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to Professor Wieslaw Z. Kroĺıkowski, Laser Physics Centre at the Australian National University
for the hospitality and supervision during my visit there.

Also visitors to DTU have been very helpful to me, and I especially thank Professor Yuri
B. Gaididei, University of Kiev, Russia and Associate Professor Juan F. Archilla, University of
Seville, Spain, together with Professor Stefano Trillo, University of Ferrara and National Institute
for Physics of the Matter for their collaboration.

Also Dr. Sergei F. Mingaleev, Univeristy of Karlsruhe and Dr. Darran Edmundson, ANU
Supercomputer Facility for their help and advice. Associate Professor Niels Christian Albertsen,
Informatics and Mathematical Modelling, DTU, Associate Professor Tom Høholdt and Professor
Morten Brøns, Department of Mathematics, DTU, are acknowledged for their kind organizing skills.

Thanks to my brothers David and Philip for their help with some figures and proofreading.

Dedicated to my grandmother, Ellen Thorsen.

Peter Vingaard Larsen
January 2006



ii

Summary

The notion of nonlocality in the description of physical systems is receiving an increasing amount of
interest, and with good reason. Nonlocality implies that in order to describe the physical properties
of a system at a given point, one cannot simply look at the values of the variables and parameters at
that very point, but it is necessary to use inputs from the rest of the domain in order to understand
the situation correctly. Nonlocality has been used for a broad range of problems, from molecular
systems to liquid crystals. In the present work, two quite different physical systems — a model of
a DNA molecule and one of a nonlinear optical crystal — are studied within a nonlocal context.

In living cells, the immensely important DNA molecule is responsible for protein processing and
cell replication. Both effects require an opening of the double-stranded molecule and to facilitate
this, energy localization is believed to play an important role. It is known that by introducing
inhomogeneities along a model molecular chain — which could simulate the action of enzymes
— localization of vibrational energy can occur and thereby facilitate DNA opening. In this work
we augment a renowned existing model to include both long range dipole-dipole interaction and
geometry. The geometrical features cannot be appreciated without nonlocality. With an intrinsi-
cally homogeneous molecule we are then able to observe energy localization originating only from
geometrical variables through a nonlocal interaction.

Nonlinear optics is a young (the laser was invented not half a century ago), but immensely pro-
gressive fields of physics with applications to ultra-fast data processing and transmissions. Already
today, fiber-optical cables are used in conventional communication systems. All-optical signal pro-
cessing is not yet possible, but is a main research topic as localized quantities can act as carriers of
information. One possible realization of such an entity is the so-called X-wave. Nonlocality can be
used to describe X-waves and like phenomena and particularly to inspire a search for X-waves in
materials with anomalous dispersion as well, which is not previously predicted. Numerical examples
of these are suggested in the present work.

Resumé (In Danish)

Begrebet ikke-lokalitet nyder større og større interesse indenfor modelleringen af fysiske systemer
— og med god grund. At en model er ikke-lokal betyder at for at kunne beskrive dens fysiske
egenskaber i et givet punkt korrekt er det ikke tilstrækkeligt blot at betragte omstændighederne
i netop dette punkt, tværtimod må en større del af modellens domæne tages i betragtning for at
opn̊a en nøjagtig formulering. Denne idé har været anvendt i en lang række problemstillinger, fra
molekylære systemer til flydende krystaller. I nærværende arbejde betragtes to ganske forskellige
fysiske systemer — en model af et DNA-molekyle og en af en ikke-lineær optisk krystal — i en
ikke-lokal sammenhæng.

I levende celler er det umådeligt vigtige DNA-molekyle ansvarlig for fremstilling af proteiner og
celledeling. Begge disse aktiviteter kræver en åbning af molekylets to strenge og for at muliggøre
dette antages det at energilokalisering spiller en væsentlig rolle. Det er velkendt at introducerede
inhomogeniteter p̊a en model af molekyl-kæden — disse kan tænkes at simulere effekten af enzymer
— kan lokalisere vibrationsenergi og dermed muliggøre åbning af DNA. I dette arbejde har vi ud-
videt en anerkendt model til at inkludere b̊ade dipol-dipol-vekselvirkninger og geometriske forhold.
Disse geometrieffekter kan ikke betragtes udenfor en ikke-lokal beskrivelse. Vi er dermed i stand til
at observere energilokalisering i et grundlæggende homogent molekyle, foranlediget af en ikke-lokal
beskrivelse af geometriske effekter.

Ikke-lineær optik er et nyt (det er ikke et halvt århundrede siden laseren blev opfundet), men
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meget aktivt omr̊ade af fysikken, med anvendelser til ultrahurtig databehandling og -transmission.
Allerede i dag anvendes fiberoptiske kabler til konventionelle kommunikationssystemer. Signalbe-
handling udelukkende p̊a basis af optiske processer er endnu ikke en realitet, men er et hovedomr̊ade
for forskningen idet lokaliserede optiske enheder kan benyttes som informationsbærere. En mulig
s̊adan lokaliseret størrelse er en s̊akaldt X-bølge. Ikke-lokalitet kan benyttes til at beskrive X-bølger
og lignende fænomener og specielt give anledning til at søge X-lignende strukturer i materialer med
anormal dispersion, hvilket ikke tidligere er observeret. I nærværende arbejde giver vi numeriske
eksempler p̊a disse.
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Introductory remarks

In the description of complex physical processes, simple linear models are often insufficient. Linear
effects simply do not fully possess the power to provide a satisfactory description of important
processes in optical systems, biological systems, solid state physics, superconducting Josephson
arrays, hydrodynamics, and many other subjects.

The field of nonlinear science includes chaos theory. One (of many) characteristics of such a
system is that its status is critically depending on the its initial conditions. In contrast to linear
systems, where a small change in the initial conditions results in a small change of the outcome, the
behaviour of a chaotic system is unpredictable, even for small initial perturbations. A well-known
metaphor is the butterfly flapping its wings in Brazil, causing a hurricane in the Mexican Gulf.

Based on this description, one may think that nonlinearity is about disorder and unpredictabil-
ity. In fact, the opposite is often the case and a second branch of nonlinear research is devoted to
the study of localized structures. Many linear systems are diffusive and lose information as time,
space or both evolve. But inclusion of nonlinearity may counteract this effect and stable, localized
structures may occur! The first example of such a soliton is the “wave of translation” discovered
by John Scott Russell in 1834. This young Scotsman observed a travelling wave of water of about
a foot in height, undistorted in shape for several miles. Such a behavior is not supported by linear
equations, under which an initial wave pulse will spread out, but nonlinearity can provide a focusing
effect able to balance the linear diffusion.

In this way nonlinearity has proven useful — and necessary — to properly describe various
features of physical systems. Another aspect of physical modeling is a system’s degree of nonlocality.
A local system has the property that the state at one given point can be determined solely on the
value of its variables and parameters at that very point. A nonlocal system, however, requires
information from other points of the system to determine its value at a given point. Just as
nonlinear models in general are more complex than linear, nonlocal models are in essence more
complex than local. But in return they are able to give superior predictions of the system dynamics,
just as nonlinearity better describe many real world phenomena.

In the present work, two different nonlocal physical systems are considered and this thesis is
divided into two parts to reflect that. In Part I, energy localization in biomolecules is discussed
with a nonlocal model. This is a discrete model with only one unknown, depending on one spatial
and one temporal variable. Part II is about localized structures in quadratic optical materials.
This is a continuous 2+1D model with 2 unknown fields and thus its description is somewhat more
complicated than the previous topic.
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Part I

Energy Localization in

Biomolecules





1
Introduction to the

DNA molecule

Figure 1.1: The DNA molecule.

The importance of the DeoxyriboNucleic Acid, better
known by its acronym DNA, has been emphasized over the
last few years by advances in drug design, an increasing in-
terest in genetically modified organisms, and the humane
genome project.

The DNA molecule contains all information about the
structure of the body’s cells and the “building blocks”
to produce proteins. It is basically made up of succeed-
ing units called nucleotides, of which there are only four:
adenosine (A) and guanine (G) (the purines), and cyto-
sine (C) and thymine (T) (the pyrimidines), all with a
common sugar-phosphate group which connects to form
the backbone of the molecular chain.

DNA has a remarkable double-strand helicoidal struc-
ture, discovery by Watson end Crick in 1953 [1] (earning
them a Nobel prize in 1962), and is depicted in Fig. 1.1.
The bases binds to each other, but due to their chemical
structure, the base A can only bind to T, and C only to
G. The former pair through a double hydrogen bond; the
latter by a triple. See Figs. 1.2 and 1.3. There are about 3
billion base pairs in human DNA. With a separating dis-
tance of about 3.4 Å, the approximate length is about a
meter! This is remarkable as it is contained in each micro-
scopic cell core.

Because the bases are hydrophobic and the sugar-
phosphate backbone is hydrophile, the strands coil to form
a characteristic helicoidal shape with the help of dipole-
dipole interaction. This “twisted ladder” shape, with

“steps” made of base pairs and “railings” made of the sugar-phosphate back-bone, is the com-
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mon DNA shape, but it should be noted that others occur as well. The base pair sequence — the
primary structure — is supplemented by the twist of the DNA helix — the secondary structure —
as well as the tertiary structure: The curling and wrinkling of the DNA double strand. It is noted,
that it is becoming increasingly apparent that the base pair sequence alone does not explain its
complex functionality sufficiently, see Refs. [2, 3, 4, 5, 6].

Figure 1.2: The AT base pair.

DNA Denaturation The DNA molecule contains all the
required information on how to make amino acids and
proteins, which are both single-stranded molecules also
made of the bases A, T, C, and G. The body contains
20 different amino acids and these connect to form pro-
teins (typically several hundreds are needed). The amino
acids are characterized by a segment of 3 nucleotide pairs,
called a codon. The term gene denotes a segment of
the DNA chain that corresponds to a protein. This ge-
netic information is copied by the RNA (ribonucleic acid)
molecule (and an enzyme, RNA-polymerase), before it is transported to relevant areas of the cell.
The copying is called transcription and to facilitate this the two base pair strands must open. This
opening process is called denaturation and is the focus of the present work. Denaturation usually
occurs in localized areas called bubbles of about 20 base pairs [7, 8, 9, 10], around which the two
strands are twisted more.

Figure 1.3: The GC base pair.

Denaturation obviously requires the breaking of hy-
drogen bonds, a process that requires energy to take
place. But for the denaturation no chemical energy is
consumed — no ATP molecules are spent. Some energy
is present due to thermal fluctuations, but for the base
pairs to open solely on thermal energy the temperature
has to be much higher than body temperature [9].

Thus it is clear that additional effects must take place.

Modeling DNA Enzymes (which are also proteins) are important for numerous bodily functions
and do beyond any doubt play a role in DNA denaturation. A typical metaphor is an enzyme
the shape of a key, which opens the otherwise locked DNA strands, but this is obviously not a
scientifically satisfying explanation. In common DNA models, the effects of enzymes have been
modeled by introducing inhomogeneities or impurities in the chain structure. There are different
ways to introduce these inhomogeneities. For instance, Refs. [11, 12, 13] have changed the mass at
a given chain site (or multiple chain sites), whereas Refs. [14, 13] have introduced changes in the
coupling between neighboring molecular sites. Both of these are meant to reflect the attachment of
an enzyme to the DNA chain. Also, difference in the coupling between the two strands at various
sites have been considered [15, 16, 17, 18]. This reflects the fact that different base pairs are
bonded by different strengths: the AT base pair connects through 2 hydrogen bonds, whereas the
CG base pair has 3 (see Figs. 1.2 and 1.3). Inhomogeneities originating from different inter-strand
coupling may describe the different number of hydrogen bonds between the two strands. It has to
some extent been experimentally verified that denaturation occurs at AT-rich sections of the DNA
molecule [19, 20, 21, 22, 23], but recent work [24] also suggests that other mechanisms are involved.
Also, conformational defects have been considered [25].
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Furthermore, nonlinear excitations such as solitons, discrete breathers, or intrinsic localized
modes have been drawing increasing attention over recent years and are widely believed to be
responsible for several effects in molecular chains, such as charge and thermal conductivity, energy
transfer and localization, etc. (see reviews in [4, 5, 26, 27, 28, 29], e.g.). In a combined effect,
impurities have been shown to act as filters governing the progression of incoming excitations. An
excitation travelling along an otherwise homogeneous molecular chain may exhibit both reflection,
trapping and transmission from the interaction with the inhomogeneity [11, 12, 13, 14, 15, 25].
Similar effects have been observed through collisions between moving discrete breathers, thus [12,
30, 31, 32] showed how stationary large amplitude discrete breathers, on the average, absorb energy
from colliding breathers of smaller amplitude. Thereby a large amplitude breather may play a role
similar to that of an impurity [11].

In DNA models, an “excitation” is usually a localized increase of vibrational energy, as thermal
fluctuations are always present at physiological temperatures. In this way, trapping of a moving
excitation represents an local increase in energy, which may lead to the onset of denaturation.
In biological environments, thermal fluctuations are always present and have been considered in
Refs. [9, 22, 23, 33, 34, 35, 36, 37, 38, 39, 40, 41], e.g. In these references it was shown that solitons
or discrete breathers can be generated from or exist among random thermal fluctuations.

In initial works on molecular chains, the geometrical features of the biopolymer chain were
essentially neglected, but recently both long-range dipole-dipole interaction [42, 43], helicity [10, 44]
and curvature [14, 45, 46, 47] have been included (as well as combinations of some of these effects
[48, 49, 50, 51, 52]). It has been shown that chain curvature induces effects similar to those of
impurities [45, 46, 48, 47].

The long-range dipole-dipole effects were mostly considered as parallel, which is not the normal
case in biological environment. The DNA chain will temporarily uncurl in relation with opening,
but this is a local and quick behavior; the molecule will wind up in itself again. Some special
uncurled DNA chains may be prepared in the laboratory.

The functionality of DNA — and proteins in general — is not only determined by the base pair
sequence (its primary structure), but also but the shape of the molecule [2, 3]. Therefore, special
attention has been paid to models of these biological macromolecules [12, 14, 15, 26, 27, 33, 34,
35, 40, 53, 54]. A widely used model was presented by Peyrard and Bishop [55] in the context
of statistical mechanics, where the solutions are shown to possess a energy localization, which is
viewed as a precursor for thermal denaturation.

Aim of the present work The aim of the present work is to study the interplay between chain geo-
metry and long-range interaction in an augmented Peyrard-Bishop model. We do this with a model
describing two kinds of geometrical effects — a dipole twist, corresponding to the chain helicity, and
chain curvature. This is done for two different chain geometries and two different expressions for the
dipole-dipole interaction. The first one of these is very simple, but it is still capable of showing how
a new mechanism for energy accumulation in the system — funneling — may be provided by the
geometry of the chain. We study the effect using an attractive long-range interaction, and it turns
out that the particular shape of the bend makes no qualitative difference. As initial conditions we
use discrete breathers as well as randomly distributed fluctuations, simulating the effect of random
thermal fluctuations.

Furthermore, we consider a realistic dipole-dipole long-range interaction with physically reason-
able parameters, and we show how both chain curvature and twist can initiate bubble generation
in the DNA molecule in two different chain configurations.
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2
The augmented Peyrard-

Bishop model for DNA

Biomolecules are often modeled as a lattice with point masses connected with some interaction.
Standard proteins are readily described by a 1D lattice, but the more complex DNA molecule
consists of two molecular strands connected. As we shall see, the renowned Peyrard-Bishop model
[55] elegantly reduces the two-strand system to a single variable.

2.1 Model assumptions and terms

To be able to give a mathematically fairly straight-forward description of the DNA molecule, certain
assumptions are made:

• The chain is assumed to be rigid and inextensible, so that the chain shape is fixed with
constant distance, l, between base pairs. Thus no longitudinal motion is considered.

• We do not distinguish between the two sets of base pairs (i.e., the AT and the GC pairs),
but assume all base pairs and their bonds are identical, with masses M .

• We assume identical coupling between the strands (even though the extra H-bond in GC pair
amounts to a 6 times higher value [14]).

• We assume that the DNA molecule is isolated from external interactions.

The dynamical variables of the model is the motion of the individual base pairs on each of the two
strands. At the nth base pair site, these are denoted Vn and Wn, respectively1, see Fig. 2.1. Note
that the sign convention of Vn and Wn are opposite.

1The notation is somewhat confusing here, as V is used both for a distance and potentials, but the potentials all
have a superscript, e.g. V Morse

n



10 The augmented Peyrard-Bishop model for DNA

Figure 2.1: The model DNA chain. Here, the chain is planar and the transformation from two to one
variable is hinted.

2.1.1 The Hamiltonian terms

The Hamiltonian of this system consists of a number of contributions, which will be described
below.

Kinetic energy, Tn First, the nucleotides possess a kinetic energy giving for each base pair the
contribution Tn:

Tn =
M

2

(
V̇ 2

n + Ẇ 2
n

)
, (2.1)

with the dot denoting differentiation with respect to time. Since we restrict ourselves to exclude
longitudinal motion, the kinetic energy presented in (2.1) only represents motion in the transverse
dimension, between the two strands.

The mass, M , is a constant in our setting.

Stacking energy, V S
n Even without longitudinal motion, the base pairs are connected to their

neighbors; this is what is referred to as the stacking or the coupling potential. At base pair site n,
it is given by

V S
n =

C

2

[
(Vn − Vn−1)

2 + (Wn −Wn−1)
2
]
, (2.2)

where we do not need to distinguish between interaction to the left neighbor and the right one. Note
how the stacking potential acts as a spring between individual nucleotides on separated strands of
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the molecule.

The coupling constant, C, is constant in our setting, and we note that an overline indicates an
unscaled, physical quantity.

Morse potential, V Morse
n Atomic interaction is often described by the Morse potential (2.3), and

this has also been employed in DNA dynamics as early as 1984 [56, 57]. It reads

V Morse
n = D

[
exp

{
− α√

2
(Wn − Vn)

}
− 1

]2

, (2.3)

0 5
0

1

2

u
n
 / α

V
nM

or
se

 / 
D

Figure 2.2: The Morse potential, Eq. (2.3).

where D and α are depth and width parameters, respec-
tively. The Morse potential thus gives a recognized de-
scription of diatomic interaction, as it both models the
hydrogen bond attraction for larger particle separation
and a strong repulsion when the particles get closer (when
this is the case, Wn < 0 and Vn > 0 (see Fig. 2.1), so the
exponential term grows fast). The Morse potential is de-
picted in Fig. 2.2.

These features of the potential are important, but one
obtains similar a behavior using e.g., the Lennard-Jones
potential (2.4) to model the inter-strand on-site dynam-
ics.

V L−J
n = A

[(
B

Wn − Vn

)12

−
(

B

Wn − Vn

)6
]
, (2.4)

The use of a nonlinear potential is crucial for the effects investigated here. The plateau of the
Morse and Lennard-Jones potentials allows for the breaking of the hydrogen bonds in the molecule
to be modeled. This is not the case for the harmonic oscillator.

These three terms, the kinetic energy, the stacking potential and the Morse potential represent
the celebrated Peyrard-Bishop model of DNA dynamics [55].

We, however, add another feature to the model:

Long-range interaction, V LRI
n Last, but certainly not the least, we have the long-range interaction

(LRI) — which we also refer to as the nonlocality — described in Eqn. (2.5)

V LRI
nm =

1

2

∑

m6=n

Jnm (Wn − Vn) (Wm − Vm) (2.5)

This long-range term models the interaction between the dipole moment generated at the nth site
and the dipole generated at the mth site. This dipole-dipole interaction is the crux of the present
study. It represents the nonlocality of the model, because its contribution to the motion at site n
is affected by the motion at all sites in the model chain. Notice that the term n = m is excluded
from the summation; this is simply because a dipole does not interfere with itself. The prefactor 1

2
makes sure that the interaction between the dipoles at site n and m is only counted once.

The strength of a dipole is governed by the distance between charges, which is included through
the (Wn,m − Vn,m) factors. The Jnm coefficient covers a dependence on the distance between the
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nth and the mth charge. Basic electrostatics (e.g., [58]) tells us that this is an inverse cubic
dependence.

Because of our assumption of a rigid chain the LRI is the only way the geometry of the model
molecule becomes important! This aspect will be elaborated further in Sec. 3.2. The converse —
that the LRI only becomes important through the inclusion of geometry — is not true. Nevertheless,
due to the inverse cubic distance dependence of the LRI the dipole-dipole interaction is very small
except for sites very close to each other. A curved model chain implies that the distance between
given sites of the model chain can decrease, which in turns greatly amplifies the LRI strength. This
effect is not restricted to rigid chains, but is also found in semi-flexible polymers [45].

In this work, two different expressions for the dipole-dipole interaction is considered. First,
we consider a very crude approximation, which will give us some insight on a simplified chain
geometry. Then the model is refined, both by a physically more reasonable geometry as well as a
proper expression for the dipole moments.

To summarize, we have the Hamiltonian (2.6) for an infinite chain of our augmented Peyrard-
Bishop (PB) model:

H =
∑

n

Hn =
∑

n

{
Tn + V S

n + VMorse
n + V LRI

n

}
, (2.6)

with the contributions defined in Eqs. (2.1)–(2.5) and with the Hamiltonian density, Hn, which
gives the energy content at a given site.

Refining the model

The Peyrard-Bishop Hamiltonian (2.6) is not easy to attack as it is presented so far. Not only
does it contain 2 independent variables, but they are also coupled. It turns out that the model is
significantly simplified by the following change of variables (also done by Peyrard and Bishop [55]):

Sn =
Wn + Vn√

2
and Un =

Wn − Vn√
2

. (2.7)

With this, one immediately sees that the Morse potential only appears in the equation for Un (see
[59, 60] for details). The new variables Sn and Un describe the Hamiltonian in two uncoupled
equations, in-phase and out-of-phase motions, respectively. In relation to DNA denaturation, the
in-phase motions are not interesting, as these do not change the distance between the DNA strands.
Therefore, we can restrict ourselves to consider only the Un variable, which quantifies the deviation
from the equilibrium distance.

A negative Un indicates that the nucleotide bases are closer to each other than normally and
vice versa for a positive Un, see Fig. 2.1. We have thus reduced the original 2D problem to a 1D
one.

Our new Hamiltonian density becomes for an infinite chain:

Hn =
{M

2
U̇2

n +
C

2
(Un − Un−1)

2 +D
(
e−αUn − 1

)2
+

1

2

∑

m6=n

JnmUnUm

}
, (2.8)

Scalings To obtain a dimensionless Hamiltonian, we introduce the scalings

un = αUn, t = t/t0, H = H/D,
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with the time constant, t0, given by

t0 =

√
M

Dα2

and the dimensionless coupling and dipole-dipole parameters

C =
C

Dα2
and Jnm =

2J0

l3Dα2
Jnm,

where the dipole-dipole interaction between two charges of q is J 0 = q2/4πε0 [61] and where we
define the dimensionless strength of the dipole-dipole interaction as

J0 =
2J0

l3Dα2
. (2.9)

Furthermore, we scale the geometric length by the distance between successive base pairs, l, as
rn = rn/l, which means that we have

|rn+1 − rn| = 1.

Note the scaling factor 2 in front of the LRI terms. This is because the change of variables implies

Hdip =

N∑

n=−N

∑

m

Jnm

√
2un

√
2um = 2

N∑

n=−N

∑

m

Jnmunum

and we obtain by simple insertion the dimensionless Hamiltonian

H =
∑

n





1

2

(
dun

dt

)2

+
C

2
(un − un−1)

2 +
(
e−un − 1

)2
+

1

2

∑

m6=n

Jnmunum



. (2.10)

The equations of motion The non-dimensional Hamiltonian for the infinitely long chain is noted
in Eq. (2.10) and it yields the derivations of motion

ün = C (un−1 + un+1 − 2un) + 2e−un
(
e−un − 1

)
+
∑

m6=n

Jnmum, (2.11)

where the double dots denote double differentiation with respect to time. However, when consid-
ering a chain of finite length, n ∈ [−N,N ], which is what we can model numerically, we see that
at the ends (n = −N and n = N), there is no neighboring base pair for the outermost pairs to
interact with, and thus the Hamiltonian in these cases is special. In this case we have used free
boundary conditions

u−N−1 = u−N ,

uN+1 = uN .

The derivation of the equations of motions is mostly trivial and can be found in Appendix A. Thus,
we are considering a chain with the total number of sites NT = 2N + 1.

These equations of motion are an augmented version of the general Klein-Gordon equations,
which are equations of the form

ün − (un+1 + un−1 − 2un) + f(un) = 0.
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Klein-Gordon models possess discrete breather solutions. A discrete breather is a localized exci-
tation which has a shape that changes periodically in time as well as it moves in space. Such a
breather can be thought of as special, more complicated, type of soliton. A “classical” soliton is a
more simple entity in the sense that it travels “only” with a conserved shape, whereas the breather
travels with a periodically varying shape. The concepts are used rather loosely in this thesis, and
also the terms “excitation” and “pulse” refer to the solution of the equations of motion.

2.1.2 Parameter values

The determination of physically reasonable parameter values for such a delicate structure as DNA
is far from straight-forward. Even though the general structure has been known for more than
half a century [1], dynamical experiments are difficult and the precise values of the parameters

are still investigated. We use the parameter values D = 0.04 eV (= 0.64 · 10−20 J), α = 4.45 Å
−1

(= 4.45·1010 m−1), M = 300 a.m.u. (= 5.00·10−25 kg) and the coupling parameter C = 0.06 eV/Å
2

(= 0.96 J/m2), which have been widely used in DNA-like models [9, 42, 52, 59].The dimensionless
stacking parameter then becomes C = 0.075, which we use throughout the paper. We note that

C-values between 0.003 eV/Å
2

[55] and 31.7 eV/Å
2

[62] have been reported in the literature.

The distance between adjacent base pairs is l = 3.4Å and the inter-strand distance is about
20Å. This means that un = 0 corresponds to a separation of 20Å. The resulting time constant,
t0 = 0.20 ps, is in the picosecond range, as seen in Table 2.1.

Symbol Parameter Physical value

C stacking 0.96 J/m2

D Morse depth 0.64 × 10−20 J
α inverse Morse width 4.45 × 1010 m−1

M base pair mass 5.00 × 10−25 kg
q dipole charge 1.18 × 10−19 C
J0 interaction strength 0.90 × 10−28 Jm
l lattice constant 3.4 × 10−10 m
t0 time constant 0.20 × 10−12 s
ε0 dielectric constant 8.854 × 10−12 F/m

a.m.u. atomic mass unit 1.66 × 10−27 kg
Debye dipole charge 3.34 × 10−30 Cm

Table 2.1: Physical parameters for the DNA molecule.

The dipole charge The dipole moment for a given DNA base pair is given through the strength
and separation of the dipole moment:

q =
dDip

aDip
.

The value of dDip is the most controversial one of the DNA parameters and has been explored in e.g.
[42, 59, 63]. Values ranging from 2.5 to 7.2 Debye appear in the literature, and in our simulations
we use the value dDip = 7.05 Debye, as this will result in the convenient value J0 = 0.5 (2.12).

The dipole length, aDip, is easier to determine and is about 2 Å. With 1 Debye = 3.34×10−30Cm,
this gives a base pair charge of about q = 1.18 × 10−19 C. Note that both dDip and aDip are
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approximate values taking into account the different hydrogen bonds within the different base
pairs.

One should be careful to distinguish between the distance between base pairs — the variable
un — and the dipole length, aDip. First, the separation between the DNA polypeptide strands is
about 20 Å [2, 35], but the dipole length is only one tenth of that. This indicates that the charge
distribution which generates the dipoles originates from the bases between the DNA strands —
which naturally are closer to one another than the back bone strands themselves.

Second, this charge is a constant quantity, whereas the dipole moment (and the dipole length)
varies through the changes in un. However, this has been taken into account through the distance
dependence in the LRI term of Eq. (2.8) and the variation of un. The used values are summarized
in Table 2.1.

The calculation is

J0 =
2 q2

4πε0

l3Dα2
=

2
(1.18×10−19C)

2

4π8.854×10−12F/m

(3.4 × 10−10m)3 · 0.64 × 10−20J · (4.45 × 1010m−1)2
= 0.5. (2.12)
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Figure 3.1: Wedge chain with opening angle, θ.

As briefly mentioned earlier, the geometry
of the model molecule only comes into play
through the long-range interactions. To intro-
duce this effect, we initially consider a simple
chain geometry with a very simple model ex-
pression for the dipole-dipole interaction. The
work presented in this and the following chap-
ter largely corresponds to Ref. [64].

Chain geometry We consider the wedge
shaped chain as shown in Fig. 3.1. Because of
the fixed distance between the base pair sites,
the position in the xy-plane of the molecules is
given by

rn = (xn, yn) = (n sin
θ

2
, |n| cos θ

2
), (3.1)

where rn is the position vector to site n, and where θ the wedge angle. The wedge angle is fixed in
this investigation, but models with a dynamically varying angles have been considered [45].

Long-range interaction The long-range interaction (LRI) considered here is given by the coefficient

Jnm = −J0

|rn−rm|3 , (3.2)

where J0 is given by (2.12). Here, only the distance between base pairs is important, and we thus
consider parallel “dipoles”, perpendicular to the wedge plane. It springs to mind here is that the
negative sign of Jnm indicates that the interaction between all dipoles is attractive, which is the
opposite of how parallel electric dipoles react. However, as we shall see later, it is the attractive
interaction that is crucial for the behavior of the molecule, and we shall use this model in a
preliminary investigation of DNA dynamics.
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We choose an inversely cubic distance dependence in this investigation. In fact, earlier studies
of the long-range effect in curved molecular chains show that the exact form of the additional
dispersion is not crucial as long as it decreases rapidly with distance [54, 51].

3.1 An interesting approximation

In the case of a straight chain with parallel dipoles, an analytical approximation can be used for
the dipole-dipole interaction term and by considering the continuum limit, we are able to give an
integrable version of the equation of motion. The dipole-dipole interaction may be approximated
by (see Sec. B for details)

∑

m6=n

Jnmum ≈ J0

l3

(
2ζ(3) +

3

2
∂2

n

)
un, (3.3)

where we find the Riemann ζ-function,

ζ(s) =
∞∑

k=1

1

ks
.

The approximation is only valid for an almost straight chain and hence not very relevant when
investigating geometrical effect, but what is interesting is that the solution to the equations of
motion is of the form (consult Appendix B for details and introduction of variables)

2iωφ(1)
τ1 +

(
α− v2

)
φ

(1)

ξ2
1

+

(
30

α
− 7

)
|φ(1)|2φ(1) = 0,

which is the nonlinear Schrödinger equation (NLS). This is remarkable, as the NLS is well-known
in nonlinear optics, and we shall meet it in Part II of this Thesis. Thus, the NLS is truly a versatile
equation.

We can solve the NLS, and the result is presented in Eq. (3.4) with t = 0 and n∗ ≡ n − ν for
simplicity (Appendix B)

un(t = 0) = 2Asech (Bn∗) cos [(γ + q)n∗] +
6

α
A2sech2 (Bn∗) − 2

α
A2sech2 (Bn∗) cos [2 (γ + q)n∗] ,

(3.4)
with constants (consult Appendix B for details)

γ =
ωv

(α− v2)

B2 = γ2 − 2
ωΛ

(α− v2)

A2 =
2
(
α− v2

)
B2

30
β − 7

As mentioned, this expression is only valid for straight chains, and even then we notice some
erroneous effects from the conversion between a discrete and continuous formulation. But even if it
is not feasible as use when considering geometry, we have successfully used it to test the developed
numerical code.
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3.2 Long-range interaction

Let us turn to the effect of the long-range interactions (3.2) on the wedge shaped chain. For a
straight chain, θ = 180◦, the LRI terms are identical at all sites, n, and have the shape plotted in
Fig. 3.2(a). So at every site, n, we see that there is no dipole-dipole interaction at site n — a dipole
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 / 
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(a) Profile of the LRI.
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(b) Contours for all n and m.

Figure 3.2: Long-range interaction at site n for a straight chain, θ = 180◦. In (b), logarithmically spaced
contours from 5 × 10−4 to 1 are used. Only in the case θ = 180◦ all the profiles at different sites are
identical.

cannot interact with itself. The contribution from sites n−1 and n+1, however, is large and equal
to J0, consistent with the denominator in (3.2) is 1, the distance between neighboring sites. Due
to the inverse cubic distance dependence the contribution from sites further from n quickly wears
off for this straight chain.

Fig. 3.2(b) shows a contour plot of the same situation, with 25 contours logarithmically spaced
(from 0.0005 to 1) to catch some of the rapidly decaying tails. The way to interpret this contour
plot is as follows: Choose a site number, n, on the abscissa. Then proceed m sites upwards to find
the interaction between sites n and m.

The appearance of this kind of plot is modified with the introduction of the wedge. Close to
the center region — the wedge tip — the distance between sites on different legs of the wedge is
decreased with decreasing wedge angle, θ. Because of the relation (3.2), this means that the dipole-
dipole interaction between these sites is increased. The effect is shown for θ = 35◦ in Fig. 3.3. In
the top row, we consider the site m = −3, slightly left of the wedge tip. From the figure on the left
it is clear that the distance between sites n = 2 and m = −3 is smaller than the distance between
sites n = 0 and m = −3. For m = −3, n = 2 is 5 sites away (m+ 5) corresponding to the “hump”
on the right part of the figure, Fig. 3.3(a). In the bottom row, we have moved yet another site
closer to the bend and the effect is even more pronounced. The situation on the right leg of the
wedge, m > 0, is completely analogous.

Fig. 3.4 shows contour plots similar to Fig. 3.2 for different wedge angles. We see how the
long-range interaction constitute the nonlocality of the system. For a given chain site close to the
bend, the notion of nonlocality implies that in order to determine the dynamics at site at given site,
we need to include more terms than just the nearest neighbor. By convention, the term “long-range
interaction” is traditionally used in molecular modeling instead of “nonlocality”.
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θ = 35◦. Note how the effect from sites other than the neighbor becomes important in the vicinity of the
wedge tip when bending is present.

3.3 Breather dynamics

The dynamics of nonlinear excitations has been investigated before in various inhomogeneous mod-
els (see e.g. [9, 11, 12, 13, 14, 15, 22, 23, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]).

A 4th order Runge–Kutta solver is used to simulate Eqs. (2.11) on a chain with

−110 −105 −100 −95 −90
0

0.5

Site, n

u n

Figure 3.5: Initial condition (3.5), for
NT = 301, v = 0.2, k = 0.2, A = 0.5 and
ν = −100. The width is chosen to be com-
parable with that of the LRI in Fig. 3.2(a).

NT = 301 sites. A stepsize in time of 0.005 ensures conser-
vation of the Hamiltonian to a relative accuracy of 10−10

throughout. We use a Gaussian initial condition

un(t) = A exp
[
−k
(
(n− ν) − vt

)2]
, (3.5)

where site ν denotes the initial position of the center of
mass as the initial excitation, v is the initial velocity of
the pulse and k its width and A its amplitude, see Fig. 3.5.

In the following we use the velocity v = 0.2, the width
k = 0.2 and the amplitude A = 0.5, because they turn
out to provide the right balance between nonlinearity and
dispersion to allow the initial condition to evolve rapidly
into a discrete moving breather. Insertion of Eq. (3.5)
with these parameter values into the total Hamiltonian
gives H = 0.13. After some initial radiation, the moving
breather turns out to possess the soliton energy, Hs ≈ 0.08.
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Figure 3.4: Contour plots of the long-range interaction for a wedge chain for different wedge angles, θ.
Logarithmically spaced contours from 5 × 10−4 to 1.

As it turns out, our system supports discrete breathers, which are localized wave packets with
oscillatory amplitude. This means that the amplitude is inconvenient to monitor and we therefore
the positive Hamiltonian density

Hn =
1

2

(
dun

dt

)2

+
C

2
(un − un−1)

2 +
(
e−un − 1

)2
+

1

2

∑

m6=n

Jnmunum (3.6)

which measures the energy content at a given site, n. This way we can monitor where the energetic
parts of the molecule is. We perform simulations where we launch a Gaussian pulse at site ν = −100
with a velocity towards the wedge center.

Consider for example Fig. 3.6, in which contour plots for the evolution of the Hamiltonian
density is shown for two different wedge angles. On the abscissa is marked the chain sites (the
outer parts are left out as nothing extraordinary is happening there), while the ordinate shows the
evolution in time. Brightly colored lines indicate a high value. A weak bend with θ = 140◦ has no
significant effect on the pulse [Fig. 3.6(a)] and only a slight decrease of the velocity after passage
of the center region is observed. In contrast for a stronger bend, θ = 95◦, a considerable part of
the excitation is trapped at the tip of the wedge at n = 0.

Very strong bends (smaller wedge angles) turn out to result in reflection of the incident breathers.
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Figure 3.6: Contour plots for the evolution of the Hamiltonian density, Hn, for NT = 301, C = 0.075,
J0 = 0.5, v = 0.2, k = 0.2, A = 0.5 and ν = −100, yielding H = 0.13. 25 equidistant contours
H = 0.005 . . . 0.05. (a) θ = 140◦ (transmission), (b) θ = 95◦ (trapping).

Such scattering properties and their dependence on the strength of the bend-induced impurity, are
similar to those of a linear impurity [65] and those of large amplitude breathers acting as an effec-
tive impurity [30, 31]. We stress that the specific shape of the bend does not affect the scattering
properties of the bent chain. Thus similar properties were observed in a parabolic chain [66].
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Figure 3.7: Relative central energy, Hc/Hs, for the simulations in Fig. 3.6. (a) θ = 140◦ (transmission),
(b) θ = 95◦ (trapping).

To analyze the processes in detail, we calculate the central energy, Hc, in 21 sites around n = 0
(21 being a typical span of the denaturation bubble of the DNA molecule [10, 9])

Hc =
10∑

n=−10

Hn, (3.7)

where Hn is from (3.6). The results are shown in Fig. 3.7. Here, time is on the abscissa and the
ordinate shows the fraction of the energy in the central region, relative to the soliton energy, Hs.
The plots corresponds to summing the Hamiltonian density along a 21 site wide strip in the middle
of the plots in Fig. 3.6. In the transmission case with a small bend, Fig. 3.7(a), nearly all the
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energy leaves the region. In the trapping case with a stronger bend, Fig. 3.7(b), the trapped energy
is stabilized at about Hc/Hs ≈ 64%. Thus only part of the energy is trapped.

What fraction of energy that remains trapped at the wedge tip depends on the wedge angle,
as is clear from Figs. 3.6 and 3.7. To be more precise, we perform simulations for different θ and
record the central energy after 800 time units as a function of the wedge angle. The result is shown
in Fig. 3.8. We see that for smaller and larger θ-values, the energy is lost through reflection and
transmission, respectively. Efficient trapping is found for intermediate wedge angles, 90◦ < θ < 107◦

and the optimal wedge angle for trapping is seen to be around θ = 95◦.
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Figure 3.8: Relative central energy, Hc/Hs, at t = 800 versus wedge angle, θ. System parameters as in
Fig. 3.6.

From Fig. 3.8 it is apparent how the wedge angle governs the ability of the model chain to trap
an incoming excitation. We stress that this is an effect in an intrinsically homogeneous chain and
that it is exclusively governed by the nonlocality.

3.3.1 Multiple breather dynamics

If the ability of a chain bend to trap energy is to be more than a curiosity, then the effect needs
to be more pronounced that merely trapping a single incoming breather. To this end, we initially
investigate the chain’s ability to trap multiple incoming, shown in Fig. 3.9. A first Gaussian pulse
(I) is launched at site ν = −100 at t = 0. At t = 800 both the displacements and the velocities are
set to zero, un(800) = 0 and u̇n(800) = 0, outside the bent region, |n| > 15, to remove radiation.
This “cleaned” chain is now used as an initial condition for a new simulation, in which we add a
second identical Gaussian pulse (II) launched at site ν = −87. Like in other systems the interaction
between two breathers, or a breather and an impurity, depends strongly on the relative phase. We
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choose ν = −87 for the launching of this second pulse to obtain maximal trapping. Using the same
procedure, a third identical Gaussian pulse (III) is launched at t = 1600, now at ν = −89. Note
that the absolute value of the central energy is shown here, as the relative value only made sense
for a single breather, without the elimination of radiation.

As seen in Fig. 3.9 we essentially succeed in trapping 3 breathers at the tip of the wedge
chain. Some energy transmission is observed when breathers I and II are trapped, while some
reflection occurs at the trapping of breather III. By successively handling the initial conditions as
described above, we avoid radiation which, when reflected at the boundaries, distorts the numerical
simulations.
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Figure 3.9: Trapping of breathers I, II and III at n = 0. Contour plot (a) with 25 equidistant lines
H = 0.005 . . . 0.05 and central energy, Hc, vs time, t. NT = 301, J0 = 0.5, v = 0.2, k = 0.2, A = 0.5. I :
ν = −100 at t = 0, II : ν = −87 at t = 800, III : ν = −89 at t = 1600.

The corresponding energy evolution for the central site energy is shown in Fig. 3.9(b). The
ability of the system to trap energy at the bending region is evident, even though more radiation is
observed as the number of trapped breathers increases. As noted also in connection with Fig. 3.7(b),
the first incident breather, I, loses about 36% of the total energy before trapping. For the following
breathers, II and III, both of the corresponding losses amount to 50%. Thus the possibility for
trapping more energy at the chain bend by additional incoming breathers may seem exhausted due
to an effective saturation.



4
Funneling of thermal energy

The trapping of breathers observed in the previous Chapter suggests that the bend may funnel
energy from the surrounding region. In order to study this in detail, we now explore the dynamics of
the chain in the case of random initial conditions, as these are meant to model thermal fluctuations.

4.1 Thermal initial conditions

The energy trapping effect demonstrated in the previous Section 3.3 is reassuring, but one may
argue that the initial Gaussian pulse is not a very biological effect. We therefore also consider
random thermal fluctuations as initial condition, which is the topic of this Section.

The physical DNA molecule exists in an environment filled with thermal fluctuations — at body
temperature — so it is a very relevant investigation to make. Thermal fluctuations have previously
been considered in nonlinear lattices and random initial disturbances have been shown to be able to
evolve into nonlinear localized excitations by modulational instabilities. Thus created, the solitons
can interact with each other or with any inhomogeneity present [9, 33, 34, 35, 38, 39, 40]. Relevant
for our context is of course the interaction with the effective inhomogeneity caused by the bend.
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Figure 4.1: Random initial conditions.

In [33, 34, 35], the number of generated solitons were found
to depend on the temperature of the system, T , to the
power 1/3, and that a significant number of solitons were
generated at physiological temperatures. Thus, the “soli-
tonic” approach is by no means irrelevant.

We use the same method of calculating the tempera-
ture as in [34]:

1

2
M
〈
U̇2

n

〉
= kBT, (4.1)

where Un is the physical unscaled variable and 〈U̇2
n〉 the

variance of its time derivative. In this approach we assume
for simplicity a mean of 0 on U̇n for all n sites, as well as
zero amplitude, Un = 0 for all n. This means that we
assume all the initial thermal energy is kinetic, and the initial model chain is a perfect DNA
“ladder” with equal (equilibrium) distance but with random velocities, both negative (moving the
base pairs closer) and positive (moving them apart). However, the system quickly transfers some
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of the kinetic energy to potential (so that we also have displacements, un, different from zero as
well as velocities, u̇n), a more physiologically reasonable situation.

Since we use the scalings (repeated from Sec. 2.1.1)

t =

√
Dα2

M
t̄ and un =

1

α
Un,

we find

T =
M

2kB

〈
U̇2

n

〉
=

M

2kB

〈(
1

α

√
Dα2

M

dun

dt̄

)2〉
=

D

2kB

〈
u̇2

n

〉
=

D

2kB
σ2

u̇n
.

With kB = 1.3807 × 10−23 J/K and D = 0.04eV = 0.64 × 10−20J, we find the standard deviation
corresponding to physiological temperature (310K):

〈
u̇2

n

〉
=

2 × 310K × 1.3807 × 10−23J/K

0.64 × 10−20J
= 1.34, (4.2)

and the standard deviation is the square root of (4.2): σu̇n = 1.156.

4.2 Analytical expectations

Before we perform simulations on the wedge chain with thermal initial conditions, we pause to
investigate what we can expect from analytical considerations.

4.2.1 The blow up effect

A way of assessing the dynamical behavior of the model is found by considering a chain with
only two sites: the dimer case. We choose for example the center sites n = 0 and n = 1.
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Figure 4.2: Modified Morse potential for the
dimer case. For displacements larger than a
given threshold, an infinite potential well oc-
curs.

Assuming that both displacements are equal, u0 =
u1 ≡ u, the coupling term in the Hamiltonian,
Eq. (2.10), vanishes and we are left with

H = u̇2 + 2
(
e−u − 1

)2 − Ju2, (4.3)

with J = |J01| = |J10|. The effective potential

V (u) = 2
(
e−u − 1

)2 − Ju2 (4.4)

is shown as the dashed red curve in Fig. 4.2. It is thus
an infinite potential well, resulting in infinite growth
of the oscillation amplitude if some threshold value of
the displacement is exceeded. Equation (4.3) may now
be integrated as

t− t̂ =

∫ u

û

dw√
H − 2 (e−w − 1)2 + Jw2

(4.5)

where u = û at the time t = t̂. Choosing t̂ so large that w � 1, the power term in the square root
of Eq. (4.5) dominates (as seen in Fig. 4.2). Therefore, Eq. (4.5) may be approximated as

t− t̂ ≈
∫ u

û

dw√
Jw2

,
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from which we find u ∝ exp
[√

J(t− t̂)
]
, in accordance with the exponential behavior found nu-

merically in Fig. 4.4, page 28.

Thus the existence of an exponential increase of the oscillation amplitude — a blow up — is
predicted in the dimer case, when some threshold value of u is exceeded.

We stress that if a harmonic potential is used as the inter-strand potential instead of the Morse
potential — so that the resulting effective dimer potential is in this case V Eff

harmonic(u) = (2 − J)u2

— the effective potential (4.4) does not give a potential well for the physical relevant value of J .

We also see that a larger value of J acts to decrease the threshold for the onset of the potential
well in Fig. 4.2; this was confirmed in some simulations (not mentioned further here).

4.2.2 Effective potential

The potential well described in Sec. 4.2.1 may also be found by considering the long-range interac-
tion as follows:

∑

n

∑

m6=n

Jnmunum = −1

2

∑

n

∑

m6=n

Jnm (un − um)2 +
∑

n

∑

m6=n

Jnmu
2
n. (4.6)

This is easily verified, remembering
∑

n

∑
m Jnmu

2
n =

∑
n

∑
m Jnmu

2
m. In (4.6) the first summations

on the right hand side correspond to an inhomogeneous dispersion energy (seen in Fig. 3.3), while
the second summation corresponds to an effective on-site potential [51]. This quantifies the effect
of the LRI at a given site and we introduce the notation V Eff

n ≡∑m6=n Jnm. With negative values

of Jnm, the potential V Eff
n has the double-well profile, shown in Fig. 4.3. Changing the wedge angle

has the effect of making the wells deeper, which is shown both in Fig. 4.3(a) and (b). Fig. 4.3(a) are
cuts of Fig. 4.3(b) at wedge angles θ = 120◦, 95◦ and 80◦, except that the mesh plot is subtracted
the “ground state” potential V∞, i.e., the potential far from the bend. From Fig. 4.3(a), this value
is about -1.2.
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Figure 4.3: Effective “ground state” potential, V Eff
n ≡ P

m6=n
Jnm, versus site number, n, for different

wedge angles, θ.

The mesh plot in Fig. 4.3(b) shows — for a given wedge angle between 60◦ and 180◦ — the
potential arising from the long-range interactions at given sites. For example, by choosing n = −1
we see that for a straight chain, θ = 180◦, the dipole-dipole interaction is the same at all sites and
we see how a stronger bend (smaller wedge angle) increases the depth of the potential well at this
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site, corresponding to (4.4). At the center site n = 0 we always have the same potential because in
the wedge chain, neither the distance from site n = 0 to all other sites, nor the dipole orientation,
changes with the wedge angle, θ.

We have already seen how this geometrically generated “impurity”, or effective on-site potential,
introduced by the bend can trap or transmit incoming excitations (Sec. 3.3). In the following we
shall see its effect on random initial conditions.

4.3 Fluctuations on the wedge chain

With the random initial conditions generating solitons, we find that collision of the nonlinear
excitations may result in exponential growth of the oscillation amplitude at the collision site as
predicted in Secs. 4.2.1 and 4.2.2. Fig. 4.4 depicts the deviation from the equilibrium base pair
distance, un, for a given site at physiological temperature (T ≈ 310K, solid line). We see that
the amplitude increases exponentially as expected — also shown is a different initial condition
corresponding to a lower temperature (T ≈ 7K, dashed line) where the exponential shape is a bit
more clear. This unbounded growth of amplitude implies energy localization at the site.
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Figure 4.4: Displacement at site n = −1, u−1, versus
time on bent chain with NT = 99 and θ = 45◦ for ran-
dom initial velocities generated with normal distribution:
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= 1.156, or T ≈ 310K, (solid) and
σu̇n

= 0.17, or T ≈ 7K, (dashed). Initial displacements:
un = 0 for all n.

For this very realization of the initial condi-
tion, the depicted site n = −1, i.e., just to the
left of the center, for a bending angle of 45◦. But
it is emphasized that the behavior can be found
at all chain sites and for all bending angles!

In this case of always attractive dipole-dipole
interaction, a blow up at one site will spread,
causing blow up at neighboring sites, which in
turn cause blow up at further sites and so on.

It is noted that this blow up effect is also
found for the Gaussian initial conditions consid-
ered in Sec. 3.3. They are predominantly found
for small wedge angles, where the dipole-dipole
interaction is most strongly augmented due to
the bending. When considering collision be-
tween breathers, the blow ups will occur when
the added oscillations exceed the threshold men-
tioned in Sec. 4.2.1, but a thorough investigation
is not performed here.

4.3.1 Statistical approach

We conduct simulations for 500 different realizations with zero displacement, un = 0, and velocities
normally distributed with zero mean, <u̇n>= 0 and standard deviation σu̇n = 1.156 are used as
determined in Sec. 4.1, corresponding to a temperature of about 37◦C. We note where the initial
blow up occurs and present these records in the following histogram plots.

Our results for a straight chain of length Nt = 99 are depicted in Fig. 4.5(a) showing a histogram
of the occurrences of sites with a displacement above the threshold value un = 10, corresponding
to the value for DNA opening used in [67]. The simulations were discontinued when this threshold
value was exceeded. These threshold transgressions, which in most cases occur after a few time
units, are seen to be uniformly distributed along the chain.
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Figure 4.5: Occurrence of amplitudes above threshold, un > 10, versus site, n, for NT = 99 until max.
t = 10, 000. Initial displacements: un = 0 for all n. 500 random initial velocities with normal distribution:
<u̇n>= 0 and σu̇n

= 1.156, T ≈ 310K.

On a wedge chain with bending angle θ = 45◦, identical initial conditions give the remarkably
different result shown in Fig. 4.5(b). We see that 70 (out of 500) threshold transgressions occur at
the sites n = −1 and n = 1, between which the long–range interaction is most strongly increased
due to the bending. Thus energy localization, implied by unbounded growth of amplitude, is
observed in the vicinity of the tip of the wedge which therefore acts as an energy funnel.
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5
A proper dipole-

dipole interaction

So far we have been considering a not very realistic expression for the dipole-dipole long-range
interaction, namely all parallel dipoles, perpendicular to the chain plane and with attracting in-
teraction. This is of course a rather crude approximation, as parallel dipoles mutually repel each
other, but it was chosen as a first try because the erroneously attracting interaction quickly wears
off with distance. Attraction between dipoles is by no means impossible, but to give a proper
description of it, we need to introduce the twist of the chain. The work presented in this chapter
largely corresponds to what is published in [68].

First, however, a few words about dipole-dipole interaction, which is far from trivial. The
potential interaction energy between 2 electric dipoles of elementary charge is given by

V (r) =
1

4πε0

dn · dm − 3 (dn · rnm) (dm · rnm)

|rn − rm|3 , (5.1)

where rn and dn are the position vector and the unit dipole vector at the nth site, respectively,
and rnm denotes the unit vector from the nth to the mth site

rnm =
rn − rm

|rn − rm| .

This is a standard textbook result, see e.g. [58]. Thus the orientation of the dipoles governs their
mutual interaction, and a few possible configurations and their respective interaction are given in
Table 5.1. Note — as indicated in the Table — that even when considering only parallel dipoles,

Dipole configuration Interaction strength Interaction

⇒ ⇒ −2 Attractive
⇒ ⇐ 4 Repulsive
⇑ ⇑ 1 Repulsive
⇑ ⇓ −1 Attractive

Table 5.1: Some possible orientations for 2 dipoles and their interaction energy. The center column
indicates the relative strength and nature of the interaction.
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the interaction can change from attraction to repulsion. For parallel dipoles, the general expression
(5.1) changes to

V (r) =
1

4πε0
[1 − 3 (dn · rnm) (dm · rnm)] . (5.2)

With r being the unit vector, both the scalar products become cos θ and the potential a function
of θ

V (θ) =
1

4πε0

(
1 − 3 cos2 θ

)
=

−1

8πε0
(1 + 3 cos 2θ) , (5.3)
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Figure 5.1: The sign and orientation of the
interaction between 2 parallel dipoles as a
function of their common angle of rotation, θ.
Plot of V (θ) from (5.3).

which is depicted in Fig. 5.1. We see that the interac-
tion is attractive (negative), when the absolute value of
the angle θ is less than |θ0| < arccos 1√

3
≈ 0.96. This is

to show that even parallel dipoles can be both attract-
ing and repelling each other. The interaction between
more than 2 dipoles is described by

VDip =
1

2

∑

n6=m

Jnmunum, (5.4)

with

Jnm =
∑

n6=m

dn · dm − 3 (dn · rnm) (dm · rnm)

|rn − rm|3 . (5.5)

The factor of 1/2 in (5.4) is needed since all contribu-
tions are otherwise counted twice and the un and um

accounts for the varying distance between base pair
dipoles. This distance and the charge of the base pairs modify the expression (5.1), written for
elementary charges. The factor Jnm is here scaled as (2.9) [repeated from page 13],

Jnm =
2J0

l3Dα2
Jnm, with J 0 =

q2

4πε0
.

We note that for dipoles perpendicular to the model chain axis, which is oriented along the x-axis,
the last term of (5.5) vanishes and we are left with something resembling the preliminary result,
only with repulsive interaction.

To determine the actual dipole moments, dn, we need to know the chain geometry.

5.1 The twist function on a parabola chain

To this end, we also abandon the wedge shaped chain in Fig. 3.1 in favor of a parabola embedded
chain, yn = κ

2x
2
n−η, sketched in Fig. 5.2. A normal vector in the xy-plane is found though

tanψn = κxn.

Using basic trigonometry1, a unit normal vector in the chain plane is

n = ± (− sinψn, cosψn) =

(
−κxn√
1 + κ2x2

n

,
1√

1 + κ2x2
n

)
, (5.6)

1We have a right-angled triangle with sides of length 1 and κxn, so the hypotenuse is of length 1 + κ2x2
n
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Figure 5.2: The parabola shaped chain with a normal vector depicted. Also marked is the tangent, needed
for calculation of the normal vector.

where the positive sign is chosen to have “inward pointing” normal vectors as in Fig. 5.2.

Here, the value of the symmetry center η is zero. This means that the symmetry axis of the
model chain is coinciding with a base pair site at n = 0 — this is also referred to as the on-site case.
Only one other possibility is considered here, namely η = 1

2 , the intersite case. In this, the axis of
symmetry runs between the two sites n = 0 and n = 1. The two cases are sketched in Fig. 5.3.
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Figure 5.3: Chain configurations.

Regardless of the choice of η, the chain is always embedded on a parabola. In contrast to the
wedge chain, Eq. (3.1), an analytical expression for the position of chain sites with mutual unit
distance is not available. The position of the sites are determined by a bisection method.

We still consider dipoles perpendicular to the molecular chain, but we also need to quantify
their direction. To do this, we introduce the twist function, φn

φn = 2arctan
(
e−τ(n−η)

)
. (5.7)

This expression varies the dipole orientation from having an angle with respect to the z axis of π to
0 with position n. How quickly this happens is governed by the value of the twist, τ , see Fig. 5.4.



34 A proper dipole-dipole interaction

PSfrag replacements

−10 −5 0 5 10
0

π

2

π

Shifted site, n− η

T
w

is
t

an
gl

e,
φ

n

τ = 0.001

τ = 0.1

τ = 1

τ = 10

Figure 5.4: The twist function, φn (n − η).

We see that the change from twist angle φ = π to φ = 0 happens faster for large values of τ . See
also Fig. 5.5, which shows how φ is oriented to the z-axis at the center site.
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Figure 5.5: The angle between the z-axis
and the twist function, φn at n = 0.

We can now express the direction of the dipole moment
at site n as

dn = sinφn · n + cosφn · ez,

where ez is the unit vector in the direction of the z axis. In
coordinates, this amounts to

dn =

(
− sinφn

κxn√
1+κ2x2

n

, sinφn
1√

1+κ2x2
n

, cosφn

)
. (5.8)

We note that |dn| = 1 as should be the case for unit dipoles.
The symmetry center, η, also appears in (5.7). Here, its effect is different from the placement

of sites along the parabola chain: For η = 0, the symmetry lies on the site n = 0. This means
that at this site, the twist function will have the value φn=0 = π

2 . For strong twists (τ → ∞), the
neighboring sites will tend towards π and 0, respectively. Thus the maximum change in twist angle
is π

2 for the on-site case. On the other hand, in the intersite case η = 1
2 , the symmetry is between

sites n = 0 and n = 1. This means that for strong twists, the angle between the dipole and the
z-axis will be φ0 = π for n = 0, but φ1 = 0 for n = 1 and thus a change in angle of π. See Fig. 5.6.
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Figure 5.6: The twist function, φn for the two different symmetry cases for τ → ∞.

To sum up, we are looking at two different parabola chains with twisting dipole moments. The
difference between the two is the placement of the axis of symmetry, which can be either on a chain
site or between two. See Fig. 5.7, where we have tried to depict both curvature and twist for both
chain configurations.
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Figure 5.7: DNA chain embedded on a parabola in the xy-plane. Sites (xn, yn) with yn = κ
2
x2

n−η,
indicated by light grey dots. Base pair dipoles, orthogonal to the parabola, shown as dark grey arrows.
Curvature κ = 2 and twist τ = 2. The z-axis (not shown) forms a right-handed system with x- and y-axes.
Fig. (a) shows the on-site case, η = 0; Fig. (b) the inter-site case, η = 1/2.

5.2 Long-range interaction in the twist model

The long-range dipole-dipole interaction can be investigated in a way similar to the one in Sec. 3.2.
The setting is more complicated as we now have two different geometric features — the curvature,
κ, and the twist, τ — as well as the two different chain configurations; the on-site and the intersite
case.

We shall give a few examples of the outcomes. The following contour plots are constructed in a
similar way as the ones in Fig. 3.4 on page 21. We use the same values for the contours, but now we
have to consider both positive as well as negative terms. We use the same range of values — from
5 × 10−4 to 1, logarithmically spaced, but we also consider the same negative values now, together
with the zero contour. We continue to use 25 lines in total; to make an example with only 11
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contours, the values used would be {−1,−0.1,−0.01,−0.001,−0.0001, 0, 0.0001, 0.001, 0.01, 0.1, 1}.
The color convention is also the same - but apart from the red color denoting attractive interaction,
we also have a blue color to indicate repulsive interaction, as well as a green line, showing the zero
contour line.
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Figure 5.8: Long-range interaction for the on-site chain for different curvatures, κ for a weak twist,
τ = 10−6. 25 logarithmically spaced contours from -1 to 1. Red color denotes attraction, blue attraction
and green the zero value contour.

Parallel dipoles, τ = 10−6 We plot the result of a very weak twist, corresponding to virtually
parallel dipoles in Fig. 5.8. We see that the straight chain (κ = 0) and weak twist τ = 10−6,
depicted for the on-site case η = 0 in Fig. 5.8(a) corresponds to the straight wedge chain in
Fig. 3.2(b) on page 19 — with one important difference: Now the interaction between the base
pairs is repulsive, indicated by the blue color. For increasing degrees of curvature, we see that the
sites in the center region begins to feel the effects from the other leg of the parabola and a shape
similar to the ones in Fig. 3.4 appears. Also, the zero contour line appears, but no red contours
are drawn, as the values are extremely small. The curvature of the chain together with the almost
parallel dipoles in the bending plane gives an attractive (but in this case negligible) interaction. In
contrast to the “wedge dipoles”, which were modeled orthogonally to the wedge chain plane, the
very low twist here corresponds to a twist angle φ = 1

2 , which means that the dipoles lies in the
chain plane.
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Figure 5.9: Long-range interaction for the on-site chain for different curvatures, κ for a strong twist,
τ = 10. 25 logarithmically spaced contours from -1 to 1. Red color denotes attraction, blue attraction and
green the zero value contour.

“Domain wall” case, τ = 10 Increasing the twist to a very large value, τ = 10, result in a dipole
configuration, where all dipoles in one half of the chain, n < η, are aligned almost parallel to the
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z-axis, but the dipoles for n > η are antiparallel to the z-axis. This is referred to as a domain wall
at n = η and it gives the result shown for the on-site case in Fig. 5.9. Since the chain in Fig. 5.9(a)
is straight as it was in Fig. 5.8(a), the absolute value of the interaction is the same — the contour
lines are at the same levels. But the interaction between sites on different legs of the chain is now
attracting due to the antiparallel orientation describe above. Increasing the curvature increases the
magnitude of the attracting interaction between the center sites.

Intermediate values For an intermediate value of the twist, τ = 0.2, gives the result shown for
the on-site case in Fig. 5.10. The plots in Figs. 5.10 and 5.11, which shows the LRI for constant
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Figure 5.10: Long-range interaction for the on-site chain for different curvatures, κ for an intermediate
twist, τ = 0.2. 25 logarithmically spaced contours from -1 to 1. Red color denotes attraction, blue
attraction and green the zero value contour.

intermediate curvature, are included to show that for intermediate values of twist and curvature,
the picture is more complex. We see that both parameters play a role in determining the nature
of the dipole-dipole interaction.
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Figure 5.11: Long-range interaction for the on-site chain for constant intermediate curvature, κ = 1.0
for different twists, τ . 25 logarithmically spaced contours from -1 to 1. Red color denotes attraction, blue
attraction and green the zero value contour.

5.2.1 Comparison between the two chain configurations

The plots in Figs. 5.8–5.11 are all made for the on-site symmetry case, η = 0. The qualitative
appearance of the corresponding intersite case is very similar. To observe the difference, we consider
the LRI profile at given sites — just as we did in Fig. 3.3 on page 20. Here, however, we show both
sides of the chain and also the sign of the interaction — Fig. 3.3 only shows the magnitude of the
then attractive interaction.
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Fig. 5.12 shows profiles for the on-site case for τ = 10 in a strongly curved chain, κ = 2.0.
We recognize the strong contributions from neighboring sites at site n = −2 [Fig. 5.12(a)] (even
though it here means a repelling interaction), but in this case, the dipole at n = 0 (m+2) always
has a twist angle of φ0 = π

2 . In the depicted case, the twist is strong, so the twist angle for n ≤ −1
(m+1) is close to π. This means that the dipoles at sites n = −3 (m-1) and n = −1 (m+1) are
almost parallel and their interaction is close to their maximal repelling value.

The dipole at n = −1 [Fig. 5.12(b)], however, experiences an attraction from site n = +1 (m+2)
on the other side of the center site, corresponding to a negative value of J .

The center site [Fig. 5.12(c)] is in this case almost perpendicular to all other sites; therefore the
interaction is almost zero. We note the symmetry: The case n = −1 and n = −2 correspond to
the mirror image in n = η of n = 1 and n = 2, respectively, and so on.
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Figure 5.12: Profiles of the dipole-dipole interaction for the on-site case for a chain with a strong twist,
τ = 10, corresponding to the domain wall case, with curvature κ = 2.0, at different sites. The figures
correspond to cuts of Fig.5.9(c).

In the intersite case η = 1
2 , depicted in Fig. 5.13, the center of symmetry is between sites n = 0

and n = 1. The case n = −2 [Fig. 5.13(a)] is very similar in both the on-site and intersite case,
but the n = −1 case [Fig. 5.13(b)] has almost the same orientation as the previous one and so the
interaction between sites n = −1 and n = 1 (m+1) is in this case close to J ; not zero as in the
on-site case [Fig. 5.12(b)]. For n = 0 [Fig. 5.13(c)], we see that the interaction to site n = −1 (m-1)
is strongly repulsive, but strongly attractive to site n = 1 (m+1) on the other side of the symmetry
center. Here, the symmetry is that site n = 0 is the mirror image of site n = 1, site n = −1 the
mirror image of site n = 2 and so on.
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Figure 5.13: Profiles of the dipole-dipole interaction for the intersite case for a chain with a strong twist,
τ = 10, corresponding to the domain wall case, with curvature κ = 2.0, at different sites. Compare to the
on-site case of Fig. 5.12.
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5.3 Thermal dynamics on the twist chain

We consider exactly the same thermally generated initial conditions as we did in Sec. 4.1 and
observe the effect of the more physiologically sound dipole moments.

Note that the considerations for the blow up effect in Sec. 4.2.1 on the dimer are also valid here,
when considering strong twists. In the on-site case, though, we must also include some curvature
to bring the next-to-center sites closer, as the twist between sites n = ±1 and n = 0 is π

2 . But in
contrast with the preliminary version of the dipole-dipole interaction, this “attracting dimer” limit
is only applicable in the center region! Regardless of the twist, neighboring base pair dipoles are
almost parallel in the far ends of the parabola chain and thus interacts repulsive and no blow ups
occur. When the chain is twisted, the dipole-dipole interaction between sites at different legs of
the chain may be formally attractive, but will be negligible due to the strong inversely dependence
on distance.

Therefore, we do not expect a behavior as in the histograms Fig. 4.5. There, the attractive
dipole-dipole interaction between all sites made it possible for the exponential increase of oscillation
amplitude to occur everywhere, and the bending of the chain made it more probable that these
blow ups would occur in the center region. Here, the exponential increase in base pair oscillation
distance occurs only between the center sites with an overall attractive interaction! Namely at sites
n = 0 and n = 1 in the intersite case and sites n = −1 and n = 1 in on-site case.

Essentially, we are now facing 3 different scenarios:

1. “Steady oscillations”: oscillations with non-exponential amplitudes [inset (b) in Fig. 5.15 or
(d) in Fig. 5.16].

2. “On-site blow up”: blow up at site n = −1, n = 0, and n = 1 [inset (a) in Fig. 5.15].

3. “Intersite blow up”: blow up at site n = 0 and n = 1 [inset (c) in Fig. 5.16].

Depending on the initial condition and the geometry, the system will oscillate in bounded fluctua-
tions or evolve into an exponentially increasing amplitude. The on-site and intersite blow up cases
occur only in the corresponding kind of chain. An example of Case 1 and 2 is shown in Fig. 5.14,
in which the physical variables are noted. Using the same initial condition, the amplitude at the
center site either stays bounded or increases exponentially. Here, the behavior is governed by the
twist, but as we shall see, changing the curvature could also have the same effect.PSfrag replacements
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Figure 5.14: Evolution of the center site am-
plitude, u0, for the same initial condition for
curvature κ = 1.0 and twist τ = 4 (solid curve)
and τ = 6 (dashed curve).

In the “all attractive dipole interaction” model of
Chapters 3 and 4, a blow up at a given site would spread
to neighboring sites. In this model, the opening only af-
fects a couple of base pairs, namely the ones fulfilling the
prediction of the dimer case. For our parameter range,
this means only sites n = 0 and n = 1 in the inter-
site case and sites n = {−1, 0, 1} in the on-site case.
This could change for stronger values of the curvature,
because then the next-to-center sites would get closer;
most prominently the on-site case. In the intersite case,
the limiting case of infinity curvature will only bring sites
n = −1 and n = 2 at a distance of 1, whereas κ→ ∞ in
the on-site case corresponds to a chain collapse, i.e., that
the two legs coincide, sites at equal distance from the cen-
ter will get infinitely close. This, by the way, corresponds
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somewhat to a straight chain (of half length) with attractive dipole-dipole interaction at all sites,
except that the magnitude of the interaction tends to infinity due to the distance dependence.

The lack of a blow up extending to a larger portion of the chain leads us to conclude that our
model only describes a precursor for bubble generation.

In the following, we perform simulations with the 100 different realizations of the physiologi-
cally sound initial conditions, modeling thermal fluctuations. These are, the same 100 of for the
simulations on the wedge chain (see one of them in Fig. 4.1). We let the simulations evolve for 100
time units (corresponding to about 20 picoseconds) and at the end we measure if the oscillation
amplitude at any 2 neighboring sites (only the 3 center sites are relevant here, following the remarks
above, but all sites are checked) has exceeded a threshold values of un = 100, corresponding to
about 20 Å, i.e., twice the equilibrium distance between base pairs.

We repeat the same set of initial conditions for various values of curvature and twist and refer
to the set of simulations as a “bubble case” if at least one fulfils the requirement of at least 2
neighboring sites exceeding the amplitude threshold. The outcomes of the two chain configurations
are discussed in the following.

5.3.1 Results for the on-site case
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Figure 5.15: Region of bubble generation in the on-site case. Light grey region: Bubble generation. Dark
grey region: Transition region indicating the uncertainty of the simulations. White region: No bubble
generation. Insets show the displacement, un, versus site, n, at the points (a) and (b) at simulation times
(a) t = 51 and (b) t = 100 for the same initial condition.
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The result for the on-site chain figuration [Fig. 5.7(a)] is shown in Fig. 5.15, where the colored
region corresponds to parameter values that exhibit bubble generation. We see that bubbles are
generated for strong twist and strong curvature, which is expected. For the on-site case, the
strongest attraction between dipoles occurs at the sites n = −1 and n = 1, which are almost
antiparallel for strong twist. For smaller twists, the interaction is either not attracting or it is too
weak. In the latter case, increasing the curvature brings attracting dipoles closer, increasing their
interaction and spurs a bubble generation. This behavior is found in Fig. 5.15 for a constant twist
of, say, τ = 5. Even for strong twists, no bubbles are generated for small curvatures in the on-site
case. In this case, the attracting dipole are at sites n = −1 and n = 1, and are thus separated by
a distance of 2 lattice lengths on a straight chain. When the chain bends, however, the attracting
sites are brought closer together and blow ups begin quickly to occur.

The exact shape of Fig. 5.15 depends on the chosen amplitude threshold — as well as system
parameters2 — but its qualitative shape is unchanged. Close to the region border, only a few of the
simulations results in bubble generation, but this number increases as one proceeds in the direction
of stronger twist and larger curvature (i.e., towards the upper right corner). We note that for the
on-site case the amplitude is increased at the 3 center sites n = −1, n = 0 and n = 1 as indicated
in the inset (a).

2Some simulations have been performed with other dipole-dipole interaction strengths, J0, but these are not
presented here due to the lesser correspondence with the biology. As expected from the considerations in Sec. 4.2.1,
a larger value of J0 stimulates blow up. See also Chap. 6, where the dependence of mobility of a breather on the
stacking and LRI parameters is investigated.
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5.3.2 Results for the intersite case
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Figure 5.16: Region of bubble generation in the intersite case. Light grey region: Bubble generation.
Dark grey region: Transition region indicating the uncertainty of the simulations. White region: No bubble
generation. Insets show the displacement, un, versus site, n, at the points (c) and (d) at simulation time
(c) t = 45 and (d) t = 100 for the same initial condition.

In the intersite case, Fig. 5.16, the picture is different. First of all, the twist needed for bubble
generation is smaller and blow ups are initiated for twists of about 2. Secondly, the dependence on
the curvature is less pronounced. This is because it is neighboring dipoles, that for strong twist are
anti-parallel and thus attracting each other. Since, in the framework of our model, the chain has
constant distance between adjacent sites, increasing the curvature does not increase the tendency
for bubbles to be generated. This is in contrast to the on-site case, Fig. 5.15.

In fact, the opposite is the case: As the dipole twist is perpendicular to the chain, increasing
the curvature has the consequence that the center dipoles interact in a less attracting way. Even
though sites n = 0 and n = 1 have a fixed distance, the dipole-dipole interaction still changes with
curvature. This is due to the fact that dipoles are perpendicular to the chain, so when the chain
shape is altered due to changed curvature, so is the dipole orientation.

Note that in this case, the displacement at the two center cites, n = 0 and n = 1, is increased
as the inset (c) shows. Close to the region border, the number of simulations resulting in bubble
generation is small, but it increases as one increases the twist or decreases the curvature (i.e.,
moves towards the upper left corner).
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5.4 Effective potential for the twist chain

It is obvious that having initially randomly distributed energy along the chain, successful bubble
generation should include, as a first stage, funneling of energy in the bent and twisted region.
Therefore we can expect that only in the case when this region acts as a potential well, bubbling
may occur. The behavior found in Figs. 5.15 and 5.16 can be qualitatively explained by the
effective on-site potential, Vn =

∑
m6=n Jnm, already presented in (4.6) on page 27. We consider

the dipole potential at given sites for both the on-site and the intersite case for constant curvature,
κ = 1.0, with respect to the “ground state” at n → ±∞. Fig. 5.17 shows the difference in
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Figure 5.17: Effective “ground state” potential, V Eff
n − V∞ with untwisted chains, τ → 0, for different

curvatures, κ.

curvature dependence for the untwisted versions of the two parabolic chain configurations. The
on-site case has a single maximal value at n = 0, whereas the intersite has two. All values are
positive, corresponding to repulsion, as it should be for the parallel dipoles. For the straight chain
(κ = 0), the long-range interaction is identical at all chain sites and as the chain curves, the
interaction between the next-to-center sites increases. This is much like the case of the wedge
chain, Fig. 4.3(b), but with the opposite sign of interaction. These are compared in Fig. 5.18.
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Figure 5.18: Comparison of the effective “ground state” potential, V Eff
n − V∞ for untwisted chains.

Fig. (a) is the same as Fig. 5.17, but from a different angle, emphasizing the double-well potential. Fig. (b)
is the wedge chain from Fig. 4.3 on page 27.
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In Fig. 5.18 the no twist case is compared to the previously considered wedge case [Fig. 4.3(b)].
First of all, we see that the sign is opposite, as it should be, but we also notice the difference
that arises from the parallel dipole orientation. In the wedge case, the dipoles are parallel to the
bending plane, but for the parabola with no twist, the parallel dipoles are aligned in the bending
plane. This explains the main difference between Fig. 5.18(a) and (b) [remember, of course, that
the chain in (a) is parabolic, while the chain in (b) is wedge shaped].

Fig. 5.19 shows the effect of twist in straight versions of the two parabolic chain configurations.
We see how the twist changes the interaction to attractive in the center region. Again, there is only
one site of maximal interaction in the on-site case, but two in the intersite one. This seemingly
modest difference plays a role in the difference in the generation of blow ups in the on-site and
intersite cases (Figs. 5.15 and 5.16).

−10
0

10

0
1

2
3

4
5

−1

−0.5

0

0.5

PSfrag replacements V
E

ff
n

−
V
∞

Site, nTwist, τ

(a) On-site case.

−10
0

10

0
1

2
3

4
5

−1

−0.5

0

0.5

PSfrag replacements V
E

ff
n

−
V
∞

Site, nTwist, τ

(b) Intersite case.

Figure 5.19: Effective “ground state” potential, V Eff
n −V∞ for straight chains, κ = 0, for different twists.

The combined effect of both twist and curvature is shown in Figs. 5.20 and 5.21. Thus, Figs. 5.20
depicts the depth of the potential well for constant curvature for both the on-site [Fig. 5.20(a)] and
the intersite [Fig. 5.20(b)] case. Interestingly, the effective potential is repulsive without any twist,
but increasing τ drives the interaction to be attractive. We see that in the vicinity of the bending
point, there exist an effective potential well for τ larger than about 0.5. This corresponds to the
behavior found in Figs. 5.15 and 5.16, where no blow ups are found for τ smaller than roughly 5 and
2, respectively. That the values does not coincide precisely is because the existence of a potential
well is a necessary, but not sufficient, condition for bubble generation (notice for example how the
attractive interaction for κ = 0 in Fig. 5.19(a) is not sufficient to generate any blow ups). The
depth of the potential well increases with increasing twist, until a saturation is reached at τ ≈ 5.
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Figure 5.20: Effective “ground state” potential, V Eff
n −V∞ with curvature κ = 1.0 and for various twists,

τ , in the two chain configurations.

For constant twist, Fig. 5.21, the situation is much more dominated by the twist than the
curvature. For the on-site case with τ = 5 [Fig. 5.21(a)], we see a decreasing potential well depth
with increasing curvature at sites n = −1 and n = 1, whereas the potential at n = 0 is almost
constant. Interestingly, the effective potential at n = 0 increases very slightly with increasing twist,
but the overall outcome is still an effective potential well.

In the intersite case [Fig. 5.21(b)], the twist is fixed at τ = 2. We see again that the depth
of the potential well increases with increasing curvature at the center sites n = 0 and n = 1, but
this time a bit stronger. The potential at n = −1 and n = 2 descreases, but not as much as in
the on-site case. For the depicted values, the overall effect of curvature is to prevent blow up.
Therefore, bubble generation is not found for larger curvature in the intersite case, corresponding
to the behavior seen in Fig. 5.16.
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(a) On-site case, τ = 5.
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Figure 5.21: Effective “ground state” potential, V Eff
n − V∞ with untwisted chains, τ → 0, for different

curvatures, κ.

We see that both curvature and twisting play a role in the localized formation of precursors
for denaturation bubbles in our model of the DNA molecule and it is clear that the chain con-
figuration is important. The many figures here have been included to emphasize the similarities
and differences between the on-site and intersite model. At a first glance, the effective potentials
of the on-site and intersite chain configurations, depicted in Figs. 5.17–5.21, seem qualitatively
identical but nevertheless there are differences, which account for the difference in the “master”
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plots Figs. 5.15–5.16.
Stronger twist increases the initiation of bubble generation in both cases considered. The effect

of increasing curvature is different: in the on-site case, curvature clearly enhances bubble generation,
but in the intersite case it slightly decreases the formation of bubbles in the range of κ considered.



6
Another note on

moving breathers —
The interface model

One may wonder if moving breathers are supported in a molecular chain where the dipoles are better
described that the overall attracting interaction, as discussed in Chapter 3. To this end, investi-
gations have been made on moving breathers in a so-called interfaced DNA molecular model [69].
We are considering a straight molecule, with dipole moments being either parallel or antiparallel
to one another. The Hamiltonian considered is

H =

N∑

n=1


1

2
mu̇

2
n +D

(
e−bun − 1

)2
+

1

2
ε (un+1 − un)2 +

1

2
µ
∑

p6=n

Jn,n+pun+pun


 , (6.1)

with the dipole-dipole interaction term

Jn,n+p =
αn,n+p

|p|3 . (6.2)

Basically, it is the same system as we have been considering all along, except that we also have
a strength parameter, µ, to the dipole-dipole interaction term and the scaling is slightly different.
This corresponds to J0 in Sec. 2.1.1, as well as the strength of the stacking term, ε, is denoted C
in Sec. 2.1.1. This work is reported in [69] and the notation and scalings has been adopted for this
final Chapter of Part I.

We transform the physical quantities (indicated with a bar) to dimensionless with the scalings

t = ω0t, un = bun, ε =
ε

mω2
0

, µ =
µ

mω2
0

, and H =
H

2D
,

where ω0 =
√

2b2D
m , the frequency of of an isolated DNA base pair oscillator, becomes unity in the

scaled system.
As initial conditions we do not use a Gaussian in this case, but rather evolve numerically a

single site distortion to the amplitude, um = λ, un6=m = 0, until a stationary breather is obtained.
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We are considering a molecular chain in which the dipoles in one half are parallel to each other,
but antiparallel to the dipoles in the other half of the chain, see Fig. 6.1.

· · · ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ · · ·
Figure 6.1: The model piecewise interfaced chain.

Instead of the free boundary conditions (2.12) and (2.12) used previously, we are using periodic
boundary conditions. But to avoid having 2 interfaces, we shape the numerical chain as a kind of
a Möbius band, so that the dipoles at the ends are parallel as well. Details are found in [69].

Moving breathers

By perturbing the initial stationary breather (numerically obtained from the um = λ Ansatz) with
a translational energy of magnitude λ we are able to generate a moving breather, provided that
the coupling between adjacent sites is strong enough. We use a “kick” at the next-to-center sites:

u̇m−1 = −v and u̇m+1 = +v, (6.3)

where the velocity, v, fulfills 1
2λ

2 = m∗

2 v
2, m∗ being the effective mass of the moving breather.

For parameter values stacking ε = 0.129, dipole-dipole term µ = 0.02, and breather frequency
ωb = 0.8, we observe different behavior depending on a threshold value of the kinetic energy, λc.

For smaller values, λ < λc a trapping regime is found on the chain configuration in Fig. 6.1.
This means that the incoming breather is trapped in a region around the interface, see Fig. 6.2(a).

For larger values, λ > λc a transmission regime, where the breather passes through the interface
region, is found, see Fig. 6.2(b). We conclude that moving breathers are supported with repulsive,
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Figure 6.2: Examples of trapping and transmission. In both cases, µ = 0.002 and ε = 0.129. The
interface is between sites 0 and 1.



Another note on moving breathers — The interface model 49

parallel dipoles. Compare also to Fig. 3.6 on page 22. We see that qualitatively similar effects exist
for both expressions for the dipole-dipole interaction.

We note that similar results were obtained using the chain geometries depicted in Fig.6.3. No
simulations were conducted with other chain geometries than the straight one.

· · · ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇓ ⇑ ⇑ ⇑ ⇑ ⇑ · · ·
Figure 6.3: Single inverted dipole chain.

Effective potential

Also in this case, an effective potential is calculated; slightly modified due to the difference in
scalings:

V Eff
n =

1

2
µ
∑

m6=n

Jn,m, (6.4)

which is depicted in Fig. 6.4 for both the interfaced piecewise and the single inverted dipole system.
We note a symmetry similar to the on-site and intersite potentials of Sec. 5.4. In the “domain wall”-
case (solid circles), we see a symmetry between sites 0 and 1, corresponding to the intersite case.
In the case of a single inverted dipole (open circles), we have symmetry center at n = 0. Also, the
potential for the single inverted dipole is lower due to the attractive interaction from both of its
two neighboring sites — in the domain wall case only of the neighbors are attracting.
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Figure 6.4: Effective potential V Eff
n , versus site number, n, for the interfaced piecewise system (dots)

and for the single inverted dipole system (open circles).
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Critical value of λ

A critical value of the initial perturbation for different µ and ε is found through a series of simula-
tions, displayed in Fig. 6.5. We see that for a given value of the dipole-dipole interaction strength,
the tendency for trapping to occur increases with increasing value of the stacking potential, µ.
Larger values of λc means a larger window for trapping to occur: λ < λc. For a fixed value of the
stacking strength, λc increases with increasing dipole-dipole interaction, µ. The tendency is most
pronounced for smaller values of ε, in which case the strength of the dipole-dipole interaction is
relatively larger than the stacking interaction.
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Figure 6.5: Dependence of the critical value of initial velocity perturbation, λc with the dipole-dipole
strength µ = 0.002 for different values of the stacking strength, ε.
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Multiple breather interaction

Finally, multiple breather interactions have also been considered in the interface model in exactly
the same way as in Sec. 3.3.1. With a given choice of initial translational kinetic energies, λ (the
“kick”), we get the result in Fig. 6.6.
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Figure 6.6: (a) Contour plots for the evolution of five breathers launched towards the interface with dif-
ferent translational kinetic energies. The breathers are trapped at the interface increasing the accumulated
energy density (λ = 0.05; 0.07; 0.15; 0.19; 0.2). (b) Time evolution of the central energy.

Compare with Fig. 3.9 on page 24. As expected, the multiple trapping effect appears here as
well. We note that the saturation effect seems to be slower with the present formulation.
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7
Conclusion

We have investigated a bent chain of Morse oscillators and find that moving discrete breathers may
be trapped at a bending point in the presence of a preliminary dipole-dipole-like long-range inter-
action. Thus the role of the geometry for the dynamics is analogous to that of an inhomogeneity,
but here it is present in an intrinsically homogeneous chain. At the bending point, several incident
discrete breathers may be trapped. However, energy is lost to radiation and a saturation effect
seems to limit the total trapped energy in the vicinity of a given bending point.

For random initial conditions modeling thermal fluctuations, we observe an unbounded growth
of oscillation amplitude. This blow up behavior is analytically supported. The tendency for blow
up in the vicinity of the bending point is substantially amplified with increasing bending. Thus
energy localization is implied in this region which therefore acts as an energy funnel.

The use of a nonlinear potential is crucial for obtaining the energy funneling effect in our model,
since no amplitude growth is observed in a linear approximation. The plateau of the characteristic
Morse potential allows for the breaking of the hydrogen bonds, e.g., in the molecule to be modeled.
In contrast, a linear approximation with a parabolic potential produces too powerful an attraction
for this effect to take place and would therefore not be an adequate description of chemical bonds.

We also note that the attracting nature of the long–range interaction is crucial for the occurrence
of amplitude growth. This is further investigated with a more accurate dipole-dipole interaction
term. We have shown that bubble generation in DNA-like models can be initiated by curvature
and twist of the molecular strands.

Stronger twist facilitate bubble generation, whereas the effect of curvature depends on the
details of the geometry. For the on-site case, with the axis of symmetry lying on a chain site,
increasing curvature increases the tendency for bubble generation. Conversely, the intersite case
(with symmetry between two chain sites) decreases bubble generation for increasing curvature.

Bubbles emerge in the region of maximal twist and curvature, and are found at physiological
temperatures and with widely used parameter values for DNA.

Also, moving breathers were investigated with an interface dipole configuration. We find that
also in this case, moving breathers are supported, and effects such as collision, trapping, and
saturation are observed as well and the outcome of changing some of the parameters is investigated.
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8
Introduction to
nonlinear optics

The invention of the laser has spurred tremendous interest in the research of nonlinear optics.
The laser allows for investigation of nonlinear effects, which are only detectable for the high light
intensities provided by the coherent laser light. Furthermore, development of materials which
exhibit nonlinearities at lower light intensities has also intensified the research activities in the
field.

A motivation for investigating light propagation in optical crystals is — amongst others —
the aspect of all-optical signal processing. A successful implementation of this would for one
result in remarkable faster optical communications networks, but is also the foundation for optical
computers; computers using photons instead of electrons as the fundamental processing unit.
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Figure 8.1: The energy density of a diffracting
and dispersive low intensity beam (top) compared
to a high intensity spatio-temporal light bullet
(bottom). Bright red corresponds to high density;
darker red to lower. Redrawn from [1, Fig. 1].

When light waves travel through a medium it is
affected by the atoms of the crystal. With a low
intensity beam, this effect causes the initial beam
profile to broaden with time and/or distance. These
effects are referred to as dispersion (temporal broad-
ening) and diffraction (spatial broadening) and are
well understood. But interestingly, if the incoming
light beam has a higher intensity, the nonlinear ef-
fects, not noticeable in the low intensity beam, be-
come important and these can counteract the broad-
ening; thus resulting in a beam with constant shape
as illustrated in Fig. 8.1. This is another example of
the balance between linearity and nonlinearity other
than the water wave example mentioned in the In-
troduction on page 1.

This effect is a result of the nonlinearity in the
crystal, which arises from the interaction between
photons and electrons in the crystal for large light
intensities [2]. The most powerful nonlinear effect
is the so-called quadratic — or χ(2)— nonlinearity. One important of one such nonlinear effect is
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the second harmonic generation, also known as frequency doubling, in which the crystal induces a
secondary wave with the double frequency. With this effect, one can generate, say, visible light
from infrared by passing it through a suitable crystal.

Optical solitons in quadratic nonlinear materials The term quadratic nonlinear materials refer to
materials where the nonlinearity is governed mainly by the χ(2)-effect. Due to their strong and
fast nonlinearity, quadratic nonlinear materials have been a center of attention for a number of
years. The χ(2)-effect gives rise to for instance frequency doubling — or “up-conversion” — of
the fundamental beam, as well as a converse “down-conversion” effect, whereby waves of double
frequency are transformed back to the original frequency. In quadratic nonlinear materials, the
formation of solitons is not due to a change in refractive index caused by the local intensity of the
beam, but due to a cascading phase-modulation mechanism [3]. The term cascading refers to the
continuous up- and down-conversion that takes place in these materials. An intuitive explanation
given in Ref. [4] explains some of the occurring phenomena, like soliton formation, self-focusing,
and self-defocusing, but it does not explain effects such as soliton interaction and the existence of
bound states. As mentioned in Chapter 1, the localized entity referred to as a soliton, retains its
shape due to a balance between linear and nonlinear effects, which counteract each other. In the
case of nonlinear optics the linear broadening of the pulse, caused by either temporal dispersion
or spatial diffraction — or both — is countered by the nonlinear self-phase modulation focusing
effect. The study of localized wave packets have been of particular interest as these solitons can act
as ideal carriers of optical information. Spatial solitons were observed experimentally some twenty
years ago [5, 6, 7] and some years later temporal solitons (localized in time) were observed using
femtosecond laser pulses [8]. Initially, both types of solitons were theoretically predicted almost
half a century ago [9, 10], but experimental verification was not possible at that time. With the
evolution of sufficiently sophisticated laboratory equipment, this spurred a new interest for research
in optical solitons and some examples are found in Refs. [3, 11, 12, 13, 14, 15, 16, 17, 18].

Figure 8.2: The biconial structure of an X-wave. Note
the small amplitude of the “tails” compared to the cen-
ter peak. From [19], courtesy of S. Trillo.

A special type of soliton combines these
features: the spatio-temporal soliton, also re-
ferred to as a light bullet, which exhibits lo-
calization in both regimes is also a possibility
[1, 20, 21, 22, 23, 24]. A light bullet is thus a
promising candidate as a unit of information in
future all-optical circuits and networks.

X waves The existence of light bullets requires
materials with anomalous dispersion which,
acting similarly to standard diffraction in bulk
materials, can counteract nonlinearities of the
self-focusing type. Conversely, normally disper-
sive media support other effects, such as tempo-
ral splitting and spectral breaking [25, 26, 21],
that were commonly believed to prevent the ex-
istence of nonlinear localized wave-packets. In a
material with normal dispersion, the higher fre-
quency components travel slower than the lower frequency components and vice versa for anomalous
dispersion. However, the perspective changes completely, if one consider so-called X-waves [27],
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introduced in 1992 in the field of linear acoustics. These waves have translationally invariant so-
lutions of the (scalar) linear wave equation with characteristic biconical shape (they are called
X-waves because the main longitudinal cut resembles the letter X) [28].

Therefore they exist also as electromagnetic waves whose evidence has been reported both at
microwave frequencies [29], and in the context of linear optics [30, 31] where they can be considered
non-monochromatic generalizations of Durnin’s Bessel beam [32]. In general, X waves can exist
also in vacuum, and do not necessarily have a narrow spectrum. However, when the propagation
of beams with narrow spatio-temporal spectral content in bulk dielectrics is considered, linear X-
waves turn out to be natural eigenmodes of normally dispersive dielectrics [33, 34]. Their excitation,
however, remains quite difficult because their shape is quite far from standard laser beams.

It was therefore a breakthrough when the formation of nonlinear X-waves was found starting
from a standard Gaussian beam in quadratic nonlinear optical materials [28, 35]. The key is
that a sufficiently strong nonlinearity provides, through spatio-temporal modulational instability,
a mechanism which is able to dynamically evolve a localized input profile into an X-wave. General
results prove that X-waves can have indeed a key role in the nonlinear dynamics both in optics
[36, 37, 38, 39], and in Bose-Einstein condensation [40, 41] where the negative effective mass due
to a 1D lattice mimics the effect of normal dispersion [42].

Optical nonlocality In contrast, the notion of nonlocality was recently shown to provide a simple
physical explanation of all these effects, as well as of bound states and general soliton interaction
[43]. The idea is to describe the effect of the second harmonic (SH) field on the fundamental through
a response function, which contains the nonlinearity of the system and the linear properties of the
SH. This analogy further allows to obtain analytical solutions of solitons and their bound states in
the so-called strongly nonlocal limit, where the governing equations become linear [43, 44, 45]. See
also Ref. [46, 47] for a review of the effects of nonlocality.

Considering only one transverse spatial dimension, it was found in Ref. [43] that with a positive
phase mismatch, the response function is localized and symmetric. However, a negative phase
mismatch introduces a difference in sign in the SH dispersion relation, which in turn changes the
nature of the response function to be oscillatory. This corresponds well with the absence of a
continuous family of soliton solutions in this case, where only pairs of solitons exist at discrete
points, corresponding to isolated values of the separation between the solitons [16].

Including the temporal dimension in the nonlocal description introduces another way of having
opposite signs in the SH dispersion relation, namely when considering normally dispersive materials.
We would thus expect an analogy between systems that support X-waves and a nonlocal system
with an oscillatory response function.
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Aim of this work In this work we propose a description of 2+1D X-waves (Here 2+1D means that
diffraction is effective in only one transverse dimension, say x, as it occurs in planar waveguides.
Linear X-waves have been investigated in this case in Refs. [48, 49]) in quadratic media, based
on a nonlocal response function. The inclusion of the temporal dependence complicates the effect
somewhat and the response function turns out to be of Bessel type. Interestingly, we show that for
normal SH dispersion the local cascading limit in terms of a nonlinear Schrödinger equation does
not exist — one needs to use the nonlocal description, because the nonlocal response function does
not converge towards a delta-function when the degree of nonlocality goes to zero.

Also, we investigate the effects of having opposite signs of the dispersion in the fundamental
wave (FW) and SH fields. We demonstrate the novel effect that X-type waves can form in quadratic
nonlinear materials with anomalous dispersion at either the FW or the SH.
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Nonlocality in

quadratic materials

Light propagation is in general governed by the celebrated Maxwell Equations

∇×E = −∂B
∂t
, (9.1)

∇×H = J +
∂D

∂t
, (9.2)

∇ · D = ρ, (9.3)

∇ ·B = 0, (9.4)

where E describes the electric field, H the magnetic field, and D and B the corresponding electric
and magnetic flux densities, respectively. J is called the current density vector and ρ the charge
density.

Furthermore, the following material dependent equations are needed, when light propagates
through other than vacuum:

D = ε0εE = ε0E + P, (9.5)

B = µ0µH = µ0H + M, (9.6)

J = σE, (9.7)

where ε0 and µ0 are the permittivity and permeability of free space, respectively1

Note that ε (and µ) are tensors and it is through nonlinearities in the ε tensor that generates
the optical nonlinearities.

However, in the nonlinear case, the ε tensor is a function of the spatial coordinates through
crystal configuration. From the first constitutive relation (9.5) we define the susceptibility, χ

P = ε0χE ⇐⇒ ε0 = 1 + χ. (9.8)

The polarization, P, is affected by the intensity of the electric field, and we must consider changes
in the polarization arising from increasing orders of the electrical field. Thus, the ith component

1Values are ε0 = 8.854 × 10−12 F
m

and µ0 = 4π × 10−7 H
m

.
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of P is expanded as

Pi = ε0χ
(1)
ij Ej + 2χ

(2)
ijkEjEk + 4χ

(3)
ijklEjEkEl + . . . , (9.9)

where we sum over repeated indices (Einstein’s summation formula). These nonlinear terms in the
polarization of a light beam are the ones responsible for the nonlinearity in nonlinear optics.

Let us investigate Maxwell’s equations further. Assuming µ and ε to be constant, taking the
curl of (9.1) gives

∇× (∇×E) = = ∇×
{
− ∂

∂t
(µ0µH)

}
= −µ0µ

∂

∂t

(
J +

∂D

∂t

)

= −µ0µ
∂

∂t

{
σE +

∂

∂t
(ε0εE)

}
= −µ0µσ

∂E

∂t
− µ0µε0ε

∂2E

∂t2
. (9.10)

The vector identity ∇ × (∇×E) = ∇ (∇ ·E) − ∇2E, together with the material equation (9.5)
gives us

∇× (∇×E) = ∇
(
∇ · D

εε0

)
−∇2E = −∇2E, (9.11)

since we assume that there are no free charges, ρ = 0, and by (9.3), the divergence of the D is
then zero. This, in fact, is not the case for non-isotropic materials, but the terms turn out to be
negligible in this context. Refer to [3] and references therein for details. If we also assume that
there is no conductance, σ = 0, (9.10) and (9.11) become

∇2E− εµε0µ0
∂2E

∂t2
= 0.

Assuming nonmagnetic materials, µ = 1, and since the speed of light is c = (ε0µ0)
− 1

2 , we get
through (9.5)

∇2E− 1

c2
∂2D

∂t2
= 0. (9.12)

Eq. (9.12) is the starting point for the derivation of the χ(2)-equations and details can be found
in [50, 51]. In Appendix C, a sketch of the derivation of the temporal version of the equations is
given.

The general idea is that by considering a wave of the form

E ≈ E1e
ik1(ω0)z−iω0tê1 +E2e

ik2(2ω0)z−2iω0tê2 + c.c., (9.13)

where êj is a unit vector describing the polarization of field component j and where we have
introduced the notation c.c. for the complex conjugate and not explicitly written the dependencies
of Ej = Ej(z, t), j = 1, 2, for brevity. Similar equations describe D, but this may be expressed in
terms of E and inserted in (9.12). We the obtain the equations

i
∂E1

∂z
+ ik′1

∂E1

∂t
− 1

2
k′′1
∂2E1

∂t2
+K1E

∗
1E2e

−i∆kz = 0

and

i
∂E2

∂z
+ ik′2

∂E2

∂t
− 1

2
k′′2
∂2E2

∂t2
+K2E2e

i∆kz = 0,
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with constants

K1 =
ω2

0 ε̃
(2)
1

k1c2
and K2 =

2ω2
0

k2c2
ε̃

(2)
2 .

With proper scalings, excluding the velocity terms (the ∂/∂t-terms), but including a similar trans-
verse spatial variable, these equations yield

i∂zE1 + 2∂2
xE1 + 2d1∂

2
tE1 +E∗

1E2e
−iβz = 0, (9.14)

i∂zE2 + ∂2
xE2 + d2∂

2
tE2 +E2

1e
iβz = 0, (9.15)

which are the governing equations for this Part of the work. Details are given in Appendix C.

9.1 The nonlocal description

The general idea behind nonlocality is to describe the effect of the SH on the fundamental through
a response function, which contains the nonlinearity of the system. This eliminates the equation
for the SH and we obtain only a single equation and thereby a better change of making analytical
predictions. In contrast to the cascading limit, which also reduces two equations to one, the nonlocal
approximation makes fewer assumptions.

The notion of nonlocality has been introduced in various papers on one dimensional systems
[43, 45, 46, 47, 52, 53, 54, 55].

9.1.1 A one dimensional nonlocality

Let us initially consider a 1+1D version of the χ(2)equations

i∂zE1 + d1∂
2
xE1 +E∗

1E2e
−iβz = 0, (9.16)

i∂zE2 + d2∂
2
xE2 +E2

1e
iβz = 0, (9.17)

to gain some insight into the nature of nonlocality in quadratic materials (this Section follows [43]).
We consider a SH field of the form E2(x, z) = e2(x, z) exp(iβz), which is inserted in (9.17) to give

i (∂ze2 + iβe2) exp(iβz) + d2∂
2
xe2 exp(iβz) +E2

1e
iβz = 0.

Assuming that the amplitude of the SH varies slowly with respect to the propagation variable z,
we can neglect the first term to give

−βe2 + d2∂
2
xe2 +E2

1 = 0 (9.18)

For large phase mismatch, β � 1, the first term is dominating the e2 contribution and therefore
the x-derivative may be neglected. This is the cascading limit assumption and it ties the shape of
the SH to the one of the FW through the relation e2 = E2

1/β. The phrase that the SH is “slaved”
to the FW is also used.

However, this exclusion of the spatial derivative is not made in the nonlocal description. If we
use Fourier transformation on (9.18), we get

−βẽ2 − k2d2ẽ2 + Ẽ2
1 = 0

which solves to

ẽ2 =
1

β + d2k2
Ẽ2

1 , (9.19)
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where we define the response function in Fourier space as

R̃ =
1

1 + sσ2k2
, (9.20)

with the degree of nonlocality is defined as

σ =

√∣∣∣∣
d2

β

∣∣∣∣ (9.21)

and with s = sgn (d2β). Keeping in mind that a multiplication in Fourier space corresponds to a
convolution in real space, the 1+1D χ(2)-equations (9.16)–(9.17) can then be written

i∂zE1 + d1∂
2
xE1 +N

(
E2

1

)
E∗

1 = 0, (9.22)

where the nonlinearity is conveniently determined by the convolution integral

N
(
E2

1

)
=

1

β

∫ ∞

−∞
R(x− ξ)E2

1(ξ, z)dξ. (9.23)

Notice that due to the reciprocality of the Fourier transform, a large degree of nonlocality narrows
the profile of the Fourier transform as in (9.20). The term nonlocality is therefore coined to the
real space in the sense that a large σ means a broad response function in the real space. But as
σ → ∞, the Fourier transformed response function (9.20) tends to zero except at k = 0 and it
therefore becomes very narrow in the Fourier space. Conversely, σ = 0 returns R̃ = 1, which covers
the whole k-axis.

The degree of nonlocality, σ, and different limits.

The convolution integral (9.23) explains the use of the term nonlocality, since it captures the effect
of the response function on the squared fundamental field. Fig. 9.1 shows different cases of the
relative widths of |R| and |E2

1 |.
In Fig. 9.1(a), R is very narrow compared to the FW, and this is referred to as the local case.

Here, the small width of the response function implies that the effect of the convolution is small.
In the limit of the response function being a δ-function, Equation (9.22) becomes the well-known
Kerr nonlinearity, described by the nonlinear Schrödinger equation

i∂zE1 + d1∂
2
xE1 + β−1|E1|2E1 = 0. (9.24)

In this limit, the light intensity at a given point is determined exclusively from values at that very
point. This is why it is referred to at the local limit. Conversely, as the effect of nonlocality is
increased, the value of the light intensity at a given point is a function of values in a region around
the point in question. The bigger the degree of nonlocality, the bigger the region.
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Figure 9.1: Different degrees of nonlocality.

Fig. 9.1(b) shows a case where the response function and the FW intensity profile are of com-
parable widths; this is the general case.

The effect of a very wide response function is shown in Fig. 9.1(c). Here, the response function
will greatly affect the outcome of the convolution. In this case, the value of the FW intensity at
a given site is determined by the value of all other sites through this folding of R onto E 2

1 , in
accordance with (9.23).

For a given one dimensional FW intensity profile, the value of σ determines strength of the
nonlocality (see derivation in Sec. 9.1.1). The local case [Fig. 9.1(a)] occurs for σ � 1, where R is
narrow, and the nonlocal case [Fig. 9.1(c)] for very large values, σ � 1, where the response function
is broad compared to the FW.

A physical example of the application of nonlocality is for instance found in liquid crystals.
Here, light is propagated through a medium whose refractive index changes with the temperature
of the crystal plasma. Because of heat dissipation, the energy provided by the incident light beam
begins relatively quickly to dissipate into the surrounding liquid phase, increasing the temperature
and thereby changes the refractive index. In this case, the rate of index change is proportional to
the temperature difference between neighboring point; thus a nonlocal model is needed for a proper
description.

The local limit The local and nonlocal limits allow for approximations of the convolution integral.
For the narrow response function in the local limit, the intensity profile is approximated by a Taylor
expansion:

∫ ∞

−∞
R(x− ξ)E2

1(ξ, z)dξ ≈
∫ ∞

−∞
R(x− ξ)

[
E2

1(x, z)

+∂xE
2
1(x, z)(ξ − x) +

1

2
∂2

xE
2
1(x, z)(ξ − x)2 + . . .

]
dξ

= E2
1(x, z)

∫ ∞

−∞
R(x− ξ)dξ

+ ∂xE
2
1(x, z)

∫ ∞

−∞
R(x− ξ)(ξ − x)dξ (9.25)

+
1

2
∂2

xE
2
1(x, z)

∫ ∞

−∞
R(x− ξ)(ξ − x)2dξ + . . . .
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For a normalized response function,
∫∞
−∞R(x− ξ)dξ = 1, we once again the we then obtain (to first

order accuracy) the NLS equation (9.24).

i∂zE1 + d1∂
2
xE1 + β−1|E2

1 |E1 = 0, (9.26)

Note that if the response function is even, the second term in (9.25) vanishes and (9.26) has second
order accuracy. This is often the case for physically reasonable response functions. In general,
the response function may attain various shapes, where some physically reasonable are Gaussians,
Lorentzians, sech-shaped, e.g., and they need not be symmetric [56].

In the strongly nonlocal limit a similar approximation is employed, but now it is the response
function, which is almost constant compared to E2

1 . We get

i∂zE1 + d1∂
2
xE1 + β−1R(x)P1E1 = 0,

with the power

P1 =

∫ ∞

−∞
E2

1(ξ)dξ.

Solving the 1D response function

The response function was introduced in the Fourier space in (9.20), but by performing an inverse
Fourier transform,

R(x) = F−1
{
R̃(k)

}
=

1

2π

∫ ∞

−∞
R̃(k)e−ikxdk =

1

2π

∫ ∞

−∞

1

1 + sσ2k2
e−ikxdk,

we obtain an expression in the real space. There are two distinct cases depending on the sign of s.

s = +1 In this case, R̃(k) = 1/
(
1 + σ2k2

)
, see Fig. 9.2(a). By parity, symmetry, and change

of variable κ = σk, we get

R(x) =
2

2πσ

∫ ∞

0

1

1 + κ2
cos
(x
σ
κ
)
dκ,

which has the solution [57, 3.723.2] (or is solved by calculus of residues)

R+ (x) =
1

2σ
e−

|x|
σ , (9.27)

where index “+” denotes s = +1, shown in Fig. 9.2(b).
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Figure 9.2: The 1D response function for s = +1, in spectral and real domain for different degrees of
the nonlocality, σ.
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We note that the response function (9.27) is not differentiable at x = 0. This causes some
inaccuracy in the region close to x = 0, but thanks to the convolution integral with the response
function, the deviation from the true solution is only small (see e.g. [43, Fig. 2]).

Fig. 9.2 depicts how a large degree of nonlocality corresponds to a wider profile in the real
space, but a narrower in the spectral domain.

The response function for s = +1 is normalizable, since

∫ ∞

−∞
R+ (x) dx =

1

2σ

∫ ∞

−∞
e−

|x|
σ dx =

1

σ

∫ ∞

0
e−

|x|
σ dx = 1 (9.28)

by [57, 3.310] (or — as usual — by calculus of residues). This is one of the requirements for R1D
+

to tend to a δ-function in the local limit σ → 0.

s = −1 Here, the Fourier transformed response function R̃(k) = 1/
(
1 − σ2k2

)
has singularities

at k = ±1/σ, see Fig. 9.3(a). By applying the same observations of parity, symmetry, and change
of variable as in the s = +1 case, we get

R(x) =
2

2πσ

∫ ∞

0

1

1 − κ2
cos
(x
σ
κ
)
dκ,

which has the solution [57, 3.723.9] (or is solved by calculus of residues)

R− (x) =
1

2σ
sin

|x|
σ
,

where index “−” denotes s = −1, see Fig. 9.3(b).
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Figure 9.3: The 1D response function for s = −1, in spectral and real domain for different degrees of
the nonlocality, σ.

For s = −1, the response function is thus oscillatory and is not normalizable as in the s = +1
case. Also, the nonlocal effect of σ is somewhat less pronounced, but it is still recognizable. Looking
at the curve for σ = 5 in Fig. 9.3(b), we see how it almost engulfs the depicted window, whereas
the σ = 1-curve oscillates rapidly. In the spectral window, the singularities are there for all values
of σ and R̃1D

− (k) tends to zero for large values of |k|, but for the smaller degree of nonlocality, the
width of the center region with values bigger than 1 is expanded.
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9.1.2 Nonlocality in general dimensions

With this introduction in only one dimension to the notion of nonlocality described by response
functions and convolution integrals in Sec. 9.1.1, it is hopefully easier to extend the idea to more
dimensions.

In the one dimensional case, the degree of nonlocality is comparable to the length of some line.
In two dimensions, one needs to consider the areas where the response function and the intensity
profile have significant contributions. As an example, a punctuation mark on this sheet of paper
is local, compared to the area of the entire sheet. A life size picture of for example a Compact
Disc would not be, as it would take up a significant part of the paper area, so a general nonlocal
description would be in order. Compared to the same sheet of paper, any sports field (soccer,
basket ball, cricket, tennis, etc.) would be significantly larger than the piece of paper. Thus, the
strongly nonlocal limit would be appropriate here.

In three dimensions, nonlocality can still be imagined. For instance, a pea would be almost
“local” to a basket ball, but not to a golf ball. The larger basket ball would still be local to, say,
the moon or any celestial object.

The concepts described for the 1D case in Sec. 9.1.1 have their extensions to multiple dimensions
as we shall see. A key issue is that with the introduction of both spatial and temporal variation
implies both diffraction as well as dispersion. This means that new combinations of signs appear,
as we shall see in the following.
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9.2 Quadratic nonlocality

We are considering the standard normalized (all quantities are suitably scaled so that they are
dimensionless) model for χ(2)-materials [50, 51]. These equations are also derived in Appendix C
and the work in this Part is also presented in Ref. [58]. We have

i∂zE1 + 2∂2
xE1 + 2d1∂

2
tE1 +E∗

1E2e
−iβz = 0, (9.29)

i∂zE2 + ∂2
xE2 + d2∂

2
tE2 +E2

1e
iβz = 0, (9.30)

where E1 and E2 denote the slowly varying amplitude of the fundamental wave and the second
harmonic, respectively, and β is the phase mismatch. Important in our context is the sign of β and
the dispersion coefficients d1 and d2. Positive values of d1,2 describe anomalous dispersion, respon-
sible for temporal localization [20, 21, 1], whereas a negative value describes normal dispersion; a
requirement for the existence of X-waves in the linear case [38].

To obtain simple intuitive predictions it is customary to write the SH as E2 = e2 (x, z, t) eiβz,
which transforms the SH equation to

βe2 − i∂ze2 − ∂2
xe2 − d2∂

2
t e2 = E2

1 .

For large phase mismatch, |β| → ∞, we obtain the cascading limit, e2 ≈ E2
1/β, (corresponding to

neglecting all derivatives of e2), and we obtain the nonlinear Schrödinger equation (NLS) for the
FW

i∂zE1 + 2∂2
xE1 + 2d1∂

2
tE1 + β−1|E1|2E1 = 0, (9.31)

with a local Kerr nonlinearity. It is known that X-wave solutions to the NLS (9.31) exist in both
the linear and nonlinear cases, provided that d1 < 0 [38]. The cascading limit corresponds to
assuming that the SH is slowly varying in all coordinates. However, Eq. (9.31) with e2 ≈ E2

1/β,
does not accurately describe all the dynamics of the original Eqs. (9.29)–(9.30). For example, the
NLS equation predicts collapse and modulational instability (MI) for positive β and d1, but it is
well known that collapse does not exist in χ(2)-materials [17, 59, 60], and that the existence of MI
depends on the sign of d2 [3]. In a 1+1D model, it was recently shown that a nonlocal picture
correctly describes these effects and the existence of bound states, while still providing a simple
physically intuitive model [43].

In the nonlocal approach, the only assumption is that |∂ze2| � |βe2|, that is, the SH varies
slowly in z, but without any restrictions on the x or t dependence. Thus, the nonlocal equations
become

i∂zE1 + 2∂2
xE1 + 2d1∂

2
tE1 +E∗

1e2 = 0, (9.32)

−βe2 + ∂2
xe2 + d2∂

2
t e2 +E2

1 = 0. (9.33)

Physical insight into the system can be extracted from the spectral domain, and we therefore apply
Fourier transformation in both the spatial and temporal domain

[
ẽ2 (k, ω) =

∫ ∫
e2(x, t)e

ikxeiωtdxdt ,
where an integration without explicit limits here and henceforth denotes integration from −∞ to
∞], whereby Eq. (9.33) solves to

ẽ2 =
1

β

1

1 + sβσ2 (k2 + d2ω2)
Ẽ2

1 =
1

β
R̃ Ẽ2

1 . (9.34)
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In this equation, tilde denotes Fourier transformation, sβ is the sign of the phase mismatch, and σ
represents the degree of nonlocality

σ = 1√
|β|
. (9.35)

In the simplest case, sβ = d2 = +1, we see how the cascading limit corresponds to the local limit,

σ → 0, and that the Fourier transformed response function approaches a constant, R̃ = 1, which
yields the NLS equation (9.31) discussed above. As we shall see, the case sβ = −d2 = 1 does not
have the same simple local (nor nonlocal) limit.

Substitution of Eq. (9.34) into Eq. (9.32) yields the nonlocal equation for the fundamental

i∂zE1 + 2∂2
xE1 + 2d1∂

2
tE1 + β−1N

(
E2

1

)
E∗

1 = 0, (9.36)

with the nonlocal nonlinearity determined by

N
(
E2

1

)
=

∫∫
R (x− ξ, t− η)E2

1(ξ, η, z)dξdη. (9.37)

Here we see how the nonlinear term is computed by a two dimensional convolution integral over the
squared FW and the response function, R. Compare to the one dimensional case in Eqs. (9.22)–
(9.23). The response function in real space is found through a 2D inverse Fourier transform

R (x, t) =
1

4π2

∫∫
e−ikxe−iωt

1 + sβσ2 (k2 + d2ω2)
dkdω. (9.38)

Note how the linear SH properties are incorporated in the response function.
Looking at Eq. (9.36) we identify the strength of the nonlinearity as

γ =
1

β
= sβσ

2. (9.39)

Interestingly, both the degree of nonlocality and the strength of nonlinearity are determined by σ.
Therefore it is not possible to choose these parameters independently.

In the strongly nonlocal limit, σ � 1, R is assumed to be much broader thanE 2
1 in Eq. (9.37) and

can therefore be approximated by its Taylor expansion. This makes Eqs. (9.36)–(9.37) effectively
linear of the form

i∂zE1 + 2∂2
xE1 + 2d1∂

2
tE1 + β−1R(x, t)E∗

1P1 = 0. (9.40)

Similarly, in the local limit, σ � 1, is assumed to be much broader than R in order to obtain the NLS
equation. For bright solitons P1 =

∫∫
E2

1(u, v)dudv; for dark solitons P1 =
∫∫ [

A2
1 −E2

1(u, v)
]
dudv,

where A1 is the background amplitude.
In the 1+1D case discussed in Sec. 9.1.1, the response function was easily derived and the

approximation provides excellent agreement with the full equations, except for a narrow region
around the origin, where the response function is non-differentiable [43]. In our 2D case, however,
the response function is more complicated. As we shall see, for d2 = +1 a singularity arises at
(x, t) = (0, 0), whereas for d2 = −1 the response function is singular along hyperbolas in the xt-
plane. When singularities arise, the linearization made for the approximation (9.40) is no longer
valid. This has profound effects for the description of the nonlocal system, e.g., neither accessible
solitons [61] nor the cascading limit exist (this is discussed in Sec. 12.2).
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Henceforth, we shall only consider the case of positive phase mismatch, sβ = +1, corresponding
to a self-focusing nonlinearity at FW in the cascading limit. The case with negative phase mismatch,
sβ = −1, and normal SH dispersion, d2 = −1 is completely analogous to the case sβ = +1 and
d2 = −1, but with x and t interchanged. The case sβ = −1 and d2 = +1, which gives a circularly
shaped singularity in the response function, is not considered in the present work.
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10
Simulation considerations

To solve the χ(2)-equations (9.29)–(9.30) we have used a Fourier split step method. This is a
spectral method, in which the nonlinear part is solved with a fourth order Runge-Kutta solver and
the linear part through a Fast Fourier Transform. The method is explained more thoroughly in
Appendix D.

With this computational scheme, we evolve the equations in z with step size dz = 0.001. This
ensures that the power

P =

∫ ∫ (
|E1|2 + |E2|2

)
dxdy (10.1)

is constant, with a relative deviation of less than 10−10. The simulation box is −25 < x, t < 25,
divided into 256 × 256 grid points unless otherwise noted (see Table D.1).

As mentioned previously, using a Gaussian input beam profile, X-waves have been shown to
spontaneously generate [28, 19]. We also use a Gaussian initial condition

E1(x, t, z = 0) = A e−(x2+t2)/B2

, (10.2)

where B determines the diameter of the pulse, usually B = 3. We assume no seeding (in the sense
that E2(x, t, z = 0) = 0), and we typically use an amplitude of A = 5 to ensure a sufficiently strong
nonlinear effect.

10.1 Linear and nonlinear length scales

A crucial knowledge to have when conducting numerical (and real!) experiments in nonlinear
optical crystals is the linear and nonlinear length scales. These are numbers that quantify the
effects originating from the linear dispersive/diffractive and the nonlinear terms, respectively. The
numbers, LD and LNL, measures what propagation distance is necessary to observe the various
phenomena. Roughly speaking, at propagation distance z � LD � LNL, both the linear and
nonlinear effects are negligible and the input beam profile will therefore be almost constant. If z is
of comparable size as the dispersion/diffraction length, z ≈ LD, but z � LNL, we begin to observe
dispersive and diffractive effects, but without significant nonlinear disturbances. Conversely, at
some z � LNL, but z � LD (in some other medium!), we will see a behavior governed almost
exclusively by the nonlinear terms of the equations.

It is therefore important to know these lengths scales in a given experiment, because otherwise
one is not able to say whether any observation is due to linear, nonlinear or both effects. In our
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case, looking for stationary solitonic solutions, we wish to be well into both the linear as well as
the nonlinear regime, because the existence of these particular entities depends on an interplay
between linear and nonlinear effects.

There is some freedom allowed in the definition of these lengths scales. Often, the disper-
sion/diffraction length is defined as the propagation distance at which the width of the pulse has
broadened by a factor of 2 or

√
2 [62], but equally as common is that the maximum intensity or

amplitude drops by a similar factor. The nonlinear length scale can be used analogously, but may
also be defined through the phase shift. In this way, LNL may correspond to the propagation length
at which the phase of the initial beam has changed by, say, π.

In the following Sections, we will define the linear and nonlinear length scales. We will assume
a Gaussian input beam profile as in Eq. (10.2) where A is the amplitude and B the spatial and
temporal width of the pulse. We also assume an unseeded SH. It is no coincidence that we choose
this initial condition, as nonlinear X-waves have been shown to spontaneously generate [28, 19].
Moreover, it provides some simplifications to the considerations made in the following Sec. 10.1.1
and 10.1.2.

10.1.1 The linear length scale

To derive the linear dispersion/diffraction length scale, we consider Eqs. (9.29)–(9.30) without the
nonlinear terms. Thus, there is no coupling between the FW and the SH, and since we consider
the unseeded case, we need only look at the FW for now. The equation to investigate is

i∂zE1 + 2∂2
xE1 + 2∂2

tE1 = 0, (10.3)

so we are assuming d2 = +1 without loss of generality. We solve Eq.(10.3) by 2D Fourier transfor-

mation Ẽ1 = 1√
2π

2

∫∫
E1(x, t, z)e

−ikxe−iωtdxdt. This is inserted in (10.3) to give

i∂zẼ1 = −2i
(
k2 + ω2

)
Ẽ1,

which solves in the spectral domain to

Ẽ1(k, ω, z) = Ẽ1(0)e
−2i(k2+ω2)z,

where Ẽ1(0) is the Fourier transform of the initial condition. This becomes

Ẽ1(0) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
A e−(x2+t2)/B2

e−ikxe−iωtdxdt =
A

2π

[∫ ∞

−∞
e−( x

B )
2

e−ikxdx

]
, (10.4)

which by the equality
∫∞
0 eax2

cos bxdx = 1
2

√
π
a e

b2/4a solves to [57, 3.896.4]

Ẽ1(0) =
AB2

2
e−

k2
+ω2

4
B2

. (10.5)

An inverse 2D Fourier transform, E1(x, t, z) = 1√
2π

2

∫∫
Ẽ1(0)e

ikxeiωtdkdω, on (10.4) with the ex-

pression (10.5), then yields

E1(x, t, z) =
AB2

4π



√

π
B2

4 − 2iz

2

exp

(−(x2 + t2)

B2 − 2iz

)
 .
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This is trivially rearranged into a complex number in ordinary form z = a+ ib. For the purpose of
finding the diffraction/dispersion length, however, we do not need to now the value of the resulting
factor to the exponential function as we are looking for a relative width broadening. Therefore it
suffices to consider

E1 ∝ C exp

(
− r2

B4 + 64z2
B2

)
, (10.6)

where the spatio-temporal radius r =
√
x2 + t2 has been introduced, and where the prefactor as

well as an oscillating term has been incorporated into C. This can be chosen so that at z = 0, the
width of the pulse is r0 = B. We define the linear diffraction/dispersion length as the propagation
distance at which this width has doubled: r0 → 2r0. Then the diffraction/dispersion length is a
matter of solving the equation

r0|z=0 = 2r0|z=LD
⇐⇒ r2

0 = (2B)2 = B2 +
64z2

B2

and we get the linear diffraction/dispersion length, z = LD, as

LD =

√
3

8
B2 (10.7)

We note that because of the unseeded SH initial condition, we need not to look for any linear length
for the SH.

10.1.2 The nonlinear length scales

Just as the nonlinear terms were neglected when determining the linear length in Sec. 10.1.1, we
disregard the linear terms when looking for the nonlinear length, LNL. Thus, we are considering
the equations

i∂zE1 +E∗
1E2e

−iβz = 0, i∂zE2 +E2
1e

iβz = 0. (10.8)

Already it is apparent that the search for the nonlinear length scale is more difficult than in the linear
case, where we could use Fourier transformation. We note that the total intensity I = |E1|2 + |E2|2
of (10.8) is constant. This result is obtained by multiplying the FW and SH (10.8) with the
respective complex conjugates. This gives

iE∗
1∂zE1 + (E∗

1)2E2e
−iβz = 0, iE∗

2∂zE2 +E2
1E

∗
2e

iβz = 0

and since ∂z|E1|2 = E∗
1∂zE1 +E1∂zE

∗
1 we find

∂z|E1|2 = (E∗
1)2E2e

−iβz − iE2
1E

∗
2e

iβz,

∂z|E2|2 = iE2
1E

∗
2e

iβz − (E∗
1)2E2e

−iβz = −∂z|E2|2,

so ∂z

(
|E1|2 + |E2|2

)
= 0.

We consider again the nonlocal approximation, E2(z) = e2(z)e
iβz (without the linear terms,

the fields are constant in x and t), and so the SH equation becomes i∂ze2 − βe2 +E2
1 = 0.

In the local limit, |β| � 1 and we obtain the nonlinear Schrödinger equation

i∂zE1 +
1

β
|E1|2E1 = 0. (10.9)
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In the slowly varying envelope approximation we can treat |E1|2 as constant, in which case (10.9)
solves to

E1(z) = E1(0) exp

(
i
1

β
|E1|2z

)
. (10.10)

From this expression, there is no amplitude variation with z. We therefore define the nonlinear
length scale in the local (cascading) limit as the propagation distance corresponding to a phase shift
of π. From (10.10) we see that this occurs for z = LNLS

NL

LNLS

NL
=
π|β|
A2

=
π

σ2A2
. (10.11)

In terms of the degree of nonlocality, this approximation is valid for σ � 1.
In another limiting case, the case of phase matching, β = 0, and the equations (10.8) become

∂zE1 = iE∗
1E2, ∂zE2 = iE2

1 . (10.12)

With the solution Ansätze,

E1(z) = A1sech(Bz), and E2(z) = iA2 tanh(Bz),

insertion in (10.12) yields

−A1Bsech(Bz) tanh(Bz) = −A2
1A2sech

2(Bz) tanh(Bz), A2Bsech2(Bz) = iA2
1sech

2(Bz),

from which A2 = B and A2
1 = B2. Then I = |E1|2 + |E2|2 = B2 and the solutions (10.1.2) become

E1(z) =
√
Isech

(√
Iz
)
, E2(z) = i

√
I tanh

(√
Iz
)
.

In this case it is more natural to define the nonlinear length as the propagation distance at which
the FW intensity is halved, |E1|2 = I/2. It is found by solving the equation sech2

(√
Iz
)

= 1
2 which

by the definition of the inverse hyperbolic secant function is easily solved to

Lint
NL

∣∣
β=0

=
1√
I

ln
(√

2 + 1
)
. (10.13)

This approximation is valid for σ � 1 and for A =
√
I = 5, we have Lint

NL

∣∣
β=0

≈ 0.1763.
In the general case, no assumptions are made on β, and we look for solutions of the form

E1(z) = A1e
iφ1 , E2(z) = A2e

iφ2eiβz,

and also define θ = φ2 − 2φ1 (inspired by [63]). Here, both the amplitudes A1,2 and phases φ1,2

are functions of z, and for simplicity we denote differentiation with respect to z by a dot in the
following. Insertion in (10.8) together with the nonlocal approximation yields

iȦ1 −A1φ̇1 +A1A2e
iθ = 0, iȦ2 −A2φ̇2 − βA2 +A2

1e
−iθ = 0, (10.14)

Separating into real and imaginary parts gives us

Ȧ1 +A1A2 sin θ = 0, −Ȧ1φ̇1 +A1A2 cos θ = 0,

Ȧ2 −A2
1 sin θ = 0, −Ȧ2φ̇2 − βA2 +A2

1 cos θ = 0.
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The equations for φ̇1,2 are condensed into

θ̇ = φ̇2 − 2φ̇1 =

(
A2

1

A2
− 2A2

)
cos θ − β.

Again, the total intensity I = A2
1 + A2

2 is conserved, since İ = 2A1Ȧ1 + 2A2Ȧ2 = . . . = 0 (by
insertion). The intensity is not the only conserved quantity inherent in Eqs. (10.14). A quantity
of the form H =

(
C1A2 + C2A

3
2

)
cos θ +A2

2 is introduced. To have it conserved, it is differentiated
and equaled to zero, which solves to

H = 2
(
A2

2 − I
)
A2 cos θ + βA2

2. (10.15)

This means we have the identities

Ȧ1 = −A1A2 sin θ I = A2
1 +A2

2

Ȧ2 = A2
1 sin θ H = 2

(
A2

2 − I
)
A2 cos θ + βA2

2

θ̇ =
(

A2
1

A2
− 2A2

)
cos θ − β φ̇1 = A2 cos θ

(10.16)

These will allow us to determine an expression for the nonlinear length scale, even though the road
is still somewhat cumbersome. We define u ≡ A2

2, which differentiated with respect to z gives
u̇ = 2A2

(
I −A2

2

)
sin θ. Squaring this expression and inserting the values from (10.16) gives us a

third degree polynomial in u:

u̇2 = 4u3 −
(
8I + β2

)
u2 +

(
4I2 + 2Hβ

)
−H2.

Considering unseeded initial conditions, A2(0) = 0 and thus also u = 0 and H = 0. The polynomial
then has a root u0 = 0 and u1 > 0 and u2 < u1 and can be written

u̇2 =
[
4u2 −

(
8I + β2

)
u+ 4I2

]
u = 4 (u− u0) (u− u1) (u− u2) ≡ f(u),

PSfrag replacements

f(u)

u1 u2
u

0

Figure 10.1: The polynomial f(u).

see Fig. 10.1. By examining the derivative of f , we
find that f(u) is positive between the roots u0 = 0 and
u1 > 0 and that these roots are

u1 =
1

8

(
8I + β2 −

√
16Iβ2 + β4

)
, (10.17)

u2 =
1

8

(
8I + β2 +

√
16Iβ2 + β4

)
. (10.18)

We therefore have

u̇ = 2
√
u (u− u1) (u− u2). (10.19)

Defining u ≡ u1a
2, which is valid for positive u, (10.19) may be written

ȧ =
√

(1 − a2) (u2 − u1a2) =
√
u2

√
(1 − a2) (1 − k2a2), (10.20)

where the constant k =
√
u1/u2 is between 0 and 1. By separation of variables, (10.20) a is found

by ∫ z

0

√
u2 dw =

√
u2 z =

∫ a

0

1√
(1 − v2) (1 − k2v2)

dv (10.21)

so a = sn
(√
u2z; k

)
; the Jacobi elliptic sn-function of modulus k2. Then

u(z) = u1 sn2(
√
u2z; k) , k =

√
u1

u2
, (10.22)

with u1 and u2 given by (10.17) and (10.18), respectively.
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Intensity-based nonlinear length, LNL = Lint
NL

We are now able to give a definition of the nonlinear length scale in the case of general phase
mismatch, β. u is the square of the SH amplitude, so the definition of the nonlinear length as the
propagation distance at which the SH reaches half the total intensity, u

(
Lint

NL

)
= I/2, can be found

by solving the equation u1 > I/2. From (10.17)–(10.18) we note that we must impose the restraint
|β| <

√
2I in order to have real solutions. This corresponds to a minimum degree of nonlocality,

σNL, below which this approach is not valid:

σNL
2 =

1√
2I
. (10.23)

For A =
√
I = 5, σNL ≈ 0.3761. We note that this choice of threshold value is somewhat arbitrary,

as one could use other definitions of the relevant intensity based nonlinear length scale. Now, we

simply solve u = u1a
2 = I/2, which gives us a =

√
I

2u1
as the upper limit in the integral (10.21).

Thus

Lint
NL

= 1
u2

∫ q

I
2u1

0

1√
(1 − v2) (1 − k2v2)

dv, (10.24)

with u1,2 given by (10.17)–(10.18). We note that in the strongly nonlocal limit, σ → ∞, u1,2 → I,
and k tends to unity, and the expression (10.13) is reencountered. Away from phase matching,
σ < σNL, the SH intensity does not reach half the total intensity and Lint

NL
is therefore undefined.

Phase shift-based nonlinear length, LNL = Lphase
NL

The expression (10.24) is not the only choice of a LNL definition. From the relationships in (10.16),
we see that the phase change of the FW now can be written (we still have H = 0)

dφ1

dz
= A2 cos θ = A2

H− βu

2 (I − u)
=
β

2

u

I − u
=
β

2

∣∣∣∣
E2

E1

∣∣∣∣
2

, (10.25)

with u given by (10.22) and u1,2 by (10.17) and (10.18). We note that this is an oscillatory function.

Here, we can reuse the nonlinear length definition from the NLS case (10.11) on page 82: The
propagation distance that corresponds to a phase shift of π for the FW,

∣∣∣φ1

(
Lphase

NL

)∣∣∣ = π =
β

2

∫ Lphase
NL

0

u

I − u
. (10.26)

Then we can numerically integrate Eq. (10.25) to sample values of z, until the outcome π is found.

To summarize, we have the linear dispersion/diffration length from (10.7), LD, the nonlinear length

defined from phase variation from (10.26), LNL = Lphase
NL , the nonlinear length defined from intensity

variation from (10.24), LNL = Lint
NL

, with the limiting value LNL = Lint
NL

∣∣
β=0

from (10.13) and finally

the amplitude depending limiting value in the cascading NLS case LNL = LNLS

NL
from (10.11). All

are shown in Fig. 10.2.

For σ > σNL the nonlinear length is determined by the intensity variation, LNL = Lint
NL

. For
σ < σNL the nonlinear length is determined by the phase, LNL = Lphase

NL . Thus, in our simulations
the nonlinear length is approximately LNL = 0.18 for σ > 0.38 and LNL = Lphase

NL > 2.0 for σ < 0.38.
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Figure 10.2: The dependence of the nonlinear length on σ. Based on the intensity variation, the NLS
approximation (10.11) is valid in the local case, for σ > σNL ≈ 0.38 (with A = 5), we have the expression
(10.24). Based on phase modulation, one should use (10.26) which is valid for all degrees of nonlocality.

Physically, one does not experience such an abrupt jump; rather it implies that the other measures
of LNL becomes important as well. Interestingly, we find that the nonlinear length related to the
phase modulation is always longer than the linear diffraction length. For σ < 0.2, LNLS

NL
is a good

approximation of the nonlinear length Lphase
NL . At phase matching, β = 0, the exact solution to

Eq. (10.25) has no phase variation and correspondingly the nonlinear length Lphase
NL must go to

infinity for σ → ∞, which is confirmed in Fig. 10.2.
The propagation length should always be viewed relative to these length scales, e.g. stationary

states can only be said to be achieved for propagation lengths longer than both. For our parameter
values we have LD ≈ 1.95 and for σ = 0.2 [σ = 0.5] we have Lphase

NL (0.2) ≈ 3.14 [Lphase
NL (0.5) ≈ 0.50].
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11
Accessible nonlocal

(2+1)D solitons,
anomalous SH dispersion

In the case of anomalous SH dispersion, d2 > 0, the Fourier transformed response function (9.34)
is positive definite (since we consider sβ = +1) and the response function in real space is found by
computing the integral (11.1)

R+ (x, t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

1

1 + σ2 (k2 + ω2)
e−ikσx̄e−iωσt̄dkdω, (11.1)

with β = 1/σ2, t̄ = t/σ and x̄ = x/σ. We first solve the inner integral:

Ik =

∫ ∞

−∞

1

1 + σ2 (k2 + ω2)
e−ikσx̄dk. (11.2)

The integral in Eq. (11.2) is simplified using the definition of the complex exponential function and
that the integral over the odd function sin(x̄k) is zero. Also, due to the parity of the cosine function,
the sign of x̄ cannot have any effect and we must therefore use its absolute value. Symmetry and
substitution u = σk then give us

Ik =
2

σ

∫ ∞

0

cos(σ|x̄|k)
√

1 + σ2ω22
+ σ2k2

d (σk) , (11.3)

which has the solution [57, Eq. 3.723.2]

Ik =
2

σ

π

2
√

1 + σ2ω2
e−|x̄|

√
1+σ2ω2

. (11.4)

This is now inserted in the outer integral of (11.1), and we also use the parity of the complex
exponential function to reduce it to

R+ (x, t) = 2
1

4πσ2

∫ ∞

0

cos(|t̄|σω)√
1 + σ2ω2

e−|x̄|
√

1+σ2ω2

d(σω), (11.5)
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where we have used the substitution v = σω. The result of this integral is found in the literature
and has the solution [57, Eq. 3.961.2]:

R+ (x, t) =
1

2πσ2
K0

(
1

σ

√
t2 + x2

)
, (x, t) 6= (0, 0), (11.6)

where we have returned to the “un-barred” variables and where K0 is the modified Bessel function
of the second kind, see Fig. 11.1. We note that this solution may also be found through integration
in the complex plane.
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Figure 11.1: Response function R+(x, t) for anomalous SH dispersion given by Eq. (11.6). The degree
of nonlocality is σ = 1 in this plot.

We note how σ governs the degree of nonlocality of the solution (see Fig. 11.3) and also the
similarity to the one dimensional response function R(x) = (2σ)−1 exp(−|x|/σ) (9.27). The term

“similarity” is used here in the sense that the shape of the current Bessel K0

(√
t2 + x2

)
-function

somewhat resembles the revolution of the function exp (−|x|/σ) around the axis x = 0, except that
we now have a singularity at origo.

Note the contour plots in Fig. 11.2, showing the effect of σ on R+, and compare with the contour
plots of the dipole-dipole interaction in Fig. 3.4 on page 21 in Part I. The same 50 equidistant
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Figure 11.2: Contour plots of the response function R+(x, t) for different σ. 50 equidistant contours
from 0.1 to 5. Compare with Fig. 3.3 on page 20.
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contours are plotted in all cases (a)–(c) of Fig. 11.2, and we see how the effect is very local for
σ = 0.1, but widens to fill the entire window at σ = 10. It should be apparent how the nonlocality
is in play in both cases — in the molecular model, the geometry introduces a new “branch” in the
contour plots of the long-range interaction of the DNA model; here, the nonlocality is a radially
symmetric effect.

In the strongly nonlocal limit, as σ → ∞, the response function broadens to eventually fill
the entire x − t plane, see Fig. 11.3. In this limit, Eqs. (9.32)-(9.33) become effectively linear,

−5 0 5
0

0.5

1

σ=10

σ=1

σ=0.1

t

2 
π 

σ2  R
+

Figure 11.3: The effect of nonlocality, σ, on the response function R+(x, t) for anomalous, d2 = 1 SH
dispersion. The plot is made for constant x = 0.

as the response function can be approximated by its series expansion and reduced to the form of
Eq. (9.40). Thus the so-called accessible solitons (see below and Ref. [61]) of the linear system
(9.40) also exist in this 2+1D case. In the 1+1D case, the response function was non-differentiable
in origo [43], whereas in the 2+1D case we see that it is undefined in origo. Nevertheless, the
characteristics of the Bessel K0-function allows us to normalize the response function and thus find
a valid expression of the form (9.40).

Conversely, in the local limit, σ → 0, corresponding to the cascading limit, the response function
approaches a δ–function, yielding the NLS equation (9.31) for the FW. We note that for large
arguments of Bessel K0-function we have the expansion [57, 8.451.6]

Kν(z) =

√
π

2z
e−z

[
n−1∑

k=0

1

(2z)k

Γ
(
ν + k + 1

2

)

k!Γ
(
ν − k + 1

2

) + θ3
Γ
(
ν + n+ 1

2

)

(2z)nn!Γ
(
ν − n+ 1

2

)
]
, (11.7)

with some θ3 depending on the argument of z. For ν = 0 we have the Γ-functions [57, 8.339.2 and
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8.339.3]1

Γ

(
1

2
+ k

)
=

√
π

2k
(2n− 1)!!

Γ

(
1

2
− k

)
= (−1)k 2k√π

(2n− 1)!!

and thus

K0(z) =

√
π

2z
e−z

[
Γ
(

1
2

)

Γ
(

1
2

) +
1

2z

Γ
(

3
2

)

Γ
(
−1

2

) + · · ·
]
≈
√

π

2z
e−z

[
1 − 1

2z

1
2

√
π

−2
√
π

]
.

With the argument 1
σ

√
t2 + x2 we then get

R+(x, t) =
1√
8π

1
4
√
t2 + x2

1

σ3/2
e−

√
t2+x2/σ

[
1 − 1

8

σ√
t2 + x2

+ · · ·
]
, (11.8)

and we see that for (x, t) 6= (0, 0), R+ tends to zero for decreasing σ; only at (x, t) = (0, 0) the
response function grows to infinity. Also, despite the singularity at origo, the indefinite integral of
the modified Bessel function of the second kind, K0, is convergent with the value 2π. This is most
easily seen by converting to polar coordinates.

∫ ∞

−∞

∫ ∞

−∞
R+(x, t)dxdt =

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
K0

(
1

σ

√
t2 + x2

)
dxdt

=

∫ 2π

0

∫ ∞

0

1

2πσ2
K0

(
1

σ
ρ

)
ρdρdφ

=

∫ ∞

0

2π

2πσ2
K0

(
1

σ
ρ

)
ρdρ

= 1, (11.9)

since we have [57, Eq. 6.561.16]

∫ ∞

0
xµKν (ax) = 2µ−1a−µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)

which here gives us ∫ ∞

0
ρK0

(
1

σ
ρ

)
=

1

σ2
Γ (1)2 =

1

σ2
.

This ensures that the normalization condition
∫ ∞

−∞

∫ ∞

−∞
R+ (x, t) dxdt = 1 (11.10)

is fulfilled, and we have thus shown that R+ indeed approaches a δ–function in the local limit. In
other words, the conventional cascading limit, e2 = E2

1/β, applies also in this 2+1D case, yielding
the 2+1D NLS Eq. (9.31).

Originally, the term “accessible solitons” was used to describe the strongly nonlocal linear limit
(9.40) in the case of anomalous SH dispersion [61]. We are using the term accessible nonlocal

1With the “double faculty” n!! = n · (n − 2) · (n − 4) · . . . · 3 · 1.
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solitons in a broader sense here, where it refers to d2 > 0 and the whole regime of σ-values, because
in this case the response function is simple and simple equations and physical explanations may be
obtained in both the local and nonlocal limit. As we shall see in Sec. 12, this is in contrast to the
normal SH dispersion case, d2 < 0, where these properties are not present. For normal dispersion
we therefore use the term inaccessible nonlocal solitons.

Based on the form of the equation for the FW, two separate cases can be considered, namely
the FW dispersion being normal or anomalous, while the SH dispersion is d2 = +1. These are
discussed in the subsections below.

11.1 Light bullet case, anomalous FW and anomalous SH dispersion

The case of normal dispersion in both fields, d1 > 0 and d2 > 0, is an augmented version of FW light
bullets [22, 24]. The FW case was investigated in a nonlocal setting, where the response function
was found to be shaped like exp (−|x|/σ) (Eq. 9.27 and [43]); σ being the degree of nonlinearity.
This is a good starting point for our investigations, as the FW dynamics is well understood. The
present setting is expected to give a somewhat similar response, keeping in mind, of course, that
we now have an additional dimension to consider.

11.1.1 Weak nonlocality, σ � 1

As discussed in the beginning of this Chapter, the weakly nonlocal limit can be approximated by
the NLS equation, and in this way we have something to compare our results with. In Fig. 11.4,
the evolution of the FW is depicted for σ = 0.1 for propagation lengths z = 0, 2 and 4. As a low
degree of nonlocality also implies a low degree of nonlinearity, we see a pulse, which spreads in a
fashion similar to the on of the linear case. A small degree of nonlocality corresponds to a small
width of the response function, σ (here σ = 0.1), relative to the initial beam width, B (here B = 3).
With these values, the nonlinear length is about LNL = 12.6 (outside of the range in Fig. 10.2), so
not even one third of a nonlinear length has been traversed and no nonlinear effect seen. z = 4
corresponds to two linear dispersion lengths, LD ≈ 1.95, and the dispersion is apparent in Fig. 11.4.
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Figure 11.4: Evolution of the FW intensity in the cascading NLS limit for σ = 0.1 and shown at
propagation distance z = 4. d1 = 1, and d2 = 1 for z = 0, 2, 4. Parameter values are A = 5, B = 3.

In the NLS limit, the SH is slaved to the FW. Thus, the SH dispersion parameter, d2, should
be of no importance for outcome of the simulations. This is confirmed in Fig. 11.5, where the top
row depicts the result of a pure NLS equation and the bottom row the outcome of a simulation of
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Eqs. (9.29)–(9.30) for σ = 0.1 at propagation length z = 4. We show not only the case d1 = d2 = +1,
but all combinations of the dispersion parameters d1 and d2. We use contour plots instead of the
surface plot in Fig. 11.4 for easier comparison. Unless stated otherwise, we use logarithmically
spaced contour lines as we will be looking for small amplitude phenomena. In Fig 11.5, the lowest
contour is at |E1|2 = 10−3 with 25 contours in total up to the maximum intensity of the plot. Note
that the lower right plot in Fig. 11.5 is a contour version of the right surface plot in Fig. 11.4.
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FW from the χ(2)-equations
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Figure 11.5: Comparison between the cascading NLS limit (9.31) and the full equations (9.29)–(9.30)
solved for σ = 0.1 and the FW intensity is shown at propagation distance z = 4. Top row: NLS. Bottom
row: Full equations. d1 = 1, and d2 = 1 for z = 0 to z = 4. 25 contour lines from 10−3 to the maximal
intensity. Parameter values are A = 5, B = 3.

As expected, the NLS approximation corresponds well to the full solutions, and we see no
difference between the NLS cases with different d2. We stress that the cascading limit is a local
description of the dynamics; in the cascading limit, the field values at a given point are determined
only by its values very close to that point. This is beautifully represented by the δ-limit of the
response function, R+, shown in the previous Section 9.2.
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11.1.2 Strong nonlocality, σ � 1
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Figure 11.6: Comparison between the cascading NLS limit (9.31) and the full equations (9.29)–(9.30)
for σ = 0.5 and z = 1 in the light bullet case, d1 = d2 = 1. On the left is the NLS solution, in the middle
the FW of the full solution and to the right the SH of the full solution. 25 contour lines from 10−3 to the
maximal intensity. Parameter values are A = 5, B = 3.

For just a slightly larger degree of nonlocality, however, the situation changes drastically; see
Fig. 11.6. Here the degree of nonlocality is σ = 0.5 and we see how the difference between the NLS
on the left and the FW calculated from the full χ(2)-equations in the middle is very pronounced, even
for this seemingly modest increase of nonlocality. But now the nonlinear length is LNL = Lint

NL
≈ 0.18,

and already at z = 1, 5 nonlinear lengths have been traversed. The simulations are halted here
(z = 1) to avoid boundary effects. Considering the SH on the right we see that the expression
e2 = E2

1/β is clearly invalid, as the resemblance between the shape of the fields is minimal.
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Figure 11.7: The evolution of the FW profile, |E1|2, in the strongly nonlocal light bullet case, σ = 10,
d1 = 1, and d2 = 1 for z = 0 to z = 4. Parameter values are A = 5, B = 3.

With a stronger degree of nonlocality and nonlinearity, σ = 10, we abandon the NLS limit and
consider now the outcome of simulations with the full equations (9.29)–(9.30). For this degree of
nonlocality, the nonlinear length calculated from the intensity becomes Lint

NL
≈ 0.18, while both the

linear length, LD, and the nonlinear phase length are close to 2. The evolution of FW intensity
in Fig. 11.7 shows a temporary increase before a stationary state is achieved. We see a strong
resemblance with the ringing structures found in Ref. [22] for strong nonlinearities. Since both the
FW and the SH dispersion are positive, we expect the shape of the corresponding intensities to be
similar. This is confirmed in Fig. 11.8.
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Figure 11.8: The evolution of the FW and SH intensities in the strongly nonlocal light bullet case,
σ = 10, d1 = d2 = 1 for z = 2 and z = 4. Parameter values are A = 5, B = 3. Contour plots with 25
logarithmically spaced lines from 10−3 to the maximal intensity.

In conclusion, the light bullet case has for shown that the NLS approximation seizes to be valid
already at quite small degrees of nonlocality. The simulations with anomalous dispersion in both
the FW and SH showed correspondence with previous work on light bullets in the FW regime
[22, 64].
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11.2 Modified X-wave case, normal FW and anomalous SH dispersion

We now consider a case of mixed dispersion effects, in the sense that the FW and SH dispersion
parameters have opposite sign. We denote the case of normal FW (d1 = −1) and anomalous SH
(d2 = +1) dispersion the modified X-wave case because the linear part of the FW equation supports
X-waves for d1 < 0 [27, 38, 65] and nothing is suggested otherwise based on the cascading limit.
However, we suspect that the inclusion of the SH field will blur this effect somewhat because the
SH does not support a linear X-wave for d2 > 0. Hence we have two effects counteracting each
other. For example a sufficiently broad response function could make the branches of an X-wave
in the FW feel each other and thereby either suppress the X-wave (by blurring it too much) or e.g.
alter its cone angle.

11.2.1 Weak nonlocality, σ � 1

We have already shown that the NLS equation of the cascading limit is an invalid approximation
of the χ(2)-equations, even for seemingly modest values of σ. Nevertheless, the NLS is known to
support X-waves (see e.g. [38]). We therefore perform yet another simulation close to the cascading
limit, but this time with d1 = −1.
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Figure 11.9: Intensity profiles at different propagation lengths for the modified X-wave case with a modest
degree of nonlocality σ = 0.5. Parameter values are: A = 5, B = 3, d1 = −1, and d2 = +1. NLS FW
Eq. (9.31) (left). Full equations (9.29)–(9.30) solved for |E1(x, t)|2 (center) and |E2(x, t)|2 (right). 15
contour lines from 0.001 logarithmically separated to the maximum intensity.
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In Fig. 11.9 we again compare the full model with the cascading limit NLS equation for σ = 0.5.
Clearly, the cascading limit no longer provides a good approximation as for σ = 0.1 in Fig. 11.5
(second column from the left in Fig. 11.5 on page 92) and simulations are stopped at z = 2. In
agreement with Ref. [38] Fig. 11.9 shows that the NLS equations supports X waves. Here it is more
clearly formed than in the case σ = 0.1 in Fig. 11.5, because the nonlinear length for σ = 0.5 is
now LNLS

NL
= 0.5, which is much shorter than for σ = 0.1, where the nonlinear length is as large

as LNLS

NL
= 12.6. In contrast, no X is observed in the full model for σ = 0.5 (middle column of

Fig. 11.9). This is supported by the appropriate nonlinear phase length LNL = Lphase
NL ≈ 2.0 and it

is just on the border where the nonlinear intensity length sets in.

11.2.2 Strong nonlocality, σ � 1

The result of the same simulation, d1 = −1 and d2 = +1, but with a strong nonlocality, σ = 10, is
shown in Fig. 11.10. The linear length is as before LD = 1.95, but in this case we should compare the
propagation distance to the nonlinear length scale originating from the intensity, LNL = Lint

NL
≈ 0.2.

At z = 4, we have therefore evolved about 20 nonlinear lengths, and it is clear that the nonlinear
contributions have had effect, as we observe biconical emission of radiation and that an X-shape is
formed.
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Figure 11.10: Intensity profile of the FW, |E1(x, t)|2, at different propagation lengths for the modified
X-wave case for σ = 10. Parameter values are: A = 5, B = 3, d1 = −1, and d2 = +1. 25 contour lines
from 0.001 logarithmically separated to the maximum intensity.

From the lengths scales shown in Fig. 10.2 it is apparent that σ should be larger than 1 to
obtain a strong nonlinear and nonlocal attractor, with a small nonlinear length determined by
the amplitude, LNL = Lint

NL
≈ 0.2. In Fig. 11.11 we continue the propagation out to z = 8,

corresponding to 4 diffraction lengths and 40 nonlinear lengths and we compared to the profile
of the SH. In order to avoid problems with radiation reaching the boundaries, this simulation is
made on a −50 < x, t < 50 grid with 360 × 360 grid points. An X-shape in the FW is now clearly
observed. In contrast, an X is not formed in the SH and thus a stationary state has not yet been
reached. For d2 = +1 we note that the response function is not X-shaped and so the formation
of the X in the FW is counteracted by the lack of X in the SH. For the parameters considered,
the FW X prevails. We note that compared to the outcome of a simulation with d1 = d2 = −1 of
Sec. 12.2, this X-shape appears somewhat broader. It seems that the SH response function drives
this effect.

The degree of nonlocality, σ, appears in the nonlinear length scale only because it also de-
termines the strength of the nonlinearity, γ, not because it describes the width of the response
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Figure 11.11: Intensity profiles for the (left) FW, |E1|2, and (right) SH, |E2|2, at propagation lengths
(top) z = 4 and (bottom) z = 8. Parameter values are: A = 5, B = 3, d1 = −1, d2 = +1, and σ = 10,
i.e., strongly nonlocal. 25 contour lines from 0.005 logarithmically separated to the maximum intensity.

function. However, the width of the response function is clearly important, because it determines
the transverse “coupling length” over which parts of the beam can feel each other. Because the
nonlinearity depends on σ2, we expect that σ at least should be larger than 1 to generate X-waves,
because then the nonlinearity is at least of the same order of magnitude as the nonlocality. This is
also confirmed in the simulations with σ = 0.5 and 10, presented in Figs. 11.9–11.11.

In any case, the observation of an X-wave for σ = 10 represents the first observation of X-wave
generation in quadratic nonlinear materials with anomalous dispersion at the SH.
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The relative magnitudes of the FW and SH can be appreciated in Fig. 11.12. They are of the
same order. As is expected, the X wave effect is small compared to the center intensity. It is
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Figure 11.12: The FW and SH profiles, |E1|2, in the strongly nonlocal modified X wave case, σ = 10,
d1 = −d2 = −1 at z = 8. Parameter values are A = 5, B = 3.

somewhat more informative to view a contour plot with logarithmically spaced level curves (as has
been done previously). In Fig. 11.13, a contour plot is superimposed on a surface plot as the one
in Fig. 11.12(a) and viewed from above.
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Figure 11.13: The FW profile, |E1|2, in the strongly nonlocal modified X wave case, σ = 10, d1 = −d2 =
−1 at z = 8. Parameter values are A = 5, B = 3. Surface plot viewed from above with a contour plot
with 10 logarithmically spaced lines from 0.005 to the maximal intensity.
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normal SH dispersion

In the case of normal SH dispersion, d2 < 0, with positive β, the situation is fundamentally different
from the anomalous dispersion case discussed in the previous Section 11. The Fourier transformed
response function is now (sβ = −d2 = +1)

R̃− (k, ω) =
1

1 + σ2 (k2 − ω2)
. (12.1)

Clearly, R̃− now has an X-shape, as illustrated in Fig. 12.1.
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Figure 12.1: Response function in the Fourier domain, eR−(k, ω), for d2 = −1, sβ = 1 and σ = 1. Note
that the function is singular for ωσ = ±

√
1 + σ2k2.
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The response function in real space, R−, is found analogously to R+ in Sec. 11. In this case,
the integration is carried out with respect to ω first, and with [57, Eq. 3.723.9] we get

R− (x, t) =
1

4πσ

∫ ∞

0

sin(|t̄|
√

1 + σ2k2)√
1 + σ2k2

e−|x̄|σ2k2

dk. (12.2)

Through substitution and parity, we see from [57, 3.876.1] that the response function is piecewise

R− (x, t) =

{
1

4σ2 J0

(
1
σ

√
t2 − x2

)
for |x| < |t|

0 for |x| > |t|
, (12.3)

where J0 is the Bessel function of the first kind of zeroth order. We see that the response function
in the normally dispersive case is oscillatory in nature and with an X-shaped profile (see Fig. 12.2).
The X-shape is given by the lines |x| = |t| corresponding to where the Fourier transformed response
function, R̃−, is singular. The cone angle can be determined by linear analysis [33].
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Figure 12.2: The response function R−(x, t) [Eq. (12.3)] in the normally dispersive case d2 = −1 for
σ = 1. Compare with Fig. 11.1.

The effect of σ for normal SH dispersion is depicted in Fig. 12.3, where R− is plotted for constant
x = 0. We see how σ governs the oscillation period of the J0-function and how for sufficiently large
values of σ, the central “hump” broadens to engulf the entire domain of definition for the fields. It
is thus apparent how σ also describes the degree of nonlocality in the case of R− [see Fig. 12.3(b)].

We note from Eq. (12.3) that in the real space the response function is undefined along the
lines |x| = |t|. Therefore, the response function is not sufficiently smooth and subsequently, the
approximation one makes to obtain the strongly nonlocal linear limit is not valid here. Thus no
accessible solitons are expected, in contrast to the case of anomalous SH dispersion.
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Figure 12.3: The effect of nonlocality, σ, on the response function R−(x, t) for normal SH dispersion,
d2 = −1. The plot is made for constant x = 0.

For large arguments the zeroth order Bessel function of the first kind can be approximated as
[57, 8.451.1]
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With the argument 1
σ

√
t2 − x2 and retaining only the lowest order term, we can approximate the

response function as

R−(x, t) =
σ−

3

2√
8π

1
4
√
t2 − x2

cos

(√
t2 − x2

σ
− π

4

)
. (12.4)

For simplicity, consider the case x = 0: We see that as σ → 0, R− tends to infinity if t is small.
But we also see that for very large t, the response function does not approach zero in this limit.
Finally, the singularity at |x| = |t| is another reason why we do not recover a δ–function in the
local limit for normal SH dispersion. This means that the cascading limit is not applicable in this
case.
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More formally, integration over the whole domain may begin with integration at some fixed t0
with respect to x and

∫ ∞

−∞
R−(x, t0)dx =

∫ t0

0

1

4σ2
J0

(
1

σ

√
t20 − x2

)
dx

With the substitutions x = σy and y0 = t0/σ, we get

∫ ∞

−∞
R−(x, t0)dx =

1

2σ

∫ t0

0
J0

(√
y2
0 − y2

)
dy =

1

2σ
sin

(
t0
σ

)

by [57, Eq. 6.517]. Finally, the full normalization integral becomes

∫ ∞

−∞

∫ ∞

−∞
R−(x, t)dxdt = lim

t0→∞
2

∫ t0

0

1

2σ
sin
( t
σ

)
dt = lim

t0→∞

[
1 − cos

(
t0
σ

)]
, (12.5)

and we see that as t0 goes to infinity, the value of the normalization integral oscillates between 0
and 2 for fixed σ; hence X-wave spatiotemporal beams are not normalizable [38].

Thus, normal SH dispersion is fundamentally different from the anomalous case, since the
response function does not have a δ-function limit for σ → 0, nor is it smooth enough to formally
allow for a strongly nonlocal linear limit, σ → ∞, and nor is it normalizable. We therefore use the
term inaccessible nonlocal solitons for the localized wave solutions with normal SH dispersion.

12.1 Spectral analysis

In a linear setting, we can derive some insight by considering the dispersion relation, which is
obtained by inserting Ej = Aj exp [j (ikx+ iωt− ikzz)] , j = 1, 2 into the linearized versions of
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Figure 12.4: Shape of the linear dispersion re-
lations. We obtain the same circular and hy-
perbolic shapes as we do for the response func-
tions R+ and R−.

Eqs. (9.29)-(9.30). Fourier transformation then yield

−kzẼ
2
1 − 2k2Ẽ2

1 − 2d1ω
2Ẽ2

1 = 0,

−2kzẼ
2
2 − 4k2Ẽ2

2 − 4d2ω
2Ẽ2

2 = 0,

and we get for the FW and SH, respectively:

kz/2 = k2 + d1ω
2, (12.6)

kz/2 = k2 + d2ω
2. (12.7)

Thus, for dj negative, we find hyperbolas (k2 −
ω2 = kz/2); for dj positive, the curves become circles
(Fig. 12.4). So we can have combinations of hyperbo-
las and circles as dictated by the signs of the dispersion
parameters dictate, but we emphasize that in this lin-
ear description, no interaction between the FW and SH
occurs.

The effect shown in Sec. 11.2 (and that will be
shown later in Sec. 12.3), where the shape of the FW
is altered by the SH through the response function, is
thus purely a nonlinear effect.
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12.2 X-wave case, normal FW and SH dispersion

Here the linear equations for the FW and SH both support X-waves and we know that X-waves in
the FW can be generated from a Gaussian input profile [19, 28] . The generation of an X-wave is
shown in Fig. 12.5 in the strongly nonlocal regime (σ = 10). The left (right) column depicts the
evolution of the FW (SH) intensity at propagation lengths z = 0, 2, and 4. The length scales in
question are LD = 1.95 and LNL = Lint

NL
≈ 0.2. We see how the input pulse evolves into a clear
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Figure 12.5: Intensity profile of the strongly nonlocal X-wave case, σ = 10. The evolution of |E1|2 (left)
and |E1|2(right). Parameter values are: A = 5, B = 3, and d1 = d2 = −1. 15 contour lines from 0.005
logarithmically separated to the maximum intensity.

X-shaped pattern in both the FW and SH fields. Even though z = 4 is only about two diffraction
lengths it corresponds to about twenty nonlinear lengths, and with a good degree of certainty we
say that a stationary two-color X-wave can be obtained in this case. By “two-color” we refer to
that the X appears in both the FW and SH. Note that also the spectra evolves into X shapes, see
Fig. 12.8.

The effect of decreased nonlocality on X-wave generation is not trivial. Apart from the quadratic
dependence on the nonlinearity, γ [from (9.39)], and the consequences on the nonlinear length scales
(discussed in Sec. 10.1.2), a smaller degree of nonlinearity increases the dependence on a proper
initial condition [38]. This means that formation of X-waves from the initial Gaussian input is
significantly slowed down. Due to the periodic boundary conditions inherent in the Fourier split
step method applied (see Appendix D), we are not in this case able to evolve the system to the
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nonlinear length. We note that this is not a contradiction to the effect that linear equations can
support X-waves.
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Figure 12.6: The FW and SH profiles, |E1|2, in the strongly nonlocal X wave case, σ = 10, d1 = d2 = −1
at z = 8. Parameter values are A = 5, B = 3.

Fig. 12.6 shows surface plots of the FW and SH at propagation length z = 8, using the −50 <
x, t < 50 grid with 360 × 360 grid points as in Fig. 11.12. We note that the magnitude of the SH
is roughly equal to that of the FW, except for two peaks of large amplitude.

Fig. 12.7 shows the same plots as Fig. 12.6, but viewed from above and with contour lines.
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Figure 12.7: The FW and SH profiles in the strongly nonlocal X wave case, σ = 10, d1 = d2 = −1 at
z = 8. Parameter values are A = 5 and B = 3. Surface plot viewed from above with a contour plot with
10 logarithmically spaced lines from 0.005 to the maximal intensity.
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12.2.1 Validity of the nonlocal approximation

To investigate the validity of the nonlocal description of X-waves, we use the result of the simulation
of the full two-component model (9.29)–(9.30) and obtain |E2

1 |2 and |E2|2, shown in Fig. 12.5. Our
nonlocal theory predicts that we might as well have solved the single component nonlocal equation
(9.36) for the fundamental and then found the SH according to the relation (9.34). In other words,
the nonlocal model predicts that the FW and SH spectral intensities are linked through the relation

|Ẽ2|2 = | 1β R̃ Ẽ2
1 |2.

In Fig. 12.8 we show spectral intensities for the SH, |Ẽ2|2, at z = 4 for σ = 10, corresponding

to the SH at z = 4 in Fig. 12.5, and compare it the nonlocal prediction | 1
β R̃ Ẽ2

1 |2. We see that the
key features of the X wave are essentially captured, even though the widths differ somewhat. The
correspondence might become better after further propagation and evolution towards a stationary
state. A cone angle of 90◦ is expected from both linear and nonlinear theory [38] and confirmed.

We further see that the hyperbola branches of the X obey the nonlocal relation ω2 = σ−2 + k2

and are thus separated by 2σ−2 = 0.02 at k = 0. It is also seen in Fig. 12.1 for σ = 1. From
standard linear theory and the cascading limit this separation would be equal to twice an undeter-
mined propagation constant, see Sec. 12.1. Our nonlocal model predicts a fixed and predetermined
separation of 2σ−2, which our simulations confirm. Correspondingly, the nonlocal model is indeed
a reasonable approximation in this strongly nonlocal case with σ = 10.

−10 0 10

−10

0

10 (a)

ω

k
−10 0 10

−10

0

10 (b)

ω

k

Figure 12.8: Comparison between |fE2|2 (a) and the nonlocal prediction (1/β)2|fE2
1 |2| eR|2 (b) at z = 4

with 25 logarithmically spaced contours between 0.0001 and 10. Parameter values are: A = 5, B = 3, and
d1 = d2 = −1. σ = 10, i.e., strongly nonlocal. Dashed lines correspond to σω = ±

√
1 + σ2k2.

We note that due to the singularities of the response function it is hard to obtain a more precise
measure for the validity of the nonlocal model. The contour plots of Fig. 12.8 are a simple way of
establishing the validity.



106 Inaccessible nonlocal (2+1)D solitons, normal SH dispersion

12.3 Modified light bullet case, anomalous FW and normal SH disper-

sion

In analogy with Sec. 11.2, we denote this case the modified light bullet case, because the linear
part of the FW equation supports light bullet generation, not X-waves. In contrast, the X-shaped
response function of the nonlocal model for d2 = −1 predicts the whole new possibility of generation
of a two-color X-wave, despite the anomalous FW dispersion. We stress that this X-wave in the
FW is not predicted by linear theory, nor by the cascading limit. Furthermore, X-wave generation
would occur despite the FW being initially Gaussian and the SH being unseeded, thus only through
the nonlocal nonlinear attractor, which prevails the FW linear properties.
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Figure 12.9: FW and SH intensity profiles |E1|2 (left) and |E2|2 (right) at propagation lengths z = 0, 4,
and 8. Parameter values are: A = 5, B = 3, and d1 = −d2 = 1. Strongly nonlocal case, σ = 10. 25
contour lines from 0.005 logarithmically separated to the maximum intensity. The mesh size is 360 on a
−50 < x, t < 50 domain.

We consider again the strongly nonlocal case with σ = 10. In Fig. 12.9 we show the results of
a simulation of the full model out to z = 8, corresponding to about 4 diffraction lengths and 40
nonlinear lengths. We have used a larger computational box (−50 < x, t < 50) in order to be able
to simulate for longer distances, because the generation of a X-wave requires the built up of the
unseeded SH and is thus expected to be slow. We use 360 × 360 discretization points to maintain
a reasonable resolution. From the figure we see a lot of radiation in the FW during the built up
of the SH which at z = 8 has grown sufficiently strong to indeed generate an X-shape in the FW
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despite its dispersion being anomalous.
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Figure 12.10: The FW and SH profiles in the strongly nonlocal X wave case, σ = 10, d1 = d2 = −1 at
z = 8. Parameter values are A = 5 and B = 3. Surface plot viewed from above with a contour plot with
10 logarithmically spaced lines from 0.005 to the maximal intensity.

Compared to the right column plots in Figs. 12.6–12.7 (showing the SH profile of the “full” X-
wave case), the SH X-shape in Figs. 12.9–12.10 more resembles the shape of an hourglass more than
the SH in the case d1 = d2 = −1. We note that this corresponds to convolution with the response
function, R−(x, t) (Fig. 12.2), which is different from zero in a similar region. Furthermore, just
as the shape of the SH affects the FW, the shape of the FW affects the SH, was was also seen in
Sec. 11.2. In Secs. 11.1 and 12.2, the shapes of the linear dispersion relations are the same for
both the FW and the SH (see Sec. 12.1), so no competing is noted due to the nonlocality.
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13
Conclusion

We have developed a nonlocal description of 2+1 dimensional spatio-temporal waves in quadratic
nonlinear materials. The model predicts that the interaction between the FW and SH is described
by a response function which takes into account the linear properties of the SH. The nonlocal
model is therefore more accurate than the cascading limit NLS equation, which neglects all linear
properties of the SH and assumes that the SH is simply slaved to the FW.

Depending on the linear properties of the SH, the response function can take on 3 fundamentally
different shapes, characterized by having singularities either in origo, along hyperbolas, or along
circles in the spectral domain. In this work we have limited ourselves to a positive phase mismatch,
which excludes the type of response function with a circular singularity.

With a positive phase mismatch and anomalous SH dispersion the response function of the
nonlocal model has nice physical properties: it is normalizable and it has both a simple local
(cascading) and strongly nonlocal linear limit. We therefore denote the localized wave solutions of
this case as accessible nonlocal solitons.

In contrast, for normal SH dispersion, we have shown that the response function is not normal-
izable and that it neither has a cascading, nor a strongly nonlocal linear limit. We therefore denote
the localized wave solutions of this case as inaccessible nonlocal solitons. Our nonlocal model pre-
dicts the general tendency of X-waves to form in this case, even for anomalous FW dispersion; an
effect that is never predicted by the cascading limit, which only predicts light bullets.

We have calculated the linear and nonlinear length scales and shown how they vary with the
degree of nonlocality. We have shown the existence of two nonlinear lengths defined from the
nonlinear phase and intensity variations, respectively. For a small degree of nonlocality the phase
change determines the nonlinear length and for strong nonlocality the intensity variation determines
the nonlinear length. A threshold between the two regimes has been found.

We have conducted numerical simulations with an unseeded SH and a Gaussian FW input. The
simulations show that the nonlocal model provides a reasonable description of the dynamics in a
broad range of parameter values.

We have shown that accessible nonlocal X-waves can be generated for normal FW dispersion and
anomalous SH dispersion. For normal SH dispersion we have shown that inaccessible nonlocal X-
waves can be generated both for normal (conventional X-waves) and for anomalous FW dispersion.
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The generation of two-color X waves in quadratic nonlinear materials with anomalous dispersion
either in the FW or SH has never been observed before. The inaccessible nonlocal X-wave found
here for the first time with anomalous FW dispersion is neither predicted by linear theory nor by
the cascading limit. However, both these novel types of X-waves arise naturally in the framework
of the nonlocal model.



A nonlocal epilogue

By using a nonlocal model of dipole-dipole interaction in the modeling of biomolecules, we were
able to introduce geometrical features — curvature and twist — in the description of the DNA
molecule. These were shown to generate localization of energy, a feature which is also generated
by the introduction of inhomogeneities, but the applied model is intrinsically homogeneous.

Energy localization is important in connection with the opening of the DNA molecule. The
opening is crucial for protein synthesis and cell reproduction and thus for life itself and the under-
standing of the underlying prosesses is important for e.g., future drug design.

There are several ways to improve our model. First of all, our model DNA chain is rigid
and it therefore has no way of adjusting to the changes made by the dynamics. One idea —
which has already been touched upon [66] — is to use a semi-flexible chain, that is, a chain
that dynamically changes its geometry based on lowest energy state. Our model only describes
a precursor of DNA denaturation as thus features no description of how the DNa molecule closes
itself after denaturation. This is referred to as the zipping/unzipping-phenomenon and it would be
a tremendous achievement to implement this in a mathematical model.

New experiments with DNA molecules are always interesting, both to validate the model pre-
dictions, but also to improve parameter accuracy. In the longer perspective even tertiary struc-
tures may be included and this would probably necessitate a three dimensional description of the
molecule.

We have also studied a localized optical quantity — the X-wave — in quadratically nonlinear
materials. The X-wave has been observed only in materials with normal diffusion. By using a
nonlocal description we were able to predict the existence of X-shaped waves in materials also with
anomalous diffusion, this being diffusion in either the fundamental wave, the second harmonic field,
or both.

Localized optical structures are important candidates as carriers of information in future all-
optical signal processing circuits - and already today as carriers on information in optical fibers.

The nonlocal description of quadratically optical materials in this Thesis suffers somewhat
from not being able to clearly separate the effect of the nonlocality from the nonlinearity, as the
latter is the square of the former. When investigating the nonlocality, this is not ideal, so one
might benefit from the investigation of other physical systems. For the χ(2)-materials, however,
the case of negative phase mismatch is an obvious extension to the present work. Ongoing work
is simulating the nonlocal equations to begin with, rather than comparing the simulation outcome
with an analytic result.

Experimental observation of X-waves in a medium with anomalous dispersion is another obvious
goal.

It is worth noting the similarities between the modeling of two physical systems as far from each
other, as biomolecular dynamics and light propagation in optical crystals might seem.

One important difference is that the natural setting for protein dynamics is a discrete model,
and the augmented Peyrard-Bishop we investigate is no exception to this. Conversely, optical
crystals are better described using continuous models. Nevertheles, both cases have used initial
conditions with Gaussian profiles. This proves the diversity of this pulse, but it also suggests the
generality of the models considered. Both models support the existence of localized structures.
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Furthermore, both models reduce to a version of the Nonlinear Schrödinger Equation, underlining
its already huge importance in nonlinear science.

Thirdly — and most importantly in the context of this Thesis — we have shown that in both
cases the notion of nonlocality reveals new insight and a more accurate description of the dynamics.

Just as the focus shifted from linear to nonlinear models a number of years ago, it seems probable
that nonlocal models will expand to other areas of research in the future.
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A
Derivation of the

equations of motion

To derive the equations of motions we first write some elements of the Hamiltonian to get a better
grasp of the terms involved. From Equation (2.10) we get
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e−αun − 1

)2 − 1

2

n∑

m6=n

Jnmunum (A.1)

+
1

2
u̇2

n+1 +
C

4
(un+2 − un+1)

2 +
C

4
(un+1 − un)2 +

(
e−αun+1 − 1

)2 − 1

2

n∑

m6=n

Jn+1,mun+1um

+
...

+
1

2
u̇2

N−1 +
C

4
(uN − uN−1)

2 +
C

4
(uN−1 − uN−2)

2 +
(
e−αuN−1 − 1

)2 − 1

2

N∑

m6=N−1

JN−1,muN−1um

+
1

2
u̇2

N +
C

4
(uN − uN−1)

2 +
(
e−αuN − 1

)2 − 1

2

N−1∑

m=1

JNmuNum.
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Differentiation of the Hamiltonian (A.1) is now a bit tricky due to this splitting. However, by
introducing pn = u̇n and qn = un, we get (easily):

∂H

∂pn
= pn, n ∈ [−N,N ] (A.2)

In the general case, we get, although not quite as easy:

∂H

∂qn
=

•1︷ ︸︸ ︷
C

2

(
un − un−1

)
+

•2︷ ︸︸ ︷
C

2

(
− (un+1 − un) + un − un−1

)

− C

2

(
un+1 − un

)

︸ ︷︷ ︸
•3

−2e−un
(
e−un − 1

)
(A.3)

− 1

2

∑

m6=n

Jnmum

︸ ︷︷ ︸
•4

− 1

2

∑

m6=n

Jnmum,

︸ ︷︷ ︸
•5

n ∈ [−N + 1, N − 1],

where the first term •1 in the C-parenthesis stems from equation from the previous value of n
and •3 from the next. •2 and •4 are from the nth equation, whereas the last summation •5 is a
collection of contributions from all the other values of n.

Obtained in the same way, but more accessible is the equations for n = −N :

∂H

∂q1
= −C

2
(u−N+1 − u1) −

C

2
(u−N+1 − u1) − 2e−u−N

(
e−u−N − 1

)
(A.4)

−1

2

N∑

m=−N+1

J−N,mum − 1

2

∑

m6=−N

J−N,mum, n = −N

and n = N :

∂H

∂qN
=

C

2
(uN − uN−1) +

C

2
(uN − uN−1) − 2e−uN

(
e−uN − 1

)
(A.5)

−1

2

N−1∑

m=1

JNmum − 1

2

∑

m6=N

JNmum, n = N,

where the summation terms have been added to one.
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Collecting terms in (A.3)-(A.5) and inserting, the Hamilton equation:

∂H

∂pn
ṗn +

∂H

∂qn
q̇n = 0 (A.6)

gives us the equations of motion for 3 different cases:

n = −N
ü−N − C (u−N+1 − u−N ) − 2e−u−N

(
e−u−N − 1

)
−
∑

m6=−N

J−N,mum = 0 (A.7)

n ∈ [−N + 1, N − 1]

ün −C (un−1 + un+1 − 2un) − 2e−un
(
e−un − 1

)
−
∑

m6=n

Jnmum = 0 (A.8)

n = N
üN + C (uN − uN−1) − 2e−uN

(
e−uN − 1

)
−
∑

m6=N

JNmum = 0 (A.9)
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B
Multiple Scale Expansion

This Appendix is basically from [67].

Long range interaction

For the present we look at a dipole-dipole interaction on a straight chain with parallel dipoles,
which has the following algebraic form

Jnm =
J0

|rn − rm|3
≡ J0

d3 · |n−m|3
, (B.1)

where rn is the distance to the nth base pair and where the last equality holds in the case of a straight
chain, i.e., d is used here as the lattice constant (instead of l). We now use Taylor expansions of the
um-terms. In general, a Taylor expansion can be written in a differential operator form as follows:

u(x+ ∆x) = u(x) + ∆x ∂xu(x) + . . .+
1

n!
∆xn ∂n

xu(x) + . . .

=

(
1 + ∆x ∂x + . . .+

1

n!
∆xn ∂n

x + . . .

)
u(x)

= e∆x∂xu(x),

recognizing the series expression for the exponential function. Using this, writing um as um ≡
un+(m−n) and expanding around m (so m− n can be compared to the ∆x above) allow us express
the dipole-dipole long range interaction term as

∑

m6=n

Jnmum =
J0

d3

∑

m6=n

e(m−n)∂n

|n−m|3
un =

J0

d3
P (∂n) un, (B.2)

Introducing k ≡ m− n we get for the P (∂n)-function:

P (∂n) =
∑

k 6=0

ek∂n

|k|3 =

∞∑

k=1

ek∂n + e−k∂n

k3

= 2

∞∑

k=1

cosh(k∂n)

k3
= 2

∞∑

k=1

1

k3
−Q(3, ∂n), (B.3)
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with

Q(3, ∂n) = 2

∞∑

k=1

1 − cosh(k∂n)

k3

as in [68]. In this paper it is justified that

Q(3, ik) ≈ −k2 ln |k| + 3

2
k2 +

1

144
k4 (B.4)

and by letting k = −i∂n and only taking into account terms proportional to k2 we get Q(3, ∂n) ≈
−3

2∂
2
n. This is a rather crude approximation to exclude the logarithmic term, but note that the

value of k cannot be smaller than 1. Thus we avoid the singularity for the logarithmic function at
k = 0 and we are on a bit more solid ground.

Furthermore, the solution of the first part of (B.3) is twice the Riemann ζ-function ζ(s) =∑∞
k=1

1
ks , with the value ζ(3) = 1.20206. Finally, we end up with the following approximation to

the LRI-term (from (B.2)):

∑

m6=n

Jnmum ≈ J0

d3

(
2ζ(3) +

3

2
∂2

n

)
un (B.5)

Perturbation approach

By the continuum limit approximation, we transform the discrete problem to a continuous one
[so that un 7→ u(x)] and consider for simplicity an infinite chain. The exponential terms can be
expanded in terms of a Taylor series and so 2 (e−u − 1) e−u to the order u4 becomes −2u+ 3u2 −
7
3u

3 + O
(
u4
)
. The discrete differential operator, ∂2

n in (B.5), becomes d2∂2
x. Furthermore, using

finite difference approximations to identify the second order spatial derivative (with x = d·n) the
equations of motion (2.11) for the infinite chain become:

∂2u

∂t2
− cd2 ∂

2u

∂x2
+ 2u− 3u2 +

7

3
u3 − 2J0ζ(3)

d3
u− 3

2

J0

d

∂2u

∂x2
= 0 (B.6)

By introducing the constants α = d2
(
c+ 3

2
J0

d3

)
and β = 2

(
1 − J0

d3 ζ(3)
)

we get the following equation
of motion:

∂2u

∂t2
− α

∂2u

∂x2
+ βu− 3u2 +

7

3
u3 = 0 (B.7)

We now apply mulitple scale expansion techniques on the equation (B.7). First of all, we assume
small oscillations, so we have the perturbations:

u = εu(1) + ε2u(2) + ε3u(3) + O(ε4)

t = t0 + εt1 + ε2t2 + O(ε3)

x = x0 + εx1 + ε2x2 + O(ε3)

Note the difference in the notation for the perturbed function u and the perturbed variables x and
t. This makes notation more convenient in future differentiations.
Differentiation with respect to the perturbed variables are of the form

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ O(ε3) (B.8)
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and the double derivatives of the form

∂2

∂t2
=

∂2

∂t20
+ 2ε

∂2

∂t0∂t1
+ ε2

(
∂2

∂t21
+ 2

∂2

∂t0∂t2

)
+ O(ε3) (B.9)

The expressions for the x-variable are similar. We now insert the expressions (B.8), (B.9) and their
spatial equivalents in the equation of motion (B.7). This gives us a big expression, from which we
extract the coefficients to the various powers of ε. We obtain:

O(ε)

u
(1)

t2
0

− αu
(1)

x2
0

+ βu(1) = 0 (B.10)

On the basis of this we introduce the linear differential operator, L:

L{2} =
∂2

2

∂t20
− α

∂2
2

∂x2
0

+ β2 (B.11)

Using this we get for the next order of equations:

O(ε2)

L
{
u(2)

}
= 2αu(1)

x0x1
− 2u

(1)
t0t1 + 3(u(1))2 (B.12)

O(ε3)

L
{
u(3)

}
= −2u

(2)
t0t1 + 2αu

(2)
x0x1

− u
(1)

t2
1

− 2u
(1)
t0t2 + αu

(1)

x2
1

+2αu
(1)
x0x2

− 6u(1)u(2) + 7
3(u(1))3,

(B.13)

where the subscripts denote differentiation. For the first order equation we seek rotating wave
solutions, i.e., solutions of the form

u(1) = y(1) (x1, t1;x2, t2) e
i(qx0−ωt0) + c.c., (B.14)

where c.c. denotes complex conjugate terms. From this point on, the argument in the complex
exponential function will be denoted θ0, i.e., θ0 = (qx0 − ωt0). This is inserted in (B.10) and we
obtain (

−ω2 + αq2 + β
)
yeiθ0 + c.c. = 0,

giving us the dispersion relation
ω2 = αq2 + β. (B.15)

We note that this is a continuous dispersion relation, which is unbounded as opposed to the proper
periodic discrete one. Thus, this approximation is only valid for small wavenumbers, where (B.15)
approximates the discrete (which has a trigonometric shape). This is what can be extracted from
the first order equation (B.10). From this we get the differentials

u
(1)
t0t1 = −iωyt1e

iθ0 + c.c.

u(1)
x0x1

= iqyx1
eiθ0 + c.c.

and the square of the function

(
u(1)

)2
=
(
yeiθ0 + y∗e−iθ0

)2
= . . . = y2e2iθ0 + |y|2 + c.c.
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With this the second order equation (B.12) can be rewritten as:

L
{
u(2)

}
= 2iωy

(1)
t1 e

iθ0 + 2iαqy(1)
x1
eiθ0 + 3

(
y(1)
)2
e2iθ0 + 3|y(1)|2 + c.c.. (B.16)

We note that the left hand side is similar to (B.10) and thus the homogenous solution of (B.16) is
of the form

u
(2)
Hom = y(2)eiθ0 (B.17)

From (B.16) we also detect secular terms (i.e., terms proportional to eiθ0 , which appears in the
first order solution) on the right hand side. We must eliminate these and thus demand that

αqy(2)
x1

+ ωy
(1)
t1 = 0 ⇐⇒ yx1

+ vyt1 = 0, (B.18)

which is the linear wave equation, with v ≡ α q
ω . We therefore convert the problem to a moving

frame of reference, i.e., we consider

y(1) ≡ φ(1) (ξ1, τ1;x2, t2) , ξ1 = x1 − vt1 and τ1 = εt1. (B.19)

Differentials with respect to the new coordinates are

∂

∂x1
=

∂

∂ξ1
, and

∂

∂t1
= −v ∂

∂ξ1
+ ε

∂

∂τ1
(B.20)

Note how the last term here comes into play in the next order equation. With (B.20) one can easily
verify that Equation (B.18) is fulfilled to order ε. In these moving frame coordinates, the second
order equation (B.16) now becomes

L
{
u(2)

}
= 3

(
φ(1)

)2
e2iθ0 + 3|φ(1)|2 + 2iωεφ(1)

τ1 + c.c. (B.21)

We thus expect a particular solution to be of the form

u
(2)
Part = λ1

(
φ(1)

)2
e2iθ0 + λ2|φ(1)|2 + c.c. (B.22)

Insertion in the L-operator yields λ1 = − 1
β and λ2 = 3

β . With the homogeneous solution (B.17),
the full solution to the second order equation is

u(2) = y(2)eiθ0 − 1

β

(
φ(1)

)2
e2iθ0 +

3

β
|φ(1)|2 + c.c. (B.23)

We now turn to the third order equation (B.13). Again, we must eliminate secular terms, i.e.,
terms proportional to eiθ0 , and from the nonlinear terms (the last two), we get the contributions
(the calculations are straightforward, but rather long)

u(1)u(2)
∣∣
∝eiθ0

=
5

β
y(1)|y(1)|2,

(
u(1)

)3 ∣∣
∝eiθ0

= 3y(1)|y(1)|2,
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where { · }|∝eiθ0 indicates that only terms proportional to eiθ0 are included. From the first order
solution we have the differentials (to order ε):

u
(1)

t2
1

= y
(1)

t2
1

eiθ0 = v2φ
(1)

ξ2
1

eiθ0

u
(1)
t0t2 = −iωy(1)

t2 e
iθ0 = φ

(1)
t2 e

iθ0

u
(1)

x2
1

= φ
(1)

ξ2
1

eiθ0

u(1)
x0x2

= iqy(1)
x2
eiθ0 = iqφ(1)

x2
eiθ0

Inserting in the third order equation (B.13) we get:

L
{
u(3)

}
=
{
2iωφ

(1)
τ1 + 2iωy

(2)
t1 + 2iαqy

(2)
x1

− v2φ
(1)

ξ2
1

+ 2iωφ
(1)
t2

+αφ
(1)

ξ2
1

+ 2iαqφ
(1)
x2

+ 30
β φ

(1)|φ(1)|2 + 7φ(1)|φ(1)|2
}
eiθ0 + other terms

(B.24)

We now extend the frame of moving reference to also count the x2 and t2 variables (could also have
been done at page 126), i.e., we have

y(1) ≡ φ(1) (ξ1, τ1; ξ2, τ2) , ξ2 = x2 − vt2 and τ2 = εt2. (B.25)

With this, the terms of (B.24) proportional to eiθ0 can be written

L
{
u(3)

} ∣∣
∝eiθ0

= 2iωφ
(1)
τ1 + 2i

[
ωy

(2)
t1 + αqy

(2)
x1

]
− v2φ

(1)

ξ2
1

+ αφ
(1)

ξ2
1

+2i [vω + αq]φ
(1)
ξ2

+
(

30
β + 7

)
φ(1)|φ(1)|2

(B.26)

Here, the first square bracket cancels because of (B.18) and the second because v = αq/ω – both
are consequences of the moving frame of reference. Thus what remains is a version of the Nonlinear
Schrödinger Equation (NLS)

2iωφ
(1)
τ1 +

(
α− v2

)
φ

(1)

ξ2
1

+
(

30
α − 7

)
|φ(1)|2φ(1) = 0. (B.27)

Solution of the Nonlinear Schrödinger Equation

In the prevous section we have established that the φ(1)-function only depends on the variables τ1
and ξ1. In this section write u(x, t) instead of φ(1)(ξ1, τ1) for convenience. The solution of NLS is
assumed to be of the breather-like1 form

u(x, t) = Asech (B(x− vt)) ei(γx−Λt) (B.28)

Using the short hand notation B(x− vt) = ψ and γx−Λt = φ, differentiation of this solution gives

ut = −iAΛeiφsechψ +ABvsechψ tanhψeiφ (B.29)

uxx = −Aeiφsechψ
{
B2sech2ψ + (γ + iB tanhψ)2

}
(B.30)

1We notice that the form is not an exact breather, however, the solution exhibits the qualities we want. An exact
breather would include all frequencies; here, as (B.36) will show, only 2 are included.
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This inserted in (B.27) gives us the equation (using tanh2 x = 1 − sech2x):

2ωΛ + 2iωBv tanhψ
−
(
α− v2

) {
B2sech2ψ + γ2 + 2iγB tanhψ −B2 tanh2 ψ

}

+
(

30
β − 7

)
A2sech2ψ = 0

(B.31)

We now collect the terms proportional to tanhψ, sech2ψ and constant terms. We get

{
−2B2

(
α− v2

)
+

(
30

α
− 7

)
A2

}
sech2ψ = (B.32)

{
2iωBv − 2i

(
α− v2

)
γB
}

tanhψ +(
2ωΛ −

(
β − v2

)
γ2 + gB2

)
= 0

Equation (B.32) gives us then the following (we note that A and B are only constants to the third
order of ε, but this is sufficient here)

γ =
ωv

(α− v2)
(B.33)

B2 = γ2 − 2
ωΛ

(α− v2)
(B.34)

A2 =
2
(
α− v2

)
B2

30
β − 7

(B.35)

In summary, we have now obtained a solution ansatz as (with A and B given as (B.35))-(B.34) and
g and α as noted on page 124):

u(x, t) = Asech (B(x− vt)) ei(γ+q)x−i(ω+Λ)t + 3
βA

2sech2 (B(x− vt))

− 1
βA

2sech2(B(x− vt)) e2i(γ+q)x−2i(ω+Λ)t + c.c.
(B.36)

Extracting the real part of this solution gives us, for t = 0:

u(x) = 2Asech(Bx) cos (γ + q)x+ 6
βA

2sech2(Bx)

− 2
βA

2sech2(Bx) cos 2(γ + q)x
(B.37)

We see that A is the perturbating parameter, so this calculation is only valid for small A. The
equations are easily rewritten into discrete form with u(x, t) = un(t).



C
Derivation of tem-

poral χ(2)-equations

The starting point in deriving the χ(2)equations is Maxwell’s equations in the plane wave approxi-
mation (9.12), derived in Sec. 9

∂2E

∂z2
− 1

c2
∂2E

∂t2
= 0 (C.1)

Here, we do not consider any transverse spatial variation of the electric field. This means that, for
the time being, we neglect the x and y variations of the Laplacian operator ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

We use the Slowly Varying Envelope Approximation (SVEA) in which the spectral width of the
FW and SH are considered small compared to the spectral width of the wave numbers k1 and k2.
These can then be approximated by a Taylor expansion. Furthermore, we consider only second
order terms, namely

E ≈ E1e
ik1(ω0)z−iω0tê1 +E2e

ik2(2ω0)z−2iω0tê2 +E∗
1e

−ik1(ω0)z+iω0tê∗1 +E∗
2e

−ik2(2ω0)z+2iω0tê∗2
= E1e

ik1(ω0)z−iω0tê1 +E2e
ik2(2ω0)z−2iω0tê2 + c.c., (C.2)

where êj is a unit vector describing the polarization of field component j and where we have
introduced the notation c.c. for the complex conjugate and not explicitly written the dependencies
of Ej = Ej(z, t), j = 1, 2, for brevity. Similarly, we have for D

D(z, t) ≈ D1(z, t)e
ik1(ω0)z−iω0tê1 +D2(z, t)e

ik2(2ω0)z−2iω0tê2 + c.c.. (C.3)

Now, the electric displacement may also be expressed ([3, 69, 51])

D = ε0E +

∫ t

−∞
χ(1) (t− τ1) ·E (τ1) dτ1 +

∫ t

−∞

∫ t

−∞
χ(2) (t− τ1, t− τ2) ·E (τ1)E (τ2) dτ1dτ2. (C.4)

We have used integral representations of the polarization in (9.5), in which the χ(1) term represents
the material’s linear contribution to the polarization, the χ(2)term the second order nonlinear
contribution, and E is merely the vacuum contribution.

We note that χ(1) and χ(2) are tensors of second and third rank, respectively.
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The integral representation in (C.4) emphasizes the delay in which a nonlinear medium responds
to light. Because of the causal nature of such a response:

χ(t− τ) = 0 for t− τ < 0,

we can safely allow the upper limits in the integrals of (C.4) to extend to infinity.
The next step is to describe D in terms of E. We insert (C.2) and (C.3) in (C.4) and collect

terms. The ones proportional to D1 are the ones containing E1 from the vacuum contribution,
χ(1)E1 from the linear polarization and χ(2)D∗

1D2 + c.c. = 2χ(2)D∗
1D2 from the second order

nonlinear contribution. If we define the vectorial Fourier transform of χ(1)(t) at frequency ωj as

χ̃
(1)
j (ω) =

1

ε0

∫ ∞

−∞

[
ê∗j · χ(1)(t) · êj

]
exp (iωjt) dt (C.5)

with j = 1, 2 in both cases, and of χ(2)(t, t′) as

χ̃
(2)
1 (ωa, ωb) =

∫ ∞

−∞

∫ ∞

−∞

[
ê∗1 · χ(2)(t, t′) · ê∗1ê2

]
exp

(
iωat+ iωbt

′) dtdt′, (C.6)

χ̃
(2)
2 (ωa, ωb) =

∫ ∞

−∞

∫ ∞

−∞

[
ê∗2 · χ(2)(t, t′) · ê1ê1

]
exp

(
iωat+ iωbt

′) dtdt′. (C.7)

The SVEA approximation allows us to expand Equations (C.5)-(C.7) in terms of their Taylor series:

χ̃
(1)
j (ω) ≈ χ̃

(1)
j (ω0) +

∂χ̃
(1)
j (ω)

∂ω

∣∣∣∣∣
jω0

(ω − jω0) +
1

2

∂2χ̃
(1)
j (ω)

∂ω2

∣∣∣∣∣
jω0

(ω − jω0)
2 + . . . (C.8)

χ̃
(2)
1 (2ω,−ω) ≈ χ̃

(2)
1 (2ω0,−ω0) + . . . (C.9)

χ̃
(2)
2 (ω, ω) ≈ χ̃

(2)
2 (ω0, ω0) + . . . , (C.10)

where we have expanded the zeroth order term to second order in ω, but the second order term
only to first order in ω.

When we have perfect phase matching, i.e.,

∆k = 2k1 (ω0) − k2 (2ω0) , (C.11)

we find

D1(z, t) = ε0E1(z, t) + ε0χ̃
(1)
1 (ω0)E1(z, t) + 2χ̃

(2)
1 (2ω0,−ω0)E

∗
1(z, t)E2(z, t)e

−i∆kz , (C.12)

D2(z, t) = ε0E2(z, t) + ε0χ̃
(1)
2 (ω0)E2(z, t) + 2χ̃

(2)
2 (ω0, ω0)E

2
1(z, t)ei∆kz , (C.13)

which by the definition of the relative permittivity

ε̃j = 1 + χ̃
(1)
j (jω0) , ε̃′j =

∂χ̃
(1)
j

∂ω

∣∣∣∣∣
jω0

and ε̃′′j =
∂2χ̃

(1)
j

∂ω2

∣∣∣∣∣
jω0

and also to second order

ε̃
(2)
1 = χ̃

(2)
1 (2ω0,−ω0) and ε̃

(2)
2 = χ̃

(2)
2 (2ω0,−ω0) ,
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ensures that (C.12)–(C.13) can be written

D1(z, t) = ε̃1E1(z, t) + iε̃ ′
1∂tE1(z, t) −

1

2
ε̃ ′′
1 ∂

2
tE1(z, t) + 2ε̃

(2)
1 E∗

1(z, t)E2(z, t)e
−i∆kz ,(C.14)

D2(z, t) = ε̃2E2(z, t) + iε̃ ′
2∂tE2(z, t) −

1

2
ε̃ ′′
2 ∂

2
tE2(z, t) + ε̃

(2)
2 E2

1(z, t)ei∆kz . (C.15)

At this point, we have expressed D1,2 in terms of E1,2, and we are ready to insert this in Eq. (C.1).
We only retain terms of second order and get

∂2
zE1 =

(
∂2

zE1 + 2ik1∂zE1 − k2
1

)
eik1(ω0)z−iω0t (C.16)

∂2
t D1 =

(
∂2

tD1 − 2iω0∂tD1 − ω2
0

)
eik1(ω0)z−iω0t (C.17)

With D1 from Eq. (C.14), we get

∂tD1 ≈ ε̃1∂tE1 + iε̃ ′
1∂

2
tE1 −

1

2
ε̃ ′′
1 ∂

3
tE1 + 2ε̃

(2)
1 (E2∂tE

∗
1 +E∗

1∂tE2) e
−i∆kz

≈ ε̃1∂tE1 + iε̃ ′
1∂

2
tE1 + . . . (C.18)

∂2
tD1 ≈ ε̃1∂

2
tE1 + iε̃ ′

1∂
3
tE1 −

1

2
ε̃ ′′
1 ∂

4
tE1 + 2ε̃

(2)
1

(
E2∂

2
tE

∗
1 + 2∂tE

∗
1∂tE1s

2 +E∗
1∂

2
tE2

)
e−i∆kz

≈ ε̃1∂
2
tE1 + . . . , (C.19)

where higher order terms have been neglected. From the SVEA, we have the magnitude assumptions
∣∣k2

1E1

∣∣� |k1∂zE1| �
∣∣∂2

zE1

∣∣ and
∣∣ω2

0E1

∣∣� |ω0∂tE1| �
∣∣∂2

tE1

∣∣

Now, Eqs. (C.16)–(C.19) are inserted in (C.1), and we sort by orders of magnitude:

−k2
1E1 +

ω2
0

c2
ε̃1E1

︸ ︷︷ ︸
•1A

+2ik1∂zE1 +

(
i
ω2

0

c2
ε̃ ′
1 + 2i

ω0

c2
ε̃1

)
∂tE1

︸ ︷︷ ︸
•2A

+

∂2
zE1 −

(
1

2

ω2
0

c2
ε̃ ′′
1 + 2

ω0

c2
ε̃ ′
1 +

1

c2
ε̃1

)
∂2

tE1 + 2
ω2

0

c2
ε̃

(2)
1 E∗

1E2e
−i∆kz

︸ ︷︷ ︸
•3A

= 0.

(C.20)

Here, the •1A-term indicates the dominant zeroth order term. Demanding this to be zero gives us
a dispersion relation

k2
1 +

ω2
0

c2
ε̃1 = 0 (C.21)

From this relation, we deduce the frequency derivatives of k1(ω):

2k1dk1 =
1

c2
(
d
(
ω2
)
ε̃1 + ω2d (ε̃1)

)
=

2ω

c2
dω ε̃1 +

ω2

c2
ε̃ ′
1dω

so

k′1 =
dk1

dω

∣∣∣∣
ω0

=
ω2

0

2k1c2
ε̃ ′
1 +

ω0

k1c2
ε̃1. (C.22)

For future use, we differentiate once more (straightforward, but somewhat tedious) to get

k′′1 =
d2k1

dω2

∣∣∣∣
ω0

=
ω2

0

2k1c2
ε̃ ′′
1 +

2ω0

k1c2
ε̃ ′
1 +

1

k1c2
ε̃1 −

(k′1)
2

k1
. (C.23)
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The next order of (C.20), •2A, is now conveniently rewritten using the first derivative of the
dispersion relation (C.22)

i∂zE1 + ik′1∂tE1 = 0, (C.24)

which can be differentiated again to express the second order spatial derivative in terms of the
second order temporal derivative as

∂2
zE1 = −k′1∂t

(
−k′1∂tE1

)
=
(
k′1
)2
∂2

tE1 (C.25)

This, in turn, is inserted in the second order term, •3A, of (C.20)

((
k′1
)2 − ω2

0

2c2
ε̃ ′′
1 − 2ω0

c2
ε̃ ′
1 − 1

c2
ε̃1

)
∂2

tE1 +
2ω2

0

c2
ε̃

(2)
1 E∗

1E2e
−i∆kz

With the constant

K1 =
ω2

0

k1c2
ε̃

(2)
1 , (C.26)

and (C.23), we get

−1

2
k′′1∂

2
tE1 +K1E

∗
1E2e

−i∆kz = 0. (C.27)

This now gives us

i
∂E1

∂z
+ ik′1

∂E1

∂t
− 1

2
k′′1
∂2E1

∂t2
+K1E

∗
1E2e

−i∆kz = 0 (C.28)

This is the equation for E1 — a identical one exists for the complex conjugate, E∗
1 , and a similar

one is derived below for the SH field, E2. Here, the derivatives (C.16)–(C.19) become, where we
keep in mind that the SH wave number, k2, is a function of the double frequency, k2 = k2(2ω).

∂2
zE2 =

(
∂2

zE2 + 2ik2∂zE2 − k2
2

)
eik2(2ω0)z−2iω0t

∂2
t D2 =

(
∂2

tD2 − 4iω0∂tD1 − 4ω2
0

)
eik2(2ω0)z−2iω0t

With D2 from Eq. (C.15) we get, analogously to (C.18)–(C.19)

∂tD1 = ε̃2∂tE2 + iε̃ ′
2∂

2
tE2 + . . .

∂2
tD1 = ε̃2∂

2
tE2 + . . . ,

We insert in (C.1) and sort by orders

−k2
2E2 +

(2ω0)
2

c2
ε̃2E2

︸ ︷︷ ︸
•1B

+2ik2∂zE2 +

(
i
(2ω0)

2

c2
ε̃2 + 2i

2ω0

c2
ε̃ ′
2

)
∂tE2

︸ ︷︷ ︸
•2B

+

∂2
zE2 −

(
1

2

(2ω0)
2

c2
ε̃ ′′
2 + 2

2ω0

c2
ε̃ ′
2 +

1

c2
ε̃2

)
∂2

tE2 +
(2ω0)

2

c2
ε̃

(2)
2 E2

1e
i∆kz

︸ ︷︷ ︸
•3B

= 0.

(C.29)

Again, the zeroth order term, •1B, gives us a dispersion relation

2k2dk2 =
1

c2

[
d
(
2ω2

)
ε̃2 + (2ω)2 d (ε̃1)

]
=

1

c2

[
(2ω) ε̃2 +

1

2
(2ω)2 ε̃ ′

2

]
d (2ω)
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so

k′2 =
dk2

d (2ω)
=

dk2

d (2ω)

∣∣∣∣
2ω0

=
(2ω0)

2

2k2c2
ε̃ ′
2 +

2ω0

k2c2
ε̃2. (C.30)

A second differentiation is also useful here, which gives

d2k2

dω2
= . . . =

1

k2
2c

2

[(
1

2
ω2ε̃ ′′

2 + 2ωε̃ ′
2 + ε̃2

)
k2 −

(
1

2

(ω)2

2k2c2
ε̃ ′
2 +

ω

k2c2
ε̃2

)]
.

With ω = 2ω0, we get

k′′2 =
d2k2

d (ω)2
=

d2k2

d (2ω)2

∣∣∣∣
2ω0

=
(2ω)

2k2c2
ε̃ ′′
2 + 2

2ω0

k2c2
ε̃ ′
2 +

1

k2c2
ε̃2 −

(k′2)
2

k1
. (C.31)

As for the D1 equation, the first order term of (C.29) gives us apart from the contribution to the
differential equation

i∂zE2 + ik′2∂tE2 = 0, (C.32)

also the relationship
∂2

zE2 =
(
k′2
)2
∂2

tE2. (C.33)

This, in turn, is inserted in the second order term, •3B, of (C.29), and with the constant

K2 =
2ω2

0

k2c2
ε̃

(2)
2 , (C.34)

and (C.31), the second order term becomes

−k′′2∂2
tE2 +K2E

2
1e

i∆kz = 0. (C.35)

Finally, the SH equation from the Maxwell equation (C.1) is

i
∂E2

∂z
+ ik′2

∂E2

∂t
− 1

2
k′′2
∂2E2

∂t2
+K2E2e

i∆kz = 0 (C.36)

We see that by introducing the scalings

ξ = |k′′1 |z, s = t− k′1,

we get ∂z = |k′′1 |∂ξ − k′1∂s and ∂t = ∂s, which eliminates the s-differentiations in (C.28) and with
the constants

δ =
k′1 − k′2
|k′′1 |

, α =
k′′2
|k′′1 |

, β =
∆k

|k′′1 |
, a1 =

√
|K1K2|
|k′′1 |

A1, and a2 =
K1

|k′′1 |
A2,

we arrive at the normalized equations for quadratic nonlinear materials

i
∂a1

∂ξ
− r

2

∂2a1

∂s2
+ a1

∗a2e
−iβξ = 0 (C.37)

i
∂a2

∂ξ
− iδ

∂a2

∂s
− α

2

∂2a2

∂s2
+ a2

1e
iβξ = 0. (C.38)

Then, by changing the ξ-variable to z, s to t, and the aj to the corresponding Ej ’s and denote
−r/2 by 2d1 and −α/2 by d2, we get the temporal χ(2)-equations. In this work, however, we do not
consider any first derivative of the spatial variable, so δ from (C.38) is zero. Instead, we include a
transverse spatial variation, which can be deduced in a similar way (see [50, 51] for details) and we
arrive at the equations (9.29)–(9.30).
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D
The Fourier Split

Step Method

The Fourier Split-Step (FSS) method is convenient numerical tool for solving the Nonlinear Schrödinger
Equation (NLS) or related equations, such as (D.1)–(D.2)

i∂zE1 + d1∂
2
xE1 + β−1N

(
E1

2
)
E1

∗ = 0, (D.1)

N
(
E1

2
)

=
∫∞
−∞R (x− ξ)E1

2 (ξ, z) dξ. (D.2)

Näıve FSS

The idea is that under the assumption ∆z � 1, we can consider the linear and nonlinear parts of
the equation independent of each other, as their interaction is assumed negligible for this small ∆z.
More formally, we consider Equations (D.1)–(D.2) as

1 2 N

N

L
PSfrag replacements

· · ·

z + dzz

z = 0 z = L

Figure D.1: The normal FSS scheme.

∂zE1 =
(
L̂+ N̂

)
E1, (D.3)

where the operators

L̂ = id1
∂2

2

∂x2
(D.4)
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and
N̂ = iβ−1N

(
2

2
)
2

∗ (D.5)

accounts for the linear and nonlinear parts, respectively. With this notation, we first solve the
linear part of (D.3) by using N̂ = 0, and then use L̂ = 0 to solve the nonlinear part.

A first observation is that assuming the operators L̂ and N̂ are constant for a small ∆z, (D.3)

solves to E1 (z) = e(L̂+N̂)z (disregarding the other variable x for now...). Thus we have

E1 (z + ∆z) = e(L̂+N̂)(z+∆z) = e(L̂+N̂)∆zE1 (z) (D.6)

The evaluation of an “exponential operator” eM̂∆z can be evaluated by use of the series

eM̂ = 1 + M̂ +
1

2
M̂2 + . . . ,

keeping in mind that operators need not commute. Thus, we can express the exponential operator
in (D.6) to second order accuracy as

e(L̂+N̂)∆z = 1 + ∆z
(
L̂+ N̂+

)
+

1

2
∆z2

(
L̂+ N̂

)2
+ . . .

= 1 + ∆z
(
L̂+ N̂

)
+

1

2
∆z2

(
L̂2 + L̂N̂ + N̂L̂+ N̂2

)
+ . . . (D.7)

The FSS, however, approximates this as

eL̂∆z · eN̂∆z,

which evaluates to

e∆zL̂ · e∆zN̂ =

(
1 + ∆zL̂+

1

2
∆z2L̂2 + . . .

)
·
(

1 + ∆zN̂ +
1

2
∆z2N̂2 + . . .

)

= 1 + ∆zN̂ +
1

2
∆z2N̂2 + . . . + ∆zL̂+ ∆z2L̂N̂ + . . .+

1

2
∆z2L̂2 + . . . +

1

2
∆z2L̂2 + . . .

= 1 + ∆z
(
L̂+ N̂

)
+

1

2
∆z2

(
L̂2 + 2L̂N̂ + N̂2

)
+ . . . (D.8)

Therefore, the FSS in this formulation is accurate to second order, as the difference between (D.7)
and (D.8) is

1

2
∆z2

(
L̂N̂ + N̂L̂

)
− ∆z2N̂L̂ =

1

2
∆z2

[
N̂ , L̂

]
+ O(∆z3)

Improved FSS

It turns out that a minor correction to the method improves the accuracy by an order of magnitude!
The idea is to split the nonlinear step at z = ∆z/2, compute the linear step throughout the interval
to z = ∆z, and return to compute the remainder of the nonlinear part the z = ∆z. The procedure
is sketched in Fig. D.2. In this case, the exponential operator becomes to second order

e(
1

2
N̂+L̂+ 1

2
N̂)∆z = 1 + ∆z

(
1

2
N̂ + L̂+

1

2
N̂

)
+

1

2
∆z2

(
1

2
N̂ + L̂+

1

2
N̂

)2

+ . . .

= 1 + ∆z

(
1

2
N̂ + L̂+

1

2
N̂

)
+

1

2
∆z2

(
1

4
N̂2 + L̂2 +

1

4
N̂2 + N̂L̂+ L̂N̂ +

2

4
N̂2

)
+ . . .

= 1 + ∆z

(
1

2
N̂ + L̂+

1

2
N̂

)
+

1

2
∆z2

(
N̂2 + L̂2 + N̂L̂+ L̂N̂

)
+ . . . (D.9)
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Figure D.2: The modified FSS scheme.

As before, we compare this to the accuracy of the numerical scheme, which in this formulation is

e
1

2
N̂∆z · eL̂∆z · e 1

2
N̂∆z =

[
1 + ∆z

1

2
N̂ +

1

2
∆z2

(
1

2
N̂

)2

+ . . .

]
·

[
1 + ∆zL̂+

1

2
∆z2L̂2 + . . .

]
·

[
1 + ∆z

1

2
N̂ +

1

2
∆z2

(
1

2
N̂

)2

+ . . .

]

= 1 +
1

2
∆zN̂ +

1

8
∆z2N̂2 + ∆zL̂+

1

2
∆z2L̂N̂ +

1

2
∆z2L̂2 +

1

2
∆zN̂ +

1

4
∆z2N̂2 +

1

2
∆z2N̂L̂+

1

8
∆z2N̂2 + . . .

= 1 + ∆z
(
N̂ + L̂

)
+

1

2
∆z2

(
L̂2 + L̂N̂ + N̂L̂+ N̂2

)
+ . . . (D.10)

Comparing Eqs. (D.9) and (D.10), we see that they are identical to second order; thus the error is
at most of the order O(∆z3) over each ∆z-unit. The order of the operators is not important, one
could just as well let the linear parts split in “half size steps”.

We note that the calculations are most conveniently carried out if one recognizes the possibility
of allowing 2 consecutive “half size steps” be computed as one step over the length ∆z. In this
way, corrections are only necessary at the ends of the z-interval, and the name split step is justified.
This is depicted in Fig. D.3.

Evaluation of the operators

The linear operator L̂

The linear part of the χ(2) equations (D.1)

i∂zE1 + d1∂
2
xE1 = 0 (D.11)

is easy to solve through a Fourier transform on the x-variable. With the Fourier Transform (FT)
pair
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Figure D.3: The modified FSS scheme with improved stepping.

Fourier Transform (FT)

F {E1 (x, z)} = Ẽ1 (k, z) =

∫ ∞

−∞
E1 (x, z) e−ikxdx (D.12)

Inverse Fourier Transform (IFT)

F−1
{
Ẽ1 (k, z)

}
= E1 (x, z) =

1

2π

∫ ∞

−∞
Ẽ1 (k, z) eikxdk. (D.13)

We note that the tilde (˜) indicates Fourier domain. The FT of a derivative transforms to the
factor ik, thus (D.11) transforms to

i∂zẼ1 (k, z) − (ik)2 d1Ẽ1 = 0 ⇐⇒ ∂zẼ1 (k, z) = −ik2d1Ẽ1, (D.14)

which solves to

Ẽ1 (k, z) = A (k) · e−ik2d1z. (D.15)

In the Fourier domain, the value at the next z-grid point is easily evaluated as

Ẽ1 (k, z + ∆z) = A (k) · e−ik2d1z+∆z = Ẽ1 (k, z) · e−ik2d1∆z, (D.16)

which is used in the simulation routines. Finally, an IFT is performed on (D.16) to obtain the
result for the linear step.

The nonlinear operator N̂

The nonlinear part of the χ(2) equations (D.1)

i∂zE1 + β−1N
(
E1

2
)
E1

∗ = 0, (D.17)

with

N
(
E1

2
)

=

∫ ∞

−∞
R (x− ξ)E1

2 (ξ, z) dξ (D.18)

cannot be solved analytically, but we also employ the FT to obtain a solution.
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The Convolution Theorem

Equation (D.18) is an example of a convolution integral, which is easily evaluated through FT. This
becomes apparent by considering the integral

f(x) =

∫ ∞

−∞
g(x− y)h(y)dy (D.19)

The FT of this is

F{f(x)} = f̃(k) =

∫ ∞

x=−∞

∫ ∞

y=−∞
g(x− y)h(y)e−ikxdydx

=

∫ ∞

ξ=−∞

∫ ∞

γ=−∞
g(ξ)h(γ)e−ik(ξ+γ)dγdξ, (D.20)

where the last equality comes from the change of variables y = γ and x = ξ+ γ. By separating the
variables, one obtains

F{f(x)} =

∫ ∞

−∞
g(ξ)e−ikξdξ ·

∫ ∞

−∞
h(γ)e−ikγdγ

= F{g(ξ)} · F{h(γ)} (D.21)

This property enables us to solve Equation (D.17) easier by the use of the convolution theorem.

Spectral resolution

A note on the resolution of the initial condition is necessary. One must always be cautious when
using Fourier transforms, because a change of the size of the computational grid in, e.g., real space
changes the resolution in the spectral domain. Furthermore, we want to eliminate boundary effects
as much as possible, because we are using periodic boundary conditions (which is easiest for the
FSS method).

As an example, consider the Gaussian function f(x) = e−(x/B)2 (our initial condition (10.2)
with A = 1 and for t = 0) on the domain Lx/2 ≤ x ≤ Lx/2, see Fig. D.4. Looking for a boundary
value of 10−n, we solve

e−(x/B)2 ≤ 10−n ⇐⇒ x0 ≥ Lx

2
= B

√
n ln 10. (D.22)

Eq. (D.22) gives us thus a way to evaluate the spatial domain needed to obtain a given accuracy
at a given initial condition at the boundary. Thus, with a initial pulse beam width of B = 3 and a
boundary value of less than 10−6, one needs a domain of

Lx = 2 × 3 ×
√

6 ln 10 ≈ 22.3

Including the t variable in this derivation, one could switch to polar coordinates and find the same
result for the radius. Thus, we can safely expand this bound on the spatial domain, Lx, to the
temporal one, Lt, as well.

The Fourier transform of this initial condition is

f̃ (k, ω) =

∫ ∞

−∞

∫ ∞

−∞
e−(x/B)2e−(t/B)2e−ikx−iωtdxdt,
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Figure D.4: A Gaussian pulse and its value at the boundaries.

which solves to

f̃ (k, ω) = 4

[∫ ∞

0
e−(x/B)2 cos (kx) dx

]2

= B
√
πe−

1

2
B2k2

,

since we have [57, 3.896.4]

∫ ∞

0
e−βx2

cos (bx) dx =
1

2

√
π

β
exp

(
− b2

4β

)
.

Disregarding the coefficient in front, we find in analogy with (D.22)

e−
1

2
B2k2

0 ≤ 10−m ⇐⇒ k0 ≥ Lk

2
=

1

B

√
2 m ln 10. (D.23)

In the same way as before, with a initial pulse beam width of B = 3 and a boundary value of less
than 10−6, one needs a spectral domain of

Lk =
2

3
×

√
2 × 6 ln 10 ≈ 3.5

Discrete Fourier Transform parameters

We can only do simulations on a finite grid, so we need to employ the Discrete Fourier Transform1.
The difficulty with the discrete version of Fourier transform is that only one of the parameters Lx

or Lk from Section D can be chosen independently and the other is then determined by the former.
With N discretization points, we have the relations

∆x =
Lx

N
and Lk =

2π

∆x
(D.24)

and

∆k =
Lk

N
and Lx =

2π

∆k
. (D.25)

1Actually, an efficient routine known as the Fast Fourier Transform, FFT, is used.
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N Lx ∆x ∆k Lk

256 50 0.1953 0.1257 32.2
360 100 0.2778 0.0628 22.6

Table D.1: Some accuracy parameters for some common computational values. N and Lx are user
defined and ∆x, ∆k, and Lk computed from the relations (D.24)–(D.25).

Rearranging (D.24) we find

Lk = N
2π

Lx
,

so we see that expanding for instance Lx, causes Lk to narrow for the same number of discretization
points, N . In conclusion, one needs to be aware of the real and spectral resolutions and domains.
A small table for some of the parameter values used in the simulations are given in Table D.1.
The values given here should be compared to the width of the initial condition, which need to be
properly discretized. Typically, we use B = 3. The accuracy for the boundary condition, derived
in both the real and the spectral domain from (D.22) and (D.23) to

n =

(
Lx

2B

)2 1

ln 10
and m =

(
πBN

Lx

)2 1

2 ln 10

evaluates to give boundary values smaller than 10−30 for the initial input beam profile. This is not
a very important parameter; it is much more interesting to make sure the boundary values remain
small throughout the simulations. For the simulations presented in this Thesis, these values are
always less than 10−12.


