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Abstract

Grinding corrections are often applied to gear teeth, which will alter the load
distribution across the tooth. Grinding corrections will also change the load
sharing between neighboring tooth pairs, and in turn the gear mesh stiffness.
In this thesis, a model for calculating the gear mesh stiffness is presented.
The model takes into account the effects of load and applied grinding correc-
tions. The results are verified by comparing to simulated and experimental
results reported in the existing literature. Using gear data loosely based
on a 1 MW wind turbine gearbox, the gear mesh stiffness is expanded in a
Fourier series and combined with a simple, torsional multibody model. Un-
der the assumption of constant angular velocity of the gears, the methods of
time-varying modal analysis are applied to this system. This investigation
is carried out in order to evaluate the potential of the time-varying modal
analysis in relation to gear dynamics.

A multibody model of two complete 2.3 MW wind turbine gearboxes mounted
back-to-back in a test rig is built. The mean values of the proposed gear
mesh stiffnesses are included. The model is validated by comparing with
calculated and measured eigenfrequencies and mode shapes. The measured
eigenfrequencies have been identified in accelerometer signals obtained during
run-up tests. Since the calculated eigenfrequencies do not match the mea-
sured eigenfrequencies with sufficient accuracy, a model updating technique
is applied to ensure a better match by adjusting the model parameters.
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Resumé (in Danish)

Slibekorrekturer p̊a tandhjul vil ændre lastfordelingen henover tænderne. Ko-
rrekturerne vil ogs̊a p̊avirke den måde, hvorp̊a de enkelte tandpar i indgreb
deler den samlede belastning, og derigennem p̊avirkes indgrebsstivheden. I
denne afhandling præsenteres en model for indgrebsstivheden, som medtager
afhængigheden af belastning og slibekorrekturer. Resultaterne er verificeret
ved sammenligning med beregnede og eksperimentelle data fra den eksis-
terende litteratur. Under brug af data, der er løst baseret p̊a et 1 MW
vindmøllegear, udvikles indgrebsstivheden i en Fourierrække og sættes sam-
men med en multibody-model, der simulerer systemets torsionssvingninger.
Tandhjulene antages at rotere med konstant hastighed, hvilket gør det muligt
at anvende teorierne om modalanalyse af periodisk tidsvarierende systemer.
Målet er at undersøge den tidsvarierende modalanalyses potentiale i relation
til gear-dynamik.

Der er udviklet en multibody-model af to 2.3 MW vindmøllegear sat op
mod hinanden p̊a en testbænk. Middelværdierne af de beregnede indgreb-
sstivheder er inkluderet. Modellen valideres ved sammenligning med bereg-
nede egenfrekvenser og egensvingningsformer, og med målte egenfrekvenser.
De målte egenfrekvenser er identificeret fra accelerometermålinger foretaget
under run-up tests. Idet de beregnede egenfrekvenser ikke stemmer overens
med de målte med tilstrækkelig præcision, er der benyttet en opdaterings-
teknik til at forbedre de simulerede resultater ved at justere p̊a model-
parametrene.
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List of symbols

Symbol Description Unit

A State matrix
a0 Transverse acceleration of gear [m/s2]
a Measured acceleration [m/s2]
a Centre distance [m]
B Normal plane tooth width [m]
b Face width [m]
b Half width of zone of influence [m]
be Length of end relief [m]
C Damping matrix
C1, C2, C3 Integration constants
C11, C12, C22 Gear body deflection constants
Ca, Ce, Cf Tip, end, root relief [m]
Cb, Ch Lead crowning, profile crowning [m]
c Stiffness [N/m, Nm/rad]
c Tip clearance [m]
c1, c2 Beam support stiffness [N/m, Nm/rad]
cγ Mean gear mesh stiffness [N/(mm·μm)]
d Effective modification vector [m]
da Tip diameter [m]
df Root diameter [m]
E Young’s modulus [N/m2]
Eeff Effective Young’s modulus [N/m2]
F Vector of generalized forces [N,Nm]
F Scalar force [N]
F Beam bending stiffness [N/m2]
F Scalar error measure
f Vector of generalized forces [N,Nm]
fA Vector of calculated eigenfrequencies [Hz]
fX Vector of measured eigenfrequencies [Hz]
f Beam bending deflection [m]
f Eigenfrequency [Hz]
G Shear modulus [N/m2]
H Tooth thickness [m]
Hroot Normal plane tooth root thickness [m]
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Symbol Description Unit

h Depth of zone of influence [m]
haP Addendum coefficient of basic rack
haP0 Addendum coefficient of tool
I Identity matrix
I, IMAX Tooth grid coordinate, number of grid

lines
IA Tooth bending moment of inertia [m4

i Gear ratio
i Imaginary unit,

√−1
J Mass moment of inertia [kgm2]
J ,JMAX Gear relative position, number of posi-

tions
K Stiffness matrix
KJ Index vector for contacting sections,

step J
K,KMAX Tooth grid coordinate, number of grid

lines
KP Loaded slice
k Stiffness [N/m, Nm/rad]
km Mean gear mesh stiffness [N/m]
L Matrix of left eigenvectors
L Tooth height [m]
L Lagrange function [J]
La, Lf Length of tip relief, root relief [m]
M Mass matrix
M , Mt Bending moment, torque [Nm]
mn Normal module [m]
Nmax Max. number of tooth pairs in contact
P Force normal to tooth surface, normal

plane
[N]

PR Radial force, normal plane [N]
PS Shear force, normal plane [N]
pmax Maximum Hertzian pressure [N/m2]
pr0 Amount of protuberance in tool [m]
q Vector of generalized displacements [m,rad]
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Symbol Description Unit

q1, q2 Normalized single tooth deflections
qH Normalized Hertzian deflection
R Matrix of right eigenvectors
R Radius for mounting of accelerometers [m]
r Right eigenvector
r Radius [m]
ra Tip radius [m]
rb Base radius [m]
rp Distance to center of gear [m]
rR Distance to center of gear [m]
SM , SK Mass, stiffness eigensensitivity matrix [Hz]
t Time [s]
T Period of oscillation, measurement time [s]
T Kinetic energy [J]
T Torque [Nm]
U Potential energy [J]
uK , uM Stiffness, mass updating factors
v Eigenvector
W Model updating weighting functions
W0 Line load [N/m]
X Generalized deflection vector [m, rad]
XH Hertzian deflection vector [m]
XT Tooth pair bulk deflection vector [m]
X Elastic tooth pair deflection [m]
X Overlap per cent
Xn Effective modifications of tooth pair n [m]
x Addendum modification coefficient
xE Generating addendum modification co-

efficient
Y Tooth pair displacement vector [m]
YA Normal plane Hertzian deflection [m]
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Symbol Description Unit

YAE Transverse plane Hertzian deflection [m]
YBE Transverse plane tooth bending [m]
YKE Transverse plane gear body deflection [m]
YKM Tooth base rotation [m]
YKP Tooth base translation [m]
Yn Deflection of tooth pair n [m]
YRE Transverse plane tooth compression [m]
YSchE Transverse plane tooth shear [m]
yP Distance from force attack to tooth

base
[m]

Z Tooth compliance matrix
ZI Tooth compliance matrix, I-direction
ZK Tooth compliance matrix, K-direction
Z Number of spectral averages
z State space coordinates [rad,rad/s]
z Number of teeth
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Symbol Description Unit

αat Angle of attack [rad]
αn Normal pressure angle [rad]
αn,at Normal plane angle of attack [rad]
αpr0 Protuberance angle [rad]
αwt Working transverse pressure angle [rad]
β, βb Helix angle, base helix angle [rad]
Δf Error in calculated eigenfrequencies [Hz]
Δf Frequency resolution [Hz]
εα,εγ Transverse, total contact ratio
ζ Tooth width coordinate [m]
ζP Force attack coordinate [m]
η Normal plane involute profile [m]
ηB Normal plane tooth bending [m]
ηR Deflection due to compression [m]
ηS Transverse plane involute profile [m]
ηSch Normal plane tooth shear [m]
θ Rotation [rad]
κ Timoshenko shear coefficient
λ Eigenvalue
ν Poisson’s ratio
ξ Distance from tooth tip [m]
ξP Force attack coordinate [m]
ξR Radial tooth deflection [m]
ρ Radius of curvature [m]
ρaP0 Tip rounding radius of tool [m]
ρf Root fillet radius [m]
τ Relative gear position
τ Shear stress [N/m2]
ψ Angle of acceleration vector a0 [rad]
Ω Gear mesh frequency, angular velocity [rad/s]
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Abbreviations

DOF Degree of Freedom
FE Finite Element
FFT Fast Fourier Transformation
HSS High Speed Stage
IMS Intermediate Speed Stage
LOA Line of Action
MAC Modal Assurance Criterion
NC Normalized Compliance
NF Normalization Factor for mode shapes
RMS Root-Mean-Square
SAP Start of Active Profile
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Chapter 1

Introduction and Literature
Review

Many areas of dynamics and statics are needed when creating a mathematical
model of a complete, geared wind turbine drive train. As the main source of
excitation is the meshing of the gear teeth, special attention is paid to this
subject. As it will later be shown, it makes sense to divide the question of how
to model the meshing gears into several subjects: First it will be examined
how to calculate the stiffness of the teeth using theory of elasticity. Secondly,
the incorporation of the found stiffnesses in the dynamic gear model will be
investigated. Since planetary stages, which shows special dynamic behavior,
are important parts of a modern wind turbine gear box, existing literature
on this subject will also be reviewed. Finally the literature related to model
validation will be examined.

1.1 Static Gear Mesh Modeling

The history of explaining gear tooth deflection dates back to 1938, where
Walker [1] uses experimental results to predict tooth deformation under load,
and uses his results to make recommendations for profile modifications. In
1955, Weber and Banaschek [2] uses the theory of elasticity to explain the
gear deformation under load as a function of gear geometry. The total defor-
mation is split up into several contributing effects, such as deformation of the
tooth, the deformation of the gear body, and the deformation coming from
the Hertzian pressure between mating teeth. Ziegler [3] defines a grid, which
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is laid out over the tooth surface, and evaluates the tooth stiffness in the
points lying on the line of action. Also, he proposes two ways of combining
the stiffnesses of several pairs of teeth in mesh simultaneously: A parallel
and a serial connection. Niemann and Winter [4] sum up the research on
tooth stiffness conducted until the 1980’s. They present an overview of the
calculations needed for a stiffness evaluation. They pay some attention to the
question of load sharing between the teeth, and also show how to determine
the stress distribution along one tooth. The decomposition of the deforma-
tion introduced in [2] is also used by Vijayakar [5], who solves the Hertzian
pressure part of the contact problem using surface integrals, while the other
parts are solved using a finite element(FE) model. Arafa and Megahed [6]
use finite elements for the whole of the gear including the contact area, and
find that the tooth stiffness is strongly dependent on the number of teeth on
the gear.

Some of the results from the articles mentioned have been standardized in
ISO-6336 [7]. This ISO standard is partly based on the German standard
DIN-3990 [8], and partly on the work of Winter and Podlesnik [9, 10, 11],
who explain the simplifications used in ISO-6336. A large part of [9, 10, 11]
concerns the tooth load distribution as a function of the gear body geometry.
The American AGMA-2001 [12] also covers the area of gear mesh stiffness.

1.2 Dynamic Gear Mesh Modeling

The traditional classification of dynamic gear mesh models is based on the
basic dynamic behavior of the model:

• LTI (linear time invariant), used for determination of natural frequen-
cies and mode shapes

• LTV (linear time varying), where the mesh stiffness is usually the time-
varying component. Typical results are frequency response functions
(FRF) and quasi-static forced responses

• NTV (nonlinear time varying) models can include effects as tooth sep-
aration and displacement-dependent mesh stiffness functions

Another possible classification follows from Gregory et al. [13], who show
that the excitation from the meshing teeth can be separated into two parts:
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The first part concerns the angular displacement, which is always present as
a result of the necessary clearance between gear teeth, and imperfections on
the gears. This is called “transmission error” (TE). The other part is the
change in tooth stiffness, as the gears rotate and the point of attack on the
tooth profile changes. In [13], ideas are presented on how to calculate both
the TE and the stiffness. In most of the articles mentioned below, the end
result of the calculations is the dynamic load on the gear teeth.

As shown by Blankenship and Singh [14], the TE and the mesh stiffness
depend on each other, making the dynamic gear mesh modeling very compli-
cated. To simplify the calculations, it is common to use the TE as the only
external excitation source, and then use the varying stiffness as a parametric
excitation. The validity of this procedure is examined by Velex and Ajmi
[15], who mentions the problem of defining TE for helical gears as a limi-
tation. Also the assumption of quasi-stationarity often used in TE-excited
models has a disadvantage, as it excludes the possibility of using the model
to correctly predict dynamic behaviour in a resonant region. This problem
is then partly solved by Kahraman and Singh in [16, 17, 18, 19], who use
the methods of nonlinear dynamics for solving the equations of motion in a
resonant region of a gear pair with a clearance-type nonlinearity. They use
TE as an external excitation, and show both periodic, quasi-periodic and
chaotic motion. The effect of the nonlinearity is amplified by introducing the
varying mesh stiffness.

The non-TE-excited models are another group of gear mesh models, mainly
described by a research group in Aachen, Germany [20, 21, 22, 23] , and
another group at INSA de Lyon in France, [24, 25, 26]. In this type of
model, no knowledge about the TE is needed before the calculation is per-
formed. Peeken et al. [20, 21, 22, 23] present both purely torsional, torsional-
axial, torsional-lateral, and torsional-axial-lateral gear mesh models, which
are parametrically excited. It is shown, that the equation of motion for the
torsional 1-DOF (degree-of-freedom) system reduces to the Mathieu equa-
tion, when the gear mesh stiffness is replaced by a cosine function. The
regions of instability for this equation are found analytically. Then, more
complicated mesh stiffness functions are introduced via the lowest terms of
their Fourier series. A large number of numerical simulations are performed,
which clarify the role of many model parameters, i.e. mesh stiffness function,
damping, tooth clearance and the introduction of the additional DOFs. The
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results from the simulations are given as time series of the dynamic tooth
forces, which are examined for resonances.

In [24], Velex and Berthe assume continuous contact between the gear teeth,
and solve the equations of motion after splitting these in a stationary part
(results from the mean external load) and a dynamic part (from the vary-
ing part of the external load). The mesh stiffness is described by a Fourier
series in the time domain. They also introduce a way of determining which
modes are important for the loading used, based on the spatial distribution
of deformation energy. Velex and Maatar [25] extend the model by further
investigations concerning the mesh stiffness. They divide the tooth surface
into grid points similar to [3], each of which has a constant and predefined
stiffness value. In each time step they compute the total mesh stiffness as
the sum of those individual grid point stiffnesses that are in contact with the
mating tooth. This way of defining the stiffness allows the inclusion of tooth
errors in a simple way. The model is validated by comparing the calculated
side bands in the response spectrum as a result of the errors with vibration
measurements of gears with the same errors. The equations of motion are
set up using Lagrange’s equations. The following article, [26] by Ajmi and
Velex, takes into account the elastic deformation of the gear body, as well
as an elastic coupling between the predefined spring coefficients. However,
they conclude, that such a complex model is rarely needed in pure dynamic
modelling, and that it may be more useful if the results of the dynamic sim-
ulation is to be followed by a static analysis, i.e. to determine local stresses.

Küçükay’s book from 1987 [27] gives a systematic introduction to the dy-
namic modeling of geared systems. Küçükay emphasizes the importance of
clearly defining the purpose of the model, the frequency range of interest, and
especially the sources of excitation. In his modeling, he uses several nodes
to model a gear wheel to calculate the load distribution across the teeth.
To obtain the equations of motion in a very general way, he proposes an
extensive use of structure vectors, which contain information about the geo-
metric couplings between the nodes. Küçükay also gives a brief, qualitative
introduction to interpreting the response of a nonlinear system, to stability
analysis, and to combination frequencies.

Niemann and Winter [4] also give a fine qualitative description of many in-
fluence factors regarding gear box vibration and noise radiation. They show
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some typical results, and define levels of vibration, that should be expected
under normal operating conditions.

1.3 Planetary Gear Modeling

The modeling of planetary gear trains for dynamic simulations started in
the 1970’s. Cunliffe et al. [28] set up a torsional-transversal model with dif-
ferent kinds of “mesh elements”: A linear (constant stiffness) element used
to determine natural frequencies and mode shapes, and a nonlinear element
allowing tooth separation is used for time integration of the response. The
nonlinear element also includes time-varying stiffness. An important con-
tribution in this work is the classification of the found modes into overall,
sun, basic, radial, tangential and torsional modes, depending on the form
of the mode shape vector. Seager [29] uses the phase differences between
the different meshes to determine conditions for the neutralization of certain
modes. The goal is to find a suitable number of teeth on the different gears
to prevent mesh-induced vibrations. Botman [30] uses a linear torsional-
transversal model with the carrier rotating at constant speed to predict nat-
ural frequencies and the corresponding mode shapes. His conclusion is that
the non-axisymmetric modes will be suppressed by the carrier rotation.

In 1994, a series of articles is presented by Kahraman, [31, 32, 33, 34]. In [31],
the development from single-mesh model to multi-mesh model (i.e., a plane-
tary stage) is described. With the proposed formulation, the different gears
can be placed at different angles relative to each other, which influences
the phase between the meshes. With [32], Kahraman starts with a sim-
ple lumped-parameter torsional-transversal model of a planetary gear stage,
which allows for analytical expressions for the lowest natural frequencies.
The model from [32] is compared with a more complicated model from [33]
to determine those parameters, which allows the use of the simpler model.
In [33], time-varying mesh stiffness and the possibility of tooth separation is
included, and the load sharing between the planets as a function of several
errors are calculated. The model is TE-excited, and the TE is expressed in
a Fourier series. The model is extended to six DOFs per node in [34], which
allows translation and rotation about all three axes. This model is used to
study the effects of planet mesh phasing. The model makes use of a fixed
coordinate system, which does not rotate with the planet carrier. This means
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that many of the equations controlling the planet gear meshes must be up-
dated in every time step, as the carrier rotates. Because of the computation
time needed for this operation, this possibly makes the model less suited for
numerical integration in the time domain, although it is possible.

As with the single-mesh models described earlier, also the planetary gears
can be modeled without knowledge about the TE. This has been done by
Saada and Velex, [35], who propose a torsional-transversal model written in
a coordinate system fixed to the planet carrier. The contact between the
teeth is modeled as a simplified version of the method used in [25], but with
an infinite number of grid points along the tooth, and the summation to find
the total mesh stiffness is substituted by an integration. The simplification
is that no tooth separation and no partial contact is allowed. In 1996, Velex
and Flamand [36] produce a three-dimensional model. As this model pos-
sesses a large number of DOFs, a Ritz-type reduction algorithm is proposed.
A time-dependent mesh stiffness is used to produce parametric excitation.
In [37], Abousleiman and Velex extend the model, which now includes ring
gear flexibility. This is done using FE beam and solid elements to model the
ring gear. Later, Abousleiman et al. [38] consider planet carrier flexibility,
although the conclusion to this work is that carrier flexibility is of secondary
importance, compared to ring gear flexibility. The planet bearing stiffness
is shown to have a great influence on the load distribution across the gear
teeth. A number of relevant parametrical studies are presented to give an
overview of planetary gear dynamic behavior as a function of the main model
parameters, such as ring gear rim thickness and planet position errors. Also,
the ring gear modeling technique is examined to find differences between the
solid and the beam elements.

A dynamic, planetary gear version of the static gear mesh modeled in [5]
is presented by Parker et al. [39]. Here, a FE grid is laid out over the
gear set, while the contact zones are modeled using surface integrals. This
combined formulation allows the FE method to be used, as it eliminates the
need of en extremely fine mesh in the contact zones. In this way, dynamic
simulations become possible. The CPU time needed for the calculations is
not reported. The model is a two-dimensional model, and an extension to
three dimensions will probably make the calculation time unreasonably long.

In 1999, Lin and Parker [40] propose a planar model of a planetary stage to
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examine the mode shape properties. The mode shapes are categorized into
rotational, translational and planet modes. For each group, the number of
distinct and degenerate natural frequencies are calculated, and the dynamic
properties are described. Using these results, Lin and Parker [41] compute
the derivatives of the natural frequencies with respect to model parameters
such as stiffnesses, masses, and moments of inertia. These derivatives are
shown to depend on the potential and kinetic energy distributions in a very
simple way. In [42], Lin and Parker find instability regions for the parametric
gear mesh excitation, for systems with in-phase or sequentially phased plan-
ets, and for systems with symmetrically as well as unsymmetrically spaced
planets. Again, using the dynamic mode shape properties, the equations
turn out very simple. The influence of possible nonlinearities, such as tooth
separation, is briefly mentioned. The work of Lin and Parker is summed up
in [43].

Peeters [44] models a full wind turbine drive train consisting of two plan-
etary stages and one parallel stage. He includes flexibility of all the parts
of the drive train using the component mode synthesis (CMS) technique de-
scribed by Craig and Bampton [45]. This allows the internal dynamics of the
individual drive train components to enter the overall equations of motion,
using an acceptable number of DOFs. However, Peeters does not develop his
theory to include an advanced gear mesh model. For this reason, he mainly
uses the linear properties of his model to calculate the natural frequencies,
and to produce frequency responses. A very interesting part of the article is
the discussion of how to integrate the drive train model in a full wind turbine
model.

1.4 Validation of Models

A validation of the model is necessary to produce useful simulation results.
Typically, accelerometer and/or strain gauge signals are used. When compar-
ing the simulation results to experimentally obtained data, different methods
can be used:

1) Direct time series or Fast Fourier Transform (FFT) comparison [25, 27,
28]

2) Frequency response comparison [16, 17, 18, 25]. If the simulation model
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is linear, or is easily linearized, the frequency response function (FRF)
can be calculated directly. Otherwise, a numerical integration of the
equations of motion is performed, the results are transformed into the
frequency domain, and an envelope curve is plotted and compared
to the corresponding curve for the experiment [46]. Also extraction
of modal parameters from experiments belongs to this category ([47],
chapter 21, [48])

For the relatively small models (low number of DOFs) used in dynamic mod-
eling, one more possibility for validation is present:

3) Comparison of dynamic behavior (normally natural frequencies and
mode shapes) to FE models with a large number of DOFs. Also com-
parison with other mathematical models from the literature fits into
this category [43, 44]

In compact gear boxes, as used in wind turbines, it can be difficult to place
measurement devices inside the gear box. Therefore, it will be a great ad-
vantage if measurements obtained on the outside of the gear housing can be
used for the model validation. In this case, a mathematical model of the
housing becomes necessary. As described by Ognjanović and Ćirić-Kostić
[49, 50], the modal properties of this housing model has a great influence
on the simulation results. Another approach is proposed by Aoyama et al.
[51], who use torsional vibration measurements obtained on the output shaft
of the gear box to estimate the gear vibrations. In this way, the need for a
housing model is eliminated, and the gear vibrations can be related to the
measured output shaft vibrations via an experimentally obtained or numer-
ically computed transfer function.

Another problem is described by Chen [52], who shows, that only the low-
est torsional modes could be excited in his large-scale torsional test rig. He
proposes to solve this problem by changing the position of the exciter to a
place, where the expected amplitude of vibration is large, based on a previ-
ous modal analysis. This solution works fine in his study of a steam turbine
drive train, but may be less suited for the excitation of modes associated with
a closed gear box. Chen also produces numerically obtained plots of ODS
(Operating Deflection Shape), by running his simulation near a critical speed.

On the other hand, if it is possible to place measurement devices on the ro-
tating parts inside the gear box, the model validation can be done in a more
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direct way. One possibility is to place accelerometers on the gear wheels [51].
Another way is to glue strain gauges to the gear body between the teeth,
as done by Rebbechi et al. [53] and Oswald et al. [54]. The strain gauge
signals can be related to dynamic tooth forces, both in the normal and in the
tangential direction (friction forces are tangential to the tooth surface). In
[53], it is described how to calculate the “tooth force influence coefficient ma-
trix”, which is necessary in the signal processing to obtain the tooth forces.
Oswald et al. [54] then use this matrix to validate a 4-DOF torsional model
of a spur gear.

1.5 Objectives and Original Contributions

From the literature reviewed, it can be concluded that the stiffness of gear
teeth can be found at an almost arbitrary precision, due primarily to the
use of FE models. However, the FE models do not necessarily provide the
best means for understanding the underlying physics of the problem, which
is needed when the results from a static analysis are to be used in a dynamic
model. Furthermore, to keep the calculation time to a reasonable level, the
data from the static analysis must be condensed, i.e. converted to a lower
number of DOFs. When doing this, care must be taken to ensure that no
vital information is lost. Clearly, the analytical results from the older refer-
ences are a great help.

When modeling dynamic systems, the understanding of the basic physical
principles becomes even more important than in statics, as it is vital for
the interpretation of the mode shapes. This means that the best modeling
results do not necessarily come from the model with the highest number of
DOFs - the selection of the DOFs and the mathematical formulation of the
equations relating the DOFs are equally important.

The validation of models seems to be less developed than the other phases
in the modeling process. No single method has been recognized as being the
best for all purposes. The selection of validation method for a specific project
thus depends on the goal of the project.

Following the literature review above, the main contributions of this research
work are:
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• The application of time-varying modal analysis to the field of gear dy-
namics. The advantages and drawbacks of the procedure are evaluated.

• The experimental validation of a theoretical model using measurements
performed on a fully instrumented and calibrated multi-megawatt gear-
box test rig.

1.6 Structure of this Thesis

The outline of the report is:

Chapter 2: A method of calculating the stiffness of a gear mesh is pre-
sented. The results are validated by comparison with theoretical and
experimental results form the literature.

Chapter 3: Presentation of the theory of modal analysis of periodically
time-varying systems. The theory is applied to a single spur gear pair
in order to evaluate the potential of the method within gear dynamics.

Chapter 4: A torsional multibody model of two multi-megawatt gearboxes
mounted back-to-back in a test rig is presented.

Chapter 5: Accelerometer measurements of the physical system modeled in
Chapter 4 are presented and interpreted. The signal processing meth-
ods used are described in detail. Eigenfrequencies are determined, and
the corresponding mode shapes are estimated by a qualitative compar-
ison of the accelerometer channels.

Chapter 6: The model described in Chapter 4 and the measurements from
Chapter 5 are compared. It is shown that an accurate match between
measurements and calculation can be established by using a model
updating technique.

Chapter 7: Summarizes the contents of the report, and contains the main
conclusions.
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Chapter 2

Mesh Stiffness Modeling and
Validation

In this chapter the mathematical model of the gear mesh stiffness will be
described in detail. The main result is the gear mesh stiffness c, which is
a function of the relative rotation of the meshing gears, applied load, gear
data, and grinding corrections. The stiffness found will form the basis for
the remaining part of the thesis.

The gear mesh stiffness is computed in a number of steps:

Initial geometric calculations: From basic input data, the involute pro-
files of the gear teeth can be determined. Data needed for the defor-
mation and stiffness calculations are then found based on the tooth
shape.

Tooth compliance matrix: For each relative gear position the theoretical
position of the contact line across the tooth face can be found from
simple trigonometric calculations. With this line a tooth compliance
matrix based on flexibility influence coefficients can be set up. The
tooth compliance matrices from the two mating teeth is combined to
form a tooth pair compliance matrix. The Hertzian deformation, which
is nonlinear, is not included in the compliance matrix, but enters the
equations at a later stage.

Single tooth pair stiffness: In general the actual length of the contact
line under load will not be equal to the length of the the theoretical
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contact line, which was used as a basis for calculating the compliance
matrix. To solve this contact problem, an iteration process is used to
find the actual contact line and the load distribution across the tooth.
The Hertzian deformation enters the equations at this stage. Also tooth
grinding corrections are considered, as they greatly influence the load
distribution and the length of the contact line. When these calculations
have been performed, the position- and load-dependent single tooth
pair deformation and stiffness are known.

Mesh stiffness: When the deformational behavior of a single tooth pair is
known, the stiffness of the gear mesh, which usually includes more than
one tooth pair in contact, can be found. Also the load sharing between
the tooth pairs is found.

For helical gears, definitions of transverse and normal profiles are necessary.
These are defined in DIN3998-1 [55] as shown in figure 2.1. For a spur gear

(a) Transverse profile (b) Normal profile

Figure 2.1: Transverse and normal tooth profiles. Figures from DIN3998-1
[55]

pair, the transverse and the normal profiles are identical.

2.1 Initial Geometric Calculations

Some basic input data for each of the two meshing gears is necessary for the
calculations. The data needed is listed in table 2.1. Most of the symbols
are standardized in DIN3999-1 [56], where also the English translations are
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αn Normal pressure angle
β Helix angle
z Number of teeth
a Centre distance
mn Normal module
x Addendum modification coefficient
b Face width
da Tip diameter
df Root diameter
haP Addendum coefficient of basic rack
c Tip clearance
haP0 Addendum coefficient of tool
ρaP0 Tip rounding radius of tool
pr0 Amount of protuberance in tool
αpr0 Protuberance angle
xE Generating addendum modification coefficient

Table 2.1: Gear input data

found. Further information can be found in DIN3960 [57].

With the presented input data, the involute transverse profile of the gear
tooth ηS, as a function of the distance to the tooth tip ξ, can be calculated
using the formulas presented by Padieth [58]. An example transverse profile
is shown in figure 2.2(a). The normal tooth profile η is then calculated from
the transverse profile as proposed by Ziegler [3], page 10:

rp(ξ) =
√

ηS(ξ)2 + (ra − ξ)2 (2.1)

βp(ξ) = arctan(
rp(ξ)

r
tan β) (2.2)

η(ξ) = ηS(ξ) cos βp(ξ) (2.3)

From equations (2.1) through (2.3) it can be seen that the transverse and
the normal profile are identical for a spur gear with β = 0. A normal profile
is shown in figure 2.2(b). An axis ζS is also seen in figure 2.2(a) to complete
the right-hand coordinate system ηSξζS. The ζ-axis is defined in a similar
manner in the normal section.
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(a) Transverse section (b) Normal section

Figure 2.2: Tooth profiles. The relation between the coordinate frames η, ξ,
ζ and ηS, ξS, ζS can be seen in figure 2.1

To construct a tooth compliance matrix of finite dimension, a discretiza-
tion of the tooth is necessary. This corresponds to laying out a grid over the
tooth, as seen in figure 2.3. The grid consists of KMAX lines in the ξ-direction,
and IMAX lines in the ζ-direction.

Now the tooth has been appropriately discretized, a number of properties
related the tooth elasticity can be derived and related to the K-lines of the
grid. For each index K in the interval [1,KMAX], the relevant parameters are:
The profile coordinates ξ(K), η(K), and ηS(K), the tooth thickness H(K),
the angle of attack αat(K), and the bending moment of inertia IA(K):

H(K) = 2 · η(K) (2.4)

αat(K) = arctan
(η(K + 1) − η(K)

ξ(K + 1) − ξ(K)

)
(2.5)

IA(K) =
2

3
B
(
η(K)

)3

(2.6)

In the formulas above, B is the tooth width in the normal direction, which is
calculated from the transverse tooth width b using the formula B = b cos(β).
Note that all properties are calculated in the normal section of the tooth, as
the deformation calculations will be performed in the normal plane.
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Figure 2.3: Tooth calculation grid

2.2 Tooth Compliance Matrix

The tooth compliance matrix will be constructed as a matrix of compliance
influence coefficients (see [59, page 285ff]). The principle is to apply a unit
force at a fixed point, and calculate the deflection of all points in the struc-
ture. The calculation is then repeated, but with a unit force applied at a
different point.

If the system to be analyzed has N points, or degrees of freedom (DOF),
the deflections and the external forces applied to the system can be set up in
two N × 1 vectors called X and F, respectively, while the compliance matrix
Z is of dimension N × N :

X = ZF (2.7)

If F = [1 0 0 0 . . . 0]T the first column of Z will be identical with X. For
F = [0 1 0 0 . . . 0]T the second column of Z will be identical with X, and so
on.
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In this model, only deformations in the normal plane, in the direction of
the line of action (LOA) are included. The LOA is shown schematically as
the line AE in figure 2.4. With the tooth calculation grid described, this

Figure 2.4: Zoom of the meshing teeth

means that the total number of DOFs is N = KMAX · IMAX, and Z will be of
dimension (KMAX · IMAX) × (KMAX · IMAX).

The calculation of Z is simplified according to the assumption proposed by
Schmidt [60]: The two directions of the tooth surface grid, the K and the I
directions, can be treated separately, and submatrices ZK and ZI are found.
These submatrices can be combined to form Z.

First, the K-direction is considered. The problem can be described as find
the deflection of all sections K, resulting from an applied unit force at section
KP . Since the problem is now one-dimensional, elements from elementary
beam theory can be used, see figure 2.5. The derivation of ZK follows the
methods of Ziegler [3]. The total deformation of the tooth is a sum of several
contributions (as mentioned earlier, the Hertzian deformation is not included
in the compliance matrix):
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Figure 2.5: Tooth as discretized beam

YBE(K) Bending
YSchE(K) Shear
YRE(K) Compression
YKE(K) Gear body deformation

Using this notation, the total single tooth deformation at section K can be
written as

YE(K) = YBE(K) + YSchE(K) + YRE(K) + YKE(K) (2.8)

In the following paragraphs, the derivation of the deformation components
in equation (2.8) are described. It is shown that all deformations depend
linearly on the load. The unit force P acts at section KP , which is located
at the coordinate ξ = ξP .

Bending deformation YBE The basic assumptions of the Bernoulli-Euler
beam theory states that a plane cross section of an undeformed beam stays
plane and perpendicular to the beam centreline during deformation. These
assumptions are good approximations when the beam is long and slender. In
the case of a short, gear-tooth shaped beam, the assumptions are not met.

Page 28 of 139



However, it is common practice to estimate gear tooth stresses based on this
theory. Therefore, the calculation of the gear tooth bending deformation in
this work is based on Bernoulli-Euler beam theory. The tooth and the beam
used for the calculations are shown in figure 2.6. The deflection of the beam

(a) Tooth (normal section) (b) Beam

Figure 2.6: The tooth and its beam equivalent

in the η-direction and normal to the undeformed beam centreline is called
ηB. The beam will bend as a function of the bending moment. The bending
moment is:

M(ξ) =

{
0 for ξ ≤ ξP

−P cos(αn,at)(ξ − ξP ) + P H
2

sin(αn,at) for ξ > ξP
(2.9)

From beam theory, the curvature of the beam with Young’s modulus E can
be expressed as:

d2ηB

dξ2
= − M(ξ)

IA(ξ)E
(2.10)

The deflection ηB is obtained by integrating twice in equation (2.10):

ηB(ξ0) = −
∫ ξ0

0

∫ ξ0

0

M(ξ)

IA(ξ)E
dξ dξ + C1ξ0 + C2 (2.11)

(In equation (2.11), the upper integration limit is temporarily called ξ0). The
integration constants C1 and C2 are found from the boundary conditions at
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ξ = L for the cantilever beam, where L is the total tooth depth:

dηB

dξ

∣∣∣∣∣
ξ=L

= 0 (2.12)

ηB(ξ = L) = 0 (2.13)

Equation (2.11) yields the deflection ηB(ξ) in the normal plane, normal to
the centreline of the undeformed tooth, and for all values of ξ, as shown in
figure 2.6(b). This deflection is then transformed into the transverse plane,
in the direction of the line of action, with the formula

YBE = ηB
cos αwt

cos β
(2.14)

Shear deformation YSchE The shear deformation in the tooth is caused
by the force PS = P cos(αn), as shown in figure 2.7. The shear stress is found

(a) Tooth (normal section) (b) Beam

Figure 2.7: The tooth and its beam equivalent

by dividing PS with the cross sectional area 2Bη(ξ) below section KP :

τ(ξ) =

{
0 for ξ ≤ ξP
PS

2Bη(ξ)
for ξ > ξP

(2.15)

As for the bending calculation, finding the shear deformation includes solv-
ing a differential equation. In equation (2.16), κ is the Timoshenko shear
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coefficient. For a rectangular cross section, κ = 5/6. G is the shear modulus.

dηSch

dξ
=

τ(ξ)

κG
⇒ ηSch(η0) =

1

κG

∫ η0

0

τ(ξ)dη + C3 (2.16)

The upper integration limit is temporarily renamed. Using the boundary
condition ηSch(ξ = L) = 0, the integration constant C3 in equation (2.16) is
found. Again, the deformation is transformed using the equation

YSchE = ηSch · cos αwt

cos β
(2.17)

Compression YRE The radial force PR = P sin(αn) will cause a small
compressive deformation of the tooth, as shown in figure 2.8. Obviously, this

Figure 2.8: Compression of the tooth

type of deformation will only give a small contribution to the total tooth
deformation. Therefore, a simplifying assumption is made: The tooth is
assumed to have constant thickness H(ξP ) for all values of ξ. H(ξP ) is the
correct tooth thickness at the contact point ξ = ξP . The compressive force PR

is evaluated at the contact point by using the pressure angle αn,at evaluated
at the contact point. This means, that the compression in the ξ-direction
can be expressed as:

ξR(ξ) =
PR(L − ξ)

H(ξP )BEeff

(2.18)
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The compressive force will also lead to a deformation in the η-direction:

ηR(ξ) = νξR(ξ) (2.19)

In equation (2.19) ν is the Poisson ratio. Equations (2.18) and (2.19) can now
be combined to give the deformation in the transverse plane, in the direction
of the line of action:

YRE = ξR tan(αn − ν)
cos αn

cos β
(2.20)

Gear body compliance YKE As opposed to the other deformation contri-
butions, the gear tooth is in this section considered rigid and the gear body
is assumed elastic, see figure 2.9. The distance in the ξ-direction from the

Figure 2.9: The rigid tooth and the elastic gear body

gear body to the point of contact is called yp = L − ξP . As seen in figure
2.9, the deformation of the gear body, measured at the contact point in the
direction of the line of action, can be split up into two components: YKP

from the tooth translation, and YKM as a result of tooth rotation. Several
authors give equations for the calculation of these quantities [2, 61]. The
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method chosen here is from [2]. First, a few quantities must be defined:

Hroot : Thickness of tooth at the root, normal section (2.21)

C11 =
9(1 − ν2)

EπBH2
root

(2.22)

C12 =
(1 + ν)(1 − 2ν)

EπBHroot

(2.23)

C22 =
2.4(1 − ν2)

EπB
(2.24)

Now the deformations are found:

YKP = 2C22P cos2 αn,at

(
1 + 0.294 tan2 αn,at

)
(2.25)

YKM = 2P cos2 αn,at

(
C11y

2
p + 2C12yp

)
(2.26)

YK = YKP + YKM (2.27)

YKE = YK
1

cos β
(2.28)

It has now been shown, how the deflection at any coordinate ξ can be calcu-
lated when a unit force P is applied at the coordinate ξP . This is sufficient
information to construct the compliance matrix ZK .

Plate influence coefficients In the previous section all slices across the
tooth have been treated equally - this means that a force on slice no. 1 will
cause identical deformations on slice no. 1 and slice no. n, for n ∈ [1, IMAX].
This is only a good approximation for very narrow-faced gears. For wider
gears, deformations will depend on the ζ-coordinate of the applied force. This
means that the influence between neighboring slices must be altered to take
this effect into account. One way of doing this is to include a simplified plate,
as done by Schmidt [60], see figure 2.10. The idea is to regard a tooth as a
plate, figure 2.10(a). The elastic deformation of the plate is approximated by
an Euler-beam, which is elastically supported by both torsional and linear
springs, figure 2.10(b). Now the problem of finding the influence between
slices in the tooth reduces to finding the bending stiffness F of the beam
and stiffnesses c1 and c2 of the support. With these constants found, the 4th
order differential equation describing the beam bending f is derived:

F
d4f

dζ4
− c2

d2f

dζ2
+ c1f = P (ζP ) (2.29)
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(a) Plate (b) Simplified plate (beam)

Figure 2.10: Simplified plate theory, according to [60]

This equation is solved using the magnitude and the position of the applied
force, P and ζP , as boundary conditions. The calculations are repeated for
several values of ζP , and the result is the matrix ZI . For a simple example
system with IMAX = 5, the columns of ZI have been plotted in figure 2.11.
The highlighted line is the ZI-column for which the force is applied at the left
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Figure 2.11: ZI(ζP , ζ)

edge of the tooth, ζP = 0. The ZI-columns are normalized to give an average
value of 1. This makes ZI(ζP , ζ) a suitable correction function, which can be
multiplied by the compliances in ZK to give a realistic displacement pattern
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across the tooth.

With ZK and ZI found, all necessary information to assemble the (KMAX ·
IMAX)× (KMAX · IMAX) tooth compliance matrix Z is available. However, to
ensure sufficient accuracy of the results, both KMAX and IMAX need to be
relatively large, which leads to an unreasonably large Z. For a given relative
gear position, the mating teeth will touch at a line across the tooth surface.
The position and orientation of this contact line depends on the gear posi-
tions and on the helix angle. In figure 2.12, the contact line is shown for a
helical gear pair. Without loss of accuracy, this line can be discretized into

Figure 2.12: Position of contact line, helical gear, figure from [60]

a number of points. From figure 2.13, where the contact line is shown for
two meshing positions, it is clear that no more than one section K of each
slice I will touch the mating gear. Since only the contacting sections K and
slices I are of any interest, the remaining sections and slices can be discarded.
This leads to a maximum dimension (IMAX× IMAX) of Z. However, since the
position of the contact line depends on the relative gear position, Z needs to
be renewed for each new gear position.

For a given slice I, the meshing is shown in figure 2.4. It is apparent that the
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Figure 2.13: Position of contact line on the calculation grid, spur gear

contact point on the ξ-axis in the tooth coordinate system will always lie in
the interval [0, ra−SAP]. Now the line AE is simply divided into JMAX − 1
pieces of equal length, which corresponds to JMAX equally spaced relative
gear mesh positions. For any position J , the ξ-coordinate of the contact
point, ξP , on the driving gear (gear 1) is found by using the formula:

ξP,J = (ra,1 − SAP1) − J − 1

JMAX − 1
· (ra,1 − SAP1) (2.30)

Likewise, for the driven gear (gear 2) the contact point is found as

ξP,J =
J − 1

JMAX − 1
· (ra,2 − SAP2) (2.31)

Now for each position J and for each slice I a nearest-point interpolation is
performed to find the section K closest to the theoretical contact point at
ξP . In this way the position of the theoretical contact line across a tooth on
the driving gear for a given mesh position J can be described by a vector
of dimension IMAX called K1,J , which contains the index numbers K of the
contacting sections. Likewise, a vector K2,J describes the theoretical contact
line for a tooth on the driven gear.

For a helical gear, the contact line will often be shorter than the distance
across the tooth, see figure 2.13. In this case, the vectors K1,J and K2,J will
simply be of smaller dimension.

Consider the relative gear mesh position J . In this position, the tooth com-
pliance matrix Z1,J for gear 1 is ready to be assembled using the matrices
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ZI and ZK , and the vector K1,J . Assume that K1,J has the length IL. Then
Z1,J will be of dimension IL × IL, and can be populated in a simple manner:

Z1,J(IA, IB) = ZK

(
K1,J(IA),K1,J(IB)

)
· ZI(IA, IB) (2.32)

for IA = 1 . . . IL and IB = 1 . . . IL (2.33)

In a similar way, the tooth compliance matrix Z2,J for gear 2 can be assem-
bled. Now the two single-tooth compliance matrices are added to produce
the tooth pair compliance matrix for position step J :

ZJ = Z1,J + Z2,J (2.34)

Grinding corrections To ensure smooth running of the gears, small amounts
of material are often removed from the tooth surfaces. This can be done in
many ways, examples are shown in figure 2.14. Often modifications are ex-
pressed by a power law.

Profile modifications are defined along the line of action (LOA), the line
AE in figure 2.4. For a tip modification, the amount of material removed
(in the direction of the LOA) at any coordinate s along the LOA, y(s), is
described by the amount removed at the tooth tip Ca, the length of the mod-
ification La, and an exponent n to describe the shape of the modification.
The equation is

y(s) = Ca

(
La − s

La

)n

for s ∈ [0, La] (2.35)

with s = distance from point E on the LOA for gear 1, and s = distance
from point A on the LOA for gear 2. For root relief, a similar equation can
be set up. The index f is used for root modifications. For a profile crowning,
the symbol Ch is used. Profile crowning can be seen as a combination of a
long tip and a long root relief.

Lead modifications are defined across the tooth width. For end relief, the
amount Ce, the length be, and the shape exponent m can be defined for both
ends of the tooth. When t is the distance to the tooth end, the end relief
follows the equation

y(t) = Ce

(
be − t

be

)m

for t ∈ [0, be] (2.36)
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(a) (b)

Figure 2.14: Examples of grinding corrections, figure from [55]. (a) Profile
modifications: Tip relief and root relief. (b) Lead modifications: Crowning
and end relief

An extra index R or L can be used to indicate right or left tooth end. For
a lead crowning, the symbol Cb is used. Lead crowning corresponds to a
double-sided end relief, with CeR = CeL = Cb and beR = beL = B/2, where
B is the tooth width. In figure 2.15, example tip relief (Ca = 60 μm, La =
15 mm, n = 2) and lead crowning (Cb = 20 μm, m = 2) are shown. These
values for m and n are typical values used in industrial applications, and
therefore both m and n are set to 2 in this work. The sum of the grinding
corrections applied to a tooth is put into a (IMAX × KMAX) matrix meaning
that the amount of material removed from each point of the grid is known,
see figure 2.16. Now the vectors K1,J and K2,J can be used to find the
grinding corrections at all points on the theoretical contact line. This results
in a vector dJ , which will be used in the following calculations.
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tions, 3D view
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2.3 Single Tooth Pair Stiffness

The Hertzian (or contact) deformation differs from the other types of defor-
mation considered here, as it depends on both of the contacting teeth. It is
the only deformation component to vary nonlinearly with the applied load.
The calculation procedure presented here is very close to the procedures pre-
sented by Ziegler [3] and Weber and Banaschek [2].

The Hertzian deformation depends on the radii of curvature of the contacting
surfaces, ρ1 and ρ2, which can be found as shown in figure 2.17. From the

Figure 2.17: Calculation of the radius of curvature for a section I

figure it is seen that the radii of curvature can be calculated as

ρ1 =
√

r2
R1 − r2

b1

1

cos βb

(2.37)

ρ2 =
√

r2
R2 − r2

b2

1

cos βb

(2.38)

The factor 1/ cos(βb) in the above equations transforms ρ1 and ρ2 from the
transverse to the normal plane. Equations (2.37) and (2.38) can be rewritten
in a single equation for the calculation of a combined radius of curvature
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taking into account both gears:

ρ =
ρ1ρ2

ρ1 + ρ2

(2.39)

Now a few quantities can be defined1:

W0 =
PBE(I)

B/IMAX

Line load (2.40)

pmax =

√
W0E

2πρ(1 − ν2)
Maximum Hertzian pressure (2.41)

b =

√
8W0ρ(1 − ν2)

Eπ
Half width of zone of influence (2.42)

h =
H

2 cos αn

Depth of zone of influence (2.43)

The value of h in equation (2.43) is chosen rather arbitrarily as the distance
from the contact point to the tooth centreline, see figure 2.18, as this seems
to be a good approximation. From Weber and Banaschek [2], the Hertzian

Figure 2.18: Definition of the “depth of zone of influence”, h (normal plane)

deformation in the normal plane in the direction of the line of action is now

1The maximum Hertzian pressure pmax is not used here, but it is needed at a later
stage
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given as

YA =
2W0(1 − ν2)

Eπ

(
ln
(2h

b

)
− ν

2(1 − ν)

)
(2.44)

Again, to transform from normal to transverse plane:

YAE = YA
1

cos β
(2.45)

To use the compliance matrix Z as shown in equation (2.7), the load dis-
tribution F across the tooth must be known. Because of elastic deformation
in the gear teeth, and because of the applied tooth modifications, the actual
contact line may not be identical to the theoretical contact line determined
in a previous section. For these reasons, a contact model must be set up. The
model shown in figure 2.19 can be used. In the figure, a spring represents the
elasticity associated with a slice I of the contact line. The tooth elasticity Z
is shown as a number of springs enclosed in a rectangular box to illustrate
the interactions between the springs. Mathematically this corresponds to the
general case, where Z is a full matrix and not a diagonal matrix. ZH repre-
sents the Hertzian deflection, which is a localized deformation type with no
influence between neighboring slices. Because of the modifications, the teeth

(a) No or low load (b) High load

Figure 2.19: Tooth stiffness model

may only touch at one point at low load, as shown in figure 2.19(a). When
the load increases, more slices I enter into contact, see figure 2.19(b). At
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low load, when only some springs are in contact, the tooth pair stiffness will
therefore have two different built-in nonlinearities with respect to the load
P : 1) The Hertzian deformation is nonlinear in P , and 2) The length of the
contact line increases with increasing load. To solve this nonlinear problem,
an iterative procedure is chosen. For a fixed load P , the calculations follow
the scheme below, which consists of two nested loops: The purpose of the
outer loop is to determine which slices are in contact, and the inner loop
finds the correct load distribution F. In order to find F, the assumption
is made that all contacting slices deflect the same amount, when including
modifications as a deflection. The same assumption is made by Ziegler [3].

1. To initialize the force vector F, all load P is put on the slice I, which
shows the smallest amount of modification d (in figure 2.19, this is slice
4)

(a) For the current load distribution F, the Hertzian deformation XH

is calculated (for unloaded slices, XH = 0)

(b) The tooth deformation XT is calculated

(c) The displacement Y = XH + XT + d is calculated.

(d) The ”displacement ratio” vector Yratio = Y/mean(Y) is calcu-
lated for the loaded slices only

(e) The load distribution F is updated using the formula Fnew =(
1

Yratio

)
Fold to increase the load on the slices I that are less-

than-average deflected

(f) The vector F is scaled to ensure
∑

F = P

(g) If the largest component of Yratio is still above a pre-set limit,
return to step 1a. Otherwise, the loop is ended

2. The ”overall elastic tooth pair deformation” X = max(XH + XT ) is
saved

3. For a given unloaded slice I, the elastic deformation required to be in
contact is d(I) + XT (I). If X > Y(I), slice I must carry load. In this
case update F so that F(I) > 0, scale F to ensure

∑
F = P and return

to step 1a. Otherwise, the loop is ended
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The calculations described here are repeated for several loads P and sev-
eral relative gear positions τ . The resulting deformation function X(P, τ) is
stored as two piecewise linear functions X(P ) and X(τ) to be used in the
gear mesh computations.

The single tooth pair stiffness cE can be calculated using one of the two
following definitions:

cE,tangent =
dP

dX
Tangent stiffness (2.46)

cE,secant =
P

X
Secant stiffness (2.47)

2.4 Gear Mesh Stiffness

The load- and position-dependent deflections for several single tooth pairs
can be combined to a mesh deflection Y and a mesh stiffness c. The method
used here is closely related to the method described by Gregory, Harris and
Munro [13], but generalized to high-contact ratio gear sets with εγ > 2.

Again, the grinding corrections are an important aspect of the calculations.
In figure 2.20, the effective modifications along the line of action are shown
for five tooth pairs. The number of tooth pairs in contact at a point on the
LOA depends on the deformation of the gear mesh, and hence on the load.
At a fixed relative gear position τ , consider three different loads marked 1, 2,
and 3 in the figure. At low load (point 1) only one tooth pair is in contact.
With increasing load, the gear mesh deformation increases. When this defor-
mation increases above the amount of modifications of a tooth pair, the tooth
pair will start carrying load. The modification of tooth pair n is called Xn.
This is shown by the points 2 and 3 in figure 2.20, where two and three tooth
pairs are in contact, respectively. Since the position- and load-dependent de-
formation behavior of a single tooth pair is known, the load sharing between
the tooth pairs, the deformation of each tooth pair, and the total gear mesh
deflection can be found. From this deflection, the gear mesh stiffness is found
using formulas similar to equation (2.46) or (2.47).

For a given relative gear position τ , the computational procedure is explained
using figure 2.21. This situation corresponds to the ”high load” situation in
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Figure 2.20: Increasing number of load carrying tooth pairs with increasing
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Figure 2.21: Calculation procedure

figure 2.20, where three tooth pairs (TPs) share the load. But to explain the
physics, let the gear mesh load P increase slowly from zero.

At the current τ , TP2 is the first TP to enter contact, when the load in-
creases. This happens roughly at Y = 0, which means that the no-load
transmission error X0 is close to zero. When TP2 has deformed an amount
Y1, TP1 enters into contact. When the load increases further, also TP3
will enter into contact. This means that in the situation shown, TP3 is
deformed the amount Y3, TP1 is deformed Y3 + Y2, and TP2 is deformed
Y3 + Y2 + Y1. The total gear mesh deflection is defined as Y3 + Y2 + Y1,
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equal to the most deformed single TP. The governing equations to find the
six unknowns (P1,P2,P3,Y1,Y2,Y3) are

Y3 = Y (P3, τ3) (2.48)

Y2 + Y3 = Y (P2, τ2) (2.49)

Y1 + Y2 + Y3 = Y (P1, τ1) (2.50)

Y1 = X1 − X0 (2.51)

Y2 = X2 − X1 (2.52)

P = P1 + P2 + P3 (2.53)

However, it is not enough to simply solve these six equations, as the number
of TPs in contact is not known from the start. Again, an iteration loop is
needed.

The total contact ratio εγ shows the average number of TPs in contact.
Therefore εγ rounded up to the nearest integer can be seen as the maximum
number of contacting TPs, that is possible at any time. In special cases
however, a high load may increase the actual number of TPs in contact by
one. This number, εγ rounded up plus one, is called Nmax.

Initially, it is assumed that Nmax TPs share the load P equally with Pi =
P/Nmax for i = 1 . . . Nmax. Equations (2.48) through (2.53) are solved to give
forces Pi and deformations Yi. This is done in an iteration loop because of
the nonlinear nature of the function Y (P ). If, during these calculations, a
force Pi falls below a predefined limit, the corresponding TP is left out of the
remaining calculations.

The procedure is repeated for several positions on the LOA. Now the gear
mesh deflection is known, and the gear mesh stiffness can be found:

ctangent =
dP

dY
Tangent stiffness (2.54)

csecant =
P

Y
Secant stiffness (2.55)

The described calculation procedure for finding the gear mesh stiffness can
be used for both external and internal gear meshes. The internal mesh is
found in a planetary gear train, which is present in most modern wind tur-
bine gearboxes.

Page 46 of 139



The above discussion shows how the transmission error (TE) is closely linked
to both modifications, stiffness, and loading of the gear teeth. In the pro-
posed mesh stiffness model, the concept of TE is therefore included; however,
it is regarded as a result of externally applied load and gear geometry and
not treated as a excitation source.
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2.5 Validation of Mesh Stiffness Model

In this section, the proposed gear stiffness model will be validated. This is
done by comparing tooth deflection and stiffness to both experimental and
model results from the literature.

In ISO-6336 [7], the maximum single tooth pair stiffness c′ and the mean
gear mesh stiffness cγ are defined. Also methods and parameter values for
the calculation are available. Therefore the mentioned ISO standard could be
used for validation of c′ and cγ. However, c′ and cγ are scalar values and give
no information on the influence of the relative gear position on the tooth
and gear mesh stiffnesses. Since this dependency is essential for the work
presented in this thesis, alternative data sources for the stiffness validation
have been used.

The gear mesh stiffness is validated by comparison with the commercial soft-
ware KissSoft2. Several gear pairs will be used in the validation process, to
obtain results comparable to those reported in the literature. The gear pair
chosen for the mesh stiffness validation is used in the following time-varying
modal analysis.

Single tooth and tooth pair deflection First, single tooth deflections
for a spur gear pair from Weber and Banaschek [2] are used for comparison.
The gear pair is described in table 2.2. In [2], a rack with z → ∞ is used as

Gear 1 Gear 2 Description Unit
z ∞ 24 Number of teeth -
x 0 0 Addendum modification coefficient -
b 5 5 Tooth width mm
ρf 0.39 · mn 0.39 · mn Root fillet radius mm
mn 1 Normal module mm
αn 20 Normal pressure angle deg
β 0 Helix angle deg
a 262 Centre distance mm

Table 2.2: Data for spur gear pair used by Weber and Banaschek

2http://www.kisssoft.ch/english/products/kisssoft_gear.php
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driving gear. However, in the model proposed here, z → ∞ causes numerical
problems, and the rack is replaced by a very large gear with z = 500. Weber
and Banaschek present results for three combinations of gears, and for two
loads per gear pair. The results are given as normalized deflection q = yBE

P
,

where y is the deflection, B is the tooth width, E is Young’s modulus, and P
is the load. Single tooth deflections are q1 and q2, and the Hertzian deflection
is qH . The results are presented in figure 2.22. It can be concluded that there
is a good agreement between the deflections calculated by the two models.
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(a) z2 = 24, pmax = 2000 kg/cm2
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(b) z2 = 24, pmax = 20000 kg/cm2
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(c) z2 = 32, pmax = 2000 kg/cm2
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(d) z2 = 32, pmax = 20000 kg/cm2
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(e) z2 = 48, pmax = 2000 kg/cm2
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(f) z2 = 48, pmax = 20000 kg/cm2

Figure 2.22: Tooth pair compliance compared to Weber and Banaschek.
The markers represent Weber and Banaschek’s values, and the lines show
the results from the present model: ◦◦◦ q; ��� q1; ��� q2; ♦♦♦ qH
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Tooth pair deflection In [6], Arafa and Megahed compute single-tooth
compliance and tooth-pair compliance for two different gear sets. A finite
element model of two meshing gears is used. The results are presented as
normalized compliance NC = δf/Fn, or NC = Y b/P with the notation
used in this work. The data for the two gear pairs are shown in table 2.3. As

Gear 1 Gear 2 Unit
z 20 20 -
x 0 0 -
b 5 5 mm
ρf 0.30 · mn 0.30 · mn mm
mn 2 mm
αn 20 deg
β 0 deg
a 40 mm

(a) Gear pair 1

Gear 1 Gear 2 Unit
z 70 70 -
x 0 0 -
b 5 5 mm
ρf 0.30 · mn 0.30 · mn mm
mn 2 mm
αn 20 deg
β 0 deg
a 140 mm

(b) Gear pair 2

Table 2.3: Data for gear pairs used by Arafa and Megahed

seen from the table, the two gear pairs consist of identical gears. The tooth
pair compliance calculated by Arafa and Megahed compared to the present
model is presented in figure 2.23. It must be noted that the finite element
model proposed in [6] does not include the Hertzian deformation as a sepa-
rate deflection component. Instead, the elements are very small to include
the localized contact deformation. Therefore care must be taken when com-
paring to the present model, where the Hertzian deflection is not included in
NC1 and NC2. Because of this difference in computational procedure, the
single-tooth deflections are not expected to be identical, but the tooth pair
deflections are directly comparable.

In figure 2.23(a), the single-tooth compliance and tooth-pair compliance is
shown for the 20/20 gear pair. It is seen how the single tooth compliance
curves for the two models differ at contact near the tooth root (the low com-
pliance area). In this zone, the model presented here shows a compliance
lower than Arafa and Megahed’s model. The difference seems to decrease,
as the contact point moves up the tooth.

Page 51 of 139



−4 −2 0 2 4
0

5

10

15

20

25

30

Position on line of action [ m
n
]

N
or

m
al

iz
ed

 c
om

pl
ia

nc
e 

[−
]

(a)

−4 −2 0 2 4
0

5

10

15

Position on line of action [ m
n
]

N
or

m
al

iz
ed

 c
om

pl
ia

nc
e 

[−
]

(b)

Figure 2.23: Single tooth and tooth pair compliance for (a) z1 = z2 = 20,
and (b) z1 = z2 = 70. The markers represent Arafa and Megahed’s values,
and the lines show the results from the present model:

◦◦◦ NC; ��� NC1; ��� NC2; NC1 + NC2

Figure 2.23(b) shows single tooth compliance and tooth pair compliance for
the 70/70 gear pair. The results from the two models are practically identical
for all contact positions.
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Tooth pair stiffness Ziegler [3] presents measurements of tooth pair stiff-
nesses. In each of the measurements used here, the gear pair consists of two
identical gears from which several teeth have been removed in order to mea-
sure the single tooth pair stiffness. The five gear pairs used are presented in
table 2.4. The measured results have been read from the graphs presented

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Unit
z 49 48 46 44 38 -
x 0 0 0 0 0 -
b 17.75 17.75 17.75 17.75 17.75 mm
mn 2.5 2.5 2.5 2.5 2.5 mm
αn 20 20 20 20 20 deg
β 11◦28’42” 16◦15’37” 23◦4’26” 28◦21’27” 40◦32’9” deg

Table 2.4: Data for Ziegler’s gear pairs

in [3, page 57], which gives an uncertainty. However this uncertainty is esti-
mated to be a small percentage value, which is acceptable for the purpose of
model validation. The measurements and the corresponding stiffnesses cal-
culated with the present model are shown in figure 2.24. An excellent match
between measurements and calculations are seen for all gear pairs.
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Figure 2.24: Tooth pair stiffness compared to Ziegler [3]. The markers show
the results from Ziegler’s measurements
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Gear mesh stiffness The final set of gears used in the stiffness validation
is loosely based on the intermediate stage of a 1 MW wind turbine gear box,
except for a zero degree helix angle and zero profile shift on both gear and
pinion is used. The basic data of the gear is presented in table 2.5. This
stiffness of this gear set will be used in the time-varying modal analysis, which
follows in section 3. The stiffness function found is validated by comparing to

Driving gear Driven gear Unit
z 95 22 -
αn 20 deg
β 0 deg
a 486 mm
mn 8 mm
x 0 0 -
b 215 225 mm
Mt 74875.84 17339.67 Nm

Table 2.5: Basic gear data

results obtained using the commercial software KissSoft. The comparison is
shown in figure 2.25. In figure 2.25(a) the gear mesh stiffness is shown, when
deformations of the gear teeth are not included in the kinematic analysis
to determine tooth contact positions. In this type of calculation, the total
contact ratio for this spur gear pair equals the theoretical εα of 1.67. A
good correlation between the models is seen. In figure 2.25(b), the elastic
deformation in the gear mesh is included. In this case, the deformations
cause the tooth to touch before the theoretical start of contact, and to stay
in contact a longer period of time. This leads to an increase in contact ratio
beyond the theoretical value. Also in this case a good correlation with the
KissSoft results is shown.

2.6 Conclusion

A method for calculating gear mesh stiffness has been presented. For a
number of gear geometries, the calculated results have been validated by
comparison with theoretical and experimental results found in the literature.

The stiffness found will form the basis of the next chapters. First, the gear
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Figure 2.25: Validation of stiffness c and mean stiffness cγ by comparing to
program KissSoft: (a) No load-induced increase in contact ratio, (b) Includ-
ing load-induced increase in contact ratio

mesh stiffness will be coupled with a very simple multibody model. This
sample system is thoroughly investigated using the theory of time-varying
modal analysis.
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Chapter 3

Dynamic Coupling and
Time-Varying Modal Analysis

The goal of this section is to apply the theory of time-varying modal analysis
to the field of gear dynamics, which is one of the major contributions of
this thesis. As an example gear set, a pair of spur gears is used instead
of a complete gearbox. The gear mesh stiffness found in chapter 2 is the
key component in the analysis. This simple example has been chosen in
order to investigate the advantages and drawbacks of using the technique for
analyzing vibrations in spur gears.

3.1 Introduction

Modal analysis method is very frequently used with the aim of integrating
time-invariant linear equations of motion. The eigenvalues and eigenvectors
obtained from the solution of eigenvalue problems allow engineers to inter-
pret and visualize the dynamic behavior of different mechanical systems. For
time-varying equations of motion the use of modal analysis in its well-know
form is not possible. In this case a stability analysis normally relies on Flo-
quet theory. The Floquet theory does not deliver the complete homogenous
solution, but gives only information about the stability of the system rep-
resented by equations of motion with periodically varying coefficients (Ertz,
Reister, Nordmann [62]).

In many cases as flexible rotating blades, flexible rotating discs, rotating
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shafts with non-symmetrical cross section, and gear dynamics, the coeffi-
cients of the equations of motion vary periodically. In Xu and Gasch [63]
the complete homogenous solution of periodic time-varying linear equations
of motions is presented, based on Hill’s approximation. The periodic time-
varying matrix systems are expanded in Fourier series. Assuming that the
solution also can be expanded in Fourier series, it is possible to obtain a gen-
eral homogenous solution by solving a hyper-eigenvalue problem, i.e. when
the number of Fourier coefficients is not infinite. The solution of the hyper-
eigenvalue problem leads also to eigenvalues and eigenvectors; nevertheless,
the eigenvectors become also periodic time-varying and the eigenvalues be-
come dependent on the periodicity of the parameter variation. Different
contributions to the problem of periodic time-varying modal analysis are
presented in the literature, i.e. non-symmetric rotors (Ertz, Reister, Nord-
mann [62], Boru, Irretier [64]), flexible rotating discs (Irretier, Reuter [65],
Reuter [66]), rotor-blade dynamics ([63], Santos, Saracho [67]) and later ac-
tive control of rotor-blade dynamics (Christensen, Santos [68, 69, 70, 71]).
The mathematical foundations of modal analysis for time-varying linear sys-
tems is clearly presented by Irretier in [72], and Bucher, Ewins in [73].

In [62] the dynamics of a simple flexible shaft with non-symmetric cross
section, supported by anisotropic bearings, is theoretically investigated us-
ing Hill’s approach. In [64] such an investigation is carried out theoretically
as well experimentally.

Flexible rotating discs are also examples of periodically time-varying struc-
tures. Their dynamics are carefully investigated using periodic time varying
modal analysis in [65, 66]. The theoretical work in presented in [65], and the
experimental validation in [66], illustrates the continuation of Irretier’s work
[74].

Rotating flexible blades are also examples of periodically time-varying sys-
tems. Their dynamics are also carefully investigated using periodic time-
varying modal analysis, as can be seen in [63], Bienert [75], and in [67, 76].
In [76] a contribution to the experimental validation of linear and nonlinear
dynamic models for representing rotor-blades parametrically coupled vibra-
tions is given. The rotor-blade dynamics is described by using three models
with different levels of complexity followed by experimental validation of such
models. A deeper physical understanding of the dynamic coupling and the
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behavior of the parametric vibrations is achieved. Such an understanding
is of fundamental importance while developing active control strategies. In
[68] the design of time-varying modal controllers is in focus. Time-varying
modal analysis and modern control theory are integrated in an elegant way
allowing the development of new control strategies. The modal controllabil-
ity and observability of bladed discs are strongly dependent on the angular
velocity; a detailed analysis of such a dependency is presented in [69]. To
control rotor and blade vibration using only shaft actuation is a challenging
problem. In [70] such a problem is investigated theoretically as well as ex-
perimentally using different control strategies. Electromagnetic actuators are
used to control a horizontal rotor-blade system (blades periodically excited
by the gravity). In [71] the same problem is theoretically as well as exper-
imentally investigated and new strategies are developed to control vertical
rotor-blade systems.

3.2 Mathematical Modeling

The gear mesh stiffness is calculated for several relative positions of the mesh-
ing gears as described in section 2. This gives a load- and position-dependent
stiffness. Under the high loads considered in the following dynamic analy-
sis, it is assumed that tooth separation will not occur. After completing
the stiffness calculation, a constant angular velocity is assumed. By these
assumptions, the gear mesh stiffness becomes a periodically varying param-
eter in the time domain, that is, the nonlinearity is removed. It must also
be noted that all teeth are considered identical, i.e. pitch errors are not in-
cluded. The resulting system can be investigated using the theory for modal
analysis of linear time-varying systems.

When the only time-varying parameter in the system is the gear mesh stiff-
ness, the equation of motion can be written as

Mq̈ + Cq̇ + K(t)q = f (3.1)

	 [
q̇
q̈

]
−
[

0 I
M−1K(t) M−1C

] [
q
q̇

]
=

[
0 0
0 M−1

] [
0
f

]
(3.2)

or

ż − A(t)z = p, z =

[
q
q̇

]
, A(t) = A(t + T ) (3.3)
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The first part of the analysis of equation (3.3) involves the homogeneous
part of the equation, that is, ż − A(t)z = 0. This equation is analyzed
by expanding the theory of modal analysis of time-invariant systems [59] to
include periodically time-varying parameters, as shown in [67] and [63]. By
the substitutions

z(t) = r(t)eλt ⇒ ż(t) = ṙ(t)eλt + λr(t)eλt (3.4)

p = 0 (3.5)

into equation (3.3), the equation can be written as the eigenvalue problem

ṙ(t) + λr(t) − A(t)r(t) = 0 (3.6)

	
ṙ(t) +

(
λI − A(t)

)
r(t) = 0 (3.7)

Under the assumption of constant angular velocity, the gear mesh frequency
in units rad/sec is called Ω. The stiffness matrix K(t) and therefore the state
matrix A(t) are both periodic with period T = 2π/Ω and can be expanded
as infinite, complex Fourier series. Also the time-varying eigenvector rj(t),
belonging to the jth eigenvalue, is assumed to be periodic. In all equations,
i=

√−1.

K(t) =
∞∑

k=−∞
Kke

ikΩt (3.8)

A(t) =
∞∑

a=−∞
Aae

iaΩt (3.9)

rj(t) =
∞∑

r=−∞
rj,re

irΩt for j = 1 . . . 2N (3.10)

It can be shown [63] that the components of the eigenvectors rj(t) can be
found by re-writing equation (3.7):

(
λj Î − Â

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
rj,−2

rj,−1

rj,0

rj,1

rj,2

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
0
0
0
0
0
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)
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where

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . · · · · · · · · · · · · · · · · · ·
· · · 2iΩI + A0 A−1 A−2 A−3 A−4 · · ·
· · · A1 iΩI + A0 A−1 A−2 A−3 · · ·
· · · A2 A1 A0 A−1 A−2 · · ·
· · · A3 A2 A1 −iΩI + A0 A−1 · · ·
· · · A4 A3 A2 A1 −2iΩI + A0 · · ·
· · · · · · · · · · · · · · · · · · . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)
In an exact solution to equation (3.11), Â is of infinite dimension. However,
the magnitude of the Fourier components of A(t) depends directly on the
Fourier components of K(t). Therefore, if the gear mesh stiffness function
included in K(t) is smooth, only a few of the Fourier components of A(t)
will have a magnitude that will significantly influence the resulting displace-
ments and velocities in vector z(t). In a later section, it will be shown how
to calculate the necessary number of Fourier components to be included in
Â, in order to obtain accurate results. If the number of included Fourier
components is n, in the sense that

K(t) =
n∑

k=−n

Kke
ikΩt (3.13)

and the number of degrees of freedom in the model is N , the dimension of
matrix Â will be 2N(2n + 1) × 2N(2n + 1).

There is a great amount of redundant information in the solution of equation
(3.11). Only the basis eigenvalues and basis eigenvectors, which are identified
as described in a later section, are needed in the ensuing analysis. The 2N
basis eigenvalues are stored in a diagonal matrix Λ, and the Fourier compo-
nents of the basis eigenvectors rj,0 are stored in the 3-dimensional array R.
This array can be visualized as (2n + 1) ”layers” of 2N × 2N matrices. The
kth layer of R will have the structure Rk = [r1,k r2,k · · · r2N−1,k r2N,k] for k
= −n . . .n

To find the solution q of equation (3.1), also the left eigenvectors L(t), which
are the solution to the equation R(t)L(t) = I are needed. These can be
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found by solving the matrix equation:

R(t)L(t) = I (3.14)

	
∞∑

r=−∞
Rre

irΩt

∞∑
l=−∞

Lle
ilΩt = I (3.15)

	 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · · · · · · · ·
· · · R0 R−1 R−2 R−3 R−4 · · ·
· · · R1 R0 R−1 R−2 R−3 · · ·
· · · R2 R1 R0 R−1 R−2 · · ·
· · · R3 R2 R1 R0 R−1 · · ·
· · · R4 R3 R2 R1 R0 · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
L−2

L−1

L0

L1

L2

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
0
0
I
0
0
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.16)

In most practical cases, the magnitudes of the submatrices Rn will decrease
with increasing n. Therefore, a solution based on the central rows and
columns of the infinitely large system of Eqs. (3.16) will be sufficiently ac-
curate. For n = 2, equation (3.16) can be approximated by:⎡

⎢⎢⎢⎢⎣
R0 R−1 R−2 0 0
R1 R0 R−1 R−2 0
R2 R1 R0 R−1 R−2

0 R2 R1 R0 R−1

0 0 R2 R1 R0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

L−2

L−1

L0

L1

L2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
I
0
0

⎤
⎥⎥⎥⎥⎦ (3.17)

With Ll found for l = −n · · ·n, the solutions to the homogeneous and the
inhomogeneous equation of motion, equation (3.1), can now be found [67, 63].
First, equation (3.6) is rewritten as

r(t)λ + ṙ(t) − A(t)r(t) = 0 (3.18)

which is then expanded from a vector equation to a matrix equation to include
all eigenvalues and eigenvectors simultaneously:

R(t)

⎡
⎢⎣

. . .

λk

. . .

⎤
⎥⎦+ Ṙ(t) − A(t)R(t) = 0 (3.19)
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The equation above is multiplied from the left with L(t) while using the
property L(t)R(t) = I, and rearranged:

L(t)R(t)

⎡
⎢⎣

. . .

λk

. . .

⎤
⎥⎦+ L(t)Ṙ(t) − L(t)A(t)R(t) = 0 (3.20)

	 ⎡
⎢⎣

. . .

λk

. . .

⎤
⎥⎦ = −L(t)Ṙ(t) + L(t)A(t)R(t) (3.21)

This result is needed later in the analysis. Now the modal coordinates y(t)
are introduced as

z(t) = R(t)y(t) ⇒ ż(t) = Ṙ(t)y(t) + R(t)ẏ(t) (3.22)

This is inserted into equation (3.3), and all terms are multiplied from the left
with L(t), which yields

L(t)Ṙ(t)y(t) + L(t)R(t)ẏ(t) − L(t)A(t)R(t)y(t) = L(t)p (3.23)

	
ẏ(t) +

(
L(t)Ṙ(t) − L(t)A(t)R(t)

)
y(t) = L(t)p (3.24)

Now equation (3.21) is inserted, and the result is the decoupled modal equa-
tions of motion

ẏ(t) −

⎡
⎢⎣

. . .

λk

. . .

⎤
⎥⎦y(t) = L(t)

[
0

M−1

]
f(t) (3.25)

By inserting L(t) =
∑n

l=−n Lle
ilΩt and the oscillating force f(t) = p+eiΩ∗t

into the right hand side of (3.25), the equation becomes

ẏ(t) −

⎡
⎢⎣

. . .

λk

. . .

⎤
⎥⎦y(t) =

n∑
l=−n

Ll

[
0

M−1

]
p+ei(Ω∗+lΩ)t (3.26)
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Now a modal solution y(t) with the same frequency as the forcing function
in equation (3.26) is assumed:

y(t) = yei(Ω∗+lΩ)t ⇒ ẏ(t) = yi(Ω∗ + lΩ)ei(Ω∗+lΩ)t (3.27)

This solution is inserted into (3.26), which yields

i(Ω∗+lΩ)y(t)−

⎡
⎢⎣

. . .

λk

. . .

⎤
⎥⎦y(t) =

n∑
l=−n

Ll

[
0

M−1

]
p+ei(Ω∗+lΩ)t (3.28)

⇔

⎡
⎢⎣

. . .

i(Ω∗ + lΩ) − λk

. . .

⎤
⎥⎦y(t) =

n∑
l=−n

Ll

[
0

M−1

]
p+ei(Ω∗+lΩ)t

(3.29)
The transformation back to the z(t) coordinates is performed using equa-
tion (3.22), and R(t) is substituted by its equivalent sum

∑n
r=−n Rr. The

resulting equation shows the forced response:

zinhom(t) =
n∑

r=−n

n∑
l=−n

Rr

⎡
⎢⎣

. . .
1

i(Ω∗+lΩ)−λk

. . .

⎤
⎥⎦Ll

[
0

M−1

]
p+ei(Ω∗+Ω(r+l))t

(3.30)
When using a finite n and the initial condition z(t0) = z0, the solution to the
homogeneous equation of motion is very similar in form to the homogeneous
solution for a time-invariant system:

zhom(t) = R(t)

⎡
⎢⎣

. . .

eλk(t−t0)

. . .

⎤
⎥⎦L(t0)z0 (3.31)

To find the basis eigenvectors and basis eigenvalues needed to set up R(t)
and λk in equation (3.30), the eigenvalues and corresponding vectors must be
sorted. This sorting is also necessary to correctly calculate the eigenvector
normalization factors, as described in a later section. The problem can be
described by figure 3.1, in which the imaginary part of the eigenvalues is
plotted versus the gear mesh angular velocity Ω. Both figures are zoomed
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Figure 3.1: Solutions to hyper-eigenvalue problem: (a) Low n or low Ω, (b)
High n or high Ω

in to show only two ”families” of eigenfrequencies. In figure 3.1(a), n = 2
Fourier components are included in the analysis. Here, the sorting is easy: the
2n+1 lower frequencies belong to the low-frequency family centered around
f1. In figure 3.1(b), n = 4 and the situation is more complicated; it is no
longer a trivial task to decide which eigenvalues belong to which family. A
typical eigenvalue distribution in the complex plane is shown in figure 3.2(a).
It is clear how the different families of eigenvalues can be identified by their
real part, which is nearly identical for all members of the family [63]. This
method will solve the problem visualized in figure 3.1(b). However, because of
the transformation into state space from equation (3.1) to equation (3.3), the
eigenvalues are found in complex conjugate pairs, as depicted in figures 3.2(a)
and 3.2(b). Obviously, these cannot be separated based on their real part
alone. Instead, a sorting algorithm based on a first order Taylor expansion
of the eigenvalues as a function of Ω is used. For a given Ωk, where k is an
integer index, the expected value for λ is given by

λk,expected = λk−1 +
dλ

dΩ
ΔΩ ≈ λk−1 +

λk−1 − λk−2

Ωk−1 − Ωk−2

(
Ωk − Ωk−1

)
(3.32)

Page 65 of 139



0

0

Re(λ)

Im
(λ

)

72 eigenvalues
8 basis eigenvalues

(a)

−f1

0

f1

Angular frequency Ω [rad/sec]

Im
(λ

)

(b)

Figure 3.2: Complex conjugate eigenvalues: (a) Eigenvalue distribution, (b)
High n or high Ω

The eigenvalues λk,expected predicted by equation (3.32) are then compared
to those actually obtained by solving the hyper-eigenvalue problem, λk. The
absolute difference between λk,expected and λk is calculated, and the eigenval-
ues in λk are then identified with the eigenvalue in λk,expected, which shows
the minimum difference. A few requirements must be fulfilled in order to use
the Taylor expansion sorting method:

1. The hyper-eigenvalue problem must be solved for a monotonically in-
creasing value of Ω

2. At least two solutions, for k−2 and for k−1 must be computed without
the Taylor expansion sorting

3. The values of Ω should not increase too much in each step in order
to get a good estimation of λk from equation (3.32), i.e., a certain
smoothness of the function λ(Ω) is required.

When the eigenvalues have been sorted within each family, the families are
sorted relative to each other based on the mean value of the imaginary part
of the eigenvalues in the family. The basis eigenvalues are now defined as the
central member of the family, based on the imaginary part.
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3.3 Results

The gear pair, the attached shafts and the inertias J1 . . . J4 are shown in
figure 3.3. The degrees of freedom (DOF) of the model are the angles of
rotation of the four inertias and will be referred to as q = [q1 q2 q3 q4]

T . The
model has intentionally been kept very simple in order to keep the results
easy to interpret. Since no lateral DOFs are included, gyroscopic effects
are not considered in the utilized model. The gear mesh stiffness function,

J
3

J
4

J
1

J
2

Figure 3.3: System model

which was calculated in section 2 and validated by comparison to KissSoft
calculations in section 2.5 is shown in figure 3.4(a). For a constant angular
velocity Ω, the periodic stiffness can be described using its complex Fourier
expansion. When t is time, the Fourier series is defined as

c(t) =
∞∑

j=−∞
cje

ijt (3.33)

In figure 3.4(b), the first 30 Fourier components of the signals are shown,
expressed as Aj = 2|cj|. Because of the symmetry in the complex Fourier
components, where cj = c−j, only cj for j = 1 · · · 30 are shown. The mean
value of the gear mesh stiffness c0 = 26.66 N (mm μm)−1 is not shown in
order to illustrate the other components more clearly. To identify each of the
2N eigenfrequencies and the associated eigenvectors, a time-invariant (n = 0)
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Figure 3.4: (a) Gear mesh stiffness, (b) Fourier expansion of gear mesh stiff-
ness

calculation has been performed. The 2N modes are numbered according to
table 3.1. The mode shapes rj(t) can be evaluated at a given time t using the

Mode no. Frequency
1 0 Hz
2 0 Hz
3 399 Hz
4 -399 Hz
5 585 Hz
6 -585 Hz
7 3216 Hz
8 -3216 Hz

Table 3.1: Fundamental eigenfrequencies for n = 0

formula (3.10), using −n and n as the limits for the sum. The result is shown
in figure 3.5 for n = 10, where the displacement parts of the eigenvectors are
plotted versus the gear mesh position θ in the interval [0,2π], corresponding
to the time interval [0,T ] at a constant gear mesh angular velocity Ω. Modes
1 and 2 - the rigid body modes - directly show the gear ratio 95/22. Modes
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Figure 3.5: Mode shapes as a function of gear mesh position θ = Ωt, calcu-
lated for n = 10

3 through 8 are elastic modes showing torsional deformations in the shafts
and the gear mesh. It can be seen how modes 3,4,5, and 6 are strongly af-
fected by the varying stiffness, while modes 1,2,7, and 8 are almost constant,
r1(t) ≈ r1,r2(t) ≈ r2, r7(t) ≈ r7, and r8(t) ≈ r8.

As a preliminary analysis, the eigenfrequencies for the system can be calcu-
lated ”quasi-statically” for a given time t = t1. To do this, A(t) in equation
(3.7) is evaluated at t = t1 using the first 2n+1 terms in equation (3.9),
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where n is the number of Fourier components included in the analysis:

A(t1) =
n∑

a=−n

Aae
iaΩt1 (3.34)

A(t1) is then inserted into equation (3.7), and the eigenvalue problem is
solved. The resulting (positive) eigenfrequencies are shown in figure 3.6 for
two different values of n. From the figure, it can be seen that the highest
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Figure 3.6: ”Quasi-static” eigenfrequency analysis: (a) n = 1, (b) n = 18

eigenfrequency at roughly 3200 Hz is much more sensitive to the variations
in the gear mesh stiffness than the other eigenfrequencies. Also, n has an
influence on the extent of the frequency interval, in which the highest eigen-
frequency is located. As a conclusion to this ”quasi-static” analysis, n can
be expected to play an important role when determining the free and the
forced response of the time-varying system.

The accuracy of the time-varying modal analysis depends on the number
of Fourier components, n, included in the analysis. When the applied force
f in equation (3.1) is constant or zero, only the changing stiffness in K(t)
can excite the system. From equation (3.13), it can be expected, that only
frequencies up to approximately f = nΩ will be excited. From the time-
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invariant modal analysis of the system it is known that the highest eigenfre-
quency is around 3215 Hz. When the gear mesh frequency is Ω = 1357.59
rad/sec ≈ 216 Hz, this eigenfrequency can be expected to be excited only
when n ≥ 3215/216 ≈ 15.

The accuracy of the method can be determined by comparing the solution
in the time domain to the corresponding solution obtained by numerical in-
tegration. For this purpose, q3 has been chosen, as this DOF shows the
largest difference between the two calculation methods, as seen from fig-
ure 3.7(a). It might be interesting to represent the time variations of the
dynamic mesh force (as opposed to q3 in figure 3.7) since it also gives an
indication on the presence of nonlinearity (contact losses when the mesh
force is negative). Since this loss of contact is not considered in the present
gear mesh model, the dynamic mesh force is calculated as the difference be-
tween the displacements of the two gears multiplied by the mesh stiffness,

F (t) = c(t)
(
q3(t)r3− q2(t)r2

)
, where r2 and r3 are the radii of the two gears.

Comparison based on a single DOF is the simplest way, since F (t) offers no
new information on the dynamic behavior of the system. It is clear from
figure 3.7(a) that the accuracy of the modal solution increases significantly
when n reaches 15. An increase in n beyond 18 does not increase accuracy
much. A zoom-in of the two solutions is shown in figure 3.7(b).

For each number of n, the eigenvalue problem, equation (3.11), changes. It
can therefore be expected, that both the fundamental eigenfrequencies (for k
= 0) and the higher-order parametric eigenfrequencies (for k ∈ [−n, n], k =
0) will change as a function of n. In the following analysis, the change in the
fundamental eigenfrequencies, evaluated at the nominal speed Ω = 1357.59
rad/sec, is investigated. The results are shown in figure 3.8, where the per
cent change of the eigenfrequencies belonging to the 3 elastic modes, relative
to a time-invariant modal analysis (n = 0) are plotted. It can be seen that
there are no significant changes in the fundamental eigenfrequencies. At no
point do the frequencies change more than 0.16 per cent.

For each of the 2N eigenvectors, the importance of the kth harmonic para-
metric vibration mode can be calculated. This is done by finding the relative
magnitude of the harmonic components of the eigenvector. For the kth har-
monic component of the jth eigenvector, rj,k, the Normalization Factor NFj,k
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is defined as:

NFj,k =
1√

rT
j,krj,k

with rj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

rj,−n

· · ·
rj,−1

rj,0

rj,1

· · ·
rj,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for j = 1 . . . 2N (3.35)

In figures 3.9 and 3.10, normalization factors for all 8 modes are plotted
versus the gear mesh frequency Ω (in rad/sec), for n = 3 and n = 10, re-
spectively. The NF-axes in the plots are logarithmic and show the interval
NF ∈ [10−2, 101]. NF for the fundamental harmonic component, k = 0, is
set to NFj,0 = 1 in all cases. With these definitions, the normalization fac-
tors show how the fundamental part of the mode shape vector r0 is related
to the time-varying parts rk for k = −n . . . n depending on the operational
speed Ω. The kth harmonic component showing the smallest NFj,k will be
predominant in the jth mode shape at a particular gear mesh frequency Ω.
A number of observations can be made from the normalization factor plots,
figures 3.9 and 3.10:

1. For the rigid-body modes 1 and 2, the fundamental harmonic k = 0 is
predominant for all gear mesh frequencies Ω > 0.

2. For all elastic modes, there is a symmetry between the positive (left
column) and the negative frequencies (right column in the plots): For
the jth positive eigenfrequency, the normalization factor NFj,k is equal
to NFj,−k for the corresponding negative eigenfrequency.

3. For modes 3, 4, 5, and 6, there exist certain mesh frequency ranges, for
which the time-varying part of the mode shape (parametric vibrations)
will be more important than the stationary part. These frequency
ranges are independent of the number of Fourier components included
in the analysis. For instance, for mode 3 in figure 3.9, NF for the +2
harmonic component shows a local minimum around Ω = 600 rad/sec.
This ”potential +2 harmonic resonance” is found for all n ≥ 2.

4. Modes 7 and 8 at roughly f = ±3216 Hz behave fundamentally different
from the other elastic modes (modes 3 through 6). No n-independent
frequencies with low NF are observed.
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Figure 3.9: Normalization factors, n = 3

5. For modes 7 and 8, frequency intervals exist in which NF for one or
more harmonic components of the mode shape are smaller than 1. In
these frequency intervals, which depend on the number of Fourier com-
ponents included but are generally located in Ω ∈ [0,600] rad/sec, the
content of the time-varying part of the mode in the overall mode shape
is larger than the fundamental component. These modes are strongly
dependent on the relative angular movement between the two gears,
and are strongly affected by the time-varying tooth stiffness.
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Figure 3.10: Normalization factors, n = 10

3.4 Conclusions

The theory of modal analysis of time-varying systems has been applied to a
simple spur gear pair with a periodically time-varying gear mesh stiffness. It
has been made clear that a large number of terms in the Fourier expansion
of the system matrices is necessary in order to yield results of sufficient accu-
racy. This is a direct result of the jumps in the gear mesh stiffness function.
In the cases of flexible rotors with non-symmetrical cross section, flexible
rotating discs, and flexible rotating blades, a very reduced number of Fourier
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components is needed, normally n = 2, as the time-varying coefficients are
normally sine and cosine functions.

It has been shown that there exist regions, in which the higher-order paramet-
ric contributions to the overall mode shapes will be significant. For the case
studied here, these effects were mainly observed at low gear mesh frequencies.

The elastic mode with the highest frequency behaved differently from the
other elastic modes. While the two lower modes showed parametric reso-
nance frequencies that were largely independent of the number of Fourier
components included in the analysis n, the parametric resonance areas of the
high frequency mode strongly depended on n. Overall, the vibrations related
to the higher frequency mode seemed to be more sensitive to the time-varying
nature of the gear mesh stiffness.

The system studied in this work consisted of a single gear stage. A typ-
ical modern wind turbine gearbox consists of one or two planetary stages
followed by one or two parallel gear stages, with a total of 8 to 15 gear
meshes. When applying the theory of modal analysis of time-varying sys-
tems to such a complex system, great care must be taken when interpreting
the results. The larger the number of Fourier components needed to expand
the periodic time-varying coefficients, the larger the hyper-eigenvalue prob-
lem becomes. It means also that it becomes more complicated and complex
to physically interpret the basic and parametric mode shapes. Nevertheless,
by exploring the definition of NF, the importance of the time-varying part
of the mode shapes (parametric modes) can be investigated and quantified
as a function of the gear mesh frequency. Compared to time-step integration
schemes, the main advantage of the time-varying modal analysis is that it
offers an analytical solution to the vibration problem. Therefore a modal
truncation is possible, which removes the need for the very short time step
used for a numerical integration of a system with high eigenfrequencies. Also
the method allows to expand the analysis to the concepts of observability and
controllability [69], which offer a quantification of the parametric vibrations.

The focus of this chapter has been to connect an advanced gear mesh stiff-
ness model with a very simple multibody model. In the remaining chapters
of this report, a different modeling approach is used. More emphasis will be
put on the multibody model and less on the gear mesh stiffness.
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Chapter 4

Torsional Multibody Model

This section shows how a torsional model of the 2.3 MW wind turbine gear-
box is set up. The method for calculating the gear mesh stiffness described
in chapter 2 is used. Tooth modifications have been considered using the
exponents n = 2 and m = 2 in equations (2.35) and (2.36). However only
the mean value of the stiffness is used. Compared to the time-varying modal
analysis of chapter 3, which deals with only a small part of the wind turbine
gearbox, the goal of the model presented in the current chapter is to capture
a substantial part of the overall dynamic behavior of the gearbox.

The first step is to establish the equations of motion in order to find the
mass matrix M and stiffness matrix K to set up the unconstrained, un-
damped equations of motion for the system.

4.1 Equations of Motion - Shaft

Several textbooks [77, 59] state the mass and stiffness matrix of shaft ele-
ments as shown in figure 4.1. The matrices for undamped, free-free torsional

Figure 4.1: Torsional model of a beam
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vibrations are

M =

[
J1 0
0 J2

]
and K =

[
k −k
−k k

]
(4.1)

4.2 Equations of Motion - Pair of Gears

The mass and stiffness matrices for a gear pair are easily derived using New-
ton’s equations and Hooke’s law. A gear pair is shown in figure 4.2. The

Figure 4.2: Torsional model of a gear pair

force in the gear mesh is called F , which makes the equilibrium equations
take the following form:

J1θ̈1 = −Fr1

J2θ̈2 = −Fr2 (4.2)

In an undamped system, the force F is a function of the elastic deformation
of the gears alone. The spring stiffness km of the gear mesh is here a linear
stiffness (as opposed to a torsional stiffness).

F = km

(
r1θ1 + r2θ2

)
(4.3)
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Inserting equation (4.3) into equations (4.2) and rewriting to vector form
directly gives the mass and stiffness matrices:

J1θ̈1 + kmr2
1θ1 + kmr1r2θ2 = 0 (4.4)

J2θ̈2 + kmr1r2θ1 + kmr2
2θ2 = 0 (4.5)

	 [
J1 0
0 J2

] [
θ̈1

θ̈2

]
+

[
kmr2

1 kmr1r2

kmr1r2 kmr2
2

] [
θ1

θ2

]
=

[
0
0

]
(4.6)

The close resemblance between equation (4.6) and the matrices of equation
(4.1) should be noted. If the gear mesh spring km, which is located a distance
r1 from the center of gear 1, is regarded as a torsional spring with the stiffness
k = kmr2

1, and the gear ratio i = r2/r1 is introduced, the stiffness matrix of
equation (4.6) can be written as

K =

[
k ik
ik i2k

]
(4.7)

It is clear, that the gear mesh can be seen as a special beam element that
changes the direction of rotation (the off-diagonal components of K are pos-
itive), and multiplies the amplitude of the vibrations by a factor of i, when
going from gear 2 to gear 1.

4.3 Equations of Motion - Planetary Stage

The equations of motion for the torsional vibration of a planetary stage as
shown in figure 4.3 can be found using the Lagrange function L = T − U ,
where T is the total kinetic energy in the system, and U is the potential
energy [59]. The DOFs, which are the rotations of the inertias, are called
θc, θr, θp1, θp2, θp3, and θs for the planetary carrier, the ring gear, the three
planets, and the sun gear, respectively. In the following equations, for clarity
only one planet is considered. The other planets are treated in the same
way. The total kinetic energy T of the planetary stage with one planet can
be written as

T =
1

2
Jcθ̇c

2
+

1

2
Jrθ̇r

2
+

1

2
Jpθ̇p

2
+

1

2
Jsθ̇s

2
(4.8)

Because of the connection between the rotation of the planet carrier, and the
translation of the planet, the mass of the planet must be included in Jc. This
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Figure 4.3: Torsional multibody model of a planetary stage. For clarity, the
torsional springs are shown as dotted lines

means that Jc = Jc,0 +r2
cmp for the one-planet system, and Jc = Jc,0 +nr2

cmp

for the n-planet system. Jc,0 is the inertia of the planet carrier only, mp is
the mass of the planet, and rc is the distance between the planet and carrier
centers.

The total potential energy U is the elastic energy stored in the springs. For a
single spring, U can be calculated from the contraction of the spring x using
the formula U =

∫
cx dx = 1

2
cx2, when the spring stiffness c is treated as a

constant. For a ring-planet gear mesh, the potential energy is

Urp =
1

2
crp

(
rbpθp − rbrθr + rc cos(α)θc

)2

(4.9)

In equation (4.9) rb denotes the base radius for the gear, α the pressure angle,
and rc the distance from the carrier center to the center of the planets. For
a sun-planet gear mesh, the corresponding equation is

Usp =
1

2
csp

(
− rbsθs + rbpθp + rc cos(α)θc

)2

(4.10)
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Now the Lagrange function L can be calculated (again only considering one
planet):

L = T − U (4.11)

=
1

2
Jcθ̇c

2
+

1

2
Jrθ̇r

2
+

1

2
Jpθ̇p

2
+

1

2
Jsθ̇s

2

−1

2
crp

(
rbpθp − rbrθr + rc cos(α)θc

)2

−1

2
csp

(
− rbsθs + rbpθp + rc cos(α)θc

)2

(4.12)

For free vibrations, the following equation applies to all coordinates θ:

d

dt

(∂L

∂θ̇

)
− ∂L

∂θ
= 0 (4.13)

As an example, the necessary derivatives are calculated below for the plan-
etary carrier. For the ring, the planets, and the sun gear, these calculations
are found in Appendix A.

∂L

∂θ̇c

= Jcθ̇c ⇒ d

dt

( ∂L

∂θ̇c

)
= Jcθ̈c (4.14)

∂L

∂θc

= −crprc cos(α)
(
rc cos(α)θc − rbrθr + rbpθp

)
−csprc cos(α)

(
rc cos(α)θc + rbpθp − rbsθs

)
(4.15)

Rearranging the terms leads to

d

dt

(∂L

∂θ̇

)
− ∂L

∂θ
= 0 (4.16)

	
Jcθ̈c

+
(
(crp + csp)(rc cos(α))2

)
θc

+
(
− crprbrrc cos(α)

)
θr

+
(
(crp − csp)(rbprc cos(α)

)
θp

+
(
− csprbsrc cos(α)

)
θs = 0 (4.17)
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Equation (4.17) and the equivalent equations in Appendix A can be written in
vector form, once the DOFs are assembled in a vector θ = [θc θr θp1 θp2 θp3 θs]

T

for a three-planet system:
Mθ̈ + Kθ = 0 (4.18)

All components of the matrices M and K are included in equations (4.19)
and (4.20), respectively. As expected, the mass matrix is a diagonal (lumped)
matrix, and the stiffness matrix is symmetric.

The gearbox housing must be expected to greatly influence the overall dy-
namic behavior of the gearbox. Through the bearings, lateral vibrations of a
shaft can excite housing vibrations. However, since the bearings do not trans-
mit torsional vibrations from shaft to housing, the influence of the housing
can be neglected in a torsional model.
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4.4 Test Rig Modeling

The beam, the gear pair, and the planetary stage are the essential building
blocks to build a torsional multibody model of the two gearboxes mounted
back-to-back in the test rig. A schematic overview drawing of the system is
given in figure 4.4. A total of 33 DOFs were used to model the test rig. In

Figure 4.4: Torsional multibody model overview. The solid black lines repre-
sent rigid links, while the dashed red lines are flexible torsional springs. The
dotted blue lines represent the flexible gear meshes

the figure, the main parts of the test rig are highlighted. The numbering of
the nodes and stiffnesses is shown in figure 4.5. When building the test rig

Figure 4.5: Node and stiffness numbering

model, the mass and stiffness matrices M and K can be expressed as a sum
of the mass and stiffness matrices of each of the elements described above.
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For a system containing N elements, this can be expressed as

M =
N∑

i=1

Mi
sub and K =

N∑
i=1

Ki
sub,i (4.21)

The sub-matrices of the system are useful when the modal energy distri-
butions are to be calculated, and are necessary for the model updating in
section 6.3.

4.5 Conclusions

A torsional model of the test rig has been presented. The model includes
two 2.3 MW gearboxes mounted back-to-back, and is expected to correctly
simulate the torsional vibrations of the system. The experimental validation
of this model is one of the main contributions of this thesis. In the next
chapter, the measurements necessary for the model validation are presented.
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Chapter 7

Summary and Conclusions

A gear mesh stiffness model, which takes into account the effects of load and
grinding corrections as well as the relative gear position along the line of
action, has been set up. In the subsequent validation, it was shown that the
model is able to reproduce both theoretically and experimentally obtained
tooth pair stiffness results found in the literature. A comparison with a com-
mercial software package, KissSoft, again proves the validity of the model,
since the gear mesh stiffness functions are nearly identical. The proposed
model calculates the effect of load-induced increase of contact ratio. Also
this is in good agreement with the KissSoft predictions.

The theory of modal analysis of periodic time-varying systems is well-known,
but it has not yet been proven efficient in the field of gear dynamics. An at-
tempt is made here, making this topic one of the major contributions of
the work. Using gear data based on the intermediate stage of a 1 MW
wind turbine gearbox, the gear mesh stiffness is calculated using the pre-
viously validated stiffness model. It is then expanded in a Fourier series
and combined with a torsional multibody model with a reduced number of
degrees-of-freedom. Under the assumption of constant angular velocity of
the gears, the time-varying modal analysis is carried out. It was found that
the discontinuities often found in gear mesh stiffness functions significantly
increase the necessary number of Fourier components, which in turn increases
computation time. However, the method provides possibilities for a modal
truncation, and by comparing the stationary and the time-varying parts of
the mode shapes, the importance of the parametric modes can be determined.
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in a 2.3 MW wind turbine gearbox are calculated. This includes both ex-
ternal gear meshes and internal meshes as found in the planetary stage of
the gearbox. The mean value of the stiffnesses is included in a torsional
multibody model of two 2.3 MW gearboxes mounted back-to-back in a test
rig. Comparisons with a well-established calculation software (DRESP) is
carried out. Some eigenfrequencies show a relatively large difference between
the two models, but all such differences can be directly attributed to minor
discrepancies in shaft stiffnesses and shaft discretization. Based on this com-
parison, it is concluded that the proposed model is correctly built, as a large
number of the mode shapes and eigenfrequencies from the DRESP model
can be recognized.

A measurement campaign has been conducted with the purpose of deter-
mining eigenfrequencies for the back-to-back gearbox arrangement. This
campaign and the subsequent model validation are further original contri-
butions of this thesis. The eigenfrequencies were found from a series of ac-
celerometer measurements, which included both run-up tests and stationary
tests. The measurements also provided a somewhat qualitative description
of the associated mode shapes. The test rig arrangement possesses a large
number of eigenfrequencies, many of which has a large portion of the total
modal energy in the rotational DOF. A load-dependence can be observed in
some eigenfrequencies. It is assumed that the elastic strain energy in the
corresponding mode shape is stored in components with a load-dependent
stiffness, such as bearings, gear meshes, and rubber bushings.

A comparison between simulated and measured eigenfrequencies was car-
ried out. Some torsional eigenfrequencies showed differences of up to 11 per
cent. Since this level of correlation was not sufficiently good, an updating
technique was employed to adjust the model parameters. As a part of the
model updating, weighting functions were used in order to control the change
in the parameters. This made it possible for the torsional model to repro-
duce the measured torsional eigenfrequencies to a degree of accuracy that
exceeds the measurement accuracy. A scalar measure of deviation between
measured and calculated eigenfrequencies was introduced. The average devi-
ation for the six eigenfrequencies used in the updating procedure drops from
4.7 percent for the purely theoretical model to 0.05 per cent for the updated
model.
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Appendix A

Lagrange Derivatives

Partial derivatives of the Lagrange function L to set up the equations of
motion for a torsional model of a planetary stage. In the main text, L has
been defined for a one-planet system as

L =
1

2
Jcθ̇c

2
+

1

2
Jrθ̇r

2
+

1

2
Jpθ̇p

2
+

1

2
Jsθ̇s

2

−1

2
crp

(
rbpθp − rbrθr + rc cos(α)θc

)2

−1

2
csp

(
− rbsθs + rbpθp + rc cos(α)θc

)2

(A.1)

Ring (θr):

∂L

∂θ̇r

= Jrθ̇r ⇒ d

dt

( ∂L

∂θ̇r

)
= Jrθ̈r (A.2)

∂L

∂θr

= crprbr

(
rc cos(α)θc − rbrθr + rbpθp

)
(A.3)
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LInserting into the equation of motion and rearranging to separate the vari-
ables, to prepare for the matrix notation:

d

dt

( ∂L

∂θ̇r

)
− ∂L

∂θr

= 0 (A.4)

	
Jrθ̈r

+
(
− crprbrrc cos(α)

)
θc

+
(
crpr

2
br

)
θr

+
(
− crprbrrbp

)
θp = 0 (A.5)

Planet (θp):

∂L

∂θ̇p

= Jpθ̇p ⇒ d

dt

( ∂L

∂θ̇p

)
= Jpθ̈p (A.6)

∂L

∂θp

= −crprbp

(
rc cos(α)θc − rbrθr + rbpθp

)
+csprbp

(
rc cos(α)θc − rbpθp − rbsθs

)
(A.7)

Inserting into the equation of motion and rearranging to separate the vari-
ables, to prepare for the matrix notation:

d

dt

( ∂L

∂θ̇p

)
− ∂L

∂θp

= 0 (A.8)

	
Jpθ̈p

+
(
(crp − csp)rbprc cos(α)

)
θc

+
(
− crprbprbr

)
θr

+
(
(crp + csp)r

2
bp

)
θp

+
(
csprbprbs

)
θs = 0 (A.9)
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∂L

∂θ̇s

= Jsθ̇s ⇒ d

dt

( ∂L

∂θ̇s

)
= Jsθ̈s (A.10)

∂L

∂θs

= csprbs

(
rc cos(α)θc − rbpθp − rbθs

)
(A.11)

Inserting into the equation of motion and rearranging to separate the vari-
ables, to prepare for the matrix notation:

d

dt

( ∂L

∂θ̇s

)
− ∂L

∂θs

= 0 (A.12)

	
Jsθ̈s

+
(
− csprbsrc cos(α)

)
θc

+
(
csprbsrbp

)
θp

+
(
cspr

2
bs

)
θs = 0 (A.13)
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Appendix B

Frequency Resolution with
Overlap and Averaging

In figure B.1, a signal of length T has been cut up into Z blocks with an
overlap of X, with X in the interval [0,1]. It is seen that the length T of the

Figure B.1: Signal analysis using overlap and averaging

total signal can be written as the sum of the lengths of the Z blocks minus
the Z − 1 overlap zones. An overlap zone has the length XTZ . For a signal
block of length TZ , the frequency resolution is

Δf =
1

TZ

(B.1)
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LThis will also be the frequency resolution of the full signal, when using overlap
and averaging. Now TZ is found:

T = ZTZ − X(Z − 1)TZ (B.2)

= TZ(Z − XZ + X) (B.3)

= TZ(1 − 1 + Z − XZ + X) (B.4)

= TZ(1 + (Z − 1)(1 − X)) (B.5)

⇒ TZ =
T

1 + (Z − 1)(1 − X)
(B.6)

Equation (B.6) is inserted in (B.1) which gives

Δf =
1 + (Z − 1)(1 − X)

T
(B.7)
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Appendix C

Torsional-Lateral Vibration
Coupling

A non-dimensional torsional-lateral vibration model of a single gear pair is
shown in figure C.1(a).
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Figure C.1: (a) Example system model, and (b) eigenfrequencies

The mass moments of inertia of the two gears are J1 = 1 and J2 = 2, the
masses are m1 = 1 and m2 = 2, the base radii are r1 = 1 and r2 = 2, the
pressure angle is α = 45◦, and the gear mesh stiffness is kmesh = 10. In figure
C.1(b) the non-dimensional eigenfrequencies are shown as a function of the
lateral bearing stiffnesses k. When the lateral bearing stiffness k → ∞,
no motions in the lateral directions are possible, and the model is purely
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Ltorsional. With decreasing k, lateral motion is allowed, and the coupling
between the lateral and the torsional DOFs becomes important - both the
eigenfrequencies and the corresponding mode shapes will be different from
the torsional model. For k → ∞, the first non-zero eigenfrequency converges
towards the frequency marked ftorsion in figure C.1(b).
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