The grid scheduling problem supports advance reservations,
queue emptying and provides an alternative to the online scheduling approach. Future
research on the offline problem where grid components are connected through a packet
switched network, could focus either on even better exact solution approaches or on
better heuristics. The proposed branch-and-price algorithm could be extended with
cutting planes. Recent research indicates that cutting planes can boost the performance
of exact solvers [57] and this could very well also be the casefor the offline schedul-
ing problem. New heuristics could focus more on taking data placement into account
when placing jobs on resources. When changing the underlying network topology into
being optical, the data transmission problem is complicated significantly and becomes
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NP-hard. The proposed exact algorithm suffers from this, because its pricing prob-
lem isNP-hard and difficult to solve to optimality. Future work couldconcentrate on
different decompositions, where the pricing problem wouldbe more tractable.

In our work, we assumed that the optical network was dedicated for the grid computing
system. The grid administrators have thus made some decisions on which fibers to rent
where and when. To support these difficult decisions, network design could be taken
into account when solving the scheduling problem. In this way, a compromise between
a good schedule and the cost of setting up the optical networkcould be reached.

The multi-commodityk-splittable flow problem has successfully been solved to opti-
mality in this thesis. However, the proposed algorithms still have room for improve-
ment. The symmetry problems and cumbersome branching couldpossibly be reduced
by adding cuts to the master problem. Another possibility isto consider new decompo-
sitions of the problem with special emphasis on tightening the bounds on the number
of used paths per commodity.



CHAPTER 12

Summary (in Danish)

Denne afhandling omhandler planlægning af data transmission i grid computing. Grid
computing består af en række computere, som arbejder sammen om at løse et stort prob-
lem. Computerne kan være placeret over hele verden og er forbundet via et netværk
som for eksempel internettet. Et grid har en eller flere centrale servere, som bestem-
mer hvilke computere, der skal køre hvilke programmer (delproblemer) og hvornår.
Serverne beregner planer for aktiviteten, men som det er nu,medtages data transmis-
sion enten slet ikke eller kun i ringe grad i beregningerne. Det er et problem, fordi nogle
programmer kræver meget data og programmet kan ikke køres før alt data er ankom-
met til computeren. Programkørslen kan derfor blive forsinket, hvilket ødelægger de
planer, som grid serverne har beregnet. Resultatet er, at grid systemet bliver ustabilt.

Denne afhandling foreslår at medtage data transmission i beregning af planer. Plan-
lægningsproblemet erNP-hårdt og derfor svært at løse. I afhandlingen foreslås flere
måder at gribe planlægningsproblemet an. Desuden foresl˚as løsningsmetoder til data
transmissionsproblemet, hvor større klumper af data sendes af sted ad gangen. Frem-
gangsmåden til at løse planlægningsproblemet og data transmissionsproblemet er an-
vendt matematik, også benævnt operationsanalyse. De optimale løsningsmetoder i
afhandlingen er baseret på Dantzig-Wolfe dekomposition,som opdeler problemet i
mindre bidder. De heuristiske metoder i afhandlingen er alle grådige. Det vidensk-
abelige bidrag er fordelt over 5 artikler. De første 3 behandler planlægning af data
transmission i grid computing sammenhæng. De sidste 2 artikler behandler data trans-
mission problemet, hvor større mængder af data sendes af sted ad gangen.
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I kapitel 4 foreslås en metode til at finde en optimal plan forkørsel af programmer i
grid computing med hensyn til data transmission. Det er antaget at computerne i grid
systemet er forbundet gennem et netværk med samme funktionalitet som internettet.
Løsningsmetoden er baseret på Dantzig-Wolfe dekomposition, hvor planlægningsprob-
lemet opdeles i en række delproblemer. Hvert delproblem sørger for at planlægge
kørsel af et givent program på en given computer og kan løsesi polynomiel tid. En
række forbedringer mindsker størrelsen på hovedproblemet og sørger for at delproble-
merne giver bedre løsninger. Derved kan metoden løse alle probleminstanser hurtigt -
de fleste i løbet af få sekunder og de sværeste på under tre minutter.

I kapitel 6 behandles planlægningsproblemet, når grid computere er forbundet via
lyslederfibre (eller optiske fibre). I et optisk netværk er der særlige betingelser til
data transmissioner, fordi der er visse hardware begrænsninger. Hver data transmis-
sion bliver sendt af sted på en lysfrekvens - hver frekvens ien fiber må højest anvendes
af én data transmission. En analyse og oversigt over arbejde på detNP-hårde data
transmissionsproblem i optiske netværk - kaldetThe Routing and Wavelength Assign-
ment Problem- er givet i kapitel 5. Det tilhørende planlægningsproblem igrid com-
puting er som skrevet behandlet i kapitel 6. To forskellige fremgangsmåder analyseres.
Den første metode er optimal og baseret på Dantzig-Wolfe dekomposition. DetNP-
hårde data transmissionsproblem gør dog, at den optimale løsningsmetode er meget
tidskrævende. Derfor foreslår kapitlet også heuristikker til hurtigt at finde en løsning,
uden at give nogen garantier for hvor god løsningen er. Den bedste heuristiske indstil-
ling giver gode løsninger, der gennemsnitligt ligger 3% frade optimale løsninger.

I kapitel 7 løses planlægningsproblemet i Nordic DataGrid Facility (NDGF). Grid sys-
temet og tilhørende netværk anvendt af NDGF analyseres og formaliseres til en matem-
atisk model. Forskellige scenarier analyseres, formaliseres og løses med henblik på at
mindske det maksimale netværksforbrug. Det maksimale netværksforbrug nedsættes
med cirka 20% (dvs. 900 Mbps) ved at ændre placeringer af programmer. Desuden
viser kapitlet at ved tilførsel af flere ressourcer til grid systemet, så kan det maksimale
netværksforbrug reduceres med yderligere 15% (500 Mbps).

De sidste to videnskabelige bidrag i denne afhandling løserdata transmissionsprob-
lemet, nårMulti-Protocol Label Switchinganvendes. Problemet går ud på at sende
data fra en række startpunkter til en række slutpunkter, således at kantkapaciteter over-
holdes og således at hver transmission bruger højestk ruter. Problemet erNP-hårdt.
I kapitel 9 løses problemet, hvor omkostningerne for at sende al data gennem netvær-
ket minimeres. Arbejde i litteraturen viser, at der er problemer med meget symmetri i
løsningsrummet. Vi foreslår en Dantzig-Wolfe dekomposition, som eliminerer meget
af den symmetri, og en dertilhørende branch-and-price algoritme. Pricing problemet
er et polynomielt korteste vej problem med forbudte delstier og branching strategien
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forbyder brug af visse delstier. Den nye algoritme yder bedre end arbejde fra littera-
turen. I kapitel 10 løses data transmissionsproblemet, hvor mængden af transmitteret
data søges maksimeret. Branch-and-price algoritmen fra forrige kapitel fungerer ikke
tilfredsstillende, når mængden af data ønskes maksimeret, fordi antallet af delstier, som
kan forbydes i branching, eksploderer. Derfor foreslår vien ny branch-and-price algo-
ritme, hvor branching strategien enten tvinger eller forbyder brug af stier. Den nye
algoritme yder rigtigt godt og udkonkurrerer tilsvarende arbejde fra litteraturen.
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Nielsen, A. Wäänänen, A. Konstantinov, and F. Ould-Saada. Building a produc-
tion grid in scandinavia.IEEE Internet Computing, 7(4):27–35, 2003.

[64] A. Elghirani, R. Subrata, and A. Y. Zomaya. Intelligentscheduling and replica-
tion in datagrids: a synergistic approach. InSeventh IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid’07), 2007.

[65] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson,
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This thesis concerns scheduling of network traffic in grid context. Grid computing consists of a 
number of geographically distributed computers, which work together for solving large problems. 
The computers are connected through a network. When scheduling job execution in grid computing, 
data transmission has so far not been taken into account. This causes stability problems, because 
data transmission takes time and thus causes delays to the execution plan.

This thesis proposes the integration of job scheduling and network routing. The scientific contribu-
tion is based methods from operations research and consists of six papers. The first four considers 
data transmission in grid context. The last two solves the data transmission problem, where the 
number of paths per data connection is bounded from above.

The thesis shows that it is possible to solve the integrated job scheduling and network routing 
problem to optimality for a grid, where computers are connected through a packet-switched network. 
When the network topology is optical, the routing problem becomes significantly more complex 
and the problem should thus be solved heuristically. Furthermore, the thesis proposes a number of 
new exact methods for the data transmission problem, where the number of paths is bounded from 
above. The new exact solution methods outperform existing methods from the literature.
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