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Abstract

The aim of this thesis is to investigate how state-of-the-art optical fiber tech-
nology can contribute towards multi-element broadband terahertz imaging
systems. Classical table-top terahertz imaging systems are generally lim-
ited to a single emitter/receiver pair, which basically constrains the appli-
cation to raster scanning imaging techniques. This thesis will exhibit that
fiber technology can improve the robustness and the flexibility of terahertz
imaging systems both by the application of fiber-optic light sources and by
optical fibers as distribution medium for multi-element systems.

A two-color, polarization-maintaining distributed feedback fiber laser
system for continuous wave terahertz generation by photomixing is pre-
sented. The laser system generates output powers up to several hundred
mW, has 25 kHz linewidth and a polarization extinction ratio of better than
20 dB. The narrow linewidth and a simple amplification scheme makes this
laser interesting for spectroscopic detection of narrow absorption linewidths
and in multi-element emitter/detector arrays, respectively.

We further present the use of a fiber-coupled multi-element terahertz
time-domain spectroscopy system to measure the scattering of terahertz
radiation from films of multi-walled carbon nanotubes. The fiber-coupled
multi-element spectrocopy system enables measurements only possible un-
der time consuming realignment procedures with a classical terahertz time-
domain spectroscopy system.

The status of the research and the development of an active multichan-
nel terahertz imaging system, named the ’THz camera’, is also presented in
the scope of this thesis. This multi-element imaging system makes use of
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Abstract

a femtosecond fiber laser, a novel fiber-based sub-100 fs pulse distribution
link with incorporated all-fiber dispersion control and a total of 64 ultra
compact terahertz emitter and receiver heads.
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Resumé

Dansk titel: Fiberlaser baserede bredbåndede THz billeddannelses-
systemer

Formålet med denne afhandling er at undersøge, hvordan state-of-the-
art optisk fiber-teknologi kan bidrage til multi-element bredbånds Terahertz
billeddannelse systemer. Klassiske table-top Terahertz billeddannelsessys-
temer er generelt begrænset til et enkelt sender / modtager-par, som be-
grænser anvendelsen til tidskrævende raster scanning billeddannelseteknikker.
Denne afhandling viser, at fiber teknologi kan forbedre robustheden og flek-
sibiliteten i Terahertz billeddannelse, både ved anvendelse af fiberoptiske
lyskilder og optiske fibre som distribution medium.

Et to-farvet, polariserings-vedligeholdende distribueret feedback fiber
laser system til kontinuert bølge Terahertz generation ved photomixing
præsenteres. Lasersystemet genererer output effekter op til flere hundrede
mW, har 25 kHz liniebredde og et polariseringsforhold bedre end 20 dB.
Den smalle liniebredde og et simpelt scalerbart forstærkningskoncept gør
denne laser interessant for hhv. spektroskopisk påvisning af smalle Tera-
hertz absorptions liniebredder og multi-element emitter / detektorsystemer.

Vi præsenterer yderligere brugen af et fiber-koblet multi-element Ter-
ahertz tidsdomæne spektroskopisystem til at måle spredningen af tera-
hertzstråling fra film af multi-walled kulstofnanorør.

Desuden præsenteres forskningen og udviklingen af et aktivt multi-
kanals Terahertz billeddannelsessystem, navngivet ’THz-kamera’. Dette
multi-element billeddannelsessystem gør brug af en femtosekund fiber laser,
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Resumé

et fiberbaseret ultrakort puls distribution link med indbygget fiber disper-
sionskontrol og i alt 64 ultra kompakte Terahertz sender og modtager hov-
eder.
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Preface

This Ph.D thesis is the summary of the work conducted during my employ-
ment as Ph.D. scholar at the Technical University of Denmark in the period
August 2006 until October 2009. During this period I spend 4 months at
the Wright State University, Dayton, OH, USA visiting Dr. Jason Deibel´s
Terahertz and Ultrafast Photonics Research Group.

The thesis is organized in the following way:

• Chapter 1 will introduce to terahertz (THz) radiation and the utiliza-
tion of THz waves for imaging.

• Chapter 2 contains the work on a dual-color DFB fiber laser which
can be seen as a promising candidate as laser source for CW THz
generation and detection. The laser source has exciting features for
the use in multi-element imaging arrays due to its scalability. The
work was done in close collaboration with the fiber laser company
Koheras A/S, Denmark (now NKT Photonics). This work resulted
in numerous conference contributions.

• Chapter 3 is a theory chapter introducing the basic concepts of pulsed
THz sources, detectors, spectrometers and imaging techniques to in-
troduce the theory and the challenges of the work presented in chapter
4 & 5.

• The work presented in chapter 4 is mainly on the scattering of carbon
nanotubes and has been conducted during the stay in Dr. Deibel´s
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group at Wright State University. The samples carbon nanotube sam-
ples under investigation are provided by Dr. Krzysztof K.K. Koziol
from the Department of Materials Science and Metallurgy, University
of Cambridge, UK. The work resulted until today in two conference
publications, one NSF grant application and one newly started ph.d.
project.

• The work presented in chapter 5 has been conducted as part of an
large European Space Agency (ESA) initiated project, ESA Contract
No. 21155/07/NL/ST, "Terahertz Camera for Remote Detection of
Material Defects and Biological and Chemical Substances". The part
of the project presented here is work done at DTU Fotonik and rep-
resents the status of the project at the time the author is writing this
thesis. The project extend the period of the ph.d. work presented
here. The project work was documented in numerous ESA-internal
reports and presentations and for the time being 1 conference contri-
bution and one submitted journal paper.

This Ph.D. fellowship was financed by a scholarship in the regime of
the Photonics Academy Denmark and sponsored in equal parts by NKT
Photonics A/S, the Technical University of Denmark and the Danish Min-
istry of Science, Technology and Innovation. A major source for financing
equipment used for the work presented in chapter 5 was the ESA Contract
No. 21155/07/NL/ST. I would also like to express my gratitude to OFS
Fitel Denmark ApS for supplying us with the DCF fiber modules.

A publication list is included in Appendix A.

Kongens Lyngby,
October 31st, 2009 Finn Eichhorn
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Chapter 1

Terahertz radiation &
imaging
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Figure 1.1: The electromagnetic spectrum from RF to UV

The word imaging can basically be defined as a visualization or re-
production of an object’s form from the outside of the object itself. An
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1. Terahertz radiation & imaging

image can be acquired using many different techniques, but common for all
techniques is the detection of electromagnetic radiation reflected from or
emitted by the object. Optical imaging techniques use visible, ultraviolet or
infrared light but imaging can as well be using by X-rays, microwaves and
radio-waves, thus all builds on the same physical phenomena. Changing the
wavelength of the detected radiation will change the way we will see things.
A medium can be described by its physical properties like volume and mass
etc., but also by its interaction with or radiation off electromagnetic radi-
ation. Matter has different properties dependent on the wavelength we are
looking at like opacity, density, absorption, conductivity, dispersion etc.

The modern human is today surrounded by imaging technologies which
can be found everywhere in all our everyday lives. High definition televi-
sion, computer screens and high resolution digital cameras employing the
Nobel prize honored CCD technology are everywhere. Radar images are
determining the weather forecast while X-ray, magnetic resonance and ul-
trasound imaging are vital tools in clinical imaging for medical doctors.

This thesis will address components, sources, detectors and propose
a multi-element array imaging system working in the terahertz frequency
range. The terahertz-region is the designation for the part of the electro-
magnetic spectrum which loosely is defined as the frequency range from
300 GHz to 30 THz. The terahertz range has previously often been viewed
as the most scientifically useful yet least explored region of the electromag-
netic spectrum. From a scientific viewpoint THz waves are very interesting
because they for instance directly interact with charge carriers in semicon-
ductors, phonon modes in crystals and intermolecular bonds in biological
material. Further have THz waves the very interesting feature that al-
though they ’behave’ like light waves and they can penetrate for instance
clothing, packing materials etc. which make the terahertz region extremely
interesting also for non-scientific application.

Over the last two decades the terahertz-region has been explored inten-
sively and the field has transformed into an very active research area. Many
new research groups with background from various different scientific fields
have moved into the field and this is resulted in an exponential growth of
scientific publications over the last years. This has led to a vast of new tech-
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niques for generation and detection of THz radiation and even more new
applications areas as for instance advanced imaging techniques. All of this
is helping rapidly in the exploration of the ’THz Gap’ and to finally close it.

Various units are used to describe electromagnetic radiation dependent
on the scientific community. The frequency of 1 THz corresponds to

1 THz ∼ 1 · 1012 Hz ∼ 300 μm ∼ 33.3 cm−1 ∼ 4.14 meV ∼ 47.6 K.

THz sources

The list of sources emitting THz radiation is during the recent years grown
quite long, starting with the expensive and bulky devices making use of
undulated electron beams like synchrotrons [1, 2], free-electron lasers[3, 4]
and backward-wave oscillators[5].

THz emitters can also be realized using microwave technology based
on Gunn [6], Impatt[7] or resonant tunneling diodes[8]. The fundamental
emission frequency in these electronics devices is multiplied in specially
designed mixer stages to access the frequencies in the lower THz region. The
highest output frequency and the average output power has over the last
years increased substantially, though is the technology still struggling with
low conversion efficiencies by going towards higher and higher frequencies,
especially for frequencies above 1 THz. Electronic-based THz sources can
be very compact, but also relative costly due the highly specialized and
miniaturized mechanical and electronic design.

Another source for THz radiation are molecular gas lasers, which rely on
transitions between different rotational levels of molecular species. These
lasers offer output powers of several mW but have only discrete wavelengths
depending on the gas (e.g., 118.83 mm for a CO2 pumped CH3OH laser)[9].
These laser are pumped with a carbon dioxide laser system which makes
the whole system very complex and cumbersome to operate.

Direct optoelectronic-based THz sources can be more compact and the
quantum cascade lasers (QCLs) are a very promising candidate with this
respect. These devices rely on emission from a transition between the
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1. Terahertz radiation & imaging

subbands in a quantum well semiconductor structure. QCL’s were in the
beginning designed for emission in the mid-infrared, but the fields focus
moved towards the far-infrared and THz region, where Tredicucci et al.
in 2002 presented a QCL working at 4.4 THz[10]. Since then the lowest
possible operation frequency moved closer towards 1 THz [11], but the
technique is still requiring operation at cryogenic temperatures.

The next two indirect optoelectronic THz sources working at room tem-
perature will be addressed the main focus in this text.

The first technique is maybe one of the most prominent in the THz com-
munity and relies on the advent of a modelocked Ti:sapphire laser was mak-
ing its way into the optical laboratories in the early 1990. This technique
uses various schemes were femtosecond laser pulses generate and detect
THz pulses via an optical gating technique. For generation the most used
techniques are the photoconductive antennas and the optical rectification
scheme.

THz sources based on traditional Ti:sapphire femtosecond lasers are still
bulky but price reductions and the upcoming of the femtosecond fiber lasers
and ultra compact Ti:sapphire laser make this technique very attractive.
This, combined with the possibility to control the dispersion of ultra-short
pulsed in optical fibers which allows to couple the femtosecond pulse train
directly to special designed THz sensor heads, pushed the technology to-
wards a compact table-top or even handheld THz emitter. The principles
of the photoconductive antennas will be described in detail in chapter 3.

The second technique is the photomixer THz generation scheme which
is a cost effective alternative to the pulsed femtosecond laser system based
setup. The femtosecond laser is here replaced by two single-mode single
frequency lasers with a slightly different emission frequency. The emission
of the two lasers is superimposed onto a semiconductor antenna resulting
in a beat signal which is converted into an oscillating current in the an-
tenna. The oscillating current is then source for a monocromatic THz wave
radiating from the antenna. This technique is addressed in chapter 2.
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THz detectors

Coherent optoelectronic techniques like the photoconductive antennas are
capable of detecting both continuous wave and pulsed THz radiation and
are addressed in greater detail in chapter 2 and 3. Another popular coherent
detection technique is the electro-optic detector. Here the THz pulse in-
duces a birefringence in a crystal which is read out by the linearly polarized
laser pulse.

Thermal detectors generally detect THz radiation in an radiation ab-
sorber attached to a heat sink. The radiation energy is absorbed and con-
verted into heat. A very sensitive thermometer then measures the increase
in heat induced by the radiation. The difference between various schemes
of thermal detector is in the way the heat sink and the thermometer works.
Compared to the techniques above are thermal detector only detecting the
intensity of the THz radiation loosing the phase information of the detected
signal which is extremely valuable in spectroscopic application.

Electronic detectors like hot electron bolometers (HEB) [12] and su-
perconducting SIS mixers [13] have been proven to be very robust and
reliable. These have been used in radiometers and in instruments both on
ESA and NASA initiated space missions like Spitzer, Herschel, Planck and
can basically cover the whole THz range. The downside of these detectors
is the cryogenic working temperature and that the phase information of the
detected signal is lost.

Introduction to THz imaging

Imaging with electromagnetic radiation in the THz range has been ad-
dressed an increasing amount of attention during the last two decades. THz
imaging systems have a vast range of potential application areas such as in
security screening, medical diagnostics and non-destructive testing. THz
waves can easily propagate through most nonpolar, nonmetallic materials
such as common packaging material, corrugated cardboard, clothing, shoes
and plastic bags. Numerous materials of interest for security or sensing
applications such as explosives and chemical and biological agents provide
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1. Terahertz radiation & imaging

spectroscopic information about the materials and can potentially be iden-
tified by their spectral finger print in the THz range. The prospective to
combine these two characteristic features of the THz technology in a THz
imaging device offers an enormous amount of potential application areas
and makes the area an extremely interesting for transferring well estab-
lished laboratory experiments into real world industrial applications.

Imaging in the terahertz range using optoelectronic techniques has been
approached by different techniques, mostly borrowed from other well estab-
lished fields like X-ray, computer tomography (CT) or synthetic aperture
radar. Optical terahertz imaging systems have predominantly been em-
ploying time-of-flight measurements by raster scanning the imaging object.
Recently, also more advanced proposals for terahertz CT [14–16], synthetic
aperture [17–19] and interferometric imaging [19] methods have been ap-
proached by several groups and published both in the scientific literature
and filed as patents. Extensive work has also been done in the field of
near-field imaging [20, 21] going beyond the wavelength limited resolution
of the other techniques. A comprehensive review of the imaging with THz
radiation has recently been published in [22].

Imaging techniques from time-of-flight measurements involves typically
only one single transmitter and receiver, both at a fixed location. By hav-
ing more than one transmitter and/or receiver at a multiple of different
positions enables the illumination of the object from more than one loca-
tion or to detect the scattered field at multiple locations. This is the basic
idea behind tomography measurements. In practice, until today most pro-
posed techniques only make use of one transmitter-receiver pair by moving
the transmitter and/or receiver around the imaging object, acquiring data
from various positions and subsequently reconstructing an image out of the
data. The advent of the fiber coupled photoconductive emitters/receivers
made this a viable method, since it then was possible to move the sensor
heads around the object without loosing the optical alignment and delay of
the THz setup [23–25]. This thesis will among other also contribute to the
demonstration of one possible implementation of a multi channel imaging
system using fiber coupled sensor heads (chapter 5).

Several research groups have explored the analogy of X-ray CT with
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terahertz radiation. The work on THz CT was pioneered by Zhang and
co-workers [14]. In contrast to X-ray CT terahertz CT resolves both the
amplitude and the phase information of the scattering object. As a conse-
quence the THz CT image contains more information than the X-ray CT
about the target such as the frequency resolved refractive index. The wide-
aperture reflection tomography allows the tomographic reconstruction of a
series of slices measured at different view angles [16]. This technique works
best with strong reflectors such as metals since it is a reflection setup. The
algorithms used for the reconstruction of the images are in general filtered
back-projection algorithms.

Active THz imaging can basically be done either by pulsed THz time-
domain measurements or by continuous wave (CW) terahertz measure-
ments. These techniques are compared in [26]. The first imaging system
was based on pulsed THz time-domain measurements presented by Nuss et
al. [27]. Pulsed THz imaging systems are based on generation and detec-
tion of single-cycle pulses by excitation of photoconductive antennas with
femtosecond laser pulses [28]. Cost, size, and complexity of the femtosecond
laser system has so far limited the spread of this otherwise very versatile
technology.

This thesis will limit itself to only consider active imaging systems al-
though commercial passive imaging systems detecting the black body radi-
ation emitted from an object are available today.
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Chapter 2

Novel fiber laser source for
continuous wave THz
imaging systems

The following chapter will present a novel fiber laser based optical source
with potential use in generation and detection schemes of continuous wave
(CW) terahertz radiation. Optically driven CW THz systems can offer
a compact and inexpensive alternative to pulsed THz systems. One can
for instance imagine specialized sensing, non-destructive testing or imag-
ing applications where the identification of a single or a few well defined
narrow absorption lines in the THz spectrum combined with the possibility
of scanning these single lines can give sufficient information compared to
the broadband pulsed THz system which still is based on rather expensive
pulsed femtosecond solid state or fiber lasers. Although the price tag of
pulsed laser systems has been reduced dramatically over the recent years,
has CW THz system eventually a large potential to be the mass produced,
ultra-compact and robust handheld or tabletop system of the future at a
more affordable price than the pulsed laser systems.

The developed laser source consists of two by approximately 1 THz
detuned unlocked distributed feedback (DFB) fiber laser oscillators and a
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2. Novel fiber laser source for continuous wave THz imaging
systems

number of cascaded fiber amplifier stages. The novel feature of this source
is a narrow and ultra-stable laser linewidth and the possibility of scaling the
laser output with respect to output power. Further is the output wavelength
of the laser oscillator tuneable without mode-hopping over several THz.
The wavelength of the two fiber laser oscillators used in the following is
around 1048 nm, making use of the rare-earth dopant Ytterbium (Yb) as
gain medium. By combining the output of two oscillators followed by an
amplification stage, we developed a two-color laser source for the use with
CW THz generation and detection principles by photomixing, a heterodyne
downconversion technique.

Employing laser sources above 800 nm brings up the need for direct
bandgap photoconductive material with a bandgap smaller than the tra-
ditional photoconducting materials used in the field like Gallium Arsenide
(GaAs) and Silicon-on-Sapphire (SOS). At the point in time where this
two-color laser was developed no such material was available in our labs
and thus does this chapter concentrates on the development and character-
ization of the laser source only.

The distinct features of a fiber laser source at 1048 nm, like simple
optical amplification schemes and fiber distribution via optical splitters,
opens up for the possibility of employing the laser in a multi-element CW
THz imaging array with possible tunability over the THz frequency range.
The inherent narrow linewidth (<25 kHz) of our DFB fiber laser also opens
up for the detection of very narrow spectral absorbtion lines, as required
for instance for gas sensing. The tuneability was shown to be around 1 THz
in difference frequency, enabling broadband scans with extremely narrow
linewidth.

2.1 CW THz generation by photomixing

Photomixing of two CW laser beams is an alternative to the pulsed THz
generation and detection concept without giving up the advantages of the
coherent detection scheme, e.g. the capability to measure both amplitude
and phase of the THz signal. CW semiconductor and fiber lasers are much
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2.1. CW THz generation by photomixing

more compact and inexpensive than Ti:Sapphire femtosecond lasers which
still are the heart of the majority of THz systems. CW lasers offers high
average output power, stable mono-mode operation, a variety of choices in
laser wavelength and linewidths. CW THz generation and detection by the
mixing of two semiconductor diode laser has been demonstrated in [29, 30]
and the first implementation of a coherent all-optical THz measurement
system was demonstrated in 1998 by Verghese et al. [31] who employed the
optical beat signal from two CW Ti:sapphire lasers operating at different
wavelength to generate and detect the THz signal using photoconductive
antennas of low-temperature grown GaAs.

The first CW THz image was demonstrated by Kleine-Ostmann et al.
[32] and based on a external cavity coupled laser diode (ETACAL) as two-
color light source and was using a bolometer as detector. The first opto-
electronic coherent homodyne CW THz imaging system has though been
demonstrated by Siebert et al. in 2002 showing a THz image of a biological
sample using photoconductive switches at 1 THz with a SNR of 1:100 and
a diffraction limited resolution [33].

An approach using photomixer technology compatible with common
fiber-optic wavelength by using a low temperature grown InGaAs (LT-
InGaAs) for both emitter and coherent homodyne detector was first pre-
sented by Baker et al.[34]. They proposed the use of LT-InGaAs for wave-
lengths longer than 1 μm. The performance of the LT-InGaAs photomixer
was though suffering from a higher dark current compared to LT-GaAs pho-
tomixers. A high dark current is problematic for both THz emitters and
THz detectors. In the emitter the dark current results in additional heating
due to a background current that constantly flows when a bias voltage is
applied to the antenna. In the THz detector the dark current results in
additional noise.

Very recently a group from the Fraunhofer Heinrich Hertz Institute
(HHI) presented a fiberbased coherent CW system operating at 1.5 μm
that employed photoconductive antennas based on a LT-InGaAs/InAlAs
multilayer structure that addressed the high dark conductivity issues of
LT-InGaAs by inserting multilayers of InAlAs to capture residual electrons
resulting in an improved resistivity [35].
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2. Novel fiber laser source for continuous wave THz imaging
systems

Generation

Figure 2.1: CW THz emitter with H-structure dipole metal structure on a
semiconductor substrate. THz radiation is generated by photomixing of two
slightly detuned laser beams. (a) Beat signal of ω1 and ω2 with difference
frequency of ωT Hz. (b) The generated photocurrent is proportional to the
optical input power, Iph ∝ Popt sin(ωT Hzt). (c) The radiated THz power is
proportional to the photocurrent squared, PT Hz ∝ I2

ph.

Photomixing means the periodic generation of carriers in a photocon-
ductor by a modulated laser beam in an semiconductor (Fig. 2.1). The
superposition of two, in frequency slightly detuned laser-beams, leads to a
beat signal with the difference frequency (ωT Hz = ω1 −ω2). The modulated
laser beam generates periodically electrons and holes in a photoconductive
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2.1. CW THz generation by photomixing

gap. The carriers are then separated by an electric field applied to an an-
tenna structure metalized onto the semiconductor surface. This is resulting
in a THz-modulated time dependent current that is fed into an resonant
or broadbanded antenna, which emits CW THz radiation [29, 30]. The
basic equation for the THz output power from photomixing assuming the
antenna is perfectly matched to the device can be written as (adapted from
[36]):

PT Hz(ωT Hz) = 1
2I2

phRA
1

1 + (ωT Hz
ωRC

)2 · 1
1 + (ωT Hz

ωtr
)2 (2.1)

where Iph is the generated AC-photocurrent, RA the antenna-resistance,
ωRC the RC-frequency of the photomixer and ωtr the transit-time-frequency
of the carriers, depending of their drift-velocity and distance they have to
travel to get to the contacts. The fundamental mechanism is that Popt ∼
I2

photo, where in this ideal case no further harmonics are generated. If one
of the two beating lasers is tunable, an ultra wide tunability in frequency
can be obtained. An upper limitation on the tuning range is set by the
ωRC and ωtr in equation 2.1. The generated time varying current is

I(t) = I0[1 + cos 2πνT Hzt] (2.2)

where I0 = ηphqPL/(hν0). PL is the laser power and ηph is the fraction
of the incident photons absorbed in the active region of the mixer. The
generated THz-photocurrent I(t) in 2.2 can now provide the input signal
to an antenna structure that can radiate the generated power.

Detection

The generated THz signal is detected in the receiver by coherent homedyne
detection. The THz induced photocurrent Idet in the detector antenna is

Idet ∝ PoptET Hzcos

(
ωT Hz

c
Δd

)
(2.3)

where Popt is the optical power incident on the photodetector, ET Hz

is the amplitude of the incident THz wave at a frequency of ωT Hz and
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Δd the relative path length difference the emitter and detection arm. Fig.
2.2 shows a sketch of a typical experimental photomixing setup. The two-
colored beam is slitted into two beam paths, one feeding the emitter pho-
tomixer and the other gating the detector photomixer. In the detector
beam path a optical delay stage is used to change the path length differ-
ence between the two arms.

Figure 2.2: Sketch of a CW THz photomixing setup.

The homedyne DC output signal at the receiver can be detected in a
lock-in amplifier referenced to a modulation of the emitter bias modulation.
A time delay stage is used to change the path length between the emitter
and detector arm, which introduces a phase delay between both the optical
beat and the THz signal at the detector. Since the detected DC signal is
maximized when both optical beat and THz signal arrive in-phase, one can
now by changing the time delay map out an interferogram from which both
THz amplitude and phase can be determined[31].
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Photoconductive mixers and photodiodes

Some of the first semiconductor based CW THz sources made use of the op-
tical beating of two detuned laser pulses in photoconductive mixers [31].Photo-
conductive mixers consists typically of interdigitated-finger electrodes placed
on semiconductor material with a short recombination lifetime as e.g. LT-
GaAs or ErAs:GaAs [36, 37]. In the gaps between the fingers, seen on fig.
2.3, are carriers generated and afterwards separated by an applied electric
field, which the structure is biased with.

Figure 2.3: Sketch a LT-GaAs photomixer

The reason why the recombination lifetimes need to be short, is to en-
sure that photo-carrier generated in the previous period are recombined
until the next period starts (0.2 – 1 ps). The devices have small distances
of about 1 μm between the fingers [36], so the transit-time τtr will be in
the area of 10 ps, when assuming the carriers are moving at their satu-
ration drift velocity of vsat ≈ 107cm/s. The saturation drift velocity of
vsat ≈ 107cm/s is reached when high electric fields are applied to the pho-
toconductor. Another limitation factor is the recombination time τrec of
the generated carriers since these have to arrive at the contacts before again
recombining. Hence a trade-off between the transit time and the recom-
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bination time exist where the frequency dependence of the device can be
improved by reducing the recombination time or the transit time. This then
in turn results in a reduced output power since not all generated carriers
arrive at the contacts[36].

Thus the main limitation of the photoconductive antenna concept is
on one hand the capacitive roll-off and the other the low photoconductive
gain g = τrec/τtr. The photoconductive gain is given by the recombination
lifetime τrec of the LT-GaAs and the transit-time τtr of the carriers until
they reach the contacts.

Therefore are photomixers often based on interdigitated electrode struc-
tures on fast semiconductor material feeding either a broadband or resonant
antenna. The output power of a ErAs:GaAs based photomixer has a best
reported output power of 2 μ W at 1 THz and 12 μW around 90 GHz with
a two decade tunability[37].

One more successful approach reducing the intrinsic limitations of the
conventional photomixer is the uni-traveling carrier (UTC) diode that uti-
lizes only the faster electrons as the active carriers. The optical absorption
and the electron transport regions are separated and can be optimized in-
dependently. This concept is one way to achieve higher output power at
THz frequencies as the conventional photomixer. The device is still both
transit-time and RC time limited and thus the output power also drops
like for conventional photomixer with ω−4. However, maximum CW out-
put powers of 20 mW and 10 μW have been achieved at 100 GHz and 1
THz, respectively, using UTC’s operating at 1.55 μm[38].

2.2 DFB fiber lasers & fiber amplifiers

The following will give a short introduction to the employed DFB fiber
lasers and introduce the most important components used for the two-color
fiber laser system. The fiber laser consists of two main components the dis-
tributed feedback fiber laser oscillator and the fiber amplifier stage. Further
does the systems include several standard polarization maintaining (PM)
and non-polarization maintaining (non-PM) fiber components as splitters,
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combiners and wavelength division multiplexers. These components are not
addressed in detail to keep the focus of this text.

Distributed feedback fiber lasers

The laser oscillators chosen for the two-color laser system is a single-mode
distributed feedback (DFB) fiber laser from the fiber laser company Koheras
A/S, Denmark. The fiber laser consists of a Bragg-grating UV-written into
an actively doped piece of silica fiber (see Fig. 2.4). The periodic Bragg-
grating structure in DFB fiber lasers acts as a resonator which works as
a distributed reflector for the designed laser wavelength. The laser gain
contained in the structure is achieved by using silica fiber doped with rare
earth ions such as Erbium, Ytterbium Thulium, Neodymium etc. The
oscillator has multiple axial resonator modes, but there is typically one
mode which is favored in terms of losses. Typically, the periodic structure
is made with a phase shift in its middle to ensure the single-mode operation.
The more detailed fundamentals of DFB gratings generally and DFB fiber
lasers specially can be found in refs. [39, 40] and [41–43], respectively.

Figure 2.4: Distributed feedback fiber laser consisting of a Bragg grating
UV written in actively doped fiber and pumped at 980 nm of 1480 nm.
Courtesy of NKT Photonics A/S.

The linewidth of a DFB fiber laser can be as low as 10 kHz for a co-
herence length of 100 meters. Comparing this number to typical semi-
conductor DFB laser one can see a linewidth in the MHz range. Since
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the linewidth typically scales with the laser cavity length (e.g. resonator
bandwidth)[44] and the standard DFB fiber laser typically has a resonator
length of around 50 mm they can obtain a superior linewidth compared
to a DFB semiconductor lasers (hundreds of μm)[45]. Due to the basic
principles of photomixing (section 2.1) the laser linewidth, the phase-noise
and intensity noise directly do transfer into the linewidth of the CW THz
signal. This feature is the origin of the ultra narrow linewidth of the laser.

Fig. 2.5 is showing a typical DFB fiber laser coupling. The fiber laser
is pumped with 978 nm light from a fiber coupled single-mode laser diode.
The fiber laser consists of an approx. 50 mm doped silica fiber (gain
medium) and an UV-written distributed Bragg reflector defining the res-
onator. The typical output power of an in the following employed fiber
laser is 12 mW at a oscillator wavelength of 1042.6 nm when pumping with
300 mW of 978 nm of pump power.

Figure 2.5: Sketch of fiber laser setup. The fiber laser is pumped with
978 nm light from a fiber coupled laser diode by using a WDM compo-
nent. The fiber laser consists of an approx. 50 mm doped silica fiber
(gain medium) and an UV written distributed Bragg reflector defining the
resonator.

Ytterbium-fiber amplifiers

Fiber amplifiers are optically based amplifiers with the optical fiber as gain
medium. The gain medium is a silica fiber doped with rare earth ions
such as Erbium, Ytterbium, Thulium, Neodymium etc. The dopants are
pumped with light typically from a fiber coupled diode laser. The signal
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to be amplified and the pump propagate together through the medium and
the energy is transferred between the two [46].

The the invention of the Erbium-doped fiber amplifier with its major
commercial application in the telecom industry was the breakthrough for
the fields of rare earth doped fiber amplifiers, making a very large wave-
length range easily accessible due to the number of available rare earth
dopants. The EDFA work was pioneered by David N. Payne, R. Mears,
and L. Reekie, from the University of Southampton [47] and a group from
AT&T Bell Laboratories, E. Desurvire, P. Becker, and J. Simpson.[48]. A
straight forward amplification scheme and the success in the telecom indus-
try made that the EDFA not only stayed confined to the telecommunication
industry but spurred a steadily growing interest in other areas.

Ytterbium-doped fiber amplifiers (YDFA´s) offers amplification over a
large wavelength band from about 975 nm up to 1200 nm. Especially when
pumping the YDFA with 975 nm, this will give access to the wavelength
range between 1000 nm and 1150 nm with low amplified stimulated emission
(ASE) and high gain. The Yb gain spectrum is depicted in Fig. 2.6.
Ytterbium amplifiers can be made with extremely high output power (tens
of kilowatts). This feature makes a CW THz source based on YDFA´s
highly scalable with respect to output power and therefore very interesting
as source in multi-element systems.

For single-frequency operation, stimulated Brillouin scattering (SBS) is
the most important nonlinear phenomena which limits operation power and
addressed later in this chapter.

Ytterbium-doped glass exhibits pronounced three-level characteristics
for wavelengths below ∼ 1040 nm. For operation at such wavelengths, a
large inversion density is required for overcoming the reabsorption loss. For
longer wavelengths, as sometimes used in fiber lasers, there is hardly any
reabsorption, and in a long fiber only a very low excitation density may be
required to obtain sufficient gain.

Ytterbium gain spectrum can from the absorption and emission cross-
section in Fig. 2.6 be written as:

G(ω) = N 5
2
σe(ω) + N 7

2
σa(ω) (2.4)
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Figure 2.6: Absorption and emission cross section of Yb in germanosilicate
glass. [49]

Where σe is the emission cross-section, σa the absorption cross-section
and N 5

2
+ N 7

2
= NY b.

A standard fiber amplifier setup is shown in Fig. 2.7. The amplifier
includes an optical pump, typically a fiber-coupled single-mode semicon-
ductor laser diode with output wavelength of 978 nm and an output power
ranging up to 1 W. A fiber-based WDM component combines pump and
signal wavelength before propagation into the Yb-doped fiber. The length
of the doped fiber can vary in length dependent on the doping level and the
pump power. To avoid damage of the diode laser end-facet due to back-
reflections from the amplifier output typically an optical isolator is placed
for protection.
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Figure 2.7: Sketch of a standard Ytterbium fiber amplifier setup. The
amplifier is pumped by a fiber coupled diode laser. A WDM is combining
pump and signal into the doped fiber. An optical isolator is placed to
protect the laser from backreflections from the output.

2.3 Characteristics & results of two-color fiber
laser

During the development process of the two-color fiber laser system several
lasers were build varying e.g. the pump diodes and oscillator wavelength
and finally we changed from a non-polarization maintaining (non-PM) to
a fully polarization maintaining (PM) system.

The first approach did not include PM components due to the thought
that fiber polarization controllers could tune the two initially different laser
polarizations into the same polarization axis at the end of the laser source.
The polarization of the two oscillators need to overlap to generate the beat
signal at the photomixer. The non-PM version revealed stability issues
introduced by heat, stress and vibration induced additional birefringence
in the fiber resulting in a low polarization extinction ratio (PER) between
the two oscillator wavelength. This resulted basically in the design of a
completely new laser by shifting all the non-PM components to PM com-
ponents.

Non-polarization maintaining

Fig. 2.8 shows a sketch of the first two-color fiber laser system developed,
which consists of two fiber lasers with an oscillation wavelength of 1042.3
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Figure 2.8: Sketch of the first principle of the two-color laser. The two
oscillators are followed by an amplifier stage combining and amplifying the
oscillator signal.

nm and 1046.5 nm, respectively. The two lasers share one single 976 nm,
300 mW pump diode. The signal from the two oscillators are combined in an
fiber-optic combiner and amplified in a preamplifier stage consisting of 2 m
of active Yb-doped fiber. The pre-amplifier is pumped with 300 mW. The
output power is scalable in the sense that it is possible to further amplify
the output signal in another or several cascaded amplifier stages. The
output spectrum is measured with a optical spectrum analyzer and shown in
Fig.2.9. The output power of the two combined oscillators amplified in the
pre-amplifier is 80 mW, sufficient to drive several photoconductive antennas.
The ASE noise floor is first seen at > 50 dB. The frequency spacing between
the two oscillator wavelengths is around 4.2 nm or 1.15 THz.

Since the spectral resolution of the spectrum analyzer used to obtain

24



2.3. Characteristics & results of two-color fiber laser

Figure 2.9: Output spectrum of two-color laser shown in Figure 2.8. The
ASE noise floor is seen >50 dB. The unequal height of the peak in the
spectrum is due to the Yb-gain spectrum (see Fig. 2.6).

the data in Fig. 2.9 is limited to 2 GHz and the linewidth of typical fiber
lasers is in the kHz range, so we need to apply a self-heterodyne linewidth
measurement technique [50, 51]. This measurement shows a linewidth of
24 kHz measured over 120 μs (Fig. 2.10).

The total output power at the output of the amplification stage shown in
Figure 2.8 is currently 80 mW, limited by severe losses in the output isolator
(we obtain more than 250 mW total power before the isolator). In Fig. 2.9
the power in the laser lines is not equally distributed, due to the gain profile
in Yb-doped fiber and the off-center wavelength of the standard 1064-nm
components used in this first version of the laser. The power distribution
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Figure 2.10: Self-heterodyne linewidth measurement, which shows a
linewidth of the two-color laser of below 24 kHz.

between the two colors would be controllable by separate pumps on each
DFB laser. This was then implemented in the next laser version.

The tunability of the laser system is illustrated in Fig. 2.11, where the
laser cavities are mechanically stretched one at a time and hereby red shifted
compared to their inherent relaxed oscillation wavelength. The difference
frequency can easily be tuned over 1 THz by stretching the fibers. A more
daring experiment should give a tuning range of more than 2 THz before
reaching the elasticity limits of the fibers.

Considering the noise characteristics of the laser it can on Fig. 2.9
be seen that the ASE noise floor is suppressed by 55 dB. Furthermore a
measurement of the relative intensity noise (RIN) using a HP Lightwave
Analyzer gives a laser RIN of -151 dBc/Hz for frequencies above 10 MHz.
The relative intensity noise describes amplitude fluctuations in the optical
field and is caused by optical interference between the laser signal and
spontaneous emission in the cavity. RIN is defined as

RIN = ΔP 2

P 2
avg

(2.5)
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Figure 2.11: Wavelength tuning of the two-color laser by mechanically
stretching of the laser cavities.

where ΔP 2 is the mean square intensity fluctuation spectral density of
the optical signal and Pavg is the average output power. These two numbers
show a good noise performance of the laser system compared to other high
performance single frequency DFB fiber laser sources [52].

Polarization maintaining laser

The laser in this section is build exclusively out of polarization maintain-
ing fiber components and the fiber used is the polarization maintaining
PANDA fiber, which is a fiber with high internal birefringence that can
maintain linear polarization against external perturbations as e.g. bending
and vibrations. Another novelty compared to the laser characterized in the
previous section is that the oscillators are pumped individually to avoid
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Figure 2.12: Sketch of a polarization maintaining two-color fiber laser setup
with individual pumps for each oscillator followed by an Yb-doped fiber
amplifier pumped with 750 mW.

unequal amplitudes of the two wavelengths originating from the Yb-gain
spectrum. Furthermore the pump diode of the preamplifier is increased
from 300 mW to 750 mW. Fig. 2.12 shows a sketch of the new version and
the spectrum is found in Fig. 2.13. A measurement of the output spectrum
vs. pump power is shown in Fig. 2.14. The output power of the PM laser
is 150 mW and the polarization extinction ratio (PER) is measured with a
PER meter to 22 dB.

Fig. 2.15 shows a measurement of the PER over 30 minutes. The
improved PER stability resulted from the PM components used and this
directly translated into an improved stability of the laser output. By in-
suring a stable overlap of the two laser polarizations throughout the entire
laser system enables the laser to be employed as source for photomixing.
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Figure 2.13: Power spectrum of an all polarization maintaining dual-color
fiber laser version.

High power multi-mode fiber amplifiers

Although the lasers showed in this chapter already had several hundreds of
mW output power, even more output power going towards several Watt´s
is achievable by using active large mode area (LMA) or photonic crystal
fibers (PCF). Fig. 2.16 show an idea of a system configuration containing
high power fiber amplifiers. The amplifier system employs an active LMA
power combiner which is pumped with several multi-moded high power
diode lasers. The signal path through the power combiner is kept in single-
mode polarization maintaining fiber. Output power of several kW’s have
been shown recently for single wavelengths systems[53].
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Figure 2.14: Figure depicts the enhancement of amplified stimulated emis-
sion(ASE) when increasing the pump power to the amplifier stage.

Discussion of Brillouin scattering and Four-wave mixing

The output spectrum of the PM laser version (Fig. 2.12) is showing the
advent of the χ(3) nonlinearity four-wave mixing (FWM). FWM is a type
of optical Kerr effect, and occurs when light of two or more different wave-
lengths are launched into a fiber. The the two narrow linewidths in the fiber
laser give rise to degenerate FWM of the two wavelengths. In Fig. 2.17 one
can clearly see the dependence of increased pump power. The frequency
mixing components that are appearing in Fig. 2.17 are: λ3 = λ1 + λ1 − λ2
and λ4 = λ2 + λ2 − λ1. At full pump power (750 mW at 978 nm) are the
FWM components still suppressed by 50 dB.

Another effect that can decrease the performance of a CW fiber laser
substantially is stimulated Brillouin scattering [54]. This scattering effect
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Figure 2.15: Measurement of the polarization extinction ratio over 30 min-
utes.

is a χ(3) nonlinearity and related to the acoustic phonons in a medium. The
incident photons can be converted into a scattered photons of slightly lower
energy and the generated phonons are usually propagating in the backward
direction. This can even at low optical power become a very strong effect.
Above a certain threshold the stimulated Brillouin scattering can reflect
most of the power of an incident beam. SBS can be seen when narrow-band
optical signals (e.g. from a single-frequency laser) are amplified in a fiber
amplifier, or just propagated through a passive fiber. While the material
nonlinearity of e.g. silica is not very high, the typically small effective
mode area and the long propagation length strongly enhances this nonlinear
effect. Brillouin scattering in fibers is treated in ref. [55] and methods to
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Figure 2.16: Fiber amplifier for high power amplification employing high
power multimode pumps and active large mode area fiber. The LMA fiber
amplifier can be pumped with several high power pump diodes.

suppress the SBS treshold to several hundred Watts are reported by Kovalev
et al. in [56]. Measurements of the output spectrums of our laser systems
above are not showing the event of Brillouin scattering despite the narrow
linewidth and the amplification of the two colors laser setups.

2.4 Summary

This chapter shows results on a novel fiber laser system for CW THz gen-
eration. The laser system is tuneable over more than 1 THz, and the
difference frequency has a linewidth of below 25 kHz. The system is fully
scalable with respect to power and can be distributed along optical fibers to
a multi-element array of THz emitters and detectors. The nonlinear effect
from four-wave-mixing where suppressed 50 dB and no indications of SBS
was observed.

Future work

In the future this laser for THz generation and detection needs to be tested
with an appropriate photomixing material. In chapter 5 we will describe a
potential candidate for working around 1μm wavelength. Another possible
material candidate for difference frequency generation at 1μm is the crys-
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Figure 2.17: Power spectrum measurement and the appearance of four-
wave-mixing components by increased pump power. The FWM components
are still suppressed by more than 50 dB at a pump diode power of 750 mW.

talline salt diethylaminosulfurtetrafluoride (DAST) which possesses very
high nonlinear susceptibilities and electro-optic coefficients [57–60].

At the time of writing this thesis we had photoconductive antennas
based on LT InGaAs/InAlAs multi-layer structures from HHI Berlin avail-
able in the lab for testing. The HHI group very recently published their
latest results on a CW THz photomixing source operated at 1.5 μm [35]
using the LT InGaAs/InAlAs multi-layer structures as detector and a novel
InP-based waveguide-integrated photodetector as emitter [61].
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Chapter 3

Pulsed broadband terahertz
imaging

This chapter will present the major photonic based terahertz generation
and detection schemes used and review the concepts of the state-of-the-art
THz imaging systems.

Generation and detection of a THz pulse generally occurs through the
nonlinear interaction of a driving optical pulse with a material with a fast
response.

One big class of generation and detection techniques makes use of the
photoconductive switch. THz generation occurs in the photoconductive
switch when an ultra fast optical excitation induces conductivity changes in
a semiconductor. The process builds on a resonant interaction as absorbtion
of photons through a interband transition. The photoconductive detection
process relies also on conductivity changes in a gated antenna structure as
the generation of THz pulses.

The second major class of THz emitters generates THz radiation by a
non-resonant interaction of short optical transients with nonlinear medium
like the ZnTe-crystal and employs the χ2-process of different frequency
generation or optical rectification.
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A widely used detection scheme also making use of a non-resonant in-
teraction in a nonlinear medium, namely the electro-optic effect (or Pockels
effect). The electro-optic effect changes the refractive index of a inversion
asymmetric medium linearly proportional to the incoming electric field.

Both types generation and detection methods are employed in the re-
ported THz imaging systems, though one needs to keep in mind that the
optical rectification process requires much higher pulse energies than the
photoconductive generation process. This results in larger requirements for
the ultra-fast laser source.

3.1 Electromagnetic radiation

The following derivation will give the fundamental background for under-
standing the processes giving rise to THz radiation used in this work,
namely the two source terms the first derivative of a conduction current,
∂ �Jcond/∂t and the second derivative of a polarization, ∂2 �P/∂t2.

Maxwell’s equations can be used to completely describe the generation
of electromagnetic radiation in a medium and are as follows:

∇ × �E + ∂ �B

∂t
= 0 (3.1)

∇ · �B = 0 (3.2)

∇ × �H = ∂ �D

∂t
+ �J (3.3)

∇ · �D = ρ (3.4)

where �D = ε �E, with ε being the dielectric constant, �B = μ �H, with μ
being the magnetic moment of the material, and �J is the current density.
Combining Eq. 3.1 with Eq. 3.4 using the vector identity ∇ × (∇ × �A) =
−∇2 �A + ∇(∇ · �A) gives

∂

∂t
(∇ × �B) = ∇2 �E − 1

ε
∇ρ (3.5)
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by combining this result with Ampère’s law in equation 3.3, and by assum-
ing that there are no free charges (ρ=0) this result in the wave equation

∇2 �E − εμ
∂2 �E

∂t2 = μ
∂ �J

∂t
(3.6)

The right hand side of the wave equation is the fundamental source of
radiation, more precisely the non-uniform motion of charge. By making a
distinction between free and bound charges we can split the right hand side
of equation 3.6 even further up. Since the current �J in general consists of
both conduction �Jcond and bound �Jbound contributions, with �Jbound =∂ �P

∂t we
are finally arriving at the expression

∇2 �E − εμ
∂2 �E

∂t2 = μ

(
∂ �Jcond

∂t
+ ∂2 �P

∂t2

)
(3.7)

which is recognized as a wave equation with two source terms, the first
derivative of a conduction current, ∂ �Jcond/∂t , and the second derivative of
a polarization, ∂2 �P/∂t2. With derivation of the two source terms we have
the fundamental background for the used THz generation techniques used
in the following.

3.2 THz sources

Photoconductive antennas

A photoconductive switch was one of the first methods generating pulsed
THz radiation. This technique was pioneered by D. H. Auston [62] and
further improved later in [63–68]. Today is the photoconductive antenna
design (Fig. 3.1) making use of the basic principles of the first photocon-
ductive switch and is one of the most used optoelectronic THz generation
principles in terahertz-time-domain spectrometers (THz-TDS’s). An opti-
cal femtosecond laser pulse is focussed into a small gap between two metallic
striplines typically separated by 30 − 60 μm and deposited on a direct-gap
semiconductor material. An above bandgap laser excitation of the semi-
conductor is creating carriers which are accelerated by a DC-field applied
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to the striplines. The resulting time-varying current burst is giving rise to
a freely propagating sub-picosecond transient or THz pulse which in the
far-field is given by E ∝ ∂ �J/∂t.

Figure 3.1: A biased photoconductive switch (left). Photoconductive an-
tenna with biased photoconductive gap. The pulsed femtosecond laser pulse
is focussed into the photoconductive gap(right).

In the simple model of a short dipole antenna the radiated electric field
E(r, t) in free space can be described for distance r and the time t as:

E(r, t) = le
4πε0c2r

∂J(t)
∂t

sin(θ) ∝ ∂J(t)
∂t

, (3.8)

where J(t) is the current in the dipole, le the effective dipole length, ε0
the dielectric constant of free space, c the speed of light in vacuum and θ
the angle of direction from the dipole. From equation 3.8 thus the strength
of the radiated field is both proportional to the dipole length and the first
derivative of the driving photocurrent.

The photocurrent density in a semiconductor can be described by

j(t) ∝ I(t) ⊗ [nf (t)ev(t)], (3.9)
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where ⊗ denotes the convolution product, I(t) the optical intensity, e
the elementary charge, nf (t) the density of free charges and and v(t) the
velocity of the photocarriers.

The rate equation for the generated carriers is

dnf

dt
= −nf

τc
+ G(t), (3.10)

where τc is the carrier trapping rate and G(t) is the generation rate of
charges from the laser pulse.

The classical Drude model is a good description of the dynamics of free
photogenerated carriers in a semiconductor. The average velocity of the
free carriers can here be modeled by the differential equation:

dv

dt
= − v

τs
+ e

m∗ Eloc(t), (3.11)

where τs is the carrier scattering rate, m∗ the effective mass of the
carriers and Eloc the local electric field.

An important effect that needs to be included is the screening of the
applied electric bias field due to the induced free charges setting up a po-
larization field opposite direction of the bias field [69]. The effect of the
space-charge reduces the bias field to

Eloc = Ebias − Psc

ηε
(3.12)

where Psc is the polarization field due to screening, η is a geometrical
factor equal to three for an isotropic dielectric material [69]. Pedersen et
al. demonstrated in Ref. [70] that increasing the optical injected carriers
can screen the applied bias-field so it strongly influences the amplitude and
the THz pulse shape.

From these considerations important properties of the semiconductor
material used for photoconductive antennas are high electron mobility, high
breakdown voltage and high resistivity.
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Equation 3.9 results in that the carrier drift velocity and hence the mo-
bility (vd = μE) is an important material parameter for the semiconductor
material used for the THz generation since n(t)ev(t) is presenting the im-
pulse response to the fast femtosecond laser pulse excitation. A short carrier
lifetime is in opposite to the photoconductive detector not a requirement.

A high breakdown voltage is desirable for the application of high bias-
fields while a high dark resistivity minimizes the heat in the structure.

The most used semiconductor materials used with modelocked Ti:Sa
femtosecond lasers are GaAs, low-temperature grown GaAs (LT-GaAs) and
radiation-damaged Silicon-on Sapphire (RD-SOS).

The THz pulse is typically collimated after generation in the point
source like photoconductive gap by a high resistivity hyper-hemispherical
silicon lens. High resistivity silicon matches the refractive index of GaAs
very well at THz frequencies (Si 3.47 and GaAs 3.6) which avoids reflections
between the substrate and the lens. Further has Si low absortion and very
low dispersion at THz frequencies [71].

Optical rectification

Another generation scheme for ultrashort electromagnetic pulses is employ-
ing nonlinear crystals, i.e. ZnTe, and can be described by the nonlinear
phenomenon called optical rectification. Optical rectification is a nonlinear
optical effect originating from the second order susceptibility χ(2) that in
the frequency domain produces polarization P (k, ω).

P(k, ω) = P(0)(k, ω) + P(1)(k, ω) + P(2)(k, ω) + · · ·
= P(0)(k, ω)

+ε0(χ(1)
ij Ei(ki, ωi) + χ

(2)
ijkEi(ki, ωi)Ej(kj , ωj) + · · · )(3.13)

where k is the wavenumber, ω is the angular frequency and χ(n) is the
susceptibility tensor of rank n + 1. P(0) is the static polarization, P(1) is
the linear polarization and P(2) is the quadratic polarization. By inspection
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3.2. THz sources

of the left hand side of equation 3.13 it can clearly be seen that P(2) and
higher orders susceptibilities are giving rise to frequency mixing terms.

Now assuming two plane electromagnetic waves E1 = 1
2 [Ak(t) exp(−iω1t)+

c.c.] and E2 = 1
2 [Al(t) exp(−iω2t) + c.c.], where Ak,l are the envelopes and

ω1,2 are the carrier frequencies, then the 2nd order induced polarization can
be written as:

P (2) = ε0χ
(2)
jkl

1
2[Ak(t) exp(−iω1t) + c.c.]

×1
2[Al(t) exp(−iω2t) + c.c.]

= ε0χ
(2)
jkl

1
4{[AkAl exp [−i(ω1 − ω2)t] + c.c.] +

[AkAl exp [−i(ω1 + ω2)t] + c.c.]}
= P

(2)
Δ + P

(2)
Σ (3.14)

Looking at Eq. 3.14 we see that P
(2)
j consists of a sum term, P

(2)
Σ and

a difference term, P
(2)
Δ . If we now assume that the electromagnetic waves

are identical i.e. Ak = Al = A and ω1 = ω2 = ω, we get

P (2) = 1
2A2(t)ε0χ

(2)
jkl[1 + 1

2 exp (−i2ωt) + c.c.]

= P
(2)
Δ (0) + P

(2)
Σ (2ω) (3.15)

Equation 3.15 shows that we get two non-zero polarization terms which
both are dependent on the electric field amplitude. P

(2)
Δ (0) is completely

independent of the carrier frequency and describes the effects of optical
rectification. The term P

(2)
Σ (2ω) is oscillating at twice the carrier frequency

and describes the nonlinear phenomenon of second harmonic generation
(SHG).

P
(2)
Δ (0) in equation 3.15 is proportional to the square of the electromag-

netic amplitude and is thus proportional to the incident wave intensity. If
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A = const. i.e. the amplitude is time-independent which equals a perma-
nent polarization inside the medium.

If we instead apply an amplitude modulated electromagnetic wave, this
will result in a time-dependent P

(2)
Δ (0). According to the wave equation

shown in equation. 3.7, this time dependence will lead to an electromag-
netic radiation. This is the property that is used for the generation of
the ultrafast electromagnetic THz signals in the nonlinear crystal. When
a femtosecond pulse is incident on a ZnTe crystal, the optical rectification
process creates a time-varying induced polarization which in the following
give rise to an broadband electromagnetic radiation which is covering the
THz frequency range.

The above description of the optical rectification is only valid for de-
scriptions of the local interaction, but it clearly neglects wave propagation
inside the crystal. To obtain a good efficiency of the process one generally
would use a crystal of a appreciable thickness, thus then propagation ef-
fects cannot be ignored. Pulse broadening may occur for both for the optical
wave and for the generated THz pulse throughout the crystal. However,
the most critical effect is phasematching between the THz wave and the
optical wave[72].

Figure 3.2: Principle of optical generation of THz radiation by optical
rectification (Pockels effect).
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3.3. THz detectors

3.3 THz detectors

Detection with photoconductive antennas

The detection scheme for photoconductive antennas is very much the in-
verse process of the photoconductive generation scheme. The main differ-
ence to the emitter is that the detector has exchanged the DC-bias supply
with an ampere meter. Photocarriers are created in the photoconductive
gap by a optical probe pulse, the carriers are then accelerated by the in-
cident THz-field and the current in the antenna is detected typically by
an lock-in amplifier. The electric field of the THz pulse is mapped in the
detector as a function of time by scanning the arrival time of the optical
gate pulse with respect to the THz pulse.

The photocurrent in the detector J(t) is represented by:

J(τ) = 1
T

∫ T

0
ET Hz(t)σ(t − τ)dt, (3.16)

where σ represents the surface conductivity in the photoconductive gap.
The ideal detector would have a delta function detector response to map
out the exact incoming THz field. However, the detector photocurrent is a
convolution of the THz field with the finite conductivity which is determined
by the optical intensity, carrier drift velocity and carrier population. The
detector bandwidth can be optimized by decreasing the response time of
the detector by using semiconductor materials with a sub-picosecond carrier
recombination time and a relative high carrier mobility.

Two main materials have been used with 800 nm Ti:Sapphire lasers
because of their sub-ps recombination time and their relative high carrier
mobility. These materials are LT-GaAS [73] and RD-SOS[74].

Electro-optic detection

Another detection method uses a free-space electro-optic detection tech-
nique (Fig. 3.4) [75–77]. This technique uses another <110>-oriented
ZnTe crystal. The THz pulse and the laser pulse are propagated collinearly
through the ZnTe crystal. The THz pulse induces a birefringence in ZnTe
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Figure 3.3: Principle of detection of THz radiation by a photoconductive
antenna. The presence of THz radiation and a optical gating pulse drives
a current in the photoconducting antenna which is measured by a current
amplifier or lock-in. (left) Front view of the photoconductive detector,
(right) side view of the photoconductive detector depicting the Si lens used
to collect the THz pulse into the photoconductive gap.

crystal which is read out by the linearly polarized laser pulse. When both
the laser pulse and the THz pulse are in the crystal, the laser polarization
will be rotated by the presence of the THz pulse linearly to the incident
THz field strength. Using a λ/4 waveplate and a beamsplitting polarizer
together with a set of balanced photodiodes, the THz pulse amplitude is
mapped out by monitoring the laser pulse polarization rotation after the
ZnTe crystal at a variety of delay times with respect to the THz pulse.

The induced phase retardation in the ZnTe crystal is given by

ΔΓ = 2π

λ
dn3

optr41ET Hz, (3.17)

where d is the optical thickness of the crystal, n3
opt the group refractive

index of the electro-optic crystal at the probe beam wavelength and r41
the electro-optic coefficient. Equation 3.17 shows the ability to read out
the full electric field ET Hz, both amplitude and phase, as the THz field is
directly proportional with the phase retardation of probe beam.

A fundamental limit to the detection bandwidth using this technique is
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Figure 3.4: Principle of optical detection of THz radiation by electro-optic
sampling. The presence of THz radiation in the ZnTe crystal rotated the
polarization of the 800 nm probe pulse. The polarization change is detected
in a pair of balanced photodiodes.

the potential phase mismatch in the crystal between the THz pulse and the
800 nm detection beam due to the difference in refractive index at these two
wavelengths [77]. Another fundamental bandwidth limiting characteristic
for ZnTe is a phonon absorption at 1.6 and 3.7 THz [78] and a TO phonon
at 5.31 THz [75].

ZnTe is the most commonly used electro-optic crystal, although GaSe,
GaP, InP, GaAs and DAST also have been used. A much more detailed
study on the crystal orientation dependence of the THz detection in ZnTe
is given by Planken et al. in [79].

3.4 THz time-domain spectroscopy

In the previous section we have described the concepts to generate and
detect THz radiation with photoconductive antennas. This section will
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deal with most prominent THz spectroscopy scheme; THz time-domain
spectroscopy (THz-TDS).

Figure 3.5: Sketch of a typical THz-TDS using photoconductive antennas
as emitter and detector. The sample under investigation is positioned in
the THz beam path and sample cell is typically purged with N2 to avoid
water absorption lines in the acquired spectrum.

Figure 3.5 shows a sketch of a typical THz-TDS setup. A optical beam-
splitter splits the ultra short laser pulses from the modelocked Ti:sappire
into two beam paths. One part is directed into the THz generation arm
and the other will be used at the detector as gating pulse. Each beam is
focussed on a photoconductive switch which generates and detects the THz
pulse, respectively. Either the generation beam or the detection beam is
led through a variable delay line in order to secure that the optical pulse
at the detector arrives at the same time as the THz pulse and gates the
detector. By changing the optical delay line the THz pulse is mapped out
as a function of time. The weak photocurrent in the detector is measured
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by a lock-in amplifier or a high gain transimpedance amplifier to ensure
a good signal-to-noise ratio. When using a lock-in detection scheme ei-
ther the optical beam, the THz beam or the bias voltage of the emitter is
modulated at the lock-in detection frequency. After generation in the pho-
toconductive antenna the THz beam is collimated with a high resistivity
hyper-hemispherical Si lens and at the detector again focussed by the Si
lens into the photoconductive gap. Often a intermediate focus of the THz
pulse is required and can easily be introduce by using two pairs off-axis
parabolic mirrors.

An example on the detected time dependent electric field E(t) prop-
agating in lab air and nitrogen purged dry environment, respectively, is
shown in Fig. 3.6(left). The oscillations on the measurement of the THz
pulse obtained in lab air are due to the decaying of rotational transitions
in water molecules of the water vapor in lab air atmosphere [80]. The THz
beam path is due to this usually kept in a N2 or dry air atmosphere.

Figure 3.6: (left) Terahertz pulse taken in a classical THz-TDS setup us-
ing a 100 fs, 800 nm pulsed laser and photoconductive antennas. (right)
Fourier transform of the THz pulse showing the frequency components of
the amplitude of a THz pulse in lab air and in a dry atmosphere.

The obtained time dependent electric field measurement E(t) can be
Fourier transformed by the discrete equivalent of the Fourier transform of
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E(ω) = 1
2π

∫ ∞

−∞
E(t)e−iωtdτ, (3.18)

where E(ω) is the frequency dependent electric field. The amplitudes of
the Fourier transformations of the time dependent electric fields of lab air
and dry nitrogen purged air are shown in Fig. 3.6(right), respectively. The
distinct lines in the spectrum of the lab air are the water vapor absorbtion
lines. The maximum detectable bandwidth of this spectrometer is up to
3 THz and the system has a signal-to-noise ratio of approx. 1:800 at the
peak of the spectrum.

A great feature of THz-TDS compared to other optical spectroscopic
techniques is, that this technique obtains the electric field and not just the
intensity. Resulting in that both the amplitude and phase of the field are
obtained one can e.g. extract the complex refractive of a material with
known thickness without the need of the Kramers-Kronig relation which
describes the mathematical relation between the real and imaginary part
of a complex function [81].

The complex index of refraction is here defines as:

˜n(ω) = n(ω) − iκ(ω) = n(ω) − i
α(ω)c

2ω
, (3.19)

where n(ω) is the frequency dependent index of refraction and κ(ω)
is the frequency dependent extinction coefficient, α(ω) is the absorption
coefficient and c the speed of light in vacuum. The complex refractive
index has a direct relationship to both the conductivity and the dielectric
function of a medium which makes the knowledge of either one of these
highly useful.

The following will show how to determine the frequency dependent index
of refraction and the absorbtion of a sample using a THz-TDS operated in
transmission-mode configuration. The transmitted field through a sample
of thickness d is depicted Fig. 3.7.

The reference pulse in transmission-mode trough an spectrometer with-
out sample is needed for the later the calculation of the index of refraction.
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3.4. THz time-domain spectroscopy

Figure 3.7: Sketch of a transmission through a sample with thickness d and
complex index of refraction n̂2.

A reference pulse Eref (ω) in frequency domain for two orthogonal polar-
izations can be expressed as

(
E

‖
ref (ω)

E⊥
ref (ω)

)
=

(
E

‖
i (ω)

E⊥
i (ω)

)
· e−αaird/2 · e−iωnaird/c

=
(

E
‖
i (ω)

E⊥
i (ω)

)
· e−iωd/c, (3.20)

where Ei(ω) is the incident THz pulse generated by the emitter, nair is the
refractive index of air, which is assumed to be 1 and αair is the absorption
coefficient of air which is assumed to be zero.

When placing the sample into the beam path of the spectrometer, the
electric field alters to Esam(ω) and can now be expressed as

(
E

‖
sam(ω)

E⊥
sam(ω)

)
=

(
E

‖
i (ω) · t

‖
12 · t

‖
21

E⊥
i (ω) · t⊥

12 · t⊥
21

)
· e−αsam(ω)d/2 · e−iωnsam(ω)d/c,(3.21)

where nsam(ω) is the refractive index of the sample, αsam(ω) the absorp-
tion coefficient and t

‖
12 · t

‖
21 and t⊥

12 · t⊥
21 the Fresnel transmission coefficient

for the interfaces for parallel and orthogonal polarization, respectively. For
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simplicity are we in the following assuming that the incoming field only is
parallel polarized. The unknown electric field Ei is represented in both Eq.
3.20 and Eq. 3.21, and can therefore be eliminated by taking the ratio of
the two fields (assuming n = nsam and α = αsam).

Esam(ω)
Eref (ω) = Ei(ω) · t12 · t21 · e−α(ω)d/2 · e−iωn(ω)d/c

Ei(ω) · e−iωd/c

= t12 · t21 · e−α(ω)d/2 · e−iω[n(ω)−1]d/c. (3.22)

At normal incidence of the field onto the sample (θi = 90◦) equation
3.22 reduces to

Esam(ω)
Eref (ω) = 4n̂(ω)

[1 + n̂(ω)]2 · e−α(ω)d/2 · e−iω[n(ω)−1]d/c ≡ A(ω) · e−iφ(ω).(3.23)

The ratio between Esam(ω) and Eref (ω) is a complex expression with the
amplitude A(ω) and phase φ(ω). The index of refraction and the absorption
coefficient can now be extracted out of equation 3.23 by inspection of the
real and imaginary part.

When the sample thickness is comparable or larger than the wavelength
(1 THz = 300 μm), the index of refraction of the sample can be expressed
just by looking at the phase difference between the reference and the sample
pulse. In this situation the phase shift arising from the Fresnel coefficients is
much smaller than the phase shift originating from the sample propagation,

n(ω) � 1 + c

ωd
φ(ω). (3.24)

After determination of the refractive index one can calculate the ab-
sorption coefficient of the sample from the amplitude of equation 3.23.

α(ω) � −2
d

· ln
{

A(ω) [1 + n(ω)]2

4n(ω)

}
. (3.25)
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3.5 Pulsed terahertz imaging techniques

Amplitude and phase imaging

Figure 3.8: Schematic of a typical transmission-mode raster scan time-
domain imaging system. The imaging plane is at an intermediate focus
point half way between emitter and detector.

A popular THz imaging system has since the very beginning of THz
imaging with [27, 82] simply been the teraherz time-domain spectroscopy
(THz-TDS) setup. Various imaging setups make use of raster scanning an
object in the THz beam of a THz-TDS either in transmission- or reflection-
mode configuration (Fig. 3.8). An image acquired by raster scanning in
a THz-TDS contains a full THz waveform for every single pixel, enabling
the data analysis capability described in the previous section. However,
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these systems use often mechanical translation stages to move the object
in the THz beam and here is a clear trade off between scanning speed and
scanning range (time delay). An increase in scanning speed is directly con-
verting into an either more coarse image or less information in every pixel
due to a reduction in scanning range. The advent of the asynchronous op-
tical sampling technique used in [83, 84] promised a substantially increased
image acquisition speed at the expense of a more complex femtosecond laser
source. Two femtosecond Ti:sapphire lasers with slightly different repeti-
tion rates are locked with a fixed frequency offset one to the other. One
laser is used for generation at the THz emitter and the other is gating the
THz waveform at the detector. The delay between the laser pulses sweeps
automatically across the THz pulse relative to the gating pulse where the
scan rate is determined by the frequency offset between the two laser. In
[83] a time delay of 1 ns is scanned at a frequency of 5 kHz without moving
mechanical parts. Compared with that of conventional TDS schemes based
on lock-in detection and mechanical delay stages, the readout time of the
THz detector is reduced by a factor of 20.

Tomography

Stacked time-of-flight measurements, by the authors called terahertz tomog-
raphy imaging, where the first 3D images first were described by Mittleman
et al. [86] in 1997. The measurement setup was a classical THz-TDS oper-
ated in reflection geometry and including a mechanical x-y stage scanning
the object across a focussed THz beam. The imaging technique acquires
thin 2D cross-sectional slices of the internal structure of a 3D object by de-
tecting the multiple reflections from the incident pulse at different dielectric
interfaces (Fig. 3.10). The 3D internal structure can be reconstructed by
stacking of the acquired 2D data. Figure 3.11 shows a measurement of a
3.5-in. floppy disk. Changes of the refractive index at dielectric interfaces
in the 2D slice’s can be mapped out and are shown in Fig. (3.11b).

The principles of tomography imaging allows imaging of highly trans-
parent, non-polar, non-metallic materials. The pulsed nature of the THz-
TDS makes it directly usable for acquiring depth information of a 3D-
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Figure 3.9: Shows a THz image of a chocolate bar obtained by raster scan-
ning the object in a THz TDS in transmission mode. The upper image
shows the amplitude variation of the peak-to-peak amplitude of the trans-
mitted pulse. The letters are visible due to scattering of the incoming THz
pulse and the almonds in the chocolate bar are visible due to a different
absorbtion coefficient than the rest of the bar. The lower image the phase
variation of the THz pulse. Here the image gives evidence of thickness vari-
ation across the bar due to the embossed letters in the chocolate. Adapted
from [85].

object. By time-of-flight analysis the different layers can be assigned to
the internal structure of the object, which makes this technique extremely
interesting for non-destructive testing in industrial applications.

THz time-of-flight principles are used in one of the most prominent
industrial application of THz imaging until today. NASA is using the tech-
nology to image insulation foam and especially looking for the identification
of defects in the space shuttle foam [87]. The crash of the NASA space shut-
tle Columbia was assigned to possible defects as voids and delaminations
of the insulation foam of the space shuttle fuel tank. Since it is difficult to
locate defect in insulation with other techniques as X-ray or ultra-sound,
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Figure 3.10: Reflection of THz pulse from dielectric interfaces.

THz tomography has found application in non-destructive low-density, low
absorption testing.

Computed Tomography imaging

Computed tomography (CT) imaging is an imaging technique normally
referring to a cross-sectional 3D-image taken with X-rays. In classical CT
systems the object or the emitter-detector pair is rotated and 2D-slices
called shadow images are taken at different rotational angles. The imaging
scene can be described by the Radon integral:

P (r, θ) =
∫

L(r,θ)
f(x, y)ds, (3.26)

where f(x, y)ds is the probability that a ray is absorbed or deflected
in the segment ds along a straight line L. f(x, y) represents the optical
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Figure 3.11: THz image of a 3.5-in. floppy disk depicting the total reflected
power (a) and a tomographic image (b) at y = 15 mm marked by the
dashed line in (a). Lighter and darker regions indicate changes in the index
of refraction in the object. Reprinted from [86].

property of the object at the point (x, y). By inverse transformation of the
integral equation the CT image is reconstructed.

CT THz imaging was first demonstrated by Zhang an co-workers in
Ref. [14]. The most important difference between X-ray CT and THz-CT
is that a THz-CT image can contain information about the amplitude and
the phase of the object. This lead to extra valuable information, as the
refractive index.

The radon integral in equation 3.26 can be adapted for THz-CT by
Fourier transforming it and rewriting it in its complex form
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Edet(ω, θ, l) = Ei(ω)exp

[∫
(r,θ)

−iω

c
(n(r) − iκ(r))dr

]
, (3.27)

where Ei is the Fourier components of the incoming field at ω, Edet is
the detected field at frequency ω, L is a straight line between emitter and
detector at an angle θ and a horizontal offset l from the object’s rotation
axis and n(r) − iκ(r) is the complex refractive index that needs to be
determined at position r.

Figure 3.12: Schematic of computed tomography. The object is rotated
around the z-axis (z is out of the page). The incident THz beam Ei prop-
agates through the object at an angle θ and a offset l from the rotation
axis. In the measurement plane both the amplitude and the phase of Edet

is detected.
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By making the approximation that the detected pulse is related to the
incident pulse by equation 3.27 the Radon transform can be inverted and
used to reconstruct the image with filtered backprojection algorithm [14].

Figure 3.13: Photograph(left) and a rendered 3D reconstructed THz-CT
image of a turkey bone. Reprinted from [14].

Synthetic aperture imaging systems

THz imaging system making use of phased array and synthetic aperture
techniques, well known from radar systems, have been proposed by sev-
eral groups. Mostly these studies were limited to simple systems making
use of a single emitter-detector pair that typically is scanned itself or the
THz beam is steered with an advanced mirror arrangement to spatially
cover the imaging plane. In ref. [17] McClatchey et al. presented an THz
synthetic aperture system based using an inverse synthetic aperture decon-
volution technique. The system demonstrates millimeter and submillimeter
resolutions along the cross range and range axes, respectively. The range
resolution, determined by the THz pulse bandwidth is 0.12 mm, while the
cross range resolution is 1.2 mm. Further does the same group present
fundamental studies on a synthetic phased array imaging system that can
produce images sharp enough to resolve features whose size is in the order
of the THz wavelength [18]. Both systems employ only one single emitter-
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detector pair together with an advanced moving mirror array making up
the phased array system.

Figure 3.14: High contrast photograph and THz SAR image of a destroyer
scale model (1:2000). SAR images are taken with 20◦ angular range and 1◦

resolution. Reprinted from [17].

Bandyopadhyay et al. have in [19] proposed an interferometric array
inspired by radio-interferometry. The idea of the imaging interferometer
consists of an array of multiple individual detectors or sensors (Fig. 3.15).
Each pair of THz detectors measure the amplitude and phase of incoming
THz radiation. By calculating the spatial Fourier components of all differ-
ent detector positions an image can be reconstructed. Bandyopadhyay et
al. [19] presents though only data from a pair of CW photomixers mowed
along the line sketched in Fig. 3.15a.
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Figure 3.15: a) Parallel wavefronts incident on a planar arrangement of de-
tectors. The wavefront is detected simultaneously at all detectors. Requires
a point source at infinite distance from the detection array. b) The THz
source is placed at a finite distance D from the detector array. This intro-
duces a phase delay between the detected wavefronts in the detectors. This
situation is difficult with respect to data analysis since the standard Fourier
inversion procedure of interferometric imaging assumes planar wavefronts.
(c) Adjusting of the detectors is matching the circular incoming wavefront,
so the detectors detect the same wavefront simultaneously. The circular
arrangement is analogous to situation a). Adapted from [19].

3.6 Conceptional ideas for a new pulsed THz
imaging system

After having reviewed the field of pulsed THz imaging systems one can rec-
ognize the clear need for a robust, fast and easy-to-use multi-element THz
imaging system. The fundamental concepts of a vast of imaging techniques
have been showed here, mostly though just the basic concept. Time-flight-
measurements have until today been the most successful technique finding
more and more application areas, also in industrial applications. The fun-
damental problem of the technique is still the image acquisition time which
for most industrial applications is far too long. This problem has been ad-
dressed attention and various techniques have been proposed to speed up
the imaging time. There is though today still a profound need for a faster
system for imaging at e.g. video rate.
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In chapter 5 we will address both the need for a multi-element sys-
tem, together with an image acquisition concept making use of syntectic
apertures image reconstruction techniques and a fast electronic time-delay
scan.
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Chapter 4

Experiments on carbon
nanotubes using a
multi-element THz-system

Before going into a detailed description of our development of a multi-
element imaging system, this chapter presents experimental results using an
existing fiber coupled multi-element THz time-domain spectroscopy (THz-
TDS) system. Besides the experimental data acquired, these experiments
will show the extreme usefulness of a multi-element system in e.g. an-
gle dependent scattering measurements. The used spectrometer has the
capability of very fast realignment of emitters and detectors due to the
fiber coupled sensor heads and further the possibility of simultaneous mea-
surements of scattered signals at different detector location. All this allows
measurements only very hardly achievable with a classical THz time-domain
spectrometer and without very time consuming realignment procedures.

THz time-domain spectroscopy of carbon nanotubes (CNTs) has previ-
ously been used to investigate their optoelectronic properties [88–90]. These
works focused on characterizing the frequency-dependent electronic and op-
tical properties (refractive index, absorption, and conductivity) of a variety
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of configurations of carbon nanotubes.
First this chapter will present results examining the scattering of THz

radiation from multi-walled carbon nanotubes (MWCNTs) oriented per-
pendicularly to the substrate plane. The MWCNT’s under investigation
were provided by the group of Dr. Koziol from Cambridge University,
UK. Despite the wavelength of the terahertz radiation (0.3 – 3 mm) being
significantly larger than the diameters of the nanotubes, significant scatter-
ing of the incident terahertz radiation occurs. In fact, when compared to
measurements performed on bulk metals, the scattering from the oriented
nanotubes is significantly higher. At this point in time it is still not clear
what gives rise to the enhanced scattering of the oriented tubes and will
require further research in future. However, first measurement results are
presented here.

The chapter will be closed by a different experiment on another type of
multi-walled carbon nanotube fibers oriented in the substrate plane [91, 92].
The aim of this experiments was to investigate the possibility to monitor
oxidation impurities in the nanotube sample as a function of THz trans-
mission and reflection of the sample. The data presented is also a initial
research data and must be investigated further in the future.

4.1 Scattering experiments on carbon nanotube
carpet

With the advantages afforded by terahertz time-domain spectroscopy, it is
logical that it has been used to study the optoelectronic properties of various
nanomaterial systems. Due to the diffraction- limited spatial resolution,
THz-TDS can not be used to probe individual nanomaterials i.e. a single
nanotube. Instead, this technique characterizes the bulk electrical or optical
properties. Jeon et al. were the first to report terahertz time-domain
spectroscopy of anisotropically aligned single walled carbon nanotube films
[89]. They found that their experimentally derived frequency dependent
conductivity did not follow the Drude model and that it changed greatly
as a function of the purity of the sample. Jeon also showed that the THz
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transmission strongly followed the alignment of the THz beam polarization
to the aligned direction of the nanotubes. This result inspired recent work
showing that aligned carbon nanotube films can function as linear polarizers
for THz radiation [93].

Since 2002, several groups have used THz-TDS with carbon nanotubes
to examine the role of nanotubes type, growth conditions, host material,
doping, etc. by monitoring the THz transmission, refractive index, absorp-
tion, and conductivity [88, 94–99]. One consistent issue with this work is
the difficulty in determining the conductivity and other electronic proper-
ties from the terahertz data. The choice of the conduction model is dif-
ficult in the case of carbon nanotubes as, to this date, most samples are
not monodisperse, meaning that each sample is often a mixture of metallic
and semiconducting nanotubes. Even in the case of multi-walled carbon
nanotubes, where the tubes are dominantly metallic, it is difficult to main-
tain a consistent tube diameter. Terahertz time-domain spectroscopy is
a valid method of determining the bulk electronic properties, but it will
not be able to characterize the properties of specific types of carbon nan-
otubes until more pure sample growth methods are discovered. Innovative
methods of using terahertz radiation to study single nanotubes do exist
as evidenced by Zhong’s work where they studied the transport through a
single carbon nanotube via the use of a field-effect transistor [100]. The
bulk terahertz frequency electronic properties of other types of nanomate-
rials such as semiconductor nanowires [101], CdSe nanoparticles [102], and
nanostructured TiO2 [103] have been investigated using THz-TDS.

The multi-walled carbon nanotubes (MWCNTs) sample were grown via
chemical vapor deposition (CVD) to form carpet-like films consisting of
nanotubes aligned approximately parallel to one another and normal to
the plane of a glass substrate [104]. Fig. 4.1 shows a SEM picture of the
tubes. The approximate density of the carbon nanotubes in the carpet film
is 5 · 106 mm−2. The figure also shows a very good alignment of the CNTs
throughout the sample (the black arrow indicate the direction of growth).
The dimensions of the tube are ≈ 80 nm outer diameter and ≈ 20 nm inner
diameter and the thickness of the CNT ’carpet’ is approximately 500 mm.
The tubes are synthesized by the CVD method at 760 oC. The carrier gas
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Figure 4.1: Multiwalled aligned nanotubes from Cambridge University[91].
(left) SEM image of the tubes. The carpet has a thickness of approximately
500 mm. (right) close up of the CNT´s which shows the ’carpet-like’ very
good alignment.

in the reactor was argon.
A THz time-domain spectroscopy system with fiber-coupled photocon-

ductive antennas is used to perform the scattering characterization (Fig.
4.2). This worldwide unique THz-TDS system builds on a commercial
THz-TDS system (Picometrix, T-Ray 2000) which was extended from the
original 1 channel receiver/transmitter pair (RX/TX) version to contain
8 RX/TX channels instead. This unique system is owned by the US Air
Force Research Laboratories and on long-term loan provided to the Wright
State University. The experiments shown here are only using one channel
and thereby only making use of the advantage of fiber coupled sensor head.

The scattering experimental setup can basically be described as follows:
THz pulses are normally incident on the sample (0 degrees) and the scat-
tered radiation is detected in reflection at several off-axis angles varying
the detection angle from 20 to 80 degrees (Fig. 4.3). Wire-grid polarizers
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Figure 4.2: Sketch of THz spectroscopy/imaging system at Wright State
University (WSU) with multiple fiber coupled transmitter/detector pairs.
Traditional time-domain terahertz systems consist of one source and one
detector. WSU’s Hydra system has 8 source/detector pairs making it ideal
for scattering and polarization dependence measurements.

are placed in front of the transmitter and receiver antennas to insure which
polarization component is incident on the samples and detected.

A simple first experimental setup for measuring the direct back-reflection
from the MWCNT carpet sample is depicted in Fig. 4.4(left). THz pulses,
generated by a photoconductive transmitter (TX) antenna are normally
incident on the sample. The reflected pulse is diverted by an in-line pellicle
beam splitter that guides the pulse to the receiving (RX) photoconductive
antenna. Wire-grid polarizers are placed in front of the transmitter and re-
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Figure 4.3: Sketch of the experimental setup. The scattering is measured
by a fiber based THz TDS.

ceiver antennas to insure that a linear polarization component is incident on
the samples and detected. Fig. 4.4(right) compares the time-domain THz
pulse reflected from the MWCNT carpet to that from a piece of polished
bulk copper. The pulse reflected from the copper is significantly stronger
than that from the MWCNT carpet. This is expected as the bulk reflectiv-
ity of the carbon nanotubes should be smaller than for carbon due to the
differences in conductivity.

THz pulses were normally incident on the sample (0 degrees) and the
scattered radiation was detected in reflection at several off-axis angles vary-
ing from 20 to 80 degrees (Fig. 4.3(left)). Fig. 4.3(right) shows results from
time-domain measurements on multi-walled carbon nanotubes in which the
THz pulses were normally incident on the sample and the scattered radi-
ation is detected in reflection at several off-axis angles. These results are
compared to radiation scattered off of a bulk metal sample (brass), indicat-
ing that the scattering is greatly enhanced in the presence of the carpet-
like film of nanotubes (Fig. 4.5(left)). The THz radiation scattered by
the carpet falls off exponentially with increasing detection angle and does
not return to an intensity level comparable to scattering from bulk metal
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Figure 4.4: (left) Schematic of a direct backreflection measurement. (right)
Backreflection data measuring backreflections from metal and nanotubes.
The reflection strength from the nanotubes are seen to be lower than that
of pure metal. This is expected as the bulk reflectivity of carbon nanotubes
is lower due to it lower conductivity.

until 60 degrees. Fig. 4.5(right) compares the time-domain waveforms at
the 30 deg. detection angle when the pulses are incident on the nanotube
carpet to that from bulk metal. It can be seen that the THz radiation scat-
tered off of the carpet is significantly larger than that for bulk metal. While
Fig. 4.5(right) shows only an 80 ps long time window, actual measurements
were performed over a much longer time window and no scattered radiation
from the bulk metal at a magnitude comparable to that for the oriented
nanotubes was present.

Fig. 4.6 provides evidence that the oriented alignment of the nanotube
carpet is critical to this scattering phenomenon. THz radiation scattered
from films of randomly oriented multi-walled carbon nanotubes and a sheet
of graphite are more similar in magnitude to scattering from bulk metal
than from oriented nanotubes. Preliminary analysis of the data in the
frequency-domain indicates that the scattering is independent of frequency.

Despite the wavelength of the terahertz radiation (0.3 – 3 mm) being
significantly larger that the diameters of the nanotubes, significant scatter-
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Figure 4.5: (left) Angle dependent reflection measurement at normal inci-
dence. (right) Scattering at 30 degree detection angle at normal (0 degree)
input. The nanotubes differ substantially from the bare metal data.

ing of the incident terahertz radiation occurs. In fact, when compared to
measurements performed on bulk metals, the scattering from the oriented
nanotubes is significantly higher. These results are counter-intuitive as the
wavelength of the THz radiation is large enough that one would not ex-
pect that the scattering from the nanotube carpets to differ from the bulk
metal with such significance. While the conductivity of brass is not the
highest as compared to other metals, the conductivity of the nanotubes is
not expected to be larger than for the brass metal. In fact, the scattering
of terahertz radiation from the MWCNT carpet samples is always signif-
icantly stronger than that for bulk metal, regardless of the type of metal
employed. It is possible that this behavior is due to surface roughness as
terahertz spectroscopy has been shown to be sensitive to this [105–107].
A side view SEM micrograph of the MWCNT carpet suggested a surface
roughness on the order of 300 nm. The spacing between the individual
nanotubes in the carpet varied between 50 nm to 500 nm, which is still well
below the wavelength of the THz light. The scattering of terahertz radia-
tion by random media and the interaction of it with oriented materials has
been well studied, but not for materials features that are so much smaller
than the wavelength of light [108–112]. Other scattering phenomenon may
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Figure 4.6: Angle dependent reflection measurement at normal incidence
comparing the scattering of carbon nanotubes, sheet of graphite and pure
metal. The scattering from the nanotubes re significant larger then from
the other object.

play a possible role in describing the theory as well including coherent back
scattering and weak localization[113–115]. This is though at this point in
time still unclear and under further investigation.

The CNT carpet consist of densely packed upright standing 500 mm
long CNT rods and compared with a metal plate the surface of the two
samples looks very different. One could, even if it at this point is not clear
how, imagine that the THz wave is penetrating into the CNT carpet of
conductive CNT rods and somehow coherently backscattered in the way the
experimental data shows. Since the THz pulse shape looks like the incident
THz pulse, one can exclude that multiple scattering paths are giving the
rise to the backscattering. A single scattering path would neither give
rise to the significant off-angle scattering of the radiation, when excluding
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surface roughness issues. One possible explanation to this could be that
the scattering is originating from a multiple scattering path that adds up
coherently in the backscattering direction. A scattering phenomenon like
this would be comparable to coherent backscattering and weak localization
theories, but this is unclear at this point in time. To get more reliable
data for this theory there is a need to take more data, especially scattering
data at small scattering angles (<20 degrees). Our collaborating group at
Wright State University have proposed a new setup taking data narrow
angle data and sketch of this setup is shown in Fig. 4.7.

Figure 4.7: Modified THz-TDS system for scattering measurements.

4.2 Initial investigation of impurities in carbon
nanotubes with THz-TDS

Additional work on a different kind of carbon nanotubes has also been con-
ducted during the stay at Wright State University. The initial interest was
to study the interaction of THz waves on carbon nanotube fibers[91, 92],
inspired by the work of [88–90], who used THz-TDS to characterize the
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frequency dependent refractive index, absorption, and conductivity. The
main purpose of our experiments was to investigate the role of impuri-
ties/contaminants on the conductivity of the carbon nanotubes using THz-
TDS. Figure 4.8 depicts a carbon nanotube fiber under investigation.

Figure 4.8: Optical, SEM and TEM image of a carbon nanotube fiber
aligned to the substrate plane[92]. The arrows indicate the alignment of
the nanotubes.

Fig. 4.9 shows THz transmission measurements performed on multi-
walled carbon nanotubes (aligned parallel to the substrate plane) [91, 92].
The samples were baked at high temperatures under vacuum conditions in
order to remove the effects of water vapor and other contaminants present
under ambient conditions. The experimental setup is depicted in Fig. 4.10.
Monitoring of the THz transmission in-situ during the baking indicated that
the increased transmission was a product of the decreased conductivity of
the samples due to impurity removal. The mechanism from this initial data
as follows: The transmission through the CNT film increases with higher
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temperature, a higher temperature decreases impurities in the CNT and
this decreases the conductivity of the tubes.

Figure 4.9: (left) Increased THz transmission through the MWCNT sample
as it baked under vacuum. (right) Plots of the THz transmission through
the sample substrate and the bare box indicating that the increased trans-
mission as a function of temperature in Fig. 4.9(right) is due mainly to the
sample.

Fig. 4.9(right) shows that the heating box and the nanotube substrate
have independent or opposite temperature vs. transmission characteristics.
These results suggest that terahertz spectroscopy merits further investi-
gation into its ability to detect impurity and doping in carbon nanotubes
samples. THz-TDS could due to its ability to monitor conductivity possibly
be a valuable monitor for impurities in the production of carbon nanotubes.
More measurements on this are planned in cooperation with the group pro-
viding the nanotubes to follow up on the results from this initial conceptual
study.
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Figure 4.10: Measurements setup used with the CNT film. Measurement
box characteristics: Pressure: min. 24 kN · m−2, low absorbtion and low
dispersion TOPAS windows, PID controlled temp. up to 250◦C.

4.3 Summary

This chapter showed two experiments using a fiber coupled THz-TDS sys-
tem. Especially the scattering experiments could barely not be conducted
without a fiber based system due to the enormous amount of realignment
needed when using classical free-space coupled THz emitter and detector
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units. Acquiring angle resolved scattering data from various objects is a
very good example where a simple, hassle-free measurement instrument is
no longer requiring the majority of attention, but the application itself is
getting into focus as a result of improved technology and operator usability.

The scattering of pulsed THz waves from a carbon nanotube carpets
showed a unexpected significance compared to bulk metal. At normally
incident THz radiation on the CNT carpet sample the scattering at a 30
degree detection angle was more that 500 times larger compared to bulk
metal. The scattering occurs despite the wavelength of the terahertz radia-
tion being significantly larger than the diameters of the nanotubes. At this
point in time it is not understood what is causing the significant scattering
and further experiments are planned to correlate the data to some possible
theory, among these weak localization and coherent backscattering theories.

Experiments on CNT fibers with a THz-TDS system showed the abil-
ity to measure conductivity changes possibly connected to impurities and
contamination in the nanotubes fibers. These measurements could be a
valuable tools for understanding and monitoring the impurities in CNT
fibers.
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Chapter 5

A broadband multi-element
THz imaging system

This chapter presents the work on a broadband multi-element THz imag-
ing system developed under the scope of an European Space Agency (ESA)
project Contract No. 21155/07/NL/ST, “Terahertz Camera for Remote
Detection of Material Defects and Biological and Chemical Substance”.
The project work was divided between several project partners, namely,
DTU Elektro, DTU Space, SynView GmbH and DTU Fotonik. The work
described in this chapter will focus on the work conducted at DTU Fotonik
and only give a short overview of the work done by the other partners
mainly for understanding the general concepts.

ESA´s main interest is remote stand-off detection of material defect and
bonding flaws in for instance spacecraft isolation foam or spectral recogni-
tion of chemical substances. More generally this project was used to push
the technology in Europe towards a terahertz ’camera’ for remote detection.

The main concept of a broadband multi-element THz imaging system
is inspired by phased array and synthetic aperture radar imaging systems
operating in the microwave range. Combining the large knowledge on data
analysis and imaging capabilities of these systems with a new multi-element
THz system will give a novel possibility of fast image acquisition avoiding
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time consuming raster scanning imaging method.

This system features an in-plane emitter-detector array consisting of
32 emitters and 32 receiver units. The technology used in every single
unit is inherited from the standard THz-TDS systems making use of pho-
toconductive switches driven by a femtosecond laser pulse train. A novel
concept is the all-fiber pulse delivery network that includes an all-fiber
dispersion compensation scheme. By avoiding free-space dispersion com-
pensation units the system wins on robustness which is of great importance
making the step from the laser laboratories and towards real life imaging
applications.

The work presented in this chapter is state-of-the-art development con-
ducted in the framework of this thesis and is not describing the complete
final THz camera in every detail. The ESA THz camera project is, how-
ever, at this point in time not finalized yet as the project first will end in
March 2010. Apart from this, it needs to be mentioned that the complete
ESA project consist of two independent imaging systems, one based on
electronic CW THz sources and detectors and the other one based on pho-
tonic generation and detection concepts (covered in this text). The basic
idea was to merge two different technologies that can support each other in
the image acquisition process. The electronic system is operated at around
300 GHz and is designed to acquire images of a larger scene (1 × 2 m), but
with a coarser spatial resolution than the photonic based broadband cam-
era system. A larger scene can be covered due to the higher average power
obtainable with electronic CW THz sources. The coarser spatial resolution
is due to the longer wavelength used. The advantage of the photonic based
system is the capability of obtaining broadbanded spectral information of
the imaged objects and that the high frequency content in the broadband
radiation is improving the spatial resolution.

The theoretical THz generation and detection concepts used for the
photonic based pulsed THz imaging concepts have been discussed in chap-
ter 3.
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5.1 System overview

The photonic part of the ESA THz camera was designed on background of
basic requirements from the European Space Agency. The aimed stand-off
working distance is at is maximum expected to be 0.5 m due to the low
average output power from the photonic THz sources. The scene size should
at least be 500×500 mm and the image acquisition speed is aimed to be close
to real-time. In order to be able to image moving objects, it is necessary to
have a sufficiently short acquisition time, in which it can be assumed that
the object is resting. Further should the camera be able to work outside the
controlled laboratory environment. The initial requirements for the pulsed
broadband system are as indicated in Table 5.1.

Stand-off distance [m] 0.5
Lower operating frequency [GHz] 300
Upper operating frequency [GHz] 2000
Scene length [mm] 500
Scene length [mm] 500
Imaging Speed real-time

Table 5.1: Photonic imaging system parameters

Several iterative concept development rounds taking all technological
challenges, like imaging algorithm, emitter/receiver design, pulse distribu-
tion, data acquisition etc. into account resulted in a camera design which
was validated in computer simulations. Simulations showed that an image
of the required quality should be formed by a synthetic aperture in 2D us-
ing 32 transmitting × 32 receiving channels where no additional optics is
used to direct the THz waves towards the imaging scene. Fig. 5.1 shows
the simulation result of the imaging capability of a planar 32 by 32 emitter
detector array. 32 receivers are placed in the inner part of the array spaced
by 13.3 mm and 32 detectors are placed in the outer part spaced by 80 mm.
The system dimensions were chosen to be 400 × 400 mm for the size of the
array plane and 300 mm distance to the object plane. The spatial resolu-
tion of the configuration was examined using the USAF resolution pattern.
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On the upper left side the original object data are displayed and the right
hand side shows the reconstructed data. One can depict that structures
below 1 mm are nicely reconstructed. Fig. 5.2 highlights the importance of
a broad system bandwidth in this imaging array which is one of the main
features of the THz-TDS setup.

Figure 5.1: Simulation results of a planar 32 by 32 emitter detector ar-
ray. Rx/Tx arranged in square arrays, 6x6 elements, corners missing (32
elements each). The receivers (blue dots) are placed in the inner array
spaced by 13.3 mm and the detector (red squares) in the outer spaced by
80 mm. The system bandwidth is 100-1000 GHz. Courtesy of Synview
(www.synview.de).

The more detailed system design is shown in Fig. 5.3 and this takes
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Figure 5.2: Simulation results of the imaging capability of the geometry
shown in Fig. 5.1 at various system bandwidths. Courtesy of Synview
(www.synview.de).

background in the design guidelines obtained by the simulation results
shown above. The design contains an optical part and an electronic part.
The optical part of the system includes an advanced dual-femtosecond fiber
laser, a fiber distribution system with dispersion control, and the 2D ar-
ray of 32 individual THz emitters and 32 individual THz detectors. The
electronic part of the system delivers the required control voltages to the
THz emitters and reads out the THz signals from the detectors for further
processing in the data acquisition hardware and software. Fig. 5.3 shows
an outline of the most principal components of the optical as well as the
electronic part of the photonic imaging system.

The design that will be presented in the following is based on a simple
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Figure 5.3: Complete photonic THz imaging system, including electronic
components. The thick arrows indicate communication with the data ac-
quisition back-end.

strategy, namely to minimize the amount of moving parts in the system.
The most important places where this strategy has played a defining role
is in the choice of:

• a fiber-based femtosecond laser system to drive the THz anten-
nas,

• a variable time delay with no moving mirrors between the two fem-
tosecond beams responsible for generation and sampling, respectively,
of the THz signals,

• an all-fiber dispersion compensation scheme that will be em-
ployed to ensure ultrafast, femtosecond laser pulses at the THz an-
tennas,

• an all-fiber distribution subsystem that will be employed to dis-
tribute the femtosecond pulses from the lasers to the 64 THz antennas,
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• a butt-coupling of each optical fiber to the individual THz antennas.

5.2 Theory of pulse delivery via fiber link

This section will introduce the theoretical background needed for the under-
standing of propagation of short pulses in optical fibers. The propagation of
ultrafast laser pulses in optical fibers is described by considering the linear
propagation effects, including linear attenuation, group velocity dispersion
and third-order dispersion, as well as the nonlinear propagation effects, in-
cluding the Kerr effect, stimulated Raman scattering, and self-steepening.
In the following we will describe the basic formalism of linear pulse prop-
agation, introduce nonlinear effects in the propagation, and combine these
effects into the well-known nonlinear Schrödinger equation that describes
pulse propagation in a nonlinear medium.

Linear propagation effects

The basis of the description of linear pulse propagation is the propagation
constant β which determines the accumulated phase after propagation of a
distance z,

E(ω, z) = E(ω, 0) exp(iβz) . (5.1)

The propagation constant is related to the effective index of refraction at
the frequency ω through

β(ω) = neff (ω)ω
c

, (5.2)

where neff often is found by an eigenmode analysis of the propagation
characteristics of a given optical fiber [54].

For femtosecond pulses in the 100-fs range, with a narrow spectral pulse
bandwidth, (ω − ω0) 	 ω0, it is justified to employ a Taylor expansion of
the frequency-dependent propagation constant in the vicinity of the central
frequency ω0 of the laser pulse,
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β(ω) = β(ω0) + β1(ω − ω0) + 1
2β2(ω − ω0)2 + 1

6β3(ω − ω0)3 + . . . , (5.3)

where the coefficients βn are the n-th order derivatives of the propagation
constant at a central frequency,

β1 = ∂β

∂ω

∣∣∣∣
ω=ω0

, (5.4)

β2 = ∂2β

∂ω2

∣∣∣∣∣
ω=ω0

, (5.5)

β3 = ∂3β

∂ω3

∣∣∣∣∣
ω=ω0

. (5.6)

The coefficient β1 is related to the group velocity of the pulse propagat-
ing though the fiber as β1 = 1/vg.

The dispersive properties of optical fibers are often characterized by the
dispersion parameter D related to the second derivative of the propagation
constant,

D(λ) = −2πc

λ2 β2 . (5.7)

The dispersion parameter is in units of s/m2, and is often reformulated
into units of ps/nm/km, describing the amount of pulse broadening per
nanometer bandwidth of the pulse and per kilometer propagation distance.

The dispersion parameter is a function of frequency, or wavelength. The
wavelength dependence of D is typically rather linear within the bandwidth
of a 100-fs laser pulse, and therefore the dispersion slope S = ∂D/∂λ is used
as an additional parameter to describe pulse propagation. If we assume that
S is independent of the wavelength within the bandwidth of the pulse then
the wavelength dependence of the dispersion parameter can be written as

D(λ) = D0 + S0(λ − λ0) , (5.8)

where D0 = D(λ0) and S0 = S(λ0) are the values of the dispersion param-
eter and the dispersion slope, respectively, at the central wavelength of the
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pulse. This relation can also be expressed as function of frequency,

D(ω) = D0 − 2πcS0

(
ω − ω0

ωω0

)
≈ D0 − 2πcS0

(
ω − ω0

ω2
0

)
(5.9)

where the approximation is valid in the vicinity of the central frequency.
We can relate D0 and S0 to the expansion coefficients of the propagation

constant,

D0 = −2πc

λ2
0

β2 , (5.10)

S0 =
(2πc

λ2
0

)2
β3 + 4πc

λ3
0

β2 . (5.11)

With these relations we can express the expansion coefficients of the prop-
agation constant as

β2 = − λ2
0

2πc
D0 = −2πc

ω2
0

D0 , (5.12)

β3 =
(

λ2
0

2πc

)2 (
S0 + 2D0

λ0

)
=

(2πc

ω2
0

)2 (
S0 + ω0D

πc

)
. (5.13)

If these expressions for the expansion coefficients are inserted in equation
5.3 we obtain an expression for the propagation constant of the form

β(ω) = 1
vg

(ω − ω0) − πcD

ω2
0

(ω − ω0)2 + 2
3

(
πc

ω2
0

)2 (
S + ωD

πc

)
(ω − ω0)3 + . . .

(5.14)

Nonlinear Schrödinger equation

The standard method for describing the propagation of a laser pulse in a
medium is to separate the carrier wave and the pulse envelope. Then the
propagation can be described by the dynamics of the slowly varying pulse
envelope u(z, t) in the reference frame moving along with the pulse at the
group velocity, t = t′−z/vg where t′ is the physical time. This assumes that
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the electric field propagates in the positive z-direction. If we further assume
that the field is polarized in the x direction and use a scalar representation
then the differential equation governing its propagation is [54]

∂u

∂z
+α

2 u+i
β2
2

∂2u

∂t2 −β3
6

∂3u

∂t3 +. . . = iγ

(
|u|2u + i

t0
2π

∂(|u|2u)
∂t

− TRu
∂(|u|2)

∂t

)
.

(5.15)
This differential equation is generally known as the nonlinear Schrödinger
equation (NLSE). The expansion coefficients β2 and β3 can be expressed
in terms of experimental measured dispersion parameters D0 and S0 and
the propagation of a given input pulse u(t) through an optical fiber with
an effective modal area Aeff can be calculated to great accuracy using the
NLSE. The expansion coefficient β1 = 1/vg cancels out in the differential
equation since we have chosen a reference frame moving with the group
velocity. The nonlinear terms describe the Kerr effect, self-steepening, and
stimulated Raman scattering. TR in equation 5.15 represents the Raman
response. The nonlinear parameter γ is defined as

γ = 2πn2
Aeff λ0

= n2ω0
cAeff

(5.16)

where n2 is the nonlinear, intensity-dependent index of refraction. For silica
glass, n2 = 2.6 · 10−20 m2/W.

The dimensions of each term in the NLSE must of course be the same.
Comparing the first term on the right-hand side with the first term on the
left-hand side of equation 5.15 we see that the dimensions of γ|u|2 must be
the same as the dimensions of ∂/∂z. Since γ has dimensions W−1m−1 and
∂/∂z has dimensions m−1 then |u|2 must be given in units of W, and hence
u is in units of W1/2. The function u(z, t) is thus not directly the electric
field, but rather proportional to the electric field, with magnitude equal to
the square root of the instantaneous power. The initial field u(0, t) must
be normalized so that

U0 =
∫ ∞

−∞
|u(0, t)|2dt (5.17)

where U0 is the energy of the laser pulse.
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In the following we will assume that the input laser pulse can be esti-
mated to have the gaussian-shaped in time,

u(0, t) =
√

P0 exp
(

−1
2(1 + iC) t2

τ2

)
(5.18)

where τ = FWHM/2
√

log 2 is the width of the pulse, defined in terms of
FWHM, the full-width-at-half-maximum duration of the laser pulse. The
parameter C is the dimensionless chirp parameter, that expresses the length
of the pulse with respect to a transform-limited pulse - e.g. a 100-fs pulse
stretched to around 1 ps has C = +10 if the chirp is positive (due to
anomalous dispersion) and C = −10 if the chirp is negative (due to normal
dispersion).

The NLSE is typically solved using the symmetrized split-step Fourier
transform method. Several software packages are available for this purpose.
The package SSPROP from T. E. Murphy and colleagues from the Photonics
Research Laboratory at the University of Maryland [116] is a fast and easy-
to-use complete package for Matlab that uses the symmetrized split-step
Fourier transform method to solve the NLSE. The simulations presented in
the following are performed with this software.

5.3 Frequency resolved optical gating (FROG)
technique

We use a home-build second-harmonic generation frequency optical gating
(SHG-FROG) setup in our experiments to characterize the ultrashort laser
pulses and to validate the quality of the numerical simulations and optimize
the fiber link. Compared to other ultrashort pulse characterization methods
the FROG technique does not only determine the pulse duration and the
pulse intensity, but can also recover the full time dependent electrical field
of the input pulse. R. Trebino and his group at Georgia Tech pioneered
this technique [117–119].

A typical FROG setup is similar to that of an intensity autocorrelator
but the photodiode that is typically used in the autocorrelator is replaced
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Figure 5.4: Sketch of the SHG-FROG measurement setup. The mixing
product of the two pulses is detected in the spectrometer as a function of
time delay difference between the two beam paths.

by a spectrometer (Fig. 5.4). For every arrival time difference between the
two pulses a full frequency spectrum is measured. The data is typically
plotted in a spectrogram which is a plot of the intensity as a function of
time and frequency (or wavelength). This can be expressed as

ISHG
sig (ω, τ) =

∣∣∣∣
∫ ∞

−∞
E(t)E(t − τ)e−iωtdt

∣∣∣∣2 , (5.19)

where E(t) is gated by a delayed version of itself E(t−τ) inside the nonlinear
crystal. This technique is very sensitive, though phase matching issues
have to be taken into account when choosing the nonlinear crystal (thinner
crystal more bandwidth). A thin crystal has a broader SHG phase matching
bandwidth than a thick crystal. We use a 0.13 mm BBO crystal which has
a reasonable flat conversion efficiency over 50 nm. By employing a iterative
FROG retrieval algorithm one can from the measured FROG spectrogram
reconstruct the amplitude and phase of the electric field of input pulse.
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5.4 Pulsed femtosecond laser source

The choice of the laser system is intimately linked to the choice of the tem-
poral delay control between the generation and sampling femtosecond laser
beams that will be implemented. We have chosen the dual femtosecond
fiber-based laser system from Toptica (Fig. 5.5). This system includes the
technical specifications required for the imaging system, and offers the pos-
sibility of electronically controlled optical sampling (ECOPS), which will be
described later in this section. All laser pulses were measured and retrieved
by the FROG technique and the retrieved pulses are also compared to the
measured intensity autocorrelation.

Figure 5.5: Dual-laser FFS femtosecond laser system from Toptica. Left
image shows an inside view of one of the two lasers. Right image shows
the two lasers on an optical table. The laser in front will drive the 32 THz
detectors and the laser in the back will drive the 32 THz emitters.

Description of femtosecond fiber laser

The two femtosecond lasers are locked to the same repetition rate by ac-
tive control of the cavity length of one of the two lasers. The complete
laser system chosen for the photonic imaging system consists of the two
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femtosecond lasers (FFS.SYS and FFS.SYS.HP), their power supplies, the
synchronization electronics (FFS.SYNC) and a laptop PC for control of
the system via an USB interface. The laser system is operational within 30
seconds after switch-on, with no alignment procedure.

The lasers have the specifications shown in Table 5.2.
In the originally delivered laser system the laser pulses are coupled into

free space from a fiber end-facet using a lens to a free-space prism setup
for dispersion control, and subsequently the pulses are delivered from the
output port of the laser system. The output pulses have been onto specs.
as seen in Table 5.2. We have customized the laser system so that it is
optimized for the fiber delivery. Instead of the free-space element in the
standard laser systems we have removed the dispersion control and spliced
the output fiber of the laser systems directly onto the fiber link. In this
way we assure a near-perfect pulse energy budget, increase the stability of
the whole system considerably, and reduce the risk of damage to the optics
due to the high peak power. The output pulse length directly out of the
fiber, before the compressor, is in the ps range rather than in the 100 fs
range after the prism compressor. Fig. 5.6 depict the FFS.SYS laser before
and after customization.

Pulse characteristic of laser source

The output of the two Toptica lasers is characterized with the FROG tech-
nique. The retrieved pulse is then used as input pulse in the pulse prop-
agation algorithm. Fig. 5.7 shows a spectrogram of the direct output of
FFS.SYS (laser 1), obtained in a FROG measurement and retrieved by
the FROG phase retrieval algorithm. We see good agreement between the
measured and the retrieved pulse spectrogram and from the retrieved pulse
spectrogram the retrieved pulse intensity and phase and the autocorrela-
tion is extracted (Fig. 5.8). The pulse length of FFS.SYS(laser 1) at the
fiber output can be determent to 0.9 ps.
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Parameters FFS.SYS (laser 1) FFS.SYS.HP (laser 2)
Output power 250 mW 350 mW
Output power at end of output fiber 293 mW 425 mW
RMS noise on power <0.1% <0.1%
Repetition rate 90.272 MHz 90.272 MHz
Pulse energy 2.5 nJ 3.9 nJ
Pulse energy at end of output fiber 3.25 nJ 4.7 nJ
Beam profile TEM00 TEM00
Beam divergence < 1 mrad < 1 mrad
Polarization Linear, horizontal Linear, horizontal
Wavelength 1550 nm 1550 nm
Pulse length 110 fs 120 fs
Pulse length at end of output fiber 0.9 ps 1.0 ps
Relative time jitter - 60-80 fs (typical)
Operational voltage 230 V 230 V
Dimensions (w × h × d) 318 × 122 × 236 mm3 576 × 122 × 236 mm3

FSS.SYNC (sync unit)
Relative time jitter 60-80 fs
Repetition rate change > 200 kHz
Piezo transducer resonance frequency > 5 kHz
Temporal sweep rate > 100 Hz (100 ps range)
Control voltage 1 V/ns, max 10 V

Table 5.2: Laser specifications

Pulse compression in single-mode fiber

The high peak power directly out of the fiber laser will due to dispersion
and nonlinear effects (especially self-phase modulation) not be able to prop-
agate very far in standard single-mode fiber before it is compressed to its
minimum pulse length. In the absence of a dispersion compensating scheme
will the pulse be compressed to its minimum before reaching the 1×32 split-
ter. A Gaussian input pulse (τF W HM = 1 ps, C = −10 and a pulse energy
of Epulse = 2.8 nJ) is compressed to its minimum pulse length of 29 fs after
930 mm of standard single-mode fiber as shown in Fig. 5.9. After passing
the 930 mm full compression point nonlinear effects as SPM take over. This
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is seen in as splitting of the pulse into a double pulse structure. To obtain
a practical useful fiber link length which can reach the sensor heads and to
protect the splitter from the high peak power of a fully compressed pulse,
the pulse has to be stretched in the very first section of the fiber link. The
design of the fiber link will be addressed in detail in section 5.5.

Optical Delay control

The optical delay control defines the timing of the arrival of the femtosec-
ond laser pulses to the THz emitter antennas and to the THz detector
antennas, respectively. One of the main purposes of the dual femtosecond
laser system is to implement an accurate and fast electronically controlled
delay between the two pulse trains. The principle of the Electronically Con-
trolled Optical Sampling (ECOPS) is shown in Fig. 5.10. The two lasers
FFS.SYS and FFS.SYS.HP are locked to the same repetition rate (approx-
imately 90 MHz) by the FFS.SYNC synchronization unit, implemented by
a standard PID feedback loop to a piezo-driven end mirror in one of the
laser cavities.

A small perturbation to the actively controlled laser cavity results in
a subsequent temporal shift of one of the pulse trains, as shown in Fig.
5.10. This perturbation is introduced by applying an additional voltage
pulse to the piezo-driven end mirror of the cavity, resulting in a slightly
longer or shorter cavity length. If the perturbation is of short duration,
i.e. only slightly longer than the cavity round-trip time, then the result of
the perturbation is a constant time shift of one beam with respect to the
other. The electronics of the FFS.SYNC unit is designed to set the temporal
delay between the two laser outputs based on a DC input voltage. This
means that a simple input ramp voltage controls the delay between the two
pulse trains. The sweep rate of the voltage ramp will be set to match the
bandwidth of the data acquisition system. A typical sweep can be carried
out at a speed of 10 ps/ms, resulting in a full scan of a 100-ps time window
at a rate of 100 Hz.
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5.5 Design of fiberlink

The femtosecond pulse trains will be delivered via an all-fiber distribution
link from the laser system to the individual THz antennas. In this section
we will specify the optical fibers involved in this link and present numerical
simulations and FROG measurements of the propagation of femtosecond
laser pulses through a fiber link. For the simulation we use the symmetrized
split-step Fourier transform method, including third-order dispersion and
nonlinear propagation effects to assure accurate simulation of the fiber link.

With this all-fiber solution from laser to each THz antenna a repro-
ducible power budget is possible, and the design is very rugged with respect
to external vibrations and temperature fluctuations. Due to the all-fiber
design no additional alignment is needed of the fiber link.

Design strategy

In order to handle the high peak power of the compressed femtosecond
pulse it is essential that the pulse remains rather long throughout as large
a fraction of the fiber link as possible. We obtain this a by further stretching
of the output from the fiber lasers (≈ 1 ps) to a duration of 2 – 3 ps by the
use of a dispersion compensating fiber (OFS Fitel extra-wide-band DCF).
The stretched pulse is then coupled into a section of standard single-mode
fiber (Corning SMF- 28) which in turn is connected to the fiber power
splitter. After the power splitter, a length of SMF-28 is again attached,
and at a suitable distance the fiber link is terminated. At this point the
output pulse is compressed to sub-100 fs and is ready for delivery onto the
THz chips. The SMF-28 can be directly spliced to the power splitter input.
The power splitter also uses SMF-28 so the loss will be negligible. The loss
is less than 0.02 dB per splice throughout the system except for the splice
to DCF which is 0.6 per splice because of the mode-mismatch between DCF
and SMF.

The length of the dispersion compensation fiber in a low power system
is chosen so that the total dispersion of the fiber link is zero, according to
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DtotLtot = DDCF LDCF + DSMF LSMF,1 + D1×32L1×32 + DSMF LSMF,2 = 0
(5.20)

where DDCF LDCF denotes the product of the dispersion parameter
for DCF fiber and the DCF fiber length, DSMF LSMF,1 is the product of
the dispersion parameter for SMF fiber and the length of fiber section 1,
D1×32L1×32 the dispersion parameter of the 1 × 32 splitter and the length
inside the splitter and DSMF LSMF,2 is the product of the dispersion param-
eter of SMF and the length of fiber section 2. The shortest pulse duration is
ensured if not only the effective dispersion parameter Dtot vanishes for the
total fiber link, but also the slope Stot of the dispersion parameter needs to
be balanced [120],

StotLtot = SDCF LDCF + SSMF LSMF,1 + S1×32L1×32 + SSMF LSMF,2 = 0
(5.21)

Since the slope of the dispersion of e.g. SMF-28 is positive the slope of
the DCF must be negative. The important quantity for a zero-dispersion-
slope system is that the relative dispersion slope (RDS) of the compensating
fiber is the same as the RDS of the rest of the fiber link. RDS is defined as
the ratio between the dispersion slope to the dispersion:

RDS = S

D
(5.22)

However, this gives though only an estimate for the fiber link since the
nonlinear effect as SPM contribute additionally.

Dispersion parameters for selected fibers

Standard single-mode fiber displays anomalous dispersion at 1550 nm. Spe-
cialty fibers are available that can compensate the dispersion of standard
single-mode fibers.

Table 5.3 and 5.4 show dispersion parameters, dispersion slopes and
RDS for several fibers with anormalous dispersion (D > 0) and for sev-
eral dispersion-compensating fibers. Comparison of these fiber types show
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Table 5.3: Dispersion parameters for various fiber types with anomalous (posi-
tive) dispersion at 1550 nm, in part adapted from [120].

D0 S0 RDS Aeff γ
Fiber type [ps/nm/km] [ps/nm2/km] [1/nm] [μm2] [10−3 W−1m−1]

SSMFa 17.2 0.059 0.0034 82 1.29
TrueWave� REACHa 7.1 0.042 0.0058 55 1.91
TeraLightb 8 0.058 0.0073 63 1.67
TrueWave� RSa 4.5 0.045 0.010 52 2.03
ELEAF fibera 4.2 0.085 0.020 72 1.46
NL-1550-POS-1c 1.2 0.0017 0.0014 2.8 37.6
LMA-35c 25 0.07 0.0028 530 0.199
a fiber from Corning
b Fiber from Alcatel
c Fiber from Crystal Fiber, A/S

Table 5.4: Dispersion parameters for various fiber types with normal (neg-
ative) dispersion at 1550 nm, in part adapted from [120].

D0 S0 RDS Aeff γ
Fiber type [ps/nm/km] [ps/nm2/km] [1/nm] [μm2] [10−3 W−1m−1]

standard DCFa -100 -0.23 0.0023 20 5.27
EWB-DCFa -120 -0.44 0.0037 21 5.02
HS-DCFa -95 -0.65 0.0065 15 7.03
EHS-DCFa -120 -1.2 0.010 14 7.53
UHS-DCFa -130 -2.1 0.016 14 7.53
NL-1550-NEG-1b -0.5 +0.014 -0.028 2.8 37.6
a fiber from OFS Fitel
b Fiber from Crystal Fiber A/S

that the RDS of a standard SMF-28 from Corning is compensated rather
efficiently by the EWB-DCF from OFS. Based on this we have chosen the
EWB-DCF fiber from OFS in combination with standard SMF-28 for the
dispersion compensation in the fiber link.
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Fiber link simulations

Fig. 5.12 shows the design approach we will use to deliver short pulses
between the fiber laser and the emitter. The aim of the simulations is to
validate the design concept and to determine the total fiber length of the
last piece of SMF (section IV) needed to re-compress the pulse.

Table 5.5 summarizes the composition and the fiber parameters of the
fiber link design approached (see Fig. 5.12). (Section I) is a short section of
single-mode fiber needed to couple into the dispersion-compensating fiber.
(Section II) is the DCF that stretches the input pulse to a duration of a few
picoseconds. (Section III) is an intermediate section between the DCF and
the power splitter and (section IV) is the output part of the power splitter
and a length of standard single-mode fiber that recompresses the pulse to
its minimum duration.

Table 5.5: Design parameters of the fiber link.

section I section II section III section IV
Parameter St. SMF EWB-DCF St. SMF St. SMF

Lsec
a [m] 0.38/0.38 0.56/0.56 0.93/0.93 1.0+SMF/1.0+SMF

Aeff [μm2] 82 21.9 82 82
Coupling loss [dB] 0.63 0.01 16.5 0.1
Average powera [mW] 293/425 254/369 5.70/8.27 5.57/8.08
D0 [ps·nm−1km−1] 17.2 -119.5 17.2 17.2
S0 [ps·nm−2km−1] 0.059 -0.41 0.059 0.059
RDS [nm−1] 3.43 · 10−3 3.43 · 10−3 3.43 · 10−3 3.43 · 10−3

γ [W−1m−1] 1.29 · 10−3 4.81 · 10−3 1.29 · 10−3 1.29 · 10−3

β2 [ps2] -0.022 0.152 -0.022 -0.022
β3 [ps3] 1.32 · 10−4 −9.12 · 10−4 1.32 · 10−4 1.32 · 10−4

a First number is the 293-mW link to the detectors, second number is the 425-mW link to
the emitters

We used the NLSE to propagate the pulse at 293 mW and 425 mW
average input power through the fiber link design. The input pulse used in
the numerical simulations is mainly the retrieved pulse from section 5.4 to
get precise knowledge of pulse phase (chirp) and intensity. The Gaussian
pulse (τF W HM = 1 ps, C = −10) is used for the first conceptual numerical
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simulations, thus, it is only a qualified approximation to the real input
pulse.

We will show the main part of the results only for the 293 mW simula-
tion, since the 293 mW and the 425 mW regime generally follow the same
compression principles and further was the experimental data available for
the 293 mW simulation. The numerical simulations of the high power link
will only be shown with the Gaussian input pulse to show that the concept
is also valid for the 425 mW link.

Fig. 5.13 shows an overview of the temporal profile of the pulse during
propagation through 293 mW fiber link design. The density plots show
the power on a logarithmic scale, in units of dBm. The abrupt change in
intensity at z = 1900 mm is caused by the power splitter which reduces
the power by 16.5 dB. The diagrams show that at a certain distance (z =
5570 mm) the pulse is re-compressed to the shortest duration(τF W HM =
94 fs). At this point the fiber link will be terminated and contacted to the
THz antenna. The first section of the link correctly disperses the pulse to
several ps duration, and hence nonlinear propagation effects are minimized
through the power splitter.

Fig. 5.14 shows the pulse intensity and the linear phase indicating that
the pulse is close to fully compressed at z = 5570 mm.

To validate the compression principle also for the high power FFS.SYS.HP
(laser 2), we increase the Gaussian pulse energy to Epuls = 4.7 nJ (corre-
sponding to an average power of 425 mW) and keep the pulse width of
0.9 ps and C = −10 as in the previous case. Fig. 5.15 shows the same
overview of the temporal profile of the pulse during propagation for the
425 mW fiber link. The pulse has a compressed FWHM minimum at 81 fs
at z = 5340 mm. Figure 5.16 depicts the magnified view of the simulation
using 293 mW input power and 425 mW, respectively. As expected reaches
the 425 mW its minimum pulse duration earlier than the 293 mW link due
the power enhanced compression in the SMF fiber, but generally can we
conclude that the two system are operating in the same regime, meaning
that the high pulse energy system is not suffering from nonlinearity issues
that not can be compensated for in the fiber link scheme.

However, by comparing the numerical pulse propagations of a Gaus-
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sian input pulse in Fig. 5.13 and Fig. 5.15 to a pulse propagation of the
measured input pulse from the FFS.SYS(laser 1) depicted in Fig. 5.17, we
see an evident difference between the two plots. One major difference is
that numerous side peak are appearing, which can be assigned to the much
more complex structure of the input pulse. Further the position and the
pulse width of the optimal compression position changed. The pulse in the
pulse propagation simulation depicted in Fig. 5.17 can be compressed to a
FWHM pulse width of 101 fs at z = 5450 mm and has hence changed by
120 mm compared to the Gaussian input pulse simulation. After the point
of shortest duration the pulse shape re-broadens due to the anomalous dis-
persion in the SMF and due to SPM originating from the high peak power.
Hence it is important to terminate the fiber link at the correct point before
this reshaping happens. Fig. 5.18 shows the more complex compressed
pulse intensity and phase.

Fig. 5.19 shows a magnified view of the region of the shortest possible
pulse. The design compresses the pulse to its shortest duration at approx-
imately 5450 mm total length of the fiber link at a more complex pulse
structure.

A different picture of the pulse propagation along the fiber is obtained
by looking at the autocorrelation of the pulses as a function of fiber length.
We can use the autocorrelation to compare directly with the experimental
data obtained in the fiber link measurements. Fig. 5.20(top) depict the
zoomed view of the minimum pulse width area. Fig. 5.20(bottom) shows
the autocorrelation of the shortest pulse length at z = 5450 mm which has
a autocorrelation FWHM of 135 fs.

The simulations above indicate that the duration of the pulse after the
link can be considered to be in the region of sub-100 fs, by far sufficient to
ensure the desired bandwidth from the THz antennas.
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Figure 5.6: (top) FFS.SYS laser before rerouting of the prism-compressor.
The output pulse length was measure to 110 fs. (bottom) The prism-
compressor is now rerouted and the original free-space output coupler re-
moved and replaced by an APC/FC-connector. The connector was fusion
spliced onto the fiber laser output. The output pulse length directly out of
the fiber connector is measured to 0.9 ps and the output power increased
by approximately 25%.
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Measured spectrogram Retrieved spectrogram

Figure 5.7: FROG spectrograms of the measured and the phase retrieved
pulse.

Figure 5.8: (left) The retrieved pulse intensity (blue line) and phase (green
dotted line). (right) Comparison of the measured autocorrelation (blue
stars) and the autocorrelation of the retrieved pulse (blue line).
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Figure 5.9: Pulse compression of a gaussian input pulse in 1.2 m SMF.
The input pulse length is 1 ps, C=-10 and the pulse energy is 2.8 nJ. The
minimum pulse intensity with a FWHM of 29 fs is reached after 930 mm
of single-mode fiber.

Figure 5.10: Electronically Controlled Optical Sampling (ECOPS) princi-
ple - the two lasers are locked to the same repetition rate. A short-term
perturbation of one of the laser cavity lengths shifts the relative timing
between the two pulse trains by an amount Δτ .
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Figure 5.11: Schematic of the fiber link. The input laser pulse is stretched
in a dispersion compensating fiber (DCF) module with single mode fiber
(SMF) pigtails. The DCF module is spliced onto a 1 × 32 splitter and
each of these channels is spliced onto a piece of single mode fiber for pulse
compression.

Figure 5.12: Design approach of the fiber link between the femtosecond
laser and the THz antennas.
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Figure 5.13: 2D plot on a logarithmic scale (dBm) of the pulse intensity
during propagation through the fiber link. The input pulse is a Gaussian
pulse with τF W HM = 1 ps, C = −10, Epuls = 2.8 nJ. The abrupt change in
intensity at z = 1900 mm propagation distance is due to the power splitter
which reduces the power by 16.5 dB. The dashed lines indicate the boarders
between the different fiber link sections.
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Figure 5.14: Plot of the intensity and the phase of the compressed Gaussian
pulse at z = 5570 mm. The pulse exhibits a linear phase across the center
peak showing a compressed pulse which is close to chirp-free. The FWHM
pulse width is 94 fs.
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Figure 5.15: 2D plot on a logarithmic scale (dBm) of the development of the
pulse shape of an Gaussian pulse (τF W HM = 1 ps, C = −10, Epuls = 4.7 nJ)
and intensity during propagation through the 425-mW fiber link.
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293-mW 425-mW

Figure 5.16: Zoom on the region of the fiber link where the pulse gets
recompressed to its shortest pulse length.
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Figure 5.17: 2D plot on a logarithmic scale (dBm) of the pulse intensity
as a function of fiber length using the measured output pulse from the
FFS.SYS(laser 1) as input pulse.
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Figure 5.18: Plot of the intensity and the phase of the compressed pulse at
z = 5450 mm. The optimum fiber link length has changed by 120 mm com-
pared to the Gaussian input pulse simulation. The FWHM pulse lengths
is 101 fs.
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Figure 5.19: Zoom on the region of the fiber link where the pulse gets
recompressed to its shortest pulse length.
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Figure 5.20: (top) 2D plot of the intensity autocorrelations of the pulses
propagating along the fiber link. The intensity is normalized to unity.
(bottom) Autocorrelation of the shortest pulse length at z = 5450 mm
where the autocorrelation has a FWHM of 135 fs.
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Measurement results of fiber cutback experiments

The simulation results are validated in a fiber cutback experiment. We
have recorded FROG traces for various fiber lengths, scanning across the
area where the numerical simulations predicted a minimum pulse length.
Figure 5.23 depicts a FROG trace of the position of the minimum measured
pulse width at z = 5100 mm and the respective retrieved FROG trace. The
retrieved FROG trace is in good agreement with the measured trace and
exhibits a FROG-error of 1.5 %.

Measured Retrieved

Figure 5.21: Measured and retrieved FROG trace of the minimum pulse
duration at z = 5100 mm. The FROG-error of the retrieved pulse is 1.5 %.

The by the FROG algorithm retrieved pulse intensity and phase are
shown in Fig. 5.22. The extracted pulse intensity exhibit ripples in the
trailing edge indicating a complex pulse structure which is expected due to
actual input pulse shape (cf. Fig. 5.8).

Fig. 5.23 shows a series of measured FROG traces at 4 different fiber
cutback lengths obtained by following the pulse along the fiber towards the
optimal pulse lengths minimum. The FROG traces exhibits how the pulse
intensity both in frequency and in time-domain is assembled to one short
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Figure 5.22: Plot of the intensity and the phase of the retrieved pulse at
z = 5100 mm.

pulse. The energy in the pronounced side pulse in the FROG spectrogram,
which in the autocorrelation appears as two pulses, is assembled in the
center of the FROG trace when the optimum compressed pulse width is
reached. This behavior is also seen in the numerical simulations. Notice
that an simulations with an Gaussian input pulse not would be able to ex-
plain these spectrograms or equivalently explain the autocorrelations which
show side pulses.

Fig. 5.24(top) shows a zoomed view of the measured autocorrelation
functions as function of fiber link length. A minimum is seen at about
5.1 m of total fiber link length. At this point the pulse is shortest and the
fiber should be terminated to the THz antennas. The development of the
autocorrelations along the minimum pulse length show by comparing the
two plots in Fig. 5.24 for measured and numerical data, respectively, very
similar features before and after the full compression point. These feature
are present despite the deviation in the fiber link lengths. The minimum
measured autocorrelation FWHM is determent to 99.2 fs (∼ 70 fs pulse
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400 mm from minimum 300 mm from minimum

200 mm from minimum 100 mm from minimum

Figure 5.23: 4 FROG traces along the fiber following the pulse on the way
to its minimum pulse width.
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Figure 5.24: (top) The measured autocorrelation functions of the fiber
link where the pulse gets re-compressed to a sub-100 fs pulse length. The
data is obtained in a cutback experiment. The minimum pulse lengths is at
z = 5100 m and has a autocorrelation FWHM of 99 fs (bottom) Simulated
autocorrelations of the real input pulse from the FFS.SYS(laser 1). The
autocorrelation FWHM is 135 fs at a minimum of z = 5450 m.112
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length) at 5.1 m link length (Fig. 5.25). Fig. 5.25 compares also the nu-
merical autocorrelation at z = 5450 mm and the measured autocorrelation
at z = 5100 mm. Also the two minimum pulse lengths autocorrelations
are very similar and within the uncertainties of the experimental results
acceptable.

Figure 5.25: Plot of the measured (crosses) and the numerically simulated
(squares) autocorrelations. The measures autocorrelation at a fiber link
length of 5.1 m. The FWHM of the autocorrelation is 99.2 fs ∼ 70 fs pulse
length.

Deviations to the numerical simulations regarding the optimal fiber link
length can both be explained by the uncertainties of the fiber dispersion of
the used Corning SMF-28 fiber, which is accurate within 5 % and variations
in the active area of the fiber, which just is known within 10 % accuracy.
These uncertainties of vital fiber parameters determining the dispersion and
the nonlinearity are seen to be the major limiting factors for a more precise
modeling of the fiber link. An exact determination of these fiber parameters
for the fiber used could improve the quality of the numerical simulations.
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The exact fiber parameters for the DCF fiber module were available for the
numerical simulations. Since the minimum pulse width is at shorter fiber
link lengths than predicted by the simulations does the fiber link exhibit
more dispersion than expected. In the simulations presented has the fiber
splitter been treated as a simple extension of the SMF. This might not be
a valid approximation and lead to additional dispersion introduced by the
planar waveguide structure inside the splitter. This could also give rise to
faster compression in the fiber link.
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5.6 Fiber splitters

The 32 THz transmitters will be connected to one of the lasers (FFS.SYS.HP)
and the 32 THz receivers will be connected to the other laser (FFS.SYS).
The femtosecond pulse train from each laser is coupled into a single-mode
fiber, and split into 32 equal portions in a 1 × 32 power splitter from the
Danish company Ignis Photonyx. These power splitters are based on planar
waveguide technology developed at the Technical University of Denmark.
The power splitters from Ignis Photonyx are capable of handling the re-
quired optical power (up to 440 mW). The technical specifications of the
power splitters are summarized in Table 5.6. The loss is specified as max.
16.5 dB, with a uniformity better than 1.4 dB. The 1/32 splitting corre-
sponds to a loss of 15.05 dB [10log(32)], and the remaining 1.5 dB is the
insertion loss. The uniformity is a very conservative specification. The
actual uniformity in the units that we have purchased displays a measured
uniformity of approx. 0.2 dB, with an average loss of 16.3 dB.

Operation wavelength 1310 &1550
Insertion loss [dB] 16.5
Uniformity [dB] 1.5
Return loss [dB] >55
Directivity [dB] >55
Operating Temp. -40 to +85
Dimensions 100 × 80 × 10

Table 5.6: Fiber splitter specifications.

Fig. 5.26 shows the appearance of one of the splitters. From the fac-
tory the inputs and all outputs are equipped with standard FC connectors,
facilitating the construction of the fiber link. However, in order to reduce
losses due to the connectors we will splice the power splitter directly to the
input fiber from the laser system. The output fibers of the splitter can due
to the reduced power level after the splitter be connected with the standard
FC/PC connectors mounted by the vendor. This will keep the flexibility
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5. A broadband multi-element THz imaging system

Figure 5.26: 1 × 32 power splitter from Ignis Photonyx. The power unifor-
mity between the individual output channels is measured to be better than
0.2 dB.

to change the last part of the link which is directly connected to with the
THz antennas.

5.7 Sensor head design

The optical fibers from the fiber link will be connected to the THz antennas
inside a small unit that we will call the THz head in the following. The
THz head will host the following components:

• THz antenna chip

• THz collimating optics

• Coupling between optical fiber and THz antenna

• Current-sensitive preamplifier (only THz detector head)
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• Electrical connectors

The sensor head is designed on background of the electromagnetic sim-
ulations conducted by DTU Space and SynView. The simulations were
showing the optimum placement and total number of emitters and detec-
tors fulfilling the requirements for the whole system. Simulations showed
that the optimum placement for the illumination of a 10 × 10 cm scene is
to place both 32 emitters and 32 detectors in a square with missing corners
(see Fig. 5.1). The optimum emitter spaced was showed to be 80 mm.
The detectors are then placed in the center of the planar emitter array
but only spaced by 13.3 mm. The detector placement put a very stringent
design limitation on the layout of the sensor heads due to the extremely
limited space available for the THz emitter and detector unit. A major
effort has been to design units small enough to fit into available space. The
detection unit incorporates a low noise trans-impedance amplifier to boost
the photocurrent detected in the photoconductive chip to ensure sufficient
signal-to-noise ratio before going onto a several meters long coaxial cable.

Figure 5.27: Rendering of the sensor head assembly. Shows the lens-
chip-ferrule mount, the dimensions of the transinpedance amplifier and the
mounts holding these parts together.
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5. A broadband multi-element THz imaging system

Chip

Both THz emitters and receivers used are photoconductive switches (see
chapter 3) to respectively generate and receive THz radiation. The THz
antennas consists of a short dipole antenna metalized onto a photocon-
ductive material. The photoconductive material used for the THz anten-
nas should have a strong response at the wavelength of the laser system,
1.55 μm. Indium-gallium-arsenide (InGaAs) is the standard choice for this
wavelength region due to the reduction of the band gap with increasing
indium content. A short lifetime can be achieved by growing the material
at a low temperature. However, this method often leads to unreasonably
high dark currents. A high dark current is problematic for both THz emit-
ters and THz detectors. In the emitter the dark current results in addi-
tional heating due to a background current that constantly flows when a
bias voltage is applied to the antenna. In the THz detector the dark cur-
rent results in additional noise. In order to circumvent these problems we
have chosen a design known from the literature [24] where active regions
of lowtemperature- grown InGaAs layers are isolated from each other by
AlInAs barrier layers. The structure is illustrated in Fig. 5.28.

The active part of the structure consists of 100 repeat units of 12 nm
beryllium-doped InGaAs and 8 nm of beryllium-doped InAlAs. The active
region hence contains 1.2 μm of photoconductive material, comparable to
the penetration depth of 1.55-μm photons. The active region is grown at
low temperature (130◦C) to ensure ultrashort carrier lifetime. The sheet
resistance of this material has been reported to be in excess of 1MΩ/�, in
contrast to bulk Be-doped low-temperature-grown InGaAs materials that
exhibit sheet resistances below 50.000 Ω/�. The material is commercially
available from Menlo Systems GmbH (Munich, Germany). This company
delivers complete antennas (H-structure dipole stripline electrodes), and
we have purchased a large batch (75 chips) for the project. THz pulses
obtained from the antennas are illustrated in Fig. 5.29.

The chip specifications are depicted in Table 5.7. The THz radiation
is collimated out of the photoconductor using hyper-hemispherical high-
resistivity silicon lenses.
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Figure 5.28: Schematic of the photoconductive material that will be used
for the THz antennas. The active InGaAs regions are separated by barrier
regions that contain the photogenerated charge carriers to the respective
active layers. Hence the dark current is suppressed significantly.

Fig. 5.29 shows a THz pulse generated and detected making use of
the photoconductive antennas described above, an all-fiber optic dispersion
compensation scheme and a glued photoconductive antenna to silicon lens.
The FWHM of the optical pulses is sub-100 fs and the optical power incident
the emitter and detector is 10 mW, respectively. The applied bias voltage
is modulated with 1 kHz for lock-in detection and the applied bias voltage
of is ± 3 V. Fig. 5.29 shows the THz pulse and the Fourier-transform of
the pulse, depicting a bandwidth up to 2 THz and a SNR of approximately
1:250.

Lens

The THz radiation generated in the small spot at the output of the fiber will
be collimated using hyper-hemispherical silicon lenses. These lenses are de-
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5. A broadband multi-element THz imaging system

Figure 5.29: (top) THz pulse generated and received with photoconductive
antennas from Menlo fed by femtosecond laser pulses from the fiberlink. 10
mW input power on both emitter and receiver and ± 3 V bias modulation
with 1 kHz on the emitter. (bottom) Fourier-transform of the THz pulse.
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Dipole length 25 μm
Photoconductive gap 10 μm (matched to SMF-28 MFD)
Photosensitivity < 1.57 μm
Electrical bias voltage 3 V
Laser power 5 − 30 mW
Laser pulse length 100 − 200 fs
Dark current 350 μA
Increase of current at correct alignment 12 − 40 μA
Substrate thickness 350 μm
Antenna chip dimensions 4 × 4 mm2

Table 5.7: Antenna chip specifications

Lens type Hyper-hemispherical lens
Material High-resistivity float-zone (HRFZ) silicon
Surface quality 80/50 scratch/dig
Surface accuracy 0.01 mm deviation from ideal sphere and plane
Diameter 10.00 ± 0.03 mm [radius 5.00 ± 0.015 mm]
Height 6.71 ± 0.03 mm
THz chip substrate thickness Prepared for 350 μm substrate

Table 5.8: Specifications of THz substrate lenses for the antennas

livered from the Russian supplier Tydex Inc. which has a long track record
in delivery of silicon THz optics to companies and research laboratories.
The specifications of the THz lenses are shown in Table 5.8.

Design consideration on the lens are the alignment precision between
the focal point of the lens and the center of the photoconductive gap on the
THz chip. In this compact THz sensor head design the lens is glued directly
together with the chip. After an investigation of the correct viscosity of the
UV-curing glue used the lens could be positioned with a precision of 8 μm
into the gap of the THz chip. This precision is judged to be sufficient with
background in [121].
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LNA amplifier design

The special designed low-noise amplifier (LNA) has a trans-impedance gain
of 109 V/A, hence generating a voltage of 1 V for a THz signal strength of
1 nA which is typically seen in a THz-TDS system. The PCB of the current
pre-amp has dimensions 1.1×5.0 cm2, and is mounted inside the cylindrical
THz head housing. THz pulses detected with the current preamplifier, using
a conventional THz-TDS system, are shown in Fig. 5.30. The THz pulse
was monitored on a digitizing oscilloscope at a scan rate of 8 Hz, limited
by the mechanical motion employed in that experiment. The noise on the
baseline of the THz trace recorded by the newly developed current LNA
preamplifier is significantly lower than the noise seen on the trace recorded
using a commercial current preamplifier. The power supply voltage was set
to +/ − 5 V.

Figure 5.30: THz traces recorded at a scan rate of 8 Hz, using the newly
developed current preamplifier (left) and a commercially available pream-
plifier(right). Our design shows a lower baseline noise and higher bandwidth
than the commercial product.

Sensor head assembly

The sensor head will be assembled in the housing depicted in Fig. 5.31.
The housing is designed with respect to facilitate a receiver spacing of
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13.3 mm and a low-cost workshop manufacturing. Only the receiver will
incorporate the LNA, while the emitter is connected to a bias supply. The
lens-chip-fiber assembly shown in the inset of Fig. 5.31 will be slided in one
of the cylindrical aluminum parts. The LNA will in the receivers be slided
into the remaining cylindrical tube. An electrical ground connection will
be established by a connection of the outer ground border of the custom
designed LNA print board to the housing, which will assure good noise
shielding. The fiber and the electrical wiring will be routed from the end
facet of the sensor head to the PCB and LNA board, respectively.

Figure 5.31: Photograph of the parts of the THz sensor head. The diameter
of the heads is 12 mm, and the total length is 130 mm. The silicon lenses
have a diameter of 10 mm and will be mounted into the rightmost part.
The PCB shows the unpopulated current amplifier and fits into the tube
shown in the center of the picture. The inset Photoconductive antenna chip
glued directly onto the silicon lens. The fiber link is butt-coupled into the
photoconducting gap.
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5. A broadband multi-element THz imaging system

The connection between the lens, the chip and the fiber will be estab-
lished as sketched in Fig. 5.32.

Figure 5.32: Sketch of the lens, THz chip and butt-coupled fiber assembly.

The lenses will be aligned with respect to the THz antenna using a
custom-made alignment tool, as indicated in Fig. 5.33, which holds the
silicon lens with a vacuum while the chip is aligned on the lens backplane
with respect to the lens center under a microscope, using four needles at-
tached to x-y translation stages. Once aligned with respect to the center,
the chip is pressed to the lens back plane by a fifth needle, and low-viscosity
glue is applied in a small droplet at the edge of the chip. After drying the
chip is securely mounted to the lens backplane, and aligned to as good as
precision as the specification of the lens diameter allows. The optical fiber
will be attached directly in contact with the THz antennas. We prefer this
solution instead of initial designs where a free-space unit conjugate optic
(UTC) was suggested to couple light from the fiber to the THz antenna.
This modification is due to:

• Higher stability of the glued solution,

• More compact construction, allowing smaller THz head.
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Figure 5.33: Tool for alignment of the hyperhemispherial silicon lens pre-
cisely with respect to the photoconductive gap on the THz antenna.

The fiber will be placed inside a ceramic ferrule, attached with glue
(Northland Optical Adhesive, NOA63), and polished to optical quality.
Custom-made ceramic ferrules with plane end facets (normally the ends
are rounded on ferrules) are supplied by the company Adamant Kogyo co.,
Japan. The ferrule with fiber is then attached to the photoconductive area
of the THz antenna while monitoring the photocurrent in the antenna. Af-
ter optimizing the photocurrent according to the specifications supplied by
Menlo Systems for each chip by lateral motion of the ferrule, low-viscosity
glue will be applied and allowed to dry. During the curing process the
photocurrent will be continuously monitored, and small possible drifts of
the alignment can hence be monitored and corrected. The THz antenna
is then a single unit with fiber and silicon lens glued on each side of the
THz chip. This solution results in a construction with no parts that can be
moved with respect to each other, and hence the construction will be very
stable.
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Number of transmitters, Tx 32
Number of receivers, Rx 32
Distance from array center to scene center 300 mm
Tx array 6 × 6 square, 4 corner elements missing
Tx element spacing 80 mm
Rx array 6 × 6 square, 4 corner elements missing
Rx element spacing 13.3 mm
Construction material Aluminium
Fabrication tolerance ± 0.01 mm on all important dimensions

Table 5.9: Specification of the geometrical arrangement of the photonic
imaging array.

5.8 Design of the 2D synthetic aperture array

The individual THz antennas will be mounted in an array as determined
by the detailed numerical simulation of the best possible arrangement per-
formed by SynView GmbH and DTU Space. The array will be set up with
all emitters and detectors located in the same plane with the geometri-
cal and material specifications shown in Table 5.9. The 32 receivers are
stacked in a 6 mm × 6 mm square in the inner part of the array and spaced
by 13 mm. The transmitter units are placed in the outer part and spaced
by 80 mm. All units are fitted into a 20 × 500 × 500 mm aluminum mount-
ing structure and pointing towards a center of scene at 300 mm from the
structure. Each Tx/Rx element is directed towards the scene center, and
each Tx element is illuminating the full scene. This feature made the man-
ufacturing process of the aluminum mounting structure highly non-trivial.
Since the mounting hole for every single units needs to be tilted by 2 angles
relative to the plane of the plate, being able to point towards the center of
the scene, this required skills from a highly specialized machine shop. The
2D array was finally produced at the Risø DTU mechanical workshop on a
computer controlled CNC 5-axis milling machine.

Fig. 5.34 shows the 3D rendering of at fully populated imaging array
and Fig. 5.35. Manufacturing
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Figure 5.34: 3D CAD rendering of the 2D synthetic aperture array including
32 emitter and 32 detector heads.

5.9 Data aquisition

The data acquisition concept was designed in collaboration with DTU Elek-
tro and is not realized yet. The data acquisition board for the photonic
imaging system is illustrated schematically in Fig. 5.36. The basic concept
of the data acquisition is to establish a lock-in detection scheme for ev-
ery single emitter/receiver channel. Every single emitter is bias-modulated
with its own carrier frequency controlled by a 32 channel DAC card. The
data from the individual receiver channels is detected by an 32 channel
ADC card and in the following stage demodulated in the data processing
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Figure 5.35: Photographs of the 2D synthetic aperture array including 32
emitter and 32 detector heads.

software. The preprocessing software is preparing the acquired data for the
imaging algorithm, that is reconstructing the 3D image.

An ICS-610 32 channel ADC board and the ICS-625B 32 channel DAC
board are the most likely candidates for the photonic imaging systems data
acquisition unit, but the final decision is not made yet. The system is
comprised of 32 channels each sampled with 64 kS/s. This leads to a
IF modulation bandwidth of 32 kHz for the receiver channels. The data
is received in slices of 1 ms and hence the number of samples is Np =
64 (samples / receiver) × 32 = 2048Samples.
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Figure 5.36: Photonic data acquisition system. The same National Instru-
ments PCI board that is used in the electronic imaging system can be used
here to trigger the DAC and ADC boards and control the laser synchro-
nization unit.
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5.10 Results from whole system

The result for the whole imaging system are not available at this point in
time since the project is running until spring 2010. All the work from the
project partners on the ’THz camera’ project will be joined together during
the winter 2009. The final results are expected to be published during 2010.

A major challenge for the next months is seen in the interplay between
the data acquisition and the 32 receivers and 32 detectors. One of the
novelties of this system is a complex emitter modulation scheme where
all 32 emitters are emitting simultaneously at their individual modulation
frequency. The demodulation of reflected signal is then obtained in form all
32 receivers. This well known principle from radiocommunication channels
has until today not been shown for THz systems.

Another major challenge is besides the data acquisition the imaging
algorithm, which is inverting the scattered back-reflections from the image
plane and is processing in into a real time image. This is as well a well
known principle for the radar community, but a completely new approach
for THz systems.

5.11 Summary

This chapter has presented the work on the ESA THz camera project con-
ducted as part of the thesis work. The work has concentrated on the sci-
entific development and research towards the implementation of a novel
synthetic aperture THz camera consisting of a 32 emitters and 32 detectors
placed in 2D synthetic aperture array. Some highlighted features of the
design are:

• Employment of a synchronized femtosecond fiber laser system with
electronic delay control.

• Development of an all-fiber pulse compression scheme for the fiber link
used for distribution of ultrashort laser pulses towards the emitter and
detector array.
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• Characterization of the ultrashort pulses with a custom-build FROG
and the validation of the fiber link by numerical simulations.

• Design of ultra-compact sensor heads featuring the strict limitations
on the physical layout of the THz emitters and detectors.

A full system implementation needs still to be shown in scope of the
finalization of the ESA project.
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Chapter 6

Conclusion & Outlook

6.1 Conclusion

This thesis presents different contributions towards the use of fiber based
multi-element imaging systems and investigated especially how fiber tech-
nology could contribute to this. Modern fiber technology can improve the
flexibility, the robustness and the cost of the classical THz systems both by
the application of fiber optical sources and by the employment of optical
fibers as distribution medium for optical pulses. The work presented in this
thesis can be summarized with the following:

Need for improved THz imaging systems By reviewing the field of
pulsed THz imaging systems in chapter 3 one can recognize the clear
need for a robust, fast and easy-to-use multi-element THz imaging
system. The fundamental concepts of a vast of imaging techniques
have been proposed but mostly these employ very basic imaging tech-
niques. Time-of-flight-measurements have until today been the most
successful technique finding more and more application areas, also in
industrial applications. The fundamental problem of the technique
is still the image acquisition time which for most industrial applica-
tions is far too long. This problem has been addressed attention and
various techniques have been proposed to speed up the imaging time.
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There is though today still a profound need for a faster imaging speed
at e.g. video rate.

Optical source for CW THz systems Chapter 2 presented results on
a novel fiber laser system for CW THz generation. The laser system
is tuneable over more than 1 THz, and the difference frequency has a
linewidth of below 25 kHz. The system is fully scalable with respect to
power and can be distributed along optical fibers to a multi-element
array of THz emitters and detectors. The nonlinear effect from four-
wave-mixing where suppressed 50 dB and no indications of SBS was
observed. The source is ready to be employed in an THz photomixing
setup by having the needed photoconductive material available now.

THz-TDS measurements of Carbon nanotubes Chapter 4 showed two
experiments using a fiber coupled THz-TDS system. Especially the
scattering experiments could barely not be conducted without a fiber
based system due to the enormous amount of realignment needed
when using classical free-space coupled THz emitter and detector
units. The acquisition of angle resolved scattering data from vari-
ous objects is a very good example where a simple, hassle-free fiber-
coupled measurement instruments no longer are requiring the ma-
jority of attention. The application itself is getting into focus as a
result of improved technology and operator usability. The scattering
of pulsed THz waves from a carbon nanotube carpets showed a un-
expected significance compared to bulk metal. The mechanism for
the enhanced scattering is until today not fully understood. Experi-
ments on CNT fibers with a THz-TDS system showed the ability to
measure conductivity changes possibly connected to impurities and
contamination in the nanotubes fibers. These measurements could
be a valuable tools for understanding and monitoring the impurities
in CNT fibers.

ESA THz Camera This chapter has presented the work on the ESA
’THz camera project’ conducted as part of the thesis work. The
work has concentrated on the scientific development and research to-
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wards the implementation of a novel synthetic aperture THz camera
consisting of a 32 emitters and 32 detectors placed in 2D synthetic
aperture array. Some highlighted features of the design are:

• Employment of a synchronized femtosecond fiber laser system
with electronic delay control.

• Development and implementation of an all-fiber pulse compres-
sion scheme for a fiber link used for distribution of sub-100 fs
laser pulses towards an THz emitter and detector array.

• Characterization of the ultrashort pulses with a custom-build
FROG and the validation of the fiber link by numerical simula-
tions.

• Design of ultra-compact sensor heads featuring the strict limita-
tions on the physical layout of the THz emitters and detectors.

A full system implementation needs still to be shown in scope of the
finalization of the ESA project.

6.2 Outlook

This thesis presents various active THz imaging techniques, concept and
application areas that can be considered as state-of-the-art. The promising
full implementation of the THz Camera described in chapter 5 is from our
point of view a very exciting contribution towards new advanced imaging
concepts and we are looking very much forward to see the performance in
the near future.

Despite the vast of application areas where THz imaging is considered
as highly useful, is the big breakthrough still awaited. The main reason
for, that we have been talking about THz imaging for the last 10 years
without major advances, can closely be related to issues in getting the
technology out of the laboratories. One big problem has been addressed
with the advent of the fiber-laser and the today commercially available
fiber-coupled sensor heads. Another problem that needs attention is the

135



6. Conclusion & Outlook

imaging speed, which due to the low output power of the THz emitters
and the mechanical translationstages is fundamentally limited. Advanced
imaging techniques as presented in this thesis will in the future show if
a stable and fast imaging system can make a major breakthrough in the
use of THz imaging in industrial applications. The industrial interest in
non-destructive imaging techniques is enormous and many problems are
looking for a new technological solution making e.g. quality control better,
cheaper and faster. The potential is enormous. THz imaging might today
be able to contribute in some areas, but the major issues have often been
the price of a system and the imaging speed compared to other related
technologies. This leaves THz technology as it is today almost exclusively
to compete on the factor that the technology can do things better or do
things not achievable with other well-established technologies. However,
if a big application area can be identified were THz technology and THz
imaging are solving major technological problems, the technology could get
its big breakthrough. If a application igniting the market can not be found,
will THz technologies very likely always be present in various specialized
application areas, especially in the field of non-destructive testing, were the
unique capabilities of terahertz technology can be extremely useful, but at
a smaller market scale.
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