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Summary

Interpolation and List Decoding of Algebraic Codes

Error-correcting codes are used in digital communication and storage systems
to prevent the influence of external noise from corrupting data. Examples of
such systems are CD and DVD players, satellite communication systems and
the transatlantic optical fiber cables that constitute an important link in the
Internet’s infrastructure.

A practical error-correcting code must provide a good trade-off between com-
munication rate and error-correcting capability, and furthermore it should be
efficiently decodable. List decoding is a flexible scheme for decoding error-
correcting codes, and recent results has shown that it allows for theoretically
optimal use of communication channels. The error-correcting codes and de-
coders in these results are completely explicit. Despite this fact it remains a
difficult challenge to take advantage of the promised optimality in practical
implementations. This fact is due to the lack of efficient list decoders capable
of operating at the rate at which modern digital communication take place.

This thesis investigates list decoders for various algebraic error-correcting
codes with emphasis on the efficiency with which these can be implemented.
An integral part of the studied list decoders is a constrained multivariate
interpolation problem. In the thesis a fast method for solving this problem
is developed. Furthermore, a new method for decoding the theoretically
optimal error-correcting codes mentioned above is given, and its virtues and
limitations are explored.
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Resumé

Interpolation og Listeafkodning af Algebraiske Koder

Fejlrettende koder anvendes i digitale kommunikations- og lagringssystemer
til at beskytte data mod at blive ødelagt af udefrakommende støj. Eksem-
pelvis anvendes fejlrettende koder i CD- og DVD-afspillere, satellitkommu-
nikationssystemer og i de transatlantiske optiske fiberkabler der er en vigtig
del af internettets infrastruktur.

En central egenskab ved en fejlrettende kode, er dens afvejning af kommu-
nikationshastighed og fejlrettende egenskaber. Ydermere skal en god fejlret-
tende kode kunne afkodes effektivt. Listeafkodning er en fleksibel metode
til at afkode fejlrettende koder og det er for nyligt blevet vist, at man med
anvendelse af listeafkodning kan opn̊a teoretisk optimal udnyttelse af en kom-
munikationskanal. De fejlrettende koder og listeafkodere, der indg̊ar i dette
resultat, er beskrevet fuldstændig eksplicit. P̊a trods af dette forbliver det en
udfordring at omsætte den teoretiske optimalitet til en praktisk anvendelig
implementering. Dette skyldes, at der endnu ikke er udviklet listeafkodere,
der kan følge med i det tempo, hvormed moderne digital kommunikation
foreg̊ar.

I nærværende afhandling undersøges listeafkodere for forskellige typer alge-
braiske fejlrettende koder med særligt fokus p̊a den effektivitet der kan opn̊as
i praktiske implementeringer af disse. Et vigtigt trin i alle de undersøgte lis-
teafkodere best̊ar i at løse et særligt flervariabelt interpolationsproblem. I
afhandlingen udvikles en effektiv metode til at løse netop denne type prob-
lemer. Der udvikles ydermere en ny metode til at afkode de ovennævnte
teoretisk optimale fejlrettende koder, og denne metodes fordele og ulemper
indkredses.
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Chapter 1

Introduction

In this thesis we will investigate the role of multivariate polynomial inter-
polation in list decoding of algebraic error-correcting codes. Our focal point
will be Sudan’s seminal paper Decoding of Reed–Solomon Codes beyond the
Error-Correction Bound [65], which not only gave the first explicit and ef-
ficient list decoder, but also connected the theory of error-correcting codes
with the subject of complexity theory. Since then, list decoding has been de-
veloped in a fruitful interplay between the two fields, and has found numerous
applications in both.

1.1 List decoding

In this section we will introduce list decoding and put it into its information
theoretic context.

1.1.1 Error-correcting codes and channels

Error-correcting codes were invented to answer the question: Say we have
some means for communication, a channel , capable of sending symbols from
a finite alphabet Σ, in such a way that whenever the sender transmits n
symbols, at most τ of them are corrupted when they arrive at the receiver.
How do we communicate over such a channel, i.e. how can a sender make
sure that an error-free copy of a message is made available at the receiver
end? This problem arises in a number of scenarios of which we now mention
a few.

1



1. Introduction

• A data harvesting satellite needs to transmit its data to a control centre
on Earth. It does so via radio waves, but due to the physical interfer-
ence that affects the waves as they travel through space, the data may
be (and most likely is) corrupted when it arrives to Earth.

• A musician wishes to communicate his or hers latest piece to an au-
dience. With the help of a record company, the track is put on CDs
and made available in record stores. The CDs are the musician’s com-
munication channels. With time the plastic in CDs degenerate and if
furthermore the CDs have been treated less considerately, the message
that gets through to the listener is a distorted version of the original
track.

• Most digital communication generated by internet traffic between USA
and Europe is transferred through optic fibers lying on the bottom of
the Atlantic Ocean. Due to deterioration of the fiber material, this
channel inflicts errors on the messages it transmits. In fact at the rate
with which the fibers are currently used, as many as 108 errors may
occur per second [36].

If a communication channel can corrupt all symbols of a message arbitrarily,
then no information gets through from the sender to the receiver. On the
other hand, if τ/n < 1 and n is sufficiently large, then the fundamental
theorem of information theory, Shannon’s Channel Coding Theorem [61],
states that the sender can actually convey some information to the receiver
via the channel. This promise can be realized with the use of error-correcting
codes.

The Hamming distance of two vectors x and y in Σn, is defined as

dH(x,y) = |{i | xi 6= yi}|.

With this notion we can formulate the properties of the channel described
above as follows: if x is the transmitted word and y is the word that the
receiver gets, then dH(x,y) ≤ τ . An error-correcting code (or simply a code)
C of length n defined over the alphabet Σ, is a collection of points in Σn.
The dimension of a code C is

k = log|Σ|(|C|),

and the rate of C is defined as the “density” of C in Σn, i.e. as R = k/n. An
error-correcting code C can be used in the channel communication problem
outlined above, by restricting the sender to only transmit vectors from C,

2



1. Introduction

rather than from all of Σn. If R < 1 then this is a real restriction which gives
some a priori information about the transmitted words. For a given received
word, the receiver may attempt to use this information to recover from the
errors imposed by the channel, and this process is known as decoding . The
minimum distance of a code is defined as

d(C) = min{dH(x,y) | x,y ∈ C,x 6= y}.

The minimum distance is an important parameter of a code, determining
how many errors the receiver’s decoding procedure can correct.

1.1.2 Unique decoding

If d(C) > 2τ , then the receiver can recover a transmitted word x ∈ C
from the corresponding received word y as the unique vector in C within
Hamming distance at most τ from y, see Figure 1.1. Thus in this case, the
sender can transmit one of the |C| possible messages by using the channel
n times, and the receiver is guaranteed to be able to recover an error-free
copy of this message. When the channel is used like this, the fraction of each
transmission that actually carries information is the rate R. The so-called
Singleton bound states that d(C)/n ≤ 1 − R + 1/n, and furthermore codes
achieving this bound exist [46, Chap. 11]. Therefore we can summarize the
above discussion by saying that if τ/n < 1

2
(1 − R), then it is possible to

communicate with rate R on the channel.

1.1.3 List decoding and list decoders

If d(C) ≤ 2τ , then we can not in general expect that there is a unique
codeword within distance τ from the received word and thus in this case, we
are not guaranteed to uniquely recover the transmitted word, see Figure 1.2.
However if τ is not too much larger than d(C)/2, then it may still be the case
that only a small list of codewords are within distance τ of the received word.
In this case the receiver is not necessarily able to pin down the transmitted
word exactly, but knowing that this word can be found among a small list
of words, may still be a lot more useful to the receiver, than just not getting
any information at all. For instance:

• If the transmitted message is a picture, or some other structured data,
then it is possible that the receiver can use this extra structure to decide
which of the codewords on the list, is the correct one.

3



1. Introduction
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Figure 1.1: The Hamming ball with center c and radius τ is BΣ(c, τ) = {x ∈ Σn |
dH(c,x) ≤ τ}. If τ < d(C)/2 then the balls of radius τ around the codewords in
C do not overlap.

• It may happen that there is only one codeword on the list. Indeed,
this is often the case for random errors (see e.g. [48, p. 33] or [55]).
In fact, for a given code, proving the existence of a received word with
many nearby codewords is in general a difficult combinatorial challenge
[9, 37].

• If the receiver insists on obtaining a single guess on the transmitted
word, then he can select some codeword which is closest to the received
word, among all the codewords on the list. This approach corresponds
to maximum likelihood decoding , since the closest codeword is also the
most probable one.

The process of finding a small list of codewords within distance τ from a
received word is called list decoding . This notion was introduced indepen-
dently by Elias [18] and Wozencraft [68] in the late 1950’s. It is important
to formalize what a small list is, since if we allow too large lists, then list de-
coding becomes trivial (e.g. if the decoder is allowed to output all the words
of C).

Definition 1.1 (List decoder). Let C be an error-correcting code of length
n, and let τ be an integer. A τ–list decoder for C is an algorithm A such
that:

• Given a received word y, A computes the list of codewords c1, . . . , cm ∈
C satisfying dH(ci,y) ≤ τ .

4



1. Introduction
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Figure 1.2: When d(C) ≥ 2τ it can happen that the Hamming balls of radius τ
around two codewords c1 and c2, both contain the received word y.

• The running time of A is polynomial in n.

The fraction τ/n is called the (relative) error-correcting radius or simply
error-radius of A. We will express the fact that A is an τ–list decoder for C
by saying that it decodes C up to error-radius τ/n.

Note that the last item of the definition implicitly requires the list decoder
to find polynomially sized lists (measured in n), since the list decoder will
not have time to output, and much less to compute, larger lists.

1.1.4 Limits to list decoding

The following theorem bounds how large error-radii are possible for list de-
coding while still maintaining polynomial list sizes:

Theorem 1.2. Let C be an error-correcting code of length n over Σ. Let
q = |Σ| and assume that 0 < τ/n < 1 − 1/q. Let Hq(p) denote the q-ary
entropy function

Hq(p) = p logq(q − 1)− p logq(p)− (1− p) logq(1− p),

and assume that, the rate of C is R = 1 − Hq(τ/n) + ε for some ε > 0.
Then there exist y ∈ Σn and a list of codewords c1, . . . , cm such that m is
exponential in n, and such that dH(ci,y) ≤ τ, for 1 ≤ i ≤ m.

Proof. We only sketch the proof, see [25, p. 24] for details. Let Bq(y, τ)
denote the Hamming ball of radius τ with center y, Bq(y, τ) = {x ∈ Σn |

5



1. Introduction

dH(x,y) ≤ τ}. It holds that

lim
h→∞

logq(|Bq(y, τ/n · h)|)
h

= Hq(τ/n),

and hence for sufficiently large n we have |Bq(y, τ)| ≈ qnHq(τ/n). Choose y
uniformly random in Σn and let Z be the random variable Z = |Bq(y, τ)∩C|.
We can compute the expectation of Z as

Ey[Z] =
∑
c∈C

|Bq(c, τ)|
qn

= |C| |Bq(0, τ)|
qn

≈ qnR+nHq(τ/n)−n = qnR+n(1−R+ε)−n = qεn.

Hence by the probabilistic method, there exist y ∈ Σn such that |Bq(y, τ) ∩
C| ≈ qεn.

When q tends to infinity, the q-ary entropy function Hq(p) tends to p. There-
fore the above theorem shows that for large alphabets, if the error-radius τ
is such that τ/n = 1 − R + ε, then there exists a received word, for which
a τ–list decoder is required to output an exponential number of codewords.
Thus list decoding with such a large error-radius is not possible. One way to
phrase this result, which we will be using in the following, is that 1 − R is
the capacity of list decoding.

As a result in the other direction the so-called Johnson bound [22], shows that
any linear code of minimum distance d can be list decoded with error-radius τ
satisfying Equation (1.1). In particular codes attaining the Singleton bound,
mentioned above, are list decodable for error-radii satisfying τ/n < 1−√R.

Theorem 1.3. Let C be an error-correcting code of length n, defined over
an alphabet Σ of size q. Let d denote the minimum distance of C. If τ ≥ d/2
and

τ/n <

(
1− 1

q

) (
1−

√
1− q

q − 1
· d
n

)
, (1.1)

then for any y ∈ Σn there can be at most

q
q−1
· d

n(
1− q

q−1
· τ

n

)2

−
(
1− q

q−1
· d

n

) ,

codewords within distance τ from y.
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1. Introduction

Proof. See [25, p. 20] or for an elegant proof using embeddings into real
vector spaces, [31].

It is known that the Johnson bound is tight, in the sense that there exist
codes with the property that if τ is chosen slightly larger than the bound
in Equation (1.1), then there exist a y ∈ Σn which has a super-polynomial
number of codewords within distance τ [22]. Furthermore, the bound is
known to be tight for binary linear codes [24]. For a version of the Johnson
bound which is independent of the alphabet size, see [15].

1.2 Interpolation and list decoding

When it was introduced in [18, 68], list decoding was a mainly theoretical
concept, dominated by non-constructive random coding arguments. It took
about thirty years before the first effective list-decoder saw light. In [21]
Goldreich and Levin gave a list decoder for Hadamard codes, as a by-product
of their investigation of so-called hard-core predicates. The dimension of
Hadamard codes is logarithmic in the code length, and hence for long codes
its rate is close to zero. Thus such codes are not suitable for high rate
data transmission, and this limits the information theoretic relevance of the
Goldreich–Levin decoder.

1.2.1 List decoding of Reed–Solomon codes

Unlike the Hadamard codes, Reed–Solomon codes [53] can be constructed
to have any (rational) rate in the interval [0, 1]. These codes are defined as
follows:

Definition 1.4 (Reed–Solomon codes). Let Fq be a finite field, and let n
and k be parameters satisfying 0 ≤ k ≤ n ≤ q. The Reed–Solomon code of
length n and dimension k over Fq is defined by

C = {(f(α1), . . . , f(αn)) | f(x) ∈ Fq[x], deg(f) < k} ,

where α1, . . . , αn are distinct elements of Fq.

The minimum distance of a Reed–Solomon code is d = n−k +1, and thus it
meets the Singleton bound. The Welch–Berlekamp decoder [67] can be used
to uniquely decode Reed–Solomon codes when the number of errors satisfy
τ/n < 1

2
(1−R). In [12] Berlekamp extended the Welch–Berlekamp decoder,

7



1. Introduction

and gave an algorithm capable of correcting one more error than is possible
with unique decoding. Thus the algorithm in [12] is in fact a list decoder for
Reed–Solomon codes. However, since it only corrects one more error than
unique decoding (and not a number which scales with the code length) its
advantage over the latter is negligible for long codes.

It was Sudan’s great insight that the main principles of [12, 67], could be
abstracted and interpreted as a bivariate interpolation problem [65]. Using
this, he gave an explicit and very elegant list decoder for Reed–Solomon
codes, working for error-radii satisfying τ/n < 1 − √2R. This result was
a real breakthrough. Not only was it the first effective list decoder for a
class of codes with non-vanishing rate, with performance significantly better
than unique decoding, but it also set the direction of future research in list
decoding. Since Sudan’s result was published, list decoders for a number
of codes have appeared in the literature, and it can be taken as measure of
the importance of Sudan’s result, that all these decoders are based on the
principles in [65]. Sudan’s list decoding algorithm consists of two steps, an
interpolation step and a root-finding step, and we now outline these.

1. Interpolation step: Let y ∈ Fn
q be a received word. Compute the

non-zero bivariate polynomial Q(x, T ) =
∑`

i=0 qi(x)T i ∈ Fq[x, T ] such
that Q(αi, yi) = 0 for 1 ≤ i ≤ n, and such that

degk−1(Q) = max{deg(qi(x)) + i(k − 1) | 0 ≤ i ≤ `, qi 6= 0},
is least possible under these conditions.

2. Root-finding step: Compute and output all polynomials f(x) for
which T − f(x) is a factor of Q(x, T ) and deg(f) < k.

The polynomial computed in step 1 is called an interpolation polynomial.
Using a linear algebra argument, it can be shown that there exists an inter-
polation polynomial such that degk−1(Q) ≈

√
2nk. If f(x) is a polynomial

generating a Reed–Solomon codeword that agrees with y in at least n − τ
positions, then the univariate polynomial Q(x, f(x)) has at least n− τ roots.
Furthermore, its degree is at most

√
2nk, and hence if τ/n < 1−√2R, then

Q(x, f(x)) = 0. Therefore f(x) will be among the polynomials found in the
root-finding step.

1.2.2 Improved list decoding of Reed–Solomon codes

Sudan’s list decoding algorithm only improves on unique decoding when R <
1/3. In [30] Guruswami and Sudan managed to overcome this restriction on

8



1. Introduction

the rate, by giving an algorithm capable of list decoding Reed–Solomon codes
up to error-radius τ/n < 1 − √R. This is better than unique decoding for
all rates, see Figure 1.3. They achieved this improvement by introducing a
multiplicity parameter s and changing the interpolation step outlined above,
to:

1. Interpolation step: Let y ∈ Fn
q be a received word. Compute the

non-zero bivariate polynomial Q(x, T ) =
∑`

i=0 qi(x)T i ∈ Fq[x, T ] such
that Q(x, T ) has a zero of multiplicity at least s in the points (αi, yi)
for 1 ≤ i ≤ n, and such that

degk−1(Q) = max{deg(qi(x)) + i(k − 1) | 0 ≤ i ≤ `, qi 6= 0},
is least possible under these conditions.

By choosing s and ` appropriately, one can show that there exists a polyno-
mial satisfying the requirements in this interpolation step, such that

degk−1(Q) ≈ s
√

nk.

Let f(x) be as before, then the polynomial Q(x, f(x)) has at least s(n − τ)
roots (counting multiplicities) and since its degree is at most s

√
nk, it follows

that Q(x, f(x)) = 0 if τ/n < 1−√R. Thus the list decoder in [30] shows that
for Reed–Solomon codes there exists an explicit list decoder which corrects
errors up to the Johnson bound in Theorem 1.3.

Above we have formulated what is often called the Guruswami–Sudan list
decoding algorithm for Reed–Solomon codes. We will use this decoder repeat-
edly in the following, and for brevity we will refer to it as the G–S algorithm.
In [30] the algorithm was formulated for general algebraic-geometry codes,
building on the work of Shokrollahi and Wasserman [62], and in [51] Pel-
likaan and Wu extended it to general Reed–Muller codes. Thus the G–S list
decoding algorithm actually applies to a broad class of algebraic codes. Fur-
thermore, recently the G–S algorithm has been extended to a combinatorial
tool (or principle) which has been used to resolve the Kakeya conjecture for
finite fields [17]. Together, these facts demonstrate the power and generality
of the G–S algorithm.

1.2.3 Approaching capacity

In Theorem 1.2 we saw that it is not possible to list decode an error-correcting
code beyond the capacity 1 − R. On the other hand, the G–S algorithm

9



1. Introduction

Figure 1.3: The relationship between rate R and error-correcting radius τ/n for
various bounds and list decoders.

promises us that there exist explicit codes, with matching decoders, that
can be list decoded up to error-radius τ/n < 1 − √R. Therefore a natural
question is: can one find an explicit code that can be list decoded up to an
error-radius larger than 1 − √R, and can this be achieved with an explicit
list decoder? In [50] Parvaresh and Vardy gave a variant of Reed–Solomon
codes and showed that by extending the interpolation step in the G–S list
decoder to (v +1)-variate polynomials, these codes can be list decoded up to
error-radius

τ/n < 1− (vR)
v

v+1 . (1.2)

Here v ≥ 1 is a parameter that can be chosen freely, and the case v = 1
corresponds to ordinary Reed–Solomon codes. For rates R < 1/16 this result
improves upon the Guruswami–Sudan list decoding radius 1 − √R. It is
the factor v

v
v+1 appearing in Equation (1.2) that is the hindrance for the list

decoder in [50] to be useful for high rate codes. In [27–29] Guruswami and
Rudra added folding to the codes considered by Parvaresh and Vardy, in
order to get rid of the v

v
v+1 factor. Furthermore, they gave an explicit list

decoder capable of list decoding the resulting folded Reed–Solomon codes, up
to error-radius

τ/n < 1−R
v

v+1 ,

10



1. Introduction

for sufficiently large alphabets. Letting v tend to infinity, Guruswami and
Rudra’s result shows that the bound in Theorem 1.2 is tight: It is possible
to construct an explicit code with an explicit list decoder capable of list
decoding up to error-radii arbitrarily close to 1 − R. On the other hand no
code can be list decoded with an error-radius which is just slightly larger
than 1−R.

1.3 This thesis

As demonstrated in the previous section all known effective list decoding
algorithms are based on the principles of the G–S algorithm. In particular,
these list decoding algorithms rely, in one way or the other, on solving a
multivariate interpolation problem with certain degree constraints. In this
thesis we will investigate how efficient list decoding algorithms based on the
principles of the G–S algorithm can be implemented for a class of algebraic-
geometry codes and for folded Reed–Solomon codes. In the investigations
of list decoders for algebraic-geometry codes we will focus on the interpo-
lation step, since in practise this is often the most time consuming part of
the decoders. For folded Reed–Solomon codes we will investigate both the
interpolation step and the root-finding step in detail.

The thesis is organized as follows:

• Chapter 2: In this chapter a general interpolation problem, encom-
passing all interpolation problems encountered in later chapters, is set
up. Furthermore, the interpolation problem is reformulated in terms
of so-called key-equations. These key-equations will provide a conve-
nient interface to the interpolation problem, which will be used in later
chapters.

• Chapter 3: This chapter describes a general algorithm for computing
“short” bases of modules over a univariate polynomial ring, when the
shortness is measured with respect to certain weighted degrees. This al-
gorithm will be the workhorse in the interpolation algorithm described
in the next chapter. The algorithm uses a divide–and–conquer tech-
nique, which makes it efficient for modules defined by a “long” basis
(with respect to the weighted degree). The chapter provides a detailed
analysis of the algorithm’s asymptotic performance.

• Chapter 4: The key-equations derived in Chapter 2 translate the in-
terpolation problem to a problem of finding “short” vectors in certain

11



1. Introduction

modules. In this chapter this fact is exploited to build an interpolation
algorithm on top of the short-basis algorithm from Chapter 3. Fur-
thermore, this interpolation algorithm is applied to the interpolation
step of the G–S algorithm for a class of algebraic-geometry codes. It
is demonstrated that for a number of well-known algebraic-geometry
codes, the asymptotic complexity of the resulting algorithm is better
than that of previously known algorithms. Furthermore the challenges
in making practical implementations of the interpolation algorithm are
discussed.

• Chapter 5: This chapter contains a detailed exposition of folded
Reed–Solomon codes. In particular it is shown that asymptotically
these codes have optimal list decoding properties in the sense of Sec-
tion 1.2.3. Furthermore,

– It is demonstrated that the interpolation algorithm from Chap-
ter 4 can be applied to efficiently handle the interpolation step in
the list decoder for folded Reed–Solomon codes.

– The algorithm from [27] for the root-finding step of the list de-
coder, based on viewing codewords as elements of an extension
of the code alphabet, is described. Furthermore, the practical
performance of this algorithm is assessed.

– An alternative algorithm for the root-finding step based on Hensel–
lifting is developed. No general bounds on the running time of this
algorithm are found. However, bounds are derived for special cases
or under certain assumptions. Furthermore it is demonstrated
that the method works well in practice.

• Chapter 6: In this chapter the thesis is summarized and its main
results are emphasized. Furthermore, points of interest for future in-
vestigations are given.

12



Chapter 2

Key-equations

In Chapter 1 it was shown that list decoding is closely related to multivariate
polynomial interpolation with degree constraints, through the interpolation
step in the Guruswami–Sudan list decoding algorithm. A key-equation is an
equation which quantifies this link: For a decoder which uses the principles
of the G–S algorithm, a key-equation gives an exact characterization of all
the multivariate polynomials that satisfy the requirements in the decoders
interpolation step. The word ‘key-equation’ was coined by Berlekamp in
[10], where he used it for an equation characterizing the decoding problem
for binary BCH codes. The equation can be interpreted as a characterization
of bivariate polynomials satisfying certain interpolation constraints [38], and
for this reason the word key-equation (or key-equations) has, since it first
appeared in [10], been used in a variety of decoders that include an interpo-
lation step. The advantage of key-equations is that they have the ability to
“compress” any structure or redundancy that may be present in an interpo-
lation problem, and thus solving a set of key-equations is often simpler, than
solving the interpolation problem directly.

In this chapter we will formulate a general interpolation problem encom-
passing all interpolation problems that we will encounter in various list de-
coders in later chapters. Furthermore, we will derive a set of key-equations
characterizing this interpolation problem, and show how these allow us to
reformulate the interpolation problem in the language of modules.

A benefit of the generality of our approach is that it allow us to view the
different key-equations for Reed–Solomon codes known in the literature, as
special cases of our general key-equation set-up. In particular we will see
that when interpreted in our language, the different key-equations for Reed–
Solomon codes, in fact only differ by simple rewritings.
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2. Key-equations

2.1 Degree constrained multivariate interpo-

lation

In a nutshell we will be interested in multivariate interpolation with multiplic-
ities, where the interpolation points are affine rational points on an algebraic
curve over a finite field Fq, and the interpolation values are tuples of elements
in Fq. In the following we will introduce the necessary concepts and notation
to make this precise. Furthermore, to make the problem tractable, for the
algorithm we propose in Chapter 3 we will need to impose certain restrictions
on the curves and interpolation points that we will consider. With notation
and restrictions in place, we will end this section with a statement of the
general interpolation problem which we will be using in later chapters (see
Problem 2.8).

2.1.1 Constraints on curves and interpolation points

An algebraic curve C over a finite field Fq can be equivalently described by
its function field Fq(C), and in the following we will be using the function
field point of view. See [63] for a comprehensive introduction to the theory
of function fields. In all of the following we will restrict ourselves to inter-
polation problems where the interpolation points are rational points on a
so-called simple Cab curve. Thus in the following C will always denote such
a curve. To avoid breaking the flow of this section, we postpone a detailed
description of simple Cab curves and their properties to Section 2.3. Below
we summarize the results of Section 2.3 needed for the developments in the
remainder of this section:

• We will denote an absolutely irreducible polynomial defining the func-
tion field extension Fq(C)/Fq(x1) by F (X1, X2), so that Fq(C) = Fq(x1, x2),
where F (x1, x2) = 0.

• On a simple Cab curve x1 and x2 have a unique pole P∞. This claim
will be proved in Proposition 2.16.

• We will denote the degree of the function field extension Fq(C)/Fq(x1)
by γ, i.e. γ = degX2

(F ).

• We will denote the the ring of functions that only have poles at P∞ by,

R =
∞⋃

m=0

L(mP∞). (2.1)

14



2. Key-equations

· · ·

PN,1 PN,2 PN,γ

QN

· · ·

Fq(C)

Fq(x1)

γ

· · ·

P1,1 P1,2 P1,γ

Q1

Figure 2.1: The places P1, . . . , Pn can be grouped so that the i-th group
Pi,1, . . . , Pi,γ all lie above the same place Qi.

We also need to impose restrictions on the interpolation points. In the follow-
ing we will only consider interpolation problems for which the interpolation
points satisfy the following assumption:

Assumption 2.1. We assume that P1, . . . , Pn are rational places of Fq(C)
different from P∞, for which it holds that:

• P1, . . . , Pn can be divided into N = n/γ groups of size γ, such that the
places in the i-th group Pi,1, . . . , Pi,γ all lie above the same place Qi in
Fq(x1). See Figure 2.1.

We will denote the set of places {Q1, . . . , QN} by S.

The grouping assumption above is equivalent to the statement that for 1 ≤
i ≤ N the place Qi splits completely in the extension Fq(C)/Fq(x1). There-
fore, since

vPi,j
(x1 − x1(Qi)) = e(Pi,j | Qi) · vQi

(x1 − x1(Qi)) .

the assumption can be stated equivalently by saying that the function Ei =
x1 − x1(Qi) must have divisor

(Ei) =

γ∑
j=1

Pi,j − γP∞. (2.2)

In particular, the assumption implies that the function E =
∏N

i=1 Ei has
divisor

(E) =
n∑

i=1

Pi − nP∞. (2.3)
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2. Key-equations

In the univariate polynomial ring Fq[x1] a polynomial U has α ∈ Fq as a root
of multiplicity at least s if and only if (x1 − α)s divides U . The reason for
making Assumption 2.1 comes from the need of a similar fact to hold for the
ring R. The following proposition shows that we have achieved this.

Proposition 2.2. For H ∈ Fq(C), H 6= 0 it holds that

L (−(H) +∞P∞) = HR. (2.4)

Proof. We verify that the left hand side of (2.4) is contained in the right
hand side, and vice versa. First let U ∈ L (−(H) +∞P∞), then there exist
h ≥ 0 such that (U) ≥ (H)− hP∞. Therefore (U/H) ≥ −hP∞ which means
that U/H is an element in R. This proves one inclusion. On the other hand,
let U ∈ R, then there exist h ≥ 0 such that (U) ≥ −hP∞ which means that
(HU) ≥ (H)− hP∞. Therefore HU lies in L (−(H) +∞P∞) as desired.

Equation (2.3) and the above proposition show that U ∈ R has a zero of
multiplicity at least s in all of the places P1, . . . , Pn if and only if Es divides
U in R. This is analogous to the situation in univariate polynomial rings
outlined above.

2.1.2 Zeroes of multivariate polynomials

In the following we will be working with multivariate polynomials in v in-
determinates with coefficients in R. We use vector notation for multivariate
polynomials, so that R[T] = R[T1, . . . , Tv] and for R = (R1, . . . , Rv) ∈
Fq[T]v and i = (i1, . . . , iv),

Ri =
v∏

h=1

Rih
h .

To increase readability we drop any dependence on v from the notation, and
instead let it be fixed and understood throughout. In the following we will
repeatedly need to index simplex–like regions of Nv

0 and thus we introduce
the following index-set:

∆` = {b ∈ Nv
0 | b1 + · · ·+ bv ≤ `} .

We will refer to the size of this set by

m` = |∆`| =
(

` + v

v

)
. (2.5)

16



2. Key-equations

We will also use the convention that
(
j

i

)
=

v∏

h=1

(
jh

ih

)
.

With this vector notation for binomial coefficients, the so-called Hasse–
derivative of a polynomial can be defined as follows.

Definition 2.3 (Hasse–derivative). For b ∈ Nv
0 the b-th Hasse–derivative is

the R–linear function H(b)
T : R[T]→R[T] satisfying

H(b)
T

(
Ti

)
=

(
i

b

)
Ti−b.

For details on Hasse–derivatives see [44, p. 303]. With the aid of Hasse–
derivatives we can now make precise what it means for a polynomial Q(T) ∈
R[T] to have a multiple zero.

Definition 2.4 (Multiplicity of zero). Let Q(T) ∈ R[T]. For a place P of
Fq(C) different from P∞ and a tuple y ∈ Fv

q , the polynomial Q(T) is said to
have a zero of multiplicity s in (P,y), if s is the largest integer such that for
all b ∈ ∆s−1 it holds that

vP

(
H(b)

T (Q) (y)
)
≥ s−

v∑

h=1

bh.

2.1.3 Interpolation polynomials

With notation in place, we can now make precise what we will understand
by an interpolation polynomial.

Definition 2.5 (Interpolation polynomial). Let C be a simple Cab curve. Let
there be given

• Interpolation points: Distinct places P = (P1, . . . , Pn) of Fq(C), satis-
fying Assumption 2.1.

• Interpolation values: Tuples Y = (y1, . . . ,yn), where each yi is an
element of Fv

q .

• Multiplicity parameter: Integer s ≥ 1.

• Degree bound: Integer ` ≥ s.
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A polynomial Q(T) ∈ R[T] is said to be an interpolation polynomial for
(P,Y, s, `), if it holds that:

(i) Q is non-zero.

(ii) The total degree of Q in the indeterminates T is at most `.

(iii) Q has a zero of multiplicity at least s in the points (P1,y1), . . . , (Pn,yn).

Usually (P,Y, s, `) is clear from the context, and in this case we will simply
say that Q(T) is an interpolation polynomial. In Theorem 2.12 in the next
section we shall see that we can characterize interpolation polynomials com-
pletely, as polynomials Q(T) =

∑
j qjT

j for which the coefficient vector q is
an element in the column span of an explicit matrix.

2.1.4 Weighted degree constraints

For our applications in list decoding, we will need to impose certain degree
constraints on the interpolation polynomials. To formulate these constraints
we need the following notion of weighted degree.

Definition 2.6 (Weighted degree). Let w ∈ Zv be a vector of weights and
let q = (qj)j∈∆`

be a vector in Rm` . Then we define the following weighted
degree of q,

degw (q) =

{
maxj∈∆`,qj 6=0 {−vP∞ (qj) + w · j} if q 6= 0,

−∞ if q = 0,

where w · j denotes the usual inner product of w and j. Furthermore, for a
polynomial Q(T) =

∑
j∈∆`

qjT
j ∈ R[T] we define its weighted degree to be

the weighted degree of the coefficient vector, i.e. degw (q).

We emphasize the following special case of the above definition: An element
A of R can be considered a constant polynomial in R[T], and therefore the
weighted degree of A is

degw (A) = −vP∞ (A) .

We can now define the special type of interpolation polynomials, that we will
be interested in, namely interpolation polynomials satisfying certain weighted
degree constraints.
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Definition 2.7 (Valid interpolation polynomial). Let (P,Y, s, `) be as in
Definition 2.5, and let w ∈ Zv be a weight vector. Let there be given a
weighted degree bound ∆ ≥ 0, then a polynomial Q(T) is said to be a valid
interpolation polynomial for (P,Y, s, `,w, ∆) if it holds that

(i) Q is an interpolation polynomial for (P,Y, s, `).

(ii) degw (Q(T)) < ∆.

As before, the quantity (P,Y, s, `,w, ∆) is usually clear from the context, in
which case we will simply say that Q(T) is a valid interpolation polynomial.

2.1.5 The interpolation problem

We are now ready to formulate our central interpolation problem. As men-
tioned earlier, all interpolation problems which we will encounter in the fol-
lowing are special cases of this general problem.

Problem 2.8 (Interpolation problem). Let C be a simple Cab curve, and let
(P,Y, s, `,w, ∆) be parameters:

• Interpolation points: Distinct places P = (P1, . . . , Pn) of Fq(C), satis-
fying Assumption 2.1

• Interpolation values: Tuples Y = (y1, . . . ,yn), where each yi is an
element of Fv

q .

• Multiplicity parameter: Integer s ≥ 1.

• Degree bound: Integer ` ≥ s.

• Weight vector: Vector w ∈ Zv.

• Weighted degree bound: Integer ∆.

We define the interpolation problem for these parameters, to be the problem
of finding a valid interpolation polynomial for (P,Y, s, `,w, ∆), if it exists.

Remark 2.9. Ideally we would like to be able to compute a valid inter-
polation polynomial (if it exists) for given (P,Y, s, `,w, ∆), without any
assumptions on the curve and the interpolation points. While effective al-
gorithms achieving this exist [56, 57], the approach we will focus on in the
following can not handle completely general curves and interpolation points.
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As we shall see in Chapter 4, the algorithm we give for computing valid in-
terpolation polynomials will be faster than those in [56, 57]. Thus, confining
ourselves to simple Cab curves and special interpolation points may be viewed
as a sacrifice of generality at benefit of speed.

2.2 Reformulation of the interpolation prob-

lem

In this section we will derive a set of key-equations characterizing the in-
terpolation problem in Problem 2.8. We will show that the interpolation
problem can be equivalently stated as a problem of finding a “short” vector
in a module over R. Later we will exploit this to give an efficient algorithm
for solving Problem 2.8.

2.2.1 A family of matrices

In our derivation of key-equations for the interpolation problem, the following
family of matrices will be central.

Definition 2.10. Let ` ≥ 0 be an integer. Define A` : Rv → Matm`×m`
(R)

to be the function given by

[A`(T)]i,j = H(j)
T

(
Ti

)
=

(
j

i

)
Tj−i, (2.6)

where the row and columns indices i and j both run in ∆`. Furthermore, for
integers s ≤ `, define Ds,` : R→ Matm`×m`

(R) to be the function given by

[Ds,`(T )]i,j =

{
Tmax(s−Pv

h=1 ih,0) for i = j

0 otherwise,
(2.7)

where again the indices i and j both run in ∆`. Note that Ds,`(T ) is a
diagonal matrix and that the number of rows and columns of A`(T) and of
Ds,`(T ) is m`.

The matrices in the above definition satisfy a number of relations, which we
establish in the following proposition.

Proposition 2.11. Let S = (S1, . . . , Sv) and T = (T1, . . . , Tv) be vectors in
Rv, and let S and T be elements in R. It holds that:
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(i) A`(S)A`(T) = A`(S + T).

(ii) A`(T)−1 = A`(−T).

(iii) Ds,`(S)Ds,`(T ) = Ds,`(ST ).

Proof. We prove each part of the proposition separately.

(i) By (2.6) it holds that

[A`(S)A`(T)]i,j =
∑

k∈∆`

[A`(S)]i,k [A`(T)]k,j

=
∑

k∈∆`

(
k

i

)(
j

k

)
Sk−iTj−k

=
∑

k∈∆`

(
j

i

)(
j− i

j− k

)
Sk−iTj−k

=

(
j

i

) ∑

k∈j−∆`

(
j− i

k

)
Sj−i−kTk

=

(
j

i

)
(S + T)j−i

= [A`(S + T)]i,j .

(ii) By (i) we have that A`(T)A`(−T) = A`(0) = Im`
.

(iii) We have

[Ds,`(S)Ds,`(T )]i,j =
∑

k∈∆`

[Ds,`(S)]i,k [Ds,`(T )]k,j .

By (2.7) the last expression is equal to

Smax(s−Pv
h=1 ih,0)Tmax(s−Pv

h=1 ih,0) = (ST )max(s−Pv
h=1 ih,0),

if i = j and zero otherwise.
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2.2.2 Key-equations for the interpolation problem

We are now ready to derive the desired set of key-equations characterizing
the interpolation problem in Problem 2.8.

Theorem 2.12. Let the curve C and the interpolation parameters (P,Y, s, `)
be as in Problem 2.8. Let R = (R1, . . . , Rv) ∈ Rv be a vector of Lagrangian
interpolation polynomials satisfying Rj(Pi) = yij for 1 ≤ i ≤ n and 1 ≤ j ≤
v. Then for a polynomial

Q(T) =
∑

j∈∆`

qjT
j ∈ R[T]

with coefficient vector q = (qj), the following are equivalent:

(i) Q(T) is an interpolation polynomial for (P,Y, s, `).

(ii) There exists a vector c ∈ Rm` such that q = A`(−R)Ds,`(E)c.

Proof. In the following b = (b1, . . . , bv) and j = (j1, . . . , jv) will denote vec-
tors in ∆`. For a divisor A of Fq(C), we define the following Cartesian product
of R–modules

LA =
∏

b∈∆`

L (−max(0, s−∑v
h=1 bh)A +∞P∞) .

Furthermore, we let D denote the divisor D = P1 + · · ·+Pn. By the Taylor–
expansion formula for the Hasse–derivative, it holds that

Q(T) =
∑

b∈∆`

H(b)
T (Q) (yi)(T− yi)

b. (2.8)

From this equation it follows that Q(T) has a zero in (Pi,yi) of multiplicity
at least s if and only if

H(b)
T (Q) (yi) ∈ L (−(s−∑v

h=1 bh)Pi +∞P∞) , (2.9)

for all b such that
∑v

h=1 bh < s. Note that by definition of A`,

[A`(yi)q]b =
∑

k∈∆`

[A`(yi)]b,k qk =
∑

k∈∆`

(
k

b

)
yk−b

i qk = H(b)
T (Q) (yi),

and hence the b-th entry of A`(yi)q is equal to the left hand side of (2.9).
Therefore item (i) is equivalent to
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(iii) For 1 ≤ i ≤ n it holds that A`(yi)q ∈ LPi
.

Since Rj(Pi) = yij we can write Rj = yij + Sj, where Sj ∈ L(−Pi +∞P∞).
Using vector notation we may write this as R = yi + S. We claim that (iii)
is equivalent to

(iv) For 1 ≤ i ≤ n it holds that A`(R)q ∈ LPi
.

To see this, fix i and assume that A`(yi)q ∈ LPi
. From Proposition 2.11 we

have that

A`(R)q = A`(S)A`(yi)q.

The (b, j)-th entry in A`(S) is
(

j
b

)
Sj−b, and hence

[A`(S)]b,j ∈ L (−∑v
h=1 max(0, jh − bh)Pi +∞P∞) .

Furthermore, by assumption

[A`(yi)q]j ∈ L (−max(0, s−∑v
h=1jh)Pi +∞P∞) .

Therefore, since

[A`(R)q]b = [A`(S)A`(yi)q]b =
∑

j∈∆`

[A`(S)]b,j[A`(yi)q]j

and since

∑v
h=1 max(0, jh − bh) + max(0, s−∑v

h=1jh) ≥
max(0,

∑v
h=1(jh − bh)) + max(0, s−∑v

h=1jh) ≥ max(0, s−∑v
h=1bh),

it follows that A`(R)q ∈ LPi
. Thus (iii) implies (iv). To prove the reverse

implications, fix i and assume that A`(R)q ∈ LPi
. By Proposition 2.11 we

have

A`(yi)q = A`(−S)A`(R)q,

and using this expression we can argue exactly as above to get that A`(yi)q ∈
LPi

, as desired. Since the vector A`(R)q does not depend on the index i we
get that (iv) is equivalent to

(v) It holds that A`(R)q ∈ ⋂n
i=1 LPi

= LD.
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From Equation (2.3) we know that (E) = D − nP∞, and therefore Proposi-
tion 2.2 gives that

L (−max(0, s−∑v
h=1bh)D +∞P∞) = Emax(0,s−Ph bh)R.

Therefore, by definition of the matrix Ds,`, we have that (v) is equivalent to
the existence of a vector c ∈ Rm` such that

A`(R)q = Ds,`(E)c.

Finally by Proposition 2.11 this is equivalent to item (ii), and thus the above
chain of equivalences prove the theorem.

Remark 2.13. In the proof of Theorem 2.12 above, the only assumption
on the interpolation points we used, is Equation (2.3). Thus for the de-
velopments in this section, we could have taken the existence of a function
E satisfying Equation (2.3) as our only assumption. However, to develop
an efficient algorithm for solving the interpolation problem we will need the
stronger properties in Assumption 2.1. Thus in order to avoid formulating
an interpolation problem that we can not solve efficiently, we have chosen to
state all assumptions already in this section.

2.3 Simple Cab curves

In this section we introduce a class of curves which we call simple Cab curves.

2.3.1 Definition of simple Cab curves

As in Section 2.1 we will work with curves in the language of function
fields. All curves will be defined over a finite field Fq. If an absolutely irre-
ducible curve C is defined by an absolutely irreducible bivariate polynomial
F (X1, X2) ∈ Fq[X1, X2], then the function field of C is Fq(C) = Fq(x1, x2),
where x1 and x2 satisfy the relation

F (x1, x2) = 0, (2.10)

and x1 is a transcendental element over Fq. In the following we will let δ
denote degX1

(F ) and γ will denote degX2
(F ). We now define the class of

simple Cab curves. The curves are special cases of the so-called Cab curves
studied in [47], but with extra regularity conditions. One of the conditions
is that the curves should be simple (i.e. non-singular), and we thus call them
simple Cab curves. It should be mentioned that the curves are also special
cases of the so-called Type I curves from [19].
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Definition 2.14 (Simple Cab curve). A curve C is a simple Cab curve if it is
defined by a polynomial F (X1, X2) satisfying:

1. Any monomial X i
1X

j
2 in the support of F satisfy γi + δj ≤ γδ,

2. gcd(γ, δ) = 1,

3. the ideal 〈F, ∂F
∂X1

, ∂F
∂X2
〉 is equal to the unit ideal of Fq[X1, X2].

Remark 2.15. The name “Cab curves” is perhaps a little unfortunate, as it
refers to a specific notation used when defining the curves. In [47] a Cab curve
is defined by a polynomial F with a = degX1

(F ) and b = degX2
(F ). Thus

to follow this terminology we should actually have called the above curves
simple Cδγ curves. However, since the name “Cab curve” has been widely
adopted (as a name, not a notation) we have avoided this.

2.3.2 Properties of simple Cab curves

We now derive a number of properties held by simple Cab curves. In particular
we will verify that the curves satisfy the claims made in Section 2.1.1. In the
following we will say that a place P of a function field Fq(C) of a simple Cab

curve, is a place at infinity if either vP (x1) < 0 or vP (x2) < 0.

Proposition 2.16. Let C be a simple Cab curve. Then Fq(C) = Fq(x1, x2)
has exactly one place P∞ at infinity. Furthermore,

vP∞ (x1) = −γ, vP∞ (x2) = −δ. (2.11)

In particular x1 and x2 can only have poles at this place.

Proof. Let P∞ denote some place of Fq(C) lying at infinity, i.e. a place such
that either vP∞ (x1) < 0 or vP∞ (x2) < 0. We will prove that there is only
one such place. By definition of simple Cab curves, the Newton polygon of F
is as shown in Figure 2.2: It has exactly two points on the line through (δ, 0)
and (0, γ), and all other points lie strictly below this line. The valuation at
P∞ of a single monomial xi

1x
j
2 in the support of F is

ϕ(i, j) = ivP∞ (x1) + jvP∞ (x2) .

We can consider ϕ as a function mapping from the Newton polygon of F to
Z, and since the Newton polygon is a bounded region we know that ϕ has a
minimum and that its minimal value is finite.
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-

6

δ
x1

x2

γ

Figure 2.2: The Newton polygon of simple Cab curve.

By symmetry, we may assume that vP∞ (x1) < 0. If we furthermore assume
that vP∞ (x2) ≥ 0, then the graph of ϕ (when considered as a function from
R2) will have negative slope in the x1 direction, and non-negative slope in the
x2 direction. Therefore ϕ has unique minimum, namely (δ, 0). But by the
Strict Triangle Inequality [63, I.1.10] such a unique minimum implies that

vP∞ (F (x1, x2)) = min
(i,j)
{ϕ(i, j)} ,

and since vP∞ (F (x1, x2)) = vP∞ (0) = ∞, this is a contradiction. Therefore
vP∞ (x2) < 0. This means that the graph of ϕ has negative slope in both the
x1 and the x2 directions, and hence the minimum of ϕ must lie on the upper
edge of the Newton polygon, i.e. on the line through (δ, 0) and (0, γ). We
know that only two points of the Newton polygon lie on this line. Further-
more, arguing as before, we know that the minimum of ϕ can not be unique,
and therefore both of the points (δ, 0) and (0, γ) must be minima of ϕ. Hence

δvP∞ (x1) = ϕ(δ, 0) = ϕ(0, γ) = γvP∞ (x2) . (2.12)

By [63, I.4.11] we have that vP∞ (x1) ≥ −[Fq(x1, x2) : Fq(x1)] = −γ and since
gcd(δ, γ) = 1, Equation (2.12) gives that

vP∞ (x1) = −γ, vP∞ (x2) = −δ.

Using [63, I.4.11] again, we get that the pole of x1 in Fq(x1) is totally ramified
in the extension Fq(x1, x2)/Fq(x1) and hence P∞ is the only place lying above
the pole of x1. Arguing similarly we get that P∞ is also the only place lying
above the pole of x2 in the extension Fq(x1, x2)/Fq(x2). Hence P∞ is the the
only place at infinity of Fq(C) = Fq(x1, x2).

The above proposition shows that simple Cab curves have exactly one place
P∞ at infinity. Thus as in Equation (2.1) we may consider the ring R =⋃∞

m=0 L(mP∞). It turns out that for simple Cab curves R has a very simple
description, namely R = Fq[x1, x2]. We derive this result in Proposition 2.19
below, and for this we need the following lemma.
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Lemma 2.17. Let R̃ denote the ring
⋃∞

m=0 L(mP∞) in the function field
Fq(x1, x2), where Fq denotes an algebraic closure of Fq. It holds that,

R̃ = Fq[x1, x2].

Proof. In the proof we will use the theory of local rings: for a place P of
Fq(x1, x2) we denote by OP the local ring of P . We denote by PFq(x1,x2) the

set of all places of Fq(x1, x2). From [63, III.2.6], it follows that

R̃ =
⋂

P∈PFq(x1,x2)\{P∞}
OP ,

is equal to the integral closure of the ring Fq[x1] in Fq(x1, x2), i.e. that

R̃ = icFq(x1,x2)

(
Fq[x1]

)
.

Since F (x1, x2) = 0 and F is monic in x2, we have that x2 is integral over
Fq[x1]. Therefore

Fq[x1] ⊆ Fq[x1, x2] ⊆ R̃.

Since integral closure preserves inclusion, this implies that

R̃ = icFq(x1,x2)

(
Fq[x1]

) ⊆ icFq(x1,x2)

(
Fq[x1, x2]

) ⊆ icFq(x1,x2)

(
R̃

)
= R̃,

and hence R̃ = icFq(x1,x2)

(
Fq[x1, x2]

)
. Therefore, the proposition will follow if

we can show that Fq[x1, x2] is integrally closed. Let C denote the affine curve
defined by F (x1, x2) = 0 over Fq. By [60, p. 126] we have that Fq[x1, x2]
is integrally closed if C is non-singular. By item 3 in Definition 2.14, this
property holds since F defines a simple Cab curve, and thus we conclude that
Fq[x1, x2] is integrally closed. This proves the lemma.

In the next lemma we express the genus of a simple Cab curve in terms of γ
and δ.

Lemma 2.18. The genus of a simple Cab curve C, is 1
2
(γ − 1)(δ − 1).

Proof. By Lemma 2.17 we have that R̃ = Fq[x1, x2]. Using the (monic)
relation F (x1, x2) = 0 to eliminate powers of x2 larger than γ − 1, we can

thus write any element of R̃ on the form

A(x1, x2) =

γ−1∑
j=0

aj(x1)x
j
2, aj ∈ Fq[x1]. (2.13)
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Let P̄∞ denote a place lying above P∞ in the function field extension

Fq(x1, x2)/Fq(x1, x2),

then it follows from [63, III.6.3(a)] that e(P̄∞ | P∞) = 1. By Proposition 2.16
we therefore have that vP̄∞ (x1) = −γ and vP̄∞ (x2) = −δ. Therefore the
valuation at P̄∞ of one of the summands in Equation (2.13), is of the form

vP̄∞

(
aj(x1)x

j
2

)
= − deg(aj(x1))γ − jδ ≡ −jδ mod γ.

Therefore, if two summands aj1(x1)x
j1
2 and aj2(x1)x

j2
2 have the same valuation

at P̄∞ then δj1 ≡ δj2 mod γ, and since gcd(δ, γ) = 1 and j1, j2 < γ, this
implies that j1 = j2. Thus all summands in (2.13) have distinct valuations
at P̄∞, which by the Strict Triangle Inequality [63, I.1.10] implies that

−vP̄∞ (A(x1, x2)) = max
j : aj 6=0

{deg(aj(x1))γ + jδ} .

This means that the Weierstrass semigroup of P̄∞ is equal to 〈γ, δ〉. By [52,
p. 925], the semigroup 〈γ, δ〉 has

1

2
(δ − 1)(γ − 1) (2.14)

gaps. Let C denote the curve defined by F (x1, x2) = 0 over Fq, then it follows
from the Weierstrass Gap Theorem [63, I.6.7] that the genus of C equals the
number of gaps of the Weierstrass semigroup of P̄∞, i.e. the quantity in (2.14).
Finally, by [63, III.6.3(b)] we have that the genus of C equals that of C, and
hence the lemma follows.

Armed with the above two lemmas, we are now ready to prove the promised
description of the ring R.

Proposition 2.19. It holds that

1. The Weierstrass semigroup of P∞ is H(P∞) = 〈γ, δ〉.
2. R = Fq[x1, x2].

Proof. We prove each item of the proposition separately.

1. Arguing as in the proof of Lemma 2.17 we have that Fq[x1, x2] ⊆ R,
and by Proposition 2.16 this implies that

〈γ, δ〉 ⊆ H(P∞). (2.15)
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By the Weierstrass Gap Theorem we know that the number of gaps
in the semigroup on the right hand side of Equation (2.15) is equal
to the genus of C, and by Lemma 2.18 we know that this quantity is
1
2
(γ − 1)(δ − 1). On the other hand we known from [52, p. 925] that

the semigroup on the left hand side of Equation (2.15) has the same
number of gaps, and hence we conclude that 〈γ, δ〉 = H(P∞).

2. As argued above we have that Fq[x1, x2] ⊆ R and hence it suffices
to prove the reverse inclusion. To this end, let f ∈ R and let a =
−vP∞ (f). By item 1 of this proposition, we know that a must be of the
form a = γi1+δj1. This means that there exist an element α1 ∈ Fq such
that f1 = f − α1x

i1
1 xj1

2 satisfies −vP∞ (f1) < a. Since Fq[x1, x2] ⊆ R,
f1 is an element of R, and hence we may apply the above argument
recursively, to get that there exist α1, . . . , αu and (i1, j1), . . . , (iu, ju)
such that

f ′ = f −
(

u∑

h=1

αhx
ih
1 xjh

2

)
, (2.16)

satisfies −vP∞ (f ′) ≤ 0. Furthermore f ′ is an element of R and hence
it can only have poles at P∞. This means that f ′ has no poles at all,
and hence that it is a constant in Fq. By Equation (2.16) this implies
that f lies in Fq[x1, x2] as desired.

We conclude the section by giving an example of a well-known member of
the class of simple Cab curves.

Example 2.20 (Hermitian curve). Let q = r2 for some prime power r, then
the Hermitian curveH over Fq can be defined by the polynomial F (X1, X2) =
Xr

2 + X2 −Xr+1
1 or equivalently by the equation

xr
2 + x2 = xr+1

1 .

We see that this relation satisfies item 1 in Definition 2.14 and furthermore,
since gcd(γ, δ) = gcd(r, r+1) = 1, item 2 is satisfied too. Finally, since ∂F

∂X2
=

1 6= 0 the curve is non-singular, and thus H satisfies all the requirements to
be a simple Cab curve. The Hermitian curve is especially interesting for
us since it has many points satisfying Assumption 2.1. More specifically,
all the rational places Q1, . . . , Qr2 of Fq(x1) different from the pole of x1,
split completely in the extension Fq(x1, x2)/Fq(x1) and therefore H has r3

places satisfying the assumption. We will return to the Hermitian curve in
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Example 4.9 where we will use it to construct good algebraic-geometry codes,
and show that the interpolation step of the G–S algorithm for these curves,
can be done efficiently.

2.4 Key-equations for simple Cab curves

In this section we will use Theorem 2.12 to derive a set of key-equations char-
acterizing all polynomials satisfying the interpolation constraints in Prob-
lem 2.8.

2.4.1 Changing base ring

Let notation be as in Theorem 2.12. The theorem shows that Q(T) =∑
j∈∆`

qjT
j is an interpolation polynomial if and only if the coefficient vec-

tor q = (qj)j∈∆`
is an element in the R–column span of A`(−R)Ds,`(E).

We would like to use this fact to develop an algorithm for computing valid
interpolation polynomials. A natural first attempt at this, is to make an
algorithm that proceeds by repeatedly making column operations that can-
cel leading terms (with respect to degw) in the columns of A`(−R)Ds,`(E).
However, it does not hold that for A,B ∈ R, degw (A) ≤ degw (B) implies
that A divides B in R. Hence it may not always be possible to cancel leading
terms of the columns of A`(−R)Ds,`(E). Thus, without modifications, such
an attempt will not yield the desired algorithm.

To get an algorithmically more convenient formulation of the interpolation
problem, we aim for an extension of Theorem 2.12 which characterizes the co-
efficient vectors of interpolation polynomials as elements in the Fq[x1]–column
span of an explicit matrix. Below we will obtain such a result by changing
the base ring of the R–module spanned by the columns of A`(−R)Ds,`(E).
In Proposition 2.19 we saw that R = Fq[x1, x2] and hence

R ' Fq[x1]
γ. (2.17)

This means that any A ∈ R can be written uniquely on the form A =∑γ−1
i=0 ai(x1)x

i
2. We can make the isomorphism in Equation (2.17) explicit by

defining
ρ(A) = (a0, . . . , aγ−1) ∈ Fq[x1]

γ. (2.18)

Furthermore, we can extend this to an identification of Rm and Fq[x1]
γm, by

for a vector A = (A1, . . . , Am) ∈ Rm letting

ρ(A) = (ρ(A1), . . . , ρ(Am)) ∈ Fq[x1]
γm. (2.19)
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We now use this identification to “expand” A`(−R)Ds,`(E) to a matrix with
entries in Fq[x1].

Definition 2.21. For given E ∈ R and R ∈ Rv, the matrix Bs,`(R, E) is
defined as follows:

• Bs,`(R, E) is an γm` × γm` matrix with entries in Fq[x1],

• The rows and columns of Bs,`(R, E) are indexed by (i′, j′) and (i, j)
respectively, both running in {0, . . . , γ − 1} ×∆`.

• The (i, j)-th column of Bs,`(R, E) is given by

(Bs,`(R, E))(i,j) = ρ
(
xi

2 · (A`(−R)Ds,`(E))j
)
. (2.20)

Note that in the special case γ = 1, no expansion occurs and Bs,`(R, E) is
equal to A`(−R)Ds,`(E). Using this matrix, we now get the following result.

Proposition 2.22. A polynomial

Q(T) =

γ−1∑
i=0

∑

j∈∆`

qi,j(x1)x
i
2T

j ∈ R[T]

is an interpolation polynomial of total degree in T at most `, if and only if
the coefficient vector q = (qi,j) is contained in the Fq[x1]-module spanned by
the columns of Bs,`(R, E).

Proof. Let M be the R–module spanned by the columns of A`(−R)Ds,`(E).
By Proposition 2.19 the ring R is a finitely generated free module over Fq[x1]
with basis {1, x2, . . . , x

γ−1
2 }. Therefore M is also a free module over Fq[x1]

with basis

xi
2 · (A`(−R)Ds,`(E))j , 0 ≤ i ≤ γ − 1 and j ∈ ∆`. (2.21)

Here (A`(−R)Ds,`(E))j denotes the j-th column of A`(−R)Ds,`(E). Note
that the elements in Equation (2.21) correspond to the columns of Bs,`(R, E).
Therefore the proposition follows from Theorem 2.12.
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2.4.2 Identifying weights

Proposition 2.22 above characterizes all interpolation polynomials. To get
the desired key-equations for the interpolation problem in Problem 2.8, we
also need to characterize valid interpolation polynomials. To this end, we
need the following definition.

Definition 2.23 (Weighted degree). Let w = (w0, w1, . . . , wm) ∈ N×Zm be
a vector of weights. Then we define the following weighted degree of a vector
a = (a1, . . . , am) ∈ Fq[x1]

m,

degw (a) =

{
maxi=1,...,m

ai 6=0
{w0 · deg (ai) + wi} if a 6= 0,

−∞ if a = 0.

Furthermore, for an m×m matrix A with columns A1, . . . ,Am and entries
in Fq[x1], we define its weighted degree to be

degw (A) =
∑

j=1,...,m

Aj 6=0

degw (Aj) .

In Definition 2.6 we defined a weighted degree of multivariate polynomials in
R[T], also denoted degw. In the following it will be clear from the context
which of the two versions of the weighted degree is meant. Furthermore, in
special cases the weighted degree of a polynomial agrees with the weighted
degree of its coefficient vector as the following result shows.

Proposition 2.24. Let q be a vector in Rm` and let w ∈ Zv be a weight
vector. Furthermore, let

ρ(w) = (γ,w′) ∈ N× Zγm` , (2.22)

where w′ is indexed by (i, j) in {0, . . . , γ − 1} ×∆`, and [w′]i,j = δi + w · j.
For a polynomial

Q(T) =
∑

j∈∆`

qjT
j =

∑

j∈∆`

γ−1∑
i=0

qi,j(x1)x
i
2T

j

in R[T] it holds that

degw (Q(T)) = degρ(w) (ρ(q)) = max
(i,j),qi,j 6=0

{γ deg(qi,j) + iδ + w · j} .
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Proof. By definition of the weighted degree of Q(T), the proposition will
follow if we can show that

−vP∞ (qj) = max
i,qi,j 6=0

{γ deg(qi,j) + iδ} .

We have that

− vP∞ (qj) = −vP∞

(
γ−1∑
i=0

qi,jx
i
2

)
. (2.23)

By an argument similar to the one in the proof Proposition 2.18, we have that
all terms in the sum on the right hand side of this expression, have distinct
valuation at P∞. Hence, by the Strict Triangle Inequality [63, I.1.10], it
follows that

−vP∞ (qj) = −vP∞

(
γ−1∑
i=0

qi,jx
i
2

)

= max
i,qi,j 6=0

{−vP∞ (qi,j)− vP∞
(
xi

2

)}

= max
i,qi,j 6=0

{γ deg(qi,j) + iδ} .

As noted above, this proves the proposition.

In words the above proposition says that if we identify a multivariate polyno-
mial in R[T] of total degree at most `, with its coefficient vector in Rm` , and
then identify this with a vector Fq[x1]

γm` using the isomorphism ρ in (2.19),
then the weighted degree of the multivariate polynomial (with respect to w)
is equal to the weighted degree of the vector (with respect to ρ(w)). Using
this fact in combination with Proposition 2.22 we can now prove the follow-
ing final and algorithmically convenient set of key-equations characterizing
valid interpolation polynomials.

Proposition 2.25 (Key-equations). Let Bs,`(R, E) be the matrix from Def-
inition 2.21 and let q = Bs,`(R, E)c for some vector c = (ci,j) in Fq[x1]

γm`.
Then

Q(T) =

γ−1∑
i=0

∑

j∈∆`

qi,jx
i
2T

j, (2.24)

is a valid interpolation polynomial if and only if degρ(w) (q) < ∆.

Proof. From Proposition 2.24 we have that degw (Q) = degρ(w) (q). There-
fore, since Proposition 2.22 gives that any Q(T) of the form (2.24) is an
interpolation polynomial, the proposition follows.

33



2. Key-equations

2.5 Key-equations for Reed–Solomon codes

In this section we show that Reed–Solomon codes are a special case of
algebraic-geometry codes defined over simple Cab curves. Furthermore, we
specialize the key-equations in Proposition 2.25 to this particular case, and
we show that the resulting key-equations agree with those known in the lit-
erature. In particular we will show that in the light of Proposition 2.25 the
(seemingly unrelated) key-equations for Reed–Solomon codes in [4] and [43]
in fact only differ by a simply rewriting. Furthermore, we show that the
“re-encoding” technique from [39] fits naturally into our key-equations.

2.5.1 Key-equations

The function field corresponding to the projective line P1
Fq

is the rational

function field Fq(P1
Fq

) = Fq(x1). Somewhat artificially, we may view Fq(P1
Fq

)
as the trivial extension of Fq(x1) defined by the equation x2 = 1, and when
looked at in this way, we see that P1

Fq
satisfies all the requirements in Defi-

nition 2.14 to be a simple Cab curve. The rational places of Fq(x1) different
from P∞ are in bijective correspondence with the elements of Fq [63, I.2.3],
and thus for n ≤ q it is possible to choose places P1, . . . , Pn satisfying As-
sumption 2.1. Since x2 = 1, we get that for the projective line the ring R is
especially simple, namely R = Fq[x1, x2] = Fq[x1].

Let P1, . . . , Pn be places of the projective line, different from P∞ and let C
be the Reed–Solomon code over Fq of length n ≤ q and dimension k,

C = {(f(P1), . . . , f(Pn)) | f ∈ Fq[x1], deg(f) < k} .

Let y = (y1, . . . , yn) be a received word and say that we wish to correct τ
errors with the G–S algorithm. Furthermore, let s ≥ 1 be a multiplicity
parameter, and let ` ≥ s be a degree bound. In Section 1.2.2 we saw that
in the interpolation step of the G–S algorithm we need to find a non-zero
polynomial Q ∈ Fq[x1, T ] such that:

1. Q has a root of multiplicity at least s in the points (Pi, yi) for 1 ≤ i ≤ n.

2. Q must be such that degT (Q) ≤ ` and degk−1(Q) < s(n− τ).

For details on the origins of these requirements, see Section 4.2.1. The in-
terpolation requirements in the above two items can be formulated in the
language of Problem 2.8, by letting v = 1 (so that T = T ), keeping the
multiplicity parameter and the degree bound, and by letting:
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1. The interpolation places be P = (P1, . . . , Pn), and the interpolation
values be Y = y.

2. The weighted degree bound be ∆ = s(n− τ).

Therefore we can specialize Proposition 2.25 to the following set of key-
equations for list decoding of Reed–Solomon codes:

Corollary 2.26 (Key-equations for Reed–Solomon codes). Let notation be
as above. Furthermore, let R ∈ Fq[x1] be the Lagrangian interpolation poly-
nomial satisfying R(Pi) = yi for 1 ≤ i ≤ n, and let E =

∏n
i=1(x1 − x1(Pi)).

Then

Q(T ) =
∑̀
j=0

qj(x1)T
j ∈ Fq[x1, T ], (2.25)

is an interpolation polynomial, if and only if there exist a vector c ∈ Fq[x1]
`+1

such that q = A`(−R)Ds,`(E)c. If furthermore

degρ(k−1) (q) < s(n− τ), (2.26)

then Q(T ) is also a valid interpolation polynomial.

Note that

ρ(k − 1) = (1, 0, k − 1, 2(k − 1), . . . , `(k − 1)),

and therefore if we use the weighted degree from Definition 2.6, then the
degree requirement in Equation (2.26) can be formulated as

degk−1 (q) < s(n− τ).

The rows of the equation q = A`(−R)Ds,`(E)c in the above corollary give
rise to ` + 1 linear equations with coefficients in Fq[x1]. It is these equations
that we regard as the key-equations for Reed–Solomon codes. These key-
equations were derived in this form in [5], building on the work in [4, 43]. To
illustrate the corollary we now give an example of the interpolation step in
the G–S algorithm for Reed–Solomon codes.

Example 2.27. This example is taken from [38, p. 133]. Consider a (15, 7, 9)
Reed–Solomon code over F16 and let α be a primitive element of this field,
satisfying α4 + α + 1. Since the minimum distance of the code is 9 it can
correct four errors. However, by selecting s = 4 and ` = 6, five errors
can be corrected using list decoding. Let the information polynomial be
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f(x1) = x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 + 1, and say we receive the following

corrupted word

y = (0, α5, α10, α3, α5, 1, α6, α7, α10, α9, 1, α11, α12, α13, α14).

We have that E =
∏14

i=0(x1−αi) = x15
1 − 1 and by Lagrangian interpolation,

we find R = x10
1 + x6

1 + x4
1 + x3

1 + x2
1 + x1. Furthermore, we have

A`(−R)Ds,`(E) =




E4 −E3R E2R2 −ER3 R4 −R5 R6

0 E3 −2E2R 3ER2 −4R3 5R4 −6R5

0 0 E2 −3ER 6R2 −10R3 15R4

0 0 0 E −4R 10R2 −20R3

0 0 0 0 1 −5R 15R2

0 0 0 0 0 1 −6R
0 0 0 0 0 0 1




.

In order for the G–S algorithm to be successful, we need to find an inter-
polation polynomial of weighted degree strictly less than s(n − τ) = 40.
Corollary 2.26 shows that this is equivalent to finding a vector in the Fq[x1]–
column span of the above matrix of weighted degree strictly less than 40.
Later we will get an efficient method for finding such a vector, but for now
we will be content with noting that if we let c be the vector

c =
(
1, 0, x10

1 , 0, x20
1 , 0, 1

)T
,

and take q = A`(−R)Ds,`(E)c, then we get the following interpolation poly-
nomial

Q(T ) =
6∑

j=0

qi(x1)T
j

= T 6 +
(
x12

1 + x8
1 + x6

1 + x4
1 + x2

1

)
T 4 +(

x24
1 + x16

1 + x12
1 + x10

1 + x8
1 + x4

1

)
T 2 +(

x36
1 + x32

1 + x26
1 + x20

1 + x18
1 + x14

1 + x12
1 + x8

1 + x6
1 + 1

)
.

The weighted degree of this polynomial is maxj{deg(qj(x1)) + 6j} = 36 and
since this is strictly smaller than s(n− τ) we are guaranteed that T − f(x1)
is a factor of Q(T ). It can be checked that

Q(T ) = (T − (x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 + 1))2 ·

(T − (x6
1 + α5x5

1 + x4
1 + x3

1 + x2
1 + x1 + α10))2 ·

(T − (x6
1 + α10x5

1 + x4
1 + x3

1 + x2
1 + x1 + α5))2,

and thus we indeed get the expected factor.
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2.5.2 Exploiting structure in an interpolation problem

The interpolation problem in the G–S algorithm for a Reed–Solomon code of
length n and multiplicity parameter s, may be directly formulated and solved
as a linear algebra problem, see Proposition 5.5 or [30] for details. The matrix

of the resulting system has about
((

s+1
2

)
n
)2

= O (s4n2) entries, and using
Gaussian elimination it may be solved in complexity O (s6n3). However,
since the linear system results from an interpolation problem, it contains
structure which is not exploited by the Gaussian elimination approach. In
[4] it was shown that the interpolation problem in the G–S algorithm can
be equivalently described by a set of key-equations. Furthermore, it was
shown that those key-equations can be formulated as a linear system on
block Hankel form, with O (s3n) distinct entries (if the common element
in the anti-diagonals are counted as a single entry). See also [8] for a direct
derivation of the block Hankel system, without the use of key-equations. One
way to interpret this result is that the key-equations exploit the redundancy
of the original interpolation problem to “compress” the problem by a factor
of O (sn). Fortunately this compressed problem is also easier to solve, and for
instance in [58] an extension of the Berlekamp–Massey algorithm from [56] is
used to solve the block Hankel system in complexity O (s5n2), again saving
a factor of O (sn) when compared to the direct linear algebra approach.

In [49] Olshevsky and Shokrollahi used a different approach for exploiting
the structure of the interpolation problem in the G–S algorithm. Using the
concept of displacement rank they showed how the linear equation system
resulting from the interpolation problem, can be considered “sparse”, and
furthermore they showed how this sparsity allows one to solve the system in
complexity O (s5n2). Note that this matches the performance of the algo-
rithm mentioned above.

2.5.3 Comparison to other key-equations

Let R and E be as in Corollary 2.26. In this notation the key-equations
derived in [4, Prop. 1] state that Q(T ) =

∑`
j=0 qj(x1)T

j is an interpolation
polynomial if and only if

E(x1)
s−b | H(b)

T (Q) (x1, R(x1)),

for 0 ≤ b < s. In our matrix notation, this is equivalent to the existence
of a vector c = (c0, . . . , c`) ∈ Fq[x1]

`+1 such that A`(R)q = Ds,`(E)c. By
Proposition 2.11 this is furthermore equivalent to q = A`(−R)Ds,`(E)c. The
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latter is exactly the key-equations in Corollary 2.26 and we thus conclude that
our key-equations only differ from those in [4, Prop. 1] by a single matrix
inversion.

In [43] a different set of key-equations for the interpolation step in the
Guruswami–Sudan list decoder, was derived. If we let

Aj =

{
E(x1)

s−j(T −R(x1))
j 0 ≤ j ≤ s

T j−s(T −R(x1))
s s < j ≤ `

,

then [43, Cor. 4] states that Q(T ) in an interpolation polynomial if and only
if it is of the form Q(T ) =

∑`
j=0 cj(x1)Aj. Note that each of the polynomials

Aj can be expressed as an Fq[x1]–linear combination of the polynomials

Bj = E(x1)
max(0,s−j)(T −R(x1))

j, 0 ≤ j ≤ `

and hence we also have that Q(T ) is an interpolation polynomial if and only
if it is of the form Q(T ) =

∑`
j=0 cj(x1)Bj. We have that

H(i)
T (Bj)

∣∣∣
T=0

= E(x1)
max(0,s−j)

(
j

i

)
(−R(x1))

j−i,

and thus the coefficient to T i in Bj is exactly the (i, j)-th entry of the matrix
A`(−R)Ds,`(E). Therefore we get that [43, Cor. 4] is equivalent to the
statement that Q(T ) is an interpolation polynomial if and only if q is of the
form A`(−R)Ds,`(E)c. This last statement is exactly Corollary 2.26, and we
conclude that our key-equations only differ by a simple rewritings from those
in [43]. This in turn means that the apparently different key-equations in [4]
and [43], are in fact only a matrix inversion and a simple rewriting apart.

2.5.4 Re-encoding

In [39] Ahmed, Kötter, Ma and Vardy suggest a simple but powerful tech-
nique, known as re-encoding, for rewriting the key-equations for Reed–Solomon
codes, into an equivalent set of equations involving polynomials of lower de-
gree. For some algorithms this rewritten problem is much easier to solve than
the original one. In this section we show how the re-encoding technique can
be naturally understood in terms of the key-equations in Corollary 2.26.

Let y = (y1, . . . , yn) ∈ Fn
q be a received word, and let g(x1) be the Lagrange

interpolation polynomial of degree at most k − 1 such that g(Pi) = yi for
1 ≤ i ≤ k. Consider the vector

y′ = (y1 − g(P1), . . . , yn − g(Pn)) =
(
0, . . . , 0, y′k+1, . . . , y

′
n

)
. (2.27)
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If we can find a polynomial f(x1) of degree at most k − 1 such that the
codeword (f(P1), . . . , f(Pn)) agrees with y′ in at least n− τ positions, then
(f(P1) + g(P1), . . . , f(Pn) + g(Pn)) agrees with y in least n − τ positions.
Therefore, when list decoding a Reed–Solomon code we can translate (or re-
encode) the interpolation problem, so that the first k positions of the received
word are all zero. This in turn means that the polynomial R in Corollary 2.26
is divisible by

E0(x1) =
k∏

i=1

(x1 − x1(Pi)).

By definition of A` and Ds,` this implies that each entry in the i-th row

of A`(−R)Ds,`(E) is divisible by E
max(s−i,0)
0 . We can write this fact as the

following matrix-factorization

A`(−R)Ds,`(E) = Ds,`(E0)KDs,`(E/E0), (2.28)

where K is the ` + 1× ` + 1 matrix defined by

[K]i,j =





(
j
i

)
(−R/E0)

j−i 0 ≤ i ≤ ` and 0 ≤ j ≤ s(
j
i

)
(−R/E0)

s−i(−R)j−s 0 ≤ i ≤ s and s < j ≤ `(
j
i

)
(−R)j−i s < i ≤ ` and s < j ≤ `

Note that the the left most s + 1 columns of K equal those of A`(−R/E0),
and that the bottom most `−s rows equal those of A`(−R). Equation (2.28)
contains the essence of the re-encoding technique. Let

(1,w) = (1, w0, . . . , w`) ∈ N0 × Z`+1,

be a weight vector as in Definition 2.23, and let c be a vector in Fq[x1]
`+1.

Then Equation (2.28) shows that q = A`(−R)Ds,`(E)c satisfies deg1,w (q) <
∆ if and only if

q′ = KDs,`(E/E0)c, (2.29)

satisfies deg1,ew (q′) < ∆, where w̃ is the weight vector defined by

w̃i = wi + deg
(
E

max(s−i,0)
0

)
= wi + k max(s− i, 0),

for 0 ≤ i ≤ `. In the interpolation problem for Reed–Solomon codes we have
∆ = s(n− τ), and the weighting of the rows of A`(−R)Ds,`(E) corresponds
to taking wi = i(k − 1). Therefore

w̃i = i(k − 1) + k max(s− i, 0) =

{
sk − i if 0 ≤ i ≤ s,

i(k − 1) if s < i ≤ `.
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Note that w̃i ≥ s(k − 1) for 0 ≤ i ≤ `. Therefore the vector q′ from
Equation (2.29) satisfy deg1,ew (q′) < ∆ = s(n− τ) if and only if

deg1,w′ (q
′) < s(n− τ)− s(k − 1) = s(d− τ),

where d = n − k + 1 is the minimum distance of C, and w′ is the weight
vector defined by

w′
i =

{
s− i if 0 ≤ i ≤ s,

(i− s)(k − 1) if s < i ≤ `.
(2.30)

Summarizing the above translations of the interpolation problem, we have
proved the following alternative set of key-equations for Reed–Solomon codes.

Proposition 2.28. Let y ∈ Fn
q be a received word and let

y′ = (y′1, . . . , y
′
n) = (0, . . . , 0, y′k+1, . . . , y

′
n) ∈ Fn

q ,

be the translated word from Equation (2.27). Let E =
∏n

i=1(x1 − x1(Pi))
and let R be the Lagrangian interpolation polynomial such that R(Pi) = y′i
for 1 ≤ i ≤ n. Let P = (P1, . . . , Pn). Then Q(T ) =

∑`
j=0 qj(x1)T

j is an
interpolation polynomial for (P,y′, s, `) if and only if it is of the form

Q(T ) =
∑̀
j=0

q′j(x1)E0(x1)
max(0,s−j)T j, (2.31)

and there exists a vector c ∈ Fq[x1]
`+1 such that q′ = KDs,`(E/E0)c. Fur-

thermore, let Q(T ) be as in Equation (2.31) and let w′ be the weight vector
defined in Equation (2.30). Then Q(T ) is a valid interpolation polynomial,
i.e. degk−1 (Q(T )) < s(n− τ), if and only if deg1,w′ (q

′) < s(d− τ).

The advantage of the rewritten (or re-encoded) key-equations in Proposi-
tion 2.28 over those in Corollary 2.26, is that they involve polynomials of
lower degree. For some algorithms, the degrees of the polynomials R and
E from the key-equations in Corollary 2.26 determine the algorithm’s com-
plexity. In the re-encoded key-equations above, the roles that A`(−R) and
Ds,`(E) play in Corollary 2.26, are played by K and Ds,`(E/E0) respectively.
Looking at the definition of K we see that one may view this matrix as a
modification of A`(−R), in which “most” occurrences of R are replaced by
R/E0. While R and E both have degree at most n, the polynomials R/E0

and E/E0 both have degree at most n− k. Thus for algorithms whose com-
plexity depends on the degrees of R and E, the re-encoding technique allows
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2. Key-equations

one to, rougly speaking, replace n by n−k in their complexity estimates. The
linear algebra approach mentioned in Section 2.5.2 and the Lee–O’Sullivan
algorithm [43] are examples of algorithms with this property, see [39, 45]
for details. For a fixed rate R, re-encoding does not change the asymptotic
complexity of these two algorithms (since the ratio of n − k and n is the
constant 1 − R). However, re-encoding significantly improves the practical
performance of these algorithms, especially for high rate codes.
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Chapter 3

The short-basis algorithm

Given a module, what is its “shortest” possible basis, and can we compute
this basis efficiently? In this chapter we will answer this question, when
the shortness of a vector is measured with respect to the weighted degree
degw from Definition 2.23, and the base ring of the module is a univariate
polynomial ring. We do so by presenting a short-basis algorithm which given a
basis A of an Fq[x1]–module M , a weight vector w and a target t, computes
another basis A′ of M such that either degw (A′) ≤ degw (A) − t, or A′

is reduced. The presented algorithm uses a divide–and–conquer approach,
similar to the one used in the fast euclidean algorithm for polynomials (see
e.g. [20, p. 309]). It is an adaptation of an algorithm by Alekhnovich [2],
generalized to compute short vectors with respect to weighted degrees.

In Proposition 2.25 it was shown that the interpolation problem posed in
Problem 2.8 can be equivalently formulated as the problem of finding short
vectors in an certain module. In Chapter 4 we use this to show how the
short-basis algorithm can be applied to solve the interpolation problem. The
material in this chapter is based on the paper [6].

3.1 The short-basis algorithm

In this section we present the short-basis algorithm. Before we can formulate
the objectives of the algorithm, we need to establish some terminology.
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3. The short-basis algorithm

3.1.1 Definitions and terminology

In the following A will denote an m×m matrix with entries in Fq[x1] and we
will denote its j-th column by Aj. For the measure of “shortness” of a vector
with entries in Fq[x1] we will use the weighted degree from Definition 2.23.
We now define the notions of leading coordinate, critical position and reduced
with respect to this weighted degree.

Definition 3.1 (Leading coordinate, critical position, reduced). Let

w = (w0, w1, . . . , wm) ∈ N× Zm

be a weight vector and let A be an m×m matrix of polynomials in Fq[x1].

• For a column Aj of A, its leading coordinate with respect to degw,
denoted LCw (Aj), is the largest index i for which

w0 deg Ai,j + wi = degw (Aj) . (3.1)

• A pair (i, j) satisfying Equation (3.1) will be called a critical position.

• A matrix A is said to be reduced with respect to degw if for all pairs of
distinct columns Aj1 and Aj2 , it holds that LCw (Aj1) 6= LCw (Aj2).

The weighted degree degw can be extended to a term order on Fq[x1]
m. Using

the term–over–position extension (see [16, p. 211]), we get the following order:

Definition 3.2 (Term order <w, leading term). Let w = (w0, w1, . . . , wm) ∈
N×Zm be a vector of weights. Let ei denote the i-th unit vector in Fq[x1]

m,
that is

ei = (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0).

For two monomials xα
1ei and xβ

1ej in Fq[x1]
m, define xα

1ei <w xβ
1ej if one of

the following holds:

• w0α + wi < w0β + wj,

• w0α + wi = w0β + wj and i < j.

A vector Aj in Fq[x1]
m can be decomposed as a sum of monomials. We define

the leading term of Aj with respect to <w, to be the largest monomial in
this sum with respect to <w, and we denote it by LTw (Aj).

To ease the language, we will in the following say that an m×m matrix A
with entries in Fq[x1], is a basis for an Fq[x1]–module M , if its columns form
a basis for M .
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3.1.2 Reduced bases and short bases

The following proposition gives a sufficient condition for when a basis of an
Fq[x1]–module, is also a Gröbner basis.

Proposition 3.3. Let A be a basis for the Fq[x1]–module M ⊆ Fq[x1]
m. If A

is reduced with respect to degw then A is a Gröbner basis for M with respect
to <w.

Proof. Assume that for any two distinct columns Aj1 and Aj2 we have
LCw (Aj1) 6= LCw (Aj2). Then by definition of S–polynomials we have that
for j1 6= j2,

S(Aj1 ,Aj2) = 0.

By Buchberger’s Criterion [16, p. 215], this means that A is a Gröbner basis
for M with respect to <w.

The result in the following proposition shows that among all bases of a mod-
ule, the reduced bases are the shortest.

Proposition 3.4. Let A′ be a reduced basis for the module M ⊆ Fq[x1]
m

with respect to degw. For any basis A of M it holds that

degw (A′) ≤ degw (A) .

Proof. Since A′ is reduced we may reorder the columns of A′ such that
LCw

(
A′

j

)
= j. Let A be some basis of M . We divide the proof into two

cases, one where A is reduced, and one where it is not. First assume that
A is reduced. Then, after reordering, we may assume that LCw (Aj) = j.
Since A′ is a basis for M , there exist a vector c ∈ Fq[x1]

m such that

A′c = A1.

Furthermore, since A′ is reduced with respect to degw, it is also a Gröbner
basis with respect to <w and hence LTw (ciA

′
i) = LTw (A1) for some i. For

cj 6= 0 it holds that LCw

(
cjA

′
j

)
= LCw

(
A′

j

)
and hence we must have i = 1.

This means that LTw (c1A
′
1) = LTw (A1), and in particular

degw (A1) = w0 deg(A1,1) + w1 ≥ w0 deg(A′
1,1) + w1 = degw (A′

1) .

Similarly one can prove that degw (Aj) ≥ degw

(
A′

j

)
for 1 ≤ j ≤ m, and

hence
degw (A) ≥ degw (A′) .
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Next, assume that A is not reduced, and let j1 6= j2 be such that LCw (Aj1) =
LCw (Aj2). By symmetry we may assume that Aj1 ≥w Aj2 . This means that
there exist α ∈ Fq \ {0} and β ≥ 0 such that

αxβ
1Aj2 + Aj1 <w Aj1 . (3.2)

Let U denote the matrix such that AU is the matrix obtained by adding
αxβ

1 times the j2-th column of A to j1-th column. Such a matrix is called
a transvection and has determinant 1. By definition of U we have that
A(1) = AU is the matrix obtained by replacing the j1-th column of A by
αxβ

1Aj2 +Aj1 , and since U is invertible, A(1) is also a basis for M . Applying
the above argument recursively, we get a sequence of matrices

A(0) = A,A(1), . . . ,A(i), . . . (3.3)

such that A(i+1) = A(i)U(i), where U(i) is a transvection, and such that for
each i there exist a column index j such that A

(i)
j >w A

(i+1)
j . As long as

the matrix A(i) is not reduced, the sequence continues. On the other hand,
since <w is a term order, and since at each step, the order of some column
decreases, the sequence can not continue indefinitely. Thus there exists an
n such that A(n) is reduced. Furthermore, by definition of the transvections
U(i) it holds that

degw (A) ≥ degw

(
A(1)

) ≥ degw

(
A(2)

) ≥ · · · ≥ degw

(
A(n)

)
.

Finally, since A(n) is reduced it follows from the previous that

degw (A) ≥ degw

(
A(n)

) ≥ degw (A′) ,

as desired.

3.1.3 Objectives of the short-basis algorithm

The construction of the sequence in Equation (3.3) is exactly what is done in
Buchberger’s algorithm (with interreduction) for computing Gröbner bases
of modules [16, p. 216]. In the algorithm, this process is continued until no
more leading terms can be cancelled, i.e. until the basis matrix is reduced, and
therefore the last half of the proof of Proposition 3.4 could have been done
by referring to the fact that Buchberger’s algorithm is always guaranteed to
terminate. However, we have chosen to give the more elaborate proof as it
almost also proves the following.
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Proposition 3.5. Let A be a basis of a module M ⊆ Fq[x1]
m. Then there

exists an m×m invertible matrix1 U with entries in Fq[x1] such that either
degw (AU) < degw (A) or AU is reduced with respect to degw.

Proof. Let A(0) = A,A(1), . . . ,A(n) be the sequence of matrices from the
proof of Proposition 3.4. First, assume that degw

(
A(j+1)

)
< degw

(
A(j)

)
for

some j, then if we take U =
∏j

i=1 U(i), it holds that AU = A(j+1), and hence

degw (AU) = degw

(
A(j+1)

)
< degw (A) .

Next, assume that for all j we have degw

(
A(j+1)

)
= degw

(
A(j)

)
, then if we

take U =
∏n−1

i=1 U(i), it holds that AU = A(n), is reduced with respect to
degw. In both of the above cases U is a product of transvections, and hence
it is invertible. This proves the proposition.

Although the above proposition is formulated as an existence statement,
its proof shows that the promised U can be computed as a composition of
column operations (transvections). In Proposition 3.13 we shall have more
to say about how many column operations are needed in this composition,
but currently our main interest in Proposition 3.5 is that it proves that the
following definition is not void.

Definition 3.6 (Uw(A, t)). Let A be a basis of a module M ⊆ Fq[x1]
m. For

a non-negative integer t, we let Uw(A, t) be an invertible matrix such that
either

degw (A ·Uw(A, t)) ≤ degw (A)− t,

or A ·Uw(A, t) is reduced with respect to degw.

3.1.4 The short-basis algorithm

In this section we will use the developments in the previous sections to de-
scribe an efficient algorithm, along the lines of [2], for computing Uw(A, t).
It is this algorithm we call the short-basis algorithm. The main idea of the
algorithm is to divide the task of computing Uw(A, t) into smaller, and eas-
ier, problems. The key to this is the following observation. If t′ is an integer
such that 0 ≤ t′ ≤ t, then it holds that

Uw(A, t) = Uw(A, t′) ·Uw (A ·Uw(A, t′), t− d) , (3.4)

1We stress that U is invertible in the ring Matm×m (Fq[x1]), i.e. that its entries are
polynomials.
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where d = degw (A)−degw (A ·Uw(A, t′)). Thus Uw(A, t) can be computed
recursively as the product of the matrices on the right hand side of this equa-
tion. As indicated in the proof of Proposition 3.5 the base case Uw(A, 1)
can be done by a series of column operations. In Algorithm 1 this procedure
is formalized and stated as pseudo code. Furthermore, pseudo code for the
recursive algorithm for t > 1 implied by Equation (3.4) is given in Algo-
rithm 2. Besides the computations directly suggested by Equation (3.4) an
extra line (line 1) has been added. This line is crucial for the complexity of
the algorithm, as the next section will show.

Algorithm 1 Algorithm for computing Uw(A, 1)

Input: An m×m matrix A with entries in Fq[x1].
Input: A weight vector w ∈ N× Zm.
Output: U(A, 1)
1: U← Im

2: repeat
3: if A is reduced with respect to degw then
4: return U
5: else
6: Find j1 6= j2 such that i = LCw (Aj1) = LCw (Aj2)
7: if deg (Ai,j1) < deg (Ai,j2) then
8: Swap j1 and j2

9: end if

10: f ← −LT(Ai,j1)
LT(Ai,j2)

// Leading terms with respect to ordinary degree

11: Dold ← degw (Aj1)
12: Aj1 ← Aj1 + fAj2

13: Uj1 ← Uj1 + fUj2

14: Dnew ← degw (Aj1)
15: end if
16: until Dnew < Dold

17: return U

Remark 3.7. From Definition 3.6 it follows that A ·Uw(A, degw (A)) must
be reduced with respect to degw. Hence by Proposition 3.3 this matrix is also
a Gröbner basis with respect to <w for the module spanned by the columns
of A. This means that the short-basis algorithm can be used to compute
Gröbner bases of modules over a univariate polynomial ring with respect to
the weighted orders from Definition 2.23.

Example 3.8. In this example we make an attempt to visualize some of the
notions introduced in the previous sections. We do so by illustrating a single
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Algorithm 2 The short-basis algorithm for computing Uw(A, t)

Input: An m×m matrix A with entries in Fq[x1].
Input: A weight vector w ∈ N× Zm.
Input: Integer t such that t ≥ 1.
Output: U(A, t)
1: A← πt(A)
2: if t = 1 then
3: return U(A, 1) // Use Algorithm 1
4: else
5: U′ ← U(A, bt/2c) // Recursive call
6: A′ ← A ·U′

7: return U′ ·U(A′, t− (degw (A)− degw (A′))) // Recursive call
8: end if

iteration of the loop in Algorithm 1. As input matrix A we take the matrix
with entries in F4[x1] defined as follows

A =




αx3
1 + x2

1 + x1 + x1 x2
1 + α α2x1 + 1 x1

x2
1 + α2 αx1 x1 + 1 1

α2x1 + α2 1 1 α
α2 1 α 1


 , (3.5)

where α denotes a primitive element of F4. Furthermore, as weight vector
we take

w = (w0, w1, w2, w3, w4) = (1, 0, 0, 0, 0).

In this case the weighted degree of a column Aj is

degw (Aj) = max
i=1,...,4

{deg(Ai,j)} ,

i.e. it is simply the maximal degree of an entry in Aj. In the left hand
part of Figure 3.1 the weighted degrees of the entries in A are visualized, by
representing each entry Ai,j by a stack of deg(Ai,j)+1 “cubes” (one for each
coefficient). For instance the polynomial in A1,1 is represented by a stack
of 4 cubes. Using this visualization, we have that the critical positions of a
column simply are the positions that have the highest stacks. Furthermore,
the leading coordinate is the position with the highest stack that is closest
to the bottom left hand of the figure. For instance we see that the columns
A1,A2,A4 only have one critical position, whereas A3 has two.

The leading coordinate of each of the columns A1,A2,A4 is one. Now,
consider the loop in Algorithm 1 with A and w as inputs. Say that in line 6
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-

A1 + αx1A2 → A1

A1
A2

A3
A4

Figure 3.1: Visualization of the matrix A from Equation (3.5).

the algorithm finds j1 = 1 and j2 = 2 (and hence i = 1). It then computes

f = −LT (A1,1)

LT (A1,2)
=

αx3
1

x2
1

= αx1,

and in line 12 it makes the column operation A1 ← A1 +αx1A2. The result-
ing matrix is illustrated in the right hand part of Figure 3.1. As expected we
see that the leading term, with respect to <w, of A1 has been cancelled, and
furthermore we see that the column operations has ‘cut down’ the maximal
height of any stack in A1. This means that the weighted degree of A1 has
been reduced by 1, and therefore Algorithm 1 terminates after the test in
line 16. By applying Algorithm 1 again, the matrix can be further cut down.
Ultimately this ‘cutting down’ process will yield a reduced matrix, as we saw
in the proof of Proposition 3.4. We believe that thinking of the operations
performed by the short-basis algorithm as repeatedly cutting down an m×m
stack of cubes, is a helpful visualization that clarifies the notions introduced
in the previous sections, as well as the analysis of the algorithm, which we
will undertake next.

3.2 Analysis of the short-basis algorithm

In this section we estimate the complexity of the short-basis algorithm. The
analysis will not depend on the specific weight vector w used in the weighted
degree degw and in the term order <w. Thus in the following we will take w
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to be some arbitrary but fixed weight vector in N×Zm, and to ease notation
we will abbreviate Uw(A, t) to U(A, t).

3.2.1 Sub-problems are easy

The problem with using Equation (3.4) directly for computing U(A, t), is
that the splitting of the problem does not in itself make the total problem
easier, as the equation in words simply says: To reduce the weighted degree
of A by t, first attempt to reduce it by t′, and then try to reduce it further by
t minus the amount by which the first attempt reduced the weighted degree
of A. The idea is that the sub-problems are actually easier to solve since
one can use a simpler “approximation” of A in the place of A when solving
them. It is this approximation πt that is added in line 1 of Algorithm 2. We
will now make precise what πt does.

Definition 3.9 (Accuracy t approximation). For a matrix A and an integer t,
we define the accuracy t approximation of A to be the matrix πt(A) obtained
as follows: If the (i, j)-th entry of A is

∑
k akx

k
1 then the (i, j)-th entry of

πt(A) is

[πt(A)]i,j =
∑

k : w0k+wi>degw(Aj)−t

akx
k
1.

Two matrices A and B are said to agree to precision t if πt(A) = πt(B), and

this will be written as A
t∼ B.

Note that by definition of the accuracy t approximation it holds that A
t∼

πt(A). The following lemma shows that we can use πt(A) in the place of A
when computing U(A, t). Thus, together with Equation (3.4), it proves the
correctness of Algorithm 2. The lemma is a generalization of [2, Lemma 2.7].

Lemma 3.10. It holds that

U(A, t) = U(πt(A), t).

Proof. We will prove the lemma by induction on t, and we start with the base

case t = 1. Since A
1∼ π1(A), all the critical positions of A and π1(A) are the

same. Note that Algorithm 1 stops as soon as for some column Aj the leading
terms in all the critical positions in column j have been canceled. Therefore,
since only the leading terms of critical positions are used in the computations
performed by Algorithm 1, we have that U(A, 1) = U(π1(A), 1) and the base
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case follows. Actually the above argument proves a little more, namely that
for t ≥ 1 it holds that

U(A, 1) = U(πt(A), 1). (3.6)

Now for the induction step assume that t > 1. Let V be a matrix representing
one of the column operation made in line 12 of Algorithm 1, i.e. a matrix
such that A · V is the matrix obtained by making the column operation
Aj1 ← Aj1 + fAj2 . Let

a(h)(x1) =
∑

k

a
(h)
k xh

1 ,

denote the polynomial in the (i, jh)-th entry of A, and let f = αxβ
1 where

β = w−1
0 (degw (Aj1)− degw (Aj2)) .

If d ≥ 0 denotes degw (A)− degw (AV) then it holds that

[πt(A) ·V]i,j1 =
∑

w0k+wi>degw(Aj1)−t

a
(1)
k xk

1 +
∑

w0k+wi>degw(Aj2)−t

f · a(2)
k xk

1

=
∑

w0k+wi>degw(Aj1)−t

a
(1)
k xk

1 +
∑

w0(k−β)+wi>degw(Aj2)−t

αa
(2)
k−βxk

1

=
∑

w0k+wi>degw(Aj1)−t

a
(1)
k xk

1 +
∑

w0k+wi>degw(Aj2)+w0β−t

αa
(2)
k−βxk

1

=
∑

w0k+wi>degw(Aj1)−t

(
a

(1)
k + α · a(2)

k−β

)
xk

1

=
∑

w0k+wi>degw((A·V)j1)−(t−d)

(
a

(1)
k + α · a(2)

k−β

)
xk

1

= [πt−d(A ·V)]i,j1 .

Furthermore for any j 6= j1 the j-th column of AV is equal to the j-th column
of A, and therefore we get that

πt(A)V
t−d∼ πt−d(A ·V). (3.7)

From Algorithm 1 it follows that we can write

U(A, 1) =
K∏

i=1

V(i),
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where each V(i) is a column addition of the type considered above. Let dj be

dj = degw

(
A ·

j−1∏
i=1

V(i)

)
− degw

(
A ·

j∏
i=1

V(i)

)
,

and let d =
∑K

j=1 dj be the total amount by which U(A, 1) reduces the
weighted degree of A, that is d = degw (A) − degw (A ·U(A, 1)). Then
using Equation (3.7) repeatedly we get that

πt(A) ·U(A, 1) = πt(A) ·
K∏

i=1

V(i) t−d1∼ πt−d1(A ·V1) ·
K∏

i=2

Vi
t−(d1+d2)∼ · · ·

t−P di∼ πt−P di
(A ·

K∏
i=1

Vi)
t−d∼ πt−d(A ·U(A, 1)). (3.8)

Using Equation (3.4) with t′ = 1, the “extended” induction base in (3.6) and
the induction hypothesis, in that order, we get the following three equalities

U(πt(A), t) = U(πt(A), 1) ·U (πt(A)U(πt(A), 1), t− d)

= U(A, 1) ·U(πt(A)U(A, 1), t− d)

= U(A, 1) ·U(πt−d(πt(A)U(A, 1)), t− d).

Now, using Equation (3.8), the induction hypothesis, and Equation (3.4)
again, we can continue the above chain of equalities by,

U(πt(A), t) = U(A, 1) ·U(πt−d(AU(A, 1)), t− d)

= U(A, 1) ·U(AU(A, 1), t− d).

= U(A, t).

This completes the induction step.

3.2.2 Combining sub-problems is easy

Lemma 3.10 shows that one only needs to consider certain monomials in the
entries of A when computing U(A, t). This has a consequence for the type of
monomials that can occur in the matrix U(A, t), and we now state and prove
this result. For this we will need the notion of the length of a polynomial.

Definition 3.11 (Length). The length of a polynomial

a(x1) =
u∑

i=l

aix
i
1, with al 6= 0, au 6= 0
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is the maximal number of non-zero coefficients that a(x1) can have, namely
u− l + 1.

The following lemma is a generalization of [2, Lemma 2.8].

Lemma 3.12. Let A be an m × m matrix of polynomials in Fq[x1]. Any

monomial in [U(A, t)]i,j is of the form αx
dij+e
1 , where |e| ≤ w−1

0 (t− 1) and

dij = w−1
0 (degw (Aj)− degw (Ai)) .

In particular any polynomial in U(A, t) has length at most 2tw−1
0 .

Proof. We prove the lemma by induction on t, and we start with the base
case t = 1. By Algorithm 1 we may factor U(A, 1) as

U(A, 1) =
K∏

h=1

V(h), (3.9)

where each V(h) is a matrix representing one of the column operations per-
formed in line 13 of Algorithm 1. By line 10 of Algorithm 1 a monomial in
the (j2, j1)-th position of V(h) is of the form

f = −
LT

(
Ãi,j1

)

LT
(
Ãi,j2

) , (3.10)

where i is the common leading coordinate of column j1 and j2 and Ã is the
matrix obtained by applying all the column operations V(1), . . . ,V(h−1) (from
the previous executions of the main loop) to A. Note that Algorithm 1 stops
as soon as the weighted degree of some column decreases, and hence for any
index j we have that degw (Aj) remains unchanged during all executions of
the algorithm’s main loop. In particular for any of the values that (i, j1, j2)
assumes during the execution it holds that

deg
(
LT

(
Ãi,j1

))
= w−1

0 (degw (Aj1)− wi) ,

deg
(
LT

(
Ãi,j2

))
= w−1

0 (degw (Aj2)− wi) .

Therefore, by Equation (3.10) it holds for any h, that the monomial in the
(j2, j1)-th entry of V(h) has degree

deg
(
LT

(
Ãi,j1

))
− deg

(
LT

(
Ãi,j2

))
= w−1

0 (degw (Aj1)− degw (Aj2)) .

(3.11)
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By (3.9) the (j2, j1)-th entry in U(A, 1) is of the form

m∑

`1=1

m∑

`2=1

· · ·
m∑

`K−1=1

[V(1)]j2,`1 · [V(2)]`1,`2 · · · [V(K)]`K−1,j1 . (3.12)

Now, by (3.11) the (`1, `2, . . . , `K−1)-th summand in this expression is a mono-
mial of degree

deg
(
[V(1)]j2,`1 · [V(2)]`1,`2 · · · [V(K)]`K−1,j1

)
=

deg
(
[V(1)]j2,`1

)
+

K−2∑

h=1

deg
(
[V(h+1)]`h,`h+1

)
+ deg

(
[V(K)]`K−1,j1

)
=

w−1
0 (degw (Aj1)− degw (Aj2)) ,

where the last equality follows since the sum telescopes. Therefore the sum
in (3.12) is also a monomial of this degree, and the induction base follows.

For the induction step assume that t > 1 and let A′ denote AU(A, 1). If we
let

d = degw (A)− degw (A′) (3.13)

then by (3.4) we have that

U(A, t) = U(A, 1) ·U(A′, t− d).

Therefore, by the induction hypothesis, any monomial in the (i, j)-th entry
of U(A, t) is of the form

α1x
dik
1 · α2x

d′kj+e

1 = α1α2x
dik+d′kj+e

1 , (3.14)

for some k, where |e| ≤ w−1
0 (t−d−1) and d′ij = w−1

0

(
degw

(
A′

j

)− degw (A′
i)
)
.

We can rewrite the exponent of this monomial as

dik + d′kj + e = dik + dkj + d′kj − dkj + e = dij + e′, (3.15)

where e′ = d′kj − dkj + e. Algorithm 1 stops immediately after the weighted
degree of some column decreases. Therefore, for all but one column it holds
that degw (Ah) is equal to degw (A′

h). Hence

d′kj − dkj = w−1
0

(
degw

(
A′

j

)− degw (A′
k)− (degw (Aj)− degw (Ak))

)

is equal to either w−1
0 (degw

(
A′

j

)−degw (Aj)) or w−1
0 (degw (Ak)−degw (A′

k)),

and thus it follows from (3.13) that |d′kj − dkj| ≤ w−1
0 d. Using this, we then

get

|e′| = |d′kj − dkj + e| ≤ |d′kj − dkj|+ |e|
≤ w−1

0 d + w−1
0 (t− d− 1) = w−1

0 (t− 1). (3.16)
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Using the equations (3.15) and (3.16) on Equation (3.14), the induction step
follows.

Lemma 3.12 shows that the matrices

U(A, t′) and U (A ·U(A, t′), t− (degw (A)− degw (A ·U(A, t′))))

computed when solving the sub-problems in (3.4) have entries of “small”
length. This means that multiplication of entries in these matrices is fast,
and hence combining the results of sub-problems, by computing the matrix
product in (3.4), is fast too.

3.2.3 Complexity of the short-basis algorithm

In this section we use Lemma 3.12 to estimate the complexity of the short-
basis algorithm. We will assume that the time the algorithm spends on
making multiplications in Fq will dominate the total complexity. Thus all
operations other than Fq–multiplications performed by the algorithm (in-
cluding Fq–additions) will not count in its complexity.

Let M (t) denote the complexity of multiplying two polynomials of degree
at most t in Fq[x1]. If we use the the Schönhage–Strassen algorithm [20,
Thm. 8.23] for polynomial multiplication, we can take M (t) to be

M (t) = O (t log t log log t) . (3.17)

Note that this is in fact also the complexity of multiplying two polynomials
of length at most t. Before we can get an estimate of the complexity of the
short-basis algorithm, we need the following proposition.

Proposition 3.13. The total complexity of t consecutive calls to Algorithm 1,
made from Algorithm 2, is O (m2(t + m)).

Proof. Without loss of generality we will estimate the complexity of the first
t calls to Algorithm 1 from Algorithm 2. Let U(i) denote the result of the
i-th call, i.e., U(i) = U(A(i), 1), where A(i) = A(i−1)U(i−1) and A(1) = A. As
in the proof of Lemma 3.10 we can write

U(i) =
K∏

j=1

V(j),
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where each V(j) represents a column operation. Since Algorithm 1 stops
immediately after a column degree decreases we have that

degw

(
A(i)

)
= degw

(
A(i) ·

K−1∏
j=1

V(j)

)
,

and therefore, by a slight modification of Equation (3.8), that

π1(A
(i))

K−1∏
j=1

V(j) 1∼ π1

(
A(i) ·

K−1∏
j=1

V(j)

)
1∼ A(i) ·

K−1∏
j=1

V(j). (3.18)

The last column operation V(K) is the one that makes the degree of some
column drop, and it only affects this single column. Therefore it follows from
(3.18) that all the critical positions of π1(A

(i−1))
∏K−1

j=1 V(j) and A(i) are the
same, except in the column whose degree has dropped.

If one of the column additions made by Algorithm 1 when computing U(i) =
U(A(i), 1) does not make the degree of a column decrease, then the quantity

m∑
j=1

LCw

(
A

(i)
j

)
, (3.19)

must decrease. Furthermore, if a column operation makes the column degree
decrease, then the quantity in (3.19) increases by at most m− 1. Therefore
if Algorithm 1 makes di column additions when computing U(i), it follows
from the observations after Equation (3.18) that

m∑
j=1

LCw

(
A

(i)
j

)
≤

m∑
j=1

LCw

(
A

(i−1)
j

)
− (di−1 − 1) + (m− 1).

This implies that

m∑
j=1

LCw

(
A

(t)
j

)
≤

m∑
j=1

LCw

(
A

(1)
j

)
−

t−1∑
i=1

(di − 1) + (m− 1)(t− 1),

and since dt ≤
∑m

j=1 LCw

(
A

(t)
j

)
−m we get

t∑
i=1

(di− 1) ≤
m∑

j=1

LCw

(
A

(1)
j

)
+ (m− 1)(t− 1)−m− 1 ≤ m2 + mt− 2m− t.
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Hence we get that the total number of column additions made in the t calls
to Algorithm 1 is

t∑
i=1

di ≤ (m2 + mt− 2m− t) + t = O (m(t + m)) .

Finally note that when Algorithm 1 is being called from Algorithm 2, all
entries in A are monomials. Therefore the complexity of one column addition
is O (M (1) m) = O (m), and hence we get that the total complexity of the t
calls is O (m2(t + m)) as desired.

Using the above proposition along with Lemma 3.10 and Lemma 3.12, we
can now get an estimate of the complexity of Algorithm 2. The theorem is a
generalization of [2, Lemma 2.10].

Theorem 3.14 (Main). Let A be an m×m matrix of polynomials in Fq[x1].
The matrix Uw(A, t) can be computed by Algorithm 2 in time at most

O (
m3M

(
w−1

0 t
)
log t + m2t

)
.

Proof. We begin by estimating the complexity of the calls to Algorithm 1
made by Algorithm 2. Each call to Algorithm 1 makes t decrease by at
least 1, and therefore Algorithm 2 makes at most t such calls. Therefore, by
Proposition 3.13, the total complexity of the calls to Algorithm 1 is

O (
m2(t + m)

)
.

Let T (t) denote the complexity of computing U(A, t) with Algorithm 2,
without counting the complexity of the calls to Algorithm 1. The complexity
of multiplying two m × m matrices of polynomials, where each entry has
length at most k is O (m3M (k)). Therefore, since by Lemma 3.12 the length
of a polynomial in any of the entries of the two matrices in the product in
line 6 of Algorithm 2 is O (

w−1
0 t

)
, we get that

T (t) ≤ O (
m3M

(
w−1

0 t
))

+ 2T (t/2).

This implies that T (t) = O (
m3M

(
w−1

0 t
)
log t

)
, from which it follows that

the total complexity of Algorithm 2 is

O (
m3M

(
w−1

0 t
)
log t + m2(t + m)

)
= O (

m3M
(
w−1

0 t
)
log t + m2t

)
.
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Remark 3.15. We remark that the matrix multiplications performed in Al-
gorithm 2, when combining the results of the sub-problems, can theoretically
be done slightly faster than claimed in the proof of Theorem 3.14. In [64]
Strassen gave an algorithm for computing the product of two square matrices
of dimension m using O (m2.8) multiplications. If Strassen’s multiplication
algorithm is used in Algorithm 2, we therefore get, by the same proof as
above, that its complexity is

O (
m2.8M

(
w−1

0 t
)
log t + m2(t + m)

)
.
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Chapter 4

Multivariate polynomial
interpolation

Key-equations for interpolation problems over simple Cab curves were de-
rived in Section 2.4. In this chapter we will show that these equations can
be applied, together with the short-basis algorithm from Chapter 3, to get
an efficient multivariate interpolation algorithm capable of solving the inter-
polation problem posed in Problem 2.8.

4.1 Solving the interpolation problem

4.1.1 The interpolation algorithm

Let (P,Y, s, `,w, ∆) be an interpolation problem as defined in Problem 2.8.
In this section we will describe how the short-basis algorithm, together with
the key-equations in Proposition 2.25, can be used to solve this problem. The
following observation will be our starting point.

Proposition 4.1. Let w ∈ N×Zm be a weight vector, and let A be an m×m
matrix with entries in Fq[x1]. Let M ⊆ Fq[x1]

m be the Fq[x1]–module spanned
by the columns A1, . . . ,Am of A, and assume that A is reduced with respect
to degw. Then it holds that

min
x∈M\{0}

{degw (x)} = min
j=1,...,m

{degw (Aj)} .

Proof. Since A is reduced with respect to degw is follows from Proposition 3.3
that A is also a Gröbner basis for M with respect to <w. Therefore for any
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vector x ∈M \ {0} it holds that Aj ≤w x. Since by definition the order <w

measures term over position this means that degw (Aj) ≤ degw (x) for all
x ∈M \ {0}, and the proposition follows.

In the following, the parameters (P,y, s, `,w, ∆) of the interpolation problem
will be fixed. In particular the polynomial E and the polynomial vector R
from Theorem 2.12 will be understood, and for brevity we will write B instead
of Bs,`(R, E) for the matrix from Definition 2.21. We will let

w̃ = ρ(w),

denote the “expanded” weight vector defined in Equation (2.22). From the
key-equation formulation of the interpolation problem in Proposition 2.25,
we know that solving the interpolation problem is equivalent to finding a
vector in the Fq[x1]–column span of B of weighted degree (with respect to
w̃) strictly less than ∆. To solve this problem we can use the short-basis
algorithm to compute

Uw̃(B, degw̃ (B)−∆γm` + 1).

By definition of the short-basis algorithm, one of the following two things
will happen.

1. The weighted degree of B ·Uw̃(B, degw̃ (B)−∆γm` + 1) is less than

degw̃ (B)− (degw̃ (B)−∆γm` + 1) = ∆γm` − 1.

Since there are γm` columns in B this means that at least one column
must have weighted degree strictly less than ∆, and since this column is
in the column span of B we can then use it to get a valid interpolation
polynomial as explained in Proposition 2.25.

2. The matrix B ·Uw̃(B, degw̃ (B) −∆γm` + 1) is reduced with respect
to degw̃. In this case it may still happen that one of the columns has
weighted degree strictly less than ∆, in which case we again obtain a
valid interpolation polynomial. However, it can also be that all columns
have a larger weighted degree and in this case Proposition 4.1 shows
that no interpolation polynomial of weighted degree strictly less than
∆ exists.

Thus knowing Uw̃(B, degw̃ (B)−∆γm`+1) suffices to solve the interpolation
problem: If a valid interpolation polynomial exists then we can read it off
from

B ·Uw̃(B, degw̃ (B)−∆γm` + 1), (4.1)
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Algorithm 3 Algorithm for solving interpolation problems.

Input: Interpolation problem (P,Y, s, `,w, ∆).
Output: A valid interpolation polynomial for the interpolation problem, if

one exists, and failure otherwise.
1: Let w̃ = ρ(w).
2: Set up the matrix B = Bs,`(R, E) as described in Definition 2.21
3: Compute Uw̃(B, degw̃ (B)−∆γm` + 1) with the short-basis algorithm.
4: Compute B̃ = B ·Uw̃(B, degw̃ (B)−∆γm` + 1).
5: if there exists a column q = (qi,j) in B̃ such that degw̃ (q) < ∆ then
6: return

Q(T) =

γ−1∑
i=0

∑

j∈∆`

qi,j(x1)x
i
2T

j,

7: else
8: return failure

9: end if

and if no valid interpolation polynomial exists we can detect this fact by
seeing whether the matrix in (4.1) is reduced with respect to degw̃. In Al-
gorithm 3 these observations are turned into an algorithm for solving the
interpolation problem.

4.1.2 Analysis of the interpolation algorithm

We now turn to analysing the complexity of Algorithm 3. As in Section 3.2
we will assume that the time the algorithm spends on making multiplications
in Fq will dominate the total complexity. If a little care is taken when setting
up the matrix in line 2, the efforts spent in line 3 will dominate the complexity
of the algorithm. The details of the analysis are given in Appendix A, and
we collect the results derived there in the following theorem.

Theorem 4.2. Let (P,y, s, `,w, ∆) be an interpolation problem, and let R ∈
Rv be the vector of polynomials from Theorem 2.12. If wj ≤ degw (Rj) for
1 ≤ j ≤ v, then the complexity of Algorithm 3 is

O (
`3vγ3M

(
`v+1γ(N + δ)

)
log(`v+1γ(N + δ))

)
.

Proof. We break the analysis in three parts.

Line 2. By Lemma A.4 the complexity of setting up B is at most

O (
`2vγM

(
(`(γδ + N) + γ2δ)γ

))
.
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Line 3. This is the main step of the algorithm. By assumption wj ≤ degw (Rj)
for 1 ≤ j ≤ v, and therefore it follows from Lemma A.5 that degw̃ (B) =
O (`v+1γ2(N + δ)). Since the number of rows and columns of B is
γm` = O (γ`v) we therefore get from Theorem 3.14 that the complexity
of line 3 is

O (
`3vγ3M

(
`v+1γ(N + δ)

)
log

(
`v+1γ2(N + δ)

)
+ `3v+1γ4(N + δ)

)

= O (
`3vγ3M

(
`v+1γ(N + δ)

)
log

(
`v+1γ(N + δ)

))
,

where the equality follows by Equation (3.17).

Line 4-9 The complexity of these lines are dominated by the complexity of line 2
and 3.

Comparing the complexities of the individual steps, we see that the com-
plexity of line 3 dominates the overall complexity of Algorithm 3, and the
theorem follows.

Remark 4.3. For the applications of Algorithm 3 in list decoding that we
have in mind, the assumptions wj ≤ degw (Rj) in Theorem 4.2 will always
be satisfied, unless the interpolation problem is trivial (i.e. if the word to
be list decoded is itself a codeword). Thus this assumption is a mild one.
Furthermore, if for some j it holds that wj > degw (Rj) then we claim that
the interpolation problem can be reduced to a simpler interpolation problem
involving one less variable.

To see this, consider an interpolation problem (P,y, s, `,w, ∆), and assume
(for notational simplicity) that wv > degw (Rv). Let Q(T) be a valid inter-
polation polynomial for this interpolation problem of least weighted degree.
We can write

Q(T) = (Tv −Rv)
hQ̃(T), (4.2)

where Q̃(T) is not divisible by Tv −Rv, and 0 ≤ h ≤ `. The polynomial

P (T) = (Tv −Rv)
hQ̃(T1, . . . , Tv−1, Rv),

is non-zero and is also a valid interpolation polynomial. Furthermore, if Q̃(T)
is not an element of R[T1, . . . , Tv−1] then degw (P ) < degw (Q), which is a
contradiction. Hence Q̃(T) must be in R[T1, . . . , Tv−1]. Now consider the
following ` + 1 “punctured” interpolation problems in v − 1 variables,

(P′,y′, s− h, `− h,w′, ∆− hwv), for 0 ≤ h ≤ ` (4.3)

where P′, y′ and w′ are obtained by dropping the v-th coordinate from
P, y and w respectively. The above discussion shows that to solve the
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interpolation problem (P,y, s, `,w, ∆) it suffices to solve the problems in
Equation (4.3). If wj ≤ degw (Rj) for 1 ≤ j ≤ v − 1 then by Theorem 4.2,
this can be done in complexity

O (
` · `3v−3γ3M (`vγ(N + δ)) log(`vγ(N + δ))

)

= O (
`3v−2γ3M (`vγ(N + δ)) log(`vγ(N + δ))

)
,

which is smaller than the complexity of the original interpolation problem
(P,y, s, `,w, ∆) when wj ≤ degw (Rj) for 1 ≤ j ≤ v. If more coordinates j
have wj > degw (Rj), we can apply the above argument recursively to these.
Altogether this shows that interpolation problems where wj > degw (Rj) for
some j, are easier than those without this property. Thus the assumptions in
Theorem 4.2 are mild, and can be removed by preprocessing the interpolation
problem as described above.

4.2 List decoding simple Cab codes

In this section we will apply Algorithm 3 to solve the interpolation step of
the G–S algorithm for list decoding algebraic-geometry codes defined over
simple Cab curves.

4.2.1 The interpolation step

We begin by defining the class of simple Cab codes.

Definition 4.4 (Simple Cab codes). Let C be a simple Cab curve over Fq, and
let P1, . . . , Pn be distinct places satisfying Assumption 2.1. Let D =

∑n
i=1 Pi

and G = µP∞ for some µ ≥ 0. For these parameters, we define a simple Cab

code to be the algebraic-geometry code

CL(D, G) = {(f(P1), . . . , f(Pn)) | f ∈ L(G)} ⊆ Fn
q .

In the following we will let the simple Cab curve C on which a simple Cab code
is defined, be fixed. In particular we let δ, γ andR be as defined in Section 2.3
for this fixed curve. By Lemma 2.18 the genus of C is 1

2
(δ − 1)(γ − 1), and

therefore by the Goppa bound [63, II.2.3] we have the following.

Proposition 4.5. Let CL(D, G) be a simple Cab code.

• The length of CL(D,G) is n = |D|.
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• The dimension of CL(D, G) is k = dim(L(G)).

• The minimum distance of CL(D,G) is at least n−k+1− 1
2
(δ−1)(γ−1).

Let y = (y1, . . . , yn) ∈ Fn
q be a received word of a simple Cab code, and say

that we wish to correct τ errors. To list decode y with the G–S algorithm
[30], with multiplicity parameter s and designed list size `, we need to find a
non-zero polynomial Q(T ) ∈ R[T ] such that

1. The degree in T of Q(T ) is at most `.

2. For 1 ≤ i ≤ n, Q(T ) has a zero of multiplicity at least s in (Pi, yi).

3. The weighted degree degµ (Q(T )) is strictly smaller than s(n− τ).

Let Q(T ) be a polynomial satisfying the above requirement, and let f ∈ L(G)
be a polynomial generating a codeword agreeing with y in at least n − τ
positions. Then by item 2 above, the degree of the zero-divisor of Q(f)
satisfies

deg((Q(f))0) ≥ s(n− τ). (4.4)

Furthermore, by definition of the weighted degree, the degree of the pole-
divisor of Q(f) satisfies

deg((Q(f))∞) ≤ degµ (Q) < s(n− τ), (4.5)

By [63, I.4.11] the equations (4.4) and (4.5) can only hold simultaneously
if Q(f) = 0. Thus codewords agreeing with y in at least n − τ positions
can be found as roots in Q(T ). Computing such roots is the content of the
root-finding step of the G–S algorithm. Note that Q(T ) can have at most `
roots f for which Q(f) = 0, and hence there can be at most ` codewords
that are “close” to y. This explains the name “designed list size” for ` used
above. We now show that Algorithm 3 can be applied to efficiently solve the
interpolation step in the G–S algorithm.

Proposition 4.6. The interpolation step of the Guruswami–Sudan list de-
coding algorithm for simple Cab codes, with designed list size `, can be done
in complexity

O (
`3γ3M

(
`2γ(N + δ)

)
log(`γ(N + δ))

)
. (4.6)
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Proof. The requirements on the polynomial Q(T ) listed above correspond
exactly to an instance of Problem 2.8 in v = 1 indeterminates, namely the
interpolation problem

(P,y, s, `, µ, s(n− τ)),

where P = (P1, . . . , Pn). By Theorem 4.2 (and the remark following it)
this interpolation problem can be solved in the complexity stated in Equa-
tion (4.6).

Remark 4.7. There exist efficient algorithms for the root-finding step of the
G–S algorithm for algebraic-geometry codes [3, 69]. In practice the interpo-
lation step is often the most computationally heavy part of the list decoder.

4.2.2 Examples

We now give two examples of simple Cab codes that have been intensively
studied in the literature, and we use Proposition 4.6 to estimate the com-
plexity of the interpolation step in the G–S algorithm for these codes. We
also compare the resulting complexities to those of other algorithms for the
same task.

Example 4.8 (Reed–Solomon codes). As we saw in Section 2.5, the pro-
jective line P1

Fq
is a simple Cab curve with δ = 0 and γ = 1, and algebraic-

geometry codes defined on the projective line, are Reed–Solomon codes. Let
P1, . . . , Pn be distinct places of Fq(P1

Fq
) = Fq(x1) then these places satisfy

Assumption 2.1. Therefore if we let D =
∑n

i=1 Pi and G = (k − 1)P∞, we
get that the algebraic-geometry code CL(D,G) is a Reed–Solomon code of
length n and dimension k, and furthermore that this is a simple Cab code.
By Proposition 4.6 this means that we can use Algorithm 3 to solve the in-
terpolation step of the G–S algorithm for Reed–Solomon codes, and since
n = γN = N we get that this can be done in complexity

O (
`3M

(
`2n

)
log(`n)

)
= O (

`5n log2(`n) log log(`n)
)
. (4.7)

Actually the general analysis in Theorem 4.2 is slightly wasteful for the
special case of Reed–Solomon codes. By Corollary 2.26 the key-equations
for Reed–Solomon codes are such that the weighted degree of the matrix
B = A`(−R)Ds,`(E) used in Algorithm 3, is at most

s−1∑
j=0

(sn− j) +
∑̀
j=s

j(n− 1) =

(
` + 1

2

)
(n− 1) +

(
s + 1

2

)
n.
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The amount by which the short-basis algorithm is required to reduce the
weighted degree of B in line 3 of Algorithm 3 is

t = degw (B)− (` + 1)s(n− τ).

The parameters s and ` in the G–S algorithm for Reed–Solomon codes are
chosen such that they satisfy

(
s + 1

2

)
n < (` + 1)s(n− τ)−

(
` + 1

2

)
(k − 1),

see Proposition 5.5 or [30] for a proof of this fact. Therefore we have

t =

(
` + 1

2

)
(n− 1) +

(
s + 1

2

)
n− (` + 1)s(n− τ) <

(
` + 1

2

)
(n− k).

If we use this estimate in the proof of Theorem 4.2, then we get that the
interpolation step for Reed–Solomon codes can be done by Algorithm 3 in
complexity

O (
`3M

(
`2(n− k)

)
log(`(n− k)) + `2M (`n)

)
.

The first term in this expression is the complexity of the computation made
by the short-basis algorithm, and the second term is the complexity of set-
ting up the matrix B. From the above improved analysis we see that the
complexity of the short-basis algorithm’s computations actually depends on
n − k rather than on n. This behaviour is similar to what can be achieved
with the re-encoding technique described in Section 2.5.4. Thus we conclude
that the benefits that can be gained by re-encoding are in a sense already
‘built into’ the short-basis algorithm.

We now compare the complexity estimate in Equation (4.7), to that of other
algorithms in the literature. The interpolation step of the G–S algorithm
for Reed–Solomon codes may be formulated and solved as a linear algebra
problem [30], in which case its complexity is O (`6n3). In [49] Olshevsky
and Shokrollahi used the fact that the linear algebra problem has low so-
called displacement rank, to reduce the complexity of the interpolation step
to O (`5n2). The same complexity was achieved by Lee and O’Sullivan by a
Gröbner basis based technique [43], and by Sakata, Numakami and Fujisawa
[58] using a generalization of the Berlekamp–Massey algorithm from [56].
The short-basis algorithm described in Section 3.1 is a generalization of an
algorithm by Alekhnovich from [2]. In the same paper Alekhnovich also
showed how this algorithm can be applied to solve the interpolation step of
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the G–S algorithm for Reed–Solomon codes, resulting in an algorithm with
complexity O (

`8n log2(`n) log log(`n)
)
. This was the first algorithm for the

interpolation step with a complexity that is less than quadratic in the code
length.

Comparing the complexities of the above algorithms, to the complexity in
Equation (4.7) we see that asymptotically our algorithm compares favourably
to these. However, as we will see in Section 4.2.3 it is not straight forward
to make an implementation of the short-basis algorithm that puts this the-
oretical advantage into practice. Therefore the algorithms mentioned above
may be faster than Algorithm 3 for short codes.

Example 4.9 (Hermitian code). This is a continuation of Example 2.20,
where it was shown that the Hermitian curve H over Fq = Fr2 defined by the
equation

xr
2 + x2 = xr+1

1 ,

is a simple Cab curve with δ = r + 1 and γ = r. Furthermore, it was shown
that there are n = r3 places P1, . . . , Pn in Fq(H) satisfying Assumption 2.1.
The Hermitian code is the algebraic-geometry code CL(D,G) of length r3

and alphabet Fr2 , obtained by letting D =
∑n

i=1 Pi and G = µP∞ for some
µ ≥ 0. We see that the Hermitian code satisfies the requirements to be a
simple Cab code, and in particular it follows from Proposition 4.6 that the
interpolation step in the G–S algorithm for Hermitian codes, can be done in
complexity

O (
`3r3M

(
`2r3

)
log(`r3)

)
= O (

`3nM
(
`2n

)
log(`n)

)

= O (
`5n2 log2(`n) log log(`n)

)

In [49] Olshevsky and Shokrollahi gave an algorithm for the interpolation
step of the Sudan list decoding algorithm (i.e. for the interpolation problem
without multiplicities) for Hermitian codes, using the notion of displace-
ment rank. The complexity of their algorithm is O (

`n7/3
)
. In [57] Sakata

showed how a generalization of the Berlekamp–Massey algorithm from [56],
can be used in the interpolation step of the G–S algorithm for general one-
point algebraic-geometry codes. When specialized to Hermitian codes, this
yields an algorithm with complexity O (

`6n8/3
)
. Recently Lee and O’Sullivan

[41, 42] have used a specialized Gröbner basis algorithm to tackle the in-
terpolation step in the G–S algorithm for Hermitian codes, resulting in an
algorithm with complexity O (

`5n8/3
)
. We conclude that our algorithm is

asymptotically faster than other algorithms known in the literature. As be-
fore it should be noted that this asymptotic advantage may however only
take effect for long codes.
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Example 4.10 (General simple Cab codes). The algorithm in [57] handles
the interpolation step in the G–S algorithm for general one-point algebraic-
geometry codes. In our notation its complexity is

O (
(γ + δ)2`6n2

)
.

For most simple Cab codes the complexity of Algorithm 3 compares favourably
to this.

Remark 4.11. Recently the paper [66] has reported promising results from
experiments with a probabilistic algorithm for the interpolation step of the
G–S algorithm for Reed–Solomon codes. Like Algorithm 3, this algorithm
proceeds by divide–and–conquer. However, as opposed to Algorithm 3, the
divide–and–conquer approach is applied to the multiplicity parameter s of
the interpolation problem. This means that an interpolation problem with
multiplicity parameter s1 + s2 is solved by combining the results of two in-
terpolation problems with multiplicity parameters s1 and s2. In [66] it is
demonstrated that the algorithm experimentally performs better than the
Lee–O’Sullivan interpolation algorithm [43]. However no general bounds on
the expected running time of the algorithm are given.

4.2.3 Simulations

In this section we supplement the asymptotic analysis of Algorithm 3 from
Section 4.1.2, with an investigation of the algorithm’s performance for prac-
tical problem sizes. We do so by simulating data transmission over a noisy
channel using Reed–Solomon codes of various lengths, that are decoded with
the G–S list decoder. When list decoding the simulated received words, we
use and compare two different algorithms for the interpolation step, namely
Lee and O’Sullivan’s interpolation algorithm [43] and Algorithm 3.

We begin by describing the codes used in the simulations. We use eight
different Reed–Solomon codes all with rate (approximately) R = 7

10
. These

codes are defined as follows: for i ∈ {6, . . . , 13} we let Ci be the Reed–
Solomon code of length ni = 2i − 1 and dimension ki = dRnie, defined over
the alphabet Fqi

= F2i . The parameters of these codes are stated in Table 4.1.

Next, we describe how the simulations are made. Let n and k denote the
length and dimension of a Reed–Solomon code respectively. Furthermore, let
s be a multiplicity parameter, ∆ a weighted degree bound and ` = b∆−1

k−1
c a
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Ci ni ki ∆i `i τi

C6 63 45 268 6 9
C7 127 89 537 6 19
C8 255 179 1081 6 38
C9 511 358 2167 6 77
C10 1023 717 4341 6 154
C11 2047 1433 8683 6 310
C12 4095 2867 17374 6 620
C13 8191 5734 34752 6 1240

Table 4.1: Parameters of the Reed–Solomon codes C6, . . . , C13.

designed list size parameter. If these parameters satisfy
(

s + 1

2

)
n < (` + 1)∆−

(
` + 1

2

)
(k − 1), (4.8)

then there exists an interpolation polynomial for any received word y ∈ Fn
q

with multiplicity parameter s and of weighted degree strictly less than ∆.
For a proof of this fact see [30] or Proposition 5.5. We will use multiplicity
parameter s = 5 in the simulations. For each code Ci in Table 4.1 we have
computed the least ∆i for which Equation (4.8) guarantees the existence of
an interpolation polynomial of weighted degree strictly less than ∆i. Note
that `i = b∆i−1

ki−1
c = 6 for all codes in the table. Furthermore, for each code

we have computed the largest integer τi smaller than ni − ∆i

s
. As we saw in

Section 4.2.1, the G–S algorithm for Ci correctly list decodes any received
word corrupted by at most τi errors.

For each of the codes Ci in Table 4.1, we simulate the transmission of a
codeword from Ci over a noisy channel as follows:

1. Choose a polynomial in Fq[x1] of degree less than ki at random, and
encode it to a codeword c ∈ Ci.

2. Generate a received word y by adding τi errors at random to c.

As mentioned above, we decode the received word y with the G–S list de-
coder, using two different algorithms for the interpolation step. The first of
these is the Gröbner basis based algorithm by Lee and O’Sullivan [43]. Below
we will call this algorithm the Lee–O’Sullivan algorithm.

In Example 4.8 we saw that, the asymptotic complexity of this algorithm is
O (`5n2). A characteristic property of the Lee–O’Sullivan algorithm is that
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it proceeds solely by elementary operations on a matrix of univariate poly-
nomials. This means that the constant hidden in the big-oh estimate of the
algorithm’s complexity is relatively small (see the comment [42, p. 11]), and
hence its efficiency is present already for small problem instances. In other
words, the Lee–O’Sullivan algorithm is an efficient method for the interpola-
tion step for practical code lengths. This is the reason why we have chosen
to compare the performance of Algorithm 3, against this specific algorithm.
We have implemented the Lee–O’Sullivan algorithm in the computer algebra
system Magma [13], and the source code can be obtained from [14]. Further-
more, we have simulated data transmission using the codes C6, . . . , C13 as
described above, and used the Lee–O’Sullivan algorithm in the interpolation
step. We have recorded the running times of these interpolation steps, and
plotted them against the code lengths in Figure 4.1 (the solid curve). Each
plotted running time represents the average of 10 simulated decodings. We
remark that the code is only a proof–of–concept implementation, following
the pseudo code from [43] closely. Thus we have made no serious attempts
to optimize the code. The same holds for our implementation of Algorithm 3
which we describe below. Furthermore, all simulations are carried out on the
same computer, and thus the implementations should offer a fair basis for
comparing the performance of the algorithms.

The second algorithm for the interpolation step we consider is Algorithm 3.
As we saw in Example 4.8, the complexity of using this algorithm in the
interpolation step is

O (
`5n log2(`n) log log(`n)

)
. (4.9)

Algorithm 3 derives its efficiency from that of the short-basis algorithm,
which in turn relies on the efficiency of Schönhage–Strassen’s fast polynomial
multiplication algorithm [20, p. 235]. The advantage of this algorithm over
naive multiplication and the classic Karatsuba’s algorithm, is only present for
polynomials of a certain length1. This means that the short-basis algorithm
is inefficient when it is used to reduce the degree of a basis by a small
amount. Therefore, to make Algorithm 3 realize the efficiency promised by
the asymptotic estimate in Equation (4.9), we need to make the following
modification of the short-basis algorithm:

• We introduce a threshold parameter, denoted λ.

1Magma implements the Schönhage–Strassen algorithm. In the current implementation
it is estimated that this algorithm outperforms both naive multiplication and Karatsuba’s
algorithm for polynomials of degree larger than 128 [1].
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• In the short-basis algorithm, we only use the recursive divide–and–
conquer approach as long as the target reduction-parameter t is strictly
larger than the threshold λ. When t is smaller than λ, we use the Gaus-
sian elimination approach from Algorithm 1 to reduce the weighted
degree of the basis matrix.

For simplicity we have avoided a formal description of the above modifica-
tion of the short-basis algorithm. The description of the algorithm given in
Section 3.1 corresponds to threshold λ = 1.

The modified short-basis algorithm avoids using the (slow) recursive ap-
proach on small problem instances. This is crucial for the practical per-
formance of the algorithm. We have made a Magma implementation of Algo-
rithm 3 (and hence also of the short-basis algorithm), and the source code
can be obtained from [14]. We have simulated data transmission using the
codes C6, . . . , C13 as described above, and used Algorithm 3 in the inter-
polation step. The running times of these interpolation steps are shown in
Figure 4.1, for two different values of the threshold: one where λ = 32 (dot-
ted curve) and one where λ = 512 (dashed curve). As above, each plotted
running time represents the average of 10 simulated decodings. We have
experimented with other values of the threshold parameter, and found that
(almost) independent of the code length, the value λ = 512 gives the best
performance.

We extract a number of conclusions from the graphs in Figure 4.1:

• Firstly we note that the Lee–O’Sullivan algorithm performs better than
Algorithm 3 for codes of length less than approximately 3000. Another
way to say this is that the cross over point between the algorithms,
i.e. the code length at which they perform equally good, is about 3000.
The observation that the Lee–O’Sullivan algorithm outperforms Al-
gorithm 3 for small code lengths is expectable since, as commented
above, the constant in the complexity estimate of the Lee–O’Sullivan
algorithm is small.

• Secondly, we note that the cross over point between the algorithms,
which the asymptotic analysis predicts must exist, actually occur within
an observable running time. Thus we conclude that Algorithm 3 does
offer some advantage over the more direct approach in the Lee–O’Sulli-
van algorithm. In particular we conclude that the algorithm is not
purely theoretical, and that it realizes the performance promised by
the asymptotic analysis for large, but not unreasonable, problem sizes.
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Figure 4.1: Plot of code length (first axis) against running time (in seconds) of
three algorithms for the interpolation step. The curves show the running times of
the Lee–O’Sullivan algorithm (solid) and of Algorithm 3 with threshold λ = 32
(dotted) and threshold λ = 512 (dashed). The top figure shows running times for
code lengths between 63 and 8191, while the bottom figure is zoomed in on code
lengths between 63 and 2047.
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• Finally, we remark that even though the cross over point is not un-
reasonably large, it is probably still too large for many applications.
Furthermore, for simulations with larger values of ` one can verify that
the cross over point is even larger. This limits the practical applicabil-
ity of Algorithm 3 somewhat. We have made a thorough investigation
of what parts of Algorithm 3 are the most time consuming, and found
that much time is used to compute the accuracy t approximation in
the short-basis algorithm, and in general on data representation and
memory management. Therefore we believe that if the short-basis algo-
rithm is implemented in a more low-level programming language than
Magma (e.g. in C), which allows direct access to data representations
and memory, it will be possible to reduce the excess time spent on
operations other than Gaussian elimination considerably. This in turn
will lower the cross over point. We have not undertaken this low-level
implementation task, as it is beyond the scope of this thesis work.
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Chapter 5

Folded Reed–Solomon codes

In this chapter we give a detailed introduction to folded Reed–Solomon codes.
We show how folded Reed–Solomon codes can be list decoded arbitrarily
close to the optimal error-radius 1 − R, and we describe the list decoder
achieving this. The list decoder encompasses an interpolation step and a
root-finding step. We show how the interpolation algorithm from Chapter 4
can be used to handle the interpolation step, and we present a method based
on Hensel–lifting for solving the root-finding step. Furthermore, we compare
these algorithms to others known in the literature.

The material in this chapter is a comprehensive extension of [7]. Furthermore,
the results in Section 5.3, 5.4.3 and 5.5 are new.

5.1 Introduction

A Reed–Solomon code of rate R can be list decoded up to relative error-radius
1 − √R using the Guruswami–Sudan list decoding algorithm [30]. On the
other hand we saw in Theorem 1.2 that no code of rate R can be list decoded
beyond error-radius 1− R. A natural question is therefore whether one can
construct explicit codes, and accompanying list decoders, with performances
in the gap between the error-radii 1 − √R and 1 − R. Building on work
by Parvaresh and Vardy [50], Guruswami and Rudra [27–29] answered this
question, and below we outline their result.
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Figure 5.1: Plot of the error-radius 1−R
v

v+1 for various values of v.

5.1.1 Achieving capacity

Guruswami and Rudra showed that one can apply a folding operation to
Reed–Solomon codes, to obtain codes that can be list decoded up to error-
radius

1−R
v

v+1 , (5.1)

where v ≥ 1 is a parameter of the construction. Furthermore, the list de-
coders in the construction are completely explicit. As v →∞ the error-radius
in (5.1) tends to 1−R, and in this asymptotic sense the folded Reed–Solomon
codes have optimal list decoders. In [27] this fact is expressed by saying that
folded Reed–Solomon codes achieve list decoding capacity . In Figure 5.1 the
speed with which (5.1) converges to 1−R is illustrated.

In [26] Guruswami managed to extend the above mentioned folding opera-
tion to certain algebraic-geometry codes. This resulted in a class of folded
algebraic-geometry codes, that contains folded Reed–Solomon codes as a spe-
cial case. Currently these codes are the only known explicit codes that achieve
list decoding capacity.
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5.1.2 Folded Reed–Solomon codes

Informally a folded Reed–Solomon code simply is a Reed–Solomon code over
some field Fq, but viewed as a code over a larger alphabet by identifying m
consecutive positions in the Reed–Solomon code with an element in Fqm .

Definition 5.1 (Folded Reed–Solomon code). Let q,m, N, k be parameters
such that k ≤ mN ≤ q−1, and let α be a primitive element of Fq. We define
the folded Reed–Solomon code with parameters q, m, N, k to be the set of
m×N arrays of the form




f(1) f(αm) · · · f(αm(N−1))
f(α) f(αm+1) · · · f(αm(N−1)+1)

...
...

. . .
...

f(αm−1) f(α2m−1) · · · f(αmN−1)


 ,

where f(x) ∈ Fq[x] is a polynomial of degree at most k − 1. Using any fixed
Fq–vector space isomorphism between (Fq)

m and Fqm , we can consider the
columns of the above array as elements of Fqm , and therefore we can consider
the folded Reed–Solomon code as a code of length N over Fqm .

The identification of (Fq)
m and Fqm may be viewed as folding a vector in

(Fq)
m to a single element in Fqm . This is what gives folded Reed–Solomon

codes their name. In the following we will call m the folding parameter of
the code. We record the basic properties of folded Reed–Solomon codes in
the next proposition [28, Prop. 1].

Proposition 5.2. The folded Reed–Solomon code, with parameters as in
Definition 5.1, is a (non-linear) code over Fqm of length N , rate R = k

Nm

and minimum distance d = N − d k
m
e+ 1.

Proof. The rate of the folded Reed–Solomon code with parameters N , k and
m is

R =
logqm(qk)

N
=

k

Nm
.

To prove the claim on the minimum distance, assume that two codewords
agree in at least d k

m
e positions. Then the two polynomials generating these

codewords must agree in at least md k
m
e ≥ k points (in Fq), which implies that

they are equal. Thus the minimum distance is at least d ≥ N −d k
m
e+1. On

the other hand, the polynomial f(x) =
∏k−1

i=1 (x−αi−1) generates a codeword
that agrees with the zero codeword in bk−1

m
c positions, and hence

d ≤ N −
⌊k − 1

m

⌋
≤ N −

(
k − 1− (m− 1)

m

)
= N − k

m
+ 1.
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Therefore

N −
⌈ k

m

⌉
+ 1 ≤ d ≤ N − k

m
+ 1,

and since d is an integer, we conclude that d = N − d k
m
e+ 1 as claimed.

Remark 5.3. The name folded Reed–Solomon codes was first used by Krach–
kovsky in [40] for a class of codes similar to those in Definition 5.1. Despite
the similarities there are however crucial differences in the way the folding
operation is done for the two types of codes. In the codes from Definition 5.1
the sub-positions in a column (f(αjm), f(αjm+1), . . . , f(αjm+m−1)) of a code-
word, are evaluations of f(x) at consecutive powers of α. Krachkovsky folds
a Reed–Solomon code “in the other direction” so that the j-th column in a
codeword reads (f(αj), f(αj+N), . . . , f(αj+(m−1)N)). Later we will see that
having evaluations of f(x) at consecutive powers of α in the columns of a
codeword, is important for the list decodability of the codes in Definition 5.1.

Krachkovsky introduced the folded Reed–Solomon codes as a tool for cor-
recting errors occuring in large bursts. Similarly we may view the codes in
Definition 5.1 as an extension of ordinary Reed–Solomon codes capable of
handling Fq–errors occuring in bursts of length m.

5.2 Decoding folded Reed–Solomon Codes

The basic principle underlying the list decoder for folded Reed–Solomon
codes from [27–29], is essentially the same as in the G–S algorithm for Reed–
Solomon codes: First in an interpolation step a special interpolation poly-
nomial is found, and next in a root-finding step a certain type of roots in
this polynomial is computed. These roots will be the decoder’s candidate
list of transmitted words. The key difference between list decoders for Reed–
Solomon codes and folded Reed–Solomon codes, is that the interpolation
polynomial in the latter is allowed to have more variables. More specifically,
it is allowed to be an element in Fq[x,T] = Fq[x, T1, . . . , Tv], where v ≤ m
is the decoders so-called interpolation parameter that also appears in Equa-
tion (5.1). Below we describe the list decoder for the folded Reed–Solomon
codes.

5.2.1 A list decoder for folded Reed–Solomon codes

As mentioned above the first step of the list decoder is to compute an in-
terpolation polynomial, which is an element in Fq[x,T] = Fq[x, T1, . . . , Tv].
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We will measure the degree of polynomials in this ring with respect to the
weighted degree degw from Definition 2.6, where w = (k−1, . . . , k−1) ∈ Nv.
This means that for a monomial xiTj in Fq[x,T] we take its weighted degree
to be

degw

(
xiTj

)
= i + (k − 1)

v∑

h=1

jh. (5.2)

We now describe the interpolation polynomials used in the list decoder for
folded Reed–Solomon codes. Similarly to the G–S algorithm the first variable
x of an interpolation polynomial plays a special role, and interpolates through
the powers of α (the primitive element in Fq), while the remaining variables
interpolate through the positions in the received word. In a folded Reed–
Solomon code each position consists of m sub-positions from an ordinary
Reed–Solomon code. Therefore we can let the variables T1, . . . , Tv interpolate
through v consecutive sub-positions for each position in the folded code.
This is a central idea in the list decoder for folded Reed–Solomon codes, and
below we investigate its consequences. But first we make the notion of an
interpolation polynomial precise. As in the G–S algorithm, the interpolation
polynomial will depend on a multiplicity parameter s.

Definition 5.4 (Interpolation polynomial). Let s be a multiplicity parame-
ter, v ≤ m an interpolation parameter, and let y be the received word

y =




y0,0 y0,1 · · · y0,N−1

y1,0 y1,1 · · · y1,N−1
...

...
. . .

...
ym−1,0 ym−1,1 · · · ym−1,N−1


 , (5.3)

then a non-zero polynomial Q(x,T) ∈ Fq[x,T] is said to be an (s, v)–
interpolation polynomial for y if Q has a zero of multiplicity at least s in
each of the points

(
αi+mj, yi,j, yi+1,j, . . . , yi+v−1,j

)
,

for all 0 ≤ i ≤ m− v and 0 ≤ j < N .

With this definition at hand we can now describe the list decoder for folded
Reed–Solomon codes. Let there be given a folded Reed–Solomon code with
parameters N , k, m, s and v. The list decoder then proceeds as follows:

1. Interpolation step: Let y ∈ (Fqm)N be a received word and say
that the number of errors to be corrected is τ . Compute an (s, v)–
interpolation polynomial Q(x,T) for y of smallest possible weighted
degree (with respect to degw).
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2. Root-finding step: Compute and output all polynomials f(x) such
that deg(f) < k and

Q(x, f(x), f(αx), . . . , f(αv−1x)) = 0. (5.4)

The background and motivation for the root-finding step, and in particular
for Equation (5.4), will be given in Proposition 5.7. In the next section we
analyse the performance of this list decoder. In this analysis we will see that
codewords that are “close” to y will be on the list computed in the above
two steps. On the other hand the list can also contain spurious elements that
do not correspond to close-by codewords. Thus one could add a pruning-step
after the steps described above, in which a polynomial f(x) computed in the
root-finding step is discarded if it does not generate a codeword “close” to
y. This last condition can be checked by simply encoding f(x) and counting
the agreement between the resulting codeword and y. Such a pruning-step
will however not change the performance guarantees of the list decoder, and
hence in the following we neglect this step.

5.2.2 Analysis of the list decoder

In the interpolation step, we are interested in interpolation polynomials of
small weighted degree. The next proposition gives a sufficient condition for
the existence of an interpolation polynomial of weighted degree less than ∆.

Proposition 5.5. Let y be a received word as in (5.3). Let ∆ be an integer
and let ` = b∆−1

k−1
c. If

(
v + s

v + 1

)
N(m− v + 1) < ∆

(
` + v

v

)
− (k − 1)v

(
` + v

v + 1

)
. (5.5)

then there exists an interpolation polynomial for y of weighted degree strictly
less than ∆ and total degree at most ` in the variables T.

Proof. Using Hasse–derivatives (see Definition 2.3), the condition on a poly-
nomial in v+1 variables to have a zero of multiplicity s in a single point, can
be formulated as

(
v+s
v+1

)
linear constraints on the coefficients of Q. Therefore

the interpolation conditions in Definition 5.4, may be formulated as a linear
system of

(
v+s
v+1

)
N(m − v + 1) equations. The number of unknowns in this

system is equal to the number of monomials of weighted degree strictly less
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than ∆, and we now bound this quantity. There are
(

a+v−1
v−1

)
ways to write

the number a as a sum of v non-negative integers. Hence the number of
monomials of weighted degree strictly less than ∆ is

∑̀
i=0

(∆− i(k − 1))

(
i + v − 1

v − 1

)

= ∆
∑̀
i=0

(
i + v − 1

v − 1

)
− (k − 1)v

∑̀
i=0

(
i + v − 1

v

)

Using the upper-index summation binomial identity [23, p. 160], we see
that this quantity is equal to the right-hand side of (5.5). Therefore un-
der the assumptions of the proposition, the linear system has strictly more
unknowns than equations, and hence it has a non-zero solution. This solution
in turn gives a non-zero polynomial satisfying the interpolation constraints
of weighted degree strictly less than ∆, and the proposition follows.

Using the above proposition we can derive the following closed-form expres-
sion of a ∆ for which an interpolation polynomial of weighted degree less
than ∆ is guaranteed to exist.

Corollary 5.6. Let there be given parameters N , k, m, s and v of a folded
Reed–Solomon code. For a word y ∈ (Fqm)N there exists an interpolation
polynomial for y of weighted degree at most

∆ =

⌊
v+1

√√√√N(m− v + 1)(k − 1)v

v∏
i=0

(s + i)

⌋
. (5.6)

Proof. The corollary will follow if we can show that the ∆ prescribed in
(5.6) satisfies the inequality in Equation (5.5). Multiplying this inequality
by (v + 1)!(k − 1)v we get

N(m− v + 1)(k − 1)v

v∏
i=0

(s + i) <

((v + 1)∆− `(k − 1)v) ·
v∏

i=1

((` + i)(k − 1)). (5.7)

By definition of ` we have `(k − 1) < ∆ and (` + i)(k − 1) ≥ ∆ for i ≥ 1.
Therefore the right hand side of Equation (5.7) is lower bounded by ∆v+1.
This implies that if we choose ∆ as in Equation (5.6), then Equation (5.5)
will be satisfied.
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Let y be a received word of a folded Reed–Solomon code. The follow-
ing proposition shows that an interpolation polynomial of sufficiently low
weighted degree “captures” the codewords that agree with y in at least N−τ
positions, if τ is not too big.

Proposition 5.7. Let y ∈ (Fqm)N be a received word, and assume that y
agrees with the folded Reed–Solomon codeword generated by f(x), in at least
N−τ positions. Let Q be an (s, v)–interpolation polynomial for y of weighted
degree strictly less than ∆, then if

τ ≤ N − ∆

s(m− v + 1)
(5.8)

it holds that Q(x, f(x), f(αx), . . . , f(αv−1x)) = 0.

Proof. Consider the univariate polynomial

Q̃(x) = Q(x, f(x), f(αx), . . . , f(αv−1x)).

For each of the at least N − τ positions where y and the codeword generated
by f(x) agree, it follows from the definition of an interpolation polynomial
that Q̃(x) has a zero of multiplicity s in m− v + 1 points. This means that
Q̃(x) has at least (N − τ)(m− v +1)s zeroes, counting multiplicities, and by
the assumption on τ this quantity is at least ∆. On the other hand, since the
weighted degree of Q is strictly less than ∆ it follows that deg(Q̃(x)) < ∆.
Hence the number of zeroes of Q̃(x) is larger than its degree, and thus it
must be the zero polynomial.

Putting Corollary 5.6 and Proposition 5.7 together, we get that the list de-
coder for folded Reed–Solomon codes works up to error-radii satisfying

τ

N
< 1−

(
k − 1

Nm

) v
v+1

(
m

m− v + 1

) v
v+1

v+1

√√√√
v∏

i=0

(
1 +

i

s

)
− 1

N
. (5.9)

We can choose the parameters m and v such that the factor m
m−v+1

is close
to one, and furthermore we can also choose s large enough that the factor

v+1

√√√√
v∏

i=0

(
1 +

i

s

)
,

is also close to one. For large values of N , the quantity k−1
Nm

is close to the rate
R, and thus if we let N tend to infinity, then asymptotically the expression
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in Equation (5.9) essentially reduces to 1 − R
v

v+1 . Also, letting v be large
this quantity tends to 1−R, which as mentioned in the introduction, is the
best possible relative decoding radius for any list decoder. Formalizing this
choice of parameters, one can prove the first item of the following theorem,
see [29, Thm. 4.4] for details.

Theorem 5.8. Let there be given R ∈ [0, 1] and ε > 0. There exist pa-
rameters s, `, v, m and an integer N0 (depending on R and ε), such that:
For every N ≥ N0 for which N · Rm is an integer, it holds that the folded
Reed–Solomon code of rate R with multiplicity parameter s, degree bound `,
interpolation parameter v, folding parameter m and length N , is such that:

• The error-correcting radius of C is 1−R− ε.

• There exist explicit algorithms for the interpolation step and the root-
finding step of the list decoder for C, both with running times polynomial
in the code length.

In Sections 5.3 and 5.4 we will prove the second item of the theorem.

Remark 5.9. Say that a sender and a receiver has agreed to protect their
communication over a noisy channel with the use of folded Reed–Solomon
codes. In the following we will only consider the scenario in which the sender
and receiver has fixed the rate at which they wish to communicate, and
furthermore that they have fixed how close to the optimal error-correcting
radius 1−R they wish the received words to be list decoded. In the language
of Theorem 5.8 this means that we will assume that R and ε are given and
fixed. By Theorem 5.8 this in turn means that all the parameters s, `, v and
m are constants that are independent of the code length N . We will use this
observation several times in the following.

The fixed-rate scenario described above is relevant if the rate of the commu-
nication channel does not vary much with time. Furthermore, since imple-
menting encoders and decoders in a scenario in which the rate is allowed to
vary, is often more involved than if the rate is kept constant, the fixed-rate
scenario is frequently used in practice.

Remark 5.10. The code length N of a folded Reed–Solomon code satisfies
q ≤ Nm + 1, and hence the fact that the folding parameter m is constant
implies that a quantity which is polynomial in q is also polynomial in the
code length N .
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5.3 The interpolation step

In the proof of Proposition 5.5 we saw that linear algebra can be used to
compute the interpolation polynomial used in the list decoder for folded
Reed–Solomon codes. Furthermore, we saw that the number of linear equa-
tions in this system is

(
v+s
v+1

)
N(m− v +1), and that it has one more variables

than equations. Hence the complexity of the linear algebra approach for
computing interpolation polynomials, is

O (
s3(v+1)(Nm)3

)
. (5.10)

This shows that the complexity of the interpolation step of the list decoder
is polynomial in the code length. From Remark 5.9 we have that the multi-
plicity parameter s is constant. Thus in principle we could drop s from the
above complexity estimate. However, we have chosen to keep it since it gives
information about the algorithm’s dependence this parameter. In [29] it is
shown that the parameters s and ` given by Theorem 5.8 are such that

s ≈ `
v+1
√

R. (5.11)

This means that if the rate is not too close to zero then s and ` are of the same
order of magnitude. To ease the comparison of the estimate in (5.10) to that
of other algorithms, we will use the fact that (5.11) implies s = O (`). By
the above comments, we see that the constant hidden in this approximation
is not very big. Using this estimate of s, we get that the complexity of the
linear algebra approach is

O (
`3(v+1)(Nm)3

)
.

Below we will show how our general interpolation algorithm from Section 4.1
can be applied to get a different method for tackling the interpolation step.
The resulting algorithm will have complexity

O (
`3vM

(
`v+1Nm

)
log(`v+1Nm)

)

= O (
`4v+1Nm log2(`v+1Nm) log log(`v+1Nm)

)
, (5.12)

where M (t) = O (t log(t) log log(t)) denotes the complexity of multiplying
two polynomials of degree t, see Section 3.2.3. Thus our algorithm achieves
a better dependence on Nm than the linear algebra algorithm, at the cost of
a worse dependence on v and ` (unless v = 1).

We now show that the interpolation problem for folded Reed–Solomon codes
posed by Definition 5.4 is a special case of Problem 2.8. In Section 2.5 we
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saw that the projective line P1
Fq

is a simple Cab curve with δ = 0 and γ = 1,

and that the rational places of Fq(P1
Fq

) = Fq(x) different from P∞, are in
bijective correspondence with the elements of Fq. Below we will therefore
take the vector of interpolation points P to be a vector with entries in Fq.
Say we have a received word y as in Equation (5.3), and that we wish to
correct τ errors by finding an (s, v)–interpolation polynomial for y. Consider
the interpolation problem (P,y′, s, `,w, ∆) defined as follows:

• Interpolation points: The vector P ∈ FN(m−v+1)
q is indexed by pairs

(i, j) in {0, . . . , m− v}× {0, . . . , N − 1}, and the (i, j)-th coordinate is
(P)i,j = αi+mj.

• Interpolation values: The vector (of vectors) y′ is also indexed by
pairs (i, j) in {0, . . . ,m−v}×{0, . . . , N−1}, and the (i, j)-th coordinate
is (y′)i,j = (yi,j, yi+1,j, . . . , yi+v−1,j).

• Multiplicity parameter: s.

• Weight vector: w = (k − 1, k − 1, . . . , k − 1) ∈ Nv.

• Weighted degree bound: ∆ = s(N − τ)(m− v + 1).

• Degree bound: ` = b∆−1
k−1
c.

The above parameters are chosen exactly such that a polynomial Q(x,T) ∈
Fq[x,T] is an (s, v)–interpolation polynomial for y if and only if it is a valid
interpolation polynomial for (P,y′, s, `,w, ∆). Therefore we can use Algo-
rithm 3 from Section 4.1 to compute interpolation polynomials in the list
decoder for folded Reed–Solomon codes. Furthermore, by Theorem 4.2 this
can be done in the following complexity:

Proposition 5.11 (Interpolation complexity). The interpolation step of the
list decoding algorithm for folded Reed–Solomon codes can be done with Al-
gorithm 3 in complexity

O (
`3vM

(
`v+1Nm

)
log(`v+1Nm)

)
.

5.4 The root-finding step

In this section we describe two methods for tackling the root-finding step
of the list decoder for folded Reed–Solomon codes. In [27] Guruswami and
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Rudra gave an elegant translation of the problem of finding roots (in Fq[x])
satisfying Equation (5.4) to a problem of finding roots (in a finite field of size
Fqq−1) of a univariate polynomial. Furthermore, they used this translation to
derive an algorithm for the root-finding step. We describe this algorithm in
Section 5.4.1.

In Section 5.4.2 we present an alternative method for solving the root finding
step using Hensel–lifting.

5.4.1 Root-finding via evaluation in Fqq−1

In this section we show how the root-finding step of the list decoding algo-
rithm for folded Reed–Solomon codes can done. We review the root-finding
method of [27] and in particular we show that a list decoder using this
method, always returns a list whose size is polynomial in the length of the
code.

In the following we will call a polynomial f(x) satisfying

Q(x, f(x), f(αx), . . . , f(αv−1x)) = 0, (5.13)

a T–root of Q. In the root-finding step we are required to extract enough
information from the relation (5.13) to determine the T–root f(x). A thing
that one can always do with such a relation is to evaluate it at some point
β ∈ Fqb , for some b ≥ 1. A priori we have no knowledge of the value of
the vector (f(β), . . . , f(αv−1β)) – it may be any of the qbv values in (Fqb)v.
But if Q(β, T1, . . . , Tv) is non-zero, then it follows from Equation (5.13) that
(f(β), . . . , f(αv−1β)) is constrained to be among the `qb(v−1) possible roots in
this polynomial. Thus if ` < qb we have extracted some information about
the T–root f(x), but not quite enough to determine it completely. However,
thoughts along those lines, together with a wonderful algebraic coincidence,
can actually be used to give a method for solving the root-finding step, as
done in [27]. This method is based on the following observation.

Proposition 5.12. Let α be a primitive element of Fq. Then the polynomial
xq−1 − α is irreducible in Fq[x].

Proof. See [44, Thm. 3.75].

Let β ∈ Fqq−1 be a root of the polynomial xq−1− α and let f(x) and g(x) be
polynomials in Fq[x] of degree at most k − 1. Since xq−1 − α is irreducible,
β can not be a root in any polynomial in Fq[x] of degree strictly less than
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q−1. Since we have k−1 < Nm ≤ q−1 this means that if f(β) = g(β) then
f(x) = g(x). We may express this property of β by saying that evaluation at
β distinguishes polynomials of degree at most k− 1 (over Fq). Furthermore,
by definition β has another property, namely that for any b ≥ 0,

f(β)qb

= f(βqb

) = f
(
(αβ)qb−1

)
= f

(
αβqb−1

)
= f

(
α2βqb−2

)
= · · · = f(αbβ).

It is these two properties of β that together give a method for solving the
root-finding step. By evaluating (5.13) at β we get

0 = Q(β, f(β), f(αβ), . . . , f(αv−1β)) = Q
(
β, f(β), f(β)q, . . . , f(β)qv−1)

,

and hence f(β) is a root of the univariate polynomial Q(β, T, T q, . . . , T qv−1
) ∈

Fqq−1 [T ]. Thus, in summary, we have that each root f(x) ∈ Fq[x] of (5.13)

implies a root f(β) ∈ Fqq−1 of Q(β, T, T q, . . . , T qv−1
), and that f(β) deter-

mines f(x) completely. To turn these observations into an algorithm for the
root-finding step, we need to make sure that Q(β, T, T q, . . . , T qv−1

) is not the
zero-polynomial. We do that in two steps:

• We can write Q(x,T) = (xq−1 − α)bQ̃(x,T), where Q̃(x,T) ∈ Fq[x,T]
and Q̃(β,T) 6= 0. Any T–root of Q is also a T–root of Q̃, and thus in
any further computations we may use Q̃ instead of Q. In other words
we may without loss of generality assume that Q(β,T) is non-zero.

• The univariate polynomial Q(β, T, T q, . . . , T qv−1
) is zero if and only if

Q(β, T1, . . . , Tv) is an element of the ideal

〈T q
1 − T2, T

q
2 − T3, . . . , T

q
v−1 − Tv〉 ⊆ Fqq−1 [T].

The polynomials {T q
1 −T2, T

q
2 −T3, . . . , T

q
v−1−Tv} form a Gröbner basis

for this ideal with respect to some term order extending total degree.
Hence any polynomial in the ideal must have total degree at least q.
In the following we will assume that ` < q. This means that the total
degree of Q(β,T) is strictly less than q, and hence the above shows that
in this case Q(β, T, T q, . . . , T qv−1

) is non-zero. Since we assume that
the rate R is fixed, it follows from Remark 5.9 that the parameter `
is a constant independent of the code length, and thus the assumption
` < q can be made to holds by choosing the code length, and hence
also q, large enough.

We are now ready to formalize the above observations into an algorithm for
the root-finding step. We state the resulting algorithm in pseudo code in
Algorithm 4.
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Algorithm 4 Algorithm for root-finding via evaluation in Fqq−1 .

Input: An integer k < q and a polynomial Q(x,T) ∈ Fq[x,T].
Output: The list of polynomials f(x) of degree at most k − 1 such that

Q(x, f(x), f(αx), . . . , f(αv−1x)) = 0.

1: Write Q(x,T) = Q̃(x,T)(xq−1 − α)b, with b largest possible.
2: Compute the set of roots F of Q̃(β, T, T q, . . . , T qv−1

) over Fqq−1 .
3: Let L← ∅.
4: for all f ∈ F do
5: Write f as f(β) = f0 + f1β + · · ·+ flβ

l with l < q − 1.
6: if l ≤ k − 1 and Q̃(x, f(x), f(αx), . . . , f(αv−1x)) = 0 then
7: Add f(x) to L.
8: end if
9: end for

10: return L

The polynomial Q(β, T, T q, . . . , T qv−1
) has degree at most `qv−1, and there-

fore the size of the list L computed by Algorithm 4 is at most

|L| ≤ `qv−1. (5.14)

Since v is constant we get from Remark 5.10 that the above bound on the
list size is polynomial in the code length N . Thus if Algorithm 4 is used for
the root-finding step in the list decoder for folded Reed–Solomon codes, then
the list size is polynomially bounded, which by Definition 1.1 is a necessary
property of a list decoder. We also need to check that the running time of
Algorithm 4 is polynomial in the code length.

Proposition 5.13. The running time of Algorithm 4 is polynomial in qv.

Proof sketch. The complexity of Algorithm 4 is dominated by the complexity
of line 2. In [11] Berlekamp gives a deterministic algorithm for computing
the roots of a univariate polynomial over a finite field, with a complexity that
is polynomial in the polynomial degree and the logarithm of the field size.
The polynomial Q(β, T, T q, . . . , T qv−1

) has degree at most `qv−1 and hence
the complexity of line 2 is polynomial in qv−1 and q log(q). This proves the
proposition.

The proposition proves the second item of Theorem 5.8, and thus we have
now showed that folded Reed–Solomon codes can be list decoded arbitrarily
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close to the optimal error-radius 1 − R, when its parameters are chosen
appropriately.

5.4.2 Root-finding via Hensel–lifting

Although Proposition 5.13 promises a polynomial running time of the root-
finding algorithm in Algorithm 4, the fact that the algorithm works over the
exponentially large finite field Fqq−1 , makes practical implementations of this
algorithm difficult. In this section we consider an alternative method for
tackling the root-finding step, using the so-called Hensel–lifting technique.
Our method is an extension of the root-finding algorithm for Reed–Solomon
codes from [54]. A method similar to ours was independently discovered by
Huang and Narayanan, and appears in [35].

We now describe the Hensel–lifting algorithm. Let there be given a polyno-
mial Q(x,T) and an integer b ≥ 1. In the following a polynomial g(x) will
be said to be a partial T–root of precision b in Q(x,T) if

g(x) = f(x) mod xb,

for some T–root f(x) of Q(x,T). Note that the degree of a partial T–root of
precision b is at most b−1. Hensel–lifting is a general technique for computing
such partial roots up to any precision when the roots are polynomials (as in
our case) or more generally when the roots are formal power series, see [59,
I.2.1]. The key idea in Hensel–lifting is to recursively lift a partial root
of precision b to a new partial root of strictly larger precision. To get the
recursive process started, one needs a partial T–root of precision b = 1. From
Equation (5.13) it follows that if f(x) =

∑k−1
i=0 fix

i is a T–root of Q(x,T),
then

0 = Q(x, f(x), f(αx), . . . , f(αv−1x)) mod x = Q(0, f0, f0, . . . , f0). (5.15)

Therefore a partial root f0 of precision one must satisfy Q(0, f0, . . . , f0) = 0.
If some power of x, say xr, divides Q then any T–root of Q will also be a
T–root of x−rQ. Thus we may assume that Q is not divisible by x, or in
other words that Q(0,T) is non-zero. However, if Q(0,T) is in the ideal

〈T1 − T2, T2 − T3, . . . , Tv−1 − Tv〉 ⊆ Fq[T],

then Q(0, T, . . . , T ) = 0, and in this case we gain no information about f0

from (5.15). If this happens, all we have is our a priori knowledge that
f0 ∈ Fq, and thus we get q partial roots of precision one. On the other hand,
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if Q(0, T, . . . , T ) 6= 0, we know from (5.15) that f0 must be among the roots
of this polynomial, and since its degree is at most the total degree of Q(0,T),
we get that in this case there can be at most ` partial roots of precision one.

The above shows how one can constrain the possible partial roots of precision
one. We now move on to show how partial roots can be lifted. Assume that
f(x) = f0 +xf̃(x) is a T–root of Q and that we know f0. Then we have that
f̃(x) is a T–root of

Q(x, f0 + xT1, f0 + αxT2, . . . , f0 + αv−1xTv). (5.16)

If Q(x,T) is non-zero, then the same holds for the polynomial in (5.16) as
the following lemma shows.

Lemma 5.14. Let Q(x,T) ∈ Fq[x,T] be a non-zero polynomial and let f be
an element in Fq, then Q(x, f + xT1, . . . , f + αv−1xTv) is non-zero.

Proof. The map ϕf : Fq(x)[T]→ Fq(x)[T] which takes P ∈ Fq(x)[T] to

P (x, f + xT1, . . . , f + αv−1xTv),

is a bijection, which maps zero to zero. Since we assume that Q(x,T) is
non-zero, the lemma follows.

From Lemma 5.14 it follows that there exists a largest power xr of x which
divides the polynomial in Equation (5.16). Let Qf0 denote the polynomial
obtained by dividing the polynomial in (5.16) through by xr, that is

Qf0(x,T) = x−rQ(x, f0 + xT1, . . . , f0 + αv−1xTv). (5.17)

By definition of f0 it holds that

Q(x, f0 + xT1, f0 + αxT2, . . . , f0 + αv−1xTv)
∣∣∣
x=0

= Q(0, f0, . . . , f0) = 0.

and hence we have that r ≥ 1. As argued above, f̃(x) is a T–root of the
polynomial in (5.16), and hence it follows from Equation (5.17) that f̃(x) is
also a T–root of Qf0 .

Let Φk(Q) denote the set of partial T–roots of Q of precision k. Using this
notation we can summarize the above discussion in the following recursive
expression,

Φk(Q) ⊆
⋃

f0∈Φ1(Q)

(f0 + x · Φk−1(Qf0)) . (5.18)
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Mimicking this expression we define the list of polynomials Λk(Q) by

Λ1(Q) = {f0 ∈ Fq | Q(0, f0, . . . , f0) = 0},
Λk(Q) =

⋃

f0∈Λ1(Q)

(f0 + x · Λk−1(Qf0)) . (5.19)

By definition it holds that

Φk(Q) ⊆ Λk(Q), (5.20)

for all k ≥ 1. Since we know how to compute Λ1(Q), we can turn Equa-
tion (5.19) into a recursive algorithm for computing Λk(Q). The resulting
algorithm is given in pseudo code in Algorithm 5.

Algorithm 5 Algorithm Λk(Q) for root-finding via Hensel–lifting.

Input: An integer k and a polynomial Q(x,T) ∈ Fq[x,T].
Output: A list guaranteed to contain all T–roots of Q of precision k.
1: if k ≤ 0 then
2: return {0}
3: else
4: Let Q← x−rQ, with r largest possible such that xr divides Q.
5: if Q(0, T, . . . , T ) = 0 then
6: B ← Fq

7: else
8: Let B be all the distinct rational roots of Q(0, T, . . . , T ).
9: end if

10: return
⋃

f0∈B (f0 + xΛk−1(Qf0)) // Compute recursively
11: end if

By definition the set of all T–roots of Q(x,T) of degree at most k − 1 is
contained in the set of partial roots Φk(Q), and by Equations (5.20) this set
is in turn contained in Λk(Q). Thus given Q(x,T) and k as input, the output
of Algorithm 5 is guaranteed to contain the set of all T–roots of Q(x,T) of
degree at most k − 1. Furthermore, the output list Λk(Q) can be pruned to
equal the set of T–roots of degree at most k− 1, by for each element f(x) in
Λk(Q) testing whether Equation (5.13) is satisfied, and if this is not the case,
remove f(x) from Λk(Q). Thus, altogether we conclude that Algorithm 5
provides a method for computing T–roots, which means that it can be used
to handle the root-finding step of the list decoder for folded Reed–Solomon
codes. In the following we will refer to this algorithm as the Hensel–lifting
algorithm.
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5.4.3 Comparison of the root-finding methods

In this section we compare the two methods for the root-finding step, de-
scribed in the two previous sections. In Section 5.4.1 we saw that Algorithm 4
returns a list of size at most `qv−1. We begin our comparison with an ex-
ample, showing that the same bound does not hold for the Hensel–lifting
method in Algorithm 5.

Example 5.15. In this example we will investigate the call-tree of the re-
cursive calls made by Algorithm 5, when it is applied to compute Λ3(Q) (i.e.
partial T–roots of the form f(x) = f0 + f1x + f2x

2), where Q is the polyno-
mial defined as follows: Let Fq = Fr2 be a finite field of square order, and let
α be a primitive element of Fq. Then Q ∈ Fq[x, T1, T2] is the polynomial

Q(x, T1, T2) = xr+1

((
α2T1 − T2

α2 − 1

)r

+
α2T1 − T2

α2 − 1

)
−

(
T2 − T1

α− 1

)r+1

. (5.21)

We have that Q(0, T, T ) = 0, and hence the only constraint on the partial
T–roots of precision one we can get, is Λ1(Q) = Fq. We have

Qf0(x, T1, T2) = x−(r+1)Q(x, f0 + xT1, f0 + αxT2)

= f r
0 + f0 +

(
αx(αT1 − T2)

α2 − 1

)r

+
αx(αT1 − T2)

α2 − 1
−

(
αT2 − T1

α− 1

)r+1

Let A = {f0 ∈ Fq | f r
0 + f0 = 0} and note that |A| = r. It turns out that

the behaviour of the recursive calls made by the Hensel–lifting algorithm in
line 10, i.e. when it is computing

Λ3(Q) =
⋃

f0∈Fq

(f0 + xΛ2(Qf0)) ,

looks quite different depending on whether f0 is in A or not (see Figure 5.2).

• First assume that f0 ∈ A, then Qf0(0, T, T ) = T r+1 which implies
that f1 = 0. Therefore, in the next level of the call-tree we get the
polynomial

Qf0,0(x, T1, T2) = x−2Qf0(x, xT1, αxT2)

= x2(r−1)

(
α2(T1 − T2)

α2 − 1

)r

+
α2(T1 − T2)

α2 − 1
− xr−1α2T2 − T1

α− 1
.

This means that Qf0,0(0, T, T ) = 0, and hence the only restriction on
the coefficient f2 we can get, is that it is an element of Fq. Therefore,
the portion of the call-tree of Λ3(Q) that has values of f0 lying in A,
has a total of rq leaves. This is illustrated in the left half of Figure 5.2.
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Figure 5.2: The call-tree of Λ3(Q), where Q is as in Equation (5.21).

• Next, assume that f0 6∈ A. From the expression of Qf0 above, we know
that Qf0(0, T, T ) = f r

0 +f0−T r+1. This equation resembles the defining
equation for the Hermitian Curve (see Example 2.20), and we get that
since f r

0 + f0 ∈ Fr there are r + 1 roots of Qf0(0, T, T ). Let f1 be any
one of these roots, then we get that the largest b such that xb divides
Qf0(x, f1+xT1, f1+αxT2) is b = 1. Furthermore, by direct computation
of Qf0,f1(x, T1, T2) = x−1Qf0(x, f1 + xT1, f1 + αxT2) we find that

Qf0,f1(0, T1, T2) = f1
α(α− 1)

α2 − 1
− f r

1

α2T2 − T1

α− 1
.

Since f1 6= 0 we see that Qf0,f1(0, T, T ) is a non-zero polynomial of
degree one, and therefore it has exactly one root. This means that the
portion of the call-tree of Λ3(Q) that has values of f0 outside A, has
a total of (q − r)(r + 1) leaves. This is illustrated in the right half of
Figure 5.2.

The above calculations show that at its third level, the call-tree of Λ3(Q) has
a total of qr + (q− r)(r + 1) = (2q− 1)r leaves. The total degree of Q in the
variables T1 and T2 is r + 1, and hence if we use Algorithm 4 to compute T–
roots of Q, Equation (5.14) guaranties that it returns at most `q = (r + 1)q
codewords. In general (r + 1)q < (2q − 1)r and thus our example shows
that the number of partial roots that the Hensel–lifting algorithm computes,
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is greater than the number of actual T–roots. This fact has a number of
consequences:

• The Hensel–lifting algorithm computes “spurious” partial roots that
do not reflect any actual T–roots. Furthermore, it seems difficult to
bound how many such spurious roots the algorithm produces.

• This means that the running time of the Hensel–lifting algorithm can
not be directly related to the number of T–roots of the input polyno-
mial. This in turn means that we have no “global” measure to estimate
the algorithms running time, and thus the road to any such bound
seems to go through “local” arguments about how the list size evolves
from level to level in the call-tree.

• For general input polynomials Q(x,T) we have unfortunately only been
able to obtain local bounds that come together multiplicatively, thus
yielding global bounds that are exponential in the number of levels in
the call-tree, i.e. in k (and hence also in the code length). However,
in Section 5.5 we shall see that if we make certain restrictions on the
input polynomials, then we will be able to derive polynomial list size
bounds.

We conclude the example by noting that if Algorithm 4 is used to compute
T–roots of Q, when q = 42 = 16, it returns the roots

{0, 1, α5, α10, α4β5, 1 + α4β5, α5 + α4β5, α10 + α4β5} ⊆ Fqq−1 = F260 .

By inserting into Q(x, T1, T2) we see that out of these roots only four corre-
spond to actual T–roots, namely

f(x) = 0, f(x) = 1, f(x) = α5, f(x) = α10.

Example 5.16 (Running times). In this example we compare the perfor-
mance of the two root-finding algorithms, when they are used in the list
decoder for folded Reed–Solomon codes. The comparison is made by simu-
lating data transmission over a noisy channel employing various folded Reed–
Solomon codes, that are list decoded at the receiver end.

In the simulations we have used the following folded Reed–Solomon codes:
for i ∈ {2, . . . , 5} we let Ci be the folded Reed–Solomon code of rate (ap-
proximately) R = 1

5
, with parameters qi = 4i, mi = 3, Ni = qi−1

mi
, vi = 2

and ki = dRNimie. The parameters of the four codes are given explicitly in
Table 5.1.
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Ci qi ki Ni ∆i τi

C2 16 3 5 12 3
C3 64 13 21 61 10
C4 256 51 85 247 43
C5 1024 205 341 999 174

Table 5.1: Parameters of the folded Reed–Solomon codes C2, . . . , C5.

We use multiplicity parameter s = 3 in the list decoder. For each code
Ci in Table 5.1 we have used Proposition 5.5 with s = 3 to compute a
weighted degree bound ∆i, such that an interpolation polynomial of weighted
degree strictly less than ∆i is guaranteed to exist for any received word in
(Fqm)N . These weighted degree bounds are given in Table 5.1. Furthermore,
for each code we have computed the largest integer τi which is at most Ni −

∆i

s(m−v+1)
. As we saw in Proposition 5.7, the list decoder for Ci is guaranteed

to reconstruct a transmitted codeword when the corresponding received word
is corrupted by at most τi errors.

For each of the codes Ci in Table 5.1, we simulate the transmission of a
codeword from Ci over a noisy channel as follows:

1. Choose a polynomial in Fq[x] of degree strictly less than ki at random,
and encode it to a codeword c ∈ Ci.

2. Generate a received word y by adding τi errors at random to c.

3. Compute an interpolation polynomial Q for y of weighted degree strictly
less than ∆i.

4. Use both root-finding algorithms to compute the T–roots of Q.

We have implemented each of the four steps above, in the computer algebra
system Magma [13]. Since we are not concerned with the running time of
the interpolation step, we have implemented step 3 using linear algebra, as
described in the proof of Proposition 5.5. The source code for the implemen-
tations can be obtained from [14].

We have repeated the above four-step simulation 10 times for each code Ci,
and recorded the average and standard deviation of the running times of each
of the two algorithms used in the root-finding step. The results are listed in
Table 5.2. Executions running longer than six hours have been terminated
and this event is marked with a ‘−’. All simulations were carried out on the
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same computer, and thus the timings in Table 5.2 should provide a fair basis
for comparing the performance of the two algorithms.

Ci Algorithm 4 Algorithm 5 (Hensel–lifting)
µ σ µ σ

C2 0.070 0.00 0.01 0.02
C3 101.71 0.73 0.22 0.27
C4 − − 87.42 98.49
C5 − − 1962.30 5986.44

Table 5.2: Running times (in seconds) of the two algorithms for the root-finding
step in the list decoder for C2, . . . , C5. The numbers are averages (µ) and standard
deviations (σ) of 10 decodings.

In the simulations the transmission errors are generated randomly. From
Table 5.2 we see that in this situation the performance of the Hensel–lifting
algorithm seems to be much better than Algorithm 4. Thus despite the lack
of theoretical bounds on the running time of the Hensel–lifting algorithm, it
performs well in practice – at least for random errors.

We remark that the standard deviations of the running times of the Hensel–
lifting algorithm reported in Table 5.2 are relatively large, i.e. of the same
order of magnitude as the averages. The reason for this is the occurrence of
unconstrained coefficients, which significantly increases the running time of
the algorithm. For instance, all but one of the Hensel–lifting computations for
the code C5 took about a minute, while a single computation, that involved
an unconstrained coefficient, took more than 5 hours.

Thus the practical performance of the Hensel–lifting algorithm is very sensi-
tive to the occurrence of unconstrained coefficients. This is also illustrated by
the running time of the Hensel–lifting algorithm when it is used to compute
T–roots of degree less than q − 1 in the polynomial from Equation (5.21)
with q = 256. In this computation

√
q + 1 = 17 unconstrained coefficients

are encountered, and the algorithm takes about 9 hours to finish (on the
same computer on which the timings in Table 5.2 were made). On the other
hand, if Algorithm 4 is used for the same task, termination does not occur
within 15 hours. Thus even for a polynomial which is carefully chosen to
be difficult for the Hensel–lifting algorithm, it is still faster in practice than
Algorithm 4.
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5.5 Bounds on the list size

In this section we will present results towards a bound on the size of the list
computed by the Hensel–lifting algorithm (Algorithm 5). We will only be
able to derive bounds under certain assumptions, either on the parameter
v or on the multiplicities of the roots of the polynomial Q(x,T) to which
the Hensel–lifting algorithm is applied. However, the techniques used in the
proofs of these results reveals much about the root-finding problem’s nature,
and furthermore they provide a good starting point for investigations of more
general list size bounds.

5.5.1 A bound on the list size for v ≤ 2

In this section we will derive a bound on the size of the list computed by
the Hensel–lifting algorithm (Algorithm 5) when v ≤ 2. We will derive this
bound by tracking the recursive calls made by the algorithm, and to this
end we need the notion of a recursion tree which we introduce below. By a
branch between two nodes A and B in a tree, we will understand a sequence
of nodes

Q0, Q1, . . . , Qd, (5.22)

such that A = Q0, B = Qd and such that Qi is a child of Qi−1 for 1 ≤ i ≤ d.
The length of the branch in Equation (5.22) is d. If there exists a branch
between two nodes A and B, then we define the distance between A and B
to be the length of this branch.

Definition 5.17 (Recursion tree). Let Q ∈ Fq[x,T] be a polynomial such
that Q(0,T) 6= 0. The recursion tree of Λk(Q) is the tree defined as follows:

• The nodes are labeled by polynomials in Fq[x,T]. The root node is Q.

• A node P is assigned child nodes according to the following rules:

1. If P (0, T, . . . , T ) = 0 and if the distance from Q to P is at most
k−1, then the child nodes of P are Pα1 , . . . , Pαq , where α1, . . . , αq

are the q distinct elements of Fq.

2. If P (0, T, . . . , T ) 6= 0 and if the distance from Q to P is at most
k−1, then the child nodes of P are Pα1 , . . . , Pαh

, where α1, . . . , αh

are the distinct rational roots of P (0, T, . . . , T ).

We will say that a node satisfying the requirements in item 1 is uncon-
strained .
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Q0 = Q(x,T)

...

Q1 = Qf0(x,T)

Q2 = Qf0,f1(x,T)

Qd−1 = Qf0,f1,...,fd−2
(x,T)

Qd = Qf0,f1,...,fd−1
(x,T)

Figure 5.3: Branch in the recursion tree of Λk(Q)

The recursion tree of Λk(Q) is defined exactly such that the child nodes of
Q are the polynomials given as input to Λk−1 in the recursive calls made
in line 10 of Algorithm 5. In Figure 5.3 a branch in this recursion tree is
illustrated.

In this section we will derive a bound on the number of leaves in the recursion
tree of Λk(Q) when v ≤ 2, and we will use this to obtain a bound on the size
of the list returned by Algorithm 5 and on the algorithm’s running time.

In the following we will say that a = (a0, a1, . . . , av) ∈ Fv+1
q is a zero of

multiplicity r in Q(x,T) ∈ Fq[x,T], if r is the smallest integer such that

the (i, j)-th Hasse–derivative of Q vanish in a, i.e. H(i,j)
x,T (Q) (a) = 0, for all

(i, j) with i +
∑v

h=1 jh < r. The following lemma shows that if we know
the multiplicity of (0, f0, . . . , f0) as a zero in Q(x,T), then we can determine
Qf0(0,T) explicitly, a fact that we will use repeatedly below.

Lemma 5.18. Let (0, f0) = (0, f0, . . . , f0) ∈ Fv+1
q be a zero in Q(x,T) of

multiplicity r. Then it holds that

Qf0(0,T) =
∑

(i,j)∈Nv+1
0 : i+

P
h jh=r

H(i,j)
x,T (Q) (0, f0)α

Pv
h=1(h−1)jhTj. (5.23)

Furthermore, for all index vectors j with
∑v

h=1 jh = r, it holds that

H(j)
T (Qf0) (0,T) = α

Pv
h=1(h−1)jhH(j)

T (Q) (0, f0). (5.24)

Proof. By the the Taylor–expansion formula for Hasse–derivatives we can
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write

Q(x,T) =
∑

i,j

H(i,j)
x,T (Q) (0, f0)x

i(T− f0)
j. (5.25)

From this expression we get that

Q(x, f0 + xT1, . . . , f0 + αv−1xTv)

=
∑

i,j

H(i,j)
x,T (Q) (0, f0)x

i+
P

h jhα
P

h jh(h−1)Tj. (5.26)

By assumption r is the smallest integer such that H(i,j)
x,T (Q) (0, f0) = 0 for all

(i, j) ∈ Nv+1
0 with i +

∑v
h=1 jh < r. Therefore the largest power of x that

divides the polynomial in (5.26), is xr. Hence

Qf0(x,T) =
∑

i,j

H(i,j)
x,T (Q) (0, f0)x

i+
P

h jh−rα
P

h jh(h−1)Tj, (5.27)

and from this equation, the expression for Qf0(0,T) in Equation (5.23) fol-
lows. To prove the second claim of the lemma, let j be such that

∑v
h=1 jh = r

and note that since Qf0(x,T) = Qf0(0,T)+O (x) it follows from (5.23) that

H(j)
T (Qf0) (x,T) = α

P
h(h−1)jhH(j)

T (Q) (0, f0) +O (x) .

Evaluating this expression in x = 0, Equation (5.24) follows.

Corollary 5.19. Let (0, f0) = (0, f0, . . . , f0) ∈ Fv+1
q be a zero in Q(x,T).

Then it holds that

degtot(Qf0(0,T)) ≤ degtot(Q(0,T)). (5.28)

Furthermore, if equality holds in (5.28) then the multiplicity of (0, f0) in
Q(x,T) is equal to degtot(Q(0,T)).

Proof. By Lemma 5.18 we have that degtot(Qf0(0,T)) is at most the multi-
plicity of the zero (0, f0) in Q(x,T). Therefore we have that

degtot(Qf0(0,T)) ≤ Multiplicity of (0, f0) in Q(x,T)

≤ Multiplicity of f0 in Q(0,T)

≤ degtot(Q(0,T)).

From this the claims of the corollary follows.
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To get a non-trivial bound on the number of leaves of a recursion tree, we
need a bound on how many unconstrained nodes there can be in such a tree.
The following lemma provides a step towards this.

Lemma 5.20. Let v ≤ 2 and let r ≥ 1. Furthermore, if v = 2 assume that
r < q − 1. Let Q0, . . . , Qd be a branch in a recursion tree, i.e. a sequence
of polynomials such that Qi = (Qi−1)fi−1

, where fi−1 ∈ Fq is some zero of
Qi−1(0, T, . . . , T ). If d < q − 1 and if

degtot(Qi(0,T)) = r,

for 0 ≤ i ≤ d, then there can be at most
(

r+v−1
v−1

) − 1 distinct indices i for
which Qi is unconstrained.

Proof. First, assume that v = 1. By definition, there can not be any uncon-
strained nodes in this case. We have that

(
r+1−1
1−1

) − 1 = 0, and hence the
lemma holds in this special case.

Next, assume that v = 2. The branch Q0, . . . , Qd can not have more than
d + 1 unconstrained nodes, and hence in the following we may assume that

d + 1 >

(
r + 2− 1

2− 1

)
− 1 = r ≥ 1,

and hence also that d > 0. In the remainder of the proof we will keep v as
a variable (instead of specializing it to v = 2), since this will allow us to see
exactly where the proof breaks down when v ≥ 3. See Remark 5.21.

By assumption we have that degtot(Qi(0,T)) = degtot(Qi−1(0,T)) = r for
i ≥ 1. Thus from Corollary 5.19 it follows that for i ≥ 1, (0, fi−1) is a root of
multiplicity exactly r in Qi−1(x,T). Therefore Lemma 5.18 implies that

Qi(0,T) =
∑

(a,j) : a+
P

h jh=r

H(a,j)
x,T (Qi−1) (0, fi−1)α

Pv
h=1(h−1)jhTj. (5.29)

and that

H(j)
T (Qi) (0,T) = α

Pv
h=1(h−1)jhH(j)

T (Qi−1) (0, fi−1), (5.30)

for index vectors j with
∑v

h=1 jh = r. Using Equation (5.30) recursively it
follows that

H(j)
T (Qi) (0, fi) = α

Pv
h=1(h−1)jhH(j)

T (Qi−1) (0, fi−1)

= · · · = αi
Pv

h=1(h−1)jhH(j)
T (Q0) (0, f0). (5.31)

102



5. Folded Reed–Solomon codes

Now assume, for the sake of contradiction, that there exist r′ =
(

r+v−1
v−1

)
indices i1 < i2 < · · · < ir′ such that

Qiu(0, T, . . . , T ) = 0, (5.32)

for 1 ≤ u ≤ r′. A necessary condition for the polynomial in (5.32) to vanish,
is that all the coefficients to the monomials in Qiu(0,T) of the form Tj

with
∑v

h=1 jh = r, must sum to zero. By Equations (5.29) and (5.31) the
coefficient to such a monomial Tj is

αiu
Pv

h=1(h−1)jhH(j)
T (Q0) (0, f0).

Consider the r′ × r′ matrix A defined by

[A]u,j = αiu
Pv

h=1(h−1)jh ,

for 1 ≤ u ≤ r′ and j in {j ∈ Nv
0 |

∑v
h=1 jh = r}. The above argument shows

that the vector (
H(j)

T (Q0) (0, f0)
)

j
∈ Fr′

q , (5.33)

again indexed by j in {j ∈ Nv
0 |

∑v
h=1 jh = r}, must be an element of the

right kernel of A. Let j and j′ be two vectors with
∑v

h=1 jh =
∑v

h=1 j′h = r.
If

α
Pv

h=1(h−1)jh = α
Pv

h=1(h−1)j′h

then, since v = 2 and since the order of α is q − 1, it must hold that j2 ≡ j′2
(mod q−1). By assumption we have j2 ≤ r < q−1 and hence this equivalence
implies that j2 = j′2, which in turn means that j = j′. Therefore all the r′

elements α
Pv

h=1(h−1)jh with
∑v

h=1 jh = r, are distinct. Since we also have

i1 < i2 < . . . < ir′ ≤ d < q − 1,

it follows that A is a non-singular Vandermonde matrix. This in turn implies
that the vector in Equation (5.33) must be zero. By Equation (5.29) this
means that Q1(0,T) has total degree strictly less than r, which contradicts
our assumptions (since d > 0). Thus we have proved that there can be at
most r′ − 1 indices i for which the polynomial Qi(0, T, . . . , T ) vanishes.

Remark 5.21. If v ≥ 3 the proof of the above lemma breaks down, because it
no longer holds that the r′ =

(
r+v−1

v−1

)
elements α

Pv
h=1(h−1)jh with

∑v
h=1 jh = r,

are distinct. As an example of this phenomenon let v = 3 and take Q(x,T) =
T1T3−T 2

2 . In this polynomial, there are two distinct power vectors j = (1, 0, 1)
and j′ = (0, 2, 0), and these satisfy

α
P3

h=1(h−1)jh = α
P3

h=1(h−1)j′h = α2.
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In fact, for f0 = 0 it holds that Qf0(x,T) = α2Q(x,T) and therefore in
the recursion tree for Λk(Q) there is a branch Q0, . . . , Qk in which every
polynomial Qi satisfies degtot(Qi(0,T)) = 2 and Qi(0, T, T, T ) = 0. Thus a
direct extension of Lemma 5.20 to the case v ≥ 3, is not possible.

To derive the desired bound on the size of the list returned by the Hensel–
lifting algorithm we will need the following lemma, which bounds the effect
of unconstrained nodes on the number of leaves in a recursion tree.

Lemma 5.22. Let Q(x,T) ∈ Fq[x,T] be a polynomial such that Q(0,T) 6=
0, and let Γ be the recursion tree of Λk(Q). Assume that for any branch
Q0, . . . , Qd in Γ, there are at most u indices i for which Qi is unconstrained.
Then the number of leaves in Γ is at most degtot(Q(0,T))qu.

Proof. We prove the lemma by induction on u, and begin with the induction
base u = 0. In this case we have that Q(0, T, . . . , T ) 6= 0. If f is a root of
Q(0, T, . . . , T ), then by Lemma 5.18 it holds that the total degree of Qf (0,T)
is less than or equal to the multiplicity of (0, f, . . . , f) in Q(x,T). This
multiplicity is less than or equal to the multiplicity of f in Q(0, T, . . . , T ),
and hence we have that

∑

f

degtot(Qf (0,T)) ≤ deg(Q(0, T, . . . , T )) ≤ degtot(Q(0,T)), (5.34)

where the sum is over all the distinct zeroes f of Q(0, T, . . . , T ). Let Γf denote
the subtree of Γ rooted in the child node Qf of Q, see Figure 5.4. There are
no unconstrained nodes in Γf , and hence we may apply our argumentation
recursively to this tree. By this recursion (or alternatively induction of the
depth of Γ) we have that

# leaves of Γ =
∑

f

(# leaves of Γf ) ≤
∑

f

degtot(Qf (0,T)),

where again the sums are over all the distinct zeroes f of Q(0, T, . . . , T ).
Using this inequality together with Equation (5.34), it follows that Γ has at
most degtot(Q(0,T)) leaves. This proves the induction base.

For the induction step assume that u ≥ 1 and that the lemma has been
proved for smaller u. Let Γ′ be the subtree of Γ constructed by the following
recipe:

1. Make Q the root node of Γ′.
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P

P ′

Q

ΓP ′

Γ′

Γ

Q

Γf Γ

· · ·Qf

Figure 5.4: The subtrees Γf (left) and ΓP ′ (right) of the recursion tree Γ.

2. For each leaf-node P of Γ′ for which P (0, T, . . . , T ) 6= 0, add the child
nodes of P in Γ (and the edges connecting them) to Γ′.

3. Repeat step 2 until no new nodes are added to Γ′.

By definition, Γ′ can only have unconstrained nodes in its leaves. The poly-
nomials in the leaf nodes of a recursion tree do not affect its size. Therefore
we may apply exactly the same argument as in the induction base to the tree
Γ′, to get that

∑

P a leaf of Γ′
degtot(P (0,T)) ≤ degtot(Q(0,T)). (5.35)

Let P be a leaf node of Γ′. To prove the induction step we count how
many leaves the subtree of Γ rooted in P can have. First we note that if
P (0, T, . . . , T ) 6= 0, then by definition of Γ′, P is also a leaf of Γ, and hence
it has no successors. Next, assume that P (0, T, . . . , T ) = 0. Then, unless the
distance from P to the root is k, P will have q child nodes. Let P ′ denote
such a child node, and let ΓP ′ denote the subtree of Γ rooted in P ′, see
Figure 5.4. Any branch in ΓP ′ can have at most u− 1 unconstrained nodes,
and hence it follows from the induction hypothesis that the number of leaves
in ΓP ′ is at most degtot(P

′(0,T))qu−1. Therefore the number of leaves in the
subtree of Γ rooted in P is at most

q · degtot(P
′(0,T))qu−1 ≤ degtot(P (0,T))qu,

where the inequality follows from Corollary 5.19. This means that the num-
ber of leaves of Γ is at most

∑

P a leaf of Γ′
(# leaves of subtree rooted in P ) ≤

∑

P a leaf of Γ′
degtot(P (0,T))qu.
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By Equation (5.35) the right hand side of the above inequality is at most
degtot(Q(0,T))qu, and thus the induction step follows.

Putting the above two lemmas together we can now prove the desired bound
on the size of the list returned by Λk(Q).

Theorem 5.23. Let v ≤ 2 and let Q ∈ Fq[x,T] be a polynomial for which
Q(0,T) 6= 0. Furthermore, let ` denote the total degree of Q(0,T), and
assume that ` < q − 1 if v = 2. If k < q − 1 then it holds that

|Λk(Q)| ≤ `q(
`+v

v )−`−1 =

{
` if v = 1,

`q(
`+1
2 ) if v = 2.

Proof. Let Γ denote the recursion tree of Λk(Q). Consider a branch

Q = Q0, . . . , Qd, (5.36)

in Γ from the root node Q to a leaf node Qd. Let fi−1 ∈ Fq be such that
Qi = (Qi−1)fi−1

, then it follows from Corollary 5.19 that

degtot(Qi−1(0,T)) ≥ degtot(Qi(0,T)),

for i ≥ 1. This implies that

degtot(Qi(0,T)) ≥ degtot(Qi′(0,T)), (5.37)

for i′ ≥ i. From this it follows that the branch in Equation (5.36) can be
split into subbranchs

Q`,0, . . . , Q`,d`
; . . . ; Qi,0, . . . , Qi,di

; . . . ; Q1,0, . . . , Q1,d1 ,

such that for 1 ≤ i ≤ ` and 0 ≤ j ≤ di it holds that the total degree
of Qi,j(0,T) is equal to i. From Lemma 5.20 we have that in the sub-
branch Qi,0, . . . , Qi,di

there can be at most
(

i+v−1
v−1

) − 1 nodes Qi,j for which
Qi,j(0, T, . . . , T ) = 0. Therefore in the branch in Equation (5.36) there can
be at most

∑̀
i=1

((
i + v − 1

v − 1

)
− 1

)
=

(
` + v

v

)
− `− 1,

unconstrained nodes. Since the branch in Equation (5.36) is arbitrary, it
therefore follows from Lemma 5.22 that the number of leaves in Γ is at most

degtot(Q(0,T))q(
`+v

v )−`−1 = `q(
`+v

v )−`−1,

and the theorem follows.
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From Remark 5.9 we know that the parameters v and ` in the list decoder
for folded Reed–Solomon codes are constants independent of the code length.
This means that if v = 2, then for a given rate it is possible to choose
the code length, and hence also q, large enough that the assumption ` <
q − 1 in Theorem 5.23 holds. If this is done, the theorem bounds the size

of the list returned by the Hensel–lifting algorithm by `q(
`+1
2 ), and since ` is

constant as a function of the code length, this quantity is polynomial in q.

From Remark 5.10 it therefore follows that the list size bound `q(
`+1
2 ) is also

polynomial in the code length.

Remark 5.24. A natural question is whether the (rather large) list size
bound in Theorem 5.23 for v = 2 is tight, i.e. if there exist an input polyno-

mial Q(x, T1, T2) which results in an output list of size `q(
`+1
2 ). In Section 5.4.1

we saw that when v = 2 the size of the list returned by Algorithm 4 is at
most `q, and therefore one might conjecture that the same list size bound
should hold for the Hensel–lifting algorithm. This is however not the case,
as we saw in Example 5.15.

A crucial property of a list decoder is that its running time is polynomial in
the code length (see Definition 1.1). In the following proposition we show
that if v ≤ 2 and the Hensel–lifting algorithm is used in the root-finding step,
then the list decoder for folded Reed–Solomon codes has this property. Thus
for v ≤ 2 this result provides an alternative to Section 5.4.1 for proving the
second item of Theorem 5.8. We will only be interested in the qualitative
result, that the running time is polynomial, and not the precise polynomial
bound. Therefore, we will only provide a rather rough complexity estimate.

Proposition 5.25. Let parameters be as in Theorem 5.23. The running time

of Λk(Q) (Algorithm 5) is polynomial in q(
`+v

v ).

Proof. Let Γ denote the recursion tree of Λk(Q). The number of nodes at
distance i from the root of Γ is equal to the number of leaves in the recursion
tree of Λi(Q). Therefore it follows from Theorem 5.23 that for i ≤ k, the

number of nodes at distance i from the root node is at most `q(
`+v

v )−`−1, and
hence the total number of nodes in Γ is at most

k · `q(`+v
v )−`−1 ≤ `q(

`+v
v )−`.

This quantity is polynomial in q(
`+v

v ) and hence the proposition will follow if
we can show that the complexity of the computations made in each node of

Γ, i.e. in the body of Algorithm 5, is also polynomial in q(
`+v

v ). Let Qi−1 be a

107



5. Folded Reed–Solomon codes

node in Γ and let Qi = (Qi−1)fi−1
be one of its child nodes. By Corollary 5.19

it holds that degtot(Qi(0,T)) ≤ degtot(Qi−1(0,T)) and furthermore from the
definition of Qi = (Qi−1)fi−1

(see Equation (5.17)) it follows that

degx(Qi(x,T)) ≤ degx(Qi−1(x,T)) + `.

Therefore, for a node Qi at distance i from the root of Γ it holds that
degtot(Qi(0,T)) ≤ ` and that

degx(Qi(x,T)) ≤ degx(Q(x,T))+ `i ≤ (`+1)(k− 1)+ `k = O (`k) . (5.38)

The number of monomials xiTj for which degw

(
xiTj

)
< ∆, that is

i + (k − 1)
v∑

h=1

jh < ∆,

is at most ∆
(

∆
k−1

)v
. Therefore Equation (5.38) gives that Qi has at most

O (`v+1k) terms. Algorithm 5 only performs computations in line 8 and 10,
and we now check that the complexity of these computations is polynomial

in q(
`+v

v ). To this end let P denote a node in Γ at distance i from the root.

• Above we saw that the total degree of P (0,T) is at most `. Hence
P (0, T, . . . , T ) has degree at most `, which means that in line 8, its roots
can be computed deterministicly in a complexity which is polynomial in
` and q, either by the algorithm in [11] or simply by exhaustive search.

• In line 10 the polynomial Pf0 must be computed for up to q different
values of f0. By Equation (5.26) we can compute Pf0 by evaluating
the Hasse–derivatives of P in the point (0, f0, . . . , f0). The number of
non-zero Hasse–derivatives is at most the number of terms in Q, and
furthermore the complexity of computing a single Hasse–derivative is at
most linear in this quantity. Hence all the Hasse–derivatives in Equa-
tion (5.26) can be computed in complexity O ((`v+1k)2). The number
of terms in a Hasse–derivative of P is at most the number of terms in P ,
and hence this quantity is O (`v+1k). Using Horner’s rule, it therefore
follows that a Hasse–derivative of P can be evaluated in (0, f0, . . . , f0)
in complexity O (`v+1k). Therefore the total complexity of line 10 is

O (
(`v+1k)2 + q · `v+1k · `v+1k

)
= O (

`2(v+1)q3
)
.

Using the above two items, we conclude that the complexity of the compu-

tations performed in a single node of Γ is polynomial in q(
`+v

v ). As argued
above, this proves the proposition.
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Remark 5.26. The result in Theorem 5.23 was discovered while preparing
this thesis. Thus we have not been able to investigate any of its consequences,
nor to make any serious attempts to weaken the assumption v ≤ 2.

5.5.2 A bound on the list size under assumptions

In the previous section we found a bound on the size of the list computed by
Λk(Q) under the assumption v ≤ 2. In this section we will derive a similar
result without limitations on v, but under certain simplifying assumptions
on the multiplicities of the zeroes of Q(x,T). These assumptions are not in
general satisfied by the polynomials computed in the interpolation step, and
thus the results below should only be considered preliminary.

Proposition 5.27. Let Q(x,T) ∈ Fq[x,T] be such that Q(0,T) 6= 0, and let
` denote the total degree of Q(0,T). Let k < q − 1, v < q and assume that
all zeroes in Q(x,T) of the form (0, f0, . . . , f0) ∈ Fv+1

q have multiplicity one.
Then it holds that

|Λk(Q)| ≤ `qv−1.

Proof. If v = 1 then the proposition follows from Theorem 5.23. In the
following we therefore assume that v ≥ 2. Let Γ denote the recursion tree of
Λk(Q), and let

Q = Q0, . . . , Qd (5.39)

be a branch in Γ beginning in the root node. Furthermore, for 1 ≤ i ≤ d
let fi−1 ∈ Fq be a zero of Qi−1(0, T, . . . , T ) such that Qi = (Qi−1)fi−1

. See
Figure 5.3 for an illustration of such a branch. The proposition will follow
from Lemma 5.22 if we can show that in the branch in Equation (5.39) there
can be at most v − 1 unconstrained nodes, and thus we aim to prove this.

Since (0, f0) = (0, f0, . . . , f0) is a zero in Q0(x,T) of multiplicity one, it
follows from Lemma 5.18 that the total degree of Q1(0,T) is at most one.
Therefore it follows from Corollary 5.19 that

degtot(Qi(0,T)) ≤ degtot(Q1(0,T)) ≤ 1,

for i ≥ 1. Assume that for some node Qi it holds that degtot(Qi(0,T)) <
1, then Qi(0, T, . . . , T ) = Qi(0,T) is a constant polynomial. Furthermore,
we have from Lemma 5.14 that Qi(0,T) is non-zero, and this implies that
the branch terminates in the node Qi, i.e. that i = d, and that Qi is not
unconstrained. Therefore, in the remainder of our argumentation we can
assume that

degtot(Qi(0,T)) = 1, (5.40)
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for 1 ≤ i ≤ d. We split the rest of the proof in two cases.

First, assume that Q0(0, T, . . . , T ) 6= 0. Lemma 5.20 in combination with
Equation (5.40) implies that among the nodes Q1, . . . , Qd there can be at
most

(
1+v−1

v−1

)−1 = v−1 unconstrained nodes. Since Q0 is not unconstrained,
this proves the lemma in this case.

Next, assume that Q0(0, T, . . . , T ) = 0. In this case it follows from the chain
rule that we have

0 = H(1)
T (Q0(0, T, . . . , T )) =

v∑

h=1

H(1)
Th

(Q0) (0, T, . . . , T ),

and hence
v∑

h=1

H(1)
Th

(Q0) (0, f0) = 0. (5.41)

By Equation (5.40) the branch Q1, . . . , Qd is exactly of the type considered
in the proof of Lemma 5.20. Therefore we can argue in the same way as in
that proof, to get that for 1 ≤ i < d, (0, fi) is a zero of multiplicity one in
Qi(0,T). Therefore, if we specialize Equation (5.31) to our current setting,
we get that

H(1)
Th

(Qi) (0, fi) = αi(h−1)H(1)
Th

(Q0) (0, f0), (5.42)

for 1 ≤ i ≤ d and 1 ≤ h ≤ v. Now assume that along the branch
Q1, . . . , Qd, there are v − 1 indices 1 ≤ i1 < i2 < · · · < iv−1 ≤ d such
that Qiu(0, T, . . . , T ) = 0 for 1 ≤ u ≤ v − 1. A necessary condition for
the polynomial Qiu(0, T, . . . , T ) to vanish, is that coefficients to T1, . . . , Tv in
Qiu(0,T) sum to zero. By the equations (5.41) and (5.42) this means that
the vector (

H(1)
Th

(Q) (0, f0)
)

h=1,...,v
∈ Fv

q ,

must be an element in the right kernel of the following matrix

A =




1 1 1 1
1 αi1 · · · αi1(v−1)

...
...

. . .
...

1 αiv−1 · · · αiv−1(v−1)


 .

Since i1 < i2 < . . . < iv−1 ≤ k < q − 1 and v < q, we have that A is a

non-singular Vandermonde matrix. This implies that H(1)
Th

(Q) (0, f0) = 0, for
1 ≤ h ≤ v. Since we assumed (0, f0) to be a zero of multiplicity one in Q(x,T)
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we therefore get that H(1)
x (Q) (0, f0) 6= 0. Furthermore, by Lemma 5.18 it

follows that

Q1(0,T) = H(1)
x (Q) (0, f0) +

v∑

h=1

αh−1H(1)
Th

(Q) (0, f0)Th = H(1)
x (Q) (0, f0),

and hence Q1(0,T) is a non-zero constant polynomial. This means that
the branch Q1, . . . , Qd terminates at Q1, i.e. that d = 1, and also that Q1

is not unconstrained. This contradicts our assumption of v − 1 ≥ 1 un-
constrained nodes in the branch Q1, . . . , Qd, and therefore we conclude that
among Q1, . . . , Qd, at most v − 2 nodes are unconstrained. This means that
in the full branch Q0, . . . , Qd there can be at most v−1 unconstrained nodes,
and this proves the proposition.

The polynomial Q(x, T1, T2) from Example 5.15 is an element in the ideal
〈x, T1 − T2〉r+1 and hence any zero in this polynomial of the form (0, f0, f0),
is in fact a zero of multiplicity at least r + 1. Therefore, Proposition 5.27
does not apply to this polynomial, and in fact we saw in Example 5.15 that
|Λk(Q)| > `q. Therefore the assumption in the above proposition that any
zero of the form (0, f0) in Q(x,T) is of multiplicity one, can not be removed.

Remark 5.28. In algebraic-geometric language the polynomial Qf0 defined
in Equation (5.17) is called the blow-up of Q at the point (0, f0, . . . , f0) [32,
p. 80]. The study of blow-ups is central in the problem of desingularization
of varieties. For this reason the study of recursion trees undertaken in this
section, bears many resemblances to the study of desingularization. For a
thorough survey of the challenges of desingularization in positive character-
istic see [33, 34].

5.6 Concluding remarks

At first glance it is not so transparent what it really is that makes the folding
operation on the Reed–Solomon codes work so well. In [29] Guruswami and
Rudra argue that the folding operation reduces the number of error-patterns
that the (adversarial) channel may impose on the transmitted word, and
since this too reduces the number of error-patterns that the list decoder has
to “recognize”, the folding operation simplifies the list decoding task at the
receiver end (at the expense of a larger code alphabet). In this light the real
wonder of the folded Reed–Solomon codes is that one can actually find an
algebraic method that takes advantage of this simplification.
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In Section 5.4.1 we saw that it took an algebraic “coincidence” of two si-
multaneous properties of β, to get bounds on the list size and root-finding
complexity. When the work covered in Section 5.4 was undertaken, the initial
hope was that the Hensel–lifting approach, besides perhaps being more effi-
cient, would also be more flexible in the sense that it would be independent
of the special algebraic features of β. In particular it was the hope that the
Hensel–lifting method would reveal more insight into what properties of the
folding operation and the resulting root-relation

Q(x, f(x), f(αx), . . . , f(αv−1x)) = 0, (5.43)

that are the keys to the optimal list decodability of the folded Reed–Solomon
codes. Unfortunately it has not been possible to fully achieve this. However,
we can extract some partial results from the previous sections:

• In Theorem 5.23 we found a list size bound that is polynomial in the
code length, for the special case v ≤ 2. Furthermore, in Proposi-
tion 5.27 we saw that under certain non-singularity assumptions on
the interpolation polynomial, it is also possible to obtain polynomial
list size bounds.

We believe that the techniques used in the proofs of these results may
be used to derive list size bounds under weaker assumptions and that
this will be an interesting starting point for future work on the Hensel–
lifting algorithm.

• In the proofs of Theorem 5.23 and Proposition 5.27 we crucially relied
on the fact that the order of α (in the group F∗q) is larger than k. It
seems that the large order of α is an important property of the root-
relation (5.43).

• In Example 5.15 we saw that any general bound on the size of the
list computed with the Hensel–lifting algorithm, must be strictly larger
than `qv−1.

We conclude with a remark on the alphabet size of folded Reed–Solomon
codes. A disadvantage of folded Reed–Solomon codes is that their alphabets
are very large for long codes. In [26] an attempt to deal with this fact is made.
In the paper, the folding operation described in Section 5.1.2 is generalized
to an operation on a special class of algebraic-geometry codes, defined over
cyclotomic function fields with cyclic Galois groups. For a fixed alphabet size,
the folded algebraic-geometry codes allow for longer codes, than folded Reed–
Solomon codes. Thus the folded algebraic-geometry codes are less affected
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5. Folded Reed–Solomon codes

by the large alphabet-problem. However, the larger code length is achieved
at cost of an extra layer of technicality, and since implementation of folded
Reed–Solomon codes already seems a difficult task, practical realizations of
folded algebraic-geometry codes remain an open challenge.
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Chapter 6

Summary and discussion

In this thesis we have investigated the efficiency of list decoding algorithms
based on the principles of the Guruswami–Sudan algorithm for two types of
algebraic codes, namely simple Cab codes and folded Reed–Solomon codes.
Below we summarize these investigations and the main results are empha-
sized. Furthermore, points of interest for future investigations are given.

Key-equation: In Chapter 2 we formulated a general multivariate inter-
polation problem with degree constraints, encompassing all the interpolation
problems encountered in various list decoders in later chapters. Further-
more, we reformulated the general interpolation problem as key-equations
and showed that finding a valid interpolation polynomial is equivalent to
finding a “short” vector in a module over a univariate polynomial ring. The
generality of the approach allows for a number of conclusions:

• The derived key-equations contain the key-equations for various alge-
braic codes known in the literature, as special cases. Therefore the
results in Chapter 2 may be taken as a unified view on key-equations.
For instance, at first glance the key-equations of Lee and O’Sullivan
[43] and those of Augot and Zeh [4], bears little resemblance. However,
we saw that in the light of our derivations, they in fact only differ by a
single rewriting.

• We saw that the re-encoding technique of Ahmed, Kötter, Ma and
Vardy [39], can be naturally understood in the language of our key-
equations.

In our derivations of the key-equations, it was necessary to make certain
assumptions on the interpolation points. Although these assumptions seem

115
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to be an integral part of the derivations, it will be interesting to investigate
whether key-equations can be infered under more relaxed assumptions.

The short-basis algorithm: In Chapter 3 we described the short-basis
algorithm. This is a general algorithm which uses a divide–and–conquer ap-
proach to compute “short” bases of modules over a univariate polynomial
ring, when the shortness is measured with respect to weighted degree. We
saw that the algorithm can also be used to compute Gröbner bases of mod-
ules over a univariate polynomial ring with respect to term orders extending
weighted degree.

We gave a detailed analysis of the short-basis algorithm and its asymptotic
performance, and we found that it is highly efficient for modules defined by
a basis of high weighted degree. This result is central to the developments
in Chapter 4 since the interpolation algorithm described there, derives its
efficiency directly from that of the the short-basis algorithm.

Multivariate polynomial interpolation: In Chapter 4 we gave an algo-
rithm for solving the general interpolation problem formulated in Chapter 2.
The algorithm builds on the key-equations derived in Chapter 2 and its key
ingredient is the short-basis algorithm from Chapter 3. We applied the re-
sulting interpolation algorithm to the interpolation step of the Guruswami–
Sudan list decoding algorithm for simple Cab codes. From this the following
results are derived:

• An efficient algorithm for the interpolation step in the Guruswami–
Sudan list decoding algorithm for Reed–Solomon codes, is obtained.
The asymptotic complexity of this algorithm is

O (
`5n log2(`n) log log(`n)

)
.

This compares favourably to other algorithms known in the literature.

• Furthermore, we obtained an efficient algorithm for the interpolation
step in the Guruswami–Sudan list decoding algorithm for Hermitian
codes. The asymptotic complexity of this algorithm is

O (
`5n2 log2(`n) log log(`n)

)
,

which is lower than the complexity of previously known algorithms.
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We discussed the challenges of realizing the theoretical efficiency of the in-
terpolation algorithm in practical implementations. From this discussion we
conclude that:

• To get an efficient implementation of the interpolation algorithm it is
crucial to have an efficient implementation of the short-basis algorithm.

• To obtain an efficient implementation of the short-basis algorithm it
is necessary to use a hybrid of the short-basis algorithm and ordinary
Gaussian elimination. In Section 4.2.3 we demonstrated that such a
hybrid improves the practical performance of the short-basis algorithm
significantly.

• To obtain an efficient implementation of the short-basis algorithm, a
low-level implementation (e.g. in C) is necessary. The reason for this
is the need to eliminate the excess time spent on memory and data-
structure management in a high-level mathematical programming lan-
guage.

By comparison of implementations in the high-level language Magma we saw
that for large, but not unrealistic, problem instances our interpolation al-
gorithm performs considerably better than the Lee–O’Sullivan interpolation
algorithm [43]. Based on our experiments with these implementations, we
conjecture that an implementation of the interpolation algorithm in which
the above items are considered, will make it possible to achieve the efficiency
promised by the asymptotic analysis. In particular we believe that the inter-
polation algorithm is not entirely theoretical, but really an algorithm with
practical potential.

Folded Reed–Solomon codes: In Chapter 5 we described folded Reed–
Solomon codes in detail. We showed that the codes can be list decoded with
error-radius arbitrarily close to the optimal bound 1 − R, for appropriately
chosen parameters. Furthermore, we investigated the efficiency with which a
list decoder for folded Reed–Solomon codes can be implemented. From these
investigations we extract the following:

• We demonstrated that the interpolation algorithm from Chapter 4 can
be applied to efficiently handle the interpolation step in the list de-
coder for folded Reed–Solomon codes. The complexity of the resulting
algorithm is,

O (
`4v+1Nm log2(`v+1Nm) log log(`v+1Nm)

)
.
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The dependence on the code length N of this complexity is significantly
better than for the alternative linear-algebra approach. However, if
v > 1 this comes at the cost of a worse dependence on ` and v.

• We described Guruswami and Rudra’s approach to the root-finding
step [27]. The advantage of this approach is that it allows for polyno-
mial bounds (measured in the code length) on the running time of the
resulting root-finding algorithm. However, although the running time
is polynomial, we demonstrated that in practice the algorithm can be
rather time-consuming.

• We presented an alternative algorithm for the root-finding step based
on Hensel–lifting. It has not been possible to derive any general poly-
nomial guarantees on the size of the list returned by this algorithm,
nor on its running time. However, we managed to derive polynomial
bounds under certain assumptions. More precisely we showed that if
v ≤ 2 or if all roots of the form (0, f0) in the polynomial Q(x,T) given
as input to the algorithm are of multiplicity one, then the list size is
polynomial. We believe that the techniques used in the derivations of
these results provide a good starting point for future work on obtaining
general bounds on the list size of the Hensel–lifting algorithm.

• Through simulations we demonstrated that, despite the lack of general
guarantees on the Hensel–lifting algorithm’s performance, it is faster
in practice than Guruswami and Rudra’s algorithm.

The current lack of general polynomial guarantees on the running time of the
Hensel–lifting algorithm, makes it unsuitable for any theoretical applications
in list decoding. Therefore, an interesting point for future investigations is
to obtain such bounds.

The advantage of the Hensel–lifting approach is that it, besides being more
efficient, also seems to be independent of the “algebraic coincidence” de-
scribed in Section 5.4.1. The folded Reed–Solomon code’s current reliance
on these special algebraic features, makes it hard to generalize them. More-
over, this reliance even makes it hard to fully grasp precisely what properties
of the folding operations are the keys to the folded codes optimal list decod-
ability. A general bound on the running time of the Hensel–lifting algorithm
(or more precisely its proof) will necessarily reveal insight into this question.
This is another, and important, reason to invest further efforts into bounding
the list size and running time of the Hensel–lifting algorithm.
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Appendix A

Complexity analysis of
Algorithm 3

In this appendix we derive two auxiliary results to facilitate the complexity
analysis of of Algorithm 3 in Section 4.1. In Section A.1 we will analyse the
complexity of computing the matrix Bs,`(R, E) and in Section A.2 a bound
on degw̃ (Bs,`(R, E)) is derived. These two results are central in the proof of
Theorem 4.2.

A.1 The complexity of computing Bs,`(R, E)

In this section we analyse the complexity of setting up Bs,`(R, E) in line 2
of Algorithm 3. Let (P,Y, s, `,w, ∆) be the interpolation problem that Al-
gorithm 3 receives as input. In the following we will let this input be fixed.

Recall that we assume that the interpolation problem, is defined over a simple
Cab curve C. We will let all notation regarding C be as in Section 2.3, and
in particular we will let F = F (X1, X2) denote the polynomial defining the
curve.

In Section 2.4.1 we saw that an element A ∈ R can be written uniquely as
A =

∑γ−1
i=0 ai(x1)x

i
2. In the following we will refer to such a representation of

A, as its normal form modulo F , or simply its normal form, and denote it by

A mod F =

γ−1∑
i=0

ai(x1)x
i
2.

We begin with a lemma showing how the vector R of Lagrange interpolation
polynomials from Theorem 2.12, can be found efficiently.
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Lemma A.1. There exists R ∈ Rv such that:

• Rj(Pi) = yij for 1 ≤ i ≤ n and 1 ≤ j ≤ v.

• degx1
(Rj) < N and degw (Rj) ≤ γ(N + δ) for 1 ≤ j ≤ v.

• R can be computed in time O (vn(γ + N)).

Proof. We use the notation of places in Fq(C) from Section 2.1.1. Thus we
let Q1, . . . , QN denote the places in S, and we let Pi,1, . . . , Pi,γ be the places
in Fq(C) lying above Qi. For each 1 ≤ i ≤ N let

Li(x1) =
∏

h=1,...,N

h6=i

(x1 − x1(Qh)) ·
∏

h=1,...,N

h6=i

(x1(Qi)− x1(Qh))
−1.

Furthermore, for 1 ≤ i ≤ N and 1 ≤ j ≤ γ let

Ki,j(x2) =
∏

h=1,...,γ

h6=j

(x2 − x2(Pi,h)) ·
∏

h=1,...,γ

h6=j

(x2(Pi,j)− x2(Pi,h))
−1.

All the above polynomials do not depend on the received word, and hence
we may assume them to be precomputed. We let the interpolation values in
Y be indexed by the places Pi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ γ, such that

Y =
(
yP1,1 , . . . ,yP1,γ ; · · · ;yPN,1

, . . . ,yPN,γ

)
,

where each yPi,j
= (yPi,j ,1, . . . , yPi,j ,v) is an element of Fv

q . We can then get
the desired R = (R1, . . . , Rv) by letting

Rb =
N∑

i=1

Li(x1)

(
γ∑

j=1

yPi,j ,bKi,j(x2)

)
. (A.1)

Note that the weighted degree of Rb can be bounded by

degw (R) ≤ max {degw (LiKi,j) | 1 ≤ i ≤ N, 1 ≤ j ≤ γ} ≤ γN + δγ,

where the last equality follows since by Proposition 2.16, −vP∞ (x1) = γ and
−vP∞ (x2) = δ. This proves the first claim of the lemma. Computing the
polynomials (in x2) in the parentheses in Equation (A.1) can be done by
taking linear combinations of known polynomials, and thus the complexity
of this is

O
(

N∑
i=1

γ∑
j=1

degx2
Ki,j

)
= O (

Nγ2
)

= O (nγ) .
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Finally, to compute Rb we need to multiply each Li into one of the paren-
theses in Equation (A.1). We have that Li is a polynomial in Fq[x1] and the
polynomial in the parenthesis into which Li is multiplied, is a polynomial
in Fq[x2]. Therefore multiplying with a single Li into a parenthesis, can be
done in complexity

O (
#terms in parenthesis · degx1

Li

)
= O (γN) .

Therefore the total complexity of computing Rb from the expression in Equa-
tion (A.1) is O (nγ + γN2) = O (n(γ + N)). Hence R can be computed in
complexity O (vn(γ + N)).

We will also need the following lemma for bounding the complexity of com-
puting a bivariate polynomial product and its normal form modulo F .

Lemma A.2. Let A and B be polynomials in Fq[x1, x2] and let δA = degx1
A,

δB = degx1
B, γA = degx2

A and γB = degx2
B. The normal form of the

product AB modulo F can be computed in time,

O ((γA + γB − γ + 1)γM (δA + δB + (γA + γB)δ) + M ((δA + δB)(γA + γB))) .

Furthermore, the x1-degree of the result is at most

δA + δB + (γA + γB − γ + 1)δ.

Proof. By [20, p. 244] the product AB can be computed in complexity

O (M ((δA + δB)(γA + γB))) . (A.2)

Now, for each γ − 1 ≤ j ≤ γA + γB, let

C(j)(x1, x2) =

j∑
i=0

c
(j)
i (x1)x

i
2,

denote the polynomial of x2-degree at most j, obtained by eliminating powers
of x2 higher than j in AB, using the relation F (x1, x2) = 0. With this
notation C(γ−1) is the polynomial we are interested in computing. Note that
C(γA+γB) = AB and that

deg c
(γA+γB)
i ≤ δA + δB, (A.3)
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for all i. We can write the polynomial defining the curve C, as F (x1, x2) =∑γ
i=0 fi(x1)x

i
2, and without loss of generality we may assume that fγ = 1.

To eliminate xj
2 in C(j), one computes

C(j−1) = C(j)(x1, x2)− c
(j)
j (x1)x

j−γ
2 F (x1, x2)

=

j−γ−1∑
i=0

c
(j)
i (x1)x

i
2 +

j∑
i=j−γ

(
c
(j)
i (x1)− c

(j)
j (x1)fi−j+γ(x1)

)
xi

2

=

j−γ−1∑
i=0

c
(j)
i (x1)x

i
2 +

j−1∑
i=j−γ

(
c
(j)
i (x1)− c

(j)
j (x1)fi−j+γ(x1)

)
xi

2. (A.4)

From this expression it follows that

deg c
(j−1)
i ≤ max{deg c

(j)
i , deg c

(j)
j + δ},

and by iterating this and using (A.3), we get

deg c
(j)
i ≤ δA + δB + (γA + γB − j)δ. (A.5)

This proves the second claim of the lemma. From (A.5) it follows that the
(univariate) polynomial products in (A.4) can be computed in time

O
(

j−1∑
i=j−γ

M
(
deg c

(j)
j + δ

))
= O (γM (δA + δB + (γA + γB)δ)) ,

and this is then also the complexity of computing C(j−1) from C(j). Hence
C(γ−1) can be computed from C(γA+γB) in time

O ((γA + γB − γ)γM (δA + δB + (γA + γB)δ)) .

This proves the lemma.

By definition of A`(−R)Ds,`(E), its entries consist of products of powers of
the polynomials R1, . . . , Rv and E (possibly multiplied by a binomial coeffi-
cient or by −1). With Lemma A.2 at hand we can now estimate the com-
plexity of computing the normal forms of all the entries of A`(−R)Ds,`(E).

Lemma A.3. The complexity of computing the normal forms of EiRj modulo
F for all pairs (i, j) such that j ∈ ∆` and 0 ≤ i ≤ max(0, s−∑v

h=1 jh), is

O (
γ2s`vM (`(γδ + N))

)
.

Furthermore,

degx1

(
EiRj mod F

) ≤ iN + ((γ − 1)δ + N)
v∑

h=1

jh.
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Proof. The polynomials E, E2, . . . , Es do not depend on the input, and hence
they can be precomputed. By definition E is an element of Fq[x1] and hence
E mod F = E. Furthermore,

degx1
Ei ≤ iN. (A.6)

Let (i, j) be such that 0 ≤ i ≤ s and i +
∑v

h=1 jh ≤ `. Furthermore, assume
that some index ju is positive. Then the normal form of EiRj modulo F can
be computed from the normal form of EiRj/Ru, by first multiplying by Ru

and then reducing modulo F . By Lemma A.2 it holds that

degx1

(
EiRj mod F

) ≤ degx1

(
EiRj/Ru mod F

)
+ degx1

Ru + (γ − 1)δ

≤ degx1

(
EiRj/Ru mod F

)
+ N + (γ − 1)δ,

and using this together with (A.6) we get

degx1

(
EiRj mod F

) ≤ iN +((γ−1)δ +N)
v∑

h=1

jh ≤ `((γ−1)δ +N). (A.7)

This proves the second claim of the lemma. To prove the first claim, note
that by Lemma A.2 one can compute the normal form of EiRj from that of
EiRj/Ru in time

O (
γ2M

(
degx1

(
EiRj/Ru mod F

)
+ N + γδ

)

+M
(
γ(degx1

(
EiRj/Ru mod F

)
+ N)

))
.

Using the last inequality in Equation (A.7) the above complexity can further
be estimated by

O (
γ2M (`(γδ + N)) + M (γ`(γδ + N))

)
= O (

γ2M (`(γδ + N))
)
,

where the last equality follows since the function M (·) is at most quadratic.
Since |∆`| ≤ `v this means that all the normal forms of all the polynomials
EiRj for j ∈ ∆` and i ≤ max(0, s−∑

h jh) can be computed in time at most

O (
γ2s`vM (`(γδ + N))

)
.

We are now ready to derive the desired bound on the complexity of computing
Bs,`(R, E).
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Lemma A.4. The complexity of computing the matrix Bs,`(R, E) from Def-
inition 2.21, is

O (
`2vγM

(
(`(γδ + N) + γ2δ)γ

))
.

Proof. In the proof we will for notational simplicity let A denote the matrix
A`(−R)Ds,`(E). We will split the computation of Bs,`(R, E) in two steps.
First we will compute the normal form of [A]j′,j for all j′, j ∈ ∆`. Next, for
each pair (j′, j) and for each 0 ≤ i ≤ γ−1 we will compute the normal form of
xi

2 ·[A]j′,j. The coefficients to x2 in these normal forms will then, by definition
be the sought entries in Bs,`(R, E). We consider each step separately below:

1. By definition of A its entries are all of the form EiRj with j ∈ ∆` and
0 ≤ i ≤ max(0, s−∑v

h=1 jh), possibly multiplied by a binomial coeffi-
cient or by −1. By Lemma A.3 this means that the normal forms of
the entries of A can computed in complexity O (γ2s`vM (`(γδ + N))).

2. For 1 ≤ i ≤ γ − 1 the normal form of xi
2 · [A]j′,j can be computed from

that of xi−1
2 · [A]j′,j. By Lemma A.2 this can be accomplished in time

O (
γM

(
degx1

(xi−1
2 [A]j′,j) + γδ

)
+ M

(
γ degx1

(xi−1
2 [A]j′,j)

))
,

and furthermore it holds that

degx1
(xi

2[A]j′,j) ≤ degx1
(xi−1

2 [A]j′,j) + 1 + (γ − 1)δ.

By iterating this and using Equation (A.7) it follows that

degx1
(xi

2[A]j′,j) ≤ degx1
([A]j′,j) + i(1 + (γ − 1)δ)

≤ `((γ − 1)δ + N) + i(1 + (γ − 1)δ)

= O (
`(γδ + N) + γ2δ

)
, (A.8)

and therefore the total complexity of computing all the normal forms
xi

2[A]j′,j for 1 ≤ i ≤ γ−1 and j′, j ∈ ∆` from the normal forms of [A]j′,j
can be bounded by

γ−1∑
i=1

∑

j′∈∆`

∑

j∈∆`

O (
γM

(
degx1

(xi−1
2 [A]j′,j) + γδ

)
+ M

(
degx1

(xi−1
2 [A]j′,j)γ

))
.

Using Equation (A.8) and the fact that |∆`| ≤ `v we can further bound
this quantity by

O (
`2vγ

[
γM

(
`(γδ + N) + γ2δ) + γδ

)
+ M

(
(`(γδ + N) + γ2δ)γ

)])

= O (
`2vγM

(
(`(γδ + N) + γ2δ)γ

))
,

where the last equality follows since by Equation (3.17) we have M (γt) ≥
γM (t).
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Using the fact that s ≤ ` together with Equation (3.17) it follows that the
complexity of step 2 dominates the complexity of step 1. Therefore the total
complexity of setting up Bs,`(R, E) is

O (
`2vγM

(
(`(γδ + N) + γ2δ)γ

))
.

A.2 An estimate of degw̃ (Bs,`(R, E))

In the proof of Theorem 4.2, a bound on degw̃ (Bs,`(R, E)) is needed. In the
following lemma we provide such a bound.

Lemma A.5. Let notation be as in Theorem 4.2, and let w̃ = ρ(w). Assume
that Bs,`(R, E) has been set up using the vector R from Lemma A.1, so that
degw (Rj) ≤ γ(N + δ) for 1 ≤ j ≤ v. Furthermore, assume that

wj ≤ degw (Rj) , for 1 ≤ j ≤ v.

Then it holds that

degw̃ (Bs,`(R, E)) = O (
`v+1γ2(N + δ)

)
.

Proof. We begin the proof by bounding the weighted degree of a single
column in Bs,`(R, E). From Proposition 2.24 and from the definition of
Bs,`(R, E), we have that the weighted degree of the (i, j)-th column of this
matrix is

degw̃

(
(Bs,`(R, E))(i,j)

)
= degρ(w)

(
ρ

(
xi

2 · (A`(−R)Ds,`(E))j
))

= degw

(
xi

2 · (A`(−R)Ds,`(E))j
)
. (A.9)

By definition, the j′-th entry of the j-th column of A`(−R)Ds,`(E) is equal
to the coefficient to Tj′ in Emax(0,s−Pv

h=1 jh)(T−R)j. Therefore,

degw ((A`(−R)Ds,`(E))j) = degw

(
Emax(0,s−Pv

h=1 jh)(T−R)j
)

.

By assumption we have wj ≤ degw (Rj), which implies that

degw

(
(T−R)j

)
=

v∑

h=1

jh degw (Rh) . (A.10)
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Furthermore, by definition of E we have that degw (E) = −vP∞ (E) = n.
Hence by Equation (A.9) we get

degw̃ ((Bs,`(R, E))i,j) = degw

(
xi

2 · (A`(−R)Ds,`(E))j
)

= iδ + n max

(
0, s−

v∑

h=1

jh

)
+

v∑

h=1

jh degw (Rh) .

Summing over all the columns of Bs,`(R, E) we therefore get,

degw̃ (Bs,`(R, E)) =

γ−1∑
i=0

∑

j∈∆`

degw̃ ((Bs,`(R, E))i,j)

≤ γ`v (γδ + ns + `γ(N + δ))

= O (
`v+1γ2(N + δ)

)
,

where the inequality follows from the assumption degw (Rj) ≤ γ(N + δ) and
the last equality follows since ns ≤ `γN . This proves the lemma.
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