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Abstract 
It is essential to improve the knowledge of macromolecular interactions in foods, as the food quality is 

highly influenced by these interactions. Thus, new methods for detection and characterisation of 

macromolecule interactions are seeked. In this thesis, near-infrared spectroscopy (NIR) is examined as a tool 

for this type of analysis, as NIR has the advantages of being non-destructive, fast, flexible and applicable on 

a wide range of sample types. The attention in this work is to protein interactions and conformations.  

A part of the work dealt with measurements of aqueous protein solutions, whereas most of the previous 

studies have used proteins in the dry state to show the sensitivity of NIR to protein secondary structures. The 

preliminary experiments showed NIR to be sensitive to β-sheet and α-helix contents also for measurements 

of the dilute protein solutions (10 mg/ml). The structure sensitive reference method mid-infrared 

spectroscopy (MIR) was applied to confirm this. However, further studies, involving more samples, are 

necessary in order to survey the possibility to obtain quantitative structure information from NIR spectra. 

The experiments gave indication that changes in amino acid side chain interactions and their micro-

environments influence the spectra and thus indicated that conformational changes other than secondary 

structure changes may be detected by NIR as well. This was seen in studies of a protein, which adopted 

monomer or polymer forms depending on the buffer type (Paper IV).  

Studies of protein conformations and interactions in the gluten-water system were done with the purpose of 

evaluating the ability of NIR to give information of more complex systems, for which several different 

constituents as well as light scattering influence the spectra (Paper I). The gluten system is useful for 

demonstrating the capacity of NIR in structure-functionality studies, as there is a well-known relation 

between protein structures and the functionality of gluten. The spectral changes were partly interpretable by 

means of the MIR reference measurements, but a full explanation of the NIR variations will require other 

types of measurements for monitoring the protein hydration, the hydrophobic interactions etc. Even though 

NIR was shown insensitive to the intermolecular β-sheet, which is of importance in the network structure of 

hydrated gluten,  the experiments indicated that NIR could give information on the gluten functionality due 

to its sensitivity towards amino acid side chain hydrations and interactions. Additional experiments involving 

gluten and other model systems would be necessary in order to confirm this hypothesis and to show how 

general these results are.  

Water is a major ingredient in many foods and has a great influence on the obtained spectra. Most times, 

the variations in the water spectrum are irrelevant and their dominance in the NIR spectra of food proteins 

can impair the analysis. An empirical model was in this work shown capable of removing these variations 

from MIR spectra (Paper III), and the same method is considered suitable for correction of NIR-spectra. A 

similar method has been employed for removal of the water vapour and CO2 absorptions from MIR spectra, 

as a way to improve the spectroscopic analysis (Paper II). 
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Resumé 
Protein-lipid-kulhydrat interaktioner og betydning heraf for levnedsmidlers kvalitet. 

Det er ønskeligt at øge kendskabet til de interaktioner, der finder sted mellem makromolekylerne i fødevarer, 

idet disse har stor betydning for fødevarernes kvalitet. Der søges derfor nye metoder til at detektere og 

karakterisere makromolekyle-interaktioner i en kompleks prøve. I denne afhandling undersøges om nær-

infrarød spektroskopi (NIR) er anvendeligt til dette formål. NIR er en ikke-destruktiv, hurtig og fleksibel 

metode, der kan anvendes til måling på mange typer prøver. Der fokuseres i rapporten på studiet af protein-

interaktioner og -konformationer.  

En del af arbejdet har omhandlet måling af proteiner i vandig opløsning, mens de fleste tidligere studier, 

som har påvist NIRs følsomhed overfor proteiners sekundære struktur, har omhandlet proteiner i tør tilstand. 

De indledende forsøg viste, at NIR-spektrene afhænger af de relative indhold af β-sheet og α-helix, også ved 

måling på relativt tynde proteinopløsninger (10 mg/ml). Dette blev bekræftet ved hjælp af den struktur-

følsomme reference metode midt-infrarød spektroskopi (MIR). Anvendeligheden af NIR til kvantitativ 

struktur-analyse skal dog undersøges yderligere med brug af et større datamateriale. Forsøgene indikerede, at 

NIR ikke kun er sensitiv overfor den sekundære struktur men også kan detektere konformationsændringer, 

der involverer ændringer i aminosyresidekædernes interaktioner og deres ’mikro-miljø’. Dette blev set i 

studiet af et protein, som antog monomer hhv. polymer form i forskellige buffertyper (Artikel IV).  

Undersøgelser af protein-konformationer og -interaktioner i gluten-vand systemet blev benyttet til at 

evaluere NIRs anvendelighed i mere sammensatte systemer, hvor forskellige komponenter influerer på 

spektrene, og hvor lysspredning giver yderligere kompleksitet (Artikel I). For gluten-systemet er der en 

kendt relation mellem proteinernes struktur og glutenets funktionalitet. Forsøgene demonstrerer derfor også 

NIRs anvendelighed i struktur-funktions-studier. Der blev påvist kvalitative ændringer i gluten proteinernes 

NIR-spektrum ved modificering af proteinernes strukturer og interaktioner både via hydrering og ved 

påvirkning med forskellige salte. Tolkning af de spektrale ændringer var delvis mulig ud fra MIR reference-

målinger, men for en fuld forklaring af NIR-spektrenes variationer kræves andre typer målinger til at følge 

hydreringen, hydrofobe interaktioner mv. Forsøgene indikerede, at selvom NIR ikke kan detektere 

intermolekylær β-sheet, som indgår i netværksstrukturen af den hydrerede gluten matrix, kan NIR alligevel 

give information om glutenets funktionalitet pga. en følsomhed overfor aminosyresidekædernes hydrering og 

interaktioner. Yderligere forsøg med gluten samt andre model systemer er nødvendige for at bekræfte 

ovenstående samt generaliserbarheden af resultaterne. 

Vand indgår som en vigtig ingrediens i mange fødevarer og har stor indflydelse på de målte spektre. 

Variationer i vandspektret er dog ofte irrelevante og kan dominere i NIR-analyser af fødevareproteiner og 

hæmme analysen af disse. En empirisk model til at fjerne disse variationer er blevet afprøvet med gode 

resultater for MIR-spektre, og samme metode menes anvendelig til korrigering af NIR-spektre (Artikel III). 
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Ligeledes er en lignende metode benyttet til fjernelse af vanddamp og CO2 absorptioner fra MIR spektre med 

henblik på at fremme den spektroskopiske analyse (Artikel II). 
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Chapter 1: Introduction and background 
Quality control has become a highly important topic in the food industry. The assessment of product safety, 

nutritional value, eating quality, etc. requires the monitoring of quality throughout the production line. 

Therefore, the on line and in line spectroscopic techniques combined with appropriate data analysis methods 

may become increasingly important tools in food production and research [Bro, 2002].  

1.1. Macromolecular interactions and importance to food quality 

Food is basically composed of molecular and colloid dispersions of biopolymers and their complexes. The 

major biopolymers in foodstuff: protein and starch, are fundamental to the structure, rheology, and other 

physical properties of foods, as well as their taste and sensory perception. Water and lipids, binding to other 

components or acting as solvents, are important factors as well. As the complexed molecules obtain new 

properties compared to the individual, the functional properties of foods reflect the physico-chemical 

properties of both the complexed and the individual macromolecules. In this way, interactions between 

macromolecules contribute to the diversity of food structures [Tolstoguzov, 1996, 2003].  

The interactions in foods are mostly of unspecific nature and are developed during the food processing 

(pumping, centrifugation, heating, extrusion etc.), as some unfolding of the macromolecules is a prerequisite 

for the interactions. The chemical and enzymatic reactions lead to altered intra- and intermolecular 

interactions that, at the macromolecular level, are reflected in conformation changes, complexation and 

aggregation. The interactions may end up in formation of colloids and three-dimensional networks, which 

are central to the development of macroscopic structures such as suspensions, foams, emulsions and gels etc. 

[Tolstoguzov, 1996].   

Complexation may take place within a type of biopolymer (e.g. protein-protein) or between different types 

of biopolymers. The protein-polysaccharide complexation is essential in the formation of the complex gels 

such as alginate-gelatine, alginate-casein gels etc., and the protein-polysaccharide complexes are often 

applied as emulsion stabilisers due to their high surface activity and ability to form thick gel-like layers. For 

example, they are added in ice-cream mixes [Tolstoguzov, 1996].  

Macromolecule complexation may also lead to phase separation caused by charge-neutralisation and the 

formation of insoluble compounds. These are easily formed by the unordered proteins (e.g. gelatine, casein 

and denatured grain storage proteins), which are not topologically restricted, and these proteins have special 

functionalities in foods [Tolstoguzov, 2003]. At high macromolecule concentration, also the incompatibility 

between proteins and polysaccharides can lead to phase separation and depletion flocculation. These 

phenomena influence the gel-strengths and the stability of oil-water emulsions and for example contribute to 

the structures of doughs and ice-cream mixes [Tolstoguzov, 1996, 2003].  

As introduced, the macromolecule complexation as well as macromolecule compatibility and cosolubility 

are factors that govern the outcome of mixing and processing the various biopolymers together. Thus, the 



 

 2

monitoring of complex-formation during food processing could contribute to an increased control of the 

processes that determine food quality.  

1.2. Scope of the project 

This project has the goal of evaluating the performance of near-infrared spectroscopy (NIR) as a method for 

detection and characterisation of biomacromolecule structures and interactions. The sensitivity of NIR to 

complex-formation between macromolecules is investigated with the purpose of bringing a new dimension to 

the control and improvement of food qualities. The recognition of NIR as a tool for gaining information on 

macromolecule interactions could bring about new applications of NIR in many fields. In the food industry, 

monitoring of protein-protein interactions during cheese ripening and dough mixing are possible 

applications. In this thesis, the focus is on protein structure and protein-protein interactions, so as to limit the 

study. Therefore, the work only constitutes a small part of this rather new research area.  

The central techniques in this work: NIR and mid-infrared spectroscopy (MIR) and methods for their 

analysis are introduced in this chapter with the purpose of giving a basic understanding of their capabilities. 

MIR is applied to facilitate the interpretation of the NIR spectra. First some basic theory considering the 

origin of absorption bands in the NIR and MIR regions is given, where after mechanisms that underlie the 

sensitivity of the absorptions to intermolecular interactions are described.  

1.3. Introduction to infrared spectroscopy 

The possibility of rapid, accurate and non-destructive identification and quantification of biochemical 

components in many types of samples by NIR has made the technique an important method in the fields of 

biotechnology, food, human health etc. NIR has since 1970s been widely applied for quality control and 

compositional analysis in the agro-food industry e.g. for protein quantification in wheat grains and is now 

widely used for screening in wheat breeding programs [Halverson, 1988; Osborne, 2000]. The NIR spectrum 

has traditionally been considered containing much less structural information than the MIR spectrum, due to 

the weakness of the absorption bands and their low resolution. However, NIR provides also physical sample 

information and has found more widespread utility than MIR or Raman spectroscopy in certain analyses (e.g. 

of cereal compositions) [Barton, 1996]. In recent years NIR has also become accepted as a method for 

quality control and process monitoring in the pharmaceutical industry and is considered a promising tool in 

the medical area [Reich, 2005, Murayama 1998, Blanco, 2002; Heise, 2002a]. Most of the applications of 

NIR rely on the calibration against a reference method and use NIR as an empirical method.  

   The weak NIR absorptions are related to the more intense MIR absorptions. The MIR spectra show 

narrower and more isolated bands than the NIR spectra, and while NIR has been used predominantly for 

gaining compositional information, MIR has often been applied in structural analyses of biomacromolecules 

[Jackson, 1995]. The sensitivity of MIR towards aggregation and misfolding of proteins causes this 
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technique to have potential for discriminating the healthy and diseased tissue occurring in Alzheimer’s- and 

Kreutzfeldt Jakob’s diseases and diabetes etc. [Pizzi 1995]. MIR has also shown capacity to measure starch 

crystallinity in the bread staling process, lipid phases and protein gel-formation [Sevenou, 2002; Allain, 

1999; Lewis, 2000].  

Some reviews of the theory, history, applications and practical aspects of NIR are given in: Osborne 

(2000), Pasquini (2003), and Blanco et al (2002) as well as in Paper I included in this thesis (Appendix I-1). 

The use and advances of MIR in biospectroscopy and human health is outlined in: Shaw (1999).  

The vibrational transitions in NIR and MIR 

Some basic theory is given in this section. For a more thorough study is referred to: Schrader (1995), 

Bokobza (2002) and Ciurczak (2001). 

Electromagnetic radiation has the ability to interact with matter and exchange energy, thereby giving rise to 

an absorption spectrum. In the vibrational spectroscopies, to which belong NIR and MIR, the interactions 

result in the transfer of radiation energy to the mechanical energy associated predominantly with the 

vibration of atoms in chemical bonds (stretching and bending vibrations). Thus, NIR and MIR are concerned 

with the infrared (IR) part of the electromagnetic spectrum, as the vibrational transition energies are 

concurrent with the energy in this frequency/wavelength region. The NIR region is found closest to the 

region of visible light and includes the wavelength range from ~780 nm to 2500 nm (wavenumbers: 1280-

4000 cm-1). The MIR region spans the higher wavelength range from 2500 to 15,000 nm (wavenumbers: 

4000-660 cm-1). The far infrared (FIR) is the range from 15,000 nm to 100,000 nm (wavenumbers: 660-10 

cm-1). The FIR is associated with the rotations and translations of atoms in the gaseous state and will not be 

described here.  

The vibrational energy transitions are explained from the harmonic and anharmonic oscillator models, 

which both consider the simple case of a diatomic molecule. Only the anharmonic oscillator model is valid 

for actual molecules. 

Harmonic oscillator: In the harmonic oscillator approximation, the diatomic molecule is depicted as two 

masses (m and M) connected by a weak spring. Only a stretching vibration is taking place in this system. The 

mechanical model leads to a vibrational frequency ν that depends on the stiffness of the spring (f) and the 

reduced mass µ (=m+M): 

(Eq. 1.1)   
µπ

ν f
2
1

=       

The vibrational energy of the harmonic oscillator increases if some photon energy is transferred to the 

molecule to increase the vibrational amplitude (excitation). However, the molecular oscillator, vibrating at 

frequency νm, can only obtain some discreet energy levels, which from quantum mechanics are found as: 
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(Eq. 1.2)  ⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1VhE mv ν  V =1, 2, 3..   

In Eq. 1.2, Ev is the energy associated with the quantum level V. A transition from one quantum level to the 

next level requires the absorption of the energy: ∆E= hνm, and this energy quantum can be supplied by 

electromagnetic radiation of the same frequency. Most observed transitions are from the ground level E0, as 

most molecules at ambient temperatures exist in this state. The fundamental 0→1 transitions require energies 

that match the energy of photons in the MIR region, whereas the higher overtone transitions (0→2, 0→3 

etc.) require the energies of photons in the NIR-region. In the harmonic oscillator, the overtones are not 

allowed according to the selection rules, which apply in the quantum mechanical model. 

Anharmonic oscillator: Anharmonicity originates from the vibrations about the equilibrium position being 

non-symmetric in real molecules. Thus, the potential energy function is approximated by the Morse function 

(see Fig. 1.1). The deviation from harmonicity is most significant for the chemical bonds of a high 

vibrational amplitude, such as bonds that connect a large atom with the small hydrogen atom. 

 

 

 

 

 

 

 

 

 

 

The anharmonicity provides the way for overtones and combination bands, which appear in NIR spectra. (see 

Fig. 1.2). Anharmonicity affects both the electrical and mechanical properties of the bond, and the overtone 

and combination bands become active as a consequence of either the electrical or the mechanical 

anharmonicity. A consequence of the anharmonicity is that allowed vibrational energy levels are not equally 

spaced but converge with increasing quantum number V as expressed in Eq. 1.3. 

 (Eq. 1.3) 2)
2
1()(

2

1
+−+= VxhVhE mmv νν   

In Eq. 1.3, x accounts for the mechanical anharmonicity. The energy required for the transition 0→V is given 

as: 

(Eq. 1.4) ))1(1( xVVhE m +−=∆ ν , V=1,2,3…. 

Fig. 1.1. Energy levels, 
according to the anharmonic 
oscillator model. 
The Morse function (full line) 
shows the potential energy 
for the anharmonic oscillator. 
Also the potential energy 
according to the harmonic 
oscillator model is shown 
(broken line).  
Illustration from [Murray, 
2004].  



 

 5

From Eq. 1.4, the energy required for the fundamental transition (V=1) is found as ∆E=hνm(1-2x), and the 

energy required for the first overtone transition (V=2) is ∆E=hνm(2-6x).  

Due to anharmonicity, NIR spectra of polyatomic molecules also show combination bands at frequencies 

that are additions of multiples of the fundamental frequencies. These bands arise when the energy of an 

absorbed photon is shared between two or more fundamental transitions. The requirement is that at least one 

of the vibrations is infrared active (described below).  

Even though a high number of overtone and combination bands generally are present in NIR spectra, these 

often have a smooth appearance with a few broad bands, due to band overlapping and averaging out. The 

infrared spectrum of a protein-rich sample is shown in Fig. 1.2. The chemical information provided by the 

fundamentals in the MIR region (Fig. 1.2B) is repeated in the combinations and overtones in the NIR region 

(Fig.1.2A). 

Since the probabilities of overtone- and combination transitions are low, the absorptivities in the NIR are 10-

100 times weaker than in MIR, and they also get progressively weaker at increasing overtone level (see Fig. 

1.2A). The weak absorptions in NIR compared to MIR means that the light, reaching the detector, contains 

information of a larger amount of sample. However, NIR is still a surface method. For example, the NIR-

light only penetrates a few mm into a dough [Wesley, 1998].  

The different chemical groups also cause bands of very different intensities. For the exchange of energy to 

take place, it is a prerequisite that the vibration is associated with a change in dipole moment i.e. a transition 

dipole moment (TDM). Therefore, vibrations that maintain a centre of symmetry in the molecules are 

infrared inactive, and, as the absorptivity shows proportionality to the TDM, the chemical groups of high 

bond polarity are the most absorptive in the MIR [Swanton, 1986]. For example, the C=O stretching gives 

rise to an intense band in the MIR. However, this does not apply to the NIR spectrum, for which the 

anharmonicity of the chemical bond has influence on the absorptivity as well (as the NIR absorptions are 

Fig.1.2. The infrared spectrum of gluten. A) NIR region, containing the combination and overtone bands. B) MIR 
region, containing the fundamental bands. For the NIR spectrum it is common to use the wavelengths (λ), whereas 
for the MIR spectrum it is common to use the wavenumbers (υ) . The relations to frequency (ν) are: λ = c/ ν and 
υ= ν /c (c is the speed of light).  
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based on anharmonicity). The consequence is that overtones and combinations, arising from bonds with a 

high electrical anharmonicity, exhibit the most intense absorptions in NIR [Bokobza, 2002; Murray, 1987]. 

Therefore, the absorptions from the CH, NH and OH groups dominate, and the C=O groups give rise to very 

weak absorptions in the NIR region.  

Quantitative chemical information 

The sample spectrum is obtained from the intensity of radiation entering (I0) and leaving (I) the sample. I is 

either the radiation that is transmitted through the sample or the radiation that is reflected back from the 

sample, giving rise to transmittance (T=IT/I0) and reflectance (R=IR/I0) spectra, respectively. (As I0 is not 

easily obtained, I is ratioed to a background measurement e.g. obtained from the empty cuvette).  

In the ideal transmission situation, the light passing through a sample of thickness l is absorbed according 

to the absorption coefficient (µa) in the sample at that specific wavelength. The attenuation of light in the 

sample can then be expressed according to Eq. 1.5. 

(Eq. 1.5) ln(I/I0)= -µal   

The absorption coefficient µa depends on the analyte concentration (c) [mol/L] and the molar absorptivity (ε) 

[L*mol-1*cm-1], and these parameters are applied in Beer’s law, which states proportionality between 

absorbance (A) and analyte concentration (Eq. 1.6). In Eq. 1.6, the optical path length l has the unit of cm 

and absorbance is expressed in absorbance units [AU]. 

(Eq. 1.6) A = -log10(I / I0 ) = εcl   

Beer’s law can seldom be used in a univariate manner. The overlapping of bands from various chemical 

groups and baseline variations instead ask for a multivariate analysis (MVA) method for unravelling the 

chemical information. These methods are based on Beer’s law and the additivity statement in Eq. 1.7. 

(Eq. 1.7) A=ε1c1l+ε2c2l….  

Due to detector non-linearities Beer’s law may not be valid for high absorbencies (>1 AU). For transmission 

measurements, deviations from Beer’s law may also result from instrument-drift, stray light and interactions 

between components, of which the latter may cause shifts in the absorbance peaks [Murray, 1987].  

1.4. Physical information  

NIR spectra are rich in physical information about the samples, due to the light scattering effects.  

Light scattering effects  

NIR has the potential to measure particulate samples (turbid liquids, semi-solids or solids) by use of diffuse 

transmission, diffuse reflection or transflection. For example, flours have been analysed widely by NIR 

diffuse reflection [Law, 1977; Delwiche, 1994, 1998; Sato, 2001; Wesley, 2001] and intact grains by use of 
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diffuse transmission [Munck, 2001]. Diffuse reflectance is the light that is reflected back to the detector from 

a particulate sample after having experienced reflections, refractions and diffractions at the particle surfaces 

[Birth, 1987]. Beer-Lamberts law is originally not defined for these measurements, since the path length is 

unknown. Nevertheless, the proportionality between absorbance and concentration may also hold in this 

situation, i.e. A=log(1/R) ∝ c [Birth, 1987].  

The light scattering property of a sample has influence on the effective path length of the light. The higher 

the scattering property of the sample (reflected in the scatter coefficient µs), the shorter is the effective path 

length and the lower is the apparent absorbance level [Pasikatan, 2001]. Consequently, the spectra show 

multiplicative scaling effects, i.e. multiplication of every wavelength by a factor (see Fig. 1.3). Also additive 

offset variations may arise due to constant loss of light at all wavelengths. 

The light scattering property is dependent on the sample 

composition, as the refractions and reflections in the sample 

depend on the refractive index differences between the 

particles and the medium. The smaller this difference is, the 

lower is the µs [Doyle, 2001]. For example, addition of 

water to a dry sample decreases the refractive index 

differences and the thereby decreased scattering properties 

could lead to a lack of diffuse reflectance from the sample 

[Doyle, 2001]. The light scattering property is also highly 

dependent on the particle concentration, particle size, 

particle size distribution, particle shape and surface texture 

as well as the crystalline form and packing density etc. 

[Murray, 1987]. An increased particle size diminishes the light scattering interfaces, thus reducing the µs and 

leading to a larger effective path length [Pasikatan, 2001]. However, the increased particle size may also 

decrease the absorption coefficient for strong absorbers, since the light does not penetrate so deeply into 

strongly absorbing particles. Instead the light is specularly reflected i.e. reflected from the surface and is 

without information on the sample composition. This ‘hidden mass’ effect means that the absorption from a 

large particle can be smaller than the absorption from several small particles of the same mass [Burger, 

1997]. Due to the described complexity, the different particle sizes may lead to different spectral shapes 

[Ventura, 1999].  

Wavelength dependent scatter results from a dependency of µs on the wavelength (µs usually decreases 

with wavelength), as this dependency is affected by physical properties such as the particle size [Schmitt, 

1996]. This results for example in varying baseline slopes.  

Fig. 1.3. Plot of four diffuse reflectance spectra 
against their mean. The different slopes reflect 
the multiplicative effects. Some chemical 
variation at high absorbance is seen. 
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Separation of physical and chemical variations 

Although the light scattering can be handled implicitly in the multivariate calibration models, the presence of 

the physical effects in the spectra demand more calibration samples and result in models of higher 

complexity. Therefore, the alternative approach to use a preprocessing method to separate out the light 

scattering from the chemical variations will usually improve the data analysis.  

Multiplicative Signal Correction (MSC) and Extended MSC (EMSC) are methods with the purpose of 

modelling and subtracting the unwanted spectral variations that result from light scattering, variable path 

lengths and baseline drifts [Martens, 2003]. An advantage of these methods is the storage of the scatter 

information in the output parameters, which can then give information on the physical sample properties. In 

the MSC/EMSC model the sample spectrum is expressed as the ideal chemical spectrum modified by various 

physical effects. In the usual MSC approach, an offset (ai) and a slope (bi) coefficient are estimated for each 

spectrum i by regression of the spectrum (zi) to the ideal chemical spectrum zi,chem according to the linear 

physical model shown in Eq. 1.8.   

 (Eq. 1.8)  zi = ai1+bizi,chem+εi    

The MSC coefficients ai and bi reflects the additive and multiplicative light scattering effects, respectively, 

whereas εi accounts for the residuals (measurement errors). In EMSC, the equation is extended with 

corrections for linear and quadratic wavelength effects i.e. the wavelength-dependent scatter variations. 

These are represented by the additional terms in Eq. 1.9, where λ represents the wavelength range. 

(Eq. 1.9)   zi = ai1+ diλ + eiλ2+ bizi,chem +εi.    

The regression returns the MSC/EMSC parameters and these are used for correction of the spectrum for the 

light scattering effects (Eq. 1.10). 

(Eq. 1.10)   zi,corr=(zi-ai1-diλ-eiλ2)/bi  

For determination of the model parameters, the ideal chemical spectrum is taken as a variance δi around a 

reference spectrum m. In MSC, this variation is unknown and ignored, and the mean spectrum is simply used 

as the ideal chemical spectrum. A disadvantage of this approach is that the obtained MSC parameters may be 

influenced by the chemical variations, and MSC may thus remove some of the relevant information 

[Martens, 2003]. For avoidance of this, the MSC parameters have to be estimated from spectral regions with 

a minimum of chemical information or the absorption peaks need to be down-weighted.  

EMSC/causal modelling: The difficulties described above may also be overcome by applying the spectra of 

the chemical constituents to express the true chemical spectrum. This spectrum may now be expressed from 

the J constituent spectra (k1, k2,…, kj) and the constituent concentration differences (∆ci1 , ∆ci2,…,∆ci j) 

relative to the reference sample, according to Eq. 1.11.  
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 (Eq. 1.11)  zi,chem = m+ ∆ci1k1
’+∆ci2k2

’+…..∆cijkj
’ 

Eq. 1.11 is inserted into the physical model (Eq. 1.9), and the EMSC parameters ai, bi, di and ei can then be 

estimated independently of the constituent concentrations by least squares regression. An important feature 

of EMSC is the possibility to subtract interfering absorption patterns from the sample spectra, as their 

concentrations are obtained from the estimated EMSC parameters. Whereas the interference spectra are 

termed “bad spectra”, the chemical constituent spectra are termed “good spectra”, since the latter represent 

the desired variations. The input spectra may be determined empirically from a calibration set by use of e.g. 

principal component analysis (PCA, see section 1.6). The application of EMSC with input “good” and “bad” 

spectra is demonstrated and explained in more detail in Paper III (section 2.5), which considers the removal 

of temperature- and salt-effects from MIR spectra of aqueous samples. A similar model-based preprocessing 

method for removal of interfering atmospheric absorptions in MIR spectra is described in Paper II (Appendix 

II). The EMSC method also remove physical information from the MIR spectra, which are sensitive to the 

physical state of the samples. When not otherwise mentioned, the term EMSC refers to the standard 

procedure with the mean spectrum used as the ideal chemical spectrum. 

Other preprocessing methods: The choice of preprocessing method for removal of light scattering effects is 

empirical and the different preprocessing methods and their combinations can be tried out. The derivative 

transformations are also able to remove baseline offsets and linear baseline variations but cannot get rid of 

the multiplicative effects. However, some of the residual scatter effects may be removed by use of 

MSC/EMSC [Pedersen, 2002]. In this work, 2nd derivative transformation is used for obtaining better 

resolution of the overlapping peaks in both NIR and MIR spectra, as it works as a band-narrowing technique.  

1.5. Influence of hydrogen bonding interactions on the infrared spectrum  

The dependency on the bond force constant means that any factor that alters the electron density in the bond 

also alters the vibrational frequency. Likewise, factors that affect the dipole moment associated with the 

vibration influences the absorptivity. As the hydrogen bonding interaction has pronounced influence on the 

electron distribution, the MIR and NIR possess the ability to bring information about the strengths of 

hydrogen bonds [Scheiner, 1997; Czarnik-Matusewicz, 2005], and the methods are recognised as powerful 

methods for the study of hydrogen bonding interactions [Vanderkooi, 2005; Ozaki, 2002]. The general effect 

of hydrogen bonding on MIR and NIR spectra is outlined in the following section. The hydrogen bonding 

interactions in liquid water is dealt with in chapter 2. 

The classical hydrogen bond 

The hydrogen bond is often described as a special case of a strong dipolar interaction. It links a proton donor 

molecule (AH) to a proton acceptor molecule (B) and causes the two molecules to share a hydrogen atom. 

The donor molecule contains a hydrogen atom covalently bound to an electronegative atom (e.g. AH= OH or 

NH), and the acceptor molecule contains an electronegative atom B with at least one lonepair (e.g. B= O: or 



 

 10

N:) [Scheiner, 1997]. The physical forces that keep the hydrogen bonded molecules together and contribute 

to the hydrogen bonding energy have been decomposed into several components that include: electrostatic 

(coulomb), exchange, induction (or deformation) and dispersion (van der Waals) energies. The exchange 

energy results from the exchange of electrons in molecule A with electrons in molecule B and is a repulsive 

force in contrast to the other forces, which are acting to contract the hydrogen bond [Scheiner, 1997]. 

The distance between the hydrogen bonded molecules reflects the strength of the hydrogen bond, and an 

exponential decrease in hydrogen bonding strength with increasing length of the hydrogen bond is observed. 

The strength of the hydrogen bond is also influenced by the hydrogen bond angle but to a smaller extent 

[Scheiner, 1997; Chaplin, 2005]. The linear hydrogen bond has the bridging hydrogen atom positioned on a 

straight line between A and B, and the more it is bend away from this geometry, the weaker is the hydrogen 

bond [Scheiner, 1997].  

General effect of hydrogen bonding on MIR spectra 

Upon hydrogen bond formation, the bridging hydrogen atom is pulled away from the proton donor AH, and 

the covalent A-H bond is extended and weakened. As a result, the fundamental AH stretching band shifts to 

lower frequencies, and the size of the vibrational shift (∆νs) reflects the hydrogen bonding strength 

[Scheiner, 1997]. The linear relation between ∆νs and the hydrogen bonding strength for the donor molecule 

is known as the Badger Bauer rule. It applies for many chemical groups and for hydrogen bonding strengths 

above a certain value (the shifts are very small for the weakest hydrogen bonds) [Scheiner, 1997]. The size 

of the shift also depends on the hydrogen bonding angle and is largest for the linear hydrogen bonds. The 

vibrational frequency of the acceptor molecule is usually not affected as much by the hydrogen bonding as in 

the case of the donor molecule [Scheiner, 1997]. However, also the binding of the peptide C=O groups to 

NH-groups causes the C=O stretching band to shift to lower frequencies [Barth, 2002].  

The hydrogen bonding strength also has influence on the intensity of the fundamental band for both 

hydrogen donor AH and acceptor molecule B, due to the perturbations of their dipole moments. When the 

hydrogen bond is formed, the lonepair on B is dragged towards the AH-molecule, and small electron density 

redistributions take place. About 0.01-0.03 electrons are transferred from B to A upon hydrogen bonding 

[Scheiner, 1997]. The electrons from B ‘bypass’ the bridging hydrogen atom, and a consequence of 

hydrogen bonding is a lowered electron density on this atom [Scheiner, 1997]. The bridging hydrogen atom 

hereby obtains a higher positive charge, and the dipole moment of the stretching vibration increases for the 

acceptor groups that possess an electropositive hydrogen atom (e.g. OH and NH). Thus, for these groups, the 

hydrogen bonding leads to higher intensities of the stretching bands. However, for e.g. the PH group (with an 

electronegative hydrogen atom), the effect of hydrogen bonding is a decrease in the dipole moment of the 

stretching vibration and a decrease of the band intensity [Scheiner, 1997].  
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Also for the acceptor molecule B, the transfer of electron density results in a change of the dipole moment, 

but the effect on the band intensity is dependent on the chemical group. For example, for the C=O peptide 

group, the intensity increases upon increasing hydrogen bonding strength [de Jongh, 1996].  

The bending vibrational frequency of an XH2 group reflects the energy necessary for overcoming the 

repulsion between the hydrogen atoms or between the lonepair electrons on X [Šoptrajanov, 2000]. 

Hydrogen bonding normally increases the stiffness of the H-X-H angle in the donor molecule. However, this 

effect may be counteracted by an increase in the X-H bond lengths, which leads to reduced repulsion 

between the hydrogen atoms [Šoptrajanov, 2000]. Thus, the shifts upon hydrogen bonding are often minor 

for bending bands [Scheiner, 1997], whereas their absorptivity generally decreases [Vanderkooi, 2005; 

Scheiner, 1997].  

General effect of hydrogen bonding on NIR spectra 

The position of an overtone band is affected by hydrogen bonding in the same way as the position of the 

fundamental band, i.e. a stretching overtone band shifts to lower frequencies/higher wavelengths [Graener, 

1991]. Hydrogen bonding may also cause combination bands to shift to higher wavelengths due to the 

dominating shift of the stretching modes.  

The effects of hydrogen bonding on the shape and intensity of overtone and combination bands are 

different from the case of fundamental bands. The polarisability and thereby the electrical anharmonicity of 

the bond is affected by hydrogen bonding. Upon hydrogen bonding, the contributions of electrical and 

mechanical anharmonicity to the overtone transition dipole moment of the stretching vibration can 

compensate each other, and the consequence is a small decrease in intensity of the stretching overtone band 

[Graener, 1991]. Thus, the monomers, which are of higher anharmonicity than the polymeric counterpart, 

produce the most intense overtone bands, and this makes the NIR region suitable for studies of polymer-to- 

monomer dissociations [Ozaki, 2002; Katsumoto, 2002]. This is in opposition to the case of MIR spectra, in 

which the free unbound groups have a rather low intensity compared to the hydrogen bonded counterpart, as 

described above. 

Also, the electrical anharmonicity has been shown to affect the shape of overtone bands, and variations in 

anharmonicity could be partly responsible for the structures (side lopes) that are sometimes observed in 

overtone bands [Graener, 1991]. 

Assessing molecular interactions in NIR/MIR spectra 

In the spectroscopic study with the purpose of probing macromolecule interactions, the possibility of 

identifying spectral variations that result from these interactions is essential. The occurrence of chemical 

interactions is manifested as a difference between the measured sample spectrum and the sample spectrum, 

reconstructed from the individual constituent spectra. For indicating the presence or absence of 

macromolecule interactions, the involvement of the pure constituent spectra is thus demanded. EMSC with 
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use of “bad spectra” is a potential approach, as the subtraction of the contributing constituent spectra would 

leave the variation caused by their interactions in the EMSC residuals (the corrected spectra). Variations in 

the residuals could then be taken as a confirmation of molecular interactions occurring in the mixture. 

However, several factors obstruct the implementation of this approach. As the macromolecular interactions 

often require the presence of water, also changes in the water-macromolecule interactions may be the cause 

of possible spectral alterations (as hydration affects the spectra of both constituents). Furthermore, the 

complex light scattering effects in NIR may also contribute to differences between the constituent spectra 

obtained alone and in the mixture, and non-linearities (i.e. influence of analyte concentration on the spectral 

shape) add additional difficulties to the above approach. Therefore, it is essential to have some a priori 

information of the spectral changes that can be expected due to interactions. This information is obtained by 

use of a reference method or by analysis of some chemically well-described systems, such that interpretation 

of the spectral alterations is possible.  

1.6. Multivariate analysis (MVA)/chemometrics 

The MVA methods (which are also called chemometrics in case of chemical data analysis) were developed 

predominantly during the 1970s and provided the way for NIR in this period [Heise, 2002b; Geladi, 2003].  

Chemometrics is the application of mathematical and statistical tools to analyse complex chemical data of a 

multivariate nature i.e. with many variables and/or many types of variation [Martens, 2000a]. A spectral data 

set usually contains more variables than samples and also has highly correlated variables. This means that the 

classical multiple linear regression is not suitable for analysing the full NIR spectrum [Murray, 2004]. On the 

other hand, the bilinear factor methods PCA and partial least squares regression (PLSR) take advantage of 

the correlations to find a few ‘latent’ non-measurable variables and thereby remove the redundant 

information [Wold, 2001; Martens, 2000a]. The new latent variables provide an overview of the main 

variations in the data and facilitate the recognition of otherwise hidden structures. The methods further have 

the advantages to allow outliers be identified, to allow ‘missing values’ and to separate out the noise from the 

signal [Wold, 2001]. The stability against noise result from the possibility to use the full spectrum instead of 

a few selected variables, which is also advantageous for the separation of physical and chemical variations. 

Thus, the bilinear factor methods have become the most popular methods for NIR analyses [Heise, 2002b]. 

On the other hand, variable selection may also improve a calibration model.  

Here, the basic methods; PCA and PLSR are described, as these methods are being used throughout this 

work for analysis of a single set or two related sets of variables, respectively. Both are bilinear methods 

(linear in samples and variables) and generally based on the linear relation between absorbance and 

concentration, according to Beer’s law. However, PLSR can handle some non-linearity 
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Principal component analysis (PCA) 

PCA is as a non-supervised classification technique. It is used for exploration of patterns and groupings in 

one data set (X) without using any prior knowledge, i.e. the data is allowed to “speak for itself”. PCA is 

described in more details in [Esbensen, 2000a; Martens, 2000b; Geladi, 2003].  

To explain the principles of PCA, the objects (described by m variables) are first visualized as points in the 

m-dimensional space with each axis represented by one variable. PCA reduces this multidimensional space 

to fewer dimensions by replacing the original variable axes with new principal component (PC) axes, which 

are linear combinations of the original variables. This is done by singular value decomposition. The 

orthogonal PCs are determined successively in such a way that PC1 describes as much as possible of the 

variance in the original data, and each successive PC accounts for as much as possible of the remaining 

variance. The last PCs only describe the noise in the data. Hence, only the ‘A’ PCs that make up the 

structured part and have the noise part separated out are subject for further interpretation. Each of the A PCs 

is build from a loading- (p) and a score vector (t) as expressed in Eq. 1.12. Here, E holds the residual 

unmodelled variance (noise) and X is often the mean-centred data.  

(Eq. 1.12)  Ep't...p'tptX A2
'
11 +⋅++⋅+⋅= = ΣPCi+E 

(Eq. 1.13)  EP'TX +⋅=  

The score vectors t1, t2 …tA hold the score values for the objects obtained by projection onto the new PC 

axes, and the 2D score plots of t1 vs. t2, t1 vs. t3 etc. provide the possibility to discover patterns, groupings, 

and outliers in the data, as they show the relations between the objects. The loading vectors: p1, p2 …pA hold 

the signature of the PCs, i.e. they express the relations between the original variables and the new PC 

variables. A high loading value (positive or negative) signifies a variable with a high contribution to the PC, 

while a loading value close to zero signifies a variable without much contribution. The PCA model is 

summarised in Eq. 1.13. Here, T and P are the score- and loading matrices, respectively.  

PCA works as a kind of curve resolution technique, which have the purpose to find the pure chemical 

spectra and their concentrations in a mixture. However, even though the loading vectors can be subject to 

interpretation to explain the chemical/physical meaning of the PC, the loading vectors from spectroscopic 

analyses seldom have a pure chemical meaning, due to the constraints of orthogonality [Geladi, 2003]. In 

addition, a PC does not necessarily result from a single source of variation. However, the PCA results may 

be used as initial estimates for the pure chemical spectra, which can then be found by adding constraints such 

as non-negativity, unimodality etc. and optimizing by alternating least squares [Czarnik-Matusewicz, 2005].  

A curvefitting approach can also be used for finding concentrations of the individual constituents in the 

mixture, but in contrast to the curve resolution methods, it applies assumptions of the number and shapes of 
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the individual sub bands and is less flexible. The curvefitting is seldom used for NIR spectra but more 

frequently for MIR spectra. 

Partial least squares regression (PLSR) 

In multivariate calibration, the relationship between the independent variables X and the dependent variables 

Y is established by use of a calibration set with known Y-values. The obtained model, which is summarised 

in the regression coefficients B, can then be used for prediction of Y for a data set of unknown Y-values (see 

Eq. 1.14). When the spectra are used as the independent data set to predict e.g. chemical concentrations, the 

spectroscopic method can replace a more labour-intensive chemical analysis. 

(Eq. 1.14)  Y=XB+F 

The inspection of B-vectors can be helpful in spectroscopic analyses, where they can draw attention to the 

spectral regions of high correlation to Y and thus help in the band assignment [Šašić, 2000]. The B-vectors 

may be found by regression of latent variables against the Y-variables, e.g. the score matrix from a PCA can 

be used. However in PLSR, both X and Y are modelled by latent variables (see Eq. 1.15), and the Y-variance 

is used as a guide for decomposition of X, as the algorithm seek to increase the covariance of the X- and Y-

scores [Martens, 2000f]. This ensures that the first PLS-components (these are also termed PCs) are relavant 

to Y. 

(Eq. 1.15) X=TP’+E Y=TQ’+F 

In addition to the calibration purposes, PLSR may also be applied for determination of the influence of the 

design factors on some response values (hypothesis-testing method), or for an entirely explorative analysis of 

how different variables relate to each other’s (hypothesis-generating method). Relationships between several 

X- and Y-variables can be inspected from the two-dimensional correlation loading plots (See Fig. 1.4) 

[Martens, 2000d]. These plots show the correlations of each original variable to the two latent variables that 

are plotted against each other’s. If the main variation is explained in the two PCs, the correlation between 

variables can be inspected from the plot: The positively correlated variables are placed close together, 

whereas negatively correlated variables are placed oppositely. Variables close to the origin are poorly 

explained by the PLS-components and contain no useful information [Martens, 2000b].  

 

Fig. 1.4. Correlation loading plot from a 
PLS-regression of several X-variables to 
one Y-variable (income).  The inner circle 
represents 50 % explanation and the outer 
circle represents 100 % explanation. The 
plot shows  e.g. that income is highly 
correlated to age. 
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PLSR is described in more details in [Wold, 2001; Esbensen, 2002b, Geladi, 2003 and Martens, 2000b, 

2000f]. 

Validation: It is important to validate the PLSR models in order to prevent overfitting and wrong conclusions 

to be drawn. The external validity of the model is checked by employing a priori knowledge. The internal 

validation considers the reliability of the results and is usually done by test set validation and/or cross 

validation (CV). The validation methods assess the stabilities of the model parameters and estimate the 

prediction errors that can be expected in the future predictions [Martens, 2000e, 2000f]. CV simulates test set 

validation by consecutively taking out subsets from the calibration set and using these as temporary test sets 

in several predictions. The stability of the model parameters against the perturbations in CV reflects the 

reliabilities of the parameters. Thus, reliability ranges for e.g. the B-coefficients can be estimated on the 

basis of CV results (by means of jack-knifing), and X-variables with a significant influence on Y may be 

identified in this way [Martens, 2000e, 2000f].  

The predictive ability of the PLSR model is assessed from the root mean square error of Y (RMSE(Y)), 

which sum up all Y-residuals and is a measure of both precision and accuracy. The future prediction result 

can be reported as Y±2*RMSE(Y), which is an empirical interval [Martens, 2000e]. A criterion for a 

successful calibration may be taken as a specific ratio of RMSE(Y) to the original Y-variance [Oberg, 2004].  

1.7. Contents of this thesis 

The next chapter deals with the infrared water spectrum, as this has a great influence in the spectroscopic 

analyses of most biological/food samples (chapter 2). The subsequent parts of the work are concerned with 

protein structure and interaction analyses using the two infrared spectroscopic techniques, and the 

experiments cover the simple case of pure protein solutions (chapter 3) and the case of more complex 

samples, which are of concern in food analyses (chapter 4 and 5). In the latter chapters, the gluten protein 

network is used as a model system for investigation of the spectral- macromolecule function relationship. 

Finally, the results are discussed and concluded upon (chapter 6).  
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Chapter 2: Effects of water in infrared spectroscopy 

The solubilising properties of water result from its high ability to form hydrogen bonds, and MIR and NIR, 

being sensitive to the hydrogen bonding state of molecules, allow the observation of the hydrogen bonded 

network of water and its perturbations -even in complex systems [Gergely, 2003; Marechal, 1997]. The 

infrared water spectrum may thus be very informative and bring information on the structure of water and on 

solute-water interactions. On the other hand, some of the spectral water variations are irrelevant (e.g. reflect 

the measurement conditions) and hampers the study of the interesting phenomena. Sections 2.3 and 2.4 deal 

with the spectral variations caused by temperature and salts, and in section 2.5 is shown how EMSC 

pretreatments can be applied on MIR spectra for removal of these irrelevant variations, thus leading to better 

spectroscopic analyses of biological specimen. First, the infrared water spectrum is introduced. 

2.1. The infrared water spectrum 

In MIR, water appears almost ‘black’ and let no light pass unless the path length is extremely short (few 

microns). One way to obtain the short path length is to use the attenuated total reflection (ATR) mode. In this 

mode, the sample is placed in contact with a crystal e.g. of ZnSe, Ge or diamond, in which internal 

reflections generate an evanescent wave. Each time the radiation impinges on the crystal-sample interface, it 

penetrates a few microns into the sample and is attenuated before being transmitted to the detector.  

In NIR, the absorptivity from water is much less than in MIR, and water studies do not require the very 

short path lengths. 

The infrared water spectrum  

The H2O molecule has three normal modes of vibrations: Symmetric stretching vibrations (ν1), bending 

(scissoring) vibrations (ν2) and antisymmetric stretching vibrations (ν3). These are all infrared active, and, in 

ATR-spectra, the fundamental absorption bands of bulk liquid water appear at around 3405 cm-1 (ν3), 3210 

cm-1 (ν1) and 1635 cm-1 (ν2) [Max, 1999]. The water bands are somewhat downshifted in ATR-FTIR spectra 

compared to transmission spectra owing to an ‘anomalous dispersion effect’ [Grdadolnik, 2002]. Although 

this effect has influence on both shape and position of the water bands, the ATR mode is considered a 

powerful method for water analysis [Chen, 2004; Marechal, 1991,1993].  

Hydrogen bonding between water molecules in the liquid state has a huge influence on the vibrational 

frequencies, so the OH-stretching (OH-str.) bands of gaseous water are shifted several hundred wavenumbers 

up compared to those of liquid water. Thus, the water spectrum also reflects the hydrogen bonding state of 

liquid water, and, as the degree of hydrogen bonding decreases linearly with increasing temperature, the 

temperature variations are reflected as shifts of the water bands. This effect is dealt with in sections 2.3. 
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A broadness of the water bands owes to anharmonic coupling between vibrations of similar energy on 

neighbouring molecules and probably to coupling of the intramolecular vibrations to the intermolecular 

vibrations between hydrogen bonded molecules [Marechal, 1991]. Also, the wide range of hydrogen bonding 

configurations in liquid water causes inhomogeneous line broadening [Chaplin, 2006]. Thus, the ν1 and ν3 

vibrations appear as one broad absorption envelope for liquid water. In the spectrum of liquid water is, close 

to the far-infrared region, seen a libration band (νL) at ~800 cm-1, which is due to reorientation of the water 

molecules in the hydrogen bonded network, and which is sensitive to the dynamic properties of water 

[Gaiduk, 2004]. A minor band at ~2165-2127 cm-1 has been ascribed to the combination of ν2 and νL 

[Marechal, 1991; Chaplin, 2006] and some very weak bands at ~1300 cm-1 and 3200-3260 cm-1 to the 1st 

overtones of νL and ν2, respectively [Fischer, 2001; Marechal, 1993]. 

In NIR spectra, six water bands are evident, the assignments of which are shown in Table 2.1. In addition, a 

very weak band at 2083 nm has been reported as the 2nd overtone of HOH-bending (3*ν2) [Wang, 1998]. 

 
Wavelength [nm] Wavenumber [cm-1] Common assignment  Alternative 

assignment 
1930 5180 OH-str.+HOH-bend. ν1,3+ν2  
1440 6940 1st overtone of OH-str. 2*ν1,3  
1190 8400 OH-str.+HOH-bend. 2*ν1,3+ν2 ν1,3+3*ν2 
970 10,310 2nd overtone of OH-str. 3ν1,3    
840 11,900 OH-str.+HOH-bend. 3*ν1,3 +ν2 ν1,3+5*ν2  
760 13,160 3rd overtone of OH–str. 4*ν1,3  

Table 2.1. Water absorptions and assignments in the NIR region [Chaplin, 2006]. 

In contrast to the liquid water bands, the water vapour bands are of a high-frequent structure. The 

fundamental rotation-vibration bands are centred at 3755 (ν3), 3657 (ν1) and 1594 cm-1 (ν2) [Chaplin, 2006]. 

These bands result from vibration of the bonds simultaneously with rotation of the molecules. (The theory of 

rotation-vibration spectra from gaseous molecules is described in Heise et al (1995). The rotation-vibration 

band associated with ν2 overlaps with some important protein bands, and its removal is essential in the MIR 

protein structure analysis. A method for removal of the water vapour spectrum from Fourier Transform 

Infrared (FTIR) spectra is described in Paper II (Appendix II).  

2.2. Water structure  

Even though water is one of the most studied chemical systems, its hydrogen bonding configuration and 

dynamic, which is thought to govern the anomalous properties of water, is far from understood.  

Hydrogen bonding of H2O in liquid water 

Water is a highly dipolar molecule and it has the capacity to participate in hydrogen bonds as donor and 

acceptor simultaneously. The water molecule may participate in maximum four hydrogen bonds: The oxygen 

atom may act as acceptor of two hydrogen bonds and the OH groups may act as hydrogen donors in two 
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other hydrogen bonds [Vanderkooi, 2005]. The fully coordinated water molecule has a tetrahedral 

arrangement around the oxygen atom, and the resulting hexagonal structure is the primary arrangement 

found in ice [Vanderkooi, 2005]. See Fig. 2.1. 

 

 

 

 

 

Liquid water has a high degree of hydrogen bonding as well; it has been estimated that less than 5% of OH 

groups in water at room temperature are free (non-hydrogen bonded) [Marechal, 1993]. Many studies 

suggest that liquid water consist of the hexagonal structures found in ice, though with many defects 

[Vanderkooi, 2005]. The new emerging comprehension is that the presence of bend or distorted (but not 

broken) hydrogen bonds distinguishes liquid water from ice and provide water its fluidity, and the existence 

of weak bifurcated hydrogen bonds in liquid water is supported from several studies [Walrafen, 1989; 

Giguére, 1987; Khoshtariya 2002; Rull, 2002]. The bifurcated configuration involves weak hydrogen 

bonding of a hydrogen atom to two other water molecules [Walrafen, 1989]. 

Recently Wernet et al (2004) suggested that the dominating configuration of H2O in liquid water is 

asymmetric: It has a strong donor- and a strong acceptor hydrogen bond, while the remaining possible 

hydrogen bonds of the water molecule are weak or broken (single donor configuration) [Wernet, 2004]. This 

configuration is favoured by the cooperative and anticooperative effects. According to the authors, also the 

fully coordinated water molecule, as seen in ice, constitutes a small part (20 %) of liquid water in a broad 

temperature range.  

Models of the water structure  

The models for water structure can broadly be classified into two classes, namely the mixture models and the 

continuum models. The original mixture model describes water as being composed of a limited number of 

water species (different ring structures or cluster types) that coexist in a temperature-and pressure-dependent 

equilibrium [Eisenberg, 1969]. The continuum model on the other hand implies that hydrogen bonds are 

equally distributed in the water sample, and that there is a continuous weakening of the hydrogen bonds with 

increasing temperature [Wall, 1965]. None of the two models has been finally proved to be the correct model 

and the different models need to be taken into account in order to explain the many anomalous properties of 

water [Khoshtariya, 2002]. 

Some recent two-component models invoke that water is composed of two coexisting phases: a low-density 

phase and a high-density phase with a high local tetrahedral ordering [Rønne, 2000; Chaplin, 2006]. One of 

Fig. 2.1. Outline of the 
tetrahedral arrangement of 
the fully hydrogen bonded 
water molecule in ice. 
 



 

 23

the theories involves the rapidly interconverting dodecahedral and isocahedral clusters, consisting each of 

280 water molecules [Chaplin, 2006], and an outer two-state model describes water as a mixture of different 

ice-like species (Ice Ih and Ice II type), which can rearrange on a pico second scale [Urquidi, 1999]. Thus, 

the hydrogen bonded structures in water are considered to be transient, with hydrogen bonds constantly 

breaking and reforming. A common feature among the recent models is the presence of interstitial (weakly 

bound) water molecules sitting in the cavities of a distorted tetrahedrally bonded network, resulting in a 

higher density than the pure tetrahedral arrangement [Rønne, 2000; Wernet, 2004].  

2.3. Temperature effects 

The hydrogen-bonded network structure in liquid water and its dependence on temperature has been subject 

to several MIR and NIR studies. The presence in the spectra of nearly isosbestic points, i.e. frequencies at 

which the absorbance is independent of the temperature, has usually been taken as support of the mixture 

model. However, MIR and NIR only provide indirect evidence as to the water structure. 

Temperature-dependent spectral changes 

Fifteen properties of water have been estimated from NIR spectra of water at different temperatures. These 

include e.g. density, refractive index, dielectricity constant, relative viscosity, isothermal compressibility, 

thermal expansitivity, thermal conductivity, surface tension, vapour pressure, enthalpy, entropy, free energy 

and ionisation constant [Lin, 1994]. The excellent correlations to all properties reflect the sensitivity of NIR 

to both hydrogen bonding and the packing density of water. Whereas variations in packing density cause 

scaling effects, the hydrogen bonding variations affect position and relative intensities of the water bands. 

The effect of temperature on the fundamental and some overtone and combination bands are shown in Fig. 

2.2 and 2.3.  

Shifts: For both the MIR and NIR spectra, the effect of increasing temperature is apparently shifts to higher 

frequencies (lower wavelengths) of the bands that involve OH–str. vibrations (ν1,3). (As described in chapter 

1, low-frequency shifts occur proportional to the strength of the hydrogen bonds). Nearly isosbestic points 

are seen in the NIR spectra in Fig. 2.3. but also appears for the MIR spectra. The position of the bending 

band (ν2) is only little affected, and even though a low-frequency shift has been frequently reported for the ν2 

band, this shift has been shown to be caused by the temperature variations of the bands on which ν2 is 

superimposed (ν2+νL and 2*νL) [Marechal, 1993]. 
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Fig. 2. 2. ATR MIR spectra of water at temperatures at 9 oC and 63oC. Some effects of increasing 
temperature is shown by the arrows. 
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Fig. 2.3. NIR spectra in the range 790-1850 nm of water at temperatures from 9 oC to 
63oC. Some effect of increasing temperature is shown by the arrows. 
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Thus, the shifts of the combination bands are caused by shifts of the stretching or libration bands. For 

example, the shift of ν2+νL in MIR is governed by νL, which shifts to lower frequencies upon increasing 

temperatur [Marechal, 1993]. Even though the reorientational motion that results in the νL band is frequently 

depicted to be governed by unspecific interactions, it is essentially influenced by the hydrogen bonding state 

and thus by the temperature [Gaiduk, 2004], and the shift to lower frequencies upon increasing temperature 

is due to the weakening of the water structure [Marechal, 1993]. The combination bands in NIR show high-

frequency/low-wavelength shifts similar to the ν1,3 band (Fig. 2.3) although the shifts may be smaller 

[Chaplin, 2006]. 

Differences between NIR and MIR: The intensities of the fundamental bands are not affected in the same way 

by temperature as are the intensities of overtone and combination bands. As the temperature increases, the 

intensity of the fundamental ν1,3 band decreases. In contrast, an opposite increase is observed for its overtone 

and combination bandsl as a result of anharmonicity affecting the two regions in different ways (see section 

1.5) [Graener, 1991]. Similar to the overtone bands, the fundamental ν2 band increases with increasing 

temperature (in fact, the ν2 band is almost vanished for ice) [Chaplin, 2006; Vanderkooi, 2005]. In contrast, 

due to coupling with the ν1,3 band, the minor ν2 +νL band decreases at increasing temperature [Marechal, 

1993]. Also, with increasing temperature, the fundamental OH-str. band shows minor broadening, and the 

HOH-bending band becomes ~20 % narrower (Fig. 2.2) [Marechal, 1991; Czarnik-Matusewicz, 2005; Toft, 

1996]. In contrast to the fundamental OH-str. bands, the overtone OH-str. bands also become narrower with 

increasing temperature [Czarnik-Matusewicz, 2005; Libnau, 1994]. The opposite effects of temperature on 

the bandwidths in the two regions may result from the inter- and intramolecular anharmonic couplings 

[Marechal, 1991].  

The opposed effects of hydrogen bonding on band intensities and shapes in NIR and MIR offer 

complementary information to the two infrared regions and a few studies have combined information from 

the two regions [Czarnik-Matusewicz, 2005; Libnau, 1994]. 

Assessment of the water structure from temperature studies 

Analyses of the MIR and NIR spectra at different temperatures by use of PCA, PLSR and multivariate curve 

resolution techniques have provided indications as to the number of water configurations in the temperature-

dependent equilibrium. In PCA/PLSR studies of water between 6-80oC, the main spectral variation as 

described in PC1 and accounting for more than 99 % of the variation has indicated an interchange between 

two groups of strongly and weakly hydrogen bonded species, respectively [Segtnan, 2001; Libnau, 1994]. 

For example in an analysis of the temperature variations in the OH-str. overtone band, the first loading vector 

reflected a shift between 1492 nm (from the strongly hydrogen bonded structure) and 1412 nm (from the 

weakly hydrogen bonded structure) [Segtnan, 2001]. Also, in an analysis of the fundamental OH-str. band, 

two spectral profiles could be extracted and these showed OH-str. maxima at 3410 and 3240 cm-1 from the 
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two components increasing and decreasing, respectively, with temperature [Libnau, 1994]. Likewise, a rank 

two-result in a curve resolution study of the ν2 band has supported the two-component model [Toft, 1996]. 

Minor deviations from the two-component models have been ascribed for example to the presence of a third 

species (as suggested for water below 20oC), a continuum of hydrogen bonding interactions or to band 

broadening and small shifts [Libnau, 1994; Czarnik-Matusewicz, 2005]. However, most authors conclude 

that water can be seen as a pseudo two-component system [Libnau, 1994; Toft, 1996, Šašić, 2002].  

Additional information on the water structure has been obtained from band deconvolution and calculation 

of the sub band areas in order to assess the relative concentrations of the differently hydrogen bonded OH-

groups at different temperatures. Maeda et al (1995) analysed the first OH-str. overtone at 1440 nm of water 

between 5 and 85oC and found from the 2nd derivative spectra five sub bands, which did not change much in 

position with temperature. These were assigned to water with zero to four hydrogen bonds: S0 (1410 nm), S1 

(1439 nm), S2 (1456 nm), S3 (1553 nm) and S4 (1642 nm), unlike the common assignment made to the four 

sub bands of the fundamental OH-str. band (See Table 2.2). 

Sub band position [cm-1] OH species Hydrogen bonding 

3250  Icelike Strong 

3380 Icelike-liquid Normal 

3540 Liquid-like amorphous  Defect 

3670-3650 Free Non hydrogen bonded 

Table 2.2. Common assignments for the sub bands obtained in the deconvolution of the OH-str. band 
[Khostariya, 2002]. 

A decrease of the species S2, S3 and S4 and an increase of S0 were observed with increasing temperature. 

Likewise, five sub bands have been fitted to the water bands at 970 nm and 1190 nm [Abe, 2004]. From the 

integrated sub band areas of the 2nd overtone band (970 nm), Abe (2004) estimated the average number of 

hydrogen bonds (Nh) as a function of temperature and obtained good agreement with data obtained from X-

ray data (Nh =2.63 at 0oC and 2.12 at 98oC). The five components were also classified into a strongly 

hydrogen bonded group and a weakly hydrogen bonded group in agreement with the two-component model. 

In a study of the band at 1930 nm, an observed interconversion between two major sub bands with 

temperature was attributed to a redistribution between OH-groups with normal hydrogen bonds (2026 nm) 

and OH groups with temperature-bifurcated hydrogen bonds (1914 nm) [Khoshtariya, 2002]. Two other 

minor sub bands assigned to ice-like species with strong hydrogen bonds (2146 nm) and to free non-

hydrogen bonded species (1835 nm), respectively did not change much with temperature. Thus, in the 

temperature-dependent equilibrium outlined by Khoshtariya et al (2002), only the 2026 and 1914 nm OH-

groups were involved. An additional temperature-insensitive OH-group (at 1970 nm) was thought to 

represent a moderate distortion of the hexagonal ice structure. The authors found the data to support the 

tetrahedral displacement mechanism, in which the net outcome is the conversion of a normal hydrogen bond 
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to a bifurcated hydrogen bond as a tetrahedrally bound water molecule moves to an interstitial position 

[Khostariya, 2002; Agmon, 1996]. This reaction, which was suggested important for the anomalous 

properties of water, was also suggested to be the mechanism underlying the temperature-dependent 

equilibrium between normal hydrogen bonds and bifurcated hydrogen bonds [Khoshtariya, 2002].  

 2.4. Salt effects  

When a salt is dissolved in water, the anions and cations interact with water and become hydrated. The 

interactions cause perturbations of the water spectrum, since the vibrational properties of the bound water 

molecules are different from those of bulk water. The perturbation is salt specific, as are the effect of salts on 

various phenomena in biology (described more in chapter 5). 

The Hofmeister series 

Franz Hofmeister et al published in 1880-1890 several papers concerning the study on what he called ‘the 

water withdrawing power of salts‘ [Kunz, 2004a]. Hofmeister first showed that the amount of salt needed for 

the precipitation of hen egg white lysozyme depended on the type of salt. Then he arranged cations and 

anions in series after their effectiveness on protein precipitation, since he observed the same order of the salts 

for hen egg white globulin and blood serum globulin.  

The effect of salts on protein solubility is a balance between salting-out of hydrophobic groups on the 

proteins and salting-in of polar peptide groups, and the Hofmeister series arranges anions and cations 

according to these properties [Baldwin, 1996]. The anion and cation series are shown below. 

PO4
3->HPO4

2-=SO4
2->citrate->acetate-> Cl->Br->NO3

->ClO4
->SCN-  

Kosmotropic    chaotropic 

NH4
+>K+>Na+> Li+>Mg2+>Ca2+ 

Chaotropic  kosmotropic  

The first ions in the two series reduce the non-polar solubility in water, stabilise protein conformation and 

cause precipitation of proteins in their native form (salting-out). This salting-out property diminishes 

throughout the series, and the last ions increase the non-polar solubilities and cause protein solubilisation and 

denaturation (Salting-in) [Kalra, 2001]. The series are not definitive as the order can vary for different 

proteins, pHs, temperatures and counter-ions. In certain cases, the series can even be reversed [Ebel, 1999; 

Wiggins, 2000; Chaplin, 2006]. The sequences also reflect the efficiency of the ions on numerous other 

phenomena of concern in chemistry and biology, e.g. ion binding to micelles, protein and colloid stability 

and protein conformations [Kunz, 2004b]. The effect on protein conformations is demonstrated in chapter 5. 

Hofmeister reasoned that the precipitation effectiveness was related to the attracting forces between the salt 

and water molecules leading to solvent removal from the protein [Kunz, 2004]. In fact, the two series reflect 

the abilities of the ions to interact with water molecules. Based on these properties, the ions have been 
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classified into structure-makers (kosmotropes) and structure-breakers (chaotropes). The kosmotropes are 

typically ions smaller than Cl- (for anions) or K+ (for cations) with a high charge-density that bind water 

strongly and are highly hydrated, whereas the chaotropes are larger monovalent ions with a low charge-

density that bind water weakly and are less hydrated [Collins, 1997; Chaplin, 2006]. It was originally 

hypothesized that structure-makers could act as nucleation sites for ice-like structures in the liquid, whereas 

structure-breakers would disrupt these structures. However, the concept of long-ranging structure-breaking 

or structure-making effects of ions has been questioned, and evidence points to the fact that there is no large-

scale effects on the water structure, and that only water molecules in the vicinity of the ions are affected 

[Omta, 2003]. The increased viscosity induced by kosmotropic ions, as expressed by a positive Jones-Dole 

B-coefficient, is explained from the rigidity of the solvation structure of the ion and its first solvation shell 

and not by an increased hydrogen bonding in bulk water [Omta, 2003].  

For both anions and cations, there is electrostatic interaction with nearby water molecules. These try to 

align their dipole moment in the direction of the ion, so that the positive end points towards anions and the 

negative end towards cations [Hribar, 2002]. The water-cation interaction is a complex dipolar interaction 

that involves the free lonepair on the water molecules, while the water-anion interaction may entail a 

hydrogen bonding interaction with the hydrogen atom of water [Symons, 1975; Kropman, 2003].  

Due to the ion-water interactions, water arranges in coordination/hydration shells around the ions. In the 

first coordination shell of the ion, there is a competition between the electrostatic ion-water interaction and 

the water-water hydrogen bonding interaction, so, depending on the charge density of the ion, the water 

become more or less oriented towards the ion [Hribar, 2002]. For small anions with a high charge density 

(kosmotropes), the electrostatic interactions dominate over water-water interactions and water molecules are 

highly ordered, whereas for larger anions (chaotropes), the weaker electrostatic interaction with water causes 

the water molecules to be less strictly aligned towards the ion [Hribar, 2002]. Thus, the kosmotropic and 

chaotropic properties are associated with low and high entropies, respectively, of the hydration water 

[Hribar, 2002]. The chaotropic property of K+ has been corroborated in a molecular dynamic simulation 

study, which showed that the exchange of water molecules in the hydration shell of these ions is higher than 

in bulk water [Tongraar, 2004].  

Salt-dependent spectral changes 

Adding salt to water influences the physical and chemical properties of water and causes various effects in 

the infrared water spectrum. At increasing salt concentration, the water concentration decreases and the 

refractive index increases, and as a result, additive baseline variations and multiplicative effects appear in the 

spectra. On the other hand, the ion-water interactions affect the band shapes and positions. In agreement with 

this, both a baseline variation and some distinct peaks have been shown of importance for the discrimination 

of mineral waters of different salt compositions by use of the 1100-1800 nm spectra [Tanaka, 1995]. The 
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peaks seen in the 2nd derivative NIR spectra were thought to result from the perturbation of the water 

structure by the salts, since most inorganic ions cause no absorption peaks by itself in the NIR range.  

The perturbations of the infrared water spectra have been found to be rather characteristic of each 

electrolyte [Lin, 1994; Fischer, 2001; Liu, 2005; Wei, 2005]. For example, it has been possible to estimate 

the individual concentrations of Cl-, Na+, K+ and SO4
2- in seawater samples using the 1100-1800 nm range 

with correlations of more than 0.7 [Chen, 2003]. The spectral effects represent the perturbations due to both 

anion and cation and generally the two effects are additive an independent [Chen, 2004; Fischer, 2001].  

Anion effects: The chaotropic and kosmotropic anions cause different shifts in the infrared water bands, due 

to the different strengths of water-anion interactions for the two groups. The perturbations of the vibrational 

frequencies may result directly from the water-anion hydrogen bonding interaction [Fischer, 2001]. The 

chaotropic KCl has been found to produce spectral changes similar to those observed from a temperature-

increase, demonstrating the structure-breaking ability of the salt [Max, 1999]. Likewise, in a Raman study of 

the weakly chaotropic perchlorate anion, the OH str.-band of 1.5M LiClO4 at 45oC could be modelled from 

the Gaussian components obtained from the pure water spectrum, and this spectrum coincided almost perfect 

with the pure water spectrum at 60oC [Neto, 2003]. In order to obtain the spectral signature of the ion 

hydration water, the ATR-MIR difference spectra (after subtraction of the pure water spectrum) have been 

looked upon [Wei, 2005; Liu, 2005].  

The difference spectra have revealed a decrease at 3203 -3196 cm-1 and an increase at ~3585 cm-1 in the 

OH-str. band, upon increasing concentration of ClO4
- [Wei, 2005]. These effects were thought to reflect the 

breakage of a strong hydrogen bonds in the icelike structure and the substitution with a weak hydrogen bond 

to ClO-, according to the assignments in Table 2.2 [Wei, 2005]. With decreasing size of the anion (more 

kosmotropic), the positive peak in the difference spectra is found at lower frequencies [Fischer, 2001]. 

Sulphate, which is known as a kosmotrope, results in ion-water hydrogen bonds of almost similar strengths 

as between water molecules [Wei, 2005]. Thus, the only spectroscopic effect of the sulphate ions is a 

decrease of the high-frequency component at 3670-3650 cm-1, where the sub band from free OH-groups 

appear, as weak hydrogen bonds from monomeric water are substituted with hydrogen bonds to the anions 

[Jin, 2003; Wei, 2005].  

Cation effects: Also cations affect the shape of the water bands due to their electrostatic interactions with 

the surrounding water molecules. The effects are not merely shifts but may be rather complex changes, 

causing various positive and negative peaks in the difference spectra [Fischer, 2001; Wei, 2005].  

2.5. Removal of temperature and salt effects   (Paper III) 

The following paper describes a preprocessing method based on EMSC for removal of the irrelevant 

temperature and salt effects in ATR-FTIR spectra. The paper also concerns the extraction of relevant sample 

information from the water spectrum as regards hydration phenomena. 
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 SUMMARY 

Multivariate modelling methods are presented for stabilizing Fourier transform infrared spectroscopy (FTIR) 

in biospectroscopy. First, the irrelevant gas contributions from water vapour and CO2 in the instrument light 

path is modelled and removed. By use of Extended Multiplicative Signal Correction (EMSC), variations in 

the Attenuated Total Reflection (ATR)-FTIR spectrum of water caused by temperature and salts (MgSO4, 

NaClO4, NaCl) are estimated and removed from the spectra of biological samples in order to improve their 

analysis. These effects were described quantitatively for use in EMSC based on ATR-FTIR spectra of water 

solutions, and  the models were tested successfully in the in-vivo monitoring of Candida albicans growing 

on the ATR crystal of the same instrument, as well as for gluten/water/salt mixtures measured in a rather 

different  ATR-FTIR instrument. The spectral variations remaining after subtraction of the estimated 

temperature and salt effects are likely to reveal relevant chemical information of the samples 

Keywords: ATR-FTIR, Water,  salt effects, temperature effects. 

1. INTRODUCTION 

In biological sciences, Fourier transform infrared spectroscopy (FTIR) has proven to be an important tool for 

measuring a chemical fingerprint of very different samples [1-3]. The water spectrum often dominates in 

FTIR spectra of biological specimens, as water is a major part of living cells and is highly absorptive in the 

mid-IR. Due to the high absorptivity of water in the mid-infrared region, a very thin transmission cell or the 

Attenuated Total Reflection (ATR) technique is needed for IR analyses of aqueous samples in order to 

prevent saturation of the water peaks. The ATR-FTIR technique provides spectra of a high signal to noise 

ratio, is easy to use, and thus has found widespread application for analysis of  biological/microbial samples 

[1-3]. 

The sensitivity of FTIR towards hydrogen bonding means that perturbations of the hydrogen bonded 

network in liquid water has great impact on the spectra. ATR-FTIR is therefore very suitable for studying 

hydration phenomena, as well as the hydrogen bonded structures in water and its temperature-dependent 

variations [4, 5]. Liquid water seems to maintain different hydrogen-bonded structures, the distribution of 
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which is affected by the other constituents (proteins, carbohydrates, lipids, nucleic acids, salts etc.), as well 

as the physical state of the system (temperature) [4,5]. Thus, the FTIR spectra, reflecting the state of water, 

may bring highly relevant information on the system.  

On the other hand, a frequent problem encountered in FTIR analyses of biological samples relates to 

temperature fluctuations during the measurement series, as the hereby introduced variations are irrelevant 

and hamper the analysis of the phenomena of interest. The temperature variations result in apparent 

frequency shifts of the water bands and also affect their intensities. Furthermore, varying types and 

concentrations of ions present in the samples may cause unwanted spectral variations, since the hydration 

water of ions may obtain different vibrational properties compared to bulk water [6]. 

Varying physical properties of the samples may cause other unwanted spectral variations, such as additive 

and multiplicative effects, since the penetration depth of the IR light depends on the refractive index of the 

sample and is wavenumber-dependent. However, these effects can be separated from the chemical variations 

prior to the analysis by means of Extended Multiplicative Signal Correction (EMSC) [7]. In addition, this 

method provides the possibility to remove the unwanted spectral variations caused by chemical perturbants 

or temperature variations etc. This is done by use of empirical model spectra, describing the unwanted 

phenomena. 

The present paper develops empirical models for the effect of temperature and of salts on FTIR spectra of 

water. The models are based on ATR-FTIR spectra from controlled experiments in water solutions with 

various temperatures and salt contents. The results are tested on two sets of biologically relevant aqueous 

samples. The water-temperature model are tested on spectra of a colony of Candida albicans growing or 

decaying directly on the same ATR crystal used for the above water measurements. The salt models are 

tested on a simplified bread dough model: mixtures of aqueous samples of wheat storage protein (gluten) 

with various known levels of salts added, measured in another country in a different brand of FTIR 

instrument. 

 
Effect of temperature and salts on IR spectra of water 

The temperature-induced variations in the IR water spectrum have been investigated in a number of studies 

with the purpose of increasing the knowledge of the water structure, which is still far from understood. The 

IR studies have mainly provided indications to the number of water species (with different hydrogen bond 

configurations) present in a temperature-dependent equilibrium in liquid water and to their relative 

concentrations [8-10]. With decreasing temperature of liquid water, the water bands show apparent 

frequency shifts,  reflecting the increased hydrogen bonding of the water structure. For example, a low-

frequency shift of the OH stretching band ν1,3 appears upon hydrogen bond, since the interaction weakens the 

covalent O-H bond [11]. Hydrogen bonding further has the effect of increasing the ν1,3 band intensity due to 

an increase of the dipole moment [11].  
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In addition to temperature, the presence of various solutes, interacting to different extents with water, affects 

the infrared water spectrum. For example, ions in the aqueous samples bring about spectral perturbations, 

which are greatly determined by types and concentrations of the ions. Both anions and cations have long 

been classified into structure-makers (kosmotropes) and structure-breakers (chaotropes) based on their ability 

to interact with water and affect its properties. Although the effect of kosmotropes and chaotropes on the 

bulk water struture is questioned [12], it is certain that water in the vicinity of ions responds in different ways 

to the ions. The kosmotropic and chaotropic property is thus associated with a decrease and increase, 

respectively, of the entropy of the hydration water: Water molecules surrounding the kosmotropes become 

strictly oriented towards the ions due to strong electrostatic interactions, whereas a more disordered structure 

is allowed for water surrounding the chaotropic ions [13].  

The kosmotropic anions are typically ions smaller than Cl- of high charge densities such as sulphate and 

phosphate ions, and they form strong hydrogen bonds to water [14, 15]. For example, the sulphate ion is 

thought to cause the exchange of weak water-water hydrogen bonds with normal strength ion-water 

hydrogen bonds. This is e.g. reflected in the IR water spectrum as a minor decrease at 3670-3650 cm-1 in the 

OH-str. band, where the weakly bound water absorb [6]. On the other hand, the chaotropic anions posses low 

charge densities and are characterised by weak hydrogen bonds to water. In accordance, the effect on the IR 

water spectrum of the chaotropic Cl- and ClO4
- have been found similar to that observed from temperature 

increases [16-17]. An observed decrease at 3203 -3196 cm-1 and an increase at  ~3585 cm-1 induced by ClO4
- 

have been interpreted as the breakage of a strong hydrogen bond in the ‘fully hydrogen bonded five molecule 

tetrahedral nearest neighbour structure’, and the substitution with a weak hydrogen bond to ClO4
- [6].  

Cations influence the IR water spectrum as well, due to the electrostatic interactions, which affect the 

vibrational properties of the bound water molecules. The higly kosmotropic Mg2+ is found to increase a low-

frequency component at 3136 cm-1 of the OH-str. band, whereas, the weaker kosmotrope Na+ is found to 

cause an increase at 3423 cm-1. The low-frequency shift of the OH-str. band seen for cations, interacting 

strongly with water, may be due to an effect on the H-O-H bond angle and the charge separation in the water 

molecules [18]. In case of divalent cations, which polarise the bound water, an increased interaction of water 

in the first hydration shell with water in a second hydration shell has also been described as a cause of the 

observed shift [15]. 

Notation and terminology 

Spectroscopically, I means measured light intensity, while A means absorbance, defined as log10(I), or log10 

(I/I0), when mentioned explicitly. I(ν) means measured intensity at ν cm-1.  

For modelling, upper-case and lower-case bold characters represent matrices and vectors, respectively; italics 

represent scalars. An absorbance spectrum # i is denoted by row vector  zi=zi,k, k=1,2,...,K, where k  

represents wavenumber channel # (here at 2 cm-1 intervals). 
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2. MATERIALS AND METHODS  

2.1 Experiments A and B: Water at different temperatures 

ATR-FTIR spectra Milli-Q water were obtained on a Bruker Equinox 55 FTIR spectrometer, recording from 

4000 to 600 cm-1. Samples at different temperatures were measured on an ATR-crystal (ZnSe) mounted in a 

closed sample cell, which allowed for temperature control by circulation of water from a water bath with 

heating and cooling ability. Each spectrum was the result of the co-addition of 128 or 256 scans, obtained in 

single beam mode, with a resolution of 4 cm-1 and a data interval of ~2 cm-1. The absorbance spectra were 

calculated by subtraction of the background spectrum obtained on the empty ATR-crystal at room 

temperature in the beginning of each measurement series.    

Experiment A (calibration set A-1, test set A-2) 

Temperature-scanning series were obtained by automatic spectrum collection at specific time intervals, while 

the temperature in the water bath either increased or decreased at a fixed rate. The temperature range was 

~10-35°C for the calibration set A-1 and 10-60°C for the test set A-2.  

Experiment B (calibration set B) 

Spectra of water at known temperatures (8-63°C) were obtained by measuring the sample temperature by use 

of a digital thermometer dipped into the sample cell immediately before and after collection of the spectrum. 

The mean temperature was used. The temperature drift in each measurement was less than 0.5°C. 

2.2 Experiment C: Candida albicans growth and decay 

C. albicans (strain SC 5314, ATCC collection) was grown in 10 ml Sabouraud Medium (bioMérieux, 

France) for 24 hours. 300 µl of this culture were added to 3 ml of fresh medium and placed on the ATR 

crystal at room temperature (21°C)  and a biofilm was allowed to develop. Biofilm growth was monitored by 

ATR-FTIR during 19 hours and a total of 58 spectra were collected at intervals of 20 minutes throughout the 

growth period. 64 scans were coadded for obtaining each final spectrum. Then a toxin was added, and 64 

spectra were collected during decay over a 20 hours period. 

2.3 Experiment D: Salt solutions at different temperatures (test set D) 

Different salt solutions (NaClO4, MgSO4, NaCl) were prepared at 0.05, 0.2, 0.5 and 1 M concentrations in 

Milli-Q-water. These were measured at temperatures of 15, 22 and 29°C on a Bruker Equinox 55 

spectrometer as in Experiment A and B. 

2.4 Experiment E: Gluten measured on a different instrument (test set E) 

Different salt (MgSO4, NaCl) solutions were prepared at 0.1, 0.2, 0.5 and 1.0 M concentrations in Milli-Q-

water. 25 ml solution was each added to an aliquot of 10 mg gluten powder, and the samples were mixed 

gently until homogeneity. After ~4 hours at room temperature, the samples were centrifuged for 15 min at 
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~340 g, and excess solution was discarded. Slices of gluten were measured by ATR-FTIR. The spectra from 

4000 cm-1 to 748 cm-1 were recorded on a Bomen FTIR spectrometer equipped with a horizontal ATR-

crystal (ZnSe), at a resolution of 4 cm-1 and with coaddition of 128 scans. The data interval was 1.93 cm-1.  

2.5 Gas modelling and smoothing 

Gas modelling: All spectra were corrected for irrelevant water vapour and CO2 absorption by the method, 

software and parameters presented  by Bruun et al (2006) [9]. Concentrations of water vapour and CO2 in the 

spectra is in principle estimated by least squares regression, based on the model of the absorbance spectrum 

z0,i  of sample i  (containing wavenumber channels k=1,2,…1764) by previously estimated [9] gas 

components with absorbance in two wavenumber regions for water vapour and two regions for CO2, as 

shown in eq. 1: 

where cGas,i  =[ ci,j , j=1,2,...] represents the concentration  or “score” of the gas elements  with spectra KGas =[ kj , 

j=1,2,...] (water vapour or CO2, each on two wavenumber regions),  di represents the “interesting” chemical and 

physical absorption effects of the sample, while ei is the residual representing measurement error. The reason 

for allowing two independent model elements for water vapour and two for CO2 is that local instrument 

artifacts or vapour-like sample absorbance effects may interfere differently with the gas concentration 

estimation at different wavenumber regions, so this provides some robustness and flexibility to the gas 

modelling. Three component spectra were used for the water vapour high range (H2OVap_1, 4000-3300 cm-

1), three component spectra for the water vapour low range (H2OVap_2,  2200-1200 cm-1),  three component 

spectra for CO2 absorption   in its high range (CO2_1, 2450-2200 cm-1) and two for CO2 absorption   in its 

low range (CO2_2, 750-600 cm-1), in total 11 gas model component spectra.  

Even though the gas model spectra KGas  have been estimated previously, it is risky to estimate their 

concentrations ci,j  in a sample directly from eq.1, because the “interesting” chemical and physical absorption  

information  di is usually unknown at this stage of the pre-processing. If these unknown effects are large, and 

ignored in the estimation of the gas scores, then they may create large alias errors in the gas score estimation. 

Therefore the gas scores estimation is based only on the high-frequency part of the spectra, where the “non-

gas” sample constituents and other phenomena that constitute di usually have smoother  features than the gas 

elements. (This assumption may not be correct in all parts of the spectrum, especially for protein absorptions 

in the second water vapour region, see below). Each input spectrum z0,i  was thus transformed into estimated 
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negative second derivatives  (convolution by u1=[-1 2 -1]), mean centred (to remove low-pass information) 

and regressed (full rank) on the correspondingly transformed gas model spectra KGas. The regression 

coefficients were taken as estimated gas component scores cGas,i. The gas estimates were then subtracted by: 

z1,i  = z0,i  - cGas,i KGas´     (2) 

Smoothing: While most of the water vapour and CO2 contributions were removed from input spectra z0,i , 

some minor gas contributions were evident in z1,i . To ensure that the subsequent water model spectra were 

devoid of incidental gas contributions, the spectra z1,i  were slightly smoothed (convolution with u2= [1 1 1]). 

Finally, the remaining CO2 contribution at 2450-2200 cm-1 was considered small enough that the spectrum 

could be replaced by a straight baseline in this limited region: 

z2,i  =conv(z1,i, u2), with a straight line between 2450 and 2200 cm-1 (3) 

2.6 Model of water and its temperature variations 

Variation patterns due to water temperature: Since general physical baseline-changes with water 

temperature were considered irrelevant at this stage, a simple baseline-correction was used at this stage: Each 

of the gas-corrected and smoothed spectra Z2 =[-z2,i, i=1,2,...,39] in Experiment A-1 was base-line corrected 

by subtraction of the absorbance at an apparently uninformative position (2625 cm-1= channel # n=714). 

z3,i  = z2,i - z2,i,n     (4) 

To reduce the impact of the possible instrument drift during the course of Experiment A-1, temporal 

difference spectra were computed (i.e. estimated first derivative over time):  

di  = z3,i - z3,i-1      (5a) 

This differentiation was done within each of the three short time series in the experiment yielding matrix 

Dm=[di,i=1,2,...], m=1,2,3 

A weighted singular value decomposition (svd) of the matrix of difference spectra Dm was performed within 

each of the three time series, and the two first PCs were saved:  

DmW = u1s11v1, m´ + u2s22v´2, m´ + Em     (5b) 

where weights W=diag(w) is 1 in the 4000-810 cm-1  range but 0.01 for 810-600 cm-1 because of apparent 

instrumental problems at this end of the spectrum. Water temperature  spectra were defined as kwatertemp,1, m = 

v1, m´W-1 and kwatertemp,2, m = v2, m´W-1. 

Such svd modelling was also done for the difference spectra for Experiment A-1 combined,  

D=[Dm, m=1,2,3] =  u1s11v1´ + u2s22v2´ + E    (5c) 
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and water temperature effect component spectra, kwatertemp,1 = v1´W-1 and kwatertemp,2 = v2´W-1. 

Water reference spectrum at room temperature: Although the exact temperature of the water in the ATR cell 

was not measured during the temperature-equilibrations in Experiment A, the use of a preliminary 

temperature calibration model (not shown here) indicated that 8 of the spectra in Experiment A-1 were 

obtained at 20 +/-2 oC.  Their spectra z3,i  were saved, and their mean was used as reference spectrum m for 

subsequent EMSC modelling.  

2.7 EMSC model 

The EMSC model as described in Martens et al. (2003) [7] of each gas-corrected absorbance spectrum zi 

may be written in terms of the “true” chemically based absorbance of the sample, zi,chem, modified by various 

physical effects such as an additive polynomial baseline (due to instrument variations or to optical properties 

of the sample) and a multiplicative signal scaling (e.g. changing optical path length due to changes in 

refractive index of the sample): 

zi ≈ ai +  diη + eiη2 + bizi,chem   (6a) 

where η =[ηk, k=1,2,...,K] represents the wavenumber range ν defined as –1  to +1 over the channels. The 

baseline of sample # i is thus represented by coefficients ai, di and ei, and the path length by coefficient bi.  

The “true” chemical signal, assumed to reflect the absorbances by various chemical species in the sample,  

may be written 

zi,chem = ci1k1´+ ... + cijkj´ + ...+ ciJkJ´   (6b) 

where cijkj´ represents the concentration and spectrum of chemical constituent # j (e.g. various species of 

water, salts etc.).  This can be equivalently written as  

zi,chem = m +  ∆ci1k1´+∆ci2k2´ + ...+ ∆ciJkJ´  (6c) 

where m is the reference spectrum  and ∆cij represents the difference in constituent # j’s concentration 

between the sample i and reference m. In the pure water samples, the constituents are expected to  involve 

various water structures, the variations between which are described in the obtained water temperature effect 

component spectra, so an equivalent, simplified bi-linear model may be written: 

zi,chem = m +  ∆cwatertemp,i,1 kwatertemp,1 ´+∆c watertemp,i,2 kwatertemp,2 ´ (6d) 

Combining eq. (6a) and (6c) yields the linear model 

zi = ai1+ diη + eiη2  + bim + hi1 k1´ + hi2 k2´+ ...+ hiJkJ´ + εi (6e) 

where vector 1 =[1,1,1,....,1] is introduced for matrix formality, and hij = bi·∆cij. Vector εi is added to 

represent the residual spectrum of sample i, containing random measurement noise and possible unmodelled 



 

 37

spectral structures. The parameters in eq. (6c) are estimate by weighted least squares regression; the diagonal 

weight matrix W described above was used in order to down-weight  the problematic lower part of the 

wavenumber range. 

Once estimated, the model parameters are used for EMSC correction. One alternative is to  retain the 

estimated  chemical information, hi1 k1´ + hi2 k2´+ ...+ hiJkJ´ in the spectra: 

zi,corrected = (zi - ai  - di η- ei η2)/bi       (7a) 

Alternatively,  

zi,corrected = (zi - ai  - di η- ei η2- (hi1 k1´ + hi2 k2´+ ...+ hiJkJ´) )/bi     (7b) 

removes also the estimated chemical variability around the reference spectrum m, while 

zi,corrected = (zi - ai  - di η- ei η2- (m +  hi1 k1´ + hi2 k2´+ ...+ hiJkJ´) )/bi    (7c) 

removes the reference spectrum itself as well. 

Moreover, once the parameters have been estimated,  ∆cij may be estimated as: 

∆cij = hij /bi, j=1,2,..,J      (7d) 

Specifics of the EMSC modelling will be given for each dataset in the Results and Discussion section.  

2.8 Temperature prediction from EMSC scores (Experiment B) 

The EMSC water temperature scores ∆cwatertemp,i,1 and ∆c watertemp,i,2 obtained by EMSC of pre-processed 

spectra  Z3 (eq. 2-4) followed by  eq. (7d)  were used in a polynomial multivariate calibration model 

y = Xb  + b0 + f       (8) 

where y =temperaturei and X =[∆cwatertemp,i,1, ∆cwatertemp,i,1
2, ∆c watertemp,i,2] and f is residual. 

The three regression coefficients in b and b0 were estimated by ordinary least squares regression, using the 

i=1,2,..,84 spectra from Experiment B, which had been measured at known temperatures between 8 and 

63°C.  The temperature calibration model was subsequently used for predicting temperature in new samples 

from their pre-processed spectra  zi, i=1,2,... . 

2.9 Salt-effect estimation (Experiment D) 

The spectra corrected for water vapour and CO2 were used for determination of the salt-effect spectra. The 

spectra of each salt at each temperature were EMSC corrected individually (only subtraction of channel 

number) with the corresponding pure water spectrum used as reference spectrum. The weights for the range 

1300 cm-1-600 cm-1 were set to zero in order to down-weight the sulphate and perchlorate absorptions at 

~1093 cm-1. After EMSC correction, the difference spectra were calculated by subtraction of the spectrum of 
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pure water at the same temperature. The difference spectra seemed not influenced much by the temperature, 

and only by salt type and concentration, as well as some day-to-day variance. For each salt type, a PLS 

regression was made, for which X=salt concentrationtemperature, day  and Y=difference spectra. Thereby 

the B-coefficient for all Y-variables showed the spectral characteristics of each salt.   

3. RESULTS AND DISCUSSION 

3.1 Experiment A: Estimation of temperature induced changes in water based on temperature-

equilibrating samples with unknown temperature. 

The temperature-induced variations in the ATR-FTIR spectrum of water was estimated on the basis of 39 

spectra of pure water at various unknown temperatures (in the range 10-35oC). These were obtained in three 

temperature-scanning series (calibration set A-1). The measured absorbances Z0 are shown in Figure 1a,b 

before and after mean-centring. The major band at 3300 cm-1 results from the OH stretching modes (ν1,3) of  

liquid water, whereas the smaller bands at ~1640 cm-1 and 800 cm-1 result from the HOH bending (ν2) and 

the librational (νL) modes of liquid water, respectively. A minor band at 2125 cm-1 is ascribed to the 

combination of ν2 and νL. The water bands are affected in different ways by the temperature.  

Figure 1. Estimation of water temperature model spectra from Experiment A, Part 1:  39 consecutive ATR-FTIR 
spectra of pure water from three temperature-drift time series. Top:  Measured absorbance spectra Z0, before 
(a) and after (b) mean-centring. Middle: Model-based correction for water vapour and CO2 in terms of (c) model 
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component spectra vs. wavenumber and  (d) their estimated component scores vs. sample # (i.e. time).  For visual 
clarity in c) the 2nd and 3rd component spectra are down-shifted by -0.2 compared to the 1st  component 
spectrum. In d) two upper solid curves and the two upper dashed curves represent the 1st  components of water 
and of CO2 respectively; the 2nd and 3rd components have been down-shifted by 0.5 for visual clarity. 
Bottom: Pre-processed absorbance Z3, after gas - and baseline correction, before (e) and after (f) mean-centring. 

In addition, high-frequency signatures characteristic of water vapour are evident in Figure 1(b) the at  4000-

3300 cm-1 and 2200-1200 cm-1. Likewise, variations in the characteristic peak of CO2 at  2450-2200 cm-1 are 

seen. Figure 1(c) shows the gas model spectra obtained from Bruun et al (2006) [19], in terms of the four 

average gas component spectra, seen as four non-overlapping non-negative spectral features and the seven 

additional gas modification spectra (down-shifted by 0.2 for visual clarity). According to Bruun et al (2006) 

[19] the former are expected to provide concentration estimates for the gases, while the latter should account 

for unidentified, but systematic effects in the gas concentration modelling. Based on the gas model (eq. (1)), 

the gas concentration scores were estimated from spectral second derivatives and they are shown in Figure 

1(d) for the three time series. The figure shows that the main water vapour concentration estimates from the 

two wavenumber regions (solid curves) follow each other very well, while the two main CO2 wavenumber 

regions give rather different CO2 concentration estimates (dashed lines). The estimated gas contributions 

were subtracted by eq. (2), yielding spectra Z1, followed by mild local smoothing etc (eq.(3)), yielding 

spectra Z2. Remaining undesired baseline variations evident in Figure 1(b) were removed by eq. (4), yielding 

the spectra Z3 shown in Figure 1 (e) and (f) before and after mean-centring. 

For estimation of the temperature-induced spectral changes, the Z3 spectra of the three time series in 

Experiment A-1 were used for calculation of temporal difference spectra Dm,  m=1,2,3  (eq. (5a))  and these 

were submitted to weighted svd, both separately (eq. (5b)) and jointly (eq. (5c)). Two systematic principal 

components were found each time, the first singular value being about 22 times greater than the second one 

each time. Together they explain most of the variance in D. Figure 2(a) and (b) show the two components 

kwatertemp,1 and kwatertemp,2, while Figure 2(c) shows the water spectrum m at room temperature for graphical 

comparison. Given the variations in Figure 1(e), the shape of kwatertemp,1  in Figure 2(a) is not unexpected: A 

major “shift” in the 3300-2900 cm-1, a clear negative peak resembling a second derivative of the mean 

spectrum around 1600 cm-1, a positive peak around 800 cm-1 plus  a weak  pattern in the 2500-2000 cm-1 

range. This reflects that the ν1,3 band changes in intensity and shifts in position when the temperature 

changes. The νL and ν2+νL bands seem to shift in the opposite direction of the ν1,3 band, whereas the postion 

of the ν2 band is not affected much. However, an effect on the peak width is seen for this band. As expected, 

the baseline of  kwatertemp,1  is close to zero both at 4000 and at 2625 cm-1. However, it is below zero at the 

lowest end of the spectrum, i.e. in the extreme range 810-600 cm-1 down-weighted because of apparent 

instrument problems. The independent replicate estimates of  kwatertemp,1,m, m=1,2,3 (dashed curves) are so 

similar that they can hardly  be distinguished from the over-all estimate kwatertemp,1(solid curve), which will be 
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used in EMSC models for all the experiments in the paper. 

Even for the small second water temperature effect kwatertemp,2 (Figure 2(b)), the reproducibility is 

reasonable except in the 810-600 cm-1 range. Therefore, this component is considered reasonably reliable. It 

will be included in subsequent EMSC models of pure water, but since it appears to reflect both “chemical” 

peak changes and “physical” baseline changes and its effect is small, it will not be used in modelling the 

more complex sample types to maintain  interpretability of the resulting EMSC-treated spectra. 

Figure 2. Estimation of water temperature model spectra (continued). First component kwatertemp,1(a), second 
component kwatertemp,2 (b) and mean water spectrum m at 20°C (c), obtained from  Z2 in Experiment A-1.  Solid 
curves: final model estimate; dotted curves: Replicate estimates from (a, b) three independent time series  and (c) 
eight different samples in the range 20±2°C. 

The fact that one PC, kwatertemp,1 described most of  the temperature effect on pure water is in agreement with 

several infrared spectroscopic studies of water at different temperatures (these also apply the overtone and 

combination bands in the near-infrared (NIR) region). A PCA analysis of the variation in the OH-str. 

overtone band at 1440 nm with temperature (6-80oC) has shown more than 99 % explanation of the spectral 

variation in the first PC; the associated scores and loading vectors were interpreted as reflecting a continuous 

inter-conversion with temperature between two water species with weak and strong hydrogen bonds, 

respectively [9]. This interpretation is in agreement with a mixture model describing water as being 

composed of a limited number of water species (different ring structures or cluster types) that coexist in a 

temperature-and pressure-dependent equilibrium [20]. On the other hand, the alternative continuum model 
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implies that hydrogen bonds are equally distributed in the water sample, and that there is a continuous 

weakening of the hydrogen bonds with increasing temperature [21]. The presence of nearly-isosbestic points 

in the infrared spectra of water at different temperatures has usually been taken as support of the mixture 

model. However, both models need to be taken into account in order to explain the many anomalous 

properties of water [22]. 

A two-state model of water, involving weakly hydrogen bonded and strongly hydrogen bonded groups of 

water molecules, is supported from water dynamic studies, which have shown groups with fast rotation 

(weakly bonded) and groups with slower rotation (strongly bonded) [23]. NIR and MIR studies by Šašić et al 

(2002) [10] and Libnau et al (1994) [8] have also lead to the conclusion that water can be seen as a closed 

two-component system with two water species (in a strongly and loosely hydrogen bonded state, 

respectively) existing in equilibrium.  

Nevertheless, some deviations from the two-state model have been described in the spectroscopic studies. 

In the study by Segtnan et al (2001) [9], additional variation in the OH-str. overtone band occurred from 6 to 

26oC and was described in a minor PC3 variation (accounting for less than 1% of the variation) [9]. 

Disruption of the two-component model at temperatures below 20oC has been suggested from other studies 

as well, and e.g. D’Arrigo et al (1981) [24] proposed the existence of an additional tetrahedrally bonded form 

of water below 20oC. Furthermore, Segtnan et al (2001) [9] and Czarnick-Matusewitcz et al (2005) [25] both 

observed a minor variation over the whole temperature range, for which scores showed a parbolic shape with 

temperature. Band broadening and change in refractive index with temperature have been suggested as 

possible causes to these deviations from the two-component model.  

For simplicity, we interpret this variation pattern kwatertemp,1 as the difference spectrum between the two 

major species of water  (“free” and “bound” water) present at different ratios in pure water at different 

temperatures. The interpretation of kwatertemp,2 is not yet clear. It appears to be a combination of the difference 

between minor water species plus some wavenumber-dependent baseline effect, e.g. due to an effect of 

temperature-induced changes in refractive index on the ATR signal. Its features below 1000 cm-1 do not 

seem to be reproducible. 

Figure 3 shows the EMSC modelling of the spectra from Experiment A. The gas-and baseline corrected 

spectra Z3 (eq. (2) ,(3) and (4)), EMSC corrected with water temperature effects subtracted (eq. (7c)) are 

shown in Figure 3(a). The 39 spectra appear virtually indistinguishable. After mean-centring some small 

spectral residuals can be seen (Figure 3(b)). However, these have rather discontinuous nature and appear to 

reflect changes between the three time series in the FTIR instrument rather than effects related to 

temperature. Figure 3(c) shows the EMSC parameters [ ai,  di,  ei ,  hi1, hi2  and bi] as functions of time within 

the three time series. Baseline parameters ai,  di,  ei  and scaling bi lie quite constant  around 0 or 1, 

respectively, while hi1 and some degree hi2  change with time. The re-scaled water temperature parameters 

∆cij (eq. (7d)) are shown in Figure 3(d). The dominant effect is the first water temperature score ∆ci1 (solid 
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curve), while the second water temperature score, ∆ci2 (dashed curve) had to be scaled by a factor of 23 to 

show comparable variation. The figure shows that the temporal dynamics of the interesting phenomena in the 

liquid water samples resemble but are distinct from those of the irrelevant atmospheric absorptions in the 

instrument (Figure 1(d)). This means that without the initial gas correction, the two  causally distinct 

temporal processes would have been confounded. 

 

Figure 3. Estimation of water temperature model spectra (continued). Top: 39 EMSC-treated spectra, i.e. after 
subtraction of the two estimated water temperature component effects from Z3 (Figure 1(e)), a) before and b) 
after mean-centring. Bottom: EMSC model scores in the three time series as functions of sample # (i.e. time); c) 
all EMSC parameters (eq. (6e)), d) the rescaled scores (eq. (7d)) for water temperature components 1 (solid) and 
2 (scaled by a factor of 23, dashed). 
 

3.2 Experiment B: Relating the EMSC model parameters to known temperature 

In order to find the correlation between the EMSC parameters and the known temperatures, the temperature 

model was applied on data set B, which contains ATR-FTIR spectra of pure water at different known 

temperatures (8-63˚C), obtained over a period of two months. The input spectra Z0= zi,0,i=1,2,...,84  are 

shown in Figure 4 (a) and (b) before and after mean centring. These were gas- and baseline-corrected by eq. 

(2), (3) and (4), resulting in spectra Z3 in Figure 4 (c) and (d). The figure shows that most of the 

characteristic, irrelevant effects of water vapour and CO2 have been eliminated. However, compared to 

Figure 1(e), these pure-water samples with known temperature display considerable contributions of other 

effects, e.g. apparent baseline- and scaling problems. This explains why Experiment B could not be used for 

estimating the temperature-change spectra of water, as originally planned. The reason for the problems could 

be that Experiment B was performed over a much longer period of time, in which the FTIR instrument and 

ATR unit were used repeatedly also for several other purposes. 
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However, if the problems in Experiment B were of “physical” nature (and not e.g. chemical impurities on the 

ATR surface), EMSC should be able to correct for at least some of it. Therefore, the spectra in Figure 4(c) 

were submitted to EMSC modelling with both “physical” baseline- and scaling elements and with the the 

two water temperature components as “chemical” elements. The score estimation was based on eq. (6d) and 

(6e) and the correction on eq. (7b). The resulting Z4= [zi,corrected,i=1,2,...,84] are shown in Figure  4 (e) and (f) 

before and after mean centring. Again, the temperature-corrected spectra appear virtually indistinguishable 

except for the lowest, down-weighted wavenumber region. This shows that indeed the EMSC removed many 

of the baseline- and scaling problems that arose in the instrument over the two-month measurement period. 

However, the residuals in Experiment B are somewhat larger than those in Experiment A-1, even outside the 

difficult, lowest wavenumber region. 

Figure 4. Calibration for water temperature in Experiment B.  (84 different ATR-FTIR spectra of pure water at 
known temperatures, recorded at different dates). Top:  Measured absorbance spectra Z0, before (a) and after 
(b) mean-centring. Middle: Pre-processed absorbance Z3, after gas - and baseline correction of Z0, before (c) and 
after (d) mean-centring. Bottom: Pre-processed absorbance Z4, after EMSC correction of Z3 with water 
temperature effects subtracted  before (e) and after (f) mean-centring. The solid line segments in c) and e) show 
the wavenumber range down-weighted by a factor of 0.01 due to irrelevant instrument variations. 

The parameters ∆cwatertemp,i,1 and ∆c watertemp,i,2 from the EMSC (eq. (7d)) of Experiment B were used for 

calibrating for temperature.  Regression coefficients (eq. (8)) were estimated by least squares. Cross-
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validated PLS regression showed the full rank solution to have best predictive ability, and this yielded the 

prediction model: 

Temperature = -11.9 ∆cwatertemp,i,1+ 0.99 ∆cwatertemp,i,1
2 + 6.8 ∆c watertemp,i,2 + 21.1   (8) 

Figure 5 plots the predicted vs. the measured temperature in these 84 samples of Experiment B. The 

predictive ability is high (cross-validated r = 0.996). Not entirely unexpected, given the serious instrument 

variations, some unexplained variation is evident particularly at temperatures outside the range 10- 35˚C of 

Experiment A-1, within which the water temperature spectral components were estimated. 

Figure 5. Calibration for water temperature (continued.). Measured temperature (abscissa) vs. predicted 
temperature (ordinate)  obtained by the obtained calibration model (eq. 8) based on EMSC scores in Experiment 
B. Predictive ability: cross validated r= 0.996. 

3.3 Experiment A-2: Testing the EMSC model parameters in independent water samples 

Test set A-2 contains ATR-FTIR spectra of pure water obtained in three new temperature-scanning series 

and is used as an independent test set to evaluate the performance of the EMSC model on ATR-FTIR water 

spectra in general. Again, the input data in Figure 6(a) and 6(b) show gas contributions as well as large 

baseline/scaling variations (probably due to instrument drift). After pre-processing by eq. (2) and (3) the 

spectra  Z2  (Figure 6 (c),(d)) show that the gas contributions have been removed.  Since no preliminary 

baseline correction was applied for these data, the spectra show large baseline variations. However, EMSC is 

able to remove most of the systematic variations (Figure 6 (e) and (f)),  leaving only minor variations in the 

residuals except for the problematic region below 800 cm-1.  

The temperature was predicted for all the samples in Experiments A by (eq. 8). The predicted sample 

temperatures are plotted in Figure 7 to illustrate the temperature range and the temporal dynamics within the 

three calibration sets in Experiment A-1 and the three test sets in Experiment A-2. In conclusion, the EMSC 

model is found to work very well on this kind of ATR-FTIR spectra, measured in pure water at different 
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temperatures with different levels of water vapour and CO2 contamination and levels of baseline- and scaling 

problems of the present kind.  

Figure 6. Applying water temperature models in Experiment A-2: (65 consecutive ATR-FTIR spectra of pure 
water from three new temperature-drift time series).  Top:  Measured absorbance spectra Z0, before (a) and 
after (b) mean-centring. Middle: Pre-processed absorbance Z2, after gas-correction of Z0, before (c) and after (d) 
mean-centring. Bottom: Pre-processed absorbance Z4, after EMSC correction of Z2, before (e) and after (f) 
mean-centring.The solid line segments in c) and e) show the wavenumber range down-weighted by a factor of 
0.01 due to irrelevant instrument variations. 
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3.4 Experiment C: Testing the EMSC model parameters in biological samples 

Input data: Under the same conditions as for Experiments A and B, the ATR-FTIR absorbance spectra were 

recorded for pure growth medium (1 spectrum) and of C. albicans during growth and decay; 58 and 64 

spectra, respectively. The 123 spectra analysed as one consecutive time series. The raw absorbance spectra 

are shown in Figure 8(a). The general shape of the spectra resembles that of pure water, although some 

additional signals above 1000 cm-1 can be seen. In Figure 8(b) the spectra are shown after subtraction of the 

spectrum of pure medium. Varying contributions of water vapour and CO2 are seen to dominate the spectra.   
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medium spectrum. a,b)  Measured absorbance spectra Z0. c,d)  Pre-processed absorbance Z1, after gas –  and 
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Gas correction: The concentration scores of water vapour and CO2 components in the wavenumber region 

above 2000 cm-1 were estimated in the second derivative, and used for subtracting  these gases in the whole 

wavenumber region, and remaining variation for the main CO2 peak was replaced by a straight local 

baseline, as described by Bruun et al (2006) [19].  The absorbance at 2625 cm-1 was taken as a simple 

baseline estimate and subtracted, all as described above. The obtained gas- and baseline-corrected spectra in 

Figure 8(c) display some variation patterns in the 2000-1000 cm-1 region. After subtraction of the first 

spectrum Figure 8(d) shows a number of sharp peaks with varying absorbance in this region, where proteins, 

lipids etc are known to absorb light. A little of this variation may be due to remaining water vapour 

contributions, since a little waver vapour is also evident above 3500 cm-1. Between 3500 and 3000 cm-1, i.e. 

inside the main water absorbance peak, systematic variations are also evident. But these are rather smooth, 

and might thus be due to some physical scaling of the main water peak itself, e.g. caused by changes in the 

ATR surface and hence in the effective optical path length. Between 3000 and 2000 cm-1 a flat but somewhat 

sloping baseline is evident. 

EMSC # 1: The spectra in Figure 8(c) were submitted to a “physical” EMSC for baseline- and scaling 

correction based on a simplified version of eq. (6e): zi = ai1+ diη + eiη2  + bim + εi  [7], using water at room 

temperature (Figure 2 (c)) as reference spectrum m and correcting using eq. (7a). The resulting spectra are 

shown in Figure 8(e); the dotted line shows the weights used in this EMSC parameter estimation. The spectra 

after medium subtraction (Figure 8(f)) have been scaled by these weights and they show systematic patterns 

of variation in several wavenumber ranges.  The patterns in the 1800-800 cm-1 range are now more distinct, 

compared to Figure 8(d)). Curved baselines are apparent over a wide range, and this may possibly be an 

artifact from the EMSC “physical” modelling due to an over-simplified baseline model or to estimation alias 

errors caused by unmodelled chemical absorbance peaks.  

The variation pattern inside the main water peak 3500 and 3000 cm-1 in Figure 8(f) is still appreciable, 

although smaller and simpler than in Figure 8(d). It probably reflects water changes in the material (C. 

albicans cells and growth medium) near the ATR surface. But is it due to changing water content or 

changing water binding?   

EMSC # 2:  Decker et al. (2005) [26] used a water temperature difference spectrum to improve the 

classification of Penicillium camemberti spectrum by NIR reflectance.  The same approach was tried here, 

based on the rationale that the FTIR difference between free and bound water in pure water might resemble 

the difference between free and bound water in biological tissue. The water temperature spectrum obtained 

for pure water was therefore included in a new EMSC modelling of C. albicans. Only the first component 

spectrum (Figure 2(a)) was used, as the second component was considered too complex for the present 

purpose. Figure 8(g) and 8(h) show the results before and after subtraction of the medium. In order to reduce 

the impact of the interesting and dominant, but unmodelled spectral variations around 1000 cm-1, additional 

wavenumber channels have here been down-weighted [7] based on the inverse of the squared mean of the 
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absolute residuals from Figure 8(f) and the EMSC repeated once. The new weights are given by the dashed 

line in Figure 8(g). Much of the variation in the water peak around 3000 cm-1 was thereby eliminated, 

confirming a similarity between free- and bound water in the two systems. The apparent baseline artifact was 

also somewhat reduced by this model refinement, leaving very distinct variation signatures in Figure 8(h). 

This plot reveals the IR fingerprint of C. albicans in terms of its changing biomass and –composition and its 

changing metabolic modification of the surrounding medium.  

Figure 9. Experiment C, continued. Weighted PCA of the C. albicans spectra after subtraction of pure medium 
(right side of Figure 8).  Left: Scaled PC loadings vs wavenumber. The dashed line segments outline the 
wavenumber range down-weighted  by 0.01. Middle: Scaled PC scores vs sample # (i.e. time). The solid curve at 
the bottom of the last model shows the estimated “free-vs. bound water” from the water-temperature spectrum 
in Figure 2a). 
Right: Scores of PC1 vs. PC2. 

Figure 9 compares the main variation patterns remaining after these four different pre-treatments of the C. 

albicans spectra, in terms of PCs from weighted svd of the spectra in Figure 8(b), (d), (f) and (h). The 

loadings vs wavenumber (left) and scores vs. time (middle) were scaled by the size of the respective singular 

values. The right-hand side show score vector of PC1 (abscissa) vs. PC2 (ordinate); adjacent points in time 

are connected; “o” represents the pure medium at the start of the experiment. The rows represent the input 

spectra, the gas-and baseline-corrected spectra, the spectra after the purely physical EMSC#1 and after the 

more extended physical and water-temperature EMSC#2. The large jump in the score plot around sample # 

64 represents the addition of the toxin to the C. albicans on the ATR. The dotted curve in the bottom score 
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plot represent the estimated “water temperature score”, assumed to reflect changes in free- vs. bound water. 

The figure shows that while the input spectra gave a meaningless PCA dominated by CO2 and water vapour, 

the three pre-processing methods give increasingly simple and informative results, both in the wavenumber 

domain and the time domain. The results from the last model appear suitable for biological interpretation and 

modelling, by e.g. multivariate curve resolution or data base searches of spectra, as well as a multivariate 

time series input  to dynamic mathematical modelling. But that is beyond the scope of the present paper. 

3.5 Experiment D: Effect of salts on water 

Input data: The spectra in Expriment D were measured over a two-month period. Closer inspection of the 

input spectra  revealed strong day-to-day variation problems of various kinds. Figure 10, left side, shows the 

difference spectra Y of aquous salt solutions and pure water measured at the same temperature on the same 

day for various concentrations of MgSO4, NaClO4 and NaCl at 15, 22 and 29°C, respectively. The strong 

absorbance peak of  SO4
2- near 1090 cm-1 and of ClO4

- near 1100 cm-1 are clearly evident along with weaker 

changes in the water peak regions. 

Figure 10. Experiment D: Effects of salts on the IR  water spectrum. Top: MgSO4, middle: NaClO4, bottom: 
NaCl. Left: FTIR spectra of solutions at various salt concentrations, after subtraction of pure water spectrum. 
Right: Estimated linear effect of salt (solid), estimated by PLSR, compared to water at room temperature 
(dashed). 
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Y ≈ ck´+tg´+DH´ = XB  (9) 

where vectors c =known concentration  and t=known temperature, and matrix D= indicator variables with 

one column for each day. Coefficient spectra B=[k, g, H] were estimated by regressing Y on X=[c, t, D] by 

weighted PLS Regression; Y-channels below 893 cm-1 were down-weighted by a factor of 0.1 and the X-

variable c was upweighted by a factor of 100 compared to t and D. Full leave-one-out cross-validation 

showed the optimal number pf PLS PCs to be 2,3 and 4 for the three salts, respectively. On the right-hand 

side of Figure 10 are the main effect spectrum k shown for each of the three salts, with the water spectrum m 

(dashed) for visual comparison. The salt*temperature effect estimates appared to be smaller and 

contaminated by unmodelled instrument problems and are not pursued here. 

Each salt effect spectrum reflects both the anion and the cation effect. These have in several studies been 

found independent of each other, i.e. the cations do not influence the hydration water of the anions and vice 

versa [Chen, 2004; Fischer, 2001].  

The MgSO4 effect spectrum shows an increase at low wavenumbers (3116 cm-1) concomitantly with a 

decrease at high wavenumbers in the ν1,3 band due to strong interaction of Mg2+ with surrounding water 

molecules. (The sulphate ion may only contribute to a minor negative peak at 3660 cm-1). As expected, the 

chaotropic NaClO4 effect spectrum shows opposite effects compared to the kosmotropic MgSO4, and an 

increase at high wavenumbers (3583 cm-1) reflects the formation of weak hydrogen bonds to ClO4
-. 

Similarly, the NaCl effect spectrum shows an overall shift to higher wavenumbers, mainly as a result of the 

weak chaotropic property of Cl-. However, the effect of NaCl is low, reflecting the low number of water 

molecules perturbed by the Na+ and Cl- ions.  

3.6 Experiment E: Testing the salt effect models in a different system 

Input data: The temperature- and salt models were based on spectra (Experiments A-D) measured on ZnSe 

ATR crystal in the Bruker Equinox FTIR instrument in the 4000-600 cm-1 range at 1.93 cm-1 intervals. In 

contrast, the spectra in Experiment E were measured on ZnSe ATR crystal in a Bomen FTIR spectrometer in 

the 4000-748 cm-1 range at 1.93 cm-1 intervals. 

The wavenumber scale of the water-temperature model (Figure 2) and the salt models (Figure 10) was 

therefore converted to the latter wavenumber scale by local linear interpolation. The uppermost curve in 

Figure 11(a) illustrates the reference spectrum m of pure water at room temperature after this wavenumber 

conversion.  The uppermost curve in Figure 11(b) represents the absorbance spectrum of pure, dry gluten. 

The second ensamble of spectra just below m in Figure 11(a) is the measured absorbance spectra of water 

with various concentrations of MgSO4 or NaCl. Likewise,  the second ensamble of spectra just below the 

gluten spectrum in Figure 11(b) is the measured absorbance spectra of gluten/water mixturees with various 

concentrations of MgSO4 or NaCl. In both cases, the absorbance above 2500 cm-1 have been smoothed by a 
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Savitsky-Golay filter of first degree  to reduce the very high measurement noise at the highest water peak in 

this experimental set-up. In both data sets, the characteristic sulphate peak near 1090 cm-1 is evident.  

Figure 11. Experiment E: Testing salt effect models in a different system. a) Water with different salts added. 
From top: Reference spectrum m=water at room temperature; input absorbance spectra; after EMSC; EMSC 
residuals after subtraction of  m. b) Hydrated wheat gluten with different salts added. From top: pure dry 
gluten; measured hydrated gluten input spectra; residuals after EMSC model# 1(subtracting gluten effect); 
residual of EMSC#1; residuals after  EMSC #2 (retaining gluten effect).  

In the water solutions in Figure 11(a), shifts in the water absorbance regions can be seen, primarily at 3200-

2900 cm-1. In the gluten slurries Figure 11(b) the variation patterns are more complex and appear to be a 

mixture of physical and chemical effects. Contributions from gluten can be recognized, e.g. around 1640, 

1550 and 1455 cm-1.  No disturbing gas contributions from water vapour or CO2 are seen in these data. 

EMSC # 1: Each of the input spectra in Figure 11(a) and 11(b) were submitted to EMSC modelling around 

the multiplicative reference spectrum m. The additive part of the model consisted of the two water 

temperature component spectra (converted from Figure 2, to account for water binding by the gluten) and the 

estimated spectra of MgSO4 and NaCl (converted from Figures 10(b) and 10(f), as well as the measured 

spectrum of  dry gluten and a second degree baseline polynomial. The estimated effects of all of these model 

components were subtracted according to eq. (7c). The EMSC-treated spectra are displayed in Figure 11(a) 

and 11(b) as the next ensamble below the input spectra. The spectra have become visually almost 

indistinguishable, and the “residuals” (the EMSC-treated spectra minus m, displayed below the EMSC#1 
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spectra) show very little remaining structure at this graphical resolution. At higher resolution, details about 

minor peak shifts for the salt and protein peaks with e.g. salt concentration can be seen, but that is beyond the 

scope of the present paper. This illustrates one way to use the EMSC modelling: estimating and removing all 

known variation types in order to check one’s assumptions and  to reveal details.  

 EMSC # 2: Another way to use the EMSC modelling was tried. The spectrum of dry gluten was treated as 

a “good spectrum” to be modelled but not subtracted in eq. (7c). The bottom ensamble of curves in Figure 

11(b) shows clear gluten-contributions in the EMSC residuals  after subtraction of m.  

The EMSC scores for the two salts were rescaled by eq. (7d) and used in prediction of the salt 

concentrations. The results are shown in Figure 12. For MgSO4 the predictive ability was very good both in 

absolute and relative terms (r>0.99) for the water solutions as well as the gluten slurries. Even for NaCl the 

relative prediction ability was reasonable (r>0.9), but the concentrations were generally over-estimated in 

gluten. Hence, the EMSC models developed for salt solutions in the Bruker FTIR ATR instrument showed 

validity also for the Bomem FTIR ATR instrument although an offset-and slope-correction of the EMSC 

calibration models were necessary.  

Figure 12. Experiment E: Testing salt effect models in a different instrument, continued. Salt concentrations 
measured vs. predicted (scaled EMSC scores). a) Water with different salts added. b) Hydrated wheat gluten 
with different salts added. Left: MgSO4. Right: NaCl. 
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4. CONCLUSION AND PERSPECTIVES 

FTIR is finding an increased importance in high-speed and high-resolution biospectroscopy in  e.g. 

functional genomics and biotechnology [1-3, 28]. Like in NIR, unwanted variations in water content, and in 

sample temperature, organic molecules,  salt content and other things that affect the structure of water can 

cause a lot of difficulties in FTIR-based biospectroscopy. Moreover, irrelevant water vapour and CO2  can 

create nuisance in FTIR measurements. Finally, physical variation in sample or instrument contribute  

needless baseline- and scaling complexity to FTIR. The present paper has presented multivariate modelling 

methods (gas removal, EMSC) and estimated model parameters for handling some of these variation sources 

in FTIR. In addition, the method may improve the analysis of the water in biological samples and provide 

information on the water-solute interactions. It is increasingly realised that water cannot be ignored as a 

passive, constant and homogeneous solvent. Instead it is a central, complex reactant or catalyzer in 

biochemical reactions. 

Acknowledgement: Ganesh Sockalingum and Isabelle Adt are thanked for providing the spectra of 

C.albicans. 
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2.6. Discussion and conclusion 

From the literature, the ability of NIR and MIR to bring information on the arrangements of  intermolecular 

interactions in a molecular system (water) with extensive hydrogen bonding was outlined.  

On the other hand, in analysis of biological samples, where changes in macromolecule composition and 

interaction is of interest, changes in the water spectrum may be an interference in the analysis. For example, 

when the macromolecule interactions are perturbed by temperature and salts, the confounding between 

changes i the water- and the macromolecule spectrum creates problems in the data analysis. As demonstrated 

in the paper above, models of  temperature- and salt- effects developed on basis of ATR-FTIR spectra of 

water and aqueous solutions were useful for removing these effects from the spectra of biological/food 

samples (biofilm and gluten). Thus, it appears to be a general preprocessing tool for improving the ATR-

FTIR analysis.  

The preprocessing method is going to be extended to NIR spectra and, based on the good results in MIR, 

the method is expected to improve the NIR analyses as well. The data analysis revealed serious drift over 

time in the ATR-FTIR measurements, causing the demand for short experiments (time series measurements), 

whereas this problem is thought to be less serious for NIR experiments. 

Perturbations of the water spectra with the simple ionic solutes illustrated the information on solute-water 

interactions that can be obtained from the infrared water spectrum. In analysis of biological/food systems, the 

water-binding may be of interest, as the interaction of macromolecules with water is of foremost importance 

to macromolecule functionality and has profound influence on food properties [Tolstoguzov, 1996; Lewicki, 

2004]. In the paper above, the variation between ‘free’ and ‘bound’ water in a developing biofilm was shown 

somewhat similar to a temperature variation. The preprocessing tool could therefore also be useful for 

studying hydration phenomena in temperature-controlled experiments. 
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 Chapter 3: Spectroscopic measurement of protein conformations and interactions  

Several methods may provide information on the structure of proteins. The three-dimensional structure is 

investigated e.g. by use of X-ray crystallography, whereas the contents of secondary structures may be 

determined by use of MIR and other spectroscopic techniques such as circular dichroism (CD) and Raman. 

These techniques do not suffer from the limitations of X-ray crystallography, such as the requirement of the 

protein in the crystallised form, and instead, they may be applied for analysis of protein structures in 

solution. In addition, MIR may give information on protein structures in a food matrix. NIR may be another 

potential method for this type of analysis, which can be done by use of only a few other methods (e.g. 

NMR).  

In this chapter, the application of both MIR and NIR in protein structure analysis is introduced, where after 

the capacity of NIR in this field is further investigated in Experiment III and in Paper IV (Appendix III-1). 

First an overview of the interactions that define the protein structures is given. 

3.1. Protein conformations and interactions 

For being catalytically active, a protein needs a specific three-dimensional structure, which is determined 

from the amino acid sequence.  

Secondary and tertiary structures 

The polar backbone C=O and NH groups are forced to undergo hydrogen bonding in the hydrophobic protein 

core, and they widely participate in the periodic main chain hydrogen bonding patterns, which define the 

different secondary structures. On the average, 89 % of the protein residues are involved in these structures 

[Darby, 1993]. At the origin of the secondary structures is the Corey-Pauling rules, which establishes the 

conditions of hydrogen bonding in the backbone and considers the polarity and steric hindrance of the side 

chains. The conditions apply to the α-helix and β-sheet, which are the principal regular secondary structures 

in proteins. 

Helixes: In the α-helix structure, the protein chain is twisted into 

repeating turns thereby forming a helix with hydrogen bonding taking 

place between residues aligned with the helix axis. In a perfect α-helix, 

all residues participate in i→i+4 and/or i-4←i hydrogen bonds (the 

oxygen in residue i form hydrogen bond to the NH group in residue 

i+4). See Fig. 3.1. Favourable dipole interactions provide the α-helix 

with a high stability. Also, side chains that stick out perpendicular from 

the helix axis may interact with each other so as to further stabilise the 

helix [Darby, 1993]. Deviations from the ideal α-helix conformation 

 

Fig. 3.1. Outline 
of the right -
handed α-helix 
[Horton, 2002 ] 
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occur frequently, wherefore the hydrogen bonding pattern may vary between α-helices [Andersen, 2001a]. 

Another helix structure, which accounts for about 12 % of all protein helices is called the 310 helix and has an 

entirely different hydrogen bonding pattern, namely the i→ i+3 pattern. The ordinary 310 helix is only 3,5 

residues long (compared to 11 residues in the α-helix) and may occur as the end-turn of α-helices [Darby, 

1993].  

β-sheets: The β-sheet is composed of aligned β-strands that run either parallel or antiparallel and therefore 

form either purely parallel, purely antiparallel or mixed type β-sheets [Darby, 1993]. In the antiparallel 

conformation, all NH groups in one chain is aligned with C=O groups in the other chain, giving rise to 

straight interchain hydrogen bonds, whereas in the parallel conformation, the hydrogen bonds are distorted. 

When residues that are not hydrogen bonded to a partner strand occur, the hydrogen bonding pattern is 

disturbed and β-bulges are formed [Darby, 1993]. Likewise, the β-sheets may be bend and consequently 

have dihedral angles that are different from the ideal ones. The side chains of adjacent residues successively 

point out on different sides of the sheet, where they may interact with each other. The formation of β-sheets 

can occur independent of the sequence, as side chain interactions do not necessarily take part in this structure 

[Shukia, 2004]. 

Turns etc: On the surface of globular proteins are found structures that can reverse the direction of the 

polypeptide chain. Two structures that accomplish the reversals are the β-turn and the omega-loop, which are 

formed by ~30 % of all amino acid residues [Darby, 1993]. They contain relatively polar residues and often 

participate in interactions with other molecules (e.g. the solvent). The β-turn is the most prevalent of the two 

structures and often connects strands in antiparallel β-sheets. It comprises four residues and can form a 10-

membered hydrogen bonded ring [Mantch, 1993]. Several different types of β-turns with different hydrogen 

bonding and different dihedral angles exist. Regularly repeated β-turns may result in the formation of the β-

spiral, which has been evidenced to occur in some proteins containing repeat motives (e.g. gluten proteins) 

[Pezolet, 1992]. Other non periodic structures (irregular or random structures) include loops and bends, as 

well as extended β-strands that are not involved in β-sheets but often interact with the solvent. 

Tertiary structure: The three-dimensional structure is established by interactions between side chains of 

amino acid residues that are far apart in the primary sequence. Most of the interactions on the tertiary level 

are non-covalent, although the disulfide (S-S) bridges may be important to the tertiary structure. The stability 

of the protein conformation is believed mostly to be a result of the hydrophobic effect. Due to their non-

favourable interaction with water, hydrophobic residues agglomerate and become buried in the protein core 

[Darby, 1993]. The hydrophobic interactions occur between side chains of hydrophobic residues (Met, Ala, 

Val, Ile, Leu, Phe) [Darby, 1993]. The amino acids with hydrogen bonding potential of their side chains are 

Glu, Gln, Asp, Asn, Ser, Tyr, Thr, Trp, Lys, His, Arg that may function as hydrogen donors, acceptors or 

both. The charged amino acid residues (Lys, Glu, Asp, His, Arg) can also form salt bridges. Even a few salt 

bridges can have profound effect on stabilisation of the tertiary structure [Darby, 1993]. Also the CH group 
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may act as hydrogen donor in a weak CH..O interaction and in an even weaker CH…π interaction, in which 

the π-electrons from carbonyl groups and aromatic amino acid side chains act as hydrogen acceptors [Brandl, 

2001]. It has been estimated that almost 50 % of the aromatic amino acids (Trp, Tyr, Phe) in a protein are 

involved in CH-π interactions, and that nearly all Trp residues participate in the weak hydrogen bonds 

(including also NH..π and OH..π interactions) [Brandl, 2001].  

Quaternary structure and protein-protein interactions 

The quaternary structure of proteins is the assembly of subunits into homo- or hetero-multimers, in which the 

subunits are held together by protein-protein interactions. The specific protein-protein interactions are 

essential to almost all levels of the cell function (transport across membranes, signal transduction, gene 

regulation, muscle contraction etc.), and nearly all proteins participate in protein-protein interactions as part 

of their functions. Some of the complexes are obligatory, meaning that the monomers do not naturally exist 

[Ofran, 2003]. On the other hand, enzymes and carrier proteins etc. that can exist as monomers may also be 

able to form dimers, tetramers or higher oligomers, depending on the environments or external factors. (The 

folate binding proteins (FBPs) are examples hereof and are dealt with in Paper III). 

The binding interface of protein complexes is as tightly packed as in the interior of proteins, and the 

interactions between side chains as well as desolvation of the protein surfaces lead to the stabilisation of the 

complexes [Kimura, 2001]. Hydrophobic interactions are main contributors to the complex stability, whereas 

the rate and specificity of the protein association are determined by long-range specific electrostatic 

interactions [Kimura, 2001]. The hydrophobic interactions are more frequent in the permanent interactions 

than in transient interactions [Ofran, 2004]. So, whereas Trp residues are overrepresented in most interfaces, 

they are less abundant in interfaces involved in transient interactions between identical proteins [Ofran, 

2004]. Whilst hydrophobic interactions take place in the core of the interphase, salt bridges and hydrogen are 

most abundant in the periphery [Ofran, 2004; Darby, 1993]. 

Complexes having 0-46 intermolecular hydrogen bonds are known. Arg side chains are involved in many 

of these, but also intermolecular hydrogen bonds form between the peptide backbones [Dou, 2004; Sakurai, 

2002]. Thus, intermolecular β-sheets are frequently found in dimers and oligomers [Dou, 2004]. For 

example, this structure has been shown important to the formation of β-lactoglobulin (BLG) dimers, and it 

provides the correct positioning of the monomers for binding to each others [Sakurai, 2002]. Dou et al (2004) 

found that 15.8 % of all the proteins in the protein database have β-sheet interfaces, and thus, intermolecular 

β-sheet can be considered an important type of protein-protein interaction. A distinct role of intermolecular 

β-sheets is in the formation of amyloid aggregates, which are involved in diseases like Alzheimer’s, 

Creutzfeldt-Jakob, Huntington’s and Parkinson’s. The β-sheets in the amyloid aggregates are arranged in a 

special cross β-structure, in which β-sheets run perpendicular to the fibril axis [Jahn, 2005]. The folding is 
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thought to be inherently different from normal protein folding and probably based on main-chain interactions 

that are allowed when the normal specific folding is destabilised [Fändrich, 2003; Jahn 2005]. 

Protein-protein interactions in foods 

Aggregates and gels, formed by protein-protein interactions, are important contributors to the structure of 

many foods, and for example, the whey proteins (BLG, BSA and α-lactalbumin) are used widespread as food 

ingredients due to their gelling abilities. Gelation is the formation of a continuous well-defined three-

dimensional network of particles or polymers, which is able to immobilise water. On the other hand, the 

unwanted outcome of aggregation, namely precipitation, does not lead to immobilisation of water [Li-Chan, 

1996]. Protein aggregation in foods involves unspecific interactions that develops only after the food 

processing has caused some unfolding of the proteins. Even though heat-treatments at 60-80oC may not 

affect the secondary structure much, it may lead to increased flexibility and exposure of hydrophobic 

regions, thus increasing hydrophobic interactions and promoting aggregation [Li-Chan, 1996; Petsev, 2000]. 

Also, ionic interactions, hydrogen bonding and disulfide bridges are believed to take part in aggregate 

formation [Li-Chan, 1996]. The aggregates may interact and form strands that again may assemble in a 

three-dimensional gel network. Different gelling conditions may cause diverse arrangement of the strands 

and lead to formation of either coagulates, opaque gels, or transparent gels [Li-Chan, 1996; Tolstoguzov, 

1996].  

 In studies of the aggregation process, a conversion of α-helices into random coils and β-sheet structures is 

often seen [Li-Chan, 1996; Shukla, 2004; Sokolowski, 2003]. However, the secondary structure changes 

depend on both the protein and its concentration, and β-sheet to random coil transformations take place in 

some cases [Li-Chan, 1996]. The intermolecular β-sheet, which can form independently of the amino acid 

composition, has been pointed out as a fundamental part of the aggregation process, as the extended 

polypeptide chains that are formed upon protein unfolding are allowed to align closely and interact with 

neighbouring chains by hydrogen bonding. These β-sheet interactions are stabilised by hydrophobic 

interactions and intermolecular S-S bridges [Srisailam, 2002; Domenek, 2002; Li-Chan, 1996]. The latter 

may be formed if Cys residues become exposed during the unfolding, and they have been shown e.g. in BSA 

and BLG gels, where they cause the irreversible denaturation [Gezimati, 1996].  

Intermolecular β-sheets may form junction zones that stabilise the networks, but their relative significance 

in the cross linking of protein networks is not established [Li-Chan, 1996]. However, the β-sheet interactions 

have been suggested to be the dominating interactions in the gel-state of some proteins [Allain, 1999]. Also, 

intermolecular β-sheets have been shown of importance to the viscoelastic properties of dough [Wellner, 

2003], and Lefevre et al (2003) suggested that the viscoelastic property of protein-stabilised oil-water 

emulsions could result from the existence of intermolecular β-sheet interactions between proteins, 

aggregated in the interfaces. On the other hand, hydrophobic interactions have also been pointed out as the 

most important in cross-linking of protein gels [Li-Chan, 1996].  
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The detection of protein aggregates can be done by use of e.g. rheology, microscopy, dynamic light 

scattering or diffusing wave spectroscopy, of which only the latter method is nonintrusive and works for the 

highly concentrated food systems [Alexander, 2006]. With spectroscopic methods (vibrational, laser light 

scattering, and mass spectrometry) it is possible to detect the aggregates before they become visible [Li-

Chan, 1996]. 

3.2. The infrared protein spectrum 

The MIR protein spectrum 

The protein backbone shows nine vibrational modes, which result in nine fundamental absorption bands 

specific for proteins (and polyamides), and which have been named the amide I-amide VII, amide A, and 

amide B modes. The amide IV-VII bands have very low intensities in MIR and are not of importance in MIR 

or NIR analyses. The amide I and amide II modes are not influenced by amino acid side-chains and only 

depend on protein backbone conformation, whereas the amide III mode is more complex, since it depends 

also on amino acid side-chains. 

Amide I (1700-1600 cm-1) is mainly a C=O stretching vibration with a weak coupling to out-of-phase C-N 

stretching, NH in-plane bending and CNN deformation. About 70-85 % of the band intensity is from C=O 

stretching and 10-20 % is from C-N stretching [Barth, 2002]. 

Amide II (1595-1510 cm-1) is an N-H in plane bending (40-60 %) coupled to C-N stretching (18-40 %) and 

also to C-C stretching (10 %) and C=O in plane bending [Barth, 2002].  

Amide III (1350-1200 cm-1) has usually been described as mainly an C-N-H in-plane bending coupled to C-

N stretching, but recent studies have revealed that for molecules containing CH2 groups, the amide III result 

mostly from coupled NH and CH2 deformations. Thus, the mode is somewhat mixed with side chain 

vibrations [Fu, 1994].  

Amide A (3310-3270 cm-1) is an N-H stretching vibration, totally localized to the NH group. The weaker 

band from amide B (3100-3030 cm-1) is commonly reported as being either the 1st overtone or a combination 

mode of amide II, which is amplified through Fermi resonance with amide A [Krimm, 1986; Lazarev, 1974]. 

However, the assignment is subject to controversy, as will be described later [Wang, 1998].  

In addition, the amino acid side chains absorb light in the MIR. For example, most amino acids cause 

absorptions from aliphatic groups. The CH and CH2 bendings are observed at around 1450 cm-1 and the 

symmetric and antisymmetric CH3 bending at 1375 and 1465 cm-1, respectively [Barth, 2000]. Some of the 

CH2 and CH3 bending vibrations are relatively uncoupled from other vibrations, but the twisting, rocking and 

wagging are coupled to other modes. The symmetric and antisymmetric -CH2 and -CH3 stretchings give rise 

to several bands between 2875 and 3100 cm-1. Other side chain absorptions are indicative of specific amino 

acids.  
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The NIR protein spectrum 

In addition to the bands in MIR, proteins have their complementary fingerprints in the NIR. The band 

assignment is difficult in this region and is less well established than in the MIR due to the numerous and 

overlapping bands. 

In the combination band region (2000-2500 nm), bands characteristic of the protein amide groups appear at 

~2050 and ~2170-2190 nm. Contradictory assignments as to their origins are found in the literature. The 

2050 nm band has mostly been attributed to amide A combined with either amide I or amide II (amide A/I or 

amide A/II). The second option was demonstrated by Wang et al (2004) in an experimental and theoretical 

study, whereas, a band at 2012 nm has been ascribed to the amide A/I combination [Bai, 2005]. The broad 

2180 nm band has commonly been ascribed to the amide B/II combination [Wang, 1994]. However, in 2nd 

derivative spectra, the band is seen to consist of at least two overlapping bands at ~2170 and ~2190 nm, in 

the vicinity of which are found several different combination bands. Czarnik-Matusewicz (1999) proposed 

three assignments in the 2100-2186 nm region: amide B/I at 2100-2124 nm, amide B/II at 2160 nm and 

amide A/III at 2186 nm. Likewise, the assignment of a weak absorption at 2215 nm to amide A/III was 

adopted by Murayama et al (2002), whereas Wang et al (1994) assigned the 2206 nm band to the CH str. 

combined with amide I.  

Higher order combinations of the amide bands are found as weaker absorptions in the lower wavelength 

region where overtones also appear. For example, the 1600 nm band has been assigned to the combination of 

free NH stretch with the 1st overtone of amide II [Sadler, 1984], and a band at 1255 nm was assigned to the 

combination of amide II with the 1st overtone of amide A [Czarnik-Matusewicz, 1999].  

The amide combination bands outlined above stem from the protein backbone vibrations, and their 

intensities reflect the total protein concentration, almost independently of amino acid composition (except 

that the 2190 nm band has been assigned to primary amide groups [Yamashita, 1994]). Therefore, the amide 

bands have been used frequently for protein concentration analysis, and the 2170 nm band has been found 

the most suitable for this purpose. Yamashita et al (1994) established that nitrogen-containing amino acid 

side chains do not contribute to this band. An amide combination band, which on the other hand is dependent 

on the amino acid composition, is found at 1980 nm and results from the primary amide group from Gln. It 

has been attributed to amide A/II, and the intensity of this band correlates with the content of Gln in proteins 

[Holly, 1992].  

Above 2220 nm, combination bands originating from amino acid side chains appear, and different amino 

acid compositions result in some variation in this region. Many bands emerge in the region, since both the C-

H symmetric and anti-symmetric stretching can combine with either symmetric or anti-symmetric C-H 

bending. Furthermore, the CH, CH2 and CH3 groups cause absorptions at different wavelengths. Czarnik-

Matusewizc recognised the absorptions at 2318, 2335, 2355, 2366-2382 nm as CH-combination bands from 

protein side chains [Czarnik-Matusewicz, 1999]. A band at 2290 nm has been reported as the combination of 
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CH2 stretching and amide III [Murayama, 2000], and absorptions at 2255 nm has been ascribed to the OH-

stretching combined with OH-deformation from amino acid side chains (e.g. Ser, Thr) [Murayama, 2002]. 

Higher order C-H combination bands appear at lower wavelength, e.g. at 1410 nm [Murayama, 1998].  

The 1st C-H stretching overtone bands from amino acid side chains are found at ~1660-1780 nm, and again, 

band shapes and positions depend on the amino acid composition. Aromatic C-H stretching vibrations appear 

separate from the aliphatic. The 1st N-H stretching overtone bands are found at ~1460-1640 nm. Sadler et al 

(1984) assigned the 1490 nm band to the 1st overtone of free NH stretching. The 1st overtone of amide A may 

appear between 1523 and 1584 nm, whereas the 1st overtone of amide B was suggested at 1638 nm [Sadler, 

1984; Czarnik-Matusewicz, 1999; Šašić, 2000]. 

3.3. Protein structure analysis by MIR 

The sensitivity of the amide bands to hydrogen bonding strengths and dipolar couplings provide MIR its 

sensitivity to the secondary structures. However, also interactions with the solvent (usually water) and with 

other molecules cause perturbations of the protein spectrum. 

Introduction to MIR in protein analysis 

MIR has been used frequently since 1970s for quantitative protein structure analysis, and it is now a well-

established method of increasing importance in the protein research [Jackson, 1995; Haris, 1999]. The FTIR 

technique is the most widespread MIR technique for this purpose. With FTIR it is possible to detect even 

small conformational changes in proteins, and the method has been applied for the analysis of structural 

changes induced in proteins by varying e.g. pH-, salts, ionic strength and temperature [Matsuura, 2001; 

Murayama, 2001, Perez, 2000; Mohney, 2000; Dong, 1997; Lin,1999], induced by interactions with ligands 

[Neault, 1998] or by adsorptions to surfaces [Fang, 1997; Lefevre, 2003]. The presence of other 

macromolecules does not obscure the protein analysis, wherefore FTIR is highly suitable for studying the 

effect of interactions with other macromolecules. For example, the effect of protein-lipid interactions as 

regards both protein and lipid conformations has been analysed by FTIR [Lefevre, 2001; Borgrah, 1999]. 

FTIR is a versatile tool, not limited by the nature of the physicochemical environments or the physical state 

of the protein, and it has been used for protein studies in membranes, detergents, films, emulsions, gels and 

in the viscoelastic or semi-solid form by use of the ATR cell [Borgrah, 1999; Fang, 1997; Lefevre, 2003; de 

Jongh, 1996; Lorenz-Fonfria, 2003; Wellner, 2005]. Raman is an alternative method for measuring turbid 

samples, whereas the light scattering sensitive UV-, visible-, fluorescence- and CD spectroscopies are not 

applicable for these samples. Thus, FTIR is an often used method for the analysis of protein gelation and 

aggregation [Lefevre, 2001; Srisailam, 2002; Allain, 1999].  

The consequence of the small path length required in FTIR measurements is that a high protein 

concentration (10-20 mg/ml) is needed for obtaining the signal to noise ratio (SNR) necessary for 

conformational analyses [Haris, 1999; Jackson,1995]. 
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Sensitivity of Amide I to secondary structures 

The amide bands are all affected by the protein structure. However, the amide I band is the most sensitive to 

secondary structure, and since it also is the most intense protein band, it is often chosen for protein structure 

analysis. An empirical relation between protein secondary structure and the shape of the amide I band was 

discovered by Elliott and Ambrose in 1950 [Elliott, 1950]. The findings were that the frequency of the amide 

I mode depend on the predominant secondary structure of the protein, and that the different structure types 

absorb at specific frequency intervals in the broad amide I envelope. Therefore, the amide I band of proteins 

are usually composed of several overlapping sub bands, resulting in a rather featureless profile. 

The hydrogen bonding geometries in the different secondary structures are of foremost importance to their 

characteristic amide I frequencies, and the strength of the hydrogen bond is one parameter that affect the 

amide I spectrum. A non-hydrogen bonded amide C=O group is found to have a vibrational frequency of 

1660-1666 cm-1, and the stronger the hydrogen bonding in the secondary structure, the lower is the 

characteristic frequency [Barth, 2002; Jackson 1995]. Consequently, the frequencies follow the order: 

turn>α-helix >β-sheet>intermolecular β-sheet. Absorptions above 1666 cm-1 originate for example from non-

hydrogen bonded β-turns, which have a disturbed planarity of the amide group and thus an increased electron 

density in C=O groups [Jackson, 1995]. Other absorptions in the high-frequency region arise from β-sheets 

and these absorptions can be explained from dipole couplings that split the amide I mode 50-70 cm-1, as will 

be described below. 

The different strengths of hydrogen bonding in the secondary structures do not provide a satisfactory 

explanation for their different frequencies. The structural sensitivity of the amide I frequency also arises 

from vibrational coupling between the individual peptide groups, which may be represented as equivalent 

amide I oscillators [Torii, 1992, Barth, 2002; Brauner 2005]. Couplings between the oscillators by 

electrostatic- and through-bond interactions cause the appearance of collective delocalised modes that 

involve several oscillators, between which the absorbed energy is shuttled back and force. In the collective 

system, the vibrational transition energies are shifted away from the transition energies of the single peptide 

group. The size of the shift depends on the couplings between the individual oscillators, and as the couplings 

are determined by the relative position, orientation and connectivity of the peptide groups, the transition 

energies reflect the secondary structure and to some extent the tertiary structure of the protein [Barth, 2002; 

Brauner, 2005; Moran, 2004; Torii, 1992]. The most important coupling is the transition dipole coupling 

(TDC) [Torii, 1992], which is an electrostatic resonance interaction taking place between oscillating dipoles 

on neighbouring amide groups when one of the groups is in the exited state. One effect of TDC is splitting of 

the amide I band (as mentioned) in an out-of-phase and an in-phase band. The size of the splitting depends 

on the magnitude of the TDM: the larger the TDM, the larger is the coupling and the splitting [Barth, 2002]. 

TDC can explain the high-frequency band that appears for antiparallel β-sheets, as they have large TDC 
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interactions between peptide groups in different strands [Barth, 2002; Torii]. The α-helix absorptions are 

only modestly split by TDC [Torii, 1992]. 

Due to the influence of hydrogen bonding on the amide I frequency, the hydrogen bonding interaction of 

the amide groups with the solvent also affects the amide I frequencies. Proteins in aqueous solutions interact 

with the water through ionic interactions and hydrogen bonding. For example, the surface carbonyl groups 

already involved in helix structure hydrogen bonding can accommodate an extra hydrogen bond to water 

[Walsh, 2003]. Thereby, the amide I spectrum is affected and can give information on protein hydration and 

solvation. The amide I vibration shifts to a lower frequency, as the carbonyl group become exposed and 

binds to the solvent [Walsh, 2003]. The heterogenic interaction with the solvent also leads to broader amide I 

bands for the exposed groups than for the buried groups [Walsh, 2003]. Thus, the amide I frequencies of the 

different secondary structures depend on the solvation. 

Correspondence between secondary structures and amide I band shape 

The usual quantitative amide I analysis involves a deconvolution and curve fitting step, in which several sub 

bands are fitted to the broad amide I band by an iterative least squares method. Each sub band is then 

ascribed to a specific secondary structure, and the relative band areas are calculated by integration and 

translated into relative contents of the secondary structures.  

Bands in the frequency interval ~1620-1640 cm-1 is usually ascribed to β-sheet structures, with the exact 

position being influenced by the varying strengths of the hydrogen bonding and transition dipole coupling in 

different β-strands [Haris, 1999]. For example, β-strands on the edges of β-sheets (β-edges) can interact 

strongly with other structures, other molecules or the solvent and may thus be found at a lower frequency 

than the major β-sheet [Haris, 1999; Dong, 2000a,b; Mohney, 2000; Lefevre, 2001, 2003 ]. The antiparallel 

β-sheet structure also causes the appearance of a five times less intense high-frequency band at 1670-1695 

cm-1 due to band splitting by TDC [Torii, 1992; Cheatum, 2004]. The possibility to distinguish between 

parallel and antiparallel β-sheets in the amide I analysis was e.g. shown by Oberg et al (2004).  

Due to the diversity of β-turn geometries, their absorptions appear in a broad frequency range, and bands 

between 1666 cm-1 and 1690 cm-1 can be ascribed to non-hydrogen bonded β-turn structure (if not β-sheet 

structures) [Jackson, 1995]. Furthermore, β-turns with internal hydrogen bonds cause absorptions at 1638-

1646 cm-1 [Mantsch, 1993].  

A band component at 1650-1658 cm-1 is usually ascribed to α-helix, but there may be overlap from bands 

due to random structure at 1648±2 cm-1 [Haris, 1999] and loops at 1658-1665 cm-1 [Khurana, 2000]. 

However, α-helix usually contributes the most to this band. The α-helices at least 10 residues long contribute 

mostly to an A-type combination of individual amide I vibrations, suggested to appear at 1660 cm-1 [Al 

Azzam, 2002]. Short helices do not exhibit a single band because of a weaker coupling, and they cause 

broader bands with several maxima, although the most intense band may appear at 1650 cm-1 [Torii, 1992]. 
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The external α-helices are found at lower frequencies than the internal α-helices, and solvent interactions or 

distortions of α-helices may cause further low-frequency shifts, so that the α-helix band appears in the 1620-

1640 cm-1 region [Mohney, 2000].  

Absorptions at 1662±3 cm-1 have been assigned to the more seldom 310-helix, but overlap with the β-turn 

often prevents its detection [Dong, 2000b]. Spectra of the different aperiodic structures like bends, irregular 

structure and isolated β-strands do not appear to be distinguishable [Oberg, 2004]. The common assignments 

are shown in Table 3.1. 

 Wavenumber region [cm-1] Assignment 

1695-1660  β-sheet, β-turns 

1660-1650  α-helix  

1650-1640  Random/unordered 

1640-1620  β-sheet 

 
Difficulties in the amide I analysis arise from the ambiguous band assignments, the baseline correction and 

the subtraction of the overlapping water band and amino acid side chain absorptions etc. In addition, the 

rotation-vibration spectrum associated with the bending mode of gaseous water overlays the amide I band. A 

method for water vapour and CO2(g) correction is described in Paper II (Appendix II). A prediction accuracy 

in the order of ±4 % is considered acceptable at best [Oberg, 2004]. 

Sensitivity of other amide bands to secondary structures 

Like the amide I mode, the amide II band is influenced by hydrogen bonding and TDC. For example, the NH 

bending frequency of an amide group depends on whether the NH group forms a hydrogen bond to a C=O 

group or to water [Maréchal, 1997; Maeda, 2000]. However, the correspondence between band shape and 

secondary structure is complex. Assignments taken e.g. from Lacey et al (1998) and Krimm et al (1986) are 

β-sheet absorptions at 1517 and 1524 cm-1, β-turn absorption at 1568 cm-1 and α-helix absorption at 1545 

cm-1 with a shoulder at 1517 cm-1. Others report the parallel β-sheet absorption to appear at 1530-1550 cm-1. 

These bands are also overlapped by random coil absorptions at 1520-1545 cm-1. Due to the above 

difficulties, the amide II band has not been studied in details for its feasibility in protein structure analysis. 

However, the use of the amide II in combination with the amide I band has been found to give better 

estimates of α-helix than with the use of the amide I band alone, and actually Oberg et al (2004) saw a better 

estimation of α-helix and turns by use of amide II compared to amide I.  

The amide III band is found to contain more structural information than the amide II band [Cai, 1999; Fu, 

1994]. Only ~30 % of the band results from amide vibrations, due to the high contribution from side chain 

vibrations (the amide III mode is significantly mixed with CH2 wagging). In addition, the low intensity is 

problem, and the band variations are not fully understood. Anyway, it has been possible to estimate 

Table 3.1. Common assignments in 
the amide I band, according to 
[Torii, 1992]. The deviations from 
these empirical rules are described 
in the text.
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secondary structure contents of several proteins in good agreement with X-ray crystallographic data [Cai, 

1999; Fu 1994]. The advantages of using the amide III band compared to amide I are: no interference from 

water and less overlapping of the bands from the different secondary structures, so that no band-narrowing is 

necessary. The assignments adopted from Cai et al (1994) are: 1340-1295 cm-1: α-helix, 1295-1270 cm-1: β-

turns, 1270-1250 cm-1: random structure, 1250-1220 cm-1: β-sheet. Extended chains have been reported to 

cause a band at 1240-1247 cm-1 [Griebenow, 1995].  

The amide A is sensitive to hydrogen bonding, which may shift this band to a lower frequency [Lazarev, 

1974], and the band is sensitive to the protein secondary structure as well [Lorenz-Fonfria, 2003]. However, 

the assignments done in this region are contradictory and the band is not used for secondary structure 

analysis. The amide B may have a complex relation to the hydrogen bonding due to fermi resonance, as 

described by Lazarev et al (1974): By fermi resonance, the 1st overtone (or a combination mode) of amide II 

borrows intensity from amide A to give rise to amide B. As the two bands come closer upon increasing 

hydrogen bonding, they obtain more similar energies and the fermi resonance and intensity-borrowing is 

increased. Thus the intensity of amide B reflects the hydrogen bonding of the NH group. The frequency of 

amide B is also determined from the hydrogen bonding, which shifts the band to higher frequencies 

[Lazarev, 1974]. In opposition to the above description, Wang et al (1998) assigned the amide B to the 

stretching vibration of the intramolecular hydrogen bonded NH group.  

The overlap with the water stretching bands often limits the use of the amide A and B bands in MIR protein 

analysis.  

3.4. Protein interaction analysis by MIR 

Although the amide I band may act as a probe for protein three-dimensional structure in some degree, the 

secondary structure is the main property reflected in the amide I band, and the tertiary structure has seldom 

been analysed by MIR.  

Detection of tertiary structure 

Measurements of the native and molten globule states have provided evidence of the ability of MIR to probe 

tertiary structure changes. The molten globule state possesses native-like secondary structure, while the 

tertiary structure is disrupted. Matsuura et al (2001) observed a broadening of the amide I sub bands and 

decreased band resolution, when the CD40 ligand was converted into a molten globule state by lowering of 

the pH. This was taken as a sign of a more loosened structure. Still, these effects on the amide I band are 

small compared to those from secondary structure changes. Instead, hydrogen-deuterium (H-D) exchange is 

a more valuable method for probing the tertiary structure and its perturbations. The exposed structures are 

most prone to the H-D exchange, so a loosening of the tertiary structure allows for more solvent interaction 

and increased H-D exchange and is reflected as band-shifts in amide II [Pedone, 2003].  
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Specific amino acid side chain absorptions, which are influenced by interactions and the dielectric 

properties of their environments, may change in respond to tertiary structure changes [Jackson, 1995]. The 

amide groups from Gln and Asn usually cause absorptions at 1660-1690 cm-1, but the frequency depends on 

the hydrogen bonding interactions of the C=O group. For example, the aspargine ladder, which has hydrogen 

bonding between Asn side chains, may lead to the Asn absorptions at 1622-1633 cm-1 [Khurana, 2000]. The 

carboxylate group from Glu and Asp causes a C=O-str. band at ~1740 cm-1 or ~1696-1705cm-1, depending 

on the hydrogen bonding state. The unprotonated carboxylate group from Asp gives rise to absorptions at 

1570-1598 cm-1 (anti-symmetric stretch), and the intensity of this band has been found a good probe for 

protein unfolding [Jackson, 1995]. The position and intensity of the Tyr, Trp and CH-str. absorption have 

also been shown to reflect their exposure and the folding state of proteins [Jackson, 1995; Liu, 2001].  

Detection of protein-protein interactions 

The relation between intermolecular β-sheet formation and the appearance of an amide I component at 

around 1620 cm-1 has been utilized in several studies to show the presence of soluble protein 

oligomers/aggregates in the native state or formed upon denaturation [Haris, 1999; Dong, 2000b; Mohney, 

2000; Lefevre, 2001; Lin S., 1999; Sokolowski, 2003]. The ability of MIR to detect this structure is an 

advantage over e.g. CD analyses. From calculations, the band due to antiparallel intermolecular β-sheet has 

been shown to appear at 1624 (± 8 cm-1), but bands as low as 1613 cm-1 has as well been ascribed to this 

structure [Allain, 1999; Lefevre 2001], as the strength of the intermolecular β-sheet interaction determines 

the exact position of the low-frequency band. Accordingly, fine stranded gels formed from heat treated BLG 

were found to have stronger hydrogen bonding interactions than particulate gels, since the two types of gels 

caused absorptions at 1613-1619 cm-1 and 1620-1623 cm-1 , respectively [Lefevre, 2001]. Involvement of 

intermolecular β-sheet in the dimerisation of BLG at high protein concentrations was also observed from the 

amide I band [Lefevre, 2001]. The dissociation of the dimer lead to the disappearance of a band at 1623 cm-1, 

which consequently was ascribed to the β-sheet interaction involved in monomer-monomer binding 

[Lefevre, 2001]. Although the low-frequency bands are indicative of intermolecular-β-sheet and aggregation, 

other factors that increase the hydrogen bonding of CO groups may cause the appearance of these bands. 

These factors include the interaction with water or other molecules. Extended hydrated structures have been 

suggested to cause an absorption at ~1619 cm-1 in spectra of gluten proteins [Belton, 1995].  

As the intermolecular β-sheets are formed, other secondary structures may decrease and therefore further 

influence the amide I band shape. For example, a decrease in the 1635 cm-1 band was found a good probe for 

detection of ovalbumin (OVA) aggregation [Dong, 2000a].  

For interactions taking place between two or more different proteins, information on the structural 

perturbations of the individual proteins cannot be gained from conventional FTIR spectra due to the 

overlapping of their amide I bands. Instead, a technique called isotope edited IR, which separate the two 
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amide I bands, can be used. See: [Fabian, 1996]. Conventional FTIR, on the other hand, can be used for 

demonstrating interactions between two different proteins. This is shown from the difference spectrum 

between the experimental spectrum and the spectrum constructed from the individual spectra. 

Other amide bands are rather insensitive to the intermolecular β-sheet structure, and no distinct frequencies 

in the amide II band have been assigned to this structure. Studies of different proteins by [Cai, 1999] showed 

that β-sheet sub bands in the amide III region were less sensitive to the denaturation than α-helix bands. 

However, the β-sheet band at 1244 cm-1 was split into a band at 1247 and at 1235 cm-1 after denaturation of 

BSA [Cai, 1999]. 

3.5. Protein structure analysis by NIR 

It could be expected that the sensitivity of the fundamental modes towards protein secondary structures exists 

for the overtones and combinations as well. This hypothesis has now been confirmed from several studies, 

but the relation between the amide combination bands and the secondary structure was not recognised until 

the early 1990s [Liu, 1994; Kamishikiryo-Yamashita, 1994], and the full potential of NIR in protein structure 

analysis has yet to be explored. In one of the first studies, Kamishikiryo-Yamashita et al (1994) considered 

the relative contributions from α-helix, β-sheet and random coil to the intensity of the 2170 nm band and 

found that α-helix contributes the double of β-sheet and random coil to this band.  

Freeze-dried proteins 

The majority of NIR-studies on protein structure have been carried out with freeze-dried proteins, and these 

have established the correspondence between protein secondary structure and band shape and position 

mainly in the combination band region [Robert, 1999; Miyazawa, 1998, Bai, 2005]. The advantages of 

measuring proteins in the solid state are the high protein signals and the absence of interfering water bands. 

Robert et al (1999) studied several dry proteins and used generalized canonical correlation analysis (CCA) to 

correlate the three data tables: NIR spectra, MIR spectra and the secondary structure contents of the proteins 

(reference values). Hereby, they identified NIR wavelength that represented the different secondary 

structures. The assignment was based on measurements of 9 proteins with dissimilar structures, and their 

different amino acid compositions were accounted for in the analysis. Wavelengths, at which α-helices 

contribute most, were identified as 2056 nm, 2172 nm, 2239 nm, 2289 nm and 2343 nm with the 2172 nm 

and 2289 nm being the most important. Bands at 2205 nm, 2264 nm and 2313 nm were characteristic of β-

sheet, while 2265 nm was most prominent for random structure. The fact that the combination bands from 

amino acid side chain also reflect the secondary structure may stem from the side chains in the different 

structures experiencing different microenvironments. Interactions, solvation and dielectric properties 

influence the position and intensity of the side chain absorptions [Jackson, 1995]. For example, the OH-

combination band at 2255 nm from Ser-, Tyr- and Thr- OH-groups could be affected by the conformation, as 

the hydrogen bonding interaction of the OH groups depends on the secondary structure. The CH overtone 
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and combination bands could as well be influenced by the C-H..O interactions, as NIR has been found 

sensitive to this type of weak hydrogen bonding interaction [Katsumoto, 2002]. Also, Sefara et al (1997) 

observed a coordinated change in the amide B/II band and the side chain combination band at 2257 nm when 

BLG was unfolded and changed from α-helix to β-sheet (by solvent-denaturation). Other side chain bands 

(2262 and 2252 nm) changed their intensity upon denaturation, but this happened out of phase with the 2257 

nm band.  

Spectral changes caused by the denaturation of proteins have confirmed the sensitivity of the NIR 

combination bands towards the secondary structure. Bai et al (2005) observed changes in the 2nd derivative 

NIR spectra of freeze-dried α-chymotrypsin and cytochrome c at both 2056 nm and 2168 nm upon 

denaturation, and a PLSR model showed a good correlation of the NIR variations to the spectral changes in 

the amide I region. The same two bands were increased when sucrose was added for protection against 

unfolding during freeze-drying. 

Miyazawa et al (1998) examined the 2nd derivative transmission spectra of dried protein films that were 

cast from solutions of the fibrous silk fibroin. They treated the silk fibroin with methanol and thereby 

induced more β-sheet structure and diminished the α-helix structure in the protein. Upon methanol treatment, 

the 2050 nm-band shifted from 2051 nm to 2058 nm, indicating sensitivity of this band to the secondary 

structure. In opposition, Liu et al (1994) found the amide A/II band to appear at 2055 nm for several globular 

proteins irrespective of their different secondary structures, demonstrating structural insensitivity of this 

band. Instead, they proposed that the 2055 nm band could detect the loosening of the hydrogen bonding 

strength in the structure e.g. upon denaturation. The weaker hydrogen bonds in collagen and peptides of 310-

helix structure were demonstrated by a shift to lower wavelength of the amide A/II band (~2040 nm). 

Finally, they showed a good correlation between the amide A/II wavelength and the amide A frequency [Liu, 

1994]. 

In the study by Miyazawa et al (1998), in which one fibrous and seven globular proteins were included, the 

2180 nm band was resolved by the derivation procedure into six component bands at around 2141, 2168, 

2186, 2200, 2209 and 2213 nm, of which the 2209 nm-band showed mostly in the case of proteins with a 

high sheet content and therefore was ascribed to this structure. Other bands were not ascribed to specific 

secondary structures, but it was noticed that the bands at 2141 and 2168 nm appeared for all native proteins, 

while bands at 2186, 2200 and 2213 nm were seen for only some of the proteins. Upon methanol treatment 

of silk fibroin, the 2141nm band disappeared. In conclusion from this experiment, NIR+ 2nd derivative was 

found to be a powerful technique for structural analysis and characterisation of proteins in the solid state.  

Protein solutions 

The study of protein structure-function relationships needs to be carried out in solution or in the hydrated 

state, such that the protein can obtain its native functional state. Furthermore, NIR-measurements of proteins 
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in aqueous solution cannot only provide structural information but also give information on protein 

hydration, since NIR allows simultaneous examination of the water and the protein signal [Wu, 2000]. 

However, for protein solutions the absorbance from the protein is much weaker than that from water. Due to 

this fact and to the existence of overlapping bands, the analyses is often done by use of chemometric 

methods or two-dimensional correlation spectroscopy (2DCOS). In 2DCOS, enhanced spectral resolution of 

overlapping bands is obtained by spreading of the bands in a second dimension. The spectra are measured as 

a function of a property (concentration, temperature, pressure etc) and 2DCOS generates synchronous and 

asynchronous maps, in which peaks represent in-phase and out-of phase variations between band intensities, 

respectively. the advantage of 2DCOS over the chemometric methods is the provision of the asynchronous 

map showing uncoupled variations between bands (these are not easily observed from loading plots), and 

from which, the order of the spectral changes can be found [Murayama, 2000]. 

2D NIR-COS has been applied for analysis of the thermal denaturation processes of OVA and human 

serum albumin (HSA) [Wang, 1998; Ozaki, 1999; Wu, 2000]. The protein concentrations were varied from 

10 to 50 mg/ml, and the concentration-dependent 2D correlation maps were studied. In the study of OVA, 

the correlation maps of native and heat-treated protein were compared. A spectral change was observed at 

67-69oC and interpreted as drastic changes in protein hydration that preceded the secondary structure 

changes: The in-phase variation between amide A/II and 2nd overtone of OH bending (3ν2 at 2080 nm) 

observed in the native state was replaced by an out-of phase variation and also a new out-of-phase variation 

between amide B/II and 3ν2. At a somewhat higher temperature, shifts in the amide A/II and amide B/II to 

lower wavelengths were observed and interpreted as secondary structure changes [Wang, 1998]. 

In the correlation maps of native HSA, asynchronous peaks, indicative of protein hydration or structural 

changes, were observed [Wu, 2000]. It was suggested that aggregation and association of proteins at the 

higher concentrations lead to small changes in secondary structure and changes in the microenvironments of 

the amino acid side chains, which resulted in spectral variation in the range 2041-2381 nm. Between 58 and 

60oC, frequency shifts were observed for both amide B/II (at 2174 nm) and amide A/II (at 2062 nm). Amide 

B/II shifted from 2174 nm to 2170 nm upon denaturation of HSA [Wu, 2000]. The amide B/II combination 

band position is determined by the position of amide B and amide II fundamental bands, and a shift to lower 

wavelengths has been taken to mean a weakening of the hydrogen bonding strength [Murayama, 2002]. 

Other 2D NIR-COS studies have considered pH-dependent structural changes of proteins. HSA exists in a 

native form at pH 5.0 but is converted to an F-isoform at pH 4.3 and an extended E-isoform at pH 2.7. Thus, 

the correlation maps at pH 5.0, pH 3.5 and pH 2.4 were compared in a study by Ozaki [Ozaki, 1999]. When 

lowering the pH from 5 to 3.5, an auto peak at 2162 nm disappeared, and this was interpreted as a change in 

hydrogen bonding state of amide groups, when α-helix changed to β-structure or random structure in the N-F 

transition. At pH 2.4, the in-phase correlations between the protein peaks and 3ν2 were changed to out-of 

phase correlations suggesting a change in hydration upon unfolding of the secondary structure at the lower 
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pH. A 2D NIR-COS study of OVA transition from native to a molten globule-like state showed hydration 

and secondary structure changes to take place in parallel between pH 2.6 and 2.8. At a pH above the 

transition pH, a change in amino acid side chain microenvironment was indicated from disappearance of an 

auto peak at 2342 nm [Murayama, 2002].  

Although most NIR analyses of proteins in solution have applied the 2DCOS, also difference spectroscopy 

and 2nd derivative analysis have been used, and Murayama et al (2000) concluded from a comparison 

between analysis techniques that these two methods always should be tried. The water spectrum subtraction 

followed by 2nd derivative calculation was for example used by Izutsu et al (2006). In a 2nd derivative 

analysis of BSA in solution, a temperature-dependent shift of the amide A/II band was observed as well as a 

splitting of the amide B/II band in two (2164 and 2176 nm), when increasing the temperature from 45 to 

85oC [Yuan, 2003]. Other important information was obtained from the water bands in the difference spectra 

and concerned the hydration changes of BSA upon protein unfolding. 

Drawing up of NIR in protein structure analysis 

In conclusion from the above literature study, several bands in NIR have been recognised as sensitive to 

protein secondary structure and/or the denaturation state. However, the spectral changes upon alteration of 

secondary structure is much lower in NIR than in MIR, and the relation to secondary structure is still 

somewhat obscure. Likewise, studies of protein structures in solution are scarce. The following questions 

will be considered in the subsequent experiments and in paper III.  

How much structural information is contained in the NIR spectra of protein solutions ? (This question is 

investigated in Experiment III and Paper IV). 

a. What qualitative information of secondary structure changes can be obtained? 

b. Is it possible to obtain good estimates of α-helix, β-sheet, β-turns and random coil contents? 

c. Is there any information of tertiary/quaternary structure changes? 

d. Is there any information of the intermolecular β-sheet? Or of other interactions ? 

2. How much structural information is contained in the NIR spectra of proteins in a complex matrix 

(such as foods)? (This question is investigated in Experiment IV and V). 

a. Are their any unique protein absorptions ? (distinguishable from starch and lipids) 

b. Can protein conformation/interaction changes be detected?  

c. Is it possible to interpret the spectral changes and obtain structural information from NIR?  

d. Can information regarding protein-water interactions be obtained? 

3.6. Experiment III: NIR analysis of protein structures in solution  

In this experiment, the same set of standard proteins in solution is measured by both FTIR and NIR, and the 

assignments of NIR-wavelength regions to secondary structures are attempted by the combined FTIR-NIR 
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analysis. Combining NIR analyses with other spectroscopic techniques (e.g. FTIR, Raman, CD) is a common 

method for improving the interpretation of the NIR spectra [Barton, 1996; Gouti, 1998; Maalouly, 2004; 

Barros, 1997]. This approach has also been used in a few structural studies of proteins [Robert, Sefara, 1997; 

Navea, 2003], in which the analysis methods have included e.g. 2D-COS, CCA and evolving factor analysis. 

Navea et al (2003) found that the combination of the corresponding spectra could not only give useful insight 

into the NIR region but could even bring information not possible with either method alone. 

One main goal of the study was to identify possible spectral signatures of intermolecular β-sheet in NIR 

spectra. A denaturation study by Yuan et al (2003) of BSA in solution (by evolving factor analysis) has 

previously indicated an ability of NIR to detect the intermolecular β-sheet, as a turning point was seen at 

71oC where this structure commonly appears.  

Method 

BSA, BLG, lysozyme (LYS), folate binding protein (FBP), Casein (CAS) and OVA solutions were prepared 

in PBS buffer of pH 7.4 at 10 mg/ml. The reference values of secondary structures as found from the 

literature are shown in Table 3.2 (no reliable data was found for CAS, and this protein is left out in most 

analyses, but however is known as a random coil protein). BLG and BSA solutions were heat-treated in 

water bath at 75-85oC for 30 min. NIR spectra from 790-2500 nm were measured on a Perkin Elmer, 

Spectrum One FT-NIR instrument, equipped with at DTGS detector and by use of a 1 mm transmission cell 

(quartz). The resolution was 16 cm-1 and 100 scans were co-added. The data interval was 1.67 nm. At least 

four replicates were measured for each solution. ATR-FTIR spectra were obtained on a Bomen FTIR 

Spectrometer from 4000 cm-1 to 748 cm-1, at a resolution of 4 cm-1 and with co-addition of 128 scans. The 

data interval was 1.93 cm-1. The instrument was continuously purged with dry air and no gas absorption was 

evident in the spectra. At least two replicates were obtained. No temperature control was applied in either 

measurement series. Preprocessing and PLSR analyses were carried out in Unscrambler 9.2 (Camo). Outer 

product analysis (OPA) was also carried out in Matlab. NIR spectra were preprocessed by use of standard 

EMSC in the 2100-2300 and 1600-1800 nm regions. Then the buffer spectra were subtracted and the spectra 

were EMSC corrected again before Savitzky Golay 2nd derivative calculation (with 9 or 13 data points) was 

carried out and the spectra were inverted. Spectral pretreatment of the ATR-FTIR spectra included Savitzky 

Golay smoothing followed by standard EMSC correction in the 1800-1500 cm-1 region and 2nd derivative 

transformation. The buffer spectrum was then subtracted from each spectrum, and mean normalization was 

carried out in the range 1700-1600 cm-1.  

% α-helix Random coil β-sheet  References 

Bovine serum albumin (BSA) 55 45 ~0 [Riley, 1953] 

β-lactoglobulin (BLG) 15  49 [Creamer, 1983] 

Lysozyme (LYS) 45 13 19 [Robert, 1999] 
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Ovalbumin (OVA) 35  45 [Stein, 1991] 

Folate binding protein (FBP) 22 31 30 [Kaarsholm, 1993] 

Standard deviation (SD) 16 15 20  

Table 3.2. Secondary structures of the standard proteins.  

Results: NIR analyses 

The NIR analysis was limited to the 1600-1800 nm and the 2100-2300 nm regions, since earlier experiments 

had found these regions of the highest protein information, and since these regions are not overlapped much 

by the water bands. These regions were for example identified by interval-PLSR for protein concentration 

(see [Nørgaard, 2000]). Likewise, in a preliminary analysis of native and denatured BSA (25-50 mg/ml), 

where the EMSC corrected were submitted to a PCA, the score plots indicated that denatured BSA could be 

discriminated from native BSA in both spectral regions, although the 2100-2300 nm region seemed to be the 

most sensitive towards denaturation. However, these analyses did not allow identification of intermolecular 

β-sheet regions, and therefore more standard proteins were analysed, as described in the following.  

The buffer subtracted and EMSC corrected NIR spectra in the 2100-2300 nm region are shown in Fig. 3.2 

for the standard proteins. The EMSC treatment after the buffer subtraction seemed to remove small 

variations in the protein concentration. 

B 

A Fig. 3.2. NIR spectra of 
standard proteins in the 
2100-2300 nm region. 
A) Protein spectra after 
buffer subtraction and 
subsequent EMSC. 
B) The same spectra after 
mean centering. Insert: 
raw spectra, showing the 
region as a valley between 
two intense water bands. 
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It is evident that each standard protein has its own distinct protein spectrum, although the differences are 

small. The differences become easier to see in the mean centred data (Fig. 3.2B). After 2nd derivative 

transformation of these spectra, the broad bands are seen to consist of some smaller peaks (Fig. 3.3).The 

large peak at 2263 nm for CAS is in agreement with the previous assignment of random coil to 2265 nm. In 

addition, the increase at 2209 nm and the decrease at 2166 nm upon denaturation of BSA is in agreement 

with the study by Izutsu et al (2006), indicating either intra- or intermolecular β-sheet formation. 

In order to relate the spectral differences to secondary structure variations, the reference values in Table 3.2 

were used as Y in two PLSR2 models, in which X was either the 2nd derivative transformed or the 

untransformed spectra. All variables were standardized, and the two models were validated by segmented 

CV. Only one component was found useful in the models as determined from the RMSECV(Y) plots.  

 

 

 

 

 

 

 

Fig. 3.3. Average NIR spectra of standard proteins and denatured proteins in the 2100-2300 nm region after 
preprocessing. Possible vibrational origins of the bands are shown. 
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The score plot from the 2nd derivative model is shown in Fig. 3.4. The use of 2nd derivative spectra resulted in 

a higher explanation of Y in PC1 (47 %) than by use of EMSC data (22 %), but neither of the models showed 

any predictive ability (R<0.13) for the α-helix content. However, the score plot showed a trend in PC1 that 

seemed related to the α-helix/β-sheet contents (Fig. 3.4) and the same was seen in a PCA score plot. 

Likewise, the β-sheet content was better explained (R=0.729) than the α-helix content and resulted in 

RMSECV(Y) of 13-15 % in the two models (compared to an original SD of 20 %). Jack-knifing was applied 

for identification of the significant NIR-wavelengths in the model with X=2nd derivative spectra. The hereby 

identified NIR-wavelengths with positive b-coefficients for the prediction of α-helix were the 2229-2239 and 

2284-2286 nm regions, while wavelength with positive b-coefficients for β-sheet were the 2142-2146, 2206-

2213 and 2268-2271 nm regions. 

The 1600-1800 nm region, which contains the 1st CH-str. overtones, was examined as well by PLSR. The 

averaged 2nd derivative spectra are shown in Fig. 3.5. The CV results showed that spectra with and without 

2nd derivative calculation resulted in models of similar predictive ability. Again, the β-sheet content was 

better predicted than the α-helix content as RMSECV(Y) was 14.1 % for α-helix (R= 0.48) by use of 1 PC 

and 12.8 % for β-sheet (R= 0.95) by use of 2 PCs. From these results it is considered that the 1600-1800 nm 

region also shows some structural information as regards α-helix and β-sheet contents. Only the wavelength 

1785 nm had a significant positive correlation to α-helix, while the regions 1713-1728 nm and 1755-1765 

nm correlated positively with β-sheet contents, as seen from jack-knifing. However, these assignments seems 

in contradiction with the assignments by Izutsu et al (2006): 1690 nm to β-sheet and 1738 nm to α-helix. 

Fig. 3.5. NIR spectra of standard proteins in the 1625-1800 nm region after preprocessing. Insert: raw spectra, 
showing the position of the region between two water bands. Possible vibrational origins of the bands are shown. 
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Use of only the significant regions in the PLSR models resulted in improvement of the models based on both 

regions (1600-1800 and 2100-2300 nm). However, the α-helix content of OVA was predicted much lower 

than the reference value in both cases.  

Results: MIR analysis 

The amide I band was examined for its correlation to the reference values of secondary structure content.The 

preprocessed amide I spectra are shown in Fig. 3.6. A PLSR2 model for prediction of α-helix and β-sheet 

contents was made based on the preprocessed amide I band. The model was validated by segmented CV. All 

variables were standardized. The PLSR analysis resulted in an RMSECV of 8 % for prediction of α-helix 

content and an RMSECV of 5% for prediction of β-sheet content, which is better than results obtained from 

the NIR analyses. The regression coefficients for prediction of α-helix are shown in Fig. 3.6. The model used 

one PC for both predictions. A satisfactory model for prediction of turn and random structure contents could 

not be made. The sample set probably had too little variation in β-turn content for making a calibration for 

this structure. Also, the correlation between random structure and α-helix contents in the sample set made it 

difficult to discriminate these two structures, as there is high overlap of the two sub bands. 

The intermolecular β-sheet is seen for the denatured proteins at 1620 cm-1.  

 

Fig. 3.6. A) Preprocessed amide I bands from ATR-FTIR measurements of standard proteins in solution. B) The 
b-coefficient plot for prediction of α-helix is shown below. 
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Correlations between MIR and NIR 

The NIR spectra were correlated to the amide I spectra by PLSR2 regression. In this analysis, the spectra of 

denatured proteins, which have unknown secondary structure contents and also contain intermolecular β-

sheet, could be included. A further advantage of this analysis was the independence of the reference data, 

which may contain errors (e.g. the α-helix content of OVA is predicted too low in both analyses).  

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3.7. PLSR results from a combined NIR-amide I analysis of standard proteins: X=inverted 2nd derivative 
NIR spectra (2100-2300 nm), Y=inverted 2nd derivative amide I spectra. A) Correlation loading plot of PC1 vs. 
PC2. The inner circle shows 50 % explanation and the outer circle shows 100 % explanation. Blue=NIR 
variables. Red= amide I variables. The three encircled regions (1-3) show the NIR and amide I-variables that are 
assigned to different secondary structures in Table 3.3. B) Score plot of PC1 vs. PC2. The two PCs explain 
together 21.5 % of the Y-variance. 

The preprocessed and replicate-averaged NIR and amide I spectra were combined in an augmented data 

matrix (containing 7 samples), and a PLSR model was made for prediction of the amide I spectra on the 

basis of the 2100-2300 nm NIR spectra. All variables were standardized, the model was validated by use of 

full CV, and jack-knifing was applied for determination of the significant NIR variables. Two PCs were 

useful in the final model. PC1 explained 18 % of the variance in the amide I spectra (Y) and 50.84 % of the 

variance in the NIR spectra (X), whereas PC2 only explained 3.5 % and 9.5 % of the amide I- and NIR 

variance, respectively. The score plot in Fig. 3.7B indicates that PC1 is related to the α-helix and β-sheet 

contents, whereas PC2 may explain in some part the native vs. denatured state. The correlations between 

NIR and amide I variables were inspected from the correlation loading plot (PC1 vs. PC2) shown in Fig. 

3.7A. The amide I and NIR variables that are close together in the correlation-loading plot are positively 

correlated. Thus, NIR-variables in the correlation-loading plot were classified into α-helix and β-sheet 

regions, based on the score plot and the known amide I assignments. The results are shown in Table 3.3 and 

Fig. 3.8.  
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2) 1645-1643 random 2174-2182, 2278-2279 2268 
3) 1691-1687 
    1635-1623 

β-sheet 2144-2151 
2196-2216 
2264-2271 

 
2205, 2209 
2264  

Table 3.3. Assignments based on the PLSR model in Fig. 3.5. The numbers 1-3 correspond to the regions in the 
correlation loading plot in this figure. The assignments are compared to those from the literature. 

Amide I wavenumbers corresponding to α-helix (+random) were correlated to three larger NIR-regions: 

2161-2172, 2231-2239 and 2283-2286 nm. Only two of these NIR-regions were found significant for α-helix 

content in the former PLSR analysis, but all three regions agreed well with the literature values. From the 

present analysis, also the 2256 and 2258 nm variables could be ascribed to α-helix. The amide I frequencies 

at 1645-1643 cm-1 are representative of random structure, but due to the overlapping with the α-helix sub 

band, the assignment of the NIR wavelength 2174-2182 and 2278-2279 nm to random structure instead of α-

helix is uncertain and do not agree with the literature values. Correlations to β-sheet were found in three NIR 

regions, of which only two (2196-2216 and 2264-2271 nm) are ascribed to β-sheet in the literature. The third 

2144-2151 nm region seems more influenced by noise and the assignment in this region may be spurious. 

The satisfactory agreement with literature values indicates that the NIR-amide I PLSR analysis is suitable 

for making assignments in the NIR region and can be applied for identification of possible intermolecular β-

sheet absorptions in the NIR region. From Fig. 3.7, PC2 was found to explain the 1608-1620 cm-1 band, 

resulting from intermolecular β-sheet. However, this component explained very little of the NIR variance. 

The nearest NIR variables in the correlation-loading plot were the 2151-2152 and 2252 nm variables (Fig.  

3.6A). Visual inspection of the spectra did not reveal any increase in these regions upon denaturation of 

BSA. Therefore, it seems difficult to use NIR for identification of intermolecular β-sheet.  
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The PLSR analysis was also carried out with the purpose of correlating the 1st CH-str. overtone region (1650-

1750 nm) to the amide I-spectra. The explained validation variance showed that only one PC, explaining 14 

% of the amide I variance, could be used, and the jack-knifing procedure found no significant NIR variables. 

Therefore, no assignments in this region were done. 

Outer product analysis (OPA) 

Another method that can combine the information in the two spectral regions (NIR and amide I) is OPA, 

which is described in [Maalouly, 2004]. OPA may reveal regions in NIR and MIR that increase 

simultaneously as a function of a property (here content of a secondary structure) and thereby highlight 

interesting regions in both spectra. An outer product (OP) matrix, which is calculated for every sample as the 

outer product of the NIR and MIR spectrum, contains all possible combinations of intensities in both the NIR 

and MIR signal. Values in the OP matrix are mutually weighted from NIR and MIR, meaning that two high 

signals reinforce each other, and a high and a low signal offset each other. The three-dimensional OP matrix 

is unfolded to a two-dimensional matrix, in which each row represents a sample, and this matrix is the 

starting point for the further analysis (e.g. PCA, PLS).  

The NIR region 2100-2300 nm (109 variables) was combined with the amide I band (52 variables) in an 

OP matrix. The NIR and amide I spectra were preprocessed as described earlier, and before the outer product 

calculation, the amide I matrix was mean-centred but not the NIR matrix as this step resulted in a worse 

model. A PLSR analysis of the OP matrix was carried out (Y=α-helix content). No standardization was used. 

Three PLS components were considered useful based on the RMSECV(Y) plot (full CV was used for 

validation). The b-vectors were refolded to 109*52 matrices, and the NIR-profiles at the wavenumbers 

characteristic of β-sheet (1635 cm-1) and α-helix (1654 cm-1) were inspected (Fig. 3.9). 

 

 

 

 

 

 

 

Fig. 3.9. OPA-results. NIR b-coefficient profiles at two different wavenumbers. The profile at 1635 cm-1 indicates 
β-sheet wavelengths, whereas the profile at 1654 cm-1 indicates α-helix wavelengths. 
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the results agree with the previous findings (Table 3.3). The high values at 2269 and 2283 nm for β-sheet and 

α-helix, respectively, indicate that these wavelengths may be the most important for detection of β-sheet and 

α-helix. The NIR profiles at lower wavenumbers (1616-1620 cm-1) were inspected (Fig. 3.10).The 1616 cm-1 
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NIR-profile shows a low value at 2269 nm but a high value at 2249 nm, compared to the 1629 cm-1 NIR-

profile. It could suggest that intermolecular β-sheet has an influence in this area, as was suggested in the 

PLSR analysis. 

Fig. 3.10. OPA results. NIR b-coefficient profiles at different wavenumbers in the range 1616-1629 cm-1. 
 

Discussion and conclusion 

From the above analyses it is possible to answer some of the previously asked questions, regarding NIR 

studies of protein solutions in order to obtain qualitative and quantitative secondary structure information, as 

well as the question of intermolecular β-sheet absorptions in NIR. 

This study was limited to the two wavelength regions 1600-1800 and 2100-2300 nm, selected by the 

criteria of low noise and little influence from the water bands, as temperature variations may cause shift of 

the water bands. This prevented the analysis of the 1st overtone of N-H stretching and the amide A/II at 2056 

nm but included e.g. the important amide B/II combination band at 2170 nm. 

A protein concentration of 10 mg/ml was used in order to evaluate the performance of NIR at a rather low 

concentration, and this is the lower limit used in other NIR studies of protein structure [Wu, 2000; 

Murayama, 2002]. A detailed analysis of random structure, α-helix, β-turns, and parallel/antiparallel β-sheet 

contents, was not possible due to the small sample set, and only β-sheet and α-helix contents were 

considered. A sensitivity in selected NIR regions to the α-helix and β-sheet ratios was indicated from PLSR 

and PCA plots, and it was found that some information of secondary structure changes could be provided 

from inspection of the 2nd derivative spectra without application of a chemometric method. For example, the 

denaturation of BSA and BLG caused visible spectral changes. 

The PLSR analysis based on the preprocessed NIR spectra did not show good correlation to α-helix and β-

sheet contents, and this suggests that NIR spectra are not very suitable for quantitative analyses of secondary 

structures (at the applied protein concentration). However, the poor results may also be due to the small 

sample set (with too little variation) and some mistaken reference values. Instead, a combined NIR-amide I 

PLSR analysis was applied for making assignments of β-sheet and α-helix in the NIR spectra, and the found 
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assignments agreed well with literature values. Therefore, a capacity of NIR for secondary structure analysis 

of proteins also in solution seems to be established.  

However, the amide I analysis seemed to work better than NIR for a quantitative analysis of secondary 

structures, even though the bands ascribed to α-helix and β-sheet appear to be better resolved in NIR than in 

the amide I band. The NIR sub bands are not attributed to a single structure, and the bands ascribed to e.g. α-

helix appear also for proteins with no α-helix. Also, in the side chain combination band region, the different 

amino acid compositions of different proteins may contribute significantly to the variation. These factors 

hampers the quantitative NIR analysis. Therefore, it seems that a multivariate calibration model with many 

more samples is needed for a proper quantitative prediction of secondary structures in different proteins, if 

possible.  

No obvious signature of intermolecular β-sheet could be found in the analysed NIR regions from this 

method, but some variables (around 2250 nm) of low correlation to this structure were high-lighted and 

could be subject for further investigation. Thus, NIR seems to have much less potential for detecting and 

characterising intermolecular β-sheets than amide I analyses.  

The performance of an NIR calibration and the detection limit for secondary structure changes both depend 

on the SNR. The applied instrument was equipped with a DTGS detector, which does not provide NIR with 

the optimal sensitivity, and an instrument equipped with another detector may therefore lead to an improved 

analysis. Also, the use of a higher protein concentration could increase the SNR. As the SNR is influenced 

by the absorbance level of the water, it can as well be optimised by adjusting the path length to give the 

optimal absorbance level of ~0.4 AU [Jensen, 2002; Isaksson, 2002]. In the 2100-2300 nm region, this can 

be achieved by using a cuvette with at path length of 0.4-0.5 mm. However, problems with temperature 

variations usually become more significant when using the very thin cuvettes. Another approach is to choose 

a wavelength region of the optimal absorbance level. Thus, it is advantageous to be able to use the CH-str. 

overtone region in the structure analysis, since the absorbencies in the 1600-1800 nm region are between 

0.25 and 0.44 AU using the 1 mm cuvette. Although the 1600-1800 nm region was found somewhat 

sensitive to secondary structures, a low correlation to the amide I variations indicated that the use of this 

region only would not result in a proper structural analysis. 

The above discussion on the SNR is relevant for transmission measurements, whereas the food samples 

often are measured in reflectance mode. For these samples, the light scattering governs the absorbance level. 

In addition, the presence of other absorbing constituents influence the spectra and complicate their analyses. 
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Chapter 4: Study of gluten interactions and functionality part 1: Hydration. 

In this and the following chapter, the protein structural and interaction analysis by NIR is attempted for 

proteins in a complex matrix, which contains several constituents, and for which the particulate nature gives 

rise to light scattering. The system under consideration is the gluten-water system, which has a particular 

functional role in bread-making. Therefore, these analyses also serve to give insight into the performance of 

NIR in a functionality study.  

This chapter has focus on the gluten-network development. In bread-making, the essential cohesive and 

viscoelastic properties of the dough are developed when the wheat gluten proteins hydrate and interact 

during the mixing. An interest in gluten protein structure and the physicochemical basis of gluten 

viscoelasticity has emerged in the past decade, and several models of the gluten network have been 

suggested e.g. with the purpose of explaining its viscoelastic behaviour [Schofield, 1996; Lindsay, 1999; 

Belton, 1999; Wellner, 2005]. This topic has interest not only in relation to the baking process but also for 

the processing of gluten into biomaterials/bioplastics [Irrisin-Mangata, 2001]. Still, the gluten structure and 

its relation to bread-making quality remain somewhat obscure. 

4.1. Gluten proteins and relation to baking quality 

The typical protein content in flour is ~10 %, and most of the proteins belong to the water insoluble gluten 

proteins [Schofield, 1996]. 

Protein composition 

Gluten is comprised of more than 50 different proteins, which are mainly divided into gliadins and glutenins 

[Schofield, 1996]. Gliadins account for ~50 % of the gluten proteins and are divided into α-, β- γ and ω-

gliadins of different structures and properties. Glutenins comprise the Low Molecular Weight glutenin 

subunits (LMW-GS), which constitute ~40 % of the gluten proteins, and the High Molecular Weight glutenin 

subunits (HMW-GS), which constitute the remaining 10 % [Schofield, 1996; Belderok, 2000a]. Gliadins are 

monomeric proteins and most of them have a globular conformation. On the other hand, glutenins exist as 

large polymers (formed by intermolecular S-S bridges) and they have a more extended conformation 

[Schofield, 1996]. A part of the glutenin fraction is called Glutenin Macropolymer (GMP) and it can be 

isolated as an SDS-insoluble layer, containing the largest glutenin polymers. A recently suggested model of 

GMP outlines the HMW-GS as assembled into linear polymers, on which the LMW-GS constitute the 

branches [Lindsay, 1999]. The HMW-GS also promote increased polymer size, and they are believed to be 

mainly responsible for the elasticity of dough [Hamer, 1998; Wrigley, 1988]. 

The amino acid sequences of gliadins and glutenins are closely related. Both gluten proteins are abundant 

in Pro and Gln and have therefore been named prolamins [Schofield, 1996]. A characteristic of the prolamins 

is the presence of repetitive domains, with repeat motives based mainly on Pro, Gln and hydrophobic amino 
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acids in gliadins and LMW-GS and on Tyr, Gln, Gly, Tyr, Ser, Leu in the HMW-GS [Schofield, 1996 ]. In 

solution, the repetitive domains of some glutenins (especially HMW-GS) and gliadins have been suggested 

to adopt the structure of a loose β-spiral based on repeated β-reverse turns, whereas the flanking C- and N-

terminal domains of both glutenins and gliadins have demonstrated random, β-sheet and α-helix structure 

[Veraverbeke, 2002; Schofield, 1996]. Cysteins are found in the non-repetitive domains and form either 

intramolecular or intermolecular S-S bridges in gliadins and glutenins, respectively (only the ω-gliadins lack 

cystein residues) [Schoefield 1996; Veraverbeke, 2002].  

Gluten baking quality 

Gluten protein structure and interactions are of concern in the baking process, since these factors can 

ultimately be correlated with the baking result. The baking result is evaluated by parameters such as bread 

volume and crumb texture: A large bread volume, and usually a soft, uniform and fine textured crumb with 

thin cell walls is demanded. However, as the crumb quality and bread volume are governed by different 

properties of the dough, the optimal bread may involve a compromise between the two [Alava, 2001]. Also, 

the properties of the unbaked dough can give an indication of the baking quality [Tipples, 1996] and may be 

determined from various rheological measurements and dough testing methods (e.g. mixograph, alveograph, 

extensograph tests). These tests provide measures of the viscosity, extensibility and elasticity etc. A common 

measure from the dough testing methods is the dough strength, which actually reflects both strength, 

extensibility and viscosity [Edwards, 2001]. The better the extensibility and elasticity, the better is the 

capacity of the dough to retain the carbon dioxide. However, for optimal baking quality, a balance between 

the extensibility and elasticity is required [Veraverbeke, 2002]. 

The baking property of a flour is affected mutually by the concentration and quality of the gluten proteins 

in the flour. The quality of gluten in a cultivar is reflected in the slope from the plot of bread volume against 

protein concentration [Schofield, 1996]. A ‘strong’ flour results in a high slope and produces optimal bread 

at medium protein concentrations, while ‘weak’ flours result in lower slopes and need high protein 

concentrations to obtain the same result [Seabourn, 2002].  

That cultivars exhibit varying gluten qualities relates mainly to their different HMW-GS/LMW-GS and 

glutenin/gliadin ratios and to their different HMW-GS compositions, as some HMW-GS subunits have been 

associated with good baking performance and others with poor baking performance [Schofield, 1996; 

Belderok, 2000b; Tronsmo, 2003]. The subunit composition may ultimately determine the ability of 

glutenins to aggregate, and this ability correlates well with the bread-making quality of the flour 

[Veraverbeke, 2002]. Thus, the glutenin polymer size distribution is found to be an important factor to the 

functionality of gluten. Long glutenin polymers cause doughs of high strength and elasticity, and also, the 

amount of GMP in the dough is positively correlated to dough strength [Schofield, 1996; Tronsmo, 2003].  
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A model considering the physical entanglement of the glutenin polymers may explain much of the physical 

dough properties [Veraverbeke, 2002; Hamer, 1998]. According to this theory, the long polymers are hard to 

disentangle as they experience a high resistance to friction, leading to increased resistance to extension and 

longer mixing time [Hamer, 1998]. However, Lefebvre et al (2003) found that gluten could not be considered 

an entangled polymer system, but rather a particulate gel, in which a network is formed by aggregation of 

particles. The existence of glutenin particles (with diameters of 0.1-100 µm) has been confirmed in studies 

by Don et al (2003a, 2003b, 2005), who found the GMP to consist of glutenin particles above a certain size 

(below the size criterion, the particles were SDS-soluble). In addition to the amount of GMP, also several 

properties of the GMP particles were shown of importance for determining the rheological properties of 

doughs. These properties were considered more important than the quantity of GMP and included the size of 

the particles and their tendency to interact with each other [Don, 2005].  

4.2. Interactions in the gluten matrix 

A hyperaggregation model outlines three levels of aggregation for the glutenins: First, the covalent S-S 

bridges are involved in the formation of soluble glutenins. Second, interactions between the soluble glutenin 

polymers lead to the appearance of insoluble GMP particles, and last, the GMP particles participate in 

network formation by interactions with other particles [Don, 2005]. The aggregation is determined by 

various chemical interactions. 

Types of chemical gluten-gluten interactions 

Due to its role in the formation of glutenin polymers, the covalent S-S bridges play a major role in the gluten 

network stabilization, and thus modification with oxidizing or reducing agents greatly affects dough 

properties, e.g. the solubility and dough development time [Mejri, 2005; Rao, 2000]. Non-covalent 

interactions are important as well, although smaller effects on the dough are seen when interactions are 

modified by e.g. addition of salts, urea or ethanol [Hamer, 1998].  

The prevalence of charged amino acids in gluten proteins is rather low (less than 10 %), but even a few salt 

bridges could play a role in the stabilisation of the gluten structure [Wrigley, 1988; Hamer, 1998]. On the 

other hand, gluten proteins contain a high amount of hydrophobic amino acids, and it has been established 

that hydrophobic interactions are essential to their ability to aggregate [Wrigley, 1988, Kinsella, 1984], so 

when stabilised by S-S bridges, the hydrophobic interactions may contribute significantly to the dough 

strength [Hamer, 1998]. In agreement herewith, the surface hydrophobicity of gliadins and glutenins has 

been correlated positively to the dough strength [Torres, 2000].  

On the other hand, Grant et al (1999) found that gluten has a hydrophilic character. Likewise, NMR studies 

have indicated that hydrogen bonding may be the dominant factor compared to hydrophobic interactions 

with regard to their stabilizing effect on gluten protein conformations and gluten structure [Hargreaves, 

1995]. The repeat sequences of glutenin and gliadin are very hydrophilic and possess a high capacity for 
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inter- and intramolecular hydrogen bonding, caused by the high contents of Gln and Asn [Schofield, 1996]. 

However, there are many other possibilities for hydrogen bonding in gluten (between side chains, between 

peptide groups and between side chains and peptide groups) since many groups (unionised carboxyl groups, 

amide groups, phenolic/aliphatic hydroxyl groups and carbonyl/carboxyl groups) may participate in these 

interactions [Seabourn, 2002].The presence of intermolecular β-sheet in hydrated gluten proteins has been 

shown from FTIR studies [Pezolet, 1992], and the involvement of Gln side chains from the repetitive 

domains in the interchain hydrogen bonding has been indicated e.g. by NMR studies [Alberti, 2002] and 

found to be central in the stability of gluten conformations [Hamer, 1998].  

Gluten network development  

Dough mixing leads to the hydration of dough components, dispersion of the gluten phase, development of 

the three-dimensional network structure and the incorporation of gas bubbles [Hamer, 1998]. Based on the 

mobility of water, Chen et al (2002) established four stages of dough development: 1) Unfolding of the 

proteins into a random network. In this process, water acts as a plasticiser that increases the protein mobility. 

Water also becomes increasingly bound to the proteins in a hydration process, in the end of which all water 

is ‘bound’. 2) The immobilised water rearranges and becomes more homogeneously distributed. 3) 

Realignment of the gluten takes place and some gluten-water interactions are replaced by protein-protein 

interactions. 4) The gluten starts to break down and more water is released.  

The functional gluten matrix is a network of fibrillar strands, which interact with each other to form 

continuous sheets [Grant, 1999]. Development of this optimal structure involves rearrangements and 

alignment of the protein chains, promoted by disulphide interchange and exchange of intermolecular 

hydrogen bonds [Hamer, 1998]. Due to the chemical and physical alterations, the GMP particles that can be 

isolated from the dough have much distinct properties than those isolated from the flour. The initially 

spherical particles become smaller and obtain a more elliptic shape upon mixing, and at high shear rates, they 

form the continuous phase in the dough [Don, 2005]. A decrease in GMP particle voluminosity (correlating 

to particle size) may be fundamental in the dough development, since different doughs are found to contain 

GMP particles of nearly the same voluminosity at the optimal mixing time (MT), even though their initial 

particle voluminosity differ [Don, 2003b]. The decrease of GMP particle voluminosity is caused by 

dissociation of glutenin particles (involving disruption of hydrogen and hydrophobic interactions) and 

involves the conversion of GMP particles to smaller SDS-soluble glutenin particles [Don, 2005]. At MT, 

most of the GMP has disappeared from the dough, but the remaining GMP has a high capacity to undergo 

particle-particle interactions, probably due to these particles being small and irregular. During the subsequent 

resting period, the reassembly of soluble particles takes place and leads to fast formation of GMP particles in 

case of optimally mixed doughs [Don, 2005]. If MT is further increased, a depolymerisation of the soluble 

glutenin polymers (involving breakage of S-S bridges) takes place, and a low GMP voluminosity is seen 

after resting [Don, 2005]. The diminishing of GMP voluminosity in the overmixed doughs agrees with the 
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end-blocker theory: During mixing, the LMW/HMW ratio is increased in GMP [Hayta, 2001] and this could 

block the formation of larger polymers [Don, 2005].  

The importance of gliadins in the aggregation behaviour of gluten has been demonstrated by Bean et al 

(1998), as they found that removal of gliadins before the addition of salts counteracted the salt-induced 

aggregation.  

Starch and lipid interactions with gluten proteins 

Flour contains 1-2 % lipids. The polar lipids consist of phospholipids and glycolipids, and the non-polar 

lipids consist of tri-, di- and monoglycerides, free fatty acids, steroids, carotenoids, tocopherole etc. It has 

been established that lipids are not essential to the gluten network formation [Hamer, 1998]. However, the 

polar lipids (that are not bound to starch) exert a positive influence on the bread volume and bread crumb, 

since they stabilise the dough network during proofing and baking [Hamer, 1998; 2003]. They may act as 

foaming agents to stabilise the thin aqueous films that separate the air bobbles in the dough foam. These 

effects are not the result of specific lipid-gluten protein interactions [Hamer, 1998]. Instead lipids are 

organized into liposomes and vesicles etc, which are either physically entrapped in the network or bound by 

unspecific interactions between proteins and the lipid phase interface [Hamer, 1998]. However, it has been 

found that some specific polar lipids bind to the gluten proteins upon hydration and that nonpolar lipids may 

bind by hydrophobic interactions [Hamer, 1998; Alzagtat, 2002]. 

Flour contains 63-72 % starch. As mentioned, gluten fibrils adhere to the starch particles, which are 

embedded in the protein network, and the protein-starch interactions could thereby influence the rheological 

properties of the dough. There are indications that the protein-starch interactions increase upon mixing until 

optimal MT, where after they diminish [Hamer, 1998]. The non-starch polysaccharides in flour are mainly 

divided into water extractable pentosans (WEP) and water unextractable solids (WUS). These fractions 

constitute together 2-3 % of the flour, and both exert an effect on the bread-making quality, probably due to 

their interference on the gluten network formation [Goesaert, 2005]. First, they may compete with gluten for 

the water, and secondly, they may be able to bind to the glutenins (pherulic acid is suggested to be able to 

crosslink WEP to the gluten proteins). Wang et al (2002) showed that WUS significantly changed gluten and 

GMP compositions and the rheological properties of the dough. 

4.3. ATR-FTIR studies: Protein secondary structure in relation to gluten functionality 

The structures of the functional hydrated gluten proteins differ from those in solution and have been the topic 

for a number of studies, involving the relationship between molecular structure and gluten functionality 

[Wellner, 2005, 2003, 1996; Feeney, 2003; Popineau, 1994]. Investigation of hydrated gluten proteins 

became possible with the appearance of ATR-FTIR instruments, and Pezolet et al (1992) were the first to use 

this method to demonstrate that hydrated gluten proteins form intermolecular β-sheet not seen in solution. 

Later ATR-FTIR studies have shown that the secondary structures of gluten proteins depend much on the 
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water content [Belton, 1995; Feeney, 2003; Wellner 1996; Mangavel, 2001], and based on ATR-FTIR 

studies of different gluten fractions, Popineau et al (1994) suggested that the secondary structure is 

influenced by the aggregation of the gluten proteins. 

Studies of the hydration-induced structure changes in glutenin and gliadin subunits have shown an initial 

increase of intra- and intermolecular β-sheet simultaneously with a decrease of random structure upon 

moistening of the dry proteins [Belton, 1995; Feeney, 2003]. The studies showed that at a certain degree of 

hydration, the β-sheet structure content was lowered again (probably due to water competing with peptide 

groups for binding), and extensively hydrated structures containing Pro appeared [Wellner, 1996; Belton. 

1995]. Also, the spectral changes have pointed to an increase of (hydrated) β-turns and extended structures at 

increasing hydration [Belton, 1995; Feeney, 2003]. At full hydration, intermolecular β-sheets and hydrated 

structures have been found to co-exist in gluten. A ‘loop and train’ model has been proposed on the basis of 

these findings and suggests that the balance of the two structures (intermolecular β-sheets and hydrated 

structures) is important to the functional properties of gluten [Belton, 1999]. According to the model, the 

repetitive domains of glutenins exist either as hydrated chains i.e. the ‘loops’ or as ‘trains’, at which 

intermolecular β-sheets and hydrophobic interaction establish interactions between two or more chains (see 

Fig. 4.1). At increasing hydration, the loop regions, consisting of hydrated extended structures and β-turns, 

increase at the expense of ‘train’ regions [Belton, 1999]. It has been suggested that the final loop/train ratio 

affects the viscoelastic properties of gluten and is determined e.g. from the length of the repeat units, in 

agreement with the hypothesis that the intermolecular β-sheet interaction takes place between the repetitive 

domains [Belton, 1999]. Also, Feeney et al (2003) showed that imperfections in the repeat sequences lead to 

less intermolecular β-sheet interaction, and Popineau et al (1994) found that the long glutenin polymers 

would cause increased intermolecular β-sheet interactions.  

The ‘loop and train’ model can explain the elasticity of gluten, which has not been accounted for by other 

models. Wellner et al outlined in an ‘extended loop and train’ model how some of the HMW subunits may 

form stable long-lived polymers with high amounts of intermolecular β-sheets, due to the favourable 

alignment of their loops upon extension, i.e. the extended loops interact with other chains and form 

interchain β-sheet structure. Only the subunits that do not align favourably revert to the original loop 

conformation, and thus, there is a build up of intermolecular β-sheet during mixing [Wellner, 2005]. 

Seabourn (2002) showed in agreement herewith that the β-sheet/α-helix ratio was maximal at mixograph 

MT, where after the intermolecular β-sheet began to decrease. 

Fig. 4.1. Sketch of the ’loop and train’ model 
of glutenin. Extension causes deformation of 
the loops (1). Further extension causes a 
disruption of the intermolecular hydrogen 
bonds (2). The initial structure is regained 
upon stress release (3). [Belton, 1999]. 

1 2 

3 Train Loop
Loop 
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4.4. Experiment IV: NIR analysis of gluten protein hydration and denaturation 

In this study, the NIR spectra of dry and moistened gluten are compared with the purpose of identifying 

protein bands that are sensitive to the structural alterations, occurring during hydration of gluten proteins. 

Interpretation of the qualitative spectral changes is done with the help of ATR-FTIR spectra. The task is to 

obtain more knowledge about the influence of protein structure and interactions on NIR spectra, obtained 

from a complex matrix, and thereby evaluate the capacity of NIR for application in structure-function studies 

of food systems. The study will also shed light on the influence of water-protein interactions in NIR. (The 

experiment is also shortly described in Paper I). 

Method 

Gluten powder was prepared by hand washing from a wheat dough. One hundred gram commercial wheat 

flour was mixed with 50 ml distilled water and kneaded for 2 min. The starch, pentosans and soluble proteins 

were washed out by hand washing in 5*1 L distilled water or 2 % NaCl solution. In each case, the last wash 

was carried out in distilled water. The gluten preparations were freeze-dried, pulverized, and later kept at 

room temperature in an exicator with drying agent. The two gluten preparations are termed gluten A 

(prepared without salt) and gluten B (prepared with salt). Starch fractions were prepared from centrifugation 

of a batter: 250 g commercial wheat flour and 180 ml water was mixed and kneaded by hand before 

additionally 220 ml water was added. The mixture was blended in a blender for 1 min and the batter was 

centrifuged at 2500 rpm for 15 min. Two separate layers of starch (different particle sizes) were recovered 

and freeze-dried. 

Experiment 1: Assignments 

Three different gluten preparations: gluten A, gluten B and Gluten S (commercial gluten from Sigma) were 

measured by use of NIR. Only gluten A and gluten S were measured by use of FTIR. Initial water contents 

of the preparations were determined from oven-drying: Gluten samples of 1 g were dried in the oven at 

120oC until constant weight was obtained, and the water content was calculated as (1000 mg-final 

weight)/1000 mg and determined as ~4.3 % (wet basis) for gluten A and gluten B and ~6 % for gluten S. 

Also starch fractions and gluten-starch mixtures were measured by NIR and FTIR. A lipid spectrum was 

obtained by transmission-NIR measurements. 

Experiment 2: Hydration 

a) Gluten A powder samples of 700 mg were spread on petri-dishes, inserted into a humid closed container 

and kept at either room temperature or at 5oC. After different time-intervals (t= 1, 2, 3, 4, 23, 27, 45 and 53 

hrs) the samples were weighted and the NIR spectra obtained. After the measurements at t=4 hrs, two of the 

samples were transferred to a closed container with drying agent. Starch was moistened for 20, 24, 42 and 50 

hrs and measured by NIR. All gluten treatments were carried out in replicates.  
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b) Samples of gluten A and B were placed in closed containers with either saturated MgCl2 solution (1), 

saturated NaCl solution (2) or distilled water (3 and 4) in the bottom. NIR spectra were recorded after ~40 

hrs.  

c) Samples of gluten A and of gluten S were kept in humid closed containers at room temperature or 5oC for 

different time intervals until the FTIR spectra were obtained. 

Experiment 3: Denaturation 

Gluten S was moistened in a humid chamber for 65 hrs until water contents of ~20-25 %. The samples were 

filled in Eppendorph tubes and heated in water bath for different time intervals and different temperatures: at 

65oC for ½ hr, or at 85oC for ½, 1 hr or 1.5 hrs. Some control samples were moistened and then dried at room 

temperature. Other control samples were not moistened but heated for ½ hr at 85oC. All samples were 

measured by NIR before and after the different treatments. 

For NIR measurements, the powders were filled in a sample cup and measured in reflectance mode from 

790 to 2500 nm on a Perkin-Elmer, Spectrum One, FT-NIR instrument, equipped with a reflectance 

assessory and an InGaAs detector, with a resolution of 8 cm-1 and use of 50 scans. The data interval was 1.67 

nm. NIR spectra of lipid were obtained in transmission mode. Replicate measurements were obtained for the 

dry samples with different fillings of the sample cup. The pretreatments of the NIR spectra are described in 

the result section. FTIR-ATR measurements were carried out on a Bomen spectrometer equipped with a 

horizontal ATR-crystal (ZnSe). The FTIR spectra from 4000 cm-1 to 748 cm-1 were recorded at a resolution 

of 8 cm-1 and with co-addition of 50 scans. The data interval was 1.93 cm-1. ATR-FTIR spectra were 

corrected by extended multiplicative scatter correction (EMSC) and 2nd derivative spectra were calculated by 

use of Savitzky Golay transformation. The inverted 2nd derivative FTIR spectra were examined.  

Results: Assignments in the NIR spectra 

The NIR spectra of the dry gluten samples were compared to the spectra of lipid and starch, which are 

contaminants in the gluten fraction (the gluten preparation produces a gluten fraction of ~80 % protein) (Fig. 

4.2). The contaminants and their NIR absorptions should optimally be identified in order to assign any 

spectral changes to protein structural alterations.  
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Fig. 4.2. NIR spectra of gluten A, gluten B, gluten S, starch and lipid. All are obtained in reflectance mode except 
for the lipid spectrum, which is obtained in transmission mode. Gluten powders were measured either after 
freeze-drying or oven-drying.  

From Fig. 4.2, profound overlapping of the broad gluten and starch absorptions is seen throughout the 

spectrum. Light scattering effects are found to cause baseline differences between measurement replicates 

and between different gluten preparations. These effects are due to different sample packing and particle 

sizes (gluten S probably has the largest particles).  

Lipid absorptions: The lipids used for obtaining the NIR reference spectrum originated from rapeseed, and 

therefore may differ from the actual gluten lipid spectrum. However, the confirmation of the lipid 

assignments is here done by use of the spectral differences between gluten A and B. Results from a PCA 

including the two preparations are shown in Fig. 4.3.  
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Fig. 4.3. A) PCA score plot (PC2 vs. PC3), discriminating gluten A (blue) and gluten B (pink). The PCA was 
based on the EMSC corrected NIR spectra of gluten A and B preparations. B) PC3 loading, compared to the 
NIR transmission spectrum of rapeseed lipids. 

In Fig. 4.3, PC2 describes the batch to batch variation, whereas PC3 is able to discriminate between gluten A 

and gluten B. The PC3 loading plot in Fig. 4.3B shows similarity with the lipid reference spectrum, and the 

results imply that gluten A contains more lipid than gluten B. This is in accordance with the report that 
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addition of salts, as in the preparation of gluten B, leads to greater washout of lipids [Sapirstein, 2002]. The 

lipid absorptions mostly result from vibrations of the CH groups, which are also abundant in proteins, and 

thus the lipid peaks are greatly overlapped by protein side chain absorptions.  

In order to show in more details the contributions from protein and lipid absorptions to the gluten spectrum, 

the spectra of ‘lipid-deficient’ and ‘lipid-rich’ gluten were calculated by use of the PCA loadings: Slipid= 

mean+0.1*p3 and Sgluten= mean-0.1*p3. As the following analyses will consider 2nd derivative spectra, the 

calculated spectra were also 2nd derivative transformed, and some interesting regions are shown in Fig. 4.4. 
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Fig. 4.4. Calculated 2nd derivative NIR spectra of ‘lipid-deficient’ and ‘lipid-rich’ gluten, compared to the lipid 
reference spectrum. Absorption peaks are downward-pointing. A) 1st CH-str. overtone region. B) Combinations 
band region. L=assigned to lipid, P=assigned to protein (or starch).  
 
Based on Fig. 4.4, the most prominent peaks from lipids are seen at 1728, 1762, 2308 and 2346 nm. Small 

contributions are possible at 1691, 2269 and at 2283nm. (Compare to the lipid assignments in Appendix IV-

1). Very small variations were also seen in the amide combination band region (not shown) for the two 

calculated spectra and may result from the weak lipid absorptions in this region. Absorptions due to cis-

unsaturated bonds are seen at 2140 nm and 2170 nm in spectra of wheat [Law, 1977].  

Starch absorptions: Starch contributions to the gluten spectrum were examined as well. The contaminations 

of the starch and gluten fractions are seen from the ATR-FTIR spectra (Fig. 4.5). 
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Fig. 4.5. ATR-FTIR spectra. Comparison of gluten and starch fractions. A) The amide I and II regions. B) The 
MIR fingerprint region. Blue and red: starch fraction. Green and light blue: gluten fraction. 

 

In Fig. 4.5A, the amide I and II bands are observed in the starch spectrum, indicating that the starch fraction 

is not free of proteins, and likewise, small peaks at 1149 and 1078 cm-1 show that some residual starch is left 

in the gluten preparation. The starch absorptions in the gluten NIR-spectra were identified from a PCA, using 

spectra of gluten-starch mixtures (Fig. 4.6). 
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Fig. 4.6. A) PCA score plot (PC1 vs. PC2), describing the gluten-starch ratio. The PCA was based on the EMSC 
processed NIR spectra of gluten-starch mixtures. B) PC1 loading. 

PC1 describes the gluten-starch ratio, and thus, to emphasise the differences between starch and protein 

spectra, the ‘starch-deficient’ gluten spectrum was calculated from the PC1 loading (Fig. 4.7). The small 

peaks in the gluten spectrum at 1433, 1696, 1778 and 2283 nm can from Fig. 4.6 be assigned to starch. The 

prominent and broad starch bands at 1927 and 2095 nm are also seen in the 2nd derivative gluten spectrum as 

weak and blurred bands (2nd derivative transformation emphasises the narrow peaks). Likewise, contributions 

of starch to the bands at 2263 nm (very weak) and 2319 nm may be observed. 
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Assignments of bands to protein, lipid and starch based on the above analyses are also shown in Fig. 4.7 and 

are summarised in Table 4.1. In conclusion, many peaks (even in the resolved spectra) may be composed of 

absorptions from all three constituents (protein, lipid, starch). However, some unique peaks are also shown in 

the table. 
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Fig. 4.7. Calculated 2nd 
derivative NIR spectra of 
‘starch-free’ gluten, 
compared to the starch 
reference spectrum and 
the gluten sample 
spectrum.  
A) Overtone region  
B) Amide combination 
band region.  
C) CH-combination band 
region. P= Assigned to 
protein, L= assigned to 
lipid, S= assigned to 
starch, W= assigned to 
water. Assignments in 
parenthesis designate 
weak contributions.  
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 1400-1800 nm 1900-2220 nm  2220-2400 nm 

Protein 1491, 1511, 1691, 1742 1975, 2054, 2167-2208 2263,  2269,  (2283), (2308), (2346) 

Lipid  (1691), 1702, 1728, 1762 Very weak bands            (2269), (2283),  2308,   2346 

Starch 1433, 1474, 1696, 1778 1912-1924, 2100 (broad),  (2263),             2283,          2319 

Table 4.1. Some assignments made in the 2nd derivative gluten spectrum. Compare to Appendix IV-1.  

Results: Gluten hydration  

Water contents for the moist gluten samples in Experiment 2a and 2b are shown in Fig. 4.8 and ranged from 

~4 to ~33 % (calculated on a wet basis).  
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Samples stored at 5oC (G05A,B) absorbed less water than samples stored at 25oC (G25A,B), and these 

samples also had different colour and textures: the particles in the moist G25 samples were larger and more 

yellowish than the particles in the equally moist G05 samples. These differences may be explained from 5oC 

and 25oC being below and above the glass transition temperature (Tg) of moist gluten, respectively [Lens, 

2003]. Storage of gluten above its Tg increases water absorption due to increased exposure of polar groups 

[Elizalde, 1999], and therefore, the G25 samples also has increased particle sizes (the coherency increased 

Fig 4.8.  Water contents in gluten. 

A) Water contents in experiment 2a. 
G25: stored at 25oC in humid chamber. 
G05: stored at 5oC in humid chamber. 
G25C and G25D: dried after 4 hrs of 
moistening at 25oC. 
B) Water contents in experiment 2b.  
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with increasing water content). The colour differences may be explained from different densities, as the 

density may be increased for gluten samples stored above Tg. At this condition the porous structure is lost 

due to rearrangement of the proteins, and this affects the colour [Elizalde, 1999]. Also, lipid oxidation may 

contribute to the colour changes. Between gluten A and B was noticed the difference that gluten B absorbed 

more water than gluten A (Fig. 4.7B). This could stem from a higher protein content in gluten B compared to 

gluten A. Alternatively, the salt has caused increased exposure of polar and ionic groups on the gluten 

surface, which could have increased the interaction with water [Mejri, 2005]. 

FTIR-results: ATR-FTIR spectra reveal the structural changes that underlie the physical changes observed 

upon increasing water content. For these measurements, the water contents of the moistened gluten samples 

only ranged from 15-20 % (on a dry basis). Raw ATR-FTIR spectra, resulting from both gliadins and 

glutenins, are shown in Fig. 4.9.  
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Fig. 4.9. ATR-FTIR spectra of dry and moist gluten. 

The low intensity of the spectra of the dry gluten powder is the result of a low contact of these samples to the 

ATR-crystal. The different intensities of dry and moist gluten spectra may cause different noise levels and 

cause the bands to appear at slightly different wavenumbers due to the anomalous dispersion effect. 

The inverted 2nd derivative spectra in the amide I and amide II region of dry and moist gluten are shown in 

Fig 4.10. Water usually absorb with a maximum at 1635 cm-1, but it appears that water may cause only very 

absorption at this position. (The binding of water to gluten is considered weak and is not thought to cause 

shift of the water band). 

 Hydration may give rise to spectral changes that are not related to secondary structure changes. For 

example, it is still under debate whether spectral changes introduced by freeze drying of proteins reflect the 

removal of water per se or changes in secondary structure upon dehydration [Griebenow, 1995; van de 

Weert, 2001; Al-Azzam, 2002]. First of all, the hydrogen bonding between water molecules and the protein 

amide groups may change the amide frequencies as described in chapter 3. In addition, an intensity-increase 
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and narrowing of the amide I band is generally observed when proteins are hydrated. Pevnser et al (2001) 

suggested that this was related to increasing dielectric properties of the protein environment upon hydration. 
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On the contrary, Al-Azzam et al (2002) concluded that the amide I band is relatively insensitive to the 

physicochemical environments and supported the hypothesis that the spectral changes solely reflect the 

structural changes (β-sheet content usually increases on the expense of α-helix upon dehydration) 

[Griebenow, 1995].  

The peak assignments in the amide I region are done according to the references: Belton, (1995), Feeney et 

al (2003) and Wellner et al (1996). In the dry gluten spectra, the peaks at 1610 cm-1 and 1629 cm-1 result from 

intermolecular β-sheet/Gln side chains and intramolecular β-sheet, respectively. The broad band around 

1650 cm-1 contains contributions from α-helix (1654 cm-1), β-turns (1640 cm-1), random coil (1645 cm-1), 

Gln side chains (1658 cm-1) and perhaps 310-helices (1660 cm-1). The band at 1660 cm-1 has also been 

ascribed to a distortion caused by the intermolecular hydrogen bonding between Gln side chains and the 

peptide backbone in the dry gluten [Wellner, 1996].  

Upon hydration the broad band at 1650 cm-1 becomes narrower, and perhaps reflects the unfolding of the 

protein chains and thereby decreased distortion. Also a decrease of random structure is indicated and is in 

agreement with other FTIR studies, in which hydration has been found to increase the secondary structures in 

gluten proteins [Feeney, 2003]. The small intensity-increase at 1650 cm-1 suggests a somewhat increased α-

helix content. However, some of the above changes could stem from the altered dielectric properties, as 

described. 

Fig. 4.10. Inverted 2nd derivative ATR-FTIR spectra of the amide I and amide II region (1700-1500 cm-1). 
The dry gluten spectra have been scaled for comparison. Dry samples:  gluten S=Blue, gluten A=green. 
Moist samples: gluten S= light green, pink. Gluten A= red, black (15-20 % water contents on a dry basis). 
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Another obvious change upon hydration is the intensity-increase in the region between 1610 cm-1 and 1630 

cm-1. This region can be ascribed to intermolecular β-sheets and to extended hydrated chains (both at 1612-

1620 cm-1). The development of extended hydrated structures, which give rise to intermolecular β-sheet, is in 

agreement with other FTIR studies of glutenin/gliadin hydration [Belton, 1995; Wellner, 1996; Feeney, 

2003]. Furthermore, absorptions from extensively hydrated Pro have been ascribed to this low frequency 

region. The structural changes seen from the amide I band are not prominent. This is in agreement with a 

hydration study of gliadin, which indicated minor structure changes to take place at moisture contents above 

15 %, while larger structural changes required water contents above 38 % [Wellner, 1996]. 

In the amide II band, the dry protein absorb at 1546 and 1536 cm-1. After hydration, the peak intensity 

increases at 1546 cm-1, whereas the 1536 cm-1 band is turned into a weaker shoulder. These changes are hard 

to interpret due to the ambiguous assignments in the amide II region. Pevsner et al (2001) observed increased 

amide II band intensity and a shift to higher frequencies upon hydration of several different proteins. A linear 

increase of amide II band area with increasing water content in gluten has also been reported by van Velzen 

et al (2003), and they explained this from e.g. a better contact of the sample to the ATR-crystal or an 

increased dipole moment of the NH amide groups upon water binding. Also, changes seen in amide II may 

reflect the hydration more than the structure changes [Wellner, 1996].  

The peak at 1515 cm-1 has been ascribed to Tyr absorptions. The decreased intensity of this peak in the 

moist gluten spectrum may reflect a lower content of unordered structure, as this band in a study was shown 

to increase concomitantly with the unordered amide I component [Liu, 2001].  
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Fig. 4.11. Raw and inverted 2nd derivative spectra of dry and moist gluten in the amide III region. Assignments 
are: 1330-1295 cm-1: α-helix, 1295-1270 cm-1: β-turns, 1270-1250 cm-1: random coil, 1250-1220 cm-1: β-sheet. 
Spectra have been scaled to comparable intensities. 

The raw and 2nd derivative amide III region of dry and moist gluten are shown in Fig. 4.11. The different 

secondary structure assignments shown in Fig. 10 are in accordance with the work of Seabourn (2002). The 
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high resolution of peaks in the raw amide III band means that 2nd derivative transformation is unnecessary 

and also will remove some quantitative information. The shifts to lower frequencies of all bands in the amide 

III region could result from the hydration and the conversion of NH..CO hydrogen bonds to NH-water 

hydrogen bonds. Other changes related to the hydration include a narrowing of the 1317 cm-1 and the 1240 

cm-1 band, but these variations do not reveal large structural changes. 

In conclusion, hydration-induced changes in the MIR region are observed mostly in the amide I band, but 

not all of them reflect structural changes in gluten proteins. The most prominent structural change is the 

development of intermolecular β-sheet and hydrated structures, as seen from the amide I band.  

 

Results: Hydration induced changes in NIR 

Raw NIR spectra from Experiment 2 are shown in Fig. 4.12. The increases of the water bands at 1450 and 

1935 nm are seen. The baseline variations are the result of the light scattering effect, probably due to the 

increased particle size of the moist samples and to the change of refractive index of the media (water has 

replaced air).  
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Especially a large baseline increase was seen for samples moistened at 25oC to at least 20 % water content, 

whereas this was not seen for the samples of equal water contents but stored at 5oC. The difference most 

likely results from the different particle sizes obtained at the two temperatures. EMSC was performed on the 

whole spectrum in order to remove and analyse these physical effects. The EMSC coefficients all showed 

high correlation to the water content, but the slope-parameter (b) differed for the 5oC and 25oC-samples of 

moisture contents above 20 %, and probably, this coefficient is related to the particle sizes. In a PLSR 

analysis of the correlation between the EMSC parameters and the water content, two PCs were needed for 

obtaining an R or 0.96. Thus, the water content correlates well with physical information in the NIR spectra.  

The physical effects seemed not possible to eliminate by use of 2nd derivative calculation only, since EMSC 

applied after the 2nd derivative transformation still yielded EMSC parameters with correlation to the water 

content (R=0.97 in a PLSR). For improving the correction, EMSC was performed on the 2nd derivative 

Fig. 4.12. Raw NIR spectra of 
gluten at different moisture 
contents (~0-33 %). The boxes 
indicate the regions that are 
subjected to further analyses (1600-
1800, 1960-2380 nm). The arrows 
indicate the increases of the most 
prominent water peaks upon 
moistening.  
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transformed spectra in two separate regions (1600-1800 nm and 1960-2380 nm) that were overlaid only 

partly by the water bands. This pretreatment seemed to eliminate most of the light scattering effects and the 

minor quantitative variations that result from the different water-gluten ratios (only the qualitative changes 

are of interest in the following analysis). Another preprocessing method, based on EMSC with the water 

spectrum used as “bad spectrum”, is described in Appendix IV-2 and had the advantage that a larger part of 

the spectrum could be included in the analyses. This method was able to remove most of the water band 

variations at 1930 nm but not those at 1440 nm. As the pretreatment resulted in spectra similar to those 

obtained in the first procedure, the latter are used in the following analysis. The pretreated spectra of dry and 

moist gluten are compared in Fig. 4.13. 
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Fig. 4.13. Preprocessed 2nd derivative NIR spectra of dry and moist gluten A. Absorption peaks are downward-
pointing. A) 1600-1800 nm, B) 1960-2380 nm. See assignments to protein, lipid and starch in Fig. 4.6.  

In the two regions are found some spectral changes, which could reflect qualitative changes in the gluten 

samples upon hydration. One region showing an interesting spectral change is the 2260-2290 nm region, 

where similar changes are seen for both gluten A and B and for the samples stored at different temperatures 

(see Fig. 4.14).  
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A) Gluten A, 5oC       B) Gluten A, 25oC 
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C) Gluten A, 25oC, moistened and dried     D) Gluten B, 25oC 

-0.00030

-0.00025

-0.00020

-0.00015

-0.00010

2254.77 2259.78 2264.79 2269.8 2274.81 2279.82 2284.83

Variables

  
-0.00045

-0.00040

-0.00035

-0.00030

-0.00025

-0.00020

-0.00015

-0.00010

2254.77 2259.78 2264.79 2269.8 2274.81 2279.82 2284.83

Variables

 

Fig. 4.14. Effect of gluten hydration in the 2260-2290 nm combination band region. The 2nd derivative absorption 
peaks are downward-pointing. The colours indicate the time-course of hydration (from blue to red). The ratio 
A2268nm/A2278nm has a correlation of 0.94 to the water content. 

The fact that the changes are similar for gluten A and B, which contains different amounts of lipids, indicates 

that lipids are not the primary cause of the spectral change. Also, as the spectra of gluten at equal moisture 

content but stored at 5 and 25oC are similar, it is indicated that the spectral change is not related to the 

particle size or the lipid oxidation. The shift starts already at 9 % water content or lower, and drying of the 

moist samples is found to cause the reversion towards the initial spectral pattern (Fig. 4.14C).  

A possible mechanism contributing to this spectral change is fermi resonance. 

Overview of the spectral changes in NIR 

A PLSR was performed for correlating the preprocessed spectra (X) to the water content (Y). The resulting 

score plot is shown in Fig. 4.15. Three PLS components describe together 94 % of the Y-variance and 38 % 

of the X-variance. PC1 is correlated to the water content, and PC3 shows a parabolic shape with increasing 

water content. (PC2 discriminates gluten A and gluten B). Use of EMSC data without 2nd derivative 

calculation resulted in a PCA showing the same three phenomena. Whereas PC1 captures ~56 % of the X-

variance and ~73 % of the Y-variance, PC3 can only explain ~7 % and ~8 % of the X- and Y-variance, 

respectively. PC3 scores decrease from the oven-dried samples to a minimum at the low water contents (~5-

10 %) and then increase again for the higher water contents. 
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The PC3 variation could therefore possibly reflect the progress from the extensive protein-protein 

interactions in the dry protein to the protein unfolding and then the development of more protein-protein 

interactions again, when intermolecular β-sheets starts to form. This is only a hypothesis. 

From the ATR-FTIR spectra it could be expected that some of the hydration-induced changes in NIR are 

related to quantitative variations of some constituents relative to others, as there is observed an increase of 

protein bands compared to starch bands upon hydration in the ATR-FTIR spectra (not shown). Van Velzen et 

al (2003), who observed the same, suggested that hydration-induced travelling of gluten to the surface layers 

could be the cause of this observation. However, the rearrangement of gluten and starch in different layers on 

hydration should not affect the NIR spectra, since NIR light can penetrate millimetres into the sample. 

Although, the relative contributions of protein, starch and lipids to the NIR spectrum is unaltered, the 

hydration and the thereby induced interactions may lead to qualitative changes in both protein, starch and 

lipid spectra, as will be examined further. 

Possible starch and lipid conformation changes 

Hydration of a flour leads to the swelling of starch granules and beginning leakage of starch. As NIR is 

sensitive to the intra- and intermolecular hydrogen bonding interactions in starch, these changes could 

possibly contribute to the observed spectral changes.  
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Fig. 4.16. Effect of the hydration of wheat starch on 2nd derivative NIR spectra in the regions 1670-1800 nm and 
2211-2340 nm regions. Peaks are downward-pointing. 

Fig. 4.15. Score plot (PC1, PC2,PC3) from at 
PLSR. X= NIR spectra in the 1600-1800 nm 
and 1960-2380 nm regions  (after 2nd 
derivative+EMSC transformation). Y=Water 
content. Samples include gluten A and B at 
different moisture contents. Segmented CV 
with replicates kept together in the segments 
was applied. 
Performance of the model with 3 components:  
R=0.968. Slope=0.93. RMSECV(Y)=2.22 %. 
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The OH-stretching 1st overtone bands have been used for detection of the water absorption capacity of wheat 

flour [Delwiche, 1994] and for measurement of the starch melting and degradation during extrusion 

processing [Millar, 1996]. The NIR spectra of dry and moistened starch are shown in Fig. 4.16. The OH-

stretching is here represented by the 2283 nm absorption, which is the OH stretching combined with C-C 

stretching. Comparing to Fig. 4.13 and 4.14, it is found that starch hydration only may contribute to the 

decreasing absorption at 1702 nm and the increasing absorption at 2283 nm in the spectra of increasingly 

hydrated gluten.  

Gluten washing leads to removal of non-polar lipids, and the remaining lipids consists mainly of polar 

lipids. The phase of these lipids may change during hydration of gluten and affect the NIR spectra. In dry 

flour, the polar lipids form aggregates with arrangements of tubules (hexagonal phase) or granules (cubic 

phase) [Hamer, 1998]. At low water content (<15 %) in the flour, only tubules exist, but at increasing water 

content, a lamellar phase is formed from the aggregates. The CH stretching and bending vibrations of lipid 

acyl chains are sensitive to the conformation of the hydrocarbon chains, which may vary in the different 

phases. For example, the fundamental CH2 stretching bands shifted 3-4 cm-1 towards higher wavelength 

when the phosphatidylserine changed from a lamellar crystalline phase to a lamellar gel phase [Lewis, 2000]. 

The CH2 deformation bands are also very sensitive to the packing of the hydrocarbon chains, and they may 

also undergo a splitting due to crystal field splitting [Lewis, 2000]. Thus, it is likely that some lipid 

conformation changes affect the NIR spectra of gluten during hydration (e.g. cause the increases at 2308 nm 

and 2346 nm in Fig. 4.13). 

Possible protein conformation changes 

In order to gain more information on the effect of gluten conformations on the NIR spectra, the heat 

denatured gluten was analysed. Spectra were preprocessed as described and a PCA was carried out. The 

score plot is shown in Fig. 4.17. PC1 explains 56 % of the spectral variation and seems related to the water 

content. (Some drying of the samples is noticed to take place during the heat-treatment).  

 

 

 

 

 

 

 

 

 

 

Fig. 4.17. Score plot (PC1 vs. 
PC2)  from a PCA using the 
preprocessed spectra from 
the gluten denaturation 
Experiment 3. 
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PC2 scores are increased for those moist samples that have been heat-treated but are decreased for the 

equally heat-treated dry samples. Therefore, the PC2 scores can be related to heat-induced conformational 

changes of the gluten proteins, which take place for moist gluten but not for dry gluten. Upon heating, the 

gluten proteins unfold and expose hydrophobic regions that may aggregate by hydrophobic interactions, 

causing increased random structure. The denaturation then become irreversible, as S-S interchange takes 

place and keeps the proteins in the denatured aggregated conformation [Domenek, 2002]. Thus, heating 

above ~50oC induces more cross linking of gluten proteins, increases the gluten strength (notably at 90oC) 

and alter the rheological properties of the dough [Hamer, 1998; Hayta, 2001; Micard, 2001]. Also at 60oC, 

starch gelation starts with the gelatinisation (breakdown of internal crystal structure). 

In Fig. 4.18, the spectral changes caused by heating of gluten are compared to those caused by moistening. 

The latter changes are found the most prominent. In Fig. 4.18A and Fig. 4.19A, an increase at ~2184 nm 

with increasing water content is seen, suggesting an increase of α-helix content (see secondary structure 

assignments in Table 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18. Comparison of heat- and moistening-induced effects on 2nd derivative NIR spectra. Absorption peaks 
are downward-pointing. The spectra are calculated from loadings and scores from the PCA analyses shown in 
Fig. 4.15 and 4.17. A) Combination band region. B) Overtone region. Assignments to secondary structures are in 
accordance with Table 3.3 (in chapter 3).  
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Oppositely, a decrease at the same wavelength for the heat treated samples could stem from an expected 

decrease of α-helix upon heat-denaturation. However, the band at 2167 nm is not concurrently 

increased/decreased, and this could mean that the increase mostly reflects changes in the side chains from 

Gln/Asn. This is not unlikely, as these side chains take part in intermolecular β-sheet formation and may 

participate in water interactions. However, a simultaneous increase at ~2283 nm for the moistened sample 

supports an α-helix-increase (if not resulting from starch). 
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Fig. 4.19. A) Inverted 2nd derivative absorbance at 2182 nm as a function of water content. B) Plot of A2281nm 
against A2182nm. Both wavelengths are thought to represent α-helix. 

At 2268 nm, an increase and decrease of unordered structure after heat treatment and moistening, 

respectively, is indicated and is in agreement with the expectations. In the 2205-2210 nm β-sheet region, an 

increase is seen for the heat treated sample and could reflect increased β-sheet. However, no increase is seen 

for the moistened samples in this region, even though an increase due to the formation of intermolecular β-

sheet could have been expected. Instead, there is a small increase at 2258 nm (also β-sheet region). The 

indication of distinct intermolecular β-sheet absorptions at 2250 nm in previous experiments (Experiment 

III) is not supported in the present study. In the overtone region, an increase at 1720-1728 nm and a decrease 

at ~1700 nm as well as a shift to lower wavelength for the peak at 1740 nm (Fig. 4.18B) upon moistening 

could also indicate secondary structure changes, but could as well stem from lipid changes (see Table 4.1). In 

addition, the S-S interchange could cause some changes in this region, as the 1st overtone of SH-str. is found 

at 1735-1745 nm [Siesler, 2002]. 

Also, in the 2nd derivative spectra, changes in the amide A/II bands from the protein backbone (2056 nm) 

and Gln side chains (1975 nm) are seen when gluten is moistened (see Fig. 4.13). Whereas the 1975 nm band 

decreases with increasing water content, the 2056 nm band increases concomitantly. The large decrease of 

the 1975 nm band could again result from the involvement of Gln in intermolecular β-sheet formation or in 

interaction with water. Though, the band intensity at 1975 nm could be highly influenced by the nearby 

water band. On the other hand, the increase of the 2056 nm band could be related to an increased α-helix 

content (see Table 3.3). 
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Not all spectral changes in the protein spectrum may be explained solely from secondary structure changes, 

as also the increased aggregation and the interaction with water may influence the amide- and side chain 

absorptions (e.g. the amide II band is generally increased upon hydration). In an FTIR hydration study of 

poly-L-Pro, the hydration was shown to cause shift of the CH deformation bands to higher frequencies, and 

this was explained by the aggregation of Pro helices [Wellner, 1996]. As gluten is abundant in Pro, this could 

be relevant to the present experiment. Also a changed (hydrogen-bond like) interaction of CH from Trp, Tyr, 

Phe could underlie some of the spectral changes, as hydrogen bonding causes a high-frequency shift of the 

CH-str. bands. Also the S-H str. absorptions could change as disulfide interchanges take place.  

Discussion and conclusion 

In this experiment, gluten hydration is used as an example of a rather concentrated protein system (also 

containing starch and lipids), in which intermolecular interactions are developed during hydration. The 

experiment is useful for answering some of the questions posed in chapter 3, regarding NIR spectra of 

proteins in a complex matrix: 

e. Are their any unique protein absorptions ? (distinguishable from starch and lipid 

absorptions) 

f. Can protein conformation/interaction changes be detected ?  

g. Is it possible to interpret the spectral changes and obtain structural information from NIR ?   

h. Can information regarding protein-water interactions be obtained? 

In the assignment of the peaks in 2nd derivative NIR spectra to protein, lipid and starch, some of the 

characteristic protein bands at 1975, 2054 and 2167-2208 nm were found only little overlapped by lipid and 

starch absorptions. Also some other bands in the overtone region (1400-1800 nm) were ascribed mostly to 

proteins, whereas the combination band region (2200-2400 nm), as expected, had no unique protein peaks. 

Therefore, only changes in a few bands may be indicative of protein conformation changes. 

Upon gluten moistening, the increase of extended hydrated structures and intermolecular β-sheet (central to 

the gluten functionality) was evidenced from ATR-FTIR amide I spectra. In the 2nd derivative NIR spectra, 

some qualitative spectral changes were revealed upon moistening and were ascribed to qualitative changes in 

the constituents. The light scattering effects, which were influenced by the water content, were removed 

beforehand by use of 2nd derivative transformation and subsequent EMSC. Even though the more complex 

light scattering effects may not have been removed from this procedure, it seems unlikely that these effects 

could cause the very reproducible spectral changes upon moistening that were seen in the corrected spectra 

from several repeated experiments. 

The protein conformation and interaction changes, provoked in this experiment, thus seemed to cause 

changes in some protein bands in the NIR spectra. However, the interpretation of the spectral changes solely 

as secondary structure changes was difficult, and some spectral changes rather suggested changes in the 



 

 114

hydration of Gln side chains. The peaks at 1975 and 2182 nm in the 2nd derivative NIR spectra of gluten, 

which have been related to the primary amide groups from Gln, showed some significant changes upon 

moistening, in agreement with these side chains taking part in intermolecular β-sheet formation and water 

binding. Therefore, the NIR could possibly provide some information, which is more difficult to obtain from 

FTIR spectra, as the Gln absorptions in MIR spectra are overlaid by the amide I band. A wavelength region 

from 2250 to 2290 nm also showed several significant changes upon moistening of gluten. The starch and 

lipid contributions to these spectral changes could not be ruled out but also did not seem to explain all of the 

variation. As the spectral changes are not seen upon moistening of proteins in general, they could be related 

to the aggregation of gluten proteins and therefore be of importance to the gluten functionality. The 

differences from other proteins also emphasise that the results obtained in this study cannot be directly 

transferred to protein analyses of other food samples.  

In conclusion, the above questions b-d are not finally answered from this experiment, which did not 

provide direct evidence but only indications. More experiments and analyses will be necessary, also in order 

to evaluate the NIR method for structure-functionality studies. The future analyses could include the 

measurements of NIR and MIR on the same samples with a range of moisture contents, whereby better 

correlations between the two spectral regions could be established. This was not attainable in the present 

experiment, as the moisture content could not be kept exactly constant for the two types of measurements. 

Other attempts to improve the interpretation of the NIR spectra could involve moistening of gluten 

preparations with a range of lipid and starch contents for better identification of these absorptions. 

Furthermore, it could be necessary to examine larger perturbations of the protein conformations (e.g. 

involving oxidation or reduction of disulfide groups).  
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Chapter 5: Study of gluten interactions and functionality part 2. Salt effects. 

An NIR experiment, involving alterations of the gluten protein conformations and interactions by use of 

various salts, was carried out with the purpose of investigating the ability of NIR to monitor the protein 

perturbations in a complex sample of high water content. The NIR spectra were interpreted based on the 

corresponding ATR-FTIR spectra and a priori knowledge of the salt effects. The effects of salts on protein 

conformations and interactions and the specific effects on gluten functionality are described in section 5.1, 

whereas the experiment is described in section 5.2 

5.1. Salt effects on protein conformations and interactions: Effects on doughs. 

NaCl are commonly added to wheat doughs with the purpose of improving the flavour, dough handling 

properties and the baking result, as addition of NaCl decreases the water absorption, increases dough strength 

and extensibility and results in larger bread volume [Preston, 1989; He, 1992; Butow, 2002]. Other salts may 

as well improve the baking result, while some disrupt the gluten functionality and deteriorate the bread 

quality at high salt concentrations [Preston, 1989; He, 1992]. It has been shown that salts primarily affect the 

gluten protein hydration, while starch hydration is less affected [Wellner, 2003].  

The influence of salts on protein conformations is explained from the Hofmeister series (see chapter 2.4). 

Ions in the Hofmeister series are arranged according to their salting-in and salting-out properties i.e. their 

abilities to increase or decrease, respectively, the solubility of a solute (as salts with a low salting-out 

property have a high salting-in property). The salting property is defined in the Setschenov equation (Eq. 

5.1), which outlines a linear relation between the logarithm of the solute solubility cp and the salt 

concentration cs [Grover, 2005; Baldwin, 1996]. 
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In Eq. 5.1, cp(0) is the solubility in water. The proportionality factor is termed the salting coefficient Ks and 

reflects the interaction between a hydrophobic solute and the specific salt. A negative Ks implies a higher 

solubility of the solute with increasing salt concentration (salting-in), whereas a positive Ks implies a 

decreased solubility (salting-out) [Grover, 2005; Kalra, 2001]. Hydrophobic solutes are salted-out by most 

salts, but for proteins, the ions may salt-in the peptide groups and other polar groups [Baldwin, 1996].  

The Hofmeister effects have been related more to ion-surface interactions than to the effect on bulk water 

structure and is probably the result of an interplay between various factors such as water structure, ionic 

dispersion forces, ion sizes, co-ion exclusion, hydration forces etc. [Boström, 2004, 2005a,b; Kunz, 2004]. 
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Salt effects at high concentrations 

Anion effects: At high salt concentrations (>0.3 M) the salting-in and salting-out of non-polar groups by 

chaotropic and kosmotropic anions, respectively, is commonly believed to be an indirect effect, caused by 

the effect on the hydrogen bonding properties of water and thereby on the hydrophobic interactions 

[Baldwin, 1996]. The salting constant Ks shows correlation to the surface tension increment of the salt 

(which reflects the kosmotropic/chaotropic property) and is related to the entropic cost of forming a cavity in 

the water in order to accommodate a hydrophobic solute [Baldwin, 1996]. Likewise, the ability of an ion to 

accommodate the hydrophobic solute in its hydration shell is suggested a primary factor in the salting-out 

mechanism. The exclusion of the hydrophobic solute from the volume occupied by the ion and its first 

coordination shell increases the concentration of the hydrophobic solute in the remaining solvent and 

promotes the hydrophobic interactions. The exclusion is most effective for the kosmotropic ions, which bind 

water tightly [Hribar, 2002; Kalra, 2001], whereas the chaotropic anions show low exclusion of the 

hydrophobic solutes and instead are able to associate to the hydrophobic surfaces [Baldwin, 1996; Di Stasio, 

2004]. The solubilising/destabilising effect of the chaotropic anions has been explained from their direct 

interaction with the exposed peptide bonds on the unfolded form of the protein [Baldwin, 1996] or with some 

amino acid side chains [Di Stasio, 2004]. The salting-in effect of the most chaotropic ions can also be 

explained from their high ability to associate to the protein surfaces [Ebel, 1999].  

For gluten, the anion effect depends on both protein quantity and quality and is quite complex [He, 1992; 

Butow, 2002]. In a study by Preston et al (1989), it was found that increasing amounts of the chaotropic 

ClO4-, I- and SCN- (as sodium salts) increased the water absorption of the dough, and that the highly 

chaotropic I- and SCN- in addition decreased the development time and the tolerance against overmixing 

dramatically. Kinsella et al (1984) also noticed accelerated hydration and decreased dough stability from 1M 

SCN-. Wellner et al (2003 )showed that the chaotropic NaI and NaBr at 1 M decreased the intra- and 

intermolecular β-sheet content compared to water and compensated for this by increasing the β-turn content. 

Thus, they suggested that the chaotropic anions reduce the amount of ‘train’ regions (which contain both 

hydrophobic and hydrogen bond interactions) and in turn increase the more hydrated ‘loop’ regions in 

gluten. This is similar to an increased solubility. Nevertheless, in the study by Preston et al (1989), the 0.5 M 

chaotropic salts were found to result in increased aggregation (measured by extensograph maximum height) 

compared to water and 0.5 M NaCl. This was attributed to the denaturing effect of chaotropic anions and 

increased hydrophobic interactions between the unfolded chains. Only at higher concentrations could this 

effect be overcome by the solubilising effect .  

In opposition to the chatropic anions, increasing amounts of the neutral Cl- leads to increased dough 

development time [Preston, 1989]. Also, the kosmotropic anion SO4
2- causes an increased dough elasticity at 

increasing salt concentrations, and above 0.1 M, the dough has even been found too elastic for breadmaking 

[He, 1992]. This reflects the ability of the kosmotropic anions to stabilise the associated forms, due to the 
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promotion of hydrophobic- and thereby also hydrogen bonding interactions. An increased aggregation and 

resistance to hydration was also noticed by Kinsella et al (1984) for the kosmotropic F-, which also caused a 

decreased dough consistency. This was related to an impeded protein unfolding during hydration. 

Cation effects: There is no clear correlation between the surface tension increment and protein stabilisation 

for cations [Boström, 2005a; Ebel, 1999]. Instead the direct interaction with the protein is more important, 

and for example, Arakawa et al showed that the binding of divalent cations to proteins could counteract the 

surface tension effect. A destabilising effect of kosmotropic cations on proteins is thus explained by their 

ability to interact with the peptide groups, as seen for chaotropic anions [Arakawa, 1984; Ebel, 1999]. Eggers 

et al (2001) suggested that some of the effects of cations are actually executed by their influence on the 

anions, i.e. kosmotropic cations may neutralise the protein stabilising effect of the kosmotropic anions by 

binding to these. The influence of the kosmotropic cations Ca2+ and Li+ on doughs has been studied by He et 

al (1992), who found that increasing concentrations of CaCl2 and LiCl decreased the loaf volume, and that 

LiCl also decreased the dough extensibility in agreement with the described destabilising effect of 

kosmotropic cations. On the other hand, KCl increased the bread volume to the same extent as NaCl. 

Salt effects at low concentrations 

At low salt concentrations (< 0.15 M), the neutralisation of charges by electrostatic ion-protein interactions 

affects the protein solubility. Increased solubility is seen if the ions replace electrostatic intra- or interprotein 

interactions [Di Stasio, 2004]. In the case the net charge of the protein is abolished by screening, the result 

may oppositely be a decreased solubility, as electrostatic repulsion is decreased and more protein-protein 

interaction is allowed [Di Stasio, 2004].  

The effect on dough properties of anions at low concentrations has been demonstrated in a study involving 

sodium salts of Cl-, Br-, ClO4
-, I- and SCN-. Both the neutral NaCl and the chaotropic salts at 0.1 M tended to 

increase the dough development time, but the most chaotropic anions were most effective [Preston, 1989]. 

Some of the effects could be related to the screening of positive charges on the surface of the gluten proteins 

and the thereby increased aggregation. However in an ATR-FTIR study, increased intermolecular β-sheet 

content was shown only for Cl- and Br- at concentrations up to 0.2 M, whereas the more chaotropic I- 

decreased the intermolecular β-sheet content even at the low concentrations [Wellner, 2003]. Thus, the 

increased aggregation at low concentrations of I- and SCN- is explained from an increased hydrophobic 

interaction between unfolded proteins and not increased intermolecular β-sheets. Although the dough 

development time was increased for these salts, the tolerance against overmixing was decreased, and the 

doughs had decreased breadmaking properties [Preston, 1989]. The weakly kosmotropic Li+, the neutral Na+ 

and the chaotropic K+ were found to increase the dough strength, but again the effect followed the 

Hofmeister series, so the most chaotropic cations were the most effective (K+>Na+>Li+) [Butow, 2002]. The 

stabilising effect was related to their coordination to the proteins. They speculated that the less hydrated K+ 
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could have a higher ability to integrate into the gluten matrix and complex to functional groups on the folded 

protein [Butow, 2002].  

The effects of low and high salt concentrations on dough property and gluten structure are summarised in 

Table 5.2. 

 Anions Cations 
conc. Chaotropes  Neutral/Kosmotropes Chaotropes Kosmotropes 
High  Trains ↓ Loops↑ 

Denaturation, aggregation 
Development time ↓ stability ↓ 

Trains ↑ Loops↓ 
Development time ↑ 
Elasticity ↑ 

Bread volume ↑ Extensibility ↓ 
Bread volume ↓ 

Low  Trains ↑ for weak chaotropes 
Trains ↓ for strong chaotropes 
Development time↑ stability ↓ 

Trains ↑ (for Cl-) 
Elasticity↑ 
Extensibility ↑ 

Dough strength ↑ 
 
 

Dough strength ↑

Table 5.2. Effects of anions and cations at low and high concentration on dough properties and gluten structure. 
The table summarises the text above. 

5.2. Experiment V: NIR analysis of protein structure and interactions in gluten  

In this experiment, gluten samples are hydrated in various salt solutions of different chaotropic and 

kosmotropic properties, so as to vary protein conformations and protein-protein interactions. The effects on 

gluten protein structure and interactions are analysed by use of the amide I band obtained in ATR-FTIR 

measurements. The purpose is to investigate the ability of NIR to detect small structural and interaction 

changes of proteins in a complex sample with a high water content, similar to the changes in food samples. 

Methods 

Different salts solutions (Na2SO4, MgSO4, MgCl2, NaCl, NaClO4, KBr, MgBr2) were prepared at 0.1, 0.2, 0.5 

and 1.0 M concentrations in mili-Q water. For each salt solution, 25 ml was added to an aliquot of 10 mg 

gluten powder (obtained from Sigma), and the samples were mixed until homogeneity. The effect of mixing 

time was investigated by mixing of two water- and two 1 M NaCl samples for 2-3 min. After storage for ~4 

hours at room temperature, the samples were centrifuged 15 min at ~340 g, and excess solution was 

discarded, where after the water uptake was calculated from the sample weights. The samples were stored at 

4oC until few hours before the measurements, which were performed one or two days after sample 

preparation. Replicates were prepared for the water- and most of the 1M salt samples, and these preparation 

replicates were measured on different days. Immediately before the NIR or MIR measurements, two to four 

slices were cut from each lump of gluten and the slices were measured on both instruments. The slices were 

kept in a closed container in the time between the NIR and MIR measurements. Two to four measurement 

replicates were obtained in ATR-FTIR, and at least five measurement replicates were obtained in NIR. 

Measurement replicates include different gluten slices from the same lump of gluten and different 

placements of the samples. The spectra included in the following analyses are shown in Fig. 5.1. 
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MIR water NaCl MgCl2 MgSO4 Na2SO4 KBr 
 •••••••••••••      

0.1  •• ••• •••• •••• •• 

0.2  •• ••• •••• •••• •• 

0.5  •• ••• •••• •••• •• 

1.0  •••••••••••••• ••••••• •••• •••••••• •••• 

NIR water NaCl MgCl2 MgSO4 Na2SO4 KBr 
 ••••••••      

0.1  ••••••••• ••••• ••••• ••••• ••••• 

0.2  ••••••••••• •••••• ••••• ••••• ••••• 

0.5  ••••••••••• •••••• ••••• ••••• ••••• 

1.0  ••••••••••••••••• ••••• •••••• •••••••••• ••••• 

Fig. 5.1. Overview of obtained spectra in the experiment. A) ATR-FTIR spectra. B) NIR spectra. 

The spectroscopic analyses did not include gluten hydrated in MgBr2, since these samples were not easily 

measurable. The FTIR spectra from 4000 cm-1 to 748 cm-1 were recorded on a Bomen spectrometer equipped 

with a horizontal ZnSe ATR-crystal at a resolution of 4 cm-1 and with coaddition of 128 scans. The data 

interval was 1.93 cm-1. The NIR spectra from 790 nm to 2500 nm were obtained on a Perkin Elmer Spectrum 

One FT-NIR spectrometer equipped with a reflectance accessory and an InGaAs detector, at a resolution of 

16 cm-1 and with co-addition of 100 scans. The data interval was 1.67 nm. Each slice was placed directly on 

the instrument without the use of a sample holder. For the pure salt solutions, a transflector plate was used, 

with the purpose of directing the light back to the detector. No temperature control was applied in either the 

ATR-FTIR or NIR measurement series. 

Spectral pretreatments (as described in the result section) as well as PCA and PLSR analyses were carried 

out in Unscrambler 9.2 (Camo). 

Results: Effect of salts on water structure 

The kosmotropic and chaotropic properties of the salts are reflected in their effect on the water spectrum, as 

described in chapter 2. The influence on the HOH bending band ν2 at 1635 cm-1 was studied in a PCA 

analysis, carried out from 1700-1600 cm-1 after EMSC correction. The results are shown in Fig. 5.2. The PC1 

loading vector indicates a shift of the water band (Fig. 5.2C). Comparing to the score plot (Fig, 5.2A), a shift 

to lower frequencies occurs with increasing amounts of the bromide salts, and the opposite shift takes place 

for the sulphate salts in agreement with the chaotropic and kosmotropic property of Br- and SO4
2-, 

respectively. However, also the cations influence the PC1 variation, especially Mg2+ as expected from its 

high charge density. 



 

 123

      
-0.10

-0.05

0

0.05

0.10

0.15

0.20

-0.3 -0.2 -0.1 0 0.1 0.2

NC01NC02NC05 NC10WA00NS01
NS02

NS05

NS10

WA00
MC01

MC02

MC05

MC10

MB10

MS01
MS02

MS05

MS10

KB01KB02
KB05

KB10

PC1

PC2 Scores

  
Fig. 5.2. A) Score plot from a PCA, including salt solution spectra (0.1-1.0 M) in the water bending region 1700-
1600 cm-1. K=kosmotropic, (K)=weakly kosmotropic, C=chaotropic, (C)=weakly chaotropic. PC1 and PC2 
explains 72 % and 24 % respectively. B) Water bending band. C) PC1 and PC2 loading vectors. 
 

PC2 also shows an effect of the magnesium salts. The small effects of NaCl and Na2SO4 seen in the score 

plot are in agreement with NaCl being regarded as a neutral salt in the Hofmeister series and with sulphate 

being described as fitting into the water structure without disturbing it much.  

Results : Water uptake and gluten consistency 

The water-uptake depended on the salt type and concentration as shown in Fig. 5.3.  
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Fig. 5. 3. Water uptake for gluten prepared in different salt solutions. The apparent water uptake includes water 
trapped in the network and water bound to the proteins. The data series are from single measurements and the 
figure does not show the replicate variations. 

Gluten hydrated in 1.0 M MgBr2 (not shown in Fig 5.3) absorbed ~4 mg water pr mg gluten, while other 

water absorptions ranged from 1.2 to 2.2 mg water pr mg gluten. Opposite effects of MgCl2/MgBr2 and 
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Na2SO4/MgSO4 on the water uptakes are seen at salt concentrations of 0.2 M and higher. The effects at 0.1 

M salt concentrations are small and do not follow the same trends as seen at higher concentrations. 

The visible effects on gluten of the different salts (at 1.0 M) are summarised in Table 5.2. Gluten hydrated 

in 1.0 M Na2SO4 and 1.0 M MgSO4 solutions appeared firm, elastic and with reduced extensibility (Na2SO4 

appeared to have a higher effect than MgSO4). The usual cohesive and homogenous network was disrupted 

and the samples appeared as compositions of small particles. The effects of MgCl2 and MgBr2 were 

obviously different from those of MgSO4 and Na2SO4. At increasing MgCl2 concentration, the gluten lump 

became more and more jelly-like, and at 1.0 M salt the sample was soft and sticky. For MgBr2, these effects 

were enhanced. The effects of NaCl and KBr on the gluten appearance were not significant. 

salt Cation Anion Effect on gluten Water uptake Appearance 

Na2SO4 (k) K High Decreased Firm 

MgSO4 K K Medium Decreased Firm 

NaCl (k) (c) Low No effect Normal 

KBr C C Low No effect Normal 

MgCl2 K (c) High Increased Jelly-like, sticky 

MgBr2 K C High Increased Jelly-like, slimy, sticky 

Table 5.2. Salt effect on gluten at 1.0 M salt concentration. K=kosmotrope, (k)= weak kosmotrope, C=chaotrope, 
(c)= weak chaotrope. 

The results in Table 5.2 may be interpreted in terms of a stabilising or destabilising effect if water uptake and 

firmness of the gluten lump are used as indicators, i.e. less binding of water indicates a more compact folding 

or higher degree of protein-protein interaction. At high salt concentration, a stabilising effect is obtained for 

the kosmotropic SO4
2- irrespective of the nature of the counter ion (Na+ or Mg2+), whereas for the weakly 

chaotropic anion Cl-, no stabilisation is observed: NaCl did not affect water uptake much above 0.2 M, and 

MgCl2 even caused destabilisation, perhaps caused by binding of Mg2+ to peptide groups. The highly 

chaotropic anion Br- caused profound destabilisation as expected, but only when Mg2+ was counter ion (and 

not K+). The very different outcomes of using MgBr2 and KBr make clear that also cations has high influence 

on the gluten structure. The destabilising effect of MgBr2 is in agreement with the theory that kosmotropic 

cations (Mg2+) may cause salting-in, but this effect may apparently be overruled by a stabilising effect of a 

kosmotropic anion (such as SO4
2-).  

The underlying secondary structure changes in the gluten proteins are seen from ATR-FTIR analyses. 
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Results: ATR-FTIR analyses 
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Fig. 5.4. ATR-FTIR spectra of gluten hydrated in water. 

ATR-FTIR spectra of gluten hydrated in water are shown in Fig. 5.4. Some replicate variability is seen. This 

could stem from variations in the contact to the ATR-crystal and from different amounts of surface water 

(communication with Nicolaus Wellner). Also, adsorption of gluten constituents to the crystal may be 

another cause of spectral variations that reduce the repeatability of the ATR-FTIR measurements. In 

addition, the amide I analysis was hampered by a high absorbance in the amide I region, resulting in a low 

SNR, and by the overlapping water band ν2. The subtraction of the water band in ATR-FTIR-spectra can be 

very complicated, due to the dependence of the penetration depth on frequency and refractive index [Wang, 

1996]. Therefore, the amide III region, which is not influenced so much by the water absorptions [Fu, 1994], 

was also analysed for gaining structural information. However, also the EMSC correction is attempted for 

removal of the water band variations. 

Amide III band analyses 

Even in the amide III region, the salts caused some variations in the water spectra that related to salt type and 

concentration. Standard EMSC correction removed most of these baseline effects (not shown). However, an 

intensive sulphate S-O stretching absorption around 1100 cm-1 gave rise to a sloping baseline for the sulphate 

salt solutions (Fig. 5.5C), and apparently some other variations discriminated between the different salt 

solutions (seen in a PCA) . The usual subtraction of the buffer spectra could not be carried out in a proper 

manner and in an attempt to remove this background variation, EMSC with Bad-spectrum subtraction 

(EMSC-BS) was carried out. The PCs obtained in the PCA on the different salt solution spectra were applied 

as ‘Bad Spectra’ and subtracted in an EMSC correction of the gluten spectra in the 1350-1200 cm-1 range. 

Some small effects of this correction were seen, e.g. in the Na2SO4 –gluten spectra (Fig. 5.5C).  
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Fig. 5.5. Amide III region of gluten hydrated in water (blue) or in Na2SO4 1.0 M (pink). A) Spectra after 
standard EMSC correction. B) Spectra after EMSC-BS (described in the text). C) Spectra after EMSC-BS -both 
gluten and salt solution spectra are shown. Light green=water. Dark green= 1.0 M Na2SO4. 
 

Not all background variation could be removed in this EMSC processing (the remaining background 

variation for Na2SO4 solutions is compared to the Na2SO4 gluten spectrum variations in Fig. 5.5C).  

From the EMSC-BS data, some effects of the different salts at 1.0 M concentration could be seen (all amide 

III spectra are shown in Appendix V-1, Fig. V-A). The two sulphate salts caused the largest effects compared 

to water, and both salts caused an increase at 1319-1274 cm-1 and narrowing of the 1242 cm-1 band together 

with a shift to lower frequencies of this band (see Fig. 5.5A,B). These differences are similar to those seen 

between moist and dry gluten in Experiment IV and indicate that the sulphate salts cause some drying out of 

gluten proteins (in accordance with the low water uptake). The increase at 1319-1274 cm-1 could suggest 

increased amount of α-helix (see assignments to secondary structures in Fig. 4.10).  

A PCA analysis that included the remaining salts (MgCl2, KBr and NaCl) at high concentrations was carried 

out (Fig. 5.6). 
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Fig. 5.6. Results from a PCA analysis of the EMSC-BS corrected amide III region. Samples included gluten 
hydrated in water or 1M salt solutions. A) PC1 vs. PC2 score plot. B) Loading plots. Blue=PC1. Red=PC2. 
 

The score plot in Fig. 5.6 shows an effect of all three salts (compared to water) in PC1, which explains 64 % 

of the spectral variation. The PC1 loading plot indicates shifts from 1260 to 1230 cm-1 and from 1328 to 

1311 cm-1 as a result of the salts. The shifts to lower frequencies parallel the effects of the sulphate salts, and 

the indication is that all salts cause some similar changes (compared to water). The different mixing times 

influence the PC2 variation, which explains 11 % of the variation.  

In conclusion from the amide III band analyses, all salts affected the gluten structure in a different way and 

more extensively than the prolonged mixing. The largest effect was seen from the sulphate salts. The effects 

of MgCl2, KBr and NaCl on the amide III band were very small but similar to the effects of sulphate salts, 

even though they seemed to affect gluten less.  

Amide I band analysis 

The effects of the salts at high concentrations were analysed further from amide I analysis. The gluten amide 

I spectra were pretreated with EMSC, 2nd derivative, baseline correction and finally mean normalisation. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.7. Results from a PCA, including the amide I bands (1700-1600 cm-1) of gluten hydrated in different 1.0 M 
salt solutions or water. A) Score plot of PC1 vs. PC2. B) PC1 loading. PC1 and PC2 explains 54 and 18 % of the 
variation, respectively. 

A PCA analysis of the pretreated spectra was carried out (results are seen in Fig. 5.7). Comparison of the 

score plot in Fig. 5.7A to the score plot in Fig. 5.2A of salt solutions reveals that the water spectrum 

variations is not the dominating effect in the gluten amide I spectra as the two plots are quite different. 

Opposite effects on the amide I band of the sulphate salts and MgCl2 (in PC1) are seen but only small effects 

of NaCl and KBr.  

 In Fig. 5.8. the amide I spectra of gluten in different 1.0 M salt solutions are compared to those of gluten in 

water. Likewise, the solution spectra are compared to the water spectrum. It is clear that some variations in 

the amide I band for the different gluten samples may be caused by variations in the water contents and 
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variations in the water spectra. In Paper III, the separation of the variations in the gluten spectrum from those 

in the water spectrum was attempted by the described EMSC#2 method. By this method, the water spectrum 

variations caused by temperature and salts were subtracted as well as the gluten spectrum and the light 

scattering, leaving only small residuals, which should contain the variations due to structure changes. 

However, these residuals are not analysed thoroughly in the present study due to a shortness of time, but they 

are presented in Appendix V, Fig. V-B. The spectral changes revealed for gluten in 1.0 M MgSO4 and 1.0 M 

NaCl from these data seem somewhat in agreement with the changes in the spectra in Fig. 5.8. Therefore, the 

changes in Fig. 5.8. are interpreted as secondary structure changes in the following.  

 Seen from Fig 5.7 and Fig. 5.8, 1.0 M NaCl have a small tendency to increase the absorptions between 

1650 and 1620 cm-1 and to decrease the intensities above 1650 cm-1. These changes could stem from 

increased random structure (1645 cm-1), β-sheet (1630 cm-1) and perhaps intermolecular β-sheet (1620-1625 

cm-1) and instead less α-helix (1654 cm-1) and β-turn (1666 cm-1). The interpretations of the amide I changes 

caused by the salts at 1M concentration are summarised in Table 5.3.   

 

1M salt Increase Interpretation Decrease Interpretation 
Na2SO4 1649-1620 random (1645) 

β-sheet (1630) 
intermolecular β-sheet (1620) 

~1685-1650 
 
1616 

β-turns (1666), 
α-helix (1654) 
extended hydrated 
structure (1616) 

MgSO4 1649 
1633-1616 

random  
β-sheet  
intermolecular β-sheet  

~1680-1650 
 

β-turns,  
α-helix 

NaCl 1650-1616 random  
β-sheet  
intermolecular β-sheet  

~1685-1650 β-turn,  
α-helix 
 

KBr 1633-1616 β-sheet  
intermolecular β-sheet  

~1685-1647 β-turn, α-helix, 
random 

MgCl2 1633-1616 β-sheet  
intermolecular β-sheet  

~1700-1664 β-turn 

 
Table 5.3. Amide I interpretations based on the spectra in Fig. 5.8. The effects compared to gluten 
hydrated in water are shown. Large effects are shown in bold. 
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Fig. 5.8. 2nd derivative amide I region of 
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shown and compared to the water 
spectrum (light blue).  
IBS= intermolecular β-sheet. 
The gluten spectra have not been corrected 
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From the described effects of salts in section 5.1, it could be expected that salts in the upper part of Table 5.3 

(Na2SO4, MgSO4) would increase the train/loop ratio in gluten, whereas the salts in the lower part (MgCl2) 

would decrease this ratio. In agreement with this hypothesis, the sulphate salts at 1 M are found to decrease 

the β-turns absorptions at 1666 cm-1, indicating less loop structure. However, also 1M MgCl2 causes a 

similar and unexpected, though, much smaller decrease at this wavenumber. Also, all salts seemed to 

increase the absorption in the 1630-~1616 cm-1 region, indicative of intermolecular β-sheet and extended 

structures. This does not agree with the study by Wellner et al (2003), in which the chaotropic anions were 

found to decrease the intermolecular β-sheet content. However, in the present study the counter ion K+ may 

have abolished the effect of the chaotropic Br-, as K+ has been found to increase the gluten aggregation 

[Butow, 2002]. A distinctive effect of the kosmotropic sulphate salts is a high absorbance at 1649 cm-1, 

which could be explained from conversion of α-helix into random structure. The random structure could 

result from an impairment of the unfolding of gluten proteins during hydration, or it could be associated with 

the increased intermolecular β-sheet, as Wellner et al (2005) saw that stress relaxation after mixing caused 

some of the formed intermolecular β-sheet to revert to random structure. They also found that a decrease of 

α-helix content accompanies the decrease of β-turn content upon mixing or drying of gluten. Thus, the 

simultaneous decreases of β-turns, α-helix and hydrated extended structures (1616 cm-1) observed for the 

Na2SO4 are both in agreement with the lower water contents of gluten hydrated in this salt solutions.  

The above results are not in accordance with the amide III analysis, which indicated increased α-helix 

for the sulphate salts, and it should be considered that both regions may be affected by perturbations of 

amino acid side chain absorptions. 

Results: NIR analyses 

 

          
 
The raw NIR spectra of gluten and salt solutions are shown in Fig. 5.9. The pretreatments of the NIR spectra 

included 2nd derivative transformation and subsequent EMSC in selected regions (1175-1320 nm, 1480-1750 

nm and 1960-2360 nm), for removal of physical and quantitative variations. (Removal of the water band 

variations by use of EMSC with the 2nd derivative water spectra used as “Bad spectra” was not possible for 

this data set, as the position of the water band at 1930 nm was different in case of gluten and salt solutions, 

Fig. 5.9. NIR spectra 
obtained in reflectance 
mode of gluten 
hydrated in different 
salt solutions. Salt 
solution spectra 
obtained in 
transflectance mode 
are shown below. 
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see Appendix V, Fig. V-C). All pretreated spectra are shown in Appendix V, Fig. V-D. An overview of the 

effects of 1M salts was obtained by submitting the three pretreated regions to a combined PCA.  
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The score plot in Fig. 5.10. shows that the NIR spectra gives rise to the same order of samples as obtained 

from the amide I spectra. However, the NaCl-, water-, KBr- and MgCl2-samples are now more clearly 

separated (compare to Fig. 5.7). In a similar analysis of the preprocessed salt solution spectra, the obtained 

pattern of samples was different from that in Fig. 5.10, indicating that water structure variations do not affect 

the results of the gluten analysis (see Appendix V, Fig. V-E). However, the order of gluten samples in Fig. 

5.10 is much related to the water contents, as a similar score plot was obtained from a PLSR, in which one 

PLS component was found to explain the 86 % of the water content based on 28% of the spectral variance. 

(See Appendix V, Fig. V-F). The concurrent structural and concentration changes causes a difficulty in 

pointing out the spectral variations that result only from the structure changes. 

Effect of salt concentration: The gluten replicate spectra were averaged, and the mean spectra were used in a 

PCA that included all salt concentrations (0.1, 0.2, 0.5 and 1.0 M). The resulting score plot (Fig. 5.11) shows 

that the concentration-dependent but specific salt effect is explained in PC1, whereas an effect of the salt 

concentration in general is explained in PC2. The sample pattern does not show opposite effects of high and 

low salt concentrations, as could have been expected for some salts according to the theory. 

 

Fig. 5.10. PCA score plot of PC1 vs. 
PC2. The PCA was based on 
pretreated NIR spectra of gluten 
hydrated in 1M-salt solutions or 
water. Three NIR regions were 
analysed together. 
PC1 and PC2 explains 32 and 8 % 
of the variance, respectively. 
The plot shows mostly the 
qualitative differences, as the 
pretreatments have eliminated the 
physical- and also the gluten 
concentration variations from the 
spectra. 

Fig. 5.11. PCA-score plot of 
PC1 vs. PC2. The PCA was 
based on pretreated NIR 
spectra of gluten hydrated in 
salt solutions (0.1-1.0 M) or 
water. Replicates were 
averaged.  
PC1 and PC2 explains 55 and 
13 %, respectively. 
The circles represent artificial 
spectra that are compared in 
Fig. 5.12. 
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The four spectra, indicated with circles in the score plot, were calculated from loading and scores and are 

shown in Fig. 5.12. 

 

Fig . 5.12. 2nd derivative NIR spectra constructed from PC1- and PC2- scores and loadings (peaks are downward 
pointing). The PCA score plot is shown in Fig.5.11, and the sample numbers refer to the numbers in this plot. 
Grey=water, red=MgCl2, green=neutral salt, blue= Na2SO4. A) The three analysed regions. B) 1st N-H str. 
overtones +NH combinations. C) Amide B/II combination band region.  

Small effects of Na2SO4 at high concentration are seen in Fig. 5.12. In the 1st NH-str. overtone region (1480-

1750 nm), Na2SO4 causes an increase at 1573 and 1593 nm compared to water, whereas MgCl2 has the 

opposite effect and also causes at decrease 1536 nm and increases at 1506 and 1636 nm (Fig. 5.12B). These 

changes could be related to different effects on the hydrogen bonding state of the NH-groups in the peptide 

backbone and side chains.  

In the amide combination band region (1960-2360 nm), Na2SO4 causes a decrease in the peak at 2184 nm 
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experiment IV (Fig. 4.12), this change is analogous to that caused by drying out of gluten and could perhaps 

be related to a decrease in the amount of Gln side chains participating in water interactions (MgCl2 has a 

small but opposite effect on the 2184 nm peak). As there is an increase at 2205 nm, more β-sheet is indicated 

and is in agreement with the increase at 1633 cm-1 in the amide I band. Also at 2260-2280 nm, the effect of 

Na2SO4 is similar to a drying out, and there is an increase at 2268 nm and a decrease at 2278 nm, which 

could be interpreted as more random and less α-helix structure (in agreement with the amide I analysis). On 

the other hand, the increase in the amide A/II band at 2056 nm by Na2SO4 is in opposition to the drying out 

effect. Some other effects of the salts are seen, including shifts of some bands.  

Results: Combined NIR and amide I analysis 

The preprocessed and averaged NIR spectra were combined with the averaged amide I spectra in an analysis, 

with the purpose of pointing out interesting NIR regions and assist the interpretation of both spectral regions. 

A PLSR2 model was carried out with X= 2nd derivative NIR spectra and Y= 2nd derivative amide I spectra. 

Samples of all salt concentrations were included. All variables were standardised and full CV was used for 

validation. Jack-knifing was employed for removal of non-significant NIR-wavelength. PC1 and PC2 

explains together 81.7 % of the NIR variance and 38.2 % of the amide I variance. The correlation loading 

plot in Fig. 5.13A. was used for identification of the correlations between the NIR and amide variables, and 

the results are shown in Table 5.4.  

Fig. 5.13. PLSR results from an analysis of gluten hydrated in different salt solutions: X=inverted 2nd derivative 
NIR spectra (1175-1320, 1480-1750, and 1960-2360 nm), Y=inverted 2nd derivative amide I spectra. A) 
Correlation loading plot. Red=amide I variables. Blue= NIR variables. B) Score plot of PC1 vs. PC2. PC1 
explains 72.7 % of the NIR-variance (X) and 38.5% of the amide I-variance (Y). PC2 explains 9 % of the NIR, 
but has no explanation of the amide I variance. The three encircled regions (1-3) show the correlations of NIR 
and amide I variables, on which the results in Table 5.4 are based. 

The previous assignments of the NIR regions to secondary structures may assist in the interpretation of the 

results in Table 5.4. However, only the previous correlation of the 2208-2224 nm region to β-sheet is in 

agreement with the present correlation of β-sheet frequencies to this NIR-region. In Table 5.4. the increase at 

2179-2189 nm is correlated to the increase of β-turns, α-helix and hydrated extended structures and could 

result from increased water interaction with Gln side chains, as explained. The correlation of the 2251-2256 
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nm region to the same structures is not in accordance with the attribution of this wavelength region to 

intermolecular β-sheet (as was suggested in chapter 3). 

 

Amide I wavenumbers (cm-1) Salts with positive 
influence 

Amide I assignment NIR wavelengths (nm) 

1) 1695-1687, 1647-1639 Na2SO4, MgSO4 Intra β-sheet 
random 
 

1277-1287, 1571-1580, 
1596-1600, 1740-1747, 
2057-2061. 

2) 1631-1625  Inter β-sheet  1695-1707, 2208-2224 
3) 1676-1654, 1616-1610 Water, MgCl2, KBr β-turns+ α-helix+ 

hydrated extended 
structures 
 

1668-1688, 1712-1723, 
2030-2037, 2086-2101, 
2179-2189, 2251-2256.  

Table 5.4. Correlations of NIR wavelengths to amide I wavenumbers, based on the PLSR model in Fig. 5.13.  
 
The interesting regions pointed out in Table. 5.4 also include wavelengths from the 1st overtone region and 

an even lower wavelength region (1277-1287nm). In the lower wavelength regions, the low absorptivities 

offer a high penetration depth, wherefore these spectral regions contain information of the deeper layers of 

the dough/gluten samples compared to higher wavelength regions. These regions may therefore be more 

useful for dough monitoring compared to the combination band region (1960-2360 nm). However, the 

previous assignments of secondary structures to regions in the amide combination band region offered in this 

studies some advantages of using this high-wavelength region.  

Discussion and conclusion 

From their correlation to the amide I band variations, some variations in the NIR spectra were found 

correlated with the salt-induced secondary structure changes. However, the connection between protein 

secondary structure changes and the NIR variations was hard to ascertain from this experiment, as other 

phenomena (e.g. hydration) likely contributed to the NIR variations. Thus, some spectral changes could be 

explained from the secondary structure changes, as these interpretations agreed with the previous 

assignments in the NIR region, whereas other spectral changes could be interpreted as different interaction 

states of amino acid side chains e.g. Gln, participating in either intra/intermolecular β-sheets or in 

interactions with water. The confirmation of these assignments would require different types of reference 

analyses. In addition, the reference method for analysis of protein secondary structures could be improved by 

performing a quantitative amide I analysis by means of deconvolution and curve fitting. However, this 

analysis would require a lower noise level than in the present measurements, and a more optimal ATR-FTIR 

setup would be demanded for this purpose.  

Other types of reference measurements, detecting various gluten properties, could have shed more light on 

the correlation between NIR spectral changes and gluten functionality. In an attempt to obtain a quick 

measure of the gluten functionality, the detection of gluten foam formation and collapse (according to the 



 

 135

method of Bombara et al (2004)) was tried. However, the method was originally developed for enzyme-

treated gluten and resulted in huge replicate variations for the untreated gluten. Also a few rheometer 

measurements were done in this study, but the results were not considered further, due to a shortness of time. 

However, this method could be applied in future analyses. Other approaches to the characterisation of the 

gluten functionality could involve a baking test or the study of the gluten microstructure e.g. in an 

environmental scanning electron microscope.  

The possibility to use the NIR water bands for monitoring the dough development has been shown by other 

researchers and results from the sensitivity of these bands to the hydration of starch and proteins during 

dough mixing [Wesley, 1998, 2001; Alava, 2001]. This type of analysis, focusing on the water signal, could 

be relevant for studies of other macromolecule-water systems. However, much more information on the 

molecular level seems contained in the NIR spectra. 
In conclusion, the study has shown that protein conformation/interaction changes in the gluten network 

may be detected by use of NIR with the current instrumentation. In addition, the interpretation of the spectral 

changes was somewhat possible by help of the complementary FTIR measurements. However, the 

generalization of the results and the validity in other protein systems needs to be confirmed.  
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Chapter 6: Discussion, perspectives and future work 

The aim of this thesis was to investigate the potential of NIR as a tool for analysis of macromolecule 

conformations and interactions, mainly in food samples. 

In the present studies, proteins have been in focus. The sensitivity of NIR to protein structures and protein-

protein interactions was investigated by performing experiments that involved pure protein solutions and 

more complex protein-based foodstuff (gluten). The sensitivity of NIR to the secondary structure of freeze-

dried proteins is previously established, whereas the present work concerns the aqueous, ‘wet’, and more 

complex samples, exhibiting weaker protein signals in the infrared. These samples are considered relevant 

for examining the performance of NIR in food analyses. One goal in the study was to obtain more knowledge 

of the protein signals in NIR, such as to improve the information that can be obtained from future NIR 

studies. For this purpose, FTIR was used as a reference analysis.  

Improvement of the spectroscopic analyses 

A good reference method is pertinent for correct interpretation of the NIR spectra. Thus, improvement of the 

FTIR analyses by use of various spectral preprocessing tools was attempted (section 2.5 and Appendix II). A 

preprocessing method for removal of atmospheric absorptions from ATR-FTIR spectra was shown to 

perform well. The elimination of possible water vapour signals is important in FTIR analyses of protein 

secondary structures (by use of the amide I band), when an uncontrolled amount of vapour has been present 

during the measurements. However, the method was not needed for the reference measurements in this 

study.  

Temperature variations during measurements may be another source of irrelevant spectral variations in 

analyses of aqueous samples. In this work a preprocessing tool, based on EMSC, was found able to eliminate 

the temperature- and salt-dependent variations in the ATR-FTIR water spectrum, as well as the spectral 

variations due to physical sample properties. This was demonstrated for ATR-FTIR spectra of both aqueous 

samples and hydrated gluten samples. Since water is a major constituent in many biological and food 

samples, this preprocessing method is thought to be an important tool for improving the ATR-FTIR analyses 

of many samples. The method may also reduce data analysis problems associated with the confounding 

between e.g. the temperature- or salt-dependent water band variations and the protein band variations. This is 

important for the amide I analyses, in which the water spectrum variations may obstruct the analysis due to 

overlapping with the amide I band. Thus, the correction was relevant in Experiment V, as the added salts 

caused perturbations of both  the water bands and the protein bands. 
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The same preprocessing method is relevant for correction of NIR spectra, and future work will consider the 

application of the method to the NIR range. For example, in the study of protein solutions in Experiment III, 

the EMSC preprocessing could possibly have allowed the analysis of the full wavelength range without 

disturbance from uncontrolled temperature variations.   

The methods were made available on the internet for use by others. 

NIR analyses of pure protein solutions 

NIR and FTIR analyses of different proteins in aqueous solutions at 10 mg/ml (Experiment III) resulted in 

NIR-assignments that were in agreement with the α-helix and β-sheet assignments established previously for 

dry proteins. Thus, a sensitivity of NIR to secondary structures of proteins in dilute solutions was shown, 

although further studies are needed for determining the influence of β-turns, 310-helices, loops etc. on the 

NIR spectra as well. (This analysis would have required a larger sample set than in the present study). The 

analyses indicated inferior performance of NIR compared to FTIR for quantitative analysis of protein 

secondary structures, and a possible explanation for this could be that amino acid side chain absorptions 

contribute to many of the protein bands in NIR and therefore cause a high complexity of these spectra.  

From protein denaturation studies, the absorptions from intermolecular β-sheet, which is an important type 

of protein-protein interaction in food, was not shown distinguishable from intramolecular β-sheet absorptions 

in the NIR region, while these two structures cause distinct absorption patterns in the amide I spectra. The 

influence of intermolecular interactions on the NIR spectrum was further investigated by analyses of FBP 

(Appendix III), which undergoes various polymerisation reactions and conformation changes upon buffer-

exchange and ligand-binding. The spectral changes confirmed the sensitivity of NIR to protein 

conformations, while some discrepancies between the NIR and the complementary amide I analysis were 

attributed to the sensitivity of NIR to changes in the interaction states and microenvironments of the amino 

acid side chains upon dimerisation/polymerisation. An amino acid side chain combination band at 2260 nm 

was suggested  particularly sensitive to the polymerisation state of FBP. However, this hypothesis needs to 

be confirmed. Future studies of other proteins that participate in polymerisation reactions could bring 

evidence to the role of the amino acid side chains in the intermolecular interactions and to the subsequent 

perturbations of their NIR absorptions. However, such a sensitivity does not necessarily make a band suitable 

as a  marker for protein-protein interactions, as conformational changes may influence these bands as well. 

The establishment of NIR as a tool for conformational analysis of proteins in aqueous solutions could lead 

to several new applications of the spectroscopic method e.g. in the pharmaceutical industry. Some future 

application of NIR could be: the detection of antibody-antigen binding, characterisation of recombinant 

proteins compared to the wild types, and detection of denatured and misfolded proteins. With isotopic 

substitution, it could be possible to obtain information of conformation changes of the individual proteins. 

The advantages of NIR compared to FTIR are the fast data acquisition, less problems with protein absorption 
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to the cuvette and with water vapour interferences, and no need for an expensive ATR-cell. Furthermore, in 

the industrial applications, the possibility to measure non-invasively through a glass vial without opening it 

also offers a great advantage over other methods. The limitation of NIR is caused by the requirement for a 

relatively high protein concentration, which is not reasonable for some types of pharmaceutical products. 

NIR analyses of complex food samples 

After having established the sensitivity of NIR to the structure of proteins in pure solutions, NIR was applied 

to study a protein system with more constituents, namely the gluten complex, for which starch and lipid 

signals also contributed to the spectra. One purpose in the studies was to assess the performance of NIR in 

structure-functionality relation studies. Experiment IV and V, involving analyses of gluten at low and high 

water contents, respectively, revealed qualitative changes in the NIR protein spectra upon hydration, 

denaturation and influence of various salts. Therefore, the experiments indicated a sensitivity of NIR to 

protein conformation and interaction changes in the complex gluten system.  

In Experiment V, the fully hydrated gluten was used as a model system for protein networks in foods, and 

different gluten functionalities were obtained by hydration of gluten powder in various salt solutions. Some 

secondary structure changes were shown by the reference method (ATR-FTIR), which however did not point 

out intermolecular β-sheet as an obvious marker of the gluten functionality, in contrast to what is reported in 

the literature. As this type of interaction is of importance to protein-networks in foods, it could, however, be 

relevant to analyse other food products that contain the intermolecular β-sheet. From the present experiment, 

it appears to be difficult to conclude upon the intermolecular β-sheet and its spectral fingerprints in the NIR 

region. 

Not all of the NIR spectral changes in Experiment IV and V could be ascribed to protein secondary 

structure changes, as some changes could result from the concomitant changes in amino acid side chain 

hydrations and interactions. An enhanced explanation of the NIR spectral changes would require more 

information regarding the gluten protein hydrations and interactions, of which only the intermolecular β-

sheet was identified by the applied reference method. For improved characterisation of the gluten system, 

e.g. NMR could be used to give more information on the side chain hydrations and interactions.  

The possibility to obtain protein hydration information by use of NIR is of interest, as there is a link 

between gluten protein hydration and the intermolecular β-sheet content, causing the hydration to be a 

marker of the gluten development. Also, the water spectrum encloses information of macromolecule-water 

interactions and therefore, it could be of interest to explore the water spectrum more in future analyses (also 

for analysis of other food systems). For this purpose, the developed EMSC preprocessing method (for ATR-

FTIR spectra, described in Paper III) was indicated to be a useful tool, since it extracts information as 

regards the hydrogen bonding state in water.  
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The analysis of other well-characterised model systems could provide additional information as regards the 

capacity of NIR in food protein analysis and in structure-functionality studies. For example, the protein 

network formed by the milk whey proteins in diary products could be of interest. Model systems of low 

protein content are also relevant, as many food systems are based on other biomacromolecules and contain 

only a minor protein fraction. This applies to the dough, in which the chemical processes also are influenced 

by interactions between different dough components and by the competition between starch and gluten for 

water. Thus, no conclusion of the performance of NIR in dough analyses can be drawn from the present 

study of the much more protein-rich gluten fraction. Future analyses should consider starch and lipid 

conformations and interactions, as these play important roles in many food systems.   

The recognition of NIR as a tool for detection of macromolecule conformation, hydration and interactions 

in complex samples could lead to a wide range of applications for NIR in the food production, as these 

factors are central to many food properties (e.g. of dough, cheese and other diary products). The replacement 

of a laborious method for quality control with on line NIR measurements could be advantageous in the food 

industry. A great benefit of NIR is that, besides information on macromolecule conformations and 

interactions, NIR spectra may simultaneously provide information on the chemical composition as well as 

the physical sample properties. 

The recent developments of fibre-optics and fast diode array instruments have offered the possibility for 

remote and very fast spectrum collection, which is necessary for application of NIR as an on line method. 

However, applications, marginally possible in the laboratory, may be unsuited for on line measurements, 

which are related with harsher conditions than in the laboratory. Also for on line applications, the sample 

surface needs to be representative for the sample, or the surface property should be related to the sample 

property. Therefore, this work did not provide information on the performance of NIR for on line 

measurements of macromolecule interactions in foods, and further work is needed to throw light on this. 

By providing increased knowledge of the macromolecule interactions in foods, NIR could be a useful tool in 

the food research, for example in the development of new products and ingredients etc. The design of new 

macromolecules with the desired functionalities could be one perspective. However, the complexity of most 

NIR spectra (with overlapping protein, lipid and carbohydrate bands) means that there is a need for a 

structure sensitive reference method for establishment of a calibration/classification model in each 

application. On the other hand, NIR is often correlated directly to the functionality measures of e.g. texture, 

taste etc. by use of chemometrics, and improved interpretation of these models is provided by increasing the 

knowledge of the biomacromolecule fingerprints in the NIR region, as attempted in this work. 

Finally, it is emphasised that additional experiments will be necessary in order to verify the general ability 

of NIR to detect and characterise macromolecular conformational changes in a food matrix. 
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Abstract

The objective of proteomics is to get an overview of the proteins expressed at a given point in time in a given tissue and to identify

the connection to the biochemical status of that tissue. Therefore sample throughput and analysis time are important issues in

proteomics. The concept of proteomics is to encircle the identity of proteins of interest. However, the overall relation between

proteins must also be explained. Classical proteomics consist of separation and characterization, based on two-dimensional elec-

trophoresis, trypsin digestion, mass spectrometry and database searching. Characterization includes labor intensive work in order to

manage, handle and analyze data. The field of classical proteomics should therefore be extended to also include handling of large

datasets in an objective way. The separation obtained by two-dimensional electrophoresis and mass spectrometry gives rise to huge

amount of data. We present a multivariate approach to the handling of data in proteomics with the advantage that protein patterns

can be spotted at an early stage and consequently the proteins selected for sequencing can be selected intelligently. These methods

can also be applied to other data generating protein analysis methods like mass spectrometry and near infrared spectroscopy and

examples of application to these techniques are also presented. Multivariate data analysis can unravel complicated data structures

and may thereby relieve the characterization phase in classical proteomics. Traditionally statistical methods are not suitable for

analysis of the huge amounts of data, where the number of variables exceed the number of objects. Multivariate data analysis, on the

other hand, may uncover the hidden structures present in these data. This study takes its starting point in the field of classical

proteomics and shows how multivariate data analysis can lead to faster ways of finding interesting proteins. Multivariate analysis

has shown interesting results as a supplement to classical proteomics and added a new dimension to the field of proteomics.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-dimensional gel electrophoresis (2DGE) and

mass spectrometry (MS) used in combination constitute
a strong analytical tool used in ‘‘classical’’ proteomics

(Fig. 1), in which MS is used for identification of pro-

teins. By using the two analytical techniques indepen-

dently of each other, but coupled with multivariate

analysis, we have added a new dimension to the field of

proteomics. Multivariate analysis improves the data

handling in proteomics, and thereby narrowing down

proteins of interest much faster (Fig. 2). Our method

should therefore be considered as a strong supplement

to the ‘‘classical’’ proteomics.

1.1. Multivariate data analysis

One of the troublesome issues in proteomics is the

handling of data with respect to characterization. The

field of chemometrics mainly concerns multivariate

analysis applied to data from chemistry (Martens and

Martens, 2001). Chemometric studies deal with the

Fig. 1. The water-soluble fraction of a barley variety separated by 2DGE. The proteins are identified after trypsin digestion by mass spectrometry.

Labour-intensive work is needed both whenmany gels are to be compared andwhen all the protein spots on one gel have to be sequenced and identified.
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overall managing, handling and analysis of data col-

lected from, e.g., 2DGE, MS or near infrared (NIR)

spectroscopy.

Multivariate analysis builds on the application of

statistical and mathematical methods, and includes the
analysis of data with many observed variables, as well as

the study of systems with many important types of

variation (Martens and Martens, 2001).

The performance of multivariate analysis builds on

two fundamental principles: (1) formulation of an ex-

periment before data analysis (planning) and (2) prob-

lem reduction during and after data analysis (modeling).

However, it must be emphasized that prior conventions,
theories and expectations may have a restrictive influ-

ence on analysis, if used blindly. Multivariate analysis is

therefore a balance between prior knowledge and new

input gained during analysis.

The explorative data analysis is an important aspect

during multivariate analysis. Before any hypotheses are

arranged, explorative data analysis can give an insight in

the multivariate chaos by means of scores (latent vari-
ables) and loading weights. An essential aspect in ex-

plorative data analysis is the outlier control. It can

always be expected that data include errors as a conse-

quence of typing errors, instrument errors, sampling

errors etc. Hypothesis-generating analysis is a natural

consequence of the entire concept behind multivariate

analysis. In traditional statistical terms, a hypothesis is

set up first and then experiments are carried out in order
to demonstrate this hypothesis. This is known as de-

ductive analysis. In contrast to traditional statistical

methods, multivariate analysis is an inductive analysis,

where hypotheses can be set up after having carried out

the computational experiments.

Principal Component Analysis (PCA) is an unsu-

pervised multivariate analysis technique used for

transforming a set of observed variables into a new set
of variables, which then are uncorrelated to one an-

other (Everitt and Dunn, 1991). The basic idea is to

find hidden structures in a dataset in order to describe

these structures. The strength of PCA is the provision

of low-dimensional plots of the data, e.g., to project

many dimensions onto a few dimensions. On this basis

it is possible to identify outlying observations, clusters

of similar observations and other data structures. As

the name indicates, the technique is based on principal

components, a mathematical technique for an or-
thogonal orientation to principal axes. A principal

component is also referred to as a latent variable. This

variable cannot be measured directly but must be

expressed as a linear combination of a set of input

variables (Martens and Martens, 2001). The PCs form

a rearranged multidimensional space based on a bi-

linear model of the data matrix X, meaning that X is

decomposed into a structural part and an error part.
The structural part consists of a scorematrix, T, and a

transposed loadingmatrix, PT, while the error part is

termed E (Esbensen et al., 2000). Equation (1) is the

mathematical skeleton of principal component

model

X ¼ T � PT þ E: ð1Þ
PCA is capable of transforming a large number of

possible correlated variables to a smaller number of

uncorrelated variables, PCs. The original axes are being

replaced by PC-axes, where each PC-axis is a linear

combination of the original variables.

The relationship of the PCs to the samples (the data
rows, ti) is called scores, and to the variables (data col-

umns, pi) called loadings. The new uncorrelated vari-

ables are represented in decreasing order of importance,

which means that the first PC covers as much as possible

of the variation in the dataset, and each subsequent

component covers as much as possible of the remaining

variation. The second PC is calculated orthogonal to the

first PC, in that way to ensure complete non-correlation
between the first and second PC-axis. The third PC-axis

goes through the maximal variation described in the

remaining dataset, i.e., not described in the first and

second PC. This decomposition continues until all sys-

tematic variation is explained. When all variation is

explained, the original data matrix has been reduced. It

is thus possible to concentrate on only two or three

dimensions at a time.

Fig. 2. Multivariate data analysis in plant science.
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Although most variation is described in the first PC,

it does not necessarily make the first PC the most in-

teresting PC.

The Y-data structure is used to guide the decompo-

sition of the X-matrix in order to reduce the original X-
data to a small number of latent variables, termed

Partial Least Squares (PLS) components (Esbensen

et al., 2000). Calibration involves relating the two sets of

data by regression modeling:

Y ¼ X � B; ð2Þ
where B is a matrix containing b-regression vectors ex-

pressing the link between variation in the predictors and

variation in the response. X and Y are defined in equa-

tions (3) and (4), respectively:

X ¼ T � PT þ E; ð3Þ

Y ¼ T �QT þ F; ð4Þ

where T are the scores, P and Q are the loadings and E

and F are the residuals. Y-variables are predicted on the

basis of a well-chosen set of relevant X-variables with

explanatory or predictive purpose (Esbensen et al.,

2000). The Y-matrix is therefore usually the property to

be calibrated for (the response data), while the X-matrix
(the descriptor data) is defined as the output of the in-

strument (Martens and Martens, 2001).

In PCA-calibration one set of loadings from the

X-matrix (P-loadings, cf. equation (3)) is obtained,

whereas PLS-calibration also includes the usage of

loading weights (termed W-loadings). The P-loadings

express the relationship between the raw data matrix

X and its scores (T), whereas the W-loadings represent
the effective loadings between X and Y. The differences

between P- and W-loadings describe the influence of the

Y-guidance on the decomposition of X. The loadings

from the Y-matrix (Q-loadings, cf. equation (4)) are the

regression coefficients from the Y-variables onto the

scores (U). Together with the Q-loadings, the W-load-

ings are used to interpret the relationships between

X- and Y-variables as well as interpreting the scores
related to these loadings (Esbensen et al., 2000).

As an extension to PLS, Nørgaard et al. (2000) have

developed iPLS. The purpose of iPLS is to divide the

variables into subintervals of equal width in order to

carry out local PLS on the subintervals, and thereby

detect specific variables of interest. In this way one can

get as large score vectors as possible in order to obtain

more stable predictions (H€oskuldsson, 2001). PLS is then
carried out on each of the subintervals (local models) and

the full-spectrum (global model). The procedure is a

stepwise calculation with the aim of zooming into local

models of interest, based on modeling performance be-

tween local models and the global model. The selection of

intervals by iPLS is furthermore of importance in PCA in

order to remove noise from the X data matrix.

1.2. Proteomics: how can data handling be improved?

The purpose of proteomics is to find ways of focusing

on those proteins that are involved in a particular bio-

logical function of interest (Godovac-Zimmermann and
Brown, 2001). The field of proteomics mainly consists of

the following two stages (Rabilloud and Humphery-

Smith, 2000): (1) separation of the proteins to be ana-

lyzed and (2) characterization of the separated proteins.

Examinations of proteomic maps have revealed more

additional proteins than was expected when compared

with the corresponding genomic maps (Corthals et al.,

2000). It has therefore been suggested that the additional
proteins found via proteome analysis are modified pro-

teins, which could not be accounted for by genome

analysis.

For every gene expressed in a cell at a given time,

three times as many cellular proteins must be expected

as a result of mRNA splicing and posttranslational

modifications (Naaby-Hansen et al., 2001). Posttrans-

lational modifications, which include simple proteolytic
cleavage as well as covalent modification of specific

amino acid residues, like, e.g., glycosylation, phos-

phorylation and acylation, are not detectable by analysis

of RNA (Hille et al., 2001).

Although time-consuming, 2DGE is the favored sep-

aration technique in proteomics by virtue of the ex-

tremely high resolution obtained (K€uster et al., 2001).

While separation constitutes the first half of proteomics,
characterization constitutes the other half. Proteins of

interest, separated by 2DGE and electroblotted, may be

submitted to N-terminal sequencing and succeeding da-

tabase cataloguing in order to determine their identity.

The advantage of N-terminal sequencing is the ability to

directly sequence the N-terminus of electroblotted pro-

teins without any need of specific preparation procedures

(Kinter and Sherman, 2000). Characterization of pro-
teins may also be carried out by application of MS.

Matrix assisted laser desorption/ionisation time of flight

(MALDI-TOF) MS is the most common type of MS

combined with 2DGE (Hille et al., 2001). After 2DGE

proteins are concentrated in individual spots as SDS–

protein complexes within the polyacrylamide gel matrix.

The protein spot must be pre-treated prior to analysis by

mass spectrometry (Eckerskorn and Strupat, 2000). If the
protein spot is excised from a dry gel, it must first be

washed out and then cleaved by site-specific proteolysis

with, e.g., trypsin (Naaby-Hansen et al., 2001). The re-

sulting peptide fragments of a given protein spot can

thereby be viewed as the third dimension separation,

being independent of the two separation modes from

2DGE (Hanash, 2000). The peptide masses obtained

from the mass spectrum are subjected to database cata-
loguing, where theoretically digestions of proteins are

available, either in protein databases or in translated

genomic databases (Naaby-Hansen et al., 2001).
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A general problem in proteomics when starting with

2DGE is the characterization procedure. Approximately

one day per gel is needed for analysis. When also in-

cluding complete structural analysis by MS, about one

month is required per gel (Hille et al., 2001). Identifi-
cation of proteins by combination of MALDI TOF-MS

and 2DGE, including the processes of image analysis,

spot detection and enzymatic digestion prior to MS, is

not possible to carry out automatically (Hille et al.,

2001). A compromise between sample throughput and

analysis time is therefore an important issue in proteo-

mics of today. Since complete automation is not possi-

ble, the field of proteomics must be extended to include
methods that can ease the evaluation of results obtained

from 2DGE. Focus is turned to optimization of 2DGE

and MS, and particularly on how to optimize the com-

bination between these techniques.

Although the concept of proteomics is to encircle the

identity of certain proteins of interest, the overall rela-

tion between proteins must also be explained. Since

large amounts of data are collected, the overview may
easily be lost. If the overview is lost, how can the con-

ditions for proteomics then be fully obtained? The field

of proteomics should therefore be extended to also in-

clude proper handling of large datasets. Image analysis

of 2D gels is the basis for characterization of proteins. If

the steps in image analysis could be speeded up, and at

the same time be improved, it would ease the proteomic

procedure essentially. Chemometrics may be the answer
to a faster and more reliable analysis in 2DGE.

1.2.1. 2DGE

2DGE separates proteins according to two indepen-

dent physical and chemical properties. Thousands of

different proteins can thus be separated, and informa-

tion such as the protein pI, the apparent molecular

weight, and the amount of each protein is obtained. As
the need for high throughput methods in proteomics

increases, focus has shifted towards automation (Lopez,

2000; Patterson, 2000), by this new focus the bottleneck

has moved from the protocol itself to the gel analysis

(Lopez, 2000; Smilansky, 2001). The 2D protocol is still

time consuming, however, it is important to notice that

the subsequent gel analysis is just as time consuming. To

automate gel analysis, several software programs have
been developed (Appel et al., 1997; Lopez, 2000; Mahon

and Dupree, 2001; Raman et al., 2002; Smilansky,

2001). Gel analysis involves three steps: (1) spot detec-

tion, (2) spot/gel alignment and (3) identification of in-

teresting spots (Lopez, 2000). Development of efficient

and reliable algorithms to perform the two first steps has

been subject to much work (Gustafsson et al., 2002;

Kaczmarek et al., 2002; Kriegel et al., 2000; Pleissner
et al., 1999; Veeser et al., 2001), which can be seen in the

new generation of 2DGE software (Raman et al., 2002).

With the continued progress in development of 2DGE

analytical software, the full potential of the 2DGE is

anticipated in the near future.

The use of multivariate methods in the analysis of

2DGE is an emerging application (Appel et al., 1988;

Jessen et al., 2002; Pun et al., 1988; Rabilloud et al.,
1985; Tarroux, 1983; Tarroux et al., 1987; Vohradsky,

1997). By mathematical modeling of the data contained

in 2D gels, it is possible to make fast extraction of data

from gels. Traditionally the use of spot volume data has

been applied as this makes direct use of the spot lists

generated by most 2D analysis software packages. Al-

ternatively it is possible to use the presence of a spot as

indicator, so that the dataset is a binary matrix, where 1
shows that a spot is present in a gel and 0 that it is not

(Radzikowski et al., 2002). This makes the classification

of gel images based on expression patterns for protein

spots possible. Moreover it is possible to deduce bio-

logical information from the loading plots, i.e., which

spots contribute to the differentiation of the gels. Using

an image-analytical approach, it is possible to do

much of the same work in an automated and fast pro-
cess that does not involve the subjective assessments of

an operator.

However, although the developments in the 2DGE

protocol and instrumentation have greatly improved the

reliability and reproducibility of 2DGE, much focus is

still on whether the method will turn into what every-

body hopes; a fast, reliable method for high throughput

proteomic research.

1.2.2. Speed/Automation

The speed and degree of automation are two areas

where the 2DGE protocol can be improved. It has been

estimated that it can take as much as one month to fully

analyze one gel (Hille et al., 2001) with the current de-

gree of automation. Improvements in the degree of au-

tomation, however it is estimated, can bring this down
to 3–7 days (Hille et al., 2001). In addition, the gel

analysis involves subjective assessments by the analyzer,

which can make the analysis operator dependent.

Automated units to perform the first and second di-

mension runs as well as visualization combined with the

development of IPG have brought down the number of

process steps and operator dependent variables (G€org
et al., 2000). Prototypes of fully automated robots for
spot identification, excision and analysis with MALDI

TOF-MS have likewise been described (Harry et al.,

2000; Nordhoff et al., 2001). It is therefore in the gel

analysis that we find the bottleneck in large-scale pro-

teomics today.

1.2.3. Problematic proteins

Generally, two groups of proteins have been a
problem in 2DGE separations – very basic and/or in-

soluble membrane proteins. The problem with the basic

proteins has been the lack of commercial products to
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create a pH gradient above 10 and that basic proteins

have been difficult to focus in the first dimension because

of reverse electro-endosmotic flow. With IPG it is pos-

sible to make pH gradients up to 12 and at the same

time use a standard protocol (G€org et al., 2000). Narrow
pH gradients up to pH 12 require changes to the pro-

tocol to minimize the transportation of water from the

cathode to the anode. Gradients with pH 10–12 and pH

9–12 have successfully been applied (G€org et al., 2000).

Hydrophobic membrane proteins are very challeng-

ing to handle and it is estimated that only about 1% of

the membrane proteins are separated in 2DGE with a

standard protocol (Fey and Larsen, 2001). The devel-
opment of sample solubilization has improved the pos-

sibility of solubilizing these proteins by use of

zwitterionic- and organic-detergents. But it is still an

area that needs to be developed (Anderson et al., 2000).

1.2.4. Visualization of proteins

Traditionally proteins are stained with Coomassie

brilliant blue (CBB) or silver. CBB staining has a rela-
tively low sensitivity but is compatible with Western

blotting and subsequent protein sequencing. Using CBB

the spot intensities correlate linearly with protein

amount. Silver staining can detect as little as 0.1 ng

protein and is thereby much more sensitive than CBB

staining but has disadvantages: (1) Silver staining does

have a lower reproducibility between replicates; (2) It

does only stain quantitatively in a narrow range, which
means that silver staining is not useful to study differ-

ences in protein expression between different stages; (3)

Some proteins are only stained weakly or not at all

(G€org et al., 2000).

As an alternative to silver staining, fluorescence

staining can be used. Fluorescence staining is less labour

intensive and has a detection limit of 1–4 ng protein

(Steinberg et al., 2000), which is better than CBB and at
the same level as some silver staining procedures. The

staining is linearly in a wide interval. The protocol is

simple and can therefore more easily be used in an au-

tomated system.

Several alternatives to the classic methods of visual-

izing have been reported. In (Bienvenut et al., 1999; Binz

et al., 1999) a molecular scanner is described. In this

system all proteins in the gel are digested followed by
transfer to a polyvinylidene difluoride (PVDF) mem-

brane with a matrix solution compatible with MALDI

TOF-MS. The PVDF membrane is then scanned di-

rectly with the MALDI TOF-MS instrument with a

resolution of 0.4 mm. The spectrum obtained in each

point is automatically submitted to a protein sequence

database for identification. In this way a complete map

of identified proteins is created. However, the method is
not quantitative and the scanning of the gels with the

spectrometer is very time consuming. Thus it takes

about 36 days to scan one gel measuring 16� 16 cm2,

generating approximately 40 GB of data. However, the

authors estimate that it will be possible to bring this

down to a matter of hours.

The method eliminates some of the classic flaws in

2DGE such as matching of protein spots, sensitivity,
identification and to some extent co-migration. As all

proteins in principle are identified, the need for match-

ing of protein spots is eliminated. The method is there-

fore an interesting alternative to the classic 2DGE

analysis, in that several steps are combined to one au-

tomated process.

In (Walker et al., 2001) a method is described where

the second dimension is replaced by MALDI TOF-MS,
thus creating a so-called virtual gel. The first dimension

is run in the traditional manner, but the IPG strip is

prepared for MALDI TOF-MS. By scanning the IPG

with the MALDI TOF-MS spectrometer the virtual gel

is created where the second dimension is constructed by

MS spectra. Thus the method also eliminates some of

the classic 2DGE problems.

1.3. Near infrared spectroscopy

Near infrared (NIR) spectroscopy provides a method

for rapid, non-destructive and accurate analysis of the

composition of a sample. It allows discrimination of

various organic compounds and can be used both to

acquire qualitative and quantitative information. It not

only supplies chemical information, but also informa-
tion of whether the physical properties of a sample can

be obtained.

NIR has been widely used in the field of agriculture,

and one of its first applications was the determination of

moisture in agricultural products (Pasquini, 2003). Now

it is also used in various other fields such as food and

medicine, and it is an increasingly accepted tool for

academic research and industrial quality control in
many areas ranging from chemistry to agriculture and

from life science to environmental analysis (Foley et al.,

1998; Siesler, 2002). A merit of NIR is the simultaneous

determination of multiple constituents in a sample,

which also allows for estimation of complex attributes

such as the susceptibility of plants to insect attack. NIR

is not used for very sensitive analysis since the detection

limit in general is only about 0.1% (w/w) for most con-
stituents (Iwamoto and Kawano, 1992).

Infrared (IR) is the part of the electromagnetic

spectrum that covers the wavelength region from 0.7 to

200 lm. The region of IR, which is nearest to the region

of visible light, is called the near infrared (NIR) region,

and it includes the wavelength range from about 780 to

2500 nm. The mid infrared (MIR) spans the higher

wavelength range from 2500 to 15,000 nm (Davies,
1993).

The electromagnetic radiation can interact with

matter to give rise to an absorption spectrum. In
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vibrational spectroscopy, which employs the MIR and

NIR regions, the absorption bands originate predomi-

nantly from radiation energy transferred to mechanical

energy associated with the vibration of atoms.

In a molecule, atoms or groups of atoms participating
in chemical bonds are displacing one in relation to the

other in a frequency that is defined by the type of bond

of vibration (Davies, 1993). Absorption of infrared ra-

diation induces the transition between vibrational en-

ergy levels, and the frequency and amount of the

absorbed radiation gives information about the types

and number of bonds between atoms or functional

groups in the molecules. Consequently, the absorption
spectrum reflects the chemical composition of the ma-

terial being analyzed, and gives information on the

amount of protein, fat, starch or any other organic

molecule in a sample. However, NIR is a secondary

method requiring calibration against a reference method

for the constituent, because of influence also from

physical properties (Osborne et al., 1993).

While the MIR-region possesses the energy that is
necessary to promote molecules from their lowest ex-

cited vibrational states, the NIR region is of higher en-

ergy, and the absorptions originate from overtones or

combinations of the fundamental absorptions seen in

the MIR region.

IR spectroscopy that uses the MIR-region has been a

well-established tool for elucidation of structure, be-

cause the peaks are relatively distinct and can be at-
tributed to the presence of certain functional groups

(Siesler, 2002). In the NIR region, however, direct in-

terpretation of the spectral absorbances is very difficult

for complex mixtures because of broad overlapping

absorption bands. NIR thus relies on multivariate

methods to quantify the properties or constituents of

interest.

One of the advantages of NIR over IR is that NIR
requires a minimum of sample preparation and provides

the possibility for analysis on, e.g., intact fruit and also

opaque samples. When a beam of IR radiation con-

taining different frequencies is directed on to a molecule,

an absorption spectrum (plot of energy versus wave-

length) is produced, because only the radiation of fre-

quencies capable of supplying exactly the energies

between allowed transitions is absorbed. Each kind of
molecule has a characteristic spectrum depending on the

number and types of bonds, since the transition energies

are defined by the vibrational frequencies of the different

bonds.

Spectra of polyatomic molecules show absorptions

from the distinct chemical groups, which vibrate at their

characteristic group vibrations. The characteristic vi-

brations are relatively constant in their frequencies from
molecule to molecule, but some adjustment takes place

due to influence from different molecular environments

and molecular interactions (e.g., degree of hydration)

which influence the force constant (Bokobza, 2002). It is

therefore possible for example to differentiate C–H

stretching stemming from, e.g., alkanes, methanol and

ethanoic acid (Osborne et al., 1993).

For polyatomic molecules interbond coupling can
occur between stretching and bending vibrations of the

same functional group, meaning that their vibrational

energies are dependent on each other. This complicates

the spectrum, but also causes some distinct vibrations

for complex molecules. Proteins, for example, show

characteristic absorption bands in the IR and NIR due

to the vibrational modes: C@O stretching coupled to

N–H bending and C–N stretching (amide I), and N–H
bending coupled to C–N stretching (amide II) (Osborne

et al., 1993). In the NIR some combination bands in-

volving these modes (and, e.g., N–H stretching) appear,

and such a band has been found very useful for esti-

mation of protein concentration. Many bands in the

NIR spectrum of protein are sensitive to changes in

secondary structure and degree of hydration, and

therefore can be used, e.g., for monitoring the dena-
turation of a protein (Wu et al., 2000). This is the con-

sequence of NH-bands being displaced by hydrogen

bonding like any other X–H-band. Hydrogen bonding

changes the force constant of the covalent X–H bond

thus causing a small shift in the wavelength at which the

absorption band appears. This sensitivity of NIR to

hydrogen bonding is the reason why NIR also can be

used for studying the state of water in foods. The O–H
absorption band, however, becomes very broad due to

the hydrogen bonding.

2. Results and discussion

2.1. Proteomics ‘classic’

The traditional way of doing proteomics is outlined in

Fig. 1. Gels are evaluated using image-processing soft-

ware; interesting spots are pointed out and identified. The

visual image of protein spots is invaluable in proteome

analysis as far as characterization of single proteins is

concerned, which is why 2DGE is the favoured separa-

tion technique in proteomics. However, the character-

ization of proteins from 2D gels often requires many 2D
images being compared to each other. However, when

adding just a few more gels to the analysis it is almost

impossible to maintain an overall view of the data. Image

Master� and other software programmes like, e.g.,

CAROL (Kriegel et al., 2000), Z3 (Smilansky, 2001),

PDQuest, Melanie and Progenesis have been developed,

making attempts on easing the 2D image analysis.

However, the real breakthrough will only appear when a
full-automated analysis of 2D images is possible. An

unquestionable obstacle towards the full-automated

analysis of 2D gels is the problem of gel alignment.
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2.2. Explorative data analysis

In order to increase the effectiveness of proper spot

selection, the data from 2DGE can be subjected to

multivariate analysis in order to point out which com-
bination of spots could be valuable to sequence. This

way a lot of time and effort can be saved when only the

proper spots are identified. Although the images from

2DGE are obvious subjects to multivariate data analysis

by virtue of the many variables they create, there still are

some obstacles to pass before it is practically possible.

The 2D gel patterns are exposed to geometrical distor-

tions, locally as well as globally, with decisive impact on
the grade of reproducibility. In order to analyze 2D

images properly by multivariate analysis, they must first

of all be aligned.

There are two ways to go. Multivariate data analysis

can be used on either the spot list produced by the image

processing software after alignment or directly on the

aligned images. The first procedure has been used in

some studies (Jessen et al., 2002, Radzikowski et al.,
2002). In the latter study concerning rye proteins it was

shown that the results from the different analysis could

then be combined and analyzed by PCA to give an im-

proved characterization of the varieties. The PCA of the

2D spot data was able to group the spots according to

the varieties in which they were present and this im-

proved the evaluation of the 2D gels. The resulting data

from PCA can also be used to create a dendrogram of
the investigated varieties. The PCA of the 2D spot data

in combination with the functional properties data

showed a similar grouping of the varieties and that there

was one spot that was close to the properties, bread

volume and bread height. The PCA of the 2D spot data

can be useful in any 2D electrophoretic analysis where

the aim is to find protein spots that are characteristic for

a given sample or find protein spots that are present in a
selected group of the investigated samples. The PCA of

2D spot data reduces the time spent on analysis of the

results obtained from image analysis of 2D gels, and it

also makes it easier to analyze a large number of gels.

Another advantage is that it is possible to combine re-

sults from many different experiments and analyze them

together.

2.3. Spot detection of 2DGE gels

Here, we present an analysis of 2DGE patterns of the

storage proteins from ten different wheat varieties by

PCA and PLSR. An analysis of the volume spot lists

showed that the selected wheat varieties were repre-

sented in two groups. To avoid the generation of spot

volume lists, i.e., to avoid spot detection, we used a
method in which the gels were analyzed as images to test

if the gels could be differentiated. The latter approach

gave the same classification of the ten varieties as the use

of spot volume lists, although without the prior work of

spot detection and spot matching which is both time

consuming and subjective. For further screening pur-

poses the use of this approach in the initial screening of

a large number of gels is therefore a promising alter-
native to the usual spot detection and matching.

Multivariate analysis is implemented in recent ver-

sions of popular 2DGE analysis software packages. The

implementation, however, is solely based on the sub-

sequent analysis of spot list data. The present method is

based on sampling of real-spot data as basis for the

detection.

The algorithm: Based on a data matrix of unfolded
spot images we have used a singular value decomposi-

tion (SVD) to build a PC Model and used this model to

create virtual gels of probability to indicate where the

spots are located. This approach is described in Fig. 3. A

more detailed description of the algorithm is found in

Appendix A.

The algorithm has been used to identify spots on

2DGE gels of wheat storage proteins (Schultz et al.,
2004) for 2DGE procedure. In Fig. 4, the spots used to

construct the Peak matrix are marked.

Spot identification was done on three different gels of

the wheat varieties: Pentium, Hussar and Trintella. All

gels were sub-images extracted from whole gels and the

background has been subtracted and the intensities

adjusted (Fig. 5).

The results from the identifications are shown in Fig.
6. It is clear that almost all spots have been identified.

However, there is a tendency towards missing identifi-

cation of the weakest spots as well as some symmetric

noise around each spots. Moreover, it is seen that the

algorithm identifies the gravity point in the spot. This is

in accordance with what is expected as the spots were

sampled from the centre of gravity. Moreover, it should

be noted that the intensities of the identified spots reflect
the degree to which a specified pixel fits the reference

model and not the original spot intensity. On the gel of

the variety Hussar an area is seen where the number of

spots are difficult to identify on the original gel. In this

area three spots have been identified, which are in ac-

cordance with the actual gel. The algorithm has also

been tested with other spots as reference data, which

differ in size and form (data not shown). These tests
show that the shape of the spot has less influence on the

performance of the algorithm than the size (Fig. 7).

We have here demonstrated an alternative approach

to 2DGE spot detection as well as shown how a

multivariate approach can be used for other purposes

than analysis of spectroscopic spectres. We believe

that the algorithm as presented here can contribute to

further development of powerful 2DGE analytic
software packages, further fuelling the widespread use

of the 2DGE technology in modern proteomics

research.
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2.4. Mass spectrometry and multivariate data analysis

MS of whole protein extracts together with chemo-

metrics can be used to classify complex mixtures of

proteins. We have used this chemometric approach as a
supplement to the proteome analysis of the alcohol-

soluble proteins (gliadins) from the wheat gluten com-

plex (Gottlieb et al., 2002). Based on classic proteome

analysis with 2DGE, a specific gliadin was found to only

be present in wheat varieties unqualified for bread-

making. By means of N-terminal sequencing, the iden-

tity of the protein was then encircled. Gliadin-data

obtained from MALDI-TOF MS ranging 31 kDa were

subject to multivariate analysis. By means of multivar-

iate analysis on the MS data narrow molecular weight

intervals of interest, with sizes of only few hundreds of

Da, were repeatedly detected (Fig. 7). The study re-

vealed that application of multivariate analysis could

detect the molecular weight area in which the gliadin of

interest was found by the classic labour-intensive pro-
teome analysis. From the study it was concluded that

the use of multivariate analysis on data output from

separation of gliadins is a strong tool that can contribute

substantially to the field of proteomics.

2.5. NIR spectroscopy and multivariate analysis

Quantitative information of a specific analyte is re-
flected in the intensity at the wavelength at which it

absorbs according to Beers law, stating that absorbance

presents a linear behavior with the concentration of the

analyte for a fixed path length (Heise and Winzen,

2002). The NIR spectra are however often rather fea-

tureless, which prevents identification of bands for the

analyte of interest. Use of a single wavelength will sel-

dom provide a good model because of the occurrence of
overlapping absorption bands and deviations from

Beers law. Deviations from Beers law occur, e.g., at high

Fig. 3. Diagram of the FindPeak algorithm. (1) The spots are sampled, and the Peak matrix is constructed of the unfolded spot images. Spots are

sampled from K different gels. One or more spots from each gel can be sampled. (2) The initial PC model is calculated, consisting of the scores matrix

(T), the loadings matrix (P) and the residual matrix (E). (3) The optimal number of principal components is determined (AOpt) and the reference PC

model is constructed based on this number of principal components. From the residual matrix the reference variance (s2Ref) can be calculated. (4) In

each pixel in the gel image to be analyzed, a sub-image with centre in the pixel is extracted and is unfolded to x. (5) The new score matrix, t, for the

pixel is calculated from x and P. (6) The new residual matrix, e, for the pixel is calculated from the new score matrix t and P. (7) From the new

residual matrix, the pixel variance, s2 is calculated. The numeric value of this describes how well the pixel sub-image fits the model and forms the

ModelFit matrix. (8) The relationship between s2 and s2Ref makes up the PeakProbability matrix.

Fig. 4. DGE gel marked with the spots used to construct the Peak

matrix. Spots 1 and 2 were sampled from 39 different gels of different

wheat varieties.
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analyte concentrations, because of light scattering phe-

nomena in solid samples, and when there are changes in

the hydrogen bonding pattern such as temperature or

relative concentration changes (Pasquini, 2003). In

particulate samples light scattering phenomena further
introduce nonlinearities (Martens et al., 2003).

Extraction of quantitative information therefore relies

onmultivariatemodels.Multiple linear regression (MLR)

that uses only a few wavelengths is a usual method for

regression of the reference data on the spectral data.

However, PCR and PLSR that can separate out the rel-

evant and reliable covariation patterns from the back-

ground noise in the full wavelength range are increasingly
being used (Heise and Winzen, 2002). PCA provides a

quick overview of the spectral data and reveals clusters

and trends which could otherwise be hard to see (Fig. 8).

2.5.1. Barley mutants

NIR spectroscopy has shown promising results for

application in plant biotechnology for gaining insight

into the phenotypes that result from perturbation of the
gene expression by genetic and environmental changes

(Jacobsen et al., 2004; Munck et al., 2001). Processing of

the NIR spectra by classification techniques yields a

metabolic fingerprint of the organisms without differ-

entiation of the individual metabolites. In this way NIR

has potential as a fast screening method revealing or-

ganisms with altered phenome, but it is also possible to

obtain quantitative information of specific metabolites

Fig. 6. Left column shows the PeakProbability matrix. Right column shows a composite image of the PeakProbability matrix and the original gel. (a)

Pentium; (b) Hussar; (c) Trintella.

Fig. 5. Gels on which spots have been identified. (a) Pentium; (b)

Hussar and (c) Trintella.
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for use in metabolomics. Accurate and reproducible

quantitative methods are necessary to differentiate

samples where the result of the changed gene expressions

is only quantitative changes in the metabolite concen-

trations (Sumner et al., 2003).

It has been shown by Munck et al., 2001 that NIR of

barley flour provides a spectral fingerprint of the barley
endosperm phenome, which can be used for discrimina-

tion of normal barley and high-lysine mutants. In the

near isogenic background of the advanced barley lines,

the effects of the high-lysine genes and also different

growth environments were easily detected by NIR. A

clear discrimination was seen in a PCA using the wave-

length region 400–2500 nm. Also the ability of NIR to

discriminate different high-lysine mutant genotypes has

been demonstrated. In a work by Jacobsen et al., 2004,

even the phenotypic effects of different alleles in the same

locus were differentiated in a PCA, where a more extreme
mutant was shown to form a distinct cluster.

Comparison of the mean spectra from the PCA

clusters lead to identification of the spectroscopic

signatures that discriminated the mutant genotypes. A

Fig. 8. NIR as an exploratory tool. NIR spectra contain ‘hidden’ information about the sample compositions, but groupings and trends in samples

can easily be surveyed in a PCA based on the spectral data. The basis for the groupings is examined by use of various analytical methods, and gene

sequencing reveals the underlying genome.

Fig. 7. Multivariate workflow combined with proteomics. (a) Mass spectra are collected, in this case of the alcohol-soluble fraction from wheat

varieties. (b) By using PCA to analyse the collected spectra it is possible to compare the objects to each other in a score-plot (each spectrum is

represented by a spot). (c) Variables of interest can be detected by iPLS. (d) The high-resolution obtained by 2DGE is then used to isolate the few

proteins in the detected interval of interest. Further analysis is done by enzymatic digestion of the selected proteins and final identification by da-

tabase searching.
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small region (2280–2360 nm) in the spectra was identi-

fied as basis for visual discrimination of mutants and

also their differentiation from normal barley. Observed

absorption bands in this range were in the literature

assigned to protein side chains (amino acid-determi-
nant), cellulose and unsaturated fat. The effect of the

different high-lysine mutant genotypes on the amino

acid composition were thus reflected in the spectral

shape, but also the effects of the altered proteome on

other constituents such as starch, fat and fibre were

evident in the spectra. These pleiotropic effects, which

are often forgotten in analysis, are revealed by NIR, and

the perspective is that mutants and transformants can be
identified from their pleiotropic effects.

The ability of NIR to measure on the intact plant

thus provides a holistic fingerprint of the metabolic

status in contrast to other chemical methods applying to

plant extracts and thus being biased towards specific

chemicals. The advantage of using spectral information

about the total endosperm composition for classification

of unknown barley lines was demonstrated. A barley
line that was formerly considered a waxy line due to its

low amylose content was recognized as another mutant,

since its spectra grouped together with lys5 mutants in

the PCA model. The lys5 mutants were low in starch but

compensated for that by high b-glucan content and thus

differed from the classical waxy lines.

The use of the combination of NIR and PCA is a

totally exploratory approach. After identification of
clusters or outliers in a PCA, the proteome and me-

tabolome can be further investigated by more selective

methods like 2DGE, MS, amino acid analysis and other

chemical analyses. In this respect, knowledge of the

wavelengths at which the different constituents absorb

can be of great help for targeting the chemical analysis.

Genome analysis reveals the functional relationship

between the genomes and the metabolomes. The fin-
gerprinting approach allows for generating new hy-

potheses about the gene functions and is more objective

than the traditional procedure in functional genomics,

where only test of the logical response to a perturbation

is made (Gidman et al., 2003).

2.5.2. Wheat quality

NIR has long been a recognized method for accurate
prediction of the protein content of wheat for assessment

of its breadmaking potential (Morris and Rose, 1996).

The baking quality of flour, however, relates to both the

amount and quality of the gluten proteins and is also

determined by the complex interactions of all the bio-

chemical constituents in flour (Veraverbeke and Delcour,

2002). Providing a measure of all the primary constitu-

ents simultaneously, NIR should have potential for de-
termination of this quality. Various biochemical and

physical properties of dough, relating to the baking

quality, have been reasonably estimated by NIR, but a

strong correlation between the measured property and

the total protein content can lead to wrong conclusions.

NIR is, however, sensitive not only to protein content but

also to protein quality to some degree (Wesley et al.,

2001). The quality of gluten protein is partially deter-
mined by the glutenin to gliadin ratio and the weight

distribution of glutenins (Wesley et al., 2001). NIR is

generally not very sensitive to individual levels of different

proteins, but is has been found anyway that the individual

contents of gliadin and glutenin can be estimated to some

degree from NIR spectra not only because of their cor-

relation to total protein content (Wesley et al., 2001).

2.5.3. Characterization of gluten

Dried gluten is used in the baking industry for im-

proving the bread-making performance of wheat flour.

To assure satisfactory performance of the gluten, ass-

esment of both composition and functional end-use

properties is required (Czuchajowska and Pomeranz,

1991). An important quality parameter of gluten is the

moisture content, since high moisture content (above
10%) promotes deterioration of gluten quality. Other

quality parameters include protein, free lipid and ash

content as well as particle size and various rheological

properties (Czuchajowska and Pomeranz, 1991). NIR

has been found useful for determination of all these

parameters, though composition was much better pre-

dicted than the physical and rheological properties

(Czuchajowska and Pomeranz, 1991).
It is more desirable to know how well gluten performs

in bread-making than just knowing its individual quality

parameters. An accepted test for gluten functionality is

measurement of the increase in volume of bread baked

from flour fortified by gluten, and NIR has been tested

for its ability to predict this end-use property. In the

work by Czuchajowska and Pomeranz, 1991, it was

found that a calibration model based on three wave-
lengths had limited power for predicting increase in loaf

volume, but it was, however, found that some rheolog-

ical properties of hydrated gluten (which correlates to its

end use properties) could be well predicted by three-

wavelengths MLR models.

2.5.4. Experiment: moisture in gluten

In an experiment FT-NIR reflectance spectra were
measured on samples of freeze-dried gluten powder,

which contained different amounts of moisture. In the

beginning of the experiment spectra were measured on

the dried gluten powders, and then samples were left to

absorb moisture in a moist chamber at room tempera-

ture (26 �C). Spectra were again recorded after 2, 4 and

24 h on the same samples (Fig. 9). The final water

content after 24 h was around 18% on a wet basis.
Broad water bands appear at around 1450 and 1930

nm for the moist samles and the intensity of the bands

increases as the water content becomes higher. At the
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same time protein bands decrease in intensity. The

spectra have been pretreated by multiple scatter cor-

rection (MSC) in order to remove undesired spectral

variation caused by light scattering. Light scattering

results from physical phenomena in the samples like
particle shape, size, size distribution and sample packing

and it introduces both multiplicative and additive effects

in the spectra (Martens et al., 2003). To demonstrate

how PCA can provide an overview of the variance and

groupings in data a score plot from PCA on the MSC

corrected full spectrum is shown in Fig. 10.

PC1 which describes 99% of the spectral variance

reflects the increase in water content. PC2 shows an-
other smaller phenomenon taking place.

To get more insight into the spectral changes that

take place when water increases and interacts with the

gluten proteins, the second derivative was taken. Second

derivative spectra are shown in Fig. 11. Taking the

second derivative of the spectra facilitates the visual

inspection of the spectra since peaks in the original

spectrum appear as more clearly separated downward
peaks in the second derivative spectrum and at the same

time multiplicative and additive effects are removed. The

signal to noise ratio is, however, decreased.

The spectral changes upon hydration can originate

from the changed concentrations, the changed hydration

of the protein, changes in protein secondary structure

upon hydration or from changes in protein side chains.

Also changes in other minor components cannot be
excluded.

A zoom picture of a small wavelength region with

interesting spectral changes is seen in Fig. 12. It seems

that two peaks that are close to each other change shape

Fig. 9. NIR spectra measured on samples of gluten powder with dif-

ferent water contents.

Fig. 10. Scoreplot from a PCA on the NIR spectra seen in Fig. 9.

D, dry gluten samples. W, moist gluten samples. Last number refers to

hours of hydration.

Fig. 11. Second derivative spectra. Original NIR spectra are seen in Fig. 9 and are measured on samples of gluten powder with different water

contents.
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and shift wavelength positions to lower wavelengths

when the samples become moist.

Changes in protein secondary structure are possibly
reflected in the amid combination bands, which are

sensitive to the degree of hydration, but also protein side

chain vibrations can change upon secondary structure

changes (Sefara et al., 1997). The interesting region en-

closes the wavelength range 2255–2290 nm, and in this

area combinations of CH2 stretch and H–C–H bending

vibrations from protein side chains and carbohydrates

are found (starch content is low). It has been found that
increased hydration of some gluten proteins leads to

increased b-sheet content and decreased unordered

structure, and at a certain point the b-turn content is

increased (Belton et al., 1995). The analysis methods

that have been used for elucidation of the changes in

secondary structure that arise upon hydration, are yet

needed for relating these structural events to the changes

seen in the NIR spectra.

2.5.5. Applications to fruits and vegetables

The lower absorption intensities of water in the NIR

compared to the MIR means that NIR is useful for

measurements on high moisture samples such as fruit. A

mode for measurements that is especially useful for

measurements on intact fruits is called interaction, and it

uses a fiber-optic probe, where the probability of the
incident beam to interact with the sample is increased

(Pasquini, 2003).

NIR is thus used for the assessment of the quality of

fruits and vegetables. It has been successfully applied for

determination of some of the most important quality

aspects of fruits such as soluble solid, sugar and acidity

content. Soluble solid content (SSC) or total solid con-

tent (TSC) (or dry matter content) has been determined
for various fruits such as apples, melons, peaches, to-

matoes, kiwis and dates and for vegetables such as on-

ions, potatoes and corn by use of NIR (Kawano, 2000;

Lammertyn et al., 2000; Schmilovitch et al., 1999;

Slaughter et al., 2003).

NIR spectra have been found useful for determina-

tion of sucrose, glucose, fructose, citric acid, malic acid

and ascorbic acid content in strawberries (Jin and Cui,
1994). In an experiment using reflectance measurements

on potatoe slices, a calibration of sugar content, how-

ever, did not perform well, and NIR was also found

insensitive to the fructose content (Scanlon et al., 1999).
On the other hand, much better calibrations of sugar

content have been reported when using transmission

measurements on thin potato slices (Mehrubeoglu and

Cote, 1997). NIR is in addition able to detect secondary

metabolites in plants since, e.g., phenols, alkaloids,

tannins and glucosinolate have distinct absorptions in

the spectrum (Foley et al., 1998).

Also textural properties of fruits and vegetables can
correlate to NIR spectra. Calibration models of NIR

spectra of pears could predict fruit hardness, juiciness and

mealiness. NIR can also predict the firmness, waxiness

and mealiness of boiled potatoes as well as hardness and

crispiness of boiled carrots (De Belie et al., 2003).

3. Conclusions

The field of classical proteomics should be extended

to also include handling of large datasets by appropriate

data analysis. The analysis performed by 2DGE, MS

and NIR give rise to many data and multivariate data

analysis can unravel the complicated data structures,

which can relieve the characterization phase in classical

proteomics. Based on analysis of proteins from the
wheat gluten complex, we have used this technique to

focus on the interesting spots or the interesting part of

spectra before the actual identification phase. Multi-

variate analysis has shown interesting results as a sup-

plement to classical proteomics and added a new

dimension to the field of proteomics.

4. Experimental

For preparation of gluten powder, dough was made

by mixing commercial wheat flour with distilled water

(2:1) by hand. Gluten was washed out manually with

distilled water from the dough and freeze-dried. The

freeze-dried gluten was ground to powder and sieved

through a 500-lm screen.
Moist samples were obtained by placing 2� 700 mg

gluten powder in a sealed container with water in the

Fig. 12. Zoom picture of second derivative spectra in Fig. 11. Dry and moist gluten samples show distinct spectral features.
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bottom, and FT-NIR spectra were collected at 2, 4, and

24 h after leaving the samples for moisture absorption.

FT-NIR spectra were also obtained from two gluten

samples, which were kept dry.

For the FT-NIR measurements, powders were com-
pressed in a sample cup and spectra were recorded using

a Spectrum One NTS, Perkin–Elmer spectrometer in

reflectance mode. Spectral data were recorded from 793

to 2495 nm at 1.67 nm intervals with co-addition of 50

scans and use of a spectral resolution of 8 cm�1. A

Spectralon� diffuse reflectance standard was used as

reference. NIR spectra were analyzed by using The

Unscrambler Software version 8.0. Spectral prepro-
cessing included MSC.
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Appendix A

Here we describe the spot detection algorithm. No-

tation and syntax are that of Matlab.

The initial model is calculated using Singular Value

Decomposition (SVD) as:

½U;S;V� ¼ svdðXÞ:
From this we get T and P as:

T ¼ VS;

P ¼ U:

The optimal number of principal components to use in

the model is obtained by studying the S matrix, which is

a diagonal matrix of the eigenvalues. The eigenvalues
describe how much of the variance is described by each

principal component, and is commonly expressed in

percents as:

diagðSÞ � 100
sumðdiagðSÞÞ :

From this the optimal number of principal components

(AOpt) is determined and the T, P and E matrixes are

constructed and the reference variance is calculated

(Fig. 3, step 2):

T ¼ Tð:; 1 : AOptÞ;

P ¼ Pð:; 1 : AOptÞ;

E ¼ Peak0 � T � P0;

s2Ref ¼ meanðEð:Þ:^2Þ:
In every pixel of the gel image to be analyzed is a sub-

image the same size as the spot sampling sub-image is

extracted and unfolded to row vector x, which is used as

data in a new model that is calculated from the loadings

matrix from the reference model. Hereby it is possible to

estimate a new score matrix, by projecting x on P and

hence the residual matrix and variance for the sub-image:

x ¼ t � P0 þ e;

t ¼ x � P � ðPP0Þ�1
;

t ¼ x � P;

e ¼ x� t � P0;

s2 ¼ meanðeð:Þ:^2Þ:
The variance, s2 is used to calculate a peak-probability

from the s2Ref (Fig. 3, step 7):

s2Ratio ¼ s2=s2Ref ;

Prob ¼ ScalingFactor � 1=s2Ratio;

Prob ¼ maxðProb; 0Þ;

Prob ¼ minðProb; 1Þ;

PeakProbability ¼ Probþ f ðleverageÞ:
This is shown below:

– Make reference PCA model and calculate reference scores and loadings.

– Study the S matrix and determine the optimal number of principal components (AOpt) and estimate the reference

variance (s2Ref) with this number of principal components.

– for h ¼ 1 : nh (number of horisontal pixels in the gel-image to be analyzed)

– for v ¼ 1:nv (number of vertical pixels in the gel-image to be analyzed)

– Extraxt a sub-image with centre in the pixel (v� dv : vþ dv; h� dh : hþ dh)
– Reshape to a row vector, x
– Estimate the score matrix for the new x data from the reference loadings.

– Estimate the residual for the new x data: e ¼ x� t � P0

– Calculate the variance: s2 ¼ meanðeð:ÞÞ:^2)
– Calculate the probability factor for the pixel (v; h)

– end

– end
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Before the reference model is made the data is nor-

malised. This is done by Multiplicative Scatter Correc-

tion (MSC) (Martens et al., 2003).
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SUMMARY 

Fourier transform infrared (FTIR) spectroscopy is a valuable technique for characterisation of biological 

samples, providing a detailed fingerprint of the major chemical constituents. However, water vapour and 

CO2 in the beam path often cause interferences in the spectra, which can hamper the data analysis and 

interpretation of results. In this paper we present a new method for removal of the spectral contributions due 

to atmospheric water and CO2 from ATR-FTIR spectra. In the IR spectrum, four separate wavenumber 

regions were defined, each containing an absorption band from either water vapour or CO2. From two 

calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model 

spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous 

solutions and a yeast biofilm (C. albicans) growing on an ATR, respectively). The amounts of the 

atmospheric gases as expressed by the model spectra were estimated by regression, using second derivative 

transformed spectra, and the estimated gas spectra could subsequently be subtracted from the sample spectra. 

For spectra of the growing yeast biofilm, the gas correction revealed otherwise hidden variations of 

relevance for modelling the growth dynamics. The presented method has proven to be a valuable tool for 

filtering atmospheric variation in ATR-FTIR spectra.  

 

Index headings: FTIR, attenuated total reflection (ATR), atmospheric correction, atmospheric absorptions, 

principal component analysis (PCA). 

 

INTRODUCTION 

In biological sciences, Fourier transform infrared (FTIR) spectroscopy has proven to be an important tool for 

measuring an overall chemical fingerprint of very different samples. For the monitoring of biological 

processes in fluids like fermentation and enzymatic reactions, the attenuated total reflection (ATR) FTIR 

technique has turned out to be very useful.1 This technique prevents saturation of the water peaks for aqueous 

samples, as a micrometer scale path length is achieved. Thus, FTIR is a versatile tool that allows for non-

destructive simultaneous quantification of a rich diversity of chemical constituents (proteins, lipids, 

carbohydrates, free vs. bound water, etc.) and certain physical properties (e.g. light scattering). The multi-

component detection is beneficial, for example in the real-time monitoring of bio-films, grown directly on 

the ATR-crystal.2,3 The relevant information is extracted from FTIR spectra by use of chemometric methods.  

However, the analysis of FTIR spectra is often hampered by IR absorptions due to uncontrolled, varying 

amounts of water vapour and CO2 in the light path. The atmospheric absorption of water vapour 

demonstrates characteristic absorption bands, each showing a symmetric pattern of fine spectral lines and 

involving the excitation of a chemical bond vibration. As each vibrational state is associated with many 

rotational levels (J), spectral lines appear symmetrically in two branches of the band, resulting from 
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transitions involving ∆J= +1 and ∆J= -1, respectively. These lines are high-frequent compared to the 

absorptions from liquids and solids.4 For CO2, the absorption lines are less resolved, and a high instrument 

resolution is needed in order to see the individual lines of the CO2 bands.  

The atmospheric absorptions represent an experimental nuisance, creating unwanted, but systematic 

patterns which often cannot be completely avoided by purging of the instrument with gaseous N2 or using 

background subtraction. The concentrations of water vapour and CO2 are likely to vary between the 

background measurement and the sample scanning. This problem is for example encountered when a process 

is followed over a long time in the ATR-cell (e.g. biofilm development). For ATR-FTIR measurements of 

aqueous samples, evaporation from the sample itself may increase the humidity in the sample compartment 

and give rise to the problems, especially if the measurements are carried out at elevated sample temperatures.  

 The CO2 bands are not as wide as the water vapour bands and the major band is found in a spectral region 

devoid of absorptions from the main biochemical components (lipids, proteins and carbohydrates). On the 

other hand, the water vapour absorptions overlap with some important bands from proteins and lipids and, in 

particular, the presence of water vapour absorptions in the amide I region (1700-1600 cm-1) presents a 

problem in analysis of protein secondary structures based on the amide I band. Even small contributions 

from water vapour may hamper this analysis and lead to incorrect band assignments, as these absorptions are 

amplified by the resolution enhancement (e.g. by Fourier self deconvolution).5  

Thus, it appears necessary to correct the spectra for the atmospheric contributions in order to obtain any 

sample information or to improve accuracy and precision of the FTIR calibration models. However, as the 

sub bands of amide I show line widths comparable to those of the water vapour lines, information may be 

lost if simple low-pass filtering is used for reducing the water vapour effects. Commonly, a gas spectrum is 

collected, whereafter the subtraction from each sample spectrum is accomplished by use of an algorithm in 

the spectroscopic software. The main problems associated with this approach relate to difficulties in 

determining the correct subtraction factor and in obtaining exactly the same band shapes for the reference 

and the sample spectrum. As regards the latter problem, the sample itself may influence the spectral shape 

due to the influence on the beam geometry. In addition a low instrument resolution causes distortion of the 

spectral lines and results in non-linearities. The present paper shows a model-based pre-processing tool for 

ATR-FTIR spectra to minimise water vapour and CO2 spectral contributions. Successful removal of these 

interferences is demonstrated for different types of samples. 

Notation and terminology 

I means measured light intensity, while A means absorbance, defined as log10(I), or log10 (I/I0), when 

mentioned explicitly. I(ν) means measured intensity at ν cm-1. Ai,k means absorbance in sample i at 

wavenumber channel k. 
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EXPERIMENTAL 

All measurements were performed on a Bruker Equinox 55 FTIR instrument, equipped with a liquid-

nitrogen-cooled MCT detector, scanning from 4000 cm-1 to 600 cm-1. The nominal instrument resolution was 

4 cm-1, but the spectral readings were recorded at 2 cm-1 intervals. Aqueous and biofilm samples were 

measured on a horizontal (ATR) ZnSe crystal with ~5 internal reflections. Each spectrum resulted from 

coaddition of at least 128 scans (if not otherwise mentioned) obtained in single beam mode. Background 

spectra were obtained on the empty sample holder.  

Four FTIR experiments were carried out, as described in the following. Gas model spectra for water vapour 

and CO2 were obtained from Experiment 1 (providing a data set of only atmospheric absorptions) and 

Experiment 2 (providing a data set with also liquid water absorptions). The model performance is tested on a 

basic and a realistic/complex data set, obtained from Experiment 3 and 4, respectively. 

Experiment 1: Gas calibration measurements and estimation of four primary gas model spectra 

A total of 120 FTIR spectra of various concentrations of water vapour and gaseous CO2 were obtained by 

acquiring several spectra in an empty sample compartment during the replacement of room air with gaseous 

N2 in the beam path. The N2 purging was started after closing of the sample compartment and spectra were 

recorded once a minute for 60 minutes. Each spectrum resulted from coaddition of 32 scans. This experiment 

was performed twice.  

Experiment 2: Water calibration extension measurements  

Milli-Q water (distilled and ion-exchanged) and various salt solutions of low concentrations (0.2-1.0 M) of 

NaCl, MgSO4 or NaClO4 (prepared in Milli-Q water) were measured on the ATR crystal, mounted in a 

closed sample cell, which allowed for temperature control by circulation of heating or cooling water in the 

space around the ATR-cell. A total of 205 sample spectra were recorded with different levels of water 

vapour and CO2 in the sample compartment. Water was measured at different temperatures between 8 and 

60°C, while salt solutions were measured at 15, 22 and 29°C. The FTIR instrument was kept at room 

temperature in all measurements. These ATR-FTIR spectra of aqueous solutions were used to define 

additional “nuisance” spectra and to develop a between-regions calibration model (see later). 

Experiment 3: Water test measurements 

Water spectra at different temperatures and with different water vapour and CO2 levels were measured by 

placing Milli-Q water in the ATR-cell at one temperature (about 22°C), closing the sample compartment and 

starting N2 purging. The spectra were read at consecutive points in time while the sample was changed 

gradually towards another temperature (about 10°C) by slowly decreasing the temperature of the cooling 

water. The FTIR instrument itself was kept at room temperature. In total 25 spectra were recorded in this 
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time series. These spectra were used for testing how well the “nuisance” gas modelling worked for samples 

similar to some of the calibration samples. 

Experiment 4: Yeast cell culture test measurements  

Candida albicans (strain SC 5314, ATCC collection) was grown in 10 ml Sabouraud Medium (bioMérieux, 

France) for 24 hours. 300 µl of this culture were added to 3 ml of fresh medium and placed on the ATR 

crystal at room temperature (21°C)  and a biofilm was allowed to develop. Biofilm growth was monitored by 

ATR-FTIR during 19 hours and a total of 58 spectra were collected at intervals of 20 minutes throughout the 

growth period. 64 scans were coadded for obtaining each final spectrum. These samples were used for 

testing how the correction for water vapour and CO2 performed for sample spectra that were very different 

from the calibration sample spectra 

Determining the primary gas model spectra 

The spectra in Experiment 1 were used for defining primary “nuisance” spectra. Temporal absorbance 

differences Di,k = Ai-1,k- Ai,k, for samples i=1,2,3,.. at wavenumber channels # k=1,2,…1764 (corresponding 

to the region 4000-600 cm-1) were computed. This was done in order to reduce the impact of possible 

instrument drift during the hour-long experiments. The H2O(g) ranges k= 1:400 (4000: 3231 cm-1) and 

1001:1450 (2072:1205 cm-1), and the CO2 ranges k=809:930 (2442:2208 cm-1) and 1601:1764 (914:600 cm-

1) were modelled separately; each containing bands from H2O(g) or CO2 (see Table 1).  

 

 Wavenumbers [cm-1] Absorption band 
Water vapour region 1 
Water vapour region 2 
CO2 region 1 
CO2 Region 2 

4000-3231 
2072-1205 
2442-2208 

914-600 

Sym. and asym. stretching ν1,3 
Bending ν2 
Asym. stretching  
Bending 

Table 1. The four defined gas regions.  Sym: symmetric. Asym: antisymmetric. 

An uncentred principal component analysis (PCA), i.e. a singular value decomposition (svd) was performed 

in each region, and the first two principal components (PC) loading vector of Di,k=k1:k2 were in each case 

extracted and saved as a primary “nuisance” spectrum. (Outside the defined ranges, the values are zero).  The 

first component turned out to be a typical water vapour or CO2 spectrum, while the second component 

models the major systematic variation around the typical spectrum in each region (for example caused by 

non-linearities and by pressure/temperature changes). Thus, loadings for a two-component bi-linear gas 

model were defined for each of the four gas regions: Two water vapour regions and two CO2 regions.  

Determining the secondary gas model spectra 

The eight primary gas model spectra estimated in Experiment 1 (two components in each of the four regions) 

were applied (see below) to reduce gas contributions in the spectra in Experiment 2. These gas-reduced 
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spectra were subsequently smoothed with a moving-average filter, averaging each channel with its 5 left- and 

right-hand neighbour channels. The difference between the gas-reduced spectra and their smoothed versions 

showed one clear remaining high-frequent variation pattern in the two H2O(g) regions and in the main CO2 

region. Hence, an additional, secondary “nuisance” gas model spectrum was determined by svd of the 

differences in each of the two H2O(g) regions and in the first CO2 region (the second CO2 region was too 

noisy). The first loading vectors were used as secondary gas model spectra after orhogonalization to the eight 

primary gas model spectra. These secondary spectra may represent distortions of the band shapes introduced 

by the samples or the ATR-crystal, and their inclusion in the model is likely to improve the removal of the 

atmospheric absorptions for similar measurements. 

As a result, the final bi-linear gas models had three model spectra in each of the water vapour regions and 

in the first CO2 region and two model spectra in the last CO2 region, i.e. in total 11 model spectra. 

Correction for the gas model spectra 

The concentrations of water vapour and CO2 in the spectra may in principle be estimated (by least squares 

regression) based on the model of the absorbance (Ai,k) of sample i in wavenumber channel k 

(k=1,2,…1764), shown in Eq. 1. 

Eq. 1. 

In Eq. 1, ci,j represents the concentration or score of gas element j =1,2,...,J (e.g. J=11), kj,k represents the 

model absorbance of gas spectrum j at channel k, and di,k and ei,k represent other chemical and physical 

absorption effects and the measurement error, respectively, at this channel.  

However, even when the gas model spectra kj,k are known, it is difficult to estimate their concentrations ci,j , 

because the “interesting” chemical and physical absorption effects di,k are usually unknown. If these 

unknown effects are large and ignored in the estimation of the gas scores, then they may create large alias 

errors in the gas score estimation. Therefore, we here estimate the gas scores only based on the high-frequent 

part of the spectra where the “non-gas” sample constituents and other phenomena that constitute di,k have 

much more smooth features than the gas elements  (This assumption may not be correct in all parts of the 

spectrum, especially for protein absorptions in the second water vapour region, see below). Thus, the gas 

concentration estimation is here done in the second derivative: For each sample i with spectrum Ai,k, the 

simplest negative second derivative was computed according to Eq. 2. 

Eq. 2  Gi,k = 2Ai,k- Ai,k-1- Ai,k+1, k=2,3,..... 

Similarly for each gas model element j with spectrum kj,k, the simplest negative second derivative was 

computed according to Eq. 3. 

Eq. 3.   hj,k = 2kj,k- kj,k-1- kj,k+1, k=2,3,..... 

kiki

J

j
jkijki edkcA ,,

1
, ++= ∑

=
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Hence, we assume that the second derivative of the unknown, but smooth sample contribution spectrum di,k, 

k=1,2,... can be approximated by a simple unknown offset fi at all channels in the second derivative. The 

second derivative model can then be written:  

Eq. 4.  kiki

J

j
kjjiki efhcG ,

1
,,, 1 ++= ∑

=

 

Gas concentrations ci,j in the sample spectra are then estimated by least squares regression of Gi,k on hj,k, 

j=1,2,...,J and on vector 1, by minimizing the residual sum of squares in ei,k. 

Indirect gas predictions: In case the spectra contain the amide I band from proteins, the above-mentioned 

assumptions about smoothness of the real sample spectra may not hold. The scores (“concentrations”) of the 

water vapour components in the second H2O(g) region (containing the amide I region) may instead be 

estimated indirectly by prediction from three water vapour components in the first region by Eq. 4b, where 

J=3 represents the three components of the first H2O(g) region, and M=3 the three components of the second 

region: 

Eq. 4b.  ∑
=

+=
J

j
mmjjimi bbcc

1
,0,,,  m=1,2,..M 

Likewise, the scores of the M=2 CO2 components in its second wavenumber region were predicted from J=3 

three CO2 components in the first region by Eq. 4b. The model parameters bj,m and b0,m in Eq. 4b were 

estimated by full-rank regression for water vapour and for CO2 separately using the scores ci,m and ci,j 

obtained in Experiment 2. The indirect score estimation models were then used for the prediction in 

Experiment 4, since samples in this experiment contain proteins. 

With the gas scores ci,j thus estimated, the sample spectra are then gas-corrected by subtracting the gas 

scores ci,j, multiplied by the corresponding gas model spectrum (Fig. 2a-d). See Eq. 5. 

Eq. 5. 

Test of the final model 

The final extended gas model thus consisted of three model spectra in each of the water vapour regions, three 

model spectra in the main CO2 region and two model spectra in the second CO2 region. This final gas model 

was applied for correction of the independent test sets from Experiments 3 and 4.  

Evaluation of the gas model performance was done by inspection of scores and loadings from a PCA 

before and after the gas correction. In addition, water vapour indices were used for comparison of water 

vapour absorptions in the spectra. The index was calculated for each spectrum as Amax - Amin in the 1847-

1837 cm-1 region in the second derivative and used as a measure of the water vapour level.6 

All results were computed and displayed in the authors’ software using Matlab (TM) version 7.0. 

∑
=

− −=
J

j
kjjikicorrectedgaski kcAA

|1
,,,,, ˆ



 

 167

RESULTS 

Experiment 1: Estimation of four primary gas model spectra 

Fig. 1a shows the raw data (intensity I(ν) spectra) from the first of the time series in Experiment 1, showing 

water vapour and CO2 in room air being gradually replaced with N2 purging gas and hence leaving smaller 

and smaller intensity reductions. Two characteristic water vapour absorption patterns are evident in the 4000-

3500 cm-1 and 2000-1200 cm-1 ranges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Calibration spectra from one time-series in Experiment 1. Infrared spectra of room air were measured 
consecutively in time during purging with N2(g) to obtain different concentrations of water vapour and CO2. a) Intensity 
spectra I(ν). b) Absorbance spectra A(ν)=-log10(I(ν)). c) Water vapour segment 1. d) Water vapour segment 2. e) CO2 
segment 1. f) CO2 segment 2.  

These are the results of rotation-vibration (“rovibrational”) transitions, associated with the stretching and 

bending vibrations of H2O, respectively. Moreover, the double CO2 absorption band around 2350 cm-1 is 

seen, as well as a weaker CO2 band around 670 cm-1, involving CO2 antisymmetric stretching and CO2 

1000 1500200025003000 3500 4000 

0.2 
0.4 
0.6 
0.8 

1

 In
te

ns
ity

 

Wavenumber [cm-1] 

1000 1500200025003000 3500 4000 
0 

0.02 
0.04 

A
bs

or
ba

nc
e 

Wavenumber [cm -1]

3300 3400 3500360037003800 39004000 
0 

0.01 
0.02 

A
bs

or
ba

nc
e 

Wavenumber [cm -1]

1300 1400 15001600170018001900 2000 
0 

0.02 
0.04 

A
bs

or
ba

nc
e 

Wavenumber [cm -1]

2250 230023502400 
0 

0.02 
0.04 

A
bs

or
ba

nc
e 

Wavenumber [cm -1]

600650 700750800850 900 
0 
5 

10 
15 

x 10 -3 

A
bs

or
ba

nc
e 

Wavenumber [cm -1]

a 

b 

c 

d 

e 

f 



 

 168

bending, respectively.7 Only the latter CO2 absorption demonstrates a so-called Q-branch in the middle of the 

band. Each water vapour and CO2 band was contained in one of the four defined spectral regions, according 

to Table 1. In the first of two defined water vapour regions (4000-3231 cm-1), the atmospheric water bands 

overlap only little with protein absorptions, whereas the interference is more dramatic in the second water 

vapour region (2072-1205 cm-1), as this region contains amide bands from proteins as well as absorption 

bands from lipids. The first of the defined CO2 regions (2442-2208 cm-1) is outside the absorptions regions 

for the common biochemical constituents, whereas the second region (914-600 cm-1) contains some 

important backbone vibrations of macromolecules. 

Primary “nuisance” spectrum for each spectral region: The absorbance spectra A(ν)=-log10(I(ν)), i.e. 

without background correction, in Fig. 1b show more clearly the four gas absorptions, which are amplified in 

Fig. 1c-f. The peak sizes decrease with purging time. The svd of each gas element region showed that the 

first component accounted for more than 99 % of the total variance, while the second component, although 

small, also showed systematic contributions. This indicated that only one major and one minor spectral 

pattern of gas variation could be observed in each region. This was seen within each of the two time-series in 

this experiment. The two replicate PC loading vectors were very similar, for both component 1 and for 

component 2, in each of the four spectral regions. Hence, their mean (shown in Fig. 2a-d) was subsequently 
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Fig. 2. Primary gas model spectra obtained from Experiment 1 by singular value decomposition (svd) of each 
gas region. Two component loading spectra are defined in each wavenumber region. In each region, the loading 
vectors for the first and the second component were normalised to correspond to a score value of 1 and 0.5, 
respectively, in an arbitrary sample (#2 in time series 1 in Experiment 1). 
a) Water vapour segment 1. b) Water vapour segment 2. c) CO2 segment 1. d) CO2 segment 2.  
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used for each region. The first component loading (highest curve in each of the four plots) is seen to be 

almost non-negative, as expected for chemical absorbances. The second component loading (lowest curve in 

each of the four plots) has been amplified for visual clarity and it shows both negative and positive 

absorbances. In each case, the corresponding scores for this second component showed curved but 

temporally smooth relationship to the score of the first component (not shown here), indicating that it 

represents a weak but systemati c nonlinear effect (e.g. due to the low instrument resolution). 

The levels of the eight primary “nuisance” gas components were estimated in the two time series and are 

seen to decrease as a function of gas purging time (Fig. 3). Fig. 3 reveals that very similar water vapour 

levels are estimated from each of the two regions of water vapour absorptions, and the same is found in case 

of CO2 estimation from the two CO2 regions. 

Experiment 2: Estimation of three secondary gas model spectra 

Absorbance spectra of the 205 aqueous solutions measured in the ATR-cell are shown in Fig. 4a. These 

samples come from several measurement series taken over two months. The spectra display the three broad 

absorbance peaks around 3300, 1640 and 800 cm-1 from liquid water plus a major peak around 1100 cm-1 

(due to the presence of anions SO4
2- and ClO4

- in some of the samples). However, upon closer inspection, the 

presence of some high-frequent water vapour contributions is evident, as well as contributions from the first 

CO2 double-peak. In contrast, the second CO2 peak is not readily visible. The spectra were corrected for the 

eight primary gas “nuisance” spectra by the procedure described by Eq. 1-5 in the Methods section: The 

second derivative transformed sample spectra were regressed on the second derivative transformed model 

spectra (plus a local polynomial), and the hereby estimated gas contents were used for determination of the 

primary spectral gas contributions. 

 

Fig. 3. Gas scores for two time series in 
Experiment 1. Estimated levels of the 
primary gas components. Upper curves, 
starting near 1: the first component in the 
four wavenumber segment models. 
Lower curves, starting near 0.5: the 
corresponding second components.  
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These were subsequently removed from the non-transformed spectra. The corrected spectra are seen in Fig. 

4b. The estimated and subtracted primary gas contributions (Fig. 4c) either have positive or negative gas 

peaks in each region, illustrating how the samples may have higher or lower gas content than a reference 

sample (background spectrum).  

Ideally, the high-frequency residuals of the corrected spectra (i.e. after subtracting the low-pass filtered 

versions of the spectra) should only contain measurement noise. However, upon closer inspection, these 

high-frequency residuals display some remaining systematic high-frequency patterns in three of the four gas-

channel regions (Fig. 5a). Therefore, a separate svd of the residuals in each of these three regions was 

performed. The first component loading was extracted (Fig. 5b) and these were projected (see e.g. Martens & 

Naes 1989)8 on the primary “nuisance” spectra. The orthogonalized residuals (Fig. 5b) were used as 

secondary loadings i.e. secondary “nuisance” spectra (orthogonal to the primary “nuisance” spectra). They 

may account for deviations from the atmospheric spectra in Experiment 1, caused by the samples or the ATR 

crystal. 

 

Fig. 4. Calibration spectra of water and salt solutions at different temperatures obtained by 
ATR-FTIR in Experiment 2. a) Raw absorbance spectra. b) Spectra corrected for the eight 
primary gas model spectra. c) Estimated gas spectra, which are subtracted from the raw 
spectra.   
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Fig. 5. Secondary gas model spectra from residuals in Experiment 2. a) High-frequency residuals in the spectra from 
Fig. 3b. b) Loading of first component from svd of the residuals in Fig. 5a for three gas regions (the two water regions 
and the main CO2 region). c) The secondary model spectra, obtained by ortogonalizing the spectra in Fig. 5b on the 
primary model spectra (Fig. 2a-d). 

Indirect gas prediction model: To what extent do the two different water vapour regions give similar 

estimates of water vapour concentration in a given sample’s spectrum? Fig. 6 shows various relationships 

between water vapour scores from regions 1 and 2, for components 1, 2 and 3, respectively. The top row 

shows the estimate from region 1 vs. the estimate from region 2. Considering that the loading spectra for the 

first two (primary) components have been obtained from a rather different measurement situation 

(Experiment 1) than the present, the similarity between the scores from the two regions is good (seen from 

the closeness to the diagonal where the abscissa equals the ordinate). Only a scaling difference is seen for the 

first component (Fig. 6a), while an offset is seen for the second and much smaller component (Fig. 6b). As 

the two regions resulted in rather similar scores in Experiment 1, the deviations seen for Experiment 2 (Fig. 

6a,b) may be related to the large differences between the spectra in the two experiments (of the empty 

sample compartment and of water on the ATR).  

Fig. 6c shows that the two regional loading spectra for the third (secondary) components obtained in 

Experiment 2 reflect much of the same systematic variation phenomenon, presumably related to varying 

water vapour concentrations. Hence, while the two wavenumber regions gave clearly related score estimates, 

these are not equal, and the two water vapour regions thus may need to be handled separately.  
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Fig. 6. Score relationships for water vapour in Experiment 2. Left, center, right: components 1, 2 and 3. Top: score 
estimate in region 1 (ordinate) vs. score estimate in region 2 (abscissa). Bottom: score estimate in region 2, predicted 
from score estimates in region 1 (ordinate) vs. score estimate in region 2 (abscissa).  

To prepare for situations where protein and lipid signals make water vapour concentrations estimation 

difficult in water vapour region 2, linear full-rank calibration models were established from the spectra in 

Experiment 2, to predict the water vapour component scores in region 2 from those in region 1 (i.e. the 

component scores in region 2 were regressed on to the component scores in region 2). Fig. 6d-f show the 

prediction ability of the models. For each of the three components it seems that the region 2 water vapour 

scores can be successfully predicted from the region 1 water vapour scores, at least for these types of spectral 

measurements. The degree of over-fitting in the predicted scores in Fig. 6d-f is considered negligible, since 

the number of observations (205) is far higher than the number of independent parameters (4) estimated for 

each component in Eq. 4b. Similar calibration models were developed for predicting CO2 scores in the 

second CO2 range from the first CO2 range. However, the modelling of (small) CO2 effects in the second 

range was obscured by measurement errors in this region, which must be considered unreliable. These 

calibration models to predict regions 2 from regions 1 for water vapour and CO2 will be used in Experiment 

4 to avoid confounding with proteins and lipids. 

Experiment 3: Test of model on ATR-FTIR spectra of aqueous samples 

Absorbance ATR-FTIR spectra obtained on pure water, dropping gradually from 21 to 10oC, are shown in 

Fig. 7a. The absorbance at 4000 cm-1 was subtracted from each spectrum to correct for irrelevant baseline 
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variations. The gas peaks and the temperature effect on the water spectrum become apparent after mean 

centring each channel (Fig. 7b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Test of the gas model, using ATR-FTIR spectra of pure water at different temperatures, obtained in Experiment 
3. a-b) Raw absorbance spectra before and after mean centring. c-d) Mean centred spectra after subtraction of gases, 
estimated in raw absorbance and in second derivative, respectively. e) Gas model spectra. 

In Fig. 7c and 7d, the mean centred spectra are seen after gas correction, based on estimation using the raw 

absorbance data and their second derivatives, respectively. Fig. 7e shows the gas component model.  

The high amount of remaining water vapour in the corrected spectra in Fig. 7c illustrates the alias problem of 

the simpler gas estimation alternative based on the actual absorbance spectra instead of their second 
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derivatives. Here, each spectrum in Fig. 7a have been regressed on the gas model spectra in Fig. 7e without 

first taking second derivatives and the regression residuals are used as gas-corrected spectra. (The gas model 

had to be compacted to give meaningful gas score estimates: 3 water vapour component spectra and 3 CO2 

component spectra were defined by summing the wavenumber regions 1 and 2 in the  original 11 model 

spectra in Fig. 7e). In contrast, the gas correction based on estimation of gas scores in the second derivative 

(Fig. 7d) effectively eliminated the gas nuisance effects. 

Fig. 8 illustrates the consequences for the subsequent data analysis, when applying no gas correction or 

when using the two different approaches to the gas correction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Results from PCA models of the spectra, obtained in Experiment 3. a,b) Raw spectra. c,d) After gas correction, 
estimated in raw absorbance. e,f) After gas correction, estimated in second derivative. Left side: the spectral variation 
patterns found, i.e. PCA loadings vs. wavenumber. Right side: sample models i.e. scores vs. time. 

Simple PCA, i.e. svd of the mean-centred spectra in Fig. 7b-d was used in order to extract the major 

systematic patterns of variation in the FTIR spectra as the liquid water sample cooled from about 21°C to 

about 10°C. The PC loading spectra and the PC scores, both scaled by the size of the component, are shown 

on the left and right side, respectively, of Fig. 8. One PC seems to dominate the data in all three cases. This 

variation is presumed to reflect the temperature-dependent changes between a weakly and a strongly 

hydrogen bonded state of liquid water. More detailed interpretation of this phenomenon is presented by 

Martens et al. (2006)9. Of more interest presently is the water vapour nuisance effect: The scores of the first  
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PC is not affected by water vapour and CO2 nuisances, as these are minor effects compared to the 

temperature-induced variation in liquid water. However, looking at the loading spectra (left hand-side of Fig. 

8), which are intended to represent the effect of temperature on liquid water, these are strongly contaminated 

by irrelevant high-frequent water vapour signal in case of the untreated data (Fig. 8a) and the over-simplified 

gas score estimation (Fig. 8c). 

It was not possible to use regression for estimation of the water temperature effect, since the precise 

temperatures were not known for these samples. Anyway, this approach would have been to no avail, as the 

temporal change in the temperature of the liquid water sample in the ATR is strongly confounded with the 

temporal change in water vapour concentration inside the instrument.  

In contrast, the gas-corrected spectra based on second derivative estimates (Fig. 7d) gave an estimated 

temperature effect on the liquid water (Fig. 8e) with little or no trace of the water vapour or CO2. 

Experiment 4: Yeast cell culture test measurements 

Fig. 9 summarizes the effect of pre-processing on in situ spectra of the live cell culture of C. albicans, 

growing on the ATR surface. The absorbance spectra measured, A=-log10(I(ν)) (Fig. 9a) are rather similar to 

that of pure water (Fig. 7a) except for a higher baseline at the lower wavenumbers.  After having subtracted 

the mean of these spectra, Fig. 9b shows that the variation in this data set is dominated by irrelevant water 

vapour and CO2 contributions, presumably from inside the FTIR instrument, plus a weaker variation around 

1000 cm-1 from the samples themselves.  

The concentrations of the water vapour and CO2 components were estimated in second derivative in the 

upper wavenumber regions (above 2100 cm-1) but not in the lower wavenumber regions (below 2100 cm-1), 

for fear that informative, high-frequent signals from proteins etc. might be lost. Instead, the scores in the 

lower wavenumber region were predicted from those in the upper region by the calibration models obtained 

in Experiment 2 (Fig. 6). The second row in Fig. 9 shows the gas-corrected absorbance spectra before and 

after mean centring. (The wavenumbers below 856 cm-1 were weighted to zero because the measurements 

were considered unreliable in this region). Apparently, most of the water vapour and CO2 contributions have 

been removed, revealing other systematic variation patterns in several regions. However, some minor gas 

(especially CO2) contributions are still evident. 

Therefore, to further reduce the CO2 effect, each spectrum was linearly interpolated locally under the CO2 

peak, i.e. from 2442 cm-1 to 2208 cm-1. Moreover, the light scattering of the C. albicans suspension may be 

expected to change with growth time. (Light scattering effects in the spectra may result from changes in 

refractive index of the sample over time. As the refractive index affects the penetration depth of the IR light, 

this variation may cause multiplicative scaling effects. Also, additive baseline effects appear. For removal of 

this physical variation, the spectra were subjected to Extended Multiplicative Signal Correction (EMSC)10 as 

described in Martens et al. (2003).11  
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Fig. 9. In situ ATR-FTIR spectra of C. albicans. Top: input absorbance spectra. Middle: after correction for the primary 
and secondary water vapour and CO2 spectra. Bottom: after subsequent interpolation under the main CO2 peak, and 
EMSC to correct for light scattering etc. Left side (a,c,e): absorbance data. Right side (b,d,f): mean-centred absorbance 
data. 

The wavenumber regions between 1582 and 1453 cm-1 and below 856 cm-1 were down-weighted in the 

EMSC parameter estimation in order to suppress the effects of chemical and instrument variations in the 

parameter estimation. For catching of the multiplicative light scattering effect and additive baseline 

variations, each spectrum was approximated by the mean spectrum from Fig. 9c plus a second-degree 

polynomial in the wavenumber domain. The estimated baseline effects were subtracted and the result divided 

by the estimated multiplicative light scattering parameter. The corrected spectra, which are shown in the 

bottom of Fig. 9 (e,f), display many regions with chemical variations. Each of the three data matrices 

displayed in Fig. 9b, 9d and 9f were submitted to PCA. The loading and score vectors are shown in the left 

and centre part of Fig. 10, while the two first PC scores are plotted against each other in the right part of the 

figure. The untreated absorbance data (row 1) give PCA loading vectors dominated by irrelevant gas 

contributions. 
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Fig. 10. Results from PCA of in situ ATR-FTIR spectra of C. albicans. Left side (a,d,g): PCA loadings vs. 
wavenumber. Middle (b,e,h): PCA scores vs. time. Right side (c,f,i): PCA score for PC1 (abscissa) vs. PC2 (ordinate). 
“Time=0” represent the start of the measurement series. 

Hence, the obtained scores probably reflect the trivial purging of gases. After removal of the gas absorptions 

(row 2), their contributions to the loadings are greatly reduced, and the loadings now show peaks from the 

chemical constituents. Thus, the scores reflect chemical changes during the cell growth, but also physical 

changes, and the jumps observed in the score plots are probably related to some physical measurement 

variations.  

 Input spectra Gas-corrected 
(primary model 
spectra used) 

Gas-corrected 
(primary +secondary model 

spectra used) 
Experiment 1 5.242 (37.754) 0.295 (0.570) - 
Experiment 2 3.181 (9.748) 1.193 (2.783) 0.885 (1.515) 
Experiment 3 1.058 (2.392) - 0.805 (0.826) 
Experiment 4 4.977 (21.989) - 0.143 (0.832) 

Table 2. Average water vapour indices (×103) for the data sets in Experiment 1-4 before and after subtraction of the 
estimated primary and secondary gas model contributions. The maximum index for each data set is shown in 
parenthesis. 

The additional step for removal of remaining CO2 and light scattering effects (row 3) causes the scores to 

show much smoother development over time. Thus, it seems that the physical variations have been removed 

in this step, leaving mainly chemical information, and the course of the scores may reflect two growth 

phases: an initial fast and a final slower phase.  
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The accomplishment of the gas-removal in all experiments is summarised by the water vapour indices shown 

in Table 2.  

DISCUSSION 

The above presented preprocessing tool is suitable for reducing the atmospheric contributions to ATR-FTIR 

spectra, such as to improve the analysis of the interesting variations in the samples. As seen from the water 

vapour indices in Table 2, and as shown above, the empirical gas model was able to effectively reduce the 

contaminating water vapour patterns, even in the spectra of C. albicans, which are very different from the 

calibration spectra. Interestingly, correction of the C. albicans spectra caused the largest decrease in the 

water vapour index (Table 2). Likewise, in Fig. 9 is seen a tremendous effect of removing the gas 

contributions from the C. albicans spectra. After the correction, the scores in the first three principal 

components are no longer influenced by the gases and it is possible that they could be used for modelling 

growth dynamics of C. albicans. Without removal of the gas absorptions, many more principal components 

would be needed in this modelling, and the interesting loadings would contain more noise. In addition, if 

purging rate and growth rate were the same, it could be hard to obtain chemical information about the 

samples from the loading plots, as these would contain also the gas signatures. 

The subtraction of atmospheric absorptions in FTIR spectra is a necessity in protein secondary structure 

analyses that are based on the amide I band (1700-1600 cm-1). In order to ensure correct amide I band 

assignments, the overlapping water vapour band needs to be almost completely eliminated prior to the 

analysis.5 Thus, mathematical treatments for removal of the water vapour spectrum have been proposed, and 

in many cases, the algorithms are included in the spectroscopic software. The here proposed method is 

thought to improve the amide I analysis considerably, as it reduces the high-frequent bands in the amide I 

region of the second derivative water spectra.  

Temperature variations in the measurement chamber could theoretically contribute to some variation in the 

gas spectra, as the populations of molecules occupying the higher rotational levels become increased on the 

expense of others with increasing temperature.4 This causes the maximum of the two branches to move 

further away from the centre of the rotation-vibration band. In addition, temperature-dependent line 

broadening effects arise.4 However, the small variations around room temperature that are commonly found 

between measurement days are believed to cause only minor temperature effects in the gas spectra. In 

addition, the calibration samples are expected to cover some temperature variations, due to the different 

temperatures of the ATR-cell. The performance of the preprocessing tool at very different temperatures was 

not tested.  

Free Matlab (TM) software code for establishing and using model of “nuisance” contributions from water 

vapour and CO2 in IR spectra can be downloaded at www.matforsk.no/specmod, where also the actual values 

of the gas component spectra obtained in the present paper can be found. The methods presented here are 

considered rather generic. But the gas component spectrum values are considered valid only for the present 
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type of ATR-FTIR measurements in our Bruker instrument; before they can be used in another experimental 

setup, they may need substantial calibration transfer modification. 
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SUMMARY 

Fourier transform infrared (FTIR) and near-infrared (NIR) spectroscopy have been applied to detect 

structural alterations in folate binding protein (FBP) induced by ligation in different buffer types. 

The amide I region pointed to a β-sheet to α-helix transition upon ligation in acetate and phosphate 

buffers, and the formation of intermolecular β-sheet was indicated at pH 5.0, in agreement with a 

dimerisation of FBP taking place at this pH. The ligand-induced changes in the 2100-2300 nm NIR 

region were significant for FBP in acetate and phosphate buffers of pH 5.0, and the variations were 

interpreted as secondary structure changes, based on previous assignments of secondary structures 

to the combination bands in NIR. In case of acetate buffer, variations in the amide combination 

bands agreed with the amide I analysis, but for the other buffer types some discrepancies were 

found and explained by side chain contributions to the NIR, which could reflect the tertiary and 

quaternary structure differences. 

NIR spectra of FBP at pH 7.4 and 5.0 revealed contradictory effects on the side chains, reflecting 

different polymerization events at the two pH-values, whereas the amide I region indicated similar 

changes at the two pH-values. Therefore, FTIR and NIR may complement each others. 

INTRODUCTION 

FTIR is a powerful and widely used technique for determining the secondary structure of proteins in 

aqueous solution. The characteristic amide I band between 1700 and 1600 cm-1 (in the mid-IR 

range) provides information on protein secondary structure owing to a sensitivity of the amide I 

frequency to the hydrogen bonding pattern and dipolar couplings in the protein backbone.1-3 The 

empirical relation between different secondary structure types and absorptions at specific frequency 

intervals in the amide I band was discovered by Elliot and Ambrose in 1950.4 Since then, FTIR has 

been applied in a number of qualitative and quantitative conformation studies. These have dealt 

with the denaturation/unfolding and aggregation of proteins induced by heat,5-9 pH,10 denaturants,7 
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buffers8 etc, and with protein conformational changes upon enzymatic cleavage11, ligand binding, 

oligomerisation9 etc. Also, a change in the secondary structure of human serum albumin (HSA) 

upon coordination of cis-platin to the protein backbone has been elucidated by FTIR12.  

In addition to the fundamental amide bands in the mid-infrared region (4000-500 cm-1), proteins 

have their complementary but much weaker fingerprints in the near-infrared region (14000-4000 

cm-1 equal to 714-2500 nm), in which overtones and combinations of the fundamentals appear. 

These broad and overlapping bands have rarely been used for protein structure analysis. However, 

they are sensitive to the interaction state of the different chemical groups, and a relation between 

protein secondary structure and overtone and combination bands has been established from several 

experiments.13-15 For example, detailed information about the denaturation process of HSA and 

ovalbumin (OVA) has been obtained from the near-infrared (NIR) spectra.16-17  

The purpose of the present study was to apply the two techniques; FTIR and NIR, to study ligand- 

and buffer-induced conformational changes in a protein and compare the information obtained by 

use of the two spectroscopic approaches, as they may offer complementary information.18  

We study the high-affinity folate binding protein (FBP), which is present in most mammalian 

tissues and body fluids at nanomolar concentrations and seems to regulate homeostasis of folate in 

the body via its involvement in conservation and protection of folates against biological degradation 

as well as distribution, excretion and intracellular trafficking of folates.19-22  

Direct and indirect evidence suggests that changes in the secondary structure of bovine milk FBP 

occurs after binding of folate. The CD-spectrum shows a decrease in antiparallel β-strands and 

increase in α-helix after ligation,23 the data, however being incomplete due to the inability to 

measure the hydrophobic unligated (apo) FBP at near-neutral pH. At near-neutral pH, ligand 

binding enhanced the concentration-dependent aggregation of FBP24,25 and caused a conversion of 

the hydrophobic aggregates into hydrophilic aggregates.26,27 Ligand binding also induced 

dimerisation at pH 5.0, at which pH, the apo FBP exists as a cationic hydrophilic monomer.24,27, 28 

Changes in the conformational structure of FBP subsequent to ligand binding could be of great 

physiological importance in the following respects: An altered structure of the ligated (holo) FBP 

might “wrap up” the ligand, and thereby protect it from biological degradation.29 After ligation, the 

high-affinity folate receptor (FR) on the surface of the cell membrane is internalized via endocytosis 

and trafficks through endosomal compartments, and recycles back to the plasma membrane after 

release of ligand into acidic intracellular compartments.30 The process initiating cycling/recycling of 

the ligated/unligated receptor is still obscure, but it is a well-known fact that ligand binding to many 
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receptors is accompanied by conformation changes/dimerisation that initiate a sequence of 

biological processes. By analogy one could propose that ligation/unligation of the FR and the 

conformational change associated with that process is the initial event or signal that triggers its 

cycling/recycling. 

The FR is a promising therapeutic target for antifolate drugs in tumor cells expressing high levels of 

the receptor. Detailed knowledge on how these drugs might affect the conformational structure of 

FR would thus be of great interest. 

Dissociation of folate from FR in the intracellular acidic compartment occurs at a pH of 5.0, range 

4.7-5.831 or markedly higher than that (pH 3.5) normally required for release of folate from FBP in 

vitro.19-22 One could hypothesize that the organic acids and metabolites acetate and citrate in some 

mode (conformational change?) downregulate the affinity of FR for folate in the intracellular 

compartment, since no binding of folate to physiological concentrations of FBP occurs at pH 5.0 in 

acetate or citrate buffers.28  

We analyze the buffer effects as well as the effect of ligation by means of the spectroscopic 

techniques. Very limited data is available concerning the structure of FBP, wherefore this study 

contributes with some new information to this field as well as insight into the performance of NIR 

in protein structural analysis.  

Due to the weak protein signal compared to the water signal in NIR, the chemometric techniques 

have commonly been applied for analyzing NIR spectra of proteins in solution. Data analysis 

methods have included e.g. two-dimensional correlation spectroscopy16,17,32-34 and Principal 

Component Analysis (PCA).33,35 PCA is a factor based methods that takes advantage of the 

intercorrelations between spectral variables to reduce the dimensionality of the data and allows the 

extraction of information from the complex data sets.36  

Here we use PCA supplemented with 2nd derivative and difference spectroscopy.  

MATERIALS AND METHODS 
The radiochemical [14C] folate (pteroylglutamate) with a specific activity of 52.4 Ci/mol, and [3H] 

folate with a specific activity of 26-45 Ci/mol were obtained from Amersham International Ltd., 

Amersham, U.K. Folate and standard proteins were supplied by Sigma. 

FBP purification: A large scale purification of FBP from cow’s whey powder was performed as 

previously described26 by a combination of cation exchange - and methotrexate affinity 

chromatography. The purified protein was characterized with regard to primary and secondary 
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structure as well as ligand binding characteristics.24-27,37,38 All FBP solutions were dialyzed against 

0.2 M acetate buffer, pH 3.5 at 4 °C to remove endogenous folate. 

Binding study: Equilibrium dialysis was performed as described previously for periods of 20 h at 37 

°C and pH 5.0 in different buffer types25 (Fig. 3) with FBP in the internal (1000 µl) and radioligand 

in the external solution (200 ml).  

Sample preparation for spectroscopic measurements: FBP solutions were prepared by dialysis of 

the stock solution against acetate-, citrate-, formate- and phosphate buffers, all of pH 5.0 and also 

phosphate buffer of pH 7.4. The final protein concentrations in the buffers varied from 8 to 19 

mg/ml (265-630 µM binding activity).  

At pH 5.0, an adequate amount of folate in solid form was added to an aliquot of each FBP 

solution, and after mixing for 1 min and resting for ~1 hour, all samples with and without folate 

were centrifuged for 1 min at 14000 g. Precipitated folate was discarded. Solubility of folate at pH 

5.0, 25°C: 200 µM. At pH 7.4, removal of unbound and dissolved folate from samples was 

performed by dialysis against the pure buffer for 2 days. Solubility of folate at pH 7.4, 25°C: > 100 

mM. 

Standard proteins of known secondary structures bovine serum albumin (BSA), β-lactoglobulin 

(BLG), OVA, lysozyme (LYS) and casein (CAS) were prepared at 10 mg/ml concentrations in 

phosphate buffer of pH 7.4. BSA and BLG solutions were also prepared in acetate pH 5.0 and 

phosphate pH 5.0, and all solutions were treated with folate as described above and measured as 

calibration and control samples.  

Spectroscopic measurements 

The clear protein solutions were measured in a 1 mm cuvette in transmission mode on a Perkin-

Elmer FT-NIR Spectrum One NTS spectrometer equipped with a deuterated triglycine sulfate 

(DTGS) detector. The resolution was 16 cm-1 and 100 scans were co-added. The data interval was 

1.67 nm. Absorbance spectra were calculated by subtraction of the background spectrum (empty 

cuvette). Each sample was measured in replicates and on different days to include the measurement- 

and day-to-day- variations.  

FTIR transmission spectra were acquired on an Bomen MB-100 series FTIR spectrometer (Bomen, 

Quebec, Canada) equipped with a DTGS detector and continuously purged with dry air. A BioCell 

(BioTools, Wauconda, IL, USA) with CaF windows and a predrilled 6 µm depression was used. 

The resolution was 2 cm-1 and 256 scans were co-added. The empty cell was used as background. 
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Spectral preprocessing and data analysis 

NIR spectra were preprocessed and analyzed by PCA in Unscrambler 9.2 (Camo, Oslo). 

The NIR spectra were truncated to the range 2100-2300 nm, since this region is rich in protein 

information and avoids the large absorption bands from water. Extended Multiplicative Scatter 

Correction (EMSC)39 was applied to this range, with the purpose of removing the additive and 

multiplicative effects etc. that result from a variable path length and light scattering phenomena. In 

the EMSC model, each spectrum zi is expressed as a modification of the ideal chemical spectrum 

zi,chem (Eq. 1).  

(Eq. 1)  zi = ai1+bizi,chem +diλ + eiλ2+εi.  

The ai and bi coefficients represent the additive and multiplicative effects, respectively, and linear 

and quadratic wavelength effects are included by the terms diλ and eiλ2.  

The ideal chemical spectrum is in the standard EMSC approach taken as a variance around the 

mean spectrum m as expressed in Eq. 2. 

(Eq. 2)   bizi,chem= m+δ.  

Thus, the EMSC coefficients are estimated from the whole data set and used for correction of each 

spectrum (Eq. 3). 

(Eq. 3)  zi,corr=(zi-ai1-diλ-eiλ2)/bi.  

After EMSC correction of the NIR spectra, the matching buffer spectrum was subtracted from each 

sample spectrum, and EMSC was applied once more. By this preprocessing method, the protein 

concentration differences were eliminated from the data set. Finally 2nd derivative transformation 

was carried out by use of the Savitzky-Golay algorithm (9 or 13 data point smoothing). The inverse 

spectra were calculated by multiplication by –1. Difference spectra (ligated-unligated) were 

calculated from the non-transformed spectra.  

The buffer subtractions from transmission spectra were carried out in Grams software, and a flat 

baseline in the 2000-1800 cm-1 range was used as criteria. The atmospheric water vapor spectrum 

was obtained before the experiment and subtracted from each spectrum. The 2nd derivative spectra 

were calculated by use of the Savitzky-Golay algorithm (13-17 data points smoothing). The spectra 

were inverted, and baseline correction and mean normalization was applied to the 1700-1600 cm-1 

region. Difference spectra (ligated-unligated) were calculated from these spectra. 
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RESULTS AND DISCUSSION 

COMPARISONS OF UNLIGATED FBP IN DIFFERENT BUFFER TYPES 
IR-results 

We examined the influence of three buffer types (phosphate pH 7.4, phosphate pH 5.0, and acetate 

pH 5.0) on the amide I spectra of FBP. The preprocessed 2nd derivative spectra are seen in Fig. 1. 

The contributions from α-helix and β-sheet to the amide I band appear at 1660-1650 cm-1 and 

1640-1625 cm-1, respectively, and the contours of the amide I bands in Fig. 1 reflect a protein with 

no predominant single structure. This is in agreement with CD measurements (however, only 

performed at pH 5.0) by Kaarsholm et al.,23 who found 22 % α-helix, 30 % β-sheet, 31 % random, 

17 % turns in FBP.  

FBP in phosphate buffer of pH 5.0 exhibits an 

amide I band shape that is highly different from 

that in the two other buffer types (acetate pH 5.0 

and phosphate pH 7.4). 1) The high absorbance 

at 1641 cm-1 implies either an increased amount 

of intramolecular β-sheet or random coil (1645 

cm-1) or both. 2) A band that can be ascribed to 

α-helix has a maximum at 1652 cm-1 instead 

of 1658 cm-1 as seen in the other buffer types. 

This could suggest that more solvated α-

helices exist in phosphate buffer of pH 5.0, as solvation causes helices to appear at lower 

frequencies40 or that α-helices have a different length in this buffer type.41 3) The decrease in the 

high-frequency region could also be related to a lower content of β-turns in phosphate buffer of pH 

5.0, as β-turns may cause absorptions in the region 1660-1690 cm-1. 42  

At low frequencies, a weak band that is usually ascribed to intermolecular β-sheet (1618 cm-1)9 is 

apparent. For the two buffers of pH 5.0, the low absorption at 1618 cm-1 indicates less 

intermolecular β-sheet than in the phosphate buffer of pH 7.4. As intermolecular β-sheet is 

frequently found to participate in oligomerisations,43 this observation is in agreement with apo FBP 

being monomeric at pH 5.0 while forming polymers at pH 7.4.24,25 

NIR-results 
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Fig. 2A shows the buffer-subtracted 2nd derivative NIR spectra and compares FBP in five different 

buffer types (acetate-, formate- and citrate buffers of pH 5.0 and phosphate buffers of pH 5.0 and 

pH 7.4).  

The absorption bands seen below 2230 nm result from combinations of the amide modes i.e. the 

coupled vibrations in the protein backbone. The band at 2170 nm is usually ascribed to the amide 

B/II combination32,44 (basically N-H stretching combined with N-H bending), but several different 

amide combinations bands likely appear in the region 2100-2230 nm. The 2nd derivative 

transformation allows for the observation of several sub bands in the region 2120-2230 nm, as seen 

in Fig. 2A, whereas a single absorption band is seen in the raw spectra (not shown). In this region, 

Miyazawa et al.14 observed for different globular proteins six sub bands at 2141, 2168, 2186, 2200, 
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Table 1. Assignments in the 2100-2300 nm NIR 
region to different secondary structures.13,14 

2209 and 2213 nm. In Fig. 2A, sub bands at similar positions can be seen. However, the regions 

2114-2150 nm and 2190-2220 nm are much influenced by noise, and the band positions can not be 

precisely established. The absorption bands above 2230 nm result from vibrations in the amino acid 

side chains and are mainly the combinations of C-H stretching and C-H bending vibrations, but also 

the combination of O-H stretching and O-H bending and the combinations of C-H stretching and 

amide III are suggested to appear at 2255 nm and 2290 nm, respectively.33,34 

In the literature, wavelength regions characteristic of the different secondary structures have been 

identified, as indicated in Fig. 2A and Table 1. For example, the intensity of the NIR band at 2170-

2180 nm has been found to receive the highest contribution from α-helix compared to β-sheet and 

random structure.15 This is also illustrated 

by the spectra of BSA (α-helix protein) and 

BLG (β-sheet protein) in the insert in Fig. 2. 

The spectrum of apo FBP was influenced by 

buffer type as seen in Fig. 2A-C. In the α-

helix region around 2170 nm is seen a 

variation in the A2164nm/ A2179nm ratio (Fig. 

2B). The high-wavelength band has often been ascribed to the primary amide groups in Gln and 

Asn. Yuan et al.35 observed a splitting of the band at 2169 nm into two bands at 2164 nm and 2176 

nm upon denaturation of BSA. Likewise, 

Miyazawa et al.14 observed that, while a 2186 

nm band was only observed for some of the 

proteins, the 2168 nm band was common to all 

the measured proteins. For FBP, the low-

frequency band at 2164 nm shows most 

variation in the different buffers, with citrate 

buffer showing the weakest absorption and the 

phosphate buffer of pH 7.4 the highest 

absorption (the phosphate buffer of pH 5.0 could 

not be compared due to the high replicate 

variability in this region).  

Another large and remarkable variation in the 
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FBP spectra, resulting from the different buffer types, is found in the side chain absorption at ~2260 

nm (Fig. 2C). Formate- and phosphate buffer samples of pH 5.0 show a high absorbance in this 

region compared to the other two buffers of pH 5.0 (acetate and citrate) as well as phosphate buffer 

of pH 7.4. The large peak is found at 2258 nm for the formate buffer samples and at 2263 nm for 

the phosphate buffer samples. The increased absorbance could result from a high content of β-sheet 

(2264 nm) and/or random coil (2265 nm) in the two buffers, according to Table 1. This would be in 

agreement with the high absorption at 1641 cm-1 (in the amide I band) for FBP in phosphate buffer 

of pH 5.0 (Fig.1). The indication that formate and phosphate buffers of pH 5.0 have a different 

influence than acetate and citrate buffers on FBP is interesting in view of binding studies at pH 5.0, 

demonstrating binding of folate in formate, and phosphate buffers (and also in Tris and MES 

buffers) but not in acetate and citrate buffers at low FBP concentrations (Fig. 3). Furthermore, 50 % 

compared to 14 % of folate bound to FBP was retained after wash-out at pH 5.0 in Tris HCl and 

acetate buffers, respectively (unpublished results). At high FBP concentrations, as used in the 

present NIR/FTIR study, the binding can take place also in acetate buffer.28 Still, it is possible that 

the buffer effects are reflected in the spectra even at the high FBP concentrations. The applied 

anions are kosmotropes (water-structuring ions) of varying strength, and they may stabilize the 

native protein conformation and the hydrophobic protein-protein interactions to different degrees.45 

That no simple explanation of the observed buffer effects could be given probably reflects the 

complexity of these anion effects. The high absorbance at 2260 nm in case of formate and 

phosphate buffer is not accompanied by a high absorbance in other β-sheet regions (2200-2213 

nm), wherefore, it is more likely that the increase at 2260 nm reflects random coil and not β-sheet. 

However, it should be stressed that the variations in the side chain combination bands are not 

exclusively the results of different secondary structures but also of other conditions that influence 

the micro-environments of the side chains and their interactions.17,34,46 Thus, for example the 

solvation and oligomerisation state of FBP in the various buffers may also account for the 

differences in the side chain absorptions. A demonstration of changes in the side chain absorptions, 

occurring despite of no significant secondary structure changes, was obtained from spectra of BSA, 

for which the 2260 nm band was increased in acetate buffer of pH 5.0 compared to phosphate buffer 

of pH 5.0. Sefara et al.46 observed uncoupled changes in the side chain absorptions at 2252, 2257 

and 2262 nm upon unfolding of BLG in bromoethanol.  



 

 190

LIGATION IN DIFFERENT BUFFER TYPES 

IR results 

Ligand-induced conformation changes of FBP 

were analyzed by transmission FTIR in three 

buffers (acetate buffer of pH 5.0 and phosphate 

buffers of pH 5.0 and 7.4). We investigated the 

difference spectra instead of performing curve-

fitting analyses on the amide I bands. 

At pH 5.0, the amide I bands from FTIR-

measurements of FBP in acetate and phosphate 

buffer are shown in Fig. 4A-B. The spectral 

changes are most prominent for phosphate 

buffer of pH 5.0, but for both buffer types, the 

variations indicate a decrease of intramolecular 

β-sheets and an increase of α-helix upon 

ligation, as shown by the negative peaks at 

~1640 cm-1 and the positive peaks at 1660 cm-1 

in the difference spectra. These findings are in 

agreement with CD studies23 at pH 5.0, in 

which a decrease from 25 to 15 % of 

antiparallel β-sheet and a small increase in α-

helix and turn structures was observed. The 

decrease in the region 1650-1630 cm-1 may also 

stem from a decrease of random coil content, 

although the CD studies23 suggested a minor 

increase of random coil upon ligation.  

 A small increase of the extreme high- and low-

frequency bands (1685 and 1620/1610 cm-1) for 

both buffer types can be ascribed to an increase of 

intermolecular β-sheets or extended β-strands, in 
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agreement with the dimerisation occurring upon ligation at pH 5.0.24,28 A high-frequency 

component usually accompanies the low-frequency component from intermolecular β-sheets.1 

The amide I variations induced by ligation of FBP in phosphate buffer of pH 7.4 were studied, 

and the 2nd derivative spectra and the difference spectra are shown in Fig. 4C. The changes are quite 

similar to those seen at pH 5.0 (Fig. 4A-B), although the negative peak has its maximum shifted to a 

lower frequency (1627 cm-1) than at pH 5.0 (1641 cm-1). The changes are consistent with a 

transition from intramolecular β-sheet to α-helix. The bands, ascribed to intermolecular β-sheet, are 

not increased as seen at pH 5.0, and this can be explained by the fact that polymers already exist for 

the apo FBPs at pH 7.4. Ligation changes the polymers to a more hydrophilic conformation, 

although the polymerization is somewhat enhanced.24,25,27 The hydrophobicity of FBP in phosphate 

buffer of pH 7.4 was reflected in attenuated total reflection (ATR)-FTIR spectra (data not shown), 

which showed high amounts of intermolecular β-sheet, indicative of protein adsorbed to the ATR-

crystal.  

 The amide I variation introduced by folate addition to BSA was small and non-significant (data 

not shown). As albumin binds folate in a low-affinity mode,47 BSA acts as a control and reveals that 

the changes in the FBP spectra are related to specific binding of folate and not resulting from folate 

absorptions.  

 

Results from the transmission measurements are summarized in Table 3. The α-helix/β-sheet ratio 

is particularly low for apo FBP in phosphate buffer of pH 5.0. Ligation increases the ratio to similar 

values in phosphate and acetate buffer of pH 5.0, and to an even higher value at pH 7.4.  

Condition A1660/A1640 

(~α-helix/β-sheet) 

A1615/A1640 

(~inter-/intra- β-sheet) 

Acetate pH 5.0, apo 1.33 0.206 

Acetate pH 5.0, holo 2.35 0.478 

PBS pH 5.0, apo 0.78 0.056 

PBS pH 5.0, holo 2.35 0.221 

PBS pH 7.4, apo 1.7 0.507 

PBS pH 7.4, holo 3.1 0.521 

Table 2. Relative 
intensities in the 
amide I spectra of 
apo and holo FBP 
in different buffer 
types.  
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NIR results 

PCA was applied to the NIR spectra with the purpose of getting an overview of the spectral 

differences between ligated and unligated forms of FBP in different buffer types. 

 

Several PCA analyses including different sub sets of the samples were carried out, and the resulting 

score plots (PC1 vs. PC2) are shown in Fig. 5. These plots reveal the main variations among the 

spectra.  

BSA

LYS BLGOVA 

CAS 

FBP BLG 

BSA 

FBP 

BLG 

BSA 

Citrate

Acetate 

Formate

A B 

C D 

+ Std protein without folate • Std protein with folate     × FBP 

Fig. 5. PCA score plots (PC1 vs. PC2), showing the ability of NIR to discriminate between holo and 
apo FBP in different buffer types. Four PCA analyses based on the preprocessed NIR spectra (2100-2300 
nm) were carried out. A) FBP in phosphate buffer of pH 7.4. B) Standard proteins with and without folate in 
phosphate buffer of pH 7.4. C) FBP in phosphate buffer of pH 5.0. D) FBP in different buffer types of pH 
5.0. BSA and BLG with and without folate were included in most analyses for comparison. The percentages 
of explained variance accounted for in the different PCs are shown.
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Fig. 5A reveals a poor discrimination between holo and apo FBP in phosphate buffer of pH 7.4, as a 

high replicate-variability exists for the ligated samples. Similarly, folation of the standard proteins 

is not accounted for in any PCs (Fig. 5B). The distinction between holo and apo FBP is much 

clearer in phosphate buffer of pH 5.0 (Fig. 5C). For three other buffers of pH 5.0 (citrate, acetate 

and formate), the largest spectral difference between holo and apo FBP was observed in case of 

acetate buffer (Fig. 5D). Thus, while PCA results show only minor spectral changes of FBP in 

citrate and formate buffers of pH 5.0, spectral variations upon ligation are more significant in 

acetate and phosphate buffers of pH 5.0. This is not in agreement with the binding study (Fig. 3), 

which showed no binding in acetate and citrate buffer, but binding in phosphate and formate 

buffers. However, the much higher concentrations used here may cause a very different binding 

mechanism. 

The information in the NIR spectra was further examined by use of 2nd derivative spectra. Since this 

calculation amplifies the noise, also the difference spectra (calculated from the non-transformed 

spectra) were considered. The difference spectra revealed no significant spectral variations in 

formate- and citrate buffers upon ligation (not shown). The small changes agree with results from 

the PCA, which showed that a discrimination was possible only in PC3 (data not shown). This is a 

spectral variance accounting for less than 0.5 % of the total variance. The small changes in citrate 

buffer can be ascribed to a rearrangement of the protein that does not involve significant secondary 

structure changes but perhaps small perturbations of the side chains.  

Fig. 6A shows the buffer-subtracted 2nd derivative NIR spectra of holo and apo FBP in acetate 

buffer of pH 5.0. Spectral differences induced by the ligation are indicated by the arrows. The 

difference spectrum in Fig. 6B also reveals significant spectral differences between holo and apo 

FBP throughout the region from 2100 to 2300 nm, while addition of folate to BSA only causes a 

minor not significant change at ~2260 nm. Therefore, these variations in the FBP spectra are most 

likely to be ascribed to perturbation of the FBP structure rather than to folate absorptions. The 

ligation of FBP in acetate increases absorption at 2177 nm (α-helix), 2239 nm (α-helix), and 2289 

nm (α-helix) and decreases absorption at 2151 nm (?), and 2264 nm (β-sheet and random). Thus, 

the NIR spectra support the formation of α-helix at the expense of β-sheet and/or random structures 

upon ligation of FBP in acetate. 
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The primary and secondary structures of FBP and the riboflavin-binding protein are closely related 

as evidenced by previous studies.48,49 Release of riboflavin from the latter protein at low pH 

involves opening of a preexisting aromatic-rich cleft and increases molecular volume, protein 

surface and surface hydration.50 This leads to segmental motion of aromatic side chains, most likely 

belonging to Trp and Tyr that participate in ligand binding.49,50 Wasylevski et al.51 saw no 

secondary structure changes upon riboflavin binding, and they suggested changed domain 

interactions or a ligand domain structure reorganization to take place instead. In a similar way, 

ligand-binding to FBP and the subsequent dimerisation could influence the solvation state and the 

packing of the side chains. As previously described, this could be the cause of the decreased 

intensity at 2260 nm.  

The 2nd derivative spectra of FBP in phosphate pH 5.0 seemed more influenced by noise, especially 

in the low-wavelength region, and this is ascribed to a rather low protein concentration. Again, the 

difference spectrum in Fig. 6C reveals significant spectral changes between holo and apo FBP, 

whereas addition of folate to BSA causes no spectral changes. As being the case in acetate buffer of 

pH 5.0, there was a marked decrease in the absorbance band around 2263 nm (β-sheet/random?), a 

marked increase of the band at 2289 nm (α-helix?), and a decrease in the band at 2150 nm upon 

ligation. The increase at 2228 nm could also result from increased α-helix absorptions. By contrast 

to acetate buffer, there was no increase at 2177 nm (α-helix), and the absorbance at 2206 nm (β-

sheet) was increased. Therefore, although the FTIR analyses show similar changes in phosphate and 

acetate buffers, the NIR analysis indicates that the changes in phosphate buffer of pH 5.0 are 

somewhat different from the β-sheet/random coil to α-helix transformation seen in acetate buffer. 

The discrepancy of the two methods possibly results from the contribution of side chain absorptions 

to the NIR region. The band most affected by the ligation in phosphate buffer of pH 5.0 was the one 

at 2260 nm. The decrease of this band upon ligation caused the disappearance of the large deviation 

seen in Fig. 2C between buffer types. 

Fig. 6: NIR spectral differences in the 2100-2300 nm range between holo and apo FBP in different 
buffer types. Difference spectra (ligated-unligated) are shown for all buffers with standard deviations. 
The arrows point out regions where ligation induces an increase (downward pointing arrows) or a 
decrease (upward pointing arrows) in the FBP spectrum. BSA difference spectra are included for 
comparison. A) 2nd derivative of holo and apo FBP in acetate buffer of pH 5.0. B) Difference spectra for 
FBP and BSA in acetate buffer of pH 5.0. C) Difference spectra for FBP and BSA in phosphate buffer of 
pH 5.0. D) Difference spectra of FBP and BSA in phosphate buffer of pH 7.4. 
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The NIR difference spectra of FBP in phosphate buffer of pH 7.4 are shown in Fig. 6D. The large 

replicate variability in the FBP spectra made it impossible to identify any spectral change that with 

certainty resulted from ligation of FBP. However, the indicated increase at 2167-2177 nm (α-helix) 

is similar to that seen in acetate buffer (pH 5.0) and supports the observations from the amide I 

spectra. A different trend in the combination band region compared to the other buffers could 

possibly stem from the different oligomerisation states of FBP at the different pHs, since the 

monomer to dimer-transition upon ligation only occurs at pH 5.0.24,28 

An overview of the ligation phenomena in 

phosphate buffers of pH 5.0 and pH 7.4 is seen 

from the score plot in Fig. 7. The PCA was again 

based on the NIR region 2100-2300 nm. The 

ligation of FBP at pH 7.4 causes only small 

variations, whereas the ligation at pH 5.0 gives 

rise to groupings in the score plot. At pH 5.0, apo 

FBP is placed in the upper part of the score plot, 

whereas after ligation samples have moved to the 

lower part. This change could reflect a β-sheet to 

α-helix transition, when comparing to the included 

standard proteins (see Table 3), and it results in a close 

similarity between FBP spectra at the two pH values. A 

higher similarity between secondary structures after ligation accords with the FTIR results 

presented in Table 2. Also in the PC1 direction (related to the variation in the 2260 nm peak) a 

higher similarity between FBP at the two pH values is seen after ligation, as was previously 

described.  

Protein α-helix 

(%) 

random 

(%) 

β-sheet 

(%) 

Bovine serum albumin (BSA) 66 31 03 

Lysozyme (LYS) 46 35 19 

Ovalbumin (OVA) 25 49 26 

β-Lactoglobulin (BLG) 06 48 46 

Casein (CAS) 7-10 56-70 20-37 

Table 3. Secondary structure contents of standard proteins.13 

+ Std. protein  

o FBP pH 7.4 

* FBP_Lig pH 7.4 

× FBP pH 5.0 

 FBP_Lig pH 5.0 

Fig. 7. PCA results, showing the effects of 
pH and ligation on the NIR spectra.  Score 
plot (PC1 vs. PC2) shows differences and 
similarities of ligated and unligated FBP in 
phosphate buffers of pH 7.4 and pH 5.0.  
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CONCLUSION 
The ligand-induced structure changes in FBP in different buffer types have been studied by use of 

FTIR and NIR. We observed significant spectral changes in the NIR region upon ligation in acetate 

and phosphate buffers of pH 5.0, which could be interpreted as a decrease of β-sheet/random coil 

content in accordance with the FTIR and previous CD studies.23 In addition, FTIR showed an 

increase in α-helix content and a higher content of intermolecular β-sheets after ligation in both 

buffer types. The latter finding is consistent with the ligand-induced dimerisation of FBP observed 

at pH 5.0.24,28 With NIR, the increase in α-helix content was only observed in acetate buffer. This 

discrepancy is possibly due to some absorptions associated with the amino acid side chains that 

dominate the spectral variations in the NIR region upon ligation.  

The buffer effects observed at low FBP concentrations (Fig. 3),28 i.e. no binding of folate at pH 5.0 

in acetate and citrate buffers but binding in phosphate and formate buffers, were reflected as 

increased NIR side chain absorptions at 2260 nm for FBP in phosphate and formate buffers. The 

distinctive side chain absorption for apo FBP in phosphate buffer of pH 5.0 was associated with a 

particular secondary structure, as seen from FTIR. However, the side chain absorptions in NIR may 

also reflect the tertiary and quaternary structure of FBP. 

At pH 7.4, FTIR studies of FBP in phosphate buffer showed a transition from β-sheet to α-helix 

upon ligation similar to that at pH 5.0. However, with NIR, we observed a great difference between 

pH 5.0 and 7.4 (phosphate buffer) as to spectral changes of the side chains after ligation, and this 

could be related to the different polymerization events at the two pH values.  

Therefore, we find that the two spectroscopic techniques complement each others. In the NIR, 

changes in the side chain absorptions reflect protein tertiary and quaternary changes, whereas 

secondary structure changes may give less significant spectral alterations. The interpretation of the 

NIR spectral changes demands the comparison to a more well-established method for secondary 

structure analysis, such as FTIR. The advantage of NIR over FTIR is that problems experienced in 

FTIR analyses (water vapor absorptions and adsorption of protein to the cuvette) are less serious in 

NIR analyses. In addition, the NIR has the ability to be applied as a non-invasive method in on line 

control of e.g. pharmaceutical products. 
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Appendix IV-1 

 
NIR assignments to lipid and starch 

 
Lipid absorptions in the 1400-2400 nm region 

 Wavelength [nm] Assignment 
1648  : 2*CH-str. 
1696  : 2* CH3 antisym-str. 
1722  : 2* CH2 antisym-str. 
1736  : CH2 antisym-str.+CH2 sym-str. 
1760  : 2*CH3/CH2 sym str. 
1816  : 2*C=C-CH str.+ CH2 bend. 
1856  :  
2144  : CH cis str.+ C=C-str. 
2304  : CH3 antisym-str. +CH3 antisym-bend. 
2336  : CH3 antisym-str. +CH3 sym-bend. 
2384  : CH3 sym-str. +CH3 -bend. 

Starch absorptions in the 1400-2400 nm region. 

Wavelength [nm] Assignment 
1400-1600  : 2*OH str. 
1702  : 2*CH2/CH-str. 
1748  : 2*CH2/CH-str 
1770  : 2*CH2/CH-str. 
1900  : OH-str.+2*CO-str. 
1920  : OH-str.+ bend 
2090-2130  : OH-str.+bend+CO-str. 
2260  : OH str. +bend or C-O-C combination 
2272  : OH str.+C-C str. 
>2280  : CH str.+bend 

 

References: 
Barton II, F. E., Himmelsbach, D.S., Archibald, D.D. (1996). Two-dimensional vibration spectroscopy. V: 
Correlation of mid- and near infrared of hard red winter and spring wheats. J. NearInfrared Spec. 4, 139-152. 
 
Chung, H., Arnold, M.A. (2000). Near-infrared spectroscopy for monitoring starch hydrolysis  
Appl. Spectrosc. 54, 277-283. 
 
Gouti, N., Rutledge, D.N., Feinberg, M.H. (1998). Factorial correspondence regression applied to multi-way 
spectral data. Analysis. 123, 1783-1790. 
 
Rodriguez-Saona, L.E., Khambaty, F.M., Fry, F.S., Calvey, E.M. (2001). Rapid detection and identification 
of bacterial strains by Fourier Transform Near-Infrared spectroscopy. J. Agric. Food. Chem. 49, 574-579.  
 
 

 



 

 202

Appendix IV-2 

Preprocessing method for NIR in Experiment IV 
Method: A 2nd derivative water spectrum is used as “bad spectrum” in an EMSC correction of the 2nd 
derivative gluten spectra (in the region: 1200-2340 nm). This process reduces ligth scattering and water 
content variations in NIR spectra of moistened gluten (from Experiment IV). See Fig. IV-A and IV-B. 
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Figure IV-A: 2nd derivative transformed spectra of gluten (obtained in reflectance mode) and a water (obtained 
in transflectance mode).  
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Figure IV-B: 2nd derivative transformed spectra of gluten (obtained in reflectance mode) and a water (obtained 
in transflectance mode) after EMSC correction with the water spectrum used as “bad spectrum”. 
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Appendix V  
 

Additional figures to Experiment V 
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Fig. V-A: Amide III band region after EMSC correction with bad-spectrum subtraction, for correction of the 
water spectrum variations due to the various salts. Spectra of gluten hydrated in water (blue) or in different 1.0 
M salt solutions (pink) are compared. 
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Fig. V-B. Mean-centred EMSC-residuals of ATR-FTIR spectra of gluten in water, NaCl and MgSO4 (after 
EMSC#2 as described in Paper III  in section 2.5). Upper figure: Full wavenumber region. Water (blue), 1M 
NaCl (pink), 1M MgSO4 (green). Middle figure: Amide I and II band region. Water (blue), 1M NaCl (pink), 1M 
MgSO4 (green).   Lowest figures: PCA score plot PC1 vs. PC2 (left) from analysis of the amide I and II region 
and corresponding loading plots (right). PC1 explains 42 % and PC2 explains 29 % of the variation. 
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Fig. V-C: 2nd derivative NIR spectra of gluten hydrated in water or 1M MgCl2 solutions. Also the salt solution 
spectra are shown. The water peak at 1930 nm is shifted for the gluten samples compared to the water samples. 
Therefore, it is not possible to use the PCA loadings from the salt-solution spectra to correct for water variations 
in the sample spectra. 
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Fig. V-D. All pretreated NIR spectra of gluten hydrated in water and different salt solutions (in Experiment V). 
The spectra were 2nd derivative transformed and subsequently EMSC corrected in selected regions (1175-1320 
nm, 1480-1750 nm and 1960-2360 nm). The three regions are shown together. 
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Fig. V-E. PCA score plot (PC1 vs. PC2) of some salt solution spectra, pretreated as the gluten spectra in Fig. V-
C. 
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Fig. V-F. Results from a PLSR model (X=preprocessed NIR spectra, Y=water content). Samples =gluten 
hydrated in 1.0 M salt solutions. Left: Score plot (PC1 vs. PC2). Right: Predicted vs. measured plot. 
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