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Abstract. In this paper, we review existing systematic treatments for the
interpretation of anisotropic diffraction patterns from partially aligned symmetric
top molecules. Such patterns arise in the context of time-resolved diffraction
experiments. We calculate diffraction patterns for ground-state NaI excited with
an ultraviolet laser. The results are interpreted with the help of a qualitative
analytic model, and general recommendations on the analysis and interpretation
of anisotropic diffraction patterns are given.
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1. Introduction

Almost 100 years ago, Friedrich et al [1] published an article in which they described intensity
maxima after sending an x-ray beam through crystals, and interpreted these in terms of
diffraction of x-rays at the atomic sites. Ever since, x-ray diffraction has been an indispensable
tool for determining the atomic structure of matter.

To a good approximation, x-ray diffraction patterns are simple functions of the atomic
species and the relative positions of the nuclei with respect to each other; that is, they directly
encode the nuclear geometry. This is a major advantage of diffraction over most other techniques
(e.g. optical spectroscopy), which usually measure the properties of the electronic structure and
infer the nuclear geometry indirectly from models or extensive electronic structure calculations.

For a chemist, the natural next step after resolving the structure of reactants and products
in a chemical reaction would be to ‘film’ the reaction itself, which leads to time-resolved
x-ray diffraction (TRXD). In this field, the commonly used technique is pump–probe difference
diffraction. A pump laser initiates the chemical reaction, and after a specific delay time, the
x-ray probe pulse produces a diffraction pattern. From this time-dependent diffraction pattern,
a reference pattern of the unexcited sample is subtracted to yield a difference pattern; this
technique removes all contributions that do not depend on the time-dependent nuclear geometry,
such as incoherent scattering or the scattering from the major portion of the molecules that have
not been excited. The difference patterns, or rather their encoded structures, can then be ordered
by the pump–probe delay time to produce a ‘molecular movie’ of the chemical reaction. While
the use of a pump laser means that only photochemical processes can be studied, this is to some
extent unavoidable; for most reactions, only laser technology provides a fast enough clocking
mechanism.

Unfortunately, so far there has been a distinct lack of suitable x-ray sources for ultrafast
TRXD experiments. Existing synchrotron sources produce pulses of about 50 ps; this is fast
enough for studying, for example, short-lived transient states in liquid (see [2, 3] and references
therein) or crystalline samples (see [4] and references therein). However, many processes
require a sub-picosecond time resolution. Although such a time resolution can be obtained with
slicing [5, 6] or plasma sources [7, 8], they only yield a low photon flux, making such setups
unattractive for many experiments.
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This situation is expected to change with the availability of free-electron lasers (FEL) in
the hard x-ray regime for pump–probe experiments. At the linear coherent light source (LCLS),
the first experiments have already been performed [9]–[11]; two other sources, the SCSS [12]
and the European XFEL [13], are in the construction stage, and plans for a Swiss FEL have
recently been presented [14]. These facilities will provide x-ray pulses of 100 fs duration or less
and with intensities exceeding those of current synchrotron facilities by orders of magnitude.
As the experimental facilities start to become available, it is the task of the theoretician to
provide support in the design of experiments and in the interpretation of results. This aid can
take various forms.

On a fundamental level, we can investigate what information is encoded in time-resolved
diffraction patterns. While this may look at first like a purely academic exercise, the need
for such studies becomes apparent if we recall that standard textbook derivations are only
applicable for time-independent systems; for example, they employ time-independent scattering
expressions, or assume negligible electric currents (i.e. stationary systems). Studies of the
theoretical foundations of TRXD have been conducted by various authors [15]–[23] and mainly
differ in the type of system studied, the description of the interaction and the thoroughness of
the derivation.

Most of the results for the difference cross section can be cast in the form

1
dσ

d�
(q, τ )= σT

∫
d3N R 1%̄(R(3N ), τ ) |Fmol(R(3N ),q)|2, (1)

with σT being the classical Thomson scattering cross section from a free electron. q is the
scattering vector (difference of the wave vectors of incoming and outgoing photons) and R
denotes the manifold of nuclear coordinates. As a convention throughout this paper, we notate
an n-dimensional vector x as x(n) and drop the superscript for n = 3. N specifies the number
of atoms in the molecule. The time-averaged difference density of nuclear geometries 1%̄ as a
function of the pump–probe delay time τ is the convolution of the difference density 1% with
the intensity profile I of the x-ray pulse,

1%̄(R(3N ), τ )=

∫
dt I (t − τ)1%(R(3N ), t). (2)

For brevity, we use the term ‘difference density’ to denote both of them. Physically,
1%(R(3N )

0 , t)d3N R is the difference probability of finding a molecule whose molecular geometry
is in an infinitesimal volume d3N R around R(3N )

0 . The squared molecular form factor |Fmol|
2

specifies the signal for a fixed nuclear geometry. Within the independent atom model, it can be
written in terms of the atomic form factors fa and bond vectors Rab as

|Fmol(R(3N ),q)|2 =

N∑
a,b

f ∗

a (q) fb(q) eiqRab . (3)

Equation (1) has a close resemblance to ordinary x-ray diffraction; the result from the time-
independent theory can essentially be obtained by replacing the time-dependent difference
density by the time-independent density of the stationary system. However, there are distinct
differences in the interpretation of the results.

In stationary molecules, the electronic potential energy surface usually exhibits one (or
more) deep wells that correspond to stable geometries, and the nuclear density is strongly
localized at these minima. It is then permissible to replace the density distribution by a delta-
function (or sum thereof); this removes the integration in (1), and the diffraction pattern is
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basically the molecular form factor (or a sum of such form factors) for the well-defined
molecular structure(s). This approximation is not always possible, however. In bulk liquids,
for example, the distance between two atoms is not always well defined, and it is necessary to
operate with distribution functions (see e.g. [3]).

In general, we expect the approximation of well-defined molecular geometries to fail in
TRXD experiments, even at T = 0 K. One reason is apparent from (2): the finite duration of the
x-ray pulse smears out all dynamics. On a more fundamental level, however, the wave function
of the nuclear coordinates that has been excited by the pump laser is no longer in the minimum of
a deep potential well. As a result, we observe quantum-mechanical wavepacket dispersion (see
for example [24]–[26]); the difference density becomes delocalized, and an x-ray diffraction
measurement yields a whole distribution of molecular structures.

Wavepacket dynamics also play a dominant role in molecular alignment. Using an intense
non-resonant laser pulse, molecules can be strongly aligned with respect to the laser polarization
axis [27, 28], so that angle-resolved information can be directly extracted by a subsequent probe
pulse [11, 29]–[31].

Alignment also occurs as a side effect when using resonant laser pulses, since the pump
laser preferentially excites molecules that are aligned with respect to the polarization axis.
Typical difference densities on ultrashort timescales then consist of contributions from the
excited wave function and from the ‘hole’ due to the depletion of the ground state, both of
which are weakly aligned with respect to the laser polarization axis.

In section 2, we review and discuss the processing of anisotropic diffraction patterns
resulting from such weakly aligned difference densities. Sections 3 and 4 present the details and
the results of our calculation on NaI excited from the ground state by an ultraviolet (UV) laser.
These calculations serve to illustrate the procedures and caveats detailed before. Our findings
are summarized in section 5, and an outlook for further research is presented.

2. Anisotropic distributions

Anisotropic diffraction patterns have been analysed in several previous studies. For diatomic
molecules, the inversion of the diffraction pattern has been studied by Ben-Nun et al [16].
In another paper, Cao and Wilson [17] studied the inversion from a cylindrically symmetric
sample assuming constant atomic form factors. Several formulae in these papers are related to
those we present here. However, for polyatomic molecules, it is rather difficult to generalize
the procedure in [16], or the approximations are too crude, and it is difficult to assign a simple
physical picture to the internuclear distribution function in [17].

Alternatively, we note that the formalism of x-ray and electron diffraction is identical
within the independent atom model. For a systematic treatment of the class of symmetric top
molecules, we can then draw on experience from the field of ultrafast electron diffraction. Kohl
and Shipsey [32] calculated the diffraction patterns from molecules selected to be in specific
rotational quantum states. Similar to our own research interest, the Zewail group studied the
diffraction patterns arising from aligned ensembles [33, 34], which resulted in a systematic
description of the anisotropies [35]. In the following, we summarize their derivations and
discuss the obtained results in some depth.

Throughout this paper, we use the integral notation (1). This is in contrast to [32]–[35],
where the averaging procedure is mostly hidden in brackets. Although this introduces some
overhead in the notation, we think that the manipulations in this section are more transparent
when formally applied to a density distribution.

New Journal of Physics 12 (2010) 113022 (http://www.njp.org/)

http://www.njp.org/


5

D

E

q

θ θq
b

a
D

abϑ

Figure 1. Definition of the various angles used in the formulae. Left image:
angles defined in the laboratory-fixed frame. The z-axis is defined by the laser
polarization vector E. Right image: angles defined in the molecule-fixed frame.
The z-axis in this frame is given by the transition dipole vector D, which is
assumed to be parallel to the symmetry axis of the symmetric top.

We restrict our attention to symmetric tops (which include linear molecules as a special
case) that are excited by a linearly polarized laser pulse from a thermal ensemble. This already
encompasses experiments on a range of symmetric molecules; see for example [2, 4, 32, 35].
Further, we only consider the case where the transition dipole moment (i.e. the molecule-fixed
vector that is aligned) is parallel to the symmetry axis. The difference density can then be
expanded in a complete basis as

1%̄(R(3N ), τ )=1%̄(θ, r(3N−6), τ )=

∑
n

Pn(cos θ) 1%̄n(r(3N−6), τ ), (4)

where Pn are the Legendre polynomials, and r denotes the internal coordinates of the molecule
(i.e. excluding the centre of mass (CM) and rotational coordinates) in a molecule-fixed frame.
For linear molecules, there are five CM and rotational coordinates; to keep the discussion
simple, we only consider the general nonlinear case in the following. The angle θ is defined
in figure 1. Note that the difference density depends only on one of the three Euler angles.
Using the orthogonality of the Legendre polynomials, the inverse relation reads

1%̄n(r(3N−6), τ )=
2n + 1

2

∫ π

0
dθ sin θ 1%̄(θ, r(3N−6), τ ) Pn(cos θ). (5)

Note that here and in the following, we always drop the integration over the two remaining
Euler angles, and the CM coordinates. As the difference density is independent of them, these
integrations just give rise to additional normalization factors; however, we always have to carry
the sinθ -factor from the Jacobi determinant around.

As detailed in [32, 35], a difference density of the form (4) leads to a difference diffraction
signal (1) of the form

1
dσ

d�
(q, τ )=1

dσ

d�
(q, θq, τ )= 2(2π)2σT

∑
n even

(−1)n/2 Pn(cos θq)Sn(q, τ ), (6)

with

Sn(q, τ )=

N∑
a,b

f ∗

a (q) fb(q)
∫

d3N−6r 1%̄n(r(3N−6), τ ) Pn(cosϑab) jn(qrab) (7)
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in terms of spherical Bessel functions jn, and with rab as the distance between atoms a and b,
and ϑab the angle between the ab-vector and the transition dipole moment as defined in figure 1.
Note that terms with odd n are antisymmetric under space inversion and give no contribution
when calculating the diffraction pattern (1), so we can drop them. At this point, the link between
the integration and the variables rab and ϑab is somewhat opaque; we will detail the integration
scheme later on.

In the simplest anisotropic case, we only consider the terms n = 0, 2, and the density is
a second-order polynomial of cos θ . This is what we get whenever we excite molecules from
thermal equilibrium by one-photon absorption [36]. The diffraction pattern (6) is then a simple
sum of S0 (the ‘isotropic’ curve) and S2 (the ‘anisotropic’ curve). If we consider a fixed delay
time τ and a fixed length of the scattering vector q, we can assign each detector pixel on the
resulting circle a value of P2(cos θq) and a value of 1dσ/d�. The decomposition of 1dσ/d�
into S0 and S2 turns into a simple linear fitting problem, whose slope gives the anisotropic and
whose y-intercept gives the isotropic curve [16].

Alternatively, we can obtain the isotropic signal by ‘magic angle detection’ [35]. If the
angle α between the incoming x-ray beam and the laser polarization axis fulfils cos2 α = 1/3,
the isotropic signal can be obtained by directly integrating over the azimuthal angle on the
detector plate.

Until now, we have merely rewritten the general equation (1). To grasp the full potential of
(6) and (7), we now turn our attention to the density components1%̄n and their relation to some
‘fundamental’ density distributions.

2.1. Density distributions

Whenever a molecule interacts with a photon, its rotational quantum number changes. During
the laser–matter interaction, a molecule that starts out with a well-defined rotational quantum
number becomes an ensemble (coherent superposition) of states with different rotational
quantum numbers. These quantum numbers influence the subsequent time evolution through
ro-vibrational coupling (e.g. centrifugal distortion).

However, in many practical applications, this coupling can be neglected. That is, the
rotational motion of the molecule and its internal evolution are uncoupled, and we can
approximate

1%̄(θ, r(3N−6), τ )= %rot(θ, τ ) 1%̄vib(r(3N−6), τ ). (8)

We have to extend this ansatz in the case of multiple species, where we understand species
as well-defined, mutually distinguishable configurations that contribute to the signal. For
example, there might be a ‘hole’ term (depletion of the stable ground state) and an excited-
state wavepacket, both of which exhibit different rotational motion due to different moments of
inertia (see also the example of NaI in the subsequent sections). We assume in analogy to (8)
that for each well-defined species S, the rotational motion and internal evolution are uncoupled,
so that we can write

1%̄(θ, r(3N−6), τ )=

∑
S

%S
rot(θ, τ ) 1̄%

S
vib(r

(3N−6), τ )

=

∑
S

∑
n

Pn(cos θ)cS
n (τ ) 1%̄

S
vib(r

(3N−6), τ ). (9)
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Comparison with (4) shows that each density component 1%̄n is built up from fundamental
‘vibrational’ difference densities 1%̄S

vib that describe the time-dependent structure of the single
species, and (real-valued) coefficients cS

n that arise from an expansion of the angular distribution
in Legendre polynomials, and thus describe the angular distribution of the species. If we
do not know the exact angular distribution, these coefficients appear as additional fitting
parameters.

With this in mind, we can construct a general analysis procedure for the class of anisotropic
diffraction patterns presented here. We first use (6) to decompose the two-dimensional
diffraction pattern 1dσ/d� into a set of one-dimensional diffraction curves Sn. In a second
step, we guess the vibrational difference densities and coefficients, and build up the single
density components 1%̄n via (9). This guess is compared to the diffraction curves (7) and
subsequently improved through some iterative schemes. For the special case of diatomics, the
scattering curves can be directly inverted, see (19) below.

We point out that (6) and (7) contain the special case of isotropic densities, where only
the n = 0 term contributes. The diffraction pattern (6) is isotropic, and if we write out the
Legendre polynomial and spherical Bessel function in (7), the isotropic scattering curve is
given by

S0(q, τ )=

∫
d3N−6r 1%̄0(r(3N−6), τ )

N∑
a,b

f ∗

a (q) fb(q)
sin(qrab)

qrab
, (10)

which is the well-known Debye formula for isotropic ensembles [37] (where again the
integration is often suppressed).

From the case of purely isotropic signals, we can extract a number of relations that are also
useful for anisotropic patterns. Using distributions %S

rot with norm 1 and the orthogonality of the
Legendre polynomials, we obtain

cS
0 (τ )=

1

2

∫ π

0
dθ sin θ %S

rot(θ, τ )P0(cos θ)=
1

2
. (11)

This is just the trivial result that for an isotropic distribution, we do not have to care about
molecular rotation. Furthermore, we can calculate the difference probability density 10 of
finding a specific molecular structure, that is, a certain value of r(3N−6), by integrating 1%̄ over
the remaining angular degree of freedom

10(r(3N−6), τ )=

∫ π

0
dθ sin θ 1%̄(θ, r(3N−6), τ )=

∑
S

1%̄S
vib(r

(3N−6), τ ), (12)

where we used (5), (9) (with P0(x)= 1) and (11). The vibrational difference densities 1%̄S
vib

are thus exactly the difference probability distributions of the molecular structures for the
corresponding species S.

Equations (11) and (12) are, in fact, valid for arbitrary difference densities. The
orthogonality of the Legendre polynomials ensures that all but the isotropic components
(cS

0 ,1%̄0) vanish during the θ -integration. This leads to an important conclusion: if we
decompose the signal according to (6) and focus only on the isotropic component S0, we can
ignore the rotational coefficients and interpret the resulting density as a (difference) probability
distribution; that is, we can process the curve S0 and interpret the results as if we had an
isotropic ensemble in the first place.
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In the theory involving isotropic ensembles, (10) is often recast in a form that involves
atom-pair-distribution functions (see e.g. [3]), which removes the cumbersome integration over
r(3N−6). We first calculate the difference probability density10ab for the distance between atoms
a, b being r0. In the spirit of (12), we take the probability density of finding some structure
r(3N−6) and integrate it over all internal coordinates except the ab distance. Formally, we choose
the internal coordinates to be the spherical coordinates ϑab, φab, rab of the ab vector, and some
3N − 9 other internal coordinates xab, and obtain

10ab(r0, τ )= r 2
0

(∫ π

0
dϑab sinϑab

∫ 2π

0
dφab

∫
d3N−9xab

×

∑
S

1%̄S
vib(ϑab, φab, x(3N−9)

ab , τ ; rab = r0)

)
= r 2

0 1gab(r0, τ ), (13)

thereby defining a difference pair distribution 1gab of the ab distance. The same integration
scheme can be used to evaluate (10), and we can express the signal through the pair-distribution
functions as

S0(q, τ )=

N∑
a,b

f ∗

a (q) fb(q)
∫

∞

0
dr r 2 1gab(r, τ )

sin(qr)

qr
. (14)

Note that pair-distribution functions can be defined in different ways. To reduce the number of
terms, the sum sometimes only runs over all atom types, and the distribution function is defined
per pair of atom types. In liquid scattering experiments, it is more convenient to convert the pair
distribution into a dimensionless quantity called the radial distribution function [3].

The concept of using the spherical coordinates of the ab-vector for the integration and
hiding most integrations in the definition of some distribution function can be extended to the
anisotropic components. From (7) and (9), we obtain

Sn(q, τ )=

N∑
a,b

f ∗

a (q) fb(q)
∫

∞

0
dr r 2

∫ π

0
dϑ sinϑ

(∑
S

cS
n (τ ) 1gS

ab(r, ϑ, τ )
)

Pn(cosϑ) jn(qr),

(15)

where the species-dependent angle-resolved difference pair distributions 1gS
ab are

1gS
ab(r, ϑ, τ )=

∫ 2π

0
dφab

∫
d3N−9xab 1%̄

S
vib(φab, x(3N−9)

ab , τ ; rab = r, ϑab = ϑ). (16)

Note that we now have one pair distribution per species in (15), while we had a single pair
distribution in (13). This is caused by the different species having different angular distributions,
which we account for by the rotational coefficients. Only if all species have the same angular
distribution, or if all rotational coefficients are identical, can we sum up the species-dependent
pair distributions to a global pair distribution.

Finally, we want to point out that the method presented here might only be feasible for
weak alignment, as induced by few-photon absorption. The stronger the alignment, the higher
the order of the Legendre polynomials that appear in the decomposition (4) and (6). In particular
in the case of multiple species, this leads to a large number of rotational coefficients that, in
general, have to be guessed.
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2.2. Direct inversion

In the following, we study the behaviour of the single density components 1%̄n of NaI. NaI
has the internuclear distance r as the single internal coordinate, which greatly reduces the
complexity. Also, the relevant transition dipole moment is parallel to the molecular axis, so
that Pn(cosϑNaI)= 1. Choosing real atomic form factors for convenience, (7) simplifies to

Sn(q, τ )= 2 f1(q) f2(q)
∫

dr r 2 1%̄n(r, τ ) jn(qr). (17)

For a diatomic, it is possible to invert the scattering curves directly to obtain 1%̄n(r, τ ). The
spherical Bessel functions have an orthogonality relation [38]∫

∞

0
dq q2 jn(uq) jn(vq)=

π

2u2
δ(u − v), (18)

so that, up to constant factors,

1%̄n(r, τ )=

∫ qmax

0
dq q2 Sn(q, τ )

f1(q) f2(q)
jn(qr) e−kq2

(19)

(a related formula is (30) of [17]). Since real-world data are only collected for q 6 qmax <∞, the
inverted density using [0, qmax] for the integral boundaries exhibits high-frequency oscillations,
which are suppressed here by applying the exponential factor with k > 0. Again, applying
this to the isotropic contribution (n = 0) gives the well-known inversion formula for isotropic
samples [33].

For isotropic distributions, the inversion formula can also be used for studying polyatomic
molecules [33]–[35], [39]. Let us assume that all atomic form factors have the same functional
form, fa(q)= Za f (q), with Za being the number of electrons of atom a, insert (14) into (19)
and use (18). We obtain up to constants the expression

∑
a,b Za Zb1gab(r, τ ). This function

has a peak or dip whenever r roughly equals some relevant atom–atom distance that has been
established (peak) or removed (dip) during the excitation. While the underlying assumptions are
too crude for a quantitative analysis, this inversion is still useful for qualitative estimates of the
dynamics.

Direct inversion schemes have also been applied previously to anisotropic diffraction
patterns. In [34], a mixture of S0 and S2, which is obtained when the laser polarization axis is
parallel to the incoming beam, was inverted using (19) with n = 0. In [35], the same procedure
was applied to the diffraction pattern along specific lines on the detector (roughly corresponding
to different values of θq) [35]. As is shown in the references, these procedures can lead to
artifacts in the resulting distribution functions, such as predicting the breakage of non-existent
bonds.

Therefore, we should always decompose the diffraction pattern into the single curves Sn,
and then invert the isotropic signal using j0, and the anisotropic signal using j2, where care
has to be taken when interpreting the latter. Comparison with (15) shows that the inversion
procedure extracts not only a sum of the angle-resolved difference pair distributions, but also
includes contributions from the ϑ-integration and the rotational coefficients, both of which can
change the amplitude and sign of the single peaks.
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Figure 2. Potential energy surfaces and sketch of the relevant nuclear motion
of NaI. By absorbing a UV photon, NaI is vertically excited from the X 16+

ground state to the A 16+ first excited state, which exhibits a shallow minimum.
The nuclei then vibrate on the excited-state surface with bond distances ranging
from approximately 3 to 12 Å. Through the avoided crossing at 7 Å, parts of the
wavepacket can make a transition to the electronic ground state and dissociate.

3. The NaI molecule

To illustrate the general decomposition outlined in the last section, we have calculated the
dynamics of NaI excited by a UV photon. The relevant potential energy surfaces and nuclear
dynamics of NaI after photo-excitation are shown in figure 2. We chose NaI because it is an
extensively studied molecule [24]–[26, 40]–[42] and because the excited wavepacket oscillates
with large amplitudes, so we can easily distinguish the two species, which are the excited state
and the depleted ground state (the ‘hole’).

We used the WavePacket program package [43] for the calculation, which comes with
potential energy curves and dipole moments for NaI based on [41]. The wave function was
represented using a pseudospectral basis with a Gauss–Legendre discrete variable representation
(DVR) in θ , and an equally spaced grid for the radial coordinate r [44, 45]. The initial wave
function was chosen to be symmetric under a rotation around the laser polarization axis, and
this symmetry is preserved by the Hamiltonian, so we can drop the azimuth angle.

The difference density components in (4) can then be calculated from

1%n(r, t)=
2

2n + 1

∫
dθ sin θ (9on †9on

− 9off †9off) Pn(cos θ). (20)

Here, and in the following, we use a vector notation 9(r, θ, t)= (1/r)(ψg(r, θ, t), ψe(r, θ, t))T

together with a contact transformation such that ψg/r specifies the wave function in the
electronic ground state and ψe/r that in the electronic excited state.

In the electric dipole approximation for the molecule–field interaction, the Hamiltonian
can be written as

Ĥ = Ĥ0 − ε(t)µ̂(r) cos θ, (21)
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where the field-free Hamiltonian Ĥ0 conserves the rotational quantum number, and the transition
dipole moment µ̂ in the second term is responsible for the initial switching of the electronic state
with an amplitude depending on the internuclear distance r and the electric field strength ε.

The molecule was initially placed in the electronic, vibrational and rotational ground
state by a propagation in imaginary time [46]. It was subsequently excited by a laser with a
wavelength of 328 nm (this value was taken from previous calculations [25, 26]), a sin2 shape
with 10 fs FWHM and an intensity of 1011 W cm−2. The propagation was carried out using
the split operator method detailed in [44]. For simplicity, we carried out the propagation non-
perturbatively; however, the laser intensity was chosen such that first-order effects dominate;
that is, only terms 1%n with n = 0, 2 are significant. The details of the calculation and the
scripts used for data processing can be found in the supplementary material (available from
stacks.iop.org/NJP/12/113022/mmedia).

We note in passing that the valence electron in NaI undergoes substantial reorganization
whenever the internuclear distance passes the avoided crossing [26]. This, however, does not
invalidate the independent atom model used to represent the molecular electron density, since
the vast majority of the electrons can be considered as core electrons associated with a specific
atom.

4. Results

4.1. Dynamics of laser-excited NaI

Figure 3 shows the isotropic and anisotropic difference densities of NaI calculated via equation
(20). We can immediately identify several features that we discussed earlier. We have two well-
defined species: the oscillating excited-state wavepacket and the ground-state ‘hole’, which
shows minor vibrations. Qualitatively, both difference densities are similar and encode the
same ‘fundamental’ time evolution. We can also see that the hole contribution changes sign
in1%̄2 at τ = 1.5 ps. From the discussion in section 2, especially equation (9), we recall that the
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density components for each species contain some universal vibrational density and a rotational
coefficient that describes the orientation of the species. In our calculation, the sign change of
the anisotropic density component comes from a sign change of chole

2 , that is, a change of the
rotational distribution of the hole. This does not happen to the excited-state wavepacket, thus
emphasizing the need to assign different rotational coefficients to different species.

We can deduce from (21) that the excitation is proportional to cos θ on the wave function
and cos2 θ on a density level. In a simple ‘classical’ picture, we can interpret this such that
the laser excites the molecules ∼cos2 θ and leaves a ‘hole’ in the ground state ∼ −cos2 θ . In
the lowest-order perturbation, only the states l 6 lmax = 2 contribute, which gives a smallest
rotational period of T = 2π h̄/Blmax(lmax + 1)≈ 45 ps. The sign change after 1.5 ps occurs
because the hole is initially not aligned with the laser field, but starts the rotation with a phase
that is determined by the details of the excitation process.

4.1.1. Interpretation of the dynamics. To get a deeper physical insight into this process, we
study the NaI dynamics with an analytic model. In a perturbation theory interpretation, the
molecule is always subject to the field-free Hamiltonian and interacts with the electric field at
a random time once and at two random times for second-order effects (on the wave function
level). With this in mind, we can explicitly write down expressions for the difference density.
For simplicity, we neglect the non-adiabatic transition, so that Ĥ 0 is diagonal in the electronic
basis.

If the laser is turned off, the molecule remains in the electronic, vibrational and rotational
ground state, that is,

9off(R, t)=
1

r

(
ψGS(r, t)

0

)
. (22)

Here, ψGS denotes the vibrational ground-state function, whose sole time dependence is a
complex phase.

If the laser is turned on and we assume no significant rotation during the laser pulse, then
the wave function at the end of the laser pulse te can be written up to second order as

9on(R, te)=
1

r

(
a0ψGS(r, te)+ a2ψhole(r, te) cos2 θ

a1ψexc(r, te) cos θ

)
. (23)

A major portion of the wave function is not excited at all and stays in the original ground state
ψGS. By absorbing a photon, the molecule can switch to the excited electronic state and move
on the corresponding surface, which is described by the wave function ψexc. Due to the form of
the interaction Hamiltonian, it acquires an angular factor of cos θ . After the molecule is excited,
it may become de-excited by emitting a photon, thereby falling back to the electronic ground
state. The resulting wave function ψhole is the result of a two-photon process and consequently
has an orientation dependence of cos2 θ .

For easier comparison of the magnitude of various terms, we have split each contribution
into a complex-valued, normalized wave function ψi and a real-valued coefficient ai . If the one-
photon excitation probability is given by p � 1, then we would expect a2

0 ≈ 1 − p, a2
1 = p, and

a2
2 ≈ p2, since the two-photon process arises from de-excitation from the excited subset of the

wave function. However, the interference term between ψhole and ψGS scales with a0a2 ≈ p and
thus has the same order of magnitude as the wave function on the excited-state surface. In fact,
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this term describes the detailed dynamics of the created hole in the ground state and has to be
included for a correct treatment.

As the field-free Hamiltonian does not couple states with different rotational quantum
numbers, we rewrite (23) using Legendre polynomials and obtain an expression that is valid
for times t > te

9on(R, t)≈
1

r

([√
1 − pψGS(r, t)+

p

3
ψhole,0(r, t)

]
P0(cos θ)+

2p

3
ψhole,2(r, t)P2(cos θ)

√
pψexc(r, t)P1(cos θ)

)
, (24)

where ψhole,0(r, te)= ψhole,2(r, te)= ψhole(r, te) from (23), and with separate time dependences
for each radial wave function. Inserting (22) and (24) into (20) and collecting only terms up to
order p, we obtain for the isotropic difference density

r 21%0(r, t)≈ −p|ψGS(r)|
2 +

2p

3
<[ψ∗

hole,0(r, t)ψGS(r, t)] +
p

3
|ψexc(r, t)|2 (25)

and for the anisotropic difference density

r 21%2(r, t)≈
4p

3
<[ψ∗

hole,2(r, t)ψGS(r, t)] +
2p

3
|ψexc(r, t)|2. (26)

Note that the weights of the ground- and excited-state contributions to the difference densities
are of similar magnitude.

The last term in (25) and (26) describes the wavepacket corresponding to the excited-state
species. It performs the large-amplitude oscillations in figure 3, and one readily observes that the
contribution is identical for both difference density components. The remaining terms describe
the hole; the first term in (25) describes the static population depletion of the ground state and
gives a negative contribution to the difference density around r = 3 Å, while the remaining terms
are the coherence or interference terms between the unexcited ground-state wave function and
the second-order perturbed wave function. If we assume for the moment that the latter is a real
eigenstate ψx of the unperturbed Hamiltonian, we can write

<[ψ∗

x (r, t)ψGS(r, t)] = <[ψx(r)ψGS(r) eiϕx +i(Ex−EGS)t/h̄]

= ψx(r)ψGS(r) cos[(Ex − EGS)t/h̄ +ϕx ]. (27)

The product of the two stationary wave functions gives some characteristic density distribution,
which then oscillates in time as described by the cosine. The hole wave functions can be
expressed as the result of an absorption of a photon from the ground state, propagation on the
excited-state surface for a certain time and subsequent emission of the photon. Consequently,
the phase ϕx is an arbitrary number that depends on the details of the system and the excitation
process.

In general, the hole wave functions ψhole,i can be written as sums of eigenstates, and the
full time dynamics are a superposition of single interference terms of the form (27). In our
calculation, we found the most important contributions to ψhole,i to be the vibrational ground
state and first excited state ψ0, ψ1 (we neglect ro-vibrational coupling that would make these
states dependent on the rotational quantum number).

Let us first consider the isotropic coherence terms in (25). Since we started in the
vibrational ground state, ψ0ψGS = |ψGS|

2 and E0 = EGS. Consequently, the coherence term
∼ ψ0ψGS is time independent, has the same form as the depletion of the ground state and
effectively only serves to modify the prefactor of the second term in (25). The product ψ1ψGS,
in contrast, is a function with one node and localized around r = 3 Å. The energy difference
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E1 − EGS is about 32 meV for NaI, corresponding to an oscillation of 130 fs duration. This
interference term causes a small oscillation of the difference density around r = 3 Å in figure 3.
However, the overall difference density remains negative at all times due to the ground-state
depletion.

Essentially the same oscillation is seen in the anisotropic difference density, which we can
also trace back to the interference between ψGS and the first vibrationally excited state in (26).
We also find ψ0ψGS = |ψGS|

2, which gives a contribution similar to the depletion of the ground
state in the isotropic difference density. However, sinceψhole,2 describes the time evolution of the
rotationally excited wave function, the time evolution contains an additional rotational energy
term, so that E l=2

0 − EGS is now approximately 0.1 meV, corresponding to a slow oscillation of
45 ps duration.

This means that 1%2 has a contribution of the form c2(t)|ψGS|
2, where the prefactor c2

comes from the cosine in (27) and oscillates slowly. From (9), it is then natural to assign −|ψGS|
2

to the vibrational difference distribution of the hole species and c2(t) to the rotational coefficient
and describe the slow oscillation as the rotation of the hole.

We can then wonder what the rotational distribution of the hole at the end of the laser pulse
is. Obviously, from (27), this is determined by the value of ϕl=2

0 , which in turn depends on the
molecule and the laser parameters. That is, while the hole species rotates with an overall period
of 45 ps, the initial orientation is determined by the details of the excitation process. For our
calculation, we found a phase shift of slightly less than −π/2, so the hole starts out weakly
aligned with the polarization axis, and the sign of the interference term changes for the first
time after only 1.5 ps.

4.2. X-ray diffraction from laser-excited NaI

For all results, we assumed an x-ray beam with a sin2-pulse shape and a half-width of 100 fs,
which should roughly correspond to the situation at the LCLS including timing jitter [9]. Atomic
form factors were taken from [47].

A typical diffraction pattern is shown in figure 4. As detailed in section 2, this rather
complex pattern is built up from two diffraction curves (here calculated from (17)), which
encode the internal dynamics of the two species and their rotational coefficients. From section 2,
equation (6), we know that for one-photon excitation, the difference signal is up to constant
factors given by1 dσ/d�= S0(q)− P2(cos θq)S2(q). Consequently, if we keep q constant, and
look at different pixels corresponding to different θq (crosses for q = 1.5 Å−1), we can plot the
cross section as a function of P2(cos θq) and obtain S0(q) and S2(q) from the offset and negative
slope, respectively.

Using this procedure for all q gives the two scattering curves. In the case of noisy
experimental data, a least squares fit should also yield some measure for the error of the
diffraction curves. The isotropic curve can be compared with various approximations, such as
an azimuthal integration over the detector plane, which gives surprisingly good results (see [35]
for a discussion of this and other approximation schemes). However, we want to point out that
the correct decomposition itself is simple enough, so one can easily avoid the loss of accuracy
inherent in the approximate scheme.

Formally, we can assign each detector pixel a value of q and θq , where the latter depends
on the angle between the wave vector of the incoming x-ray beam and the laser polarization
axis. Consequently, we get different diffraction patterns if we vary this angle. However, this
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Figure 4. Left: calculated two-dimensional difference diffraction pattern in
arbitrary units for NaI at a pump–probe delay time of 500 fs. qz and q⊥ give the
length of the component of q parallel and perpendicular to the laser polarization
axis, which was set perpendicular to the wave vector of the x-ray beam. Middle:
plot of 1 dσ/d� as a function of P2(cos θq) (q = 1.5 Å−1, points correspond to
those of the left image). Right: isotropic and anisotropic curves Sn(q, τ ) encoded
in the two-dimensional pattern. Also shown is the result from an azimuthal
integration over the detector surface.

only affects how well we can decompose the pattern into the single curves Sn; the curves
themselves are independent of the experimental setup. For the figures presented here, we
assumed a perpendicular setup where the anisotropy is most pronounced.

In figure 5, we compared the real difference densities to an inversion from the diffraction
data using (19). We used a pump–probe delay time of 1650 fs because the vibrational
interference pattern is most pronounced in the anisotropic difference density at this time.
We assumed LCLS beam parameters of 8 keV photon energy; with a maximum scattering
angle of 60◦, only scattering vectors up to q ≈ 4 Å−1 are collected. We find that this range
of scattering vectors is too small to resolve—in particular, the vibrational interference terms—
whereas perfect agreement with the original density distribution is obtained with a larger range
of scattering vectors, as indicated in the figure.

Until now, we have only studied NaI in the rotational ground state. In practice, one usually
starts with a Boltzmann distribution of initial rotational states. However, our basic findings still
hold in this case. The orientation of the hole is still determined by an interference term between
the unexcited molecular wave function and a second-order wave function, and the phase between
them (i.e. orientation of the hole) depends on the detailed dynamics of the latter. We also find
two additional effects that do not occur in the ground-state calculation.

Firstly, we point out that if the molecule absorbs a photon in the rotational ground state,
the resulting excited-state wave function ψexc consists of a single rotational quantum state with
l = 1; the density |ψexc|

2 is always preferentially oriented towards the laser polarization axis.
This is a special case; for a nonzero initial rotational quantum number l0, ψexc is composed of
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reconstructions with different values of qmax and k.

contributions with l0 + 1 and l0 − 1. As a consequence, its contribution to the difference density
also includes rotational interference terms, and the anisotropic density can show amplitude or
sign changes that we can interpret as rotation of the excited molecule.

A second effect that we expect to occur is rotational dephasing [28, 34, 39]. The rotational
interference terms for ensemble members with different initial angular momenta oscillate with
different timescales. When performing the ensemble average some time after the excitation, the
different anisotropic contributions typically cancel. In effect, the diffraction pattern becomes
almost isotropic on the timescale of a few picoseconds with alignment revivals at certain times.

5. Conclusions

Whenever we excite molecules with a linearly polarized laser, we prepare anisotropic
ensembles. When we probe the subsequent sub-picosecond dynamics with TRXD, the resulting
difference diffraction patterns also show a pronounced anisotropy. It has been demonstrated
that such signals can be decomposed into an isotropic and one or more anisotropic diffraction
curves. For alignment through one-photon absorption, the decomposition turns into a linear
fitting procedure, and gives an isotropic and an anisotropic curve. These curves can be processed
independently of each other, and they encode the same basic information about the non-
equilibrium molecular structure.

The isotropic curve is described by the usual Debye formula [37] and gives the same
signal as we would obtain from an isotropic ensemble. The anisotropic curve contains additional
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coefficients that describe the rotational distribution of the molecule, which makes data extraction
more difficult. On the other hand, it is related to an angle-resolved pair distribution; that is, it
also includes explicit information about the orientation of the single bonds with respect to the
transition dipole moment, which might be used to supplement the information extracted from
the isotropic curve.

We have calculated the diffraction patterns and difference densities for the diatomic
NaI molecule excited from the rotational, vibrational and electronic ground states. We have
demonstrated both numerically and analytically that the density distribution can be extracted
through an exact inversion procedure.

By interpreting the dynamics with a simple analytic model, we could explicitly demonstrate
that the orientation of the hole species is strongly dependent on the details of the excitation
process. This should serve as a warning that the orientation of the single species cannot be
guessed from simple models that omit quantum-mechanical interference terms (for example,
equation (32) of [35] assumes that when molecules are preferentially excited along the laser
polarization axis, the hole is also oriented in this direction).

Apart from applying the formalism presented here to larger systems, one possible route for
expansion is molecular imaging. It has been proposed to align molecules in their stable ground
state in the gas phase by a non-resonant laser to extract their structure [22, 30, 31, 48]. Due
to imperfect alignment, however, the structural information that we get in the laboratory frame
is always blurred to some extent. To try to overcome this limitation, it is intuitively appealing
to use the same basic procedure of separating the density into a rotational and an ‘internal’
component. However, it remains to be seen how useful this concept is in practice and whether
it can be used to create a convergent and stable algorithm.
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