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Preface

This thesis was prepared at Informatics Mathematical Modelling, at the Techni-
cal University of Denmark in partial fulfillment of the requirements for acquiring
the Ph.D. degree in engineering.

The topic of the Ph.D. thesis is Pharmacokinetic/Pharmacodynamic modelling
with a particular focus on stochastic differential equations. Insulin secretion
and Interleukin-21 development was used as case studies.

The thesis consists of a summary report and a collection of five research pa-
pers written during the Ph.D. study and published/submitted to international
journals.

Lyngby, June 2006

Rune Viig Overgaard
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Abstract

Mathematical models are used for many different purposes during the devel-
opment of new drugs. These models can for example help to figure out how
much medicine should be given and how often it should be given in order to
obtain the desired effect. In other words, the models can help to create the
users manual for a new medicinal product. These models are called Pharma-
cokinetic/Pharmacodynamic (PK/PD) models, where the PK part typically de-
scribes the concentration of drug in the body, and the PD part describes the
effect of the drug. If one, for example, develop a PK/PD model for aspirin, the
PK part could describe the concentration of aspirin in the blood after you take
the tablet. Initially the concentration will increase gradually, and at some point
the concentration will begin to decline. The PD part could for example describe
the level of pain that start of high, begin to decrease after you take the tablet,
and presumably increase again when the amount of aspirin has been eliminated
from the body. The typical PK/PD model can be created based on data from
an existing experiment, e.g. measurements of concentration and pain relieve at
various time points. These models can then simulate the results of new exper-
iments and thereby quickly and inexpensively investigate, e.g. whether aspirin
should be administered two or three times daily to obtain the desired effect.
The results will naturally be tested in new experiments before the users manual
can be accepted for a new medicinal product.

In the present project, new methods are investigated for the formulation and
estimation of these mathematical PK/PD models. Specifically, it is investigated
whether stochastic differential equations (SDEs) may improve PK/PD models
and PK/PD model results. SDEs can be understood as differential equations
where the solution is not completely predictable. This randomness could occur,
e.g. if there are random variations in the speed with which the drug is removed
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from the body. In our previous example, one could imagine that this would lead
to small fluctuations in the concentration of aspirin in the blood. Biological
systems in general are often composed of numerous sub-processes that cannot
be expected to perform completely identical from occasion to occasion or from
minute to minute. In this way random fluctuations can occur, also because of
perturbations from processes that are not modelled, and it is argued that SDEs
provide a more natural description of these systems than ordinary differential
equations.

During the course of the present project, several models with many different
purposes have been developed. These models are developed within two main
subjects, insulin secretion and development of IL-21 as a new anti cancer drug.
We find that SDEs are useful in many aspects of PK/PD modelling, both for
insulin secretion modelling and for models used during the development of IL-
21. Most importantly, SDEs could improve the models ability to execute their
respective main purposes, to describe, predict, or increase the understanding of
the system.



Resumé

Matematiske modeller bliver brugt p̊a mange forskellige m̊ader igennem ud-
viklingen af nye lægemidler. Disse modeller kan for eksempel hjælpe med
at finde ud af hvor meget medicin man skal give og hvor ofte det skal gives
for at opn̊a den ønskede effekt. Med andre ord kan modellerne hjælpe til
at udarbejde brugermanualen til et nyt lægemiddel. Disse modeller kaldes
Farmakokinetik/Farmakodynamik (PK/PD) modeller, hvor PK delen typisk
beskriver koncentrationen af lægemiddel i kroppen, og PD delen beskriver læge-
midlets effekt. Hvis man for eksempel laver en PK/PD model for aspirin,
kunne PK delen beskrive koncentrationen af aspirin i blodet efter man tager en
tablet. Først vil koncentrationen stige gradueret, og lidt senere vil stigningen
ophøre s̊a koncentrationen falder igen. PD delen kunne for eksempel beskrive
smerteniveauet som starter højt, falder lidt efter man har taget tabletten og
formodentlig øges igen efter der ikke er mere aspirin tilbage i kroppen. En
typisk PK/PD model kan laves p̊a baggrund af data fra et eksisterende forsøg,
fx m̊alinger af koncentration og af den smertestillende effekt. Modellerne kan
derefter simulere resultatet af nye forsøg, og p̊a den m̊ade kan man hurtigt og
billigt undersøge, fx om aspirin skal gives to eller tre gange om dagen for at
opn̊a den ønskede effekt. Disse resultater skal naturligvis testes i nye forsøg før
man kan vedtage brugermanualen for et givet lægemiddel.

I dette projekt undersøges nye metoder til formulering og estimering af disse
matematiske PK/PD modeller. Specifikt undersøges hvorvidt stokastiske dif-
ferentialligninger (SDEer) kan forbedre PK/PD modellerne og deres resultater.
SDEer kan forst̊as som differentialligninger hvor løsningen ikke er fuldstændig
forudsigelig. S̊adanne tilfældigheder kunne opst̊a, for eksempel hvis der er til-
fældige variationer i den hastighed hvormed lægemidlet fjernes fra blodet. For
vores tidligere eksempel kunne man forestille sig at dette vil give anledning til
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små fluktuationer i koncentrationen af aspirin i blodet. For biologiske systemer
generelt, indg̊ar der oftest mange sm̊a delprocesser der ikke kan forventes at
være nøjagtig ens fra gang til gang eller fra minut til minut. Der kan s̊aledes
opst̊a tilfældige fluktuationer, ogs̊a p̊a grund af perturbationer fra processer der
ikke er modelleret, og vi vil argumentere for at SDEer giver en mere naturlig
beskrivelse af disse systemer end normale differentialligninger. En del af dette
projekt har best̊aet i at formulere, implementere, og teste en ny metode der
tillader brug af SDEer uden at g̊a p̊a kompromis med de traditionelle metoder
der bliver brugt indenfor PK/PD modellering.

Undervejs i dette projekt er der udviklet mange forskellige modeller med flere
forskellige metoder til mange forskellige formål. Disse modeller er udviklet
indenfor to hovedomr̊ader, insulinsekretion, og udvikling af IL-21 som et nyt
lægemiddel indenfor kræftbehandling. Vi finder at SDEer er nyttige i mange
aspekter af PK/PD modellering, b̊ade for insulin sekretions modeller, og for
modeller brugt i udviklingen af IL-21. Vigtigst er det at SDEer kunne forbedre
modellernes evne til at udfører deres respektive hovedform̊al, at beskrive, forudsige,
eller øge forst̊aelsen af systemet.
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Chapter 1

Introduction

Pharmacokinetic/pharmacodynamic (PK/PD) modelling is a promising disci-
pline within drug development that is hoped to increase speed and reduce cost of
bringing new drugs to market, ultimately leading to faster and cheaper medicines
for the consumer. PK/PD modelling techniques are used, not only for drug de-
velopment, but also to increase knowledge within physiology, pathophysiology,
and biosciences in general.

The present project explores the possibility to improve standard PK/PD mod-
elling techniques by bridging data driven modelling with more theoretical tech-
niques. PK/PD models are most often based on ordinary differential equations
(ODEs), where theoretical modelling components such as physiological and bio-
physical mechanisms may be implemented to improve the model quality. In the
present project we shall pursue a modelling approach where ODEs are extended
to stochastic differential equations (SDEs), in order to approach data driven
methods that are believed to enable a more rigorous framework for statistical
inference and model building. A main effort has been to formulate and exem-
plify the effects of SDEs in PK/PD models in terms of actual model performance
criteria such as simulation properties, specific predictive performance criteria,
parameter estimates, and diagnostic plots.

Two major areas of application have been addressed, modelling of insulin secre-
tion and modelling during interleukin-21 (IL-21) development. Insulin secretion
models are based on biophysical as well as semi-empirical techniques, with ap-
plications that includes 1) an increased understanding of beta cell physiology,
2) a concise description of beta cell function e.g. for diagnosis, 3) control of
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an artificial pancreas, and 4) development of anti-diabetic drugs. IL-21 is a re-
cently discovered cytokine that is currently evaluated as an anti-cancer therapy
in early clinical development. The fascinating biology of IL-21 includes several
markers that with benefit can be analyzed using PK/PD models, and thereby
provide a realistic scenario to test novel modelling techniques.

The specific contributions of the present report include,

1. A new model for insulin secretion is presented to bridge current biophysical
and more empirical modelling techniques, and thereby contribute to the
purposes of both model types.

2. Several models are developed to describe, predict, and understand the
effects of IL-21, and thereby contribute to the drug development program.

3. A new estimation method for non-linear mixed-effects models based on
SDEs is formulated, implemented, and investigated. This method provides
a realistic setting for PK/PD models based on SDEs, which was required
for further investigations.

4. A comparison of PK/PD models based on ODEs and SDEs is conducted.
This included several different models that are based on different principles
and built with different purposes.

The remaining thesis is structured as follows: Chapter 2 aim to explain and
motivate PK/PD modelling as a new scientific discipline within drug develop-
ment. Basic PK/PD concepts and methods are reviewed. Chapter 3 describes
the present status of PK/PD modelling during IL-21 development by summa-
rizing the different models and how they can be used. A brief introduction of
IL-21 biology and the potential role of PK/PD modelling during development of
cancer treatment is provided. Chapter 4 discuss the purpose of insulin secretion
modelling, emphasizing the potential roles of the proposed new insulin secretion
model. Relevant aspects of the beta-cell physiology and typical beta cell func-
tion tests are summarized. Chapter 5 introduces and discusses the proposed
algorithm for mixed-effects models based on SDEs in relation to a few exist-
ing parameter estimation methods for 1) SDEs and 2) non-linear mixed-effects
models. A short introduction to the interesting mathematical aspects of SDEs
and their application in other areas of research, is provided. Chapter 6 aim to
illustrate the specific benefits of SDEs in PK/PD models for 1) simulation prop-
erties, 2) specific predictive performance criteria, 3) parameter estimates, and
4) diagnostic plots. This is carried out through a series of comparisons between
ODE and SDE models. A short review of the application of SDEs in PK/PD
modelling and other biosciences is provided.



Chapter 2

PK/PD modelling

Strictly speaking, the term PK/PD model refers to a mathematical model for
the pharmacokinetic (PK) and pharmacodynamic (PD) properties of a drug, as
well as a causal link from PK to PD. In the present thesis, however, we shall use
the common and more loose definition that includes also models dealing only
with PK or only PD, and even physiologic models that contain no drugs but
uses PK/PD methodology. By this definition, all models treated in the present
thesis can be considered PK/PD models, also models of insulin secretion where
no drugs are included. The following chapter aim to elaborate on the PK/PD
concepts, the PK/PD methodology, and the use of PK/PD models.

2.1 Pharmacokinetics

Pharmacokinetics describes the relationship between drug administration and
drug concentrations at various sites in the body as a function of time. It is a
scientific discipline concerned with the absorption, distribution, and elimination
of drugs [105].

• Absorption describes the, most often irreversible, movement of drugs
from the site of administration to the systemic circulation. Models typ-
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ically use an absorption compartment representing for example the gas-
trointestinal tract for oral administration, or a subcutaneous depot for sub-
cutaneous administration. The rate of absorption is typically described as
either constant (zero’th order) or proportional (first order) to the amount
in the absorption compartment, but more complicated models can and
have been applied.

• Distribution is the reversible movement of drug from one location to an-
other within the body. PK models typically use a central compartment to
represent the systemic circulation and distribution compartments to rep-
resent, e.g. tissue or intracellular space. The distribution processes is fre-
quently modelled by diffusion and convection principles that leads to linear
rate constants between the different compartments, whereas more compli-
cated distribution mechanisms could include for example target mediated
PK [78], for which drugs may distribute onto the drug target, generally a
saturable process.

• Elimination is the irreversible removal of drug from the body, either
by excretion e.g. via the kidneys, or by metabolism e.g. by enzymes in
the liver. Elimination, is typically modelled to be proportional to the
concentration in the systemic circulation, or saturable via the Michaelis-
Menton equation, corresponding to limited elimination pathways.

Paper B involves a simulation study of a one compartment model with first
order elimination. The scientific contribution of this work, however, is not on
the pharmacokinetics, but on the statistical methods to be explored in Chapter
5 and 6.

2.2 Pharmacodynamics

Pharmacodynamics concerns the effect of a drug on the body. Many drugs
induce pleiotropic effects at a variety of sites in the body, where each effect
could start a chain of pharmacodynamic activity or directly lead to physiological
counter regulatory mechanisms, making PD modelling a potentially difficult
task. In opposition to PK, the possible PD mechanisms are numerous, making
classification according to mechanisms a strenuous task, and we shall simply
refer to a classification according to physiological precision that is described in
the following section.

The present thesis involves PD models for the effect of IL-21 on Red Blood Cells
(Paper D) and on temperature regulation (Paper E). If glucose is seen as the
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drug, the intravenous and the oral glucose tolerance tests can be seen as PK/PD
experiments, and two papers consider the pharmacodynamic effects of glucose
on insulin secretion (Paper A and Paper C).

2.3 PK/PD models

PK/PD models typically involve a description from dosing to exposure (e.g.
plasma concentration) to clinically relevant effect, possibly with intermediate
effect variables such as biomarkers to support the link between concentration
and effect. They can usually be categorized according to the level of physio-
logical detail needed for the chosen application, i.e. empirical, mechanistic, or
physiological.

• Empirical models are exclusively based on data, and disregard the un-
derlying physiology and mechanisms involved in the response. The effect
compartment model, see e.g. [43], is most often used as an empirical model
for the delay between dose or concentration to drug effect. Empirical mod-
els are simple and descriptive, but the failure to include knowledge about
the system constitute a high risk for erroneous predictions when extrapo-
lating beyond the data used for estimation.

• Physiological models aim to include a complete description of the physi-
ological system where all parameter values and mechanisms are consistent
with findings from basic experimental research. The main disadvantage is
a high dependence upon knowledge of the drug and physiological mecha-
nism, and that parameter estimation is usually made difficult by structural
unidentifiable parameters and models with a high degree of complexity.
This may limit the ability of the model to give a precise description of
available experiments and to incorporate variability in the simulation of
new trials. However, these models can with advantage be used to under-
stand the system, and for simulation (biosimulation) in situations where
no data is available, as e.g. for the first human trials or when evaluating
new drug targets.

• Mechanistic or mechanism-based models, see, e.g. [79], aim to include
the most significant physiological mechanisms, while not necessarily us-
ing parameter values that are identical to findings via basic experimental
research. By this definition, physiological models are mechanistic, but
not necessarily vice verse, and mechanistic models thereby constitute a
compromise between the level of physiological precision in physiological
and empirical models. Mechanistic models are most often simpler than
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physiological models, containing a set of descriptive parameters that can
be estimated. Since these models are based on previous data as well as
the most important physiological mechanisms, mechanistic modelling has
been the preferred approach to extrapolate beyond the data used for esti-
mation and provide us with a hypothesis for the outcome of future trials
[110]. The trend of PK/PD modelling seems to be towards more mecha-
nistic models, e.g. by approaching physiological models that can answer
questions with more certainty, also when no data is available.

For pharmacokinetics, the non-compartmental analysis (NCA) is empirical, the
usual compartment models are more mechanistic, whereas some research is put
into physiology based PK (see [12] and references therein), where the flow of
drug through all organs is described in terms of physiologically known values.

2.4 The Population PK/PD method

Population PK/PD deals with models across different populations of individuals
as defined by demographics (such as age, sex, and weight), biological information
(such as the value of biological markers), genetic information, comedications,
environmental factors, and disease states [110]. The purpose being to explain
the variation between individuals, so that dosage can be appropriately modified
if particular populations exhibit a shift in the PK or therapeutic index [129]
[121].

The population model framework consist of the following three parts: 1) A model
for individual parameters that may include relationships to covariates such as
demographics, other population factors, or even study specific factors. The pa-
rameter model typically also uses unexplained variability, e.g. inter-individual
variability (IIV) and inter-occasion variability (IOV). 2) A structural model that
depend upon the individual parameters is usually formulated by a set of differ-
ential equations or the solution thereof. It could be empirical, mechanistic, or
physiological as previously discussed. 3) A residual error model, which contain
the differences between structural model predictions and actual observations,
arising because of assay error, variability in parameters, unknown perturba-
tions, and errors in the structural model.

A consensus is arising for non-linear mixed-effects modelling, see Section 5.6, as
the preferred technique for population modelling. With this technique, all data
is modelled simultaneously, which enables the inclusion of information from one
individual to the next, and thereby also from one treatment regimen/dose level
to the next. The accumulating information obtained by many subjects treated
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in different ways enable more mechanisms to be elucidated allowing reliable
mechanistic models to be developed. For empirical models the number of nec-
essary parameters will increase, and mechanistic models will eventually become
the most parsimonious. Whereas these obvious benefits make population mod-
elling, mixed-effects techniques, and mechanistic modelling go hand in hand,
also other techniques have been widely used to investigate population data, e.g.
the standard two-stage method1.

The vast interest towards the population approach is evident, not only from
regulatory guidelines [129] [121] and position papers [110] [35] [36] [37], but
also from world wide yearly conferences on this type of modelling, e.g. PAGE
(Population Approach Group Europe), PAGANZ (Population Approach Group
in Australia & New Zealand), and ECPAG (East Coast Population Analysis
Group). One might say that the scope of population modelling with mixed-
effects techniques has grown beyond the purpose of dose adjustment because
the method lend itself naturally for modelling PK/PD data that most often
includes several individuals, possibly from different studies, possibly sparsely
sampled, and possibly with a range of different treatment schedules.

The population approach, in the form of mixed-effects modelling is used in Pa-
pers B, C, D, and E. Paper B presents the work toward an extension of the
population model, by extending the structural model from an ordinary differen-
tial equation (ODE) to a stochastic differential equation (SDE), which will be
discussed in detail in Chapter 5 and 6.

2.5 The Role of PK/PD modelling in pharma-
ceutical development

It is the aim of the drug development program, to turn chemicals into drugs;
that is, to provide the ’user’s manual’ required for their safe and efficacious use
[110]. PK/PD modelling can contribute to many aspects of this process, for
example related to the combination of information to facilitate the transition
between the different phases in development, i.e. preclinical, and clinical phase
I-IV, as presented in Figure 2.1.

It has recently been identified by the Food and Drug Administration in the
U.S. (FDA) that the pharmaceutical development process lacks behind basic
biomedical scientific innovation in speed and effectiveness [130]. Consequently

1The first stage involves separate parameter estimation for each individual, while the second
stage involves a model for these parameter estimates as a function of population covariate
information.
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Figure 2.1: Diagram of the pharmaceutical development process. PK/PD mod-
elling offers many contributions during this process, and some of these are con-
cerned with combining information to support the transition between different
phases, as marked with bullets.

development has increasingly contributed to the overall expenditure in time and
money to carrying new drugs to market2, ultimately having caused the observed
slowdown in drugs reaching patients. Scientific research directed towards phar-
maceutical development and information technology are foreseen to play a key
role in strengthening pharmaceutical development [130] [98], and PK/PD mod-
elling is identified directly to play a significant part in both of these directions.

Several initiatives have been taken to drive modelling forward to meet the needs
of drug development: 1) Pharmacometrics was recognized as a scientific disci-
pline of its own in 1982, with a special section in the journal of Pharmacoki-
netics and Biopharmaceutics. 2) Regulatory guidelines have been put forward
to facilitate industrial use of modelling [129] and [121]. 3) The European Com-
munity has sponsored the COST B15 expert committee that addresses the role
of PK/PD modelling [8], and [102]. 4) A number of independent position pa-
pers have been formulated to elaborate on the use of PK/PD modelling, see
e.g. [110], [112], [44], and [28] that in essence all advocate increased knowledge
based decisions in drug development as facilitated e.g. by PK/PD modelling.
Whereas the practical goal of drug development is to demonstrate (confirm) ef-
ficacy, a paradigm shift has been suggested to focus more on science (learning)

2In 2001, a typical drug company spend $802 million during 10 to 15 years on bringing a
new drug to market until approval by the FDA could be obtained [40].
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during early drug development [111], which may partially be driven by PK/PD
modelling.

The die is cast, and only the future will show whether drug development will
make the necessary changes for PK/PD modelling to live up to its full potential.

Of the many ways to categorize the benefits of PK/PD modelling, the gen-
eral division used e.g. in [44], is repeatedly referred to throughout this thesis.
PK/PD models can be used to describe, predict, and understand the system
under investigation.

• Describe. Mathematical models give a very concise and univocal sum-
mary of data, particularly useful when bridging knowledge from different
studies.

• Predict. Models can be used to predict/simulate the outcome of new
studies, e.g. with new dosing regimen or sampling schedules. Allometric
scaling (see [101] and references therein) and physiology based PK (see [12]
and references therein) are typically used to predict from animal to the
first human studies, whereas complete trial simulations [52] can be used to
predict the probability of success in statistically confirmatory trials by in-
cluding between-subject variability, within-subject variability, compliance
etc.

• Understand. PK/PD models can help to understand the fundamen-
tal mechanisms of the system, they being pharmacological, physiological,
pathophysiological, biochemical or something else. In deed, modelling may
help to test the consistence of competing theories for the observed effect,
as used e.g. to resolve different mechanisms of drug action, which may be
complicated by the presence of counter regulatory physiological effects.

The role of PK/PD modelling in IL-21 development shall be discussed in more
detail in Section 3.3.
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Chapter 3

PK/PD models of
interleukin-21

Interleukin-21 (IL-21) is a recently discovered cytokine [90] with antitumor ef-
fects in preclinical and in vitro models, which is currently under clinical in-
vestigations as an immunotherapeutic anti-cancer drug. Several of the PK/PD
models that were developed during the present project were motivated by the
challenges of turning this biological molecule into a pharmaceutical compound.
After a brief introduction of IL-21 biology and its potential role in cancer treat-
ment, the present chapter will focus on these PK/PD models.

3.1 IL-21 Biology

It is six years since cloning of the interleukin-21 receptor (IL-21R) [88] and
identification of IL-21 with a first analysis of its proliferative and functional
effects on T, B, and natural killer (NK) cells [90]. Since then, IL-21 research
has been progressing rapidly, now with more than 100 PubMed [5] publications.
A detailed review is beyond the scope of the present section, but Figure 3.1
sketches a central part of the role of IL-21 in lymphocyte biology.

IL-21 has a protein structure that place it in the γ-chain family of cytokines,
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Figure 3.1: The biological effects of IL-21 on central lymphocytes, see [48] for
a slightly more detailed version of this figure. IL-21 is produced by activated
T-helper cells and has pleiotropic effects on T, B, and NK cells. The increased
cytolytic activity and IFN-γ production from activated NK and T cells was one
central motivation for the early suggestions of antitumor and immunotherapeu-
tic effects in oncology. IL-21 is not only affecting lymphocytes, but also some
myeloid cells and keratinocytes.

with greatest similarity to IL-2 and IL-15 [90], but the biological characteristics
of IL-21 are distinct from other known cytokines. IL-21 is produced by acti-
vated T helper cells, and the IL-21R is expressed on T cells, B cells, NK cells,
and some populations of myeloid cells and keratinocytes, consistent with cell
types that respond to IL-21, see review [72]. From an oncology perspective, the
most interesting immunomodulatory action of IL-21 is seen by activation and
proliferation of lymphocytes, leading to increased cytolytic activity. Given these
effects on lymphoid cell function, and the known effects of IL-2 and IL-15 on
tumor regression in vivo, IL-21 has been anticipated also to have a role in tumor
regression. Indeed, IL-21 has been shown to have potent antitumor activity in
several experimental models [72]. The current status of the broad range of IL-21
effects on various cell lines, most recently reviewed in [72], is listed below:

• T cells. 1) Stimulation of T cell proliferation together with CD3-specific
antibody. 2) Stimulation of cytotoxic T cell proliferation in synergy with
IL-7 and IL-15, but not IL-2. 3) Induction of antitumor activity for cyto-
toxic T cells.

• B cells. 1) Cooperation with IL-4 to promote IgG antibody production.
2) Promotion of class switching to IgG1 and IgG3 antibodies. 3) Inhibition
of transcription of part of IgE antibody constant region. 4) Induction of
differentiation of B cells into plasma cells. 5) Pro-apoptotic effects on
naive B cells, and B cells that are activated in the absence of T cells. 6)
Stimulation of proliferation together with IgM or CD40 specific antibody.

• NK cells. 1) Induction of differentiation. 2) Induction of cytotoxic and
apoptotic activity. 3) Induction of antitumor activity.
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• Myeloid cells. Induction of monocyte-derived macrophages to secrete a
potent neutrophil chemoattractant. 2) Inhibition of dendritic cell activa-
tion and maturation.

As outlined above, IL-21 has clear effects on lymphoid cells mediating anti-
tumor activity, but evidence also points toward a role in inflammation [91]. For
human diseases, IL-21 is speculated to play a role in autoimmunity, asthma and
allergy, and oncology [72], where the present evidence is strongest for the latter.
Although these observations motivate clinical studies, there is still a long way
to go before this molecule can be used in an approved anti-cancer treatment
strategy.

3.2 PK/PD in Early Anti-Cancer Development

The large medical need for new cancer therapy is evident. A recent global
overview [89] of 26 cancers find 10.9 million new cases, 6.7 million deaths, and
24.6 million persons alive with cancer in 2002. In the US, cancer accounted for
23% of all deaths, ranking second only to heart disease [58]. Cancer cases are
grouped into four stages denoted by Roman numerals I through IV, where the
precise definition of the four stages vary among different cancers [4]. In general,
stage I cancers are small localized cancers that are usually curable, while stage
IV usually represents inoperable or metastatic cancer often associated with poor
prognosis, sometime less than 5% probability of survival.

Conventional treatment includes surgery, radiotherapy, and chemotherapy. Al-
though cytotoxic chemotherapy is a systemic treatment that can be used also
against metastatic cancers, they lack selectivity leading to severe side effects
and limited efficacy. Novel cancer therapies aim at targeted cancer treatment
[108], e.g. by targeting specific cancer cell processes. Another strategy aim to
modulate the immune system and thereby use the body’s own defence mecha-
nisms against the cancer cells. Experimental treatment with IL-21 pursues this
latter strategy.

IL-21 is currently evaluated in early clinical development, and data used in the
present thesis are from preclinical and phase I studies. For ethical reasons, new
experimental cancer treatments in phase I studies are as a general rule conducted
in patients with advanced disease (stage IV) and with no other treatment option.
We should remember that these patients are severely ill, which influences their
general state, their ability to recover from unwanted effects, and their ability to
respond to immune modulation. Naturally, these circumstances will narrow the
window of opportunity by reducing the drug efficacy and increasing the severity
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of adverse events, complicating the development of new cancer treatments.

It has been argued that PK/PD modelling may be especially useful within on-
cology, where drugs tend to have a narrow therapeutic index [131]. In this
setting, it is fruitful to consider both efficacy and safety markers, so that a two
sided evaluation of the dosing regiments can be performed. Also the COST
B15 experts have devoted special attention to modelling in the development of
anti-cancer agents, advocating its use to integrate knowledge throughout the
development process to reduce ethical concerns, uncertainty, risk, and resource
costs [102].

3.3 PK/PD Modelling in IL-21 Development

Several models have been developed during the past years of pre-clinical and
clinical testing of IL-21. In the following sections, we shall review some of these
efforts with a focus on how the different models can and have been applied during
development. The mathematical description and the scientific exploration of
stochastic differential equations within some of these models, is given in Chapter
6.

3.3.1 IL-21 Effects on RBC

The effects of IL-21 on red blood cells (RBC) and haemoglobin concentration
in the blood have been investigated with PK/PD modelling from preclinical
studies, see Paper D, and modelling has continued up until the present stage in
clinical development, see Section 6.5. Cynomolgus and Rhesus monkeys demon-
strated a significant loss in RBC concentration following IL-21 administration,
and anemia was at that stage judged as the most likely candidate to cause dose
limiting toxicity in the clinic. Haemoglobin is no longer considered to be the
most important toxicity marker, but it is dose dependent, and related to fatigue
and quality of life of the patients [27], which could make it a relevant marker to
aid dose and regimen selection.

PK/PD modelling of haemoglobin and RBC can and have been used to,

• Give a univocal description of the observed effects. 1) The effects
of IL-21 is consistent among different trials, dosing regimens and species.
2) One way to describe the effects are: IL-21 treatment leads to a decrease
in haemoglobin/RBC, which is considerably delayed compared to dosing
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and IL-21 plasma concentration. 3) Besides the dose dependent drop, an
additional drop in haemoglobin/RBC was found. This could be described
as a placebo effect in the clinical studies, while for the monkey studies the
drop in RBC concentration was found to be proportional to the amount
of blood removed during the study. 4) A decrease in haemoglobin/RBC
leads to an increased production of new red blood cells, which enters into
the blood stream after a delay. 5) Haemoglobin/RBC is seen to recover,
but the recovery is slow and is not seen to rebound above baseline levels.

• Merge preclinical data with early clinical results. The model for
effects on RBC in monkeys was used during the clinical dose escalation,
so that modelling could be used at a time point where clinical data was
insufficient to identify the model structure and estimate all parameters.
In other words, the monkey results were used as prior information for the
clinical model, which became more and more ”humanized” as more data
became available. This was useful to describe current clinical data, give
reasonable predictions for observed results at higher dose levels, and to
give likely intervals for these predictions.

• Demonstrate a clear dose response. Due to differences in sampling
schedules and starting haemoglobin/RBC level, it may be difficult to com-
pare the the results from different studies and individuals. By modelling,
the effect of IL-21 on the haemoglobin level could be summarized in one
number, making it easier to identify the dose response curve.

• Compare the observed effects for different treatment regimens.
Two treatment regimens were investigated in the phase I trials, 1) a cyclic
regimen with 5 days of dosing followed by 9 days of rest, and 2) a con-
tinuous regimen with 3 times weekly dosing for six weeks. It is presently
judged that the effect, e.g. the area under the baseline haemoglobin curve,
will be similar in the two regimens if the same number of doses with iden-
tical amounts are administered in the two regimens, but slightly larger
fluctuations are seen in the cyclic regimen.

• Simulate predictions for anemia in other dosing regimens. The
model was used to simulate several different dose levels and dosing regi-
mens to predict the probability for grade 3 anemia (haemoglobin concen-
tration at 80-65g/L).

3.3.2 IL-21 Effects on platelet

Like the clear effects on RBC, IL-21 was observed to induce clear effects on
platelets in preclinical studies. Modelling of the effects on platelet was initiated
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during the clinical dose escalation study, and has subsequently been used to, 1)
give a univocal description of the observed effects, 2) demonstrate dose response,
3) compare the observed effects for different treatment regimens, and 4) simulate
predictions for thrombocytopenia in other dosing regimens, and thereby support
dose selection in future studies.

PK/PD modelling of platelets was not performed during the present project,
and will not be explored further in the present thesis.

3.3.3 IL-21 Effects on Temperature

Besides anemia, fever was considered the most clinically important toxicolog-
ical finding in the preclinical studies of IL-21 in non-human primates. In the
clinical study, fever is still a very frequent adverse event, but the rise in body
temperature is easily normalized by the administration of paracetamol. A sin-
gle PK/PD model for IL-21 effects on body temperature was developed using
preclinical data, see Paper E and Section 6.3.

Modelling has been used to describe the complicated effects of IL-21 on the
different mechanisms that regulate body temperature. One way to describe the
effects is as follows: 1) A sufficiently high dose of IL-21 induces priming, i.e.
no effect of IL-21 is seen until some priming has occurred. 2) Priming happens
gradually and takes some time to occur, and this time may vary between indi-
vidual monkeys. 3) After priming has occurred, circadian rhythm in metabolism
vanish, and metabolism is kept at a daytime high value. 4) Further more, IL-21
administration will after priming induce a fast dose independent effect, i.e. a
predetermined fixed size acute phase response, and a slow dose dependent ef-
fect. The fast and the slow effects are combined to give a saturable elevation of
the set-point temperature. 5) This elevation cause a decrease in conductance,
e.g. via vasoconstriction, leading to elevated core body temperature.

3.3.4 IL-21 Effects on Soluble CD25

The cell membrane molecule CD25 is the alpha subunit of the IL-2 receptor,
which is shed e.g. from T-cells and NK cells during activation. High serum
levels of soluble CD25 (sCD25) is considered a marker for general activation
of the immune system1, and sCD25 is presently used as a biomarker for the
immunomodulatory activity of IL-21. Modelling of sCD25 was initiated during

1sCD25 is for example used as a diagnostic marker for chronic T-cell activation.
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preclinical studies and is proceeding in the clinical phases, where it has been
used to, 1) give a univocal description of the observed effects across different
trials, dosing regimens, and species, 2) demonstrate a more clear dose response,
3) compare the observed effects for different treatment regimens and different
patient populations, and 4) simulate effects on sCD25 to evaluate various treat-
ment regimens that have not been tested experimentally. This evaluation has
been compared to haemoglobin results, because it is necessary to include both
efficacy and safety parameters in such an analysis.

PK/PD modelling of sCD25 has not been included as part of the present project,
and will not be explored further in this thesis.

3.3.5 IL-21 Effects on Lymphocytes

As previously mentioned, IL-21 has various effects on the various lymphocyte
cell lines. The observed total lymphocytes counts in plasma is seen to decrease
immediately after dosing, and a rebound above baseline is seen after a few days.
Although these effects do lead to short periods of lymphopenia, the effects on
lymphocytes reflect the immunomodulatory mechanism of the drug that are
believed to provide benefits to the patients. Modelling of lymphocytes were ini-
tiated during the phase 1 study, and has been used to 1) give a univocal descrip-
tion of the observed effects across different trials, dosing regimens, and species,
and 2) simulate effects on lymphocytes and the probability of lymphopenia in
various treatment regimens that has not been tested experimentally.

PK/PD modelling of lymphocytes has not been included as part of the present
project, and will not be explored further in this thesis.
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Chapter 4

PK/PD Modelling of Insulin
secretion

Type 1 diabetes is characterized by complete beta cell function failure, whereas
type 2 diabetes is a heterogeneous disorder characterized by a combination of
impaired insulin secretion and insulin resistance [3], in which either factor can
be dominant. Of these interrelated factors, the present thesis deals with insulin
secretion, and we shall here review some relevant aspects of the beta-cell physi-
ology, the typical tests used to assess glucose homeostasis and beta cell function,
and how modelling is used within this field.

4.1 The physiology of biphasic insulin secretion

Insulin secretion in response to an abrupt increase in plasma glucose is known
to be biphasic with a rapid peak at 2-4 min (first-phase), decrease to nadir at
10-15 min, and then gradually increase within the next couple of hours (second-
phase)1. For both phases, it is observed that the amount of insulin released
depend upon the level of the elevated glucose concentration. In physiologic

1In vitro, a third-phase of insulin secretion is observed [22] as desensitization of perfused
beta cell islets, which is seen as a decline in secretion around 3 hours after the starting point
of the hyperglycemic challenge [21].



20 PK/PD Modelling of Insulin secretion

situations, e.g. after the consumption of a meal, the glucose rises slowly and a
first-phase peak is not seen, but there is still a significantly elevated early release
that we shall refer to as first-phase release, since it is likely caused by the same
mechanism.

The physiology behind the biphasic insulin secretion, as reviewed in [116], [117],
and [103], entails a number of mechanisms that are not all fully understood:

• Synthesis. Glucose stimulates transcription as well as translation of
proinsulin, but over short time periods proinsulin biosynthesis is mainly
regulated by increasing the rate of translation of proinsulin mRNA. Evi-
dence exist that newly synthesized secretory vesicles are secreted first [34],
but for beta cells the current consensus is that upregulation of proinsulin
contributes only partially to the gradual increase in second-phase response.

• Granule pools. After synthesis, proinsulin is split into insulin and C-
peptide that are packed in equimolar amounts into granules by the golgi
apparatus. Some granules move freely within the intracellular space while
others are docked in the plasma membrane and only a fraction of the latter
are ready to be released, thereby named the readily releasable pool (RRP),
see review [104]. The RRP is believed to contain the granules contributing
to the first phase secretion [87], while recent experiments with real-time
imaging indicate that second phase secretion is due to granules that have
just arrived at the plasma membrane [86].

Insulin secretion following two sequential square-wave glucose stimuli will
lead to two first-phase spikes. If the time between the two pulses is very
short, the second first-phase release will be low, known as time dependent
inhibition [80], which may be due to depletion of the RRP. On the other
hand, a longer period of hyperglycemia is known to increase a subsequent
first-phase response, called time dependent potentiation, which is likely
due to an enlarged RRP associated with the elevated insulin release.

• Exocytosis. The release of insulin is tightly controlled by the electrical
activity of the beta cell [103]. Intracellular glucose transforms into ATP,
stopping the potassium efflux of the sodium-potassium pump, which depo-
larizes the cell. Depolarization opens the voltage gated calcium channels,
and the rise of calcium activates certain proteins (e.g. SNARE proteins)
that facilitate the exocytosis of insulin granules. A significant part of the
insulin is secreted in small bursts that are synchronized among different
beta cells, giving oscillations in plasma insulin concentration, see [96] and
references therein2.

2Rapid oscillations in insulin secretion have been reported with periods ranging from 5-15
min [96], whereas ultradian oscillations have been reported with periods 100-150 min [120].
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• Heterogeneity. The heterogeneity between granules (being docked or
not) can explain the existence of two phases, but the significance of hetero-
geneity among beta-cells is not fully recognized and understood. However,
under the assumption that the RRP of a single beta-cell is emptied when it
undergoes exocytosis, heterogeneity among beta-cells is needed to explain
the increasing first-phase response to increasing glucose challenges, which
is a promising hypothesis argued from experimental findings in [94], [95],
and [107]. Indeed, individual beta-cells have been reported to differ in the
glucose threshold levels for pro-insulin biosynthesis, glucose metabolism,
calcium influx, and secretory activity, see [106] and references therein.

• Incretin Effect. The list of chemical, biological and pharmaceutical
mediators that affect insulin secretion is long, and beyond the scope of
this short summary. However, we wish to mention that oral ingestion of
nutrients is known to enhance insulin secretion, the incretin effect, leading
to higher insulin secretion during oral glucose challenge than from an
experiment with matched glucose concentrations obtained by IV infusion
of glucose, see e.g. [62]. The incretin effect is mediated by insulinotropic
intestinal hormones, as e.g. glucagon-like peptide-1, which enhances both
first and second phase release, see e.g. the experiments by Fritsche et al.
[42]. Besides the effects of incretin hormones, we wish to list that 1)
neuronal signals have been found to stimulate secretion prior to a meal
[119], 2) the level of free-fatty-acid has been found to change the sensitivity
of insulin secretion [15], and 3) that insulin may inhibit its own secretion
[13].

Patients during the early stages of type 2 diabetes are most often subject to
impaired or even lost first phase secretion, whereas the second phase and the
baseline insulin level is frequently enhanced. The consequences of these changes
may not be fully understood, but strong evidence indicates that early insulin
release after glucose ingestion is a key determining factor for the subsequent
glucose concentration [26]. Ultimately, these results indicate that a reduced
first-phase may be a significant pathogenic factor, or even responsible for the
development of impaired glucose tolerance [97].

4.2 Diagnostic tests

Diagnostic tests for the assessment of insulin secretion as well as insulin resis-
tance for individual patients have great value for epidemiological and clinical
studies. The most common oral administration tests are the oral glucose tol-
erance test (OGTT) and the meal tolerance test (MTT), but also the 24 hour
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triple meal test has been used to more closely mimic a physiological relevant
situation. The most common intravenous (IV) tests are the intravenous glu-
cose tolerance test (IVGTT) and the clamp tests, e.g. the hyperglycemic clamp
(HGC), where glucose is kept constant at an elevated level. Also other tests,
such as the graded up&down glucose infusion test have been suggested [124],
and less rigorous infusion tests are frequently used during the evaluation of new
medicines.

4.3 Models of insulin secretion

Like other research of insulin secretion, modelling should more or less directly
aim to ease the burden of diabetes. The two main directions for modelling in-
sulin secretion is, 1) biophysical modelling to increase the understanding of the
system, which resembles the ”physiological” approach described above, and 2)
by the ”empirical” approach, to describe and summarize individual and popu-
lation data.

Biophysical models that aim to increase knowledge and understanding of the
basic physiology have contributed to many aspects of insulin secretion. Perhaps,
the most comprehensive contribution are from models that describe the ion
fluxes within single beta cells, see [41] and references therein. These models have
enabled quantitative formulation of the processes that govern the oscillatory
patterns of ions concentrations that are important e.g. for exocytosis.

For the whole body system, there has been two classical directions for bio-
physical models of insulin secretion, the ”storage-limited model” [46] and the
”signal-limited model” [51] that are compared in [85]. In the ”storage-limited
model”, each phase of secretion corresponds to the release, by a constant sig-
nal, of a distinct pool of insulin granules, whereas in the ”signal-limited model”
a biphasic signal operates on one pool of granules. The distributed threshold
hypothesis is a storage limited model that has been used to argue and derive
many of the following more empirical models, see [73] and Paper A.

More empirical modelling of insulin secretion can be imagined within nu-
merous areas to support a variety experiments. In the present context, we shall
merely mention three applications of whole body models that are believed to be
particular relevant for the present thesis, i.e. estimation of diagnostic indexes,
controlling the artificial pancreas, and guiding pharmaceutical development of
anti-diabetic drugs.

• Metabolic Portrait. Empirical insulin-glucose models have traditionally
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been used with data from diagnostic tests, to estimate parameters that
constitute a metabolic portrait. Thereby models have enabled diagnosis
and tracking of the progression of diabetes. Such analysis can significantly
benefit single subject investigations as well as large scale clinical and epi-
demiological studies to increase the knowledge of diabetes and the effects
of treatment. This approach to modelling the insulin-glucose system typi-
cally follow the minimal model approach, where models are aimed to be as
simple as possible, yet describing the most important features in data, see
e.g. the original minimal model for glucose disposition [18]. Many mod-
els are very tightly linked to a particular diagnostic test, as e.g. minimal
models for the IVGTT [123] and [125]. While these models exclusively aim
to describe data from one test, a single approach is beginning to converge
for diagnostic tests where the glucose concentration varies smoothly. The
oral minimal model of insulin secretion, as it is frequently called, has been
successfully used to model the OGTT [23], the graded up&down glucose
infusion [124], and the MTT [29]. This approach makes use of a baseline
(B), a static (ks), and a dynamic (kd) index, so that insulin secretion can
be written,

dY

dt
= −αY − ks[G−Gb]

SR = B + Y + kd
dG

dt

(4.1)

where SR is the secretion rate, [G−Gb] is the glucose above baseline, and
α is a rate parameter. To some extent, the dynamic index corresponds
to first-phase secretion and the static index corresponds to second-phase
secretion.

• Artificial pancreas. The recent progress in glucose censoring devices
makes the closed-loop artificial pancreas3 within reach, leading to interest
for insulin secretion models and algorithms to support this field [17], [115],
and [114]. Very successful algorithms have been developed for the artificial
pancreas, and one has been tested to outperform the real dog pancreas to
keep a constant glucose concentration after a meal [99]. Constant low
glucose concentration, however, has its price in terms of increased insulin
delivery, which may cause weight gain, hypertension, or arteriosclerosis,
and it has been argued that a more physiological insulin delivery may be
preferable [114].

• Anti-diabetic Drugs. Modelling of insulin secretion to support the de-
velopment of anti-diabetic drugs has not been significantly published, but

3The open-loop program deliver a predetermined amount of insulin to the patient, whereas
the closed-loop artificial pancreas require continuous monitoring of blood glucose levels, see
e.g. [39].
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undoubtedly such efforts are beneficial. As previously discussed, mod-
elling in pharmaceutical development is moving towards more mechanistic
models. For insulin secretion, such models would improve the ability to
incorporate drugs that target different mechanisms on the beta cell. It
is also foreseen that mechanistic models would improve the prediction of
different dose levels and administration schedules, via the inclusion of the
relevant physiological regulatory mechanisms of the pancreas.

The two main contributions of the present project to modelling of insulin secre-
tion are described in Paper A and Paper C. Paper A is primarily a theoretical
paper that aim to illustrate how the two different minimal models for the IVGTT
(published in [123] and [125]) are connected with different theoretical features in
the distributed threshold model [46]. The hope is that these new insights to the
minimal model of insulin secretion can lead to an understanding of the meaning
of the estimated parameters, and aid in the pursuit of a more general and phys-
iological correct model that can characterize the beta cell function, not only for
the IVGTT, but also for other experiments. Paper C describes such an attempt,
where data from the IVGTT and from the OGTT is modelled simultaneously.
Modelling is performed via the population PK/PD method with a mixed-effects
approach, which as previously discussed is well suited for modelling several in-
dividuals from different study designs. This mechanistic compromise between
physiological and empirical modelling could potentially help to solve issues in
the application of both types of models.

For physiological models, the model in Paper C may be regarded to improve
knowledge of the system by providing a consistency check for the threshold
distribution hypothesis as an explanation for the dose dependent first-phase
secretion. In fact, an interesting conclusion was that threshold distribution
as well as incretin effects for both first and second phase were necessary to
describe differences between the IVGTT and the OGTT. All in all, the threshold
distribution hypothesis was found to be consistent with the two experiments,
with no physiological contradictions. In particular, I was pleased to find that for
the IVGTT and the OGTT, the individually estimated sizes of the RRP were
similar and exhibited a convincing correlation.

Paper C can be seen to aid all three previously mentioned application areas for
empirical models, 1) the metabolic portrait, 2) the artificial pancreas, and 3)
the development of anti-diabetic drugs. Each point is discussed in the following:

1. When the same individuals are subject to different diagnostic tests, one
expect to get similar results, and at least a reasonable correlation should
exist between indexes that describe the same physiology, e.g. the first-
phase indexes should correlate. When different models are used for differ-
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ent diagnostic tests, we must relax our requirement of similar indexes, but
we should still expect a reasonable correlation. Indeed, a good correlation
is seen for indexes from some diagnostic tests, but clear discrepancies have
been found between the first-phase index from the HGC and the MTT,
leading to the conclusion that further work is needed for these indexes to
be routinely used in clinical and epidemiological studies [114]. The model
described in Paper C aim to provide a higher degree of consistency to
these indexes by providing a single model that can be used for parameter
estimation in different tests, and thereby improving model based diagno-
sis and tracking of the progression of diabetes. Emphasis was devoted
towards similarity, reproducibility, and prognostic relevance of individual
parameters estimated in the IVGTT and the OGTT.

2. The oral minimal model for insulin secretion previously mentioned in (4.1)
has been found to be a promising candidate for the artificial pancreas,
both with subcutaneous glucose censoring and insulin delivery, and with
IV glucose censoring and intraperitoneal insulin delivery [115]. A num-
ber of complications are involved in the implementation, e.g. that in the
oral minimal model, 1) the parameters may differ according to the design
of the diagnostic test, see [114], making it unclear which parameters to
use, and 2) that the model lack a description of the RRP to explain time
dependent inhibition and potentiation of the first phase of insulin secre-
tion, which could be influential with the fluctuating glucose concentration
found in every day living. The model described in Paper C is an attempt
to overcome these problems. It provide a first step towards solving the
consistency among indexes, and naturally incorporates time dependent
inhibition as depletion of the RRP, and potentiation as an elevated RRP
due to elevated glucose concentration.

3. The model described in Paper C provides a mechanistic description of
the first and second phase of insulin secretion. Hereby, the model fill out
an important gap in the list of modelling tools for development of anti-
diabetic drugs. The model can be seen as a baseline model, which can
be extended to include the action of different drugs, e.g. sulphonylureas
acting on exocytosis, or incretin hormones that affect first-phase as well
as second-phase.
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Chapter 5

Stochastic Differential
Equations

• What happens if the parameters in a differential equation are randomly
varying at all time points?

• How do we merge classical time-series modelling with the differential equa-
tions found in other sciences?

• How do we optimally filter away measurement noise in a system where the
underlying theory is modelled with differential equations?

Stochastic differential equations (SDEs) provide the answer to these and many
other questions. Similarly Øksendal [69] pose six fundamental questions to
motivate the extension of ordinary differential equations (ODEs) to SDEs.

Parameter estimation, particularly in mixed-effects models based on SDEs, is an
important topic of the present thesis that shall be touched upon in the present
chapter. But first of all, we shall investigate the depth of the discipline by
discussing some fundamental mathematical properties and fruitful applications
of SDEs.
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5.1 Mathematical Introduction

In the most common form1, SDEs can be defined as,

dx = g(x)dt + σw(x)dw, wt2 −wt1 ∈ N(0, |t2 − t1|I) (5.1)

where w is a standard Wiener process, i.e. a continuous process where the incre-
ments (wt2−wt1) of non-overlapping time intervals are independent multivariate
Gaussian with mean zero and a standardized variance-covariance. g(x) is called
the drift term, and σw(x)dw is the diffusion term giving rise to system noise.
The diffusion term is called additive if σw is independent of x and multiplica-
tive if σw(x) depend upon x, such that multiplication of stochastic variables are
involved in the term σw(x)dw. Most often, we refer to multiplicative diffusion
in the proportional form that can be written σwxdw.

SDEs are interesting objects that to fully understand require a substantial
amount of university level mathematics, particular within the field of measure
and integration theory [69]. In the interest of making the present thesis more
accessible, the mathematical details will be skipped, and I shall merely men-
tion two fundamental counterintuitive examples that illustrate the mathematical
challenge of a rigorous consistent description.

1. SDEs cannot be defined in terms of the usual differential quotient dx/dt,
because the corresponding random term dw/dt is ill defined (not finite).
An immediate consequence is seen by the notation used in (5.1), where the
SDE is defined by dx rather than dx/dt. A more peculiar consequence is
that the Wiener process will cross zero an infinite number of times within
any time interval that includes zero, possibly leading to strange behavior
of the SDE solution.

2. Like for ODEs, the solution to an SDE (for a particular instance of the
Wiener process) can be calculated by numerical integration, and the so-
lution converge when the integration steps go to zero. However, unlike
for ODEs, the SDE solution may depend upon the method of integration,
making it important to state under which integration scheme the SDE
should be understood. Itô and Stratonovich are two popular integration
schemes that produce different solutions to the same SDE, see further
discussion and Figure 5.1 in Section 5.3.

When starting to apply these objects without a complete understanding, it is
comfortable to know that rigorous mathematics ensures us that SDEs, in spite
of these counterintuitive properties, are in fact consistent objects.

1One can, and have imagined other forms of SDEs, e.g. with the more general Lévy pro-
cesses that also include discrete jumps such as those originating from Poisson processes [70].



5.2 Applications of SDEs 29

5.2 Applications of SDEs

Whereas the fundamental description of SDEs is a mathematical discipline,
their application have been found useful in many areas of research. Specific
areas of applications include finance, satellite navigation, theoretical physics,
and modelling within various biosciences.

• Financial statistics dominates the applications of stochastic differential
equation, where SDEs are used for estimation and simulation of e.g. the
random fluctuations in stock price development, which is necessary for
option pricing. Finance and SDEs are interconnected to an extent where
SDEs are treated within standard course-work text books of finance [53],
and so that financial applications are pushing forward the field of SDEs,
as for example the connection between Lévy processes [70] and alternative
option pricing strategies.

• Satellite navigation problems of reentry and orbit determination are classi-
cal applications of SDEs [55]. The use of stochastic processes have contin-
ued and they are now used to optimize satellite position estimates for the
global positioning system (GPS). One example include a 56 state Kalman
filter (to be discussed below) for the air force’s most advanced navigation
system [1].

• SDEs have been used to approximate the solution to the Schrödinger equa-
tion in quantum physics [64], which is only one possible interaction point
between SDEs and theoretical physics. Please note the small contribution
made during the present Ph.D. to SDEs within astrophysics, by stochastic
simulations of the quasi periodic oscillations observed for neutron stars
and black holes [132].

• Applications of SDEs in PK/PD and other biosciences shall be dealt with
separately and in more depth in Chapter 6.

• Besides these concrete examples, SDEs makeup an important part of var-
ious engineering disciplines, e.g. control theory [118] system identification
[109], and time series modelling [77].

Although most financial and theoretical research apply SDEs directly, most
engineering applications, including GPS, use a continuous-discrete stochastic
state-space model where the continuous SDE is observed at discrete time points
with measurement error. Since PK/PD models are presently most often based
on ODEs with measurement noise, it is obvious to use the stochastic state space
formulation when ODEs are extended to SDEs. For this reason, the stochastic
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state-space model play an important part of the present thesis. It can be written
as,

dx = g(x,d, t, φ)dt + σwdw, wt2 −wt1 ∈ N(0, |t2 − t1|I)
yi = f(x(ti),d(ti),φ) + ei, ei ∈ N(0,Σ)

(5.2)

where x is a vector of the states, for example the amount of drug in the central
compartment. g and f are vector functions, while σw is a matrix. d is the
input, e.g. dose administration, t is time, φ is a vector of parameters, yi is
the i’th observation vector, and ei is the associated measurement error with
variance-covariance Σ. Again w is the standard multivariate Wiener process,
which has independent increments.

The stochastic state-space model (5.2) has previously been used to define Grey-
box models, see e.g. [126], where the grey in Grey-box is a mix between white
(theoretical) and black (empirical). The theoretical part is implemented via
differential equations, and the empirical part is fulfilled via system noise, which
allow for a complete statistical description of data.

5.3 Physical Modelling

The view on physical modelling presented in [55] shall be reviewed and elab-
orated upon in the present section. This is meant to resolve the uncertainty
associated with the different possible integration methods for practical applica-
tions, see Figure 5.1.

The nature of the mathematical challenges with SDEs lies in the microscopic
or infinitesimal behavior. To understand how we should proceed, it is necessary
to understand the microscopic behavior of the stochastic fluctuations in the
physical system that we are modelling. Sometimes it is reasonable to say that
the physical fluctuations are 1) differentiable, and sometimes it is reasonable to
say that the infinitesimal increments (dw) are 2) truly independent making the
stochastic noise non-differentiable. Let us elaborate on these two scenarios,

1. As argued in [55], the solutions to SDEs have no derivatives, and as a result
of this erratic behavior may only be approximations of the physical process
that we are modelling. We shall add that e.g. the true concentration of
drug in the body will take a discrete jump whenever a single molecule is
metabolized, making it non-differentiable, but only at separable points.
Note also that the stochastic fluctuations in a model of concentration
are likely originating from ”under modelling” that could be improved by
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Figure 5.1: For one instance of the wiener process (left), the Itô and the
Stratonovich integration scheme may yield different results (right). Both solu-
tions are for the stochastic differential equation, dX = X + dW with X(0) = 1.

extending the differential equations, and are thus differentiable in nature.
If our SDEs should approximate a system with differentiable fluctuations,
then it can be shown that the Stratonovich method of integration is the
only appropriate one, see e.g. [55].

2. True independence of the stochastic infinitesimal increments is a common
assumption for many models. For this scenario, the derivatives of the
fluctuations will not be finite, and it can be shown that the Itô integration
method is the only appropriate one, see e.g. [55].

For Itô integration, new rules of calculus (e.g. for change of variable) apply,
while for Stratonovich integration the standard rules of calculus remain, making
the latter easier to use. However, Itô integration has some useful statistical
properties that make Itô the easy and preferred choice for development of many
statistical estimation and filtering algorithms. Itô and Stratonovich integration
give the same result when the diffusion term in (5.1) is additive, see e.g. [55]
for more discussions on these two methods.

For PK/PD models, it is more common to use proportional than additive resid-
ual error models, making it likely that also multiplicative diffusion will become
more common than additive diffusion. In many cases, one can do a trans-
formation of the stochastic model into a model with additive diffusion [82]. I
recommend to do this transformation before implementing system noise, so that
only additive diffusion is needed. This line of approach, as undertaken e.g. in
[11], is consistent with the Stratonovich method of integration.
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5.4 Parameter Estimation of SDEs

The maximum likelihood approach was proposed by Fisher in 1922, and is still
seen as the golden standard for parameter estimation in statistical models. The
parameter estimates θ̂ are given as,

θ̂ = arg max
θ

L(θ,Y) (5.3)

where Y = [y1, ...,yN ] is the observed data, and L(θ,Y) is the likelihood func-
tion, given by the probability density function, L(θ,Y) = fθ(Y)). For models
based on SDEs it is convenient to formulate the likelihood function as the prod-
uct of conditional densities,

L(θ,Y) =

(
N∏

i=2

p(yi|Yi−1)

)
p(y1) (5.4)

where Yi = [y1, ...,yi] represents all observations up to number i (typically, but
not necessarily ordered in time), and p(yi|Yi−1) are the conditional densities.
The fundamental problem for parameter estimation of the general SDE model
given in (5.2), is that the conditional densities cannot be derived analytically2.
The conditional densities also constitute a fundamental ingredient to estimate
the true states of the system by optimally filtering away uncertainty due to
measurement noise, i.e. solving the filtering problem [55].

5.4.1 The Extended Kalman Filter

The Kalman Filter (KF) [59] is the famous and extensively used analytical
solution to the filtering problem for a linear discrete system with additive system
noise and Gaussian measurement noise. The equivalent linear submodel of (5.2)
can be written,

dx = (Ax + Bd)dt + σwdw

yi = Cx(ti) + Dd(ti) + ei

(5.5)

where A, B, C, D are matrices, while the remaining entities are identical to
those used in (5.2).

2For models based on ODEs with uncorrelated measurement noise, the conditional densities
collapse to unconditional densities that can be approximated arbitrarily well by a numerical
integration of the differential equation. The counter part for SDEs would be to numerically
solve the Fokker Planck Equations, which is generally considered too time consuming for
estimation purposes.
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For this model, the conditional densities will be Gaussian and therefore com-
pletely characterized by the mean and variance. The conditional densities de-
scribe the distribution of the following measurement conditioned on all the pre-
vious measurements, so that the mean of the distribution is identical to the
prediction of the following measurement, i.e. the one-step prediction ŷi|i−1.
Likewise, the covariance of the conditional density will be the one-step pre-
diction covariance Ri|i−1. The KF is a recursive algorithm to calculate the
analytical one-step predictions and the one-step prediction variances, see Ta-
ble 5.1 for easy reference, and the appendix of Paper B for a more thorough
description.

Table 5.1: The KF and the EKF are recursive algorithms to calculate the one-
step predictions of the state x̂i|i−1 and the one-step predictions for the obser-
vations ŷi|i−1, and the associated variances Pi|i−1 and Ri|i−1 respectively. The
KF gives the analytical solution for linear models with additive diffusion, while
the EKF gives an approximate solution for non-linear models with additive dif-
fusion.

Algorithm: The Kalman Filter
Given parameters and initial prediction
φ, x̂1|0 and P1|0
For i = 1 to N do
Output Prediction:

ŷi|i−1 = Cx̂i|i−1 + Ddi

Ri|i−1 = CPi|i−1CT + Σi|i−1

State Update:

Ki = Pi|i−1CT R−1
i|i−1

x̂i|i = x̂i|i−1 + Ki(yi − ŷi|i−1)

Pi|i = Pi|i−1 −KiRi|i−1KT
i

State Prediction:
dx̂t|i/dt = Ax̂t|i + Bdt

dPt|i/dt = AtPt|i + Pt|iA
T + σwσT

w

end for

Algorithm: The Extended Kalman Filter
Given parameters and initial prediction
φ, x̂1|0 and P1|0
A = ( ∂g

∂x
)x=x̂ and C = ( ∂f

∂x
)x=x̂

For i = 1 to N do
Output Prediction:

ŷi|i−1 = f(x̂i|i−1, di, φ)

Ri|i−1 = CPi|i−1CT + Σi|i−1

State Update:

Ki = Pi|i−1CT R−1
i|i−1

x̂i|i = x̂i|i−1 + Ki(yi − ŷi|i−1)

Pi|i = Pi|i−1 −KiRi|i−1KT
i

State Prediction:
dx̂t|i/dt = g(x̂t|i, dt, t, φ)

dPt|i/dt = AtPt|i + Pt|iA
T + σwσT

w

end for

For the general system in (5.2), the matrices (A, B, C, D) will be replaced by
non-linear functions, so the KF can no longer be used directly and the condi-
tional densities will not necessarily be Gaussian. The extended Kalman filter
(EKF) [55] refer to methods that apply a local linearisation of the model in
order to use the KF equations [47] to give an approximate and Gaussian solu-
tion of the filtering problem. In principle, you can treat the general model by
this method, but for multiplicative diffusion it is generally accepted that higher
order filters should be applied [55], so the EKF presented in Table 5.1 assumes
additive diffusion. As previously discussed, many models with multiplicative
diffusion can be transformed into models with additive diffusion [82].
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The KF and the EKF was in the preceding introduced as tools to derive or
approximate the conditional densities, for use in maximum likelihood estima-
tion of parameters. However, note that state estimation is perhaps the most
common application of Kalman Filtering, which has been used e.g. to improve
GPS position estimates and satellite navigation [55].

Further introductory reading on the KF and the EKF can be found in the recent
document by Welch and Bishop [47], or the CTSM math guide [2].

5.4.1.1 Assumptions and Diagnostics for the EKF

Diagnostics enable model evaluation and comparison, and should be used to
test the ability of the model to fulfil its objectives, and for assumption testing,
e.g. by comparing diagnostics for two models based on different assumptions.
However, when we choose to use an approximate solution to the model, it may
be relevant to consider direct diagnostics for this approximation.

The basic assumptions of the EKF are that 1) the conditional densities are
Gaussian, and 2) that the one step prediction mean and variance are well ap-
proximated by the prediction equations of the EKF. These assumptions can
be tested by the distribution of the standardized one step prediction errors,
which is supposed to be standard normal. One may use either simulated data
or real data, and should remember that the distribution test for real data is
simultaneously testing the assumptions of the EKF and the model fit to data.

When the basic assumptions of the EKF are broken, it could easily happen
that parameters estimated by the EKF method would be different than the true
parameters of a simulation study. In fact, the performance of different approx-
imate methods are frequently assessed by the ability of the method to estimate
the correct parameters in a simulation test. The parameter estimates from the
presented KF and EKF based likelihood method are evaluated in [77], whereas
[68] compares parameter estimates from the EKF based likelihood approach and
a weighted least squares algorithm, and [84] compares parameter estimates from
the EKF based likelihood approach with estimating functions to be discussed
below. Paper B aim to test the parameter estimates for the EKF based likeli-
hood approach when it is embedded in a mixed effects algorithm, see Section
5.6.
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5.4.2 Other Parameter Estimation Methods

The EKF based likelihood approach is a well established method for parameter
estimation in SDEs, but it is certainly not the only method, see review in [83].
Higher order filters constitute immediate extensions of the EKF [55], and below
we shall briefly discuss two techniques that have been applied to PK/PD models,
i.e. the general method of estimating functions and Markov chain Monte Carlo
methods.

5.4.2.1 Estimating Functions

Estimating functions pursue parameter estimates via the solution to an estimat-
ing equation f(Y,θ) = 0, where f is the estimating function, Y is the data, and
θ is the parameter vector. By this definition, the Maximum Likelihood approach
can be obtained via an estimating function, d

dθ log L(Y,θ) = S(Y,θ) = 0, where
S(Y,θ) is the score function. See e.g. [100] for a review.

Estimating functions are most often seen as an alternative to the likelihood func-
tion when this cannot be obtained analytically. The goal is to derive estimating
functions that within a given class of functions produce parameter estimates as
close as possible to the maximum likelihood estimates. This can be done via
optimality criteria, and one typical optimality criterion (F-optimality) ensures
maximum correlation between the score function and the estimating function.

Estimating functions have been applied to the stochastic version of the linear
compartment models that are typically applied within PK modelling [20], and to
a two compartment model with additive measurement noise [19]. The main chal-
lenge for applying estimating functions to the models addressed in the present
Ph.D. are viewed to be the following:

1. Whereas estimating functions could in principle be used for any model of
the form presented in (5.2), there is to my knowledge no readily applicable
strategy. They are most often used in the situation without measurement
noise 5.1, for which a considerably larger class of models can be readily
solved. A more general formulation is needed, where measurement noise
can be combined with the typically very nonlinear situation of PK/PD,
where not even ordinary differential equation can be solved analytically.

2. Implementation of estimating functions requires a good deal of time con-
suming mathematical derivations. A software implementation is needed
that will enable the researcher to focus on different models rather than on
the implementation thereof.
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These challenges are far from trivial involving many potentially impossible steps,
concluding estimation functions to be interesting, but beyond the scope of the
present thesis.

5.4.2.2 Simulation based Techniques

The EKF and the estimating functions are both approximate techniques of the
likelihood function for SDEs, while in fact simulation based techniques may
converge towards the analytical solution. Markov chain Monte Carlo (MCMC),
see e.g. [45], is a well established simulation based technique that can be applied
in general, also for problems beyond those associated with SDEs. PKBUGS [75]
is a software developed specifically for PK/PD modelling with MCMC, and a
few examples have been published where MCMC is used to estimate SDEs in
PK/PD, see [25], [10], and [11]. Also other simulations based methods have
been used to estimate parameters for SDE based PK/PD models, see e.g. [30].

With MCMC you generate a series of parameter values so that after the se-
ries has converged, the distribution of parameter values will give the likelihood
function and thereby the maximum likelihood estimate. Only the most recent
parameter value is used to derive the next parameter value (Markov chain prop-
erty), and this is derived by simulation (Monte Carlo property). The Metropolis-
Hastings update [49] offer a two step strategy for generating a new parameter
value, 1) simulate a new parameter from a proposal distribution that may de-
pend on the old parameter value, 2) accept the proposed parameter with a
probability that depend upon the likelihood ratio for the new and the old pa-
rameter and upon the symmetry of the proposal density. For the state-space
model in (5.2) we must simulate both a new set of parameters and a set of states
to find the likelihood function and use the Metropolis-Hastings update, see e.g.
[11] for details.

Particle filtering methods provide a recent simulation based technique to solve
the filtering problem for state estimation, which may also become useful for
parameter estimation in the stochastic state-space model [33]. These methods
use a particle representation of probability densities, so that Monte Carlo sim-
ulation can be used efficiently to propagate these densities forward in time, see
[14] for a tutorial.

MCMC and other simulation based techniques are certainly potential alterna-
tives for parameter estimation in PK/PD models based on SDEs. Compared to
the EKF based likelihood approach, MCMC can be shown to converge to the
true likelihood estimates, but may require many simulations until convergence
and they are generally considered slow. Following the same line of thought,
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MCMC methods are alternatives to the approximate first-order techniques of
the non-linear mixed-effects problem to be discussed in the next section. Again,
the tradeoff will be theoretically desirable parameter estimates versus speed,
and the approximate likelihood techniques are the ones most widely used [7].

The two main reason for choosing the EKF and first-order techniques over
MCMC and other simulation based techniques were that 1) EKF techniques
is a field of special competencies at my department at DTU that we believe is
efficient and practical, and 2) that the first-order approximations to the non-
linear mixed-effects problem has proven useful for a substantially larger number
of PK/PD models.

I do believe that the chosen technique was more productive than MCMC could
have been, and further that it allowed comparison of ODE and SDE techniques
for more advanced PK/PD models. However, it is certainly possible that MCMC
and other simulation based techniques will have a larger rôle to play with the
increasing computer power foreseen to come in the future.

5.5 Statistical Model Building

The Likelihood function is important, not only for parameter estimation, but
also to perform tests that can be used during statistical model building. The
Likelihood ratio is defined as,

λ = max
θ∈Ω0⊂Ω

L(θ,Y)
/

max
θ∈Ω

L(θ,Y) (5.6)

λ is frequently used to test the null hypothesis, i.e. that the parameters be-
long to the parameter space Ω0, which is a subset of the larger parameter space
Ω. The difference between the simple model with parameter space Ω0 and the
expanded model with parameter space Ω could be a single covariate relation-
ship to be estimated, but we shall refer to a more general model component.
For simple Gaussian models, the distribution of λ can be found analytically,
but for more complex models it is common to use the Wilk’s Likelihood Ratio
test. This is based on the asymptotic result that −2 log(λ) → χ2(dim(Ω\Ω0))
when the number of observations increases. By approximating the distribution
of −2 log(λ) with a χ2 distribution, we can calculate the p-value for making
type 1 errors, i.e. for rejecting a null hypothesis while the null hypothesis was
actually true. In other words the risk that an error is made by keeping a model
component, calculated under the assumption that the simple model is true.

The Likelihood ratio test is frequently used for statistical model building, also
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for PK/PD models where it is the most common method for covariate selection.
Several strategies have been suggested to select among model components that
can be included or excluded independently of each other into a base model.
Some examples are,

• Forward Selection. Start with the base model. At each step evaluate the
p-value for all model components that are not yet included, and include
the model component with the lowest p-value. Continue until no more
model components meet the pre-specified limit for the p-value.

• Backward Selection. Start with a model that include all model com-
ponents. At each step evaluate the p-value for all model components that
are still in the model, and discard the model component with the highest
p-value. Continue until all model components meet the pre-specified limit
for the p-value.

• Stepwise Selection. A modification of the forward selection principle.
Start with the base model. At each step evaluate the p-value for all model
components in the model, and discard the model component with the
highest p-value. If all model components in the model meet the pre-
specified limit for the p value, you evaluate the p-value for all model
components that are not yet included, and include the model component
with the lowest p-value. Continue until all model components in the model
meet the pre-specified limit for the p-value, and all model component that
are not in the model do not.

The Backwards Selection adheres to the basic assumptions of the likelihood
ratio test, which is in principle only valid if the true model is contained in
the expanded model, whereas the other methods may be useful in practise.
Further more, practical experience frequently demonstrates that the conclusion
regarding a single model component depend upon the model used as a null
hypothesis, making it important to use a null hypothesis as close as possible
to the true model. System noise is one model component that can be tested
via the Likelihood Ratio test, and it is frequently found to be quite significant
with −2 log(λ) values around 1000 for the temperature model and the insulin
secretion model in Section 6. Since this model component can be extremely
influential, it may be especially important for likelihood based statistical model
building.
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5.6 SDEs in Non-Linear Mixed-Effects modelling

In contrast to the exploratory field of SDEs in PK/PD, non-linear mixed-effects
modelling is a well established and successful modelling technique for PK/PD
models [7]. The complication of merging these two methods need to be addressed
in order to test the applications of SDEs to PK/PD in a realistic setting. During
the applications, we found that the sharing of information among subjects was
quite useful to get robust parameter estimates, making the increased statistical
complication worth while.

Non-linear mixed-effects models based on SDEs are investigated and advocated
in the present thesis. These models can be written as an extension of the
stochastic state-space model in (5.2) where the individual parameters φ are
modelled with fixed effects θ that are identical for all individuals and random
effects η that exhibit inter-individual variability with variance-covariance matrix
Ω. The equations become,

φ = h(θ,Z,η), η ∈ N(0,Ω)
dx = g(x,d, t, φ)dt + σwdw, wt2 −wt1 ∈ N(0, |t2 − t1|I)
yi = f(x(ti),d(ti),φ) + ei, ei ∈ N(0,Σ)

(5.7)

To simulate new data we first simulate a new set of individual parameters φ de-
pending on the specific covariate information Z of the given individual. Second,
we simulate one instance of the stochastic differential equation, and third we
simulate random measurement noise to give us the observations. By this formu-
lation, we have three sources of variability, inter-individual variability, system
noise, and measurement noise, where all three random components, η, w, and ei

change between individuals. The first-stage model refer to the state-space model
given by the two last equations, and the second-stage refer to the model for in-
dividual parameters, which often use a log-normal model, i.e. h(θ,Z) exp(η).

5.6.1 Estimation in Non-Linear Mixed-Effects Models

Non-linear mixed-effects models are often based on ODEs, or the solution thereof,
i.e. models where the SDE in (5.7) is replaced by an ordinary differential equa-
tion. We shall briefly leave the discussion of SDEs and mention the general
challenge associated with the non-linear mixed-effects models.

For non-linear mixed-effects models, the predictions are non-linear functions of
the random effects, making the likelihood function impossible to derive analyt-
ically for most models. Many techniques and algorithms have been developed
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to solve this problem, and some of these have been implemented in ready to use
software. These programs can be divided into three categories: 1) parametric
approximate likelihood techniques, 2) nonparametric likelihood techniques, and
3) Bayesian methods [7]. Approximate likelihood techniques [92] [74] are the
most common, implemented in e.g. NONMEM [16], Splus (called NLME [93]),
and SAS (called NLINMIX). Nonparametric methods extend the model in (5.7)
by loosening the assumption of Gaussian random effects to a nonparametric dis-
tribution, see e.g the USC*PACK program suite [57]. Bayesian MCMC methods
are implemented in PKBUGS [75].

Presently, NONMEM is the most widely used PK/PD software for non-linear
mixed-effects modelling, and in particular the first-order methods are widely
applied. These methods use a linearisation of the model predictions with respect
to the random effects, so that the likelihood function can be approximated
by Gaussian densities. The first-order (FO) method linearizes around zero,
while the first-order conditional estimation (FOCE) method linearizes around
the conditional estimates of the random effects, see NONMEM user’s guide [16]
or Paper B for details. These techniques also form the basis for the estimation
of mixed-effects modelling based on SDEs to be discussed in the following.

5.6.2 Estimation in Non-Linear Mixed-Effects Models based
on SDEs

Table 5.2: Statistics of the estimation performance when simulating experiments with
100 individuals each sampled 3 times. The model is a one compartment model for an
IV bolus experiment parameterized by clearance CL, and volume of distribution V ,
with coefficient of variation ωCL and ωV , system noise σw, and relative standard error
on the measurement noise σe.

V CL ωV ωCL σw σe

Simulated value 10 0.5 0.2 0.2 0.2 0.1
Mean estimate 10.02 0.508 0.195 0.195 0.198 0.102
Std. Dev. of estimates 0.212 0.015 0.016 0.035 0.037 0.010
Mean estimated std. error 0.220 0.014 0.018 0.035 0.046 0.011

It is to be expected that many of the different parameter estimation methods
for SDEs can be combined with many of the methods used for estimation in
non-linear mixed-effects models. One approach is to estimate parameters via
MCMC, as attempted in [11]. This is an appealing extension because it in
principle gives us the exact maximum likelihood estimates, but it can be slow
and thereby force us to make approximations that take us away from the true
likelihood estimates.
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Paper B describes the contribution of the present Ph.D. to parameter estimation
in non-linear mixed-effects modelling based on SDEs. This article introduces
the basic model framework in (5.7) and explains how the first-order method
from NONMEM can be merged with the EKF. A series of simulation studies
were used to demonstrate that system noise, measurement noise, and inter-
individual variability can be estimated simultaneously, as is typically necessary
for these models to be treated meaningfully. One example includes the statistics
of the parameter estimates from 50 simulated trials, presented in Table 5.2. The
simulation based conclusion were confirmed by a study in [31] that investigates
simulations of a linear mixed-effects model based on SDEs that can be solved
analytically.

The model framework of Paper B can be implemented in NONMEM version VI
beta [127], which facilitate the speed and numerical performance necessary for
practical applications of non-linear mixed-effects models based on SDEs. The
following chapter is devoted to these applications, including stochastic modelling
of core body temperature, haemoglobin, and insulin secretion.
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Chapter 6

Applications of SDEs to
PK/PD

Stochastic differential equations constitute a promising discipline with many
possible applications within PK/PD modelling and biosciences in general. A rel-
ative large interest exists for new results within applications of SDEs to PK/PD
with benefits including aspects of model development as well as model per-
formance. However, the use of SDEs in PK/PD is complicated by software
limitations and technical issues to an extent where progress is almost exclu-
sively driven by statistical and technical universities with a prior knowledge
about SDEs. Naturally, applications are appearing slowly compared to mod-
elling techniques that are readily applicable for any bioscientist, and although
the publication speed is picking up, the role of SDEs in PK/PD has not been
resolved.

SDEs have been used within various biosciences such as physiology, biology,
pharmacology, and pathophysiology as integral model component. Examples
include realistic descriptions of fluctuations in HIV viral load and T-cell popula-
tions [128], [122], and [60], cortisol diurnal patterns [25], pulsatile secretion in the
male hypothalamic-pituitary-Leydig cell axis [63], modelling of drug dissolution
time [71], bacterial growth in a PK/PD model of bactericidal drugs [38], drug
resistance during antineoplastic chemotherapy [9], for the rat nephron [32], for
PK models [30], and for joint glucose-insulin models of the IVGTT [11]. Many
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of these early contributions on SDEs in biosciences motivate the introduction of
system noise by more realistic simulation properties and/or description of the
system to be modelled. However, for a PK/PD modelling scientist who is not
used to SDEs, it may take more than the possibility of a more realistic descrip-
tion to motivate learning the new and difficult skills necessary for implementing
SDEs. Furthermore, inter-individual variability and measurement noise are well
established ingredients to explain PK/PD data, making it difficult to foresee the
virtually unexplored effects of a third level of variability on model development
and modelling results. A main effort of the present work has been to formulate
and exemplify the effects of system noise in PK/PD models in terms of actual
model performance criteria such as simulation properties, specific predictive
performance criteria, parameter estimates, and diagnostic plots.

In short, system noise has been proposed to aid, 1) diagnostics, 2) deconvo-
lution, and 3) systematic model development, both in pursuit of models with
system noise and in pursuit of those without. Compared to models based on
ODEs, models based on SDEs may 4) give more realistic description of the
fluctuations, 5) leading to better simulation properties, and 6) predictive per-
formance. System noise was further seen to 7) increase stability of population
parameters, and to 8) improve precision for the individual parameter estimates
and their uncertainties. In the present chapter, we shall review some of these
points, emphasizing the specific contributions made during the present thesis.

6.1 Diagnostics, Deconvolution, and Systematic
Model Development

The introduction of system noise in classical engineering disciplines such as
system identification [109] allow all model assumptions to be tested, also whether
the residuals are independent or correlated. In the same line of thought, the
continuous AR(1) autocorrelated processes has been implemented in NONMEM
version V and advocated as a potential diagnostic for PK/PD models [61]. The
autocorrelation function was found to be a useful tool, both to identify system
noise when none is used, but also to locate model deficiencies when system
noise has already been introduced, and it was used in all models presented in
the present chapter. Note that the Lag Dependent Function [81] extend the
autocorrelation to explore more general lag dependencies, which may be useful
for nonlinear models.

Mathematically dynamic models can be understood as objects that take some
input and produce some output. For linear models, deconvolution is a well
established technique to calculate the input if you know the output and the pa-
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rameters of the model. This technique has been used within PK/PD modelling
for example to derive the rate of drug appearance and the secretion of endoge-
nous hormones (e.g. insulin). In fact deconvolution methods are for example
implemented in a standard PK/PD software WINNONLIN [6], and in a stand
alone stochastic deconvolution program WINSTODEC [113]. For linear mod-
els, WINSTODEC has been seen to produce identical results as an SDE based
deconvolution method, while the SDE setup offers a natural extension to treat
also non-linear models [66].

The idea to use stochastic differential equations for diagnostics and deconvolu-
tion has been merged into a systematic tool for model development, as originally
proposed in chemical engineering applications [68] and [65] and later adopted in
PK/PD modelling [67] and [127]. The suggested procedure can be summarized
as: 1) Start with and ODE, 2) Extent the model to an SDE, 3) Take significant
system noise as an indicator for model deficiencies, 4) Let the structure of the
estimated system noise inform or pinpoint you to the model deficiency, 5) Exam-
ine suggested misspecified parameters by parameter tracking, i.e. treating them
as states that can be estimated (deconvoluted) via the EKF and the Kalman
smoother. 6) Use non-parametric methods to locate functional relationships for
the tracked parameters, 7) Extend the stochastic model with these functional
relationships, 8) Continue with this procedure until no further improvements
can be made.

As previously mentioned, diagnostics, deconvolution, and systematic model de-
velopment can be used both in pursuit of models with system noise and in pur-
suit of those without. However, when system noise is to enter as a component
in the final model, it may be worthwhile considering the connection between the
cause of the fluctuations and the implementations of system noise, i.e. some of
the mechanistic aspects.

6.2 Mechanistic Aspects of System Noise

Realizing that in many minds, the words mechanistic and mechanism based
model are almost contradictory to stochastisity and random fluctuations - an
explanation is needed. In the present thesis, mechanistic refer to the use of phys-
iologic mechanisms in the model, see Section 2.3, and the mechanistic aspects
of system noise involve the physiological cause of these fluctuations. Mechanis-
tic modelling can be understood as a compromise in the level of physiological
details included in empirical versus physiological models, but it is not necessar-
ily a mix of these two modelling techniques. Grey-box modelling on the other
hand, is understood as a mix between theoretical (white) and empirical (black)
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modelling techniques. The present section investigate how random fluctuations
can be implemented to comply with the physiological mechanisms, which is one
aspect of Grey-box modelling.

The autocorrelation between residuals that is often observed for PK/PD mod-
els has motivated the introduction of the continuous first order autoregressive
process (AR(1)) in NONMEM as an alternative residual error model [61]. The
AR(1) process can be defined as a process P with a correlation decay rate ρ,
i.e. COV (P (t1), P (t2)) = V exp(−ρ|t1 − t2|). Such a process could also be
formulated as the steady state solution to a stochastic differential equation,

dP = −ρPdt + σdw (6.1)

AR processes are usually exclusively motivated by data, and the implementa-
tion does not correspond to any explanatory mechanism for the observed fluc-
tuations, making the AR process empirical in nature. On the other hand, SDEs
can be implemented directly into the dynamical equations and thereby describe
the cause of the observed fluctuations, making SDEs more mechanistic.

Let’s consider an example with a one compartment PK model where fluctuations
in clearance is known to cause random fluctuations in data. Within a given small
time interval ∆t, the fluctuations in clearance would lead to random variations
in the eliminated amount during that period, e.g. (CL/V )A∆t + σ∆w, where
A is the amount, CL is the clearance, V is the volume, and σ∆w is the random
deviation from the expected eliminated amount. This could be modelled with
an SDE as,

dA = −(CL/V )Adt + σdw (6.2)

Exploring further into the origin of the random fluctuations in clearance, it
is safe to assume that over any time interval, the eliminated amount will be
positive definite. This is not inherent in the implementation above, but could be
implemented e.g. by modelling the dynamic fluctuation in clearance as follows,

dA = −(CL/V )Adt

dCL = σCLdw
(6.3)

By introducing CL as a new state, the SDEs become non-linear, which is difficult
to identify with many traditional statistical methods, but can be solved with
the proposed EKF approach. Although we have assumed random fluctuations
in clearance, the completely unbounded fluctuations in CL is unrealistic. This
knowledge could be implemented by assuming that clearance varies around some
value CL0 with some correlation decay rate k, which may be written as,

dA = −(CL/V )Adt

dCL = −k(CL− CL0)dt + σCLdw
(6.4)
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As we see, the mechanistic knowledge about the fluctuation can be incorporated
into models based on SDEs with varying levels of detail.

It is beyond the scope of the present thesis to discuss all possible mechanistic
aspects of system noise and how they should be assessed. Instead, we shall intro-
duce three real data cases that have been under investigation during the present
project, and discuss the mechanistic aspects behind the stochastic implementa-
tion, how it was selected, and how modelling results was improved compared to
the corresponding situation with ODEs.

6.3 Model of IL-21 Effects on Thermoregulation
in Monkeys

This section summarizes some of the results in paper E.

Drugs may modify the regulation of body temperature by three fundamen-
tal mechanisms [76], either by 1) changing heat production i.e. increasing
metabolism, 2) by changing heat loss e.g. by cutaneous vasoconstriction, or
3) indirectly by changing the regulation process i.e. by increasing the set-point
temperature that may be associated with lowering the signaling of temperature
sensitive neurons in the hypothalamus.

The problem of modelling regulation of core body temperature has been chal-
lenged with many different models. Physiology based models typically include
a vast amount of mechanisms of heat regulation to produce fruitful simulation
models, see [50] and references therein. More statistical models aim to precisely
describe and help to identify the circadian rhythm of body temperature, see e.g.
[24] and [54]. PK/PD models of temperature have successfully used complex
feedback mechanisms in a set-point model to describe the observed oscillations
in temperature after a pharmacodynamic challenge [135]. Further research has
integrated the set-point model with an oscillator model for the circadian rhythm
and handling effects to describe system effects together with drug induced hy-
pothermia in rats [133].

The model presented in Paper E compliments existing models of thermoregula-
tion on three points,

1. Provide a model framework for parameter estimation that include the fun-
damental mechanisms of drug action, i.e. heat production, heat loss, and
set-point regulation. This model was formulated according to the basic
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Figure 6.1: Model for IL-21 induced regulation of core body temperature in
cynomolgus monkeys. The model includes a part that describes the general
mechanisms for temperature regulation (blue), a part that describes how an
intermediate receptor system is hypothesized to regulate the set-point temper-
ature (green), and a part that empirically explains the relationship between
administration of IL-21 and the effects (red). Each square box represents a
compartment, i.e. a differential equation or the solution thereof, whereas each
oval box represent an algebraic expression. A physical flow from one compart-
ment to the next is depicted with an arrow, while a bullet is used to signify an
influence of one model entity on another.

physiology of heat regulation [134], so that the circadian rhythm could be
realistically described, and other external challenges may be incorporated.

2. It represents an attempt to bridge empirical modelling techniques with
theory driven modelling, and thereby provide a Grey-box approach to
modelling core body temperature. The theory of heat regulation is incor-
porated via differential equations, and the empirical model requirements
were satisfied after implementation of system noise.

3. The model provides a quantitative description of the effects of IL-21 on
thermoregulation in cynomolgus monkeys.
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6.3.1 The Model

A detailed description of the model for IL-21 effects on thermoregulation is given
in Paper E. For easy reference Figure 6.1 gives the structure of the model, and
the equations below constitutes the fundamental stochastic differential equa-
tions.

dM = −km(M − f1(Drug, t))dt + σMdwM

dT = c−1(M − k(T − Ta))dt

dBR = (PD(t)(1−BR)− kRBR)dt + σBRdwBR

k = kb + kinc(T − Tz) and Tz = (1 + ptotBR)Tb

(6.5)

M is the metabolic rate, which decays with a rate constant km towards the
metabolism dictated by the circadian rhythm and the drug effect f1(Drug, t).
T is core body temperature, c is the specific heat constant, Ta is the ambient
temperature, k is the conductance of heat, which has the baseline value kb, cor-
responding to a specific baseline temperature Tb, and kinc gives how much k
is upregulated if temperature increases above the set-point temperature. The
steady state temperature can be understood to depend upon the metabolism,
so that a fixed set-point value Tz can be defined corresponding to the baseline
metabolic rate. The effects of IL-21 on the thermoregulatory set-point are mod-
elled via a tolerance model that mimic a system of free and bound receptors BR,
where kR is the off rate for the bound receptor complex, PD is the drug effect,
and ptot is a parameter for the combined effect on the set-point temperature.
IIV was implemented on the timing of the drug effect in f1(Drug, t) and PD(t),
see Paper E for details.

6.3.2 Aspects of the Stochastic Implementation

The model for IL-21 effects on thermoregulation includes three differential equa-
tions, one for each of metabolism, core body temperature, and fraction of bound
receptors. Many possible mechanistic implementations of system noise could be
imagined, but to avoid numerical difficulties it was decided to investigate system
noise, only for these three fundamental equations. The following arguments can
be given for the chosen implementation of system noise.

• Fluctuations in metabolism were motivated by the natural variations in
movement and exercise patterns. Further investigations used the esti-
mated parameters to simulate the metabolic rate in Figure 6.2, which
exhibited reasonable stochastic and circadian fluctuations compared to an-
other monkey species. Subsequently it was concluded that this proposed
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Figure 6.2: The simulated metabolism for cynomolgus monkeys demonstrate
the circadian rhythm and stochastic fluctuations that were used to explain the
observed fluctuations and circadian rhythm in core body temperature.

mechanism for temperature fluctuations could not be falsified. The simu-
lations of metabolism were reasonable and far from zero, and it was not
judged necessary to investigate a more complicated proportional model,
which could ensure the metabolism to be strictly positive. Equivalent sys-
tem noise for the temperature state could to a large extend compensate
for variations in metabolism, and including both effects gave only modest
improvement to the objective function value. System noise on metabolism
was selected over direct effects on temperature because of an improved
objective function value1, more realistic simulations of metabolism, and
since it enabled estimation of the rate constant km for stabilization of
metabolism.

• System noise was also introduced for the receptor compartment. These
fluctuations could reasonably account slow fluctuations, and were signif-
icant in a likelihood ratio test. The chosen stochastic implementation
ensures that the total number of bound and unbound receptors remain
constant. Further mechanistic considerations involved the need for strictly
positive values in the receptor compartment, which could be ensured by
system noise proportional to the fraction of bound (and unbound) recep-
tors. A term with system noise proportional to the pharmacodynamic
effect was tested and rejected.

It was not attempted to extend the model with stochastic fluctuations in other
parameters or model components. However, the differential equations for metabolism
and bound receptors may be seen as extensions that could be removed if an ODE
model was pursued. In this case metabolism would simply be the f1(Drug, t)

1These models were not nested, so the Likelihood ratio test could not be used.
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function, and the bound receptor model would reduce to a simple Emax term in
the equation for Tz.

6.3.3 Results

The inclusion of system noise had a number of positive effects on the model
performance, which can be illustrated by a comparison between the mixed-
effects model based on SDEs and the corresponding model based on ODEs.
These include,

• The ODE model with uncorrelated residuals could be falsified by a simple
statistical test of the autocorrelation function (ACF), whereas the SDE
model was able to describe the correlation structure in the residuals. The
ACF can be seen as a general model diagnostic, where an erroneous ACF
will falsify the model, but the ACF may also be a more direct quality
mark for model simulations. In particular, simulated data could be used
to assess precision of parameter estimates for different sampling schedules.
It is to be expected that the results would change if simulations are made
with a model that produce a completely different residual error structure.

• The introduction of SDEs allows us to quantify and propose a mechanism
for the fluctuations in temperature, i.e. random fluctuations in metabolic
rate and in the fraction of bound receptors that affect the thermoregula-
tory set-point.

• The high measurement error estimated in the ODE model caused sim-
ulations to jump up and down erratically and unrealistically compared
to simulations based on SDEs that realistically resembled the variations
seen in data. This could become important, e.g. if one wish to predict
the probability that treatment of a given individual causes temperature
elevation above a certain level.

• IIV was reduced by the inclusion of system noise, and the simple predic-
tive check demonstrated that the SDE model led to narrower confidence
intervals, as is often seen with more accurate models for the variations.

• SDEs allowed us to simplify the model for inter-occasion variability on day
and night time steady state temperature, which significantly improved the
model speed.
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6.4 A stochastic model for insulin secretion fol-
lowing an MTT

During the course of the present project a population covariate analysis for
insulin secretion following a meal tolerance test (MTT) was performed and
formulated as part of a larger analysis of 85 healthy and 417 patients with
type 2 diabetes [56]. The main purpose of the modelling effort was to quantify
insulin secretion as a function of glucose in terms of individual parameters, and
to find the most important explanatory factors for these parameters. As a minor
project, it was tested how the inclusion of stochastic differential equations would
influence the individual parameter estimates.

6.4.1 The Model

The stochastic model for insulin secretion following an MTT can be written as,

dE = −1
τ

(βGab − E)dt

dP = −ρPdt + σdw

CI = (BI + αGab + E) exp(P ) exp(ε)

(6.6)

where E is proportional to the delayed glucose above baseline Gab, with a time
constant τ . CI is the insulin concentration, and BI is the baseline insulin
level. Two proportional noise terms were used, ε is the usual uncorrelated
measurement error, and P is the continuous AR(1) process that gives rise to
stochastic fluctuations in the insulin concentration. IIV was implemented for α,
β, and BI , using a proportional model with a full variance-covariance matrix.

6.4.2 Aspects of the Stochastic Implementation

Prior to the implementation of system noise, the model contained only one dif-
ferential equation, i.e. the equation for E. It was attempted to extend this
equation to an SDE in various ways, 1) by additive system noise, 2) by addi-
tive system noise to the log-transformation of E, corresponding to proportional
system noise, and 3) by using system noise proportional to the glucose concen-
tration, but numerical stability remained a problem for all these models. The
proportional AR(1) and measurement noise model given above provided a very
stable alternative that is easy to apply for a wide variety of models. However, it
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Figure 6.3: Diagnostic plots of the insulin secretion model. The mixed-effects
model based on ODEs is placed in the top row, and the corresponding model
based on SDEs is placed in the bottom row.

should be made clear that it is an empirical model, where the time scale of 1/ρ
and τ are different. Interestingly, the time scale estimated for the stochastic fluc-
tuations ρ ≈ 100min is close to the time scale estimated for the redistribution
krd ≈ 115min in Paper C.

6.4.3 Results

The main results of the stochastic implementation are associated with the indi-
vidual parameter estimates for α, β, and BI . The precision of these parameter
estimates can implicitly be investigated via the correlation between the param-
eter estimates and known covariates, where a lower correlation indicates more
uncertainty in the estimates. The correlations for the SDE model and the corre-
sponding ODE model are given in Table 6.1, leading to the following conclusions,

• By comparing ODE and SDE models with no covariates, we see that SDEs
yield a slight improvement of the individual parameter estimates. The
pairwise differences are not significant, but since the effect is seen consis-
tently, also for other covariates, the difference is believable.
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Table 6.1: Correlation between log-transformed parameter estimates and most
important covariates, baseline glucose BG and the waist circumference WST.
Model \ Covariate α ∼ BG β ∼ BG BI ∼ WST
ODE model no covariates -0.71 -0.77 0.52
SDE model no covariates -0.76 -0.78 0.52
ODE model with covariates -0.73 -0.81 0.56
SDE model with covariates -0.79 -0.89 0.63

• From Table 6.1 we see that the introduction of covariates increases the cor-
relation, both for the ODE model and the SDE model. This phenomena is
caused by regression to the mean, where the a posteriori estimated param-
eter is a balance between the individual estimate obtained without prior
information and the population mean given by the covariate relationship.
We note that this effect is considerably larger for the SDE model than for
the ODE model, which is probably due to an overestimated accuracy of
the individual parameter estimates for the ODE model.

• The autocorrelation of the residuals was clearly reduced by the introduc-
tion of system noise, i.e. the ACF was improved, see Figure 6.3. But the
improvement was insufficient, in the sense that the SDE model could also
be falsified by the ACF. By comparing the present insulin secretion model
with the model presented in Paper C, the present model is expected to be
deficient, and hence it is satisfactory that this deficiency can be diagnosed
by the ACF.

6.5 Model of IL-21 Effects on Haemoglobin

PK/PD models of the effects of IL-21 on haemoglobin were proposed already
during preclinical studies (Paper D), and are presently used as part of the eval-
uation of IL-21 in the early stages of clinical development. These models have
been used to predict the time course of haemoglobin for IL-21 administered
in various treatment regimens, see also Section 3.3.1. Particular interest was
devoted to the lowest haemoglobin concentration observed for each individual,
where a haemoglobin level below 6.5g/dL is defined as a severe (grade 4) ane-
mia, and below 8g/dL is defined as moderate (grade 3) anemia. In fact, the
ability to simulate the lowest haemoglobin observation was taken as a predic-
tive performance criteria to evaluate and compare models based on ODEs and
SDEs.
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6.5.1 The Model

The stochastic model for IL-21 effects on haemoglobin given in Figure 6.4 can
be written as the following equations,

Input = k(EMAXDose/(ED50 + Dose) + E0)
dA1

dt
= Input− ktA1

dA2

dt
= ktA1 − ktA2

dA3

dt
= ktA2 − ktA3

dHMGP = (kbHMGBM −A3)dt + σdw

dHMGBM = (Be(HMGP −HMGBase)− kbHMGBM )dt− σdw

(6.7)

where A1, A2, and A3 are transit compartments, symbolizing the cascade of
activity between dosing with IL-21 and effect. The rate constant kt gives the
total transit time as 3/kt. E0 is the minimum effect, which is implemented as
a placebo effect that enter at every dose, also when no drug is administered,
whereas EMAX and ED50 parameterize the dose related effect. When IL-21
acts, the plasma concentration of haemoglobin HMGP will go below baseline
HMGBase. This drop increases the production rate of red blood cells and
haemoglobin in the bone marrow HMGBM with a rate that is proportional to
the drop with a proportionality factor Be. kb is the transfer rate of haemoglobin
from the bone marrow to the plasma compartment. σdw is the diffusion term,
where the subtraction in the HMGBM equation correspond to the addition in
the HMGP equation. This ensures that mass balance is conserved, i.e. if extra
haemoglobin randomly appear in plasma, it is removed from the bone marrow
compartment. IIV was implemented for Input and HMGBase, both via the
proportional model.

6.5.2 Aspects of the Stochastic Implementation

There are two noteworthy aspects in the stochastic implementation of the haemoglobin
model, 1) the link between dosing and effect is modelled exclusively with ODEs,
and 2) system noise is implemented so that mass balance is conserved.

1. Simultaneous use of ODEs and SDEs may significantly reduce the com-
plexity of the model, making it faster and numerically more robust. If the
transit compartments were included as SDEs, the total number of states
would be 5, and the number of independent elements in the full state
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Figure 6.4: Model for IL-21 induced effects on haemoglobin.

covariance would increase from 3 to 15, so that the total number of dif-
ferential equations in a NONMEM implementation of the Kalman Filter
[127] would be 20, i.e. the maximum number for a default NONMEM in-
stallation. In theory, there should be no problems for large systems, but
the practical situation may be quite different. A combination of ODEs and
SDEs was not the only practical choice made for the present model. The
original Red blood Cell (RBC) model for monkeys (Paper D) included a
system of transit compartments between the bone marrow and plasma to
mimic the maturation stages of RBCs. This system was removed in the
stochastic model, in order to reduce the number of stochastic states and
thereby also the size of the state covariance.

2. It was investigated whether to use additive system noise 1) as chosen, i.e.
by restricting mass balance to be conserved, 2) only on the plasma com-
partment, 3) only on the bone marrow compartment, or combinations of
the three possibilities. These options were associated with similar objec-
tive function values, and they could to a large extend replace each other.
The first option was chosen because it was judged to be slightly more re-
alistic than the other two, since it was associated with a lower variance
of the individual residuals, and the predictive performance was slightly
better.

6.5.3 Results

The inclusion of system noise for the present model had several positive effects.
These include,
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Figure 6.5: Diagnostic plots of the haemoglobin model. The mixed-effects model
based on ODEs is placed in the top row, and the corresponding model based on
SDEs is placed in the bottom row.

• The SDE model was able to describe the correlation structure in the resid-
uals, whereas the ODE model with uncorrelated residuals could be falsified
by a simple statistical test of the autocorrelation function.

• The introduction of SDEs allows us to propose and quantify a mecha-
nism for the fluctuations in haemoglobin, i.e. a random release rate of
haemoglobin from the bone marrow.

• The SDE model was found to yield more robust population parameters
when small changes were made in the model. Five minor model changes
were made, for which the SDE model consistently produced high ED50

estimates, and the ODE model estimates occasionally yielded very low
values.

• The SDE model was found to yield a better predictive performance for
the minimum level of haemoglobin. The predictive performance measure
(PPM) for a given simulated trial was defined as,

PPM =
1
N

N∑
individuals

(min(HMGsim)−min(HMGobs)) (6.8)

where N is the number of individuals, HMGsim is the simulated haemoglobin
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Figure 6.6: Distribution of the Predictive Performance Measure (PPM) for
the mixed-effects model based on SDEs and the corresponding model based
on ODEs. PPM (left figure) is based on the minimum observed haemoglobin
levels, and PPM2 (right figure) is based on the minimum of the moving average
of the observed haemoglobin levels. For both measures, the preferred model
would yield a narrow distribution around zero.

concentration for a given individual, with HMGobs being the observed
concentration. For a perfect model, the predictive performance measure
(PPM) would always be close to zero, but for any real model some error
is to be expected. The distribution of the PPM is compared for the ODE
and the SDE model in Figure 6.6, where the ODE model is seen to be more
biased than the SDE model. This bias for the ODE model may be caused
by simulations with more erratic jumps, which increases the probability
that one of the observations for a given individual will be extremely low.
This hypothesis could be confirmed, since most bias was removed by using
the moving average (MA) of two consecutive values to smooth out some
of the erratic jumps, i.e. by using the following PPM,

PPM2 =
1
N

N∑
individuals

(min(MA(HMGsim))−min(MA(HMGobs)))

(6.9)



Chapter 7

Conclusion

During the past few decades Pharmacokinetic/pharmacodynamic (PK/PD) mod-
elling has emerged as a promising discipline within drug development that is
hoped to increase speed and reduce cost of bringing new drugs to market, ulti-
mately leading to faster and cheaper medicines for the consumer. The primary
goal of the present project was to explore the use of stochastic differential equa-
tions (SDEs) as a new statistical technique that could benefit this field. PK/PD
models and modelling techniques are used, not only during drug development,
but also for biosciences in general. Insulin secretion was selected as a case story
that reflects biosciences in general, while development of IL-21 as a novel anti-
cancer agent provided several different fascinating biological markers that with
benefit could be analyzed using PK/PD models. A main effort has been to
formulate and exemplify the effects of SDEs in PK/PD models in terms of ac-
tual model performance criteria such as simulation properties, specific predictive
performance criteria, parameter estimates, and diagnostic plots.
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Several achievements have been summarized in the present report and some are
described in further detail in the series of papers presented in the appendices.
These contributions include,

1. Paper A is primarily a theoretical paper that aim to illustrate how the
two previously published minimal models for the IVGTT are associated
with different theoretical features in the distributed threshold model.

2. Paper B presents a new estimation method for non-linear mixed-effects
models based on SDEs, by merging the extended Kalman Filter used for
SDEs with first-order methods used for non-linear mixed effects modelling.
A series of simulation studies demonstrated that system noise, measure-
ment noise, and inter-individual variability can be estimated simultane-
ously, as is typically necessary for these models to be treated meaningfully.

3. Paper C presents a new insulin secretion model and demonstrates its use
for the IVGTT and the OGTT. Note that this model is likely to be ap-
plicable also for other experiments. The analysis provided a consistency
check for the physiological understanding of the biophysical distributed
threshold hypothesis, while simultaneously demonstrating the consistency
of empirical parameters obtained from the two different diagnostic tests.

4. Section 3.3 summarizes several PK/PD models of the pleiotropic effects
of IL-21. Among other things, these models have been used to 1) give
a univocal description of the observed effects, including dose response
relationships, 2) to bridge data from different species, treatment regimens,
and patient populations, 3) to give predictions for new experiments, and
4) to increase understanding of the mechanisms of action for IL-21. Two
of these models are described more thoroughly in Paper D and Paper E.

5. Chapter 6 summarizes several SDE based PK/PD models that have been
developed during the present project, see also the more detailed descrip-
tion in Paper E. Several benefits of SDEs have been identified for each
model. In particular, the three different overall purposes of the three
different models was improved by SDEs, i.e. 1) individual parameters es-
timates were improved, 2) understanding of the system was increased, and
3) predictions and simulations were improved.

In summary, several different PK/PD modelling techniques have been used to
develop many different models with a variety of purposes. We conclude that
SDEs are useful in many aspects of PK/PD modelling, and may help modelers
produce even better results.
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Abstract

The present work introduces an extension of the original minimal model of second phase insulin secretion during the intravenous

glucose tolerance test (IVGTT), which can provide both physiological and mathematical insights to the minimal model. The

extension is named the mean-field beta cell model since it returns the average response of a large number of nonlinear secretory

entities. Several secretion models have been proposed for the IVGTT, and we shall identify two fundamentally different theoretical

features of these models. Both features can play a central role during the IVGTT, including the one presented in the mean-field beta

cell model.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Minimal model; Insulin secretion; Distributed threshold; Mean field

1. Introduction

The intravenous glucose tolerance test (IVGTT) is
widely used in order to estimate parameters that
constitute the so-called metabolic portrait of the test
subject. The insulin sensitivity and glucose effectiveness
provide the glucose kinetics part of the metabolic
portrait, while the first- and second-phase insulin
secretion indices are measures of pancreatic b-cell
function. The parameters are embedded in two different
minimal models, one describing the glucose kinetics
(Bergman et al., 1979) while the other describes the
insulin secretion (Toffolo et al., 1980). The minimal
models are extensively used and implemented in
published computer programs (Pacini and Bergman,
1986) and (Vega-Catalan, 1990). Here we shall concen-
trate upon the minimal model of insulin secretion
(hereafter named MM), as applied e.g. in Pacini and

Cobelli (1990), Marchesini et al. (1990), and Piccardo
et al. (1994).

MM simply states that during an IVGTT, the second
phase insulin secretion into plasma is proportional to
the time since the glucose bolus was administrated and
to the glucose concentration above some threshold
value. MM is based on data, and does not provide any
physiological arguments for why the secretion rate rises
linearly in time, which subsequently might cast doubt on
whether the physiology is satisfactory described by the
model. Furthermore, the explicit time dependence
causes mathematical problems, specifically when the
two minimal models are unified (Gaetano and Arino,
2000).

Based on data analysis, other statistical models have
been suggested to replace the minimal model of insulin
secretion (Toffolo et al., 1995), (called M1 and M2 in
the present paper, just as in the original paper).
These models can be argued from theoretically more
comprehensive models (Licko and Silvers, 1975), which
make them physiologically and mathematically more

ARTICLE IN PRESS

www.elsevier.com/locate/yjtbi

0022-5193/$ - see front matter r 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jtbi.2005.04.023

�Corresponding author. Tel.: +4530 24 78 76; fax: +45 45 88 26 73.

E-mail address: rvo@imm.dtu.dk (R.V. Overgaard).

74 Paper A



appealing. However, the physiologic assumptions and
the theoretical feature behind these models are not the
only reasonable ones, which is subject for further
elaboration in the following.

The primary goal of the present paper is to introduce
a theoretical and mathematical extension of the original
MM that clarifies the physiologic background and
describes the theoretical feature that has made MM a
success. The added structure introduced to clarify the
physiology solves the unboundedness of the secretion,
which was the more crucial of the mathematical
problems.

The theoretical idea behind the suggested model is to
describe the collective secretory response of all the beta
cells as a single object, a mean-field beta cell. The
dynamics of the mean-field beta cell is different from the
individual entities it is composed of, but we can give a
physiological understanding of the mean-field model
based on the behavior described by an appropriate
model for the individual entities.

The secondary purpose of the present text is to
compare M1 to the mean-field beta cell model in a
theoretical context motivated by the distributed thresh-
old model (Grodsky, 1972), which enables us to identify
the two separate theoretical model features of the
original MM and M1. Finally the models are compared
in a short data analysis, to demonstrate that both
theoretical features can be seen in the IVGTT experi-
ment. This data analysis deals exclusively with the
theoretical features, that could be identified only for a
small number of subjects, whereas other complications
of a full scale data analysis were completely ignored.
The present model is thus not proposed as a competitive
model for the IVGTT, but as a tool to illustrate the
theoretical features that may be necessary to consider
for new insulin secretion models. Especially when more
mechanistic models are pursued for a coherent descrip-
tion of different challenges of the beta cell.

All models discussed in the present text are summar-
ized in the appendix, for easy reference.

2. Insulin synthesis and release

Insulin secretion in response to an abrupt increase in
blood glucose concentration can to a large extent be
described by two phases, a rapid first phase followed by
a slowly rising second phase. These phases are related to
the pleiotropic effects that glucose induce on the beta
cell, ranging over regulation of insulin biosynthesis,
movement of insulin within the beta cell, and insulin
release.

The duration of the IVGTT is only a few hours, which
is a brief period when dealing with insulin synthesis.
Over short periods (2 h or less) glucose regulates the
proinsulin biosynthesis mainly by increasing the rate of

translation of proinsulin mRNA. In vitro studies show
that after an abrupt increase in plasma glucose
concentration, the amount of translated proinsulin rises
approximately linearly in time, see e.g. (Itoh et al.,
1978), and approximately linearly with the glucose
concentration (Welsh et al., 1986), for time periods
and glucose concentrations comparable to the IVGTT.
After synthesis, proinsulin is split into insulin and C-
peptide, which are packed in equimolar amounts into
granules.

The dynamics of intracellular granules, recently
reviewed in Rorsman and Renstrom (2003), is an
exploding area of research made available by new real-
time imaging techniques. Among other things, these
studies indicate heterogeneity of the intracellular insulin
granules where some move freely within the intracellular
space while others are docked in the plasma membrane
and only a fraction of the latter are ready to be released,
thereby named the readily releasable pool (RRP).
Movement of granules from, e.g. the intracellular space
to the RRP is included in the concept of redistribution
that in the following mathematical models more
generally covers changes in the level that insulin released
is sensitive to glucose concentration. The RRP is
believed to contain the granules contributing to the first
phase secretion (Olofsson et al., 2002), while recent
experiments with real-time imaging indicate that second
phase secretion is due to granules that have just arrived
at the plasma membrane (Ohara-Imaizumi et al., 2002).
The second phase secretion is seen also when the
synthesis of proinsulin is completely inhibited, indicat-
ing that recruitment of freely moving intracellular
granules are responsible for the provision of new insulin
to the membrane. However for other cell types, recent
experiments using fluorescent cargo protein that changes
color with time demonstrate that newly assembled
secretory entities are secreted first (Duncan et al.,
2003). For the beta cell, similar experiments might
illuminate, whether upregulation of proinsulin does
contribute to the second phase secretion after all.

The release of insulin is facilitated by glucose
transforming into ATP, stopping the potassium efflux
of the sodium–potassium pump, which depolarizes the
cell. The depolarization opens voltage-gated calcium
channels, and the rise of calcium leads to transport of
insulin granules across the cell membrane. The insulin
release, ranging over a few minutes, is very fast in the
time frame of the IVGTT, and for this reason it is
frequently modelled to be instantaneous, but it can also
be identified dynamically as described later.

Heterogeneous response of insulin to glucose has been
documented, not only at intra-cellular level, but also at
the inter-cellular level. These differences exist both in the
biosynthesis and in the secretory response, but also
different beta cells have been seen to exhibit different
thresholds for the glucose-induced insulin release
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(Schravendijk et al., 1992). In the following mean-field
beta cell model, we model the collective response of the
many beta cells as one object, and thus lump together
many forms of heterogeneities. The mathematical model
will not depend on whether the inhomogeneity is at the
level of beta cells or at the level of granules within the
cell, and we shall thus simply refer to the secretory
entities.

3. The mean-field beta cell model

The first mean-field beta cell model (MFM1 in the
following) is a description of the above-basal second
phase secretion during the IVGTT. The first phase
secretion is not modelled, and could be included either
by using a dirac delta function, or simply by letting the
plasma insulin concentration start at the maximal
insulin concentration Imax.

We shall quantify the physiological argument that the
second phase secretion must be a combination of the
provision of new insulin and the heterogeneity of the
secretory entities. The ith entity is described by

dP=dt ¼ �aðP�HðG � hÞÞ,

SRi ¼ bHðG � hiÞP; Pð0Þ ¼ 0,

where Hð�Þ is the Heaviside (or step) function, hi is the
individual glucose threshold for the secretion entity,
which gives us the heterogeneity in the individual above-
basal second phase secretion rate, SRi, P is the normal-
ized rate of provision of new insulin, similar to what has
been used e.g. in Grodsky (1972) and Toffolo et al.
(1995), which in the present context is modelled
identically for the individual entities. The provision is
the combination of recruitment from intracellular
granules and from newly synthesized insulin, and like
proinsulin it rises slowly starting when glucose concen-
tration rises above some global threshold h. 1=a is the
characteristic time-scale for the provisionary factor to
approach its maximum level, and b is the proportion-
ality factor between the normalized provision and the
individual secretion rate.

MFM1 arises through the assumption that the
number of secretory entities contributing to the total
above-basal secretion is proportional to the glucose
concentration above threshold, h. We have MFM1,

dP=dt ¼ �aðP�HðG � hÞÞ,

SRab ¼ ðg=aÞ½G � h�þP; Pð0Þ ¼ 0. (MFM1)

½G � h�þ is the positive part of ðG � hÞ, which is
modelled to be proportional to the number of con-
tributing secretory entities. SRab is the total above-basal
second phase secretion rate. The parameterization has
been changed compared to the model of the individual

secretory entities, such that g is the second phase
secretion index (f2).

We remark that MFM1 respond differently than the
individual secretory entities. The individual entities have
a sharp threshold above which they begin to secrete,
while the mean-field beta cell has a secretion propor-
tional to the glucose concentration above some thresh-
old. This threshold in MFM1 will not represent a typical
threshold for the individual packets, but lie in the low
end of the individual thresholds, which is in agreement
with the typical MM estimation of a threshold near the
basal glucose concentration.

Compared to MM, we have used an additional state
variable and one extra parameter. The new state
variable gives us an interpretation of the linear rise in
time, and the extra parameter gives us a glucose-
dependent upper bound on the secretion rate.

3.1. Deriving the minimal model from the mean-field beta

cell model

In the typical IVGTT, the glucose concentration will
not rise above threshold after the first time it has gone
below. In this situation, we can derive MM from MFM1
in the limit a! 0. MFM1 can now be written,

P ¼ atþOða2Þ for G4h,

SRab ¼ ðg=aÞ½G � h�þP ¼ g½G � h�þt (MM)

which is the usual representation of the minimal model.
Since (1=a) is a characteristic time, we can understand

the minimal model, as the limit where it takes an
infinitely long time before the maximal provision is
approached. In this limit the insulin secretion will rise
unbounded, just as for the MM.

3.2. Including first phase secretion in the mean-field

model

Up until now, we have assumed that the first phase
secretion is instantaneous. This is obviously not true,
and we might get a better description of the first few
measurements by including a state representing the total
amount of ready made insulin in the currently secreting
entities. This state is named X in the following extended
form of the mean-field beta cell model (MFM2 from this
point). MFM2 is,

P ¼ �aðP�HðG � hÞÞ,

dX=dt ¼ ðg=aÞ½G � h�þP�mHðG � hÞX ,

SRab ¼ mHðG � hÞX , (MFM2)

where 1=m is the characteristic time for the first phase
secretion, so by taking the limit m!1 MFM1 is
obtained. The first phase secretion index, f1 can be
derived from the initial amount of readily releasable
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insulin in all packets contributing to the first phase
secretion.

4. Motivating models for the IVGTT from the distributed

threshold hypothesis

The distributed threshold hypothesis (Grodsky, 1972)
has played a central role in the development of a suitable
model to estimate the secretion indices during an
IVGTT. The original experiments on the perfused rat
pancreas used to quantify the distributed threshold
model was in fact used as motivation for MM (Toffolo
et al., 1980). More directly the distributed threshold
model has motivated another model for the IVGTT
(Licko and Silvers, 1975), which in a slightly altered
form has provided an alternative to MM (Toffolo et al.,
1995). Also the mean-field beta cell model proposed in
this paper can be motivated by the distributed threshold
model. We shall present a summary of the distributed
threshold model, and then demonstrate the two different
approximations corresponding to the two model alter-
natives.

The fundamental hypothesis is that the readily
releasable insulin is stored in small packets, where the
different packets have different thresholds, secreting
insulin into the plasma only when the glucose concen-
tration has exceeded this threshold. The amount of
readily releasable insulin in packets with threshold
between y and yþ dy is given by xðy; tÞdy, so the
threshold density distribution function x can be used to
model the total secretion into plasma, i.e.

dxðy; tÞ=dt ¼ �mxðy; tÞHðG � yÞ þ gðyÞPðG; tÞ

� G0xðy; tÞ þ g0ðyÞ
Z 1
0

xðy0; tÞdy0,

dPðG; tÞ=dt ¼ �a½PðG; tÞ � PðG;1Þ�,

SRtot ¼ m

Z G

0

xðy; tÞdy. (Dist-Thres)

The secretion of insulin into the plasma is realized
through the first term �mxHðG � yÞ, where Hð�Þ is the
Heaviside function, P is the provisionary factor, which
asymptotically approaches the maximal provision
PðG;1Þ at a rate a. The last terms, G0x and g0

R1
0 xdy0

are named redistribution terms corresponding to insulin
exchange between the different packets, which can be
understood as insulin changing its sensitivity to glucose,
and not necessarily its spatial location. Redistribution is
necessary in order to return to the initial insulin
distribution in steady state after a glucose stimulation.
Both g and g0 are then assumed to be proportional to the
threshold density distribution function at constant zero
glucose concentration, xðy; 0Þ. SRtot is the total secre-
tion, SRtot ¼ SRb þ SRab, where SRab is the above-basal

secretion as modelled by the IVGTT models described in
this paper, and SRb is the basal secretion rate, which is
assumed constant in models of the IVGTT.

Several experiments are needed to identify the
different parameters in the distributed threshold model,
so it cannot be used directly for the IVGTT. In order to
see how the model can motivate MFM1, we present the
following approximation of the distributed threshold
model: (1) m is taken to infinity, corresponding to an
instantaneous first phase secretion, (2) we model only
the packets presently secreting, and disregard redistribu-
tion, also the important redistribution of insulin from
packets not secreting. This approximation gives us,

dP=dt ¼ �a½P� PðG;1Þ�,

SRtot ¼ fPX ðGÞ; X ðGÞ ¼

Z G

0

xðy; 0Þdy,

where f is the proportionality factor between gðyÞ and
xðy; 0Þ. The nonlinear functions for the accumulated
initial insulin distribution (X) and the maximal provi-
sion (PðG;1Þ) have been fitted in the original work, see
e.g. (O’Connor et al., 1980), to the functions presented
in Fig. 1.

MFM1 corresponds to the further approximation,

X ab / ½G � h�þ; PðG;1Þab / HðG � hÞ,

where X ab and PðG;1Þab are the part of the functions
contributing to the above-basal secretion.

This approximation of the distributed threshold
model justifies that the number of secretory entities
contributing to the above-basal secretion is proportional
to the glucose concentration above threshold, as it is
modelled in MFM1.
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It was chosen to approximate the maximal provision
with a piecewise constant function, because a linear
approximation would produce a quadratic glucose
dependence of the total secretion, while in the distrib-
uted threshold model the total glucose dependence of
the above-basal secretion is approximately linear. The
step function approximation of the maximal provision
increases the secretion during the last part of the IVGTT
where the glucose concentration is low but still above
threshold, which to some extent counter effect that no
redistribution has been modelled. This counter effect is
perhaps the primary reason that one cannot include an
improved description of the maximal provision without
also including some form of redistribution.

One can argue that the maximal provision PðG;1Þab

rather than the threshold distribution X ab should be
approximated with a step function. First of all the
nonlinear function describing the maximal provision is
steeper, hence closer to a step function than the
cumulative distribution. Second, changes in the maximal
provision influence the secretion only through the
provision, while changes in the number of contributing
secretory entities affect the secretion directly and
immediately. During the IVGTT, the glucose concen-
tration drops quickly, so it might be essential for the
secretion model to respond correctly to an immediate
decrease.

It is clear that the approximations lead to certain
limitations of the model. Since we are modelling only the
insulin content in packets presently secreting, the model
does not take into account that insulin stored in other
packets would secrete directly into plasma if the glucose
concentration was to rise. During the IVGTT, this
approximation is less important since after the admin-
istration of the glucose bolus the plasma glucose
concentration is approximately monotonously decreas-
ing. More important is the lack of redistribution that
would facilitate an indirect contribution from packets
not presently secreting. MFM1 has emphasized model-
ling of the immediate response of the beta cell, and not
the precise form of the total provision, which might be
more important for long slowly varying glucose
stimulations, since all provisioned insulin is believed to
be secreted at some point.

Another approximation of the distributed threshold
model emphasizes modelling of the total provision and
the total secretion. This approximation is called M1,
which is a model for the above-basal second phase
secretion. M1 is given by

dP=dt ¼ �aðP� b½G � h�þÞ,

SRab ¼ P; Pð0Þ ¼ 0 (M1)

b is the second phase secretion index, and 1=a can again
be interpreted as a characteristic time for P to approach
the glucose-dependent maximum provision. M1 is a

slight variation of the model presented in Licko and
Silvers (1975) previously compared to the minimal
model in Toffolo et al. (1995). We shall here present
the following argument for the model.

For the distributed threshold model, the total provi-
sion to all packets is proportional to P, and the
redistribution terms makes sure that it will also be
secreted at some point. Specifically in steady state, the
secretion will be identical to the provision. M1
emphasizes the approximation of the maximal provision
in order to precisely account for the total provision,
which is then used to approximate the secretion. This
approximation is expected to work best for slowly
varying glucose stimulations, where the effect of
inhomogeneous response from the different secretory
entities is diminished by the redistribution of thresholds.
The original mathematical approximation in Licko and
Silvers (1975) was to disregard the part of the secretion,
which is dependent upon variations in glucose concen-
tration. This approximation will thus be exact for a
constant glucose stimulation, i.e. the glucose step, and
M1 will be very close to the distributed threshold model.

Just as MFM1 was extended to include first phase
secretion, a similar extension could be formulated for
M1 called M2 (Toffolo et al., 1995), but this provides no
further insight in the present context.

5. Analysis

It is important to note that a regular performance
comparison of the presented models is not provided and
believed to be out of the scope of the present paper.
Data has been included merely to illustrate the
theoretical point that the inhomogeneity of the indivi-
dual secretory entities may be an important interpreta-
tion for the plasma insulin profiles for some individuals
following the IVGTT. As a tool to demonstrate this
interpretation, we have provided the least-squares fit of
the relevant models to data.

Six out of a group of 30 healthy volunteers completing
an IVGTT were selected for the present analysis from a
previously published data set (Henriksen et al., 2000). A
bolus of 300mg glucose per kg body weight (up to a
maximum of 25 g) was administrated at t ¼ 0, and blood
samples were collected for measurement of plasma
glucose and plasma insulin concentration at times:
�30;�20;�10;�1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19,
22, 26, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 140, 160,
180min relative to the time of injection. Plasma glucose
was measured at the bedside on a Beckman Glucose
Analyser (Beckman Instruments, Fullerton, CA, USA)
by the glucose oxidase method. Plasma insulin blood
samples were immediately centrifuged at 4 �C and stored
at �20 �C for later analysis by two-site, time-resolved
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immunofluorometric assay (DELFIA) (Hemmila et al.,
1984).

The models for second phase secretion were assumed
to describe the post-hepatic insulin delivery, and we used
the standard first-order elimination

dI=dt ¼ SRab � nðI � IbÞ,

where n is the elimination rate and I is the plasma insulin
concentration with a basal value Ib.

Parameter estimates and model predictions were
obtained by a least-squares fit of the different models
to the plasma insulin concentration, assuming a known
glucose concentration calculated as the linear interpola-
tion of the measured glucose concentrations. All
computations were performed in R.

5.1. Comparison of the one compartment models

Of the 6 subjects in the present analysis, 3 individuals
were selected for their vague elongated second phase,
and the remaining 3 because they exhibit a more clear
second phase insulin profile. Many of the remaining
unselected individuals, exhibited a more noisy insulin
profile, or were in some other way more difficult
to characterize into the two types of profiles. An
elongated profile is consistent with secretion due to
continued provision and redistribution after glucose has
returned towards baseline as modelled in the distributed
threshold model, but it might also be interpreted
as biphasic disposition of insulin. A short second
phase profile may indicate inhomogeneity of the
secretory entities, where different entities stop secretion

at different glucose concentrations during the decrease
of glucose in plasma. Here it is investigated to
what extent the second phase secretion models MFM1,
M1, and MM are able to describe these two fundamen-
tally different features observed in data during an
IVGTT.

All models were started at t ¼ 0, while the first
predictions were at the point of the highest measured
insulin concentration where the modelled plasma insulin
concentration was set to the parameter Imax. It was
chosen to estimate all parameters except Ib, which was
fixed to the average value of the insulin concentrations
measured at 160 and 180min. For MFM1 the para-
meters (a; g; h; Imax; n) were estimated. For M1 the
parameters (a; b; h; Imax; n) were estimated. For MM
the parameters (g; h; Imax; n) were estimated.

The results presented in Fig. 2 demonstrate that for
the subjects with a clear second phase both MM and
MFM1 are able to describe the rapid decrease of plasma
insulin concentration, while M1 gives a more elongated
insulin profile. These results indicate that for some
individuals the inhomogeneity of the secretory entities
included in MM and MFM1 but not in M1, may be
necessary to accurately describe the second phase
secretion during the IVGTT.

For individuals with a clear second phase the time to
reach maximal provision was estimated to be very high
indicating that we are close to the MM limit. The higher
insulin provision can through the approximation of the
distributed threshold model be interpreted as a com-
pensation for the missing redistribution contribution to
the active insulin packets.
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Fig. 2. Plasma insulin concentration and model predictions during an IVGTT for 6 different individuals, where 3 individuals exhibit a vague

elongated second phase (top) while the remaining 3 have a more clear and short second phase insulin profile (bottom). The top plots demonstrate

similar good predictions of M1 and MFM1, but problems of MM, in the case of elongated second phase where insulin concentrations are elevated

also after the glucose concentration has returned towards baseline. In the bottom plots with more clear and short secretion profiles M1 has problems

to account for the fast decrease in insulin level when the glucose concentration goes down, while in this case MM and MFM1 give similar good

predictions.
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Further results demonstrated in Fig. 2 show that M1
and MFM1 are both capable of describing subjects with
an elongated insulin profile, while the MM predictions
seems to be forced towards baseline when glucose goes
down. In this case the estimated time to reach maximal
provision was shorter constituting the difference be-
tween MM and MFM1.

5.2. Comparing models for the first phase secretion

Two versions of the mean-field beta cell model have
been presented, MFM1 and the extension MFM2,
which increases the physiological understanding of the
secretion by introducing a compartment for the readily
releasable insulin. Here we demonstrate that this can be
seen in data from an IVGTT.

The initial condition for MFM2 need some attention.
X represents the amount of readily releasable insulin in
all contributing entities at a given time. So the initial
value for X is the amount of readily releasable insulin in
all entities contributing to the first phase secretion,
namely the active entities during the high glucose
concentration right after the glucose bolus is admini-
strated. In principle it does not make sense to use the
model to predict insulin secretion before the glucose
administration, where a small fluctuation in glucose
concentration could be slightly above threshold, which
would trigger a first phase spike.

The exact time for the rise in plasma glucose
concentration after bolus administration is not known,
and the glucose measurements around t ¼ 0 are too
sparse to obtain a good estimate directly from the
glucose concentration profile, see Fig. 3. For MFM2 it
was chosen to estimate the optimal starting point along
with the other parameters, (g; h;m;X ð0Þ; a; n).

The results in Fig. 3 compare MFM1 and MFM2 to
demonstrate that the extra compartment for readily
releasable insulin included in MFM2 does in fact enable
us to describe the first phase secretion.

6. Conclusion

We have presented a physiological interpretable
mean-field beta cell model for insulin secretion during
the IVGTT, and showed that this model is very close to
the original MM. In fact, it was shown that the original
MM reappears in some limit of the mean-field model
and that we may be close to this limit for some subjects.
The model was extended with an extra compartment of
readily releasable insulin, which enabled us to under-
stand and describe the first phase secretion.

Theoretical insights of the model was given through
the distributed threshold hypothesis, and it is observed
that the mean-field model does actually incorporate the
inhomogeneity of the different secretory entities. We
have further summarized the approximation of a
previously published IVGTT secretion model. This
enabled us to understand the two fundamentally
different approximations of the model, where one
crudely approximates the provision and redistribution
of newly synthesized insulin, while the other crudely
approximates the inhomogeneity of the secretory
entities. Investigations shows that both of the theoretical
features may be important for data analysis. For some
test subjects, in particular those with a clear second
phase secretion, the inhomogeneity in the secretory
response is essential, while for other subjects, in
particular those with a vague elongated secretion, the
prolonged secretion along with the redistribution
seemed to be superior compared to the minimal model.
In both cases the mean-field beta cell model was able to
describe the observed profiles.

A comparison between data and model fits was
provided to demonstrate that the theoretical features
of redistribution and threshold heterogeneity is present
in reality. Since MFM1 was able to describe both of
these phenomena, it is intriguing to propose MFM1 as
the new model to estimate and characterize beta cell
function from the IVGTT. However, during data
analysis it was found that differences in performance
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Fig. 3. Plasma glucose (left) and insulin (right) concentrations during the first minutes of the IVGTT. (left plot) A linear interpolation between

glucose measurements (solid line) results in an unrealistic elevation of plasma glucose concentration before the IV glucose administration. Instead, it

was chosen to estimate the starting point of the model, corresponding to using the glucose concentration profile given by the dashed line. (right plot)

The predicted plasma insulin concentrations during first phase secretion are given for model MFM1 (dashed line) and MFM2 (solid line).
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of the models could be seen clearly only for a small
subset of the subjects, and subsequently it was judged
that a test of the computational applicability of the
model for the would clutter the theoretical findings.
Since MFM1 as a model for the IVGTT can provide
only a modest improvement if any, it was chosen to keep
the focus on the insights provided by the model. These
theoretical insights could become important in the
pursuit of a more general and physiological correct
model that can characterize the beta cell function, not
only for the IVGTT, but also for other experiments.

Appendix

All models discussed in the main text are summarized
in Table 1 given below.
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Table 1

Summary of insulin secretion models

Model Abbreviation

dxðy; tÞ=dt ¼ �mxðy; tÞHðG � yÞ þ gðyÞPðG; tÞ Dist-Thres

�G0xðy; tÞ þ g0ðyÞ
R1
0 xðy0; tÞdy0

dPðG; tÞ=dt ¼ �a½PðG; tÞ � PðG;1Þ�
SRtot ¼ m

RG

0
xðy; tÞdy

dP=dt ¼ �aðP�HðG � hÞÞ MFM1

SRab ¼ ðg=aÞ½G � h�þP; Pð0Þ ¼ 0

P ¼ �aðP�HðG � hÞÞ; MFM2

dX=dt ¼ ðg=aÞ½G � h�þP�mHðG � hÞX

SRab ¼ mHðG � hÞX

SRab ¼ g½G � h�þt MM

dP=dt ¼ �aðP� b½G � h�þÞ M1

SRab ¼ P; Pð0Þ ¼ 0
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ABSTRACT

Pharmacokinetic/pharmacodynamic modelling is most often performed using non-linear
mixed-effects models based on ordinary differential equations with uncorrelated intra-individual
residuals. More sophisticated residual error models as e.g. stochastic differential equations
(SDEs) with measurement noise can in many cases provide a better description of the varia-
tions, which could be useful in various aspects of modelling. This general approach enables
a decomposition of the intra-individual residual variation ε into system noise w and mea-
surement noise e.

The present work describes implementation of SDEs in a non-linear mixed-effects model,
where parameter estimation was performed by a novel approximation of the likelihood func-
tion. This approximation is constructed by combining the First-Order Conditional Estima-
tion (FOCE) method used in non-linear mixed-effects modelling with the Extended Kalman
Filter used in models with SDEs. Fundamental issues concerning the proposed model and
estimation algorithm are addressed by simulation studies, concluding that system noise can
successfully be separated from measurement noise and inter-individual variability.

KEY WORDS: SDE, PK/PD, Kalman filter, population modelling, system noise, corre-
lated residuals.
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1 INTRODUCTION

Non-linear mixed effects modelling has proven to be a useful tool in the characterization
of pharmacokinetic (PK) and pharmacodynamic (PD) properties of drugs (see [1] and [2]).
The models used in this mode of analysis are most frequently based on ordinary differential
equations (ODEs), or the solutions thereof, supplemented by a model for the inter-individual
variations in the structural model parameters and a model for the variation of the residuals
that assumes independence, so that the residuals are uncorrelated. However, correlations
between residuals are not uncommon, and it is well known that a violation of this basic
statistical assumption may lead to erroneous estimates, for example of the inter-individual
variations as demonstrated in [3].

In NONMEM [4], which is the most commonly used software for PK/PD analysis using non-
linear mixed-effects models, it is possible to handle correlated residual errors using an AR(1)
model [3]. Simulations suggest that the introduction of a model for correlated residuals
may lead to 1) better estimates of the inter-individual variation, 2) better estimates of the
structural parameters, 3) and a diagnostic tool giving a measure of the model improvement.

An alternative approach to model correlated residuals is to use stochastic differential equa-
tions (SDEs). This model structure includes the statistical functionality of the continuous
AR(1) model, but is more flexible with respect to specifying models for different residual
error correlation patterns.

With SDEs, the differences between individual predictions and observations are explained by
two fundamentally different types of noise: 1) the dynamic noise, which enters through the
dynamics of the system and may originate from model deficiencies or true random fluctua-
tions within the system, and 2) the measurement noise, which represents the uncorrelated
part of the residual variability, may be due to assay error or if the sample concentration
is not representative for the true concentration in plasma. This could e.g. occur for sam-
ples during the distribution phase of an intravenous (IV) bolus administrated drug. The
difference between two measurements at the same time point will therefore only be due to
measurement noise. In a recent book on PK/PD modelling, it is suggested that the intra-
individual variations may be more appropriately modelled by using SDEs rather than ODEs
[5].

In addition to separating the residual error into dynamic noise and measurement noise,
SDEs also allow the dynamic noise to be attributed to different model components. For
example, if the absorption process of an orally administered drug cannot be well described
by the model, this may lead to correlated residuals. However, if an AR(1) model was used
to account for this, the auto-correlation pattern would be assumed effective along the whole
concentration time profile. With SDEs, the dynamic noise component could be put directly
on the state equation for the absorption meaning that the auto-correlation pattern is only
assumed effective as long as absorption occurs. Furthermore, SDEs could facilitate the
estimation of the actual absorption profile in a way similar to deconvolution, and thus reveal
the misspecifications of the model [6]. The same approach can be used for other model
components as well, and SDEs therefore has the potential to be a useful model building tool,
as well as a diagnostic tool [7].

Besides the increased functionality, SDEs may indeed offer practical benefits in terms of
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easier PK/PD modelling, particularly when more complicated mechanistic models are used.
In this case, the number and complexity of the mechanisms involved may be too great for
inclusion in a model used for estimation. Here SDEs may be included to describe some of
these mechanisms, while only the major mechanisms are treated by the parametric model.

SDEs have been used for individual non-linear analysis of PK/PD data and have proven to
be useful, both with respect to parameter estimation, model building, and simulation, e.g.
in [8] and [9].

Both non-linear mixed-effects models and SDEs are highly non-trivial statistical problems
where an analytical likelihood function can rarely be found. The combination of the two
should therefore be treated with care. The problem has previously been addressed by the
Markov Chain Monte Carlo (MCMC) method [10] for a combined minimal model of glucose
disposal and insulin secretion. In the present paper, we combine the Gaussian approximation
of the non-linear mixed-effects models with the Gaussian approximation of SDEs with mea-
surement noise. The approximations are facilitated by the Extended Kalman Filter (EKF)
to approximate the intra-individual likelihood function [11] and the First-Order Conditional
Estimation (FOCE) method to approximate the population likelihood function [12].

The focus of the present study is on two fundamental issues concerning the implementation
of SDEs in non-linear mixed effects models. The first is how the likelihood function of non-
linear mixed-effects models with SDEs can be approximated to facilitate estimation in these
models. The second focus concerns identifiability: Can the inter-individual variability, the
measurement- and the system noise be separated? Or in other words, will significant system
noise be predicted by the algorithm when none is used in the simulations (Type I error), and
will the algorithm fail to detect significant system noise when it is truly present in the data
(Type II error).

2 THEORY

Non-linear mixed-effects models can be thought of as a hierarchical model structure where
the variability in concentration/effect is split into intra-individual variability described by the
first-stage distribution and inter-individual variability described by the second-stage distri-
bution [13, 14]. While the introduction of SDEs do not change this fundamental hierarchical
structure, they do change the entities in the first stage density and the construction thereof.
This section describes the notation for non-linear mixed-effects models used in the present
paper, and proceed with an explanation of the extensions needed to include SDEs.

2.1 Notation of Non-Linear Mixed-Effects Models

Non-linear mixed-effects models are used to describe, understand, and simulate data struc-
tured as

yij, i = 1, . . . , N j = 1, . . . , ni (1)

where the observation yij in general is a vector of responses for the ith individual at the jth

time point, N is the number of individuals and ni is the number of measurements for the ith

individual.
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The structural model used to describe the intra-individual data typically consists of a set
of ODEs or the solution thereof. These ODEs are supplemented by a model of the residual
variation that describes the differences between the structural model and the observations.
This gives rise to the following equations for the first stage model:

dxi

dt
= g(xi,di, t, φi) (2)

yij = f(xi(tij), di(tij), φi) + εij (3)

where for the ith individual, xi(t) is a vector of state variables, e.g. the amount of drug
in a PK model, di is a vector of inputs, e.g. dose administration, t is time, tij is the jth

measurement time, φi is a vector of the individual parameters, and εij is the jth residual.
The residuals are typically modelled as serial independent with covariance matrix Σ, which
may depend on the states, input, time, and/or individual parameters. Σ is most often a
scalar, except in the general case of multidimensional measurements. g(·) and f(·) are non-
linear vector functions describing the dynamics of the states and the relationship between
the states and the observations, respectively.

The second-stage model describes the inter-individual variations, which in the present work
is accomplished through the following model for the individual parameters

φi = h(θ, Zi) exp(ηi) (4)

where h(·) denotes the structural type parameter model, which is a function of the fixed-
effects parameters θ and typically also some covariates Zi. The random-effects ηi are in-
dependent and multivariate normally distributed with zero mean and covariance matrix Ω,
resulting in a multivariate log-normal distribution for the individual parameters.

The total set of population parameters to be estimated in the non-linear mixed effects model
can now be summarized as intra-individual variability, inter-individual variability, and fixed-
effects parameters, given by the set (Σ, Ω, and θ).

2.2 Non-Linear Mixed-Effects Models with Stochastic Differential
Equations

Non-linear mixed-effects models based on SDEs extend the usual non-linear mixed-effects
models by including system noise as an additional source of variation in the first-stage model.
This extended model describes the intra-individual variation in data through two sources of
noise, which in the present work will be described as two different types of population
parameters: 1) Σ describing the covariance matrix of the measurement noise rather than
that of the residuals, 2) the new parameter matrix σw describing the magnitude of the
system noise. By this extension, the complete set of population parameters in non-linear
mixed-effects models based on SDEs becomes (Σ, σw, Ω, and θ).

The formulation of the first-stage model can be separated into the design of a structural
model and the addition of variations. Designing the structural model is equivalent to selecting
the model structure for conventional PK/PD modelling, which means that exploratory data
analysis and physiological knowledge may be applied in the usual manner. This process
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consists of formulating a set of ODEs as those given in (2). Once the structural part of the
first-stage model has been formulated, we can add variations to account for the differences
between the measured and the predicted values. When SDEs are involved, the usual residuals
will no longer be independent, and we need to describe the underlying variations of ε by
system noise w as well as measurement noise e. The system noise can be added directly to
the differential equations allowing for some random variations in the evolution of the states,
which may be appropriate whenever the modeler fear that the true evolution of the states
does not comply strictly with the structural model. Measurement noise is added to the
model in the usual measurement equation, such that a first-stage model with SDEs can be
written as

dxi = g(xi, di, t, φi)dt + σwdw (5)

yij = f(xi(tij),di(tij),φi) + eij (6)

where xi(t), di, t, tij, φi, g(·) and f(·) are identical to what has previously been defined for
ODEs in (2) and (3). eij are the independent identically distributed Gaussian measurement
errors with covariance matrix Σ , and σwdw gives the system noise, where both Σ and σw

may depend on the states, input, time, and/or individual parameters. If the magnitude of
the system noise σw is zero, then the entire system noise term will vanish and the remaining
part of the SDE will simply be the differential form of the ODE given in equation (2). SDEs
are usually written on the differential form given above, because the term dw has a mathe-
matical interpretation as the infinitesimal increments in the noise process (w), whereas the
corresponding derivative dw/dt cannot be treated mathematically. The individual specific
system noise w is a standard vector Wiener process, i.e. a continuous time Gaussian process
where the mean and variance of the differences between two time points are

E[wt2 −wt1 ] = 0 (7)

V [wt2 −wt1 ] = |t2 − t1|I (8)

where I is the identity matrix. The Gaussian process can be understood to originate from the
sum of many identically distributed stochastic events giving rise to the difference between
the true evolution of the state and the evolution described by the structural term g(·).
Furthermore, the variance of the Wiener process increases linearly in time, which can be
interpreted as a linear increase in the number of stochastic events contributing to the dynamic
noise. [11] and [15] provide an introduction to applied stochastic differential equations, and
[16] gives a more thorough mathematical introduction.

3 The Likelihood Function for the Non-Linear Mixed-

Effects Model with SDEs

When the first-stage model is extended to include SDEs rather than ODEs, the first-stage
probability density function can no longer be computed analytically. In the present section,
we shall describe how the likelihood function is now formulated, how it can be approximated,

6

89



and how it is combined with the second-stage density to form the population likelihood
function. This is all summarized in Table I, presented at the end of the section.

When the intra-individual model contains correlations in the residuals, the first-stage distri-
bution must be factorized as a product of conditional densities that are conditioned not only
upon (φi, Σ, σw, and di), but also on all previous measurements. Conditioning on previous
measurements is central for the present text, giving rise to the term conditional densities
used in the following. To see how factorization of the first stage density comes about, start
with the distribution for the initial observation and successively add one observation at a
time by the use of a reformulation of Bayes rule P (A ∩ B) = P (B|A)P (A). This gives us
the following first stage density for the ith individual

p1(Yini
|φi,Σ,σw,di) =

(
ni∏

j=2

p(yij|Yi(j−1), ·)
)

p(yi1|·) (9)

The so called conditional densities are given on the right hand side, Yij = [yi1, ..., yij]
represents all observations of the ith individual up to time tij, and conditioning on φi, Σ,
σw, and di is represented by ” · ”.

If the SDEs are reduced to ODEs, the residuals will be uncorrelated, and the conditional
densities will be identical to the unconditional densities, such that the likelihood function
will reduce to the product of unconditional densities, as known for ODEs.

An analytical determination of the conditional densities requires a solution of a so called
general non-linear filtering problem. This entails to start with the initial distribution and
then successively solving Kolmogorov’s forward equation for the SDE and applying Bayes’
rule [11]. In practice, this approach involves the numerical solution of a partial differential
equation for each time increment, which is too time consuming, making it computational
infeasible, and an alternative is needed. Various methods have been proposed and are still
investigated for parameter estimation in the general setup, and a consensus of a preferred
method has not yet been reached [17].

In the present work we shall use a quasi likelihood method, i.e. a method that uses the
Gaussian approximation, so we assume that the conditional densities are well approximated
by Gaussian densities. This is a particularly useful choice since filtering techniques used for
SDEs with measurement noise rely on separability of the first and second order moment, and
since Gaussian densities are easily combined with the methods usually used in non-linear
mixed-effects modelling. The calculation of the conditional densities for the intra-individual
model is facilitated by the Extended Kalman Filter (EKF) [11]. In the case where the
differential equations are linear and both system noise and measurement noise are state
independent, the EKF reduces to the ordinary Kalman Filter, which in this case gives the
exact likelihood function. When proportional system noise or proportional measurement
noise is needed, one can typically log-transform the states or the measurements to approach
the Gaussian distribution. These transformations will most often give rise to more severe
non-linearities in the functions for the structural model g(·) and the measurement equation
f(·) in (5) and (6). However, it is our experience that the conditional densities are well
described by Gaussian distributions, also for highly non-linear systems. The assumption
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of Gaussian conditional densities is easily tested by the distribution of the standardized
residuals, while also more advanced methods have been developed, see [18].

The EKF approximates the conditional densities with Gaussian distributions, which is de-
scribed in detail in Appendix A. The conditional densities describe the distribution of the
following measurement conditioned on all the previous measurements, so that the mean of
the distribution is identical to the prediction of the following measurement, i.e. the one-step
prediction ŷi(j|j−1). Likewise, the covariance of the conditional density will be the one-step
prediction covariance Ri(j|j−1). We have thus completely described the approximate Gaus-
sian conditional densities by the conditional mean and covariance, which are

ŷi(j|j−1) = E(yij|Yi(j−1), ·) (10)

Ri(j|j−1) = V (yij|Yi(j−1), ·) (11)

The notation above is also used for the mean and variance of the first prediction, such
that ŷi(1|0) is the unconditioned model prediction of the first observation, and Ri(1|0) is the
covariance of the first prediction error.

The one-step prediction error εij is given by

εij = yij − ŷi(j|j−1) ∈ N(0, Ri(j|j−1)) (12)

Using the notation above, the Gaussian approximation of the first-stage distribution density
function in (9) can be written as

p1(Yini
|·) ≈

ni∏
j=1

exp
(
−1

2
εT

ijR
−1
i(j|j−1)εij

)
√|2πRi(j|j−1)|

(13)

The second-stage density (4) can be written as p2(ηi|Ω), which is included in the same way as
for ordinary differential equations. This gives us the full non-linear mixed-effects likelihood
function

L(θ,Σ, σw,Ω) ∝
N∏

i=1

∫
p1(Yini

|ηi,θ,Σ, σw,d)p2(ηi|Ω)dηi

=
N∏

i=1

∫
exp(li)dηi

(14)

where

li = −1

2

ni∑
j=1

(
εT

ijR
−1
i(j|j−1)εij + log |2πRi(j|j−1)|

)
− 1

2
ηT

i Ω−1ηi − 1

2
log |2πΩ| (15)

is the approximate a posteriori log-likelihood function for the random effects of the ith in-
dividual. It is observed that the likelihood function is based on the one-step prediction
error.
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In the case of no system noise (σw = 0) the SDE in the model reduces to the more fa-
miliar ODE, and the one-step prediction covariances will reduce to the residual covariance
Ri(j|j−1) = Σ. The one-step prediction errors will be identical to the usual unconditioned
prediction errors, such that the likelihood function above will reduce to the one known for
non-linear mixed-effects models based on ODEs.

As usual for non-linear mixed-effects models, the likelihood function cannot be solved an-
alytically. Approximations therefore have to be made in order to estimate the parameters,
which will be considered in the following.

3.1 Approximations of the Population Likelihood Function

The Gaussian structure of the individual likelihood functions allows us to use the well known
Laplacian approximation, as well as the other approximation schemes frequently used in
non-linear mixed-effects modelling to obtain the population likelihood function. The entities
within the likelihood function structure (ε and R) are however extended compared to the
standard problem. In the following we shall discuss the approximation when applied to these
extended entities.

For non-linear mixed-effects models, the likelihood function is usually approximated by per-
forming a second-order Taylor series expansion of the a posteriori individual log-likelihood
function li around some value of the random effects, e.g. zero or the value of ηi that mini-
mizes li. The same approach is taken for mixed-effects model with SDEs, so the Laplacian
approximation of (14) becomes

L(θ,Σ, σw,Ω) ∝
N∏

i=1

∫
exp(li)dηi ≈

N∏
i=1

|4li|−1/2 exp

[
li − 1

2
∇lTi 4l−1

i ∇li

]
(16)

The gradient ∇li of the a posteriori individual log-likelihood with respect to the random
effects will vanish when the expansion is made around the true minimum, but it has been
included here to account for the more general case. The Hessian 4li is thus a key element
in the evaluation of the population likelihood function.

The numerical evaluation of double derivatives to form the Hessian is usually quite sensi-
tive leading to uncertainty in the objective function and optimization problems. Several
approximations have been developed specifically to avoid numerical calculations of double
derivatives related to this Hessian in non-linear mixed-effects models. In the present work,
we have used the First-Order Conditional Estimation (FOCE) method [4].

3.2 First-Order Conditional Estimation method

The FOCE method uses only first-order derivatives in the evaluation of the population
likelihood function where the derivatives are evaluated at the conditional estimates of the
random effects η̂i. The likelihood function can thus be written as

L(θ,Σ,σw,Ω) ≈
N∏

i=1

|4li|−1/2 exp(li)|η̂i
(17)
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where the second-order derivatives are disregarded such that the individual a posteriori log-
likelihood function and its Hessian can be written as

li = −1

2

ni∑
j=1

(
εT

ijR
−1
i(j|j−1)εij + log |2πRi(j|j−1)|

)
− 1

2
ηT

i Ω−1ηi − 1

2
log |2πΩ| (18)

4li ≈ −
ni∑

j=1

(
∇εT

ijR
−1
i(j|j−1)∇εij

)
−Ω−1 (19)

We note that the variance of the one-step predictions Ri(j|j−1) is generated through the
dynamics of the system and will thus depend inherently upon the parameters of the model.
This dependence leads to interactions between the intra-individual residuals and the random
effects even in models that are usually homoscedastic. In the FOCE approximation given
above, we are disregarding first-order derivatives of Ri(j|j−1), which is an approximation in
the case of interactions, and thus a more crude approximation when modelling with SDE’s
as compared to ODEs. This approximation would be worse if directly including interactions
between the random effects and system noise, which has been avoided in the present study,
but could be included if one feel that it is necessary.

Interactions were included in the FOCE method presented here, so both the predictions and
the covariances are evaluated at the conditional estimate. One could also, as it is imple-
mented in NONMEM version V, use the conditionally estimated predictions together with
covariances computed by the population predictions, corresponding to having no interac-
tions, or even expand the likelihood function around the population average, corresponding
to the first-order (FO) method.

4 METHODS

Several simulation studies are used to test whether the likelihood function formulated above
can be advocated for estimating parameters in a non-linear mixed-effects model based on
SDEs. These simulation studies are based on the PK model and the numerical implementa-
tion described below.

4.1 Model used for Simulation

We shall simulate experiments using a one-compartment PK model with IV bolus dose with a
constant coefficient of variation for the uncorrelated measurement error and additive Wiener
noise such that the ith individual is modelled by

dAi = −CLi

Vi

Aidt + σwdw (20)

yij = log
A(tij)

Vi

+ eij, eij ∈ N(0, σ2
e) (21)

where Ai is the amount of drug in the central compartment, yij is the measurement at time
tij, eij is the measurement error and σe is the coefficient of variation for the measurement
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error, w is a standard Wiener process, and σw is the magnitude of the system noise. Vi and
CLi are the individual parameters for volume of distribution and clearance, respectively.
These are composed of a fixed effect and a random effect, i.e.

Vi = V exp(ηV
i ), ηV

i ∈ N(0, ω2
V ) (22)

CLi = CL exp(ηCL
i ), ηCL

i ∈ N(0, ω2
CL) (23)

Hence, the six population parameters to be estimated are (V , CL, ωV , ωCL, σw, and σe).

The model is used to simulate two different experimental setups. First, the type I and type
II errors are investigated using a somewhat data rich situation with 25 individuals, where
the plasma concentration are sampled 12 times at times 0, 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20,
and 24 hours. In the second experimental setup, we simulate 100 individuals, where the
plasma concentration is sampled 3 times at times 0, 6, and 24 hours. This second analysis
is included to illustrate that parameters in models based on SDEs may also be successfully
estimated when only a few samples per individual are taken.

All simulations are performed using the same structural parameter values (V = 10 and
CL = 0.5), while the simulated values of the noise parameters (ωV , ωCL, σw, and σe) all
varies between 0.01 and 0.4. Examples of simulated individual profiles for various levels and
types of intra-individual noise are presented in Figure 1.

4.2 Numerical Implementation

Evaluation of the approximate likelihood function, the optimization, and the simulations
of the mixed-effects models based on stochastic differential equations were performed in
MATLAB.

As previously described, the population log-likelihood can be approximated using the indi-
vidual a posteriori log-likelihood functions and the Hessian of each of these. The individual
likelihood functions can be calculated from the one-step predictions and covariances given
by the Extended Kalman Filter as described in Appendix A depending on the initialization
of the covariance of the states. The covariance of the states at the first measurement was
set to the amount of system noise accumulating in a time span equal to that between the
first and second measurement. This particular choice has proven successful in other software
implementations [19].

The Hessian of the individual a posteriori log-likelihood function can be approximated us-
ing the gradients of the one-step predictions as previously described. These gradients were
calculated numerically by a central differencing algorithm given in [20]. We note that other
methods such as automatic differentiation may be useful, especially in a more general soft-
ware implementation.

In order to ensure stability in the calculation of the objective function, simple constraints
were introduced on the parameters, i.e.

θmin < θ < θmax (24)
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These constraints were satisfied by solving the optimization problem with respect to a trans-
formation of the original parameters, i.e.

θ̃ = ln

(
θ − θmin

θmax − θ

)
(25)

Regardless of the true parameter value, minimum and maximum allowed values were chosen
to be 10−5 and 50 respectively.

Two different initial parameter values were used in the optimization, one at 0.8 times the
simulated value and one at 1.2 times the simulated value. Experience with the present
implementation of the optimization problem tells us that the initial values should not be too
low, so the smallest allowable set was chosen to be 0.04 and 0.06. In the figures showing the
results, the estimate is plotted for both of these initial values, but any difference can rarely
be seen. This gives some assurance of the size of the region governed by the local- if not
global minima reached by the estimation procedure.

The asymptotic standard errors of the estimates were computed through the Hessian of the
population log-likelihood, which was approximated by a finite difference algorithm given in
[20]. The algorithm depends on the accuracy in the numerical evaluation of the likelihood
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Figure 1: Simulated individual plasma concentration profiles for various levels and types of
intra-individual noise. Simulations are made with no inter-individual variation, using V = 10
and CL = 0.5. Each individual was sampled 12 times, as in the somewhat frequently sampled
experiment. The simulated measurements are connected with lines.
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function. By graphical means, the number of significant digits in the likelihood function was
found to be around 10, such that the number of significant digits in the Hessian should be
around 10/3 ≈ 3, see [20].

The computation time on a standard laptop PC (1400 MHz Pentium IV processor) for
one evaluation of the population likelihood function was between one and three seconds
depending on the simulated example and a few minutes for a complete optimization. The
relative swiftness compared to e.g. MCMC methods is a serious advantage of the presented
algorithm, and this may enable estimation of SDEs in more general models for practical
purposes.

5 Results

Successive simulation and estimation of many different experiments have been used to in-
vestigate the type I and type II error of the presented algorithm, and whether SDEs could
be used in studies with only a few measurements per individual. In the present section we
describe the results of these simulation studies.

5.1 System Noise is Separable From Other Sources of Variation

Any use of the presented algorithm is naturally dependent upon its ability to separate the
three levels of noise proposed in the present paper. Separability should thus be among the
fundamental issues to be addressed prior to investigation of real data or implementation in
more general software. Since system noise is the central addition to the model setup, the
central concern is towards separability of system noise e.g. whether system noise is detected
when it is truly present in data (type II error).

Separability of system noise and type II errors were investigated in the first simulation study
consisting of 40 simulated experiments with 25 individuals each sampled 12 times. Each
simulated experiment was performed using a fixed level of inter-individual variation and
measurement noise and with an increasing amount of system noise. The results presented
in Figure 2 provides a visual confirmation that higher levels of system noise do not produce
either additional measurement noise nor inter-individual variability, illustrating that system
noise is in fact satisfactorily separable from the remaining noise parameters.

Furthermore, the variability and the standard error of the estimated values of inter-individual
variation of the clearance is seen to increase when system noise increases. This indicates that
the system noise does make estimation of this particular noise parameter more difficult, while
the remaining noise parameters are not influenced to the same extent.

5.2 Insignificant Bias in the Estimated System Noise

A fundamental feature in maximum likelihood estimation of mixed-effects models is that
the individual predictions are regressed towards the mean (the population prediction). This
introduces manifest correlations in the intra-individual residuals, which in the present model
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could be estimated as system noise introducing bias to the estimates. Bias in the estimated
system noise could also originate in more general separability problems where inter-individual
variation or intra-individual measurement noise is estimated as system noise. If a significant
level of system noise is estimated when none is used in the simulation, then a type I error
has occurred.

Bias in the system noise and type I errors were investigated in the second simulation study
consisting of 40 simulated experiments with 25 individuals, each sampled 12 times. Each
simulated experiment was performed using no system noise but with an increasing amount of
inter-individual variation and measurement noise. This investigation might reveal a potential
relationship between bias in the system noise and the level of the remaining noise parameters.
The results presented in Figure 3 demonstrate that this relationship is small and that the
existing bias is insignificant such that only few type I errors occur. The largest estimates of
system noise was around 0.2, which in Figure 1 is seen to be a modest level of noise compared
to the corresponding measurement noise.
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Figure 2: Simulated parameter values are given by the line and estimated parameters values
are given by a dot supplemented by error bars representing plus/minus one standard error.
The value of the system noise is satisfactorily inferred at increasing levels of system noise,
and the bias introduced to the remaining parameters seems to remain small.
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5.3 Estimation Based on Sparsely Sampled Individuals

A data set consisting of many sparsely sampled individuals is not uncommon within PK/PD
modelling. However, parameter estimation in SDEs based on sparsely sampled individuals
has previously been complicated by the need of rich sampling to separate system noise from
measurement noise and the limitations of single subject estimation algorithms. Mixed-effects
modelling has in this situation enabled parameter estimation of ODEs, making it interesting
whether also SDEs can be successfully treated.

50 experiments with 100 individuals each sampled 3 times has been simulated and subse-
quently estimated. The results presented in Figure 4 demonstrate that estimation can be
performed successfully with sparsely sampled individuals in the chosen model. We note
that estimation based on 2 samples per individual failed to yield the same level of success,
so 3 samples per individual may indeed be the lower limit when system noise is included
simultaneously with measurement noise and inter-individual variability.

Statistics of the estimation results from Figure 4 are given in Table II, which demonstrates
that the mean values of the estimated parameters are close to the true values used in the
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Figure 3: Simulated parameter values are given by the solid line and estimated parameters
values are given by a dot supplemented by error bars representing plus/minus one standard
error. The estimated system noise is insignificant in most of the simulated experiments, also
when the other noise levels increase dramatically. Each simulation was estimated with two
sets of initial conditions, which in a few cases gave two slightly different parameter estimates,
such that two dots are seen for the same simulation number.
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simulations and that the standard deviations of the estimates are relatively close to the
mean of the standard error estimates. It should be mentioned that due to the relatively
high number of simulated experiments, one is able to demonstrate bias in the estimated
clearance values on a 95% confidence level. Note that bias exists in practically any algorithm
for parameter estimation in complicated systems. This entails that bias in all parameter
estimates will be found if the number of simulated experiments is increased sufficiently.
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Figure 4: Simulated parameter values are given by the solid line and estimated parameters
values are given by a dot supplemented by error bars representing plus/minus one standard
error. Each simulated experiment consists of 100 individuals sampled 3 times.

6 Discussion

SDEs offer a general intra-individual error structure where the evolution of the states is
allowed to deviate from the structural model. This work presented a novel approximation
of the likelihood function for non-linear mixed-effects models based on SDEs and addresses
some fundamental issues regarding parameter estimation in this new type of model.

When SDEs are implemented, one-step predictions and their variances were seen to take up
the role of the usual unconditioned predictions and intra-individual variance in many ways.
In the theory section, it was emphasized that these objects reduce to the usual predictions
and variances when the system noise vanishes, and that they can be used to construct the
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likelihood function. The fundamental model assumption of uncorrelated prediction errors is
converted into the assumption of uncorrelated one-step prediction errors, such that diagnostic
plots should be slightly changed. Predicted versus previous prediction should be replaced
by one-step prediction versus previous one-step prediction. Furthermore, weighted residuals
versus time or covariates or similar diagnostic plots should be replaced by corresponding
plots of the one-step prediction error weighted by the one-step prediction variance.

Stochastic differential equations are complicated mathematical entities with peculiarities
such as dependence in the solution upon the chosen interpretation of the infinitesimal corre-
lation structure, or equivalently on the selected interpretation of the integral part of the SDE.
The system noise is called multiplicative or additive when the diffusion term is dependent
or independent of the state variable (x), respectively. In the multiplicative case, the SDE
proposed in equation (5) will be dependent upon the chosen interpretation of the infinites-
imal correlation structure, and special attention is needed. In the present work, we restrict
ourselves to the additive case where the solutions are independent of the interpretation, since
for this case the EKF is recognized to work best. However, situations may arise where mul-
tiplicative noise is necessary, as already seen for PK/PD modelling in e.g. [10]. Luckily, a
large class of SDEs with multiplicative diffusion can be transformed into SDEs with additive
diffusion [21]. One may choose to do this transformation before implementing the diffusion,
such that only additive diffusion is needed. This line of approach, as undertaken e.g. in [10],
is consistent with the Stratonovich interpretation of the infinitesimal correlations, which is
recommended for physical modelling [11].

The presented combination of SDEs and measurement noise constitute a general framework
to describe the intra-individual variations, which includes many previous implementations
of statistically sophisticated intra-individual models. Motivated by these efforts, we try to
identify some of the potential benefits that the literature indicates SDEs can offer non-
linear mixed-effects models of PK/PD: 1) improve estimates of inter-individual variability,
2) improve structural parameter estimates, 3) give a diagnostic test of the model, 4) pinpoint
model defects to be used in successive model improvement 5) improve simulation properties
of the model, 6) provide a more realistic description of the observed variations, 7) allow
fluctuations in physiological parameters, 8) enable deconvolution, 9) extend deconvolution
to nonlinear PK/PD models, 10) improve estimation of the states in the system.

Points 1-3 were argued based on a simulation study including the AR(1) in mixed-effects
modelling [3]. Points 3 and 4 were also demonstrated by SDEs with measurement noise
for single subject PK/PD data in a work in progress using ready available software [19].
Points 5-7 were demonstrated by various case-by-case implementations of SDEs to PK/PD
data, see e.g. [8], [9], and [10]. Point 8 was demonstrated for PK/PD models in [22], where
deconvolution was facilitated by a random walk, which is a discrete version of a SDE. Since
the SDE setup includes non-linear models, point 9 gives itself. Point 10 was demonstrated
using a mixed-effects setup of random walks to improve estimation of the AUC [23].

The focus of the present investigation was implementation of SDEs in non-linear mixed-
effects models, which could potentially boost the use of SDEs within PK/PD. Fundamental
issues concerning the implementation was addressed by simulation and successive estima-
tion of a non-linear mixed-effects model based on SDEs corresponding to a one-compartment

17

100 Paper B



model. Three specific concerns were addressed: 1) Will bias in the estimated parameter val-
ues lead to significant estimates of system noise when none is used in the simulations (type I
errors)? 2) will the system noise be separable from the remaining noise parameters? and 3)
can the parameters in the proposed model also be determined with sparsely sampled individ-
uals? The relationship between bias in the system noise and the level of the remaining noise
parameters was found to be small and only few type I errors occurred. It was demonstrated
that a significant level of system noise can be detected when it is truly present in data (no
type II errors). Successful estimation was performed with population data including only 3
samples per individual, which may indeed be the lower limit, when three different types of
noise are used.

In conclusion, it is confirmed that inter-individual variability, measurement- and system
noise can be separated for the chosen model, which is necessary for non-linear mixed-effects
models based on SDEs to be treated meaningfully. However, the presented model and study
setup were quite simple, and the routines used in the numerical implementation were not
state of the art. So the present investigation should be seen as a pilot study preceding a more
general implementation, which more easily allows SDEs in non-linear mixed-effects models.
A work in progress demonstrates how the EKF can be implemented in the control stream of
NONMEM Version VI beta.

APPENDIX A: THE EXTENDED KALMAN FILTER

The Extended Kalman filter can be used to calculate the one-step predictions and the one-
step prediction variances for a stochastic differential equation with additive diffusion and
measurement noise. The algebra presented in the following appendix is all performed on
the individual level, so to ease the notation, the i index referring to the individual has been
dropped. The general intra-individual model treated here can be written as

dx = g(x,d, t, φ)dt + σwdw (26)

yj = f(x(tj),d(tj),φ) + ej (27)

where x is the vector of state variables, yj is the vector of measurements at time tj, ej

are the associated normally distributed measurement errors with covariance matrix Σ, and
σwdw is the system noise, where both Σ and σw may depend on input d, time t and/or
individual parameters φ.

The following notation for the derivatives is applied

At =
∂g

∂x

∣∣∣
x=x̂t|j−1

, Cj =
∂f

∂x

∣∣∣
x=x̂j|j−1

(28)

One needs to initiate the EKF with a prediction of the initial state x̂1|0 and a prediction of
the covariance of the initial state P1|0. From this point, the EKF is a recursive algorithm
starting with the calculation of the one step prediction of the measurement and its associated
covariance matrix. This is achieved by

ŷj|j−1 = f(xj|j−1,dj,φ) (29)

Rj|j−1 = CjPj|j−1C
T
j + Σj|j−1 (30)
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Given the actual measurement, we can update our state prediction and variance to be predic-
tions conditioned also on the jth measurement. This is performed by the update equations,
i.e.

x̂j|j = x̂j|j−1 + Kj(yj − ŷj|j−1) (31)

Pj|j = Pj|j−1 −KjRj|j−1K
T
j (32)

Kj = Pj|j−1C
T R−1

j|j−1 (33)

where Kj is the Kalman gain.

The final step in the recursive algorithm is to predict the state and the state variance at the
time of the following measurement. This is performed by solving the prediction equations,
i.e.

dx̂t|j/dt = g(xt|j,d, t, φ) (34)

dPt|j/dt = AtPt|j + Pt|jA
T
t + σwσT

w (35)

After the prediction of the state value at the following measurement, we start again with
predictions of the actual measurements until all the one-step predictions ŷj|j−1 and all the
one-step prediction variances Rj|j−1 have been calculated. The algorithm is summarized in
table III.
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Table I: Summary of the Likelihood Evaluation Algorithm
Function: Approximate Individual a posteriori Log-Likelihood (li)
1 : Function of ηi given (Σ, σw, Ω, θ, Zi, di, and Yini

)
2 : Use (4) to compute φi

3 : Initialize the state prediction and state covariance.
See the numerical implementation below.

4 : Use EKF in Appendix A to compute εij and Ri(j|j−1)

5 : Return li as computed in (15)
Function: Approximate Population Likelihood (L)
1 : Function of (Σ, σw, Ω, and θ) given Zi, di, and all observations
2 : For i = 1 to N do
3 : η̂i = arg min(li)
4 : Use EKF in Appendix A to compute εij|η̂i

, ∇εij|η̂i
, and Ri(j|j−1)|η̂i

5 : Use (18) and (19) to compute li|η̂i
and 4li|η̂i

6 : end for
7 : Return L(θ,Σ,σw,Ω) as computed in (17)
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Table II: Statistics of the estimation performance when simulating experiments with 100
individuals each sampled 3 times.

V CL ωV ωCL σw σe

Simulated value 10 0.5 0.2 0.2 0.2 0.1
Mean of estimates 10.02 0.508 0.195 0.195 0.198 0.102
Standard deviation of estimates 0.212 0.015 0.016 0.035 0.037 0.010
Mean of standard error estimates 0.220 0.014 0.018 0.035 0.046 0.011
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Table III: Algorithm for the Extended Kalman Filter
Algorithm: Kalman Filtering
1: Given parameters and initial prediction φ, x̂1|0 and P1|0
2: For j = 1 to ni do

3: Use (29) and (30) to compute, ŷj|j−1 and R̂j|j−1.
4: Use (33) to compute the Kalman Gain, Kj

5: Use (31) and (32) to compute updates, x̂j|j and Pj|j
6: Use (34) and (35) to compute x̂(j+1)|j and P(j+1)|j
7: end for
8: Return (for all j) εj = yj − ŷj|j−1 and Rj|j−1
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Abstract  

Evaluation of beta cell function is conducted by a variety of glucose tolerance tests and evaluated 

by a number of different models with less than perfect consistency among results obtained from 

different tests. We formulated a new approximation of the distributed threshold model for insulin 

secretion in order to approach a model for quantifying beta cell function, not only for one, but for 

several different experiments. Data was obtained from 40 subjects that had both an oral glucose 

tolerance test (OGTT) and an intravenous tolerance test (IVGTT) performed. Parameter estimates 

from the two experimental protocols demonstrate similarity, reproducibility, and indications of 

prognostic relevance. Useful first phase indexes comprise the steady state amount of ready 

releasable insulin A0 and the rate of redistribution krd, where both yield a considerable correlation 

(both r=0.67) between IVGTT and OGTT estimates. For the IVGTT, A0 correlates well (r=0.96) 

with the 10 min area under the curve of insulin above baseline, whereas krd represents a new and 

possibly more fundamental first phase index. For the useful second phase index γ, a correlation of 

0.75 was found between IVGTT and OGTT estimates.  

 

Keywords: Parameter estimation; Pancreatic beta cell; Mixed-effects; Physiological models 

Abbreviations: AUC, area under the curve; BG, baseline glucose; BOV, between occasion 
variability; BSV, between subject variability; CV, coefficient of variation; FDR, first degree 
relatives to patients with diabetes; HGC hyperglycaemic clamp; IVGTT, intravenous tolerance test; 
MTT, meal tolerance test; OGTT, oral glucose tolerance test; RRI, ready releasable insulin; RRP, 
ready releasable pool; SE, standard error. 
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INTRODUCTION 

Type 2 diabetes is a heterogeneous disorder characterized by a combination of impaired insulin 
secretion and insulin resistance1, in which either factor can be dominant. Of these interrelated 
subjects, the present work deals with the assessment of beta cell function, which relative to insulin 
resistance must be impaired for development of type 2 diabetes, and may even represent the primary 
factor predisposing individuals to type 2 diabetes2. Insulin secretion in response to an abrupt 
increase in plasma glucose is known to be biphasic with a rapid peak at 2-4 min (first-phase), 
decrease to nadir at 10-15 min, and then gradually increase within the next couple of hours (second-
phase). Early insulin release after glucose ingestion is a key determining factor for the subsequent 
glucose concentration3, indicating that a reduced first-phase may be responsible for the 
development of impaired glucose tolerance4.  

Evidently, diagnostic tests for the assessment of insulin secretion as well as insulin resistance have 
great value for epidemiological and clinical studies. The most common oral administration tests are 
the oral glucose tolerance test (OGTT) and the meal tolerance test (MTT), whereas the most 
common intravenous (IV) tests are the intravenous glucose tolerance test (IVGTT) and the 
hyperglycemic clamp (HGC). Several descriptive mathematical models and model based methods 
have been proposed to calculate indexes for characterization of beta cell function from the various 
tests5-8. Although useful for the analysis of a specific experiment type, the models can rarely be 
used across different tests, and similar indexes obtained from different experiments are not 
necessarily in agreement, leading to the conclusion that further work is needed for these indexes to 
be routinely used in clinical and epidemiological studies9. 

Besides descriptive models for characterization, more comprehensive mathematical models10-12 
have been used to communicate and increase the understanding of the physiological mechanisms 
behind insulin secretion13. Of these, the distributed threshold hypothesis11 has been used to argue 
and derive many of the descriptive models14, 15. However, to our knowledge, descriptive insulin 
secretion models up until now all fail to incorporate the fundamental mechanisms that have enabled 
the distributed threshold hypothesis to describe insulin secretion in response to a long series of 
glucose challenges, and hereby increase understanding of the beta cell function. In the present work 
we formulate a model that includes threshold distribution, redistribution, and incretin effects, and 
investigate the applicability of this model to data from the IVGTT and the OGTT. At a longer 
perspective, the present work is a step towards a model for characterizing beta cell function, not 
only for one, but for many of the glucose tolerance tests; with parameters that are closer related to 
the physiology than those of more empirical models.  

Model development and evaluation was performed on data from 40 individuals16, 17, where each 
subject had both an IVGTT and an OGTT performed. Indexes obtained from the OGTT were 
compared to those from the IVGTT in order to demonstrate parameter reproducibility and 
similarity, giving credit to the applicability of indexes, e.g. in epidemiological studies. Indication of 
prognostic relevance was demonstrated by the extreme parameter values found for 4 subjects that 
subsequent to the study have developed type 2 diabetes, also other such parameters exist18.  
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RESEARCH DESIGN AND METHODS 

A total of 40 healthy normoglycemic subjects had both an IVGTT and an OGTT performed; 20 
subjects with no family history of diabetes and 20 first degree relatives (FDR) to patients with type 
2 diabetes of which four subjects have developed type 2 diabetes themselves within 10 years of the 
initial investigation. The protocols were approved by the local Ethics Committee and informed 
written consents were obtained from all participants before testing both at the initial testing and at 
10 years follow up. Clinical characteristics of the study populations are given in Table 1. 

The OGTT was performed by ingestion of 75 g glucose in a liquid solution. Blood samples were 
obtained in the fasting state (three samples) and for a total of 3 h following the glucose load (15 
samples). The IVGTT was performed, with an infusion of a 25% solution of glucose (300 mg of 
glucose per kg body weight (max 25 g)) being given over 1 minute, immediately followed by a 
saline flush (50 ml). Time zero was taken as the start of the glucose bolus and samples were 
collected at -30, -20, -10, -1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 30, 40, 50, 60, 70, 80, 90, 
100, 110, 120, 140, 160 and 180 minutes, for determination of plasma glucose and insulin. Plasma 
glucose concentration was measured at the bedside by the glucose oxidase method with a Glucose 
Analyzer (Beckman Instruments, Inc., Fullerton, Calif., USA). Blood samples for plasma insulin 
were immediately centrifuged at 4 °C at the time of study and stored at -20 °C until analysis and 
concentrations measured by a double antibody radioimmunoassay in duplicate (Kabi Pharmacia 
Diagnostics AB, Uppsala, Sweden)  

Model description  

Background. The distributed threshold hypothesis11 successfully explains the dose dependent first 
phase insulin release following IV glucose administration with a pool of insulin stored in packets. 
According to this hypothesis, different packets have different thresholds, secreting insulin only 
when glucose concentration has exceeded this threshold. Changes in plasma glucose concentration 
will alter the distribution of insulin in the packets, while provision of new insulin and redistribution 
of insulin among packets ensures convergence toward steady state when glucose concentration is 
constant. In principle, each packet corresponds to a compartment, yielding a complicated numerical 
problem with a large number of coupled differential equations. The present simplification lump all 
active packets together and all passive packets together to a two-compartment system. A 
mathematical analysis of the differences and approximation between the present model and the 
distributed threshold model is given in Appendix A, whereas the following list summarizes the 
main differences: 

1. Steady state provision was modeled with a sigmoid Emax function instead of the more 
complicated parametric function used in11.  

2. Incretin effects during the OGTT were implemented for provision and packet activation.  
3. The flow of insulin between passive and active packets is modeled to be unidirectional, i.e. 

all ready releasable insulin is released from an active packet before it is deactivated.  
4. Redistribution was modeled to involve random activation rather than random change of 

threshold, see Appendix A.  
5. All passive packets were approximated to contain the same amount of insulin. 

The central approximation is that all passive packets contain the same amount of insulin. This will 
not be influential during simple glucose challenge tests, where glucose is single peaked. But for 
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multiple glucose peaks, e.g. for glucose oscillations, the response of the threshold distribution 
hypothesis will be different from that of the present model. 

Model Equations.  As illustrated in Figure 1, the model can be divided into four components, 1) 
provision of new insulin, 2) a pool of ready releasable insulin (RRI), i.e. insulin in passive packets 
available for quick release as a consequence of abruptly increasing glucose concentrations, 3) a pool 
of insulin in active packets, which is quickly being released, and 4) a plasma compartment that 
represents insulin pharmacokinetics. 

The provision, P of new insulin is typically written as,  

)),(( ∞−−= GPPP
dt
d α  

P(G,∞) is the glucose dependent steady state provision, described below. Glucose (G) is 
implemented as the linear interpolation between measured concentrations of plasma glucose, except 
during the time interval between -1 and 1 min, where the baseline glucose (BG) value was used to 
ensure that the interpolated glucose does not rise prior to glucose administration at time zero15. 
When the system is not at steady state, e.g. due to rapid changes in glucose, P(t) will be different 

from P(G, ∞). Whereas changes in P(G, ∞) are immediate, the changes in P will be delayed with 

time constant α, leading to smooth changes. Note that this delay is not the only contributing factor 
to the delay in the second phase insulin response, see Appendix B. 

Oral ingestion of nutrients is known to enhance insulin secretion, the incretin effect, leading to 
higher insulin secretion during an OGTT than from an experiment with matched glucose 
concentrations obtained by IV infusion of glucose19. The incretin effect is mediated by 
insulinotropic intestinal hormones, as e.g. glucagon-like peptide-1, which enhances both first and 
second phase release, see e.g. the experiments by Fritsche et al.20, and consequently also the 
provision. We have 
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where the last term is the incretin effect, modeled with glucose above BG as a surrogate for incretin 
hormones, which are rarely measured in the OGTT. [G-BG]+ is the maximum of zero and (G-BG), 
and AUCG-BG is the area under the curve (AUC) of [G-BG]+. EC50  is calculated via the initialization 
given below. EOGTT is the effect parameter for the incretin effect in an OGTT, which is zero for an 
IVGTT.  

The two-compartment model for the passive and active pool, as derived in appendix A, can be 
written:  
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where Ipassive is the total amount of insulin in packets with thresholds above G, and Iactive is the 
amount in the active packets contributing to the total secretion rate SR. f(G) is the threshold 
distribution function, i.e. the fraction of active packets at a certain glucose concentration. FC50 is 
the glucose concentration that activates 50% of the packets, FBG is the fraction of packets activated 
at baseline, and h2 is the hill coefficient. The phase 1 component, Ph1, is the rate of insulin removal 
from the passive to the active packets caused by packet activation due to rising glucose 
concentration. The assumption that all passive packets contain the same amount of insulin allow us 
to calculate Ph1 as the amount of insulin per passive packet Ipassive/N(1-f(G)) times the rate of packet 
activation N·df(G)/dt, where N is the total number of packets. Ph1 is: 
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Ph1 is seen to be sensitive to glucose changes, giving us a first phase insulin release when glucose 
concentration increases abruptly. Incretin effects on the first phase release are explained by 
increased packet activation with oral glucose administration, which is implemented through two 
different values of h2 in the OGTT and the IVGTT, hOGTT and hIVGTT.  

Plasma insulin concentration is computed assuming first order elimination, 

plasmaIplasmadt
d IkVSRI −= /  

where Iplasma is the plasma concentration of insulin. V is the apparent volume of distribution for 
insulin, and kI is the elimination rate constant. Since V and Emax (and EOGTT) can be shown not to be 
simultaneous identifiable, V was fixed to the plasma volume (3l), which is slightly higher than 
typical estimates of the central volume of distribution21. 

Model implementation. The model was implemented as a non-linear mixed-effects model in 
NONMEM V with FOCE22.  

Parameters to be estimated: kI, α, Emax, h, EOGTT, krd, m, FBG, hIVGTT, and hOGTT, are described in 
Table 2. Emax, krd, and EOGTT exhibit between subject variability (BSV) by the proportional model, 

)exp(ηθ , and FBG exhibit BSV via the logistic function, ))exp(1/()exp( ηθηθ +++=FBG  to 

ensure values between zero and one, where θ is the fixed effect and η is a Gaussian random effect 
that varies between individuals. Data from the OGTT and the IVGTT were treated as if it was from 
different individuals, such that no false correlation is introduced in the parameter estimates from the 
two trials.  
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Observed (y) and predicted insulin plasma concentrations (Iplasma) were log-transformed for the 
residuals ε to be Normal distributed, i.e.  

ε+= )log()log( plasmaIy  

Initialization. The model is initiated in steady state, under the assumption that BG has produced a 
steady state provision corresponding to the baseline insulin concentration I0, where BG/I0 is 
calculated as the average of measured glucose/insulin concentrations prior to glucose 
administration. Initialization in steady state allow us to utilize the steady state equation to calculate 
EC50,  
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Indexes. The amount of RRI in the ready releasable pool (RRP) is known to change according to 
the history of glucose concentration13, whereas the size of the pool at fasting, i.e. the initial amount 
of insulin in the passive compartment A0 is suggested as a first phase index. In the presented model, 
A0 is not estimated directly, but derived using the following equation, 
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It  proved useful also to present a derived second phase index γ, which is the slope of the incretin 
independent part of the steady state provision with respect to glucose at BG, similar to indexes of 
other insulin secretion models5, 6. γ is computed by,  
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Model development. Different models were discriminated based on, robustness, likelihood 
function value, ability to capture individual insulin profiles, reproducibility, bias of parameter 
estimates compared to known physiological values, bias in the predictions made by the typical set 
of parameters, and whether the implementation seemed physiologically reasonable. 

Based on the listed criteria for model selection, a number of incretin effects on the first phase in the 
OGTT were attempted and discarded. These attempts include: 1) no first phase incretin effect, 2) 
some packets were activated during the OGTT only, 3) the Ph1 input to passive packets was 
elevated compared to removal from passive packets, corresponding to recruitment of insulin from 
packets not contributing to steady state secretion, 4) glucose above baseline or transit compartment 
functions was used to elevate packets activation.  

The described implementation of incretin effects for the second phase was chosen above the 
following list of discarded attempts. 1) transit compartments were used to model an incretin profile, 
2) proportional rather than additive incretin effects, 3) incretin effects directly on the provision 
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rather than on the steady state provision, 4) separate levels of Emax and/or hill coefficient h were 
used for the IVGTT and OGTT.  

Besides investigations of different structural models, several combinations of between-subject 

variation were tested. BSV on the hill coefficients were judged to run unstable, whereas BSV on α 
and kI worsened the correlation between IVGTT estimates and OGTT estimates, possibly because 

individual values of α and kI cannot be estimated robustly from the OGTT.  

Results 

The estimated typical parameter values for the study population are presented in Table 3, along with 
the standard error (SE) of the estimate and the coefficient of variation (CV) between subjects in the 
study. 

Model predictions. Two kinds of model predictions are calculated for this model, 1) individual 
predictions are based on the individually estimated parameter values, and 2) population predictions 
utilize the typical parameter values to compute a typical insulin concentration profile for a given 
glucose profile. The geometric mean of the individual- and the population- predictions are 
compared to data in Figure 2, demonstrating ability of the model to capture differences between 
insulin response in the OGTT and the IVGTT. 

Reproducibility and similarity of parameters. Parameter estimates obtained from the IVGTT are 
plotted against those obtained from the OGTT in Figure 3, and the correlation coefficients between 
estimates are presented (for parameters plotted on a log-scale the correlation coefficient for the log-
transformed parameters are presented). γ, A0, krd, exhibit a clear correlation between experiments 
(correlation coefficient around 0.7), whereas FC50, FBG, and Emax demonstrate an intermediate 
correlation (correlation coefficient around 0.5). The high degree of correlation demonstrates 
parameter reproducibility, in the sense that subjects characterized with high values in one 
experiment are most likely associated with high values in the other experiment. All parameters 
except FC50 are close to the line of unity, demonstrating similarity of the parameter values, giving a 
hint to a similar physiological origin of parameters from the different experiments. The bias in FC50 
is due to the implemented incretin effect, where a higher hill coefficient results in a higher fraction 
of packet activation when glucose starts to rise, resulting in a decrease in the level of glucose 
necessary to activate 50% of the packets.  

Prognostic indexes. The four subjects that subsequent to the study have developed type 2 diabetes 
are associated with a low A0, a low FBG, a high FC50, and a high krd, especially krd for which all 
exhibited a high value. For the second phase, a low Emax seems to indicate diabetes for the OGTT, 
but not for the IVGTT, whereas γ and EC50 does not appear to be particularly predictive. As 
expected, also more descriptive indices, such as high BG and high AUC for glucose above BG, 
appear to implicate higher risk for development of type 2 diabetes. Of the four subjects in a pre-
diabetic state, the one with lowest BG was found to have the lowest A0 among the total study 
population, see Figure 4, indicating that the first phase indexes (A0, krd, and FBG) carry separate 
prognostic information to that of BG. 
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Discussion 

We have suggested a new approximation of the distributed threshold hypothesis for parameter 
estimation that conserves fundamental mechanisms of threshold distribution, active and passive 
packets, and redistribution among packets. Effects of incretin hormones were included on packet 
activation and provision of insulin, to allow quantification of beta cell function, both for the IVGTT 
and the OGTT.  The parameter estimates exhibited similarity and reproducibility, and several 
parameters are promising candidates for an early diagnostic for development of type 2 diabetes. 
However, in spite of the usefulness, the reproducibility was less than perfect, which deserves some 
discussion. 

Reproducibility. Three factors can be named to cause reduced correlation, as that observed 
between some of the parameter estimates in Figure 3.  

1) Between-occasion variability (BOV). For example, the less then perfect 
correlation of BG (r=0.70) and I0 (r=0.76), must be caused by BOV. 

2) Suboptimal design, e.g. timing of measurements and chosen glucose 
administration. Compared to the IVGTT, the OGTT exhibit some technical design 
problems: a) inevitably, incretin and plasma glucose effects occur over the same 
time period, making them difficult to separate. b) Glucose rises slowly, making 
separation of first and second phase difficult. c) Glucose elevation is lower, 
making estimation of Emax difficult. 

3) Lacking physiological precision, in the sense that parameters in the OGTT and the 
IVGTT have separate physiological meanings. However, the similarity in 
parameter values obtained from the OGTT and IVGTT indicates that this last 
point is not a dominant issue. 

Sampling design. In analogy with other models7, the robustness of the individual parameter 
estimates in the OGTT were investigated for different sampling designs, and similar conclusions 
were obtained, i.e. the accuracy of the first phase parameter estimates drops significantly when 
fewer measurements are included around times 0-50 min. The original design includes sampling at 
(0, 5, 10, 15, 20, 30, 40, and 50 min). When sustaining the (0, 10, 20, and 30 min) samples, the first 
phase indexes (A0 and krd) are robust, with high correlation to the original estimates (r~0.95). This 
correlation is reduced to (r~0.86), when using only the (0, 20, and 40 min) samples, and to (r~0.77) 
when using only the (0 and 30 min) samples. Also the estimates of EOGTT and Emax were sensitive to 
reduced sampling design. 

Second phase indexes. γ and Emax were highly correlated for the IVGTT (r=0.85), but less 
correlated in the OGTT (r=0.52). Whereas Emax was estimated, the introduction of γ was motivated 
by 1) γ is theoretically similar to previous successful second phase indexes5, 6, 2) a simulation study 
verified that γ is more robustly estimated than Emax in the OGTT, which is also seen as a higher 
correlation in Figure 3. Both parameters were well estimated from the IVGTT, indicating design 
problems with the OGTT. 3) A clear relationship exists between parameter estimates of Emax and 
EOGTT, but not between γ and EOGTT.  
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Incretin effect. For the OGTT, glucose above baseline exhibit similar dynamics as incretin 
hormones, see e.g. experiments by Rask et al.23, and was found the best available surrogate for their 
effect. However, the implementation leads to suspicion concerning the physiological origin (glucose 
or incretin hormones) of EOGTT. Three observations indicate successful estimation of the incretin 
effects: 1) the similarity of Emax and γ estimates obtained in the IVGTT and the OGTT. 2) No 
correlation was found between EOGTT and AUCG-GB, which would be expected if glucose alone was 
causing what was estimated as incretin effects. 3) A simulation study confirmed that γ and EOGTT 
can be estimated simultaneously from the OGTT, with a correlation between simulated and 
estimated values of (r=0.9) for γ and (r=0.95) for EOGTT. 

First phase indexes. The AUC of insulin above I0 during the first 10 minutes after glucose 
administration has been used as an index for first phase secretion24. This index correlated with A0 
(r=0.96), krd (r=-0.63), and FBG (r=-0.30), demonstrating a clear difference between the three 
indexes, where A0 clearly represents the more traditional first phase index.  

Insulin response to glucose in the OGTT has previously been successfully described by a static and 

a dynamic index φD
7, where φD depend on the derivative of glucose, which is similar to Ph1 in the 

present model. An insulin based calculation of φD demonstrated that φD and A0 obtained from the 
OGTT correlates equally well to the 10 min AUC of insulin above baseline for the IVGTT (r=0.65) 
and (r=0.67). However, compared to previous models, the present model brings new and potentially 
important indexes to describe beta cell function.  

Does redistribution represent a fundamental factor for beta cell dysfunction? Under the 
assumption that packets represent beta cells, as eluded to in other work25, redistribution would be 
the activity of passive cells, e.g. by random activation, so that fast redistribution will represent a 
high frequency of cells releasing their content. Note that the precise formulation of redistribution 
has changed slightly compared to the distributed threshold model, see appendix A, and that 
redistribution has not yet been understood in a cell biological framework. In the whole body system, 
glucose is known to have potentiating effects on the first phase release11, and redistribution is a 
likely mechanism for the normalization of an elevated RRP, making krd a determining factor for the 
steady state RRP. Since provision of insulin to the RRP is necessary, steady state provision is 
another likely determining factor for the steady state RRP. For subjects 1-4 in Figure 3, krd is large 
and A0 is small, but krd is more pronounced than A0, which could indicate that redistribution is the 
more fundamental factor for beta cell dysfunction. This makes sense, since A0 depend upon baseline 
provision, which is known to increase during development of insulin resistance. Hence, A0 may be a 
composite index, influenced in opposite directions by beta cell dysfunction and insulin resistance, 
whereas krd may be a more fundamental factor for beta cell dysfunction. 

Provision.  The provision of insulin to the RRP is a simple function of glucose that lump a number 
of intracellular processes together, such as the glucokinase, up regulation of proinsulin, and 
increased formation of new insulin granules. This clear approximation of reality means that the rate 

constant α and Emax, may not be valid for other experiments on longer time horizons.   

Threshold Distribution. In the light that some25-27 believe heterogeneity in beta cells activation 
threshold to cause the biphasic insulin release, this heterogeneity should relate to the estimated 
threshold distribution. In fact, under the assumption that the potential size of the RRP in each beta 
cell is identical, the estimated distribution of thresholds and the measured distribution of activated 
beta cells should be identical. Some experiments have found that 53% of beta cells secreted 
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detectable amounts of insulin at 5.6 mM glucose28, which is in the high end of the range of 
individual estimates of FBG between 0.1 and 0.6. Two concerns for this comparison are that 1) 
redistribution from passive cells could also lead to insulin secretion, allowing some passive cells to 
be estimated as active, 2) oscillations of insulin secretion could interfere with the estimated activity 
frequency, which is not accounted for in the model.    

It is worth noting that redistribution was estimated more robustly than FBG, and also that the 
inclusion of BSV on redistribution was more important than for FBG, to explain variations in the 
first phase response, possibly indicating a higher degree of uncertainty in the estimated values for 
FBG. 

Individual secretion profiles. In Figure 5, individual and population predictions are compared to 
data for a few selected individuals. For subject 1 to 3, a small RRP was estimated for both 
experiments, corresponding to a lower than typical first phase for the IVGTT, and a lower than 
typical quick increase in plasma insulin concentration for the OGTT. Both subject 1 to 3 have 
developed type 2 diabetes post study, which is in agreement with the common understanding that a 
low first phase secretion is an early diagnostic marker for type 2 diabetes. Also subject 4 has 
developed type 2 diabetes, but for this individual the first phase response appears normal, and A0 is 
among the highest 50%. Interestingly, this individual was associated with a relatively low FBG 
(among the lowest 30%) and a relatively high krd (among the highest 30%), which should indicate a 
low first phase. The apparent slightly above normal first phase originates from the provision of new 
insulin at baseline glucose, for which the subject 4 had the largest value among the 40 subjects. 
Subject 5 and 6 exhibit an above average amount of RRI, and as expected none of these have 
developed diabetes. Subject 6 has an Emax around average in both experiments and EOGTT was the 
second largest in the study, explaining why insulin concentrations during the later stage of the 
IVGTT are close to typical, while they are far above the population predictions in the OGTT. 

Using insulin vs. C-peptide for assessment of beta cell function. Beta cells release an equimolar 
mixture of insulin and C-peptide, but C-peptide is cleared slower from plasma and does not suffer 
the same first pass effect of the liver, hence C-peptide has been used in many models and model 
based methods to asses beta cell function6. In the absence of C-peptide data, the present analysis 
was performed using insulin data, so the obtained secretion rate reflects a post hepatic secretion. 
One advantage of the higher elimination rate of insulin is that changes in secretion lead to more 
pronounced changes in plasma concentration, which we believe to produce high estimation 
accuracy.  

Limitations and potential future implementations. The presented method uses data from the 
IVGTT and the OGTT simultaneously to find all parameters. In order to use the model for 
estimation in a single experiment, it may be necessary to use Bayesian techniques or to fix some 
parameters. In our analysis, we modeled the OGTT alone by fixing some parameters to the values 
found by the simultaneous analysis, while estimating only parameters with BSV.  

The present model is developed from oral and intravenous administration of glucose, using data 
within 3 hours of glucose administration. If one wish to model longer experiments or use other 
combinations of nutrients, then the limitations of the model in its present formulation has been 
exceeded. Compared to more empirical beta cell models, one advantage of the present more 
mechanistic model is that it can more naturally be extended and adjusted to account for new 
situations. Fruitful model extensions and adjustments could possibly include: 1) a description of 
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other experiments such as the HGC, to include new features at sustained high glucose challenges 2) 
model extensions to include simultaneous models of the MTT and the OGTT could possibly 
describe the incretin effects from various compositions and amounts of nutrients, and possibly link 
the incretin effect to measured incretin hormones, 3) model extensions that include a triple meal test 
could investigate whether the potentiating effects of insulin release29 is caused by the RRP, or 
possibly another pool, 4) modeling of the modified IVGTT, to test whether the large tolbutamide 
driven insulin release can be related to the RRP included in the model, 5) extensions to include 
covariates for characterization of differences between patient populations, and 6) during 
development of drugs that target beta cells, description, understanding, and predictions of results in 
future trial designs could be aided by the presented model.  

Conclusion. A new approximation of the distributed threshold hypothesis has been formulated, and 
it was verified that it can be used for parameter estimation of the IVGTT and the OGTT. With this 
initiative, we approach a population model for quantification of beta cell function that can be used 
for several of the different tolerance tests available. The present work focused on similarity, 
reproducibility, and prognostic relevance of individual parameters estimated from an IVGTT and an 
OGTT, for which validation further included comparison to other indexes, simulation studies, and 
prediction of individual profiles. First phase indexes comprise the steady state amount of ready 
releasable insulin, similar to traditional first phase indexes, and the rate of redistribution, which 
represents a new and possibly more fundamental first phase index. The most useful second phase 
index γ is theoretically similar to the second phase index of other models, and it is precisely 
estimated for the IVGTT, and to some extend believed separable from the incretin effects of the 
OGTT. Lack of perfect correlation between parameters estimates from the two experiments is likely 
caused by between-occasion variability, and by the design of the OGTT, which yield more 
imprecise parameter estimates, but enables estimation also of the incretin effect.  

Appendix A 

In the present appendix we use the original threshold distribution hypothesis11 to derive the 
equations for the active and passive amounts of insulin presented in the main text. This derivation 
involves three approximations/alterations to the original model that can be applied in arbitrary 
order, for instance as described below.  

The fundamental hypothesis in the original distributed threshold model is that the readily releasable 
insulin is stored in small packets, where the different packets have different thresholds, secreting 
insulin into the plasma only when the glucose concentration has exceeded this threshold. The 

amount of readily releasable insulin in packets with threshold between θ and θ+dθ is given by 

θθξ dt),( , so the threshold density distribution function can be used to model the total secretion 

into plasma. The original distributed threshold model11, can be written as, 
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The secretion of insulin into the plasma is realized through the first term, where H(·) is the 
Heaviside function. The second term is the provision of new insulin, and the last two terms are 
named redistribution terms corresponding to a random change of thresholds of the different packets. 

Note that f´(θ)=d/dθ  f(θ), is the distribution density function. In the original analysis glucose 

started at zero, so that f´(θ) gives the initial insulin distribution density function ξ(θ,0). 

Ipassive and Iactive can be written as,  

∫∫ ==
∞ G
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G
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The differential equations for Ipassive and Iactive can be derived analytically,  
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The first suggested alteration to the distributed threshold involves unidirectional flow of insulin 
from passive packets to active packets. Note that the beta cell action potential will either spike or 
not, where a spike will lead to exocytosis. It is not possible to stop the spike by a decrease in 
glucose and thereby stopping exocytosis of insulin that is currently being released, motivating a 
unidirectional flow. Whereas this change does simplify the model structure, the rate constant m is so 
large that it does not alter the results. We get, 
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In the distributed threshold model, redistribution can be understood as a random change in the 
sensitivity to glucose, where passive packets may change threshold but still be passive. This 
formulation is slightly changed. In the present model, redistribution involves random activation of 
packets, in the sense that a passive packet may by a random mechanism release all insulin in its 
ready releasable pool, and then return to the passive state. By this mechanism, redistribution will 
not decrease to zero when all packets are passive. The equations become, 
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The two alternative models for redistribution were compared during model development, and the 
chosen formulation produced superior correlations between OGTT and IVGTT parameter estimates, 
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superior objective function value, and was numerically more robust when changing initial estimates 
in the estimation.  

The central approximation in the present approach is that all passive packets contain the same 

amount of insulin, so that ξ(G,t) = Ipassivef(G)/(1-f(G)). This approximation will not be influential 
during simple glucose challenge tests, where glucose is single peaked. But if a second and identical 
peak is seen immediately after the first peak, the threshold distribution hypothesis will predict the 
second peak to give no first phase, because the passive packets involved are empty, whereas the 
present approximation will predict a nonzero first phase, since all passive packets contain the same 
amount of insulin. This difference may be of particular relevance for predictions of insulin response 
to rapid oscillations in glucose. Following this approximation we get the equations for the amount 
of insulin in the passive and active packets that were presented in the main text, 
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Appendix B 

The present appendix provides the exact solution to the amount of insulin in the passive and active 
packets following a step increase in glucose from G1 to G2, at time t = 0. Starting at the steady state 
solution: 
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For a step increase in glucose, the Ph1 contribution can be computed via a Dirac delta-function,  
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The amount of insulin in the passive packets can be computed as 
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where the first term reflects the immediate removal of insulin due to packet activation, 
corresponding to the first phase release. The second term D(t) represents the elevation in the amount 
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of insulin in the passive packets coming from an elevated provision, i.e. the second phase 

contribution to the passive packets. α and krd constitute the two timescales for the second phase 

contribution. Since α is more than a factor 10 larger than krd, the main contribution of the delayed 
increase of the second phase comes from krd.    

The amount of insulin in the active packets can be computed as, 
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where the first term in Iactive corresponds to the initial amount, the second term is the first phase 
contribution, and the third term D2 gives the second phase contribution. Since m leads to a rather 
fast decay compared to the remaining time scales, it is reasonable to approximate D2(t) as,  
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One part originates from the immediate increase in provision and another part originates from the 
steady increase in passive packets. 
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Table 1 Physical characteristics of the study subjects at initial examination 

                                                Relatives   Control subjects 

N (F/M)                          20 (8/12)   20 (8/12) 
Age (yr)    6.17 ± 0.13   6.12 ± 0.08 
HbA1c (%)   6.17 ± 0.13   6.12 ± 0.08 
BMI (kg/m2)    25.1 ± 1.0   25.1 ± 0.9  
Weight (kg)    76.6 ± 3.3   78.8 ± 4.0  
Fasting glucose (mM)  5.41 ± 0.08   5.16 ± 0.08 
Fasting insulin (pmol/l)  45.6 ± 3.0   41.4 ± 3.0  

Values are mean ± SE. HbA1c: glycated haemoglobin (normal range: 5.4 - 7.4 %); BMI: body mass 
index; 
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Table 2 Description of parameters to be estimated 

kI The elimination rate of insulin. 

α The rate constant for provision to reach steady state. 

Emax Maximum value of the incretin independent part of the steady state provision rate. 
h Hill coefficient for the incretin independent part of the steady state provision rate. 
EOGTT Effect parameter for the incretin effect in an OGTT, which is zero for an IVGTT. 
krd Redistribution rate constant from passive to active packets. 
m The rate of insulin release from active packets. 
FBG The fraction of packets activated at the initial steady state glucose concentration. 
hIVGTT Hill coefficient for the threshold distribution function of the IVGTT. 
hOGTT Hill coefficient for the threshold distribution function of the OGTT. 
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Table 3 Population Parameter Estimates 

Parameter Unit Estimate SE of Estimate CV of parameter 

kI 1/min 0.161 0.03 - 

α 1/min 0.111 0.045 - 

Emax pM/min 103 15 49% 

h 1 6.43 0.89 - 

EOGTT nmol 8.86 1.78 55% 

krd 1/min 0.00869 0.00124 58% 

m 1/min 1.47 0.206 - 

FBG % 27.4 11 90% 

hIVGTT 1 1.96 0.45 - 

hOGTT 1 5.14 1.76 - 
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Figure 1 Model for observed insulin concentration in glucose tolerance tests. The model includes a one 

compartment model for insulin pharmacokinetics, two compartments to describe ready releasable insulin in the 

active and passive packets, and one differential equation to describe the relationship between glucose and the 

provision of new insulin. The provision is divided into the active and passive packets according to the fraction of 

active packets f(G), which is a function of the glucose concentration. 
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Figure 2 All observed glucose (top) and insulin (bottom) concentrations (small light colored circles), geometric 

mean of insulin and mean of glucose (large black squares), geometric mean of individual predictions (light 

colored line), and geometric mean of population predictions (black line), are presented for the IVGTT (left), and 

the OGTT (right). 
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Figure 3 Individual parameter values obtained from the IVGTT are compared to those obtained from the 

OGTT. Triangles signify control subjects, circles signify first degree relatives of diabetics, and numbers 1-4 

signify the four first degree relatives of diabetics that have developed type 2 diabetes within the 10 years since 

study completion. The correlation coefficient presented above each plot is calculated for the log transformed 

parameter for krd, FC50, and A0. 
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Figure 4 Individual parameter values are compared to illustrate separate prognostic relevance. Triangles signify 

control subjects, circles signify first degree relatives of diabetics, and the numbers 1-4 signify the four subjects 

that have developed type 2 diabetes within the 10 years since study completion. krd is compared to EOGTT  for the 

OGTT(left), A0 is compared to BG  for the OGTT(middle), and A0 is compared to BG  for the IVGTT(right). 

 

 

Figure 5 Observed insulin concentrations (circles), are presented together with individual predictions (light 

colored line) and population predictions (black line) for selected individuals. All 6 individuals were healthy at the 

time of the study, but individuals with id 1 to 4 have subsequently developed type 2 diabetes, whereas individuals 

with id 5 and 6 have remained healthy. 
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Abstract 

Interleukin-21 (IL-21) is a novel cytokine that is currently under clinical investigations as a 

potential anti-cancer agent. Like many other anti-cancer agents, including other interleukins, IL-21 

is seen to produce a broad range of biological effects that may be related to both efficacy and safety 

of treatment. The present analysis investigates the observed pharmacodynamics effects on red blood 

cells following various treatment schedules of human IL-21 administrated to cynomolgus monkeys. 

These effects are described by a novel non-linear mixed-effects model that enabled separation of 

drug effects and sampling effects, the latter believed to be due partly to blood loss and partly to 

stress induced haemolysis in connection with blood sampling. Two different studies with a total of 9 

different treatment groups of cynomolgus monkeys were used for model development and for the 

subsequent model validation consisting of both a cross validation and a biological test of the 

predicted rise in reticulocytes. In conclusion, the model consistently describes the IL-21 induced 

drop in red blood cells to be 1) caused by removal rather than suppression of production, and 2) 

considerably delayed compared to dosing, i.e. not related to the drop in red blood cells observed 

immediately post dose. It is believed that the structural model presented here can be used for other 

types of drug induced loss of red blood cells, whereas the mechanism for sampling related blood 

loss is relevant for investigations of anaemia in all pharmacological studies with smaller animals.  
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Abbreviations 

CRBC, RBC count; Cret, Conversion rate of reticulocytes to mature erythrocytes; (DropRBC), drop in 

RBC; ED50, steady state amount of IL-21 in the delayed compartment, giving rise to half maximum 

effect; Emax, maximal relative disappearance rate of RBCs; EPO, erythropoietin; IL, interleukin; IL-

21, interleukin-21; IV, intravenous; PD, pharmacodynamic(s); PK, pharmacokinetic(s); PRBC, 

fraction of the deficit RBC produced pr hour; RBC, red blood cell; RSE, relative standard error; SD, 

standard deviation; TIL-21, transit time for IL-21 effects; TRBC, transit time for newly synthesized 

RBCs; Vblood, estimated effective blood volume; VBWT, body weight covariate on the blood volume; 

Vsample, volume of the blood sample. 
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Introduction  
Interleukin-21 (IL-21) is a novel cytokine (1) that is produced by activated CD4

+
 T-cells and 

demonstrates an ability to activate CD8
+
 killer T-cells, natural killer, and B-cells (2). These 

immunomodulatory functions lead to the hypothesis of IL-21 as a potential anti-cancer 

immunotherapeutic drug, which is presently under investigation in clinical studies. Pre-clinical 

studies suggest that the side effects of IL-21 may be less severe than what has been observed for 

similar immunotherapeutic drugs, e.g. IL-2 (3), giving hope that a larger, longer, and more effective 

boost of the immune system is tolerable with IL-21 treatment. However, a consistent and dose 

dependent loss of red blood cells has been observed in monkey studies, constituting the main focus 

of the present work. 

 

Drug induced anaemia is an increasing complication to therapeutic intervention (4) leading to 

decreased quality of life (5) and in some cases even death. This may be particularly important for 

cancer treatment, where both cancer and treatment are frequently reported to induce anaemia (6). 

Drug induced anaemia is seen both for many chemotherapeutic drugs (7) and also, which is more 

relevant in the present context, for many immunotherapeutic cytokines where anaemia is induced by 

a variety of mechanisms. A reproducible anaemia (possibly autoimmune haemolytic anaemia (8) is 

among the toxic effects reported for IL-2 (3). Haemolytic anaemia has also been reported for IL-12 

(9), while other interleukins (IL-6 and IL-11) lead to anaemia as a consequence of increased blood 

volume (10, 11). The mechanism for IL-21 induced anaemia in monkeys is not known, but is 

associated with reticulocytosis and hyperbilirubinaemia. Erythrophagocytosis, which is a rare 

complication reported also for IL-3 (12), has been observed for IL-21, but it is presently not 

believed to be the primary cause of the observed loss of red blood cells. Also rouleaux formation 

and clumping of erythrocytes have been observed.  

 

Pharmacokinetic (PK) and pharmacodynamic (PD) modelling can guide drug development by a 

concise and unequivocal summary of data, by making predictions, and by improving the 

understanding of the modelled system (13). Especially in oncology, PK/PD modelling could be 

useful as anticancer agents tend to have a narrow therapeutic index (14). Detailed mathematical 

models have been developed to describe the biology of stem cell proliferation and erythropoiesis 

(15-17), and several PK/PD models make use of these mechanisms to describe the effects of 

erythropoietin (EPO) to treat anaemia, see e.g. (18-22), whereas most published PK/PD models of 

drug induced anaemia (23, 24) are empirical in nature describing anaemia only at a certain time 

point e.g. at steady state. In the present work, we advocate the more mechanistic models that enable 

a description of the complete time course of drug induced anaemia and significantly improve the 

models ability to assist in dose regimen selection for optimal therapeutic outcome. However, we 

find that the most important mechanisms to describe data are different than those applied in PK/PD 

models of EPO, and do not include baseline production and lifespan of red blood cells. 

  

The present analysis is based on studies of human IL-21 in monkeys subject to various treatment 

regimens of intra venous (IV) bolus administration. Several endpoints were addressed by these 

studies to investigate the complex and fascinating biology of IL-21, whereas the present analysis 

dealt only with the effect on the red blood cell (RBC) count. The objective was to establish the 

underlying relationship between drug administration schedule and the time course of RBC count 

that could guide the selection of treatment regimen and aid the design of future studies. A 

mathematical model was composed of frequently used pharmacodynamic model components (25), 

using an Emax model to describe saturation in effect, and transit compartments both to empirically 
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describe the delayed effect of IL21 and more mechanistically to mimic the blood cell maturation in 

the bone marrow. This base structure was integrated with a model of the experimental influence on 

the RBC count, i.e. that blood sampling reduces the RBC count in the monkey. The proposed base 

structure of drug action and physiologic recovery may be relevant and applicable for modelling 

other drug induced loss of RBC in clinical as well as preclinical settings, whereas the mechanism 

for sampling related blood loss is relevant for investigations of anaemia in all pharmacological 

studies with smaller animals. 

 

Materials and Methods 
Two different studies were used for the following analysis. The study plan for Study 1 was 

reviewed and approved by the Novo Nordisk non human primate task force. The animal unit was 

animal welfare monitored and found to be in compliance with the Novo Nordisk Principles for the 

use of animals as well as national legislation, including the Declaration of Helsinki.  Study 2 was 

sponsored by ZymoGenetics, carried out at Sierra Biomedical (SBI). Treatment of the animals 

follows the SBI principles that adheres to the regulations outlined in the USDA Animal Welfare Act 

(9 CFR, Parts 1, 2 and 3) and the conditions specified in the Guide for the Care and Use of 

Laboratory Animals (ILAR publication, 1996, National Academy Press). The study protocol was 

approved by SBI’s Institutional Animal Care and Use Committee prior to dose administration. 

 

  

Animals  

A total of 30 male and female purpose bred cynomolgus monkeys were tested in the two 

independent studies of the pharmacodynamic effect of IL-21, 24 monkeys in Study 1 and 6 in Study 

2. Body weight prior to the first dose was between 1.8-3.8 kg in Study 1 and 3.4-4.7 kg in Study 2. 

Animals were acclimatized at least 6 weeks (Study 1) and 20 days (Study 2) prior to first dose. In 

both studies, the animals were housed individually during study days. The rooms were illuminated 

in a 12 hour light-dark cycle, and there were a minimum of 10 air changes per hour. Temperature 

was kept at 19-25°C (Study 1) and 18-29°C (Study 2).  

Treatment 

The animals were dosed by intravenous bolus injection according to the design described in Table I 

(Study 1) and Table II (Study 2). 

  

Table I Design of study 1 

Treatment 

group 

Number of Animals 

Males        Females 

Dose level 

(mg/kg/day) 

Dosing Days Haematology sampling days  

(+ denotes 4 hours post dose) 

1 2 2 0 0, 3, 7, 10, 14 -5, 0, 0+, 3, 3+, 7, 7+, 14, 14+, 18, 22 

2 2 2 1.0 0, 7,14 -5, 0, 0+, 7, 7+, 14, 14+, 18, 22 

3  2 2 3.0 0, 7,14 -5, 0, 0+, 7, 7+, 14, 14+, 18, 22 

4 2 2 0.2 0, 3, 7, 10, 14 -5, 0, 0+, 3, 3+, 7, 7+, 14, 14+, 18, 22 

5  2 2 0.5 0, 3, 7, 10, 14 -5, 0, 0+, 3, 3+, 7, 7+, 14, 14+, 18, 22 

6 2 2 0.2 10, 11, 12, 13, 14 -5, 4, 10, 10+, 14, 14+, 18, 22 
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Table II Design of study 2 

Treatment 

group 

Number of Animals 

Males        Females 

Dose level 

(mg/kg/day) 

Dosing 

Days 

Haematology sampling days  

(+ denotes 6 hours post dose) 

1 1 1 0 1-5 and 9-14 1, 1+, 3, 5, 11, 15, 15+, 17, 19, 22, 25, 33 

2 1 1 0.5 1-5 and 9-14 1, 1+, 3, 5, 11, 15, 15+, 17, 19, 22, 25, 33 

3 1 1 1.5 1-5 and 9-14 1, 1+, 3, 5, 11, 15, 15+, 17, 19, 22, 25, 33 

 

Sampling 

Haematology samples were drawn at different time points in the different treatment groups as 

described in Table I and Table II. Other blood samples were drawn to ensure measurements of the 

pharmacokinetics and various parameters within serum chemistry, coagulation, and also 

concentrations of various blood cell lineages using flow cytometry. The extensive sampling 

schedules necessary to optimize the amount of information from each study was within the ethical 

limits for blood sampling in animal studies. The time points and approximate volume of all blood 

samples (not shown) were incorporated in the computational data file as exemplified in Appendix 

B. 

 

Pharmacodynamic RBC Model 

The model was based on differential equations, given in Appendix A, and all of these equations are 

represented by compartments in Figure 1.  
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Figure 1 Compartment model for the IL-21 induced effects on red blood cells. The arrows 

represent a flow from one compartment to the next, whereas a bullet represents some 

interaction. Either dose or plasma concentration can be used as input in the first 

compartment. This illustrates that the model can be used as a pure PD model or as a 

PK/PD model where the units and values of the parameters are slightly changed. 
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The model consists of three fundamental parts: 1) a sampling effect, 2) an IL-21 induced effect, and 

3) a model for blood recovery to steady state value.  

1) Following a blood sample, interstitial fluid will enter the blood stream to keep the total 

blood volume constant. The fluid will dilute the blood slightly, leading to a drop in the RBC 

count. This mechanism was implemented in the model to explain the observed IL-21 

independent drops in RBC from the predose to the postdose samples. The model hypothesis 

was that the total blood volume was constant during the entire experiment, so the drop in 

RBC (DropRBC) could be calculated from the estimated total blood volume (Vblood) of the 

monkeys and the volume of the blood samples (Vsample). Since blood samples are small 

compared to the total blood volume, the hypothesis of constant blood volumes leads to a 

drop in RBC count for each sample that is essentially identical to the drop calculated as:  

                                                  
blood

sample
RBCRBC V

V
CDrop =   

Vblood is an effective blood volume and not the actual blood volume, since both sampling 

effect and stress related haemolysis of the blood may influence this volume estimate. The 

body weight was implemented as a reasonable covariate of the blood volume of the monkey.  

2) The pharmacodynamic effect of IL-21 on RBC was modelled by a saturable model (an Emax 

model) proportional to the baseline RBC count, where the effect was delayed through transit 

compartments. Nine transit compartments were used, since nine gave a significantly better 

fit compared to three or six. The present text describes the model as a pure PD model, but 

one can also use plasma concentration as the input to the first compartment, making it a 

PK/PD model. The latter will essentially only change the units and values for the amounts in 

the transit compartments and the parameters in the Emax model, but inter-individual 

variability in PK may lead to further changes, as discussed later.  

3) Recovery of the RBC count was modelled via a production in the bone marrow, which at all 

times was proportional to the deficit of RBCs in blood relative to the baseline value. This 

baseline RBC count was fixed to the value obtained from the first blood sample for each 

individual monkey, and it was used as an initial condition for the RBC count in the model. 

Newly synthesized RBCs enter into the blood stream after a delay, which was modelled by 

three transit compartments mimicking the maturation chain in the bone marrow. No 

significant improvement was gained by including more delay compartments, but the delayed 

entry approach was significantly better than implementing the production directly into the 

blood, corresponding to an indirect response model. 

 

The structural parameters of the final model are described in Table III. 

 

Table III  Description of structural parameters in the PD model for IL-21 induced anaemia in 

cynomolgus monkeys. 

Parameter Unit Description 

VBlood ml Effective blood volume (for a 3 kg monkey) 

VBWT ml/kg Body weight covariate on the blood volume 

Emax 1/h Maximal relative disappearance rate of RBCs. (Relative to baseline RBC value)  

ED50 mg/kg 
Steady state amount of IL-21 in the delayed compartment, giving rise to half maximum 

effect.  

TIL-21 h Mean transit time for the total delay between IL-21 dosing and effect 

PRBC 1/h Fraction of the deficit RBC produced pr hour 

TRBC h Mean transit time for the synthesis of new RBCs 
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Inter-individual variation was included for: 

1) VBlood  (Effective blood volume) 

2) Emax   (Maximal drug effect) 

Extended Reticulocyte model 

The RBC model was extended to include reticulocytes, as depicted in Figure 2, to investigate 

whether the predicted blood production was consistent with the observed reticulocyte levels. This 

extension was based on two main hypotheses. First, during anaemia the production of new RBCs is 

so rapid that a large part of the reticulocytes are pushed out into the blood before they are mature. A 

further model assumption was that the number of erythrocytes matured in the bone marrow was 

insignificant during this highly anaemic state, such that all newly synthesized RBCs originate from 

the reticulocyte compartment. Second, reticulocytes were assumed to be removed from the blood 

compartment, either by maturation to erythrocytes or by blood sampling, where the fractional drop 

for reticulocytes was identical to the one estimated for RBCs. The number of reticulocytes maturing 

in a given time interval was modelled to be proportional to the total number of reticulocytes. 
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Figure 2  Compartment model for RBC and reticulocytes simultaneously. The arrows represent a 

flow from one compartment to the next, whereas a bullet represents some interaction. 

 

It was chosen to use the structural parameter estimates from the RBC model above, to predict the 

production of reticulocytes, so only one extra structural parameter was needed to explain the 

observed reticulocyte counts, namely the conversion rate (Cret) from reticulocytes to mature RBCs. 

Inter-individual variation was added to the conversion rate, such that inter-individual variation was 

included for three parameters (effective blood volume, proportional drug effect and reticulocyte 

conversion rate). 

 

Both proportional and additive error was included in the intra-individual error model, such that the 

increasing variations for high reticulocyte levels were taken into account. 
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Computations 

NONMEM version V level 1.1 (26) was used to fit the models to data, while Splus was used for 

graphical presentation of the results and to generate the appropriate NONMEM data file. This data 

file included dosing information as well as volume and timing information about all blood samples 

as described in the protocol. Model and data file are described in greater details in Appendix A and 

B, respectively. 

Results 

Pharmacodynamics 

The effects on the RBC count during various IL-21 treatment schedules were well described by the 

model, as seen in Figure 3. In terms of the R
2
 statistics, the fraction of variation explained by the 

predictions is 95.7% for the individual predictions and 89.4% for the population predictions. 
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Figure 3  Observations versus population predictions of the RBC model  

with data from two independent cynomolgus monkey studies, study 1 and study 2. 

 

Figure 4 gives the average population predictions of the RBC count, which is compared to the 

average observed RBC count at the different time points in each treatment group of Study 1 and 

Study 2. We see marked dose independent drops in RBC count from pre- to post- dose 

measurements, eventually leading to significantly reduced counts, even for the vehicle group. These 

drops in RBC count did appear to be larger in Study 1 than in Study 2, which in the model was 

explained by the smaller sample volumes and larger body weights of monkeys in study 2. 

 

Large differences were seen in the time evolution of the RBC count for the different treatment 

groups. This included a high level of anaemia in the treatment group with a low (0.2 mg/kg) dosing 

for 5 consecutive days (Days 10-14), compared to a lower level of anaemia in a treatment group 

with relatively high dose (1 mg/kg) administered 3 times (Days 0, 7, and 14). Figure 4 demonstrates 

that the model was able to describe all these between-treatment groups and between-study 

differences, by including a description of the sampling effect, the RBC recovery and the effect of 

IL-21.   
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Figure 4  Average population predictions (line) and the average RBC count (dots) in various IL-

21 treatment groups of cynomolgus monkeys. The top 6 dosing groups are from Study 

1, while the bottom 3 dosing groups are from Study 2. 

 

The parameter estimates are summarized in Table IV. As seen, the fixed effects were estimated with 

reasonably good precision, the largest relative standard error (that of ED50) being 39.3%  

 

Table IV Parameter estimates from the pharmacodynamic model of IL-21 induced effects on red 

blood cells 

Parameter Unit 
Parameter 

Estimate 
RSE

1
 

95 % Confidence Intervals  

Lower                    Upper 

VBlood ml 106 7.34% 90.8 121 

VBWT ml/kg 24.3 29.9% 10.1 38.5 

Emax 1/h 0.00435 20.3% 0.00262 0.00608 

ED50 mg/kg 0.107 39.3% 0.0247 0.189 

TIL-21 h 57.3 9.97% 46.1 68.5 

PRBC 1/h 0.00388 5.28% 0.00348 0.00428 

TRBC h 140 28.9% 60.8 219 

Inter-Individual Variation 

VBlood CV = 18.3% 44.2% 

Emax CV = 28.9% 32.2% 

Intra-Individual Variation 

eRBC 10
9
/ml SD =  0.256 17.0%   

                                                 
1
 Relative Standard Error 
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Cross Validation 

A cross validation was performed to evaluate the robustness of the parameter estimates and the 

predictability of the model. The data from Study 1 and 2 was split into two, such that an equal 

number of monkeys from each treatment group were found in each data set. This particular splitting 

was judged to be necessary, since the model could easily be over parameterized if all data from one 

or two treatment groups were missing. In practice the data set was split into those with even and 

those with odd identification numbers, and hereafter the parameters were estimated using the entire 

data set and each of the partial data sets. Table V compares the structural parameter estimates and 

their confidence intervals, which do indeed seem to be reasonable robust. Note that during cross 

validation it was chosen to parameterize the Emax model with p1=1/ED50 and p2=Emax/ ED50, as 

suggested by (27). The predictions obtained from the cross validation explained 89.2% of the 

variation, which is only slightly lower than the fraction of explanation obtained when using the 

entire dataset for estimation (where R
2
 = 89.4%). This similarity, illustrates the good predictive 

properties of the model that was also seen for the graphical presentation of the predictions obtained 

during cross validation, which was practically indistinguishable from the previously presented plots 

using predictions based on the entire dataset. 

 

Table V Cross validation of parameter estimates from the pharmacodynamic model of IL-21 

induced loss of red blood cells (Model 1). Parameter estimates were based on two 

different studies with cynomolgus monkeys (Study 1 and Study 2).Note that during 

cross validation it was chosen to parameterize the Emax model with Emax/ ED50 and 

1/ED50. 

Parameter Unit Study 1 and 2 

Estimate   95% Conf. I. 
Odd IDs  

Estimate   95% Conf. I. 
Even IDs  

Estimate   95% Conf. I. 
VBlood ml 106 [90.7, 121] 108 [82.9, 133] 108 [85.7, 130] 
VBWT ml/kg 24.2 [10.3, 38.1] 23.2 [2.03, 44.4] 31.4 [5.72, 57.1] 
Emax/ ED50 kg/(mg*h) 0.0381 [0.0181, 0.0581] 0.0411 [0.0017, 0.081] 0.0363 [0.0165, 0.0561] 
1/ED50 kg/mg 8.57 [1.71, 15.4] 11.0 [-4.39, 26.4] 6.74 [0.919, 12.6] 
TIL-21 h 57.4 [45.7, 69.1] 59.7 [47.0, 72.4] 53.3 [28.0, 78.6] 
PRBC 1/h 0.00389  [0.0035, 0.0043] 0.00391 [0.0037,0.0046] 0.00385 [0.0034, 0.0043] 
TRBC h 140 [62.8, 217] 146 [38.4, 254] 140 [27.9, 252] 

The parameter estimates obtained from the monkeys with even IDs were used to give population 

predictions of the RBC counts for the monkeys with odd IDs, and vice verse. This gave us 

predictions, where the observed RBC count had not been used directly in the estimation. However, 

the first observation of the RBC count for each monkey does enter directly into the model as a 

baseline parameter, and was thereby used to calculate predictions for the remaining observations. 

Biological test of the Model  

The reticulocyte extension of the RBC model was included as a biological test of the model. This 

model included only one extra structural parameter, namely the conversion rate from reticulocytes 

to mature erythrocytes. The estimated value for the conversion rate was 3.2% per hour with an 

inter-individual variation with CV= 23.2%. Proportional as well as additive error was used for the 

reticulocyte count, which was estimated to, CV= 39.7% and SD= 0.0453 10
9
/ml respectively.  

 

Figure 5 shows the average population predictions of the reticulocyte counts, which are compared 

to the average of the observed reticulocyte counts at the different time points in each treatment 

group of Study 1 and Study 2. As seen, the production of RBCs implemented in the model 

adequately described the between-group variations in reticulocyte levels, supporting the sufficiency 
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of the simple linear relationship between production of new RBCs and the deficit in RBCs. This 

also supports the fundamental structural hypothesis of the model, i.e. that the anaemia is due to 

removal of red blood cells, and not due to suppression of RBC production in the bone marrow.  
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Figure 5  Average population predictions (line) and the average reticulocyte count (dots) in 

various IL-21 treatment groups of cynomolgus monkeys. The top 6 dosing groups 

are from Study 1, while the bottom 3 dosing groups are from Study 2. 

 

Discussion 
The presented results demonstrated a successful model with high predictive power, for the effect of 

IL-21 on RBCs. One reason for the apparent success was the extensive use of transit compartments, 

to empirically describe the delay of drug effect. Data confirmed that IL-21 had a delayed effect on 

RBC elimination, and that nine transit compartments gave a better description of this delay 

compared to three or six delay compartments. A good description of the delay may be essential for 

any system containing delays as well as saturation, because the effect may saturate both for a large 

single dose and when many smaller doses are given close together. At least two causes may have 

contributed to the identification of the empirical description of this delay in the present model: First, 

the interplay between delay and saturation might be the critical factor enabling a description of the 

different effects in the different treatment groups. Second, for a small number of delays a significant 

fraction of the effect will occur between the pre- and post- dose measurement, which is inconsistent 

with data. For other system, the saturation due to frequent administration could be simply related to 
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the dose response saturation via accumulation of plasma concentration, but that is not the case for 

the present analysis since IL-21 was essentially cleared within 24 hours, which was the shortest 

dosing interval. 

 

According to the model presented here, a feedback loop ensures that a drop in RBC count 

stimulates a production of new red blood cells at a rate proportional to the deficit in the RBC count. 

However, other mechanisms may account for the return to the RBC baseline. Thus, cell lifespan 

models (28) could facilitate a recovery due to the natural turnover of blood cells. However, initial 

investigations revealed that the rate of recovery was faster than that from the natural turnover of 

cells. Other investigations attempted to include a constant production and turnover of RBCs in 

addition to the modelled feedback production, but this was not significant and subsequently 

neglected. It was proposed to model the delay of the RBC feedback by using transit compartments 

to mimic the maturation chain of RBCs in the bone marrow, and this was seen to be a statistically 

significant improvement. The chosen combination of mechanisms for the model of blood 

production was further supported by the observed rise in reticulocyte count, which is an observation 

that cannot be explained by a constant RBC production.  

 

During model development PD and PK/PD models were compared to test whether dose, population 

fitted plasma concentration, individually fitted plasma concentration profiles, or individually fitted 

AUC estimates would be the best predictor for the effect (details not shown). These models could 

not be discriminated based on the available data, and subsequently it was chosen to use the pure PD 

model, which includes no assumptions about the link between plasma concentration and effect. The 

lack of superiority of the PK/PD model could origin from various reasons. First, the individual 

plasma concentrations were measured for the first dose only, but used in the simulation of all 

subsequent doses. So the lack of correlation between individual variability in PK and PD may be 

due to inter-occasion variability. Second, the IL-21 plasma concentration varies on a faster time 

scale than the effects, which may be another reason for the lack of its predictive power compared to 

the IL-21 doses. 

 

Two effects were included in the PD model, one arising from IL-21 and blood sampling, both 

leading to a loss of red blood cells. From information about sampling, a theoretical effective blood 

volume was estimated. The estimates of this volume for each individual monkey are given in Figure 

6, and we see that the differences of sampling effect in Study 1 and Study 2 could partially be 

understood through the differences in body weight of the animals. The estimated volumes were 106 

ml for a 3 kg cynomolgus monkey, which is comparable to- but lower than the cynomolgus blood 

volumes reported in the literature (63 ml/kg) (29). This indicated that the drop in RBC was larger 

than it would be if it was only due to the sampling volumes. We find that the most likely 

explanation for the larger effect was a stress induced haemolysis caused by the blood sampling 

procedure, which is consistent with increased bilirubin levels in all dosing groups including the 

vehicle group.  
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Figure 6 Estimated effective blood volume for each cynomolgus monkey in study 1 and study 2 

is plotted against body weight. 

 

Figure 5 demonstrated that the reticulocyte levels at initiation of Study 2 were elevated compared to 

study 1. This may indicate an elevated production of blood, which may be related to the low initial 

RBC counts in Study 2, see Figure 4. We have no obvious explanation for these differences 

between the two studies. 

 

The population prediction of the reticulocytes explains only 60% of the variations in data, which is 

significantly lower than for the RBC model, and should not be viewed on its own, but only as a 

validation of the RBC model. Reticulocyte response to erythropoietin (EPO) and the endogenous 

EPO production has recently been modelled in acute anaemia, including a “paradoxal” down 

regulation of EPO production (19). It was judged paradoxal, since EPO does not have a negative 

feed-back on its own production; however a negative feed-back connected to RBC mass is not 

unlikely. Such a down regulation is to some extent also seen for the reticulocyte counts in Figure 5, 

where a drop in the reticulocyte level is seen at time points where the anaemia is still significant. It 

was attempted to improve the presented reticulocyte model by including both a higher baseline in 

Study 2 and a negative feedback mechanism. This gave a significant improvement of the 

reticulocyte model, but did not aid the RBC model, and the more complicated model was therefore 

not advocated as a better description of loss of red blood cells. 

 

In conclusion, the present study describes the pharmacodynamics of the drop in RBC count 

observed in response to interleukin-21 administrated intravenously in monkeys in several different 

treatment regimens. A novel model was constructed by combining an Emax model with transit 

compartments and a mechanism for sampling effect. The model consistently describes the IL-21 

induced drop in red blood cells to be 1) caused by removal rather than suppression of production, 

and 2) significantly delayed compared to dosing, i.e. not related to the drop in red blood cells 

observed immediately post dose. The model description was validated through standard statistical 

procedures (cross-validation) as well as by a biological validation that checked for consistency with 

the observed increase in reticulocyte count. Other cases of drug induced loss of RBC in clinical as 

well as preclinical settings may be investigated using the same structural model, while the 

mechanism for sampling related blood loss is relevant for investigations of anaemia in all 

pharmacological studies with smaller animals. 
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Appendix A 
Using the parameters given in Table III, the model can be described by the following equations: 
 

Parameters to be estimated 

VBlood, VBWT, Emax, ED50, TIL-21, PRBC, and TRBC 

 

Supplementary Parameters:  

KT=9/(TIL-21) 

KTB=4/(TRBC) 

E=Emaxexp(η1) 

V=(Vblood+(BWGT-3)VBWT) exp(η2) 

Where η1 and η2 are random effects describing the inter-individual variation. 

CHK is the volume of the blood sample. It is given directly in the data file, where it is turned on 

immediately after a blood sample and turned off 1hour later. 

RBC0 is the first measured RBC count, which is given directly in the data file. 

 

Differential Equations: 

DADT(1)=-KT *A(1)  # IV dosing enters into this compartment 

DADT(2)= KT *A(1)- KT *A(2) 

DADT(3)= KT *A(2)- KT *A(3) 

DADT(4)= KT *A(3)- KT *A(4) 

DADT(5)= KT *A(4)- KT *A(5) 

DADT(6)= KT *A(5)- KT *A(6) 

DADT(7)= KT *A(6)- KT *A(7) 

DADT(8)= KT *A(7)- KT *A(8) 

DADT(9)= KT *A(8)- KT *A(9) 

DADT(10)= KTB *A(13)-CHK*(1+A(10))/V   - E *A(9)/( ED50+A(9)) 

DADT(11)=- PRBC *A(10)- KTB *A(11) 

DADT(12)= KTB *A(11)- KTB *A(12) 

DADT(13)= KTB *A(12)- KTB *A(13) 

 

Predictions: 

IPRE=RBC0*(1+A(10)) 

PRED=RBC0*(1+A(10))  (for η1=η2=0) 
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Appendix B  
 

A representative section of the NONMEM data file that includes dosing as well as sampling 

information is given below: 

 

 
 

‘C’ is the row number, ‘TIME’ is the time in hours, starting with 0 at day -20, ‘ID’ is the id number 

of the monkey, ‘GRP’ is the treatment group of the monkey, ‘RBC’ is the dependent variable for 

the RBC count [10^9/ml], ‘RBC2’ gives all the measured RBC counts also the baseline 

measurement. ‘SEX’ is 1 for male and 2 for female, ‘BWGT’ is the body weight, ‘EVID’ is the 

standard NONMEM event identifier, ‘DOSE’ gives the dosing amount, ‘CHK’ gives the blood 

volume [ml] drawn at a specific sampling time, ‘RBC0’ gives the baseline RBC count fixed to the 

first measurement  

C Data Desc: Updated Individual data from NN and ZGI 
C TIME ID GRP   RBC   RBC2 SEX   BWGT EVID DOSE CHK  RBC0 
1 360 2201 1 . 7.97 1 3.75 2 . 0 7.97 
2 360 2201 1 . . 1 3.75 2 . 0 7.97 
3 361 2201 1 . . 1 3.75 2 . 9.8 7.97 
4 384 2201 1 . . 1 3.75 2 . 0 7.97 
5 408 2201 1 . . 1 3.75 2 . 0 7.97 
6 432 2201 1 . . 1 3.75 2 . 0 7.97 
7 456 2201 1 . . 1 3.75 2 . 0 7.97 
8 480 2201 1 7.74 7.74 1 3.75 0 . 0 7.97 
9 480 2201 1 . . 1 3.75 1 0.0001 0 7.97 

10 480 2201 1 . . 1 3.75 2 . 0 7.97 
11 481 2201 1 . . 1 3.75 2 . 7 7.97 
12 484 2201 1 7.49 7.49 1 3.75 0 . 0 7.97 
13 484 2201 1 . . 1 3.75 2 . 0 7.97 
14 485 2201 1 . . 1 3.75 2 . 9.8 7.97 
15 504 2201 1 . . 1 3.75 2 . 0 7.97 
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Purpose. To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on

core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major

effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic

differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling.

Methods. A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a

thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using

NONMEM.

Results. The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model

was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the

circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a

more realistic description with improved simulation properties, and further changed the model into one

that could not be falsified by the autocorrelation function.

Conclusions. The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a

biologically plausible model. The quality of the model was improved by the use of SDEs.

KEY WORDS: autocorrelation; immunomodulation; PKPD model; SDE; statistical model;
thermoregulation.

INTRODUCTION

Interleukin-21 (IL-21) is a novel cytokine (1) that is
produced by activated CD4+ T-cells and demonstrates an
ability to activate CD8+ killer T-cells, natural killer, and B-cells
(2). These immunomodulatory functions lead to the hypothesis
of IL-21 as a potential anti-cancer immunotherapeutic drug,
which is presently under investigation in clinical studies. Like
many other anti-cancer agents, including other interleukins,
IL-21 is seen to produce a broad range of biological effects that
may be related to both efficacy and safety of treatment. The
present work focuses on the effects of human recombinant IL-21

on thermoregulation in monkeys where IL-21 is observed to
cause an increased core body temperature.

Drugs may modify the regulation of body temperature,
either by changing heat production i.e., increasing metabo-
lism, by changing heat loss e.g., by cutaneous vasoconstric-
tion, or indirectly by changing the regulation process i.e., by
increasing the set-point temperature (3) that may be associ-
ated with lowering the signalling of temperature sensitive
neurons in the hypothalamus. In technical terms, fever has
been defined as a state of elevated body temperature caused
by an elevated thermoregulatory set-point (4). However, this
definition is still under debate (5), and we shall use the term
fever in the broader meaning of the word that includes any
kind of hyperthermia, and refer to the specific mechanistic
causes when necessary. Drug-induced fever is observed
following treatment with a wide variety of drugs (3) e.g.,
halothane causes a hypermetabolic state called malignant
hyperpyrexia, phenothiazines cause an increase in the set-
point temperature, and anticholinergic drugs increase temper-
ature by decreasing sweat production. Fever is a characteristic
effect of pyrogenic cytokines, for which elevation of the set-
point is a likely, but possibly not the only mechanism. Most
often, fever is associated with fatigue and nausea and can
significantly reduce the quality of life, while the more extreme
drug induced hyperthermia can be fatal. Fever caused by an
elevated set-point can be treated with antipyretic drugs, e.g.,
the NSAIDs, whereas hyperthermia caused by a hypermet-
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abolic state is generally unaffected by the antipyretics and
more difficult to treat.

The present work proposes to quantify interleukin-21
(IL-21) induced elevation of core body temperature in
cynomolgus monkeys with a pharmacokinetic pharmacody-
namic (PKPD) model. The mechanism for IL-21 induced
fever are currently unknown, but they are believed to include
elevated thermoregulatory set-point, consistent with the
clinical finding that IL-21 induced fever can be brought
down by administration of paracetamol, and with findings of
other cytokines. PKPD modelling of drug induced changes in
body temperature can provide a summary description of the
observed effects, enable predictions for other administration
schemes, and increase understanding of the underlying
mechanisms. For a general system, one could imagine that
modelling of temperature could forecast dangerous hyper-
thermia, or guide administration of antipyretic drugs given in
combination with fever inducing drugs.

Modelling of the regulation and variation of body
temperature are well established problems that have been
challenged with many types of mathematical models. Some
models incorporate a vast amount of physiological and
physical details about heat regulation that enables fruitful
simulation models, e.g., (6). Other more statistical models
aim to precisely describe and help to identify the circadian
rhythm of body temperature, e.g., see (7) and (8). PKPD
models of temperature regulation are typically formulated via a
system of ordinary differential equations (ODEs) incorporated
in a mixed-effects model to account for inter-individual differ-
ences, e.g., see (9Y11). Among these, the set-point model
involves a complex systems feedback mechanism that has
proven useful for several studies (10,11). Whereas these efforts
have been productive, we find that previous PKPD models of
temperature regulation fail to integrate many of the elements
in the physiological simulation models as well as the method-
ology applied in more statistical models. The present model
aim to comply with these two points, as discussed below.

Aspects of more physiological models has been included
by extending a model with a set-point to include also
metabolism and heat loss; all merged in accordance with
the basic, but evidently not all theory of heat regulation and
experimental findings in monkeys. This allows the pharma-
codynamic effect to be described as direct effects on the
metabolism, the set-point, and/or the heat conduction with a
natural inclusion of the basic counter regulatory mechanisms
of the body, which may improve predictions of new
experimental situations. Note that this type of model aim to
include the most basic mechanisms to explain the most basic
phenomena of heat regulation, but we do not aim to produce
a model that can explain all phenomena of this complicated
system.

The methodology of more statistical temperature models
is incorporated by extending the set of ODEs to a set of
stochastic differential equations (SDEs), using a mixed-
effects model based on SDEs (12). The use of SDEs is a
novel technique in PKPD modelling that has been presented
both as a diagnostic tool that can facilitate systematic model
development (13,14), and also as a means to facilitate a more
realistic description of the variations in the system (15,16).
The present work focuses on the implementation of SDEs to
provide a more realistic description of the variations, and

among other things, we aim to demonstrate that implemen-
tation of SDEs may improve the predictions of the model by
producing more realistic probabilities for a given animal to
get fever. Since SDEs is a new technique of PKPD modelling,
it will be emphasized how the results using SDEs differ from
the corresponding results based on ODEs.

MATERIALS AND METHODS

The study plan was reviewed and approved by a Novo
Nordisk ethical committee. The animal unit was animal
welfare monitored and found to be in compliance with the
Novo Nordisk Principles for the use of animals as well as
national legislation and the NIH BGuide for the Care and
Use of Laboratory Animals.^

Animals

Sixteen purpose bred adolescent male cynomolgus
primates (Macaca fascicularis) obtained from Guangxi,
China, were used in the study. Prior to the study each
primate was examined by veterinary surgeon and confirmed
fit for the study.

The animals were implanted with telemetry transducers,
type TL11M2-D70-PCT (Data Sciences International), for
measurement of core body temperature. The animals were
group-housed in a primate unit in gang cages. The room was
illuminated by fluorescent lights timed to give a 12 h lightY
dark cycle. The temperature range was 21Y26-C and the
relative humidity range was 41Y86%. The animals were aged
3.6 to 4.75 years and weighed 3.1Y4.8 kg at the initiation of
the study. The primates were fed a diet of MP(E) SQC
(Special Diets Services, Witham, UK) with a supplementary
diet of fruit, vegetables, and nuts. Tap water was available ad
libitum.

The animals were acclimatized in general three weeks
prior to the study and in the measuring cage on three
occasions before the initiation of the study. A number of
environmental enrichments were available: swings, stubs,
swimming pool, puzzle feeders, toys etc.

Data Acquisition

During data acquisition the animals were in isolation
cages within the animal house. Each telemetered cage was
equipped with Data Sciences receivers. A Data Sciences
telemetry recording system was used for continuous record-
ing of the physiological data. The acquisition and analysis
were made using Notocord HEM data acquisition and
analysis software (version 3.2). For each dose, data collection
commenced at least 1 h before dosing and ended approxi-
mately 24 h after dosing with 500 Hz sampling. Pretreatment
of data prior to modelling involved, assessment of average
temperature for each 10 min interval, keeping only the first
average temperature of each hour.

Study Design

Four dosing groups consisting of four animals each were
treated with 0, 0.03, 0.5 or 3 mg/kg IL-21. The animals were
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dosed by intravenous bolus injection. The dose volume for
the 0.5 and 3.0 mg/kg IL-21 administrations was 3.0 ml/kg and
1.0 ml/kg for the 0.03 mg/kg IL-21 administrations. The
animals received a dose on days one, three and five of the
study. Following each dose body temperature was recorded
continuously for 24 h.

The study was conducted in accordance with the OECD
Principles of GLP.

MODEL OF TEMPERATURE REGULATION

The PKPD model of temperature regulation can be
divided into two parts. First, a baseline model that aims to
reflect physiological mechanisms of temperature regulation,
including the effects induced by a circadian rhythm, changes in
ambient temperature, and/or forced changes in metabolic rate,
e.g., induced by exercise. This part is presumably generally
applicable for other drugs, since various pharmacological
mechanisms can be implemented. The second part of the model
includes a specific proposal for the pharmacodynamic effect of
IL-21 on thermoregulation. For a brief overview of the
structural model, see Fig. 2. The description of the inter- and
intra-individual variability models are of special interest for
the present analysis, and shall be described separately after
presentation of the structural model.

Baseline Model

Body temperature is ultimately regulated by the balance of
heat production and heat loss, where the primary mechanism of
regulation is based on control of heat loss, whereas increased
metabolism, e.g., by shivering is used in more extreme
situations, see (17). In this setting, heat production is under-
stood as an independent variable that drives the system, i.e.,
metabolism varies in order to meet the energy demand of daily
living, causing changes first in temperature and subsequently
in heat loss. One could imagine two ways of regulating heat
loss after an increased heat production, see Fig. 1. First, the
heat loss may increase to approach the metabolic rate and thus
obtain heat balance, where the delay between the increase in

heat production and increase in heat loss will lead to heat
balance at an elevated temperature. Second, the heat loss may
exceed heat production so that heat balance will not be
reached until the temperature has decreased to its original
baseline value.

The physiology of heat regulation reviewed in (17)
indicates that heat loss is controlled to obtain balance between
heat production and heat loss, rather than to defend a specific
temperature. We note that temperature sensing is probably the
most important mechanism to detect discrepancies between
heat production and loss in order to control this balance.
Experimental results lead to the understanding that the typical
nocturnal decrease of body temperature is a consequence of
the delay between a rapid decrease in metabolic rate e.g., due
to inactivity, and the subsequent decrease in heat loss until
temperature returns to a new steady state. The present model
adheres to this concept by letting metabolic rate drive the
circadian rhythm, and further by letting body temperature
control conduction of heat. An increased heat production or
equivalently an increase in external temperature will increase
the body temperature, and subsequently the regulatory
mechanism will increase heat conductance and thereby also
heat loss, which ultimately drives the system towards steady
state at a higher temperature. The equations can be written,

Mc tð Þ ¼
Mday for t 2 0; tnight

� �
; tday; tnight þ 24h
� �

; :::
� �

Mnight for t 2 tnight; tday

� �
; tnight þ 24h; tday þ 24h
� �

; :::
� �

(

dM=dt ¼ �km M �Mc tð Þð Þ ; M 0ð Þ ¼Mday

dT
�

dt ¼ c�1 M � k T � Tað Þð Þ ; T 0ð Þ ¼ Tday

k ¼ kb þ kinc T � Tbð Þ
ð1Þ

M is the metabolic rate, which decays with a rate constant km

towards the metabolism dictated by the circadian rhythm
Mc(t), which under normal physiological conditions varies
around a baseline value Mb with a day time Mday and a night
time value Mnight, where tday and tnight are the times where the
day and night periods start. The mechanisms causing diurnal
variation in Mc(t) are not included in the present model. c

Temperature 
Heat Loss 
Metabolic Rate 

Night Time Day Time 

Temperature 
Heat Loss 
Metabolic Rate 

Night Time Day Time 

Fig. 1. Two possible ways of regulating heat loss after an increased heat production. First (left), the heat

loss may increase to approach the metabolic rate and thus obtain heat balance, where the delay between

the increase in heat production and increase in heat loss will lead to heat balance at an elevated

temperature. Second (right), the heat loss may exceed heat production so that heat balance will not be

reached until the temperature has decreased to its original baseline value.
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is the specific heat constant, Ta is the ambient temperature, k
is the conductance of heat, which has the baseline value kb

when the temperature is at baseline Tb, and kinc gives the
increment in conductance per degree when the temperature
rises. The model explains heat loss, only through terms
proportional to the difference between body temperature and
ambient temperature (T j Ta), as appropriate for conduction.
Radiation causes a heat loss proportional to T4 � T4

a

� �
and

evaporation is typically understood as temperature indepen-
dent. Conductance ceases to explain heat loss for example
when Ta approaches body temperature, and the model should
be extended if it is needed to include e.g., high ambient
temperatures.

The structural parameters to be estimated for the base-
line model were chosen as: Tb, kinc, km, tday, tnight, and DT,
where DT is the difference between day and night time steady
state temperature, Tday and Tnight. Tday ¼ Tb þ $T=2; and
Tnight ¼ Tb � DT=2 .

Neither the specific heat nor the baseline metabolic rate
are identifiable when only temperature data is available, and
consequently c was fixed to values obtained in humans, c =
3.47 kJ/(kg C), and Mb was fixed to 3 W/kg. This value was
derived using squirrel monkey baseline metabolic rate of
approximately 4 W/kg (18), and allometric scaling (19).
Likewise, the ambient temperature was fixed to 21-C, as
suggested by the experimental conditions, and except for kinc,
the model was not sensitive to changes in the ambient
temperature. The baseline conductance and the night and

day time metabolic rate can now be calculated from the
steady state conditions:

kb ¼Mb= Tb � Tað Þ
Mday ¼ kb þ kinc Tday � Tb

� �� �
Tday � Ta

� �

Mnight ¼ kb þ kinc Tnight � Tb

� �� �
Tnight � Ta

� �
ð2Þ

Pharmacodynamic Model

The baseline variations of temperature regulation can be
altered e.g., by disease, or by the introduction of exogenous
compounds. Drugs are seen to modify thermoregulation either
by directly affecting the metabolic rate, by direct effects on the
heat loss, e.g., via vasodilatation, or indirectly by affecting the
set-point temperature. Physiologically, the set-point is modu-
lated through the temperature sensing neurons in the hypothal-
amus. If these neurons emit signals that correspond to a
temperature lower than the set-point, the conductance is
decreased and the temperature increases towards a higher
steady state. For the baseline model described above, there is no
single temperature that the body regulates towards, rather the
level of the steady state temperature depend upon the
metabolic rate. Consequently, it is necessary to define the set-
point temperature relative to some metabolic rate. In the
present work, the set-point is defined as the temperature the

Fig. 2. Model for IL-21 induced regulation of core body temperature in cynomolgus monkeys. The

model includes a part that describes the general mechanisms for temperature regulation (dark), a part

that describes how IL-21 is believed to regulate the set-point through prostaglandin E2 (white), and a

part that empirically explains the relationship between administration of IL-21 and the effects (light).

Each square box represents a compartment, i.e., a differential equation or the solution thereof, whereas

each oval box represents an algebraic expression. A physical flow from one compartment to the next is

depicted with an arrow, while a bullet is used to signify an influence of one model entity on another.
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body regulates itself towards at Mb, i.e., Tb if no drug has been
introduced. The introduction of drugs can be understood to
change the baseline model by,

dM=dt ¼ �km M � f1 Mc tð Þ; Drug ; tð Þð Þ
dT
�

dt ¼ c�1 M � k T � Tað Þð Þ
k ¼ kb þ kinc T � Tb 1þ f3 Drug; tð Þð Þð Þ þ f2 Drug ; tð Þ

ð3Þ

where f1, f2, and f3, are some functions of time and drug
intervention, as typically modelled via plasma concentration. f1

allows drug modulated steady state metabolism, f2 describes a
drug effect on heat conduction, whereas f3 involves drug mod-
ulation of the set-point to a new value Tz ¼ Tb 1þ f3 Drug; tð Þð Þ.
Whereas this model structure can be used to describe the
effects of a given drug, it is unlikely that it can be used to
discriminate between e.g., effects on set-point and direct
effects on conductance, when based exclusively on tempera-
ture data without precise knowledge of the function of drug
effect.

The IL-21 induced rise of body temperature in cyno-
molgus monkeys is a rather complex set of phenomena (see
data presented in Fig. 5 in the following section):

1) The effect of IL-21 seems to be absent following the
first dose. This phenomenon confirms previous findings,
indicating the existence of some regulating mechanism that
must be switched on before any IL-21 induced effects on
temperature can occur. For the 3 mg/kg treatment group, the
temperature seems to be unaffected within 24 h of the first
dose, but an increase is seen 48 h later at the time of the
second dose. For the 0.5 mg/kg group, most monkeys exhibit
only a partial response to the second dose, and a full response
to the third dose.

2) The nocturnal decrease in temperature seems to
vanish for the two highest treatment groups during the
period where IL-21 has an effect. Note that the monkeys
were unable to sleep in these periods.

3) IL-21 induces fast as well as slow temperature
elevations. A quick peak is seen to last about 24 h, whereas
a slower mechanism leads to persistent elevated temperature
48 h after the second dose of 3 mg/kg.

4) The fast peak is considerably lower in magnitude
when temperature is already elevated; compare e.g., the
effect following third dose in the 0.5 and the 3 mg/kg
treatment groups.

The delayed onset of the pharmacodynamic effects
(phenomenon 1) was modelled with an empirical function
that starts at 0 indicating no effect, and when the time since
the first dose increases, the function smoothly goes towards
one, indicating full effect. We assume that a certain dose
level is necessary for this priming to take place, but the
available data did not allow a reasonable estimate of this
value. For practical reasons, priming was implemented only
for the high dosing groups, where an effect on temperature
was seen in the animals. The following priming function was
used,

fprime tð Þ ¼ �high dose 1� exp �� t � tdose1 � tprime

� �� �� ��1 ð4Þ

where dhigh_dose is 0 for the low dose levels and 1 for the high
dose levels, tdose1 is the time of administration of dose 1, tprime

is the characteristic time of priming, and a gives the shape of
the priming function. The priming function for the onset of
the pharmacodynamic effect was also used to model the
disappearance of the nocturnal decrease in the metabolic
rate (phenomenon 2). This effect on metabolism, perhaps
by preventing sleep and rest at night, was consistent with
simultaneous observations of heart rate that maintain a day
time high value during nights when IL-21 affects temper-
ature, but exhibit a nocturnal decrease when no effect is
seen on temperature. The steady-state day and night time
metabolic rates were modelled to be changed by the drug
as

M�
day ¼ f1 Drug ; tð Þday ¼Mday

M�
night ¼ f1 Drug ; tð Þnight ¼ 1� fprime

� �
Mnight þ fprime Mday

ð5Þ
where M�

day and M�
night are the drug modulated day and

night time metabolic rates. At the present time, we were not
able to formulate a reasonable model for Bun-priming^ of the
system, e.g., the return to a normal circadian rhythm. It may
be appropriate to develop more realistic and mechanistic
dose-response relationships for the priming and the Bun-
priming,^ but at present we use the function given above.

The fast and slow effects following dosing with IL-21
(phenomenon 3) are modelled to elevate the thermoregula-
tory set-point as described below. Both effects are described
by gamma distribution functions giving the solution to a
system of transit compartments that could represent the
chain of events between dosing and effect. The gamma
distribution function can be written as

gN;T tð Þ ¼ exp �tN=Tð Þ tð ÞN�1ðN=TÞN N � 1ð Þ! for t

> 0 ; gN;T tð Þ ¼ 0 for t � 0 ð6Þ

where gNT is the gamma function, yielding the value in the
Nth transit compartment, and T is the mean total transit time
to compartment N. In the model, the slow effect is dose
proportional, whereas the fast effect is a dose independent
fixed response. Such dose independence could reflect that the
maximum effect has been reached, or that a predetermined
acute phase response is induced. The total effect is modelled
as the sum of the slow and the fast effect, and proportional to
the priming function, which ensures that the effect is seen
only when the priming has occurred. The equations describ-
ing these rather empirical effects are,

Eslow ¼ pEs

X

doses

AMTdosesgNs;Ts t � tdoseð Þ

Efast ¼ pEf

X

doses

gNf ;Tf t � tdoseð Þ

PD tð Þ ¼ fprime tð Þ Eslow þ Efast

� �

ð7Þ

where AMTdose. is the amount of IL-21 administered by a
given dose at time tdose. The mean total delay for the slow
and the fast effect is parameterized by Ts and Tf, whereas pEf

and pEs gives the level of the fast and the slow effect. Nf and
Ns are the number of transit compartments used in the two
effects, both fixed to four in order to produce a standard
third order delay between the dose and the effect compart-
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ment. It was judged reasonable to combine the fast and the
slow effect, assuming that they act through the same mecha-
nism, as motivated by the observed saturation of the combined
effect (phenomenon 4). The combined pharmacodynamic
effect PD(t) is modelled to affect the thermoregulatory set-
point. Although not completely understood, this effect is
likely mediated by prostaglandin E2 (PGE2), which is
believed to mediate cytokine induced fever (20Y22) by
lowering the signalling of temperature sensitive neurons in
the hypothalamus. Many possible mechanisms can be pro-
posed to describe the link between drug effect, PGE2 release,
and the subsequent increase in set-point temperature. A
simple Emax model could describe the set-point temperature
as a saturable function of PD(t). In general the Emax rela-
tionship can be motivated by the classical receptor occupancy
theory under the assumption of equilibrium, e.g., see (23).
However, for the present analysis, this receptor occupancy was
modelled explicitly, without the assumption of steady state.
The rate of increase in the number of bound receptors is
proportional to the pharmacodynamic effect and the fraction
of unbound receptors. When no pharmacodynamic effect is
present, the bound receptors will decay to unbound receptors.
This can give rise to phenomenon fourVsaturation in effect,
because for an elevated temperature, only few unbound
receptors will be available, so a subsequent response will
produce only a few more bound receptors. We get,

dBR=dt ¼ PD tð Þ 1� BRð Þ � kRBR ; BR 0ð Þ ¼ 0

f3 Drug; tð Þ ¼ pEtotBR ; Tz ¼ 1þ pEtotBRð ÞTb

ð8Þ

BR is the fraction of bound receptors, and kR is the off rate.
Empirically, kR give us one extra parameter to describe the
shape of the delayed fast and slow effects, and further for the
SDE model kR is also involved in the correlation structure for
the residuals, to be discussed below. The actual effect on the
set-point is proportional to the fraction of bound receptors
with the coefficient being the effect parameter pEtot.
Whereas, pEf and pEs parameterize the effect on the
receptors, i.e., they control the induced level of saturation.
The complete set of structural parameters to be estimated for
the pharmacodynamic model was chosen as: (pEtot, kR, tprime,
Ts, Tf, pEf, pEs, and a).

The complete model of the mechanistic baseline system,
the mechanistic effect model, and the empirical drug interaction
are presented in Fig. 2, while simulations of the different model
entities are presented in Fig. 3. Following the first adminis-
tration of IL-21, the system will become primed according to
Eq. (4), which will affect the metabolic rate to maintain a day
time value Eq. (5). Subsequent administrations of IL-21 will
exhibit a reduced or a full response Eq. (7), where the fast effect
is of a fixed size, whereas the slow effect is proportional to the
dose level. The effect will convert unbound receptors to bound
receptors Eq. (8), which raises the thermoregulatory set-point
Eq. (8), so that the normal physiological regulatory system will
raise the body temperature according to the change in set-point
and metabolic rate, see Eq. (3) or Eq. (9).

Variability Model

The present analysis utilize a new technique for vari-
ability in PKPD models, where system noise is added to a set

of ordinary differential equations to account for model mis-
specification and true random fluctuations, producing a set of
stochastic differential equations. The SDEs are embedded
into a typical mixed effects setting with uncorrelated mea-
surement noise and inter-individual and/or inter-occasion
variability in the parameters. In summary, the intra-individual
statistical model can be written as,

dM ¼ �km M � f1 Drug ; tð Þð Þdt þ �MdWM ; M 0ð Þ ¼Mday

dT ¼ c�1 M � k T � Tað Þð Þdt ; T 0ð Þ ¼ Tday

dBR ¼ PD tð Þ 1� BRð Þ � kRBRð Þdt þ �BRdWBR ; BR 0ð Þ ¼ 0

k ¼ kb þ kinc T � Tzð Þ and Tz ¼ 1þ pEtotBRð ÞTb

Tobs ¼ T þ e ; e 2 N 0; �2
e

� �

ð9Þ
The SDEs given by the first three equations correspond

to the ODEs previously defined, now with system noise added
to the metabolism and the receptor compartment. Tobs gives
the observed temperature, modelled with additive uncorre-
lated measurement noise e, which is normally distributed
with standard deviation se. sMdWM and sBRdWBR give
system noise in the metabolism and the receptor compart-
ment, respectively. Where WM and WBR are independent
standard Wiener processes, e.g., see (24). System noise
produces fluctuations directly into the structural model, and
will therefore depend upon the structural parameters.
Specifically, the metabolism fluctuates and the correlation
between the metabolic rate at time t1 and t2 will be
exp �km t1 � t2j jð Þ: Similarly, the correlation of BR will be
exp �kR t1 � t2j jð Þ when no drug is included. These fluctua-
tions will thus give two time scales for the correlations in the
model.

From data presented in Fig. 5, variability is seen to be
higher after second dose than after third dose. This effect
can be understood as inter-individual variability in the time
point where the effects are switched on tprime, so that the
system can be more or less turned on during the second
dosing day, whereas it is completely turned on for the third
dose. A proportional inter-individual model was imple-
mented as,

tprime ¼ � exp �ð Þ ; � 2 N 0;4ð Þ ð10Þ

where q is the typical value of tprime, and h is a normally
distributed random effect with variance W. Several other
inter-individual and inter-occasion models were investigated
during model development.

MODEL DEVELOPMENT

Different models were discriminated based on, robust-
ness, likelihood function value, reasonable physiological
values of the parameter estimates, and performance of the
simple predictive check described in the results.

A number of different baseline models have been
investigated and rejected in favour of the chosen model.
These include, square wave metabolism, sine wave metabo-
lism, modelling temperature directly as a sine wave, and
modelling heat loss to approach metabolism exponentially

(9)
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instead of the chosen model where change in conductance
gives the change in heat loss. It was not tested whether a
more complicated oscillator model, as e.g., described in (25),
could explain the circadian rhythm.

During development of the pharmacodynamic model, it
was investigated whether simulated pharmacokinetic profiles
could be used instead of dosing to drive the pharmacody-
namics, but using dose directly turned out to be more
productive. It was further investigated whether the slow and
fast effects could be joined into one effect, and also whether
the effect on metabolism could be explained as a function of
the slow effect.

Inter-individual variability was tested for all parameters.
Whereas many of these parameters were significant based on
objective function value, only inter-individual variation for
tprime gave a large improvement, and was crucial for the
performance of the simple predictive check.

Stochastic Model Development

Investigation of system noise may be motivated by the
significantly autocorrelated residuals of the ODE model, as

demonstrated in Fig. 4. If the system noise parameters
sM and sBR in the SDE model are set to zero, then we
get our original ODE model. In other words, the ODE
and SDE models are nested, making it appropriate to test
the inclusion of system noise with the likelihood ratio test.
The inclusion of system noise was highly significant with
Dlog(L) > 1,000.

System noise was investigated for temperature, metabo-
lism, and receptor compartments, testing also a term propor-
tional to PD(t) in the receptor compartment. The following
considerations contributed to the chosen implementation:

Stochastic fluctuations in metabolism were motivated
by the natural variations in movement and exercise pat-
terns. A simulation test confirmed that the level of fluctua-
tions in metabolism were reasonable compared to those
observed in squirrel monkeys (18). The simulations of me-
tabolism were far from zero, and subsequently it was judged
unnecessary to investigate a numerically more complicated
proportional model that would ensure metabolism to be
strictly positive.

System noise for the temperature compartment could to
a large extent compensate for variations in metabolism, but
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Fig. 3. Simulations of the different components in the pharmacodynamic model for IL-21 induced regulation of core body temperature in
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including both effects gave only modest improvement to the
objective function value. System noise on metabolism was
selected instead of direct effects on temperature because of
an improved objective function value, more realistic simu-
lations of metabolism, and since it enabled estimation of the
rate constant km.

System noise was also introduced for the receptor
compartment, which could reasonably account for slow
fluctuations and were significant in a likelihood ratio test.
The chosen stochastic implementation ensures that the total
number of bound and unbound receptors remain constant. A
term with system noise proportional to the pharmacodynamic
effect was tested and rejected.

COMPUTATIONS

Parameter estimation was performed using NONMEM
(26), where stochastic differential equations were imple-
mented in NONMEM version VI beta as explained in (14).
The model was processed at the cluster of the PKPD group at
Uppsala University, which is a heterogenic cluster of 20
computers with dual processors running Redhat 9 (http://
www.redhat.com), kernel version 2.4.26 with the openmosix
cluster patch version 2.4.26-1 (http://www.openmosix.org).
To save computational time, it was chosen to estimate pa-
rameters by the following two stage procedure. First, we
estimate the parameters in the baseline model, using data
from the vehicle group and the 0.03 mg/kg group where no
effect is seen. Second, the complete dataset is used to

estimate the pharmacodynamic parameters, including all
variability parameters, while keeping baseline parameters
fixed to the previously estimated values. For both steps,
estimation of standard errors (SE) was obtained by boot-
strapping, i.e., from the estimation results of 100 randomly
generated datasets. New datasets were generated by replac-
ing each monkey in the dataset with a randomly selected
monkey, while allowing for duplicates. For bootstrapping of
the pharmacodynamic model, new datasets were con-
strained to contain four monkeys from all of the four
treatment groups.

RESULTS

Parameter estimates and their relative standard errors
for the pharmacodynamic model of IL-21 induced effects
on temperature regulation are presented in Table I. SDE
model parameter estimates are compared to the corres-
ponding estimates obtained with ODEs. We note that the
ODE model estimate of km was very unstable, as indicated
by a large relative standard error. During estimation of
the remaining parameters, the ODE model km was fixed
to the value obtained in the SDE model, allowing a more
reasonable comparison of the two sets of estimates. For
most parameters, the estimates are very similar, while some
estimates clearly differ in the two estimation procedures.
The most characteristic changes are that the SDE model
produces estimates with lower inter-individual variability
and measurement noise compared to the ODE model.
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Fig. 4. Diagnostic plots for the ODE and SDE model for IL-21 induced regulation of core body

temperature in cynomolgus monkeys. QQ-plots (left) provide a visual test for weighted individual
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individual one-step predictions, which are identical to the usual individual predictions for the ODE

model. The autocorrelation functions (right) of the weighted residuals are plotted with the 95%
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Table I. Parameter Estimates and Their Relative Standard Errors From the Model of IL-21 Induced Regulation of Core Body Temperature

in Cynomolgus Monkeys

Parameter Unit SDE parameter estimate ODE parameter estimate % Difference of ODE estimate

Baseline parameters

tnight h 6.64 (1.9%) 6.73 (1.7%) 1.4

tday h 17.3 (0.8%) 17.5 (1.4%) 1.1

km 1/d 27.3 (17%) *591 (140%) 2064

kinc W/(kg-C2) 0.0169 (19%) 0.0258 (10%) 52

DT -C 1.66 (3.2%) 1.57 (3.3%) j5.4

TB -C 37.9 (0.15%) 38 (0.15%) 0.26

Pharmacodynamic parameters

Ts d 2.15 (21%) 2.45 (12%) 14.0

Tf d 0.303 (8.4%) 0.368 (7.4%) 21.5

pEs kg/(d mg) 2.97 (19%) 3.57 (48%) 20.2

pEf 1/d 2.16 (22%) 2.43 (40%) 12.5

pEtot 1 0.16 (9.4%) 0.144 (10%) j10.0

kR 1/d 4.1 (20%) 5.35 (36%) 30.5

tprime d 2.12 (9.3%) 1.88 (16%) j11.3

a Y 11.2 (37%) 5.35 (47%) j52.2

Inter-individual variability

CV(tprime) h % 14.9 (46.5%) 37.5 (37%) 152

Measurement noise

se -C 0.102 (8.2%) 0.31 (3.9%) 224

System noise

sm W/(kgd1/2) 1.46 (22%) Y Y
sR 1/d1/2 0.179 (34%) Y Y

*For the ODE model, km could not be estimated reliably, and was subsequently fixed to the value estimated in the SDE model, allowing a

more reasonable comparison of the remaining estimates.
The parameter estimates are compared to the corresponding model based on ordinary differential equations.
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the observed temperature (black circles) in four different treatment groups. Each group include four

cynomolgus monkeys receiving an IV bolus administration of IL-21 at day one, day three, and day five,
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A representative set of diagnostic plots are presented in
Fig. 4. Similarly to the QQ-plot and the predicted versus
observed, the autocorrelation function for individual weight-
ed residuals was computed from the vector containing data
from all individuals, as given by the NONMEM output file.

A simple predictive performance check was performed by
simulating the model 500 times and calculating the 90%
prediction interval. These prediction intervals were calculated
both for the ODE and the SDE model and compared to the
observed temperatures for each of the four treatment groups
in Fig. 5. The ODE and SDE intervals are reasonably similar,
with the same strengths and weaknesses. Both models
capture the particularly high variability following second
dose, as well as the four phenomena of the structural model:
1) absent effect after first dose, 2) effects on temperature
circadian rhythm, 3) fast and slow effects, and 4) saturation of
effect. The 90% prediction intervals seem to include more
than 90% of data, which indicates a slightly overestimated
variation, more so for the ODE model than the SDE model.

Figure 6 compares simulated individual profiles from the
SDE model and the ODE model of the observed temper-
atures following third administration of IL-21 at a dose level
of 3 mg/kg, which is the most critical time for the present
study. Simulations based on SDEs vary continuously, simi-
larly to the observed temperatures, whereas ODE simula-
tions are seen to jump up and down erratically.

DISCUSSION

The thermoregulatory effects of IL-21 in cynomolgus
monkeys were described by a PKPD model based on stochas-
tic differential equations. Whereas temperature modelling is
well established in the literature, the present model and results
do include a series of features that justify further discussion.

Priming The mechanism behind an absent effect on
temperature after first dose is presently not understood. This
priming effect was described by an empirical function that
switches on sometime after the first dose, and inter-individual
variation in the time of onset could describe an increased
variation after second dose. However, the model does not
satisfactorily describe how the system returns to normal.
During model development it was attempted to model
priming as a function of the slow effect, but various attempts
were discarded because of poor simulation properties.

Receptor model The standard Emax model was extended
to explicitly include a receptor compartment, extending the
model with an off rate for the receptors kR. Empirically, this
off rate is related to the shape of the response, and to the
correlation structure in the SDE model. The estimated value
for kR corresponds to a half-life of 4 h, and it is presently not
known whether this off rate relate to that of any physiological
receptor involved in the response. In particular, intracerebral
injections of PGE2 in rat leads to elevated temperatures
lasting for only tens of minutes (22), indicating a much faster
half life of response.

Metabolism model Whereas the metabolism was unob-
served in the present study, the circadian rhythm of thermo-
regulation has been investigated in detail for squirrel monkeys
(18). These calorimetric experiments showed that the meta-
bolic rate begin to decrease around the time of lights-off, and
reach a stable level within 1.5Y2.5 h. This is in reasonable
agreement with the estimated value of km, corresponding to a
half life of 0.7 h for cynomolgus monkeys. Since the cor-
relation structure in data contributed significantly to the
estimation of km, this result constitutes a test, both for the
structural model and for the implemented system noise.

For the squirrel monkeys, it was also found experimen-
tally that the metabolic rate varies approximately between
3 W/kg at night and 5 W/kg at day (18). Cynomolgus monkeys
are approximately three times larger than squirrel monkeys,
so allometric scaling yield a night and day time metabolic
rate, of 2.57 and 3.45 W/kg in cynomolgus monkeys. In the
present analysis, we used a fixed baseline metabolic rate Mb

in cynomolgus monkeys of 3 W/kg. From the fixed value of
Mb and the estimated parameter values of kinc, Tb, and DT,
we can calculate or simulate model predictions for the night
and day time metabolic rate in cynomolgus monkeys. The
model prediction yield night and day time values at 2.63 and
3.40 W/kg which is in perfect agreement with the values
found by allometric scaling.

Model Diagnostics A series of diagnostic plots were
presented in Fig. 4 to compare the ODE model with the SDE
model. Models based on ODEs typically assume indepen-
dence of the individual prediction errors, whereas SDE mod-
els assume independence of the individual one-step prediction
errors, i.e., prediction errors based on predictions that include
information of all previous data to predict the next observa-
tion. So the individual residuals refer to the one-step predic-
tion errors, which reduce to the usual prediction errors when
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Fig. 6. Core body temperature for cynomolgus monkeys 4 h to 12 h post third administration of IL-21 at a dose level of 3 mg/kg. The three
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ODEs are used. Diagnostic plots of predictions versus obser-
vations demonstrate that SDE model predictions are closer to
the observations than ODE model predictions, illustrating
that one-step predictions are based on all previous data for
SDEs, but not for ODEs. The autocorrelation function pre-
sented in Fig. 4 clearly demonstrates significantly correlated
individual residuals for the ODE model, which falsifies the
statistical model assumption. The SDE model on the other
hand, successfully passes this statistical test. Diagnostic Quanti-
leYQuantile (QQ) plots presented in Fig. 4 illustrate that the
weighted individual residuals are close to being normal dis-
tributed for the SDE model as well as for the ODE model.
This is one of the fundamental assumptions for both models,
and particularly for the Extended Kalman Filter approxima-
tion to the individual SDE likelihood function (12). Failure to
produce Gaussian residuals may indicate that the Extended
Kalman Filter is inadequate, possibly motivating the pursuit of
higher order filters or other estimation methods (24).

Do SDEs represent true fluctuations? Investigation of
system noise may be motivated by the significantly autocor-
related residuals of the ODE model, as demonstrated in
Fig. 4. Such correlations may be due to true variations that can
be modelled by SDEs, or by model misspecification that may
be described but not reproduced by SDEs. If the estimated
system noise in reality originates from model misspecification,
one would presume that simulations with SDEs would pro-
duce large confidence bands, because unlike a model defi-
ciency, system noise will change the model in a different
direction with every simulation. Figure 5 clearly demonstrates
that the SDE model reproduces data with reasonable confi-
dence bands, leading to the conclusion that the autocorrelated
residuals reflect true fluctuations in data, and Fig. 6 confirms
that the simulations look reasonable compared to data.

System noise and inter-occasion variability From a
mixed-effects modelling perspective, the inter-occasion vari-
ability (IOV) and the residual variability are treated as
separate entities. However, in some cases it may be more
realistic to explain inter-occasion variability as a continuous
random varying process, i.e., system noise that is high on
some occasions and low on others. During model develop-
ment, the likelihood ratio test indicated the significant
between-day variability in the steady state day and night
time temperature (Tday and Tnight) for both the ODE and the
SDE model. However, for the ODE model IOV was seen to
give individual predictions that were visibly closer to data,
while this was not the case for SDEs. For SDEs, IOV did not
visibly improve individual predictions, neither for the diag-
nostic plots in Fig. 4, nor when comparing to observations
over time. Since the implemented system noise seemed to
reasonably describe the day-to-day variation of Tday and
Tnight, no explicit IOV was included for these parameters,
which considerably reduced the computational time.

Simulation Properties The simple predictive check given
in Fig. 5 provide a reasonable diagnostic for the model to
capture overall differences between treatment groups, and
thereby predict the overall outcome of new experimental
designs. However, PKPD models are quite often used for
predictions of new individuals possibly in new treatment
regimens. For any drug that may elevate body temperature,
one might be interested in the probability for a new
individual to show three readings (at least 1 h apart) higher

than 38-C (100.4-F) or a single reading higher than 38.3-C
(101-F), which is used in oncology practice as a criteria for
significant fever (27). Model predictions of such probabilities
require accurate simulations of the individual profiles.
Figure 6 demonstrate that simulations based on SDEs vary
continuously, similarly to the observed temperatures, whereas
ODE simulations are seen to jump up and down erratically,
possibly leading to erroneous conclusions.

Benefits of SDEs In summary, the benefits of SDEs were
found to include,

1. The ODE model with uncorrelated residuals could be
falsified by a simple statistical test of the autocorrelation func-
tion (ACF), whereas the SDE model was able to describe the
correlation structure in the residuals. The ACF can be seen as
a general model diagnostic, where an erroneous ACF will fal-
sify the model, but the ACF may also be a more direct quality
mark for model simulations. In particular, simulated data
could be used to assess precision of parameter estimates for
different sampling schedules. It is to be expected that the
results would change if simulations are made with a model that
produce a completely different ACF for the residual errors.

2. The introduction of SDEs allows us to quantify and
propose a mechanism for the fluctuations in temperature, i.e.,
random fluctuations in metabolic rate and in the fraction of
bound receptors that affect the thermoregulatory set-point.

3. The high measurement error estimated in the ODE
model caused simulations to jump up and down erratically
and unrealistically compared to simulations based on SDEs
that realistically resembled the variations seen in data. This
could become important, e.g., if one wish to predict the prob-
ability that treatment of a given individual cause temperature
elevation above a certain level.

4. IIV was reduced by the inclusion of system noise, and
the simple predictive check demonstrated that the SDE model
led to narrower confidence intervals, as is often seen with
more accurate variability models.

5. SDEs allowed us to simplify the model for inter-
occasion variability on day and night time steady state tem-
perature, which significantly improved the model speed.

Other statistical techniques, such as the autoregressive
(AR) process that has previously been incorporated in
NONMEM (28) or the more general autoregressive moving
average (ARMA) process, would also enable quite general
inclusion of correlated residuals. The present approach
favours SDEs, because they incorporate random fluctuations
directly on the different mechanisms or entities of the model,
which gives us an understanding of the origin of the cor-
relation structure found in data.

Model Limitations and potential future applications First
of all, the model includes only the most basic mechanisms of
heat control, and it fail to explain what happens e.g., if the
ambient temperature is changed far from 21-C.

As previously mentioned the empirical effects on priming
have not been implemented to return to normal. This poses
serious problems for the model to simulate longer dosing
intervals, long term treatment, and termination of treatment.
We should note that previous unpublished experiments have
demonstrated qualitatively similar patterns of IL-21 induced
effects on temperature regulation for a series of different
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dosing regiments. However, the empirical parts of the model
must be extended if it is to give a complete understanding of
the effects of IL-21 on thermoregulation.

On the other hand, a mechanistic framework of thermo-
regulation has been put forward. It is hoped that this frame-
work can be used to improve the descriptions and predictions
not only for IL-21, but also for other pharmaceutical and
biological compounds. In particular it is hoped that the mech-
anistic aspects of the thermoregulation model can improve
predictions of the overall outcome of new dosing regimens,
whereas the inclusion of SDEs can provide better predictions
of the variations seen in temperature for individual animals.

CONCLUSION

A new baseline PKPD model for thermoregulation has
been formulated to include potential effects on the circadian
rhythm, metabolism, heat loss, and a thermoregulatory set-
point. The baseline model quantitatively reproduces basic
physiological findings of the circadian regulation of heat
production and heat loss in monkeys. It further qualitatively
reflects some basic effects of thermoregulation following
exercise and changed ambient temperatures, while clearly
not explaining all phenomena in this complicated system.

The proposed mechanisms of IL-21 were incorporated
into the baseline model via effects on the circadian rhythm of
metabolism, and on the thermoregulatory set-point, which
could describe a complex set of IL-21 induced phenomena.
These phenomena include 1) absent effect after first dose, 2)
disappearance of the circadian rhythm, 3) fast and slow effects,
and 4) saturation of effect. Further more, inter-individual
variability in the onset of effect could explain increased
variability after second dose.

System noise was implemented in the metabolism and
the receptor compartment, converting the ODE model into
an SDE model. SDEs provided a more realistic description
of the variability that improved individual simulation/predic-
tive properties, accelerated model speed by simplifying inter-
occasion variability, and finally changed the model into one
that could not be falsified by the autocorrelation function.
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