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An optimization scheme based on topology optimization for transient response of photonic crystal structures is
developed. The system response is obtained by a finite-element time-domain analysis employing perfectly
matched layers as an absorbing boundary condition. As an example a waveguide-side-coupled microcavity is
designed. The gradient-based optimization technique is applied to redistribute the material inside the micro-
cavity such that the Q factors of a monopole and a dipole mode are improved by 375% and 285%, respectively,
while maintaining strong coupling. This is obtained by maximizing the stored energy inside the microcavity in
the decaying regime of the transient response. Manufacturable designs are achieved by filtering techniques
capable of controlling minimum length scales of the design features. © 2010 Optical Society of America

OCIS codes: 000.4430, 230.5750, 230.7390.

1. INTRODUCTION
In the field of information technology light plays a pro-
gressively important role as an information conveyor. One
of the keys to future information technology is the real-
ization of large-scale optical integrated circuits. Herein
photonic crystals (PhCs) are believed to be the leading
platforms. This is due to their unique capability of exhib-
iting very strong light-matter interaction while keeping
the size of the optical components greatly reduced [1,2]. It
is the photonic bandgaps of PhCs that yield this interac-
tion in which wave propagation at certain wavelengths is
prohibited. The introduction of PhC mirrors, waveguides
(WGs), and resonant microcavitites (MCs) as the three
basic PhC components has led to an increased attention
on the design of optical devices within the last decade
that may accomplish the complete control of light propa-
gation. Amalgamation of these components has been uti-
lized to designing various PhC devices such as filters,
bends, and splitters for various applications [3].

In the engineering of PhC devices, the use of inverse
problem techniques has recently been introduced as po-
tential designing tools to replace previous approaches
[4,5]. In this paper we demonstrate how topology optimi-
zation based on transient analysis can be used to tweak
the performance of a two-dimensional (2D) PhC filtering
device, consisting of a PhC-WG-side-coupled PhC-MC.
The aim is to achieve strong coupling between the
PhC-WG and -MC while maintaining a high Q factor for
the filtered mode residing inside the MC.

The methodology behind topology optimization has pre-
viously disclosed its usefulness in the design of various
2D PhC-WG components, e.g., a 90° bend [6], a T-junction
[7], and a termination [8]. Other relevant and efficient
PhC component designs have been obtained and experi-
mentally verified in [9–12]. The common goal for these op-
timization examples is the maximization of power trans-

mission of either transverse electric (TE-) or transverse
magnetic (TM)-polarized waves at multiple frequencies.
The optimized components reveal good performance and
agreement with experiments. The basis for the computa-
tional model is the finite-element frequency-domain
method. A consequence of using frequency-domain meth-
ods is that wideband optimization requires multiple fre-
quency analyses.

In the present paper the finite-element time-domain
(FETD) method will be employed. Time-domain methods
have the advantage of computing the response of a linear
system at many frequencies with a single time-domain
analysis. This idea has been used for antenna design us-
ing the finite-difference time-domain method [13], one-
dimensional filter and pulse modulator designs [14,15],
and simultaneous space-time optimization [16] in the set-
ting of the FETD method. Additionally, time-domain
methods can accommodate strongly nonlinear or active
(time-varying) media, whereas frequency methods have
difficulties with these physical regimes because the fre-
quency is no longer preserved. Two of the major chal-
lenges of the FETD method are the computational cost as-
sociated with the computation of the sensitivities and the
implementation of efficient absorbing boundary condi-
tions (ABCs), such as the perfectly matched layer (PML)
[17]. To the authors’ knowledge, a topology optimization
scheme based on the FETD method using PMLs as ABCs
has not been reported before.

Improving Q factors of MCs has previously been stud-
ied and subjected to optimization in a 2D PhC slab with a
triangular lattice pattern of air holes. These studies re-
veal that small mode volume and high Q factors are es-
sential in the realization of high-performing active light-
emitting devices such as zero-threshold lasers. Standard
designs of PhC-MCs exploit simple circular defects. A gen-
eral recipe relying on an analytically derived inverse
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problem approach is developed in [18] restricted to geom-
etries of circular shape. Alternatively, a more general in-
verse systematic approach based on a level-set approach
for shape optimization is suggested in [19] that yields op-
timized designs of arbitrary convex shapes. Meanwhile,
when considering the MC as side-coupled to a WG in fil-
tering devices, it acts as a passive component. Conse-
quently, the requirement for the mode volume becomes
secondary, and the interaction between the PhC-MC and
the PhC-WG is the primary target [20]. A detailed concep-
tual study of this interaction can be found in [21,22].

The purpose of this work is to utilize the free material
distribution technique provided by topology optimization
[23], and thereby not limiting the optimized design to any
particular geometrical shape. The optimization method is
formulated in the framework of the FETD method for TE-
polarized modes, and it uses PMLs as ABCs (Section 2).
We express the problem in a fashion that improves the Q
factor by maximizing the stored magnetic energy in the
exponentially decaying regime of the transient response
of PhC-MC monopole and dipole modes. In the optimiza-
tion process we consider a 2D PhC configuration with a
triangular lattice of air holes in the dielectric GaAs (Sec-
tion 3). The system is homogenous in the third dimension,
whereby the total Q factor only depends on the in-plane Q
factor. However, the method presented here is believed
also to be valid for optimization of the Q factor for equiva-
lent PhC slab devices, in which the out-of-plane Q factor
limits the total Q factor. It can also immediately be
adapted to TM modes. Finally (Section 4) by using tempo-
ral coupled-mode (CM) theory [24], the PhC filter with the
optimized PhC-MC is analyzed to verify that the spectral
performance of the filter is improved as desired.

2. FORMULATION OF THE TRANSIENT
TOPOLOGY OPTIMIZATION METHOD
Throughout this paper we consider propagation of TE
modes within 2D infinitely tall PhC structures. The me-
dium inside the structures is assumed to be invariant in
time and to occupy a composite of regions of a homoge-
neous dielectric material as a function of the plane (Car-
tesian) position vector r= �x ,y� in the solution domain �S.
Due to the infinite extension in the third dimension, it is
sufficient to solve the scalar wave equation for the trans-
verse component of the magnetic field, Hz�r , t�. The nu-
merical solution is sought by truncating �S with a PML
region �PML as a means to minimize the nonphysical re-
flection from the boundary ��S (see Fig. 1). Interpreting
the material behavior in �PML as anisotropic, dispersive,
and lossy, the governing equation for r��=�S��PML
takes the following general form [17]:

�L1�t�Hz + � �

�x�L2,x�t�

�

�

�x� +
�

�y�L2,y�t�

�

�

�y��Hz = −
�JB,z

�t
,

�1�

where �=��r� and �=��r� denote permittivity and perme-
ability, respectively.

On the right-hand side of Eq. (1), JB,z�r , t� is the mag-
netic charge current, serving here as the excitation term

in the case of a radiating source residing in �S. The op-
erator L1�t� in Eq. (1) is given by

L1�t� =
�2

�t2 +
�x + �y

�

�

�t
+

�x�y

�2 , �2�

and the other operator L2,p�t� is given by

L2,p�t� = 1 − ap exp�− bpt�ū�t� � , p = x,y, �3�

with ax= ��x−�y� /�, ay= ��y−�x� /�, and bp=�p /�. In Eq.
(3), ū�t� denotes the Heaviside step function, and � stands
for temporal convolution. The spatially dependent
coordinate-wise conductivities �x and �y attenuate the
field in �PML and are thus only nonzero in �PML. They are
expressed in terms of the PML profile ��r� that is chosen
here as [25]

��r� = �max� �

d�
m

,

�max = −
�m + 1�log10�R0�

2dZ0
. �4�

In Eq. (4), � denotes the perpendicular distance from the
PML interface, d is the width of the PML, m is the order
of the PML profile, R0 is the theoretical reflection coeffi-
cient at normal incidence (typically around the order of
10−5), and Z0 is the free-space material impedance. The
impedance matching condition between �S and �PML is
satisfied by requiring that the permittivity in �PML [cf.
Eqs. (2) and (3)] is determined by the value at the PML
interface (i.e., when �=0) [25,26]. For convenience it is
designated by �i=���=0�.

If the PML is backed with the first-order Silver–Müller
radiation boundary condition [27] on �abs���,

n · ��−1�̃Hz� − Y
�Hz

�t
= 0 on �abs, �5�

where n is the outward unit vector normal to the bound-
ary, and Y=	� /� is the surface admittance, the nonphysi-
cal reflections will be further diminished [17]. Here, we
have introduced �̃= �L2,x� /�x ,L2,y� /�y� to abbreviate the

a

√
3
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d

d
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Fig. 1. Illustration of a �–K directional PhC-WG structure as
the computational domain. It consists of the solution domain �S
and the transition domain �T that are truncated by the PML re-
gion �PML. The circle encloses the scattering design region �D. In
�E (black circular region) the energy is maximized. The PhC is
built by blocks of size a /2�	3a /2, where �T��S contains 30
�14 building blocks, and �PML is extended with 24 and 4 blocks
on both sides in directions �–K and �–M, respectively.
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notation. Propagation of plane waves with direction � is
generated in �S by an incident field Hz

inc�r , t� that is in-
troduced on �inc���S as

n · ��−1�̃Hz� − Y�n · � − 1�H0,z
inc

�f

�t
= 0 on �inc, �6�

where H0,z
inc and f�t�, respectively, are the amplitude and

the time evolution of the incident field. When the waves
originate from a radiating point source in �S, the mag-
netic charge current becomes JB,z�r , t�=��r−r��g�t�,
where ��r� denotes the Dirac delta function, r� is the lo-
cation of the point source, and g�t� is the temporal evolu-
tion of the source.

A. Finite-Element Implementation
To seek the FETD solution of Eq. (1), we employ Galer-
kin’s method [17]. By introducing an appropriate testing
function Tz�r�, the weak-form representation becomes



 

V
��TzL1�t�Hz�t� + �Tz · �̃Hz�t� + Tz

�JB,z

�t �dV

+
 

S
�YcTz

�Hz

�t
+ TzUz�dS = 0, �7�

where Uz=Yc�n ·�−1�H0,z
inc� f /�t. Then, expanding the field

as

Hz�r,t� = �
i=1

N

Ni�r�ui�t�, �8�

where Ni is the ith interpolating shape function, and as-
suming that �, �, �x, and �y are constant within each el-
ement yields the corresponding finite-element discretiza-
tion as

�
e=1

M

�Teü + Reu̇ + Seu + ge − fe� = 0, �9�

where N and M denote the numbers of nodes and ele-
ments, respectively; � �˙ �d/dt; and � �¨ �d2/dt2. The square
matrices Te, Re, and Se are computed by

Tij
e = �Ni,Nj��e,

Rij
e = ���x + �y��i

−1Ni,Nj��PML
e + YcNi,Nj��ABS

e ,

Sp,ij
e = �−1�Ni/�p,�Nj/�p��e, p = x,y,

Sij
e = ��x�y�i

−2Ni,Nj��PML
e + Sx,ij

e + Sy,ij
e , �10�

where  , ��e and  , ��e mean integration over the volume
and surface, respectively, of an element, and u
= �u1 , . . . ,uN�T. Since we model only the scalar field Hz it
is adequate to consider Ni as the nodal based shape func-
tion of an element in order to satisfy the field continuity
equations. The convolution and the excitation vectors, ge

and fe, respectively, are given by individual vector compo-
nents:

gi
e = �

j
Sx,ij

e 	x,j + Sy,ij
e 	y,j, e � �PML,

fi
e = − Ni,�JB,z/�t��S

+ Ni,Uz��inc
e , �11�

In Eq. (11) the elements of 	p are expressed by

	p,j = ap exp�− bpt�ū�t� � uj�t�, p = x,y. �12�

In Subsection 2.B it is described how the computationally
cumbersome convolution term in Eq. (12) is resolved very
efficiently to reduce the computational costs.

The PhC in Fig. 1 is reproduced by using building
blocks of size a /2�	3a /2, where a is the basic step length
of the PhC, i.e., the lattice constant. These building blocks
are discretized in 7�12 elements yielding 14 elements
per inter-hole spacing in the computational mesh, which
corresponds to 14 elements per wavelength in the dielec-
tric material.

B. Time Integration
As a means to speed up the FETD solution in the iterative
topology optimization process, we benefit from explicit in-
tegration schemes, because they do not require the solu-
tion of a matrix system within each time step. Addition-
ally, they have a natural parallelizability. Here, we use a
technique that renders the T-matrix diagonal when inver-
sion is needed, and in the case of multiplication an aver-
aged T�-matrix is used. The integration of the T- and
S-matrices for a four-node rectangular bilinear element
follows modified rules that can be found in [28], such that
fourth-order dispersion error accuracy is achieved. A res-
olution of 14 elements per wavelength is found to be suf-
ficient to obtain acceptable dispersion error. The semi-
discrete version of Eq. (9) is given by

Tdu̇n+1/2 = T�vn−1/2,

Tdv̇n = − Ru̇n+1/2 − Sun − gn + fn, �13�

where Td,ii=�jTij, Td,ij=0, and T�= �1−��Td+�T. The op-
timal combination factor is �= �
2−1� /2 to obtain fourth-
order accuracy, where 
=�tcc /�x, with �tc denoting the
critical time step. It follows the Courant–Friedrichs–
Lewy (CFL)-condition, i.e., �tc�0.7071�x /c, where c is
the vacuum speed of light. However, we choose �t
=0.9�tc to avoid or delay numerical instabilities, such as
nonphysical oscillations and late-time instabilities in the
PML. Half-step approximation is used for central time
differences in this scheme, i.e., u̇n+1/2= �un−un−1� /�t and
v̇n= �vn+1/2−vn−1/2� /�t, and it is initiated by u0= u̇0=0 and
v1/2=�tTd

−1�f0−Su0� /2. The temporal derivatives (e.g., of
the primal response u or of the analytical excitation) are
evaluated by following the central second difference
scheme approximations:

ün =
un+1 − 2un + un−1

�t2 ,

u̇n =
un+1 − un−1

2�t
. �14�

The convolution term in Eq. (12) requires significant com-
putation time and memory since the entire solution his-
tory is needed in the convolution integral. However, it can
be recursively evaluated at time n�t instead as [17]
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	p,j
n = exp�− bp�t�	p,j

n−1 +
ap�t

2
�uj

n + exp�− bp�t�uj
n−1�.

�15�

Since ap and bp are assumed to be constant within each
element the recursive convolution relation in Eq. (15) is
most easily implemented when the matrix-vector multi-
plication is carried out element-wise in the time-
marching. In practice this means that we assign 	p

n sepa-
rately to each element and update this according to
Eq. (15).

C. Design Variables and Material Interpolation
In the design domain �D��S each finite element is asso-
ciated with one (density) design variable xe that varies
continuously between 0�xe�1. All design variables are
assembled into the global design vector x= �x1 , . . . ,xM�T.
By following the solid isotropic material with penalization
(SIMP) scheme [23] the design variable is then used to in-
terpolate between two candidate material phases, desig-
nated here as � �I for air and � �II for dielectric. Since rela-
tive magnetic permeability is very close to unity for
dielectric materials, explicit design dependence is only re-
stricted to the inverse of the relative permittivity. This is
successfully adopted by a linear interpolation [6],

�r
−1�xe� = �1 − xe���r

I�−1 + xe��r
II�−1. �16�

The continuous design parameterization above now facili-
tates the use of a gradient-based optimization algorithm
(referred to as the optimizer) to find an optimized design.
The shortcoming of the continuous material parameter-
ization is the possible scenario of intermediate design
variables appearing in the final design. In Subsection 2.E
it is described how design variables close to discrete (xe
=0 and xe=1) are efficiently obtained through penaliza-
tion schemes.

D. Sensitivity Analysis
In our continuous optimization problem we need to com-
pute the design sensitivities in order to use gradient-
based optimization solvers. For large numbers of design
variables the adjoint sensitivity approach offers a clever
and computationally efficient alternative to direct sensi-
tivity analysis [29]. As briefly described, the adjoint
method makes the central processing unit time associated
with the sensitivity analysis almost independent on the
number of design variables by introducing an auxiliary
problem (the adjoint problem) that needs to be solved
backward in time.

The development of an explicit design sensitivity ex-
pression proceeds as follows [30]. Consider a design func-
tional  that is defined here as a function of the design x:

�x� =

0

T

F�u,u̇,ü,x�dt, �17�

where T is the termination time of the transient simula-
tion, and u�u�x , t� where the design dependence is im-
plicit. Now, we continue by expressing the sensitivities in
terms of the residual of Eq. (9), given by

r�u,u̇,ü,x� = f − �Tü + Ru̇ + Su + g� = 0. �18�

Combining the integrand in Eqs. (17) and (18) defines the
augmented functional

F̂ = F�u,u̇,ü,x� + �Tr�u,u̇,ü,x�, �19�

where the adjoint operator (Lagrange multiplier) �
���x , t� depends implicitly on the design and explicitly on
time. The augmented design functional is identical to that
in Eq. (17) with F replaced with F̂, though, since r=0. By
a clever choice of �, which can be chosen freely since r
=0, the sensitivity analysis is significantly simplified as
shown in the following.

Now, differentiating Eq. (17) with respect to each com-
ponent xe�x by the chain rule yields the sensitivities

�

�xe
=


0

T � �F

�u

�u

�xe
+

�F

�u̇

�u̇

�xe
+

�F

�ü

�ü

�xe
+

�F

�xe
+

��T

�xe
r

+ �T� �r

�u

�u

�xe
+

�r

�u̇

�u̇

�xe
+

�r

�u

�ü

�xe
+

�r

�xe
��dt. �20�

Utilizing integration by parts and that r=0, Eq. (20) is
now rewritten as

�

�xe
= ��T

�r

�u̇

�u

xe
+ �T

�r

�ü

�u̇

xe
− �̇T

�r

�ü

�u

�xe
�

0

T

+

0

T � �F

�u̇

�u̇

�xe
+

�F

�ü

�ü

�xe
+

�F

�xe
�dt

+

0

T � �r

�ü
�̈ −

�r

�u̇
�̇ +

�r

�u
� −

�F

�u� �u

�xe
dt +


0

T

�T
�r

�xe
dt.

�21�

The implicit system derivatives �u /�xe are eliminated
from the sensitivity expression by selecting the appropri-
ate �. This process induces the adjoint problem

�r

�ü
�̈ −

�r

�u̇
�̇ +

�r

�u
� =

�F

�u
, �22�

where �F /�u designates the adjoint load. If we introduce
the time shift t�T−
 for 
� �0,T�, the adjoint problem in
terms of ��
� becomes

�r

�ü
�̈̄ +

�r

�u̇
�̇̄ +

�r

�u
�̄ =

�F

�u
, �23�

since � /�t=−� /�
. Then upon imposing u�0�= u̇�0�=0,

solving Eq. (23) with the terminal condition �̄�0�= �̇̄�0�
=0, and subsequently substituting ��T−
�= �̄�
�, the sen-
sitivity expression reduces to

�

�xe
=


0

T � �F

�xe
+ �T

�r

�xe
�dt. �24�

In our case �F /�u̇ and �F /�ü vanish since we only con-
sider problems in which F=F�u ,x�. The result is an ad-
joint problem whose form is identical to that of the primal
transient analysis in Eq. (9), albeit with another excita-
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tion term. Hence, the same time integration scheme can
be used to find the adjoint response.

The evaluation of the adjoint sensitivities proceeds as
follows: After the transient primal analysis is concluded,
the adjoint response � is computed at the exact same time
steps by reusing the exact same ABC setup from the pri-
mal analysis [30]. While integrating the adjoint response
in time, the contribution to the integral in Eq. (24) is com-
puted, which is plausible since � and u are already
known. Consequently, when integration of the adjoint re-
sponse is concluded the sensitivities are obtained. This
process only requires the storage of the primal response
u�t� from which, when needed, ü�t� and u̇�t� are computed
by Eq. (14).

More often, it is desirable to control the objective in a
localized time interval �T1 ,T�� �0,T� (see [31]). The lower
integration limit in Eq. (17) cannot simply be replaced
with T1, because then the brackets in Eq. (21) will not
vanish. Alternatively, the time integral in Eq. (17) could
be split into two integrals �T1

T =�0
T−�0

T1. However, this re-
quires two adjoint analyses. In order to reduce the com-
putational costs we suggest incorporating a localizing
function in the design functional instead. The Heaviside
step size function ū�t−T1� allows us to specify a time in-
terval, such that the design functional becomes

�x� =

0

T

F�u,u̇,ü,x�ū�t − T1�dt, �25�

which modifies the adjoint load to become ��F /�u�ū�t
−T1�.

E. Optimization Problem
In the present optimization formulation, the design func-
tional �x� is restricted to scalar measures. Here, we con-
sider magnetic energy given by ��E

1
2�Hz

2d�. Thus, F can
in general be expressed as uTQu, where Q is a matrix
with the components Qij

e = 1
2�Ni ,Nj��e for e��E. In

PhC-MC design problems the Q factor can be enhanced by
delaying the exponential energy decay [32]. To achieve
this, we suggest including the localizing function in F to
specify the elapsed time, after which the magnetic energy
should be maximized. The optimization problem is now
formulated as

maxx�RM �x� = log10�

0

T

uTQuū�t − T1�dt� ,

s.t.: Governing Eq. �9�

�
e

vexe � Vf�, 0 � xe � 1, e � �D. �26�

In the second constraint ve is the element volume, and V
is the total volume occupied by �D; hence V=�eve. The
constraint serves as a restriction on the available amount
of dielectric material, set by f� herein, that is to be distrib-
uted in �D. It is important to stress that it is not neces-
sarily active in this problem. The logarithm in the objec-
tive is introduced to ensure better numerical scaling. The
optimization process is initiated by a qualified design that

is found via the trial and error approach or previously re-
ported designs.

The solution of the optimization problem in Eq. (26)
suffers from strong non-uniqueness leading to multiple lo-
cal minima. Some of them are a result of the possible ex-
istence of degenerate modes [3]. Others stem from local
resonance effects yielding a poor performance away from
the target frequency [7]. Since the physics behind sharp
resonance phenomena induces very sensitive behavior
upon tiny design changes, we use a globally convergent
optimizer. Thereby we stay in the vicinity of the initial de-
sign and avoid undesirable minima. Based on an initial
design and the adjoint sensitivities, the design update is
carried out by the globally convergent method of moving
asymptotes that is suggested and implemented in Fortran
77 by Svanberg [33]. The Heaviside step function ū�t
−T1� in Eq. (26) is regularized in a neighborhood �T cen-
tered at T1 by

ū�t − T1� �
1

2

tanh�2��t − T1�/�T�

tanh���
+

1

2
�27�

to avoid numerical problems. The parameter � dictating
the curvature of the regularization and the size of �T are
chosen such that the fast Fourier transform of uTQuū�t
−T1� does not disclose any undesirable local resonance
peaks away from the target frequency of the mode.

In order to avoid any non-manufacturable features in
the structure we use density filtering techniques capable
of controlling the minimum length scale of void and di-
electric simultaneously [34,35]. However, this particular
type of multiphase projection leads to intermediate design
variables in the transition region between the material
phases. We use the so-called pamping method [7] that in-
troduces an artificial mass proportional damping contri-
bution Re=4qxe�1−xe��0Te and makes the existence of in-
termediate design variables expensive with respect to the
objective. This penalization procedure is, however, only
applicable in this form for maximization problems. Nu-
merical experiments have proven q=0.2�T−T1� /T to be
an adequate choice.

The state problem solver, providing the objective and
sensitivity evaluation, is parallellized by using Fortran 90
MPI for all interprocessor communications to avoid com-
putational bottlenecks in the storage of the primal re-
sponse. A non-blocking communication strategy is imple-
mented in the time integration to speed up the simulation
time. The design update is carried out on a single proces-
sor, to which all necessary data for the optimizer are sent.

3. DESIGN OF A SIDE-COUPLED RESONANT
CAVITY
The high index-contrast devices used in the present inves-
tigation are constructed by using a 2D PhC composed of a
triangular lattice of air holes embedded in the dielectric
material GaAs (see Fig. 1). By viewing the structures as
infinite in the third dimension and using the radius of the
air holes r /a=0.35, it supports a complete TEz bandgap in
the normalized frequency range a /�0=0.21–0.33, where
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�0 denotes the wavelength in vacuum. The dielectric con-
trast between GaAs and air is 11.4 for wavelengths
around 1.5 �m [3].

The side-coupled cavity in the 2D PhC with an infinite
height has two distinct loss mechanisms. One concerns
the leak of the cavity mode into the �–K directional WG,
and the other concerns that into the surrounding PhC.
Hence, the total in-plane Q factor is given by

1/Qin = 1/Qe + 1/Q0, �28�

where Qe is the quality factor of the cavity mode with re-
spect to the WG, and Q0 is the quality factor of the iso-
lated cavity. From Eq. (28) it is deduced that Qin increases
when the cavity is far away from the WG, albeit at the ex-
pense of poor coupling. In fact, Qin increases exponen-
tially with the distance [20]. Since the ultimate goal is
miniaturized integrated PhC circuit devices, the method
of topology optimization is utilized here to improve Qin for
short distances while maintaining strong coupling. The
first target in the design process is to improve Q0 by con-
sidering the isolated cavity.

A. Isolated Cavity Design
Although an arbitrary initial condition could be em-
ployed, it is reasonable to search for a cavity geometry
supporting a high Q mode by varying the radii of nearest
neighboring holes to the cavity. The geometry in Fig. 2(a)
that is surrounded by a two cell sizes thick PML pulls
down a monopole Hz-mode from the air band at the fre-

quency of �0a /2�c=0.3030 with Q0=2.2�105. We calcu-
late the Q factor by measuring the slope of the exponen-
tial decay of the energy of the cavity mode [32]

U�t� = U0 exp�− �0t/Q0�, �29�

where U0 represents the (initial) amount of energy stored
in the cavity that is reached at time Tmax. The correspond-
ing mode profile in Fig. 3(b) is extracted by the discrete
Fourier transform of the response that is excited by a ra-
diation point source in the center of the cavity with time
evolution

g�t� = exp�− �t − T0�2/
2�sin�2��0�t − T0��, �30�

where 
=180c /a and T0=500a /c.
The design region �D for the coupled system depicted

in Fig. 1 is also adopted for isolated MC optimization. In
the center hereof the objective is evaluated in a circular
region �E with radius 3a /14. We excite the system by re-
using the time evolution in Eq. (30), and the simulation
time is set to T=100,000�t. The choice of T1 is not critical
here since the isolated cavity has only a single loss
mechanism. Additionally, we impose vertical and horizon-
tal symmetry conditions through the center of the cavity
and do not constrain the amount of the dielectric mate-
rial, i.e., f�=1. The optimized design reached after 311 de-
sign iterations appears in Fig. 2(b). As expected it does
not include any structural features that violate the mini-
mum allowable length scale prescribed by the density fil-
ter with radius 2.5a /14, and the length scale of the blend-
ing region between dielectric and air corresponds to the
thickness of one finite element. Based on the normalized
logarithmic energy decay in Fig. 3(a) the Q factor of the
corresponding mode is computed to be Q0=4.8�105. Evi-
dently, the initial design has been altered significantly to
achieve this doubling of the Q factor, likewise the mode
profile in Fig. 3(c).

(a)

(b)

air dielectric
Fig. 2. Monopole mode. (a) Initial MC geometry. (b) Optimized
MC geometry.

0 5000 10000�0.03
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log
10
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(t)
/U
0]

Init MC
Opt MC

(a)

(b) (c)

neg pos
Fig. 3. (Color online) (a) Logarithmic envelope of normalized
stored energy for the monopole mode. (b),(c) Hz-field distribution
for the initial and optimized MC geometries, respectively. The
material distribution is shown with xe

t =0.6 as threshold.
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In practical applications of the side-coupled MC the ini-
tial geometry and corresponding mode cannot be chosen
uncritically. The influence of the light line in the disper-
sion diagram should then be taken into account. Unlike
for the monopole mode, we identify a dipole mode at the
frequency of �0a /2�c=0.2480 whose intersection point
with the WG mode is below the light line; see the disper-
sion diagram in Fig. 4. The corresponding MC geometry
appears in Fig. 5(a).

For the dipole mode �D remains unchanged, and the
radius of �E is now doubled to 6a /14. The system is ex-
cited by two point sources located in the eye of the dipole

with opposite signs. Now, however, it has been necessary
to constrain the amount of the dielectric material to f�

=0.8 to avoid ending up in local maxima bearing degener-
ate modes. The optimized geometry reached after 592 de-
sign iterations is displayed in Fig. 5(b). Compared to the
mode in Fig. 6(b) of the initial design with Q0=9.9�104

the Q factor of the optimized design is slightly improved
to Q0=11�104 [see Fig. 6(a)]. Similar to the monopole
mode, the topological features of the optimized design
prevent the cavity field in Fig. 6(c) from leaking into the
surrounding PhC above and below the cavity. Instead, the
leakage is only concentrated on the corners.

B. Coupled System Design
For the coupled system in Fig. 1 we consider, for the sake
of completeness, both cavity modes despite the limited
practical applicability of the monopole. Here, we impose
only a vertical symmetry condition through the cavity
center to increase the design freedom. The system is ex-
cited by a line source �inc located inside the PhC-WG with
an appropriate distance from the cavity and with tempo-
ral dependence given by Eq. (30). The entire structure is
surrounded by a PML into which the PhC features are
continued (see Fig. 1). The design process is initiated by
reusing the optimized isolated cavity designs with similar
�D and �E, and the simulation time is set to T
=120,000�t. Since the coupled system now supports mul-
tiple loss mechanism, the choice of T1 becomes crucial in
order to improve Qin. Here, the three cases T1=0, =Tmax,
and =4Tmax are considered. We compute Qin by utilizing
that �0 /Q equals the full width at half-maximum
(FWHM) of the resonant shape of the transmitted power
ratio �T�2�Pout/Pin for the coupled device. Similarly, how-
ever, by varying the separation between the PhC-WG and
-MC determines Qe. The power is computed by the Poyn-
ting vector at the flux plane �out, given by
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Fig. 4. Dispersion curve of the �–K directional PhC-WG. The
bandgap exists between the dielectric (lower) and air (higher)
bands in the normalized frequency range a /�0=0.21–0.33. The
horizontal lines represent the dipole mode frequency of 0.2480
and the monopole mode frequency of 0.3030.
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air dielectric
Fig. 5. Dipole mode. (a) Initial MC geometry. (b) Optimized MC
geometry.
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Fig. 6. (Color online) (a) Logarithmic envelope of normalized
stored energy for the dipole mode. (b),(c) Hz-field distribution for
the initial and optimized MC geometries, respectively. The mate-
rial distribution is shown with xe

t =0.6 as threshold.
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P��� =
1

2
Re�n ·


�out

E�
� � H�d�� , �31�

where � �� denotes complex conjugate, and � �� means dis-
crete Fourier transform of the time dependent field. By
removing the scattering cavity Pin can be determined at
�out. For a broadband analysis, the frequency span of the
incoming Gaussian wave packet corresponds to that of
the guided mode.

The optimized designs for the monopole and dipole
modes follow from Figs. 7 and 9, respectively, and none of
those contravene the similar minimum allowable length
scale as above. For the monopole mode, the results in
Figs. 7(b)–7(d) reveal that the optimization has caused
minor redistribution of the dielectric material. According
to Figs. 8(b)–8(f) the FWHM of the Lorentzian dip in
transmission indicates that Qin is deteriorated compared
to the performance of the isolated cavity design. An over-
view of all relevant Q factors is presented in Table 1. The
significance of choosing T1 is illustrated by the envelope
of the stored energy response inside the cavity in Fig.
8(a). When T1 approaches zero the WG energy attempts
to couple into the cavity immediately yielding a strong in-
teraction and a subsequent rapid decay inside the cavity
as a consequence of low Qin. As T1 grows beyond the
Tmax-limit, the energy decay is postponed, which suggests
that achieving high Q devices in principle counteracts
strong coupling. Nevertheless, in all cases almost zero
transmission is achieved independent of the difference in
Qin. This behavior can be understood by utilizing CM
theory [24] to obtain an analytical expression for the
transmission in the WG, given by

(a) (b)

(c) (d)

air dielectric
Fig. 7. Optimized designs for the monopole MC mode. (a) Iso-
lated MC. Optimized coupled system geometries for (b) T1=0, (c)
T1=Tmax, and (d) T1=4Tmax.
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Fig. 8. Monopole mode. (a) Logarithmic envelope of stored en-
ergy U�t�. Transmission spectrum for (b) initial design, (c) iso-
lated MC, coupled system (d) T1=0, (e) T1=Tmax, and (f) T1
=4Tmax.

(a) (b)

(c) (d)

air dielectric
Fig. 9. Optimized designs for the dipole MC mode. (a) Isolated
MC. Optimized coupled system geometries for (b) T1=0, (c) T1
=Tmax, and (d) T1=4Tmax.
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�T����2 = 1 −

1

4Qe
2�1 + 2

Qe

Q0
�

�� − �0

�0
�2

+
1

4Qe
�1 +

Qe

Q0
�2 . �32�

At resonance, i.e., �=�0, it simplifies to

�T��0��2 =
Qin

2

Q0
2 �

Qe
2

Q0
2 + O��Qe/Q0�3�, �33�

where the last approximation is valid if Q0�Qe. Table 1
indicates that it holds true for the present system, and
additionally that Qe and Qin have the same order of mag-
nitude. Hence at resonance according to Eq. (33), strong
coupling is retained even upon considerable improvement
of Qin (and Qe). Consequently, the optimization formula-
tion makes it possible to control the counteracting rela-
tion between high Q and strong coupling. One should also
expect that Q0 is largest for the isolated cavity optimiza-
tion. Table 1 supports this fact for the monopole. How-

ever, the dipole mode favors the largest Q0 for unsym-
metrical cavity design in the vertical direction. This is
only obtainable for the coupled system �T1=4Tmax� as a
result of the symmetry conditions in both directions for
the isolated cavity optimization.

For the dipole mode the original cavity geometry in Fig.
5(a) and the optimized ones in Fig. 9 exhibit practically
zero transmission at resonance [see Figs. 10(b)–10(f)].
The isolated cavity optimization only improves Qin by a
factor of 2. In contrast to the monopole, optimizing for
T1=4Tmax further increases Qin by 50% as a result of mi-
nor design changes [compare Figs. 9(a) and 9(d)], yielding
a total improvement of 185%. The design result for T1
=0 in Fig. 5(a) shows substantial material redistribution
in the interaction region in order to enhance coupling.
However, the envelopes of the energy decay in Fig. 10(a)
only display marginal changes among the various designs
in the coupling performance. As expected the Hz-field plot
in Fig. 11 of the best dipole candidate �T1=4Tmax� shows
nearly zero transmission at resonance.

The use of a 2D PhC of infinite height in this paper
omits the influence of the out-of-plane energy losses,
which constitutes a limiting factor with regards to im-
proving the total Q factor in PhC slabs. Thus, improving
the in-plane Q does not necessarily imply the same trend
for the out-of-plane Q [22]. Furthermore, we cannot take
the third dimension into account by the effective index
method since it holds limited accuracy for high index-
contrast structures or near the cutoff. However, our expe-
rience from previous studies (cf. [9–12]) is that 2D
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Fig. 10. Dipole mode. (a) Logarithmic envelope of stored energy
U�t�. Transmission spectrum for (b) initial design, (c) isolated
MC, coupled system (d) T1=0, (e) T1=Tmax, and (f) T1=4Tmax.

Table 1. Q†103
‡ Factors for Coupled System Configurations

Monopole Dipole

Qin Qe Q0 Qin Qe Q0

Init. MC 16 17.3 220 2.1 2.1 99
Opt. MC 60 68.3 474 4.1 4.2 110
T1=0 2.1 2.1 139 2.0 2.0 90
T1=Tmax 7 7.3 168 3.3 3.4 100
T1=4Tmax 16 17.2 239 6.0 6.2 140

neg pos
Fig. 11. (Color online) Hz-field distribution for the best opti-
mized WG-side-coupled MC candidate for the dipole mode when
T1=4Tmax. The material distribution is shown with xe

t =0.6 as
threshold.
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optimized designs in general yield good behavior in three
dimensions as well. In future studies we will verify the
obtained designs by three-dimensional simulations and
possibly extend the optimization to three dimensions as
well.

4. CONCLUSION
In this paper, we have developed a design method based
on topology optimization for transient response, and we
have used it to design a miniaturized PhC-WG-side-
coupled PhC-MC device with an improved Q factor while
maintaining strong coupling. Frankly we have shown
that the transient optimization formulation makes us ca-
pable of controlling the counteracting relation between
high Q factor and strong coupling.

The optimization algorithm relies on a 2D FETD model
for TE-polarized waves that uses PMLs as absorbing
boundary conditions (ABCs), which has not been reported
before. To manage the material distribution of air and di-
electric we associate a continuously varying design vari-
able to each element in the design domain enclosing the
MC. We suggest that the in-plane Q factor can be im-
proved by maximizing the stored cavity energy in the de-
caying regime of the transient response. Manufacturable
designs are achieved by filtering techniques that control
the minimum length scale of air and dielectric simulta-
neously.

The design process is threefold. First, by trial and error
we alternate the radii of nearest neighboring holes to the
cavity to find a well-performing geometry. This serves as
an initial guess in the optimization of the isolated cavity,
and if the performance is improved, this is subsequently
used to start the optimization of the coupled device. We
have optimized the coupling to a monopole and a dipole
MC mode, and in both cases we managed to improve the
in-plane Q factors by 275% and 185%, respectively, com-
pared to the original design. To study the spectral perfor-
mance of the optimized designs we have derived an ana-
lytical expression for the transmission based on coupled-
mode (CM) theory. These agree very well with numerical
simulations.
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