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Automatic Epileptic Seizure Onset Detection Using Matching Pursuit:
A Case Study

Thomas L. Sorensen†, Ulrich L. Olsen†, Isa Conradsen†, Jonas Henriksen†,
Troels W. Kjaer∗, Carsten E. Thomsen‡ and Helge B. D. Sorensen†

Abstract— An automatic alarm system for detecting epileptic
seizure onsets could be of great assistance to patients and
medical staff. A novel approach is proposed using the Matching
Pursuit algorithm as a feature extractor combined with the
Support Vector Machine (SVM) as a classifier for this purpose.
The combination of Matching Pursuit and SVM for automatic
seizure detection has never been tested before, making this
a pilot study. Data from red different patients with 6 to
49 seizures are used to test our model. Three patients are
recorded with scalp electroencephalography (sEEG) and three
with intracranial electroencephalography (iEEG). A sensitivity
of 78-100% and a detection latency of 5-18s has been achieved,
while holding the false detection at 0.16-5.31/h. Our results
show the potential of Matching Pursuit as a feature extractor
for detection of epileptic seizures.

I. INTRODUCTION

About 1 % of the world’s population suffers from epilepsy
[1][2], making it one of the most frequent neurological
disorders only outnumbered by stroke and headache [3].
About 75 % of epilepsy patients can be seizure free on
antiepileptic drugs, and some of the remaining 25 % can
be treated with other procedures, like surgical resection of
the epileptic focus, a vagus nerve stimulator or a ketogenic
diet [4].

The goal of this study is to build an automatic onset
detection for epileptic seizures. Such an alarm would give
patients suffering from epilepsy an opportunity to leave their
homes knowing that family or medical personnel can come
to their rescue if they encounter a seizure. Furthermore it
is important to register the number of seizures the patient
encounter in a given time frame. This can give medical
doctors insight on how well a treatment is working. It can
also be important to know when a patient has a seizure,
in case of acute treatment, or if a tracer drug has to be
administered for an ictal SPECT-scan. An automatic trigger
for the vagus nerve stimulator is another possibility, since it
has the greatest effect if it is activated early in the seizure [5].
An automated seizure detection system would also assist in
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detecting seizures in large encephalography (EEG) data sets,
that often include recordings from several days.

Automatic seizure detection is not a new idea. Through
the past couple of decades many attempts have been made,
to find the optimal algorithm for classification, primarily
using intracranial EEG (iEEG) or scalp EEG (sEEG) [6].
More recently other approaches have been attempted such
as accelerometers, electromyography (EMG) and angular
velocity recordings [1][4].

We have applied the Matching Pursuit algorithm on both
iEEG and sEEG data providing features, which will be
used with the Support Vector Machine (SVM) classifier. The
algorithm was first used to study ictal EEGs by Jouny et al.
in 2003 [7]. However this is the first time SVM has been
combined with Matching Pursuit for seizure onset detection.

II. METHOD

A. Clinical data

We have included six patients (pt.) with a total of 133
seizures in 305 hours of recordings (rec.) in this study. To
investigate if the robustness of the algorithm depends on
whether data is collected intracranially or extracranially, two
of the patients are recorded with sEEG and two are recorded
with iEEG. The EEG-data is recorded at the Epilepsy Mon-
itoring Unit (EMU) at Rigshospitalet University Hospital,
Copenhagen. The sEEG-data are recorded at a sampling
frequency of 200 Hz from patients admitted for diagnostic
workup, using StellateTM Harmonie with 21-25 EEG chan-
nels, placed using the 10-20 system.

TABLE I
PATIENT INFORMATION

Pt. Sex Age Rec. Modality Type # of Seizures

P1 M 6 49 h sEEG pGTCS 10
P2 M 63 8 h sEEG CPS 49
P3 F 33 44 h sEEG SPS 35
P4 M 45 95 h iEEG CPS 20
P5 F 28 66 h iEEG SPS/CPS 13
P6 M 45 43 h iEEG SPS/CPS 6

Sum 305 h 133

• pGTCS = primary Generalized Tonic Clonic Seizures
• CPS = Complex Partial Seizures
• SPS = Simple Partial Seizures
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Fig. 1. A flowchart of the Matching Pursuit algorithm. First the inner product between all Gabor functions gγ in the library and the signal f is found.
The Gabor function gγn which leads to the highest inner product is chosen and subtracted from the signal f , using the inner product value as the Gabor
function amplitude. The process is then repeated with the residual Rnf as the signal.

The iEEG-data are recorded from patients monitored prior
to epilepsy surgery. It is recorded at a sampling frequency
of 200 Hz using grid and strip electrodes. The seizures are
outlined by a specialist in clinical neurophysiology (Troels
W. Kjaer, MD, Ph.D.), to have a frame of reference for
training the detection algorithm, and for the calculation of la-
tency between the true EEG onset and the onset estimated by
the algorithm. Furthermore three channels that clearly show
epileptic activity are chosen by the specialist, which greatly
minimizes the amount of data. Table I shows information for
the four patients and their seizure types.

B. Matching Pursuit

The Matching Pursuit algorithm was developed in the early
1990’s by Mallat and Zhang [9]. The fundamental concept
is to approximate a signal by the sum of functions found
in a dictionary. The functions found in the dictionary, are
referred to as atoms. Often Gabor functions are used, which
are sinusoids multiplied by a gaussian function [9]. This
study uses the Gabor function for the decomposition. The
software used to compute the Matching Pursuit algorithm,
is the original software by Mallat and Zhang, rewritten by
Dr. C. Jouny and Dr. P. Franaszczuk from the Epilepsy
Reseach Laboratory at Johns Hopkins Medical Institutions. It
can be downloaded at: http://erl.neuro.jhmi.edu/mpsoft/. Dr.
Supratim Ray from Harvard Medical School has adapted the
code to run from within MATLAB.

To find the Gabor function that best describes the signal,
the inner product between the Gabor function and the signal
is calculated. The Gabor function that leads to the highest
inner product is used, see Fig. 1. The inner product is then
used as the amplitude for the Gabor function and the Gabor
function is subtracted from the signal. An iterative process
is run until the energy is below a specified threshold. The
Matching Pursuit algorithm is described by equation (1)
where a finite number of Gabor functions, m, are used to
decompose the signal [9].

f =

m−1∑
n=0

〈Rnf, gγn〉 gγn +Rmf (1)

Rnf is the residual of the n’th iteration and gγn is the n’th
Gabor function.

Because the Gabor functions are sinusoids limited in time
by a gaussian function, a non-complex Gabor function is
given by:

gγ(t) = K(γ)e−π( t−us )
2

cos (ω(t− u) + φ) , (2)

where γ = {u, s, ω, φ}. u shifts the atom in time, s defines
the width of the atom, ω is the frequency of the atom in
rad/s and φ is the phase of the atom. K(γ) is a scaling
factor making ||gγ(t)|| = 1. Matching Pursuit is an iterative
process and therefore a stop criteria is needed. Jouny et. al [7]
introduced a stop criteria that is simply an energy threshold
of the last atom. The decomposition will continue to run until
the energy of the last atom is lower than the specified energy
threshold.

C. Features

The Matching Pursuit algorithm returns the number of
Gabor functions needed to reconstruct the signal. In [7],
focus is on the number of atoms m needed to describe the
signal. They state that the complexity of ictal EEG is higher
than the complexity of interictal EEG, thus more atoms are
needed to describe ictal EEG signals than is needed for
interictal EEG. Therefore we apply the density of Gabor
functions normalized with the window length, Gabor Atom
Density (GAD) [7][8], as a feature for seizure detection. The
equation for GAD is:

GAD =
m

∆t ·∆f
=

2 ·m
N

, (3)

where ∆t is the window size in seconds and ∆f is the size of
the frequency scale; making N the window size in samples.
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Fig. 2. Top: The raw EEG signal of Patient P4. Middle: The GAD curve
calculated from (3). Bottom: The MAF curve calculated from (4) The red
line marks the seizure start and end placed by the specialist. The green line
marks the seizure onset detection by the SVM classifier.

We found that the frequencies increases significantly in the
EEG during a seizure. This makes the mean of all the gabor
functions within a window, Mean Atom Frequency (MAF),
another possible feature enabling the algorithm to accurately
distinguish between seizure and non-seizure. MAF can be
described by:

MAF =
1

m

m∑
n=1

ωgγn , (4)

where ωgγn is the frequency in rad/s of the atom gγ .
It has been proved that working on data from multiple

channels increases the accuracy, why three focal channels are
used for this study. Taking the GAD and MAF for each of
the three channels, gives a total of six features. The features
are fed as input to the SVM classifier.

For the scalp EEG the features are extracted from the
signal by applying a 512 sample window to a 200 Hz signal,
hence 2.56 seconds. For iEEG the window size is 2048
samples, also sampled at 200 Hz. The reason for the different
window sizes is to optimize the difference between interictal
and ictal data, and is a result of testing the performance
with different sizes. An overlap of 75% is used on both
modalities resulting in a temporal resolution of 0.64 and 2.56
seconds respectively. For the stop criteria an energy threshold
of 200 µV 2 was used for sEEG, as was found in [7] to be the
optimum. For the iEEG data an energy threshold of 500 µV 2

was used as it results in the largest difference between the
interictal and ictal data. On Fig. 2 the two features calculated
for a 230 second period is shown. During the seizure, a clear
rise in both GAD and MAF can be observed.

D. Support Vector Machine

The SVM algorithm was developed by C. Cortes and V.
Vapnik in 1995 [12][13]. In this context it is applied for
classification of the features. The MATLAB implementation
of the SVM classifier is used for this study.

The SVM is trained using the first 30% of the seizures
for causality, combined with three times the amount of
background data randomly selected from the first part of
the EEG recordings. The remaining seizures were used for
testing along with as much background data, from after the
training period, as possible.

E. Post processing

To eliminate artifacts of short periods, a temporal con-
straint was applied to the SVM output. The constraint only
allows detection of a seizure after the SVM has classified
a number of consecutive epochs containing seizure activity.
This post processing greatly reduces the number of false
positives, but also leads to an increase in detection latency.
The number of consecutive epochs depends on the use of
the algorithm. One should seek to specify the number that
best fulfill the purpose of the algorithm. The constraint has
only been applied to the sEEG data, as the false detection
rate in the iEEG data was significantly smaller, and the con-
straint has therefore been omitted. For sEEG five consecutive
epochs were required to be classified, by the SVM as a
seizure, before the algorithm accepted it as a seizure. The
optimal number of five consecutive epochs (for this purpose)
was found by empirical evaluation.

III. RESULTS

Fig. 3 shows the two features, GAD and MAF, for one
channel recorded using iEEG. It can be seen that the seizure
epochs are well separated from the background data and
confined to a relatively small area. This leads to a low False
Detection Rate (FDR), which is particularly true for the iEEG
data, as can be seen in table II.

The sEEG data have higher FDRs and by looking at the
feature plots for these data (not depicted) it can be seen that,
though they are separated from the background data, they
are not as clearly separated as the iEEG data are.

For some patients it was found that both GAD and MAF
peaked early in the seizure and then decayed steadily to the
end of the seizure. This indicates that these features are best
suited for seizure onset detection, and might not be able to

TABLE II
RESULTS SUMMARY

Patient # of Seizures Sensitivity (%) FDR (1/h) Latency (s)

P1 10 100 0.59 18.3
P2 49 91.4 5.31 9.1
P3 35 - - -

P4 20 95.0 0.20 6.06
P5 13 77.8 0.16 5.67
P6 6 100 1.8 7.44
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Fig. 3. The SVM training from patient P4 - channel 1. The decision
boundary is based on the training seizure- and non-seizure epochs from the
two features. The circled epochs are the support vectors used for defining
the decision boundary, which is developed by using a radial basis kernel as
mapping function, with σ = 1.

detect seizure duration. This has not been investigated in this
study, but is a subject for our future work.

The algorithm is patient-specific. This means that the SVM
is trained for each patient, and then tested on the rest of the
seizures and background activity for the same patient.

From Table II it can be seen that the algorithm in this
initial case study is capable of detecting 78-100% of all
seizures, while keeping the FDR between 0.16-5.31/h. The
detection latency was found to be 5-8s for iEEG and 9-18s
for sEEG. We were unable to detect any seizures of P3 with
the features used in this study.

IV. DISCUSSION & CONCLUSION

The reason for the high FDR in patient P2, is due to a
large amount of artifacts. The algorithm is sensitive to the
artifacts found in this particular patient. A solution to avoid
the artifact could be to pre-filter the data before feeding it
to the algorithm. The seizure dynamics for P3 are different
from the other patients. This results in a poor detection and a
high FDR. For P3 different features are needed for effective
seizure detection.

Another issue is the number of electrodes. We used three
focal electrodes for the detection. In patient P4 and P5
the epileptic focus is mainly in one hemisphere, but the
patients do encounter some seizures that have focus in the
opposite hemisphere. These seizures are not detected, since
no electrodes from the focus area was used in the algorithm.
A better way would be to include all the available electrodes.
This could also introduce the idea of focus localization.

This is a case study, so the full potential of the method is
not fully investigated. The goal is to improve performance,

especially on the onset detection latency which does seem
plausible. With an artifact removal algorithm, some of the ar-
tifacts introduced when the medical personnel are interacting
with the patient etc. could be avoided. This would remove the
need for the epoch constraint, and thereby result in a better
latency performance. Furthermore a larger patient database
would show the robustness of the method better, and perhaps
introduce the idea of a non-patient specific approach based on
different seizure types. Also a larger patient database could
show if there is a difference in modality, i.e. iEEG or sEEG,
and if there is significant differences between the different
types of seizures. Results show a tendency for iEEG to be
the more robust modality for this algorithm, but further work
will have to be conducted to confirm these findings.

The idea of using Matching Pursuit for seizure detection
seems very promising, and we will investigate it further to
achieve even better results than presented in this paper.
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