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Abstract—In this work we propose a novel variational

method that we intend to use for estimating non-rigid texture

deformation. The method is able to capture variation in gray-

scale images with respect to the geometry of its features.

Accurate localization of features in the presence of unknown

deformations is a crucial property for texture characterization.

Our experimental evaluations demonstrate that accounting for

geometry of features in texture images leads to significant

improvements in localization of these features, when textures

undergo geometrical transformations. In addition, feature de-

scriptors using geometrical total variation energies discriminate

between various regular textures with accuracy comparable

to SIFT descriptors, while reduced dimensionality of TVG

descriptor yields significant improvements over SIFT in terms

of retrieval time.

I. INTRODUCTION

In most natural images texture is an important element
and contains information about the depicted scenes, for
example information about object shape or class. As a
consequence, texture analysis is a widely studied topic in
image processing. We are interested in investigating the
problem of characterizing textures that undergo non-rigid
deformations. The primary goal of our research is to tackle
the problem of estimating unknown non-rigid deformations
in textures that exhibit some regularity, see Figure 1 for
samples of such textures.

Intuitively, the spatial distribution of image features will
determine how a texture is deformed, but the same features
are characteristic for a texture. This makes characterization
and deformation estimation dependent on each other. By
image features we mean discontinuities in intensity values
of the image plane, see e.g. [1]. Furthermore, if a gray-scale
image is treated as 2D manifold (two spatial dimensions)
embedded into 3D space (intensity becomes third dimen-
sion), then any single point placed on a surface of the image
manifold will have co-dimensionality zero. In addition, two
types of discontinuities (i.e. features) may be present in
image manifold: features of co-dimension one and two. It
is easy to see that discontinuities of co-dimension one will
correspond to edges, while corners will be features of co-
dimension two.

In general, due to dependency, simultaneously estimating
the deformation and characterizing texture is difficult. While

it is known that Total Variation (TV) energy is invariant
under minor deformations [1], accurately estimating the
geometry of deformed texture features via total variation
energy is computational costly and will require some sort
of flow estimation. In contrast, Total Variation Geometry
(TVG) directly accounts for the intrinsic geometry of image
features in the form of co-dimensionality, which significantly
improves accuracy of tasks such as feature localization in the
presence of deformation - a crucial property for both texture
characterization and deformation estimation. In addition,
we also show that deforming area of integration while
computing the TVG based on the local geometry of texture,
further improves localization of features. When computing
TVG energy responses, we will refer to the process of
deforming the region of integration as “steering TVG“.

II. RELATED WORK

A survey of texture characterization is given in for ex-
ample [2], [3], where the latter has particular focus on
deformation-invariant texture characterization. Often used
categories for texture analysis are statistical, model based,
and structural methods, which we will briefly describe here.

Statistical methods are concerned with the relative dis-
tribution of pixel intensities, and a distinction is made
between first, second and higher order statistics [4], [2], [3].
First order is basically a histogram of intensities. Second
order is the probability of co-occurrence of intensities, and
early work of Haralick et al. [5] introduced the concept
of gray level co-occurrence matrices. Higher order statistics
concerns the joint probability of more than two pixels.

Model based methods are concerned with estimating the
coefficients of a texture model and using the coefficients
for texture characterization. Texture models include Markov
random fields, Gabor filters, wavelet models, steerable fil-
ters, etc. Typically, a modeled texture can be generated by
a linear combination of weighted basis functions. Different
approaches for obtaining deformation invariance have been
proposed, for example obtaining rotation or scale invariance
by combining coefficients, which only differ by rotation or
scale [3]. Recent examples of model based texture analysis
include steerable filters and Markov random fields used in
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Figure 1. Textures used in experimental results.

[6] for estimating texture deformation, and TV energy used
in [7] for separating textured and structure regions.

Structural methods are based on basic image structures
like textons [8] or features obtained from image derivatives.
Deformation is estimated in [9] and [10] employing a high
level vision model, but based on texton-like structures. A
low level computer vision approach is used in [11] based on
image derivatives for estimating texture deformation in scale
space. [12] suggest a sparse texture characterization based on
size and orientation of image regions and local features. The
spatial extension of the image regions are found from TV-
flow. No existing feature based texture characterization ex-
plicitly account for the intrinsic geometry of the texture. We
suggest a method based on Total Variation Geometry (TVG)
presented in [1] that preserves feature co-dimensionality. It
is worth mentioning that differential manifolds utilized in
the estimation of the proposed Beltrami operator in [13] is
closely related to TVG energy density. We will now explain
the details of our method.

III. GEOMETRICAL TEXTURE CHARACTERIZATION

Geometrical Total Variation energy density (TVG) was
proposed by Burchard in [1], and is defined as follows.
Given a map u between manifolds M1 →M2, TVG energy
of degree r is the elementary symmetric function of degree r
in the singular values of the derivative ∇u. Any gray-scale
image, may be treated as a map u : �2 → �3, in other
words, image is a 2D manifold embedded into 3D space.
As a result, for gray-scale images only two degrees of TVG
energy density is available. First degree of TVG responds
to discontinuities of co-dimensions one and two; second
degree of TVG smoothes discontinuities of co-dimension
one (edges) and responds to discontinuities of co-dimension
two (corners).

We now briefly describe the method to compute TVG
energy density for gray-scale images, which directly follows
from theoretic results presented in [1]. Given image I(x, y),
let Ix and Iy denote first order derivatives of I along x and

y directions, respectively. And, TVG energy of I of orders
one and two are TV G1(x, y) = σ1 +σ2 and TV G2(x, y) =√

σ1 × σ2, where σ1 and σ2 are singular values of matrix
∇I(x, y) filled with Ix and Iy for pixels in the neighborhood
Ω of the pixel (x, y) (size of matrix ∇I(x, y) is |Ω|× 2).

Accurate estimation of first order derivatives of images
is essential to stability of TVG energy density, especially
if images are deformed with some geometrical transforma-
tions. We employ second order kernel regression to compute
values of Ix and Iy described in [14], that formulates
second order kernel regression as a weighted least-squares
optimization problem. The weights are computed using
Gaussian kernels with steering covariance matrices, so each
neighbor pi = (xi, yi)T of pixel p = (x, y)T is weighted by
KHi(pi − p) = exp(−(pi − p)T Ci(pi − p)/2h), where Ci

is a covariance matrix defined in [14], and h is a smoothing
parameter.

The procedure to estimate image gradients is as follows.
First, Ix and Iy are estimated using second order steering
kernel regression. Second, steering covariance matrices Ci

are computed using new estimates of image gradients.
Steering covariance matrices Ci are initialized with identity
matrices. We found that two iterations of the procedure is
sufficient to produce robust estimates of image gradients,
even when significant deformation is introduced to images.

The response of geometrical total variation energy greatly
depends on the choice of neighbor set Ω. We propose to use
steering Gaussian weights KHi(pi−p) to construct neighbor
sets Ωi for every pixel pi. In other words, we would like to
adapt shapes of integration regions Ωi when computing TVG
energies, based on local geometry of the texture. We refer
to the process of estimating TVG energies in this way as
steering TVG. For the sake of implementation efficiency we
simulate the process of building Ωi by multiplying image
gradients in ∇I(p) with weights KHi(pi − p), while rows
(Ix(p1), Iy(p1)) in ∇I(p) are selected from fixed size set Ω
which corresponds to square window centered around pixel
p. Illustrations of steering TVG for selected texture images
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Deformed Texture Steering TVG, Degree 1 Steering TVG, Degree 2

Figure 2. Geometrical total variation energy for selected images. Illustrations of steering TVG values are presented for original and deformed textures.

under various perspective transformations can be found in
Figure 2.

A high dimensional feature descriptor can then be com-
puted using the TVG energies. Like SIFT features [15], the
TVG descriptor is defined by the position in the image, the
scale and orientation of the feature, and a vector describing
the feature. The image interest points are found in the same
manner as SIFT features, i.e. position, scale, and orientation
are similar to the SIFT feature. To create the feature vector,
the TVG energies TV G1(x, y) and TV G2(x, y) are com-
puted for the entire image. The scale, σ, of the feature is
defined as standard deviation for the Gaussian kernel that
corresponds to the local extrema of the scale-normalized
Laplacian of Gaussian. Similar to [16], we set the size of the
window for the feature descriptor to 20× σ. We then rotate
this square window centered around the interest point to
match the computed feature orientation. The window is then
divided evenly into 4× 4 sub-windows in order to preserve
spatial information.

The first and second degree TVG energies are summed
for each sub-window to form part of the feature vector.
To approximate the summation values at each sub-window
we integrate TVG energies within axis-aligned windows
of size 1

2 × σ using integral images, regularly sampled at
10 × 10 points. The feature descriptor is then defined by
the concatenation of the TVG energies of each sub-window,
resulting in a 4×4×2 = 32 dimensional feature descriptor.
Finally, the resulting feature vector is normalized to unit
length to preserve invariance to changes in light intensity.

IV. EXPERIMENTAL RESULTS

In this work we investigate the accuracy of localization
of features for three different types of variational energies:
1.) geometrical total variation with steering (steering TVG),
2.) geometrical total variation without steering (TVG), and
3.) total variation (TV). Recall that TV energy for images
is defined as sum of gradients’ �2 norms in a neighborhood
Ω. In addition, we demonstrate that steering TVG feature
descriptors introduced in III can be used to discriminate
between various regular textures deformed with perspective
transformations. The accuracy of steering TVG descriptors
is comparable to SIFT, while running time is on the order
of magnitude lower for steering TVG descriptors over SIFT.

We have chosen 10 texture images shown in Figure 1 and
applied three various perspective transformations to every
image (see first column of Figure 2). Each image in the
resulting dataset of 40 textures was 512×512 pixels. We then
computed scale-space interest points for three types of ener-
gies, and every interest point from the non-deformed texture
was warped to the deformed image coordinates, and pixel
distance between warped interest point and closest interest
point from the deformed texture was recorded (distances
were computed with respect to points’ locations). Table I
presents mean and standard deviation of these distances for
the three types of energies tested. Clearly, steering TVG
of both degrees outperforms two other types of energies
tested. This indicates that steering TVG produces more
accurate localization for texture features than other types
of variational energies.
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TV TVG, Degree 1 TVG, Degree 2 Steering TVG, Degree 1 Steering TVG, Degree 2
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
0.47 0.24 0.46 0.24 0.45 0.24 0.38 0.22 0.37 0.22

Table I
LOCALIZATION ERRORS FOR THREE TYPES OF VARIATION ENERGIES.

Descriptor Mean Std Dev Time
SIFT 0.97 0.02 62m 24s
TVG 0.93 0.05 8m 29s

Table II
TEXTURE CLASSIFICATION.

The original 10 texture images from Figure 1 and 30
deformed textures were used in classification experiment.
For each texture image, SIFT and steering TVG feature de-
scriptors corresponding to scale-space interest points found
in gray-scale images were formed. We then attempted to
classify every interest point by finding its nearest neighbor
in the database. For every texture image, the database con-
tained all interest points from the remaining 39 images. We
recorded an interest point as correctly classified if its nearest
neighbor was from the same texture class. Table II lists mean
and standard deviation of classification accuracies (number
of correctly classified interest points divided by total number
of interest points) for all images in the dataset. Running
times for classification experiments are also provided. The
experiments indicate that steering TVG descriptors improve
retrieval time over SIFT at the expense of insignificant
degradation in classification accuracy.

V. FUTURE WORK

In this paper we described a model for texture character-
ization that accounts for geometry of the textured features.
We have identified several promising directions for our
future work. First, we would like to improve localization
of scale-space interest points through steering Gaussian
weighting schema when building Laplatian pyramids. Sec-
ond, we would like to extend definition of steering TVG
energies to multi-band (color) images. Finally, we would
like to revisit different TV regularization methods used for
segmentation and classification, and see if the use of steering
TVG improves their performance.
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