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Response of Listeria monocytogenes and Staphylococcus aureus to host defense 

peptides and behavior in eukaryotic cells 

The innate immune system constitutes the first line of defense against invading pathogenic 

microorganisms. Antimicrobial peptides (AMPs) or host defense peptides (HDPs) have 

constituted a major group of antimicrobial effector molecules of the innate immune defense 

of all living organisms for millions of years. Hence the development of resistance is 

considered unlikely. In addition they have been shown to possess immunomodulatory 

functions that serve to stimulate both innate and adaptive immune responses. This has 

prompted a massive interest in HDPs as novel antimicrobials. On the other hand, a cardinal 

feature of pathogenic microorganisms is the ability to resist the actions of these HDPs in 

order to establish an infection. Hence, the effectiveness of HDPs as well as the virulence of 

the pathogenic microorganisms are a result of the complex interplay between the 

microorganisms and the host. In order to evaluate the potential role of HDPs as novel 

antimicrobials, an understanding of the natural variation in tolerance within bacterial 

populations and the relation to virulence potential as well as the influence of environmental 

factors on response to HDPs is needed. In addition an assessment of the potential risk of 

development of resistance when HDPs are used outside of their natural environments is 

necessary.  

The purpose of this Ph.D. study was to investigate the response of two related Gram-positive 

pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus, to HDPs. We 

hypothesized that increased virulence could at least in part be explained by increased 

tolerance to the antimicrobial components of the innate immune system. We examined a 

collection of 25 L. monocytogenes and 16 S. aureus strains representing different subtypes, 

origins and phenotypic behavior. We used four model peptides representing each of the 

three structural classes of HDPs. Protamine is a linear peptide rich in proline and arginine, 

plectasin is a fungal defensin, and novispirin G10 and its derivate novicidin are linear �-

helical peptides that also belong to the group of cathelicidins. We found that the L. 

monocytogenes and S. aureus strains were within each species equally sensitive to HDPs 

and that this was not paralleled by their phenotypic behavior. Hence, the potential 

therapeutic use of HDPs is not hampered by naturally occurring resistant bacteria. Also, the 

environmental conditions that a pathogen is exposed to prior to infection can influence the 

physiological state of the pathogen and affect the ability to cause infection. We hypothesized 
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that exposure to food-related stresses (5% NaCl, pH 5.5 and 5°C) would elicit a stress 

response in L. monocytogenes leading to increased tolerance to HDPs. We did not observe 

an altered tolerance to HDP treatment after exposure to each of the three stress conditions. 

Finally, to investigate if resistance to HDPs could be provoked by single mutations we 

created transposon mutants in both L. monocytogenes and S. aureus and screened for 

mutants with increased tolerance to plectasin. We identified a mutant in S. aureus with the 

transposon inserted into the response regulator hssR of the two-component system hssRS. 

This mutant had a two to four-fold increased tolerance to plectasin. We did not identify any 

resistant mutants in L. monocytogenes, suggesting that development of resistance through 

single mutations is unlikely. 

Together, we have shown that natural tolerance to HDPs does not occur in two populations 

of L. monocytogenes and S. aureus and that exposure to food-related stresses does not 

increase the tolerance of L. monocytogenes to subsequent HDP treatment. In addition, the 

development of resistance through single mutations does not seem to occur readily. These 

results support a potential role of HDPs as novel antimicrobials.   

The ability of L. monocytogenes to adapt to specific environmental conditions can also lead 

to the establishment of persistent subpopulations within distinct ecological niches such as 

food processing facilities. Such strains are likely contaminants of foods and hence from a risk 

assessment perspective it is important to determine the virulence potential. The L. 

monocytogenes collection used in this study comprises strains of a specific molecular 

subtype, the RAPD type 9 (random amplified polymorphic DNA) that have been isolated 

repeatedly from fish processing facilities for a period of several years. It has previously been 

shown that these strains were low virulent in simple in vitro virulence models and non-

mammalian models, however in a more complex biological model using pregnant guinea 

pigs, a RAPD type 9 strain surprisingly infected the placenta and fetuses just as efficiently as 

a high virulent clinical strain. We hypothesized that the RAPD type 9 strains had an 

enhanced ability to execute one (or several) of the steps involved in transmission across the 

placenta and that this might be reflected in differences in sequences of virulence genes 

important for these steps. We found that the RAPD type 9 strains invaded placental 

trophoblasts to a lower level compared to clinical strains, and this could be explained by the 

presence of premature stop codons in inlA. Likewise, the ability of the RAPD type 9 strains to 

spread from cell-to-cell in fibroblasts was not different to clinical strains. We conclude that the 

RAPD type 9 strains can still be regarded as low virulent with respect to human listeriosis 

and do not pose a risk to pregnant women and their unborn fetus in particular. 
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Listeria monocytogenes og Staphylococcus aureus’ respons på antimikrobielle 

peptider og adfærd i eukaryote celler 

Det innate immunsystem udgør det første forsvarsværk mod indvaderende patogene 

mikroorganismer. Antimikrobielle peptider (AMPer) eller ” vært-forsvars-peptider” (host 

defense peptides, HDPer) har været en central gruppe af antimikrobielle effektormolekyler i 

alle levende organismers immunforsvar i flere millioner år. Derfor anses det for usandsynligt 

at der udvikles resistens mod disse peptider. Desuden har de vist sig at have 

immunomodulatoriske funktioner, der stimulerer både det innate og adaptive immunforsvar. 

Dette har resulteret i en massiv interesse i HDPer som en helt ny gruppe af antimikrobielle 

stoffer. Omvendt er en af de vigtigste egenskaber ved patogene mikroorganismer deres evne 

til at modstå virkningen af HDPer, hvilket gør dem i stand til at etablere en infektion. Som 

følge heraf er både HDPernes effektivitet og de patogene mikroorganismers virulens et 

resultat af et komplekst samspil mellem mikroorganismer og værten. For at kunne evaluere 

HDPers mulige rolle som en ny gruppe antimikrobielle stoffer, er det nødvendigt at kende til 

den naturlige variation i tolerance i en population af patogene bakterier og om en sådan 

variation kan reflekteres i deres virulenspotentiale. Desuden er det vigtigt at vide om 

miljømæssige faktorer påvirker tolerancen overfor HDPer, og at vurdere om der er risiko for 

at der udvikles resistens når HDPer bruges udenfor deres naturlige miljø.  

Formålet med dette Ph.D. studie var at undersøge hvordan to beslægtede Gram-positive 

patogene bakterier, Listeria monocytogenes og Staphylococcus aureus, reagerede på 

HDPer. Vi antog at stammer med et øget virulenspotentiale ville være mere tolerante overfor 

de antimikrobielle komponenter i det innate immunforsvar. Vi undersøgte en samling af 25 L. 

monocytogenes stammer og 16 S. aureus stammer der repræsenterede forskellige 

undergrupper, oprindelse og fænotypisk adfærd. Vi brugte fire modelpeptider, der 

repræsenterede de tre klasser af HDPer. Protamin er et lineært peptid der er rigt på prolin og 

arginin, plectasin er et defensin der er isoleret fra en svamp og novispirin G10 og dets derivat 

novicidin er lineære �-heliske peptider der også tilhører gruppen af cathelicidiner. Vi fandt ud 

af at stammer indenfor hver af de to arter af L. monocytogenes og S. aureus var lige 

sensitive overfor HDPer, og at denne sensitivitet ikke kunne beslægtes med forskelle i 

fænotypisk adfærd. Det vil sige at den potentielle brug af HDPer som alternative antibiotika 

ikke bliver forhindret af naturligt forekommende resistente bakterier. Det vides også at de 

miljømæssige forhold som en bakterie udsættes for forud for infektion kan påvirke den 

fysiologiske tilstand og dermed også evnen til at skabe infektion. Vi antog at ved at udsætte 

L. monocytogenes for stress faktorer som normalt findes i fødevarer (5% salt, pH 5,5 og 5°C) 
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ville der initieres et stressrespons i L. monocytogenes som ville resultere i en øget tolerance 

overfor HDPer. Vi observerede ikke nogen øget tolerance overfor HDPer efter hver af de tre 

stresspåvirkninger. 

Endelig undersøgte vi en samling transposonmutanter i både L. monocytogenes og S. 

aureus for tilstedeværelsen plectasinresistente mutanter for at prøve om der kunne 

fremprovokeres resistens overfor HDPer ved en enkelt mutation. Vi identificerede en mutant i 

S. aureus med transposonet indsat i responsregulatoren hssR fra to-komponentsystemet 

HssRS. Denne mutant havde en to- til fire-fold øget tolerance overfor plectasin. Vi fandt 

ingen resistente mutanter i L. monocytogenes, hvilket antyder at udvikling af resistens 

gennem enkelte mutationer er forholdsvis usandsynlig. 

For at opsummere har vi vist at der ikke forefindes naturligt tolerante mutanter i to 

populationer af hhv. L. monocytogenes og S. aureus, og at forudgående stresspåvirkninger 

ikke ændrede L. monocytogenes tolerance overfor en efterfølgende HDP-behandling. 

Desuden fandt vi at der ikke umiddelbart udvikles resistens gennem enkeltmutationer. Disse 

resultater understøtter at HDPer kan bruges som potentielle nye antibiotika. 

L. monocytogenes’ evne til at adaptere til specifikke omgivelser kan også føre til etablering af 

persisterende subpopulationer i forskellige naturlige nicher, f.eks. i fødevareprocesanlæg. 

Der er stor sandsynlighed for at sådanne persisterende stammer vil kontaminere fødevarer, 

og derfor er det i forbindelse med vurdering af fødevaresikkerheden vigtigt at undersøge 

disse stammers virulenspotentiale. Samlingen af L. monocytogenes stammer der er brugt i 

dette studie indeholder en persisterende subtype, RAPD type 9 (random amplified 

polymorphic DNA), som er blevet isoleret gentagende gange fra fiskeindustrien gennem en 

lang årrække. Det er tidligere blevet vist at disse stammer er lavvirulente i simple in vitro 

virulensmodeller og ikke-mammale modeller. I en mere kompleks biologisk model hvor der 

blev brugt gravide marsvin, viste det sig derimod at en af disse stammer inficerede placenta 

og fostre lige så effektivt som en højvirulent klinisk stamme. Vi antog at RAPD type 9 

stammerne havde en øget evne til at gennemføre nogle af de specifikke trin der indgår i 

krydsningen af placenta-barrieren og at dette eventuelt kunne afspejles i sekvensforskelle i 

de virulensgener der er involveret i disse trin. Vi fandt at RAPD type 9 stammerne 

invaderede placentale trophoblastceller i et lavere niveau end andre kliniske stammer, og at 

dette sandsynligvis kan forklares af præmature stop codons i inlA. Ligeledes var RAPD type 

9 stammernes celle-til-celle spredning i fibroblaster ikke anderledes end observeret for de 

kliniske stammer. Vi konkluderer at RAPD type 9 stammerne stadig kan antages at være 

lavvirulente i human listeriose, og at de ikke udgør en særlig risiko for gravide kvinder. 
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1. Introduction 

To establish an infection successfully, pathogenic microorganisms must first overcome the 

barriers of the innate immune system. This first line of defense is composed of several cell 

types that utilize an array of effector mechanisms that all contribute to the physical and 

chemical defense lines. Epithelial cells line both the skin and mucosa and act as a physical 

barrier to prevent pathogens from entering. In addition, they secrete mucus and microbicidal 

compounds that serve as a chemical defense. Bacteria penetrating these barriers are met by 

phagocytic cells which engulf the pathogens and subsequently kill them intracellularly by the 

means of the same chemical compounds as the epithelial cells secrete. These chemical 

antimicrobial compounds can broadly be categorized into those mediating an oxygen-

dependent killing and those mediating an oxygen-independent killing. The reactive oxygen 

species (ROS) such as hydrogen peroxide and superoxide that are produced in phagocytes 

constitute an important part of the first group. Antimicrobial peptides (AMPs) are one of the 

main contributors to the latter group (Flannagan et al. 2009). 

Antimicrobial peptides (AMPs) constitute an evolutionary very well-conserved group of 

bacterial inactivator molecules and are widespread in the innate immune systems of 

mammals, insects, plants, and fungi (Zasloff 2002;Brogden et al. 2003). The fact that they 

have retained antimicrobial activity through millions of years suggests that development of 

resistance is relatively improbable. They are now often referred to as host defense peptides 

(HDP) as they besides the direct antimicrobial actions also have other immunomodulatory 

properties, like chemotactic activities that serve to attract and activate several effector cells 

of both the innate and adaptive immune system. HDPs thus enhance both the innate and 

adaptive immune responses thereby boosting infection-resolving immunity. Together this has 

prompted a massive interest in HDPs as novel antimicrobials as they can become an entirely 

new therapeutic approach to combat bacterial infections (Hancock and Sahl 2006).  

Nevertheless, a cardinal feature of pathogenic bacteria is the evolution of advanced 

strategies to circumvent, resist or counteract the innate defense systems allowing the 

establishment of a temporary niche for bacterial survival at the epithelial cell surface from 

where the infection can be initialized. Such intrinsic resistance mechanisms are regulated by 

two-component systems that sense the host environment and regulate the expression of 

virulence or resistance genes accordingly (Mandin et al. 2005;Kraus et al. 2008). On the 

other hand, some host factors have been shown to induce down-regulation of virulence 

genes (Dorschner et al. 2006). Hence, a better understanding of the molecular basis of 
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bacterial resistance to HDPs will provide insights on how to design therapeutic HDPs that are 

not prone to provoke development of resistance. 

This study focuses on two related gram-positive, pathogenic species, Listeria 

monocytogenes and Staphylococcus aureus, that represent different routes of infection. L. 

monocytogenes is a food borne pathogen entering the host via contaminated food products 

and gains access to the blood stream by invading the intestinal epithelium. L. 

monocytogenes disseminates in the blood and can cause general sepsis. From the blood 

stream it can cross both the blood-brain barrier giving rise to central nervous system 

infections such as meningitis and encephalitis as well as the placental barrier causing severe 

illness in the fetus leading to abortion, still birth or premature birth (Vazquez-Boland et al. 

2001). S. aureus has a more complex disease pattern. It can, as L. monocytogenes, be a 

food borne pathogen causing food poisoning due to the production of enterotoxins. However, 

it is more often a community-acquired pathogen, gaining access to the host tissue through 

breaches in the skin and cause a variety of diseases ranging from superficial skin infections 

like boils and abscesses to more serious infections such as pneumonia, meningitis, 

septicemia, endocarditis, and osteomyelitis as well as toxic shock syndrome due to the 

production of Toxic Shock Syndrome Toxin 1 (TSST-1) (Lowy 1998). 

Strains of both L. monocytogenes and S. aureus are not equally virulent (Roche et al. 

2001;Buncic et al. 2001;Peacock et al. 2002;Melles et al. 2004) and also differ in their 

sensitivity to stresses encountered (Buncic et al. 2001;Lianou et al. 2006;Rode et al. 2007). 

Since HDPs and other components of the innate defense system may be viewed as stress 

factors, it can be hypothesized that differences in virulence between strains may reflect 

differences in their ability to circumvent and survive the stresses imposed by the innate 

immune system. The understanding of the natural variation in sensitivity of strains of 

pathogenic species to HDPs would be an essential part of evaluating the potential of HDPs in 

treatment. In addition, the environmental conditions to which a pathogen is exposed prior to 

infection can be decisive for its virulence potential. Adaptation to sub-lethal levels of 

environmental stress conditions induces a stress response in the bacteria that confers 

tolerance to lethal levels of stress and to other forms of stress as well, a phenomenon known 

as stress hardening (Lou and Yousef 1997). Thus, exposure to such environmental stresses 

may alter the physiological state of a pathogenic bacterium in a way that prime the pathogen 

for subsequent stages of infection (Garner et al. 2006b;Andersen et al. 2007;Werbrouck et 

al. 2009). Such an adaptation might also include tolerance to HDPs. 
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The ability to adapt to specific environmental conditions can also lead to persistence of 

bacteria in distinct ecological niches. The L. monocytogenes strain collection used in this 

study comprises a subset of persistent strains. These strains constitute a specific molecular 

subtype that is isolated repeatedly in the same processing plant, and even in the same 

places inside the plant during a period of several years (Rørvik et al. 1995;Norton et al. 

2001;Vogel et al. 2001b;Wulff et al. 2006). Such strains are likely contaminants of food 

products and hence it is important to assess their virulence potential. Previous work have 

shown that a group of these persistent strains were low virulent in simple in vitro models and 

non-mammalian models (Jensen et al. 2008a) but in a more complex mammalian model, the 

pregnant guinea pig, a persistent strain infected the fetuses in the same level as a high-

virulent clinical strain (Jensen et al. 2008b). This discrepancy between in vitro and in vivo 

assessment of virulence potential needs to be investigated further in order to understand the 

actual risk posed by such persistent bacteria. The occurrence of both sporadic cases as well 

as an outbreak of listeriosis caused by a persistent subtype of L. monocytogenes (Olsen et 

al. 2005b;Orsi et al. 2008) further emphasizes the need to investigate the virulence potential 

of such persistent strains. 

 

Within the broader research perspective of understanding the infectious process in order to 

better design new antimicrobial therapeutics, the purpose of the study has been to 

investigate the response of different strains of L. monocytogenes and S. aureus to 

antimicrobial compounds of the innate immune defense. Specifically, the project has focused 

on AMPs or HDPs as these are potential novel antimicrobials. In addition, the study explored 

if the response to HDPs could be linked to the variation in the strains' phenotypic behavior, 

including expression of virulence-related factors and behavior in eukaryotic cell models.  

As the innate immune system constitutes our first line of defense against invading 

pathogens, we hypothesized that any differences in virulence between strains of the same 

pathogenic species might be reflected in differences in tolerance to the stressors of the 

innate immune defense. Hence, we determined the natural variation in sensitivity of L. 

monocytogenes and S. aureus strains to HDPs and hydrogen peroxide (Gottlieb et al. 2008). 

Furthermore, the environmental stress conditions that pathogens are prone to be exposed to 

prior to infection might elicit a stress response that augments the infectious potential. We 

hypothesized that exposure to food-related environmental stress conditions could increase 

the tolerance of L. monocytogenes to subsequent HDP treatment (Gottlieb and Gram 2009). 

Also, to examine the potential development of resistance to HDPs outside the natural 
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environment, we investigated if tolerance to HDPs could be induced by transposon 

mutagenesis (Thomsen et al. 2009). 

To further investigate the differences in virulence potential between L. monocytogenes 

strains, we compared the behavior of the subgroup of persistent strains to clinical strains in 

eukaryotic cell models and determined if differences in phenotypic behavior could be 

explained by systematic differences in virulence gene sequences. We hypothesized that the 

otherwise low-virulent, persistent strains had a predilection for the placenta and hence had a 

specific ability to execute one (or several) of the steps involved in transmission of L. 

monocytogenes across the placenta membrane (Holch et al. 2009). 

 

The thesis consists of an overview section and four papers. The overview section gives an 

introduction to the innate immune defense and the current knowledge of HDPs and their 

antimicrobial and immunomodulatory functions. In this context the potential use of HDPs as 

novel antimicrobials is discussed. In addition the two pathogenic bacteria L. monocytogenes 

and S. aureus are introduced and various phenotypic and genotypic analyses as well as 

eukaryotic cell models for assessment of their virulence potential is discussed. The 

experimental work and the results obtained during the Ph.D. project are described in four 

papers. 
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2. Innate immune defense against bacteria 

The myriads of microorganisms that an individual faces every day only rarely cause disease 

due to the innate immune system that acts as a first line of defense. Pathogenic 

microorganisms are prevented from entering by physical barrier properties, or are combated 

through the action of antimicrobial compounds. This chapter focuses on the antimicrobial 

compounds of the innate immune system, in particular the host defense peptides. A general 

introduction to the actions of the innate immune system and the induction of the adaptive 

immune response is given in order to understand the immunomodulatory functions of HDPs. 

2.1. The first line of defense 

To establish an infection in a host organism, pathogens must first overcome the barriers of 

the innate immune system. These barriers are composed of several cell types that utilize an 

array of effector mechanisms that all contribute to the physical and chemical defense lines 

(Figure 1).  

Epithelial cells line both the skin and mucosa and act as a physical barrier preventing 

pathogens from entering. In addition, they secrete mucus and microbicidal compounds that 

serve as a chemical defense. Bacteria penetrating these barriers are met by phagocytic cells 

which engulf the pathogens and subsequently kill them intracellularly. The phagocytic cells 

kill the pathogens by the means of the same chemical compounds as are secreted by the 

epithelial cells.  

Differences in virulence between strains of pathogenic bacteria might be caused by 

differences in the ability to overcome or circumvent the stresses imposed by the innate 

immune system. 
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Figure 2.1: The barriers of the innate immune system. The mechanical barrier function of the epithelial 

cells consists of tight junctions and mucus. The normal flora of nonpathogenic bacteria on both the skin 

and gastrointestinal mucosa compete with pathogenic bacteria for nutrients and attachments sites and 

may even secrete antimicrobial substances. The chemical barrier consists of HDPs and compounds that 

generate an oxidative burst, as well as secreted fatty acids and various enzymes such as lysozyme. If the 

epithelial barrier is breached, the phagocytic cells in the host tissues contain antimicrobial compounds in 

various granules. These include HDPs, lysozyme, acid hydrolase, and myeloperoxidase that generates an 

oxidative burst. NADPH oxidase in the cytosol is also responsible for generating an oxidative burst. © 

Gottlieb 2007. 

2.1.1. Epithelial cells 

Epithelial cells line all internal and external surfaces of the body, including the skin and the 

gastrointestinal and respiratory mucosa. They are held together by tight junctions that 

effectively form a physical barrier. In addition, they secrete mucus, a viscous fluid that 

contains many glycoproteins called mucins. Mucus can coat microorganisms, thus 

preventing their adherence to the epithelium and aid in expelling the microorganism. This is 

seen in the flow of mucus driven by the cilia in the respiratory epithelium or the peristaltic 

movement in the gastrointestinal tract (Acheson and Luccioli 2004). The importance of 

Physical Microbiological Chemical 

Skin / mucosa 

Blood / Tissue 

“The wild” 

DISEASE 
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mucus in immunity is seen for example in cystic fibrosis patients, where failure in mucus 

production leads to frequent lung infections. 

The epithelial cells produce several chemical antimicrobial compounds that can broadly be 

categorized into those mediating an oxygen-dependent killing and those mediating an 

oxygen-independent killing. Compounds that generate an oxidative burst constitute the first 

group, whereas the antimicrobial peptides (AMPs) or host defense peptides (HDPs) 

constitute the majority of the non-oxygen dependent compounds. HDPs are either 

constitutively expressed at sites where initial interaction with potential invading 

microorganisms occurs, or are induced upon recognition of injury. In addition, proteolytic 

enzymes like lysozyme are secreted in saliva, sweat and tears, pepsin is secreted in the gut, 

and the skin produces fatty acids that also have antimicrobial effect. 

2.1.2. Phagocytes 

Pathogens that succeed in crossing the epithelial surfaces are removed by phagocytes in the 

underlying tissues. Macrophages are derived from blood-circulating monocytes and reside in 

tissues. They are found in large numbers in connective tissues in association with the 

gastrointestinal tract, the respiratory tract, and along certain blood vessels in the liver (where 

they are known as Kupffer cells). Macrophages are complemented by the recruitment of 

large numbers of neutrophils to the site of infection. Neutrophils or polymorphonuclear 

neutrophilic leukocytes (PMNs) is the second large family of phagocytic cells and are 

circulating in the blood. They are not present in normal healthy tissues but are recruited to 

the site of infection by HDPs and cytokines and chemokines that are secreted as a result of 

tissue injury. 

The interaction between phagocytes and pathogens can be either direct - through recognition 

of pathogen-associated molecules such as surface carbohydrates, peptidoglycans or 

lipoproteins by pattern recognition receptors - or indirect by opsonins. Upon engulfment of 

pathogens, phagocytes undergo a drastic maturation to acquire the microbicidal and 

degradative features associated with innate immunity. These include the progressive 

acidification of the phagosome as well as the acquisition of HDPs and hydrolases 

(Flannagan et al. 2009). 

The internalization and subsequent destruction of pathogens in phagocytes are key features 

of the innate immune response that promote antigen presentation and the activation of 

adaptive immunity. 
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2.1.3. Activation of adaptive immunity 

If (or when) microbial pathogens pass the first line of defense of the innate immune system, 

the adaptive immune system is activated: Macrophages and dendritic cells engulf the 

pathogens and present pathogen-derived antigens on their surfaces. When these antigen-

presenting cells encounter naïve, circulating T-cells the T-cells are activated and proliferate 

to generate a large number of antigen-specific effector T-cells, of which there are three 

different kinds. The relative production of each subset of effector T-cells depends on the 

nature of the infection. Intracellular pathogens such as vira and L. monocytogenes are 

eliminated by cytotoxic CD8 T-cells that migrate to the infected tissue and kill the infected 

host cells. Other pathogens are killed by the two kinds of helper CD4 T-cells. Intravesicular 

pathogens such as Mycobacterium tuberculosis are eliminated via CD4 TH1 cells that 

activate the infected macrophages. Extracellular pathogens (i.e. most bacteria) are 

eliminated by CD4 TH1 and TH2 cells by induction of engulfment by macrophages and 

activation of specific B-cells to produce antibodies, respectively. 

2.2. Antimicrobial compounds of the innate immune defense 

As mentioned, the antimicrobial compounds of the innate defense can broadly be divided into 

those mediating an oxygen-dependent killing and those that mediate a non-oxygen-

dependent killing.  

2.2.1. Oxygen-dependent 

The generation of reactive oxygen species (ROS) in professional phagocytes is catalysed by 

NOX2 NADPH oxidase that transfers electrons from cytosolic NADPH to molecular oxygen, 

releasing O2
- into the phagosomal lumen (Quinn and Gauss 2004). ROS production is most 

prominent in neutrophils. In the phagosomal lumen, O2
- can dismutate to H2O2, which can in 

turn react with O2
- to generate hydroxyl radicals and singlet oxygen (Minakami and Sumimoto 

2006). H2O2 can also be converted by myeloperoxidase into hypochlorous acid and 

chloramines (Flannagan et al. 2009).  

In addition to ROS, nitric oxide (NO•) and the reactive nitrogen species (RNS) derived from it 

are important antimicrobial effectors. RNS are primarily produced in macrophages by the 

inducible nitric oxide synthase, NOS2, isoform. RNS production requires de novo synthesis 

of NOS2 in response to proinflammatory agonists (Fang 2004). NO• is synthesized on the 

cytoplasmic side of phagosomes, and diffuse across membranes to reach intraphagosomal 

targets. In the luminal environment, where it encounters ROS, NO• can undergo either 
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spontaneous or catalytic conversion to a range of RNS, including nitrogen dioxide (NO2
•), 

peroxynitrite (ONOO-), dinitrogen trioxide (N2O3), and nitroxyl (HNO) (Fang 2004). 

ROS and RNS synergize to exert highly toxic effects on intraphagosomal microorganisms. 

They interact with numerous microbial targets, such as thiols, metal centers, protein tyrosine 

residues, nucleic acids and lipids. As a result, proteins are inactivated and lipids are 

converted by oxidative damage. In addition, microbial DNA can undergo irreparable damage. 

Together, these reactions can impair bacterial metabolism and ultimately inhibit replication 

(Imlay 2003). 

However, many pathogens can survive the oxidative burst, for example by secreting 

enzymes such as catalase that neutralizes ROS/RNS. In the present study, we have tested if 

strains of L. monocytogenes and S. aureus that presumably represent different levels of 

virulence as discussed in chapters 4 and 5, varied in their tolerance to H2O2 as a model 

compound of the oxidative burst mediated by the innate immune defense. We found no 

difference in sensitivity in a collection of 25 L. monocytogenes and 16 S. aureus strains (see 

Table 3.1, chapter 3) (Gottlieb et al. 2008). 

2.2.2. Non-oxygen-dependent compounds 

Non-oxygen-dependent compounds comprise both large and small antimicrobial proteins and 

peptides. The large proteins are often lytic enzymes, such as lysozyme, nutrient-binding 

proteins or hydrolases, and proteases that target bacterial carbohydrates, lipids, and proteins 

(Flannagan et al. 2009). Lactoferrin is an example of a nutrient-binding protein. It is 

contained in neutrophil granules and released into the phagosomal lumen, where it 

sequesters iron that is required by some bacteria (Masson et al. 1969). In addition, the 

phagosome is acidified due to the action of the V-ATPases causing a luminal pH as low as 

4.5 (Desjardins et al. 1994;Huynh and Grinstein 2007;Flannagan et al. 2009). The 

acidification of the phagosome serves two purposes. First, to impair the metabolism of 

pathogens, and second, to favor the activity of many host hydrolytic enzymes that have 

acidic pH optima. In addition, the transmembrane H+-gradient generated by V-ATPases both 

causes extrusion of essential microbial nutrients from the phagosomal lumen and facilitates 

the generation of superoxide (O2
-) due to the surplus of H+ that counteracts the negative 

charges translocated by the NADPH oxidase (Flannagan et al. 2009). 

The smaller antimicrobial peptides, which are the focus of this thesis, are a diverse group of 

peptides that have an essential role in the innate immune defense of all living organisms. 

They are small, ribosomally-synthesized peptides, most in the range of 10-50 amino acids. 
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They have a positive net charge and an amphiphatic structure (Zasloff 2002;Brogden et al. 

2003;Marshall and Arenas 2003;Powers and Hancock 2003;Brogden 2005). The 

antimicrobial peptides exhibit such great diversity that they can only be categorized broadly 

into three classes on the basis of their secondary structure (Table 2.1). 

Table 2.1: Classification of host defense peptides based on secondary structure and examples of HDPs 

belonging to each class. Most organisms express multiple peptides from several of these structural 

classes. Underlined HDPs are used in this study. Reviewed in (Zasloff 2002;Brogden et al. 2003;Marshall 

and Arenas 2003;Powers and Hancock 2003;Brogden 2005). 

Peptide Origin 

Linear peptides forming helical structures 

hCAP-18/LL-37  Human neutrophil granules 
Human epithelial cells (skin, lung, gut, mammary gland and 
epididymis) 

Novispirin G10 Synthetic (from ovispirin-1 from SMAP-29) 

Novicidin Derivate of novispirin G10 

Cecropins Insect hemolymph 

Margainins Frog skin  

Pleurocidin Fish skin mucous 

Buforin II Human gastric mucosa 

Cysteine-stabilised peptides with a �-sheet 

Human defensins  

   HNP1-4 Neutrophils 

   HD5-6 Paneth cells in the small intestine 

   HBD1-4 Epithelial cells (gastrointestinal and respiratory tract, skin) 

Plectasin Fungus 

Protegrins Pig leukocytes 

Tachyplesins Horseshoe crab 

Penaeidins Shrimp 

Linear peptides rich in specific amino acids (Pro, Gly, His, Trp) 

Protamine (Pro, Arg) Fish spermatozoa 

Histatins (His) Human (primate) saliva 

Bactenins (Pro, Arg) Bovine neutrophils 

PR-39 (Pro, Arg) Pig small intestine 

Indolicidin (Trp, Pro) Bovine neutrophils 

Across these three classes are a group of peptides called cathelicidins. These are peptides 

that differ greatly in their sequences, structures and sizes but share a highly conserved N-
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terminal structural domain (cathelin) that is linked to a C-terminal peptide possessing the 

antimicrobial activity. 

In humans and other mammals, the two main HDP families are the defensins and the 

cathelicidins (Zasloff 2002;Brogden et al. 2003). The sole human cathelicidin is synthesised 

as a preproprotein named human cationic protein 18 kDa (hCAP18) whose 37 C-terminal 

amino acids constitute the active peptide, LL-37. LL-37 is generated by proteolytic 

processing of hCAP18 by various tissue-specific proteinases (Eckmann and Kagnoff 2005). 

hCAP18 is synthesised and stored in secondary neutrophilic granules but has also been 

found in various epithelial sites, mast cells and a subpopulation of monocytes and 

lymphocytes (Ganz 2003).  

The human defensins have three pairs of disulfide bonds and a �-sheet structure. They are 

sub-divided into six �-defensins and four �-defensins based on the arrangement and spacing 

of the three disulfide bonds, as shown in Figure 2.2. 

 

Figure 2.2: Sequence and disulphide bonds in a human �- and �-defensin. The disulphide bonds are 

indicated by solid lines and the corresponding cysteines in �- and �-defensins by dotted lines. From 

(Ganz 2003). 

 

The �-defensins human neutrophil peptides 1-4 (HNP1-4) are expressed in neutrophils 

whereas human defensin 5 and 6 (HD-5 and HD-6) are expressed predominantly in Paneth 

cells in the small intestine. The four human �-defensins, HBD1-4, are expressed in epithelial 

cells such as those lining the intestinal and respiratory tracts and the skin, and are thus 

important in protection from environmental pathogens (Ganz 2003). 

In leukocytes and Paneth cells the defensins are stored in granules and released for 

antimicrobial action into phagocytic vacuoles and intestinal crypts, respectively, and the 

physiological concentrations of HDPs can be as high as > 10 mg/mL. In the various secretory 
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and barrier epithelial cells the average concentration reaches 10-100 �g/mL. In vitro 

antimicrobial activity is observed to be as low as 1-10 μg/mL (Ganz 2003).  

Bacteria also produce ribosomally synthesized antimicrobial peptides, collectively named 

bacteriocins. These include nisin that is widely used as a food preservative, as well as 

pediocin PA-1 and lacticin 3147 (Cleveland et al. 2001). Bacteria also produce peptide 

antimicrobials using large multifunctional enzymes known as non-ribosomal-peptide 

synthetases. Prominent examples of these include the polymyxins and gramicidins (Hancock 

and Sahl 2006).  

2.3. Host defense peptides - mechanisms of action 

HDPs have several mechanisms of action. They have direct antimicrobial actions, and due to 

their cationic, amphiphilic nature, HDPs have been suggested to be “dirty drugs”. They target 

many different microbial targets at the same time but with modest potency instead of 

blocking a specific high-affinity target, thereby making development of resistance difficult 

(Peschel and Sahl 2006). In addition, they have immunomodulatory actions, boosting both 

innate and adaptive immune responses which favor resolution of infection, hence the name 

host defense peptides rather than just antimicrobial peptides. 

2.3.1. Direct antimicrobial action: membrane-acting HDPs 

The wide spectrum of activity and the speed of action (often within minutes in vitro) of most 

HDPs indicate that they target the bacterial membrane. The Shai-Matsuziaki-Huang model 

(SMH-model) describes the activity of most HDPs (Zasloff 2002). The model proposes that 

the peptides interact with the membrane via peptide-lipid interactions rather than receptor-

mediated recognition processes. The fact that synthetic all-D amino acid enantiomers of the 

peptides exhibit the same antimicrobial spectra as their all-L native counterparts indicates 

that the antimicrobial activity does not involve stereo-specific protein receptors. 

In general, the cationic HDPs are attracted by electrostatic forces to the anionic 

phospholipids and phosphate groups on lipopolysaccharide (LPS) on Gram-negative 

bacteria, and teichoic acids on Gram-positives (Shai 1999). The peptides have low affinity for 

the outer leaflet of plant and animal membranes, which are composed of lipids with no net 

charge (Zasloff 2002). In addition, the presence of membrane-stabilising cholesterol has 

been shown to further protect eukaryotic cells against HDPs (Matsuzaki 1999). After the 

initial attraction, HDPs must traverse capsular polysaccharides (and teichoic and lipoteichoic 

acid in Gram-positives) in order to reach the cytoplasmic membrane and interact with the 
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lipid bilayers (Brogden 2005). Hydrophobic interactions are the driving force of the following 

permeabilisation and/or disruption of the membrane. When associated with the membrane 

the peptides exhibit two distinctly different physical states of binding. At low peptide-to-lipid 

ratios the peptides are embedded in the lipid headgroup region parallel to the peptide-lipid 

interface in a functionally inactive state. The embedment stretches the area of the membrane 

and results in membrane thinning. As the peptide concentration increases, a certain 

threshold level is reached, and the peptides shift from the parallel orientation to a 

perpendicular orientation leading to insertion into the cytoplasmic membrane and the 

formation of multiple pores. The transition occurs when the energy levels of the surface-state 

and the integrated state are equal. The susceptibility of a cell to HDP depends on this 

threshold level that is determined by the lipid composition of the cell membrane (Huang 

2000).  

Four models have been proposed to describe the membrane permeabilisation. The four 

models - the aggregate model, the toroidal-pore or wormhole model, the barrel-stave model, 

and the carpet model - are illustrated in Figure 2.3. In certain cases the peptide enters into 

the interior of the target cell via these pores, presumably to exert additional antimicrobial 

activities. 
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Figure 2.3: Mechanism of action of host defense peptides. The bacterial membrane is shown as a yellow 

lipid bilayer and the peptides are shown as cylinders with the hydrophilic regions in red and the 

hydrophobic regions in blue. (A-D) explain mechanisms of membrane permeabilization. (A) The aggregate 

model. (B) The toroidal-pore (“wormhole”) model: Peptide helices insert into the membrane and induce 

the lipid monolayers to bend continuously through the pore to connect the two leaflets of the membrane. 

The toroidal model differs from the barrel-stave model as the peptides are always associated with the 

lipid head groups even when they are vertically inserted in the lipid bilayer. (C) The barrel-stave model: 

Peptide helices form a bundle in the membrane and the hydrophobic peptide regions align with the 

membrane lipid core region leading to transmembrane pore-formation. (D) The carpet model: Peptides 

accumulate on the surface of the bilayer forming a peptide-carpet that is thought to disrupt the lipid 

bilayer in a detergent-like manner leading to the formation of micelles. (E-I) explain mechanism of action 

of non-membrane acting HDPs.  Adapted from (Jenssen et al. 2006). 
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Amphiphatic �-helical HDPs permeate membranes predominantly via the “carpet” 

mechanism (Shai 1999). Defensins are also thought to permeate the membranes via the 

carpet or toroidal pore mechanism although the specific arrangement of defensin molecules 

in the pores remains unknown (Ganz 2003).  

Pore formation (as in formation of any ion- or water-permeable structure in the membrane) 

seems to be a central point in the peptide-membrane interaction. The pores formed by 

various HDPs vary in size but are all � 20 Å, thus allowing the passage of ions and small 

molecules. This would lower the proton gradient and destroy the membrane potential, 

stopping ATP production and all cellular metabolism, leading to cell death (Huang 2000). 

These pores can be either stable as revealed by release of intracellular components in an 

“all-or-nothing” manner, or non-stable as shown by a partial release of intracellular markers. 

This is probably due to destabilization of the pores by electrostatic repulsions between highly 

cationic HDPs (Ganz 2003).  

The formation of pores or general disruption of the membrane can be experimentally 

demonstrated by measuring the leakage of intracellular components to the extracellular 

milieu. We have determined the leakage of ATP upon treatment with three different peptides, 

representing the three different classes (Figure 2.4). Protamine caused leakage of ATP to 

the extracellular environment as also shown by (Johansen et al. 1997), suggesting that it 

acts on the membrane. Microscopic examination of cell cultures exposed to protamine 

suggested that it not only formed small pores but disrupted the membrane in a detergent-like 

manner (Figure 2.4c). This is supported by Johansen et al. (1997) that also showed that 

protamine caused leakage of high-molecular-weight compounds such as �-galactosidase. 

Plectasin did not appear to act on the membrane on S. aureus as no ATP leakage was seen. 

Plectasin treatment of L. monocytogenes did cause a small leakage of ATP although not to 

the same extent as seen with protamine. This leakage is probably due to secondary effects 

as the slow killing kinetics observed for plectasin suggest that is not acting on the membrane 

(Mygind et al. 2005). Novicidin also resulted in leakage of ATP and could thus act on the 

membrane. However, the extremely rapid action as well as the fact that no ATP was left 5 

minutes after start of exposure suggest that novicidin could have additionally intracellular 

actions, such as activation of ATPases. Cell-free experiments where a standard ATP solution 

was treated with novicidin did not result in decreasing ATP levels (data not shown), 

suggesting that novicidin is not directly degrading ATP. 
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Figure 2.4: Measurement of ATP leakage after treatment with HDPs. (A) ATP leakage from S. aureus after 

treatment with protamine. (B) ATP leakage from S. aureus after treatment with novicidin. (C) Photograph 

of L. monocytogenes after treatment with protamine (1,000x magnification). (D) Photograph of L. 

monocytogenes after treatment with plectasin (1,000x magnification). (E) ATP leakage from S. aureus 

after treatment with plectasin. (F) ATP leakage from L. monocytogenes after treatment with plectasin. 

Adapted from (Thomsen et al. 2009). 

Together, the three different leakage profiles observed after treatment with the three peptides 

suggest that they have different mechanisms of action. These results are physiologically 

meaningful, since the simultaneous use of host defense molecules with different actions will 

make the defense against microorganisms more effective and reduce the risk of 

development of resistance as is discussed in chapter 3. 
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2.3.2. Direct antimicrobial action: Non-membrane acting HDPs 

Increasing evidence indicates that HDPs have additional antimicrobial actions besides the 

pore-forming or general membrane disrupting actions described above. These can be non-

membrane external targets that can be activated by HDPs to induce lysis of the bacteria. 

Examples include the activation of bacterial autolysins that is normally inhibited by the 

presence of cell wall components like lipoteichoic and teichuronic acids (Bierbaum and Sahl 

1987) and enhancement of the activity of host-derived secretory phospholipase, thus 

showing a synergistic effect of HDPs and other host defense factors (Zhao and Kinnunen 

2003). HDPs have been shown to interact with periplasmic and cytoplasmic macromolecules 

once they have penetrated the cell wall (Figure 2.2 and Table 2.2). The mechanism of action 

of a particular HDP most likely varies according to the bacterial target cell, the concentration 

at which the HDP is assayed, and the physical properties of the interacting membrane 

(Jenssen et al. 2006). Many HDPs have been attributed potentially false membrane-targeting 

actions because the mechanism have been investigated using concentrations high above 

MIC values, exceeding the MIC-equivalent peptide:lipid ratio, or masking any potential 

intracellular effects (Shai 1995;Patrzykat et al. 2002). Such an effect could account for the 

ATP leakage seen after plectasin-treatment of L. monocytogenes. 

In order to access their intracellular targets, HDPs must cross the bacterial membrane 

without causing permeabilisation. Arginine-rich peptides readily translocate across both 

cellular and nuclear membranes (Futaki et al. 2001) by endocytosis (Richard et al. 2003) or 

pinocytosis (Wadia et al. 2004). Protamine used in this study is a linear peptide rich in proline 

and arginine, hence, in lower concentrations it might cross cell membranes and have 

additionally intracellular targets.  

Buforin II accumulates in the cytoplasm where it inhibits cellular functions by binding to DNA 

and RNA (Park et al. 1998). We have examined the DNA-binding properties of plectasin and 

another plectasin-like defensin, eurocin, using a gel retardation assay as described by (Park 

et al. 1998). We found that these peptides do not bind to DNA (Figure 2.5) (Thomsen et al. 

2009). 
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Figure 2.5: Gel retardation assay examining the DNA binding properties of HDPs. (A) Plectasin (0, 2.5, 5, 

10, 20, 40 or 80 μg/ml) was incubated with 100 ng of plasmid DNA for 1 hour at room temperature and 

applied to a 1% agarose gel electrophoresis. The migration of plasmid DNA was not inhibited, indicating 

that plectasin does not bind DNA. Data not shown from (Thomsen et al. 2009). (B) A comparable 

experiment using buforin II that is known to bind DNA. Once a certain threshold limit of peptide:DNA ratio 

is reached the migration of DNA is inhibited, indicating that the peptide bind DNA. From (Park et al. 1998). 

However, the gel retardation assay is an indirect, in vitro determination of DNA 

binding/inhibiting activity. By measuring in vivo incorporation of [3H]thymidine or [3H]uridine 

into DNA and RNA, respectively, one can determine if HDPs directly inhibit DNA and RNA 

synthesis. Inhibition of nucleic acid synthesis has been demonstrated for HDPs from different 

structural classes, both the �-helical peptides such as derivates of pleurocidin and 

dermaseptin (Patrzykat et al. 2002), the �-sheet, cysteine stabilized peptides such as the 

human HNP-1 (Lehrer et al. 1989), and the linear, Trp- and Pro-rich bovine peptide, 

indolicidin (Subbalakshmi and Sitaram 1998). Likewise, analyzing the incorporation of 

radioactively marked amino acids can determine if a HDP inhibits protein synthesis, such as 

shown for PR-39 (Boman et al. 1993) and derivates of pleurocidin and dermaseptin 

(Patrzykat et al. 2002). Intracellular enzymatic activity can also be the target for pyrrhocidin 

that specifically inhibits the ATPase activity of DnaK, thus preventing its chaperone activity 

leading to accumulation of misfolded proteins in the cell cytoplasm and death (Otvos et al. 

2000). 

Two bacterial antimicrobial peptides, the lantibiotics nisin and mersacidin, both interfere with 

the cell wall precursor lipid II, thus preventing peptidoglycan formation and inhibiting cell wall 

synthesis (Hechard and Sahl 2002). 
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Table 2.2: Summary of HDP antimicrobial mechanisms of action (MOA). 

MOA Examples of HDPs Reference 

Membrane-acting 

Aggregate  Indolicidin (Hancock and Chapple 1999;Wu et al. 1999) 

Toroidal pore LL-37 (Henzler Wildman et al. 2003) 

 Magainin 2 (Matsuzaki et al. 1996;Yang et al. 1998) 

 Protegrin-1 (Yamaguchi et al. 2002) 

 Melittin (Yang et al. 2001b;Lee et al. 2004) 

Barrel-stave Alamethicin (Brogden 2005) 

Carpet Cecropin (Gazit et al. 1995) 

 Ovispirin (Yamaguchi et al. 2001) 

 Melittin (Naito et al. 2000) 

Non-membrane acting 

Nucleic acid synthesis HNP-1, HNP-2 (Lehrer et al. 1989) 

 Buforin II (Park et al. 1998) 

 Indolicidin (Subbalakshmi and Sitaram 1998) 

 Pleurocidin (Patrzykat et al. 2002) 

 Dermaseptin (Patrzykat et al. 2002) 

 PR-39 (Boman et al. 1993) 

 Tachyplesin II (Yonezawa et al. 2002) 

Protein synthesis HNP-1, HNP-2 (Lehrer et al. 1989) 

 Pleurocidin, dermaseptin (Patrzykat et al. 2002) 

 PR-39 (Boman et al. 1993) 

Protein folding Pyrrhocoricin (Otvos et al. 2000) 

Cell wall (lipid II) Bacteriocins (nisin, 
mersacidin) 

(Hechard and Sahl 2002) 

In summary, the cationic antimicrobial peptides have been proposed to have a multitarget 

mechanism of action, interacting with multiple anionic targets of the bacterial cell, including 

negatively charged lipids at the membrane, nucleic acids and intracellular enzymes (Powers 

and Hancock 2003). 

2.3.3. Immunomodulatory actions 

In addition to their direct antimicrobial action, HDPs have been demonstrated to confer 

protection against infection by indirect mechanisms as well. The immunomodulatory actions 

that both function to favor the resolution of infection and reverse potentially harmful effects of 
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inflammation (Figure 2.6) have eventually lead to a change of names from the more narrow 

antimicrobial peptides (AMP) to host defense peptides (HDP). 

 

Figure 2.6: The multiple functions of HDPs in host defense. Apart from the direct antimicrobial actions, 

HDPs have immunomodulatory functions. HDPs have chemotactic activity that either directly or by 

stimulating secretion of chemokines and cytokines serves to attract and activate several cell types of 

both the innate and adaptive immunity. In addition HDPs regulate inflammation by inhibiting bacterial 

endotoxins and neutralize pro-inflammatory cytokines and promote wound healing and angiogenesis. 

From (Lai and Gallo 2009). 

HDPs act directly or induce expression of chemokines and cytokines to recruit leukocytes to 

the site of infection. Both �-defensins HNP-1 and HNP-2 (Territo et al. 1989), �-defensins 

HBD-2, HBD-3, and HBD-4 (Niyonsaba et al. 2002;Yang et al. 2002), and LL-37 (Yang et al. 

2000) have been shown to directly recruit monocytes and macrophages to the site of 

inflammation, thereby enhancing the initial phagocytosis and clearing of invading pathogens. 

In addition, both �-defensins (Yang et al. 2001a), �-defensins (Yang et al. 1999), and LL-37 

(Yang et al. 2000) have induced recruitment of dendritic cells and T-cells to sites of infection, 

thus promoting the cellular immune response by facilitating antigen-presentation to naïve, 

circulating T-cells. HDPs also induce the secretion of chemokines and cytokines from both 

epithelial cells (Niyonsaba et al. 2005;Niyonsaba et al. 2007) and phagocytic cells 

(Funderburg et al. 2007;Yu et al. 2007). 
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Another important immunomodulatory role is the regulation of Toll-like receptor (TLR)-

dependent inflammatory responses. Normally, inflammation serves to deliver additional 

effector cells and molecules to the site of infection as well as containing the infection locally. 

Bacterial products such as LPS stimulate inflammation via TLR-4. Uncontrolled inflammation 

causes tissue damage and can eventually lead to sepsis. Cathelicidins have been shown to 

inhibit TLR-4-mediated induction of cytokine release (Di Nardo et al. 2007;Morioka et al. 

2008), and LL-37 can selectively inhibit TNF-� release from human monocytes and 

macrophages stimulated by LPS and LTA (Mookherjee et al. 2006). In addition, many HDPs 

can bind and neutralize LPS, thus providing an alternative mechanism of interfering with LPS 

response (Chen et al. 2006;Rosenfeld et al. 2006). 

Several HDPs have also been shown to promote wound healing, serving to limit the infection 

by closing the site of entry. Cathelicidins stimulate the migration of keratinocytes required for 

re-epithelialization of the wound (Gallo et al. 1994;Tokumaru et al. 2005), HBD-2 and LL-37 

stimulates migration, proliferation and formation of vessel-like structures of endothelial cells, 

thus promoting angiogenesis important for wound neovascularization (Koczulla et al. 2003), 

and LL-37 have also been shown to have anti-fibrotic effects that might benefit normal wound 

repair (Park et al. 2009). 

In summary, HDPs have immunomodulatory functions that boost both the innate and 

adaptive responses to infection, dampen the potential tissue damage due to inflammation, 

and finally promote wound healing and tissue regeneration that function to close the site of 

entry of the pathogen, hence favoring the resolution of infection. 

2.4. Bacterial evasion of innate immune mechanisms – intrinsic resistance to 

HDPs 

The ability to survive the antimicrobial actions of HDPs due to intrinsic resistance 

mechanisms is an essential virulence property to many microbial pathogens as it allows them 

to establish a niche on the host surface from where the infection can be initiated (Miller et al. 

2005). Here the various strategies employed by pathogenic bacteria to circumvent the 

actions of HDPs are presented.  

Microorganisms use a number of resistance strategies to circumvent HDP-mediated killing 

(Figure 2.7). These can largely be categorised as mechanisms that alter the bacterial cell 

wall or membrane, inhibit HDP action (either by HDP binding/inactivation or by HDP 

degradation), downregulate HDP expression, or actively transport HDPs by energy-

dependent influx/efflux systems. 
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Figure 2.7: Bacterial mechanisms of HDP resistance. From (Gallo and Nizet 2003). 

S. aureus alters the membrane composition via the dlt operon. This operon encodes proteins 

that transport D-alanine to the surface teichoic acids and catalyse the esterification of the 

phosphate groups of the teichoic backbone with the positively charged D-alanine. This 

causes a reduction of the net negative charge and thereby reduced binding of cationic HDPs 

(Peschel et al. 1999). Likewise, the staphylococcal mprF is involved in the biosynthesis of 

lysylphosphatidylglycerol (LPG) by catalysing the formation of the basic phospholipid by 

transfer of L-lysine from lysyl-tRNA to phosphatidylglycerol thus decreasing the attraction 

and binding of cationic HDPs by the bacteria (Peschel et al. 2001). Inactivation of the dlt 

operon or mprF resulted in increased sensitivity towards human HNP1-3, porcine protegrins 

and tachyplesins (Peschel et al. 1999;Peschel et al. 2001). We have shown that these two 

strains also exhibited increased sensitivity to plectasin, novicidin and novispirin G10  and to a 

lesser extent also protamine (Table 3.1) (Gottlieb et al. 2008). Interestingly, wild-type strains 

bearing additional copies of the dlt operon produced teichoic acids with higher amounts of D-

alanine esters and were consequently less sensitive to antimicrobial peptides (Peschel et al. 

1999). This suggests that strain differences in virulence can be caused by different 

expression levels of such intrinsic resistance genes. Homologues of these two 

staphylococcal genes have been found in many other bacteria, including L. monocytogenes 

(Abachin et al. 2002;Thedieck et al. 2006) and Streptococcus pneumoniae (Kovacs et al. 

2006). Others have identified the staphylococcal IsdA surface protein that is produced in 

response to host factors (iron deprivation) and actually increases the negative charge of the 

membrane. However, it also makes the membrane more hydrophilic which renders S. aureus 
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more resistant to both HDPs and skin fatty acids that require hydrophobic interaction with the 

membrane for their activity (Clarke et al. 2007). 

In Salmonellae and other Gram-negative bacteria the PhoPQ two-component regulatory 

system controls the expression of genes that are involved in the alteration of the fluidity of 

the outer membrane due to increased hydrophobic interactions between Lipid A acyl tails. In 

Salmonella enterica Typhimurium this is accomplished by the action of pagP (Pho-P 

activated gene P) involved in the acylation of Lipid A with palmitate. The increased 

hydrophobic interactions probably retard or abolish peptide insertion and pore formation 

(Guo et al. 1998). 

S. aureus secretes staphylokinase that induces extracellular release of �-defensins from 

PMNs, subsequently neutralising their bacteriolytic properties by direct binding to the HDPs 

(Jin et al. 2004). Likewise, some highly virulent Streptococcus pyogenes strains produce an 

anionic extracellular protein, SIC (streptococcal inhibitor of complement), that inhibits LL-37, 

HNP1, and HBD1-3. sic is expressed at an early growth phase, suggesting that SIC will be 

secreted as soon as S. pyogenes starts growing on an epithelial surface. This may promote 

the early stages of infection by inactivating HDPs (Frick et al. 2003;Fernie-King et al. 2004). 

Increasing evidence indicates that proteolytic enzymes also play a role in HDP tolerance. In 

S. aureus  the metalloproteinase aureolysin catalyses the simultaneous hydrolysis of several 

peptide bonds in LL-37 (Sieprawska-Lupa et al. 2004).  

Intrinsic HDP resistance can also be caused by increased active transport of the peptide 

either into the cell for degradation or out of the cell. The SapABCDF (sap, sensitivity to 

antimicrobial peptides) complex in S. Typhimurium belongs to the ATP binding cassette 

(ABC) family of protein transporters. The predicted periplasmic location of the SapA 

component suggests that it may be responsible for the transportation of bound ligands into 

the cytoplasm of the cell (and away from their putative membrane targets) where they could 

be degraded by peptidases. Alternatively, by detecting the presence of toxic compounds, 

Sap could initiate a regulatory cascade resulting in the activation of the relevant peptide 

resistance determinants. Inactivation of sap resulted in increased sensitivity to protamine and 

the microbicidal compounds of human neutrophil granules (Parra-Lopez et al. 1993). 

Shigella spp. is capable of down-regulating transcription of LL-37 and HBD-1 early during 

infection, which probably facilitates colonization of the intestinal mucosa (Islam et al. 2001). 
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2.5. Conclusions 

The innate immune system combats invading pathogenic microorganisms through an array 

of effector molecules and one of the main contributors to these chemical defense lines are 

the host defense peptides, HDPs. HDPs can be divided into three classes based on their 

secondary structure. Across these three classes is a group of structurally heterogeneous 

peptides called cathelicidins. HDPs have direct antimicrobial actions and probably function 

as dirty drugs, acting on several microbial targets at the same time. We have shown that the 

HDPs used in this study have different mechanisms of action. In addition, HDPs have 

immunomodulatory actions that function to boost the immune system and thus contribute to 

infection-resolving immunity. However, pathogenic microorganisms have evolved various 

strategies to resist the antimicrobial activities of HDPs which contribute to their virulence. 
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Host defense peptides have two possible applications in the therapy of infectious diseases. 

Their broad antimicrobial activity spectrum and rapid action make them attractive candidates 

as direct antimicrobial agents. In addition, their recently discovered immunomodulatory 

properties that stimulate the innate immune system to resolve infection make the HDPs an 

entirely new approach to treat infectious diseases. Together, this has prompted a massive 

interest in HDPs as a new generation of antimicrobials (Hancock and Sahl 2006). In addition 

to the therapeutic perspectives, the broader group of antimicrobial peptides (AMPs) are 

being researched as possible food preservatives (Potter et al. 2005).  

3.1. Variation in tolerance of human pathogens to HDPs 

The central dogma for HDPs is that they have been an effective part of the innate immune 

system for millions of years targeting all classes of microorganisms. However, a cardinal 

feature of pathogenic microorganisms is that they are able to circumvent the massive attack 

of these antimicrobial compounds and establish an infection. The importance of such intrinsic 

HDP resistance in virulence is verified by a number of studies of mutants with increased HDP 

susceptibility compared to their parental wild type, and subsequently attenuated virulence 

(Peschel et al. 2001;Abachin et al. 2002;Collins et al. 2002;Thedieck et al. 2006).  

The antimicrobial activity of a given compound is indicated as either the minimum inhibitory 

concentration (MIC) determined in a broth microdilution assay, or the minimum effective 

concentration (MEC) determined in a radial diffusion assay. Several studies have 

demonstrated the broad spectrum of antimicrobial activity of HDPs against several 

pathogenic species. However, the majority of these studies have analyzed only one or a few 

strains within each species, and this strain is often a laboratory reference strain. Turner et al. 

showed that the human cathelicidin LL-37 and the defensin HNP-1 had considerable 

antimicrobial activity (MIC <10 μg/mL for LL-37 and MIC < 20 μg/mL for HNP-1) against 

Staphylococcus aureus, Listeria monocytogenes, Staphylococcus epidermidis, vancomycin-

resistant enterococci, and Escherichia coli. LL-37 was also active against the Gram-negative 

Pseudomonas aeruginosa and Salmonella Typhimurium (Turner et al. 1998). Human 

intestinal defensin 5 (HD-5) was shown to have broad spectrum activity (MIC < 10 μg/mL) 

against one strain of L. monocytogenes, E. coli, S. Typhimurium, and C. albicans, 

respectively (Porter et al. 1997). Protamine used in this study has also been demonstrated to 

inhibit both Gram-positive and Gram-negative food borne pathogens and food spoilage 

3. Host defense peptides as novel antimicrobials 
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bacteria (Truelstrup Hansen et al. 2001). The cathelicidin novispirin G10 has been shown to 

have potent antimicrobial activity against single strains of several Gram-positive and Gram-

negative species (MECs ranging from of 0.4 – 11.4 μg/mL), including a S. aureus, S. 

epidermidis, Enterococcus faecalis, E. coli, P. aeruginosa, and Proteus mirabilis 

(Steinstraesser et al. 2002;Jacobsen et al. 2007).  

A limited number of studies have investigated the natural variation in tolerance of several 

strains of the same species to HDPs. The fungal defensin plectasin used in this study 

showed potent antimicrobial activity against a number of Gram-positive pathogenic species. 

At least ten and up to 133 strains within each species were studied, including both methicillin 

sensitive and –resistant S. aureus (MICs < 32 μg/mL), penicillin sensitive and –resistant 

Streptococcus pneumonia (MICs < 8 μg/mL) and erythromycin sensitive and –resistant S. 

pyogenes (MICs < 0.5 μg/mL). The antibiotic resistant strains were not more tolerant to 

plectasin than the sensitive strains (Mygind et al. 2005). Likewise, Maisetta et al. found that 

the human �-defensin, HBD-3, was equally active against several strains of multidrug-

resistant S. aureus, E. faecium, and P. aeruginosa (Maisetta et al. 2006). In contrast, Joly et 

al. tested the activity of HBD-2 and HBD-3 in a radial diffusion assay against a variety of oral 

pathogens, and included 3-4 strains for each species. They found considerable variation in 

tolerance to both peptides, which was strain rather than species specific. Within the same 

species, MIC ranged from 6.5 to > 250 μg/mL for HBD-2 and from 4.5 to > 250 μg/mL for 

HBD-3 (Joly et al. 2004). 

The bacterial equivalent to the HDPs, the bacteriocins, are used as antimicrobial agents in 

the food industry and also have potential implication in the development of desirable flora in 

fermented foods (Cotter et al. 2005). Numerous reports exist on variations in tolerance of 

field isolates of L. monocytogenes to bacteriocins. 245 L. monocytogenes isolates of different 

origin have been shown to vary in tolerance to bavaricin-A (Larsen and Norrung 1993), 22 

strains isolated from ewe’s milk varied in tolerance to enterocin 4 (Rodriguiez et al. 1997), 

381 L. monocytogenes strains of clinical or environmental origin showed variation in 

tolerance to pediocin PA-1, bavaricin A and nisin (Rasch and Knochel 1998), and 31 Listeria 

sp. of food origin, including 14 L. monocytogenes strains, varied in susceptibility to enterocin 

A, mesentericin Y105, divercin V41, and pediocin AcH. These four bacteriocins showed 

similar antimicrobial patterns, with some strains being fully resistant to all four compounds. 

This is of great concern with respect to their use as antimicrobial agents (Ennahar et al. 

2000). The effect of bacteriocins on S. aureus strains have mainly focused on comparing 

antibiotic resistant and sensitive strains. Piper et al. found that groups of S. aureus strains 

with different antibiotic susceptibility patterns did not vary greatly in susceptibility to neither 
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nisin nor lacticin 3147. The MIC varied within a factor of two to four within each group (Piper 

et al. 2009), which is within the assay insecurity when doing two-fold dilution MIC 

determinations. Likewise, nisin caused extensive loss of viability in all strains of multidrug 

resistant staphylococci, S. pneumoniae and enterococci (Severina et al. 1998).  

We speculated that any variation in virulence between strains of pathogenic bacteria could 

be explained by differences in tolerance to HDPs, since this might give the more tolerant 

strains the opportunity to establish a niche on the epithelial surface from where the infection 

can subsequently be initiated. The occurrence of such natural tolerant isolates would hamper 

the potential use of HDPs as antimicrobial therapeutics. Therefore, we examined the 

susceptibility to HDPs in a group of natural occurring isolates of L. monocytogenes and S. 

aureus that represent a broad spectrum of origins, sub types and phenotypic virulence-

associated behavior. We used four model peptides, protamine, plectasin, novicidin and 

novispirin G10, which were chosen because they represent each of the three different 

classes of HDPs. In addition, as mentioned above, ATP leakage profiles suggest that they 

represent different mechanisms of action (Figure 2.4). We also included the human �-

defensin HBD-3 against a subset of strains. HBD-3 is expressed at epithelial surfaces of both 

the skin and mucosa (Harder et al. 2001), and is thus highly relevant for both L. 

monocytogenes and S. aureus. We found no systematic differences in tolerance to the four 

model HDPs or HBD-3 between strains of L. monocytogenes and S. aureus (Table 3.1) 

(Gottlieb et al. 2008).  

Correspondingly, another study has found that L. monocytogenes does not differ remarkably 

compared to the non-pathogenic species L. innocua and L. ivanovii with respect to tolerance 

to HDPs such as HBD-1, HBD-2, thionins, magainin, and protamine (Lopez-Solanilla et al. 

2003). These results are physiologically logical, since HDPs are designed to target whatever 

pathogenic microorganism that enters the host organism.  
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Table 3.1: Origin, subtype and MIC values of the Listeria monocytogenes and Staphylococcus aureus 

strains used in the present study. Modified from (Gottlieb et al. 2008). 

MICa 

L. mono Origin Sero Lin 
Pro Ple NoC NoS  HBD H2O2 

Ref 

La22 Cold smoked salmon 1/2a 2 16 128 4 64 16/16 0.23 (Vogel et al. 2001b) 
V518a Fish processing 4b 1 32 64 8 64 - 0.94 (Vogel et al. 2001b) 
N53-1 Fish processing 1/2a 2 16 128 2 32 16/32 0.47 (Wulff et al. 2006) 
No40-1 Fish processing 1/2a 2 16 128 4 64 - 0.47 (Wulff et al. 2006) 
R479a CS salmon  1/2a 2 16 128 4 64 - 0.47 (Vogel et al. 2001b) 
O57 Gravad salmon  1/2a 2 16 128 4 128 - 0.47 (Embarek and Huss 1993) 
H13-1 Fish processing 1/2a 2 16 128 4 64 - 0.94 (Wulff et al. 2006) 
La111 Cold smoked salmon 1/2a 2 8 64 4 32 8/16 0.94 (Vogel et al. 2001a) 
M103-1 Fish processing 1/2a 2 32 128 4 64 - 0.94 (Wulff et al. 2006) 
EGD Wildtype 1/2a 2 8 64 4 64 16/16 0.47 b 
2315 EGD sigB del 1/2a 2 8 64 4 64 - 0.94 (Brondsted et al. 2003) 
2317 EGD prfA del 1/2a 2 16 128 4 64 - 0.94 b 
2375 EGD perR del 1/2a 2 32 64 4 32 - 0.94 (Rea et al. 2004) 
2374 EGD perR ins 1/2a 2 32 128 4 32 - 0.94 (Rea et al. 2004) 
2275 EGD dps del 1/2a 2 16 64 4 64 - 0.94 (Olsen et al. 2005a) 
2307 EGD resD del 1/2a 2 8 128 2 32 - 0.12 c 
LO28 Wildtype 1/2c 2 8 64 2 16 - 0.47 (Vazquez-Boland et al. 2001) 
4666 Human clinical 1/2b 1 8 64 8 64 - 0.18 (Larsen et al. 2002) 
4459 Human clinical 1/2a 2 16 128 4 32 - 0.23 (Larsen et al. 2002) 
7418 Spread. sausage 1/2b 1 32 64 4 64 4/8 0.18 (Larsen et al. 2002) 
4446 Human clinical 4b 1 16 64 4 64 16/16 0.47 (Larsen et al. 2002) 
6895 Ham 1/2a 2 16 128 4 96 - 0.35 (Larsen et al. 2002) 
7291 Pasta w chicken 4b 1 32 64 8 128 - 0.47 (Larsen et al. 2002) 
4239 Human clinical 1/2a 2 32 64 4 64 - 0.23 (Larsen et al. 2002) 
Scott A Human clinical 4b 1 16 64 4 32 8/8 N.D. d 

 MIC 
S. aureus Origin spa 

 Pro Ple NoC NoS HBD H2O2 
Ref 

8325-4 Wildtype t211  16 32 8 128 32/32 0.47 (Novick 1967) 
Sa113 Wildtype t211  16 32 6 128 - 0.18 (Iordanescu and Surdeanu 1976) 

�mprF Sa113 mprF del t211  8 4 1 8 - 0.12 (Peschel et al. 2001) 
�dltA Sa113 dltA ins t211  8 2 0.5 2 - 0.23 (Peschel et al. 1999) 
14943 Pork meat t012  16 8 8 256 32/64 0.23 e 

15033 Pork meat t216  32 8 8 128 - 0.23 e 
B31369 Human, clinical t216  16 16 12 256 64/64 0.47 e 
796 Pasta salad t230  16 8 6 128 64/64 0.47 e 
J15033 Human, clinical t230  16 8 8 128 - 0.23 e 
2148-jvi Mastitis t518  16 1 4 64 32/32 0.47 e 
K3-B2 French cheese t524  16 1 4 128 32/64 0.23 e 
B29997 Human, clinical t548  16 16 4 128 - 0.23 e 
KES 439 Human, clinical Ukf  32 2 4 128 - 0.23 (Gjødsbøl et al. 2006) 
KES 626 Human, clinical t1269  16 1 4 64 32/64 0.18 (Gjødsbøl et al. 2006) 
KES 735 Human, clinical Ukf  16 16 4 128 - 0.47 (Gjødsbøl et al. 2006) 
KES 855 Human, clinical t339  16 16 4 64 - 0.23 (Gjødsbøl et al. 2006) 

a MIC values are given in �g/ml for the five human defense peptides and in % (V/V) for H2O2. 
b The strains were kindly provided by Werner Goebel, University of Würzburg 
c The strain was kindly provided by Marianne Halberg Larsen, University of Copenhagen, Faculty of Life 
Sciences. 
dThe strain was kindly provided by Campden Food and Drink Association, UK. 
e The strains were kindly provided by Jørgen Leisner, University of Copenhagen, Faculty of Life Sciences. 
f Uk: Unknown. 
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In contrast, others have found that the susceptibility of clinical isolates of S. aureus (both 

MRSA and MSSA) to the two human HDPs, HBD-3 and hCAP18 varied among the strains 

both when assayed as percent survival of a 2 hour HDP treatment or when assayed 

regarding their susceptibility to different combinations of peptides (Midorikawa et al. 2003). 

Also, differences between two S. aureus reference strains have been observed in the 

susceptibility to HBD-2 and the murine cathelin-related antimicrobial peptide, mCRAMP 

(Clarke et al. 2007). The discrepancy to our results can be related to the fact that they 

examined the percent survival of initial inoculums after 2 hours of treatment, whereas we 

examined the inhibitory effect on growth after 24 hours. It has previously been shown that 

there are differences between L. monocytogenes EGD and sigB mutant in bacteriocin 

tolerance when assayed in “real time” as opposed to endpoint assays such as MIC 

determinations (Begley et al. 2006). However, we have not observed differences between L. 

monocytogenes EGD and its sigB mutant or between wildtype strains when compared in 

realtime (Figures 3.1 and 3.2) (Gottlieb and Gram 2009). 

3.2. Stress response and HDP susceptibility 

To evaluate the potential role of HDPs in antimicrobial therapy, knowledge about how 

microorganisms react to treatment with HDPs is necessary. During the course of infection, 

pathogenic bacteria are exposed to an array of stresses, including the HDPs of the innate 

immune defense. Environmental stresses as met both before infection, e.g. in foods, as well 

as during the infectious process might elicit a stress response in the pathogenic bacteria that 

could prime the pathogen for the subsequent stages of infection.  

3.2.1. Potential role for SigmaB in growth and survival in the presence of HDPs 

A common trait for all bacteria is the use of alternative sigma factors to react to and cope 

with stressful conditions. Indeed, S. aureus grown in the presence of carbonate, mimicking 

the mammalian ionic environment, had a ten-fold decreased expression of sigB encoding the 

Gram-positive alternative sigma factor SigmaB. This correlated with an increased 

susceptibility to a number of HDPs, including LL-37 and HBD-2 (Dorschner et al. 2006) 

suggesting that sigB is involved in tolerance to HDPs. Likewise, the Gram-negative 

alternative sigma factor, SigmaE, is involved in the resistance of the two human enteric 

pathogens Salmonella enterica serovar Typhimurium and Vibrio cholerae to P2, a derivate of 

a human HDP (Humphreys et al. 1999;Crouch et al. 2005;Mathur et al. 2007). Also, SigmaB 

has been shown to be involved in the response of L. monocytogenes to both the bacteriocins 

nisin and lacticin 3147, and the conventional antibiotics penicillin and ampicillin (Begley et al. 
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2006;Palmer et al. 2009). Surprisingly, Begley et al. found that a sigB mutation did not affect 

the bacteriocin tolerance in endpoint assays, while survival assays showed that a sigB 

mutation decreased the tolerance to nisin (Begley et al. 2006). In contrast, Palmer et al. 

found that a sigB mutation increased the survival of nisin treatment (Palmer et al. 2009).  

We hypothesized that SigmaB was involved in the tolerance to HDPs in L. monocytogenes 

and investigated the growth and survival of L. monocytogenes EGD and ΔsigB in the 

presence of HDPs. Like Begley et al. (2006) we did not observe differences in tolerance to 

HDPs between L. monocytogenes EGD and ΔsigB in endpoint assays (Table 3.1) (Gottlieb et 

al. 2008). In contrast, we found that there was no difference between the wildtype and the 

sigB mutant with respect to both growth at sublethal concentrations of plectasin or novicidin 

or the survival of lethal concentrations of plectasin (Figure 3.1) (Gottlieb and Gram 2009). 

The discrepancy could be due to different mechanisms of action of the antimicrobials 

investigated, as one could speculate that this would confer different kind of stresses and 

hence different responses.  
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Figure 3.1: (A-B) Growth and survival of L. monocytogenes 10403S (����) and ΔΔΔΔsigB (����) in the presence of 

nisin. Adapted from (Begley et al. 2006). (C) Growth of L. monocytogenes EGD (closed symbols) and 

ΔΔΔΔsigB (open symbols) in the presence of plectasin (��������), novicidin (��������), or buffer (��������). (D) Survival of L. 

monocytogenes EGD (closed symbols) and ΔΔΔΔsigB (open symbols) in the presence of 256 �g/ml (��������), 128 

�g/ml (��������), or 64 �g/ml (��������) of plectasin or peptide dilution buffer (♦♦♦♦����). Adapted from (Gottlieb and 

Gram 2009). 
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To analyze whether sigB is in fact induced during HDP exposure, an agar-based assay could 

be applied (Kastbjerg et al. 2009). The principle of the assay is that gene expression is 

monitored through �-galactosidase production from strains carrying a sigB promoter:lacZ-

fusion that is cast into an agar plate. HDPs could then be added to wells in the agar and the 

color of the colonies close to the inhibition zone reveals whether sigB is induced or 

repressed. Also, Kastbjerg et al. (2009) demonstrated that virulence gene promoter 

expression was up- or down-regulated differently in response to treatment with various 

disinfectants depending on the active compound, hence it could be speculated that different 

classes of HDPs would induce expression of sigB differently depending on the mechanism of 

action. 

3.2.2.  Effect of exposure to environmental stress conditions on tolerance to HDPs 

L. monocytogenes is capable of survival and growth under adverse conditions normally used 

in food conservation, including low pH, high salt concentration and low temperatures (Farber 

and Peterkin 1991). SigmaB is a major contributor to bacterial survival under adverse growth 

conditions such as high osmolarity, acid stress, cold stress, ethanol, carbon starvation, and 

oxidizing conditions (Wiedmann et al. 1998;Becker et al. 1998;Ferreira et al. 2001;Sue et al. 

2004;Chaturongakul and Boor 2006). SigmaB also regulates the expression of several 

virulence genes, including bile salt hydrolase, bsh (protecting against the toxic effect of bile) 

and the invasion-mediating internalins, inlA and inlB (Kazmierczak et al. 2003;Sue et al. 

2004). Furthermore, SigmaB is involved in the invasion of L. monocytogenes into Caco-2 

cells (Kim et al. 2005;Garner et al. 2006a). Interestingly, the relative importance of SigmaB in 

the stress response differ between strains of L. monocytogenes, and may be related to the 

serotype (Moorhead and Dykes 2003;Severino et al. 2007), suggesting that SigmaB could 

contribute to strain differences in stress tolerance and virulence. 

Exposure to sub-lethal levels of such environmental stress conditions have been shown to 

induce a stress response in L. monocytogenes that renders it more tolerant to lethal levels 

and to other forms of stress, a phenomenon known as stress-hardening (O'Driscoll et al. 

1996;Lou and Yousef 1997;Begley et al. 2002). Especially, this cross-protection might result 

in pathogens adapted to e.g. food-related stress conditions with increased resistance to the 

stresses met during infection. Indeed, adaptation to acidic, NaCl, or oxygen restriction stress 

prior to infection of Caco-2 cells increased the invasive ability of L. monocytogenes (Garner 

et al. 2006b;Andersen et al. 2007;Werbrouck et al. 2009;Olesen et al. 2009). Acid adaptation 

also increased the survival in macrophages (Conte et al. 2002), suggesting that virulence-

associated characteristics are likely to be affected by food-related stress conditions. Thus, 
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besides the enhanced survival in foods which increases the chance (or rather, the risk) of 

ingesting an infectious dose of L. monocytogenes, such stress adaptation also augments the 

virulence of the target organism (Hill et al. 2002;Garner et al. 2006b). On the other hand, the 

stress conditions found in a potted minced pork product, rillettes, that has been implicated in 

cases of listeriosis, actually limited the in vitro virulence phenotype of L. monocytogenes 

(Midelet-Bourdin et al. 2006).  

In addition to the in vitro virulence phenotype, adaptation to 6.5% NaCl or 5°C for 1 hour 

have been shown to increase the tolerance to the bacteriocin pediocin PA-1 (Jydegaard et al. 

2000). Likewise, acid adaptation of L. monocytogenes at pH 5.5 (adjusted with lactic acid) for 

1 hour significantly increased the resistance to nisin, whereas the protective effect of acid 

adaptation was much less pronounced for treatment with lacticin 3147 (van Schaik et al. 

1999). This indicates that stress-hardening of L. monocytogenes strains in a food matrix may 

hamper the effect of bacteriocins as a food preservation factor (van Schaik et al. 1999).  

We hypothesized that exposure to food-related environmental stress factors could increase 

the tolerance of L. monocytogenes to subsequent HDP exposure. We have investigated the 

effect of three food-related stress factors, 5% NaCl, pH 5.5, and growth at low temperature 

(5°C/10°C) on tolerance to subsequent HDP treatment. We found that in the experimental 

design of this study, these food-related factors did not affect HDP tolerance, neither when 

treated with single peptides or in combination of several. Also, there was no difference 

between the three strains used, representing different origins and serotypes. Representative 

results from exposure to pH 5.5 is shown in Figure 3.2 (Gottlieb and Gram 2009).  
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Figure 3.2: Treatment of L. monocytogenes strains with plectasin, novicidin or a combination after 

pretreatment with pH 5.5 or pH 7.0. Strains were grown in TSB 1% glucose pH 5.5 (closed symbols, 

straight lines) or pH 7.0 (open symbols, dotted lines) in two successive inoculations, harvested, washed, 

and resuspended in MHB pH 7.4 to app. 5 × 105 CFU/mL prior to treatment with (a) plectasin, (b) novicidin, 

(c) a combination of plectasin and novicidin, or (d) peptide dilution buffer. Strains and stress conditions: 

(����) EGD pH 5.5, (����) EGD pH 7.0, (����) 4446 pH 5.5, (����) 4446 pH 7.0, (����) N53-1 pH 5.5, and (����) N53-1 pH 7.0. 

From (Gottlieb and Gram 2009). 

The discrepancies between our results and those regarding stress adaptation and 

bacteriocin tolerance (van Schaik et al. 1999;Jydegaard et al. 2000) could be due to different 

mechanisms of action between the bacteriocins and the HDPs used in this study. However, it 

could also be explained by the use of short term exposure as opposed to long term exposure 

to the stress factors (Olesen et al. 2009), the use of organic versus inorganic acid to lower 

the pH (Phan-Thanh et al. 2000), or the growth phase of the bacteria (O'Driscoll et al. 1996). 

Together, our results suggest that the potential use of HDPs will not be hampered by a stress 

response in pathogenic bacteria that would render them more tolerant to HDPs and thus 

lowering the therapeutic effect of HDPs. However, it is possible that the stresses met during 

gastric passage might prime L. monocytogenes for the next phase of infection, which 
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includes the HDPs at the intestinal mucosa and the subsequent systemic invasive disease 

(Sleator et al. 2009).  

3.3. Potential development of resistance 

The development of resistance towards HDPs is considered highly unlikely for two main 

reasons. First, the HDPs targets fundamental features of the bacteria that will be hard to 

change without a large fitness cost to the bacterium. Second, the great diversity of HDPs 

together with the simultaneous release of several different kinds of HDPs at the site of 

infection and with different mechanisms of action impedes the probability of evolution of 

resistance in the bacterial population (Zasloff 2002). However, if or when the HDPs are taken 

out of their natural environment and used as antimicrobials in a clinical setting, they will 

confer a specific and continued selection pressure on the bacterial population that eventually 

might lead to the evolution of resistance. This could have more severe implications if it will 

lead to cross-resistance to human innate antimicrobial peptides (Bell and Gouyon 

2003;Perron et al. 2006). A better understanding of the molecular basis of bacterial 

resistance to HDPs may provide clues on how to design synthetic peptides to circumvent 

potential resistance problems (Zaiou 2007). 

3.3.1. Bacterial sensory systems involved in HDP resistance 

A cardinal feature of pathogenic microorganisms is the occurrence of intrinsic resistance 

mechanisms to HDPs that are essential for pathogenesis as described in section 2.4. Since 

the constitutive production of such intrinsic resistance mechanisms probably represents a 

significant energy burden to the bacteria, the expression is restricted to times when HDPs 

are present in the environment. Consequently, pathogenic bacteria have evolved regulatory 

mechanisms that sense the presence of HDPs (or other molecular markers of intra-host 

existence) and control the expression of resistance genes accordingly. Two-component 

systems (TCS) are basic stimulus-response systems that allow bacteria to sense and 

respond to changes in the environment (Stock et al. 2000). Several of such two-component 

systems have been described to be involved in bacterial sensing and responding to 

antimicrobial peptides as well as virulence. The VirRS TCS in L. monocytogenes controls the 

expression of the dlt operon and mprF, strongly suggesting an important role in regulation of 

L. monocytogenes resistance to HDPs (Mandin et al. 2005). Likewise, the CesRK system is 

involved in virulence and resistance to �-lactam antibiotics (Kallipolitis and Ingmer 

2001;Kallipolitis et al. 2003). Inactivation of the staphylococcal ApsRS system resulted in 

increased susceptibility to HDPs such as HBD-3 and LL-37 (Li et al. 2007). Likewise, the 
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staphylococcal GraRS also contributes to resistance to LL-37 as well as virulence in vitro in 

neutrophils and in vivo in mice (Kraus et al. 2008). PhoPQ controls inducible resistance to 

HDPs in a number of Gram-negative species (Bader et al. 2005). Hence, such bacterial 

sensory systems could be potential targets for novel antimicrobial therapeutics (Brodsky and 

Gunn 2005). 

Surprisingly, inactivation of the heme sensor TCS, HssRS, in S. aureus resulted in enhanced 

virulence. This correlated with an increased secretion of virulence factors with known 

immunomodulatory functions and hence a reduced innate immune response in the host 

(Torres et al. 2007). Also, just as the carbonate-mediated down-regulation of sigB in S. 

aureus as mentioned earlier (Dorschner et al. 2006), it could be speculated that also other 

host factors could induce down-regulation of virulence-associated genes. Hence, the 

inactivation of genes involved in sensing the mammalian environment could lead to a HDP-

resistant phenotype. We investigated if resistance to the defensin plectasin could be induced 

by transposon mutagenesis in S. aureus and L. monocytogenes. While we did not find any 

mutants in L. monocytogenes, two S. aureus mutants with the transposon inserted in the 

heme response regulator hssR were identified. The mutation caused increased tolerance to 

plectasin and the plectasin-like defensin eurocin, but not to other classes of HDPs or 

conventional antibiotics (Thomsen et al. 2009).  

A mechanistic explanation for the intuitively illogical phenotype of hssRS mutants is given in 

Figure 3.3. Since heme is a central component of hemoglobin and myoglobin, it can function 

as a molecular marker that can potentially be exploited by infecting bacteria to sense that the 

surface tissues of the host have been breached, allowing them to adjust to an internal life 

cycle. The inability to sense and excrete surplus heme could result in a stress response in S. 

aureus leading to increased virulence factor secretion (Torres et al. 2007). Among these 

could be proteins that neutralize plectasin and plectasin-like compounds.  
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Figure 3.3: Model for the role of HssRS and HssAB in S. aureus pathogenesis. (A) In wildtype S. aureus 

HssS sense internalized heme, activates HssR that bind the htrAB promoter activating the expression of 

htrAB. HtrAB then mediates efflux of surplus heme that is otherwise toxic to the cell. (B) Inactivation of 

hrtAB, or in our case hssR,  leads to accumulation of surplus heme in the cytoplasm. This activates a 

stress response in S. aureus that increases the expression and/or secretion of virulence factors. These 

virulence factors could include proteins that neutralize plectasin. From (Torres et al. 2007). 

Interestingly, L. monocytogenes LO28 RR23, carrying an insertional deletion in the putative 

L. monocytogenes hssR homologue rr23, did not have increased tolerance to plectasin. 

Significant interspecies differences in the HDP-TCS interaction have been observed (Li et al. 

2007), which could explain the different phenotypes of S. aureus and L. monocytogenes 

LO28 observed in this study.  

Also, as is becoming increasingly evident, the environmental role of conventional antibiotics 

is not only as antimicrobials. They also serve signaling purposes in the low concentrations 

found naturally, allowing microorganisms in an ecosystem to communicate with each other 

(Goh et al. 2002). Consequently, in the complex world of microbial ecosystems, the 

inhabitants probably depend on compounds produced by other members of the community, 

to turn on specific metabolic pathways, and start biofilm formation (López et al. 2009) to 

orchestrate the growth of the community (Goh et al. 2002). The presence of intrinsic 

resistance genes has thus been selected in their hosts as a way of sensing their 

surroundings (Martinez 2009). As L. monocytogenes is ubiquitously found in the environment 

living as a saprophyte on decaying matter, and plectasin is isolated from the saprophytic 

ascomycete Pseudoplectania nigrella, it could be speculated that L. monocytogenes unlike 

S. aureus have already encountered plectasin-like compounds in its ecosystem. Hence, L. 

monocytogenes could harbor intrinsic tolerance mechanisms to plectasin and similar 

A B 
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compounds and have therefore already evolved a maximum ability for sensing plectasin, 

explaining why we can only induce tolerance in S. aureus. This is consistent with the finding 

that L. monocytogenes is generally more tolerant to plectasin than S. aureus (Mygind et al. 

2005;Gottlieb et al. 2008) 

3.3.2. Evolution of resistance to HDPs through cumulative changes 

As a consequence of the ongoing interplay between microbial infection strategies on the one 

hand and host defense strategies on the other, the host-pathogen co-evolution has resulted 

in a balance between the host repertoire of HDPs and the microbial repertoire of resistance 

mechanisms (Peschel and Sahl 2006). HDP genes are among the most rapidly evolving 

groups of mammalian proteins, which suggests a highly dynamic system in which virulence 

and resistance continually shift as the result of co-evolutionary arms race between the host 

and their bacterial pathogens (Vanhoye et al. 2003;Peschel and Sahl 2006;Hancock and 

Sahl 2006).  

As opposed to conventional antibiotics that often have a single, high-affinity target and a 

single mode of action, the evolutionary concept of antimicrobial peptides appears to be as 

“dirty drugs” targeting many biological functions but with modest potency, thus minimizing the 

risk of development of resistance (Peschel and Sahl 2006). In addition, the simultaneous 

release of several HDPs with different mechanisms of action at the site of infection also 

impedes the development of resistance (Hornef et al. 2002;Peschel and Sahl 2006). Also, 

the continual presence of HDPs in all host environments has not led to generalized or high 

level of resistance (Hancock 2003). 

The presence of multiple HDP targets in bacteria makes development of resistance difficult 

as it would require several mutations in target molecules. Hence, evolution of resistance 

most probably will have to occur through cumulative changes involving several loci, which 

will require a long selection period of serial transfers of cultures to medium with gradually 

increasing HDP concentration to allow mutants with mildly beneficial effects to appear and 

spread in the population (Perron et al. 2006). 

Repeated subculture of S. aureus and P. aeruginosa in broth containing ½ MIC of protegrin-1 

for 18 serial passages failed to induce resistance in either organism (Steinberg et al. 1997). 

Likewise, up to 14 serial passages of several bacterial species, including S. aureus and P. 

aeruginosa, on plates containing ½ MIC pexiganan did not increase the tolerance, indicating 

that in vitro resistance acquired by the selection of mutations within the population of a given 

bacterial isolate does not occur with pexiganan (Ge et al. 1999). In contrast, both studies 
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demonstrated that the same short-term selection experiments induced resistance to 

conventional antibiotics (Steinberg et al. 1997;Ge et al. 1999). However, on a long-term basis 

high levels of heritable resistance to pexiganan evolved in populations of both Escherichia 

coli and Pseudomonas fluorescens when passaged for 100 daily transfers (corresponding to 

6-700 generations) in increasing concentrations (Perron et al. 2006). The reason why this 

has not been seen in nature can be that under natural conditions, a population is exposed to 

an array of stresses that change from generation to generation. In the laboratory, and when 

antimicrobial agents are used in the clinical setting, the population is exposed to a particular 

stress that limits its growth, generation after generation, creating an intense selection that in 

turn is very likely to cause resistance in the population (Perron et al. 2006). 

3.4. Conclusions 

The data produced in this study does not speak against the use of HDPs as alternative 

antimicrobial therapeutics. We have not seen natural tolerant isolates in a broad collection of 

L. monocytogenes and S. aureus strains to four model HDPs representing each of the three 

classes. Furthermore, exposure of L. monocytogenes to food-related environmental stress 

conditions did not alter the response to subsequent HDP treatment. Finally, using transposon 

mutagenesis we identified a plectasin-tolerant S. aureus mutant with a two- to four-fold 

increased tolerance but we not find tolerant L. monocytogenes mutants. However, selection 

experiments allowing mildly beneficial mutations to accumulate have been shown to provoke 

HDP resistant mutants.  
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S. aureus and L. monocytogenes are closely related bacterial species belonging to the class 

of Bacilli, which comprises a group of Gram-positive bacteria with low G+C also including 

Bacillus and lactic acid bacteria. S. aureus and L. monocytogenes are pathogenic bacteria 

that represent different ecological niches, routes of infection and disease spectra. 

4.1. Staphylococcus aureus 

4.1.1. General characteristics and natural niches 

The genus Staphylococcus includes more than 30 different species, of which two, S. aureus 

and S. epidermidis, are important with regard to human disease. Staphylococcus species 

can be subdivided into two groups on the basis of the ability to produce the enzyme 

coagulase. S. aureus is the principle species of the coagulase-positive and S. epidermidis of 

the coagulase-negative group (Lowy 1998). 

S. aureus is a Gram-positive, non-sporeforming, nonmotile, facultative anaerobic, 

clusterforming coccus. The natural reservoir of S. aureus is the skin and mucus membranes 

of vertebrates (Lowy 1998;Ben Zakour et al. 2008). S. aureus shows some degree of host 

species specificity, and five biotypes have been proposed to divide S. aureus strains 

according to host origin (Hájek and Marsálek 1971;Devriese and Oeding 1976). In addition, 

S. aureus has the ability to asymptomatically colonize healthy individuals, the ecological 

niche being the anterior nares. Three patterns of carriage exist. Approximately 20% of the 

population is persistent carriers that almost always carry one type of strain, the majority of 

the population (60%) is intermittent carriers that harbor different S. aureus strains from time 

to time, and finally 20% of the population almost never carry S. aureus (Kluytmans et al. 

1997).  

S. aureus can grow between 7 and 48 °C, in the presence of up to 10% NaCl and at pH 

values ranging from 4.0 to 9.8 (Jay 1996). S. aureus is resistant to drying and desiccation 

(Rountree 1963;Tolba et al. 2007) meaning that it can survive on various surfaces outside its 

host habitat. 

To distinguish strains of S. aureus and categorize them into groups that correlate with 

epidemiological origin, various molecular typing methods have been used. DNA sequence-

based approaches have the advantage of being easy to perform and share between 

4. Staphylococcus aureus and Listeria monocytogenes – Gram-

positive pathogenic bacteria 
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laboratories. The S. aureus strains in this study have been typed using the spa-typing 

technique that is based on DNA sequencing of repeat regions of the spa gene (protein A) 

(Shopsin et al. 1999). spa typing has been shown to perform equally well as multi-locus 

enzyme electrophoresis (MLEE) and pulsed field gel electrophoresis (PFGE) with respect to 

discriminatory power and phylogeny (Koreen et al. 2004).  

4.1.2. Routes of contamination and infection 

S. aureus was described for the first time in 1880 by Ogston as the causative agent of sepsis 

and abscesses (Ogston 1880) and was identified to also be an animal pathogen in sheep 

(Nocard 1887) and cattle (Guillebeau 1890). The natural reservoir being vertebrates, S. 

aureus is either a hospital- or community-acquired pathogen (Lowy 1998). It is normally 

transferred from infected persons, either with overt clinical disease or asymptomatic carriers, 

to new hosts within the same species. However, cross-infections between host species have 

been observed, especially between domesticated animals and humans (Rodgers et al. 

1999;Simoons-Smit et al. 2000;van Leeuwen et al. 2005). The ability to survive on various 

surfaces such as hospital bed linen and coins for prolonged periods increases the chance of 

transmission to a new host (Rountree 1963;Tolba et al. 2007). While persistent carriage 

seems to have a protective effect for acquisition of other strains during hospitalization 

(Kluytmans et al. 1997), it also poses a risk. It was found that carriers had a three-fold 

increased risk compared to non-carriers of acquiring nosocomial S. aureus bacteraemia, with 

endogenous strains being responsible for the bacteremia in 80% of the cases (Wertheim et 

al. 2004). Genetic analysis of both carriage and invasive disease isolates showed that 

isolates of both groups were represented in the same genetic clusters, suggesting that 

essentially any S. aureus genotype carried by humans can cause invasive disease (Melles et 

al. 2004). Thus, S. aureus is an opportunistic pathogen. Interestingly, elimination of nasal 

carriage by topical administration of antibiotic also eliminated S. aureus on the hands, 

thereby reducing the risk of contamination (Reagan et al. 1991). 

S. aureus is the cause of an array of disease mechanisms in humans, ranging from relatively 

mild, superficial skin infections manifesting as boils to more serious infections such as 

pneumonia, meningitis, endocarditis, osteomyelitis, and systemic septicemia. In addition, the 

production of exotoxins can cause food poisoning, toxic shock syndrome and scalded skin 

syndrome (Lowy 1998). 

Staphylococcal infection is initiated when S. aureus is introduced to the underlying tissues 

whenever the skin or mucosal barrier is damaged. The portal of entry can also be a hair 

follicle, a needle stick, or a surgical wound. Other sites of entry include the respiratory tract, 
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probably when immune defenses are impaired due to other infections such as influenza 

(Lowy 1998). Also, the production of enterotoxins in foods due to S. aureus contamination 

and growth causes the gastrointestinal tract to be not as much an entry site for S. aureus 

cells but for the enterotoxins, leading to diarrhea and vomiting (Marrack and Kappler 1990).  

Immediately after S. aureus entry, neutrophils are recruited to the site. The establishment of 

an inflammation serves to contain the infection locally and leads to the formation of pus-filled 

abscesses. If the inflammation fails to contain the infection, S. aureus gains access to the 

bloodstream, and the resulting bacteremia may cause seeding of S. aureus in other tissues 

including heart (causing endocarditis), the bones (causing osteomyelitis), or the joints 

(causing septic arthritis) (Lowy 1998). The sequence of events of staphylococcal invasion of 

tissues is illustrated in Figure 4.1. 

 

Figure 4.1: Course of infection of staphylococcal invasion of tissues. S. aureus circulating in the blood 

binds to sites of vascular damage and is phagocytosed by endothelial cells. The release of proteolytic 

enzymes facilitates the spread to adjoining tissues where abscess formation occurs. Infection of 

endothelial cells also induces expression of adhesion molecules and release of cytokines, resulting in 

recruitment of leukocytes to the site of infection and contributes to the manifestation of sepsis.  From 

(Lowy 1998). 
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The tissue tropism of S. aureus may be mediated by staphylococcal surface proteins that can 

bind extracellular matrix molecules such as laminin, fibronectin, or collagen that are exposed 

due to vascular damage (Patti et al. 1994). 

Although S. aureus is traditionally considered as an extracellular pathogen as opposed to L. 

monocytogenes, endothelial cells have been demonstrated to actively phagocytose S. 

aureus (Ogawa et al. 1985;Hamill et al. 1986). Also epithelial cells (Almeida et al. 1996), 

osteoclasts and fibroblasts are able to internalize S. aureus (Hudson et al. 1995).  

In addition to the tissue damage induced by S. aureus itself, the bacterium also secretes an 

array of exotoxins. The membrane-damaging cytotoxins, �-toxin (�-hemolysin), �-toxin, �-

toxin, and the Panton-Valentine leukocidin, cause lysis of various host cells. The 

staphylococcal enterotoxins A, B, C, and D (SE-A – SE-D) cause vomiting and diarrhea 

when ingested in S. aureus contaminated food and can also cause toxic shock syndrome 

(TSS) when expressed by systemic S. aureus (Humphreys et al. 1989;Marrack and Kappler 

1990). Both SE and toxic shock syndrome toxin, TSST-1, act as superantigens causing 

massive, unspecific stimulation of T-cells. This results in the release of large amounts of 

cytokines, accounting for the symptoms of TSS. Finally, two exfoliatin toxins, ETA and ETB, 

cause scalded skin syndrome (Lowy 1998).  

4.1.3. Virulence factors in S. aureus 

As seen in Figure 4.1, the pathogenesis for the majority of the diseases caused by S. aureus 

is multifactorial and hence is caused by the coordinated action of an array of virulence 

factors, with the only exception being diseases caused by specific toxins (Fournier and 

Philpott 2005).  

The virulence factors of S. aureus can be broadly categorized by their function during the 

infectious process (see also Figure 4.2): 

• Factors that promote colonization of host tissues 

• Factors that promote bacterial invasion of host tissues 

• Factors that contribute to evasion or survival of phagocytosis 

o Prevent immunological recognition 

o Prevent phagocytosis (including cytolytic toxins) 

o Enhance survival inside phagocytes 

• Factors that otherwise damage host tissues or provoke symptoms of disease (toxins) 
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Colonization of host tissues is mediated by several staphylococcal surface proteins 

expressed during the exponential growth phase that are believed to be involved in the 

adhesion to the host tissue. These surface proteins, such as elastin-binding protein, 

collagen-binding protein and fibronectin-binding protein, bind extracellular matrix molecules 

via their N-terminal ligand-binding domain and have been designated microbial-surface 

components recognising adhesive matrix molecules (MSCRAMM) (Lowy 1998;Foster 2005).  

To facilitate invasion, S. aureus also produces a number of excreted proteins, especially 

during stationary growth phase, which degrade host tissues and cells enabling the bacteria to 

invade and spread. These include the cytolytic toxins and proteases, lipases, and 

hyalorunidase (Foster 2005).  

 

Figure 4.2: Virulence factors of S. aureus that contribute to host tissue invasion and immune evasion.  

From http://schaechter.asmblog.org/.a/6a00d8341c5e1453ef01127918d7f028a4-400wi (2/11-2009). 

Once inside the host tissue, S. aureus is confronted by neutrophils and macrophages that 

are recruited to the site of entry by a gradient of chemoattractants that have been secreted 

by the damaged tissue. S. aureus inhibits chemotaxis by secreting proteins such as 

chemotaxis inhibitory protein of staphylococci (CHIPS) and the extracellular adhesion protein 

(eap) which block the host receptors involved in chemotaxis (Foster 2005;Rooijakkers et al. 

2005b). Also, the production of the cytotoxins, �-toxin, �-hemolysin, and Panton-Valentine 

leukocidin, enables S. aureus to lyse and kill phagocytic cells before they can interact with 

the bacteria (Bhakdi et al. 1989;Foster 2005). 
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Protein A has anti-phagocytic properties due to binding of the Fc region of immunoglobulin 

G, which is also recognised by the neutrophils (Lowy 1998;Foster 2005). Clumping factor 

(ClfA) binds and causes coating of the bacterial surface with fibrinogen, thereby inhibiting the 

deposition of or access to opsonins on the bacterial surface (McDevitt et al. 1997;Palmqvist 

et al. 2004). Likewise, complement factors on the bacterial surface are inaccessible to the 

neutrophil complement receptors due to capsular polysaccharides (Thakker et al. 1998). In 

addition, cell-bound staphylokinase causes cleavage of complement and IgG (Rooijakkers et 

al. 2005a).    

Inside phagocytes, S. aureus withstands the oxidative burst through the action of catalase 

and carotenoid (Liu et al. 2005). In addition, the secretion of staphylokinase that binds 

defensins (Jin et al. 2004) and aureolysin that cleaves LL-37 (Sieprawska-Lupa et al. 2004) 

as described in chapter 2 contribute to staphylococcal survival of the innate antimicrobial 

attack.  

4.1.4. Assessment of virulence potential 

Virulence is a multifactorial phenomenon involving numerous factors from both the host and 

the invading pathogen. Factors such as age, gender, genetics, and the general immune 

status affect the host susceptibility. The pathogen usually produces an array of virulence 

factors, i.e. components that determine its capacity to cause disease but are not required for 

its viability. The true virulence of an organism (a strain) can only be determined in a natural 

situation of host infection, and may vary depending on the type of infection studied. However, 

single steps of the infection can be studied and be indicative of virulence potential. 

Since neutrophils and macrophages are the first cells to arrive at the site of S. aureus 

infection (Foster 2005;Rooijakkers et al. 2005b), the virulence potential of S. aureus very 

much depends on the ability of S. aureus to evade the neutrophil attack. Indeed, enhanced 

strain virulence determined in vivo in mouse infection assays is linked to – or results from – 

the ability to evade killing by human neutrophils in vitro (Voyich et al. 2005). Therefore, we 

tested the collection of S. aureus strains for the phenotypic expression of several of the 

virulence factors described above, and also tested for the production of enterotoxins and 

TSST-1 (Figure 4.3 and Table 4.1). 
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b)  d) SE-A SE-B TSST-1 
 

 
 

 

 

   
Figure 4.3: Determination of extracellular virulence factors in S. aureus. (a) Hemolysis. (b) Carotenoid 

production. (c) Staphylokinase production. (d) Production of enterotoxins and TSST-1. Data described in 

(Gottlieb et al. 2008). 

Table 4.1  - Virulence assessment of the S. aureus strain collection. Tests include hemolytic activity, 

staphylokinase activity, catalase activity, carotenoid production and production of exotoxins. A sub-

selection of strains were tested for their killing kinetics against C. elegans (time to 50% mortality, h) and 

their ability to survive and grow in human whole blood (cell density after 24 h, cfu/ml). From (Gottlieb et 

al. 2008). 

Enterotoxin 

Strain 

H
em

ol
ys

is
 

S
ta

ph
.k

in
. 

C
at

al
as

e 

C
ar

ot
en

oi
d 

A B C D 

T
S

S
T

-1
 

C
. e

le
ga

ns
 

B
lo

od
 

8325-4 +++ - a ++ + - - - - - 184 2.4×108 
Sa113 - - ++ ++ - - - - -   
�mprF - - ++(+) ++ - - - - -   
�dltA - - +(+) + - - - - -   
14943 - - ++(+) +++ +++ - - - +++ 157 7.6×108 
15033 ++ - +++ +++ - +++ - - -   
B31369 ++ - ++(+) +++ - +++ - - - 140 1.1×108 
796 (+) - ++(+) +++ - - - - - 223 2.5×108 
J15033 (+) - ++ +++ - - - - -   
2148-jvi - - ++(+) ++ - - - - - 256 3.0×106 
K3-B2 + - ++ ++ - - - - - 225 3.4×107 
B29997 (+) - ++(+) +++ - - - - -   
KES 439 (+) - ++ ++ - - - - -   
KES 626 +++ - a ++(+) + - - - - - 118 1.0×109 
KES 735 (+) - ++ +++ - - - - -   
KES 855 ++ - ++ ++ - - - - -   

a A clearing zone on both plates with and without added serum indicate a high production of proteases. 
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There is considerably variation between the S. aureus strains in production of the single 

virulence factors tested in this study. 

The strains differed markedly in hemolytic activity, reflecting their ability to lyse and kill 

phagocytic cells (Bhakdi et al. 1989;Foster 2005). In this study an animal clinical strain, 

2148-jvi, was found to be non-hemolytic, while two human clinical strains, KES 439 and KES 

735, were only weakly hemolytic, consistent with previous reports (Christensson and 

Hedstrom 1986;Clyne et al. 1988). We did not analyze the production of Panton-Valentine 

leukocidin, since this toxin is only found in a small subset of S. aureus strains (Prevost et al. 

1995).  

We did not detect any specific staphylokinase activity, although two strains (8325-4 and KES 

626) showed a high level of unspecific proteolytic activity. This might reflect an increased 

ability to degrade host tissues, and indeed, KES 626 was isolated as a colonizer of a chronic 

wound (Gjødsbøl et al. 2006). Only three out of 143 S. aureus isolates from cows produced 

staphylokinase (Fitzgerald et al. 2000), while 66 out of 79 isolates from humans did 

(Humphreys et al. 1989). This is supported by the detection of anti-staphylokinase antibodies 

in all (120) samples of normal human sera, indicating that most people have been exposed 

to staphylokinase and emphasizing its importance in S. aureus infections in vivo (Rooijakkers 

et al. 2005a). In this context, it is odd that we did not detect any staphylokinase activity.  

Also, the strains differed in their production of catalase and carotenoid, suggesting that the 

oxidative attack defense mechanisms contribute differently in each strain. 

Strain 14943 (isolated from pork meat) produced both enterotoxin A and TSST-1, while 

15033 and B31369 (isolated from pork meat and a clinical case) produced enterotoxin B. 

TSST-1 producing strains are often non-hemolytic (Christensson and Hedstrom 1986;Clyne 

et al. 1988), as is 14943. Enterotoxin A, B, and C production has been found to be higher 

among clinical isolates compared to nasal carriage isolates, suggesting a role for 

enterotoxins in diseases caused by S. aureus other than food poisoning (Humphreys et al. 

1989).  

Taken together, these analyses did not identify strains that were more or less virulent than 

the rest, suggesting that each parameter is important in different types of infection and that 

each strain is specialized in one (or more) type(s) of infection(s). However, it can be 

hypothesized that strains producing several virulence factors have higher virulence potential 

than strains producing a lower number of virulence factors. Comparing the presence of 33 

putative virulence genes between invasive and carriage isolates of S. aureus, Peacock et al. 

found that seven genes (including fnbA, encoding fibronectin binding protein A, cna, 
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encoding collagen binding protein, and hlg, encoding gamma-toxin) were significantly more 

common in invasive isolates and that the effect of the seven virulence determinants seemed 

to be cumulative. This means that the more virulence determinants a strain possessed, the 

more likely it was to be an invasive strain as opposed to a carriage strain (Peacock et al. 

2002). When we compared a sub-collection of the strains in two more complex virulence 

models - the nematode C. elegans and human whole blood - we found that the strains 

differed with respect to virulence against C. elegans but that only one strain, S. aureus 2148-

jvi, differed noticeably from the others in growth in human whole blood (Figure 4.4) (Gottlieb 

et al. 2008).  

  

Figure 4.4: Virulence potential of S. aureus strains in C. elegans (a) and human whole blood (b). From 

(Gottlieb et al. 2008). 

S. aureus 2148-jvi also showed the lowest virulence potential in C. elegans and had no 

hemolytic activity, suggestive of a lower virulence potential. However, this strain was isolated 

from a case of bovine mastitis, indicating that the poorer performance in human whole blood 

can potentially be related to species tropism (Hájek and Marsálek 1971;Devriese and Oeding 

1976). The human clinical isolate, KES 626, killed C. elegans the fastest and grew well in 

human whole blood. It also had a high hemolytic and catalase activity, as well as a high 

unspecific proteolytic ability. On the other hand, it was unpigmented (Figure 4.3c), illustrating 

a low production of carotenoid. Others have found that the production of carotenoid 

contributed to staphylococcal survival in human whole blood due to its antioxidative potential 

(Liu et al. 2005). The discrepancy could be due to the use of different strains with different 

genetic backgrounds. It can be hypothesized that the carotenoid-attenuated field strain have 

had the opportunity to evolve other counter-protective measures or activate redundant 

antioxidative mechanisms compared to the laboratory-generated mutant of a carotenoid-

producing wildtype, which would account for an increased survival in whole blood. 

A 
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Although the determination of an array of virulence factors did not identify specific high- or 

low-virulent strains, it did confirm that the S. aureus collection used in this study represented 

a wide spectrum of virulence-associated phenotypes.  

4.2. Listeria monocytogenes 

4.2.1. General characteristics and natural niches 

The genus Listeria currently includes six species, L. monocytogenes, L. ivanovii, L. seeligeri, 

L. innocua, L. welshimeri, and L. grayi. Only L. monocytogenes and L. ivanovii are 

pathogenic. L. monocytogenes is the primary cause of human listeriosis although rare cases 

have been caused by L. ivanovii that is otherwise mainly responsible for perinatal listeriosis 

in cattle and sheep. One human clinical case has been ascribed to the otherwise 

nonpathogenic L. seeligeri (Vazquez-Boland et al. 2001). Recently, a new species, L. marthii, 

closely related to L. monocytogenes and L. innocua, has been described. It has not been 

associated with disease to date (Graves et al. 2009). 

L. monocytogenes is a small Gram-positive, non-sporeforming, motile, facultative anaerobic 

rod widely distributed in nature. It is found in both soil and water, with the primary habitat 

believed to be decaying plant matter including silage which can lead to infection of animals. 

In addition, both human and animal asymptomatic carriers have been described (Farber and 

Peterkin 1991;Iida et al. 1998;Vazquez-Boland et al. 2001). L. monocytogenes is able to 

grow under adverse conditions such as temperatures between 0 – 44°C, at salt 

concentrations as high as 10%, and at pH intervals from 4.4 up to 9.6 (Dykes and Moorhead 

2000).  

For epidemiological purposes, L. monocytogenes is divided into subgroups based on 

phenotypic and genotypic traits. The presence of a combination of somatic (O) and flagellar 

(H) surface proteins on L. monocytogenes strains divide them into 13 serogroups: 1/2a, 1/2b, 

1/2c, 3a, 3b, 3c, 4a, 4b, 4ab, 4c, 4d, 4e and 7 (Seeliger and Höhne 1979). Intriguingly, more 

than 90% of human clinical cases are caused by serotype 1/2a, 1/2b or 4b (Farber and 

Peterkin 1991;Vazquez-Boland et al. 2001). Most cases (64%) of listeriosis are due to 

serotype 4b, while serotype 1/2a and serotype 1/2b only cause 15% and 10%, respectively. 

Serotype 1/2c is responsible for 4% of cases (McLauchlin 1990). As serotypes 1/2a, 1/2b, 

and 1/2c predominate in foods (Farber and Peterkin 1991;Vazquez-Boland et al. 2001), this 

suggests that some serotypes, especially 4b, are more virulent than others (McLauchlin 

1990). 
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Sequence differences in several central virulence genes divide L. monocytogenes into three 

distinct evolutionary lines that correlate with flagellar antigens (Rasmussen et al. 

1995;Wiedmann et al. 1997). Strains from human cases are restricted to lineage I and II, 

while strains from animal cases are distributed among all three lineages. Lineage I contains 

strains from human epidemic outbreaks, whereas linage II only contains sporadic cases. 

Lineage I contains strains belonging to serotype b, and lineage II contains serotypes a and c. 

Also, strains from lineage I and III showed higher virulence potential than strains from lineage 

II. This suggested that linage I and III contain strains that are highly virulent to humans and 

animals, while lineage II contains strains with lower virulence potential (Wiedmann et al. 

1997). When we tested the tolerance of L. monocytogenes strains to HDPs and H2O2, we 

found that lineage II strains were more sensitive to novicidin, while lineage I strains were 

more susceptible to plectasin. However, when the tolerance was compared to the four HDPs 

as a group or to H2O2, no differences between lineages were observed (Table 3.1) (Gottlieb 

et al. 2008).  

Since the majority of human-associated L. monocytogenes strains belong to only three 

serotypes within one lineage, several molecular subtyping methods have been employed to 

further sub-group isolates. The strains used in this study have been subtyped using randomly 

amplified polymorphic DNA (RAPD) typing. This method is based on random amplification of 

DNA by short, arbitrary PCR primers under low-stringent annealing conditions. The 

advantage of this method is that it is a rapid, low cost typing approach that is reproducible 

and as discriminatory as pulsed field gel electrophoresis (PFGE) when strict standardization 

is exhibited, especially with respect to purification of target DNA (Vogel et al. 2001a). 

4.2.2. Routes of contamination and infection 

Reports of Gram-positive rods from tissues of diseased patients, which in retrospect probably 

suffered from listeric infections, date back to 1891 as reviewed in (Gray and Killinger 1966). 

However, L. monocytogenes was first described under the name Bacterium monocytogenes 

as the causative agent of mononucleosis in rabbits and guinea pigs by Murray and co-

workers in 1926 (Murray et al. 1926) and in 1940 Pirie suggested to change the genus name 

to Listeria (Pirie 1940). The first confirmed human case was described in Denmark in 1929 

(Nyfeldt 1929). However, it was not until an outbreak in Nova Scotia in 1981 that L. 

monocytogenes was recognized as a foodborne pathogen (Schlech et al. 1983). 

L. monocytogenes is introduced to the food processing environment either with contaminated 

raw material (of both animal and vegetal origin), soil, or possibly also by healthy human 

carriers. Once introduced, specific subtypes of L. monocytogenes have been shown to 
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persist in the food processing environment for long periods of time despite comprehensive 

cleaning and disinfectant procedures (Rørvik et al. 1995;Autio et al. 1999;Norton et al. 

2001;Vogel et al. 2001a;Wulff et al. 2006). Thus, food products can become contaminated, 

potentially giving rise to food borne infections (Olsen et al. 2005b). This emphasizes the 

need for a thorough understanding of the physiology and the virulence potential of such 

persistent subtypes. The assessment of virulence potential is further discussed in section 

4.2.4 and in chapter 5. 

Listeriosis occurs mainly in two forms: Either as a mild, gastrointestinal illness or as a serious 

invasive disease with a high mortality. The clinical outcome of L. monocytogenes infection 

depends on the number of ingested bacteria, the virulence potential of the bacteria and the 

immune status of the host (Vazquez-Boland et al. 2001). In healthy, immunocompetent 

adults, ingestion of low doses of L. monocytogenes will probably have no effect except for 

possible development of anti-listerial immunity. On the other hand, ingestion of heavily 

contaminated foods is likely to cause typical gastroenteritis symptoms including diarrhea, 

vomiting and fever. It occurs 18-20 hours after ingestion, and the infectious dose is estimated 

to be high (up to 109 CFU). The gastrointestinal variant is self-limiting and normally resolves 

spontaneously without any permanent damage (Vazquez-Boland et al. 2001;Lecuit 2007).  

The invasive form of listeriosis most often targets immonucompromised individuals, i.e. the 

elderly, pregnant women, their fetus, or newborns. The intestinal tract is the major site of 

entry, and after crossing the intestinal barrier, L. monocytogenes disseminates in the blood to 

the primary target organs, the liver and spleen, where it is normally eliminated by resident 

macrophages (Figure 4.5). 

 

Figure 4.5: Course of infection of human listeriosis. From (Lecuit 2007). 
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Failure to mount a proper immune response in immunocompromised individuals result in 

unrestricted growth of L. monocytogenes until it reaches a critical mass and is released to 

the bloodstream. The ensuing bacteremia results in local infections in the secondary target 

organs, the brain (causing meningitits and encephalitis) and the placenta, or in septicemia. In 

pregnant women, the infected mother often only gets mild flu-like symptoms, whereas the 

fetus is infected by transplacental transmission of L. monocytogenes from the maternal blood 

which cause abortion, stillbirth, or a generalized infection of the neonate known as 

granulomatosis infantiseptica (Farber and Peterkin 1991;Vazquez-Boland et al. 2001;Roberts 

and Wiedmann 2003). The treatment of choice for listeriosis is co-administration of penicillin 

G or ampicillin with an aminoglycoside, classically gentamicin (Charpentier and Courvalin 

1999). Even with antibiotic treatment, listeriosis has a mortality rate as high as 30% 

(Vazquez-Boland et al. 2001;Roberts and Wiedmann 2003). The prolonged incubation period 

before clinical manifestation of invasive disease could be due to both a period of silent 

intracellular replication in the hepatocytes as well as asymptomatic bacteremia. 

4.2.3. Virulence factors in L. monocytogenes 

L. monocytogenes is an intracellular pathogen that is able to induce its own internalization 

into non-phagocytic cells including epithelial cells, fibroblasts, hepatocytes, endothelial cells, 

and neurons (Vazquez-Boland et al. 2001). The strategy of adapting an intracellular life style 

gives it the advantage of “hiding” inside host cells, thus escaping the humoral immune 

system. The intracellular life cycle starts with the active uptake of L. monocytogenes 

mediated by bacterial surface proteins called internalins (Figure 4.6).  



Staphylococcus aureus and Listeria monocytogenes – Gram-positive pathogenic bacteria 

  52 

 

Figure 4.6: The intracellular life cycle of L. monocytogenes. (a) Entry of L. monocytogenes into non-

phagocytic cells is an active process induced by the surface proteins InlA and InlB. Lysis from the 

vacuole and escape to the cytosol is mediated by the secretion of the hemolysin listeriolysin O, LLO, and 

a phospholipase, PI-PLC. Upon intracellular replication, L. monocytogenes is able to recruit the host cell 

actin-polymerization machinery via the action of ActA and propel itself from one cell to the neighboring 

cells. This results in a double-membraned vacuole that is lysed due to the action of LLO and another 

phospholipase, PC-PLC, and the intracellular cycle continues. See text for details. From (Hamon et al. 

2006). 
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Internalin A mediates the invasion into epithelial cells (Gaillard et al. 1991) via the interaction 

with the E-cadherin receptor (Mengaud et al. 1996). InlB mediates the invasion into other 

cells (Dramsi et al. 1995) via the Met receptor (Shen et al. 2000) or the complement receptor 

gC1q-R (Braun et al. 2000). L. monocytogenes attaches to and is surrounded by the host cell 

membrane, and internalization results in the engulfment of L. monocytogenes in a vacuole 

(Figure 4.6b). As in phagocytes, the vacuole acidifies; thus survival of L. monocytogenes is 

dependent on its ability to escape being mediated by the hemolysin Listeriolysin O (LLO) 

(Portnoy et al. 1988;Cossart et al. 1989). Two phospholipases, phosphatidylinositol-specific 

phospholipase C (PI-PLC) and phosphatidylcholine-specific phospholipase C (PC-PLC), are 

also secreted by L. monocytogenes and participate in the escape from the vacuole (Geoffroy 

et al. 1991;Mengaud et al. 1991a). Following the escape, L. monocytogenes replicates in the 

cytosol. Doubling times have been estimated as being between 40 minutes and one hour 

(Vazquez-Boland et al. 2001;Portnoy et al. 2002). Intracytoplasmic L. monocytogenes are 

immediately surrounded by actin filaments which are recruited to one of the poles of the 

bacterium by the action of the surface protein ActinA (Tilney and Portnoy 1989;Kocks et al. 

1992). Here they are polymerized to form an actin-tail that propels L. monocytogenes 

through the cytoplasm in a random manner. Eventually, L. monocytogenes reaches the 

periphery of the cell and is pushed into the neighboring cell where it is engulfed by the 

recipient host cell membrane and internalized, resulting in a double-membrane vacuole. L. 

monocytogenes escapes from this vacuole within 5 minutes and initiates a new cycle of 

intracellular proliferation and intracellular spread (Vazquez-Boland et al. 2001). 

The above mentioned virulence genes are clustered together in two loci in the genome 

known as pathogenicity islands. The genes for LLO (hly), PI-PLC (plcA), PC-PLC (plcB) and 

ActA (actA) are physically linked in the virulence gene cluster Listeria pathogenicity Island 1 

(LIPI-1) (Vazquez-Boland et al. 2001). The genes encoding InlA (inlA) and InlB (inlB) are 

located in an internalin island in another part of the chromosome (Vazquez-Boland et al. 

2001). The virulence genes in LIPI-1 are under the control of the transcriptional regulator, 

positive regulatory factor A (PrfA), encoded by prfA which is itself located in LIPI-1 (Mengaud 

et al. 1991b). PrfA is also involved in the regulation of inlA and inlB expression. prfA is 

thermoregulated at the posttranscriptional level, as prfA mRNA forms secondary structures at 

30°C that resolves at 37°C, allowing for the translation of prfA and the subsequent 

expression of virulence genes when inside the host (Johansson et al. 2002). 
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4.2.4. Assessment of virulence potential 

Several studies have indicated that L. monocytogenes strains differ in their virulence 

potential (Chakraborty et al. 1994;Sokolovic et al. 1996;Norrung and Andersen 2000;Buncic 

et al. 2001;Roche et al. 2003), and some of these differences may be explained by 

polymorphisms in virulence genes. The underlying genetic mechanisms that may be 

responsible for differences in virulence among subtypes of L. monocytogenes can be 

addressed by sequencing the responsible genes. Epidemiological studies of the expression 

of central virulence genes, including inlA, inlB, hly, and actA, in two L. monocytogenes 

populations of clinical and food origin identified the presence of a full length InlA as a marker 

for virulence, since this was present in 96% of clinical L. monocytogenes isolates (a group 

with a priori high virulence potential) compared to only 65% of L. monocytogenes isolates 

from food, a group that might contain strains with low or attenuated virulence (Jacquet et al. 

2002;Jacquet et al. 2004). No polymorphisms were described in InlB or LLO, but the strains 

could be divided into four groups based on the molecular weight of ActA (Jacquet et al. 

2002).  

The reference strain L. monocytogenes LO28 harbors a nonsense mutation in inlA which 

results in a truncated InlA that is released to the medium and consequently, LO28 show 

decreased invasive ability (Jonquieres et al. 1998). Several other studies have identified field 

strains with single point mutations causing premature stop codons in inlA, and correlated the 

expression of a truncated InlA to attenuated virulence (Olier et al. 2002;Olier et al. 

2003;Nightingale et al. 2005;Temoin et al. 2008;Nightingale et al. 2008). Hence, a full length 

InlA has been suggested as a potential biomarker to assess the virulence potential of L. 

monocytogenes strains (Jacquet et al. 2004). We have assessed the virulence potential of a 

group of L. monocytogenes strains of different origins and found that four very similar L. 

monocytogenes strains that all grouped in a particular RAPD group (denoted type 9) all 

encode an inlA with a premature stopcodon (Figure 4.7) (Holch et al. 2009). The four RAPD 

type 9 strains represent a sub-type that is often persistent and dominant in the food industry 

(Wulff et al. 2006). Interestingly, the stop codon is at the same position as the one described 

by Olier et al. (Olier et al. 2002;Olier et al. 2003). The strains harboring this mutation also 

showed decreased virulence in Caco-2 cells (Jensen et al. 2007a) and human trophoblastic 

cells (Holch et al. 2009) as is further discussed in chapter 5.   
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Figure 4.7: Sequence of inlA from the L. monocytogenes strains used in this study. The four persistent 

RAPD type 9 strains all harbor a nucleotide substitution resulting in a stopcodon at position 492 and the 

expression of a truncated InlA. Adapted from (Holch et al. 2009). 

However, the occurrence of truncated InlA have also been described in strains of clinical 

origin (Jonquieres et al. 1998;Jacquet et al. 2004) emphasizing that even though a full length 

InlA can be a biomarker for virulence (Jacquet et al. 2004), the opposite, a truncated InlA, is 

not necessarily a biomarker for decreased or attenuated virulence. We have also identified 

the presence of a 9 bp deletion in inlA in a strain of fetomaternal origin (L. monocytogenes 

4810-98) (Holch et al. 2009). This deletion has also been described in two serotype 4b 

strains isolated from cod roe, and in accordance with our observations it did not affect the 

invasion into Caco-2 cells (Handa-Miya et al. 2007). 

The invasive ability is not completely abolished in the RAPD type 9 strains despite a 

truncated InlA, indicating that other, although less efficient ligand-receptor interactions, are 

involved in L. monocytogenes internalization. One such ligand could be the Listeria adhesion 

protein (LAP) that interacts with Heat shock protein 60 (Hsp60) and also mediates 

internalization of L. monocytogenes into Caco-2 cells (Wampler et al. 2004).  

In contrast to the epidemiological studies that did not detect polymorphisms in inlB, another 

study showed that a group of low-virulence strains of food origin harbored several point 

mutations in inlB, some of these causing amino acid substitutions in the region interacting 

with the Met receptor (Temoin et al. 2008). This resulted in lower invasive ability in Vero 

fibroblastic cells. Interestingly, we found the same point mutation in the four RAPD type 9 

strains as well as in a number of other strains, but did not observe an effect of the mutation 

on the invasive ability in L929 fibroblastic cells (Holch et al. 2009). The discrepancy could be 

due to the use of two different cell lines in the two studies (Vero cells are derived from the 
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green monkey, whereas L929 cells are of murine origin) or that other factors in these strains 

influence the invasion. 

The differences in molecular weight of ActA observed in the epidemiological study (Jacquet 

et al. 2002) are related to allelic variation. ActA can be divided into three functional domains 

(Figure 4.8a) including a membrane-anchoring C-terminal domain, a central domain 

containing three to four proline-rich repeats (PRR), and an N-terminal domain essential for 

stimulating actin polymerization (Kocks et al. 1992;Smith et al. 1996;Skoble et al. 2000). 

Several studies have observed allelic variation in the number of PRRs in L. monocytogenes 

strains (Sokolovic et al. 1996;Smith et al. 1996;Wiedmann et al. 1997;Moriishi et al. 

1998;Jiang et al. 2006;Roberts and Wiedmann 2006;Holch et al. 2009) causing actA 

transcripts or ActA proteins of different sizes. The repeat motifs have been demonstrated to 

enhance actin-based motility with movement rates being proportional to the number of PRRs 

(Smith et al. 1996). Consequently the number of repeats has been related to plaque forming 

ability and virulence, although with contradicting results. 

a) 

 

b) 

 
c) 

 

Figure 4.8: Schematic representation of ActA and variation in actA. (a) Schematic representation of ActA 

with the central PRRs. From (Smith et al. 1996). (b) Sequence of actA. Eight strains have a 105 nt deletion, 

corresponding to one proline-rich-repeat. (c) Plaque forming by L. monocytogenes La111, EGD and 7418 

(from left to right). From (Holch et al. 2009).  
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A L. monocytogenes strain expressing a truncated ActA (3 PRRs) compared to the L. 

monocytogenes EGD ActA (four PRRs) had attenuated virulence in mice (Chakraborty et al. 

1994). Likewise, Sokolovic et al. found that the lower virulence phenotype of a serotype 4a 

strain compared to 4b strains correlated with three PRRs and a smaller plaque size 

(Sokolovic et al. 1996). Accordingly, Jiang et al. have described a strain carrying three PRRs 

that was unable to form plaques compared to another strain carrying four PRRs (Jiang et al. 

2006). In contrast, L. monocytogenes isolates belonging to lineage I predominantly carried 

three PRRs and showed larger plaque sizes than lineage II isolates predominantly carrying 

four PRRs, suggesting that the presence of three PRRs is linked to higher virulence 

(Wiedmann et al. 1997). Other studies could not correlate the number of PRR to neither 

serotype (Moriishi et al. 1998) nor plaque forming ability (Roberts and Wiedmann 2006). In 

agreement with these studies and in contrast to Wiedmann et al. (1997), we could not 

correlate the number of PRRs with serotype, plaque forming ability, or lineage (Figure 4.8b 

and 4.8c) (Holch et al. 2009). The difference in plaque forming ability observed by Jiang et al. 

(Jiang et al. 2006) is probably due to the comparison of two strains with different genetic 

backgrounds. Roberts and Wiedmann specifically tested the importance of genetic 

background using allelic-exchange mutagenesis, showing that the plaque forming ability was 

not dependent on the number of PRRs although the number of PRRs could contribute to the 

attenuated virulence observed in some strains carrying only three PRRs (Roberts and 

Wiedmann 2006).  

4.3. Conclusions 

S. aureus and L. monocytogenes are two related Gram-positive pathogenic bacteria that 

represent different natural niches and routes of infection. The S. aureus strains used in this 

study differ in their production of an array of virulence factors. However, single strains cannot 

be identified as more or less virulent than the rest, suggesting that each virulence factor 

contribute to different types of infection and that each strain is specialized in one (or more) 

type(s) of infection(s). The L. monocytogenes RAPD type 9 strains harbor a premature stop 

codon leading to a truncated inlA that probably accounts for the lower virulence potential of 

these strains. Eight of the 15 strains tested in the study had a 105 bp deletion in actA. This 

deletion is in the proline rich repeat region and does not seem to affect the virulence potential 

of these strains. 
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Several laboratories, including ours, have demonstrated that a food processing unit can 

harbor particular molecular sub-types for long periods of time (Rørvik et al. 1995;Norton et al. 

2001;Wulff et al. 2006). These strains are likely contaminants of food products and hence a 

potential health risk to consumers. At the same time, the virulence of L. monocytogenes 

strains differ greatly, and several reports exist on the widespread presence of L. 

monocytogenes strains with attenuated virulence in foods (Jacquet et al. 2004;Nightingale et 

al. 2005). If the L. monocytogenes persisting in the food industry are indeed low virulent, one 

could speculate that they might serve to keep more virulent strains from entering the food 

processing plant. Understanding and assessing the virulence potential of L. monocytogenes 

strains will help to assess the real risk posed by different sub-populations of L. 

monocytogenes in foods. Subsequently, one could imagine that different criteria may be 

employed for regulation of L. monocytogenes in foods depending on the virulence of the 

organism. 

The true virulence of L. monocytogenes can, however, only be determined in a natural model 

of listeriosis, since the potential severity of L. monocytogenes infection rule out the use of 

human volunteers. Instead, various animal models including mice (Lecuit et al. 

2001;Czuprynski et al. 2003;Kim et al. 2004), guinea pigs (Bakardjiev et al. 2004;Andersen 

et al. 2007;Jensen et al. 2008a;Jensen et al. 2008b), gerbils (Disson et al. 2008;Disson et al. 

2009), and non-human primates (Farber et al. 1991;Smith et al. 2003) have been applied to 

assess the virulence potential. However, due to ethical concerns and restrictions, as well as 

the costs and workload associated with such experiments, in vivo animal models are not 

appropriate for screening of large collections of field strains. As an alternative, various in vitro 

cell assays have been designed that exploit the capability of L. monocytogenes to adhere, 

invade, grow inside and spread between various mammalian cells. These assays use 

established mammalian cell lines to mimic the stage (or phase) specific barriers that L. 

monocytogenes crosses during infection, and focus on assessing the active invasion into 

non-phagocytic cells and the intracellular cell-to-cell spread in both epithelial and fibroblastic 

cells (Figure 5.1) (Liu et al. 2007). In addition to the in vitro cell lines, several non-mammalian 

animals have been used for virulence assessment of L. monocytogenes such as the 

nematode Caenorhabditis elegans (Thomsen et al. 2006;Forrester et al. 2007) and the fruitfly 

Drosophila melanogaster (Mansfield et al. 2003;Jensen et al. 2007b). 

5. Eukaryotic cells as models for virulence assessment in L. 

monocytogenes 
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We have previously shown that one molecular sub-type of L. monocytogenes is persisting in 

several fish processing industries. The L. monocytogenes strains were sub-typed using 

randomly amplified polymorphic DNA profiles, and this particular group denoted RAPD type 9 

(Wulff et al. 2006). These strains appear to have a low virulence potential when assessed in 

human intestinal cells, in the non-mammalian hosts C. elegans, and D. melanogaster and in 

non-pregnant guinea pigs (Jensen et al. 2007a;Jensen et al. 2008a). However, when 

assessing the virulence potential in a more complex model (a pregnant guinea pig), one of 

these RAPD type 9 strains, La111, invaded the guinea pig fetuses to the same extent as the 

monkey clinical strain 12443 and better than Scott A (Jensen et al. 2008b). We hypothesized 

that this paradox reflected a specific ability of the RAPD type 9 strains to execute one (or 

several) of the specific steps involved when L. monocytogenes crosses the placenta 

membrane. We therefore compared the adhesion and invasion of the RAPD type 9 strains 

and a collection of other L. monocytogenes strains in several cell line models (Figure 5.1) 

(Holch et al. 2009). We reasoned that the phenotypic behavior of the RAPD type 9 strains in 

these cell models would be similar to strains that are known to have caused fetal infection.  

 

Figure 5.1: Microscopic appearance of the cell types used in this study. Left: Caco-2 intestinal, epithelial 

cells. Middle: BeWo trophoblastic, epithelial cells. Right: L929 fibroblastic cells. Scale bar 100 �m. From 

(http://www.lgcstandards-atcc.org/Attachments/1777.jpg). 

5.1. Intestinal barrier 

Being a food borne pathogen, L. monocytogenes first encounters and interacts with epithelial 

cells of the mammalian gastrointestinal tract during infection. L. monocytogenes has a 

unique ability to actively invade non-phagocytic cells and hence can cross the three tight 

physiological barriers of the host, the gastro-intestinal barrier, the blood-brain barrier and the 

placental barrier. In vivo studies of L. monocytogenes infection have shown that intestinal 

invasion occurs in the small intestine as well as the caecum and colon (Disson et al. 2008). 

The human colonic cancer epithelial cell line Caco-2 was established as a model of infection 

of intestinal epithelial cells by L. monocytogenes and demonstrated that unlike the non-
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pathogenic species (L. seeligeri, L. welshimeri and L. innocua), the pathogenic L. 

monocytogenes and L. ivanovii were able to enter Caco-2 cells by inducing their own 

phagocytosis (Gaillard et al. 1987). In line with this study, Pine et al. used the cytopathogenic 

effects in infected Caco-2 cells to discriminate between virulent and nonvirulent L. 

monocytogenes strains as determined by lethal doses (LD50) in mice (Pine et al. 1991). The 

invasive ability in Caco-2 cells has also been correlated to serotype, with strains of all 13 

serotypes being divided into two groups of high and low invasive ability, respectively. The 

majority of the serogroup 4b, 1/2a, and 1/2b strains (12 out of 14 strains) grouped into the 

high invasive group (Jaradat and Bhunia 2003) further indicating the significance of invasion 

into Caco-2 cells as a measure of virulence potential. Likewise, Larsen et al. showed that L. 

monocytogenes strains of different PFGE types had significantly different invasive abilities. A 

group of PFGE type 1 strains had invasion at log 2.5 CFU per well compared to a group of 

high invasion with an average of 3.5 CFU per well (Larsen et al. 2002). However, as different 

studies compute the invasion differently (e.g. either directly as the number of recovered 

intracellular bacteria, as the intracellular bacteria relative to the original inoculum, or as the 

number of intracellular bacteria relative to the number of adherent and invaded bacteria), 

comparison between experiments is difficult. In addition, the invasive efficiency also varies 

with the multiplicity of infection (MOI), i.e. the number of bacteria added per cell in the 

monolayer. A higher invasion efficiency is observed at low MOI (Francis and Thomas 1996), 

which further complicates comparisons.  

Another human colonic cancer cell line (HT-29) (Roche et al. 2001) as well as the small 

intestine cell line INT-407 (Jaradat et al. 2003) have also been used to assess the virulence 

potential of L. monocytogenes strains. Caco-2 cells have been shown to have an unusually 

high ability to internalize L. monocytogenes. The average number of invaded bacteria in 

Caco-2 cells was 97% of the original inoculum compared to 0.1 to 10% for other cell lines, 

including INT-407 (Pine et al. 1991). Also, the cell immortalization (i.e. cell lines) as opposed 

to primary cell cultures enhances L. monocytogenes invasion since proliferative, 

undifferentiated cells were more susceptible to entry of L. monocytogenes than non-

proliferative, differentiated cells (Velge et al. 1994;Velge et al. 1997). Accordingly, other 

studies have used the HT-29 cell line instead of Caco-2 cells since the presence of glucose 

in the medium maintains the HT-29 cells at a constant proliferation rate (Roche et al. 2001). 

These results suggest that invasion studies in Caco-2 cells might overestimate the invasive 

ability of the strains tested.  

Nevertheless, Caco-2 cells is a widespread model to assess the ability of L. monocytogenes 

strains to adhere, invade and replicate inside enterocytes (Larsen et al. 2002;Jaradat and 
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Bhunia 2003;Wampler et al. 2004;Rousseaux et al. 2004;Andersen et al. 2006;Yamada et al. 

2006;Jensen et al. 2007a;Holch et al. 2009). 

The invasion of L. monocytogenes into Caco-2 cells is InlA-dependent (Mengaud et al. 1996) 

and consequently, L. monocytogenes LO28 as well as other strains encoding a truncated 

InlA have lower invasion into Caco-2 cells compared to strains expressing a full length InlA 

(Jonquieres et al. 1998;Olier et al. 2002;Olier et al. 2003;Nightingale et al. 2005;Felicio et al. 

2007).  

We have previously shown that the specific molecular sub-type (RAPD type 9 strains) are 

poor invaders of Caco-2 cells, invading in cell numbers that are 100-1000 fold lower than 

seen with typical clinical strains (Jensen et al. 2007a;Jensen et al. 2008a). Since we 

hypothesized that the RAPD type 9 strains would behave similar to strains of fetomaternal 

origin in cell virulence models, we determined the invasive ability of a group of maternofetal 

strains and found that they invaded Caco-2 cells in the same high level as other clinical 

strains (Figure 5.2) (Holch et al. 2009). 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

N
53

-1

L
a1

11

H
13

-1

M
10

3-
1

L
a2

2

74
18

38
49

-9
7

32
72

-0
3

34
95

-0
4

48
10

-9
8

44
46

S
co

tt
 A

L
O

28

E
G

D

In
va

si
o

n
 lo

g
10

(C
F

U
/m

L
)

Persistent RAPD 9 Food Maternofetal Clinical Reference
 

Figure 5.2: Caco-2 cell invasion of L. monocytogenes strains used in this study. Strains have been sorted 

according to origin. Dark columns represent lineage I strains and light columns represent lineage II 

strains. Columns represent averages from one trial carried out in duplicate and error bars are standard 

deviations. The results are representative of three independent experiments. Compilation of data from 

(Jensen et al. 2007a;Holch et al. 2009). 

We found that the RAPD type 9 strains all carried a specific nonsense mutation in inlA 

(Figure 4.7) and this most likely account for the lower invasion of these strains in Caco-2 

cells (Holch et al. 2009). In comparison, field strains harboring another premature stop codon 
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(at position 25) invaded Caco-2 cells on average 55-fold less than the EGDe wildtype 

(Temoin et al. 2008).  

Interestingly, the occurrence of field stains with nonsense mutations in inlA and consequently 

low invasive ability in Caco-2 cells seem to be widespread. It has been described in strains 

from France (Rousseaux et al. 2004;Temoin et al. 2008), the United States (Nightingale et al. 

2005;Nightingale et al. 2008), Portugal (Felicio et al. 2007), and Japan (Handa-Miya et al. 

2007). These virulence-attenuated strains are most commonly found among lineage II 

serotype 1/2a and 1/2c strains, and the prevalence in foods is as high as 30% (Jacquet et al. 

2004;Nightingale et al. 2005) although the Japanese study only identified one strain carrying 

an inlA PMSC out of 59 tested food strains (Handa-Miya et al. 2007). We have identified an 

inlA PMSC in one strain originally isolated from cold-smoked salmon (La111) (Vogel et al. 

2001a) and in three strains (N53-1, M103-1, and H13-1) that were all isolated from fish 

processing plants (Wulff et al. 2006) and thus potentially could contaminate food but the 

general prevalence of inlA PMSCs among Danish L. monocytogenes food isolates is not 

known.  

It has been suggested that the rather high prevalence in food and hence the frequent 

ingestion of such virulence-attenuated L. monocytogenes strains might result in 

asymptomatic carriage and a mucosal immune response conferring resistance in humans to 

infection by L. monocytogenes. Indeed, vaccination of guinea pigs with a virulence 

attenuated strain carrying an inlA PMSC reduced the severity of subsequent infection with a 

fully virulent strain (Nightingale et al. 2008). However, Iida et al. observed that among 

carriage strains isolated from a healthy Japanese population, 94.7% belonged to serotype 

1/2a, 1/2b or 4b, suggesting that if persons in high risk groups (such as pregnant women) 

become carriers, they could have a high risk of developing listeriosis (Iida et al. 1998).  

5.2. Blood-placenta barrier 

During pregnancy, the fetus can immunologically be regarded as an allograft and maternal 

tolerance to the paternally derived fetal antigens is thought to occur through local 

suppression of cell-mediated immunity at the maternofetal interface (the placenta). The 

prevailing hypothesis is that pregnancy-related hormonal factors as well as cytokines 

released by maternal macrophages and fetal trophoblasts at the maternofetal interface affect 

the TH1-TH2 balance towards a TH2-dominated humoral immunity and a suppression of cell-

mediated immunity (Guleria and Pollard 2000;Dealtry et al. 2000;Abram et al. 2003;Jamieson 

et al. 2006). This increases the susceptibility of pregnant women to intracellular pathogens 

such as L. monocytogenes, Toxoplasma gondii, and cytomegalovirus (Ross et al. 



Eukaryotic cells as models for virulence assessment in L. monocytogenes 

  63 

2006;Jamieson et al. 2006). L. monocytogenes is capable of crossing the placental barrier, 

and it has been proposed that the placenta offers an immunologically privileged compartment 

within which L. monocytogenes can replicate and eventually spread to the fetus (Redline and 

Lu 1987;Redline and Lu 1988;Abram et al. 2003;Le Monnier et al. 2006;Bakardjiev et al. 

2006). We speculated that the otherwise low-virulent RAPD type 9 strains might be 

opportunistic pathogens, conferring protection in a healthy population but posing a particular 

risk to pregnant women due to the TH1-TH2 shift occurring during pregnancy.  

The placenta is composed of interlocking maternal and fetal tissues and is formed upon 

implantation when fetal epithelial cells, trophoblasts, proliferate and form protrusions into the 

uterus wall thereby forming the placental villi (Leiser and Kaufmann 1994). During the 

invasion of the uterus endometrium, the fetal trophoblasts erode the walls of maternal 

capillaries, ensuring an adequate blood supply to the intervillous space through which the 

exchange of nutrients and waste products between the maternal and fetal blood streams 

occur (Figure 5.3). 

 

Figure 5.3: The anatomy of the maternofetal barrier in humans. (A) The fetus in the uterine cavity. (B) The 

placental villus tree. (C-D) Cross section of a villus. Nutrients, waste products and also some drugs and 

infectious agents are exchanged between the maternal blood in the intervillous space and the fetal blood. 

The placental membrane is thus a semipermeable layer of fetal tissues that separates the maternal and 

fetal blood streams. It is composed of the trophoblasts covering the villi, the connective tissue of the villi 

and the endothelial cells lining the fetal vessels. (E) Cross section of the amnion that delineates the 

extraplacental maternofetal interface. From (Lecuit et al. 2004). 
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After invasion of the gastrointestinal epithelium and successful replication in the liver, L. 

monocytogenes disseminates in the blood to its secondary target organs, the brain and the 

placenta. Thus, to infect the fetus, L. monocytogenes from the maternal blood must first 

invade the fetal trophoblasts and spread through the connective tissue of the villi before it 

can cross the endothelial cells of the fetal blood vessels and gain access to the fetal 

bloodstream (Figure 5.3d). The mechanisms responsible for the vertical transmission of L. 

monocytogenes across the fetoplacental barrier are not fully understood. Cell line-based 

studies have focused on the invasion into trophoblasts, as they have been shown to be the 

first placental cell type that L. monocytogenes interacts with during in vivo placental infection 

(Lecuit et al. 2004;Bakardjiev et al. 2004;Le Monnier et al. 2006). 

5.2.1. Invasion of trophoblasts 

A number of different cell lines have been used to study the interaction of L. monocytogenes 

and trophoblasts, including the choriocarcinoma cell lines BeWo, JAR, and JEG-3 (Lecuit et 

al. 2004;Bakardjiev et al. 2004;Disson et al. 2008;Mostowy et al. 2009). These studies have 

primarily focused on the differences in invasive ability between L. monocytogenes wildtype 

and inlA and inlB mutants. In vitro studies in the BeWo cell line have shown that L. 

monocytogenes invades trophoblasts in an InlA-dependent manner. Whereas inlB mutants 

did not differ from the parental wildtype with respect to invasion of trophoblasts, invasion of 

the wildtype was approximately 20-fold (Lecuit et al. 2004) and 100-fold (Bakardjiev et al. 

2004) greater than the isogenic inlA mutant. In contrast, both InlA and InlB are involved in the 

invasion of L. monocytogenes into JAR cells, with a 10-fold difference in invasive efficiency 

between inlA or inlB mutants and their isogenic wildtype (Disson et al. 2008). Also, L. 

monocytogenes did not show enhanced invasion into the BeWo cell line compared to primary 

cultured trophoblasts (Lecuit et al. 2004;Bakardjiev et al. 2004), suggesting that in contrast to 

Caco-2 cells (Velge et al. 1994) immortalization does not influence the susceptibility of BeWo 

cells to L. monocytogenes infection. 

We have used the JAR cell line to assess the invasive potential of the RAPD type 9 strains in 

trophoblasts. To the best of our knowledge, this study is the first to use trophoblastic cell 

lines to assess the virulence potential of field isolates of L. monocytogenes. We found that 

the RAPD type 9 strains, as well as LO28, EGD and the maternofetal strain 3849-97 invaded 

the JAR cells at a lower level than the clinical strains (Figure 5.4) (Holch et al. 2009). 
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Figure 5.4: Invasion of L. monocytogenes strains into human trophoblastic JAR cells. Invasion is 

expressed as the number of intracellular CFU/ml relative to the number of CFU/ml added to the well. 

Strains have been sorted according to origin. Dark columns represent lineage I strains and light columns 

represent lineage II strains. Columns depict averages from one trial carried out in duplicate. Error bars 

indicate standard deviations. The results are representative of three independent experiments. From 

(Holch et al. 2009). 

The lower invasion of the InlA-deficient RAPD type 9 strains and LO28 is consistent with the 

in vitro invasion of inlA mutants in both BeWo and JAR cells (Lecuit et al. 2004;Bakardjiev et 

al. 2004).  

We also speculated that the ability to infect guinea pig fetuses could be reflected in an 

increased ability of the RAPD type 9 strains to multiply to higher numbers once inside the 

placental cells. However, we did not observe any differences in intracellular growth, 

indicating that the RAPD type 9 strains do not have any intracellular growth advantage 

compared to the clinical strains in this study (Holch et al. 2009).  

Preceding growth conditions could probably affect the invasion into trophoblastic cells, as 

observed for Caco-2 cells (Garner et al. 2006b;Andersen et al. 2007;Werbrouck et al. 

2009;Olesen et al. 2009). We speculated that the enhanced ability of the RAPD type 9 strain 

to invade guinea pig fetuses could be a result of a response to the stresses met during 

infection such as the antimicrobial compounds of the innate immune system. The RAPD type 

9 strains did not exhibit an increased tolerance to the HDPs used in this study compared to 

other strains when analyzed in vitro in endpoint assays (Gottlieb et al. 2008). To test whether 

HDPs could induce a response in L. monocytogenes that would alter the infective capability, 

we pretreated L. monocytogenes strains with plectasin prior to infection of JAR cells (Figure 
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5.5). Also, this provided a more realistic model of infection, since L. monocytogenes is 

confronted with an array of HDPs during its passage through the gastrointestinal tract and 

dissemination in the blood. We compared the invasion of the RAPD type 9 strain La111 to a 

high invasive lineage I strain. Both strains have a MIC of 64 μg/ml for plectasin (Gottlieb et al. 

2008). The invasion assay was done as described previously (Holch et al. 2009) with 

preparation of the plectasin-treated bacterial cultures as described in the legend of Figure 

5.5.  

 

Figure 5.5: Invasion of JAR cells after exposure to plectasin. Bacterial cultures were prepared by 

inoculating fresh colonies (strains La111 and 7418) into MHB pH 7.4 broth. Untreated samples were 

incubated o.n. at 37°C and samples treated with plectasin for four hours were incubated at 37°C o.n. and 

plectasin added to a final concentration of 16 �g/mL (corresponding to ¼ MIC) 4 hours prior to infection 

of the cells. Samples treated with plectasin o.n. were added plectasin to a final concentration of 16 μg/mL 

and incubated o.n. at 37°C. At the day of the assay, bacteria were adjusted to 1×106 CFU/mL and used to 

infect the JAR cells as described earlier (Holch et al. 2009). Both strains were tested in duplicate (Gottlieb, 

unpublished data). 

As observed earlier, the two strains differed in invasive ability, however, the pretreatment 

with plectasin did not affect the invasive ability. Since the preliminary data did not suggest 

that the response of RAPD type 9 to pre-treatment with the HDPs of the host innate immune 

defense was different from other strains, this experimental approach was not continued 

(Gottlieb, unpublished data).   

5.2.2. Cell-to-cell spread 

The intracellular cell-to-cell spread of L. monocytogenes is assessed by plaque forming 

assays, analyzing the ability of L. monocytogenes to form plaques of infected cells in a 

confluent cell monolayer. The advantage of plaque assays over the invasion assay described 

above is that it – in addition to the invasion and intracellular multiplication – also takes into 

account the extra parameter of cell-to-cell spread. Accordingly, a plaque forming assay in 
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Caco-2 cells showed higher specificity than an invasion and multiplication assay in 

discriminating between virulent and non-virulent L. monocytogenes strains as determined by 

intraperitoneal infection in immunocompromised mice (Van Langendonck et al. 1998). Also, 

plaque forming in HT-29 cells has been shown to be equivalent to subcutaneous infection of 

mice with respect to distinguishing virulent and non-virulent strains (Roche et al. 2001). It 

was furthermore found that strains belonging to serotype 4a, 4c and 4d that rarely cause 

listeriosis in humans formed smaller plaques compared to serotype 4ab and 4b strains, and 

this correlated with virulence determined by intraperitoneal infection of mice (Sokolovic et al. 

1996). 

Animal studies of pregnant guinea pigs and mice have shown that ActA-mediated cell-to-cell 

spread plays a major role in maternofetal infection in both guinea pigs and mice (Bakardjiev 

et al. 2005;Le Monnier et al. 2007). Consequently, we hypothesized that the RAPD type 9 

strains would have an increased ability to spread from cell-to-cell. We analyzed the cell-to-

cell spread in murine fibroblast cells, L929, as described earlier (Sun et al. 1990) mimicking 

the spread through the connective tissue of the placental villi to the fetal blood vessels. We 

found that the strains differed with respect to both the number and size of plaques (Figure 

5.6). 
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Figure 5.6: Plaque formation by L. monocytogenes in mouse fibroblastic L929 cells. Data is expressed as 

the number of plaques for 102 invaded bacteria. Strains have been sorted according to their origin. Dark 

columns represent lineage I strains and light columns represent lineage II strains. Check patterned 

columns represent strains with a 105 bp deletion in actA. Columns represent averages from one trial 

carried out in duplicate. Error bars indicate standard deviations. The results are representative of three 

independent experiments. From (Holch et al. 2009). 
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There were, however, no differences in either the number or size of plaques between strains 

when grouped according to origin. We did however observe that lineage I strains formed 

larger plaques than lineage II strains (p < 0.05) (Holch et al. 2009). Consistently, others have 

found that although no clear correlation between lineage and plaque size or plaquing ability 

(i.e. the number of CFU necessary to form one plaque) were found, lineage I strains tended 

to form more and larger plaques compared to lineage II strains (Wiedmann et al. 1997).  

Another study showed that strains isolated from perinatal cases of listeriosis all showed 

similar virulence with regard to plaque formation in HT-29 cells as well as immune response 

measured as cytokine production from cord blood cells. Interestingly, the study tested strains 

from all three lineages and showed that also the strains from lineage II and III that are 

believed to be less virulent had the same virulence potential as the lineage I strains 

(Mereghetti et al. 2004). However, the results might be biased since all strains used in the 

study had already caused invasive disease. Hence, it is possible that other strains from the 

heterogeneous lineage II and III would have lower virulence potential.  

5.3. Blood-brain barrier 

Both the central nervous system (CNS) and the placenta are immunologically privileged 

compartments. Hence, the tissue tropism of L. monocytogenes for these tissues might be a 

common strategy of immune evasion, and lessons learned from the CNS infections due to L. 

monocytogenes might confer to placental infections as well. 

The blood-brain barrier is constituted of the brain capillary endothelial cells separating the 

blood and the brain (Drevets et al. 2004). The concurrence of CNS infections and bacteremia 

suggest that blood-borne L. monocytogenes is the predominant route of CNS infections, as is 

the case for placental infections (Berche 1995;Drevets et al. 2004). Hence, direct invasion of 

endothelial cells lining the brain blood vessels is a route of entry. L. monocytogenes has 

been shown to enter human umbilical vein endothelial cells (HUVEC) (Drevets et al. 

1995;Greiffenberg et al. 1997;Parida et al. 2002), and as L. monocytogenes also has to 

interact with fetal endothelial cells in the placental villi, this model is also relevant for crossing 

of the placental barrier (Parida et al. 2002). Different reports exist on the dependence of 

internalins in this process. While internalins were demonstrated to play a role in HUVEC-

invasion (Drevets et al. 1995;Parida et al. 2002), Greiffenberg et al. found that entry into 

HUVEC occurred independently of InlA, InlB, InlC and ActA (Greiffenberg et al. 1997). 

However, in the latter study, HUVEC were grown in the presence of pooled human sera as 

opposed to fetal calf serum in the two first studies. It has later been shown that normal 

human serum contains L. monocytogenes-specific antibodies which inhibit the invasion into 
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human brain microvascular endothelial cells, HBMEC (Hertzig et al. 2003). Accordingly, an 

InlB-dependent entry of L. monocytogenes into HBMEC was observed (Greiffenberg et al. 

1998). 

Together with the apparent rather frequent asymptomatic carriage of L. monocytogenes by 

humans (Jacquet et al. 2004;Nightingale et al. 2005) the study by Hertzig et al. suggest that 

the extracellular bacteria in the blood stream as well as the endothelial cells are bathed in 

anti-listerial plasma proteins in vivo (Hertzig et al. 2003). This questions whether direct cell 

invasion of extracellular bloodborne L. monocytogenes into the barrier cells of the secondary 

target organs, the brain and placenta, actually plays a significant role in vivo.  

5.3.1. Heterologous cell-to-cell assays 

It has been suggested that L. monocytogenes (and other intracellular bacterial pathogens) 

could use infected mononuclear phagocytes as vectors to avoid host defenses and move 

from the bloodstream to immunologically privileged compartments. The concept of this 

Trojan horse model is that leukocytes are infected in the periphery and then transport 

intracellular L. monocytogenes to the CNS and across the blood-brain barrier. It has been 

shown that both in vitro and in vivo approximately 30% of the blood borne L. monocytogenes 

are associated with peripheral blood leukocytes (Drevets 1999;Drevets et al. 2001). 

Consequently, in addition to direct invasion, L. monocytogenes can also invade endothelial 

cells by heterologous cell-to-cell spread from infected macrophages both in vitro (Drevets et 

al. 1995;Greiffenberg et al. 1998) and in vivo (Drevets 1999;Drevets et al. 2001;Join-Lambert 

et al. 2005). Infected macrophages can also serve as vectors for heterologous spreading of 

L. monocytogenes into Caco-2 cells, COS-1 monkey kidney fibroblasts, and TIB-73 mouse 

hepatocytes (Greiffenberg et al. 1998). Specifically, Drevets et al. demonstrated that 

leukocyte-associated L. monocytogenes were fully capable of establishing CNS infection in 

vivo in the absence of extracellular bacteria due to continuous infusion of gentamicin 

(Drevets et al. 2001). 

It is reasonable to assume that L. monocytogenes uses the same Trojan horse strategy to 

cross the placental barrier and hence, it would have been more realistic to investigate the 

heterologous cell to cell spread from infected phagocytes to trophoblasts rather than the 

direct invasion. However, preliminary attempts to set up an experimental model of 

heterologous cell invasion between L. monocytogenes-infected PMNs isolated from human 

whole blood and trophoblastic JAR cells did not succeed but provide basis for further 

research into this area (Gottlieb, unpublished results).  
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5.4. The virulence potential of RAPD type 9 strains – current status 

The limitation of the cell models is that they assay single specific steps of the infectious 

process. In addition, they do not take into account the other factors such as the host immune 

defense that influence the infection in vivo. Hence a high virulence potential in one model 

does not necessarily mean that the strains have a high virulence in vivo as they can be 

attenuated in virulence in other steps of the infectious process. Indeed, in contrast to the 

many studies describing an association between high invasive ability and in vivo virulence, 

some studies have demonstrated that clinical strains have low invasive ability in Caco-2 cells 

and HepG2 cells (Werbrouck et al. 2006;Roberts et al. 2009). This emphasizes that clinical 

strains cannot a priori be regarded as high virulent in in vitro assays and also that other 

strain-specific characteristics such as the ability to survive and grow in the food matrix within 

which it is delivered to the host might affect the likelihood of these strains to cause disease 

(Roberts et al. 2009). In addition, the lower invasion capacity in cells that also correlated with 

a lower induction of pro-inflammatory cytokines might be a mechanism of immune invasion of 

clinical strains (Werbrouck et al. 2006). 

We hypothesized that the ability of the otherwise low-virulent RAPD type 9 strains to infect 

guinea pig fetuses was a reflection of a specific ability to execute one or several of the 

infectious steps specific for maternofetal infection. We found that the RAPD type 9 strains did 

not have an increased ability to invade placental trophoblasts, nor did they exhibit increased 

intracellular growth rates. These results suggest that the RAPD type 9 strains do not have an 

increased ability to perform the first step of placental invasion, being the infection of 

trophoblasts. However, as discussed above, an indirect invasion through infected 

macrophages might be a more realistic experimental approach to assess the virulence 

potential in this step of the placental infectious cycle. Our subsequent experiments 

addressed whether the RAPD type 9 strains had an increased ability to spread from cell to 

cell, mimicking the spread through the connective tissue in the placental villi. The RAPD type 

9 strains did not form more or larger plaques than the clinical strains used in this study, 

suggesting that they are not more efficient than other cells to reach the placental blood 

stream once inside the connective tissue of the villi. 

The discrepancy between the low in vitro virulence potential of the RAPD type 9 strains and 

the in vivo infection of guinea pig fetuses is probably explained by the species specificity of 

the interaction of L. monocytogenes internalins with the host cell receptors. InlA interacts with 

human and guinea pig but not with mouse E-cadherin receptors (Lecuit et al. 1999), while 

InlB interacts with human and mouse but not with guinea pig Met receptors (Khelef et al. 
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2006) (Figure 5.7). Like humans, the gerbil is permissive to both the InlA – E-cadherin and 

the InlB – Met pathways. 

 

Figure 5.7: The species specificity of InlA – E-cadherin and the InlB – Met interaction. InlA recognizes 

human, gerbil and guinea pig E-cadherin but does not bind mouse E-cadherin due to a single amino acid 

substitution at position 16. InlB recognizes human, gerbil and mouse Met but do not recognize guinea pig 

Met for unknown reasons. From (Hamon et al. 2006). 

During the course of this study, it has been demonstrated that InlA and InlB have 

interdependent roles in maternofetal infection in gerbils. Consequently, L. monocytogenes 

targets the placenta in vivo only if both the InlA and the InlB pathways are functional (Disson 

et al. 2008). Thus, the infection of guinea pig fetuses by the RAPD type 9 strain might be due 

to other pathways involved in infection, or other factors specific to either the host or the strain 

of L. monocytogenes that influence the course of infection. 

In summary, we did not observe an increased virulence potential of the RAPD type 9 strains 

in cell models mimicking steps involved in crossing the placental barrier. Based on these 

results and in accordance with our previous observations (Jensen et al. 2008a) and the 

findings by Disson et al. (Disson et al. 2008), we conclude that the ability of the RAPD type 9 

strains to infect guinea pig fetuses is a consequence of species specific differences in the 

host cell receptors involved in internalization of L. monocytogenes. Thus, the RAPD type 9 

strains, although highly virulent to guinea pig fetuses, do not appear to pose a particular risk 

in human maternofetal listeriosis.  

Of note, we and others have shown that strains belonging to another persistent RAPD type, 

RAPD type 15, have high virulence potential in Caco-2 cells (Jensen et al. 2007a), human 

whole blood (Gottlieb, unpublished results) and in non-pregnant guinea pigs (Roldgaard et al. 

2008). Thus, the low virulence potential of the RAPD type 9 strains can not be extrapolated 

to other persistent sub types. Indeed, persistent L. monocytogenes have been the cause of 

�������	
��
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both sporadic cases of listeriosis as well as a multistate outbreak in the US (Olsen et al. 

2005b;Orsi et al. 2008) emphasizing the need for further research into the physiology of such 

persistent subtypes. 

5.5. Conclusions 

Mammalian cell lines can be used to assay the ability of L. monocytogenes to execute 

specific steps of the infectious process. The advantage of the plaque forming assay over 

invasion assays is that it also takes into account the extra step of intra- and intercellular cell-

to-cell spread. We investigated the discrepancy between previous in vitro and in vivo 

determinations of the virulence potential of the persistent RAPD type 9 strains. The RAPD 

type 9 strains did not exhibit increased virulence potential in cell models mimicking the single 

steps of the transmission across the placenta membrane and we concluded that they still can 

be regarded as low virulent with respect to human listeriosis.  
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The host defense peptides (HDPs) constitute a central part of the antimicrobial effector 

molecules of the innate immune system of all living organisms and have retained 

antimicrobial activity through millions of years. Recently they have been shown to have 

immunomodulatory functions as well. Together, this has prompted a massive interest in 

HDPs as a new generation of antimicrobials. On the other hand, the ability of pathogenic 

microorganisms to resist the antimicrobial effects of the innate immune system, such as the 

HDPs, is an essential part of the pathogenesis.  

Knowledge about the response of bacteria to exposure to HDPs, the effect of environmental 

stresses or stimuli on tolerance to HDPs and the possible development of resistance is 

essential in order to evaluate the potential of HDPs as novel antimicrobials.  

Given that pathogenic microorganisms are natural resistant to at least the HDPs that they are 

naturally exposed to during infection in the host, we hypothesized that natural variation in 

tolerance within a pathogenic species would exist and that this also reflected differences in 

virulence. We tested a broad collection of L. monocytogenes and S. aureus strains 

representing different origins, subtypes and virulence-related phenotypic behavior against 

four model peptides representing each of the three classes of HDPs. These were protamine, 

a linear peptide rich in proline and arginine, the fungal defensin plectasin, and the two linear, 

�-helical cathelicidins, novispirin G10 and its derivate novicidin. By measuring the ATP 

leakage from bacteria during treatment with these peptides, we determined that they have 

different mechanisms of action. We found that within each species, strains were equally 

sensitive to the four HDPs. This suggest that natural tolerance to HDPs does not exist in a 

population of human pathogenic bacteria and hence that the potential therapeutic use of 

HDPs is not hampered by naturally occurring resistant bacteria. 

Since exposure to various stresses elicits a stress response in bacteria that confer resistance 

to other stressors as well, the environmental conditions to which a pathogen is exposed prior 

to contact with the host can influence the ability to cause infection. We examined if exposure 

to three food-related stress conditions (5% NaCl, pH 5.5 and 5°C) would alter the tolerance 

of L. monocytogenes to subsequent HDP treatments. We found that under the experimental 

conditions used in this study, these stress factors did not affect the tolerance to HDPs. 

The development of resistance to HDPs is considered unlikely since they have retained a 

central role as antimicrobials in the innate immune defense of all living organisms for millions 

6. Concluding remarks 
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of years. However, many conventional antibiotics are also originally natural compounds, and 

spontaneous resistant mutants occur readily. We examined if single mutations, induced by 

transposon mutagenesis, could produce mutants of L. monocytogenes and S. aureus with 

increased tolerance to plectasin. We identified a mutant in S. aureus with the transposon 

inserted into the response regulator, hssR, with a two- to four-fold increased tolerance 

compared to the wildtype but we did not find any resistant mutants in L. monocytogenes.  

Collectively, these results do not speak against the use of HDPs as novel antimicrobials. 

However, since HDPs are “dirty drugs” that target many biological functions simultaneously, 

development of resistance would have to occur through cumulative changes involving 

several genes, which will require a long selection period. HDP resistance has been provoked 

in E. coli and Pseudomonas spp. through repeated subculture in increasing concentrations of 

HDPs. Such experiments and analyses of which genes are responsible for such resistant 

phenotypes could provide a basis for future studies on HDPs and development of resistance. 

Eventually, a better understanding of the molecular basis of resistance to HDPs might 

provide insights on how to design synthetic peptides to circumvent resistance problems. 

The L. monocytogenes collection used in this study comprises a subgroup of food processing 

persistent strains (RAPD type 9) that previously have been shown to have low virulence 

potential in simple in vitro models but infected guinea pig fetuses just as efficiently as a high-

virulent strain. We hypothesized that this discrepancy could be explained by an increased 

ability of these strains to execute one or several of the steps involved in transmission of L. 

monocytogenes across the placenta membrane and that sequence differences in central 

virulence genes could be the cause. We found that the RAPD type 9 strains had a lower 

invasive ability in placental trophoblasts and that this probably was caused by the presence 

of premature stop codons in their inlA. In addition they did not show enhanced ability to 

spread from cell-to-cell. Based on these results we concluded that the RAPD type 9 strains 

can still be regarded as low virulent with respect to human listeriosis. 

It has been suggested that L. monocytogenes use infected phagocytes as vectors to avoid 

host defenses and move from the bloodstream to immunologically privileged compartments 

such as the CNS and the placenta. Hence other factors such as the host defense 

mechanisms and interaction with other cell types probably influence the course of infection in 

vivo. Further studies on virulence and in particular the ability to cross the blood-brain and the 

placenta barrier could include the establishment of cell models that closer mimics the in vivo 

conditions such as the heterologous cell-to-cell spread assay. 
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Abstract
Background: Host defense peptides (HDPs), or antimicrobial peptides (AMPs), are important
components of the innate immune system that bacterial pathogens must overcome to establish an
infection and HDPs have been suggested as novel antimicrobial therapeutics in treatment of
infectious diseases. Hence it is important to determine the natural variation in susceptibility to
HDPs to ensure a successful use in clinical treatment regimes.

Results: Strains of two human bacterial pathogens, Listeria monocytogenes and Staphylococcus
aureus, were selected to cover a wide range of origin, sub-type, and phenotypic behavior. Strains
within each species were equally sensitive to HDPs and oxidative stress representing important
components of the innate immune defense system. Four non-human peptides (protamine, plectasin,
novicidin, and novispirin G10) were similar in activity profile (MIC value spectrum) to the human
�-defensin 3 (HBD-3). All strains were inhibited by concentrations of hydrogen peroxide between
0.1% – 1.0%. Sub-selections of both species differed in expression of several virulence-related
factors and in their ability to survive in human whole blood and kill the nematode virulence model
Caenorhabditis elegans. For L. monocytogenes, proliferation in whole blood was paralleled by high
invasion in Caco-2 cells and fast killing of C. elegans, however, no such pattern in phenotypic
behavior was observed for S. aureus and none of the phenotypic differences were correlated to
sensitivity to HDPs.

Conclusion: Strains of L. monocytogenes and S. aureus were within each species equally sensitive
to a range of HDPs despite variations in subtype, origin, and phenotypic behavior. Our results
suggest that therapeutic use of HDPs will not be hampered by occurrence of naturally tolerant
strains of the two species investigated in the present study.
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Background
Antimicrobial peptides (AMPs) are widespread as bacte-
rial inactivator molecules in the innate immune systems
of insects, fungi, plants, and mammals. The peptides are
also known as host defense peptides (HDPs) as they have
other, immuno-modulatory functions besides the direct
antimicrobial actions. Three broad categories of HDPs
have been identified: the linear peptides with helical
structures (e.g. LL-37), the cysteine stabilized peptides
with beta-sheet (e.g. the defensins), and a group of linear
peptides rich in proline and arginine that primarily have
been identified in non-mammalian species [1-3].

The HDPs target a broad spectrum of bacteria [3] and
recently, these peptides have been suggested as novel anti-
microbials for treating bacterial infections [4,5]. Whilst
the peptides are regarded as universal antibacterial com-
pounds, little is known about the sensitivity spectrum of
different strains of pathogenic bacteria. Such understand-
ing would be an essential part of evaluating the potential
of HDPs in treatment.

Whilst some known pathogens possess intrinsic resistance
mechanisms indicating a central role for HDP resistance
in pathogenicity it is generally assumed that acquisition of
resistance towards a given HDP is relatively improbable
[6]. However, the spectrum of sensitivity, e.g. measured as
MIC may vary in a selection of strains that may differ in
genes known to be involved in resistance such as the dlt
operon or mprF in S. aureus [7,8]. Also, HDPs and other
components of the innate defense system may be viewed
as stress factors against which bacteria have developed
many counter protective mechanisms.

The ability of pathogenic bacteria to overcome these
defense systems is essential to establish an infection.
Strains of a particular pathogenic organism are not
equally virulent [9-12] and may also differ in sensitivity to
stresses encountered [9,13,14]. However, the resistance of
different strains to the stresses imposed by the host
defense systems might also differ and be indicative of dif-
ferences in virulence.

The purpose of the present study was to determine the
natural variation in sensitivity of strains of two pathogenic
species to host defense peptides and hydrogen peroxide.
In addition, if any differences were found, to determine if
this could be reflected by variation in the strains' pheno-
typic behavior, including expression of virulence-related
factors. Four model-peptides were chosen to represent
each of the three different peptide categories: protamine is
a linear arginine-rich peptide originally isolated from
salmon spermatozoa [15], the fungal defensin plectasin
[5], and two cathelicidins, novispirin G10 [16] and its
derivate novicidin. We used a collection of the two Gram-

positive organisms, Listeria monocytogenes and Staphylococ-
cus aureus, and selected strains carefully to reflect different
important niches of the bacteria. L. monocytogenes is a
foodborne pathogen infecting via the gastrointestinal epi-
thelia [17] and S. aureus is community- or hospital
acquired and gains access to the tissues and blood stream
whenever the skin or mucosal barrier is damaged [18]. To
ensure that the strain collection reflected a broad variation
in phenotypic behavior, we also determined the expres-
sion of several virulence factors and behavior of the bacte-
ria in simple eukaryotic models. We found that the L.
monocytogenes and S. aureus strains were within each spe-
cies equally sensitive to single components of the innate
immune defense system and this was not paralleled by
their differences in phenotypic behavior.

Methods
Strains and culture conditions
Experiments were carried out with a collection of 25 Liste-
ria monocytogenes strains (Table 1) and 16 Staphylococcus
aureus strains (Table 2) representing different lineages and
serotypes (L. monocytogenes), spa types (S. aureus), and ori-
gins (food processing environment, food products, and
human clinical isolates). Six L. monocytogenes strains were
mutants of the EGD strain and were mutated in genes
known to be involved in stress tolerance. The S. aureus col-
lection comprised two deletion mutants, strains Sa113/
�mprF [8] and Sa113/�dltA [7], known to be more sensi-
tive to host defense peptides. Two of the S. aureus strains
could not immediately be assigned to an existing spa type
and we are in the process of acquiring the additional
information that is needed to assign a new spa type to
them. The strains were obtained from The National Insti-
tute of Aquatic Resources and The National Food Insti-
tute, Technical University of Denmark, Faculty of Life
Sciences, University of Copenhagen, Denmark, Statens
Serum Institut, Denmark, University of Würzburg, Ger-
many and Campden Food and Drink Association, United
Kingdom. Stock cultures were stored at -80°C in 4% (w/
V) glycerol, 0.5% (w/V) glucose, and 2.0% (w/V)
skimmed milk powder. The bacteria were grown in Brain
Heart Infusion (BHI) broth (Oxoid, CM0225), Tryptone
Soy Broth (TSB) (Oxoid, CM129), and cation-adjusted
Mueller-Hinton II Broth (MHB) (Becton Dickinson,
212322) adjusted to pH 7.4. To avoid unspecific binding
of host defense peptides to plastic ware and agar, all MIC
determinations were carried out using polypropylene
plastic ware and radial diffusion assays were carried out in
MHB supplemented with 1% agarose (Invitrogen, 15510-
027) as gelling agent.

Host defense peptides and oxidative compounds
Protamine was purchased from Sigma (P4020-5G).
Plectasin, novicidin, and novispirin G10 were supplied by
Novozymes A/S. Recombinant HBD-3 was purchased
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Table 1: Origin, serotype, lineage, and MIC values of the Listeria monocytogenes strains used in the present study

Strain Origin Sero Lin MICa Ref
Pro Ple NoC NoS hBD H2O2

La22 CSb salmon 1/2a 2 16 128 4 64 16/16 0.23 [42]
V518a Fish processing 4b 1 32 64 8 64 - 0.94 [42]
N53-1 Fish processing 1/2a 2 16 128 2 32 16/32 0.47 [43]
No40-1 Fish processing 1/2a 2 16 128 4 64 - 0.47 [43]
R479a CS salmon 1/2a 2 16 128 4 64 - 0.47 [42]
O57 Gravad salmon 1/2a 2 16 128 4 128 - 0.47 [44]
H13-1 Fish processing 1/2a 2 16 128 4 64 - 0.94 [43]
La111 CS salmon 1/2a 2 8 64 4 32 8/16 0.94 [45]
M103-1 Fish processing 1/2a 2 32 128 4 64 - 0.94 [43]
EGD Wildtype 1/2a 2 8 64 4 64 16/16 0.47 c

2375 EGD perR del 1/2a 2 32 64 4 32 - 0.94 [46]
2374 EGD perR ins 1/2a 2 32 128 4 32 - 0.94 [46]
2275 EGD dps del 1/2a 2 16 64 4 64 - 0.94 [47]
2317 EGD prfA del 1/2a 2 16 128 4 64 - 0.94 c

2315 EGD sigB del 1/2a 2 8 64 4 64 - 0.94 [48]
2307 EGD resD del 1/2a 2 8 128 2 32 - 0.12 d

LO28 Wildtype 1/2c 2 8 64 2 16 - 0.47 [17]
4666 Human clinical 1/2b 1 8 64 8 64 - 0.18 [49]
4459 Human clinical 1/2a 2 16 128 4 32 - 0.23 [49]
7418 Spread. sausage 1/2b 1 32 64 4 64 4/8 0.18 [49]
4446 Human clinical 4b 1 16 64 4 64 16/16 0.47 [49]
6895 Ham 1/2a 2 16 128 4 96 - 0.35 [49]
7291 Pasta w chicken 4b 1 32 64 8 128 - 0.47 [49]
4239 Human clinical 1/2a 2 32 64 4 64 - 0.23 [49]
Scott A Human clinical 4b 1 16 64 4 32 8/8 N.D. e

a MIC values are given in �g/ml for the five human defense peptides and in % (V/V) for H2O2.
b CS: Cold-smoked
c The strains were kindly provided by Werner Goebel, University of Würzburg
d The strain was kindly provided by Marianne Halberg Larsen, University of Copenhagen, Faculty of Life Sciences.
e The strain was kindly provided by Campden Food and Drink Association, UK.

Table 2: Origin, spa type, and MIC values of Staphylococcus aureus strains used in the present study

Strain Origin spa MICa

Pro Ple NoC NoS hBD H2O2 Ref

8325-4 Wildtype t211 16 32 8 128 32/32 0.47 [50]
Sa113 Wildtype t211 16 32 6 128 - 0.18 [51]
�mprF Sa113 mprF del t211 8 4 1 8 - 0.12 [8]
�dltA Sa113 dltA ins t211 8 2 0.5 2 - 0.23 [7]
14943 Pork meat t012 16 8 8 256 32/64 0.23 b

15033 Pork meat t216 32 8 8 128 - 0.23 b

B31369 Human, clinical t216 16 16 12 256 64/64 0.47 b

796 Pasta salad t230 16 8 6 128 64/64 0.47 b

J15033 Human, clinical t230 16 8 8 128 - 0.23 b

2148-jvi Mastitis t518 16 1 4 64 32/32 0.47 b

K3-B2 French cheese t524 16 1 4 128 32/64 0.23 b

B29997 Human, clinical t548 16 16 4 128 - 0.23 b

KES 439 Human, clinical Ukc 32 2 4 128 - 0.23 [52]
KES 626 Human, clinical t1269 16 1 4 64 32/64 0.18 [52]
KES 735 Human, clinical Ukc 16 16 4 128 - 0.47 [52]
KES 855 Human, clinical t339 16 16 4 64 - 0.23 [52]

a MIC values are given in �g/ml for the five human defense peptides and in % (V/V) for H2O2.
b The strains were kindly provided by Jørgen Leisner, University of Copenhagen, Faculty of Life Sciences.
c Uk: Unknown.
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from PeproTech (300-52). The host defense peptides were
dissolved in 0.01% acetic acid/0.1% bovine serum albu-
min (Sigma, A7906). Hydrogen peroxide was purchased
from Bie & Berntsen (MER 1.07209.1000).

Determination of Minimum Inhibitory Concentration 
(MIC) and Minimum Bactericidal Concentration (MBC) of 
host defense peptides in liquid medium
The strain collection was tested for sensitivity to pro-
tamine, plectasin, novicidin, and novispirin G10 by deter-
mining their minimal inhibitory concentration (MIC)
using a microbroth dilution method [19]. Colonies from
a BHI agar plate incubated overnight were suspended in
MHB pH 7.4 to a turbidity of 0.11–0.12 at 546 nm
(approx. 1.0 × 108 CFU/ml) and diluted in MHB to a con-
centration of 5.0 × 105 CFU/ml. 90 �l of bacterial suspen-
sion was incubated with 10 �l of peptide solution in
polypropylene 96-well plates (Nunc, 442587) for 18–24
h at 37°C. The peptide solutions were made fresh on the
day of assay and diluted two-fold. The range of concentra-
tions assayed were 0.031–32 �g/ml for novicidin, 0.125–
128 �g/ml for protamine and novispirin G10, and 0.25–
256 �g/ml for plectasin. MIC was the lowest peptide con-
centration at which visual growth was inhibited. The min-
imum bactericidal concentration (MBC) values were
determined by plating l0 �l samples from wells with no
visible growth onto BHI agar plates. MBC was the lowest
concentration of each peptide of which 99.9% reduction
of the initial inoculum was observed.

Determination of Minimal Effective Concentration (MEC) 
of host defense peptides and H2O2 in radial diffusion assay
The MEC of HBD-3 was assayed on a sub-selection of
strains using a radial diffusion assay [20] with some mod-
ifications. In brief, MHB/1% agarose was supplemented
with glucose to an end-concentration of 0.1% (w/V) to
enhance the growth of L. monocytogenes and improve the
visualization of the inhibition zones. Bacterial suspen-
sions were prepared as described for MIC determination
in liquid medium, mixed with melted MHB pH 7.4/1%
agarose/0.1% glucose medium at 42°C to 5.0 × 106 CFU/
ml, and 10 ml gel was poured into 90 mm Petri dishes.
Following solidification on a leveling table, 1 mm wells
were punched with a Pasteur pipette. Two-fold dilutions
of HBD-3 were prepared in 0.01% acetic acid/0.1%
bovine serum albumin to a concentration range of 0.25–
256 �g/ml and 2 �l was added to each well. The plates
were incubated overnight at 37°C and MEC was deter-
mined as the lowest peptide concentration at which an
inhibition zone was observed. Each strain was tested in
two independent trials.

A similar assay was performed to determine the MEC of
hydrogen peroxide. The bacteria were prepared and mixed
with MHB/1% agarose as described above and 50 ml gel

was poured into 140 mm Petri dishes. The gel was allowed
to solidify and 3 mm wells were punched. Hydrogen per-
oxide was serially diluted from stock (30%) in Millipore
water and 10 �l was transferred to each well. The plates
were incubated overnight at 37°C and the MEC was read
as described above.

Extracellular virulence factors of S. aureus
S. aureus strains were examined for production of several
virulence factors to determine their variation in phenotypic
behavior. It was verified that all strains were S. aureus by
analyzing their production of protein A and clumping fac-
tor A using the BactiStaph identification kit (Oxoid,
R21144) as described by the manufacturer. The hemolytic
activity of S. aureus strains was determined in a microplate
hemolysin assay [21,22]. All strains were grown overnight
in BHI at 37°C with shaking and samples of the cultures
were centrifuged at 10,000 × g for 10 min. The supernatant
was treated with 10 mM dithiotreitol and 50 �l two-fold
dilutions were made in BHI in a microtiter plate with U-
formed wells. Bovine erythrocytes were washed in 0.9%
saline with 0.1% gelatin and 0.0043% sodium azide and
100 �l of a 0.5% suspension was added to the supernatant.
The plates were incubated at 37°C for 30–45 min and the
hemolytic activity was scored as follows: +++, strong hemo-
lysis; ++, moderate hemolysis; +, weak hemolysis; (+),
questionable hemolysis; -, no hemolysis. The assay was car-
ried out in duplicate. Staphylokinase activity was examined
as described earlier [23]. Plates containing fibrinogen were
prepared by dissolving human fibrinogen (Kordia, FIB 3)
in double strength TSB to a final concentration of 0.1% (w/
V). To this was added 3% (w/V) agar at 55°C and incubated
at this temperature for 10 min. Fetal bovine serum (Invitro-
gen, 10106-151) was added at 0.1% (V/V). Plates without
added serum served as controls for non-specific effects such
as might be due to high levels of protease. Isolated colonies
of each strain were then streaked onto the plates and incu-
bated overnight at 37°C. A clear zone surrounding the bac-
terial growth indicated staphylokinase activity. The assay
was repeated in two independent trials.  Catalase activity
was determined using the capillary tube catalase test as
described earlier [24]. Briefly, 3% (V/V) H2O2 were drawn
into capillary tubes (1 mm in diameter), a bacterial colony
was touched with the H2O2 tube, and the amount of gas
production was scored semiquantitatively after 10 seconds.
+(+), ++, ++(+), and +++ represent a few bubbles, moderate
number of bubbles, many bubbles, and gas forcing the 3%
H2O2 upwards in the capillary tube, respectively. Ten iso-
lated colonies were tested for each strain in two independ-
ent trials. Carotenoid production was assessed by smearing
isolated colonies on white filter paper. Finally the strains
were analyzed for production of enterotoxins A, B, C, and
D, and toxic shock syndrome toxin (TSST-1) using reversed
passive latex agglutination kits (Oxoid, TD0900 and
TD0940) as described by the manufacturer.
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S. aureus induced killing of C. elegans
For a sub-collection of S. aureus strains, the virulence was
assessed in C. elegans as described [25]. 20 �l overnight
culture of each strain was spread onto Nematode Growth
Medium (NGM) plates and incubated at 37°C over night.
For each strain, about 100 L4 hermaphrodites of the pha-
1 (e2123ts) mutant [26] were transferred from NGM
plates seeded with E. coli OP50 to the plates seeded with
staphylococci and incubated at 25°C. The plates were
scored for live and dead worms every 24 hours and 50%
mortality was taken as the time when 50% of the initial
number of worms were dead. At least three independent
trials were performed for each strain.

L. monocytogenes invasion into Caco-2 cells and induced 
killing of C. elegans
The data included are based on work presented in [27,28].
In brief, Caco-2 cells (ATCC HTB 37) for the invasion
assay were grown to monolayers in 96-well tissue culture
plates. Overnight cultures of L. monocytogenes were
adjusted to approximately 1.5 × 107 CFU/ml and allowed
to infect the Caco-2 cells for 1 hour at 37°C. Extracellular
bacteria were killed by incubation with 50 �g/ml gen-
tamicin for 1 hour at 37°C before the cells were lyzed
using 0.1% Triton X-100. The number of intracellular bac-
teria was determined by plate count. The C. elegans assay
was performed as described above for S. aureus except that
the bacteria were spread onto Luria-Bertani (LB) plates.

Human whole blood killing assay
A sub-selection of strains was tested for sensitivity to
human whole blood by incubating the individual L.
monocytogenes and S. aureus strains with blood to a final
concentration of 75%. Human blood samples were
obtained from a normal healthy volunteer by venous
puncture and collected in BD vacutainers coated with
3.8% citrate (Hettich Labinstruments Aps, 455382). Bac-
terial suspensions were prepared as described for MIC
determination and diluted in MHB to a final concentra-
tion of approximately 5.0 × 103 CFU/ml, followed by
addition of fresh human blood or peptone saline (0.1%
peptone, 0.85% NaCl) as a control. E. coli MG1655 was
used as a positive control for neutrophil-mediated killing.
The mixtures were shaken (300 rpm) at 37°C for 24
hours. To determine bacterial viability, aliquots were
withdrawn at the beginning of the assay and after 2, 4, 6,
and 24 hours of incubation and serial dilutions were
plated onto BHI agar. Each strain was tested in duplicate
in two independent trials.

Statistical analysis
Data were analyzed using GraphPad Prism Statistical soft-
ware. Data did not follow a Gaussian distribution and so
Friedman's test was used to compare strains and Kruskal-
Wallis test was used to compare groups. Dunn's post test

was used for both. If only two groups were compared, the
Mann-Whitney test was used. Since MIC and MEC values
were determined from two-fold dilutions of peptides,
these data were log2-transformed before test.

Results
MIC and MBC of HDP in liquid medium against L. 
monocytogenes and S. aureus
We compared the sensitivity of 25 L. monocytogenes strains
and 16 S. aureus strains to four model HDPs (Table 1 and
Table 2). The MIC values of the four HDPs against L.
monocytogenes were 8–32 �g/ml (protamine), 32–128 �g/
ml (plectasin), 2–8 �g/ml (novicidin), and 4–128 �g/ml
(novispirin G10). For S. aureus the range was 8–32 �g/ml
(protamine), 1–32 �g/ml (plectasin), 0.5–12 �g/ml
(novicidin), and 2->128 �g/ml (novispirin G10). Pro-
tamine appeared to be equally efficient against both L.
monocytogenes and S. aureus, while plectasin was more
active against S. aureus than L. monocytogenes. Both novici-
din and novispirin G10 were equally effective against the
two bacteria and novicidin was clearly more potent than
its parent peptide. The minimum bactericidal concentra-
tions (MBC) of plectasin, novicidin, and novispirin G10
were identical to the MICs, suggesting that all three pep-
tides have pronounced bactericidal effects.

The two peptide-sensitive S. aureus mutants (SA113/
�mprF and SA113/�dltA) were, logically, more sensitive
than the rest of the strains but otherwise there was no sig-
nificant differences in peptide sensitivity between neither
L. monocytogenes (p = 0.0718) nor S. aureus (p = 0.0647).
Some differences were found between L. monocytogenes
lineages in tolerance to single peptides (lineage 1 strains
were more sensitive to plectasin, p = 0.01, and lineage 2
strains were more sensitive to novicidin, p = 0.0334), but
there was no difference in tolerance between lineages to
all the four peptides together (p = 0.4627). Likewise, no
significant differences were found when the strains were
grouped according to origin (clinical, food, and process-
ing), suggesting that there is no systematic differences in
peptide tolerance between the strains.

No systematic differences in MEC values of human �-
defensin 3 between strains
A sub-selection of strains was tested against the human
host defense peptide �-defensin 3 (HBD-3) to compare
the activity spectrum to the four model-peptides. HBD-3
was originally identified in skin and is also expressed in
epithelial cells lining the digestive tract and is active
towards Gram-positive bacteria [29]. It is therefore highly
relevant when examining both L. monocytogenes and S.
aureus. The MEC values varied between 6 and 24 �g/ml for
L. monocytogenes and 32 and 64 �g/ml for S. aureus (Tables
1 and 2). As for the non-human model-peptides, there
was no systematic variation in MEC values when the



BMC Microbiology 2008, 8:205 http://www.biomedcentral.com/1471-2180/8/205

Page 6 of 10

(page number not for citation purposes)

strains were grouped according to origin for neither L.
monocytogenes (p = 0.2276) nor S. aureus (p = 0.2899). The
MEC spectrum of HBD-3 was similar to the four non-
human peptides.

MEC of hydrogen peroxide against L. monocytogenes 
and S. aureus in radial diffusion assay
The susceptibility of the strains to an oxidative burst gen-
erated by hydrogen peroxide was assayed by a radial diffu-
sion assay (Tables 1 and 2). MEC values were in the range
of 0.12–0.94% (V/V) against L. monocytogenes and 0.12–
0.47% (V/V) against S. aureus. As was the case with the
HDPs no systematic difference in tolerance between
strains could be observed when grouped according to ori-
gin for neither L. monocytogenes (p = 0.0571) nor S. aureus
(p = 0.5225). Also, there was no difference in tolerance
between L. monocytogenes lineage 1 and 2 strains (p =
0.1491).

Determination of virulence factor expression and 
phenotypic behavior in L. monocytogenes and S. aureus 
strains
To address if differences in peptide sensitivity among
strains reflect their virulence potential, it is necessary to
have a collection of strains that represent a wide spectrum
of virulence factor expression. We have previously shown
that the L. monocytogenes strains used in the present study
differ in behavior in several virulence factor assays. The
strains varied in their ability to invade Caco-2 cells and in
their killing kinetics against C. elegans [27,28]. A sub-collec-
tion of strains (Table 3) was selected for the present study
to span the different behavior in the virulence models.

To select a similar representative sub-collection of S.
aureus strains, each strain was analyzed for several extra-
cellular virulence factors (Table 4).

The two HDP-sensitive mutants had significantly lower
virulence factor expression than the rest (p = 0.0299),
which could indicate that intrinsic HDP tolerance may be
related to virulence of pathogenic bacteria. The rest of the
strains varied in the expression of the individual virulence
factors but no clear patterns in phenotypic behavior were
found.

For instance, the clinical strains were not more hemolytic
than the rest of the strains (p = 0.4676) consistent with
reports on clinical strains without hemolytic activity
[30,31]. In this study an animal clinical strain, 2148-jvi,
was found to be non-hemolytic and two human clinical
strains, KES 439 and KES 735, were only weakly hemo-
lytic. Likewise, there was no correlation between the pro-
duction of catalase and carotenoid (r = 0.444, p = 0.085),
suggesting that these oxidative attack defense mechanisms
contribute differently in each strain.

Three strains produced enterotoxins and only one of
these, strain 14943, produced both enterotoxin A and
TSST-1.

Seven strains were selected to represent different expres-
sion levels of the virulence factors and different strain ori-
gin. These were analyzed for their killing kinetics in a C.
elegans worm model. The seven S. aureus strains killed the
C. elegans more rapidly than the negative control strain E.

Table 3: Virulence assessment and survival in whole blood of a sub-collection of L. monocytogenes strains

Strain Invasion Caco-2 (CFU/ml) 50% mortality C. elegans (hours) Cell density Whole blood (CFU/ml)

La22 1.4 × 105 - 6.4 × 103

V518a 3.8 × 105 - -
N53-1 1.9 × 102 110 1.3 × 103

No40-1 1.1 × 105 - -
R479a 2.4 × 104 - -
O57 4.1 × 104 - -
H13-1 5.5 × 102 - -
La111 4.1 × 102 110 2.9 × 102

M103-1 1.9 × 102 - -
EGD 2.1 × 104 110 1.3 × 103

LO28 5.3 × 103 - -
4666 3.1 × 105 - -
4459 8.5 × 104 - -
7418 2.8 × 105 80 2.8 × 104

4446 1.2 × 105 80 4.3 × 104

6895 3.3 × 104 - -
7291 2.6 × 105 - -
4239 1.9 × 104 - -
Scott A 2.8 × 105 80 9.0 × 102

Data on Caco-2 cell invasion and C. elegans mortality based on [27,28].
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coli OP50 (Figure 1 and Table 4). The strains differed with
respect to the time taken to reach 50% mortality of the
worms. When feeding on the two fastest killers, the
human clinical strains KES 626 and B31369, the worms
reached 50% mortality in 118 and 140 hours respectively.
The three food isolates 14943, 796, and K3-B2 resulted in
50% mortality after 157 hours, 223 hours, and 225 hours
respectively. Feeding on the laboratory reference strain
8325-4 took 184 hours to reach 50% mortality, while the

mastitis isolate 2148-jvi led to 50% mortality in 256
hours.

Difference in ability to survive and grow in whole blood
A sub-collection of strains was examined for their behav-
ior in human whole blood to analyze the response of
these strains to a more complex model of the innate
immune system. The strains were chosen on the basis of
their origin and their behavior in the virulence factor
assays described above (Table 3 and Table 4).

All seven L. monocytogenes strains were able to survive in
human whole blood for 24 hours (Figure 2A). Strains
EGD and Scott A remained at approximately the same cell
number during the 24 hours of incubation, whereas the
strains N53-1 and La111 grew during the first four hours
of incubation and thereafter declined to the inoculation
level or just below. The last three strains grew throughout
the experiment. La22 increased approximately half a log
unit and both 7418 and 4446 grew to approximately one
log unit over inoculation level. The ability to grow and/or
survive in whole blood was to some extent paralleled by
the ability of the strains to invade Caco-2 cells and kill C.
elegans worms. Thus, the better the survival or growth, the
higher the invasion into Caco-2 cells and mortality in C.
elegans. 7418 and 4446 both grew well in whole blood,
were highly invasive in Caco-2 cells, and killed 50% of the
C. elegans worms in 80 hours. Likewise, N53-1 and La111
whose cell numbers were declining in whole blood both
were low invasive in Caco-2 cells and took 110 hours to
kill 50% of the worms. For La22, EGD, and Scott A there

Table 4: Virulence assessment of the S. aureus strain collection

Strain Hemolysis Staph. kin. Catalase Carotenoid Enterotoxin TSST-1 C. elegans Blood
A B C D

8325-4 +++ - a ++ + - - - - - 184 2.4 × 108

Sa113 - - ++ ++ - - - - -
�mprF - - ++(+) ++ - - - - -
�dltA - - +(+) + - - - - -
14943 - - ++(+) +++ +++ - - - +++ 157 7.6 × 108

15033 ++ - +++ +++ - +++ - - -
B31369 ++ - ++(+) +++ - +++ - - - 140 1.1 × 108

796 (+) - ++(+) +++ - - - - - 223 2.5 × 108

J15033 (+) - ++ +++ - - - - -
2148-jvi - - ++(+) ++ - - - - - 256 3.0 × 106

K3-B2 + - ++ ++ - - - - - 225 3.4 × 107

B29997 (+) - ++(+) +++ - - - - -
KES439 (+) - ++ ++ - - - - -
KES626 +++ - a ++(+) + - - - - - 118 1.0 × 109

KES735 (+) - ++ +++ - - - - -
KES855 ++ - ++ ++ - - - - -

a A clearing zone on both plates with and without added serum indicate a high production of proteases.
Tests include hemolytic activity, staphylokinase activity, catalase activity, carotenoid production and production of exotoxins. A sub-selection of 
strains were tested for their killing kinetics against C. elegans (time to 50% mortality, h) and their ability to survive and grow in human whole blood 
(cell density after 24 h, CFU/ml).

Assessment of virulence of a sub-selection of S. aureus strains against C. elegansFigure 1
Assessment of virulence of a sub-selection of S. 
aureus strains against C. elegans. 100 pha-1 mutant 
worms were tested for each strain. % mortality indicates the 
number of dead worms relative to the starting number of 
worms. Error bars represent standard deviations of triplicate 
measures.
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was not a clear pattern. There was a correlation between
the invasive ability in Caco-2 and the lethality in C. elegans
(r = -0.891, p = 0.033) but the survival in whole blood
could not be correlated to neither Caco-2 invasion (r =
0.327, p = 0.498) nor C. elegans (r = -0.495, p = 0.356).

All seven S. aureus strains both survived and grew in whole
blood (Figure 2B). Six of the strains had nearly identical
growth patterns. KES 626 was the strain that reached the
highest cell density (1.0 × 109 CFU/ml) after 24 hours.
This was also the strain that killed the C. elegans worms
the fastest. 2148-jvi grew remarkably poorer than the rest
and reached a cell density of only 3.0 × 106 CFU/ml after
24 hours. When C. elegans fed on 2148-jvi, 50% mortality
was not reached until after 256 hours compared to 118
hours for KES 626. There was however, no statistical cor-
relation between killing time in C. elegans and survival in
whole blood for the seven strains (r = -0.750, p = 0.066).

Together, the C. elegans and whole blood assays do not
identify more virulent strains but they do indicate that the
strains differ in phenotypic behavior.

Discussion
In the present study, we found that antimicrobial compo-
nents of the innate immune defense (HDPs and hydrogen
peroxide) act equally well on several strains of two patho-
genic bacterial species (Table 1 and 2). We did not find
significant inter-strain differences in sensitivity to neither
the HDPs nor hydrogen peroxide. In general, the S. aureus
strains were more sensitive to plectasin than L. monocy-
togenes, which is in concordance with previous findings
[5]. The four non-human model peptides represent each
of the three classes of host defense peptides and were sim-
ilar in MIC spectrum to HBD-3.

Generally, L. monocytogenes strains from clinical cases are
more virulent than strains isolated from environmental
sources such as food [32]. Therefore, one could expect that
the clinical isolates would be more tolerant to HDPs or
hydrogen peroxide. However, no consistent patterns in
tolerance were observed when the strains were grouped
according to their origin.

The lack of difference between L. monocytogenes strains to
the eukaryotic cationic peptides tested here is in contrast
to the differences in sensitivity of strains to the bacterial
cationic peptides, bacteriocins, that have been observed in
several studies [33-35]. The differences could, however,
not be correlated to neither strain origin [33] nor serovar
[35] and may simply reflect the natural variation within
the bacterial population.

There was no similarity in the S. aureus strains' perform-
ance in the virulence factor assays and their tolerance to
the antimicrobial compounds of the innate immune
defense system. Compared to L. monocytogenes, the disease
spectrum of S. aureus is more complex. To assess the dif-
ferences in phenotypic behavior of the S. aureus strains in
parallel to the data we have obtained earlier for L. monocy-
togenes [27,28], we analyzed the S. aureus strains for sev-
eral virulence factors that all contribute to evasion of the
neutrophil attack at the site of infection [36]. There was
considerably variation between the S. aureus strains for
each of the single virulence factors tested in this study.
However, none of the strains could be identified as gener-
ally more or less virulent than the rest and probably reflect
that each strain is more or less specialized or virulent in
one (or more) type(s) of infection(s).

The growth of L. monocytogenes and S. aureus strains in
human whole blood and lethality in C. elegans demon-
strated that the strains differed in growth in such eukaryo-
tic systems but this could not be matched to tolerance to

Survival of selected L. monocytogenes (A) and S. aureus (B) strains in human whole bloodFigure 2
Survival of selected L. monocytogenes (A) and S. 
aureus (B) strains in human whole blood. Strains were 
adjusted to 1.0 × 103 CFU/ml, mixed 1:3 with human whole 
blood, and incubated at 37°C. E. coli MG1655 was used as a 
positive control for neutrophil killing. Bars represent stand-
ard deviations of duplicate observations. Graphs are repre-
sentative of two independent experiments. Arrows indicate 
that cell numbers were below the detection limit (1.0 × 101 

CFU/ml).

0

1

2

3

4

5

6

0 4 8 12 16 20 24

Time (hours)

lo
g

10
 (

C
F

U
/m

l) 4446
7418
La22
N53-1
2063
Scott A
La111
MG1655

A

0

1

2

3

4

5

6

7

8

9

10

0 4 8 12 16 20 24

Time (hours)

lo
g

10
 (

C
F

U
/m

l) KES 626
B31369
14943
8325-4
796
K3-B2
2148-jvi
MG1655

B



BMC Microbiology 2008, 8:205 http://www.biomedcentral.com/1471-2180/8/205

Page 9 of 10

(page number not for citation purposes)

host defense peptides or hydrogen peroxide. Likewise,
there was no statistical correlation between the growth of
L. monocytogenes in whole blood and the invasive ability in
Caco-2 cells [27] or the lethality in C. elegans [28]. The
ability of S. aureus to grow in human whole blood was not
paralleled by any of the virulence parameters tested here.
Liu and co-workers showed that disruption of the carote-
noid biosynthesis impaired the resistance to both neu-
trophil and whole blood killing [37]. We found that strain
2148-jvi which had an intermediate carotenoid produc-
tion grew poorly in human whole blood, whereas both
8325-4 and KES 626 which had a low carotenoid produc-
tion grew very well in whole blood. There was no correla-
tion between the S. aureus strains' growth in whole blood
and their lethality in C. elegans, although the best and the
poorest survivor (KES 626 and 2148-jvi, respectively) also
were the fastest and the slowest to kill the worms. Blood
from different donors may have different bactericidal
activity and we initially compared the sensitivity of L.
monocytogenes EGD to blood from three donors. The strain
was equally sensitive to all three and the experiments were
therefore performed with blood from only one donor.

The HDPs are widespread as a diverse and very well-con-
served part of the defense system in all eukaryotes and
have retained their antimicrobial activity for millions of
years, hence the acquisition of resistance towards HDPs is
considered unlikely. This has prompted the use of the
design principles of these molecules for the design of new
anti-infective drugs [3,38]. Indeed, several novel HDPs
have been discovered and are thought to represent one of
the most innovative families of anti-infective agents that
have been characterized over the last 25 years [4,5]. In
addition, HDPs have also been suggested as natural alter-
natives to chemical food preservatives [39-41].

Our data indicate that such host defense peptides would
be well suited for both purposes as they appeared to have
broad bactericidal effect on human pathogenic bacteria
with different expression patterns of virulence factors. The
lack of natural strains with a particular high tolerance to
the peptides indicates that they are likely to be effective
independently of the particular strain causing the infec-
tion.

Conclusion
We found that a collection of L. monocytogenes and S.
aureus strains did not differ in tolerance to single compo-
nents of the innate immune system despite representing a
broad spectrum of phenotypically different organisms.
Four non-human host defense peptides were similar in
activity profile (MIC value spectrum) to the human HBD-
3 when examined against a sub-selection of strains. When
the same sub-selection was tested in human whole blood
and C. elegans worms, differences between strains were

found in each assay but there was no correlation between
the two models. The broad activity of the HDPs against
several strains of a pathogenic species indicates that natu-
ral resistance is not present in a population and these
HDPs may indeed, as suggested, be useful as novel antimi-
crobials.
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ABSTRACT 1 

Aims: Host defense peptides (HDPs) are explored as novel antimicrobials in the clinical 2 

setting and in foods. However, the sensitivity to HDPs may change if the bacterium is 3 

stressed before being exposed to HDPs. Our aim was to investigate the growth and survival 4 

of Listeria monocytogenes in the presence of HDPs and determine if growth under 5 

environmental stress conditions affected the tolerance to HDPs. 6 

Methods and results. Growth and survival of Listeria monocytogenes EGD and sigB mutant 7 

in the presence of the HDPs plectasin or novicidin was followed by OD measurements and 8 

colony counts. Neither growth nor survival was affected in the sigB mutant. Three wildtype 9 

strains of L. monocytogenes were grown under food-related stress conditions (5% NaCl, pH 10 

5.5 or 10°C/5°C) prior to exposure to HDPs. Pre-exposure to stress did not alter the strains’ 11 

tolerance to subsequent HDP treatment. 12 

Conclusions: SigmaB does not contribute to L. monocytogenes growth and survival of HDP 13 

treatment. In addition, pre-exposure of L. monocytogenes to a food relevant stress factor did 14 

not alter its sensitivity to HDPs. 15 

Significance and impact of the study: Our results suggest that therapeutic use of HDPs 16 

will not be hampered by a stress response in pathogenic bacteria that would render them 17 

more tolerant to HDPs. 18 

 19 

Keywords: L. monocytogenes, sigma B, host defense peptides, tolerance, environmental 20 

stress 21 
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INTRODUCTION 1 

Host defense peptides (HDPs) are a central part of the innate immune defense of virtually 2 

every life form and have retained antimicrobial activity through millions of years, probably 3 

due to a delicate balance in the co-evolution of HDPs and microbes and their development of 4 

resistance mechanisms (Peschel & Sahl 2006). The broad antimicrobial activity and rapid 5 

action as well as their recently discovered additionally immunomodulatory properties, have 6 

prompted a massive interest in HDPs as a new generation of antimicrobials (Hancock & Sahl 7 

2006). Also, the broader group of antimicrobial peptides (AMPs) are being researched as 8 

possible food preservatives (Potter, Hansen, & Gill 2005). However, the potential use of 9 

HDPs outside their natural environment e.g. in a clinical setting against “foreign” microbial 10 

pathogens might confer a different kind of selection pressure on the microbial pathogens, 11 

leading to development of resistance. In the context of HDPs being suggested as novel 12 

antimicrobials, it is important to understand the response of bacteria to these peptides and in 13 

particular if previous growth conditions (stress) would alter their sensitivity. 14 

During the infectious process, pathogenic microorganisms encounter various stresses 15 

imposed by the innate immune system, including acidic and oxidizing conditions and the 16 

secretion of an arsenal of HDPs with different mechanisms of action. Hence, it could be 17 

speculated that the virulence potential is closely related to the ability of the pathogenic 18 

microorganism to cope with these stresses. Indeed, pathogenic bacteria with mutations 19 

rendering them less susceptible to HDPs have shown attenuated virulence (Abachin et al. 20 

2002;Mandin et al. 2005;Peschel et al. 1999;Peschel et al. 2001;Thedieck et al. 2006), 21 

indicating the important role of tolerance to HDPs in pathogenicity and possibly also in 22 

virulence.   23 

Listeria monocytogenes is a Gram-positive food borne pathogen that is capable of surviving 24 

and growing under conditions normally used in food conservation, including lowering pH, 25 

increasing the salt content and storage at cold temperatures (Farber & Peterkin 1991). 26 

Exposure to sub-lethal environmental stress conditions induce a stress response in L. 27 
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monocytogenes that renders it more tolerant to other forms of stress (Lou & Yousef 1997). 1 

The stress response is mediated by the Gram-positive central stress response regulator, 2 

SigmaB, that contributes to bacterial survival under adverse growth conditions, including high 3 

osmolarity, acid stress, cold stress and oxidizing conditions (Becker et al. 1998;Buncic et al. 4 

2001;Ferreira, O'Byrne, & Boor 2001;Sue et al. 2004). SigmaB also regulates the expression 5 

of several virulence genes, including invasion-mediating inlA in L. monocytogenes (Garner et 6 

al. 2006a;Kazmierczak et al. 2003;Kim, Marquis, & Boor 2005) suggesting that SigmaB may 7 

contribute to the virulence of L. monocytogenes. The response of L. monocytogenes to 8 

bacterial antimicrobial peptides, bacteriocins, has also been shown to be dependent on 9 

SigmaB (Begley, Hill, & Ross 2006;Palmer, Wiedmann, & Boor 2009) and the other way 10 

around, antimicrobial peptides have been shown to activate the alternative sigma factor E in 11 

Salmonella enterica serovar Typhimurium and Vibiro cholerae (Crouch et al. 2005;Mathur, 12 

Davis, & Waldor 2007). 13 

The purpose of this study was to investigate the growth and survival of Listeria 14 

monocytogenes in the presence of HDPs and determine if growth under environmental 15 

stress conditions prior to HDP treatment affected the tolerance of the bacteria to HDPs. We 16 

hypothesized that a sigB mutant was attenuated in growth and survival in the presence of 17 

HDP, and that exposure to food-related environmental stress factors could increase the 18 

tolerance of L. monocytogenes to HDPs. We found no effect of a deletion of sigB on the 19 

growth or survival of HDP treatments, neither could we demonstrate an increased tolerance 20 

to HDPs after stress adaptation to food-related environmental stress factors. Together, our 21 

results suggest that the potential use of HDPs will not be hampered by a stress response in 22 

pathogenic bacteria that would render them more tolerant to HDPs and thus lowering the 23 

therapeutic effect of HDPs. 24 

 25 

MATERIALS AND METHODS 26 

Strains and culture conditions 27 
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Experiments were carried out with a collection of six Listeria monocytogenes strains 1 

representing different origins (food processing environment, food products and human 2 

clinical strains), and different sub-types (RAPD-types, serotypes and lineages) (Table 1). 3 

Stock cultures were stored at -80°C in 4% (w/v) glycerol, 0.5% (w/v) glucose and 2.0% (v/w) 4 

skimmed milk powder. The bacteria were grown in Brain Heart Infusion (BHI) broth (Oxoid, 5 

CM0225) and enumeration was done on BHI agar (Oxoid, CM0225 and AppliChem, A7354). 6 

Treatments with HDPs were performed in cation-adjusted Mueller-Hinton II Broth (MHB) 7 

(Becton Dickinson, 212322) adjusted to pH 7.4. Plectasin and novicidin were supplied by 8 

Department of Antiinfective Discovery, Novozymes A/S. Peptides were diluted in peptide 9 

dilution buffer (0.01% acetic acid/0.1% bovine serum albumin) (Sigma, A7906). 10 

Growth of L. monocytogenes EGD and L. monocytogenes ΔΔΔΔsigB in the presence of 11 

sublethal concentrations of HDPs 12 

Overnight cultures of L. monocytogenes EGD and its ΔsigB mutant were inoculated (3%, 750 13 

μL in 25 mL, 3:100) in MHB pH 7.4 and plectasin or novicidin was added to a final 14 

concentration of 16 μg/mL and 1 μg/mL, respectively, corresponding to ¼ MIC. The culture 15 

was incubated at 37°C with aeration (300 rpm) and OD546 was measured every two hours. 16 

HDP-mediated killing of L. monocytogenes EGD and L. monocytogenes ΔΔΔΔsigB  17 

To investigate if the stress response in L. monocytogenes was involved in responding to 18 

HDPs, L. monocytogenes EGD and L. monocytogenes EGD ΔsigB were treated with 19 

plectasin at MIC, two times MIC, and four times MIC. Colonies from a BHI agar plate 20 

incubated overnight were suspended in MHB pH 7.4 to a turbidity of 0.11-0.12 at 546 nm 21 

(approx. 1.0 × 108 CFU/ml) and diluted in MHB to a concentration of 5.0 × 105 CFU/mL. The 22 

bacterial suspensions were treated with plectasin, and incubated under aerated conditions 23 

(300 rpm) at 37°C. Cells treated with peptide dilution buffer were included as controls. To 24 

determine bacterial viability, aliquots were withdrawn at the beginning and after 1, 2, 4, 6, 8, 25 

and 24 hours of incubation and serial dilutions were plated onto BHI agar.  26 
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Treatment of L. monocytogenes with plectasin, novicidin, or a combination of both 1 

Bacterial suspensions of 5 × 105 CFU/mL were prepared as described above and treated 2 

with plectasin, novicidin or a combination of both. Bacteria were treated with plectasin (64 3 

μg/mL, corresponding to the MIC value) and with novicidin (1 μg/mL, corresponding to ¼ 4 

MIC), since the fast killing obtained when treating with MIC values of novicidin masked any 5 

effects of treating with the two peptides together. The cell suspensions were incubated at 6 

37°C with aeration (300 rpm) and aliquots were withdrawn at 0, 1, 2, 4, 6, and 24 hours for 7 

determination of bacterial viability by plate count. Two independent experiments were 8 

performed. 9 

Treatment with plectasin, novicidin, or a combination after pre-incubation under 10 

stressful conditions 11 

Fresh colonies of L. monocytogenes N53-1, EGD, and 4446 from BHI agar plates were 12 

inoculated into TSB with 1% (w/V) glucose with or without stress. Stresses include 5% (w/V) 13 

sodium chloride, pH 5.5 (adjusted with 1 M HCl), and incubation at 10°C and 5°C. Bacteria 14 

treated with 5% NaCl or pH 5.5 were incubated 24 hours at 37°C with aeration (300 rpm), re-15 

inoculated (100 �L in 5 mL) in media with or without the stress factor and incubated for 16 

another 24 hours at 37°C. Bacteria exposed to cold stress were inoculated in TSB with 1% 17 

glucose, and incubated for 4 days at 10°C, reinoculated in TSB 1% glucose and incubated 7 18 

days at 5°C. For all experiments controls grown in TSB with 1% glucose at 37°C were 19 

included. After stress treatment, the bacteria were harvested by centrifugation (2,000 x g for 20 

10 min), washed in MHB pH 7.4 and adjusted to 5×105 CFU/mL as described above. 21 

Plectasin was added to a final concentration of 128 �g/mL (N53-1 and EGD) or 256 �g/mL 22 

(4446) and novicidin was added to a final concentration of 4 �g/mL for all three strains. 23 

Samples were incubated at 37°C with aeration (300 rpm) and aliquots were withdrawn after 24 

0, 2, 4, 6, 24, and 48 hours for enumeration by plate count on BHI agar. Each experiment 25 

was performed once. 26 

RESULTS 27 
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No difference in growth between L. monocytogenes EGD and L. monocytogenes 1 

ΔΔΔΔsigB when treated with sublethal concentrations of HDPs 2 

To investigate if SigmaB has a role in coping with the stress conferred by HDPs, we 3 

examined the growth of L. monocytogenes EGD and a ΔsigB mutant in the presence of 4 

sublethal concentrations of plectasin and novicidin. There was no difference between the 5 

wildtype and ΔsigB mutant in growth when treated with sublethal concentrations of plectasin 6 

and novicidin (Figure 1). In general, there was no difference in the growth of the EGD 7 

wildtype and the ΔsigB mutant, albeit the mutant grew slightly slower. Compared to when 8 

grown in peptide dilution buffer alone, cultures treated with plectasin had the same lag 9 

phase, but grew a little slower and went into stationary phase at a lower cell density. On the 10 

other hand, novicidin apparently act much more potent on the bacteria compared to 11 

plectasin, as even a ¼ MIC resulted in an 8 hour lag-phase.  12 

Equal killing time for plectasin on L. monocytogenes EGD and L. monocytogenes 13 

�sigB 14 

To investigate how SigmaB affected the survival of L. monocytogenes of treatment with 15 

HDPs, we examined the killing kinetics during plectasin exposure of L. monocytogenes EGD 16 

and a ΔsigB mutant (Figure 2). When treated with peptide dilution buffer alone, both strains 17 

grew equally well, indicating that the sigB deletion does not influence growth rate. When 18 

treated with plectasin at MIC, two times MIC and four times MIC values, there was no 19 

difference in killing time between the two strains, indicating that SigmaB does not contribute 20 

to survival in the presence of plectasin. 21 

Treatment with plectasin at MIC, but not two and four times MIC, resulted in regrowth of both 22 

strains after eight hours. To determine whether regrowth was due to use or degradation of 23 

plectasin or an adaptation/ tolerance in the bacteria to plectasin, the MIC of plectasin was 24 

determined against the 24 h cultures treated with buffer and 64 μg/ml plectasin respectively. 25 

MIC was 64 μg/mL for the cultures treated with dilution buffer and 32 μg/mL for the cultures 26 
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treated with plectasin (data not shown). Thus, the cultures treated with plectasin have 1 

apparently not adapted to plectasin and it is not a plectasin-tolerant subpopulation that has 2 

emerged.  3 

Additive effect of plectasin and novicidin against L. monocytogenes 4 

So far, we have investigated the effect of treatment with single peptides, however, in vivo the 5 

pathogenic bacteria are met by an arsenal of different HDPs with different mechanisms of 6 

action that complement each other. Consequently, we also investigated the survival of L. 7 

monocytogenes in the presence of a combination of plectasin and novicidin to mimic the 8 

conditions at the mucosal surfaces and in the blood. 9 

When treating bacterial suspensions with MIC concentrations of novicidin, the cell counts are 10 

immediately reduced by 2-3 log units (data not shown). Therefore, we determined which sub-11 

inhibitory concentrations should be used in the combination treatment, so that the immediate 12 

effect of novicidin would not mask any combined effects of using the two peptides together 13 

and found that L. monocytogenes was mildly affected by 1 �g/mL (¼ MIC). Treatment with 14 

plectasin alone resulted in a 0.5 log unit reduction during the first eight hours of growth 15 

(Figure 3), and then the cells start to recover. Treatment with novicidin alone resulted in an 16 

immediate reduction of about one log unit, and the cell counts were further reduced by one 17 

log unit during the first hour of treatment before they started to recover. The combination of 18 

plectasin and novicidin resulted in a 3.5 log unit reduction in total during the first four hours of 19 

incubation before the cells started to recover. Thus, the effect of plectasin and novicidin 20 

seems to be additive (Figure 3). As mentioned above, the regrowth observed for all 21 

treatments is probably due to a degradation or use of the peptides. 22 

Pre-incubation under stressful conditions do not alter the response of L. 23 

monocytogenes strains to HDPs 24 

The use of the hurdle principles in food conservation can induce a stress response in food 25 

borne bacteria that renders them more tolerant to subsequent stresses e.g. of the immune 26 
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system (Andersen et al. 2007). To investigate if the stresses that L. monocytogenes is likely 1 

to meet during food conservation and storage would influence the tolerance to HDPs we 2 

pretreated three L. monocytogenes strains with three food preservation stresses: Growth at 3 

5°C and 10°C, in 5% (w/V) sodium chloride, or at pH 5.5. Subsequently, L. monocytogenes 4 

strains were treated with plectasin, novicidin, or a combination of both.  5 

There was no variation in the tolerance to the peptide treatments between the strains when 6 

they were grown in TSB 1% glucose without stress (data not shown), which is in accordance 7 

with our previous observations on the natural variability in peptide tolerance among strains of 8 

L. monocytogenes (Gottlieb et al. 2008). In addition, the pretreatment with 5% NaCl, pH 5.5, 9 

or 5°C did not affect the general growth ability of the strains as seen when the growth curves 10 

of the strains treated with peptide dilution buffer alone were compared (Figure 4d, 5d, and 11 

6d). Pretreatment with 5% NaCl did not affect the tolerance to the subsequent treatment with 12 

plectasin (Figure 4a) or the combination of plectasin and novicidin (Figure 4c). There were 13 

some differences between the strains with respect to regrowth with novicidin treatment 14 

(Figure 4b), however the differences seem to be more strain-dependent than stress-15 

dependent. No differences were observed between strains in tolerance to all three peptide 16 

treatments after pretreatment with low pH (Figure 5a-c) even though a diminutive regrowth 17 

was observed for N53-1 pretreated at pH 5.5, 4446 pretreated at pH 7.0, and EGD 18 

pretreated at pH 5.5. Incubation at 10°C and 5°C compared to 37°C did not alter the 19 

tolerance of the strains to plectasin (Figure 6a), except for EGD grown at 37°C that showed a 20 

remarkable lower tolerance than the rest of the strains. This result could however not be 21 

reproduced and is thus probably an artifact. As seen with pretreatment in the presence of 22 

NaCl, there were some differences in recovery after novicidin treatment (Figure 6b). Again, 23 

the difference appears to be more strain-dependent, although non-stressed cultures seem to 24 

recover better than stressed ones. The regrowth phenomenon is probably due to coincidence 25 

caused by small variations in inoculation levels or peptide concentrations between assays 26 

than it reflects actual strain- or stress differences.  27 
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Together, none of the three stressful conditions used in this study altered the tolerance of the 1 

strains to the subsequent peptide treatments, indicating that adaptation to food-related 2 

stresses does not increase the tolerance of the strains to HDPs. However, it is possible that 3 

any induced protection is abolished during harvesting from the stress media and suspension 4 

in a new media (without the stressor) for treatment with HDPs. It is noteworthy that the 5 

combination of plectasin and novicidin effectively killed all strains irrespective of origin and 6 

environmental stress conditions. 7 

 8 

DISCUSSION 9 

In this study we hypothesized that the HDPs of the innate immune system confer a stress 10 

upon the invading bacteria, and consequently that a mutant in the central stress response 11 

regulator, sigB, could be expected to be more sensitive to the stresses imposed by the host 12 

defense system.  We have investigated the influence of HDPs on the growth and survival of 13 

L. monocytogenes EGD and its ΔsigB mutant. We have also examined whether pretreatment 14 

with food-relevant stress factors altered the tolerance to subsequent treatment with HDPs. 15 

 16 

We found that there was no difference in the growth of L. monocytogenes EGD and its ΔsigB 17 

mutant in the presence of sublethal concentrations of the two HDPs plectasin and novicidin 18 

(Figure 1). Likewise, there was no difference in the survival of the wildtype and ΔsigB mutant 19 

of plectasin treatment (Figure 2). We have previously shown that L. monocytogenes EGD 20 

and the ΔsigB mutant had identical tolerances (MIC values) to four different HDPs 21 

representing each of the three classes of HDPs (Gottlieb, Thomsen, Ingmer, Mygind, 22 

Kristensen, & Gram 2008). Similarly, Begley and co-workers found that L. monocytogenes 23 

10403S and a sigB deletion mutant had similar sensitivity to the bacteriocins nisin and 24 

lacticin when assessed in endpoint MIC assays (Begley, Hill, & Ross 2006). In contrast, both 25 

the growth and survival of treatments with the bacteriocins (as well as conventional, 26 
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membrane-active antibiotics ampicillin and penicillin G) were greatly attenuated in the sigB 1 

mutant (Begley, Hill, & Ross 2006). Others have found that the Gram-negative alternative 2 

sigma factor, SigmaE, is involved in the resistance of both Salmonella enterica serovar 3 

Typhimurium and Vibrio cholerae to the human HDP-derivate P2 (Crouch, Becker, Bang, 4 

Tanabe, Ouellette, & Fang 2005;Mathur, Davis, & Waldor 2007). The discrepancy to our 5 

results might be explained by different mechanisms of actions of the antimicrobials used in 6 

the studies. P2 targets the cell envelope of Gram-negatives (Weiss, Beckerditequagliata, & 7 

Elsbach 1980) and both the bacteriocins and conventional antibiotics are membrane active 8 

as well (Hechard & Sahl 2002). In contrast, plectasin does not appear to have classical 9 

membrane actions (Gottlieb et al. 2007;Mygind et al. 2005) and novicidin appears to at least 10 

have additional intracellular targets besides the bacterial membrane (Gottlieb, Mygind, 11 

Kristensen, & Gram 2007).  12 

The regrowth observed both after treatment with both plectasin and novicidin (Figure 2 and 13 

3) and in some cases also after treatment of stress-pretreated cultures (Figure 4, 5, and 6) is 14 

not caused by the emergence of resistant mutants, as the regrowth population does not 15 

show elevated MIC values to plectasin. It can instead be due to the presence of persister 16 

cells in the bacterial population. Persister cells are non-dividing, dormant cells that are 17 

tolerant to antimicrobial treatments since the target molecules for HDPs are not active and 18 

hence their function is not compromised by the antimicrobial (Lewis 2007). These will revive 19 

and regrow when the antimicrobial is gone, either because it is used (bound irreversibly to 20 

bacterial targets) or degraded e.g. by bacterial proteases. 21 

 22 

The combination of plectasin and novicidin showed an additive effect on killing of L. 23 

monocytogenes. We have previously implied that these two peptides have different 24 

mechanism of action based on their different ATP leakage profiles (Gottlieb, Mygind, 25 

Kristensen, & Gram 2007;Thomsen et al. 2009). Synergistic effects of two antimicrobial 26 

peptides with different mode of actions, nisin and the polypeptide ε–poly-L-lysine, have been 27 
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observed for L. monocytogenes and Bacillus subtilis but not for E. coli (Najjar, Kashtanov, & 1 

Chikindas 2007). Bacteriocins are not active against Gram-negatives due to their outer 2 

membrane. Interestingly, combination of several bacteriocins with the fish AMP pleurocidin 3 

resulted in synergistic effects against E. coli, probably because pleurocidin renders the outer 4 

membrane permeable to the bacteriocins that then gain access to the inner membrane to 5 

exert their antimicrobial activity (Luders et al. 2003). The simultaneous use of several 6 

antimicrobials with different mode of actions appears also to be a general principle of innate 7 

immune defense (Peschel & Sahl 2006). In a therapeutic perspective, synergistic effects 8 

between HDPs would allow for administration of lower concentrations of antimicrobials that in 9 

turn could lead to a less favorable condition for the occurrence of HDP-resistant 10 

subpopulations (Bell & Gouyon 2003). 11 

 12 

Since exposure of L. monocytogenes to environmental stress conditions have been shown to 13 

induce the expression of both stress response and virulence genes (Kazmierczak, Mithoe, 14 

Boor, & Wiedmann 2003;Olesen, Vogensen, & Jespersen 2009) and increase the phenotypic 15 

virulence potential (Garner et al. 2006b;O'Driscoll, Gahan, & Hill 1996;Olesen, Vogensen, & 16 

Jespersen 2009), we hypothesized that exposure of L. monocytogenes to food-relevant 17 

environmental stress conditions would initiate a stress response that would affect their 18 

tolerance to HDPs. However, we found that pretreatment of L. monocytogenes with food-19 

related environmental stress factors did not affect the tolerance of L. monocytogenes to the 20 

HDPs used in this study (Figure 4-6). In contrast, acid adaptation at pH 5.5 (pH adjusted with 21 

lactic acid) has been shown to increase the tolerance to nisin and to a lesser extent lacticin. 22 

The acid adaptation altered the composition of fatty acids in the bacterial membrane and the 23 

differences in tolerance probably reflect the different mode of actions of the two bacteriocins 24 

(van Schaik, Gahan, & Hill 1999). Also, short term exposure (60 min) to either 6.5% NaCl or 25 

5°C have also been shown to protect L. monocytogenes to subsequent pediocin treatment 26 

(Jydegaard, Gravesen, & Knochel 2000). 27 
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Others have found that incubation under stressful conditions similar to those used in this 1 

study (7% NaCl, pH 4.5 – 5.0, and 4°C) increased the tolerance of L. monocytogenes to the 2 

oxidative effects of H2O2, another antimicrobial compound of the innate immune defense 3 

(Lou & Yousef 1997;Stecha et al. 1989). Growth at 4°C for 7 days actually increased the L. 4 

monocytogenes survival rate in human neutrophils (Stecha, Heynen, Roll, Brown, & 5 

Czuprynski 1989). In addition, acid adaptation has also been shown to increase the 6 

intracellular survival of L. monocytogenes in macrophages, probably due to increased 7 

expression of genes involved in response to acid and oxidative stresses (Conte et al. 2002). 8 

These studies all imply that stress adaptation to food-related stresses can render L. 9 

monocytogenes more tolerant to the stresses of the innate immune system and hence 10 

increase the virulence potential. 11 

In this study, L. monocytogenes was pre-incubated under stressful conditions, harvested and 12 

then treated with HDPs under non-stressful conditions (normal osmolarity, pH 7.4, 37°C), 13 

thus the stress response could be lost during harvesting. However, treatment with HDPs 14 

under stressful conditions could hamper the effect of the HDPs and hence give false positive 15 

results for stress hardening with respect to HDP tolerance. It is well known that the presence 16 

of ions affect electrostatic attraction between HDPs and bacterial membrane (Brogden 17 

2005;Zasloff 2002). In addition, both pH and temperature have been shown to affect 18 

protamine activity, probably due to alterations in the fatty acid composition of the cell 19 

membrane (Johansen et al. 1997), as also shown for bacteriocins (van Schaik, Gahan, & Hill 20 

1999). Also, we subjected L. monocytogenes to stresses on a long term basis (adaptation) 21 

which has been shown to result in a different stress response when examining the 22 

transcriptional profile compared to the response to stress on a short term basis (shock) 23 

(Olesen, Vogensen, & Jespersen 2009). Some of the above mentioned studies observed the 24 

effects after short term stresses and it is possible that a short term stress induction could 25 

have resulted in altered HDP tolerance. However, it is important to study the response under 26 
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conditions relevant to the system where the pathogen is found, in this case in food, where 1 

the stresses are indeed implied on a long-term basis. 2 

 3 

In conclusion, the data produced in this study does not speak against the use of HDPs as 4 

alternative antimicrobial therapeutics. Others have suggested concern that the use of HDP 5 

and the potential evolution of resistant bacterial populations would hamper our intrinsic 6 

defenses against infectious diseases (Bell & Gouyon 2003). Previously, we have observed 7 

that natural variation in tolerance to HDPs does not exist in a collection of L. monocytogenes 8 

representing different subtypes and virulence phenotypes (Gottlieb, Thomsen, Ingmer, 9 

Mygind, Kristensen, & Gram 2008). Here, we report that pre-exposure to food-related 10 

stresses do not alter the tolerance to subsequent HDP treatment as have been observed for 11 

several bacteriocins.  12 

 13 
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TABLES 1 

Table 1: Origin, serotype, and lineage of the Listeria monocytogenes strains used in 2 

the present study. 3 

Strain Origin 

S
er

ot
yp

e 

Li
ne

ag
e 

Ref 

N53-1 Fish processing plant 

persistent 

1/2a 2 (Wulff et al. 2006) 

EGD Wildtype 1/2a 2 * 

2315 EGD sigB del mutant 1/2a 2 (Brondsted et al. 2003) 

4446 Human, clinical 4b 1 (Larsen et al. 2002) 

* The strain was kindly provided by Werner Goebel, University of Würzburg. 4 

 5 
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FIGURES 1 

Figure 1: Growth of L. monocytogenes EGD wildtype and a sigB deletion mutant in the 2 

presence of sub-lethal concentrations of plectasin and novicidin. 3 

Overnight cultures were diluted 3% in MHB pH 7.4 and treated with ¼ MIC (16 μg/mL 4 

plectasin and 1 μg/mL novicidin, respectively) at 37°C under aerated conditions (300 rpm). 5 

Treatment with plectasin does not have noticeable effects on the growth compared to buffer, 6 

whereas treatment with novicidin almost abolishes growth. Strains and HDP treatment: (�) 7 

EGD + Buffer, (�) ΔsigB + Buffer, (�) EGD + Plectasin, (�) ΔsigB + Plectasin, (�) EGD + 8 

Novicidin, and (�) ΔsigB + Novicidin. 9 

 10 

Figure 2: Plectasin-induced killing of L. monocytogenes EGD wildtype and a sigB 11 

deletion mutant. 12 

The bacteria were adjusted to 5.0 × 105 cfu/ml and treated with plectasin at 256 �g/mL, 128 13 

�g/mL, or 64 �g/mL or with peptide dilution buffer at 37°C. There are no differences in 14 

survival between EGD and the sigB deletion mutant. 256 �g/mL and 128 �g/mL plectasin 15 

killed both strains within 6-8 hours. Strains and HDP treatment: (�) EGD + 256 �g/ml 16 

plectasin, (�) ΔsigB + 256 �g/ml plectasin, (�) EGD + 128 �g/ml plectasin, (�) ΔsigB + 128 17 

�g/ml plectasin, (�) EGD + 64 �g/ml plectasin, (�) ΔsigB + 64 �g/ml plectasin, (♦) EGD + 18 

Buffer, and (�) ΔsigB + Buffer. 19 

 20 

Figure 3: Survival of L. monocytogenes after treatment with plectasin, novicidin, or a 21 

combination of both. 22 

The bacteria were adjusted to 5.0 × 105 cfu/ml and treated with plectasin (64 μg/mL), 23 

novicidin (1 μg/mL), or a combination of plectasin and novicidin at 37°C. Bacteria treated with 24 

peptide dilution buffer alone were included as controls. There is an additive effect of plectasin 25 
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and novicidin in treatment of L. monocytogenes. HDP treatment: (�) Plectasin, (�) 1 

Novicidin, (�) Plectasin + Novicidin, and (�) Buffer. 2 

 3 

Figure 4: Treatment of L. monocytogenes strains with plectasin, novicidin or a 4 

combination after pretreatment with or without 5% NaCl. 5 

Strains were grown in TSB 1% glucose with (closed symbols, straight lines) or without (open 6 

symbols, dotted lines) 5% NaCl in two successive inoculations, harvested, washed, and 7 

resuspended in MHB pH 7.4 to app. 5 × 105 CFU/mL prior to treatment with (a) plectasin, (b) 8 

novicidin, (c) a combination of plectasin and novicidin, or (d) peptide dilution buffer. Strains 9 

and stress conditions: (�) EGD + NaCl, (�) EGD – NaCl, (�) 4446 + NaCl, (�) 4446 – 10 

NaCl, (�) N53-1 + NaCl, and (�) N53-1 – NaCl.  11 

 12 

Figure 5: Treatment of L. monocytogenes strains with plectasin, novicidin or a 13 

combination after pretreatment with pH 5.5 or pH 7.0. 14 

Strains were grown in TSB 1% glucose pH 5.5 (closed symbols, straight lines) or pH 7.0 15 

(open symbols, dotted lines) in two successive inoculations, harvested, washed, and 16 

resuspended in MHB pH 7.4 to app. 5 × 105 CFU/mL prior to treatment with (a) plectasin, (b) 17 

novicidin, (c) a combination of plectasin and novicidin, or (d) peptide dilution buffer. Strains 18 

and stress conditions: (�) EGD pH 5.5, (�) EGD pH 7.0, (�) 4446 pH 5.5, (�) 4446 pH 7.0, 19 

(�) N53-1 pH 5.5, and (�) N53-1 pH 7.0. 20 

 21 

Figure 6: Treatment of L. monocytogenes strains with plectasin, novicidin or a 22 

combination after pretreatment at 10°C and 5°C or 37°C. 23 

Strains were grown in TSB 1% glucose for four days at 10 °C, reinoculated and grown at 5 24 

°C for 7 days (closed symbols, straight lines) or grown at 37°C o.n. in two successive 25 



 25 

inoculations (open symbols, dotted lines). They were harvested, washed, and resuspended 1 

in MHB pH 7.4 to app. 5 × 105 CFU/mL prior to treatment with (a) plectasin, (b) novicidin, (c) 2 

a combination of plectasin and novicidin, or (d) peptide dilution buffer. Strains and stress 3 

conditions: (�) EGD 10°C/5°C, (�) EGD 37°C, (�) 4446 10°C/5°C, (�) 4446 37°C, (�) 4 

N53-1 10°C/5°C, and (�) N53-1 37°C. 5 

 6 
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Figure 3 1 
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Figure 4 1 
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Figure 5 1 
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Figure 6 1 
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Abstract 

Background: Host defence peptides (HDPs), also known as antimicrobial peptides 

(AMPs), have emerged as potential new therapeutics and their antimicrobial spectrum 

covers a wide range of target organisms. However, the mode of action and the genetics 

behind the bacterial response to HDPs is poorly understood and such knowledge is 

required to evaluate their potential as antimicrobial therapeutics. Plectasin is a recently 

discovered HDP active against Gram-positive bacteria with the human pathogen, 

Staphylococcus aureus being highly susceptible and the food borne pathogen, Listeria 

monocytogenes being less sensitive. In the present study we aimed to use transposon 

mutagenesis to determine the genetic basis for S. aureus and L. monocytogenes 

susceptibility to plectasin. 

Results: In order to identify genes that provide susceptibility to plectasin we constructed 

bacterial transposon mutant libraries of S. aureus NCTC8325-4 and L. monocytogenes 

4446 and screened for increased resistance to the peptide. No resistant mutants arose 

when L. monocytogenes was screened on plates containing 5 and 10 fold MIC of plectasin. 

However, in S. aureus, two mutants with insertion in the heme response regulator (hssR) 

were 2- 4 fold more tolerant to plectasin as compared to the wild type. The hssR mutation 

also enhanced tolerance to the plectasin-like defensin eurocin, but not to other classes of 

HDPs or to other stressors tested. Addition of plectasin did not influence the expression of 

hssR or hrtA, a gene regulated by HssR. The genome of L. monocytogenes LO28 

encodes a putative HssR homologue, RR23 (in L. monocytogenes EGD-e lmo2583) with 

48% identity to the S. aureus HssR, but a mutation in the rr23 gene did not change the 

susceptibility of L. monocytogenes to plectasin. 



 3 

Conclusion: S. aureus HssR, but not the homologous RR23 from L. monocytogenes, 

provide susceptibility to the defensins plectasin and eurocin. Our data suggest that a 

functional difference between response regulators HssR and RR23 is responsible for the 

difference in plectasin susceptibility observed between S. aureus and L. monocytogenes. 

 



 4 

Background 

Humans are living in a constant struggle with infectious microorganisms and whilst 

improved hygiene has been essential to control such organisms, one of the major steps 

forward has been the discovery and use of antibiotics. However, the high rate at which 

bacteria become resistant to currently used antibiotics is regarded as a major threat to the 

future treatment of infectious diseases in both humans and livestock [1,2] Therefore, there 

is a growing demand for new types of antimicrobial compounds and interest is focused on 

host defence peptides (HDPs) as novel therapeutic agents. HDPs are a unique and 

diverse group of peptides, which can be grouped into different classes, based on their 

amino acid composition and structure. In humans and other mammals, the defensins and 

the cathelicidins constitute the two main HDP families. The cathelicidins vary widely in 

sequence, composition and structure [3], but share a highly conserved N-terminal 

structural domain (cathelin) linked to a highly variable cathelicidin peptide domain. The 

defensins are more uniform, small cystein-rich cationic peptides [4]. Defensins have well-

established antimicrobial activity against a broad spectrum of pathogens, and in addition 

they have been shown to have immunostimulatory functions on both innate and adaptive 

immunity [5]. This has prompted a massive interest in synthetic defensins as novel 

antimicrobial candidates for therapeutic use.  

 

Recently, the antimicrobial peptide, plectasin isolated from a saprophytic fungus, was 

described [6]. Plectasin is a defensin, which has broad activity against several species of 

Gram-positive bacteria [6,7] and combined with very low toxicity in mice and on human 

keratinocytes and erythrocytes, plectasin holds promises as a novel antiinfective treatment 

[6].  
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In the present study, we addressed the response of two human pathogens, S. aureus and 

L. monocytogenes to plectasin. These two pathogens differs in sensitivity towards 

plectasin with MIC values of 16-32mg/L for methicillin resistant Staphylococcus aureus 

(MRSA), and above 64mg/L for the less sensitive Listeria monocytogenes [6,7]. In addition, 

the two bacteria represent different routes of infection and may be exposed to different 

arrays of HDPs. S. aureus is a hospital- and community-acquired pathogen that causes a 

wide range of diseases including septicaemia, toxic-shock syndrome and food poisoning 

[8]. S. aureus is primarily extracellular and produces extracellular enzymes and toxins that 

cause damage to tissues. L. monocytogenes is a food borne pathogen causing 

gastroenteritis or septicaemia and meningitis in immunocompromised individuals [9]. As 

opposed to the infection mode of S. aureus, L. monocytogenes is an intracellular pathogen, 

able to spread from cell to cell within the host and thereby guarded against circulating 

immune factors. 

 

The purpose of the present study was to investigate if resistance/tolerance towards 

plectasin could be induced in S. aureus and L. monocytogenes by transposon 

mutagenesis and if this resistance/tolerance would affect the mutants’ response to other 

groups of antimicrobial peptides  

 

Results 

Plectasin does not cause cellular leakage 

Many antimicrobial peptides affect the structural or functional integrity of the bacterial 

membrane, leading to pore formation and subsequently leakage of intracellular 



 6 

components [10]. Therefore, we examined the extracellular protein-profile by SDS-PAGE 

analysis. When the two Gram-positive pathogens, S. aureus and L. monocytogenes, were 

grown with and without plectasin, there was no difference, indicating that the bacteria are 

not leaking macromolecules (data not shown). To support this notion, we determined the 

effect of plectasin on the membrane of the two species by measuring the amount of ATP 

leakage. In this study we also included three peptides representing each of the 

antimicrobial peptide groups: the plectasin-like defensin eurocin, the linear arginine-rich 

peptide protamine [11] and the �-helical peptide novicidin. ATP leakage profiles were 

similar for L. monocytogenes and S. aureus but differed between peptides. When either of 

the pathogens were exposed to the defensins, plectasin or eurocin, we found that the 

intracellular ATP concentration remained at the same level as the controls treated with 

peptide dilution buffer only, indicating that the defensins do not cause pore formation or 

membrane disruption of neither L. monocytogenes nor S. aureus (Figure 1). In contrast, 

protamine and novicidin resulted in increased ATP leakage thus suggesting that they are 

disrupting the membrane (Figure 1). Our finding is in agreement with previous results 

which showed slower killing kinetics for plectasin compared to membrane-perturbing 

compounds, indicating that plectasin does not function by perturbing the membrane [6].  

 

Since the antimicrobial activity of plectasin does not involve membrane disruption we set 

out to search for an alternative mode of action. An increasing amount of evidence 

establishes that HDPs can have cytoplasmic and intracellular targets [12]. One such target 

is the bacterial DNA. However, we were unable to demonstrate binding of neither plectasin 

nor eurocin to DNA when examined by in vitro gel retardation (data not shown). 
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Identification of genes providing increased tolerance to Plectasin 

In order to identify genes involved in the bacterial susceptibility towards plectasin, we 

created transposon mutant libraries in S. aureus 8325-4 and L. monocytogenes 4446 

using bursa aurealis and Tn917, respectively. MIC values on agar plates were determined 

for the two wild types and the two transposon libraries were subsequently screened on 

plectasin-concentrations corresponding to 4, 5 or 10 fold MIC. Screening of the S. aureus 

mutant library resulted in identification of seven colonies with increased tolerance. 

However, after screening 40,000 colonies of L. monocytogenes transposon mutants, we 

found no mutants with increased tolerance. Both S. aureus and L. monocytogenes wild 

types were also screened on similar agar plates with plectacin and no spontaneous 

mutations, leading to changes in sensitivity, occurred. 

 

Sequence analysis of two of the S. aureus mutants, revealed that the transposon element 

had inserted into the heme response regulator hssR that together with hssS forms a two 

component system (TCS) [13]. S. aureus require iron, and during infection, it can obtain 

iron through the haemolysin-mediated rupture of erythrocytes [15]. While heme is an 

important source of iron, high concentrations are toxic to S. aureus due to the molecule’s 

reactivity [16]. Therefore, the HssRS TCS is able to sense high concentrations of heme 

and induces the expression of the HrtAB efflux pump that protects the cells against heme-

mediated cell damage ([16,17].  

 

No mutants were obtained from the screening of the transposon mutant library of L. 

monocytogenes for altered tolerance to plectasin. However, an orthologous system in L. 

monocytogenes LO28 was identified by homology search and we found that the response 
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regulator RR23 has a higher identity (48%) to HssR compared to other response 

regulators (30-35%) from L. monocytogenes LO28. In addition, RR23 have 99% identity to 

L. monocytogenes EGD-e lmo2583, previously suggested to be an hssR orthologoue [13]. 

To evaluate the importance of HssR on sensitivity to plectasin of another bacterium than S. 

aureus, a L. monocytogenes RR23 mutant was included in the experiments.  

 

HssR modulates tolerance to defensins 

In order to validate the phenotypes obtained by our S. aureus transposon mutant 8325-4 

hssR::bursa, we transduced the transposon element to S. aureus 8325-4 wild type, giving 

the mutant 8325-4 hssR. In addition, we included another S. aureus wild type, S. aureus 

15981, and the 15981-ΔTCS15 (15981- ΔTCS15 hssRS), which harbour a deletion of both 

the response regulator hssR and the histidine kinase hssS [18].  

 

The Minimal Inhibitory Concentrations (MIC) for plectasin was determined for all the 

strains using the microbroth dilution method (Table 1) and a mutation in the hssR 

response regulator in S. aureus lead to a 2 to 4 fold increased tolerance compared to the 

wild type, regardless of the genetic background. This is in agreement with the initial finding, 

where we used 4 fold MIC in the plate screen for transposon mutants. The deletion of the 

rr23 in L. monocytogenes had no effect on the tolerance towards plectasin (Table 1). 

 

In addition, we tested whether the two-component system is involved in altered sensitivity 

to other antimicrobial peptides namely novospirin (a cathelicidin), novicidin (a cathelicidin), 

protamin (a linear peptide) and eurocin (a plectasin-like defensin). The S. aureus 
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hssR/hssRS mutants were also more tolerant to eurocin, the only other defensin, but were 

not altered in sensitivity to other groups of peptides (Table 1).  

 

The ability of the S. aureus hssR mutants to cope with higher concentrations of the peptide 

compared to the wild type was confirmed in a growth experiment. The strains were grown 

with (concentrations known to inhibit growth) or without plectasin and the wild type did not 

grow in the presence of plectasin, but the response regulator mutants all grew (Figure 2). 

The growth experiment also showed that the mutant and wild type strains have similar 

growth kinetics when grown in TSA (Figure 2). 

 

Both HrtAB and HssRS are required for Staphylococcal growth in hemin [13]. When we 

examined the growth of the hssR mutant compared to the wild type we also found it to be 

almost completely inhibited by 4 μM hemin, regardless of the presence or absence of 

plectasin (Figure 3). The expression of hrtAB efflux system has previously been shown to 

increase 45 fold by exposure to hemin through transcriptional activation by HssR [19]. 

However, a northern blot revealed that the expression of hrtB and hssR are not changed 

by addition of plectasin (data not shown).  

 

Stress and antibiotic resistance of hssR mutant cells 

The relatively small number of bacterial TCSs in S. aureus and L. monocytogenes, imply 

that some of them are able to sense several different stressors. In Streptococcus 

pyogenes the TCS CovRS, sense both iron starvation, antimicrobial peptides and several 

other stressors [20]. We have found that HssR sense defensins in addition to heme 

concentrations, we therefore determined if the HssRS two-component system affects 
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susceptibility to other types of stress. However, when the S. aureus and L. monocytogenes 

wild types and mutants were subjected to a variety of stress-conditions; growth at 15°C, 

30°C, 37°C or 44°C, or growth with the addition of 4% NaCl, we found no difference in 

growth between the wild types and their respective mutants.  We also examined the 

sensitivity of wild type and mutants to several antibiotics, i.e. ampicillin, gentamicin, 

sulfa/trimethoprim, rifampicin, tetracycline, amoxy/clavulan, cephalotin, clindamycin, 

enrofloxacin, fusidic acid and oxacillin and no change in MIC values were observed when 

the wild type S. aureus and L. monocytogenes and the corresponding response regulator 

mutants were compared (data not shown). Thus, as opposed to the CovRS TCS, 

HssR/RR23 from S. aureus and L. monocytogenes do not seem to sense other types of 

stress. The results for RR23 correspond with previous experiments, showing no stress 

phenotype for a rr23 mutant [21]. 

 

Discussion 

In the present study, we investigated how the antimicrobial peptide, plectasin, affects two 

human pathogens. Our results indicate that plectasin and another defensin, eurocin, do 

not perturb the S. aureus and L. monocytogenes membrane, but affect the bacterial 

survival differently. These results are in agreement with previous results that demonstrated 

slower killing kinetics of plectasin compared to known membrane pertubing compounds, 

which indicates that this defensin does not mediate cellular leakage [6]. However, the non-

defensins, novicidin and protamin did lead to increased leakage, implying that the 

antimicrobial activity of these peptides involves disruptions of the bacterial membranes 

(Figure 1).  
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To identify genes involved in tolerance to plectasin, we screened transposon mutant 

libraries of L. monocytogenes and S. aureus.  We were unable to identify any L. 

monocytogenes mutants more tolerant to the peptide compared to wild type. The L. 

monocytogenes wild-type is more tolerant to plectasin (MIC >64 μg/ml) compared to the S. 

aureus wild type (MIC = 8-16 μg/ml) [6,7, this work], which might explain the difficulties in 

obtaining less sensitive L. monocytogenes mutants. Seven S. aureus mutants, more 

tolerant to plectasin, were isolated. Two of these had the transposon inserted into the 

response regulator hssR, which is part of a two-component system (TCS), HssRS, 

involved in sensing heme concentrations [13]. A primary mechanism by which bacterial 

cells respond to changes in the environment is through the action of TCSs. TCSs typically 

consist of a membrane-bound histidine kinase that senses the changes and undergo 

autophosphorylation followed by transfer of the phosphoryl group to the regulator [22]. 

During contact with a host, S. aureus acquire heme as iron source, but surplus heme can 

be toxic. The HssRS system is important for sensing the level of heme, and for activating 

the ABC transporter system HrtAB, which protects the bacteria against heme-mediated 

damage [16,17]. The HssR response regulator seems to be important for S. aureus to 

sense its environment [13]. Changes in iron availability are an environmental signal 

indicative of mammalian host-pathogen interaction [23]. Our results reveal that a mutation 

in hssR increases the tolerance of S. aureus to two defensin-like HDPs, suggesting that 

the mutation of hssR lead to enhanced bacterial resistance to immune clearance. 

Defensins are an important part of the mammalian immune response and mutant 

pathogens, more susceptible to HDPs, are often attenuated in virulence, indicating that the 

intrinsic resistance to HDPs plays a key role in bacterial infection [24]. It has previously 

been reported that a mutation in S. aureus hssR leads to increased virulence [13]. In 
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addition, hssR mutants have been shown to affect the innate immune response against S. 

aureus infection. The deletion of hrtA increases the expression of immunomodulatory 

factors and it has been suggested that growth in heme, could be sensed as a physiological 

signal for invading S. aureus to switch from a cytolytic toxin secretion profile to an 

immunoevasive response [13]. This hypothesis could explain why the hssR mutant survive 

plectasin better compared to the wild type and this ability to cope with defensins, could be 

an important part of the increased virulence observed. Recently, a link between iron 

starvation and HDP resistance in Yersinia pseudotuberculosis has been shown, supporting 

the idea that bacteria can sense that they are inside a host and then coordinate their 

response accordingly [25].  

 

We did not observe an upregulation of neither hssR nor hrtA when S. aureus is exposed to 

plectasin. Previous results have shown a 45 fold upregulation of hrtAB when exposed to 

exogenous hemin [19]. The lack of plectasin regulation of the systems implies that the two-

component system do not sense the defensins and the ABC transporter system HrtAB is 

not involved in exporting the peptides. Instead, the deletion of hssR affects the production 

and secretion of various virulence factors, including proteins that can neutralize peptides.  

 

A possible HssR homologue, RR23, exist in L. monocytogenes.  However, a mutation in 

this response regulator showed no change in growth or survival when exposed to the 

peptides and previous results have shown that the RR23 mutant is not important for 

virulence [21]. Homologues of the HrtAB and HssRS systems are found conserved across 

Gram-positive pathogenic bacteria, including L. monocytogenes [13, this work]. With the 

results presented here, it can be argued that the primary function of the systems, is to 
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respond to heme exposure in the Gram-positive species, but the ability to produce immune 

evasive factors and enhance its resistance to immune clearance is only found in S. aureus 

and not in L. monocytogenes. Whether the difference in sensitivity towards plectasin 

between L. monocytogenes and S. aureus can be explained by the variations in virulence 

factors and different routes of infection of the two pathogens remains elusive. 

 

Conclusion 

We found that the S. aureus response regulator HssR, but no the corresponding RR23 

from L. monocytogenes, is involved in the organisms’ sensitivity to defensins, exemplified 

by plectasin. Mutating the hssR leads to increased tolerance towards plectasin and 

eurocin. The HssRS two component system have previously been shown to be important 

for heme homeostasis and an hssR mutation leads to increased virulence [13]. Taken 

together these results further indicate the importance of this system in sensing 

environmental cues and responding accordingly. This result support the notion that the 

system is able to sense internal host tissue and shift to an immune evasive response and 

that the mutation in hssR leads to enhanced bacterial resistance to host immune factors. 

During the course of infection, the bacteria must not only cope with iron starvation but also 

resist antimicrobial peptides, including defensins. Whether the difference in responding to 

the HDPs between L. monocytogenes and S. aureus is due to the differences in infection 

processes still remains unclear, but our results indicate a functional difference between 

RR23 and HssR and the genes regulated by these regulators, which might explain the 

difference in HDPs susceptibility between the two strains. 

 

Methods 
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Strains and culture conditions 

Listeria monocytogenes strain 4446 [26]. L. monocytogenes LO28 [27], L. monocytogenes 

LO28 RR23 [21]. S. aureus 8325-4 ([28]. 8325-4 hssR::bursa (this work), 8325-4 hssR 

(this work), 15981 [30], 15981 ΔTCS15 [18] in this paper referred to as 15981�TCS15 

(hssRS). The bacteria were grown in Brain Heart Infusion broth (BHI, CM0225 Oxoid) (L. 

monocytogenes) or Tryptone Soy Broth (TSB, CM0129 Oxoid) (S. aureus). When 

appropriate, antibiotics were added at the following concentrations erythromycin 5 (L. 

monocytogenes) and 10 �g/ml (S. aureus 8325-4), chloramphenicol 10 μg/ml and 

tetracycline 12,5 μg/ml (Sigma).  

 

Host defense peptides.  

Protamine was purchased from Sigma (P4020-5G). Plectasin, eurocin, novicidin, and 

novispirin G10 were supplied by Department of Antiinfective Discovery, Novozymes A/S. 

The antimicrobial peptides were dissolved in 0.01% acetic acid/0.1% bovine serum 

albumin (Sigma, A7906). 

 

Determination of the effect of Plectasin on the bacterial envelope - ATP 

measurements.  

L. monocytogenes and S. aureus were grown in TSB at 37 °C. Bacteria were harvested 

(10 min at 2,000 × g) at mid-exponential phase (OD546 of 2.5 and 1.0 for S. aureus and L. 

monocytogenes, respectively), washed once in 50 mM potassium phosphate buffer pH 7.0 

and once in 50 mM HEPES buffer pH 7.0. The pellet was resuspended in 50 mM HEPES 

pH 7.0 to a final OD546 of 10. Bacteria were stored on ice and used within 5 hours. Bacteria 

were energized in 50 mM HEPES (pH 7.0) with 0.2% (wt/vol) glucose and treated with 500 
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�g/ml plectasin or eurocin. ATP was determined using a bioluminescence kit (Sigma, 

FLAA-1KT) and a BioOrbit 1253 luminometer. Total ATP content was determined by 

rapidly permeabilising 20 �l cell suspension with 80 �l dimethyl sulfoxide. The cell 

suspension was diluted in 4.9 ml sterile water, and ATP content was determined in 100 �l 

of the preparation as described by the manufacturer. To determine the extracellular ATP 

concentration, the 20 �l cell suspension was mixed with 80 �l sterile water and analyzed 

as described above. Intracellular ATP concentrations were calculated by using the 

intracellular volumes of 0.85 and 1.7 �m3 for S. aureus and L. monocytogenes, 

respectively. The number of cells in suspension was determined by plate spreading. 

 

Extracellular protein 

Prewarmed TSB/BHI (25 ml) in a 250 ml Erlenmeyer flask was inoculated with and without 

plectasin and incubated with shaking at 37°C overnight (	 17 h). The next morning, the 

exact OD600 ml−1 of the cultures was measured, and 15 ml of culture was centrifuged to 

precipitate the cells. The supernatant was transferred to a 50 ml Blue cap bottle (placed in 

an ice/water bath), and the extracellular proteins were precipitated by adding one volume 

of ice-cold 96% EtOH and left in the refrigerator overnight for proteins to precipitate. 

Precipitated proteins were collected by centrifugation (15,000 x g; 30 min; 0°C). Protein 

pellets were suspended in a volume of 50 mM Tris-HCl (pH) adjusted to the original 

OD600 ml−1 of the overnight culture so that 15 ml of overnight culture with OD600 ml −1= 5.0 

was suspended in 0.8 ml of 50 mM Tris-HCl (pH). A sample of 15 μl of the protein extracts 

was analysed on NuPAGE® 4–12% Bis-Tris gels (Invitrogen) using the X Cell SureLock® 

Mini-Cell system (Invitrogen) as recommended by the supplier. The gels were Coomassie 

stained using GelCode® Blue Stain Reagent (Pierce). 
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DNA-binding analysis 

Gel retardation analysis were performed by mixing 100 ng of plasmid DNA (pBluescript II 

SK+) with increasing amounts of peptide in 20 �l binding buffer (5% glycerol, 10 mM Tris, 1 

mM EDTA, 1 mM dithiothreitol, 20 mM KCL and 50 �g ml-1 bovine serum albumin). 

Reaction mixtures were incubated 1 h at room temperature. Subsequently, 4 �l loading 

buffer (10 mM Tris-HCl (pH 7.6), 0.03% bromophenol blue, 0.03% xylene cyanol FF, 60% 

glycerol, 60 mM EDTA) (Fermentas) and a 12 �l aliquot was subjected to 1% agarose gel 

electrophoresis in 0.5 × Tris-acetat-EDTA (40 mM Tris acetate and 1 mM EDTA, pH 8.0).   

 

Transposon library in L. monocytogenes and S. aureus.  

Transposon mutagenesis of L. monocytogenes 4446 was performed with the temperature-

sensitive plasmid pLTV1 [30] as described, but with modifications. L. monocytogenes 4446 

harbouring pLTV1 was grown overnight at 30°C in BHI containing 5 �g/ml erythromycin. 

The bacterial culture was then diluted 1:200 in BHI erm5 and grown for 6 h at 42°C. 

Aliquots were plated onto BHI erm5 plates and incubated at 42°C. Colonies were 

harvested from the plates in BHI and stored in 30% glycerol at -80 °C. To determine the 

transposition frequency, the transposon library was plated onto BHI containing 5 �g/ml 

erythromycin. 100 colonies were picked and streaked onto BHI plates containing 5 �g/ml 

erythromycin, 10 �g/ml chloramphenicol, and 12.5 �g/ml tetracycline, respectively, and 

incubated at 30 °C for 48 h. The transposition frequency was calculated as the percentage 

of colonies growing only on BHI + 5 �g/ml erythromycin and BHI+10 �g/ml 

chloramphenicol (harbouring only the transposon) but not on BHI+12.5 �g/ml tetracycline 
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(still harbouring the plasmid). Transposon mutagenesis of S. aureus 8325-4 with bursa 

aurealis was performed as described [31].   

 

Screening of transposon library for plectasin tolerant mutants 

The transposon mutant libraries were screened on agar plates for increased tolerance to 

plectasin as compared to wild-type sensitivity. Wild-type sensitivity was determined by 

plating approx. 1.0 × 107 CFU/ml on TSA containing plectasin (S. aureus) and approx. 

1.0 × 105 CFU/ml on Muller Hinton Broth agarose plates (MHB, 212322 Becton Dickinson) 

with plectasin (L. monocytogenes). Plates were incubated at 37°C for 3 days and 

inspected for growth. The transposon libraries were screened on TSA with 300 �g/ml, 500 

or 750 �g/ml plectasin (S. aureus) or MHB plates with 250 �g/ml or 500 �g/ml plectasin (L. 

monocytogenes) at 37°C for up to 7 days. 

 

Determination of Minimum Inhibitory Concentrations (MIC) of antimicrobial peptides 

in liquid medium.  

Minimal inhibitory concentrations (MIC) of plectasin, eurocin, protamine, novicidin, and 

novispirin G10 were determined using a microbroth dilution method [32]. Colonies from a 

BHI plate incubated overnight at 37ºC were suspended in MHB pH 7.4 to a turbidity of 

0.11-0.12 at 546 nm (approx. 1.0 × 108 CFU/ml) and diluted in MHB to a concentration of 

5.0 × 105 CFU/ml. Ninety �l of bacterial suspension was incubated with 10 �l of peptide 

solution in polypropylene 96-well plates (Nunc, 442587) for 18-24 h at 37 °C. The peptide 

solutions were made fresh on the day of assay. The range of concentrations assayed were 

0.25–256 �g/ml for plectasin and eurocin, 0.125-128 �g/ml for protamin and novispirin G10, 
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and 0.031-32 �g/ml for novicidin. MIC was the lowest peptide concentration at which visual 

growth was inhibited.  

 

Influence of hemine and plectacin on growth of S. aureus  

Overnight cultures of S. aureus were diluted to OD600 = 0.05 in TSB with and without 4 μM 

hemin and/or plectasin. Growth at 37C. OD600 measurements were made every 30 

minutes.   

 

Potential influence of plectacin on hssR expression. Wild type S. aureus  and the 

hssR mutant were grown at 37°C with vigorous shaking and at an optical density at 600 

nm (OD600) of 0.45 ± 0.1 samples were withdrawn for the isolation of RNA. Then 35μg/ml 

Plectasin was added to the growing culture, and after 10 and 80 minutes samples were 

also withdrawn. Cells were quickly cooled on ice bath and frozen at −80°C until extraction 

of RNA. Cells were lysed mechanically using the FastPrep machine (Bio101; Q-biogene), 

and RNA was isolated by the RNeasy mini kit (QIAGEN, Valencia, Calif.) according to the 

manufacturer's instructions. Total RNA was quantified by spectrophotometric analysis (
 = 

260 nm), and 5 �g of RNA of each preparation was loaded onto a 1% agarose gel and 

separated in 10 mM sodium phosphate buffer as described previously [33]. RNA was 

transferred to a positively charged nylon membrane (Boehringer Mannheim) by capillary 

blotting as previously described [34]. Hybridization was performed using gene-specific 

probes that had been labeled with [32P]dCTP using the Ready-to-Go DNA-labeling beads 

from Amersham Biosciences [35]. Internal fragments of the genes were used as templates 

in the labeling reactions. Primers for internal fragments : hrtB-1 

5´CACTCAATAAATGTCTTGTC 3´, hrtB-2 5´AAGGTAATTCATCAAGAACC 3´, hssR-1  
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5´AATGTCTTGTTGTCGATGAC 3´ , hssR-2  5´ TTATAGCCTTGTCCTCTTAC  3´. All 

steps were repeated in two independent experiments giving similar results.   

 

Stress and antibiotic resistance of S. aureus and L. monocytogenes 

Cultures were grown exponentially in TSB/BHI at 37°C. At OD600 = 0.2, the cultures were 

diluted 10−1-, 10−2-, 10−3- and 10−4-fold, and 10 μl of each dilution was spotted on TSB/BHI 

plates. The plates were incubated at the indicated temperatures. In addition plates 

containing 4% NaCl were spotted and incubated in a similar way. 

Antimicrobial susceptibility to ampicillin, gentamicin, sulfa/trimethoprim, rifampicin, 

tetracycline, amoxy/clavulan, cephalotin, clindamycin, enrofloxacin, fusidic acid and 

oxacillin was performed with a commercially available MIC technique using dehydrated 

antimicrobials in microtitre wells (Trek Diagnostic systems Ltd., UK). 
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Figures 

Figure 1  - Measurement of ATP leakage from Staphylococcus aureus after treatment with 

plectasin (A), eurocin  (B), protamine (C), and novicidin (D). 

Measurement of intracellular (IC) and extracellular (EC) ATP after treatment with plectasin 

(500 �g/mL), eurocin (500 �g/mL), protamine (1,000 �g/mL), novicidin (1,000 �g/mL), or 

peptide dilution buffer. Treatment with the two defensins does not lead to leakage of 

intracellular ATP, whereas treatment with protamine and novicidin lead to leakage of ATP. 

Representative results from S. aureus are shown as treatment of S. aureus and L. 

monocytogenes resulted in similar leakage profiles. Symbols are averages of duplicate, 

independent determinations and errorbars represent standard deviations. 

 

Figure 2  - Growth of Staphylococcus aureus wild-type and hssR mutants in the presence of 

plectasin. 

Plectasin inhibited the growth of S. aureus 8325-4 and 15981 wild-types but hardly 

affected the growth of the 8325-4 hssR::bursa transposon mutant, the transduced 8235-4 

hssR mutant or the 15981 ΔTCS15 (hssRS) mutant.  

 

 

 

Figure 3  - Growth of Staphylococcus aureus wild-type and hssR mutants in the presence of 

hemin and plectasin. 
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The growth of the S. aureus 8325-4 wild-type is only affected by plectasin and not hemin. 

On the contrary, the 8325-4 hssR mutants do not grow in the presence of hemin, 

regardless of the presence or absence of plectasin, confirming the heme-sensitive 

phenotype of hssR mutants.  

 

Tables 

Table 1  - MIC values of host defence peptides (HDPs) against S. aureus and L. 

monocytogenes wild-types and two-component system mutants. Plec: plectasin, Euro: 

eurocin, Prot: protamine, NovC: novicidin, NovS: novispirin. 
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Figure 2 
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Figure 3 
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Table 1 

MIC (�g/ml) 
Strain Description 

Plec Euro Prot NovC NovS 

8325-4 S. aureus wild-type 16 32 16 1 128 

8325-4 hssR::bursa Transposon mutant 32 64 16 1 128 

8325-4 hssR Transduced 8325-4 hssR mutant 32 64 16 1 128 

15981 S. aureus wild-type 8 8 16 1 >128 

15981 ΔTCS15 (hssRS) hssRS deletion mutant 32 32 16 1 >128 

LO28 L. monocytogenes wild-type 64 128 16 1 16 

LO28 RR23 rr23 insertion mutant 64 128 16 1 16 
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Abstract1

We have previously shown that a group of genetically similar Listeria monocytogenes strains 2

(molecular sub-type RAPD 9) that can persist in fish processing are low virulent in simple 3

eukaryotic models but one of these strains was highly virulent against guinea pig fetuses. The 4

purpose of this study was to determine if the persistent RAPD 9 strains have a preference for the 5

placenta and therefore pose a particular risk to unborn fetuses. The RAPD 9 strains were 6

compared to clinical strains from maternofetal cases with respect to phenotypic behavior in cell line 7

systems mimicking two of the steps in crossing of the placental barrier. Additionally, three key 8

virulence genes, inlA, inlB, and actA, were sequenced to determine if there was a correlation 9

between cell invasion, genotype and the type of infection. The RAPD 9 strains invaded human 10

placental trophoblasts less efficiently than other L. monocytogenes strains, and this could be 11

explained by the presence of a premature stop codon in inlA from the RAPD 9 strains. In addition, 12

they did not show enhanced intracellular replication in these trophoblasts. Likewise, the RAPD 9 13

strains did not have an increased ability to spread from cell to cell in mouse fibroblasts. 14

Interestingly, 8 of 15 strains, including the RAPD 9 strains and maternofetal strains, had a 105 15

nucleotide deletion in actA, but this did not affect the cell-to-cell spread. We conclude that the 16

RAPD 9 strains can still be regarded as low-virulent with respect to human listeriosis and do not 17

pose a particular increased risk to pregnant women. 18

 19

Words: 254 20



3

Introduction 1

2

Listeria monocytogenes is a gram positive pathogenic bacterium that can cause food-borne 3

listeriosis. It is a ubiquitous environmental bacterium, and it is therefore continuously introduced to 4

the food processing plants through contaminated raw material. Once introduced, some molecular 5

sub-types are able to persist in the food processing plants despite thorough cleaning and 6

disinfection procedures (1,32,39,48). Such persistent strains are likely to contaminate the food 7

products and may be the cause of food borne infections (35).  8

 9

We have shown that specific molecular subtypes of L. monocytogenes can persist for years in the 10

seafood processing environment (51) and since these strains are likely food contaminants, it is 11

important to determine their virulence potential. We found that strains representing a particular 12

prevalent persistent molecular sub-type (the so-called RAPD type 9 (Random Amplified 13

Polymorphic DNA)), had a lower virulence potential than clinical strains in a number of simple 14

eukaryotic models, e.g. invasion into Caco-2 cells (14). However, in a  more complex biological 15

model using pregnant guinea pigs, a RAPD type 9 strain surprisingly infected the placentas and 16

fetuses just as efficiently as a clinical strain (15). We therefore hypothesized that this specific sub-17

type may have an altered (enhanced) ability to cross the placental barrier for instance by an 18

enhanced invasion into placental cells or an enhanced ability to intracellular spread.  19

 20

During listeriosis, L. monocytogenes disseminates in the blood after crossing the intestinal barrier. 21

From the maternal blood L. monocytogenes must cross the placental tissue to gain access to the 22

fetal blood stream. The placenta is composed of interlocking maternal and fetal tissues and is 23

formed when fetal epithelial cells, trophoblasts, proliferate into the uterus wall (19,27). Thus, L.24

monocytogenes from the maternal blood must first invade the fetally derived trophoblasts and 25

spread through the connective tissue before it can cross the endothelial cells of the fetal blood 26
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vessels and infect the fetus. A number of virulence factors are important for the fetal infection by L.1

monocytogenes, and mutations in these key virulence genes lead to less virulent L.2

monocytogenes (9). The surface proteins InlA and InlB interact with their respective receptors, E-3

cadherin (28) and Met, gC1qR or proteoglycans (4,17,41) and mediate internalization of L.4

monocytogenes into non-phagocytic cells. InlA is involved in invading intestinal epithelial cell lines 5

(10,25) and has also been shown to be important for invasion of human trophoblastic cell lines as 6

well as human primary trophoblastic cultures and placental explants (2,12,26). In contrast, in vivo 7

studies on pregnant guinea pigs and mice showed that InlA was not important for fetoplacental 8

invasion (2,23). InlB appears not to be essential for in vitro infection of placental cells (2, 26). 9

However, the interaction of both InlA and InlB with their respective receptors is species-specific, 10

and thus the important role that these proteins play in crossing of host barriers, can only be studied 11

in species permissive to both these pathways. Recently Disson et al. (9) have shown an 12

interdependent role of InlA and InlB for crossing the blood-placenta barrier in vivo in both knock-in 13

mice (hEcad) and gerbils, which like humans are permissive to both the InlA and the InlB 14

pathways. Apart from the laboratory-generated inlA deletion mutants, field strains with mutations in 15

inlA leading to premature stop codons (PMSC) have been detected in L. monocytogenes from 16

France (34), USA (30) and Japan (11). These mutations lead to attenuation in invasion of intestinal 17

epithelial cells (30,33,40), but it is not known if the invasion into trophoblasts is affected.  18

ActA is important for cell-to-cell spread (5), is involved in invasion into epithelial cells (45), and 19

ActA-mediated cell-to-cell spread plays a major role in crossing the fetoplacental barrier in both a 20

guinea pig and a mouse model (3,23). When inside the placental tissue, ActA is essential for 21

further infection of the fetus (3). An identical deletion of 105 nucleotides, in the proline rich region 22

of actA has been reported in several strains (29,44,50) and the influence of this deletion on the 23

ability to form plaques is still unresolved. Neither Sokolovic et al. (44) nor Roberts & Wiedmann 24

(37) could correlate the length of ActA and the ability of the bacterium to spread as indicated by its 25

ability to form plaques.  26

 27
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The purpose of this study was to determine if the discrepancy between assessment of virulence 1

potential of the processing plant persistent strains (RAPD 9) in gastro-intestinal cells and in the in2

vivo pregnant guinea pig model could be explained by systematic differences in invasion into and 3

spread between cells and if systematic differences in virulence gene sequences could be the 4

cause of such potential differences.  We hypothesized that the RAPD type 9 strains would have a 5

preference for the placenta and would thus pose a particular risk to unborn fetuses. To assess the 6

virulence potential of the RAPD type 9 stains in maternofetal listeriosis further, we investigated the 7

phenotypic behavior of these RAPD type 9 strains in model systems mimicking two of the steps in 8

the crossing of the placental barrier. We compared this behavior to strains from clinical cases of 9

listeriosis, especially maternofetal cases in their ability to invade and grow in a trophoblastic cell 10

line, JAR, and to spread in a fibroblastic cell line, L929. In addition, inlA, inlB and actA which are 11

the three virulence genes important for these steps were sequenced. 12

13

14

Materials and methods 15

16

Strains, culture conditions and characterization. Experiments were carried out with a culture 17

collection of 17 Listeria monocytogenes strains representing different origins (food processing 18

environment, food products and human clinical strains), RAPD-types, serotypes and lineages 19

(table 1). Four strains (N53-1, La111, H13-1, M103-1) all represent a unique persistent sub-type 20

(RAPD type 9) of L. monocytogenes. Strain La22 was isolated from a food sample but its RAPD 21

type is similar to another RAPD sub-type that we have found as persistent in a fish processing 22

plant (48). Stock cultures were stored at -80°C in 4% (w/v) glycerol, 0.5% (w/v) glucose and 2.0% 23

(v/w) skimmed milk powder. The bacteria were grown in Brain Heart Infusion (BHI) broth (Oxoid, 24

CM0225) and enumeration was done onto BHI agar (Oxoid, CM0225 and AppliChem, A7354). For 25
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all cell assays, bacteria were grown at 37°C with aeration for 20 h. Serogrouping of the strains was 1

done using Listeria O antisera Type 1 and 4 (Becton Dickinson, 223001 and 223011) according to 2

the manufacturer, and lineage separation was done as in Wiedmann et al. (50). RAPD typing was 3

done according to Vogel et al. (49).4

5

Invasion in Caco-2 cells. The human colorectal adenocarcinoma cell line Caco-2 (HTB 37) was 6

obtained from LGC standards and grown in Eagle’s Minimum Essential Medium (MEM) (Invitrogen, 7

42360024) supplemented with 20% FBS (Lonza, DE14-830), 0.1 mM non-essential amino acids 8

(Invitrogen, 11140035), and 25 �g/ml gentamycin (Gibco, 15750-037). Invasion was determined as 9

described earlier (13).  10

 11

Invasion and intracellular growth in JAR cells. The human choriocarcinoma cell line JAR (HTB-12

144) was obtained from LGC standards and grown in F12 (Lonza, BE12-615) supplemented with 13

10% Fetal Bovine Serum (FBS) (Lonza, DE14-830) and 25 �g/ml gentamycin (Gibco, 15750-037).  14

For the invasion assay, the JAR cells were adjusted to 5×104 cells/ml in F12+10% FBS and grown 15

in a 24-well tissue culture plate (TPP, Trasadingen, Switzerland) for 24 h at 37°C with 5% CO2 to 16

reach a monolayer. The bacterial overnight cultures were adjusted to 1×106 CFU/ml by dilution in 17

F12+10% FBS. The cells were washed one time in saline water (0.9% NaCl, pH 7.2) and 1 ml of 18

diluted bacteria was added to each well. Following, the plates were centrifuged for 5 min at 150 x19

g. After 1 h of incubation, the cells were washed in saline water and F12+10% FBS + 50 �g/ml 20

gentamycin was added to each well, followed by a 1 hour incubation at 37°C. The cells were 21

washed one time with saline water and lysed with 1 ml 0.1% TritonX-100. The number of bacteria 22

released was expressed in CFU/ml by plating appropriate dilutions onto BHI agar plates. The 23

ability of L. monocytogenes to grow intracellularly in JAR cells was studied for all 17 strains. The 24

JAR cells was infected as described above, the monolayer was washed twice with saline water and 25

the extracellular bacteria were killed by incubation with F12 +10% FBS + 50 �g/ml gentamycin for 26

one hour at 37C. The media was removed and F12 +10% FBS + 25 �g/ml gentamycin were added 27
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to each well. The plates were incubated for 2 h, 3.5 h or 5 h at 37°C. At each time the media was 1

removed and cells were lysed and the number of intracellular bacteria was determined as 2

described above. All experiments were carried out in duplicate in three independent trials.3

 4

Invasion and plaque formation in L929 cells. The mouse fibroblastic cell line L929 was obtained 5

from European Collection of Animal Cell Cultures (ECACC, 85011425) and grown in Dulbecco’s 6

Modified Eagle’s Medium (DMEM) (Lonza, BE12-604F) with 10% (FBS) (Lonza, DE14-830) and 25 7

�g/ml gentamycin (Gibco, 15750-037). For the invasion assay, L929 cells were adjusted to 3×105 8

cells/ml in DMEM+10% FBS and grown in 24-well tissue culture plates (TPP, Trasadingen, 9

Switzerland) for 24 h at 37°C with 5% CO2 to reach a monolayer. The bacterial overnight cultures 10

were adjusted to 5×104 CFU/ml by dilution in DMEM+10% FBS and invasion was determined as 11

described for the JAR cells, except that L929 cells were incubated with DMEM + 10% FBS + 50 12

�g/ml gentamycin to kill extracellular bacteria prior to lysis. The detection limit with this setup was 13

approx 1 CFU/ml. For the plaque formation assay, the L929 cells were grown in a 6-well tissue 14

culture plate (TPP, Trasadingen, Switzerland) for 24 h at 37°C with 5% CO2 to reach a monolayer. 15

The bacterial cultures were adjusted to 5x104 CFU/ml by dilution in DMEM with FBS. The L929 16

cells were washed two times in saline water and 3 ml of the diluted bacteria was added to each 17

well. The plates were centrifuged for 5 min at 150 x g. After 1 h of incubation at 37°C, the L929 18

cells were washed in saline water, followed by addition of 2 ml overlay consisting of DMEM, 0.5% 19

agarose, 10 �g/ml gentamicin. The wells were incubated 4 days at 37°C with 5% CO2. The plaques 20

were visualized by the addition of 2 ml DMEM containing 0.5% agarose and 0.01% neutral red 21

(Sigma, N2889). The experiment was carried out in duplicate in three independent trials. To verify 22

the assay, we included L. monocytogenes 10403S and 10403S delta actA (kindly provided by D. 23

Portnoy, University of California) as a positive and negative control of plaque formation (data not 24

shown). The plaque areas were measured using ImageJ software and plaque size was normalized 25

to the size of the well. The measurement included 10 plaques per strain from one experiment. 26

 27
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Sequencing of virulence genes. Primers (DNA Technology, Århus, Denmark) of PCR 1

amplification if inlA, inlB and actA were also used for sequencing of the purified PCR products 2

(Table 2). The sequencing was done by DNA Technology (Århus, Denmark) and Eurofins MWG 3

Operon (Ebersberg, Germany). To eliminate errors in the sequencing, each PCR product was 4

sequenced with both the forward and reverse primer. The inlA and inlB genes were fully 5

sequenced whereas the actA gene was sequenced partly. 6

 7

Statistical analyses. The Mann-Whitney test was used to compare groups of full-length and 8

deletion in actA with respect to either number of plaques or plaque sizes. The Kruskal-Wallis test 9

was used to test for associations between invasive ability, number of plaques, and plaque sizes 10

between groups of strains of different origin. All analyses were performed using GraphPad Prism 11

statistical software.12

 13

Nucleotide sequence accession numbers. The inlA, inlB and actA gene sequences have been 14

deposited in GenBank under the accession numbers xxx to xxx and GU079614 to GU079626 and 15

GU060665 to GU060678, respectively.16

 17

 18

Results19

 20

RAPD type 9 strains have a low invasive ability in placental trophoblasts. The ability of L.21

monocytogenes strains (RAPD type 9 and others) to invade placental trophoblasts was examined 22

in the choriocarcinoma cell line JAR. The group of persistent RAPD type 9 strains invaded the 23

trophoblasts at a significantly lower level than the maternofetal strains did (P < 0.05), but also EGD 24

and LO28 displayed low invasion in JAR cells (Figure 1). Since L. monocytogenes invades 25

placental trophoblasts in an InlA-E-cadherin dependent manner (26), the observed lower invasion 26
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of the RAPD type 9 strains and LO28 in JAR cells is supported by the presence of premature stop 1

codon in inlA from these strains (see below). 2

 3

The ability to invade trophoblastic cells of the two lineage groups, lineage I and lineage II was 4

compared and lineage I strains invaded to a significantly higher level than lineage II strains (P < 5

0.05). The two strains derived from food samples, 7418 and La22, also invaded the trophoblasts in 6

a very high level, comparable to the maternofetal strains. The high invasion of the maternofetal and 7

human clinical strains was also seen in Caco-2 cells (Table 1). 8

 9

All strains have similar growth rates in JAR cells. We examined intracellular growth in JAR 10

cells to determine if the RAPD type 9 strains were able to multiply to higher numbers once inside 11

the placental cells. There was however no difference between the RAPD type 9 strains and the 12

other strains (results not shown) indicating that the RAPD type 9 strains have no intracellular 13

growth benefits compared to the clinical strains. 14

 15

Differences in the ability of cell-to-cell spread in L929 cells. ActA is involved in cell-to-cell 16

spread by inducing the polymerization of actin thus propelling L. monocytogenes through the host 17

cell cytoplasm and into neighboring cells resulting in plaque formation. The ability of the strains to 18

spread from cell to cell was evaluated in a plaque assay in the mouse fibroblastic cell line L929 19

(Figure 2). All strains invaded the L929 cells in a similar level (Table 1) and all strains were able to 20

form plaques in L929 cells (Table 1 and Figure 2).  21

22

None of the four groups formed plaques significantly different from each other (P > 0.05), 23

especially the group of persistent RAPD type 9 strains did not form a higher number of plaques as 24

an indicator of increased cell-to-cell spread (Figure 2) . One maternofetal strain (3272-03) showed 25

an extreme ability to form plaques as the number of plaques was more than double as all the 26

numbers of the other strains. We did not find differences between the size of the plaques when 27
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strains were grouped according to origin (P > 0.05), or presence of actA deletion (P > 0.05) (see 1

below), however lineage I strains formed significantly larger plaques as compared to lineage II 2

strains (P < 0.05).  3

 4

RAPD type 9 strains harbor important mutations in inlA and actA. We have sequenced the 5

three virulence genes, inlA, actA and inlB from all 15 wild type strains used in this study, because 6

these three genes are important for invasion and the intracellular lifestyle of L. monocytogenes. In 7

a previous study, we found that strains belonging to the food processing persistent RAPD type 9 8

group had a low ability to invade into the intestinal epithelial cell line Caco-2 (13,14), and we 9

hypothesized that single point mutations in inlA could cause this result. In the present study we 10

were able to identify the presence of a premature stop codon (PMSC) in all the four RAPD type 9 11

strains. We identified a nucleotide substitution from cytosine to a thymidine at position 1474, 12

resulting in a stop codon at position 492 (Figure 3A), leading to export of InlA instead of 13

incorporation into the cell membrane (18,33). LO28 was the only other strain containing PMSC, 14

which is already known. The maternofetal strain 4810-98 had a small deletion of 9 nucleotides 15

starting at position 2214 (result not shown).  This deletion did not influence the ability of this strain 16

to invade trophoblasts. The deletion was present at the membrane anchoring region of InlA and 17

might therefore not influence the activity of InlA. 18

19

Three of 15 strains contained a complete inlB sequence, but in 12 strains we detected two 20

nucleotide substitutions; one from guanine to adenine at position 350 resulting in an amino acid 21

substitution from alanine to threonine (position 117) and one from guanine to adenine (position 22

395) leading to an amino acid substitution from valine to isoleucine (position 132) (Figure 3B). The 23

first mutation was seen in the four RAPD type 9 strains, two maternofetal strains (12443 and 3272) 24

and one food strain (La22). The other type of mutation was seen in all of the strains except EGD, 25

LO28 and the maternofetal strain 3495-04. None of the strains contained any nonsense mutations 26

in inlB.  27
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 1

When actA, encoding actin-polymerizing protein essential for intracellular motility and cell-to-cell 2

spread was sequenced, a deletion of 105 nucleotides (35 amino acids) was seen in eight out of the 3

15 strains (Figure 3C). The deletion is present at amino acid 305 to amino acid 340. This deletion 4

is in the region encoding the central region of proline-rich repeats required for binding to the 5

vasodilator-stimulated phosphoprotein (VASP) (7,22). The deletion was not only seen in the four 6

RAPD type 9 strains, but also in four of the clinical strains, of which two have caused fetal 7

infection. This suggests that the deletion in the actA repeat region does not influence the ability to 8

cause fetal infection. Also, this deletion did not influence the number of plaques formed (P > 0.05) 9

(Table 1).  10

 11

 12

Discussion13

 14

In this study, we have addressed the apparent discrepancy between the virulence potential of 15

genetically similar food processing persistent L. monocytogenes strains (RAPD type 9 strains) as  16

they were low virulent in simple eukaryotic models (13) but one of these strains was highly virulent 17

in the complex pregnant guinea pig model (15). The persistent RAPD type 9 strains have not been 18

implicated in listeriosis outbreaks in Denmark (Birgitte Smith, unpublished results) but other 19

persistent L. monocytogenes have been the cause of outbreaks, e.g. in the US (35,36). This 20

emphasizes the need for a more thorough understanding of the physiology of these persistent 21

strains to provide adequate insight about the virulence of field isolates and the likelihood that a 22

given strain will cause illness. 23

 24

We hypothesized that the disagreement between virulence potential in different models could be 25

explained by an increased ability of the RAPD type 9 strains to execute one (or several) of the 26
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infectious steps involved in crossing the placenta membrane from the maternal to the fetal 1

bloodstream. To investigate this, we studied the phenotypic behavior in cell line models and 2

sequenced important virulence genes (inlA, inlB and actA) from a genetically similar group of 3

persistent strains and compared this to human clinical strains including strains isolated from 4

maternofetal listeriosis.  5

 6

The InlA receptor E-cadherin is present on the cell wall of trophoblast cells and is responsible for 7

InlA – E-cadherin dependent entry of L. monocytogenes into trophoblasts (26). We have previously 8

shown that RAPD type 9 strains do invade Caco-2 cells, which is another InlA – E-cadherin 9

dependent cell line, to a lower level than strains of other origin and RAPD type (13) and we found 10

in the present study that they were poor invaders of tropoblastic cells as well (Figure 1). We have 11

identified a single point mutation in the four RAPD type 9 strains resulting in the formation of a 12

premature stop codon (PMSC) that can explain the lower invasion ability of the RAPD type 9 13

strains. Whilst previous studies have demonstrated that a strain lacking inlA is attenuated in its 14

ability to invade cells from the placental barrier (2, 9,26), our study is the first to demonstrate that 15

strains with PMSC in inlA are affected in invasion of placental cells. The PMSC is at position 1473 16

which is at the same position as in French strains that were low invasive in Caco-2 cells (33). 17

However, strains with truncated InlA cannot be regarded as non-virulent, as two large 18

epidemiological studies found that a few cases of maternofetal listeriosis or bacteremia were 19

caused by strains expressing truncated InlA (9,12), Another reason for low invasion into Caco-2 20

cells could be a low inlA transcript level, and some outbreaks have been caused by strains 21

expressing low levels of inlA (38). 22

 23

We also identified a small deletion of nine nucleotides in inlA at position 2214 in strain 4810-98, 24

which is in the membrane anchoring region of InlA (30). As seen from the invasion data from both 25

Caco-2 cells and JAR cells, this deletion does not influence the role of InlA in cell invasion, since 26

strain 4810-98 invades both cell types to the same high level as strains with no deletions. This 27
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small deletion is also seen in L. monocytogenes strain H7858, which is a serotype 4b frankfurter 1

isolate from the multistate outbreak of 1998-1999 (6), however no phenotypic consequence of this 2

small deletion has been described. The strain used in this study did all invade the L929 fibroblastic 3

cells to the same level meaning that inlA is not involved in the invasion into this cell type.  4

 5

As described, InlB is important for the interaction with several cell line receptors, however, full 6

expression of InlB may not be a prerequisite for virulence as Nightingale et al (31) showed that the 7

full genome sequenced strain F2365, which is an isolate from the 1985 listeriosis epidemic in 8

California, contains a stop codon in inlB at position 100 and the strain will therefore not translate a 9

full length InlB.  We did, however, expect that InlB was important for invasion of L. monocytogenes 10

into L929 fibroblast cells as it has been demonstrated that for instance single point mutations in 11

InlB affects invasion into Vero cells  (46). We found the same single point mutations at amino acid 12

position 117 and 132 but these did not affect the fibroblast invasion. The SPM are located in the 13

leucine-rich region of InlB, which is important for the interaction with the Met receptor (41). The 14

contradiction between our results and the results seen by Temoin et al. (46) could be because of 15

the studies used two different cell lines (Vero cells and L929 cells), or be due to the presence of 16

other mutations in other genes.  17

 18

 19

When L. monocytogenes is spreading from one cell to the neighboring cell, ActA is responsible for 20

the formation of the actin tail and strains lacking ActA are less virulent and unable to form plaques 21

(5). ActA is also required for crossing of the fetoplacental barrier in both guinea pigs and mice 22

(3,23). Surprisingly, the actA from several of the strains used in the present study had a deletion of 23

105 nucleotides (35 amino acids) in the central region of proline-rich repeats required for binding to 24

vasodilator-stimulated phosphoprotein (VASP) (Figure 3B). This deletion has been described in 25

several other L. monocytogenes strains (16,29,44,50) but the phenotype of the strains appears not 26

to change. Jiang et al. (16) have showed that a strain containing the deletion is unable to form 27
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plaques in the mouse fibroblastic cell line L929, but the control strain and the deletion strain in that 1

study were not isogenic and therefore this could be due to other genetic differences. Accordingly, 2

neither Solokovic et al. (44), Chen et al. (8) nor Morishii et al (29) found any correlation between 3

plaque formation and actA deletion in either the rat epithelial cell line L2 or L929.  Our results 4

indicate that full length ActA is not obligatory for full invasion as the deletion of 105 nucleotides in 5

actA did not affect cell to cell spread. The ability of a RAPD type 9 strain to spread to guinea pig 6

fetuses cannot be caused by an increase capacity to cell-to-cell-spread as these strains showed 7

average spread in terms of plaque size and numbers.  8

 9

The paradox that an otherwise low virulent strain (La111) that harbors a mutation in inlA is able to 10

infect guinea pig fetuses indicate that InlA does not play a crucial role in placental infection of 11

guinea pigs. This is supported by another study in pregnant guinea pigs (2) as well as a study in 12

pregnant mice (23). In contrast, full length inlA is important for human placental infection as 13

demonstrated by human epidemiologic studies as well as studies with human trophoblastic cells 14

and placental explants (2,9,12,26). The discrepancy between in vivo (guinea pig) and in vitro (cell 15

lines) results is probably explained by the species-specificity of InlA and InlB. InlA interacts with the 16

human and guinea pig E-cadherin but not with the mouse E-cadherin (24), whereas InlB interacts 17

with the human and mouse Met receptor but not with the guinea pig Met receptor (20). Like 18

humans, the gerbil is permissive to both the InlA – E-cadherin and the InlB – Met pathways and it 19

has recently been established that InlA and InlB have interdependent roles in fetoplacental 20

invasion in this species. Consequently, L. monocytogenes only targets the placenta in vivo, if both 21

InlA and InlB pathways are functional (9).   22

 23

Even though our results demonstrate the necessity of a full functional InlA, strains with PMSC in 24

inlA can, albeit rarely, cause human listeriosis (9,12), suggesting that other pathways can be 25

involved in the infection and/or that other factors specific to either the host or the strain of L.26

monocytogenes influence the course of infection. This could explain why the RAPD type 9 strain 27
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with a PMSC in inlA can infect guinea pig fetuses as other pathways may be important in this 1

species. In addition, other strain-specific factors, like the ability to survive and grow in the food 2

matrix within which it is delivered to the host, can also influence the infectious potential as also 3

speculated by Roberts et al (38). 4

 5

The key question in this study was if the otherwise low-virulent RAPD type 9 strains had a 6

preference for the placenta and thus would pose a particular risk to pregnant women. It is striking 7

that the four tested RAPD type 9 strains all had the exact same sequence (and mutations) for all 8

three sequenced virulence genes when compared to the EGD-e genome indicating that these 9

strains are genetically highly similar. They have been isolated from different processing 10

environments over a period of 12 years and have in all environments been identified as persistent 11

strains (51).  We have shown that the RAPD type 9 strains did not invade human placental 12

trophoblasts more efficiently than other strains, probably due to the presence of PMSC in their inlA. 13

In addition, they did not show enhanced intracellular replication in these trophoblasts nor increased 14

ability to spread from cell to cell in mouse fibroblasts. Based on these results and in accordance 15

with Jensen et al. (14) and Disson et al (9), we conclude that the RAPD type 9 strains can still be 16

regarded as low-virulent with respect to human listeriosis and do not pose an increased risk to 17

pregnant women in particular.  18

 19

 20

 21
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Legends1

Figure 1: Invasion of L. monocytogenes strains into human trophoblastic JAR cells. 2

Strains were grown in BHI broth at 37°C for 20 hours and adjusted to 1.0 × 106 CFU/ml 3

before infection of the JAR monolayer. Invasion is expressed as the number of intracellular 4

CFU/ml relative to the number of CFU/ml added to the well. Strains have been sorted 5

according to origin. Dark columns represent lineage I strains and light columns represent 6

lineage 2 strains. Columns are average from one trial carried out in duplicate and error 7

bars are standard deviations. The results are representative of three independent 8

experiments.  9

10

Figure 2: Plaque formation by L. monocytogenes in mouse fibroblastic L929 cells. Strains 11

were grown in BHI broth at 37°C for 20 hours and adjusted to 5 × 104 CFU/ml before 12

infection of the L929 monolayer. Data is expressed as the number of plaques for 102 13

invaded bacteria. Strains have been sorted according to their origin. Dark columns 14

represent lineage I strains and light columns represent lineage 2 strains. Check patterned 15

columns represent strains with a 105 bp deletion in actA. Columns are average from one 16

trial carried out in duplicate and error bars are standard deviations. The results are 17

representative of three independent experiments.  18

 19

Figure 3: Amino acid sequence of sequence of InlA (A), InlB (B) and ActA (C) from Listeria 20

monocytogenes strains. The InlA from the four RAPD type 9 strains has a premature stop 21

codon (PMSC) at position 492 leading to a truncated InlA. The InlB from the four RAPD 22

type 9 strains has several single point mutations. The ActA has, for several of the strains, 23

a deletion of 35 amino acids in the vasodilator-stimulated phosphoprotein region. 24
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Figure 2 1
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