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ABSTRACT

This technical note documents the trust-region-based sequential quadratic programming algorithm used
in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject
to linear inequalty constraints and nonlinear equality constraints.
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1 Introduction

A nonlinear cost function subject to nonlinear equality and inequalty constraints constitutes a nonlinear
programming problem (NLP). Multiple methods for solving such problems exists, best known are sequen-
tial quadratic programming problem (SQP) [1, 2] algorithms and interior point (IP) algorithms [3, 4] or
hybrids of the two [5]. The SQP is typically augmented with a trust region inequality constraint, which
can be tightened of loosened depending on the progress made by the current search direction. More
advanced versions of these algorithms are able to cope with nonlinear inequality constraints, a feature
not yet tested with the algorithm presented in this paper. This paper describes a trust-region-based
sequential quadratic programming (TRSQP) algorithm with a general framework which can be used for
different problems with adaptations suited for the particular structure of the problem. Such a particular
structure is seen in Nonlinear Model Predictive Control [6, 7, 8].

2 Trust-region-based sequential quadratic programming

A NLP of the general form

min
x
f(x), s.t. c(x) = 0 and d(x) ≤= 0 (1)

has the Lagrangian

L(x,ν,λ) = f(x) + νT c(x) + λTd(x) (2)

leading to the Karush-Kuhn-Tucker (KKT) conditions for optimality [3, 4]

∇L(x,ν,λ) = ∇f(x) +∇c(x)ν +∇d(x)λ = 0 (3)

c(x) = 0 (4)

d(x) ≤ 0 (5)

diag(d(x))diag(λ) = 0 (6)

λ ≥ 0 (7)

the KKT conditions will not be investigated further here as they more relevant for the IP methods. The
NLP can be solved via an iterative procedure known as sequential quadratic programming (SQP) where
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in each iteration the local approximated problem is solved as a quadratic programming problem (QP).

min
∆x

m(∆x), m(∆x) = 1
2∆xTH∆x+∇f(x)T ∆x (8a)

subject to

c(x) +∇c(x)T ∆x = 0 (8b)

d(x) +∇d(x)T ∆x ≤ 0 (8c)

‖D∆x‖p ≤ δ (8d)

The optimization variable is updated by the iterative progress

(x,ν,λ)+ = (x,ν,λ) + ∆(x,ν,λ) (9)

if certain step acceptance criteria are met. The extra inequality constraint (8d), known as a trust-region,
where δ is the trust region radius, can be added to aid the convergence. Iterations continue either untill
the maximum number of allowed iterations are met, if termination criteria are met or until the algorithm
fails due e.g. bad numerical handling of the problem solving or because the problem was ill-posed to
begin with. The outline of the TRSQP can be seen in Alg. 1.

Algorithm 1: Trust region based sequential quadratic programming solver

Set initial values for (x,ν,λ), δ = δmax and H = ∇2f ;
for ITER from 1 to IMAX do

Calc. trust-region scaling matrix D;
Solve QP to obtain ∆(x,ν,λ);
Set trial variables (x,ν,λ)+ = (x,ν,λ) + ∆(x,ν,λ);
Calc. f(x+), c(x+) and d(x+) and their Jacobians;
Calc. progress measures ρ and γ;
Update trust region radius δ;
Update Quasi-Newton approximation of Hessian of Lagrangian H;
if Step accepted then

Set (x,ν,λ) = (x,ν,λ)+;

if Convergence then
Terminate algorithm;

The different points of the algorithm are elaborated in the following sections.

2.1 Step acceptance

Step acceptance is depending on two measures of progress as well as inequality feasibility. The actual to
predicted cost reduction ratio

ρ =
f(x)− f(x+)

−m(∆x)
(10)

provides a measure of how well the QP subproblem resembles the properties of the NLP at the current
point. For ρ ≈ 1, the QP and the NLP are in good agreement. For ρ > 1, a greater decrease in cost
function than predicted by the QP has occured and for 0 < ρ < 1 the actual decrease in cost function
was not as good as predicted by the QP. For ρ < 0, the NLP and the QP are not in agreement of whether
the cost function was decreased or increased with the current step. The relative improvement of the cost
function

γ =
f(x)− f(x+)

f(x)
(11)
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Figure 1: Two trust regions are shown in this figure: The box is given by the ∞-norm and the ellipsiod
is given by the 2-norm. Both norms have scaling matrices based on the Hessian.

provides another measure of progress. Different strategies can be taken. In the present work the cost
function is allowed to increasee as long as ρ or γ are positive and inequalties are feasible. This enables
a search where the algorithm is able to move around. The step is accepted if the QP was able to find a
feasible solution and if

max(ρ, γ) > 0 (12)

max(d(x+)) ≤ τd(x) (13)

furthermore steps are not accepted in the first iteration as experience has shown better performance by
letting the algorithm start up and generate its first Quasi-Newton Hessian approximiation etc.

2.2 Trust region

A trust region with the general form

‖D∆x‖p ≤ δ (14)

where D is the scaling matrix, p is the number of the norm, e.g. 1,2 or∞, and δ is the trust region radius,
can be imposed on the QP. The first choice of a suitable scaling matrix D might be the identity matrix.
An even better choice takes the Hessian H into account as the problem might not be equally sensitive to
changes of x in all directions. The 2-norm yields a quadratic constraint ∆xTDTD∆x ≤ δ2 which can
be chosen to be indentical to the Hessian ∆xTH∆x ≤ δ2. The quadratic constraints would make the
approximated problem a quadratic constrained quadratic cost (QCQC) problem which does not fit into
the normal QP framework used by the SQP, where only linear constraints occur. The ∞-norm results
in linear inequalty constraints

−δ ≤ D∆x ≤ δ (15)

and is thus suitable for the description of a trust region which can be included in standard QP. Inspired
by the quadratic constraints the Hessian can be decomposed by e.g. singular value decomposition

H = UΣVT = UΣ1/2Σ1/2VT = DTD (16)

giving a multidimensional box circumscribing the ellipsoid of the quadratic constraint as tight as possible.
Fig. 1 shows how the ∞-norm and the 2-norm trust regions resemble the Hessian and ensure that steps
are constrained along the dimensions in a fashion scaled by the Hessian.
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2.3 Trust region radius

The trust region radius should be increased or decreased according to a set of rules: If ρ is small indicating
poor agreement between the NLP and QP or if γ is negative indicating an increase in cost function or
if the previous step has been rejected for some reason, then the trust region radius should be decreased.
If the QP failed, it is most likely due to a too restrictive trust region radius and the radius should be
increased. If ρ was high, indicating good agreement between the NLP and the QP, then the trust region
radius should be increased.

δ =


δ/2 for ρ < 1/4 or γ < 0 or Step Rejected

min(3δ, δmax) for QP failed
min(3 min(δ, ‖D∆x‖p), δmax) for ρ > 3/4

(17)

2.4 Quasi-Newton approximations of Hessian of Lagrangian

The quadratic cost in the QP should idealy by the Hessian of the Lagrangian of the NLP

∇2L = ∇2f(x) +

nc∑
i

∇2ci(x)νi +

nd∑
i

∇2di(x)λi (18)

this would computational expensive and if no analytic second derivatives of the cost function and con-
straints are available, those would have to be determimed via finite differences. Commonly used alter-
natives are different Quasi-Newton approximations such as dBFGS (Alg. 2), SR1 (Alg. 3) and SR1pos
(Alg. 4). They are all calculations based on the variable step s and and with the difference in the
gradients of the Lagrangian y

s = x+ − x (19)

y = ∇L(x+,ν+,λ+)−∇L(x,ν+,λ+) (20)

Algorithm 2: damped Broyden-Fletcher-Goldfarb-Shanno (dBFGS) update

if sTy < 0.2sTHs then
θ = 0.8sTHs(sTHs− sTy)−1;
y = θy + (1− θ)Hs;

H = H−HssTH(sTHs)−1 + yyT (yTs)−1;

Algorithm 3: Symmetric rank-1 (SR1) update

if (y −Hs) < 10−6(y −Hs)s then
H = H + (y −Hs)(y −Hs)T ((y −Hs)Ts)−1;

Algorithm 4: Positive definite symmetric rank-1 (SR1pos) update

if (y −Hs) < 10−6(y −Hs)s then
H = H + (y −Hs)(y −Hs)T ((y −Hs)Ts)−1;
ΛV = HV;
H = VΛ+V−1;

The dBFGS and SR1pos both maintain a positive definite Hessian, making the QP easier to solve.
The SR1 might be a better fit if the NLP is not positive definite.
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2.5 Termination

The algorithm terminates if steps toward the optimum are becomming to small and if the last accepted
step was feasible

‖∆x‖2 ≤ τ∆x (21)

max(d(x+)) ≤ τd(x) (22)∥∥c(x+)
∥∥
∞ ≤ τc(x) (23)

3 Discussion and future work

The presented algorithm has been tested with Nonlinear Model Predictive Control, with nonlinear equal-
ity constraints [6]. It has not been tested with nonlinear inequality constraints and performance with
nonlinear inequality constraints remains to be investigated.
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