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Abstract

This thesis investigates signal processing techniques for wireless communication
receivers. The aim is to improve the performance or reduce the computationally
complexity of these, where the primary focus area is cellular systems such as
Global System for Mobile communications (GSM) (and extensions thereof), but
also general Multiple-Input Multiple-Output (MIMO) systems are considered.
The motivation for a performance improvement is that this is needed to achieve
higher capacity in the systems, which can ensure increased bit-rates at the same
or lower prices. A reduction in the computationally complexity can potentially
lead to limited power consumption, which translates into longer battery life-time
in the handsets.

The scope of the thesis is more specifically to investigate approximate (near-
optimal) detection methods that can reduce the computationally complexity
significantly compared to the optimal one, which usually requires an unaccept-
able high complexity. Some of the treated approximate methods are based on
QL-factorization of the channel matrix. In the work presented in this thesis
it is proven how the QL-factorization of frequency-selective channels asymp-
totically provides the minimum-phase and all-pass filters. This enables us to
view Sphere Detection (SD) as an adaptive variant of minimum-phase pre-
filtered reduced-state sequence estimation. Thus, a novel way of computing
the minimum-phase filter and its associated all-pass filter using the numerically
stable QL-factorization is suggested. Alternatively, fast QL-factorization meth-
ods can be applied which provides a computationally efficient way of obtaining
these filers.

Additionally, Markov Chain Monte Carlo (MCMC) sampling has been inves-
tigated for near-optimal Maximum Likelihood Sequence Detection in MIMO
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systems. The MCMC method considered in the thesis is the Gibbs sampler,
which is proposed as an alternative to the SD in scenarios where the latter type
of detector requires an unacceptable high complexity.



Resumé (Abstract in Danish)

Denne afhandling undersøger signalbehandlingsteknikker til tr̊adløse kommu-
nikationsmodtagere. Det overordnede mål er at forbedre ydeevnen eller reducere
beregningskompleksiteten i disse, hvor det primære fokusomr̊ade er cellebaserede
netværk s̊asom GSM (eller udvidelser deraf), men ogs̊a generelle Multiple-Input
Multiple-Output (MIMO) systemer vil blive betragtet. Motivationen for at
forbedre ydeevnen i s̊adanne systemer er, at dette vil være nødvendigt hvis man
vil forøge kapaciteten i disse, hvilket kan sikre en højere data-rate til samme eller
lavere pris. En reduktion i beregningskompleksiteten vil potentielt set medføre
et lavere strømforbrug, hvilket fører til længere batterilevetid for mobiltelefoner.

Formålet med afhandlingen er mere specifikt at undersøge approksimative (nær-
optimale) detektionsmetoder, som kan reducere beregningskompleksiteten be-
tydeligt sammenlignet med den optimale modtager, eftersom denne oftest vil
kræve en uacceptabel høj kompleksitet. Nogle af de approksimative metoder
som undersøges er baseret p̊a QL-faktorisering af kanalmatricen. Det vises,
hvorledes man ved en QL-faktorisering af frekvens-selektive kanaler kan opn̊a
minimum-fase og all-pass filtrene. Herved er det muligt at betragte “Sphere
Detection” (SD) som en adaptiv form for minimum-fase præ-filtreret “reduced-
state sequence estimation”. Der foresl̊as dermed en ny metode til at beregne
minimum-fase filteret og det dertilhørende all-pass filter ved brug af den nu-
merisk stabile QL-faktorisering. Alternativt kan “hurtige” QL-faktoriserings-
metoder benyttes, hvilket beregningsmæssigt set resulterer i effektive metoder
til at udregne disse filtre.

Endvidere er “Markov Chain Monte Carlo” (MCMC) sampling blevet undersøgt
til at opn̊a “Maximum Likelihood” sekvens detektion i MIMO-systemer. MCMC
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metoden, som betragtes i afhandlingen er den s̊akaldte “Gibbs sampler”, der er
blevet foresl̊aet som et alternativ til SD, n̊ar denne type detektor vil kræve en
uacceptabel høj beregningskompleksitet.



Preface

This thesis has been prepared at the department of Informatics Mathematical
Modelling, Technical University of Denmark and Modem Algorithm Design,
Nokia Denmark A/S in partial fulfillment of the requirements for acquiring the
Ph.D. degree in electrical engineering.

The thesis deals with different aspects of signal processing techniques for detec-
tion in wireless communications. A main focus area has been the complexity of
the detection methods, since this is a crucial factor in the design of “real-life”
wireless communication systems.

The thesis consists of a summary report and a collection of four research papers
written during the period 2006-2009.

Lyngby, December 2009

Morten Hansen



vi



Papers included in the thesis

[A] Morten Hansen, Lars P. B. Christensen, and Ole Winther. On Sphere
Detection and Minimum-Phase Prefiltered Reduced-State Sequence Esti-
mation. IEEE Global Telecommunications Conference (GLOBECOM).
November 2007.

[B] Morten Hansen and Lars P. B. Christensen. Efficient Minimum-Phase
Prefilter Computation Using Fast QL-Factorization. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). April
2009.

[C] Morten Hansen, Lars P. B. Christensen, and Ole Winther. Computing the
Minimum-Phase Filter using the QL-Factorization. IEEE Transactions
on Signal Processing. Submitted in June 2009, accepted, waiting for
publication.

[D] Morten Hansen, Babak Hassibi, Alexandros G. Dimakis, and Weiyu Xu.
Near-Optimal Detection in MIMO Systems using Gibbs Sampling. IEEE
Global Telecommunications Conference (GLOBECOM). November 2009.



viii



Acknowledgements

I would like to thank the Technical University of Denmark (DTU) for allowing
me the opportunity of doing this work. I would also like to thank Nokia Denmark
A/S and the Modem Algorithm Design (MAD) group for partly supporting the
Ph.D. study. A special thanks goes to Izydor Sokoler and in particular Niels
Mørch for taking the effort of setting up the Ph.D. study in co-operation with
DTU, and for giving me the opportunity to participate in activities in the MAD
group.

I am very grateful to my supervisors Lars P. B. Christensen and Ole Winther,
who have allowed me the freedom to pursue my own ideas while still ensuring
that the research was going in a fruitful direction. I appreciate your mentorship
and your willingness to come with helpful suggestions, in particular when I got
stuck in my research.

I would also like to thank Lars Kai Hansen and Jan Larsen for interesting discus-
sions in various topics in signal processing and machine learning. Furthermore,
I want to thank the rest of my colleagues at both the department of Informat-
ics Mathematical Modelling and Modem Algorithm Design for improving the
working environment and for talks of both social and professional matter. A
special thanks goes to Pedro Højen-Sørensen, Morten Hagdrup, and Søren S.
Christensen for always being willing to share knowledge and ideas.

From California Institute of Technology I wish to thank Babak Hassibi for letting
me visit his group in a period of five month and for letting me freely interact
with the students in his group. In this context I would like to thank Alexandros
G. Dimakis and Weiyu Xu for fruitful joint work. I would also like to express



x

my gratitude to Ravi Teja Sukhavasi, for making me feel welcome throughout
the visit and for many hours of fun together.

I wish to thank Klaus S. Andersen and Carsten Stahlhut for proofreading this
thesis.

Finally, I would like to thank my girlfriend Stine for her support, love, and
encouragement over the years.



Nomenclature

a.k.a. Also Known As

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BS Base Station

CIR Channel Impulse Response

DARE Discrete-time Algebraic Riccati Equation

DFE Decision-Feedback Estimation

EDGE Enhanced Data rates for GSM Evolution (a.k.a. EGPRS)

EGPRS Enhanced GPRS

FDMA Frequency Division Multiple Access

FIR Finite Impulse Response

GPRS General Packet Radio Service

GS Gibbs Sampling

GSM Global System for Mobile communications

HT Hilly Terrain

i.i.d. Independent and Identically-Distributed

IIR Infinite impulse response

ISI Inter-Symbol Interference

LHS Left-Hand-Side
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LMMSE Linear Minimum Mean-Square Error

LS Least Squares

MAC Multiply and Accumulate

MAP Maximum A-Posteriori

MCMC Markov Chain Monte Carlo

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MLSD Maximum Likelihood Sequence Detection

MS Mobile Station

MUD Multi User Detection

NP-hard Non-deterministic Polynomial-time hard

PDF Probability Density Function

RHS Right-Hand-Side

RSSE Reduced-State Sequence Estimation

SD Sphere Detection

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SUD Single User Detection

TDMA Time Division Multiple Access

TU Typical Urban



Notation

General terms
x Scalar
x Column vector
xi The ith element of x
x/i Excluding the ith element in x
xi The ith ”vector element” of x

x1∶N The vector containing [xT
1 , . . . ,x

T
N ]T

X Matrix(X)i,j The (i, j)th element of matrix X
Xi,j The (i, j)th element of matrix X
IM Identity matrix of size M ×M
0M×N All-zero matrix of size M ×N
1M×N All-one matrix of size M ×N
i

√−1∣⋅∣ Absolute value of a complex number∠ Angular component of a complex number(⋅)∗ Complex conjugation
P(⋅) Probability
E Statistical expectation operatorCN (µ,Σ) Complex-valued Gaussian distribution with mean µ

and covariance Σ
χ2

N Chi-Square distribution with N complex-valued
degrees-of-freedomO(N) Of the order of N
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Set operators
R Real part
I Imaginary part
Z The set of integer numbers
R The set of real numbers
C The set of complex numbers∅ The empty set∣ ⋅ ∣ Cardinality of the set

Vector operators
diag (x) Diagonal matrix with x in the diagonal

Matrix operators(⋅)−1 Inverse matrix(⋅)T Transposed matrix(⋅)H Transposed and complex conjugated matrix
X+ Pseudo inverse matrix of the matrix X
Xn The nth power of a square matrix X∥⋅∥F Frobenius norm
diag(⋅) Vector given by diagonal of the matrix
det(⋅) Determinant of matrix
tr(⋅) Trace operation
rank(⋅) Rank of matrix⊗ Kronecker product
λi(X) The ith eigenvalue of X
σi(X) The ith singular value of X
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Resumé (Abstract in Danish) iii

Preface v

Papers included in the thesis vii

Acknowledgements ix

Nomenclature xi

Notation xiii

1 Introduction and Motivation 1
1.1 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 5
2.1 Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Optimal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Approximate Detection . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 The Minimum-Phase Filter . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Detection using QL-factorization 15
3.1 Sphere Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The QL-factorization and the Minimum-Phase Prefilter . . . . . . 24
3.3 Efficient Minimum-Phase Prefilter Computation . . . . . . . . . . 38



xviii CONTENTS

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Sampling 49
4.1 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Conclusion 69

A On Sphere Detection and Minimum-Phase Prefiltered Reduced-
State Sequence Estimation 73

B Efficient Minimum-Phase Prefilter Computation Using Fast QL-
Factorization 79

C Computing the Minimum-Phase Filter using the QL-Factoriza-
tion 85

D Near-Optimal Detection in MIMO Systems using Gibbs Sam-
pling 97

Bibliography 105



Chapter 1

Introduction and Motivation

Wireless communications is a very active research area due to the ever increas-
ing demand for higher capacity and due to the huge amount of revenue there
is in this field. As an example of the latter, we cite [1] where it is stated that
“The telecommunications industry is one of the largest industries worldwide,
with more than $1 trillion in annual revenue for services and equipment”. Fur-
thermore, according to the GSM Association (an association of mobile operators
and related companies) the number of mobile connections1 is now (in February
2009) above 4 billion and the association has predicted that the world will reach
6 billion connections by 2013.2

To keep up with the demand for ever higher bit-rates at the same or lower prices,
several challenges must be met. Examples are:

● Higher-order modulations used for greater spectral-efficiency.

● Multipath propagation caused by reflections between transmitting and
receiving antennas.

● Interference from other data streams and/or users in the system.

● Noise from analog processing, i.e. antenna and Radio Frequency (RF)
front-end processing.

1The number of connections does not directly translate into the number of users, since a
user may have multiple mobile phones.

2The press release by the GSM Association with the headline “Mobile World Celebrates
Four Billion Connections” has been announced February 11 2009.



2 Introduction and Motivation

The optimal detector for the received signal is known (assuming that the received
signal can be described by a linear model) but its complexity scales exponentially
with the number of streams/users and the length of the channel.3 This makes the
optimal solution highly unrealistic for many real-life scenarios as the associated
cost, power, and size would be unacceptable.

The focus of the Ph.D. thesis is to investigate methods for approximate inference
of the transmitted information that preserves a near-optimal performance, but
has a significantly reduced complexity compared to the optimal one. Having
such detectors would enable far better use of resources leading to increased sys-
tem capacity, coverage, and connection quality, all by upgrading the handsets
used.
In the thesis, we only consider improvements related to the physical layer pro-
cessing and, more specifically, processing of signals in the detector and its effects
on objective performance measures such as the Bit Error Rate. Beside exam-
ining the performance improvements of detection methods, the computational
complexity of the methods is also taken into account since this is often the lim-
iting factor in an actual implementation. Thus, it might be that a method is
abandoned due to its excessive complexity, even though it achieves huge perfor-
mance gains.

1.1 Thesis Outline and Contributions

Chapter 2, Preliminaries, gives an introduction to the cellular system used
in wireless communications and a general system model is presented. Next, the
optimal sequence and symbol-by-symbol detectors are treated. Additionally,
some near-optimal detection techniques are presented.

Chapter 3, Detection using QL-factorization, presents detection methods
that are based on QL-factorization of the channel matrix. Firstly, the basic idea
behind the Sphere Detector is described and it is shown how minimum-phase
prefiltering can reduce the complexity of sphere detection in frequency-selective
channels. Secondly, a proof that connects the minimum-phase and all-pass fil-
ters to the QL-factorization of the above-mentioned channel-type is presented.
This leads to a novel approach to compute these two classical filters iteratively.
The convergence rate for the iterative method is analyzed and a computation-
ally efficient method for obtaining the filters is suggested.

Chapter 4, Sampling, describes a Markov Chain Monte Carlo detector, which
uses Gibbs sampling to perform approximate (near-optimal) Maximum Likeli-

3In this thesis channel encoding is not considered, but if it should be taken into account
the complexity of the optimal detector would increase even further, see e.g. [2].
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hood Sequence Detection in Multiple-Input Multiple-Output systems having a
huge number of receive and transmit dimensions. The novelty of the proposed
Gibbs sampler is that it will, unlike simulated annealing techniques, use a fixed
“temperature” parameter in all the iterations. This leads to the property that
after the Markov chain has mixed, the probability of finding the optimal solution
is polynomially rather than exponentially small.

Chapter 5, Conclusion, summarizes the thesis and presents some suggestions
for interesting future research directions.

Contributions

Paper A, On Sphere Detection and Minimum-Phase Prefiltered Re-
duced-State Sequence Estimation, examines prefiltering techniques for sphere
detection in frequency-selective channels. It is shown that it is possible to re-
gard sphere detection as a generalization of traditional reduced-state sequence
estimation. Further, simulations illustrate that minimum-phase prefiltering can
reduce the complexity of sphere detectors significantly and still obtain near-
optimal performance.

Paper B, Efficient Minimum-Phase Prefilter Computation Using Fast
QL-Factorization, contains a novel approach for computing both the mini-
mum-phase filter and the associated all-pass filter in a computationally efficient
way using fast QL-factorization. A desirable property of this approach is that
the complexity is independent of the size of the matrix being QL-factorized.
Instead, the complexity scales with the required precision of the filters. In or-
der to evaluate the applicability of the method, simulations for communication
channels used in the GSM system have been made, where the numerical effects
of the method has been examined.

Paper C, Computing the Minimum-Phase Filter using the QL-Facto-
rization, proves that the QL-factorization of a time-invariant multipath channel
matrix gives the finite length equivalent to the minimum-phase and the all-pass
filters and, thereby, it presents a novel method of computing these two classical
filters in a numerically stable way. The convergence properties of this method
is also analyzed such that the exact convergence rate has been computed for a
simple SISO length L = 2 system and an upper bound has been derived, which
is used for approximating the convergence in systems of arbitrary length.

Paper D, Near-Optimal Detection in MIMO Systems using Gibbs
Sampling, describes a method for Maximum Likelihood Sequence Detection
using a Markov Chain Monte Carlo Gibbs sampler. The method is novel in that
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the “temperature” parameter is optimized so that in steady state, i.e. after the
Markov chain has mixed, there is only polynomially (rather than exponentially)
small probability of encountering the optimal solution.



Chapter 2

Preliminaries

This Chapter introduces some of the basic concepts which will be used through-
out the rest of the thesis.

2.1 Cellular Systems

In order to derive efficient detection methods we first of all need a proper model,
which can describe the received signal and, therefore, we first take a brief look
at the cellular systems used for wireless communications. A general description
of the wireless medium are treated in a vast number of books on wireless com-
munications. Thus, for a more thorough treatment of this matter, the reader is
referred to e.g. [1, 3–5] and the references therein.
A mobile network is divided into cells (hereby the name Cellular System) in
order to provide coverage for the Mobile Station (MS). In the Global System for
Mobile communications (GSM) both Time Division Multiple Access (TDMA)
and Frequency Division Multiple Access (FDMA) are used, which enable net-
work access to multiple subscribers at the same time. Each cell has a specific
frequency for wireless communication but due to the limited resources in the
frequency band, the available frequencies are being reused in other cells. How-
ever, the drawback of frequency reuse is occurrence of Co-Channel Interference
(CCI).
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When a signal is transmitted over a wireless medium, the effects of the surround-
ing environment will often lead to reflections of the signal, such that the MS
will receive multiple copies of the same signal arriving at different time instances
and having different attenuation levels. This leads to the concept of multipath
channels. In cases where the delay time of the reception of the multiple copies of
the signal is significant compared to the symbol interval, the transmitted sym-
bols will affect each other, such that we get Inter-Symbol Interference (ISI). Due
to the multiple paths of the signal, it can either add up constructively or de-
structively. This will lead to fading that depends on the signal wavelength (and
thereby also the frequency) which is called frequency-selective fading. Likewise,
in the case where the MS moves toward or away from the Base Station (BS),
the fading will depend on the time and we then have time-selective fading [1].

2.2 System Model

In order to model the effects of the cellular systems, we introduce a general
system model, which will be used throughout the thesis. A widely used channel
model in wireless communication is the linear model

y =Hx + υ , (2.1)

where y ∈ CM is the received signal, H ∈ CM×N represents the channel ma-
trix, and x ∈ ΩN it the transmitted symbols from alphabet Ω. The noise term
υ ∈ CM represents the thermal noise plus interference (from other users). In the
case with no interference, we will assume that the noise term is simply Additive
White Gaussian Noise (AWGN),i.e. υ ∼ CN (0M×1, σ2

υIM). Both pulse-shaping
and the receive filtering can be incorporated in the channel matrix since these
are usually also linear operations.

In the case of a time-invariant Multiple-Input Multiple-Output (MIMO) system
with a Finite Impulse Response (FIR) of length L, we can express the system
model as

yj =
L−1
∑
l=0

Hlxj−l + υj , (2.2)

where yj ∈ CNR is the received signal at time index j and xj ∈ ΩNT is the input
signal at time j = {1,2, . . . , J}. J is the length of the transmitted sequence
while NR and NT denote the receive and transmit dimensions, respectively.
The matrix Hl ∈ C

NR×NT denotes the lth tap in the impulse response and
υj ∈ CNR is the noise term, υj ∼ CN (0NR×1, σ

2
υINR

). The system model in
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(2.1) is capable of modeling a multipath channel by letting the channel matrix
H be a block-banded block Toeplitz matrix having the form

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 0 ⋯ 0
⋮ ⋱ ⋱ ⋮

HL−1 ⋱ ⋱ 0
0 ⋱ ⋱ H0

⋮ ⋱ ⋱ ⋮
0 ⋯ 0 HL−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3)

Here, each sub-matrix Hi has the size NR ×NT and the matrix H will have
the size M = NR(J +L − 1) and N = J ⋅NT . If the channel is time-variant, the
channel matrix will still be a block banded matrix, but it will no longer be block
Toeplitz, since it will now change for each block-row of H. In the case with no
multipath effect, the channel will purely be a MIMO channel with M = NR and
N = NT .

The Signal-to-Noise Ratio (SNR) is defined as

SNR ≜
E{∥Hx∥22}
E{∥υ∥22}

= E{tr (HHHxxH)}
E{tr (υυH)} . (2.4)

Given the situation where we transmit N independent symbols with the average
symbol power σ2

x in a MIMO channel with no multipath and the noise term
υ ∼ CN (0M×1, σ2

υIM), the SNR in (2.4) can be simplified to

SNR = E{σ2
xtr (HHH)}
σ2
υNR

. (2.5)
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2.3 Optimal Detection

In this section we introduce the optimality criteria, which we often encounter
in detection in wireless communications. Also, we briefly describe how optimal
detection can be achieved. The equations below have been derived under the
assumption that the noise is AWGN.

2.3.1 Optimal Sequence Detection

In the decoding part we are often interested in finding the most likely sequence,

x̂ML = arg min
x∈ΩN

∥y −Hx∥22 , (2.6)

which is called Maximum Likelihood Sequence Detection (MLSD) and often
abbreviated as Maximum Likelihood (ML) detection for simplicity. The opti-
mization problem in (2.6) is considered to be NP-hard both in worst-case and
in average sense for general H [6–8] when x belongs to a discrete symbol set.
Thereby, the complexity seems at first glance to scale exponentially with the
size of vector x, i.e. ΩN . However, in multipath channels clever dynamical
programing can be applied (such as the Viterbi algorithm1 [10, 11] a.k.a. the
max-sum algorithm [12]), and the complexity will instead scale as ΩNT ⋅L, which
in communication systems usually is a huge reduction in complexity. As an
example we can mention GSM where N = 122 (in the case of Single User Detec-
tion (SUD) where the training sequence and the tail bits has been excluded),
which should be compared to L = 7 for the Typical Urban (TU) profile or L = 10
for the Hilly Terrain (HT) profile defined in [13]. Furthermore, in Multi User
Detection (MUD) the complexity gets worse still, since the number of users will
also influence the complexity exponentially.

MLSD using the Viterbi-algorithm

Since an extension to the above mentioned dynamical programing techniques is
treated in Chapter 3, we briefly describe how the Viterbi-algorithm works and
how it is capable of reducing the complexity in case of a multipath channel.
For simplicity we only consider a Single-Input Single-Output (SISO) system,
i.e. NT = NR = 1, and we assume we have a time-invariant channel.2 Let us

1The forward-only max-log BCJR-algorithm [9] can also be used for optimal sequence
detection.

2It is straightforward to extend the algorithm to the general time-variant MIMO system.
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first rewrite the optimization problem given in (2.6) by using the signal model
in (2.2)

x̂ML = arg min
x∈ΩN

M

∑
j=1
∥yj − L−1

∑
l=0

hlxj−l∥
2

2

. (2.7)

From this it can be seen that the cost function in (2.6) that we are minimizing
can be computed recursively and, thereby, reducing the complexity.

2.3.2 Optimal Symbol-by-Symbol Detection

In case we are interested in optimal symbol-by-symbol detection, we instead
maximize the a-posteriori probability of the symbols

x̂k,MAP = argmax
xk∈Ω

P (xk ∣y,H) , (2.8)

which is also called Maximum A-Posteriori (MAP) detection and involves a
marginalization over all possible symbol settings in x/k. This will require evalua-
tion of ΩN probabilities but once more dynamical programming can be exploited
for multipath channels by applying the forward-backward algorithm [14, 15]
(a.k.a. the BCJR-algorithm [9] or the sum-product algorithm [12]). Thus, for
SUD the complexity of this is again of order ΩNT ⋅L. It should be mentioned
that in communications systems where the detection stage is succeeded by a
decoding stage, we will usually be more interested in the symbol probability
P (xk ∣y ) (a.k.a. the soft-symbol) instead of the “hard-symbol” given in (2.8).

2.4 Approximate Detection

For higher order modulation types, a complexity of order ΩNT ⋅L is still much
too complex in the existing GSM system, e.g. for 16- and 32-QAM (Quadra-
ture Amplitude Modulation), which has been standardized in EGPRS2 [16] to
increase data rates. Instead approximate (sub-optimal) detection methods are
applied in such systems and this has been the main motivation for considering
approximate detection in this thesis. There exists a huge number of approxi-
mate methods, so an overall treatment of each of these is out of the scope.
In Chapter 3 Sphere Detection (SD) is described, which can either be used for
approximate or exact detection. The kind of problems that we are consider-
ing will often (due to the complexity constraints in an implementation) imply
that it is only feasible to perform approximate SD and, hence, we will focus on
this. Another type of approximate detection is based on Markov Chain Monte
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Carlo and we will treat that in Chapter 4. In the following we also describe
some approximate methods which are widely used in systems with multipath
channels.

2.4.1 Decision Feedback Techniques

Several approximate methods rely on some sort of feedback in the receiver. The
most simple one is called Decision-Feedback Estimation (DFE) [17, 18] and it
simply feeds back a weighted sum of past estimated symbols in order to deal
with the ISI. To improve the performance of the DFE, the Delayed Decision-
Feedback Sequence Estimation (DDFSE) [19] was introduced. This broadly
speaking, consists of a parameter ξ that can be varied between 0 and the length
of the Channel Impulse Response (CIR), L. If ξ = 0 the DDFSE reduces to the
DFE detector, while ξ = L corresponds to the Viterbi-algorithm, and the com-
plexity is generally of order ΩNT ⋅ξ. In cases where the cardinality of the alphabet
is large, the Reduced-State Sequence Estimation (RSSE) [20] can be applied.
The RSSE will, besides the DDFSE part, also employ set-partitioning [21] such
that the constellation points are partitioned into subsets, and the complexity
will now scale exponentially in the number of subsets instead of the size of the
alphabet.
In order to obtain decent performance of the above mentioned feedback tech-
niques for channels with large delay spread, prefiltering of the received sig-
nal is needed [19] such that the CIR is transformed into a minimum-phase
filter [22–24]. Thus, the received signal will often be prefiltered with an all-pass
filter as explained in Subsection 2.5 in order to obtain the desired minimum-
phase characteristic for the CIR. This leads to the system illustrated in Figure
2.1.

Channel

H
x

y
+ xx̂

all-pass

filter
detection

y
~

Figure 2.1: System model with prefilter and detection stage included.
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2.5 The Minimum-Phase Filter

The spectral factorization theorem states that the spectrum of any linear time-
invariant system can be factorized into minimum-phase components [25]. Fur-
thermore, a generalization of spectral factorization states that any linear filter
can be split into an all-pass filter and a minimum-phase filter found by spectral
factorization [22]. The minimum-phase filter has the convenient property that
it provides the highest possible energy concentration in the first filter taps (??).
This filter is therefore crucial if the performance of the suboptimal trellis-based
detectors (such as DDFSE and RSSE) should be close to the optimal one. Oth-
erwise, if the channel impulse response is not minimum-phase, the suboptimal
detectors are required to have a complexity close to the optimal one in e.g.
the GSM system. This is due to the so-called C0 pulse shape which is used in
GSM [13,26] and shown in Figure 2.2. From Figure 2.2 it is clear that it is nec-
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Figure 2.2: Pulse shape of C0-pulse used in GSM.

essary to have a memory of length four in the trellis-based detectors in order to
capture the most of the energy of the pulse, which for higher-order modulation
types is a too high complexity. As an example we can mention EGPRS2 with∣Ω∣ = 32 giving approximately 3.3 ⋅ 104 states in the trellis diagram. Thus, the
minimum phase filter is absolutely necessary in these types of applications.
Due to the broad applicability of the minimum-phase filter it has been studied
intensively over the years and, thus, there exist various methods for computing
the filter. In [25] and the references therein, a thorough treatment of several
methods for spectral factorization can be found. One classical way of obtaining
the minimum-phase filter is by using the root-method of spectral factorization,
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in which the roots of

H(z) = L−1

∑
l=0

Hlz
−l , (2.9)

located outside the unit circle are reflected inside to the conjugate reciprocal
location [22, 23, 27]. Here, H(z) represents the z-transform of the equivalent
infinite-length filter impulse response, which is connected with the finite-length
system in (2.3) when we let the system size J → ∞. The connection between
the finite- vs. the infinite-length system is among others treated in [28]. The
polynomial form described in (2.9) can be a useful representation in the analysis
of the filter characteristics.
The simple root-method of spectral factorization has however its limitations.
Particularly, in the case of MIMO systems since we besides the roots also need
to know the direction of the “basis” vector associated with a root [24]. Some
methods for solving the problem in this case have been described in among others
[29–32], but these methods have the disadvantages of being mathematically
rather complicated and, furthermore, they can suffer from numerical instabilities
[24]. Thus, instead one might prefer to solve a Discrete-time Algebraic Riccati
Equation (DARE), which is a numerical stable method. It has the particularly
advantageous property that it easily can be extended to the vector case [25]. In
the following, we briefly describe how the roots can be determined.

2.5.1 The root-method of spectral factorization

Let us for a moment assume that we are only interested in determining the
roots of H(z) in (2.9). In a MIMO system where NT = NR, the roots can be
obtained by finding the z-values where det (H (z)) = 0, [33], leading to a matrix
polynomial in the scalar variable z. This type of matrix polynomial is normally
called a lambda-matrix [34, 35] and the number of roots in such a polynomial
is min (NT ,NR) ⋅ (L − 1). In [34], it is shown that the roots can be obtained by
determining the eigenvalues of the block-companion matrix, C, of the associated
monic polynomial. This can be obtained by H̃(z) ≜ (HL−1)−1H(z), assuming
that HL−1 is invertible. Thus, we get the following block-companion matrix

C ≜
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0 −H̃0

I ⋱ ⋮ −H̃1

0 ⋱ 0 ⋮

⋮ ⋱ I −H̃L−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.10)

where H̃l ≜ (HL−1)−1Hl. Since the method proposed in [34, 35] assumes that
all Hl terms are square matrices, we cannot directly handle the case where
NT ≠ NR. As a consequence a modifcatoin of the problem is needed. IfNR > NT ,
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we can instead introduce S = HHH and find the roots of the lambda-matrix
S(z),

S (z) = HH (z−∗) ⋅H (z)
= L−1

∑
l=0

Sl ⋅ z−l + L−1

∑
k=1

SH
k ⋅ zk , (2.11)

which gives the roots both inside and outside the unit circle (from the minimum-
and maximum-phase filter, respectively). Likewise, we can construct S̃ =HHH

when NR < NT and once more select the roots inside the unit circle. However,
this does not solve the problem of finding the zero directions and, therefore, we
will also address an alternative way of computing the spectral factor.

2.5.2 The DARE Method

As mentioned in Subsection 2.5.1, the DARE method has the convenient prop-
erty that it is straight forward to extend the method from the Single-Input
Single-Output (SISO) case to the MIMO case. Furthermore, the method relates
to results from Kalman filtering theory and, therefore, many of the properties of
this method have been extensively studied, among others its convergence prop-
erties which are treated in [24].
The DARE method considered in this thesis, solves the Riccati equation

P = FPF H − (FPH H +G )(HPH H + S0)−1 (FPH H +G )H , (2.12)

where we have assumed that NR = NT . F represents a block-shifting matrix of
dimension (L − 1)NT × (L − 1)NT having the form

F =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0NT×NT
⋯ ⋯ 0NT×NT

INT
⋱ ⋱ ⋮

0NT×NT
⋱ ⋱ ⋮

⋮ ⋱ INT
0NT×NT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

G is a matrix of size (L − 1)NT ×NT containing

G =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

SL

SL−1

⋮

S1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and H = [ 0NT×NT
, 0NT×NT

, ⋯, 1NT×NT
]. If the iterative procedure de-

scribed in [36] is used to solve the Riccati equation, we have

P k+1 = FP kF H
− (FP iH H

+G )(HP kH H
+ S0)−1 (FP kH H

+G )H ,

(2.13)
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where P = lim
k→∞P k and P 0 = 0NT (L−1)×NT (L−1). This results in the stability

matrix (i.e. eigenvalues smaller than 1 in magnitude)

F − (FPH H
+G )(HPH H

+ S0)−1 . (2.14)

As described in [37], the minimum-phase filter coefficients can be computed
based on the stabilizing solution as

Hmp,DARE(z) =
⎡⎢⎢⎢⎢⎢⎣

(S0 + (P )(N1∶N2,N1∶N2)) 1

2

(S0 + (P )(N1∶N2,N1∶N2))− 1

2 (FPH H
+G)HJ

⎤⎥⎥⎥⎥⎥⎦

H⎡⎢⎢⎢⎢⎢⎢⎢⎣

1NT×1

z−11NT×1

⋮

z−L+11NT×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.15)

where J ∈ RNT (L−2)×NT (L−2) is an anti-diagonal matrix with ones on the anti-
diagonal. Furthermore, we have for simplicity introduced N1 ≜ NT (L − 2) + 1
and N2 ≜ NT (L − 1).
The complexity of computing the minimum-phase filter of a length L SISO
system, using the DARE method described above, requires

Omin,DARE = k (3
2
L2
−
1

2
L + 1) + 2L (2.16)

operations, where k denotes the number of iterations used for computing the fil-
ter and where we define an operation as a complex Multiply-Accumulate (MAC)
instruction.

2.6 Summary

This chapter has treated some of the effects which occur in cellular systems.
Based on these, a general system model has been introduced which is capable
of modeling multipath and multiuser MIMO systems. Next, optimal sequence
detection and symbol-by-symbol detection has been described and some com-
putationally efficient dynamical programming methods have briefly been men-
tioned. To reduce the complexity of the detection stage, some approximate
feedback techniques have been proposed. It has been explained that to achieve
decent performance of these techniques, both the minimum-phase filter and the
associated all-pass filter (which is used for prefiltering the received signal) play
a crucial role. Finally, some general properties of the minimum-phase filter has
been described, among others how this filter can be computed and the complex-
ity of this.



Chapter 3

Detection using
QL-factorization

In this Section we treat algorithms which exploit the QR- or the QL-factorization
in order to obtain efficient low complexity detection methods. First, the princi-
ple behind the Sphere Detection (SD) algorithm is described and next, a connec-
tion between the minimum-phase filter and the QL-factorization is proved. This
connection is then used to obtain a novel approach to compute the minimum-
phase filter and its associated prefilter using fast QL-factorization methods.
The Chapter is based on results which have originally been presented in the
papers given in the Appendices A, B, and C.

3.1 Sphere Detection

The problem of performing MLSD using Sphere Detection has gained much at-
tention over the years [6,38–44]. This Section briefly describes the SD algorithm
and shows how the MLSD can be achieved computationally efficient. Further-
more, it is described how SD can be applied in frequency-selective channels and
how the effect of imperfect channel estimation can be taken into account when
the radius of the sphere is determined.



16 Detection using QL-factorization

The Sphere Detection algorithm address the problem of finding the integer least-
squares solution in a clever way. This corresponds to solving the least-squares
problem when the unknown vector consists of integer elements. This is some-
times also referred to as the closest lattice point problem [40,41]. In general, the
integer least-squares problem can be expressed as

arg min
x∈ZN

∥y −Hx∥22 , (3.1)

where Z represents a N -dimensional integer vector. From (3.1), we see that it
is equivalent with MLSD if we minimize over Ω instead of Z. As mentioned in
Section 2.3, the general integer least-squares problem is much more complicated
to solve than the “standard” least squares problem and, thus, if the received
signal, y, is arbitrary, the expected complexity will be exponential [6]. However,
when the received point is a lattice point distorted by additive Gaussian noise, it
has been shown in [6] that the expected complexity tends to behave polynomially
over a wide range of SNRs. The complexity will, however, still be exponential
for cases where we have low SNR or where the number of receive- and transmit-
dimensions are huge [45]. We will first consider the general case where there is
no structure in H, but since H often has a certain structure (e.g. Toeplitz) in
many wireless systems, we also address this in the next Subsection.

The integer least-squares problem can geometrically be represented as finding
the closest lattice point in a skewed lattice, Hx, based on the received signal,
y [6]. Thus, the basic idea behind the SD algorithm is simply to solve the MLSD
problem by only searching over a limited number of lattice points inside a sphere
around the received point as illustrated in Figure 3.1.

R

y
1

y
2

Figure 3.1: Principle of SD with radius, R, for the 2-dimensional case.
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Even though the idea behind the SD is quite simple, we need to address two
issues in order to design an efficient algorithm. Firstly, we need a method to
determine which points are inside the sphere without computing distance from
the received point to each of the lattice points (this will not get rid of the
the exponential behavior). Secondly, we also need a scheme for choosing the
radius, R, of the sphere. This might seem like a trivial thing, but it turns out
that the size of the radius will have a significant impact on the complexity of
the algorithm [46–48]. If the radius is too small there will be no lattice point
inside the sphere, while a too large radius will include too many points and the
complexity will still be exponential. A natural choice of the radius would be
the covering radius of the lattice, which is defined as “the smallest radius of
spheres centered at the lattice points that cover the entire space” [6]. However,
the problem of finding the covering radius is also exponential in complexity [6]
and, therefore, there have been several investigations on selecting the radius
properly, in example see [46,48,49] and the references therein.

In order to determine if a point is inside the sphere efficiently, we perform a QL-
factorization (or QR-factorization) of the channel matrix, H = Q̃L̃. Based on the
QL-factorization we can get a new equivalent system equation by multiplying
the system equation in (2.1) by Q̃H such that

y =Hx + υ = Q̃L̃x + υ ⇔ (3.2a)

ỹ = L̃x + υ̃ , (3.2b)

where we have used the fact that Q̃ ∈ CM×M is a unitary matrix and defined
ỹ ≜ Q̃Hy and υ̃ ≜ Q̃Hυ. Importantly, it also follows from unitarity that the
noise statistic is not changed (under the assumption that we have Gaussian
noise). In order to ensure a unique factorization we have

L̃ ≜ [ 0(M−N)×N
L

] , (3.3)

where M ≥ N and where we require that the N ×N lower triangular matrix,
L, corresponds to the Cholesky factor of HHH. This implies that L is positive
definite and thus contains real-valued positive diagonal elements (assuming that
rank(H) = N). Using (3.2) we can rewrite the optimization problem in (2.6) to

x̂ML = arg min
x∈ΩN

∥ỹ − L̃x∥22 (3.4a)

= arg min
x∈ΩN

∥QHy −Lx∥22 + ∥QH
0 y∥22 , (3.4b)

where Q̃ ≜ [Q0,Q] and Q0 contains the first M − N columns of Q̃, while Q
represents the remaining N columns. Since we are optimizing over x, we can
disregard the latter term on the LHS in (3.4b) (or simply collect this term in
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the radius constraint shown below). The lower triangular structure in L has the
advantageous property that we can examine a single dimension at a time and,
thereby, we can design an efficient detection algorithm. If a point lies inside (or
on the boundary of) a sphere centered at the received point, ý ≜QHy, with the
radius, R, it has to satisfy

R2 ≥ ∥ý −Lx̂∥22 . (3.5)

This imply that it certainly has to fulfill the constraint

R2 ≥ ∣ý1 − (L)1,1 x1∣2 ,

and, thereby, we can construct boundaries for the symbol such that

−R + ý1(L)1,1 ≤ x̂1 ≤ R + ý1(L)1,1 . (3.6)

We can then tighten the constraint in order to bound the next symbol based on
our knowledge of x̂1:

−R2∣1 + ý2∣1(L)2,2 ≤ x̂2 ≤ R2∣1 + ý2∣1(L)2,2 ,

in which we have used R2
2∣1 ≜ R2

− ∣ý1 − (L)1,1 x̂1∣2 and ý2∣1 ≜ ý2−(L)2,1 x̂1. This
procedure can be repeated for each dimension until we have reached the Nth
dimension.1

The radius of the sphere can be selected based on the noise statistics, such that

∥υ̃ − L̃(x − x̂)∥22 ≈ ∥υ̃∥22 , (3.7)

where we have combined (3.5) and (3.2). The approximation in (3.7) is valid
when the ML is in fact the transmitted sequence (i.e. when x = x̂). Given that
the noise is AWGN, the squared 2-norm of υ is a Chi-Square distribution with
M complex degrees for freedom, ∥υ∥2 ∈ χ2

M . The probability of having a point
inside the sphere (here denoted as 1 − ε) can, therefore, be computed by

P (χ2
M ≤ R2) = 1 − ε .

This corresponds to evaluating the inverse Chi-Square distribution and can be
implemented by look-up tables for the distribution [6, 48]. As indicated earlier,
the SD algorithm can turn out to be very computationally complex at low SNR
and for high dimensional lattice points, which is due to a very loose bounding
caused by the radius. Instead, we can use increasing radii in the SD algorithm,
which often gives a huge reduction in complexity but it comes with the cost of
no longer guaranteeing the ML solution. However, in [46] a statistically sound
method for computing the increasing radii, which can provide a performance
that comes arbitrarily close to the ML solution, has been presented.

1It is assumed that the channel matrix has rank(H) = N . If the rank is lower than this,
we can only apply SD until we have reached rank(H), and we would then have to perform
exhaustive search in the remaining dimensions to obtain the ML solution.
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3.1.1 SD in Multipath Channels

In situations where we have a multipath channel, we can apply the SD algorithm
without performing a full QL-factorization ofH due to the lower block triangular
form of the channel matrix in (2.3). As it is shown in [2,47,48], we can achieve
a lower triangular matrix H̃ by the transformation

H̃ = (I⊗QH
0 )H ,

where I is an identity matrix of size (J +L − 1) × (J +L − 1) and we have defined
Q0L0 ≜ H0. This simply corresponds to a factorization of each submatrix in
H with Q0. Given a SISO system (i.e. a block size of one) we do not have
to perform the QL-factorization at all since H already has a lower triangular
structure.

The lower triangular structure in H̃ makes it possible to combine the SD al-
gorithm with the Viterbi algorithm as shown in [50], and the MLSD can be
obtained by examining only the states in the trellis diagram, which lie inside
the sphere, corresponding to a pruning of the trellis diagram. Alternatively, the
SD algorithm can be combined with the MAP detector to obtain near-optimal
symbol-by-symbol detection by forming approximate bit posteriors [38, 51].

To make the SD algorithm implementable in “real applications” it will some-
times be necessary to specify the maximum allowed complexity since it, in the
worst case, is exponential. By using the Schnorr-Euchner search strategy [43], it
is possible to set an upper limit on the number of states, which are allowed to be
examined at each time index in the trellis diagram and, thereby, only search the
most likely paths in the trellis diagram. Furthermore, it is possible to specify
the maximum number of state transitions allowed from a given state. Both of
these methods are, of course, suboptimal but can be a necessary compromise.
The performance of these two suboptimal schemes will greatly depend on the
CIR (among others, the numerical value of the diagonal elements in H̃, since
these appear in the denominator of (3.6), which are used for bounding of the
symbols). The intuitive explanation for the connection between the bounding
interval and the pulse shape of the CIR is that the decision of disregarding
states in SD can first be made when a considerable extent of confidence has
been obtained. In other words, this implies that the SD algorithm will first
prune the trellis diagram when a certain amount of energy has been received
from the transmitted symbol [47].

In Section 3.2 it will be proven that a QL-factorization of the multipath chan-
nel matrix will asymptotically correspond to prefilter the original CIR with an
all-pass filter such that we obtain a minimum-phase filter on the detector side
as illustrated in Figure 3.2. The Figure corresponds to the system model shown
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in (3.2), which was obtained by the QL-factorization. It can be seen that it is
possible to regard SD as a generalization of traditional reduced-state sequence
estimation, providing a unifying framework for the two detection methods.

Hx
y

+ xx̂Q
H

Det.
y
~

Figure 3.2: System model with prefilter and detection stage included.

As mentioned in Section 2.5, the minimum-phase filter has the convenient prop-
erty of providing the highest possible energy concentration in the first taps.
Thus, a full QL-factorization of the channel matrix can, potentially, reduce the
computational complexity (compared to the decoding directly on H̃) due to the
earlier decision making in the trellis diagram. Furthermore, it will be shown in
Section 3.3 that efficient methods for factorizing the channel matrix exist, which
make it more likely that a complexity reduction can be achieved.

Simulations

In order to demonstrate the effect of the QL-factorization of the channel ma-
trix, we present simulation results which originally were presented in [47]. The
simulations are carried out for the EDGE system, having a frame format and
modulation type identical to that specified in the EDGE standard [13], e.g. a
3π/8 rotated 8-PSK signal is used. It is assumed that frequency hopping is
made between each received burst and the CIR and noise variance are perfectly
known. Only single user detection is considered in the simulations and only a
single receive antenna is assumed to be available. Moreover, AWGN is added
to account for any thermal noise. To exploit the diversity in the channel model,
the oversampling factor in the channel is set to Nsps = 2 in respect to the symbol
rate. Due to this oversampling, the received signal is jointly prefiltered before it
is passed to the detector, leading to NR = 1 in the detector. The channel mod-
els used in the simulations are the Typical Urban (TU0) and the Hilly Terrain
(HT0) profiles defined in the GSM specifications [13].
The channel profiles of TU and HT, obtained by the convolution of the square
root of the power delay profile with the transmit filter response (the so-called
C0-pulse in [26]), are shown in Figure 3.3a. 3.3b, an example of the channel
coefficients of the HT profile is shown (Nsps is here set to 1). The coefficients
obtained using a minimum-phase prefilter are also shown to illustrate the effect



3.1 Sphere Detection 21

of the filter. It is observed that the number of taps needed for modeling the
channel properly is approximately L = 7 when there is no prefilter, while the
channel length can be reduced to L = 6 using a minimum-phase prefilter. The
optimal detector would in the latter case require a search in a trellis diagram of
86−1 ≈ 33 ⋅ 103 states per symbol, which is still an unacceptable high complex-
ity and it will get worse still for the newly specified EGPRS2 standard, where
modulation up to 32-QAM can be applied [16].
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(a) The ensemble average of the pulse shape
of the Typical Urban (TU) and the Hilly
Terrain (HT) profiles (including the trans-
mit pulse shaping).

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lag in symbols

A
bs

ol
ut

e 
va

lu
e

 

 

Before prefilter
After prefilter

(b) The absolute value of filter coefficients
for one realization of the HT profile with
and without minimum-phase prefiltering.

Figure 3.3: Delay profile and single realization thereof for the TU and HT
profiles in the EDGE system.

In the simulations SD has been combined with the max-log MAP receiver to ob-
tain approximate bit posteriors and the increasing radii scheme has been used.

The radii have been obtained from P ( ∣υ1∶n∣2 > r2n) = ε2k, where k is the number

of times the algorithm is restarted, which is done if no points are found inside
the sphere. Furthermore, the approach of specifying the maximum number of
allowed states in the trellis diagram has been used in all the simulations consid-
ering SD. The Bit Error Rates (BER)s for the two channel profiles have been
plotted in Figure 3.4.
In Figure 3.4a, the BER performance of the proposed sphere detector is pre-
sented for the TU profile. To illustrate the effect of prefiltering, BER curves
are given for the same simulation setup, but with and without minimum-phase
prefiltering. In the labels, “S”, denotes the maximum number of allowed states
in the trellis diagram, while “MaxST” denotes the maximum number of allowed
state transitions for a given state. In Figure 3.4a, the performance of the max-log
MAP detector and the Linear Minimum Mean-Square Error (LMMSE) detector
have also been included as references. The detector relying on minimum-phase
prefiltered SD with at most 16 states in the trellis diagram is capable of obtain-
ing a performance which is comparable with the max-log MAP. This is not the
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(a) TU profile with and without prefiltering.
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(b) HT profile with and without minimum-phase prefiltering.

Figure 3.4: BER performance for different channel profiles. S denotes the maxi-
mum number of states in the trellis diagram and MaxST is the maximum number
of state transitions from a given state.
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case when the prefilter is not used.
In Figure 3.4b, the performance of the detectors for the HT profile is shown.
For this profile, it has not been possible to simulate the max-log MAP detector
due to its huge complexity. From Figure 3.4b it is clear that prefiltering gives
a significant improvement in BER performance. Furthermore, it is observed
that the complexity can be reduced considerably without degrading the BER
performance.

SD and Channel Uncertainty

When we do not have perfect knowledge of the CIR, which will be the case
in wireless communication systems, this uncertainty of the channel estimation
should be taken into account when we estimate the radius of the sphere. For
simplicity we consider the case of SUD in a SISO system. We will assume AWGN
and use the Least Squares (LS) estimate of the training sequence to determine

the channel estimate ĥ ∼ CN (hML,Σĥ
) where we have

hML = (XHX)−1XHyTS =X+yTS (3.8a)

Σ
ĥ
= σ2

υ (XHX)−1 . (3.8b)

In (3.8a), we have introduced the vector yTS ∈ CNTS−L+1, which represents the
received signal based on a transmission NTS training symbols. Also, we have
defined the matrix X ∈ Ω(NTS−L+1)×L containing the training symbols

X ≜
⎡⎢⎢⎢⎢⎢⎢⎢⎣

xNL
⋯ x1

xNL+1
⋯ x2⋮ ⋯ ⋮

xNTS
⋯ xNTS−L+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Assuming that the training set is designed such that all column vectors in X
are orthonormal, we get from (3.8) that covariance matrix of size L ×L will be

Σ
ĥ
= σ2

υ( (NTS −L + 1) IL)−1 = σ2
υ

NTS −L + 1
IL .

The estimated channel matrix can be expressed as Ĥ ≜ H + ∆H, where H
represents the true channel matrix, and ∆H denotes the estimation error which
in the SISO case will have the form

∆H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆h0 0 ⋯ 0
⋮ ⋱ ⋱ ⋮

∆hL−1 ⋱ ⋱ 0
0 ⋱ ⋱ ∆h0

⋮ ⋱ ⋱ ⋮

0 ⋯ 0 ∆hL−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
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Here we have ∆hl ∼ CN (0, σ2

υ

NTS−L+1
) leading to a detector that will be mini-

mizing

∥y − Ĥx∥22 = ∥H(x − x̂) + υ −∆Hx̂∥22 ≈ ∥υ −∆Hx∥22 , (3.9)

where the approximation in (3.9) is valid when MLSD solution is in fact the
transmitted symbol vector. If x̂ is independent of υ and ∆H, the RHS of
(3.9) can be described by a Chi-Square distribution having the variance σ̃υ

2 =
σ2
υ (1 + L

NTS−L+1
). Thus, the variance will no longer only depend on the noise

variance, but also the number of training symbols and the channel length.

3.2 The QL-factorization and the Minimum-Phase

Prefilter

In this Section we prove that the QL-factorization of a time-invariant channel
matrix in a multipath environment will provide us with both the all-pass filter
and the minimum-phase filter. We first present an intuitive argument for the
connection and subsequently present a more formal proof of this. The proof has
been given in [52] (see Appendix C), but in order to have coherent treatment
of the QL-factorization of channel matrices in multipath channels it has been
reproduced here.

When we QL-factorize the time-invariant block-banded block Toeplitz matrix,
each block-row in L will be a shifted version of each other for N → ∞, where
each block-row is given by the spectral factorization, [53]. Likewise, the M ×M

unitary matrix, Q, will be the matrix equivalent to the all-pass filter, where
again each block-column ofQ will be a shifted version of each other (forN →∞).
Furthermore, it can be seen that each of these block-columns will correspond to
the finite dimensional analog of the all-pass filter associated with the minimum-
phase filter.
In the finite length case, each block-row of L (block-column of Q) will not be
exactly the same, but as we will show later in the paper, the values in each of
these will converge toward the true minimum-phase filter as a function of the
block-row number.2 The block-columns of Q will similarly converge toward the
associated all-pass filter.

2Strictly speaking the elements in the block-row of L converge toward the minimum-phase
filter from the bottom up, since the Householder transformation computes the elements in the
lower triangular matrix from the bottom (when we perform a QL-factorization instead of a
QR-factorization).
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Algorithm 1 Householder Transformation for QL-fact.

1: Input: Matrix B
2: B̂⇐B
3: for k = 1 to min{M,N} do
4: {Pick out the last column vector of B̂}

5: b̂ = B̂∶,end
6: k̃ =M − k + 1
7: {Do Householder reflection of b̂ (line 8 to 12)}

8: α = ∥b̂∥
9: α̃ = ei∠b̂

k̃ α

10: v = b̂ + α̃ek̃
11: Ûk = e−i∠b̂

k̃ (2vvH

∥v∥2 − I)
12: B̃ = ÛkB̂
13: {Remove last row and last column of B̃}

14: B́⇐ B̃1∶(end−1),1∶(end−1)
15: {Repeat for new B̂}

16: B̂⇐ B́
17: end for

After K =min{M,N} iterations we have;
L =UK . . .U2U1B
Q =UH

1 UH
2 . . .UH

K

The Householder Transformation

In our analysis of the convergence toward the minimum-phase filter and the all-
pass filter we use the Householder transformation to compute the QL-factorization.
Therefore, we first briefly describe the steps of this transformation. The rea-
son for choosing this transformation is its advantageous numerical stability to
roundoff effects. For a more thorough treatment of the transformation and its
numerical properties the reader is referred to [54]. In most textbooks, the House-
holder algorithm is only described for real numbers and since this transformation
plays a crucial role in our treatment of the convergence rate, we here illustrate
a complex version of the transformation. The Householder transformation (for
QL-factorization) of a matrix B ∈ CM×N works as illustrated in Algorithm 1,
where ek denotes the unit vector with 1 in the kth position, and where we have
defined the unitary matrices Uk ∈ CM×M and Ûk ∈ C(M−k+1)×(M−k+1) as

Uk ≜ [ Ûk 0
0 Ik−1

]
.
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3.2.1 Convergence rate

In this Subsection we examine the convergence properties of the rows and
columns the QL-factorization toward the minimum-phase and all-pass filters.
In order to simplify this analysis, we first consider the simplest possible case,
which is for the SISO case with a filter length of L = 2. We will then extend this
result to the more general one.

SISO system with filter length L = 2
Any SISO filtering matrix of a length L = 2 system can be formulated as

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0
a 1 ⋱ ⋮

0 a ⋱ 0
⋮ ⋱ ⋱ 1
0 ⋯ 0 a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where we have normalized the impulse response such that a ≜ h1/h0 ≠ 0, leading
to H(z) = 1 + az−1. In this case it is trivial to compute the minimum-phase
solution using the root-method

zmp = { −a if ∣a∣ ≤ 1
−1/a∗ else

, (3.10)

where zmp represents the minimum-phase root. Since H(z) = Hap(z)Hmp(z)
we have

Hap(z) = ⎧⎪⎪⎨⎪⎪⎩
1 if ∣a∣ ≤ 1

z−1+ 1

a

1+ 1

a∗
z−1

else
, (3.11)

where Hmp(z) and Hap(z) represent the z-transformed minimum-phase and all-
pass filters, respectively.3

By QL-factorizing the filtering matrix we get

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αN 0 ⋯ 0
βN−1 αN−1 ⋱ ⋮

0 βN−2 ⋱ ⋮

⋮ ⋱ ⋱ α2 0
0 ⋯ 0 β1 α1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.12)

where we are interested in determining the α and β values. For notational
brevity we introduce γk ≜ b̂k̃, where b̂k̃ is defined in Algorithm 1 as the last

3In order to ensure that the magnitude response of the all-pass filter will always be one,
we have normalized the minimum-phase filter such that Hmp(z) = a(1+ 1/a∗z−1) whenever a
root is reflected inside the unit circle (i.e. when ∣a∣ > 1).
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element in vector b̂, which is being reflected in the kth iteration. Since b̂1 =[0, . . . , 0, 1, a]T we have γ1 = a for the first Householder reflection (also referred
to as iteration k = 1). Based on the input vector we see from line 8 in Algorithm

1 that α1 =
√
1 + ∣γ1∣2 and from lines 9-10 we get v1 = [0, . . . , 0, 1, γ1 + α̃1]T .

Lines 11 and 12 in Algorithm 1 lead to the following expression for the β,

β1 = 2a e−i∠γ1 (γ1 + ei∠γ1α1)
1 + ∣γ1 + ei∠γ1 α1∣2 (3.13a)

= 2a (∣γ1∣ + α1)
1 + ∣ ∣γ1∣ + α1∣2 , (3.13b)

where in (3.13b) we have used γ1 = ei∠γ1 ∣γ1∣. After the first Householder reflec-
tion we have

U1H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋱ 0 ⋯ 0
⋱ 1 ⋱ ⋮

⋱ a 1 0
⋮ 0 γ2 0
⋯ 0 β1 α1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

since there are only two non-zero elements in the columns of H. In the next
iteration we will have b̂1 = [0, . . . , 0, 1, γ2]T , and by examining the update
steps in the Householder reflection carefully, it becomes clear that the value of
γk+1 can be expressed as a function of γk, leading to a recursive update given
as

γk+1 = a(1 − 2

1 + ∣γk + ei∠γkαk ∣2 ) (3.14a)

= a
⎛⎜⎜⎝1 −

2

1 + ∣ ∣γk∣ +√1 + ∣γk ∣2∣2
⎞⎟⎟⎠ (3.14b)

= a ∣γk ∣√
1 + ∣γk ∣2 . (3.14c)

Likewise, the general expression for the α’s and β’s will be

αk =
√
1 + ∣γk ∣2 (3.15)

βk = 2a (∣γk∣ + αk)
1 + ∣ ∣γk ∣ + αk ∣2 . (3.16)

From (3.15) we can verify that the α values will be positive and real-valued,
which is exactly what is required from the QL-factorization. From (3.14) and
(3.16) we also see the interesting property that all the values of the γk’s and
the βk’s will always have the same angle in the complex plane, determined by
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∠βk = ∠γk = ∠a. This implies that the convergence of the βk’s to the true
minimum-phase solution for each iteration takes place in the same direction in
the complex plane.

Lemma 3.1 (Recursive computation of αk and βk) In a time-invariant SISO
system with L = 2, the coefficients in L obtained by the Householder transfor-
mation can be determined as

αk =
√
1 + ∣γk ∣2

βk = 2a (∣γk ∣ + αk)
1 + ∣ ∣γk∣ + αk ∣2

where

γk+1 = a ∣γk∣√
1 + ∣γk∣2 .

Proof. Given above. As shown in [52, Appendix A] the recursive expression

for γk given in (3.14), can be rewritten as

γk = ei∠a

¿ÁÁÀ ∣a∣2 − 1
1 − ∣a∣−2k . (3.17)

Now in order to show that the values of αk and βk match the minimum-phase
filter, we need to determine the fixed-point solutions for the parameter γk in
(3.14), such that

γfix = f (γfix) , where f(x) = a ∣x∣√
1 + ∣x∣2 .

As shown in the lemma below, there are two fixed-points.

Lemma 3.2 (Fixed-points for γ) In a time-invariant SISO system with L =
2, the fixed-point solutions for γ will be

γfix = { 0 if ∣a∣ ≤ 1
ei∠a

√∣a∣2 − 1 else
.

Proof. See [52, Appendix B] for a detailed proof.
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Based on these fixed-points for γ we have

αfix = { 1 if ∣a∣ ≤ 1∣a∣ else
(3.18a)

βfix = { a if ∣a∣ ≤ 1
ei∠a else

. (3.18b)

Thus, the root of L obtained using the QL-factorization, will be zL = −βfix/αfix

zL = { −a if ∣a∣ ≤ 1
−ei∠a/∣a∣ else

= { −a if ∣a∣ ≤ 1
−1/a∗ else

,

(3.19)

which corresponds to the result given in (3.10), obtained by the traditional root-
method of spectral factorization. Likewise, the unitary matrix will converge to
the Infinite Impulse Response (IIR) all-pass filter given in (3.11). In order to
ensure that we do in fact get the minimum-phase solution, we also need to
prove that the recursive expression for γk converges to the fixed-points. In [52,
Appendix C] it has been proved that this is indeed the case. Thus, it can be
concluded that in the SISO case with a filter length of L = 2, the elements in
the rows of L converge to the minimum-phase filter.4

In the following we examine the convergence rate to the fixed-point solutions,
which can be determined based on the expression for γk given in (3.17). In order
to compute the convergence rate we introduce

γk = γfix +∆γk , (3.20)

where ∆γk represents the deviation of γk from the fixed-point solution. To
upper bound the convergence we treat the cases of ∣a∣ ≤ 1 and ∣a∣ > 1 separately.

The ∣a∣ ≤ 1 case:
From (3.17) we get that

∣∆γk ∣ = ∣γk − γfix∣ = ∣a∣k
¿ÁÁÀ ∣a∣2 − 1∣a∣2k − 1 (3.21a)

≤ ∣a∣k
¿ÁÁÀ∣a∣2 − 1∣a∣2 − 1 = ∣a∣k for ∀ k ≥ 1 . (3.21b)

The ∣a∣ > 1 case:

When ∣a∣ > 1 the fixed-point is ∣γfix∣ = √∣a∣2 − 1 and from [52, Lemma C.1] we

4This is no surprise, since it has already been shown in [25, 53] that the lower triangular
matrix provides the spectral factor.
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know that ∣γk∣ ≥ ∣γfix∣. As mentioned in [52, Appendix C] all of the terms which
are compared have the same argument and, therefore, we can simply ignore the
angle and just consider the case where the terms are real and positive. We then
get

∣∆γk ∣ = ∣γk∣ − ∣γfix∣ (3.22a)

=
√∣a∣2 − 1⎛⎜⎝

1√
1 − ∣a∣−2k − 1

⎞⎟⎠ (3.22b)

≤
√∣a∣2 − 1( 1

1 − ∣a∣−2k − 1) (3.22c)

≤ ∣a∣−2k
√∣a∣2 − 1
1 − ∣a∣−2 = ∣a∣−2k

∣a∣2√∣a∣2 − 1 . (3.22d)

Thus, we have the following lemma which upper bounds the convergence rate.

Lemma 3.3 (Upper bound on the convergence rate of γ) In a time-in-
variant SISO system with L = 2, the convergence rate of γk can be upper bounded
by

∣∆γk ∣ ≤ ∣∆Ìγk ∣ = ⎧⎪⎪⎨⎪⎪⎩
ek ln(∣a∣) if ∣a∣ ≤ 1

∣a∣2√
∣a∣2−1 e2k ln(1/∣a∣) else

.

From Lemma 3.3 we see the interesting property that the convergence rate is ex-
ponentially fast and is determined by ∣a∣, in other words, the convergence rate to
the fixed-point is governed by the localization of the root in the complex plane.
In the case where we have a root which is close to the unit circle, we will have
slow convergence to the minimum-phase solution. In Figure 3.5a the convergence
of ∆γk and ∆Ìγk have been shown as a function of the number of iterations for
a L = 2 SISO system in the case where the root is z = {−0.3,−0.6,−0.9}, re-
spectively. From the Figure it is clearly seen that the distance of the root from
the unit circle has a huge influence on the convergence rate and, furthermore,
we see that the upper bound becomes tighter as the distance between the root
and the unit circle grows. It is also relevant to examine how the deviation ∆γk
affects the value of the root and, therefore, we introduce zL,k ≜ −βk/αk, which
represents the root obtained from L in the kth iteration. Likewise, we haveÌzL,k ≜ −Ìβk/Ìαk, where the approximated values of αk and βk have been obtained
using ∆Ìγk.
In Figure 3.5b the deviations from the true minimum-phase root has been plot-
ted, where we have defined ∆zk ≜ zmp − zL,k and ∆Ìzk ≜ zmp − ÌzL,k. From the
Figure, we see that the deviation ∆γk is significantly larger than the deviation
in the root value ∆zk.
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Figure 3.5: Example of deviations of ∆γk, ∆Ìγk, ∆zk, and ∆Ìzk in a SISO system,
with length L = 2 and root at a = {0.3,0.6,0.9}, respectively
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3.2.1.1 SISO system with filter length L > 2
In the case where we have a filter length of L > 2, the deviations of the recursions
for the Householder transformation become much more complicated, since the
vector b in Algorithm 1 will now have L non-zero elements. Thus, it will no
longer be the simple scalar recursion for γk but instead a (L−1)×(L−1) matrix
recursion and, furthermore, due to the multiple roots there will also be multiple
fixed points. However, we can generalize the result obtained for the L = 2 SISO
system by factorizing the filtering matrix into (L−1) products of L = 2 filtering
matrices,5 such that

H =H(L−1)2 H
(L−2)
2 . . .H

(1)
2 , (3.23)

hereH
(l)
2 is the filtering matrix of the lth length two filter, where the z-transform

of the equivalent infinite-length filter impulse response is given as H
(l)
2 (z) ≜

1+ al z
−1. The factorization makes it possible to perform a QL-factorization on

each of the (L − 1) terms in (3.23), which gives

H
(l)
2 =Q(l)2 L

(l)
2 . (3.24)

where the convergence rate of each of the (L − 1) terms is given in Subsection
concerning L = 2 systems. By inserting (3.24) into (3.23) we get

H =QL =Q(L−1)2 L
(L−1)
2 Q

(L−2)
2 L

(L−2)
2 . . .Q

(1)
2 L

(1)
2 . (3.25)

We would like to reorder the terms on the RHS of (3.25) such that all Q
(l)
2

terms are grouped together followed by all the L
(l)
2 terms, i.e.

H ≅Q(L−1)2 Q
(L−2)
2 . . .Q

(1)
2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q

L
(L−1)
2 L

(L−2)
2 . . .L

(1)
2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L

, (3.26)

where the equality holds when the system size N → ∞. The reason that it is
possible to rearrange the terms when the system size goes to infinity is due to fact

that L
(l)
2 and Q

(l)
2 asymptotically become circulant matrices [55], and thereby,

we can use the commutative property of circulant matrices [55]. Conceptually

it is fairly easy to see why L
(l)
2 asymptotically becomes circulant, since it is

a banded matrix, but this might not be as obvious for the all-pass filtering
matrix, which represents an IIR filter. However, it has been proved in [56] that
the IIR filter has an exponential decay, which implies that, in the limit where the
system size tends to infinity, the IIR filter becomes a Toeplitz matrix. In [55] it is
proved that general Toeplitz matrices containing absolutely summable elements
(also referred to as Wiener Class Toeplitz Matrices) asymptotically converge
to circulant matrices too. Thus, in the limit N → ∞ both matrices become

5It should be noted that the size of H
(l)
2

decreases by one (both column- and row-wise) as
l decreases by one, in order to enable the factorization.



3.2 The QL-factorization and the Minimum-Phase Prefilter 33

circulant and, therefore, we know that the lower triangular matrix L converge
to the minimum-phase filter for SISO systems of arbitrary length. Due to the
unique factorization of H = QL (where we require that the elements on the
diagonal of L are real-valued and positive), Q must be the matrix version of
the all-pass filter associated with the minimum-phase filter, since it is the only
unitary matrix which links L with H.
Based on the expression in (3.26) it is possible to approximate the convergence
rate in a SISO system of arbitrary length, by examining the deviations in the

approximated root values ∆Ìz(l)k ≜ z(l)mp − Ìz(l)L,k, where z
(l)
mp represents the lth root

of the true minimum-phase filter and Ìz(l)L,k ≜ −Ìβ(l)k /Ìα(l)k is the approximated value
of the lth root based on the upper bound given in Lemma 3.3. Thus, in the
z-domain the difference between the true minimum-phase filter and the filter

obtained based on Ìz(l)L,k becomes

∆H(z) ≜Hmp(z) − ÌLk(z) (3.27a)

≈ z−(L−1) [L−1∏
l=1
(z − z(l)mp) − L−1

∏
l=1
(z − Ìz(l)L,k)] , (3.27b)

where ÌLk(z) represents the z-transform of the approximate value for the kth
row in the lower triangular matrix, L. In (3.27b) we have normalized the first
coefficient and from the equation we can see that the main contribution to the
difference between the true minimum-phase filter and the result obtained by the
QL-factorization, will asymptotically come from the root which is closest to the
unit circle. This observation fits well with what is described in [24, p. 508],
where the convergence to the stabilizing solution of the DARE is exponential
and determined by the spectral radius.

MIMO system

In the case of a MIMO system, we can first examine the length 2 system
H(z) = I +H1z

−1 where NT = NR. Compared to the SISO system of the same
length, the only difference is that the operations now become NR ×NT matrix
operations instead of scalars. However, since we have η =min{NT ,NR} (L − 1)
roots, we get 2η fixed-points, thus it becomes more complicated to analyze even
a simple L = 2 MIMO system. In the case of an arbitrary filter length, the
argument presented in the previous Subsection, concerning the SISO system of
length L > 2, can be repeated here.

It should be mentioned that during the process of writing the final version
of the thesis it has been discovered, that the convergence analysis presented
in this Subsection could also be done using classical fixed point theory. The
contraction mapping theorem could e.g. be used for proving the existence and
uniqueness of the fixed points [57]. The convergence rate and basins of attrac-
tion to a particular solution can then be determined and this framework might
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be more suitable for analyzing the MIMO systems.

3.2.2 Simulation Results for Convergence

In this section simulation results for both SISO and MIMO systems are pre-
sented. For the SISO system we examine two channel scenarios; in the first one
we have complex Gaussian distributed, CN (0,1), filter coefficients and in the
second one we consider the Typical Urban (TU0) profile from the GSM specifi-
cations [13] shown in Figure 3.3.

In order to measure the convergence rate of the filter coefficients, we compute
the relative difference between two overall filtering impulse response matrices,Ha,k and Hb,k, at the iteration number k, as

d (Ha,k;Hb,k) ≜ ∥Ha,k −Hb,k∥2∥Ha,k∥2 . (3.28)

We define Hmp as the impulse response of the true minimum-phase filter, andHL,k represents the impulse response obtained from L (at iteration k). To
measure how well the estimated all-pass filter, HQ,k, matches the estimated
minimum-phase filter HL,k, we filter the original impulse response H with(HQ,k)H , which gives us the output HL̂,k.

In all the simulations presented below, we have made 10,000 realizations of
the examined channel profile, and computed the minimum-phase and the all-
pass filter for each realization. The filter length of the all-pass filter is set to
Lap = 64 in the simulations. Based on the results obtained from the 10,000
filter realizations, we have computed the mean and median value of the relative
errors, d (Hmp;HL,k) and d(HL,k;HL̂,k).
The results for the Gaussian filter coefficients with uniform power in the delay
domain are shown in Figure 3.6, where we see that the rows in L converge to the
true minimum-phase filter as a function of the iteration number (i.e. the row
number).6 From the Figure we observe that the median value of d (Hmp;HL,k)
converges exponentially to zero and that the median difference is about 10−8

after 140 iterations. The convergence of the average difference is considerably
slower, due to the instances where a channel realization has zeros very close
to the unit circle, which will lead to a slow convergence. Thus, these cases
tend to bias the estimate of average convergence rate. This is indeed what can
be observed from the estimated PDF of d (Hmp;HL,k). Likewise, the mean of

6Again, strictly speaking the convergence occurs from the last row and up, since it is the
QL-factorization.
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Figure 3.6: The relative deviations d (Hmp;HL,k) and d(HL,k;HL̂,k) in a SISO
channel with Gaussian coefficients having uniform power in the delay domain,
L = 6.
Table 3.1: Complexity of computing the minimum-phase filter using the fast
QL-factorization (QL) and the DARE method (DARE) using k iterations in a
length L SISO system.

k Method L = 5 L = 10 L = 15 L = 20
10

QL 3.18 ⋅ 102 5.98 ⋅ 102 9.03 ⋅ 102 1.23 ⋅ 103
DARE 3.70 ⋅ 102 1.48 ⋅ 103 3.34 ⋅ 103 5.95 ⋅ 103

20
QL 6.38 ⋅ 102 1.17 ⋅ 103 1.72 ⋅ 103 2.30 ⋅ 103

DARE 7.30 ⋅ 102 2.94 ⋅ 103 6.65 ⋅ 103 1.19 ⋅ 104

d(HL,k;HL̂,k) seems to be biased, which (besides the effect described above) is
also due to the truncation of the IIR all-pass filter. Both the mean and median
value of the approximated convergence of d (Hmp;HL,k) computed on the basis
of (3.27) have also been plotted. From the Figure it can be seen that the trend
of the true and approximated deviation behaves similarly. As a reference we
have also included the relative deviation between the true minimum-phase filter
and the one obtained using the DARE method, and from this it is possible to see
that convergence of the two iterative methods is almost identical. In Table 3.1
the complexity of computing the minimum-phase filter using the two iterative
methods has been compared (based on (2.16) and (3.40)), and from this it is
seen that the fast QL-factorization method has a computational advantage.
In Figure 3.7 the result for the TU0 profile is shown and it is seen that the
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Figure 3.7: The relative deviations d (Hmp;HL,k) and d(HL,k;HL̂,k) in the SISO
channel TU0 with L = 5.
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Figure 3.8: Locations of roots in a 2 × 2 MIMO system with Gaussian filter
coefficients, L = 5. The number of iterations in the QL-factorization is k = 200.
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Figure 3.9: Deviation of the roots in a 2× 2 MIMO system with Gaussian filter
coefficients, L = 5 for iteration k = 20 and k = 200.

convergence rate is faster for this channel type compared with the Gaussian
filter coefficients with uniform power in the delay domain. It is again observed
that the median value of the difference decreases more rapidly than the mean
value. We also see that the approximated convergence of d (Hmp;HL,k) is even
closer to the actual convergence for this channel profile and that the DARE
method again has similar convergence.

In Figure 3.8 we have a plot of the location of the roots of a 2×2 MIMO system
having Gaussian coefficients with filter length L = 5, leading to 8 roots. From
the plot it is seen that the roots of H(z) (illustrated with squares) which lie
outside the unit circle are reflected inside (the circles) using the root method.
Furthermore, it is seen that these roots match the roots of L(z). In Figure 3.9

the root difference ∆z
(l)
k = z

(l)
mp − z(l)L,k has been plotted for each of the roots

l = {1, . . . ,8} for iteration k = 20 and k = 200. The roots have been sorted
according to their distance to the unit circle, such that the one closest to the
unit circle is called root 1, etc. The Figure shows that the closer the root is
to the unit circle, the slower the convergence is, which follows the convergence
analysis given in Section 3.2.1. After k = 200 iterations, it is primarily the
root closest to the unit circle which contributes to the difference between the
filter obtained from L and the true minimum-phase filter. As a concluding
remark to this subsection we can therefore say that it has hereby shown how
the QL-factorization of the channel matrix gives the finite length equivalent to
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the minimum-phase and the all-pass filters.

3.3 Efficient Minimum-Phase Prefilter Compu-

tation

In Section 3.2 it has been proved that the QL-factorization of the time-invariant
multipath channel matrix provides the minimum-phase filter and the all-pass
filter. This knowledge is used to present a novel method for computing these
two classical filters in a computationally efficient way as shown in [58] (found in
Appendix B). We illustrate here how the fast QL-factorization can be exploited
for time-invariant channels.

When general methods are used to compute the QL-factorization, it requiresO (N3) operations [59]. But for Toeplitz matrices there exist methods with
lower computational complexity. Different methods have been proposed for
performing the fast QR-factorization (see e.g. [59–63] and the references therein),
each of which has different numerical properties and slightly different complexity
as well.7 They do, however, all use the shift-invariance property of Toeplitz
matrices to partition it in two ways and it is this partitioning that leads to the
low complexity schemes. In [59], the QL-factorization can be performed using
13MN +6N2 operations for general M ×N Toeplitz matrices, while the method
proposed in [61] requires 13MN + 6.5N2 operations. The methods described
in the literature usually deal with real-valued matrices but the results can be
extended to be valid over the complex field, [61]. To extend the method in [59]
to complex numbers, will however require another type of rank-1 downdating,
which is described in [64]. The methods can also be extended to handle block
Toeplitz matrices for the general MIMO case as well, [65].

In the following, we illustrate how the fast QR-factorization methods utilize
the structure in Toeplitz matrix, which has also been described in detail in
[59]. To keep the description of the fast QR-factorization close to the treatment
found in the literature, we first consider a general Toeplitz matrix, T ∈ RM×N .
Afterwards, we will show the implications of having a more specific channel
matrix, H. Furthermore, we briefly describe how a generalization of the fast
factorization algorithm to complex numbers can be achieved. The fact that the
principal submatricesT−1 ∈ RM−1×N−1 of the Toeplitz matrixT are identical [59]

7Methods for QR-factorization may easily be converted to QL-factorization.
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is exploited in order to derive a fast factorization method, i.e.

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 t−2 ⋯ t−n
t2 t1 ⋯ t−n+1⋮ ⋱ ⋱ ⋮⋮ ⋮ ⋮ t1⋮ ⋯ ⋱ ⋮

tm tm−1 ⋯ tm−n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [ t1 tT

r(1)
tc(1) T−1

] = [ T−1 tc(n)
tT
r(m) tm−n

] . (3.29)

Here tT
r(1) ≜ T1,2∶N denotes the row-vector containing the elements in the first

row of T excluding the element t1, tc(1) ≜ T2∶M,1, t
T
r(m) ≜ TM,1∶N−1, and tT

c(n) ≜
TN,1∶M−1. Let R ∈ RN×N , which is similar to the definition in (3.3), be the
upper triangular Cholesky factor of TTT, which we can partition in two ways
as well

R = [ r1,1 rT
r(1)

01,N−1 Rb

] = [ Rt rc(n)
0N−1,1 rn,n

] , (3.30)

where rT
r(1) ≜R1,2∶N and rT

c(n) ≜RN,2∶N . By substituting the two expressions of

T in (3.29) and the two expressions of R in (3.30) into RTR = TTT we obtain
the following two equations:

⎡⎢⎢⎢⎢⎣
r21,1 r1,1r

T
r(1)

r1,1rr(1) rr(1)rTr(1) +R
T
b Rb

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

t21 + t
T
c(1)tc(1) t1t

T
r(1) + t

T
c(1)T−1

t1tr(1) +TT
−1tc(1) tr(1)t

T
r(1) +T

T
−1T−1

⎤⎥⎥⎥⎥⎦
(3.31a)⎡⎢⎢⎢⎢⎣

RT
t Rt RT

t rc(n)
rT
c(n)Rt rT

c(n)rc(n) + r
2
n,n

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

TT
−1T−1 + tr(m)t

T
r(m) T

T
−1tc(n) + tr(m)t1

tT
c(n)T−1 + t

T
r(m)tm−n tT

c(n)tc(n) + t
2
m−n

⎤⎥⎥⎥⎥⎦
(3.31b)

From the upper left submatrix of (3.31b) we get

RT
t Rt = TT

−1T−1 + tr(m)t
T
r(m) , (3.32)

and from lower right submatrix of (3.31a) we have

RT
b Rb + rr(1)r

T
r(1) = TT

−1T−1 + tr(1)t
T
r(1) . (3.33)

By combining (3.32) and (3.33) a relation between Rb and Rt is achieved:

RT
b Rb =RT

t Rt + tr(1)t
T
r(1) − tr(m)t

T
r(m) − rr(1)r

T
r(1) . (3.34)

This implies that we can compute RT
b Rb based on RT

t Rt using one rank-1
updating and two rank-1 downdating modifications [59].
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We will here briefly describe how a single downdate is executed in [59], and in
order to do this we introduce

ZTZ ≜RT
t Rt + tr(1)t

T
r(1) − tr(m)t

T
r(m) ,

and
ATA = ZTZ − rr(1)r

T
r(1) ,

where we have defined

A ≜ [ i ⋅ rT
r(1)
Z

] .

Using the expression for Z ∈ RN×N and A ∈ C(N+1)×N we can formulate (3.34)
as

RT
b Rb = ZTZ − rr(1)rTr(1) =ATA , (3.35)

where the task is to compute the Cholesky factor Rb based on Z and rr(1)
without forming the Cholesky factorization of RT

b Rb.
In order to achieve this we introduce the matrix V such that

VA =V [ i ⋅ rT
r(1)
Z

] = [ Rb

01×N
] , (3.36)

where the matrix V ∈ C(N+1)×(N+1) consists of a product of N plane rotation
matrices, i.e. V ≜ ṼN,(N+1)Ṽ(N−1),N . . . Ṽ1,2. Each of the plane rotations is
defined as

Ṽk,(k+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ ⋯ 0
0 ⋱ ⋮⋮ i ⋅ ρk ςk

ςk i ⋅ ρk ⋮⋮ ⋱ 0
0 ⋯ ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
←Ð k th row
←Ð (k + 1) th row

.

(3.37)

In (3.37), the elements ρk ∈ R and ςk ∈ R are obtained in a similar fashion as
one would compute the elements in a Givens rotation [54,66]. Thus, having the(N + 1)-dimensional vector with the elements i ⋅ ak and ak+1 at position k and(k + 1), respectively, we can choose ρk and ςk such that

[ i ⋅ ρk ςk−ςk i ⋅ ρk ] [ i ⋅ ak
ak+1

] = [ √a2k − a2k+1
0

] ,

where we have assumed that both ak and ak+1 are real numbers and a2k >
a2k+1. Furthermore, it should be noted that ṼT

k,(k+1)Ṽk,(k+1) = IN+1, and that

Ṽk,(k+1) is simply a plane rotation operating in the plane (k, k+1) (just like the
ordinary Givens rotation), which imply that a premultiplication with Ṽk,(k+1)
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only changes the elements in the kth and (k + 1)th rows. In other words, we
can compute one row at a time. Thus, if we know the first row of Z (along with
rT
r(1)), we can compute first row of Rb.

From the treatment above, it is seen that we can compute the first row in Rb

if we know the first row in Rt (based on (3.34)). Since the first row in Rb is
equivalent to the second row in Rt (except of a column shift), we have, thereby,
indirectly computed the second row of Rt. This procedure can be repeated for
the second row, and so forth and, therefore, we obtain a recursive scheme for
computing each row of R. Likewise, the unitary matrix Q can be computed
recursively using plane rotation matrices. This is done using, among others
things, the (update) plane rotation matrix V́k,k+1 associated with (downdate)
plane rotation matrix Vk,k+1, i.e.

V́ [ rT
r(1)
RT

b

] = [ Z
01,N

] ,

where ZTZ =RT
b Rb + rr(1)rTr(1). See [59] for a more detailed treatment of each

of the rank-1 updating and downdating steps, and for a more comprehensive
description of the fast QR-factorization algorithm.

Generalization to Complex Numbers

At first glance one might think that it is a bit exaggerated to address the issue
of generalizing the fast QL-factorization method to complex numbers, since it
from a mathematical point of view is considered to be trivial to extend methods
from the real to the complex domain. However, this is not always the case
on the implementation level, and as an example we can refer to the quotation
in [54, p. 233] where it is stated; “Most of the algorithms that we present in
this book have complex versions that are fairly straight forward to derive from
their real counterparts. (This is NOT to say that everything is easy and obvious
at the implementation level).” Thus, we will shortly describe this extension.
The downdating procedure given in (3.37) is not applicable when the Toeplitz
matrix T contains complex numbers, and instead a procedure for downdating
without the imaginary multiplier is needed. To mention one, in [64] a treatment
of downdating the Cholesky factorization without imaginary multiplier is found,
which rely on Σ-unitary transformations with

Σ = [ −1 0
0 I

]
applied in a similar way as the Givens rotations are used in the rank-1 updating
method [64,67].8 When we compute the rank-1 downdate we should be particu-

8A matrix A is called Σ-unitary if it fulfill AH
ΣA =Σ.
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larly careful with the phases of complex numbers since these have to be tracked
from transformation to transformation.

Fast QR-Factorization for Channel Matrices

When Toeplitz matrix is a banded channel matrix with L non-zero (complex)
elements in each column (here, we still only consider a SISO system), the ex-
pression in (3.34) simplifies to

RH
b Rb =RH

t Rt − rr(1)rHr(1) , (3.38)

since tr(1) = 0N−1,1 and tr(m) = 0N−1,1. Thus, we only need one rank-1 down-
dating modification when we want to compute R. The first row in R (excluding
the first element in R, which is simply the Euclidean norm of the first column
of T, i.e. R1,1 = ∥T1∶M,1∥2) can be computed as

rHr(1) = tHc(1)T−1/R1,1 . (3.39)

Here tc(1) is a vector containing L − 1 channel coefficients and having zeros

in the remaining elements. The complexity of computing tH
c(1)T−1 in (3.39) is(L − 1) + ∑L−1

l=1 l = 1/2(L2 + L) − 1 ≈ 1/2(L2 + L) and since the vector has at
most L− 1 non-zero elements, it requires (1/2L2 + 3/2L) complex operations to

compute rH
r(1). On top of this, we also need L complex operations to compute

R1,1 plus one square root operation.9

From (3.36) it is seen that we need to perform N plane (downdating) rotations
Ṽk,k+1 to obtain R. Besides that, we also need the associated updating matrix

V́k,k+1 in order to compute the unitary matrix. The rotation matrices Ṽk,k+1

and V́k,k+1 can be computed using seven complex operations plus one square
root operation. As already mentioned, the rank-1 downdating procedure in [64]
also requires a rotation of the input signal, rr(1), when it is used for complex
numbers. Since the number of non-zero elements in rr(1) is L, we need L complex
operations to obtain the rotated signal. Furthermore, for each plane rotation
we also need to multiply Ṽk,k+1 with Ṽk−1,k . . . Ṽ1,2A. Complexity-wise, this
corresponds to a multiplication of a 2 × 2 plane rotation matrix with a 2 × L
matrix (the latter represents the recursively computed input signal), and the
complexity of this is therefore 4L. Thus, we can compute each row in R using
5L + 7 complex operations and one square root computation leading to a total
complexity of (5L+ 7)N + (1/2L2 + 5/2L) complex operations and N + 1 square
root operations for calculating R.

9Like in the rest of this thesis, we define an operation as a complex Multiply and Accumu-
late (MAC) instruction.
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Recall that the fast QL-factorization computes a single row of L (or column of
Q) at a time, which is a great advantage when the QL-factorization is used for
prefilter computation. This is due to the fact that each row of L converges to the
true minimum-phase filter as shown in Section 3.2. This implies that we can stop
the computation of the rows in L once we have obtained the required precision
of the filter coefficients. Likewise, we only need to compute a certain fraction of
the columns in Q to obtain the required precision of the all-pass filter. By using
the fast QL-factorization to compute the filters, the complexity no longer scales
with the size of the channel matrix H, but depends on the required precision.
The number of rows in L (and thus columns in Q), which is used to obtain the
estimated minimum-phase and all-pass filters, is referred to as the number of
iterations, k. Thus, if the required precision of the minimum-phase estimate can
be obtained using k iterations, the computational complexity will be

Omin = (k − 1) ⋅ (5L + 7) + (1/2L2 + 5/2L) (3.40)

complex operations plus k + 1 square root operations. Each of the last Lap −L
columns of Q require (L+ j̃)(j̃ + 1) operations with j̃ = {0, . . . , Lap −L − 1} and
Lap denotes the all-pass filter length. The complexity of computing each of the
j + 1 last columns of Q is Lap(j + 1) for j = {Lap −L, . . . , Lap}. If the number
of required iterations is higher than the length of the prefilter, we also need
Lap(Lap + 1) complex operations to calculate each of the remaining columns
(i.e. the columns from Lap+1 to k counted from right to left). Thus, the overall
complexity of computing the prefilter, is

Oap = ∑min{(Lap−1);(k−1)}
l=0 min{(L + l);Lap} ⋅ (l + 1)+max{0; (k −Lap)} ⋅Lap(Lap + 1) , (3.41)

assuming that k ≥ Lap −L + 1. Note that the last term in (3.41) vanishes when
k ≤ Lap and that we can obtain the first Lap filter coefficients after (Lap −L+1)
iterations. This means that whenever L is close to Lap we only need a few
iterations if we are willing to sacrifice precision in favor of complexity.

From (3.40) and (3.41) it is seen that the all-pass filter is the “bottleneck”
complexity-wise if the all-pass filter is long compared to the channel length.
Thus, we can often achieve a further complexity reduction by only computing
the minimum-phase filter using the fast QL-factorization and then estimate the
all-pass filter based on a polynomial division (or deconvolution operation) since
we have

Hap(z) = H(z)
Hmp(z) . (3.42)

This polynomial division can be achieved using

Oap,deconv = LapL

operations, since each all-pass filter coefficient can be computed using L opera-
tions.
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The approximate low complexity method proposed in [68], which uses Linear
Prediction (LP) to obtain an estimate of the all-pass and minimum-phase filters,
will approximately require 1/2⋅(L+1)(L+2)+L2

p+2Lp+(L+1)(Lp+1) operations
(complex multiplications). Here, Lp denotes the order of the prediction-error
filter. Figure 3.10 shows a plot of the complexity of the LP method and the
fast QL-factorization method (when the all-pass filter has been obtained by
polynomial division). In the Figure the number of iterations in the fast QL-
factorization has been adjusted such that the two methods gives similar accuracy
in the filter coefficients of the minimum-phase filter in order to make a fair
comparison. Using this setup, the all-pass filter obtained based on the fast
QL-factorization method seems to give a slightly better accuracy. From Figure
3.10 it is seen that the fast QL-factorization method has a complexity which
is comparable with the LP method. Additionally, the former method has the
advantage that an arbitrary number of iterations can be made without affecting
the all-pass filter length, which is not the case for the LP method.
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Figure 3.10: The complexity of computing the minimum-phase and all-pass
filters for a fixed channel length L = 6 using the fast QL-factorization and the
linear prediction method shown in [68], respectively.

In Figure 3.11 the complexity of computing the minimum-phase filter using the
fast QL-factorization and the DARE method for a fixed channel length L = 10
has been plotted (the prefilter computation has not been included here). Also,
the complexity of the two methods has been plotted as a function of the channel
length as shown in Figure 3.12



3.3 Efficient Minimum-Phase Prefilter Computation 45

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

Number of iterations, k

C
om

pl
ex

ity

 

 

Fast QL−method
DARE method

Figure 3.11: The complexity of computing the minimum-phase for a fixed chan-
nel length L = 10 using the fast QL-factorization and the DARE method.

2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

Filter length, L

C
om

pl
ex

ity

 

 

Fast QL−method
DARE method

Figure 3.12: The complexity of computing the minimum-phase for a fixed num-
ber of iterations k = 10 using the fast QL-factorization and the DARE method.
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Simulations of Filter Computation using Fast QL-factorization
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Figure 3.13: TU0 profile, L = 6. Mean and median value of the relative devia-
tions, d (Hmp;HL,k) and d(HL,k;HL̂,k) when Lap = 32.

Here we present simulation results for the same two channels as shown in Figure
3.3, namely the Typical Urban (TU0) and the Hilly Terrain (HT0) profiles. In
this simulation setup we do, however, only consider the SISO case, i.e. the
oversampling is Nsps = 1. The simulation setup is similar to the simulations
presented in Section 3.2, which imply that we have made 10,000 realizations of
the examined channel profile and computed the minimum-phase and the all-pass
filter for each realization. Again, we measure the relative difference between the
two filters (as shown in (3.28)) as a function of the iteration number, k. The
filter length of the all-pass filter is in all simulations Lap = 32.

To sum up on the notation, we have Hmp, which represents the impulse response
of the true minimum-phase filter, and HL,k, which is the impulse response ob-
tained from L (at iteration k). To measure how well the estimated all-pass
filter, HQ,k, match the estimated minimum-phase filter HL,k, we filter the orig-

inal impulse response H with (HQ,k)H , which gives us the output HL̂,k. Once
again, we have computed the mean and median value of the relative errors,
d (Hmp;HL,k) and d(HL,k;HL̂,k).
In Figure 3.13, the results for the TU0 profile are shown and, here, we can see
that the average relative deviation between the true minimum-phase filter and
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estimated solution is approximately 10−2 after 7-8 iterations. To obtain the
same relative deviation between the estimated minimum-phase filter and the
estimated all-pass filter we need approximately 14-15 iterations. We can see
from Figure 3.13 that the median value of the relative error converges faster
than the mean value, which indicates that some of the realizations will bias the
estimate of the mean value due to “outliers” in the distribution of the relative
error. By inspecting the approximated Probability Density Function (PDF) for
different iterations, it is observed that a few realizations converge slower than
the majority and they will, therefore, in some sense bias the estimate as we also
mentioned in Section 3.2.

0 20 40 60

10
−8

10
−6

10
−4

10
−2

10
0

a) Householder.

 

 

0 20 40 60

10
−8

10
−6

10
−4

10
−2

10
0

b) Fast QL, double−prec.

R
el

at
iv

e 
di

ffe
re

nc
e

 

 

0 20 40 60

10
−8

10
−6

10
−4

10
−2

10
0

c) Fast QL, single−prec.

 

 

Mean d(H
mp

 ; H
L,k

 )

Mean d(H
L,k

 ; H
L,k
∧  )

Median d(H
mp

 ; H
L,k

 )

Median d(H
L,k

 ; H
L,k
∧ )

Figure 3.14: HT0 profile, L = 10. Mean and median value of the relative devia-
tions, d (Hmp;HL,k) and d(HL,k;HL̂,k) when Lap = 32. Result given for a) the

Householder transformation and for b) and c) the fast QL-factorization using
floating-point double- and single-precision, respectively.

Figure 3.14(b) shows the result for the HT0 profile and in this case the conver-
gence is slower than the TU0 profile. This is not surprising since the channel
impulse response is longer, which makes it more likely that there are roots close
to the unit circle. For this profile, we need 21 iterations to obtain an average
precision of 10−2 between the true and estimated minimum-phase filter. In Fig-
ure 3.13 and Figure 3.14(b), we see that the relative difference d(HL,k;HL̂,k)
tends to be biased due to the usage of a finite length all-pass filter. This bias
term can be reduced by increasing the length of the all-pass filter, Lap.

To examine the numerical stability of the fast QL-factorization, the Householder
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transformation has been used as a reference, since this algorithms is considered
to be numerically stable [54]. In Figure 3.14(a), the minimum-phase filter for
the HT0 profile has been computed using Householder transformation and the
result is compared to the ones obtained by the fast QL-factorization using either
double- or single-precision floating-point operations. We see that the numerical
stability of the fast QL-factorization algorithm is not as good as the Householder
transformation. This is basically due to a numerical instability of the rank-1
downdating procedure [64]. However, the numerical instability do not seem
to be of such a significant scale that it prevents the fast method from being
applicable for practical purposes.

3.4 Summary

It has been proven how the QL-factorization of the channel matrix (of a multi-
path system) gives the finite length equivalent to the minimum-phase and the
all-pass filters. Thereby, a novel method for computing these two classical fil-
ters in a numerically stable way has been presented. Alternatively, this new
method can be used for determining the filters in a computationally efficient
manner using the fast QL-factorization with the complexity depending on the
required precision. Based on the link between minimum-phase prefiltering and
the QL-factorization of frequency-selective channels, it is possible to relate SD
with minimum-phase prefiltered RSSE. As a result, it is possible to regard SD
as a generalization of the traditional RSSE, providing a unifying framework for
the two detection methods.



Chapter 4

Sampling

Over a wide range of SNRs, the average complexity of SD is significantly smaller
than exhaustive search detectors. But in worst case, the complexity is still expo-
nential [45]. Thus, in scenarios with poor SNR or in MIMO systems with huge
transmit and receive dimensions, even SD can be infeasible. A way to overcome
this problem is to use approximate Markov Chain Monte Carlo (MCMC) detec-
tors instead. In this Chapter, we will therefore treat a detector relying on Gibbs
Sampling (GS). The treatment given in this Chapter is based on the paper in
Appendix D.

4.1 Gibbs Sampling

It is well known that Markov Chain Monte Carlo detectors asymptotically can
provide the optimal solution [69–71]. The MCMCmethod called Gibbs sampling
(also known as Glauber dynamics) is a special case of the Metropolis-Hastings
algorithm [12], which can be used for sampling from distributions of multiple
dimensions and it has among others been proposed for detection purposes in
wireless communication in [1, 72–74] (see also the references therein). In con-
trast to previously proposed MCMC methods for such problems, we here sug-
gest an approach in which we optimize the “temperature” parameter so that in
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steady state, i.e. after the Markov chain has mixed, there is only polynomially
(rather than exponentially) small probability of encountering the optimal solu-
tion. More precisely, we obtain the largest value of the temperature parameter
for this to occur since the higher the temperature, the faster the mixing. This
is in contrast to simulated annealing techniques where, rather than being held
fixed, the temperature parameter is tended to zero in its search for a global
minimum.

In the treatment below, we have a minor change in the system model given in
(2.1) such that we instead use the equivalent model

y =
√

SNR

N
H́x + ύ . (4.1)

The model in (4.1) has the advantage that both the channel matrix, H́, and
the noise vector, ύ, will have i.i.d. N (0,1) entries. This simplifies the deriva-
tions, and for the same reason, we will only consider the real-valued block-
fading MIMO system with N transmit and receive dimensions. Furthermore,
we assume that Ω = {±1} and that the channel coefficients are known. The
normalization in (4.1) guarantees that SNR represents the signal-to-noise ratio
per receive dimension (which we define as the ratio of the total transmit en-
ergy per channel divided by the per-component noise variance as described in
among others [41]). It should be noted that the real-valued system considered
here can easily be extended to complex-numbers by performing a so-called IQ-

splitting (a.k.a. composite real representation) where x = [R (xc)T ,I (xc)T ]T ,
ύ = [R (υ)T ,I (υ)T ]T , and

H́ = [ R (H) −I (H)
I (H) R (H) ] .

For further details on this see e.g. [48, 75].

The equivalent system model (4.1) leads to the following ML optimization prob-
lem:

x̂ = arg min
x∈ΩN

XXXXXXXXXXXXy −
√

SNR

N
H́x

XXXXXXXXXXXX
2

2

. (4.2)

As explained further below, for analysis purposes we will focus on the regime
where SNR > (2 + ǫ) ln(N) (where ǫ > 0) to get the probability of error of the
ML detector to go to zero. Further, in our analysis, without loss of generality,
we will assume that the all minus one vector was transmitted, x = −1N×1, and
we therefore get

y = ύ −
√

SNR

N
H́1N×1 . (4.3)
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One way of solving the optimization problem given in (4.2) is by using Markov
Chain Monte Carlo simulations, which as mentioned in the introduction of this
Section asymptotically converge to the optimal solution. More specifically, the
GS computes the conditional probability of each symbol in the constellation set
at the jth index in the estimated symbol vector. This conditional probability
is obtained by keeping the (j − 1) other values in the estimated symbol vector
fixed. Thus, in the kth iteration the probability of the jth symbol adopts the
value ω ∈ Ω, is given as

p (x̂(k)j = ω ∣θ) = e
−

1

2α2

XXXXXXXXXXX
y−

√
SNR

N
H́x̃j∣ω

XXXXXXXXXXX

2

2

∑
x̃j∣ω̃ ∈Ω

e
−

1

2α2

XXXXXXXXXXX
y−

√
SNR

N
H́x̃j∣ω̃

XXXXXXXXXXX

2

2

, (4.4)

where x̃T
j∣ω ≜ [x̂(k)1∶j−1, ω, x̂

(k−1)
j+1∶N]T and where we for simplicity have introduced

θ = {x̂(k−1),y, H́}.1 The parameter α represents a tunable positive number,
which controls the mixing time of the Markov chain. This parameter is also
known as the “temperature”. The larger α is, the faster the mixing time of
the Markov chain will be. But as we will show in this Chapter, there is an
upper limit on α, in order to ensure that the probability of finding the optimal
solution in steady state is not exponentially small. The Gibbs Sampler will

with probability p (x̂(k)j = ω ∣θ) keep ω at the j’th index in the estimated symbol

vector and compute conditional probability of the (j + 1)th index in a similar
fashion. We define one iteration of the Gibbs sampler as a randomly-ordered
update of all the j = {1, . . . ,N} indices in the estimated symbol vector x̂.2

The initialization of the symbol vector x̂(0) can either be chosen randomly or,
alternatively, e.g. the zero-forcing solution can be used.

1When we compute the probability of symbol ω at the j’th position, we more precisely

condition on the symbols x̂
(k)
1∶j−1 and x̂

(k−1)
j+1∶N , but to keep the notation simple, we do not

explicitly state that in the equations above.
2We need a randomly-ordered update for the Markov chain to be reversible and for our

subsequent analysis to go through. It is also possible to just randomly select a symbol j to
update, without insisting that a full sequence should be done. This also makes the Markov
chain reversible and has the same steady state distribution. In practice a fixed, say sequential,
order can be employed, although the Markov chain is no longer reversible. Note that our
theoretical analysis is assuming randomly selected symbol updates for analytical convenience.
In our experimental section we used a sequential updating order which empirically yields a
slight convergence acceleration.
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4.1.1 Complexity of the Gibbs sampler

The conditional probability for the j’th symbol in (4.4) can be computed effi-
ciently by reusing the result obtained for the j − 1’th symbol when we evaluate

∥y −√SNR/NH́x̃j∣ω ∥2
2
. Since we are only changing the j’th symbol in the sym-

bol vector, the difference dj ≜ y −√SNR/NH́x̃j∣ω can be expressed as

dj = dj−1 −
√

SNR

N
H́1∶N,j∆xj∣ω , (4.5)

where ∆xj∣ω ≜ x
(k)
j∣ω − x(k−1)j∣ω̃ . Thus, the computation of conditional probabil-

ity of a certain symbol in the j’th position costs 2N operations since we need
to compute both the inner product dT

j dj and the product H́1∶N,j∆xj∣ω .3 We
need to update ∣Ω∣ − 1 symbols per index j, which leads to a complexity ofO (2N2[∣Ω∣ − 1]) operations per iteration. For further details on the implemen-
tation of the Gibbs sampler see [76].

GS using QL-factorization

In the case were the number of iterations in the Gibbs sampler is sufficiently
larger than the system size, the complexity of GS can be reduced using a QL-
factorization (or QR-factorization) of the channel matrix, H́ = QL, such that
the optimization problem in 4.2 becomes

x̂ = arg min
x∈ΩN

∥ỹ −Lx∥22 ,

with ỹ ≜QHy. Due to lower triangular structure in L, the product Lx requires
less computations compared to a full channel matrix. Thus, for a square channel
matrix of size N , the complexity per iteration will be reduced toO (N(N + 1)[∣Ω∣ − 1]) and we will, therefore, roughly save (N2 −N)[∣Ω∣ − 1] ≈
N2[∣Ω∣ − 1] operations per iteration. This computation saving should be com-
pared with the complexity of performing the QL-factorization, which requiresO (N3). Therefore, in cases where the number of iterations is k > N

∣Ω∣−1 , we can

achieve a reduction in complexity.

4.1.2 Probability of Error

We first examine the probability of error for the ML detector, which will be
used in order to evaluate the performance of the Gibbs sampler. To ease our

3Like in Chapter 3, we define an operation as a MAC instruction.
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analysis, we will assume that the ML detector finds the correct transmitted
vector. Before we derive the probability of error for the ML detector, we will
state a lemma which we will make repeated use of.

Lemma 4.1 (Gaussian Integral) Let v and w be independent Gaussian ran-
dom vectors, each with distribution N (0N×1, IN). Then, if 1− 2a2η(1+ 2η) > 0,

E{eη(∥v+aw∥22−∥v∥22)} = ( 1

1 − 2a2η(1 + 2η))
N/2

. (4.6)

Proof.

E{eη(∥v+aw∥22−∥v∥22)}
= ∫ dwdv(2π)N e

−
1

2
[ vT , wT ]⎡⎢⎢⎢⎢⎣

IN −2aηIN−2aηIN (1 − 2a2η)IN
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v
w

⎤⎥⎥⎥⎥⎦

= 1

det1/2 [ IN −2aηIN−2aηIN (1 − 2a2η)IN ]
= 1

detN/2 [ 1 −2aη−2aη 1 − 2a2η ]
= ( 1

1 − 2a2η(1 + 2η))
N/2

.

This completes the proof of Lemma 4.1. ◻
Assuming that the vector x = −1N×1 was transmitted, the ML detector will
make an error if there exists a vector x ≠ −1N×1 such that

XXXXXXXXXXXXy −
√

SNR

N
H́x

XXXXXXXXXXXX
2

2

≤
XXXXXXXXXXXXy +

√
SNR

N
H́1N×1

XXXXXXXXXXXX
2

2

= ∥ύ∥22 .

In other words, the probability of an error Pe is

Pe = P
⎛⎜⎝
XXXXXXXXXXXXy −

√
SNR

N
H́x

XXXXXXXXXXXX
2

2

≤ ∥ύ∥22⎞⎟⎠
= P

⎛⎜⎝
XXXXXXXXXXXXύ +

√
SNR

N
H́(−1N×1 − x)XXXXXXXXXXXX

2

2

≤ ∥ύ∥22⎞⎟⎠ ,
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for some x ≠ −1N×1, which can be formulated as

Pe = P
⎛⎜⎝
XXXXXXXXXXXXύ + 2

√
SNR

N
H́δ

XXXXXXXXXXXX
2

2

≤ ∥ύ∥22⎞⎟⎠ , (4.7)

for some δ ≠ 0, where we in (4.7) have defined δ ≜ 1
2
(−1N×1 − x). Now, using

the union bound

Pe ≤ ∑
δ≠0

P
⎛⎜⎝
XXXXXXXXXXXXύ + 2

√
SNR

N
H́δ

XXXXXXXXXXXX
2

2

≤ ∥ύ∥22⎞⎟⎠ . (4.8)

We will use the Chernoff bound [77] to bound the quantity inside the summation.
Thus,

P
⎛⎜⎝
XXXXXXXXXXXXύ + 2

√
SNR

N
H́δ

XXXXXXXXXXXX
2

2

≤ ∥ύ∥22⎞⎟⎠ ≤ E
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e
−β
⎛
⎝
XXXXXXXXXXXύ+2

√
SNR

N
H́δ

XXXXXXXXXXX
2

2

−∥ύ∥2
2

⎞
⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(4.9a)

=
⎛⎜⎝

1

1 + 8SNR∥δ∥22
N

β(1 − 2β)
⎞⎟⎠
N/2

, (4.9b)

where β ≥ 0 is the Chernoff parameter [77], and where we have used Lemma 4.1

with η = −β and a = 2
√

SNR∥δ∥2
2

N
, since

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝2
√

SNR

N
H́δ
⎞⎠⎛⎝2
√

SNR

N
H́δ
⎞⎠
T⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 4

SNR∥δ∥22
N

IN .

The optimal value for β is 1
4
, which yields the tightest bound:

P
⎛⎜⎝
XXXXXXXXXXXXύ + 2

√
SNR

N
H́δ

XXXXXXXXXXXX
2

2

≤ ∥ύ∥22⎞⎟⎠ ≤
⎛⎜⎝

1

1 + SNR∥δ∥2
2

N

⎞⎟⎠
N/2

. (4.10)

Note that this depends only on ∥δ∥22, the number of nonzero entries in δ. Plug-
ging this into the union bound yields

Pe ≤
N

∑
i=1
( N

i
)⎛⎝ 1

1 + SNRi
N

⎞⎠
N/2

. (4.11)

Let us first look at the linear (i.e., i proportional to N) terms in the above sum.
Thus,

( N

i
)⎛⎝ 1

1 + SNRi
N

⎞⎠
N/2
≈ eNH( i

N
)−N

2
ln(1+SNRi

N
)
,
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where H(⋅) is entropy in “nats”. Clearly, if limN→∞ SNR = ∞, then the linear
terms go to zero (superexponentially fast).

Let us now look at the sublinear terms. In particular, let us examine i = 1 and
substitute the SNR with a function g(N):

ξN ≜ N ⎛⎝ 1

1 + SNR
N

⎞⎠
N/2
⇒ (4.12a)

ln (ξN) = ln (N) + N

2
ln(1 + g(N)

N
)−1 = N

2
{ 2

N
ln (N) − ln(1 + g(N)

N
)}
(4.12b)

= 1

2

2
N
ln (N) − ln (1 + g(N)

N
)

1
N

(4.12c)

Since all terms in (4.12c) tends to zero as N →∞, we can use l’Hôpital’s rule:

lim
N→∞ ln (ξN) = 1

2

2 (−N−2 ln(N) + 1) − (1 + g(N)
N
)−1 {−N−2g(N) + 1

N
g′(N)}

−N−2
(4.13a)

= ln(N) − 1 + 1

2
(Ng′(N) − g(N)) (4.13b)

We need to let term ξN go to zero in order to get Pe in (4.11) to go to zero. By
choosing g(N) ≥ (2 + ǫ) ln(N) where ǫ > 0, we get from (4.13b) that

lim
N→∞ ln (ξN) = ǫ

2
(1 − ln(N)) = −∞ ,

leading to ξN → 0 for N → ∞. Therefore, we require that SNR ≥ (2 + ǫ) ln(N)
4. A similar argument shows that all other sublinear terms also go to zero, and
so, which gives us Lemma 4.2.5

Lemma 4.2 (SNR scaling) If SNR > (2 + ǫ) ln(N), where ǫ > 0 then Pe → 0
as N →∞.

4We could also use a slower growing function g(N) = 2 ln(N) + g̃(N), where g̃(N) is any
function that goes to infinity as N goes to infinity, such as g̃(N) = ǫ ln(ln(N)) and so forth.
But for simplicity we have just chosen g̃(N) = ǫ ln(N).

5A rigorous proof can be given using the saddle point method, similarly to the proof in the
Subsection 4.1.3.
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4.1.3 Computing the optimal α

Assuming that the vector x = −1N×1 has been transmitted, the probability
of finding this solution after the Markov chain has mixed is simply π−1, the
steady-state probability of being in the all −1 state. Clearly, if this probability
is exponentially small, it will take exponentially long for the Gibbs sampler to
find it. We will, therefore, insist that the mean of π−1 must only be polynomially
small.

Mean of π−1

This calculation has a lot in common with the one given in Section 4.1.2. Note
that the steady state value of π−1 is simply

π−1 = e
−

1

2α2

XXXXXXXXXXXy+
√
SNR

N
H́1N×1

XXXXXXXXXXX
2

2

∑x e
−

1

2α2

XXXXXXXXXXXy+
√
SNR

N
H́x

XXXXXXXXXXX
2

2

= e−
1

2α2
∥ύ∥2

2

∑x e
−

1

2α2

XXXXXXXXXXXύ+
√
SNR

N
H́(x−1N×1)

XXXXXXXXXXX
2

2

(4.14a)

= e−
1

2α2
∥ύ∥2

2

∑δ e
−

1

2α2

XXXXXXXXXXXύ+2
√
SNR

N
H́δ

XXXXXXXXXXX
2

2

= 1

∑δ e
−

1

2α2

⎛
⎝
XXXXXXXXXXXύ+2

√
SNR

N
H́δ

XXXXXXXXXXX
2

2

−∥ύ∥2
2

⎞
⎠
, (4.14b)

where the summations (over x and δ) are over 2N terms. By Jensen’s inequality
on (4.14), we get

E{π−1} ≥ 1

E{ 1
π−1
} =

1

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑δ e

−
1

2α2

⎛
⎝
XXXXXXXXXXXύ+2

√
SNR

N
H́δ

XXXXXXXXXXX
2

2

−∥ύ∥2
2

⎞
⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(4.15a)

= 1

∑δ E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e
−

1

2α2

⎛
⎝
XXXXXXXXXXXύ+2

√
SNR

N
H́δ

XXXXXXXXXXX
2

2

−∥ύ∥2
2

⎞
⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(4.15b)

= 1

1 +∑δ≠0
⎛⎝ 1

1+4
SNR∥δ∥2

2

N
1

α2
(1− 1

α2
)
⎞⎠
N/2 (4.15c)

= 1

1 +∑N
i=1 ( N

i
)( 1

1+
βi

N

)N/2 . (4.15d)
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In (4.15c), we have used Lemma 4.1 and in (4.15d) we have defined
β ≜ 4SNR 1

α2 (1 − 1
α2 ). While it is possible to focus on the linear and sublinear

terms in the above summation separately, to give conditions for E{π−1} to have
the form of 1/poly(N), we will be interested in the exact exponent and, thus,
we will need a more accurate estimate. To do this, we shall use saddle point
integration. Note that

( N

i
)⎛⎝ 1

1 + βi

N

⎞⎠
N/2
≈ eNH( i

N
)−N

2
ln(1+βi

N
)
,

where again H(⋅) represents the entropy in “nats”. Therefore, the summation
in the denominator of (4.15d) can be approximated as a Stieltjes integral6 [79]:

N

∑
i=1
( N

i
)⎛⎝ 1

1 + βi

N

⎞⎠
N/2
≈ N

N

∑
i=1

e
NH( i

N
)−N

2
ln(1+βi

N
) 1
N

(4.16a)

≈ N ∫
1

0
eNH(x)−N

2
ln(1+βx)dx . (4.16b)

For large N , this is a saddle point integral and can be approximated by the
formula

∫
1

0
eNf(x)dx ≈

√
2π

N ∣f ′′(x0)∣eNf(x0) , (4.17)

where x0 is the saddle point of f(⋅), i.e.,f ′(x0) = 0. In our case,

f(x) = −x lnx − (1 − x) ln(1 − x) − 1

2
ln(1 + βx) ,

and thus,

f ′(x) = ln 1 − x
x
− 1

2

β

1 + βx .

In general, it is not possible to solve for f ′(x0) = 0 in closed form. However, in
our case, if we assume that β = 4SNR 1

α2 (1 − 1
α2 ) ≫ 1 (which is true since the

SNR grows at least logarithmically), then it is not too hard to verify that the
saddle point is given by

x0 = e− β

2 . (4.18)

Hence f(x0) =
− e− β

2 ln e−
β

2 − (1 − e−β

2 ) ln(1 − e−β

2 ) − 1

2
ln(1 + βe− β

2 )
≈ β

2
e−

β

2 + e−β

2 − 1

2
βe−

β

2 = e−β

2 .

6The Stieltjes integral are also sometimes referred to as the Riemann-Stieltjes integral, [78].
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Furthermore, by inserting x0 into f ′′(x) = − 1
x
− 1

1−x
− 1

2

β2

(1+βx)2 , yields

f ′′(x0) ≈ −e β

2 − 1 + 1

2
β2 ≈ −e β

2 . (4.19)

Replacing these into the saddle point expression in (4.17) show that

N

∑
i=1
( N

i
)⎛⎝ 1

1 + βi

N

⎞⎠
N/2
≈√2π/N exp(Ne−

β

2 − β

4
) . (4.20)

We want E{π−1} to behave as 1
Nζ and according to (4.15), this means that we

want the expression in (4.20) to behave as N ζ . Let us take

eNe
−
β
2 = N ζ .

Solving for β yields

β = 4SNR 1

α2
(1 − 1

α2
) = 2 (lnN − ln (lnN) − ln ζ) . (4.21)

Incidentally, this choice of β yields e−
β

4 ≈ 1√
N
, and so we have the following

result.

Lemma 4.3 (Mean of π−1) If α is chosen such that

α2

1 − 1
α2

= 2SNR

lnN − ln (lnN) − ln ζ , (4.22)

then

E{π−1} ≥ N−ζ . (4.23)

Value of α

Note that from (4.15d) it is clear that the larger β is, the larger π−1 is. Therefore,
the range of α that gives a polynomially small probability to π−1 is

α2

1 − 1
α2

≤ 2SNR

lnN − ln (lnN) − ln ζ . (4.24)

It can be shown that in the regime, SNR > 2 lnN , the above quadratic inequality
in α has two positive real solutions, α+ ≥ α−, and that the inequality holds for
all α ∈ [α−, α+].
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We know that the larger α is, the faster the Markov chain mixes.7 Therefore,
it is reasonable that we choose the largest permissible value for α, i.e., α+.

Figure 4.1 and Figure 4.2 show the values of α+ and α− as a function of SNR
for systems with N = 10 and N = 50 when we have ζ = 1/ ln(N). The values of
α+ and α− have also been plotted as a function of the system size N which is
shown in Figure 4.3.
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Figure 4.1: Value of α vs. SNR for system size N = 10.

Mixing time of Markov Chain

One open question is whether the Markov chain is rapidly mixing when using
the strategy above for choosing α, however, the simulations presented in Section
4.1.4 seem to indicate this is the case. Furthermore, the simulations also suggest
that the computed value of α is very close to the optimal choice, even in the
case where the condition SNR > 2 ln(N) is not satisfied.
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Figure 4.2: Value of α vs. SNR for system size N = 50.
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Figure 4.4: BER vs. iterations, 10×10 system. SNR = 10 dB. Theoretical value
of α+ = 2.7.
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Figure 4.5: BER vs. iterations, 10×10 system. SNR = 14 dB. Theoretical value
of α+ = 4.6.
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4.1.4 Simulation Results

In this Section, we present simulation results for a MIMO N ×N system with
a full square channel matrix containing i.i.d. Gaussian entries. In Figure 4.4
and Figure 4.5, the BER of the Gibbs sampler, initialized with a random x,
has been evaluated as a function of the number of iterations in a 10×10 system
using a variety of α values. Thereby, we can inspect how the parameter α affects
the convergence rate of the Gibbs sampler. The performance of the ML, the
Zero-Forcing (ZF), and the LMMSE detector has also been plotted to ease the
comparison of the Gibbs sampler with these. It is seen that the Gibbs sampler
outperforms both the ZF and the LMMSE detector after only a few iterations in
all the presented simulations when the tuning parameter α is chosen properly.
Furthermore, it is observed that the parameter α has a huge influence on the
convergence rate and that the Gibbs sampler converges toward the ML solution
as a function of the number of iterations. Here, it should be noted that the way
we decode the symbol vector to a given iteration, is to select the symbol vector,
which has the lowest cost function in all the iterations up to that point in time.
The optimal value of α (in terms of convergence rate) is quite close to the the-
oretical values from Figure 4.1 of α+ = 2.7 and α+ = 4.6 at SNR’s at 10 and 14
dB, respectively. It is also observed that the performance of the Gibbs sampler
is significantly deteriorated if the temperature parameter is chosen based on the
SNR (and, thereby, on the noise variance) such that α = σ ≜ 1/SNR. Thus, the
latter strategy is clearly not a wise choice.
Figure 4.6 shows the BER performance for the MCMC detector for fixed num-
ber of iterations, k = 100. From Figure 4.6 we see that the SNR has a significant
influence on the optimal choice of α given a fixed number of iterations.
The performance of the Gibbs sampler is also shown for a 20× 20 and a 50× 50
system, which represents a ML decoding problem of huge complexity where an
exhaustive search would require 220 ≈ 106 and 250 ≈ 1015 evaluations, respec-
tively.
In Figure 4.7 the BER performance is plotted as a function of the number of
iterations for the 20×20 system. Again, it is observed that the parameter α has
a huge influence on the convergence rate. The BER as a function of the SNR
has been plotted in Figure 4.8 for k = 250 iterations.

For the 50×50, system even the sphere decoder has an enormous complexity un-
der moderate SNR.8 Thus, it has not been possible to simulate the performance
of this decoder within a reasonable time and we have, therefore, for the 50 × 50

7In general, there is a trade-off between faster mixing time of the Markov chain (due to
an increase of α) versus slower encountering the optimal solution in steady-state. In fact, at
infinite temperature, our algorithm reduces to a random walk in a hypercube, which mixes in
O(N lnN) time [80].

8In fact, it can be shown that for SNR = O(lnN), the lower bound on the complexity of
the sphere decoder obtained in [45] is exponential.
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Figure 4.6: BER vs. SNR, 10 × 10 system. Number of iterations, k = 100.

0 50 100 150 200 250 300 350 400 450 500
10

−4

10
−3

10
−2

10
−1

10
0

1

22.5 3

4

Iteration number

B
E

R

 

 

ML
ZF
LMMSE
MCMC (α=σ)
MCMC, α =1
MCMC, α =2
MCMC, α =2.5
MCMC, α =3
MCMC, α =4

Figure 4.7: BER vs. iterations, 20×20 system. SNR = 12 dB. Theoretical value
of α+ = 3.1



64 Sampling

6 7 8 9 10 11 12 13 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

1

2

2.5

3

4

SNR [dB]

B
E

R

 

 

ML
ZF
LMMSE
MCMC (α=σ)
MCMC, α =1
MCMC, α =2
MCMC, α =2.5
MCMC, α =3
MCMC, α =4
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Table 4.1: Complexity (MAC operations) of Sphere Detection (SD) and Gibbs
Sampling (GS).

N Method SNR 6 dB 10 dB 14 dB

10
GS 9.8 ⋅ 103 10.9 ⋅ 103 16.4 ⋅ 103
SD 10.0 ⋅ 103 1.7 ⋅ 103 1.5 ⋅ 103

20
GS 4.6 ⋅ 104 6.1 ⋅ 104 15.5 ⋅ 104
SD 2.5 ⋅ 107 8.3 ⋅ 104 9.8 ⋅ 103

50
GS 7.6 ⋅ 105 9.5 ⋅ 105 10.6 ⋅ 105
SD ≫ 1.9 ⋅ 109 ≫ 1.9 ⋅ 109 37.7 ⋅ 105

system “cheated” a little by initializing the radius of the sphere to the minimum
of either the norm of the transmitted symbol vector or the solution found by
the Gibbs sampler. This has been done to evaluate the BER performance of the
optimal detector. Figure 4.9 shows the BER curve as a function of the iteration
number, while Figure 4.10 illustrates the BER curve vs. the SNR. From Figure
4.9, we see that there is a good correspondence between the simulated α and
the theoretical value α+ = 2.6 obtained from Figure 4.2.

The average complexity (MAC pr. symbol vector) of the Gibbs sampler having
a BER performance comparable with the ML detector is shown in Table 4.1.
The SD has been included as a reference.9 It is observed that the complexity
of the Gibbs sampler is not affected by the SNR as much as the SD, which can
also be seen from Figure 4.11 where the number of operations has been plotted

9It has not been possible to simulate the SD for a 50 × 50 system when SNR ≤ 10dB and,
therefore, the complexity of SNR = 12dB has been used as a lower bound.
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Figure 4.9: BER vs. iterations, 50×50 system. SNR = 12 dB. Theoretical value
of α+ = 2.6
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as a function of the SNR for a 20 × 20 system.
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Figure 4.11: Complexity of SD and GS vs. SNR for a 20 × 20 system.
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4.2 Summary

We have described and analyzed a way to compute the ML solution using Gibbs
sampling. It has been shown that the method can be used for achieving a near-
optimal and computationally efficient solution of the problem, even for systems
having a huge dimension. The proposed MCMC method will, unlike simulated
annealing techniques, have a fixed “temperature” parameter in all the iterations,
with the property that after the Markov chain has mixed, the probability of en-
countering the optimal solution is only polynomial small (i.e. not exponentially
small). We have computed the optimal (here largest) value of the temperature
parameter that guarantees this. Simulation results reveal that the choice of the
temperature parameter has an impact on how fast the GS finds the ML solu-
tion and show that our computed value gives a very good approximation to the
optimal value of the GS. Furthermore, the simulation results suggest that the
Markov chain is rapidly mixing. Thus, it has been observed that even in cases
were ML detection using e.g. sphere decoding becomes infeasible, the Gibbs
sampler can still offer a near-optimal solution using much less computations.
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Chapter 5

Conclusion

In this thesis different approximate methods for detection in wireless communi-
cations have been treated, where one focus area has been the computationally
complexity of the investigated methods. This is motivated by the fact that if
a certain method should have any chance of being applied in an actual imple-
mentation the complexity has to be reasonable.
The main application field has been the existing 2G cellular system (such as
GSM, EDGE, and EGPRS2), but also methods for general MIMO systems have
been investigated.

It is proved that the QL-factorization of frequency-selective channels asymptot-
ically provides the minimum-phase and all-pass filters. The exact convergence
rate for the minimum-phase filter has been computed for a simple SISO length
L = 2 system and an upper bound has been derived. This is used to approxi-
mate the convergence in systems of arbitrary length and, asymptotically, these
results also generalize to MIMO systems. This makes it possible to view sphere
detection as an adaptive variant of traditional reduced-state sequence estima-
tion and, in that way, it provides a unifying framework for the two detection
methods. Simulations have indicated that a significant reduction in complexity
is obtained using a minimum-phase prefilter in front of a sphere detector. Thus,
the proposed sphere detector is capable of obtaining near-optimal BER perfor-
mance, even though it has a very limited complexity.
Moreover, a novel method for computing the minimum-phase filter and its
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associated all-pass filter in a computationally efficient manner using fast QL-
factorization has been presented. The method convergences asymptotically to-
ward the true filters and has the convenient property of having a complexity
depending on the required precision.

Markov Chain Monte Carlo Gibbs sampling has been proposed for MLSD in
MIMO systems with a large number of transmit and receive dimensions. The
proposed Gibbs sampler is novel as it uses a fixed “temperature” parameter in
all the iterations, unlike simulated annealing techniques. Hereby, the detector
will have the property that after the Markov chain has mixed, the probability
of encountering the optimal solution is only polynomial small (i.e. not expo-
nentially small). Further, the approximate optimal value of the temperature
parameter that guarantees this convergence has been computed. Simulation re-
sults reveal that the choice of the temperature parameter has an impact on the
performance of the Gibbs sampler, just as it was expected. Also, the simulations
show that the computed value gives a quite good approximation to the optimal
value of the Gibbs sampler.

Suggestions for Further Work

During the Ph.D. study several interesting ideas, which has not been treated
in this thesis, have become apparent. Some interesting directions for future
research would be the ones listed below.

Detection using QL-factorization

● Analyze more thoroughly under which conditions minimum-phase pre-
filtering provides a complexity reduction for sphere detection in time-
invariant multipath channels. More specifically, it would be relevant to
investigate what effect the distribution of the channel coefficients, the
channel length, and the system size have on the complexity. Thereby, e.g.
a system designer will have the possibility of evaluating whether or not
prefiltering reduces the complexity.

● Investigate if fast QL-factorization methods can be extended to handle a
slowly time-varying multipath channel. For this type of channel it will
be unrealistic to perform an exact QL-factorization using fast methods.
But it might be that under certain behavior in the time-variant filter
coefficients the fast method can provide an approximate solution which
is close enough to the actual factorization to be of interest for practical
usage.



71

● Find an upper bound (instead of the approximate expression) for the con-
vergence rate of SISO and MIMO systems of arbitrary length for the
minimum-phase filter computation using the QL-factorization method.
Such an upper bound will significantly strengthen the convergence analysis
of this method.

Gibbs Sampling

● Generalize the results for the proposed Gibbs sampler such that they also
cover higher order modulation formats and banded matrices. Such a gen-
eralization will be of interest for many communication systems.

● Investigate whether the underlying Markov chain in the Gibbs sampler
mixes in polynomial time for an appropriate choice of temperature param-
eter. Theoretically, this will be a really important result, since it is then
proved that the Gibbs sampler can solve a NP-hard problem in polyno-
mial time with high probability over the channel matrices for a sufficiently
large SNR.

● Examine how well the suggested Gibbs sampler estimates the soft-infor-
mation. In many communication systems the detector should be capable
of providing soft-information as an output and, therefore, it is relevant to
examine how good estimates the Gibbs sampler can provide.

● Investigate how imperfect SNR and channel estimation affect the perfor-
mance of the Gibbs sampler. Before the Gibbs sampler can be used in an
actual communication system it should be designed such that it is robust
to these kinds of effects.
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Abstract—In this paper, prefiltering techniques for Sphere
Detection (SD) in frequency-selective channels are examined. It
is shown that a link between QL-factorization of the channel
matrix and minimum-phase prefiltering exists. As a result, it is
possible to regard SD as a generalization of traditional reduced-
state sequence estimation, providing a unifying framework for
the two detection methods. It is illustrated how minimum-phase
prefiltering or the Linear Minimum Mean-Square Error Decision
Feedback Equalization (LMMSE-DFE) forward filter is capable
of reducing the complexity of sphere detectors significantly,
while still obtaining near-optimal performance. The significant
reduction in complexity is obtained as prefiltering enables earlier
decision making in SD. Simulations carried out in an EDGE sys-
tem confirm that prefiltering leads to a considerable complexity
reduction for sphere detectors.

I. INTRODUCTION

Throughout the recent years, Sphere Detection (SD) has

gained much attention in the literature. Wireless communi-

cation is one of the fields where SD has been proposed.

This paper deals with SD in frequency-selective (multipath)

channels, where the complexity of the optimal detectors is

enormous when higher order modulation techniques are used.

SD addresses the issue of performing the Closest Lattice

Point Search (CLPS) in a computationally efficient way. CLPS

is equivalent to Maximum Likelihood Sequence Detection

(MLSD), which normally leads to exhaustive search, having a

complexity that is exponential with respect to both the length

of the channel and number of transmit dimensions. It has

been proved that the average complexity of SD is significantly

smaller than exhaustive search detectors, over a wide range of

Signal-to-Noise Ratios (SNR)s [1]. However, the complexity

is in the worst case still exponential [2].

In a real implementation of a detector (e.g. in a mobile phone),

it is necessary to upper-bound the complexity. The exponential

complexity of SD is in conflict with this implementation issue,

and therefore it is relevant to study the performance of sphere

detectors with upper bounded complexity.

Concentrating the energy of the channel impulse response

in the first taps enables early decision making in the trellis

search. Thus, when a prefiltering stage is placed in front of the

sphere detector, the complexity is likely to be reduced. Using

a minimum-phase filter, the energy of the channel impulse

response will obtain this desired property.

The rest of the paper is organized as follows. Section II

presents the signal model, while the basic concepts of SD

and additional pruning techniques are treated in Section III.

Section IV establish a link between minimum-phase prefiltered

Reduced-State Sequence Estimation (RSSE) and SD. Further-

more, prefiltering using the Linear Minimum Mean-Square Er-

ror Decision Feedback Equalization (LMMSE-DFE) forward

filter is considered. The simulation results of the examined

detectors are presented in Section V and a conclusion can be

found in Section VI.

Throughout the paper bold lowercase letters (e.g. x) denote

column vectors, while bold uppercase letters denote matrices

(e.g. H). The matrix transpose is denoted (·)T
, while (·)H

is

the Hermitian matrix transpose.

II. SIGNAL MODEL

Consider an uncoded frequency-selective Multiple-Input

Multiple-Output (MIMO) channel with channel length L. The

channel can be modeled as

xn =

L−1
∑

l=0

Hlsn−l + zn , (1)

where xn ∈ C
NR is the received signal at time index

n = {1, 2, . . . ,K + L− 1}. K is the length of the transmit

sequence and NR and NT (assuming NR ≥ NT ) denote

the number of receive and transmit dimensions, respectively.

The matrix Hl ∈ C
NR×NT contains the coefficients of the

channel impulse response, while sn ∈ ΩNT is the vector

of transmitted symbols at time n, each symbol belonging to

the complex-valued alphabet Ω. zn represents the Additive

White Gaussian Noise (AWGN) term with the variance σ2,

i.e. zn ∼ CN (0, σ2I).
Using matrix notation, the signal model in (1) can be expressed

as

x = Hs + z , (2)

where x =
[

xT
1 , xT

2 , . . . , xT
K+L−1

]T
. Let

M , K ·NT , then s is the M-dimensional vector containing

the complex symbols, i.e. s =
[

sT
1 , sT

2 , . . . , sT
K

]T
. H

is a block banded block Toeplitz channel convolution matrix
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having the form
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,

leading to a block-fading channel model. To ease the notation

let N , NR(K + L− 1), leading to H ∈ C
N×M . MLSD can

now be expressed as

ŝ = min
s∈ΩM

‖x−Hs‖2 . (3)

This detection problem is considered in the rest of the paper.

III. SD FOR FREQUENCY-SELECTIVE CHANNELS

In SD the search problem given in (3) is transformed to

an equivalent problem, which often requires less computa-

tions [3]. This is done by performing either a QR- or QL-

factorization of the channel matrix, H = QL, where Q is a

N ×N unitary matrix and L (or R) is an N ×M lower (or

upper) triangular matrix with positive real diagonal elements.

Thus, the only difference between R and L is the location

of the non-zero elements. The QL-factorization is preferred

here because it is more intuitive to use from a filtration point

of view since the lower triangular structure corresponds to a

causal system. It should be noted though that both a QR- and

a QL-factorization leads to the same result for SD.

When H is QL-factorized, (3) can be rewritten as

ŝ = min
s∈ΩM

‖x̃− Ls‖2 , (4)

due to Q being unitary with x̃ , QHx. Furthermore, the QL-

factorization is directly linked to Cholesky factorization as we

require that L is the Cholesky factor of HHH, i.e.

HHH = LHL , (5)

where L is positive definite. The triangular structure makes

it feasible to examine a single dimension at a time, and find

lattice points located inside a hyper-sphere with a specified

radius. Actually, several radii, which increase as a function

of the examined dimension, can be applied in SD. Thus, for

each dimension a radius is specified, leading to a complexity

reduction compared to the case of a single radius. Especially

when the dimension of Ls is large, a significant complexity

reduction is obtained. However, using increasing radii, we

are no longer guaranteed to find the closest lattice point. A

statistically sound method for computing the radii is presented

in [4].

When the transmitted (complex) symbols lie on a lattice

structure, which e.g. is the case for quadrature amplitude

modulated signals, the real and imaginary parts of the symbols

are normally bounded one at a time. In the case of real-valued

symbols (and assuming NR = NT = 1), the bounding of the

first symbol is given as

−r + x̃1

l11
≤ s1 ≤

r + x̃1

l11
, (6)

where r denotes the radius of the sphere for the current

dimension and lij denotes the (i, j)-th entry of L.

In the case of e.g. Phase Shift Keying (PSK), the bounding

is carried out in the complex plane, where the intersection of

two circles (i.e. the ones that represent the symbols and the

sphere, respectively) is determined.

Symbols which lie inside a given sphere are assumed to be

potential solutions to (4), and the most likely symbols (being

the ones that are closest to the received point) are traditionally

examined first, using the Schnorr-Euchner enumeration [5].

Since the channel convolution matrix has a lower block

triangular form, it is possible to perform SD without having

to do a full QR- or QL-factorization. When the block size of

Hl is one (i.e. NR = NT = 1), it is actually not required to

do a QL-factorization, since H already has a lower triangular

structure. The bounding in SD is then applied directly on the

frequency-selective channel matrix. When the block size is

larger than one, a lower triangular structure can be obtained

conveniently by

H̃ =
(

I⊗QH
0

)

H , (7)

where H0 = Q0L0 and ⊗ denotes the Kronecker product.

Thus, it is possible to obtain the lower triangular structure

of H̃, by multiplication of QH
0 with each sub-matrix in H.

However, as will be illustrated in Section IV and Section V,

it is often preferable to perform the full QL-factorization of

H anyway, since the computational complexity is likely to be

reduced.

In [6] it is shown that it is possible to apply SD on top

of the Viterbi algorithm. Thus, the MLSD can be obtained

by examining only the states in the trellis diagram, which

lie inside the sphere. Alternatively, the SD algorithm can be

combined with the Maximum A Posteriori (MAP) detector to

obtain near-optimal symbol-by-symbol detection by forming

approximate bit posteriors.

In an implementation of the SD algorithm, it is necessary to

be able to specify the maximum allowed complexity since

in the worst case it is exponential. By using the Schnorr-

Euchner search strategy, it is possible to specify the maximum

number of states, which are allowed to be examined in the

trellis diagram. Thus, only the most likely paths through the

trellis diagram are considered, leading to further reduction in

complexity. Likewise, it is possible to specify the maximum

number of state transitions allowed from a given state. How-

ever, both of these methods are of course suboptimal, but can

be a necessary compromise.

IV. MINIMUM-PHASE PREFILTERED RSSE

The spectral factorization theorem states that the spectrum

of any Linear Time-Invariant (LTI) system can be factorized
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into minimum-phase components [7]. Furthermore, a gener-

alization of spectral factorization states that any linear filter

can be split into an all-pass filter and the minimum-phase

filter found by spectral factorization [8]. As shown in [9],

the minimum-phase filter has the convenient property that it

provides the highest possible energy concentration in the first

taps and thus, enabling earlier decision making in the trellis

diagram 1. For that reason a minimum-phase preprocessing

stage is typically also found in front of a detector relying on

RSSE. This stage would filter the received signal with the

conjugate of the all-pass filter related to the channel, leading

to a minimum-phase channel impulse response.

The finite-length equivalent of the spectral factorization is

given by the Cholesky decomposition of covariance matrices

[10]. However, a generalization of splitting a LTI system into

an all-pass and a minimum-phase filter to systems of finite-

length appears to be unknown. It is explained in the next

subsection that such an extension exists and is given by the

QL-factorization.

A. Minimum-Phase Prefiltering Implements QL-Factorization

Due to the Toeplitz structure of H it is ensured that

HHH has a Toeplitz form with bandwidth (2L − 1)NT (the

bandwidth represents the number of non-zero entries in a row

of the Toeplitz matrix). As a result of (5), this will also be the

case for LHL. Now assume that M →∞, while the channel

length is kept fixed. This will lead to a certain structure in L,

where each row will be a shifted version of each other, which

is precisely given by the spectral factorization [10].

For a moment regard the unitary matrix as a filter. Since this

is the only filter which does not change the spectrum (or the

covariance), the filter must correspond to an all-pass filter. This

is substantiated by recalling that a unitary matrix leaves the

statistics of a vector unchanged. Thus, a unitary matrix must

be the matrix equivalent to the all-pass filter. Since Q is the

only unitary matrix that links H with L, Q is the all-pass filter

associated with the spectral factorization. Let again M →∞,

leading to vanishing boundary effects. The rows of Q will be

shifted versions of each other and will correspond to the all-

pass filter associated with the minimum-phase filter.

In the case of finite-length systems, the Toeplitz structures of

Q and L are no longer ensured due to boundary conditions.

However, for large systems these conditions have a less

significant role, and therefore, the results above will converge

towards their asymptotic values in the middle of the matrices,

where the influence of the boundary conditions is less. Thus,

there is a direct link between minimum-phase prefiltering and

QL-factorization of the channel matrix, H.

Based on the link between minimum-phase prefiltering and

the QL-factorization of frequency-selective channels, it is

possible to relate SD with minimum-phase prefiltered RSSE.

One difference between SD and RSSE is though that the

1An earlier decision making in the trellis diagram is possible since the
diagonal elements (and the ones that are close to it) of the lower triangular
matrix, L, will have larger numerical values after prefiltering. Thus, from (6)
it is clear that tighter bounds are obtained.

decision of disregarding states in SD is not made until a

considerable extent of confidence has been obtained. This is

because traditional SD does not have a limit on the maximum

number of examined states, but only prunes away states when

they are outside the sphere. Through the connection with the

QL-factorization, a reasonable method of using minimum-

phase prefiltering in sphere detection can be constructed,

which leads to tighter bounds in SD.

B. LMMSE-DFE prefiltering

Another method for obtaining tighter bounds in SD is

proposed in [11]. Here, a LMMSE-DFE prefilter is obtained

by reformulating the detection problem in (3), which is done

by augmenting the channel matrix

Ĥ ,

[

H

σI

]

= Q̂L̂1 =

[

Q̂1

Q̂2

]

L̂1 , (8)

where the unitary matrix and the lower triangular matrix are

defined in a slightly different way, since Q̂ ∈ C
(N+M)×M

and L̂1 ∈ C
M×M . The columns of Q̂ will be unitary and the

upper N ×M part of Q̂ is denoted Q̂1. In this reformulation

of the detection problem, Q̂1 represents the forward LMMSE-

DFE filter, while L̂1 is the backward filter [11]. The detection

problem in (3) can be altered to

ŝ = min
s∈ΩM

‖y − L̂1s‖
2 , (9)

where y , Q̂H
1 x. It should be emphasized that the detection

problem in (3) and (9) are not equivalent, since the columns

of Q̂1 are not unitary.

An advantage of the change of detection problem is that

L̂H
1 L̂1 = HHH+σ2I. Thus, the change of the detection prob-

lem ensures that the channel matrix will be better conditioned

and that rank(Ĥ) = M . However, by altering the detection

problem the noise statistics is changed, such that the modified

noise is non-Gaussian and data-dependent. The noise will still

be white with variance σ2 and (9) is, therefore, only to some

extent assumed to be suboptimal [11].

V. SIMULATION RESULTS

The simulation results presented in this section are carried

out in an EDGE system. The frame format and modulation

type used are identical to that specified in the EDGE standard,

e.g. a 3π/8 rotated 8-PSK signal is used in the modulation.

It is assumed that frequency hopping is made between each

received burst, and that the channel impulse response and noise

variance are perfectly known. AWGN is added to account for

any thermal noise. Only single user detection is considered in

the simulations and only a single receive antenna is assumed

to be available. The SNR is defined as the average received

signal power from the user, divided by the noise power. To

exploit the diversity in the channel model, the oversampling

factor in the channel is set to Nsps = 2 in respect to the

symbol rate. Due to this oversampling, the received signal is

jointly prefiltered, before it is passed on to the detector, leading

to NR = 1 in the detector. The channel models used in the
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Fig. 2. The absolute value of channel coefficients with and without minimum-
phase prefilter for the Hilly Terrain profile.

simulations are the Typical Urban (TU0) and the Hilly Terrain

(HT0) profiles defined in the GSM specifications.

In Fig. 1, the channel profiles of TU and HT including the

transmit pulse shaping are shown. In Fig. 2, an example of the

channel coefficients of the HT profile is shown (Nsps is here

set to 1). The coefficients obtained using a minimum-phase

prefilter are also shown to illustrate the effect of the filter.

It is observed that the number of taps needed for modeling

the channel properly is approximately L = 7, when there is

no prefilter. Using a the minimum-phase prefilter the channel

length can be reduced to L = 6. The optimal detector would
in the latter case require a search in a trellis diagram of

86−1 ≈ 33 · 103 states per symbol, which is an unacceptable

high complexity.

In the simulations presented, SD is combined with the max-

log MAP receiver to obtain approximate bit posteriors. Fur-

thermore, the approach of specifying the maximum number of

allowed states in the trellis diagram (described in Section III)

has been used in all the simulations considering SD.

The increasing radii are found from P
(

|z1:n|
2

> r2
n

)

= ε2i,

where i is the number of times the algorithm is restarted

(which is done if no points are found inside the sphere),

and z1:n =
[

zT
1 , . . . zT

n

]T
. This leads to a probability

1−ε2i of finding the transmitted point inside the n-dimensional
hyper-sphere, and due to the AWGN assumption, the radii can

be determined using the Chi-square distribution.

The filter coefficients of the prefilter and the associated chan-

nel impulse response, have been calculated by extracting a part

2 4 6 8 10 12 14 16 18 20 22
10

−3

10
−2

10
−1

10
0

Channel SNR (dB)

B
E
R

Max−log MAP

LMMSE

SD, S=32, MaxST=8 (no prefilter)

SD, S=16, MaxST=8, (no prefilter)

SD, S=16, MaxST=8, (prefilter)

Fig. 3. BER performance in TU with and without prefiltering. S is the
maximum number of states in the trellis diagram and MaxST is the maximum
number of state transitions from a given state.
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Fig. 4. BER performance in HT with and without minimum-phase prefilter-
ing.

of one of the rows in the middle of the unitary matrix and the

lower triangular matrix, respectively. In some of the figures

the performance of the LMMSE detector is also given, which

serves as a reference.

In Fig. 3, the Bit Error Rate (BER) performance of the

proposed sphere detector is presented for the TU profile. To

illustrate the effect of prefiltering, BER curves are given for

the same simulation setup, but with and without minimum-

phase prefiltering. In the labels, ”S”, denotes the maximum

number of allowed states in the trellis diagram (e.g. S = 16,

indicates that 16 states are allowed). Furthermore, ”MaxST”

denotes the maximum number of allowed state transitions for

a given state (e.g. MaxST = 8, indicates that 8 state transitions

from each state are allowed). In Fig. 3, the performance of the

max-log MAP detector is also included. The detector relying

on minimum-phase prefiltered SD with at most 16 states in the

trellis diagram, is capable of obtaining a performance which is

comparable with the max-log MAP. This is not the case when

the prefilter is not used.

In Fig. 4, the performance of the detectors for the HT profile

is shown. From the figure it is clear that prefiltering gives a

significant improvement in BER performance. Furthermore, it

is observed that the complexity can be reduced considerably

without degrading the BER performance.

Fig. 5 presents a comparison between the sphere detector using

either the minimum-phase or the LMMSE-DFE prefilter. From

the figure it is observed that the BER performance is almost

identical for the two prefilters. However, when S = 16 and
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Fig. 5. BER performance for SD using different prefilters in HT.

MaxST = 4 the LMMSE-DFE prefilter gives a slightly better

performance at low SNR (approximately 0.15 dB). This is

probably due to the reformulation of detection problem, which

has a regularizing effect on the channel matrix.

To be able to evaluate the performance of the proposed

detector it has been compared with the best detector (with

respect to BER performance) presented in [12], which relies on

Delayed Decision Feedback Sequence Estimation (DDFSE).

The DDFSE detector uses a trellis diagram of 64 states and

minimum-phase prefiltering is also applied. In [12], a similar

simulation setup is found, which makes a comparison possible.

The performance curve of the detector has been directly

reproduced from [12]. Thus, there may be minor differences

in the simulation setup, even though the general setup is the

same. The SD using prefilter seems to outperform the detector

in [12] significantly, both with respect to BER performance

and complexity (i.e. the number of examined states).

The complexity of the detectors used to obtain the simulation

results presented in Fig. 5 is illustrated in Fig. 6. The com-

plexity is expressed as the average number of state transitions

in the trellis diagram. Recall, that the channel length needed

to model the HT channel properly (using prefilter) is L = 6,
leading to 86 ≈ 2.6 ·105 evaluated state transitions per symbol

for the max-log MAP detector. Thus, compared to the max-

log MAP detector, the SD detector is capable of pruning

the trellis diagram efficiently, and thereby obtaining a huge

reduction in complexity. In Fig. 6, it is observed that the

complexity is upper bounded by the product of the specified

number of allowed states and state transitions (denoted S and

MaxST). From the figure, it is seen that SD using minimum-

phase or LMMSE-DFE prefiltering leads to almost the same

complexity.

Based on the presented simulations, it is observed that near-

optimal performance is obtained, while still having a reason-

able complexity. Thus, in contrast to other sphere detectors

(e.g. [1] and [6]) the worst-case complexity for the proposed

method will no longer be exponential. The price paid for upper

bounding the complexity is that the proposed method might

not find the ML solution (especially at low SNR). This is

because the ML path in the trellis diagram might be pruned

away since there are many candidates inside the sphere at low

SNR, but only a limited number of these is used in the search.
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Fig. 6. The average number of evaluated state transitions per symbol.

VI. CONCLUSION

A link between minimum-phase prefiltering and the QL-

factorization of frequency-selective channels has been estab-

lished. This makes it possible to relate SD with minimum-

phase prefiltered RSSE. Simulations have indicated that a

significant reduction in complexity is obtained using either a

minimum-phase prefilter or a LMMSE-DFE forward filter in

front of a sphere detector. Thus, the proposed sphere detector

is capable of obtaining near-optimal BER performance, even

though it has a very limited complexity. The performance

of SD using either the minimum-phase or the LMMSE-DFE

prefilter has been evaluated. The two prefilters lead to almost

the same performance, although the LMMSE-DFE forward

filter seems to give a slightly better performance at low SNR.

The complexity of SD using the two prefilters is likewise

similar.
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ABSTRACT

This paper presents a novel approach for computing both the

minimum-phase filter and the associated all-pass filter in a

computationally efficient way using fast QL-factorization. A

desirable property of this approach is that the complexity is

independent of the size of the matrix being QL-factorized.

Instead, the complexity scales with the required precision of

the filters as well as the filter length.

Index Terms— Communications, prefiltering, minimum-

phase systems, fast QL-factorization.

1. INTRODUCTION

The minimum-phase filter has an important role in general

signal processing theory, see e.g. [1], and one application

thereof is communication systems when higher-order mod-

ulation schemes over multipath channels are used. In such

systems, optimal sequence detection can be obtained using

Maximum-Likelihood Sequence Estimation (MLSE), but

MLSE typically require an unacceptable high complexity

for channels with large delay spread (i.e. long impulse re-

sponses). Therefore, other suboptimal techniques such as

delayed decision feedback, or reduced-state sequence estima-

tion, will often be used in such systems [2]. To obtain reliable

detection using these techniques, both the minimum-phase

and the associated all-pass filter are used.

In this paper we describe a new approach for efficiently

computing the minimum-phase filter and the all-pass filter by

performing a fast QL-factorization of the channel matrix. The

paper is organized as follows; In Section 2 we present the sig-

nal model and Section 3 describes the connection between the

minimum-phase filter and the QL-factorization. In Section

4 we illustrate how the fast QL-factoization can be utilized

for time-invariant channels, while the simulation results are

found in 5. Finally, Section 6 contains some concluding

remarks.

2. SYSTEMMODEL

Consider a time-invariant Single-Input Single-Output (SISO)

system1, which can be described by the Finite Impulse Re-

sponse (FIR) filter,H, having the length L. The output signal
yk ∈ C at time index k can be expressed as

yk =

L−1∑

l=0

hlxk−l , (1)

where xk ∈ C is the input signal at time index

k = {1, 2, . . . , N + L− 1}, N is the length of the input se-

quence, and hl ∈ C denotes the l’th tap in the impulse re-

sponse. Using matrix notation, the system model in (1) can

be formulated as

y = Hx , (2)

where y =
[

y1, y2, . . . , yN+L−1

]T
and

x =
[

x1, x2, . . . , xN

]T
. To ease the notation let

M , (N + L− 1), leading to y ∈ C
M . Due to the time-

invariant property of the filter, H ∈ C
M×N will be a banded

Toeplitz convolution matrix having the form

H ,





h0 0 · · · 0
... h0

. . .
...

hL−1
. . .

. . . 0

0
. . .

. . . h0

...
. . .

. . .
...

0 · · · 0 hL−1





.

In the analysis of the filter characteristic, it is often useful to

z-transform the channel impulse response [1], which leads to

H(z) =

L−1∑

l=0

hlz
−l . (3)

1Results presented may be directly extended to Multiple-Input Multiple-

Output (MIMO) systems, but this is outside the scope of this paper.
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A classical way of obtaining the minimum-phase filter,Hmin,

is by using the root method of spectral factorization, where

we first find roots in the polynomial given in (3), and reflect

the roots located outside the unit circle, into the circle, [1],

[3]. Based on the roots inside and on the unit circle, a new

polynomial can be computed in the z-domain, which repre-

sents the minimum-phase filter. There exists however several

other spectral factorization methods which among others is

described in [4]. In many applications (e.g. in communica-

tions) we also need the associated all-pass filter, which is used

to prefilter the output signal, y, such that the modified out-

put signal matches the minimum-phase filter. As finding the

minimum-phase and all-pass filters can be computationally

expensive, approximative methods having lower complexity

may be of practical interest [2].

3. QL-FACTORIZATION AND THE

MINIMUM-PHASE FILTER

It is well-known that the minimum-phase filter can be ob-

tained in various ways, [4] and recently, it has been discov-

ered that the minimum-phase filter and its associated all-pass

filter can be obtained by performing a QL-factorization of the

channel matrix, H, [5], [6]. When we perform the factoriza-

tion,

H = QL̃ = Q

[
0(M−N)×N

L

]
, (4)

we require that the N × N lower triangular matrix, L, cor-

responds to the Cholesky factor of HHH, meaning that L

is positive definite and contains real-valued positive diagonal

elements (assuming that rank(H) = N ). Since we perform

a factorization of a banded Toeplitz matrix, each row in L

will be a shifted version of each other as {M,N} → ∞, and

each row is precisely given by the spectral factorization, [7].

Likewise, the M × M unitary matrix Q will be the matrix

equivalent of the all-pass filter and again each column of Q

will be a shifted version of each other. Furthermore, it can be

seen that each of these columns will correspond to the all-pass

filter associated with the minimum-phase filter. For a detailed

description of this, see [5], [6].

In the finite length case, each row of L (column ofQ) will not

be exactly the same, but as can be seen in [6], the values in

each row of L will converge toward the true minimum-phase

filter as a function of the row number2, likewise the columns

ofQ will converge toward the associated all-pass filter. Thus,

the accuracy of the estimated filter coefficients (compared to

the true filters) depends on where in L and Q we take out the

filter coefficients.

4. FAST QL-FACTORIZATION

When general methods are used to compute the QL-factorization

it requires O
(
N3

)
operations, [8], but for Toeplitz matrices

2Using the Householder method, elements of rows in L converge toward

the minimum-phase filter from the bottom and up due to elements in the lower

triangular matrix being computed from the bottom and up.

there exist methods with lower computational complexity.

Different methods have been proposed for performing the

fast QL-factorization3 [8], [9], [10], each of which has differ-

ent numerical properties and slightly different complexity as

well. They do however all use the shift-invariance property

of Toeplitz matrices to partition it in two ways, and it is this

partitioning that leads to the low complexity schemes. In [8],

the QL-factorization can be performed using 13MN + 6N2

operations for general M × N Toeplitz matrices, while the

method proposed in [10] require 13MN +6.5N2. The meth-

ods described in [8], [9], and [10] all deal with real-valued

matrices, but the results can be extended to be valid over the

complex field, [10]. To extend the method in [8] to handle

complex numbers, will however require another type of rank-

1 downdating, which is described in [11]. The methods can

also be extended to handle block Toeplitz matrices for the

general MIMO case as well, [12].

The fast QL-factorization computes a single row of L (or

column of Q) at a time, which is a great advantage when

the QL-factorization is used for prefilter computation. This

is due to the fact that each row of L converges toward the

true minimum-phase filter, which implies that we can stop

the computation of the rows in L once we have obtained the

required precision of the filter coefficients. Likewise, we

only need to compute a certain fraction of the columns in Q

to obtain the required precision of the all-pass filter. Thus,

by using the fast QL-factorization to compute the filters, the

complexity no longer scales with the size of the matrix, H,

but depends on the required precision. The number of rows

in L (and thus columns in Q) which is used to obtain the

estimated minimum-phase and all-pass filters, is referred to

as the number of iterations, n.
The complexity of the fast QL-factorization can be reduced

even further, using the fact that the Toeplitz channel matrix,

H, contains at most L non-zero elements in each row. Thus,

using the method described in [8] and the rank-1 downdate

given in [11], we can compute of each row in L using 5L + 7
complex operations and two square root computations. On

top of that we also need to take into account the initializa-

tion step, which among others determines the bottom row

of L 4, requiring (L − 1)L/2 + 4L complex operations and

two square root computations. Thus, if the required preci-

sion of the minimum-phase estimate can be obtained using n
iterations, the computational complexity will be

Omin = (n− 1) · (5L + 7) + (L− 1)L/2 + 4L , (5)

complex operations plus n + 1 square root operations. Each

of the last Lap − L columns of Q require (L + i)(i + 1)
operations where i = {0, . . . , Lap − L− 1} and Lap de-

notes the all-pass filter length. The complexity of computing

each of the j + 1 last columns of Q is Lap(j + 1) for

3Methods for QR-factorization may easily be converted to QL.
4The QL-factorization starts from the bottom row and works its way up

to the top, while the QR-factorization uses a top down approach.
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Fig. 1: Gaussian filter coefficients, L = 7. Mean and me-

dian value of the relative deviations, d (Hmin,true;HL,n) and

d(HL,n; ĤL,n) when Lap = 32.

j = {Lap − L, . . . , Lap}. If the number of required itera-

tions is higher than the length of the prefilter, we also need

Lap(Lap + 1) complex operations to calculate each of the re-
maining columns (i.e. the columns from Lap +1 to n counted

from right to left). Thus, the overall complexity of computing

the prefilter, is

Oap =
∑min{(Lap−1);(n−1)}

k=0 min{(L + k);Lap} · (k + 1)
+max{0; (n− Lap)} · Lap(Lap + 1)

(6)
assuming that n ≥ Lap − L + 1. Note that the last term in

(6) vanishes when n ≤ Lap and that we will obtain the first

Lap filter coefficients after (Lap −L + 1) iterations. Thus, in
cases where L is close to Lap we only need a few iterations

if we are willing to sacrifice precision in favor of complexity.

Thus, for the Hilly Terrain (HT0) profile specified in [13], the

minimum-phase filter and the all-pass filters can be obtained

using 503 operations (where L = 10 and using Lap = 14,
n = 5).
The approximate low complexity method proposed in [2],

which uses Linear Prediction (LP) to obtain an estimate of

the all-pass and minimum-phase filters, will approximately

require 1/2·(L+1)(L+2)+L2
p+2Lp+(L+1)(Lp+1) oper-

ations (complex multiplications). Here Lp denotes the order

of the prediction-error filter. When Lp = 14 this method re-

quires 455 operations for the HT0 profile. Thus, the method

proposed here will for some practical channel profiles have

comparable complexity to that of the LP-method, but in other

cases, the price paid for the better prefilter is a somewhat

higher complexity.

5. SIMULATION RESULTS

In this section, we present simulation results for 3 different

types of SISO channels. First we assume that we have com-

plex Gaussian distributed, CN (0, 1), channel coefficients.
Secondly, we consider two types of channels defined in the

GSM specifications [13], namely the Typical Urban (TU0)
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Fig. 2: TU0 profile, L = 6. Mean and median value of the

relative deviations, d (Hmin,true;HL,n) and d(HL,n; ĤL,n)
when Lap = 32.

and the Hilly Terrain (HT0) profiles, see e.g. [5].

We compute the relative difference between the two filters,

Ha andHb, as a function of the iteration number, n, as

d (Ha,n;Hb,n) ,
‖Ha,n −Hb,n‖2

‖Ha,n‖2
, (7)

which is done in order to measure the convergence rate of

the filter coefficients. In the simulations Hmin,true denotes

the impulse response of the true minimum-phase filter, and

HL,n is the impulse response obtained from L (at iteration

n). To measure how well the estimated all-pass filter, HQ,n,

match the estimated minimum-phase filterHL,n, we filter the

original impulse response H with H∗Q,n, which gives us the

output ĤL,n. In all the simulations presented below, we have

made 10000 realizations of the examined channel profile, and

computed the minimum-phase and the all-pass filter for each

realization. The filter length of the all-pass filter is in all sim-

ulations Lap = 32. Based on the result of the 10000 filter re-
alizations, we have computed the mean and median value of

the relative errors, d (Hmin,true;HL,n) and d(HL,n; ĤL,n).
The result for the Gaussian channel coefficients is shown in

Fig. 1, where we see that there is a convergence toward the

true minimum-phase filter as a function of the iteration num-

ber. In Fig. 2 the result for the TU0 profile is shown, and

here we can see that the average relative deviation between

the true minimum-phase filter and estimated solution is ap-

proximately 10−2 after 7-8 iterations. To obtain the same rel-

ative deviation between the estimated minimum-phase filter

and the estimated all-pass filter we need approximately 14-15

iterations. We can see from the figure that the median value of

the relative error converges faster than the mean value, which

indicates that some of the realizations will bias the estimate

of the mean value due to ”outliers” in the distribution of the

relative error. By inspecting the approximated PDF for differ-

ent iterations, it is observed that a few realizations converge

slower than the majority, and they will therefore in some sense
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Fig. 3: HT0 profile, L = 10. Mean and median value of the relative deviations, d (Hmin,true;HL,n) and d(HL,n; ĤL,n) when
Lap = 32. Result given for a) the Householder transformation and for b) and c) the fast QL-factorization using floating-point
double- and single-precision, respectively.

bias the estimate. The realizations which converge slowest

are the ones which contain roots located close to the unit cir-

cle. From Fig. 2 it can also be observed that the convergence

rate of the median value is exponential. Fig. 3b show the

result for the HT0 profile, and in this case the convergence

is slower than the TU0 profile. This is not surprising, since

the channel impulse response is longer, which makes it more

likely that there are roots close to the unit circle. For this

profile we need 21 iterations to obtain an average precision

of 10−2 between the true and estimated minimum-phase fil-

ter. In Fig. 1, Fig. 2, and Fig. 3b we see that the relative

difference d(HL,n; ĤL,n) tends to be biased due to the us-

age of a finite length all-pass filter. This bias term can be

decreased by increasing the length of the all-pass filter, Lap.

In the figures we also see that the difference between the true

and the estimated minimum phase filter d(Hmin,true;HL,n)
is biased, which is due to the numerical instability of the rank-

1 down-dating procedure, [11]. This effect can be observed

by inspecting the median value of the difference between the

two filters. To examine the numerical stability of the fast QL-

factorization, the Householder transformation has been used

as a reference. In Fig. 3a the minimum-phase filter for the

HT0 profile has been computed using Householder transfor-

mation, and the result is compared to the ones obtained by the

fast QL-factorization using either double- or single-precision

floating-point operations.

6. CONCLUSION

In this paper we introduced a new approach for computing

the minimum-phase filter and its associated all-pass filter in a

computationally efficient manner using fast QL-factorization.

The proposed method convergences asymptotically toward

the true filters with the complexity depending on the required

precision.
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Computing the Minimum-Phase Filter using the

QL-Factorization
Morten Hansen, Lars P. B. Christensen, and Ole Winther,

Abstract—We investigate the QL-factorization of a time-
invariant convolutive filtering matrix and show that this fac-
torization not only provides the finite length equivalent to the
minimum-phase filter, but also gives the associated all-pass filter.
The convergence properties are analyzed and we derive the exact
convergence rate and an upper bound for a simple Single-Input
Single-Output system with filter length L = 2. Finally, this upper
bound is used to derive an approximation of the convergence
rate for systems of arbitrary length. Implementation-wise, the
method has the advantage of being numerically stable and
straight forward to extend to the Multiple-Input Multiple-Output
case. Furthermore, due to the existence of fast QL-factorization
methods, it is possible to compute the filters efficiently.

Index Terms—Minimum-phase filtering, QL-factorization,
sphere detection, spectral factorization, wireless communications.

I. INTRODUCTION

T
HE minimum-phase and the all-pass filters have over

the years attracted much attention due to their broad

applicability in signal processing. For this reason these types

of filters are generally covered in various classical books

on signal processing, cf. e.g. [1]–[3]. One area where the

minimum-phase filter is widely used is in digital communica-

tions over multipath channels where higher-order modulation

schemes are employed. In such scenarios the optimal symbol-

by-symbol or sequence detector will often require a very high

complexity, due to its exponential growth in complexity as

a function of the filter length. Furthermore, in multi user

detection the complexity grows further, since the number

of users will also influence the complexity exponentially.

Thus, suboptimal schemes, such as delayed decision feedback,

[4], or reduced-state sequence estimation, [5], will often be

applied in such systems instead [6]. However, in order to

ensure acceptable performance of these schemes, both the

minimum-phase filter and the associated all-pass filter are

usually needed [4], since the minimum-phase filter provides

the highest possible energy concentration in the beginning of

the filter impulse response [2].

The scope of this paper is to show a new method of com-

puting both the minimum-phase filter and the associated all-

pass filter using the QL-factorization. This insight provides

an alternative approach for computing the minimum-phase

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
M. Hansen and O. Winther are with DTU Informatics, Technical University
of Denmark, DK-2800 Lyngby, e-mail: {mha,owi}@imm.dtu.dk.
L. P. B. Christensen is with Modem Algorithm Design, Nokia Denmark,

Frederikskaj, DK-1790 Copenhagen V., e-mail: lars.christensen@nokia.com.
Manuscript submitted, June 22, 2009; revised February 22, 2010.

filter in a numerically stable way, due to the Householder

transformation [7], [8]. Furthermore, as shown in [9], fast low-

complexity algorithms can be exploited when computing the

QL-factorization of the filtering matrix [10]–[13], if one is

willing to sacrifice numerical precision in favor of reduced

complexity. Thus, the minimum-phase and all-pass filters can

be computed efficiently using this method (see [9] for a more

detailed description of this).

The rest of the paper is organized as follows; In Section II we

present the general system setup, including the system model,

while Section III describes some of the existing methods for

computing the minimum-phase filter, and Section IV presents

an overall treatment of why the QL-factorization provides the

minimum-phase filter. Section V contains an elaborate proof of

this as well as an analysis of the convergence rate. In Section

VI some simulation results are shown, and some concluding

remarks are given in Section VII.

Throughout the paper bold lowercase letters (e.g. x) denote

column vectors, while bold uppercase letters denote matrices

(e.g. H). The matrix transpose is denoted (·)T , while (·)H is

the Hermitian matrix transpose, and the complex conjugate of

a complex number is represented by (·)∗.

II. SYSTEM MODEL

We consider a time-invariant Multiple-Input Multiple-

Output (MIMO) system with a Finite Impulse Response (FIR)

length L. The output signal yj ∈ C
NR at time index j can be

expressed as

yj =

L−1∑

l=0

Hlxj−l + υj , (1)

where xj ∈ C
NT is the input signal at time j = {1, 2, . . . , J},

and υj ∈ C
NR represents the noise term, υj ∼ CN

(
0, σ2I

)
.

J is the length of the input sequence and NR and NT

denote the size of input and output vectors, respectively (in

communications also called receive and transmit dimensions).

We assume that NR ≥ NT which implies that the matrix

Hl ∈ C
NR×NT denoting the lth tap in the impulse response,

will be either a “tall-thin” or a square matrix. Using matrix

notation, the system model in (1) can be formulated as

y = Hx+ υ , (2)

where y =
[
yT
1 , yT

2 , . . . , yT
J+L−1

]T
and

x =
[
xT
1 , xT

2 , . . . , xT
J

]T
. To ease the notation

let M , NR(J + L− 1) and N , JNT , leading to y ∈ C
M

and x ∈ C
N . Due to the time-invariant property of the

filter, H ∈ C
M×N will be a block-banded block Toeplitz
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Figure 1. System model with prefilter and detection stage included.

convolution matrix (also referred to as the filtering matrix),

having the form

H ,















H0 0 · · · 0
...

. . .
. . .

...

HL−1
. . .

. . . 0

0
. . .

. . . H0

...
. . .

. . .
...

0 · · · 0 HL−1















.

The finite-length system above can be described in polynomial

form when we let the system size J → ∞. The connection

between the finite- vs. the infinite-length system is, among

others, treated in [14], and the z-transform of the equivalent

infinite-length filter impulse response, is given as

H(z) =

L−1∑

l=0

Hlz
−l , (3)

which is a useful representation in the analysis of the filter

characteristics.

By QL-factorizing the filtering matrix, H = QL in (2) and

multiplying by QH with (2), we get a new equivalent system

equation

ỹ , QHy = Lx+ υ̃ , (4)

where we have used the fact that Q is a unitary matrix. Im-

portantly, it also follows from unitarity that the noise statistic

is unchanged (under the assumption of Gaussian noise). Fig.

1 illustrates the system model given in (4).

III. THEORY ON THE MINIMUM-PHASE FILTER

As mentioned in the introduction, the minimum-phase filter

has been studied intensively over the years due to its broad

applicability, and there are various methods for computing

the filter. In [15], [16] and the references therein a thorough

treatment of several methods for spectral factorization can be

found. One classical way of obtaining the minimum-phase

filter is by using the root-method of spectral factorization,

in which the roots of (3) - which for NR = NT satisfy

det (H (z)) = 0 - located outside the unit circle are reflected

inside to the conjugate reciprocal location [1], [2], [17]. This

simple method however has its limitations, particularly in the

case of vector observations (i.e. MIMO systems), since besides

the roots we also need to know the direction of the vector

associated with that root [3]. Some methods for solving the

problem in this case have been described in, among others

[18]–[21], but these methods have the disadvantage of being

mathematically rather complicated and, furthermore, can suffer

from numerical instabilities [3, p. 206]. Thus, one might

prefer to solve a Discrete-time Algebraic Riccati Equation

(DARE) instead, which is a numerical stable method, having

the particularly advantageous property that it can easily be

extended to the vector case [15]. In the following we briefly

describe how the roots can be determined, which we will be

using in the analysis of the convergence rate.

A. The root-method of spectral factorization

Let us for a moment assume that we are only interested in

determining the roots ofH(z) in (3). In a MIMO system where

NT = NR, the roots can be obtained by finding the z-values
where det (H (z)) = 0, [22], leading to a matrix polynomial

in the scalar variable z. This type of matrix polynomial is

normally called a lambda-matrix [23], [24] and the number

of roots in such a polynomial is min{NT , NR} (L− 1). In
[23], it is shown that the roots can be obtained by deter-

mining the eigenvalues of the block-companion matrix, C, of

the associated monic polynomial, which can be obtained by

H̃(z) , (HL−1)
−1

H(z), where we have assumed that HL−1

is invertible. Thus, we get the following block-companion

matrix

C ,










0 · · · 0 −H̃0

I
. . .

... −H̃1

0
. . . 0

...
...

. . . I −H̃L−2










, (5)

where H̃k , (HL−1)
−1

Hk. Since the method proposed in

[23], [24] assumes that all Hl terms are square matrices,

we cannot directly handle the case where NT 6= NR and,

therefore, we need to modify the problem. If NR > NT we

can instead introduce S = HHH and find the roots of the

lambda-matrix based on S(z),

S (z) = HH(z−∗)H(z)

=
L−1∑

l=0

Slz
−l +

L−1∑

k=1

SH
k zk

, (6)

giving the roots both inside and outside the unit circle (from

the minimum- and maximum-phase filter, respectively). This

does not however solve the problem of finding the zero

directions in the lambda-matrix, and we will therefore also

address an alternative way of computing the spectral factor.

B. The DARE Method

As mentioned in the previous subsection, the DARE method

has the convenient property that it is straight forward to

extend from the Single-Input Single-Output (SISO) case to the

MIMO case. Furthermore, the method relates to results from

Kalman filtering theory and, therefore, many of the properties

of this method have been extensively studied, among others

its convergence properties, [3].

The DARE method considered in this paper, solves the Riccati

equation using the iterative procedure described in [16],1 and

once the stabilizing solution has been obtained, the filter

1In [16] the procedure is referred to as the method of doubling.
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coefficients are computed as described in [25]. The complexity

of computing the minimum-phase filter of a length L SISO

system using the DARE method is

Omin,DARE = k

(
3

2
L2 − 1

2
L+ 2

)

+ 2L (7)

operations, where k denotes the number of iterations used for

computing the filter.2

IV. CONNECTION BETWEEN THE MINIMUM-PHASE FILTER

AND THE QL-FACTORIZATION

As mentioned earlier, it is well-known that the minimum-

phase filter can be computed in several ways, and recently

it has been realized that the minimum-phase filter and the

associated all-pass filter can be obtained by QL-factorizing

the filtering matrix H, [26], [27], such that

H = QL̃ = Q

[
0(M−N)×N

L

]

, (8)

whereM ≥ N , and we require that the N×N lower triangular

matrix, L, corresponds to the Cholesky factor of HHH, im-

plying that L is positive definite and thus contains real-valued

positive diagonal elements (assuming that rank(H) = N ). In

Section V we prove the connection between the minimum-

phase filter and the QL-factorization in a more formal way

compared to the argument presented in [27], but we would

first like to repeat the intuitive argument in order to clarify

why we can obtain minimum-phase and all-pass filters using

the QL-factorization.

When we QL-factorize the time-invariant block-banded block

Toeplitz matrix, each block-row in L will be a shifted version

of each other for N →∞, where each block-row is given by

the spectral factorization, [28]. Likewise, the M ×M unitary

matrix, Q, will be the matrix equivalent to the all-pass filter,

where again each block-column of Q will be a shifted version

of each other (for N → ∞). Furthermore, it can be seen

that each of these block-columns will correspond to the finite

dimensional analog of the all-pass filter associated with the

minimum-phase filter. In the finite length case, each block-

row of L (block-column of Q) will not be exactly the same,

but as we will show later in the paper, the values in each of

these will converge toward the true minimum-phase filter as a

function of the block-row number.3 The block-columns of Q

will similarly converge toward the associated all-pass filter.

As shown in [9] the complexity of obtaining the minimum-

phase filter of a SISO system using fast QL-factorization is

Omin,QL = (k − 1)(5L+ 7) + (L− 1)L/2 + 4L (9)

operations and k+1 square root operations, while the all-pass
filter requires

Oap,QL =
∑min{(Lap−1);(k−1)}

n=0 min{(L+ n);Lap}(n+ 1)
+max{0; (k − Lap)}Lap(Lap + 1)

(10)

2We here define an operation as a complex Multiply-Accumulate (MAC)
instruction.

3Strictly speaking the elements in the block-row of L converge toward the
minimum-phase filter from the bottom up, since the Householder transforma-
tion computes the elements in the lower triangular matrix from the bottom
(when we perform a QL-factorization instead of a QR-factorization).

operations, assuming that k ≥ Lap. Here Lap denotes the

length of the all-pass filter. From (7) and (9) we see that the

fast QL-factorization has a computational advantage over the

DARE method described in Section III-B, which can also be

seen from Table I in Section VI where a comparison of the

complexity of the methods is given.

It should be noted that in the case where we have a time-

variant filter, the block-rows in the lower triangular matrix

will in some sense represent an analog to the “instantaneous”

minimum-phase filter and, likewise, the block-columns of

unitary matrix will represent the associated “instantaneous”

all-pass filter. It should also be noted that if we perform

a QR-factorization of the filtering matrix instead of a QL-

factorization, we will get the maximum-phase filter.

A. The Householder Transformation

In our analysis of the convergence toward the minimum-

phase filter and the all-pass filter we use the Householder

transformation to compute the QL-factorization. Therefore,

we first briefly describe the steps of this transformation. The

reason for choosing this transformation is its advantageous

numerical stability to roundoff effects. For a more thorough

treatment of the transformation and its numerical properties the

reader is referred to [7]. In most textbooks, the Householder

algorithm is only described for real numbers and since this

transformation plays a crucial role in our treatment of the

convergence rate in Section V, we here illustrate a complex

version of the transformation. The Householder transformation

(for QL-factorization) of a matrix B ∈ C
M×N works as illus-

trated in Algorithm 1, where ek denotes the unit vector with

1 in the kth position, and where we have defined the unitary

matrices Uk ∈ C
M×M and Ûk ∈ C

(M−k+1)×(M−k+1) as

Uk ,

[

Ûk 0

0 Ik−1

]

.

V. CONVERGENCE RATE

In this section we examine the convergence properties of the

rows and columns the QL-factorization toward the minimum-

phase and all-pass filters. In order to simplify this analysis,

we first consider the simplest possible case, which is for the

SISO case with a filter length of L = 2. We will then extend

this result to the more general one.

A. SISO system with filter length L = 2

Any SISO filtering matrix of a length L = 2 system can be

formulated as

H =












1 0 · · · 0

a 1
. . .

...

0 a
. . . 0

...
. . .

. . . 1
0 · · · 0 a












,

where we have normalized the impulse response such that

a , h1/h0 6= 0, leading toH(z) = 1+az−1 for the equivalent
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Algorithm 1 Householder Transformation for QL-fact.

1: Input: Matrix B

2: B̂⇐ B

3: for k = 1 to min {M,N} do
4: {Pick out the last column vector of B̂}
5: b̂ = B̂:,end

6: k̃ = M − k + 1
7: {Do Householder reflection of b̂ (line 8 to 12)}
8: α =

∥
∥
∥b̂

∥
∥
∥

9: α̃ = ei∠b̂
k̃ α

10: v = b̂+ α̃ek̃
11: Ûk = e−i∠b̂

k̃

(
2vvH

‖v‖2
− I

)

12: B̃ = ÛkB̂

13: {Remove last row and last column of B̃}
14: B́⇐ B̃1:(end−1),1:(end−1)

15: {Repeat for new B̂}
16: B̂⇐ B́

17: end for

After K = min {M,N} iterations we have;
L = UK . . .U2U1B

Q = UH
1 UH

2 . . .UH
K

infinite-length filter impulse response. In this case it is trivial

to compute the minimum-phase solution using the root-method

zmp =

{
−a if |a| ≤ 1
−1/a∗ else

, (11)

where zmp represents the minimum-phase root. Since H(z) =
Hap(z)Hmp(z) we have

Hap(z) =

{
1 if |a| ≤ 1

z−1+ 1
a

1+ 1
a∗

z−1 else
, (12)

where Hmp(z) and Hap(z) represent the z-transformed
minimum-phase and all-pass filters, respectively.4

By QL-factorizing the filtering matrix we get

L =












αN 0 · · · 0

βN−1 αN−1
. . .

...

0 βN−2
. . .

...
...

. . .
. . . α2 0

0 · · · 0 β1 α1












, (13)

where we are interested in determining the α and β values. For

notational brevity we introduce γk , b̂k̃, where b̂k̃ is defined

in Algorithm 1 as the last element in vector b̂, which is being

reflected in the kth iteration. Since b̂1 = [0, . . . , 0, 1, a]
T
we

have γ1 = a for the first Householder reflection (also referred

to as iteration k = 1). Based on the input vector we see from

line 8 in Algorithm 1 that α1 =
√

1 + |γ1|2 and from lines

4In order to ensure that the magnitude response of the all-pass filter will
always be one, we have normalized the minimum-phase filter such that
Hmp(z) = a(1 + 1/a∗z−1) whenever a root is reflected inside the unit
circle (i.e. when |a| > 1).

9-10 we get v1 = [0, . . . , 0, 1, γ1 + α̃1]
T
. Lines 11 and 12

in Algorithm 1 lead to the following expression for the β,

β1 =
2a e−i∠γ1

(
γ1 + ei∠γ1α1

)

1 + |γ1 + ei∠γ1 α1|2
(14a)

=
2a (|γ1|+ α1)

1 + | |γ1|+ α1|2
, (14b)

where in (14b) we have used γ1 = ei∠γ1 |γ1|. After the first

Householder reflection we have

U1H =













. . . 0 · · · 0

. . . 1
. . .

...

. . . a 1 0
... 0 γ2 0
· · · 0 β1 α1













,

since there are only two non-zero elements in the columns of

H. In the next iteration we will have b̂1 = [0, . . . , 0, 1, γ2]
T
,

and by examining the update steps in the Householder reflec-

tion carefully, it becomes clear that the value of γk+1 can be

expressed as a function of γk, leading to a recursive update

given as

γk+1 = a

(

1− 2

1 + |γk + ei∠γkαk|2

)

(15a)

= a




1− 2

1 +
∣
∣
∣ |γk|+

√

1 + |γk|2
∣
∣
∣

2




 (15b)

=
a |γk|

√

1 + |γk|2
. (15c)

Likewise, the general expression for the α’s and β’s will be

αk =
√

1 + |γk|2 (16)

βk =
2a (|γk|+ αk)

1 + | |γk|+ αk|2
. (17)

From (16) we can verify that the α values will be positive and

real-valued, which is exactly what is required from the QL-

factorization. From (15) and (17) we also see the interesting

property that all the values of the γk’s and the βk’s will always

have the same angle in the complex plane, determined by

∠βk = ∠γk = ∠a. This implies that the convergence of the

βk’s to the true minimum-phase solution for each iteration

takes place in the same direction in the complex plane.

Lemma V.1 (Recursive computation of αk and βk). In a

time-invariant SISO system with L = 2, the coefficients

in L obtained by the Householder transformation can be

determined as

αk =
√

1 + |γk|2

βk =
2a (|γk|+ αk)

1 + | |γk|+ αk|2

where

γk+1 =
a |γk|

√

1 + |γk|2
.
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Proof: Given above.

As shown in Appendix A the recursive expression for γk
given in (15), can be rewritten as

γk = ei∠a

√

|a|2 − 1

1− |a|−2k
. (18)

Now in order to show that the values of αk and βk match the

minimum-phase filter, we need to determine the fixed-point

solutions for the parameter γk in (15), such that

γfix = f (γfix) , where f(x) =
a |x|

√

1 + |x|2
.

As shown in the lemma below, there are two fixed-points.

Lemma V.2 (Fixed-points for γ). In a time-invariant SISO

system with L = 2, the fixed-point solutions for γ will be

γfix =

{
0 if |a| ≤ 1

ei∠a
√

|a|2 − 1 else
.

Proof: See Appendix B for a detailed proof.

Based on these fixed-points for γ we have

αfix =

{
1 if |a| ≤ 1
|a| else

(19a)

βfix =

{
a if |a| ≤ 1

ei∠a else
. (19b)

Thus, the root of L obtained using the QL-factorization, will

be zL = −βfix/αfix

zL =

{
−a if |a| ≤ 1

−ei∠a/|a| else

=

{
−a if |a| ≤ 1
−1/a∗ else

,

(20)

which corresponds to the result given in (11), obtained by the

traditional root-method of spectral factorization. Likewise, the

unitary matrix will converge to the Infinite Impulse Response

(IIR) all-pass filter given in (12). In order to ensure that we

do in fact get the minimum-phase solution, we also need to

prove that the recursive expression for γk converges to the

fixed-points. In Appendix C it has been proved that this is

indeed the case. Thus, it can be concluded that in the SISO

case with a filter length of L = 2, the elements in the rows of
L converge to the minimum-phase filter.5

In the following we examine the convergence rate to the

fixed-point solutions, which can be determined based on the

expression for γk given in (18). In order to compute the

convergence rate we introduce

γk = γfix +∆γk , (21)

where ∆γk represents the deviation of γk from the fixed-point

solution. To upper bound the convergence we treat the cases

of |a| ≤ 1 and |a| > 1 separately.

5This is no surprise, since it has already been shown in [15], [28] that the
lower triangular matrix provides the spectral factor.

1) The |a| ≤ 1 case: From (18) we get that

|∆γk| = |γk − γfix| = |a|k
√

|a|2 − 1

|a|2k − 1
(22a)

≤ |a|k
√

|a|2 − 1

|a|2 − 1
= |a|k for ∀ k ≥ 1 . (22b)

2) The |a| > 1 case: When |a| > 1 the fixed-point is

|γfix| =
√

|a|2 − 1 and from Lemma C.1 we know that |γk| ≥
|γfix|. As mentioned in Appendix C all of the terms which

are compared have the same argument and, therefore, we can

simply ignore the angle and only consider the case where the

terms are real and positive. We then get

|∆γk| = |γk| − |γfix| (23a)

=

√

|a|2 − 1




1

√

1− |a|−2k
− 1



 (23b)

≤
√

|a|2 − 1

(

1

1− |a|−2k
− 1

)

(23c)

≤ |a|−2k

√

|a|2 − 1

1− |a|−2 = |a|−2k |a|2
√

|a|2 − 1
. (23d)

Thus, we have the following lemma which upper bounds the

convergence rate.

Lemma V.3 (Upper bound on the convergence rate of γ). In a

time-invariant SISO system with L = 2, the convergence rate

of γk can be upper bounded by

|∆γk| ≤ |∆γ̃k| =
{

ek ln(|a|) if |a| ≤ 1
|a|2√
|a|2−1

e2k ln(1/|a|) else
.

From Lemma V.3 we see the interesting property that the

convergence rate is exponential and is determined by |a|. In
other words, the convergence rate to the fixed-point solution

is governed by the localization of the root in the complex

plane. In the case where we have a root which is close to the

unit circle, we will have slow convergence to the minimum-

phase solution. In Fig. 2(a) the convergences of ∆γk and ∆γ̃k
have been shown as a function of the number of iterations for

a L = 2 SISO system in the case where the root is z =
{−0.3,−0.6,−0.9}, respectively. From the figure it is clearly

seen that the distance between the root and the unit circle has a

significant influence on the convergence rate and, furthermore,

we see that the upper bound becomes tighter as the distance

grows. It is also relevant to examine how the deviation ∆γk
affects the value of the root. Therefore, we introduce zL,k ,

−βk/αk, which represents the root obtained from L in the

kth iteration. Likewise, we have z̃L,k , −β̃k/α̃k, where the

approximated values of αk and βk have been obtained using

∆γ̃k.
In Fig. 2(b) the deviations from the true minimum-phase root

have been plotted, where we have defined ∆zk , zmp − zL,k

and ∆z̃k , zmp − z̃L,k. From the figure, we see that the

deviation ∆γk is significantly larger than the deviation in the

root value ∆zk.
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Figure 2. Example of deviations of ∆γk and ∆zk in a SISO system, with length L = 2 and root at a = {0.3, 0.6, 0.9}, respectively

B. SISO system with filter length L > 2

In the case where we have a filter length of L > 2, the
deviations of the recursions for the Householder transforma-

tion become much more complicated, since the vector b in

Algorithm 1 will now have L non-zero elements. Thus, it will

no longer be the simple scalar recursion for γk but instead

a (L − 1) × (L − 1) matrix recursion and, furthermore, due

to the multiple roots there will also be multiple fixed points.

However, we can generalize the result obtained for the L = 2
SISO system by factorizing the filtering matrix into (L − 1)
products of L = 2 filtering matrices,6 such that

H = H
(L−1)
2 H

(L−2)
2 . . .H

(1)
2 , (24)

here H
(l)
2 is the filtering matrix of the lth length two filter,

where the z-transform of the equivalent infinite-length filter

impulse response is given as H
(l)
2 (z) , 1 + al z

−1. The

factorization makes it possible to perform a QL-factorization

on each of the (L− 1) terms in (24), which gives

H
(l)
2 = Q

(l)
2 L

(l)
2 . (25)

where the convergence rate of each of the (L − 1) terms is
given in Subsection V-A. By inserting (25) into (24) we get

H = QL = Q
(L−1)
2 L

(L−1)
2 Q

(L−2)
2 L

(L−2)
2 . . .Q

(1)
2 L

(1)
2 .
(26)

We would like to reorder the terms on the RHS of (26) such

that all Q
(l)
2 terms are grouped together followed by all the

L
(l)
2 terms, i.e.

H ∼= Q
(L−1)
2 Q

(L−2)
2 . . .Q

(1)
2

︸ ︷︷ ︸

Q

L
(L−1)
2 L

(L−2)
2 . . .L

(1)
2

︸ ︷︷ ︸

L

, (27)

where the equality holds when the system size N → ∞.

The reason that it is possible to rearrange the terms when

the system size goes to infinity is due to fact that L
(l)
2

and Q
(l)
2 asymptotically become circulant matrices [29], and

6It should be noted that the size of H
(l)
2 decreases by one (both column-

and row-wise) as l decreases by one, in order to enable the factorization.

thereby, we can use the commutative property of circulant

matrices [29]. Conceptually it is fairly easy to see why L
(l)
2

asymptotically becomes circulant, since it is a banded matrix,

but this might not be as obvious for the all-pass filtering

matrix, which represents an IIR filter. However, it has been

proved in [30] that the IIR filter has an exponential decay,

which implies that, in the limit where the system size tends

to infinity, the IIR filter becomes a Toeplitz matrix. In [29] it

is proved that general Toeplitz matrices containing absolutely

summable elements (also referred to as Wiener Class Toeplitz

Matrices) asymptotically converge to circulant matrices too.

Thus, in the limit N → ∞ both matrices become circulant

and, therefore, we know that the lower triangular matrix L

converge to the minimum-phase filter for SISO systems of

arbitrary length. Due to the unique factorization of H = QL

(where we require that the elements on the diagonal of L are

real-valued and positive), Q must be the matrix version of the

all-pass filter associated with the minimum-phase filter, since

it is the only unitary matrix which links L with H.

Based on the expression in (27) it is possible to approximate

the convergence rate in a SISO system of arbitrary length,

by examining the deviations in the approximated root values

∆z̃
(l)
k , z

(l)
mp − z̃

(l)
L,k, where z

(l)
mp represents the lth root of

the true minimum-phase filter and z̃
(l)
L,k , −β̃(l)

k /α̃
(l)
k is the

approximated value of the lth root based on the upper bound

given in Lemma V.3. Thus, in the z-domain the difference

between the true minimum-phase filter and the filter obtained

based on z̃
(l)
L,k becomes

∆H(z) , Hmp(z)− L̃k(z) (28a)

≈ z−(L−1)

[
L−1∏

l=1

(

z − z(l)mp

)

−
L−1∏

l=1

(

z − z̃
(l)
L,k

)
]

,

(28b)

where L̃k(z) represents the z-transform of the approximate

value for the kth row in the lower triangular matrix, L. In (28)

it is only the effect of each deviation in the approximated root

value that has been taken into account, but the approximation
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made in (27) will to some extent affect the convergence

rate due to roots only being asymptotically independent. The

tightness of the approximate expression for convergence when

L > 2 has been evaluated empirically in Figs. 4 and 5 given in
Section VI. In (28b) we have normalized the first coefficient

and from the equation we can see that the main contribution

to the difference between the true minimum-phase filter and

the result obtained by the QL-factorization, will asymptotically

come from the root which is closest to the unit circle. This

observation fits well with what is described in [3, p. 508],

where the convergence to the stabilizing solution of the DARE

is exponential and determined by the spectral radius.

C. MIMO system

In the case where we have a MIMO system, we can first

examine the length 2 system H(z) = I+H1z
−1 where NT =

NR. Compared to the SISO system of the same length, the

only difference is that the operations now become NR ×NT

matrix operations instead of scalars. However, since we have

η = min {NT , NR} (L−1) roots, we get 2η fixed-points, thus
it becomes more complicated to analyze even a simple L = 2
MIMO system. In the case where we have an arbitrary filter

length, the argument presented in Subsection V-B, concerning

the SISO system of length L > 2, can be repeated here.

VI. SIMULATION RESULTS

In this section simulation results for both SISO and MIMO

systems are presented. For the SISO system we examine

two channel scenarios. In the first scenario we have com-

plex Gaussian distributed, CN (0, 1), filter coefficients. In the

second scenario we consider a channel defined in the GSM

specifications [31], namely the Typical Urban (TU0) profile.

The channel profile, obtained by the convolution of the square

root of the power delay profile with the transmit filter response

(the so-called C0-pulse in [32]), is plotted in Fig. 3, and from

the figure it is seen that roughly speaking we need about four

symbols to capture the energy of the pulse. If the cardinality

of the alphabet is denoted by |Ω|, this implies that a Delayed
Decision Feedback Equalizer Sequence Estimation (DDFSE)

type of equalizer would require about |Ω|(4−1) states in the

state-space model in order to achieve a performance close to

the optimal Maximum Likelihood Sequence Detector (MLSD).

The DDFSE equalizer will then have a complexity similar to

the MLSD, if no prefiltering is made. In e.g. EGPRS2 [33],

this would lead to an unacceptably high decoding complexity,

since we can have cardinalities up to |Ω| = 32, giving

approximately 3.3 · 104 states. Thus, in such applications it is
a great advantage to prefilter the pulse with the all-pass filter

to obtain the minimum-phase filter. In [27] we have shown

a practical application of this, where we have evaluated the

effect of prefiltering in terms of performance of equalizers

employing reduced-state sequence estimation techniques.

In order to measure the convergence rate of the filter coeffi-

cients, we compute the relative difference between two overall

filtering impulse response matrices, Ha,k and Hb,k, at the

iteration number k, as

d (Ha,k;Hb,k) ,
‖Ha,k −Hb,k‖2

‖Ha,k‖2
. (29)

Table I
COMPLEXITY OF COMPUTING THE MINIMUM-PHASE FILTER USING THE

FAST QL-FACTORIZATION (QL) AND THE DARE METHOD (DARE) USING
k ITERATIONS IN A LENGTH L SISO SYSTEM.

k Method L = 5 L = 10 L = 15 L = 20

10
QL 3.18 · 102 5.98 · 102 9.03 · 102 1.23 · 103

DARE 3.70 · 102 1.48 · 103 3.34 · 103 5.95 · 103

20
QL 6.38 · 102 1.17 · 103 1.72 · 103 2.30 · 103

DARE 7.30 · 102 2.94 · 103 6.65 · 103 1.19 · 104

We define Hmp as the impulse response of the true minimum-

phase filter, andHL,k represents the impulse response obtained

from L (at iteration k). To measure how well the estimated

all-pass filter, HQ,k, matches the estimated minimum-phase

filter HL,k, we filter the original impulse response H with

(HQ,k)
H
, which gives us the output HL̂,k.

In all the simulations presented below, we have made 10,000

realizations of the examined channel profile, and computed

the minimum-phase and the all-pass filter for each realization.

The filter length of the all-pass filter is set to Lap = 64 in the
simulations. Based on the results obtained from the 10,000

filter realizations, we have computed the mean and median

value of the relative errors, d (Hmp;HL,k) and d(HL,k;HL̂,k).
The results for the Gaussian filter coefficients with uniform

power in the delay domain are shown in Fig. 4, where we see

that the rows in L converge to the true minimum-phase filter as

a function of the iteration number (i.e. the row number).7 From

the figure we observe that the median value of d (Hmp;HL,k)
converges exponentially to zero and that the median difference

is about 10−8 after 140 iterations. The convergence of the

average difference is considerably slower, due to the instances

where a channel realization has zeros very close to the unit

circle, which will lead to a slow convergence. Thus, these

cases tend to bias the estimate of average convergence rate.

This is indeed what can be observed from the estimated

probability density function (pdf) of d (Hmp;HL,k). Likewise,
the mean of d(HL,k;HL̂,k) seems to be biased, which (besides
the effect described above) is also due to the truncation of

the IIR all-pass filter. Both the mean and median value of

the approximated convergence d(Hmp;HL̃,k) have also been

plotted, and from (29) it is seen that this term represents

the energy of the approximated deviation obtained in (28)

normalized with respect to the energy of the minimum-phase

filter. From the figure it can be seen that the trend of the true

and approximated deviation behaves similarly. As a reference

we have also included the relative deviation between the true

minimum-phase filter and the one obtained using the DARE

method, and from this it is possible to see that convergence

of the two iterative methods is almost identical. In Table I

the complexity of computing the minimum-phase filter using

the two iterative methods has been compared (based on (7)

and (9)), and from this it is seen that the fast QL-factorization

method has a computational advantage.

In Fig. 5 the result for the TU0 profile is shown and it is

seen that the convergence rate is faster for this channel type

compared with the Gaussian filter coefficients with uniform

power in the delay domain. It is again observed that the

7Again, strictly speaking the convergence occurs from the last row and up,
since it is the QL-factorization.
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Figure 3. Delay profile and single realization thereof for the Typical Urban (TU) channel.
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Figure 4. The relative deviations d
(

Hmp;HL,k

)

and d(HL,k;HL̂,k
) in a

SISO channel with Gaussian coefficients having uniform power in the delay
domain, L = 6.
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Figure 5. The relative deviations d
(

Hmp;HL,k

)

and d(HL,k;HL̂,k
) in

the SISO channel TU0 with L = 5.
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Figure 6. Locations of roots in a 2 × 2 MIMO system with Gaussian
filter coefficients, L = 5. The number of iterations in the QL-factorization is
k = 200.

median value of the difference decreases more rapidly than the

mean value. We also see that the approximated convergence of

d (Hmp;HL,k) is even closer to the actual convergence for this
channel profile and that the DARE method again has similar

convergence.

In Fig. 6 we have a plot of the location of the roots of a

2 × 2 MIMO system having Gaussian coefficients with filter

length L = 5, leading to 8 roots. From the plot it is seen that

the roots of H(z) (illustrated with squares) which lie outside

the unit circle are reflected inside (the circles) using the root

method. Furthermore, it is seen that these roots match the roots

of L(z). In Fig. 7 the root difference ∆z
(l)
k = z

(l)
mp− z

(l)
L,k has

been plotted for each of the roots l = {1, . . . , 8} for iteration
k = 20 and k = 200. The roots have been sorted according to
their distance to the unit circle, such that the one closest to the

unit circle is called root 1, etc. The figure shows that the closer

the root is to the unit circle, the slower the convergence it will

have, which follows the convergence analysis given in Section
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Figure 7. Deviation of the roots in a 2 × 2 MIMO system with Gaussian
filter coefficients, L = 5 for iteration k = 20 and k = 200.

V. After k = 200 iterations, it is primarily the root closest to

the unit circle which contributes to the difference between the

filter obtained from L and the true minimum-phase filter.

VII. CONCLUSION

It has been shown how the QL-factorization of the filtering

matrix gives the finite length equivalent to the minimum-phase

and the all-pass filters and thereby presents a new way of

computing these two classical filters in a numerically stable

way. The exact convergence rate has been computed for a

simple SISO length L = 2 system and an upper bound has

been derived, which is used for approximating the convergence

in systems of arbitrary length. Asymptotically these results

also generalize to MIMO systems. The derived convergence

results correspond well with what is observed in simulations

and, furthermore, they are in agreement with existing results

for the DARE method.
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APPENDIX A

FUNCTIONAL FORM OF RECURSIVE PARAMETER γk

In this appendix we rewrite the recursive expression for the

parameter γk to a functional form. The recursion given in (15)
is

γk+1 =
a |γk|

√

1 + |γk|2
,

and by inserting γ1 = a into the expression above we get

γ2 = ei∠a |a|2 /
√

1 + |a|2 and we then see that

γ3 =
ei∠a |a| |a|2√

1+|a|2

√

1 + |a|4

1+|a|2

=
ei∠a |a|3

√

1 + |a|2 + |a|4
. (30)

The reduction made in (30) can be repeated in every step of

the recursion and, therefore, in general we get

γk =
ei∠a |a|k

√
k−1∑

k′=0

|a|2k′
=

ei∠a |a|k
√

1−|a|2(k−1)+2

1−|a|2

(31a)

= ei∠a |a|k
√

|a|2 − 1

|a|2k − 1
. (31b)

APPENDIX B

FIXED-POINT SOLUTIONS

This appendix proves Lemma V.2. From Section V-A we

have seen that the parameter γk, which determines the co-

efficients in L of the Householder transformation, can be

computed recursively. In order to find the fixed-point solution

γfix = f (γfix) , where f(x) =
a |x|

√

1 + |x|2
, (32)

we will first assume that γfix 6= 0. We then have

γfix =
a |γfix|

√

1 + |γfix|2
⇔ (33a)

a =
√

1 + |γfix|2 ei∠γfix ⇔ (33b)

|a|2 = 1 + |γfix|2 ⇒ (33c)

γfix = ei∠a
√

|a|2 − 1 , where |a| > 1 . (33d)

In (33b) and (33d) we have used the fact that ∠γfix will

always be the same as ∠a. By inserting (33d) in (32) it is

easily verified that this is indeed a fixed-point solution for

|a| > 1.
Let us next consider the case where γfix = 0. By inserting

this value of γfix into (32), it is easily seen that this is actually
a fixed-point. Thus, Lemma V.2 has hereby been proved.

APPENDIX C

CONVERGENCE TO FIXED-POINT SOLUTIONS

In order to prove that the recursive update of γk converges

to the fixed-points we are interested in showing that

|γk+1 − γfix| < |γk − γfix| , ∀ k ≥ 1 . (34)

The proof has been split up into the case for |a| ≤ 1 and

|a| > 1, but we will first prove Lemma C.1, which turns out

to be a useful lemma when proving the convergence to the

fixed-point for |a| > 1.

Lemma C.1. Let γfix be the fixed-point solution given in

Lemma V.2 and let ǫ be a complex valued constant with ∠(ǫ) =
∠γfix = ∠a, we then have

|f(ǫ+ γfix)| > |γfix| , where f(x) =
a |x|

√

1 + |x|2
. (35)

Proof: It is trivial to show that Lemma C.1 is valid

for |a| ≤ 1, since γfix = 0, so we will focus on γfix =
ei∠a

√

|a|2 − 1. Since the arguments for all the terms in (35)
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are the same, we can simply ignore the angle and only consider

the simple case where all values are real and positive, i.e.

f(ǫ+ γfix) > γfix ⇒ (36a)

a (ǫ+
√
a2 − 1)

√

1 +
(
ǫ+

√
a2 − 1

)2
>

√

a2 − 1 , (36b)

which can be rewritten as

1

(ǫ2 + 2ǫ
√
a2 − 1)/a2 + 1

< 1 . (37)

Since all the terms on the LHS in (37) are positive, the

inequality is true for all |a| > 1. This completes the proof.

We now turn our attention to proving (34).

A. Case where |a| ≤ 1

It is fairly straight forward to prove the convergence in this

case, since γfix = 0 and, thus, (34) reduces to showing that

lim
k→∞

γk = 0, or equivalently |γk| > |γk+1|,

|γk| > |γk+1| =
|a| |γk|

√

1 + |γk|2
⇔ (38a)

√

1 + |γk|2 > |a| . (38b)

Since we assumed that |a| ≤ 1, (38b) is satisfied for all γfix 6=
0. In the case where γ = 0 we have the fixed-point, and

therefore, we have proved the convergence to the fixed-point

for |a| ≤ 1.

B. Case where |a| > 1

Since the initial input to the recursion in (15) is a, which
numerically is greater than γfix, we can use Lemma C.1 to

rewrite (34) as

|γk+1| − |γfix| < |γk| − |γfix| ⇔ (39a)

|γk+1| =
|a| |γk|

√

1 + |γk|2
< |γk| ⇔ (39b)

|a|
√

1 + |γk|2
< 1 . (39c)

By recalling from Lemma C.1 that |γfix| < |γk| (when γk 6=
γfix), we can upper bound LHS in (39c) as

|a|
√

1 + |γk|2
<

|a|
√

1 + |γfix|2
(40a)

=
|a|

√

1 + |a|2 − 1
= 1 . (40b)

Now since the RHS in (40a) is equal to one, (39) must be

true, which completes the proof of convergence for |a| > 1,
and provides us with the following lemma.

Lemma C.2 (Convergence to fixed-point). Let γfix be the

fixed-point solution given in Lemma V.2 and let γk 6= 0 be

a complex valued number given by the recursion in (15). For

γ1 = a the value of γk satisfy

|γk+1 − γfix| < |γk − γfix| , ∀ k ≥ 1 .
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Abstract—In this paper we study a Markov Chain Monte
Carlo (MCMC) Gibbs sampler for solving the integer least-
squares problem. In digital communication the problem is
equivalent to performing Maximum Likelihood (ML) detection in
Multiple-Input Multiple-Output (MIMO) systems. While the use
of MCMC methods for such problems has already been proposed,
our method is novel in that we optimize the ”temperature”
parameter so that in steady state, i.e. after the Markov chain
has mixed, there is only polynomially (rather than exponentially)
small probability of encountering the optimal solution. More pre-
cisely, we obtain the largest value of the temperature parameter
for this to occur, since the higher the temperature, the faster
the mixing. This is in contrast to simulated annealing techniques
where, rather than being held fixed, the temperature parameter
is tended to zero. Simulations suggest that the resulting Gibbs
sampler provides a computationally efficient way of achieving
approximative ML detection in MIMO systems having a huge
number of transmit and receive dimensions. In fact, they further
suggest that the Markov chain is rapidly mixing. Thus, it has
been observed that even in cases were ML detection using, e.g.
sphere decoding becomes infeasible, the Gibbs sampler can still
offer a near-optimal solution using much less computations.

I. INTRODUCTION

The problem of performing Maximum Likelihood (ML)

decoding in digital communication has gained much attention

over the years. One method to obtain the ML solution is Sphere

Decoding (SD) [1]–[5]. Over a wide range of Signal-to-Noise

Ratios (SNR)s the average complexity of SD is significantly

smaller than exhaustive search detectors, but in worst case

the complexity is still exponential [6]. Thus, in scenarios

with poor SNR or in Multiple-Input Multiple-Output (MIMO)

systems with huge transmit and receive dimensions, even SD

can be infeasible. A way to overcome this problem is to

use approximate Markov Chain Monte Carlo (MCMC) de-

tectors instead, which asymptotically can provide the optimal

solution, [7], [8]. Gibbs sampling (also known as Glauber

dynamics) is one MCMC method, which is used for sampling

from distributions of multiple dimensions. The Gibbs sampler

has among others been proposed for detection purposes in

wireless communication in [9]–[12] (see also the references

therein). The scope of this paper is to describe and analyse

a new way of solving the integer least-squares problem using

MCMC. It will be shown that the method can be used for

achieving a near-optimal and computationally efficient solution

of the problem, even for systems having a huge dimension.

The paper is organized as follows; In Section II we present

the system model that will be used throughout the paper. The

MCMC method is described in Section III and in Section IV

we analyse the probability of error for the ML detector. Section

V treats the optimal selection of the temperature parameter α,
while the simulation results are given in Section VI and some

concluding remarks are found in Section VII.

II. SYSTEM MODEL

We consider a real-valued block-fading MIMO antenna

system, with N transmit and N receive dimensions, with know

channel coefficients.1 The received signal y ∈ R
N can be

expressed as

y =
√

SNR

N
Hs + υ , (1)

where s ∈ ΩN is the transmitted signal, and Ω denotes the

constellation set. To simplify the derivations in the paper

we will assume that Ω = {±1}. υ ∈ R
N is the noise

vector where each entry is Gaussian N (0,1) and independent
identically distributed (i.i.d.), and H ∈ R

N×N denotes the

channel matrix with i.i.d. N (0,1) entries. The normalization
in (1) guarantees that SNR represents the signal-to-noise ratio

per receive dimension (which we define as the ratio of the total

transmit energy per channel use divided by the per-component

noise variance as described in among others [5]). As explained

further below, for analysis purposes we will focus on the

regime where SNR > 2 ln(N), in order to get the probability

of error of the ML detector to go to zero. Further, in our

analysis, without loss of generality, we will assume that the

1For simplicity we have assumed that the receive and the transmit dimen-
sions are the same, but the results presented in the paper can be generalized
to cover different dimensions.
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all minus one vector was transmitted, s = −1. Therefore
y = υ −

√
SNR

N
H1 . (2)

We are considering a minimization of the average error

probability P (e) ≜ P (ŝ ≠ s), which is obtained by perform-

ing Maximum Likelihood Sequence Detection (here simply

referred to as ML detection) given by

ŝ = arg min
s∈ΩN

XXXXXXXXXXXX
y −

√
SNR

N
Hs

XXXXXXXXXXXX

2

. (3)

III. GIBBS SAMPLING

One way of solving the optimization problem given in (3)

is by using Markov Chain Monte Carlo (MCMC) simulations,

which asymptotically converge to the optimal solution [13].

More specifically, the MCMC detector we investigate here is

the Gibbs sampler, which computes the conditional probability

of each symbol in the constellation set at the jth index in

the estimated symbol vector. This conditional probability is

obtained by keeping the j − 1 other values in the estimated

symbol vector fixed. Thus, in kth iteration the probability of

the jth symbol adopts the value ω, is given as

p (ŝ(k)j = ω ∣θ) = e
− 1

2α2

XXXXXXXXXXXy−
√
SNR

N
Hs̃j∣ω

XXXXXXXXXXX
2

∑
s̃j∣ω̃ ∈Ω e

− 1

2α2

XXXXXXXXXXXy−
√
SNR

N
Hs̃j∣ω̃

XXXXXXXXXXX
2

, (4)

where s̃T
j∣ω ≜ [ŝ(k)

1∶j−1
, ω, ŝ

(k−1)
j+1∶NT

]T and where we for simplicity

have introduced θ = {ŝ(k−1),y,H}.2 α represents a tunable

positive parameter which controls the mixing time of the

Markov chain, this parameter is also sometimes called the

”temperature”. The larger α is the faster the mixing time

of the Markov chain will be, but as we will show in the

paper, there is an upper limit on α, in order to ensure

that the probability of finding the optimal solution in steady

state is not exponentially small. The MCMC method will

with probability p (ŝ(k)j = ω ∣θ ) keep ω at the j’th index in

estimated symbol vector, and compute conditional probability

the (j+1)th index in a similar fashion. We define one iteration

of the Gibbs sampler as a randomly-ordered update of all the

j = {1, . . . ,NT } indices in the estimated symbol vector ŝ.3 The
initialization of the symbol vector ŝ(0) can either be chosen

randomly or, alternatively, e.g. the zero-forcing solution can

be used.

2When we compute the probability of symbol ω at the j’th position, we

more precisely condition on the symbols ŝ
(k)
1∶j−1 and ŝ

(k−1)
j+1∶NT

, but to keep the

notation simple, we do not explicitly state that in the equations above.
3We need a randomly-ordered update for the Markov chain to be reversible

and for our subsequent analysis to go through. It is also possible to just
randomly select a symbol j to update, without insisting that a full sequence
be done. This also makes the Markov chain reversible and has the same
steady state distribution. In practice a fixed, say sequential, order can be
employed, although the Markov chain is no longer reversible. Note that
our theoretical analysis is assuming randomly selected symbol updates for
analytical convenience. In our experimental section we used a sequential
updating order which empirically yields a slight convergence acceleration.

A. Complexity of the Gibbs sampler

The conditional probability for the j’th symbol in (4) can be
computed efficiently by reusing the result obtained for the j −
1’th symbol, when we evaluate ∥y −√SNR/NHs̃j∣ω ∥2

. Since

we are only changing the j’th symbol in the symbol vector,

the difference dj ≜ y −√SNR/NHs̃j∣ω can be expressed as

dj = dj−1 −
√

SNR

N
H1∶N,j∆sj∣ω , (5)

where ∆sj∣ω ≜ s
(k)
j∣ω − s

(k−1)
j∣ω̃ . Thus, the computation of condi-

tional probability of certain symbol in the j’th position costs

2N operations, where we define an operation as a Multiply and

Accumulate (MAC) instruction.4 This leads to a complexity of

O(2N2[∣Ω∣ − 1]) operations per iteration. For further details

on the implementation of the Gibbs sampler see [14].

IV. PROBABILITY OF ERROR

In this paper, we are interested in evaluating the perfor-

mance of the aforementioned Gibbs sampler, compared to the

ML solution. To ease our analysis, we will assume that the

ML detector finds the correct transmitted vector. Before we

derive the probability of error for the ML detector, we will

state a lemma which we will make repeated use of.

Lemma IV.1 (Gaussian Integral). Let v and x be independent

Gaussian random vectors with distribution N (0, IN) each.

Then, if 1 − 2a2η(1 + 2η) > 0,

E {eη(∥v+ax∥2−∥v∥2)} = ( 1

1 − 2a2η(1 + 2η))
N/2

. (6)

Proof: See Appendix VIII-A for a detailed proof.

Assuming that the vector s = −1 was transmitted, the ML

detector will make an error if there exists a vector s ≠ −1 such

that XXXXXXXXXXXXy −
√

SNR

N
Hs

XXXXXXXXXXXX
2

≤
XXXXXXXXXXXXy +

√
SNR

N
H1

XXXXXXXXXXXX
2

= ∥υ∥2 .

In other words,

Pe = Prob
⎛⎜⎝
XXXXXXXXXXXXy −

√
SNR

N
Hs

XXXXXXXXXXXX
2

≤ ∥υ∥2
⎞⎟⎠

= Prob
⎛⎜⎝
XXXXXXXXXXXXυ +

√
SNR

N
H(−1 − s)XXXXXXXXXXXX

2

≤ ∥υ∥2
⎞⎟⎠ ,

for some s ≠ −1, which can be formulated as

Pe = Prob
⎛⎜⎝
XXXXXXXXXXXXυ + 2

√
SNR

N
Hδ

XXXXXXXXXXXX
2

≤ ∥υ∥2
⎞⎟⎠ ,

4We need to compute both the inner product d
T
j dj and the product

H1∶N,j∆sj∣ω .
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for some δ ≠ 0. Note that in the above equation δ is a vector

of zeros and −1’s. Now using the union bound

Pe ≤ ∑
δ≠0

Prob
⎛⎜⎝
XXXXXXXXXXXXυ + 2

√
SNR

N
Hδ

XXXXXXXXXXXX
2

≤ ∥υ∥2
⎞⎟⎠ . (7)

We will use the Chernoff bound to bound the quantity inside

the summation. Thus,

Prob
⎛⎜⎝
XXXXXXXXXXXXυ + 2

√
SNR

N
Hδ

XXXXXXXXXXXX
2

≤ ∥υ∥2
⎞⎟⎠ (8a)

≤ E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e
−β

⎛
⎝
XXXXXXXXXXXυ+2

√
SNR

N
Hδ

XXXXXXXXXXX
2

−∥υ∥2⎞⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(8b)

= ⎛⎜⎝
1

1 + 8
SNR∥δ∥2

N
β(1 − 2β)

⎞⎟⎠
N/2

, (8c)

where β ≥ 0 is the Chernoff parameter, and where we have

used Lemma IV.1 with η = −β and a = 2

√
SNR∥δ∥2

N
, since

E

⎧⎪⎪⎨⎪⎪⎩
⎛⎝2

√
SNR

N
Hδ

⎞⎠⎛⎝2

√
SNR

N
Hδ

⎞⎠
∗⎫⎪⎪⎬⎪⎪⎭ = 4

SNR∥δ∥2

N
IN .

The optimal value for β is 1

4
, which yields the tightest bound

Prob
⎛⎜⎝
XXXXXXXXXXXXυ + 2

√
SNR

N
Hδ

XXXXXXXXXXXX
2

≤ ∥υ∥2
⎞⎟⎠ ≤ ⎛⎜⎝

1

1 + SNR∥δ∥2
N

⎞⎟⎠
N/2

.

(9)

Note that this depends only on ∥δ∥2, the number of nonzero

entries in δ. Plugging this into the union bound yields

Pe ≤
N

∑
i=1

( N
i

)⎛⎝ 1

1 + SNRi
N

⎞⎠
N/2

. (10)

Let us first look at the linear (i.e., i proportional to N ) terms

in the above sum. Thus,

( N
i

)⎛⎝ 1

1 + SNRi
N

⎞⎠
N/2

≈ e
NH( i

N
)−N

2
ln(1+SNRi

N
)
,

where H(⋅) is entropy in “nats”. Clearly, if limN→∞ SNR = ∞,

then the linear terms go to zero (superexponentially fast).

Let us now look at the sublinear terms. In particular, let is

look at i = 1:

N
⎛⎝ 1

1 + SNR
N

⎞⎠
N/2

≈ Ne−SNR/2.

Clearly, to have this term go to zero, we require that SNR >
2 lnN . A similar argument shows that all other sublinear terms

also go to zero, and so.5

Lemma IV.2 (SNR scaling). If SNR > 2 lnN , then Pe → 0 as

N →∞.

5Due to space constraints we only present a sketch of this bound. A rigorous
proof can be given using the saddle point method, similarly to the proof in
the next section.

V. COMPUTING THE OPTIMAL α

Assuming that the vector s = −1 has been transmitted, the

probability of finding this solution after the Markov chain has

mixed is simply π−1, the steady-state probability of being in

the all −1 state. Clearly, if this probability is exponentially

small, it will take exponentially long for the Gibbs sampler to

find it. We will therefore insist that the mean of π−1 be only

polynomially small.

A. Mean of π−1
This calculation has a lot in common with the one given in

Section IV. Note that the steady state value of π−1 is simply

π−1 = e
− 1

2α2

XXXXXXXXXXXy+
√
SNR

N
H1

XXXXXXXXXXX
2

∑s e
− 1

2α2

XXXXXXXXXXXy+
√
SNR

N
Hs

XXXXXXXXXXX
2

(11a)

= e− 1

2α2
∥υ∥2

∑s e
− 1

2α2

XXXXXXXXXXXυ+
√
SNR

N
H(s−1)XXXXXXXXXXX

2
(11b)

= e− 1

2α2
∥υ∥2

∑δ e
− 1

2α2

XXXXXXXXXXXυ+2

√
SNR

N
Hδ

XXXXXXXXXXX
2

(11c)

= 1

∑δ e
− 1

2α2

⎛
⎝
XXXXXXXXXXXυ+2

√
SNR

N
Hδ

XXXXXXXXXXX
2

−∥υ∥2⎞⎠
, (11d)

where δ is a vector of zeros and ones and the summations

(over s and δ) are over 2n terms.

Now, by Jensen’s inequality

E {π−1} ≥ 1

E { 1

π−1
} (12a)

= 1

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑δ e

− 1

2α2

⎛
⎝
XXXXXXXXXXXυ+2

√
SNR

N
Hδ

XXXXXXXXXXX
2

−∥υ∥2⎞⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(12b)

= 1

∑δ E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e
− 1

2α2

⎛
⎝
XXXXXXXXXXXυ+2

√
SNR

N
Hδ

XXXXXXXXXXX
2

−∥υ∥2⎞⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(12c)

= 1

1 + ∑δ≠0
⎛⎝ 1

1+4
SNR∥δ∥2

N
1

α2
(1− 1

α2
)
⎞⎠

N/2 (12d)

= 1

1 + ∑N
i=1 ( N

i
)( 1

1+βi

N

)N/2 . (12e)

In (12d) we have used Lemma IV.1 and in (12e) we have

defined β ≜ 4SNR 1

α2 (1 − 1

α2 ). While it is possible to focus

on the linear and sublinear terms in the above summation

separately, to give conditions for E {π−1} to have the form

of 1/poly(N), we will be interested in the exact exponent
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and so will need a more accurate estimate. To do this we shall

use saddle point integration. Note that

( N
i

)⎛⎝ 1

1 + βi

N

⎞⎠
N/2

≈ e
NH( i

N
)−N

2
ln(1+βi

N
)

,

where again H(⋅) represents the entropy in “nats”. And so the
summation in the denominator of (12e) can be approximated

as a Stieltjes integral:

N

∑
i=1

( N
i

)⎛⎝ 1

1 + βi

N

⎞⎠
N/2

≈ N
N

∑
i=1

e
NH( i

N
)−N

2
ln(1+βi

N
) 1

N

(13a)

≈ N ∫
1

0

eNH(x)−N
2

ln(1+βx)dx .

(13b)

For large N , this is a saddle point integral and can be

approximated by the formula

∫
1

0

eNf(x)dx ≈
√

2π

N ∣f ′′(x0)∣eNf(x0) , (14)

where x0, is the saddle point of f(⋅), i.e.,f ′(x0) = 0. In our

case,

f(x) = −x lnx − (1 − x) ln(1 − x) − 1

2
ln(1 + βx) ,

and so

f ′(x) = ln
1 − x

x
− 1

2

β

1 + βx
.

In general, it is not possible to solve for f ′(x0) = 0 in

closed form. However, in our case, if we assume that β =
4SNR 1

α2 (1 − 1

α2 )≫ 1 (which is true since the SNR grows at

least logarithmically), then it is not too hard to verify that the

saddle point is given by

x0 = e− β

2 . (15)

And hence f(x0) =
− e−β

2 ln e− β

2 − (1 − e−β

2 ) ln(1 − e−β

2 ) − 1

2
ln(1 + βe− β

2 )
≈ β

2
e−β

2 + e−β

2 − 1

2
βe− β

2 = e− β

2 ,

and further plugging x0 into f ′′(x) = − 1

x
− 1

1−x
− 1

2

β2

(1+βx)2 ,
yields

f ′′(x0) ≈ −e
β

2 − 1 + 1

2
β2 ≈ −e

β

2 . (16)

Replacing these into the saddle point expression in (14) show

that

N

∑
i=1

( N
i

)⎛⎝ 1

1 + βi

N

⎞⎠
N/2

≈ √
2π/N exp(Ne−β

2 − β

4
) . (17)

We want E {π−1} to behave as 1

Nζ and according to (12) this

means that we want the expression in (17) to behave as N ζ .

Let us take

eNe
−

β
2 = N ζ .
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Figure 1: Value of α vs. SNR for system size N = 10.

Solving for β yields

β = 4SNR
1

α2
(1 − 1

α2
) = 2 (lnN − ln lnN − ln ζ) . (18)

Incidentally, this choice of β yields e− β

4 ≈ 1√
N
, and so we

have the following result.

Lemma V.1 (Mean of π−1). If α is chosen such that

α2

1 − 1

α2

= 2SNR

lnN − ln lnN − ln ζ
, (19)

then

E {π−1} ≥ N−ζ . (20)

B. Value of α

Note that from (12e) it is clear that the larger β is, the larger

π−1 is. Therefore, the range of α that gives a polynomially

small probability to π−1 is

α2

1 − 1

α2

≥ 2SNR

lnN − ln lnN − ln ζ
. (21)

It can be shown that in the regime, SNR > 2 lnN , the above

quadratic inequality in α has two positive real solutions, α+ ≥
α−, and that the inequality holds for all α ∈ [α−, α+].
We know that, the larger α is, the faster the Markov chain

mixes.6 Therefore it is reasonable that we choose the largest

permissible value for α, i.e., α+.
Figures 1 and 2 show the values of α+ and α− as a function

of SNR for systems with N = 10 and N = 50, when we have

ζ = 1/ ln(N).
C. Mixing time of Markov Chain

One open question is whether the Markov chain is rapidly

mixing when using the strategy above for choosing α. This is
something we are currently investigating, and the simulations

presented in Section VI seem to indicate that this is the case.

Furthermore, the simulations also suggest that the computed

value of α is very close to the optimal choice, even in the case

where the condition SNR > 2 ln(N) is not satisfied.

6In general, there is a trade-off between faster mixing time of the Markov
chain (due to an increase of α) versus slower encountering the optimal solution
in steady-state. In fact, at infinite temperature our algorithm reduces to a
random walk in a hypercube which mixes in O(N lnN) time.
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Figure 2: Value of α vs. SNR for system size N = 50.
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Figure 3: BER vs. iterations, 10 × 10. SNR = 10 dB.

VI. SIMULATION RESULTS

In this section we present simulation results for a MIMO

N × N system with a full square channel matrix containing

i.i.d. Gaussian entries. In Fig. 3 and Fig. 4 the Bit Error Rate

(BER) of the Gibbs sampler, initialized with a random s, has

been evaluated as a function of the number of iterations in a

10 × 10 system using a variety of α values. Thereby, we can

inspect how the parameter α affects the convergence rate of the

Gibbs sampler. The performance of the Maximum Likelihood

(ML), the Zero-Forcing (ZF), and the Linear Minimum Mean

Square Error (LMMSE) detector has also been plotted, to

ease the comparison of the Gibbs sampler with these. It is

seen that the Gibbs sampler outperforms both the ZF and

the LMMSE detector after only a few iterations in all the

presented simulations, when the tuning parameter α is chosen

properly. Furthermore, it is observed that the parameter α has

a huge influence on the convergence rate and that the Gibbs

sampler converges toward the ML solution as a function of the

iterations.7 The optimal value of α (in terms of convergence

rate) is quite close to the theoretical values from Fig. 1 of

α+ = 2.7 and α+ = 4.6 at SNR’s at 10 and 14dB, respectively.

It is also observed that the performance of the Gibbs sampler

is significantly deteriorated if the temperature parameter is

7It should be noted that the way we decode the symbol vector to a given
iteration, is to select the symbol vector which has the lowest cost function in
all the iterations up to that point in time.
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Figure 4: BER vs. iterations, 10 × 10 system. SNR = 14 dB.
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Figure 5: BER vs. SNR, 10×10. Number of iterations, k = 100.

chosen based on the SNR (and thereby on the noise variance),

such that α = σ ≜ 1/SNR. Thus, the latter strategy is clearly

not a wise choice.

Figure 5 shows the BER performance for the MCMC detector

for fixed number of iterations, k = 100. From the figure we

see that the SNR has a significant influence on the optimal

choice of α given a fixed number of iterations.

The performance of the Gibbs sampler is also shown for a

50 × 50 system, which represents a ML decoding problem of

huge complexity where an exhaustive search would require

250 ≈ 1015 evaluations. For this problem even the sphere

decoder has an enormous complexity under moderate SNR.8

Therefore, it has not been possible to simulate the performance

of this decoder within a reasonable time and we have therefore

“cheated” a little by initializing the radius of the sphere to

the minimum of either the norm of the transmitted symbol

vector or the solution found by the Gibbs sampler. This has

been done in order to evaluate the BER performance of the

optimal detector. Figure 6 shows the BER curve as a function

of the iteration number, while Figure 7 illustrates the BER

curve vs. the SNR. From Figure 6 we see that there is a

quite good correspondence between the simulated α and the

theoretical value α+ = 2.6 obtained from Figure 2. The

average complexity (MAC pr. symbol vector) of the Gibbs

8In fact, it can be shown that, for SNR = O(lnN), the lower bound on
the complexity of the sphere decoder obtained in [6] is exponential.



103

0 50 100 150 200 250 300 350 400 450 500
10

−4

10
−3

10
−2

10
−1

10
0

Iteration number

B
E
R

ML

ZF

LMMSE

MCMC (α=σ)

MCMC, α =1

MCMC, α =2

MCMC, α =2.5

MCMC, α =3

MCMC, α =4

2.5

2

3

1

4

Figure 6: BER vs. iterations, 50 × 50 system. SNR = 12 dB.
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Table I: Complexity of SD and Gibbs Sampler (GS).

N Method SNR 6 dB 10 dB 14 dB

10
GS 9.8 ⋅ 10

3
10.9 ⋅ 10

3
16.4 ⋅ 10

3

SD 10.0 ⋅ 10
3

1.7 ⋅ 10
3

1.5 ⋅ 10
3

50
GS 7.6 ⋅ 10

5
9.5 ⋅ 10

5
10.6 ⋅ 10

5

SD ≫ 1.9 ⋅ 10
9 ≫ 1.9 ⋅ 10

9
37.7 ⋅ 10

5

sampler having a BER performance comparable with the ML

detector is shown in Table I. The SD has been included as

a reference.9 It is observed that the complexity of the Gibbs

sampler is not affected by the SNR as much as the SD.

VII. CONCLUSION

In this paper we considered solving the integer least-squares

problem using Monte Carlo Markov Chain Gibbs sampling.

The novelty of the proposed MCMC method is that, unlike

simulated annealing techniques, we have a fixed temperature

parameter in all the iterations, with the property that after

the Markov chain has mixed, the probability of encounter-

ing the optimal solution is only polynomial small (i.e. not

exponentially small). We further compute the optimal (here

largest) value of the temperature parameter that guarantees

this. Simulation results indicate the sensitivity of the method

to the choice of the temperature parameter and show that

our computed value gives a very good approximation to its

9It has not been possible to simulate the SD for a 50 × 50 system when
SNR ≤ 10dB and, therefore, the complexity of SNR = 12dB has been
used a lower bound.

optimal value. Investigating whether the Markov chain mixes

in polynomial time for this choice of temperature parameter

is currently under investigation.

VIII. APPENDIX

A. Proving Lemma IV.1

Lemma IV.1 (Gaussian Integral) Let v and x be inde-

pendent Gaussian random vectors with distribution N (0, IN)
each. Then

E {eη(∥v+ax∥2−∥v∥2)} = ( 1

1 − 2a2η(1 + 2η))
N/2

. (22)

Proof: In order to determine the expected value we compute

the multivariate integral

E {eη(∥v+ax∥2−∥v∥2)}
= ∫ dxdv(2π)N

e
− 1

2
[ vT , xT ]

⎡⎢⎢⎢⎢⎣
IN −2aηIN

−2aηIN (1 − 2a2η)IN

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
v

x

⎤⎥⎥⎥⎥⎦

= 1

detN/2 [ 1 −2aη
−2aη 1 − 2a2η

] = ( 1

1 − 2a2η(1 + 2η))
N/2

.

Thus, Lemma IV.1 has hereby been proved.
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