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Summary 

This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling 
approach and a method for finding periodic steady state solutions are described. 
Examples of applications are given in the form of four research papers. 
 
Stirling machines and pulse tube coolers are introduced and a brief overview of the 
current state of the art in methods for simulating such machines is presented. It was 
found that different simulation approaches, which model the machines with different 
levels of detail, currently coexist. Methods using many simplifications can be easy to 
use and can provide results quickly, but they are limited with respect to the phenomena 
that can be studied. More comprehensive methods can be used to study and optimise 
machines or components in more detail, but they usually require more time and 
computer resources. In this work the focus was on methods that are fast enough to be 
used for numerical optimisation of complete machine designs. The highest level of 
detail which appears to be feasible for this purpose is to model the gas flows in the 
machines as being primarily one-dimensional. 
 
The theory and implementation of a control volume based approach for modelling 
oscillating, compressible flow in one space dimension is presented. The implementation 
produces models where all the equations, which are on a form that should be 
understandable to someone with a background in engineering thermodynamics, can be 
accessed and modified individually. The implementation was designed to make models 
flexible and easy to modify, and to make simulations fast. 
 A high level of accuracy was achieved for integrations of a model created using 
the modelling approach; the accuracy depended on the settings for the numerical solvers 
in a very predictable way. Selection of fast numerical algorithms and multi-threading 
accelerated simulations considerably. The discretisation scheme of the modelling 
approach was found to be convergent, and even relatively coarse discretisations 
produced useable results. Models created using the modelling approach produced results 
in good agreement with experimental data, and with simulation results from current 
state of the art software, for two Stirling machines and two pulse tube coolers. 
 
Parallelised single and multiple shooting methods were studied and were found to be 
reliable for finding periodic steady state solutions. Multiple shooting methods had better 
parallel scalability but this advantage was almost neutralised by a significant overhead 
compared to single shooting. The overhead was due to transients at the beginnings of 
the sub intervals in the cycle. The severity of the overhead was specific to models which 
included the inertia of the gas in the momentum balance. Single shooting, where the 
fastest evolving variables such as velocities and pressures, where excluded from the 
shooting, was the fastest sequential method. Fixed point iteration was performed on the 
excluded variables during the shooting. The parallel scalability for batch jobs was 
improved with an implementation which uses the parallelism inherent in batch jobs to 
increase the scalability of the parallelised shooting methods. 
 
The four research papers are self contained studies on: 1) the effects of regenerator 
matrix temperature oscillations on the performance of a Stirling engine, 2) optimal 
regenerator designs which takes into account the effects of the regenerator matrix 
temperature oscillations, 3) transverse asymmetry in the temperature profile of a 
regenerator in a pulse tube cooler, and 4) the appendix gap losses in a Stirling engine.
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Resume (Summary in Danish) 

Denne afhandling omhandler numerisk simulering af cykliske termodynamiske 
processer. En modelformulering og en metode til at finde periodestationære løsninger er 
beskrevet. Eksempler på anvendelser er vist i fire videnskabelige artikler. 
 
Der gives en introduktion til Stirlingmaskiner og pulse tube-kølere og en kort oversigt 
over status inden for metoder til simulering af sådanne maskiner. Det blev fundet, at der 
er flere forskellige aktuelle simuleringsmetoder, der modellerer maskinerne med 
forskellige detaljeringsgrader. Metoder med mange forsimplende antagelser kan være 
meget brugervenlige og kan give resultater hurtigt, men kan kun studere overordnede 
fænomener. Mere omfattende metoder kan bruges til nærmere analysere og optimering 
af maskiner og komponenter, men kræver oftest mere tid og regnekraft. I dette arbejde 
er der fokuseret på metoder, som er hurtige nok til at være anvendelige til numerisk 
optimering af komplette maskindesigns. Den fineste detaljeringsgrad, som er operativ i 
denne sammenhæng, ser ud til at være modellering af gasstrømningerne i maskinerne 
som værende hovedsageligt endimensionale. 
 
Teorien bag og en implementering af en kontrolvolumenbaseret metode til modellering 
af endimensionale, oscillerende, kompressible strømninger præsenteres. 
Implementeringen giver modeller, hvor alle ligningerne, der er formuleret så de skulle 
være tilgængelige for personer med baggrund i anvendt termodynamik, kan tilgås og 
ændres enkeltvis. Implementeringen blev designet til at gøre modeller fleksible og lette 
at ændre, og samtidigt gøre simuleringer hurtige. 
 Stor nøjagtighed blev opnået ved numerisk integration af en model formuleret 
efter modelleringsmetoden. Sammenhængen mellem løserindstillinger og opnået 
nøjagtighed var meget forudsigelig. Udvælgelse af passende numeriske algoritmer og 
parallelisering vha. tråde forøgede simuleringshastigheden betydeligt. Det blev fundet at 
diskretiseringen i modelleringsmetoden var konvergent, og at selv relativt grove 
diskretiseringer gav brugbare resultater. Modeller lavet med modelleringsmetoden gav 
resultater, der stemte godt overens med eksperimentelle data og beregningsresultater fra 
state-of-the-art software, for to Stirlingmaskiner og to pulse tube kølere. 
 
Paralleliserede enkelt- og multiple skydemetoder blev studeret, og blev fundet at være 
pålidelige til at finde periodestationære løsninger. Det blev fundet at multiple 
skydemetoder skalerede bedst på parallelcomputere, men at denne fordel stort set blev 
neutraliseret af at metoderne var mere regnetunge end enkeltskydemetoder. Den ekstra 
regnetid skyldtes transienter ved begyndelserne af underintervallerne i cyklussen. Disse 
transienter var særligt beregningstunge for modeller, der inkluderer gassens inerti i 
impulsbalancen. Den hurtigste metode ved sekventielle beregninger var enkelt 
skydning,  hvor de hurtigste variable, såsom hastigheder og tryk, var ekskluderet fra 
skydningen. Der blev foretaget fikspunktiteration på de ekskluderede variable. 
Skalerbarheden for gruppekørsler blev forbedret med en implementering, som udnytter 
de indbyggede muligheder for parallelitet ved gruppekørsler til at forbedre 
skalerbarheden af de paralleliserede skydemetoder.  
 
De fire videnskabelige artikler er selvstændige studier af: 1) Indflydelsen af 
regeneratormatrixtemperatursvingninger på en Stirlingmotors ydelse, 2) optimale 
regeneratormatrixdesigns som tager højde for regeneratormatrixtemperatursvingninger, 
3) asymmetri på tværs af strømningsretningen i temperaturprofilet i en regenerator i en 
pulse tube køler, og 4) ringspalte-tabene i en Stirlingmotor.
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1. Introduction 

 1 

1. Introduction 
In this work we consider cyclic thermodynamic processes that will approach a periodic 
steady state, if they are left to run for a sufficiently large number of cycles. Such cyclic, 
or periodic, processes are abundant in engines, cooling machines, heat pumps, 
compressors, rotary devices, and so on. 
 
A common feature of the above mentioned machines and devices is that their designs 
are often optimised for good performance at periodic steady state operation. If such a 
design optimisation is to be assisted by using a numerical simulation model then 
periodic steady state solutions to the numerical model are needed. 
 This can be problematic because the cyclic thermodynamic processes in the 
machines typically approach periodic steady state in an asymptotic manner. An engine, 
for instance, may need several minutes of running time after a cold start until steady 
state conditions are reached. To find a periodic steady state solution to a numerical 
model of such a machine it can sometimes be necessary to simulate many consecutive 
cycles of operation in order for the solution to evolve until it is close to the periodic 
steady state. Finding periodic steady state solutions to complex numerical models in this 
way may require many hours of CPU time. Waiting for extended periods of time when 
using simulation as a design aid is impractical. 
 
One approach to reducing the waiting time is to relax the requirements for how close to 
periodic steady state that solutions need to be. But this approach may compromise the 
consistency of the solutions, i.e. it can become impossible to tell if changes in a solution 
are actually due to changed input parameters or if the changes are just noise due to 
deviations from periodic steady state. Good consistency is usually critical when using 
simulation results as input for a numerical optimisation routine. 
 A different approach to reducing the waiting time is to reduce the complexity of 
the numerical model. But if too many simplifying assumptions are made, then the 
ability of the model to mimic the actual machine may be compromised and that can 
reduce the usefulness of the model. 
 Another way to reduce the waiting time is to use specialised simulation 
software, which uses optimised numerical methods and/or parallel computing 
techniques to reduce the time needed to find periodic steady state solutions.  
 
In the present work efforts have been divided between: 

1. Developing a good way to make models that can predict the performance of 
machines, for which oscillating compressible flow that is predominantly one-
dimensional plays an important role. Stirling machines have been used as the 
primary example, but pulse tube coolers have also been modelled. It was a 
priority that the models should be in a format which, when fully developed, 
would be flexible and yet simple enough to allow individual equations to be 
understood and modified by a user with a background in engineering 
thermodynamics. 

2. Optimising a numerical method, namely the shooting method, for finding 
periodic steady state solutions to the models. It was a priority to be able to 
compute periodic steady state solutions quickly enough that numerical 
optimisation of complete machine designs were practical. 

3. Applying the developed methods for performing numerical studies on 
phenomena and loss mechanisms in Stirling machines and pulse tube coolers.
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1.1. The type of cyclic processes considered here 

In this work we consider cyclic thermodynamic processes that will approach a periodic 
steady state if they are left to run for a sufficient number of cycles. 
 
In such a process it would be possible to measure the value of some quantity, either at a 
fixed point in space or inside an imaginary fluid parcel, such that the measured value 
would never reach a constant value. Even when a zillion cycles had passed the 
measured value would still oscillate with a constant period. If one continuously plotted 
the measured value against the relative position in each cycle then the plotted curves for 
different cycles would be right on top of each other. If one plotted the measured value 
against time, starting at the time when the first cycle began, the resulting plot could look 
like Fig. 1. After an initial transient the cycles begin to look identical.  
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Fig. 1. Illustration of a measured value approaching a periodic steady state. 

 
In the remainder of this thesis the terms “cyclic” and “periodic” are used to denote 
processes that behave as described above. 
 
If the before mentioned measurement was made on a very small scale, say on the scale 
of the turbulence in the gas flows inside an engine, then the measured signal might have 
a chaotic component, so that there would never be two identical cycles. In such cases it 
is not trivial to formulate conditions for when periodic steady state has been reached. 
This problem is not investigated here.  
 

1.2. Examples of machinery that embodies cyclic processes 

In this work the processes that occur in Stirling engines, Stirling coolers, and pulse tube 
coolers have been studied as examples of cyclic thermodynamic processes. Stirling 
machines have been used as the primary example, but simulations of pulse tube coolers 
have also been performed. As an introduction to the material presented in the chapters 
that follow, Stirling machines and pulse tube coolers are briefly described below. 
 
The theoretical stepwise thermodynamic cycles, which are used widely in textbooks on 
thermodynamics, have little resemblance to the processes that takes place inside actual 
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machines of the types described below. Therefore they are not discussed here. Instead 
the descriptions below are aimed at giving the reader an initial feel for the nature of the 
actual cyclic thermodynamic processes, that takes place inside the machines, and a feel 
for what is needed in order to successfully model the machines. 
 

1.2.1. Stirling engines and Stirling coolers 

Stirling engines and Stirling coolers are described here under the same heading because 
the working principles of the machines are very similar. For some production Stirling 
machines it is primarily the printed labels on the exterior of the machines and the 
materials chosen for their construction that enables one to determine if a Stirling 
machine is actually an engine or a cooler. 
 
Stirling machines basically embody a serial connection of the following five 
components: 

1. A compression volume. 
2. A heat exchanger for heat rejection, the heat rejector. 
3. A regenerator. 
4. A heat exchanger for heat absorption, the heat absorber. 
5. An expansion volume. 

The serial connection of the components is illustrated in Fig. 2. The total volume 
contained inside the five components is denoted the working volume and it is filled with 
gas. 
 

 
Fig. 2. The basic components in a Stirling machine. 

 
Stirling machines as engines 
In order for a Stirling machine to work as an engine the temperature of the heat absorber 
must be higher than the temperature of the heat rejector. The work producing cyclic 
process that takes place inside a Stirling engine can be mentally divided into four 
phases: 

Phase 1: Work is expended to compress the gas while it is mainly in the 
compression volume. 

Phase 2: The gas is moved from the compression volume to the expansion volume 
by moving both pistons simultaneously. During the transport through the 
heat exchangers and the regenerator the gas is heated so that it arrives in 
the expansion volume with a temperature near that of the hot heat 
absorber. This heating takes place at near constant volume and causes 
the pressure to rise. 
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Phase 3: The hot gas is expanded in the expansion volume. More work, than was 
needed for compression, can be extracted from the expansion because 
the pressure is higher. 

Phase 4: The gas is moved back from the expansion volume to the compression 
volume. On its way the gas is cooled so that it has a temperature near 
that of the heat rejector when it arrives in the compression volume. The 
cooling occurs at near constant volume and causes the pressure to 
decrease. The cycle can now be repeated by beginning with phase 1. 

 
One could make the four phases very distinct from each other if the pistons in Fig. 2 
were moved in a step like manner. In a real machine, however, the phases change 
fluently from one to the next because the motions of the pistons are more sinusoidal 
than stepwise. But the basic idea of the process remains the same: Compress a cold gas, 
heat it to increase the pressure, expand it and extract more work than was needed for 
compression, cool the gas to decrease the pressure, and start the next cycle. One can say 
that a duty is paid in the form of heat at a high temperature in order to produce work. 
 
Stirling machines as coolers 
When a Stirling machine is used as a cooler the temperature of the heat absorber is 
lower than the temperature of the heat rejector. This is just the opposite of what was the 
case for the Stirling engine. The work consuming cyclic process that takes place inside a 
Stirling cooler can be mentally divided into the following four phases: 

Phase 1: Work is expended to compress the gas while it is mainly in the 
compression volume. 

Phase 2: The gas is moved from the compression volume to the expansion 
volume. During the transport through the heat exchangers and the 
regenerator the gas is cooled so that it arrives in the expansion volume 
with a temperature near that of the heat absorber. This cooling takes 
place at near constant volume and causes the pressure to decrease. 

Phase 3: The cooled gas is expanded in the expansion volume. The expansion 
causes a further decrease in temperature. Less work, than was needed for 
compression, can be extracted from the expansion because the pressure 
is lower.  

Phase 4: The cold gas is moved back from the expansion volume to the 
compression volume. On its way the gas is heated so that it has a 
temperature near that of the heat rejector when it arrives in the 
compression volume. The heating occurs at near constant volume and 
causes the pressure to increase. The cycle can now be repeated by 
beginning with phase 1. 

 
In a Stirling cooler the idea is to: Compress a warm gas, reject the heat from the 
compression in the heat rejector, expand the gas to further decrease the temperature, let 
the cold gas absorb heat in the heat absorber, start the next cycle. The patterns of motion 
for the pistons are the same in a Stirling cooler as in a Stirling engine. But because the 
expansion occurs at a lower temperature than the compression the result of the process 
is different: A duty is paid in the form of work in order to move heat from a cold place 
to a warm place.  
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The regenerator 
In both Stirling engines and Stirling coolers the regenerator plays a crucial role in the 
cycle. The regenerator typically contains a porous matrix, the regenerator matrix, which 
has a very large surface area in contact with the gas. Regenerator matrices can be made 
in many ways from, for instance, very thin wires, fibres, layers of dimpled or etched foil 
where gas can flow between and/or through the layers, or beds of small packed spheres. 
The function of the regenerator is to act as a thermal heat storage. The regenerator 
matrix must absorb heat when hot gas is blown through it in one direction and it must 
release the energy again when the flow direction is reversed and cold gas is blown 
through it in the other direction. The alternating blasts of hot and cold gas from different 
directions cause a steep temperature gradient to build up inside the regenerator during 
the cycle. 
 
In a Stirling engine the regenerator absorbs heat from the gas when the gas is moved 
from the expansion volume to the compression volume. This helps to cool the gas so 
that less heat is rejected in the heat rejector. When the gas flow is reversed and the high 
pressure gas is blown towards the expansion volume the regenerator releases energy to 
the gas. This helps to heat the gas and reduces the amount of heat that must be put into 
the gas by the heat absorber in order to obtain the desired high temperature and 
pressure. The regenerator increases the efficiency of the engine because it reduces the 
amount of high temperature heat input to the heat absorber needed to produce a certain 
amount of work. The axial temperature distribution in a Stirling engine, including the 
regenerator, is illustrated schematically in Fig. 3. 
 

 
Fig. 3. Schematic of the axial temperature distribution in a Stirling engine. 

 
In a Stirling cooler the regenerator absorbs heat when the compressed gas is moved 
from the compression volume to the expansion volume. This reduces the amount of heat 
carried by the gas from the warm end of the cooler to the cold heat absorber. The heat is 
released to the expanded gas again when the gas is pushed towards the heat rejector. 
The regenerator increases the coefficient of performance, i.e. the COP, because it 
increases the cooling power for a given amount of work input. The axial temperature 
distribution in a Stirling cooler is illustrated in Fig. 4. 
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Fig. 4. Schematic of the axial temperature distribution in a Stirling cooler. 

 
Real Stirling machines 
In real Stirling machines the five basic components of a Stirling machine can be realised 
with different constructions, some of which look very different from the schematics 
above. There are also different principles for making the pistons move. But the basic 
working principles of the machines remain the same as has been outlined above. 
 

1.2.2. Stirling type pulse tube coolers 

Pulse tube coolers are typically used for cooling at cryogenic temperatures. There are 
different types and configurations of pulse tube coolers and this introduction is limited 
to the so called Stirling type pulse tube cooler with inertance tube. Such a Stirling type 
pulse tube cooler can consist of a serial connection of the following components: 

1. A pressure wave generator. 
2. A hot heat exchanger for heat rejection, called the aftercooler. The aftercooler 

removes most of the energy put into the gas by the pressure wave generator. 
3. A regenerator. 
4. A cold heat exchanger for heat absorption. 
5. A pulse tube. 
6. A hot heat exchanger for heat rejection. This heat exchanger primarily rejects 

the heat absorbed in the cold heat exchanger.  
7. An inertance tube. 
8. A buffer volume. 

The components are connected in a serial connection as illustrated in Fig. 5, which also 
shows a schematic of the axial temperature distribution in a pulse tube cooler. 
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Fig. 5. The basic components in a Stirling type pulse tube cooler and a schematic of the axial 

temperature distribution. 

 
When describing Stirling machines it was possible to mentally divide the processes in 
the machines into four phases: Compression, flow towards the expansion end, 
expansion, and flow towards the compression end. In Stirling machines the separation, 
or phase angle, between the pressure oscillation and the mass flow oscillation was 
controlled by changing the sizes of the cylinder volumes out of phase.  
 In a pulse tube cooler there is only one volume that varies in size, i.e. the volume 
in the pressure wave generator, and it is the pulse tube that provides a way for the 
oscillating gas flow to cool the cold heat exchanger. A pulse tube cooler has no moving 
parts at the cold temperature and this can improve the reliability when operating at 
cryogenic temperatures. It is also possible to have very low levels of vibration in the 
cold heat exchanger. 
 If a tube, with a moderate length to diameter ratio, is sealed off at one end and is 
open to an oscillating pressure wave at the other end, then the amount of gas inside the 
tube will oscillate almost in phase with the pressure; the mass flow oscillation at any 
axial position in the tube is hence approximately 90 degrees out of phase with the 
pressure oscillation. In this situation only a small amount of energy is transported along 
the tube towards the closed end, and the energy transport is due to interaction between 
the gas and the wall (Bauwens, 1996). 
 If a small opening is made at the closed end of the duct then this opening will 
add a mass flow oscillation that is in phase with the pressure oscillation. Gas will flow 
towards the small opening while it is at high pressure and temperature, and gas will flow 
towards the open end of the tube when it is at low pressure and temperature. In this way 
a significant axial energy transport towards the small opening is induced in the tube. It 
is this effect that is used to generate the cooling in a pulse tube cooler of the type shown 
in Fig. 5. 
 
The function of the aftercooler is to remove the heat of compression. The function of the 
regenerator is, as it is in a Stirling cooler, to reduce the net amount of heat transported 
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by the oscillating flow towards the cold heat exchanger. The buffer volume and the 
inertance tube serve to provide a mass flow that is almost in phase with the pressure 
oscillation, so that a significant amount of energy is transported along the pulse tube 
from the cold heat exchanger to the hot heat exchanger. The inertance tube can be 
several meters long even when all the components from the aftercooler to the hot heat 
exchanger are packed inside a canister the size of a mans finger. 
 

1.3. Gas flows in Stirling machines and pulse tube coolers 

In order to successfully model a Stirling machine it is necessary to describe with 
equations what happens with the gas in the working volume of the machine during 
operation. If one chooses a level of detail where the actual gas flows are modelled then 
one must be able to model oscillating, compressible flow in heat exchangers, in a porous 
matrix, and in cylinder volumes. One must also model the solids in the machine with 
sufficient detail to determine the surface temperatures inside the machine, because the 
surface temperatures are important to the heat transfer processes that occur inside the 
machine. 
 In order to successfully model a pulse tube cooler of the type described above 
one must describe with equations more or less the same phenomena as when modelling 
Stirling machines. But with pulse tube coolers it is more critical to take into account the 
inertia of the gas, because it can have an important influence on the phase angles 
between the pressure oscillation and the mass flow oscillation at different locations in 
the cooler. 
 
Frequently the designs of Stirling machines and pulse tube coolers are such that the gas 
flows in many of the components of the machines are approximately one-dimensional. 
This makes it possible for models with a one-dimensional discretisation of the gas flows 
inside the machines to predict the performance of the machines with good accuracy.  
 One-dimensional models need empirical correlations for flow friction and heat 
transfer in order to describe the interaction between the gas and the surfaces inside the 
machines. Correlations can also be used to describe axial transport phenomena that are 
due to multi-dimensional flow patterns, such as enhanced axial energy transport due to 
turbulent mixing or energy transport due to circulating flows inside a pulse tube. 
 It can, however, be problematic to find correlations that properly take into 
account the effects of, for instance, special inlet conditions on the circulating flows 
inside a pulse tube, or special inflow conditions where gas enters cylinder volumes. 
Therefore one-dimensional models may sometimes predict machine performance with 
insufficient accuracy for some purposes. Also, one-dimensional models do not allow 
one to study the multi-dimensional phenomena in detail so that, for instance, the 
geometry of an inlet could be optimised. One-dimensional models can, at best, allow 
one to take the net effect of the multi-dimensional phenomena into account through the 
use of empirical correlations. 
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2. Background and state of the art in methods for 
Stirling machine simulation 

 

2.1. Introduction to Stirling machine modelling 

Computer simulation has been used for design and optimisation of Stirling machines for 
several decades. Early simulation models were of limited complexities, in order to limit 
the need for processing time and computer memory, so that the models could run on the 
computers of the day. As could have been expected the complexities of simulation 
models have increased as computers have become ever more powerful. At the present 
day some scientists simulate gas flows inside complete Stirling machines using 
commercially available 3-dimensional Computational Fluid Dynamics packages 
(hereafter abbreviated 3D CFD). 
 
But some of the simpler and faster modelling approaches, that were feasible decades 
before 3D CFD could even be considered for Stirling engine modelling, have not been 
made obsolete by the advent of the newer and more complex methods. On the contrary, 
simulation programs based on the simpler and faster modelling approaches are still 
being developed and requested commercially. One reason for this is that simulating a 
single cycle of a Stirling machine using 3D CFD still requires many CPU hours. This 
makes 3D CFD a very cumbersome tool for a number of design and optimisation 
purposes, especially when periodic steady state solutions are needed. 
 The simpler modelling approaches can yield results in anywhere from a few 
CPU hours to mere milliseconds, depending on the exact approach used. Also, the 
amount of input data needed to simulate a machine tends to increase with the 
complexity of a model. Finally, it may, in practice, prove necessary to have some 
understanding of the numerical methods used in a more complex model in order to 
successfully use the model. The simpler and faster modelling approaches can hence be 
implemented so that they require comparatively little effort, knowledge, or patience 
from the user. This makes them attractive for a number of simulation purposes. 
 The simple and very fast modelling approaches can sometimes achieve good 
agreement with experimental data for real machines. There is no general guarantee that 
using a more complex and computationally intensive method will yield results that 
agree better with experimental data. 
 
The more complex and computationally intensive modelling approaches do have some 
very compelling advantages, though. A complex model can allow one to study the 
effects of lower level phenomena, which are not even considered in the simpler 
modelling approaches. Such phenomena include the effects of temperature distributions 
or geometric details in the interior of a machine on various losses. Also, a complex 
model may require fewer assumptions and experience factors than the simpler 
modelling approaches. A good implementation of a complex model can be very good at 
performance prediction as long as it is not used for modelling a design where a 
phenomenon, which is not properly accounted for in the model, is important.  
 
No single modelling approach for Stirling type machines appears superior, or even 
appropriate, for all common simulation tasks. This is probably the main reason behind 
the present diversity in the coexisting methods that are used for modelling Stirling 
machines at the present day. 
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2.2. The scope of this chapter 

A large number of methods and programs exist for simulating Stirling type and related 
machines. A few of these programs, namely SNAPpro, PROSA, and Sage, which are all 
discussed below, are commercially available. Other simulation programs are in-house 
codes of universities and institutions (like NASA), or are the intellectual property of 
persons and companies working in Stirling related businesses. A number of the 
programs have been described in varying levels of detail in the published literature but, 
to my best knowledge, none of these programs are freely available. 
 It would be difficult, expensive, very laborious, and hence somewhat misplaced 
in the context of this work, to attempt to produce a complete overview and comparison 
of the existing and previous modelling approaches and programs. Martini (1978) 
included a 100 page review of the then existing Stirling modelling methods (with some 
examples) in his now famous Stirling Engine Design Manual and concluded that his 
review was incomplete and should be expanded. The number of modelling methods in 
use and the number of implementations of the methods have increased since 1978. 
Other reviews and comparisons of older simulation methods can be found, for instance, 
in the papers of Ash and Heames (1981) and Urieli (1983). 
 This chapter is not a complete overview. The chapter briefly mentions a few 
historical programs and some of the important and relatively recent Stirling simulation 
efforts known to me. The chapter may serve as a brief introduction to the subject. But its 
main purpose is to provide sufficient background information to enable us to classify 
this work relative to the present day state of the art in methods for simulating Stirling 
and related machines.  
 
This chapter contains a section that establishes an operative classification scheme for 
simulation methods for Stirling type and related machines. This is followed by sections 
that summarise relatively recent Stirling simulation methods divided into the categories 
of the abovementioned classification scheme. 
 

2.3. Classification of simulation methods 

Martini (1978) introduced a classification scheme for Stirling engine models in his 
Stirling Engine Design Manual. In the classification scheme models are divided into 
first, second, and third order models in the following way: 

• First order models: Such a model is either “... a theoretical stepwise engine 
model.” or methods for “... calculating loss-free engine output when the engine 
is crank operated ...”. The latter group contains analysis methods such as 
Schmidt analysis, which is discussed in the manual, where the cycle no longer 
consists of step wise thermodynamic processes. These modelling approaches are 
defined as first order models when combined with experience factors. First order 
models yield closed form solutions. 

• Second order models: These models are based on Schmidt analysis or something 
similar, i.e. on a simplified analysis of an idealised thermodynamic cycle that 
yields closed form solutions. In second order models various parasitic power 
losses and heat losses are calculated independently of each other and are used to 
correct the results from the analysis of the idealised cycle. Since the losses are 
assumed independent of each other the second order models also yield closed 
form solutions. The closed form solutions are sometimes iterated in order to 
correct the temperatures of the underlying idealised thermodynamic cycle with 
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calculated temperature differences between the gas and the heat exchanger walls 
(Lista, 1993b). 

• Third order models: In third order models the working volume of the engine is 
divided into a number of nodes and the basic differential equations that govern 
the engine, i.e. the equations for mass, energy, and momentum, are solved using 
numerical methods. Third order models make fewer assumptions about the 
engine cycle and about the coupling of loss mechanisms to each other and to the 
engine cycle. This means that third order models may yield more accurate 
prediction of engine performance. Third order models do not yield closed form 
solutions and are much more computationally intensive than first and second 
order models.  

 

The Stirling Engine Design Manual was revised and expanded and was published in a 
second edition by Martini (1983). In the second edition the definitions of the different 
orders in the classification scheme were reformulated so that the definitions were also 
based on possible uses for models of different orders. Perhaps this reformulation is part 
of the reason why some people perceive the definitions of order as being somewhat 
fuzzy. 
 Present day Stirling simulation tools seem to fit mainly into the second order and 
third order categories of the classification scheme from the 1978 version of the Stirling 

Engine Design Manual. The definition of third order models now appears very broad as 
it encompasses models ranging from simple 1D models with many assumptions and 
simplifications all the way up to fully compressible 3D CFD. 
 
The 1978 classification by Martini is widely used within the Stirling community in spite 
of its age, its inaccuracies, and the fact that it is possible to confuse the term “order” 
with the numerical order of the discretisation of space and time in a third order model. 
Though the classification was developed by Martini for analysis methods for Stirling 
engines it appears that the classification is now also used for models of Stirling coolers 
and even pulse tube machines. Applying the same terminology for models of Stirling 
engines and Stirling coolers makes sense because there is very little difference between 
modelling a Stirling engine and a Stirling cooler. Also, some of the tools developed for 
simulation of Stirling machines have been developed so that they can also be used for 
pulse tube machines. 
 
It is my impression, that the term “third order model” is now used mostly for models 
where the governing equations for fluid flow are discretised only in one space 
dimension and time, i.e. for models that could be described as 1D CFD. Please note, 
though, that third order models do not need to be strictly one-dimensional even though 
they use a 1D discretisation of the governing equations for fluid flow. Third order 
models can have multiple parallel flow paths, and the heat conduction in the solids of a 
machine can also be modelled as multi-dimensional. When 2D CFD is used it is usually 
referred to as “2D CFD”. When 3D CFD is used it is referred to either as “3D CFD” or 
simply “CFD”.  
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The current operative classification scheme, which will also be used in this thesis, thus 
appears to contain the following categories: 

• First order models: Closed form solutions without parasitic losses. 

• Second order models: Closed form solutions with parasitic losses. 

• Third order models: Any form of 1D discretisation of the governing equations 
for fluid flow (no closed form solution). 

• 2D CFD 

• 3D CFD 
 
The following sections describe simulation efforts belonging to the last four of these 
categories. 
 

2.4. Second order simulation programs 

 

2.4.1. The Martini-Weiss program by Martini 

The Martini-Weiss program (sometimes the name is shortened to MarWeiss) was a 
simulation program for Stirling engines developed at the University of Calgary by 
Martini and later expanded by Weiss (Walker et al., 1990). The program was based on 
the work of Martini (1978, 1983) on second order modelling. There was also a version 
of the program called CryoWeiss for simulating cryocoolers. Successful validations of 
the Martini-Weiss program against experimental data for real engines have been 
published (Lista, 1993b). The Martini-Weiss program was commercially available in the 
late 80’s and part of the 90’s, but it appears that it has been surpassed and outdated by 
newer second order simulation programs. 
 

2.4.2. The SNAPpro software by Altman 

The SNAPpro software (SNAP is an abbreviation for Stirling Numerical Analysis 

Program) is a commercially available Stirling simulation program by Altman (2005). 
The program is based on the work of Martini (1978, 1983) and is classified as a second 
order model. The program is being actively promoted on the internet (Altman, 2005) 
and at conferences (Altman, 2003). 
 SNAPpro is written in Excel and uses the plotting capabilities of Excel to 
provide extensive plotting facilities. The program has facilities for simulating user 
defined Stirling designs, for performing parameter studies, and for performing 
optimisation using a genetic algorithm. 
 

2.4.3. The PROSA software by Thomas 

PROSA is an abbreviation of Program for second order analysis. PROSA is a 
commercial Stirling simulation program available from Thomas (2006). The versions of 
PROSA up to version 2.4 are second order models. But a new version 3.0, which will be 
a third order model that simulates using time stepping instead of using closed form 
solutions, is currently being developed. 
 Descriptions of PROSA’s second order analysis method, graphical user interface, 
and additional tools (for parameter studies, optimisation, and automatic calibration 
against experimental data) have been published in papers by Thomas (2001, 2003). 
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PROSA has been successfully validated, both with and without calibration, against 
experimental data for a number of Stirling engines as documented in the above 
mentioned papers by Thomas and in the work of Prieto and Garcia (2005). 
 

2.5. Third order (1D) simulation programs 

 

2.5.1. The MS*2 code by Bauwens 

References to the MS*2 Stirling simulation code by Bauwens appear in the literature up 
until the mid nineties, see for instance the papers by Bauwens (1990, 1993a, 1993b) and 
by Mitchell and Bauwens (1990). The MS*2 code was a third order model and was 
based on a finite difference discretisation in one space dimension. The model used an 
Eulerian grid, i.e. a grid with non-moving nodes. Periodic steady state solutions were 
found by marching the solution forward in time from a given set of initial values until 
the solution became periodic (Bauwens, 1990). The sound numerical properties of the 
MS*2 code have been documented in several papers (Mitchell and Bauwens, 1990) 
(Bauwens 1993a, 1993b) and validations of the code against experimental data has also 
been published (Mitchell and Bauwens, 1990). In the early nineties powerful 
workstations or super computers were needed when refining the discretisation of time 
and space to explore and prove the convergence of the discretisation scheme used in the 
code. 
 

2.5.2. The simulation program by Kühl 

Kühl (1990) described the simulation program kpsim that could perform both second 
order and third order analysis of machines with regenerative cyclic gas processes. The 
program allowed models to be built from a library of predefined components. The 
components were discretised in one space dimension on Eulerian grids. The program 
performed time stepping with the models when performing simulations. A method, 
which was based on understanding of the physics of regenerators at periodic steady 
state, was used to accelerate the convergence of axial matrix temperature distributions 
towards periodic steady state. The performance prediction of the program was 
successfully validated against experimental data for a Vuilleumier heat pump and two 
Stirling engines. The program has also been successfully validated against high speed 
measurements of instantaneous gas temperatures inside a Vuilleumier heat pump (Kühl 
et al., 1997). 
 

2.5.3. Stirling simulation related to NASA (HFAST, GLIMPS, and 
SAGE) 

NASA has been involved in Stirling engine research since the early 70’s (NASA Glenn 
Research Center, 2005) and has been a significant sponsor for the development of 
Stirling simulation programs. NASA´s involvement in 1D Stirling models has been 
summarised by Ibrahim et al. (2001). 
 NASA developed its own 1D finite difference model in the late 70’s and early 
80’s. Later NASA acquired unlimited rights the simulation program HFAST from 
Mechanical Technology, Inc. (MTI) of Albany, New York. NASA also purchased the 
Stirling simulation code GLIMPS by Gedeon. HFAST and GLIMPS were both more 
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time efficient and user friendly than the finite difference code previously developed at 
NASA. HFAST and GLIMPS were, together with MS*2 code by Bauwens, considered 
to be the state of the art in 1994 according to Commiso (1994). Several papers on 
experimental validations and comparison of the two codes can be found in the literature 
(Geng and Tew, 1992)(Lista, 1993a)(Cairelli, Geng and Skupinski, 1989) (Cairelli et 
al., 1990). 
 In 1994 Gedeon introduced a simulation program named Sage. Sage is a direct 
descendant of the GLIMPS code. According to Tew et al. (2004) NASA devoted an 
increased level of effort to simulating several Stirling engines and a thermoacoustic 
engine with the Sage simulation program. According to Ibrahim et al. (2001) Sage had 
also become the primary design tool of the Stirling Technology Co. (or STC, which has 
now changed its name to Infinia). 
 
HFAST 
HFAST was a descendant of the Harmonic Stirling Cycle Analysis Code (HSCAC). 
Development of HSCAC started in 1978 at MTI in order to satisfy the need for a fast 
and reasonably accurate tool for design and optimisation (Rauch, 1980). The principle 
idea behind the solution method used in HSCAC was to make sufficient simplifying 
assumptions about the governing equations for mass, energy, and momentum that they 
could be solved analytically for harmonic functions. Rauch (1980) made a detailed 
description of the primary simplifying assumptions in the HSCAC code along with its 
iterative solution method. The solution process began by making an initial guess for the 
temperature distribution. The solution method then iterated the following four stages. 

1. Solving the continuity equation for the pressure wave and mass flow. Here it 
was assumed that the gas temperatures were constant in the regenerator and heat 
exchangers, and that compression and expansion was adiabatic in the cylinder 
spaces. 

2. Solving the momentum equation for the pressure drop. The pressure drop was 
then used to correct the pressures in the volumes in the model. 

3. Solving the energy equation for the gas temperatures. Here it was assumed that 
the working gas flowed back and forth through the heat exchangers in two 
steady blows. 

4. Solving additional energy equations for the wall temperatures. 
When the iterations had converged the resulting solution was corrected with parasitic 
losses for leakage past piston seals, thermal hysteresis in the expansion and compression 
spaces, and shuttle conduction along the displacer. 
 HSCAC was revised several times. The name was changed to FAST* to indicate 
that the solution method was potentially much faster than some alternative solution 
methods that needed time stepping. Tests at MTI indicated that FAST* needed to be 
upgraded so that the governing equations for mass, energy, and momentum were solved 
with fewer assumptions in order to become a useful performance prediction tool 
(Huang, 1992). Due to significant difficulties the upgrade was made in stages until 
HFAST 2.0 appeared in the late 80’s. In the new version a one-dimensional 
discretisation based on a staggered mesh of control volumes was used and the solution 
method had been completely revised. Solutions now included time varying 
temperatures, and they obeyed energy conservation for the gas flows. According to 
Huang (1992) the version of HFAST available in 1992 had exploited the full potential of 
the harmonic analysis method for Stirling cycle simulation and the performance 
prediction of the code had improved. 
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GLIMPS 
GLIMPS was an abbreviation for Globally Implicit Stirling Cycle Simulation. Gedeon 
(1986) described the GLIMPS code which he had developed with the goal of making 
modelling of Stirling machines with a 1D discretisation of space feasible on personal 
computers. 
 GLIMPS used a 1D finite difference mesh in space for the governing equations 
for mass, energy, and momentum in the gas and for energy in the solids of a Stirling 
machine. The governing equations were also discretised in time, so that the complete 
discretisation produced a 2D finite difference mesh. For each point in time in the 2D 
finite difference mesh the mesh had nodes corresponding to all the nodes in the 1D 
spatial discretisation. Each node in the 2D finite difference mesh hence had both a time 
and a space coordinate. At each node in the 2D mesh there was a corresponding solution 
point for each of the governing equations for mass, energy, and momentum. 
 In GLIMPS two opposing sides of the 2D finite difference mesh were connected 
and an additional condition for the mean pressure was added. This produced a globally 
implicit equation system, which could be solved all at once for the periodic steady state 
solution. This eliminated the need to simulate many cycles with a time stepping 
procedure until a periodic steady state solution was reached. 
 The solution method used in GLIMPS was advantageous because the implicit 
equation system made it possible to use as few as 10 time nodes while still maintaining 
the stability of the numerical scheme. This kept the total number of equations in the 
global equation system, and hence the required computational resources to find 
solutions, on a tolerable level. The ability to use a small number of nodes made 
GLIMPS fast, but using only very few nodes was not good for the accuracy of the 
solutions. GLIMPS required only minor assumptions and simplifications for the 
governing equations, such as excluding axial conduction in the gas, in order to make the 
equation system solvable. 
 
Sage 
Sage was developed by Gedeon from GLIMPS. Gedeon (1994) described how the 
computational core in the mathematical model of the Stirling process was essentially 
that of the GLIMPS code with a few changes. But the graphical user interface and the 
way that the equation system was generated behind the user interface was new. Models 
were now constructed by dragging icons representing predefined models of components 
onto a canvas in the graphical user interface. Mass flows paths and heat conduction 
paths between the components were then established by mouse clicking in the user 
interface. The graphical user interface enabled users to make endless permutations of 
possible machine designs by adding or removing components and by connecting the 
components in different ways. 
 
Sage is, in my opinion, the leading (and only) commercially available tool for third 
order simulation of Stirling, pulse tube, and similar machines. Because Sage is 
expensive commercial software there is limited publicly available information about it. I 
have had the privilege to get a little first hand experience with Sage, to read parts of the 
Sage documentation, and to talk and work with experienced Sage users. Because Sage 
represents the current state of the art in third order simulation programs a short 
summary of my experiences with Sage appears relevant. The information contained in 
the following two paragraphs cannot be referenced to published literature. 
 Sage has a very impressive user interface and users seem to need little 
experience to modify models and perform simulations. The graphical user interface of 



2. Background and state of the art in methods for Stirling machine simulation 

2.5. Third order (1D) simulation programs 16 

Sage allows models of high complexity to be constructed with relative ease. The 
solution process is relatively robust but Sage is computationally very intensive if 
accurate solutions are required. The requirements for memory and, especially, 
processing time increase sharply when the total numbers of space nodes or time nodes 
are increased. The bulk of the processing time is spent doing sparse decomposition of 
the Jacobian matrix for the very large globally implicit equation system that results from 
having many time and space nodes in a model. Experiments to determine how many 
nodes are needed for the solution to become reasonably independent of the 
discretisation is something that is left to run overnight with different numbers of nodes 
on different PCs. 
 The finite difference method in Sage is formulated so that the nodes in the 
temporal discretisation eliminate harmonics of progressively higher order. Two nodes 
are required to add one harmonic, i.e. a cosine with both amplitude and phase angle at a 
frequency that is a multiple of the operating frequency of the machine. So to get, for 
example, the first 7 harmonics one needs 14 time nodes. Usually, the first few 
harmonics dominate when looking at the harmonic series for individual variables in the 
solutions. This means that one can quickly compute solutions containing only a handful 
of harmonics that capture important temporal aspects of the solution. But in practice it 
can be a very time consuming task to compute a solution with a discretisation so fine 
that aggregated values such as, say, the cooling power of a pulse tube cooler does not 
change significantly when the numbers of time and space nodes are increased. 
 

2.5.4. Alternative methods for third order modelling 

The third order models referenced above all use discretisations in space, where gas is 
transported by flow relative to the nodes or control volumes in the discretisation in 
space. These methods appear to be the most widely used but alternative approaches to 
solving the governing equations for mass, energy, and momentum do exist. To my best 
knowledge, no programs that use these alternative methods have been widely adopted. 
But because the methods are fundamentally different from the methods presented above 
and because they do appear in the recent literature they are briefly mentioned here as 
background information. 
 One alternative approach is called Lagrangian analysis. In this approach the gas 
nodes always contain the same mass of gas and the gas nodes move relative to the solid 
nodes. One can picture this approach as a string of balloons that slide back and forth 
through the components of the simulated machine. Martini (1986) reported on an 
implementation of a Lagrangian analysis program for Stirling engines, but concluded 
that his implementation was incomplete and not suited for use in design. 
 Another method called “the lambda-scheme method” was used by Rispoli 
(1985) to model a simplified device containing some of the components of a Stirling 
engine. Calandrelli and Rispoli (1995) reported that the work started by Rispoli had 
been upgraded to a full five-volume model of a Stirling engine. According to Organ 
(1992), who strongly advocates use of “the method of characteristics” for solving the 
governing equations for fluid flow in Stirling machines, the lambda-scheme employed 
by Rispoli is basically also a version of the method of characteristics.  
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2.6. 2D and 3D CFD modelling 

 

2.6.1. CFD modelling at NASA (CAST, CFD-ACE+) 

CFD modelling of Stirling machines appears to have begun in the late 80’s with work 
on 2D CFD simulations of components in Stirling machines. Gedeon (1989) reported 
using a code named MANIFEST (short for Manifold and Estimate) on a Cray 
supercomputer to model gas jets impinging on Stirling regenerators. Ibrahim, Tew and 
Dudenhoefer (1989) reported beginning work on modelling Stirling heat exchangers 
with a 2D-code, and in 1990 they reported using their code to model components in 
NASA´s Space Power Research Engine (often abbreviated SPRE) (Ibrahim, Tew and 
Dudenhoefer, 1990). Ibrahim et al. (2001) described the evolution from 1989 up to 2001 
of a 2D CFD code named CAST for modelling components in Stirling machines, and 
mentions simulation of Stirling machine components using the commercial CFD 
package CFD-ACE+. In the paper Ibrahim et al. compared results for gas spring 
hysteresis losses in a free piston machine to experimental results, as well as results for 
heat transfer pr. unit area at different locations in a heat exchanger under oscillating 
flow conditions. Ibrahim et al. (2001) also described how the CAST code was used for 
assisting the making of an empirical method for predicting the transition between 
laminar and turbulent flow in Stirling machines. This empirical method for predicting 
transition is now used in Sage. 
 
NASA received a 2D CFD model of a complete Stirling engine in 2003 (Tew et al., 
2004). The model was developed at Cleveland State University under a NASA grant 
using the CFD-ACE+ package. In solutions, which had not reached periodic steady 
state, flow phenomena such as flow in different directions in parallel tubes in heat 
exchangers had been observed. Such a phenomena could be a significant loss 
mechanism, if it also existed in periodic steady state solutions and in the real engine. 
Such a phenomenon would not be revealed by a strictly 1D third order model without 
parallel flow paths. 
 Tew et al. (2004) reported on several problems in using the CFD Stirling model. 
The problems included the need to simulate many cycles in order to reach a periodic 
steady state solution for the regenerator temperature profile. In 2004 NASA was using a 
32 processor cluster for performing CFD simulations of Stirling machines. 
 

2.6.2. 3D CFD modelling in Fluent by Mahkamov 

Mahkamov and Ingham (2000) reported on using a 2D CFD model of a complete 
Stirling engine using an in-house CFD code. In a solution to the 2D CFD model it was 
observed that gas temperatures varied significantly with both radial and axial position 
within the cylinder volumes of the studied 1 kW V-type Stirling engine for solar 
applications. 
 
In 2003 Mahkamov reported on 3D CFD modelling of two different Stirling engines 
using the commercial CFD package Fluent (Mahkamov and Djumanov, 
2003)(Mahkamov, Djumanov, and Hislop, 2003). In both papers it was emphasised that 
the results from the 3D CFD calculations could be used to identify flow resistances that 
lead to significant losses. In (Mahkamov, Djumanov, and Hislop, 2003), for instance, it 
was found that a piston could partially block the flow through a connecting tube from a 
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cylinder volume, because the passage that was intended to let gas flow around the piston 
was too small. Chow and Mahkamov (2005) documented that they had successfully 
completed a feasibility study on a 3D CFD simulation of a coupled system with a burner 
and a Stirling engine. They had successfully simulated 64 engine cycles and obtained an 
only slowly changing solution. The results showed that the temperature distribution on 
the heater heads of the Stirling engine in the combustion chamber was non-uniform. 
 

2.7. Summary of the present state of the art 

The simulation tools currently in use can be divided into second order models, third 
order models, and multi-dimensional CFD models. 
 
Second order models use closed form solutions for an idealised thermodynamic cycle 
and correct the results for a number of independent parasitic power- and heat losses. 
Commercially available second order analysis programs, such as SNAPpro and PROSA, 
are still being developed and used. Such programs are very fast, robust, and convenient 
to use for some simulation purposes. The programs use empirically determined 
correlations, which have been refined for three decades, for computing the parasitic 
losses. 
 The programs can sometimes produce results that agree well with experimental 
data. The agreement with experimental data can be particularly good within a narrow 
parameter space if models can be calibrated against experimental data. But the nature of 
the second order models limits their usefulness for studying lower level phenomena and 
for studying machines where different loss mechanisms are strongly coupled. 
 
Third order models use a discretisation of the governing equations for fluid flow in one 
space dimension and time. Third order models require fewer assumptions than second 
order models but they must also rely on the validity of empirical correlations for 
computing flow friction and heat transfer. 
 The performance prediction of third order models can be superior to second 
order models if the third order models account for all the important phenomena in the 
simulated machine. Also, the third order models can be used for studying phenomena 
that are not included in second order models. Third order models are usually much more 
computationally intensive than second order models, but they can still find periodic 
steady state solutions fast enough, that they are practical for numerical optimisation of 
complete machine designs. The state of the art in third order modelling of Stirling and 
related machines is currently represented by the only commercially available third order 
simulation program: Sage. 
 
CFD is currently being used successfully for studying phenomena that cannot be studied 
using one-dimensional models. These phenomena include the effects of geometric 
details on multi-dimensional flow patterns, pressure losses, and temperature and heat 
transfer distributions. Current studies use either commercially available CFD packages, 
such as Fluent or CFD-ACE+, or in-house codes developed at universities and/or at 
institutions such as NASA. 
 CFD is very computationally intensive. Finding a solution to a complete engine 
model, where the temperature distribution in the regenerator matrix approaches periodic 
steady state, is presently very time consuming even on a parallel computer platform. 
This appears to make CFD impractical for optimising a complete machine layout using 
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numerical optimisation. It is my anticipation that it will take a number of years before 
this changes. 
  

2.8. Classification of the present work 

In this work the focus has been on simulation methods that are useful for design 
optimisation of complete machines. This presently appears to rule out multi-
dimensional CFD as a viable option. Instead the work done here has been aimed at the 
high end of third order 1D modelling of Stirling machines and related machines. 
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3. Modelling of 1D, oscillating, compressible flow in 
reciprocating machines 

 
This chapter presents the theory, implementation, and testing of an approach for 
modelling machines with oscillating, one-dimensional, compressible flow as initial 
value problems (IVPs) or as boundary value problems (BVPs). 
 
The modelling approach was developed with the following design criteria: 

• It should be able to model Stirling machines and similar machines with good 
accuracy. 

• It should produce models to which solutions can be found quickly enough that 
the models are practical to use for design optimisation. 

• It should produce models where the equations are directly accessible so that they 
are easy to modify. 

• The equations should be as easy as possible to understand and modify by 
someone with a background in engineering thermodynamics. 

 
The design criterias are deliberately written in soft terms in order to reflect the way the 
design criterias were used during this work: I kept the above design criterias in mind 
and then made choices of methods based on personal preferences. 
 
In this chapter the modelling approach is presented as an approach for modelling the 
machines as IVPs. In chapter 4 it is then discussed how periodic BVPs can be solved. 
 The point is that the equations do not, for instance, use harmonic series 
representations of heat fluxes which would only make sense for periodic solutions; the 
equations are valid both for both transient and steady state problems. The equations are 
also not tied into a single numerical method. 
  
The modelling approach was developed for making models of Stirling machines and 
pulse tube coolers. But the modelling approach is general in nature and is not limited to 
these specific types of machines. 
 
This chapter begins with section 3.1 which describes the reasoning behind the basic 
choice of discretisation method for the governing equations for fluid flow. Section 3.2 
describes the theory of the modelling approach and its methods for enhancing precision 
and for reducing the computational efforts needed to perform simulations.  
 Section 3.3 describes how the modelling approach has been implemented in this 
work as models in a simulation package called MUSSIM. The basic structure of the 
MUSSIM software, the structure of the models, and some performance enhancing 
features of the software are described. 
 In section 3.4 a Stirling machine model is briefly described. The model has been 
used for testing the performance enhancing features of the MUSSIM software and for 
testing the modelling approach in combination with an IVP solver. An overview of the 
tests is presented in section 3.5, and the sections 3.6 through 3.9 contains descriptions 
and results for the individual tests. 
 The contents of this chapter are summarised in section 3.10. 
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3.1. Choice of discretisation method for the governing 
equations 

This work has been focussed on third order modelling of Stirling machines and related 
machines, i.e. focus has been on models where the governing equations for fluid flow 
are discretised in one space dimension and time. The equations of such models represent 
a form of partial differential equations. 
 
Commiso (1994) discussed different methods for discretising and solving partial 
differential equations in the context of Stirling machine modelling. The discussion 
included finite difference methods, finite volume methods, finite element methods, 
spectral methods, the method of characteristics, and the method of lines. Commiso 
concluded that none of the methods had proven to be clearly superior to the others. 
 Organ (1992), on the other hand, strongly advocated the method of 
characteristics. The method of characteristics has the advantage that the computed 
solutions are free from numerical diffusion so that discontinuities in pressure or 
temperature can be maintained if they travel in a flow field where no diffusion is 
present. Organ vehemently criticised the use of discretisation schemes based on 
Eulerian grids, i.e. schemes where gas moves relative to the nodes or volumes, for 
modelling Stirling machines. According to Organ such schemes produce solutions 
where the rates of diffusion and the rates of pressure information propagation are 
functions of the discretisation of space and time. Organ suggested that refining the 
discretisation for such finite difference or finite volume methods merely leads to 
different solutions but not necessarily to more accurate solutions. 
 Organs criticism of methods based on Eulerian grids was rebutted by Bauwens 
(1993a, 1993b). Bauwens argued that if one uses a convergent numerical scheme, 
Eulerian or not, then minimising the errors due to numerical diffusion to a tolerable 
level is merely a question of using a sufficiently fine grid. Organs broad criticism of the 
lack of convergence for methods based on Eulerian grids also appears to conflict with 
the mathematical derivation of the speed of convergence for different finite difference 
schemes given by authors such as Sod (1985), with the good results achieved with finite 
different methods for high speed gas dynamics by for instance Adewumi, Eltohami and 
Ahmed (2000), and with the performance of the widely adopted finite volume methods 
in CFD codes. 
 Kühl (1990) and Kühl and Schultz (1995) emphasize that using a discretisation 
on a Eulerian grid has practical advantages. When models are formulated using a 
discretisation on a Eulerian grid it is easy to separate the implementation of the 
equations from the implementation of the numerical method that is used for solving the 
equations; this separation is difficult to achieve if, for instance, the method of 
characteristics is used. Using a Eulerian discretisation further has the advantage, that it 
is relatively easy to keep the implementations of equations for different components 
separate. This makes it easier to make a modular implementation where blocks of 
equations for different types of components are stored separately. 
 
If one chooses to use a discretisation on a Eulerian grid then there appears to be two 
main approaches for formulating one-dimensional models: 

1. To discretise the differential forms of the one-dimensional governing equations 
for fluid flow, i.e. the equations for mass, energy, and momentum, using a finite 
difference scheme. 

2. To apply the integral form of the governing equations for fluid flow to a string 
of control volumes. 
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The first approach has been used in, for instance, GLIMPS and Sage by Gedeon (1986, 
1994) and MS*2 by Bauwens (1993a). The second approach, which from here on is 
denoted as the control volume approach, was used in HFAST. The control volume 
approach is also used, for instance, in the simulation program by Carlsen (1993) (A 
detailed description of the simulation program by Carlsen has never been published, but 
the program has been used successfully for designing several Stirling engines). 
  If a conservative discretisation scheme for the differential form of the equations 
is chosen then the equations that result from these two formulations are very similar 
(Commiso, 1994). One difference between the two approaches is that the integral form 
of the governing equations for fluid flow is meaningful regardless of the shapes of the 
control volumes and how the volumes are connected. When discretisation of the 
differential forms of the equations is performed, then mathematical attention must be 
paid to, for instance, flow area discontinuities in order to maintain a meaningful 
formulation (Bauwens, 1993b).  
 There appears to be no fundamental reasons to universally prefer one of the two 
forms of the governing equations for fluid flow over the other. 
 
In this work it has been chosen to make a control volume based formulation based on a 
Eulerian grid. The main reasons behind this choice are: 

1. A Eulerian grid of control volumes is simple to understand and work with for a 
person with a background in engineering thermodynamics. Understanding a 
model is very important when creating or modifying the model. 

2. It is easy to completely separate models from the numerical methods that are 
used for solving them. This has the advantage that one can verify the correctness 
of the applied numerical methods by comparing the results from different 
numerical methods applied to the same problem. One is also free to change the 
numerical method if one becomes aware of a better method than the one 
presently used. 

3. Equations for different components can easily be separated in the 
implementation. This makes it relatively easy to add extra components to a 
model by adding extra blocks of equations for the components. 

By choosing a control volume based formulation on a Eulerian grid it has been accepted 
that numerical diffusion will be present in the solutions. The formulation will also have 
difficulties in tracing discontinuities which propagate relative to the grid of control 
volumes. But methods exist for minimising numerical diffusion and such methods are 
discussed below. 
 

3.2. The modelling approach in theory 

This section presents the basic theory of the modelling approach. Features for enhancing 
the accuracy of solutions and for reducing the computational effort needed to simulate 
Stirling machines are also discussed. 
 Parts of the contents of this section have previously been published (Andersen, 
Carlsen and Thomsen, 2004). Compared to this paper it is primarily the section 
“Interpolation of state variables and velocities to control volume boundaries” that has 
been revised and expanded. The model formulation has also been updated so that kinetic 
energy is treated with better consistency. The section “Discretisation of the solids” was 
not included in the paper. 
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3.2.1. Discretisation of the gas domain on a staggered mesh of 
control volumes 

The modelling approach presented here is based on the integral form of the conservation 
equations for mass, energy, and momentum applied to a staggered mesh of two 
overlapping strings of control volumes. Conservation of mass and energy is applied to 
one string and conservation of momentum is applied to the second string. The control 
volumes, to which conservation of momentum is applied, are located so that their 
centres coincide with the boundaries of the control volumes where conservation of mass 
and energy are applied. This is the common approach of the finite volume method of 
CFD. The staggered mesh approach ensures direct coupling between pressures, which 
are determined by the mass and energy balances, and velocities, which are determined 
by the momentum balances. This direct coupling yields stable and bounded solutions. 
 
Fig. 6 illustrates the staggered mesh of control volumes. The solid line control volumes 
are used for the mass and energy balances and the dashed line control volumes are used 
for the momentum balances.  
 From the balance equations for these control volumes a system of first order 
ordinary differential equations (ODEs) is derived. ODEs for variables that, as explained 
later, ultimately represent the pressures and the temperatures in the control volumes are 
derived from the mass and energy balances for the solid line control volumes. ODEs for 
the velocities in the domain are derived from the momentum balances for the dashed 
line control volumes. 
 

 
Fig. 6. A staggered mesh of control volumes 

 

3.2.2. The mass and energy balances 

The mass balance for the solid line control volume with index i is written as follows: 
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 (2) 

 

The values of convh  and effk  must be calculated using empirical correlations. 

 
Additional terms that affect the energies in the control volumes, such as internal heat 
production, can be included in (2) as additional terms if needed. The gas in volume i 
may exchange heat with more than one surface. 
 

3.2.3. Transformation of equations for mass and energy balances 

Models can be formulated directly using the ODEs for the mass and energy balances in 
(1) and (2) but doing so may not be optimal. If the computational domain contains 
control volumes of different sizes then the masses and energies in the volumes will also 
differ in sizes, even if the pressure and temperature are constant throughout the domain. 
If the sizes of the control volumes differ by orders of magnitudes then the corresponding 
masses and energies will also differ by orders of magnitude. This can make it more 
difficult to accurately solve the ODEs for the masses and energies due to bad scaling of 
the variables. 
 
A transformation of the ODEs for masses and energies into ODEs for pressures and 
temperatures can be desirable because it can improve the scaling of the variables and at 
the same time make it easier for an engineer to provide realistic initial values to a 
model. The transformation can also help to separate fast and slow phenomena into 
different variables because changes in pressure will propagate at sonic speeds while 
major changes in temperature generally travel with the, usually much slower, bulk flow 
speed induced by the motion of one or more pistons. This separation can make it easier 
and faster to accurately solve the ODEs. 

 For an ideal gas, using p V m R T⋅ = ⋅ ⋅ , U m u= ⋅ , and ( )vdu c T dT= ⋅ , gives:  
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The transformation defined by (3) needs idm

dt
 and idU

dt
 as input, and these derivatives 

must be extracted from (1) and (2). idm

dt
 is given explicitly by (1). For Stirling machines 

it will usually be safe to neglect kinetic energy (Bauwens, 1993a), so that one can obtain 

idU

dt
 by simply assuming that i idE dU
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 The transformation can be enhanced by scaling the units of the pressures and 
temperatures between the model and the numerical method. Eq. (3) requires a consistent 
set of units, but the numerical method may integrate the pressures and temperatures in 
units of, say, MPa and hK (hekto-Kelvin) if this helps to achieve better scaling of the 
variables. 
 
When it is not desired to assume ideal gas or to neglect kinetic energy then an 
alternative approach, which is much more general with respect to the equation of state 
for the gas, can be used to combine thermodynamic properties into variables that behave 
like pressure and temperature. For many applications the pressures, temperatures, and 
velocities will be so that the specific internal energy u , and also the specific total 

energy e , depends mostly on temperature. The energy density eρ ⋅  on the other hand 

will almost cancel out the individual dependencies of ρ  and e  on temperature if u  is 

close to directly proportional to the temperature. A suitable linear translation of u  can 
be necessary to eliminate the influence of the reference temperature for u  in the gas 

property functions if this reference temperature differs from 0 K. When eρ ⋅  is nearly 

independent of temperature it will behave much like a pressure; it even has units of 
pressure.  

 To obtain good scaling of variables ρ  and e  can either be made dimensionless 

using suitable linear translations or just be scaled by using appropriate units. The 
transformations from mass and energy into density and energy density can be written 
with (1) and (2) as input as: 
 

 ( )
( )

2

1

1

i i i i

i i

i i i
i i

i

i i i i i i

i i

de dE E dm

dt m dt m dt

d dm dV
V m

dt dt dtV

d e d E m de

dt dt m V dt

ρ

ρ ρ

 = ⋅ − ⋅   

= ⋅ ⋅ − ⋅

⋅
= ⋅ + ⋅

 (4) 

 
Specific energy and energy density may not be as easy to relate to as temperature and 
pressure when manually making initial guesses for a solution. But at least these 
variables are independent of the sizes of the control volumes and hence they make it 
easier to make initial guesses that correspond to uniform conditions in regions of a 
machine. It is, of course, also possible to automate the calculation of initial guesses in a 
model. When this is done the disadvantages of the transformation (4) compared to the 
transformation (3) are reduced, while the advantages of greater generality with respect 
to the equations of state for the gas and the treatment of kinetic energy are preserved. 
 

3.2.4. The momentum balance 

When modelling Stirling machines it is not uncommon to simplify the momentum 
balance by neglecting the inertia of the gas. This approach was also pursued in the 
beginning of this work as documented in the accompanying Paper A. However, it 
appeared desirable to include the inertia terms in the momentum equation in order to 
eliminate the risk that their exclusion caused important effects to be neglected. 
 Experiments were carried out which compared the computational efforts needed 
to compute solutions with and without the inertia terms in the momentum equation. 
These experiments indicated that the inertia terms caused only little overhead for 
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periodic steady state solutions. It was also found that the iterations performed in a semi-
implicit Runge-Kutta method during simulations actually converged better during flow 
reversals when the inertia terms were included than when they were neglected. There 
was, however, a measurable overhead due to the inertia terms when simulations were 
performed from non-smooth initial pressure distributions. But it was found that the 
overhead could be reduced to a tolerable level by using an appropriate method for 
dissipating acoustic waves. 
 On this background it was chosen to include the full momentum balance in the 
modelling approach. 
 
The momentum balance for the dashed line control volume j is written as (5).  
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By expanding the accumulation term on the left hand side in (5) the time derivative of 
the velocity in volume j becomes: 
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In the following the term ,f jp∆  is used to represent the absolute value of the pressure 

difference due to flow friction between the inlet and outlet of volume j. ,f jp∆  can be 

calculated using empirical correlations for the friction factor and loss coefficients. 
Correlations developed for steady state flow are often readily available and can be used 

as an approximation. The term ,wall jF  in (6) can then be approximated by multiplying the 

pressure loss with a cross sectional reference area , ,c ref jA : 

 
 , , , ,wall j f j c ref jF p A= ∆ ⋅  (7) 

 

It appears appropriate to choose , ,c ref jA  to be equal to either , 1c iA − , ,c iA , or some mean 

value in between these two cross sectional areas. To determine the pressure jpɶ  in (6) 

acting on the area difference between the inlet and outlet of volume j, we impose the 
condition that (6) must match the energy equation for steady state incompressible flow 
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in a stationary tube, i.e. the extended Bernoulli equation, between 1ix −  and ix  when 

gravitational potential energies are neglected: 
 

 
2 2
1

1 ,2 2
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i j i j f j
j

VV V
p p p

V
ρ ρ−

−
     + ⋅ − + ⋅ = ⋅ ∆        

 (8) 

 

It can be verified by insertion that this is achieved if the pressure jpɶ  is calculated using 

either (9) or (10) and the artificial dissipation force is zero. Note that the last terms in 

(9) and (10) simplify greatly if , ,c ref jA  is chosen equal to either , 1c iA −  or ,c iA . 
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Eqs. (9) and (10) give jpɶ  as the pressure in a solid line control volume plus two 

correction terms. At flow area discontinuities, such as the location where a tube 
connects to a large chamber, the correction terms containing the square of the velocity 
can cause instability. To avoid instability the choice between (9) and (10) should be 
made so that the squared velocity is as small as possible, i.e. so that the extrapolation 
from the pressure in the solid line control volume is as small as possible. In practice this 

can be done by using (9) where , , 1c i c iA A −≥  and using (10) elsewhere. 

 

3.2.5. Artificial dissipation 

For some machines it is known that the periodic steady state performance will be 
practically unaffected by acoustic waves. Acoustic waves are pressure waves that 
propagate with the speed of sound. In Stirling machines the acoustic waves typically 
oscillate at frequencies significantly higher than the operating frequency of the 
machines.  
 When a simulation is started from a bumpy pressure distribution then acoustic 
waves may be induced. As the simulation progresses the acoustic waves will eventually 
ring out. But due to the tiny time steps needed to track the acoustic waves during the 
initial phase of such a simulation the acoustic waves can cause a very significant and 
unwanted computational overhead when modelling Stirling machines. 

 An artificial dissipation force ,AD jF  is included in the modelling approach and 

this dissipation force can be used in such cases to accelerate the dissipation of the 
acoustic waves. I use (11) for calculating the artificial dissipation force. 
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The terms in (11) proportional to the first derivative of the velocity can be considered 
similar to a viscous normal stress (Bird, Stewart, and Lightfoot, 1960). The terms 
proportional to the third derivatives of the velocity cannot easily be related to physical 
effects. 
 The terms proportional to the third spatial derivatives of the velocity inhibit 
oscillations between neighbouring pairs of control volumes, and hence dampen 
oscillations with a short wavelength compared to the length of the control volumes. The 
terms proportional to the first spatial derivatives of the velocity penalize curved velocity 
profiles and hence dampen oscillations with longer wavelengths.  
 The artificial dissipation force is scaled by an average pressure that should be 
representative for the region where the artificial dissipation is applied. In this work I 
have used the instantaneous average pressure in the cylinder volumes of the machines 
for the scaling. 
 
Care must be taken not to apply the artificial dissipation forces so that they interfere 
significantly with the mean solution. The magnitudes of the artificial dissipation 

coefficients 1µɶ  and 2µɶ  must be large enough to yield the desired smoothing effect and 

yet small enough to not significantly affect the mean solution. At the same time (11) 
should not be used where flow area discontinuities, localised pressure losses, or other 
localised phenomena affect the calculation of the velocity derivatives in (11). I have not 
observed problems from simply switching the artificial dissipation terms off, when any 
of the dashed line control volumes containing the velocities used for calculating the 
derivatives in (11) contain flow area changes or are prescribed localised pressure losses 
to model inlets, tube bends, or similar. 
 Visual inspection of solutions was used to check if the desired smoothing effect 

was achieved. Inspection of the ratio , ,/AD j wall jF F  and experimentation with the 

artificial dissipation coefficients was used to test that the artificial dissipation did not 
interfere significantly with the mean solution. For simulations of Stirling engines, 
Stirling coolers, and pulse tube coolers with helium, nitrogen, air, and carbon dioxide at 

pressures in the range of 1-10 MPa I found the values 4
1 1.0 10 /s mµ −= ⋅ɶ  and 

6
2 2.0 10 /s mµ −= ⋅ɶ  to be suitable. 

 

3.2.6. Interpolation of state variables and velocities to control volume 
boundaries 

The pressures jp  and enthalpies ,gas jh  (or alternately the temperatures jT ) at the 

boundaries of the solid line control volumes, and the velocities iV  at the boundaries of 

the dashed line control volumes are not given as explicit output by the modelling 
formulation. But these unknown values are needed, both explicitly and in gas property 
calculations, in the equations (1) through (10). Since the model formulation does not 
yield these values directly they must be approximated from known values in the control 
volumes next to the boundaries using some kind of interpolation method. The choice of 
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interpolation method turns out to be very important for the accuracy of the modelling 
approach. 
 
Problems related to interpolation methods 
The enthalpies at the boundaries of the solid line control volumes are needed for 
computing the amount of energy transported by advection between neighbouring solid 
line control volumes. 
 
Unfortunately the obvious approach of using a symmetric interpolation method to 
compute the temperatures or enthalpies at boundaries does not work well because it will 
introduce strong non-physical temperature oscillations into solutions. The source of the 
problem with symmetric interpolation of boundary temperatures can be thought of as 
temperature information being able to travel against the flow direction. With symmetric 
interpolation the temperature at a boundary will depend as much on the temperature in 
the receiving control volume as on the temperature in the control volume where the 
mass flow is coming from. 
 
The problem with non-physical oscillations can be avoided by using the so called 
upstream approximation. When using the upstream approximation it is assumed, that 
gas flowing across a boundary between two control volumes has a temperature equal to 
the average temperature in the control volume where the gas is coming from. 
 Unfortunately the upstream approximation introduces an artificial energy 
transport mechanism, known as numerical diffusion, into solutions when mass is 
advected along a temperature gradient. When mass flow is in the direction of decreasing 
temperature the temperatures at the boundaries between control volumes, and hence the 
enthalpy flows across the boundaries, are overestimated by the upstream approximation. 
When mass is flowing in the direction of increasing temperature the enthalpy flows at 
the boundaries are underestimated. The numerical diffusion has nothing to do with the 
underlying governing equations but is only an artefact of the spatial discretisation 
scheme. 
 With the upstream approximation the magnitude of the artificial energy transport 
due to numerical diffusion is proportional to the mass flow, the temperature gradient, 
and the length of the control volumes. So when the number of control volumes is 
doubled the magnitude of the error due to numerical diffusion is halved. The numerical 
diffusion can hence be said to be a first order error term. Numerical diffusion in models 
of Stirling machines is a well known problem (Gedeon, 1984)(Kühl and Schultz, 
1995)(Commiso, 1994) that can be very severe because of the large axial temperature 
gradients in regenerators. 
 
The problems with non-physical oscillations and numerical diffusion cause a need for a 
specialised interpolation method for the boundary enthalpies. The interpolation method 
must force upstream temperatures to take some precedence over downstream 
temperatures without introducing too much numerical diffusion when steep temperature 
gradients are present in the solution. 
 
Background for choosing interpolation methods 
When deciding which form of interpolations to use for approximating the unknown 
values one should balance three design criteria: 

• The interpolations should increase the accuracy of models for predicting the 
performance of machines. 
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• The interpolations should not increase the computational cost of solutions too 
much. The computational cost of the interpolations themselves will usually not 
be very significant. But if the interpolations depend on the local solution in a 
strongly non-linear way then the computational cost of integrating a model using 
an implicit integration method can increase significantly. 

• The interpolations should not introduce too strong non-physical oscillations into 
solutions (these oscillations are discussed below). 

 
When weighing these requirements one should also take into account the characteristics 
of the solutions to the models. For Stirling and similar machines the following 
characteristics are known from experience: 

• Very strong temperature gradients exist in regenerators. The axial temperature 
profile in the regenerator is not shifted significantly back and forth in the flow 
direction, i.e. the temperature inside a regenerator is mainly a function of the 
axial space coordinate. Limiting numerical diffusion in regenerators is known to 
be critical to Stirling machine modelling. 

• Propagating discontinuities in pressures and velocities do not occur in periodic 
steady state solutions. Discontinuities in pressures and velocities only occur at 
localised pressure losses and flow area discontinuities which are all fixed in 
space relative to the control volumes. In other words: Shocks do not form and 
propagate in periodic steady state solutions. However, shocks may form as a 
result of poor guesses for the initial values. Poor guesses for the initial values 
can, for instance, result from a divergence in a numerical method trying to find 
the initial values corresponding to a periodic steady state solution. Hence it is 
important that shocks can be dissipated and that they do not cause catastrophic 
instabilities that make it impossible to find a solution. 

• Temperature discontinuities can, conceptually, be produced by flow reversals. 
Consider, for instance, a tube connected to a large cylinder volume and assume 
that gas is flowing out of the tube and into the cylinder volume with a 
temperature different from the temperature in the cylinder volume. In this case a 
temperature discontinuity can form at flow reversal when gas from the cylinder 
volume begins to flow into the tube. In a real machine, however, the turbulent 
mixing at the inlet/outlet should smooth away any would-be discontinuity. In a 
one-dimensional model one can achieve the same effect artificially by 
connecting components appropriately. But waves with steep temperature 
gradients may form at flow reversals in spite of the smoothing. Temperature 
discontinuities can still also occur as a result of poor initial values. Hence 
temperature discontinuities or steep wave fronts must not make the equation 
system unsolvable. 

 
Appropriate interpolation methods 
Both interpolation methods that depend linearly on the local solution and interpolation 
methods that depend on the local solution in non-linear ways have been considered in 
this work. Both classes of methods can minimise numerical diffusion to tolerable levels. 
The methods that depend linearly on the local solution generally yield the fastest 
simulations but produce solutions which can contain non-physical oscillations. The 
methods that depend on the local solution in a non-linear way minimise both numerical 
diffusion and non-physical oscillations but they tend to make simulations more 
computationally expensive. 
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Linear interpolation methods 
Kühl (1990) presented an interpolation method based on a blend between symmetric 
linear interpolation and linear extrapolation through two upstream points. The optimum 
weight factors were determined by Kühl to be 0.3 for the extrapolation and 0.7 for the 
interpolation. Except for its dependence on the flow direction the approach by Kühl 
depends only linearly on the local solution. 
 
I have previously recommended an asymmetric interpolation method based on a cubic 
polynomial that goes through one upstream point and two downstream points and 
whose first derivative at the upstream point equals the slope of the tangent through two 
upstream points. Except for its dependence on the flow direction this method also 
depends linearly on the local solution. The method was previously described by 
Andersen, Carlsen, and Thomsen (2004).  
 In practice, however, the differences in simulation results between the 
asymmetric cubic interpolation and the asymmetric interpolation method by Kühl are 
only slight. Also the interpolation method based on the asymmetric cubic polynomials 
has the disadvantages that is it more difficult to implement when using a non-uniform 
mesh and that the factor by which upstream information is given precedence cannot be 
adjusted. For these reasons this author now prefers the method by Kühl over the 
asymmetric cubic interpolation method. 
 
The method by Kühl can be modified slightly by using cubic polynomials for the 
interpolation instead of linear interpolation. When the interpolation method is used at 
locations where oscillations are well damped by physical mechanisms, so that a small 
weight factor for the upstream extrapolation can be used, then using cubic interpolation 
instead of linear interpolation might result in better accuracy. In the following this 
modified method will be denoted as CILE for Cubic Interpolation Linear Extrapolation. 
The CILE method also depends only linearly on the local solution. 
  
Fig. 7 illustrates some of the advantages and problems with methods such as the CILE 
method and the upstream approximation. The figure shows snapshots at two different 
times of a temperature front travelling from left to right through a gas filled tube, which 
was discretised into 96 control volumes of uniform size. The front was created with a 
step input of cold gas being blown into the left end of the tube. The upstream 
approximation and the CILE method with three different weight factors for the 
extrapolation term were used for interpolating enthalpies at the boundaries of the control 
volumes.  
 



3. Modelling of 1D, oscillating, compressible flow in reciprocating machines 

3.2. The modelling approach in theory 33 

235

240

245

250

255

260

265

270

275

280

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Position [m]

T
e

m
p

e
ra

tu
re

 [
K

]

CILE f = 0.0

CILE f = 0.2

CILE f = 1.0

Upstream

 
Fig. 7. A travelling temperature front in a 3 m long tube divided into 96 solid line control volumes. 
Boundary enthalpies were computed using the upstream approximation and the CILE method, i.e. 

a blend between linear upstream extrapolation (weight factor f) and cubic interpolation (weight 
factor 1-f). The tick marks on the horizontal axis indicate the positions of the boundaries between 

the solid line control volumes. 

 
Fig. 7 shows that the upstream approximation caused the step input to be smeared by 
numerical diffusion. The gradient of the smeared temperature front also diminished 
visibly between the two snapshots.  
 The three curves for the CILE method with different weight factors (0, 0.2, and 
1) for the linear extrapolation in Fig. 7 show, that the CILE method also caused 
smearing of the step input and that it also caused non-physical oscillations. But the 
temperature gradient at the front was steeper than for the upstream approximation and 
the gradient was preserved quite well between the two snapshots. This means that the 
numerical diffusion was smaller than for the upstream approximation. 
 Fig. 7 shows that using only symmetric interpolation (CILE f = 0.0) caused 
strong oscillations to trail the front. Using only extrapolation (CILE f = 1.0), on the 
other hand, caused an overshoot and strong oscillations to precede the front. In the latter 
case the oscillations propagated faster than the bulk flow velocity which transported the 
temperature front. Using a weight factor of 0.2 for the linear extrapolation appeared to 
be a good compromise for the CILE method when balancing the overshoot and the 
accompanying preceding oscillations with the trailing oscillations. But even with the 
optimised weight factor the non-physical oscillations were still visible. 
 
Non-linear interpolation methods 
The fluid dynamics literature contain a number of different methods, such as flux 
limiters (Suratanakavikul and Marquis, 1999) or flux splitting (Fedkiw et al, 1998), that 
depend on the instantaneous solution in different non-linear ways. These methods can 
both minimise numerical diffusion and non-physical oscillations but at the cost of 
increasing the computational efforts needed to perform simulations. 
 By experimentation is has been found that some flux limiters only cause a slight 

overhead relative to the CILE method. A flux limiter can be perceived as a function jΨ  

that determines the weight factor for the values in the neighbouring control volumes 
when interpolating a value at a boundary. The flux limiter function depends on a sensor 
variable which is related to the smoothness of the local solution. In this work flux 
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limiters have been implemented with a sensor variable, jr , based on consecutive 

gradients. If the enthalpy is to be interpolated then jr  is calculated as follows, where ε  

is a very small number: 
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The sensor variable will hence be equal to 1 if the gradient of the solution is constant. 
One flux limiter found to cause only moderate overhead is due to van Leer 
(Suratanakavikul and Marquis, 1999) and is defined in the following way: 
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The interpolation of the enthalpy at the boundary using the flux limiter function is then 
carried out as follows: 
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Fig. 8 shows the same temperature front as Fig. 7 from simulations using: 

• The CILE method with a weight factor of 0.2 for the linear extrapolation. 

• The asymmetric cubic interpolation method. 

• The method by Kühl. 

• The van Leer flux limiter. 
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Fig. 8. A travelling temperature front in a 3 m long tube divided into 96 solid line control volumes. 
Boundary enthalpies were computed using: 1. The CILE method with a weight factor of 0.2 for the 
upstream extrapolation, 2. asymmetric cubic interpolation, 3. the interpolation method by Kühl, 4. 

the flux limiter by van Leer. The tick marks on the horizontal axis indicate the positions of the 
boundaries between the 96 solid line control volumes in the tube. 
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In Fig. 8 the results for the three interpolation methods which depend linearly on the 
local solution are very similar. These methods cannot maintain the temperature 
discontinuity but they maintain a slightly smeared temperature gradient well between 
the two snapshots. All three methods have overshoots and oscillations that appear to 
grow slowly in amplitude as the temperature front travels. For solutions where 
numerical diffusion must be minimised and where the oscillations will not grow to 
destroy the solution either of three interpolation methods appear to be more attractive 
than the upstream approximation. 
 Fig. 8 shows that the van Leer flux limiter both preserves the steep gradient and 
avoids the non-physical oscillations. For situations where avoiding non-physical 
oscillations is more important than achieving optimum simulation speed the van Leer 
flux limiter appears to be more attractive than the three interpolation methods which 
depend linearly on the local solution. 
 
It appears to make little sense to use the specialised interpolation methods right next to 
flow area discontinuities where different components are connected. In that case, one of 
the points used for the interpolation would be located in the neighbouring component 
where conditions might be different. Hence the specialised interpolation methods are 
not applied when some of the points used for the interpolation would fall across flow 
area discontinuities. 
 Upstream extrapolation is applied to find enthalpies at flow area discontinuities, 
such as connections between components. If the upstream control volume is assumed to 
be perfectly mixed then the upstream extrapolation reduces to the standard upstream 
approximation. 
 
Interpolation of pressures and velocities at boundaries 
Intuitively, it appears to make sense to use the same specialised interpolation method for 
interpolating both pressures, temperatures and velocities; doing so applies the same 
upwind bias to advection of energy, mass, and momentum. 
 In periodic solutions to Stirling machine models, however, I have not observed 
that the choice of interpolation method for the pressure makes a significant difference. 
But pressure discontinuities travelling through a machine in a transient solution do tend 
to cause fewer oscillations when the CILE or van Leer methods are used for 
interpolating pressures. In this context it has been observed for the CILE method that 
using a larger weight factor, such as 0.5 instead of 0.2, for the extrapolation term seems 
most effective at reducing oscillations. 
 In this work no advantages in using asymmetric interpolation methods for the 
velocities have been observed for Stirling machine models. Hence symmetric cubic 
polynomials have been used for interpolating velocities to the boundaries of the dashed 
line control volumes.  
 

3.2.7. Discretisation of the solids 

The temperatures of the solids in a machine must also be modelled. To do so the solids 
are discretised into control masses. The discretisation is made so that the axial 
distribution of the control masses matches the axial distribution of the solid line control 
volumes, i.e. so that the boundaries between the control masses match the boundaries 
between the solid line control volumes. 



3. Modelling of 1D, oscillating, compressible flow in reciprocating machines 

3.2. The modelling approach in theory 36 

 The solids corresponding to each solid line control volume may be divided into 
multiple control masses. In an annular regenerator, for instance, there would typically 
be three control masses for each solid line control volume; two control masses would 
the represent the inner and outer walls of the annular duct and the third control mass 
would represent the regenerator matrix. 
 Depending on the assumptions made about the temperature distributions within 
the control masses there are different methods for modelling the temperatures of the 
control masses. 
 
One approach is to assume that the temperatures are uniform within the control masses, 
i.e. to use a lumped formulation for the temperatures of the control masses. This 
assumption is often accurate for the control masses representing a regenerator matrix, 
which is made from very fine wires. Wire diameters in regenerators are typically 

between 20-100 µm and in this work the corresponding Biot numbers have at most been 
of the order of magnitude 10-2. In this case the ODE for the temperature of the control 
mass can be derived from an energy balance: 
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Another approach is to assume that the wall temperatures are constant. This assumption 
can be accurate for walls where the surface heat fluxes are relatively small. If the 
oscillations in the surface temperatures are small compared to the temperature 
differences between the gas and the wall, then the surface temperature oscillations may 
have only a minor relative influence on the calculated heat transfer between the gas and 
the wall. 
 The constant temperature of a control mass at periodic steady state can be 
determined from the integral condition (16) which specifies that the net heat input to the 
control mass during one cycle must be zero. The integrated heat input must include both 
the heat exchange between the gas and the control mass, and the heat input to the 
control mass from conduction in the solids. 
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It is also possible to use a general discretisation of the solids in the radial direction in 
order to model the heat conduction inside the walls and thereby be able to predict the 
oscillations in the surface temperatures. This approach, however, is unattractive with 
respect to keeping simulations fast, because the approach will increase the number of 
equations. 
 An alternative approach is to begin from an analytical solution for the 
temperature oscillations inside a solid slab when the slab is subjected to a harmonically 
oscillating heat flux. One can then design specialised coarse discretisations of a wall so 
that the solution from the coarse discretisation will approach the analytical solution for 
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the solid slab when the surface heat flux is harmonic. Kühl (1990) presented such an 
approach for use in cylinder volumes, where the first harmonic of the wall temperature 
oscillations could be accounted for by using only one extra equation pr. wall segment. 
 
In this work it has been chosen to use the lumped approach (15) to model regenerator 
matrix temperatures and to assume that all other wall temperatures are constant. 
 

3.2.8. Conditions for periodic steady state 

Models built using the modelling approach described above will contain the following 
variables that exhibit periodic behaviour according to the definition in section 1.1: 

• Specific energy densities eρ ⋅  (or pressures p ) in the gas. 

• Specific energies e  (or temperatures T ) in the gas. 

• Gas velocities V . 

• Regenerator matrix temperatures mT . 

Models will also contain constant wall temperatures which can be thought of as 
parameters for each simulation. 
 

In the following we collect the periodic variables in the vector py . We denote the 

integration results from the right hand sides of the integral conditions for the wall 

temperatures (16) as the vector iy . Also we collect the constant temperatures of the wall 

segments into the parameter vector ic , which has the subscripts i to signify that the 

parameters belong to the integral conditions. For a periodic steady state solution: 
1. The initial and final values of the periodic variables must be identical. 
2. The integration results from the integral conditions for the wall temperatures 

must be zero. 
 
But the above conditions are not adequate to determine a unique periodic steady state 
solution because the conditions can be fulfilled for any total mass of gas inside the gas 
domain. To get a unique solution an additional condition that determines the total mass 
of gas in the gas domain is needed. 
 The condition does not need to be formulated explicitly in the total mass of gas. 

Often it is convenient to specify a mean pressure, meanp , at a point inside the gas 

domain. This mean pressure can either be an integral mean pressure or it can be a 
geometric mean pressure, i.e. an average of the minimum and maximum pressures 
observed during the cycle. The latter definition can be more practical when comparing 
with experimental data because it can be easier to measure the minimum and maximum 
pressures than to measure the integral mean pressure. 

 In the following we say that we can compute a result variable sy  as a monotone 

function of the amount of gas in the gas domain. We denote the desired value of this 
result variable as SCTV . The acronym for SCTV  stands for Scaling Condition Target 
Value. The reason for this name will become obvious when we in chapter 4 discuss 
methods for finding periodic steady state solutions to the models. 
 

We can hence say that for a unique periodic steady state solution the initial values ,0py  

for the periodic variables and the parameters values ic  for the integral conditions must 

satisfy the following conditions: 
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where ( )0 ,0; ,p p iy t t y c+ ∆  denotes the values of py  at time 0t t+ ∆  given initial values 

,0py  and parameters ic . 

 

3.3. Implementation of the modelling approach 

Section 3.2 above describes the theory of the modelling approach developed in this 
work. In practice, there is a long way to go from writing down the general equations 
until one has a simulation up and running. The following subsections describe different 
aspects of the method of implementation chosen in this work. 
 

3.3.1. Method of implementation: An equation based MUSSIM model  

In this work it was chosen to implement Stirling machine and pulse tube cooler models 
in the simulation software MUSSIM (MUSSIM is an acronym for Multi-purpose 

software for simulation). MUSSIM is an equation based general purpose simulation tool, 
which has been developed by this author, and it has its origin in a preparatory thesis 
project.  
 The MUSSIM software is a collection of subprograms that, when combined with 
a model file, can be compiled into an executable simulation program. The code is 
written in Fortran 95. Some high level algorithms have been parallelised using the 
Message Passing Interface (MPI) and central parts of the code have been parallelised 
with a finer granularity using OpenMP. Hence MUSSIM simulation programs can 
benefit from using multiple processors (or multiple processor cores) when the necessary 
hardware, libraries, and compiler technology are available. 
 
A consequence of using the MUSSIM software for implementation of models is that 
models basically end up being a collection of declarations and equations contained in a 
single source file. This type of model has both advantages and disadvantages compared 
to other types of implementations, such as the object oriented implementation used in 
the Sage software by Gedeon (1994) which hides the equations from the user. 
 The primary advantage of an equation based model is that such a model is very 
transparent and adaptable. It is my experience that users of Sage often end up wanting to 
study machine specific details in ways that are not supported by the predefined 
components of Sage. With an equation based model users have the possibility to modify 
the equations to suit their special needs. 
 
The equation based approach also has possible disadvantages: 

• Making the equation system requires insight and can be laborious and time 
consuming. This problem can be eliminated if the model equation system is 
generated automatically from user input about which components the model 
must contain and how they are to be connected. With such a model generator the 
user will have the choice to look at and modify the equation system if needed, or 
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to leave it be if the predefined components support all the needed functionality. 
Such a model generator could have a graphical user interface. 

• The user can make changes that break a model, i.e. that cause the equation 
system to not correctly mimic the physics being modelled, or that simply make 
the equation system unsolvable. Test values, such as checksums for mass and 
energy conservation, can aid the user in making sure that none of the changes 
made to the equation system breaks the model. 

• Model files can grow to be quite large (in practice on the order of a few 
thousand lines). Each component has its own block of equations even if the 
model contains multiple identical components. This may ultimately limit the 
number of components which can practically be combined in a single model. In 
my experience, however, this has not been an issue.  

 

3.3.2. The structure of the MUSSIM software 

The basic software structure of a MUSSIM simulation program is illustrated in Fig. 9. A 
main program can invoke high level numerical subprograms for solving IVPs, BVPs, 
algebraic equation systems (AEs), performing parameter studies, and performing 
optimisation. These numerical subprograms need to interact with the user defined model 
in order to calculate residuals, right hand sides, Jacobians, and so on. All interactions 
between the numerical subprograms and the model are performed through an optimising 
equation system interface (OESI). The OESI is designed to analyse the equation system 
at program start up. The analysis produces information that is used during execution of 
the program to minimise the computational effort needed to supply data to the 
numerical subprograms. 
 

 
Fig. 9. Basic software structure of a MUSSIM simulation program. 

 
Note that interaction with linear algebra subprograms is also performed through the 
OESI. This approach has been chosen to make it easier to switch between different 
matrix storage schemes and solvers. Changing to a new matrix storage scheme and/or 
solver only causes a few changes to the OESI and no changes to the high level 
numerical subprograms. 
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3.3.3. The mathematical structure of MUSSIM models 

The MUSSIM software divides variables and parameters into the following main 
categories: 

• Parameters: These are values that do not change during the integration of an 
IVP. Parameters can be both strictly input parameters or be parameters that must 
be determined from the simulation. An input parameter could be a tube diameter. 
A parameter, whose value must be determined from a simulation, could be a 
constant wall temperature. 

• Static variables: These are variables that are determined from algebraic 
equations, i.e. variables that exhibit no “inertia”. 

• Dynamic variables: These are variables that are determined from differential 
equations. 

• Shared evaluations: These are values that need to be calculated in order to 
evaluate the right hand sides of the algebraic equations and differential 
equations. In practice, the shared evaluations come from splitting up the 
complex right hand sides of equations into smaller, well defined calculations. 
When complex right hand sides are split up in this way, it will often become 
apparent that different right hand sides share common calculations. For instance, 
two neighbouring control volumes could share the calculation of the mass flow 
between them. The splitting allows these shared evaluations to be performed 
only once for each evaluation of all the right hand sides. It usually also turns out 
that many of these shared evaluations are independent and can be performed in 
parallel when using a multiprocessor computer. With proper (automated) 
optimisations the approach with the shared evaluations also has significant 
advantages when calculating Jacobians for the equation system using numerical 
differencing; this is explained in a section below. To get the maximum benefit of 
these optimisations it is a design objective, when implementing a MUSSIM 
model, that a large part of the computations needed to evaluate the right hand 
sides should be placed in the shared evaluations. 

 
IVPs and BVPs that are to be solved using the MUSSIM software must be formulated as 
differential algebraic systems of equations (DAEs) of the form: 
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where x  are static variables, y  are dynamic variables, c  are parameters, s  are states, 

dy

dt
 are the derivatives of the dynamic variables and where f  and g  are vector 

functions. In practice, equation systems in MUSSIM models also contain the above 

mentioned shared evaluations, SE , as an intermediate stage in the calculations of f  and 

g : 
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States are used for handling events where the equation system can undergo instant 
changes, i.e. it can shift from one state to another state. A change of states is essentially 
a discontinuity that occurs when some condition is fulfilled. A condition for an event 
could be defined as: If P1 < P2 then open the Valve 1. The equation system could then 
change from a state where Valve 1 was closed to a state where Valve 1 was open. 
 By manually specifying conditions for events it becomes possible to determine 
with high precision the times when events occur. Explicitly handling events, instead of 
just letting an IVP method with a variable step size algorithm stumble across the 
associated discontinuities, not only enhances the precision of the integration results but 
can also save computational effort. 
 
The individual parameters, variables, shared evaluations, and equations in a MUSSIM 
model can be either in scalar or vector form. This is helpful when making models that 
involve spatial discretisation. The equations for a discretised component can be written 
in vector form so that refining the discretisation of the component amounts to changing 
a single parameter for the numbers of elements in the vectors. 
 
Models created using the modelling approach presented above usually have equation 
systems which contain no static variables. 
 

3.3.4. General implementation of MUSSIM models 

A MUSSIM model is implemented in a model file. The model file is a Fortran 95 source 
file that contains a number of modules and subprograms (A module in Fortran 95 is 
basically a program unit with its own scope that can contain both declarations and sub 
programs. Other program units can selectively use variables and subprograms from a 
module). A MUSSIM model file contains the following main modules and subprograms: 

• The module Model_info_module: This module contains information about the 
model source file and the input files that are associated with the model. 

• The module User_variables_module: This module is used for declaring 
variables to the Fortran compiler. Here it could be declared that, for instance, 
WallTemperature_h1 is an array of 12 floating point values of a given kind. 
Typically the kind would specify 8 bytes pr. floating point value (double 
precision), but the program can also be compiled to use other number 
representations such as 4 byte (single precision) or 16 byte (quadruple precision) 
floating point values. 

• The subroutine UserDeclarations: This subroutine is used for declaring 
variables, parameters, and so on to the OESI. Here it could be declared, for 
instance, that the array WallTemperature_h1 from User_variables_module is an 
array of parameters. 

• The subroutine ExecuteBeforeSimulation: This subroutine is used for 
computations that need only be performed once for every simulation. Computing 
geometry from input parameters and setting up the computational mesh is 
typically done here. 

• The subroutine ExecuteBeforeResiduals: This subroutine is used during 
simulations to perform calculations that depend only on time. 

• The subroutine SharedEvaluations: This subroutine is used for evaluating 
individual shared evaluations. 
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• The function ResidualsOfStaticEquations: This function is used for calculating 
individual residuals of algebraic equations. 

• The function DerivativesOfDynamicVariables: This function is used for 
calculating individual right hand sides of differential equations. 

• The subroutine ExecuteOnSolution: This subroutine is called after each step of 
the IVP solver. It can be used, for instance, for generating detailed output during 
a cycle. 

• The subroutine ExecuteOnSample: This subroutine is called at each sample 
point, when an IVP solver has been instructed to find solution points with a 
fixed time interval between them. Sampling is typically used for generating 
output data with uniform time spacing between the values. But it can also be 
used for changing the values of parameters or variables with a fixed time 
interval. This is useful when modelling systems where controllers interact with 
the system at fixed time intervals. 

• The subroutine ExecuteAfterSimulation: This subroutine is called when an 
IVP solver has finished an integration, for instance after each simulation of a 
complete cycle for a machine. 

• The subroutine StateShifting: This subroutine is used for handling events (state 
changes) in a simulation.  

 

3.3.5. A component oriented implementation of the equation based 
models 

When using the modelling approach developed here for modelling Stirling or similar 
machines it can be advantageous to group the equations by components. By doing so it 
becomes easier to add or remove components in a model. 
 
Connecting components 
The fact that a staggered mesh is used in the model formulation causes a slight 
complication when components are connected. 
 When components are discretised into control volumes it appears natural to 
discretise them so that the whole interior of each component is divided into an integer 
number of solid line control volumes for mass and energy balances. At each intersection 
where two components are joined, one control volume for the momentum balance will 
then be shared between the two components. This is illustrated in Fig. 10. If 
components are to be connected in this way then one must choose a general scheme to 
decide which component should contain the equation for the velocity in the shared 
control volume. 
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Fig. 10. Shared momentum balance control volume at connection between two components. 

 
In this work an alternative approach, which is illustrated by Fig. 11, has been chosen. In 
the alternative approach there is no direct connection between components that have 
equations for the velocities at their outer boundaries. Instead these components can only 
be connected to special “manifold” components that do not have equations for the 
velocities at their boundaries. 
 In this work components such as cylinder volumes, heat exchangers, and 
regenerators have been chosen to have velocities at their outer boundaries. A single 
generic manifold component, which has only a single solid line control volume for mass 
and energy balances, has been used to connect the components. When there has been no 
distinct connecting volume between two components in the actual physical device being 
modelled, then the manifold component has been given the same properties as one of 
the neighbouring components, i.e. it has been used to model a short length of one of the 
neighbouring components. 
 
 

 
Fig. 11. Components connected through a manifold. Momentum balance control volumes are not 

shared directly between the components, only between the components and the manifold. 

 

Component A Component B 

Rightmost momentum 

balance control volume 

of component A 

Manifold AB 

Leftmost momentum 

balance control volume 

of component B 

Component A Component B 

Shared momentum 
balance control volume 



3. Modelling of 1D, oscillating, compressible flow in reciprocating machines 

3.3. Implementation of the modelling approach 44 

The manifold components are usually used to model volumes which are moderate in 
size compared to the amount of gas travelling back and forth during a cycle (see for 
instance the manifold volumes of the SM5 engine in Fig. 13 on page 52 below). The gas 
temperatures in the manifold volumes will hence tend to quickly approach the outlet 
temperatures of their closest upstream components. 
 As mentioned in section 3.2.6 extrapolation from upstream conditions are used 
for finding enthalpies at the intersections between components. In the single volume 
manifold components this extrapolation reduces to the upstream approximation. The 
manifolds thus function as mixing zones between components. During flow reversals 
the manifold components have a smoothing effect and they eliminate the step inputs in 
temperature to the spatially discretised components that could otherwise occur. 
 This method for connecting components corresponds to assuming that the gas is 
perfectly mixed inside the manifold volumes. The assumed perfect mixing, which 
smoothes discontinuities and hence has significant numerical benefits, is a crude 
approximation to reality. But capturing the true amount of turbulent mixing in 
manifolds is beyond a one-dimensional model anyway, and assuming no mixing at all 
does not appear to be any more justifiable than the assumption of perfect mixing. 
 
Organisation of computations 
The computations for the different components have been implemented in the MUSSIM 
models with the following general code organisation: 

• ExecuteBeforeSimulation is used for performing initial geometry calculations 
from input parameters and setting up the computational mesh. 

• SharedEvaluations is used for calculating all the terms that must be inserted in 
the governing equations. SharedEvaluations is hence where the bulk of the CPU 
time is spent when derivatives, residuals, and Jacobians are calculated. 

• DerivativesOfDynamicVariables is used for calculating the derivatives 
corresponding to the governing equations from the values computed in 
SharedEvaluations. 

• ExecuteAfterSimulation is used for computing heat conduction between control 
masses where constant wall temperatures have been assumed. 

 
The shared evaluations for the different types of components can be organised into 
layers, so that there are no dependencies between the shared evaluations in each layer. 
The ordering into layers is performed automatically by the OESI and the shared 
evaluations can be entered into models in any order. The ordering of shared evaluations 
into layers is global for the entire model, i.e. it is not just performed for individual 
components. Hence components may cause the shared evaluations in other components 
to be split into more layers than a quick look would otherwise suggest, because there 
can be dependencies between the shared evaluations in different components. 
 
If no other components influence the global ordering into layers, then the shared 
evaluations for the manifold components could be ordered into the following layers by 
the OESI: 

1. Layer • Compute specific volumes, v , from the transformed variables in the  

   governing equations (the transformed variables could, for example, be eρ ⋅ , 

   e , and V ). 

  • Compute specific internal energies, u , from the variables in the governing 
   equations. 
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2. Layer • Compute masses in control volumes from v  and geometry. 

  • Compute temperatures, T , from v  and u . 

3. Layer • Compute pressures, p , from T  and v . 

4. Layer • Compute enthalpies, gash , from u , p , and v . 

5. Layer • Compute mass flow rates, mɺ , centrally in the solid line control volume from 
   the mass flow rates at the outer boundaries (these are computed in the  
   adjoining components). 

6. Layer • Compute flow velocities centrally in the solid line control volume from mɺ , 
   v , and geometry. 

7. Layer • Compute heat exchange between gas and walls from flow velocity, gas 
   properties, and geometry. 
 
Under similar assumptions about the global ordering of the layers the shared evaluations 
for another component, a tubular heat exchanger, may be organised into layers in the 
following way: 

1. Layer • Compute specific volumes, iv , from the variables in the governing  

   equations. 

  • Compute velocities centrally in dashed line control volumes), jV , from the 

   variables in the governing equations. 

2. Layer • Compute masses in control volumes from iv  and geometry. 

  • Compute velocities, iV , in solid line control volumes from jV  and 

   geometry. 

3. Layer • Compute specific internal energies, iu , from the variables in the governing 

   equations and iV . 

  • Compute mass flow rates, imɺ , centrally in the solid line control volumes 

   from iV , iv , and geometry 

4. Layer • Compute temperatures, iT , from iv  and iu . 

  • Compute artificial dissipation from jV  and geometry. 

5. Layer • Compute pressures, ip , from iT  and iv . 

6. Layer • Compute enthalpies, ,gas ih , from iu , ip , and iv . 

  • Compute pressures, jp  at centres of dashed line control volumes from ip , 

   the pressures in the adjoining manifolds, and geometry. 

  • Compute heat exchange between gas and walls in solid line control volumes 

   from iV , gas properties, and geometry. 

7. Layer • Compute enthalpies, ,gas jh , centrally in dashed line control volumes from 

   ,gas ih , enthalpies in the adjoining manifold volumes, and geometry. 

8. Layer • Compute temperatures, jT , and specific volumes, jv , from jh  and jp . 

9. Layer • Compute mass flow rates, jmɺ  centrally in dashed line control volumes from 

   jV , jv , and geometry. 

  • Compute flow friction, wallF , in dashed line control volumes from jV , gas 

   properties, and geometry. 

10. Layer • Compute rates of energy transport by advection, axial conduction, and 
   turbulent axial conduction enhancement over boundaries of solid line  
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   control volumes from jmɺ , ,gas jh , jV  (kinetic energy), gas properties, and the

   temperature gradient between the adjacent solid line control volumes. 
 
Other types of components contain additional shared evaluations. Regenerators, for 
instance, also compute the heat exchange between the gas and the regenerator matrix, 
axial heat conduction in the matrix, radial heat conduction between the matrix and the 
surrounding walls, and so on. 
 
Note that it is only the first layer of the shared evaluations that uses the variables 
defined by the governing equations. The bulk of the shared evaluations do not depend 
on the transformations applied to the mass, energy, and momentum balance equations. It 
is possible to define the calculations in the first layer of shared evaluations conditionally 
so that they are valid for more than one transformation. By doing so one can make a 
model where one can change between different transformations by changing the value 
of an input parameter to the model. 
 

3.3.6. The optimising equation system interface 

By carefully placing executable statements in the correct subprograms in a MUSSIM 
model one can help to reduce the number of times that statements are executed during 
simulations. The OESI performs further optimisations to reduce the computational 
efforts needed to produce data for the numerical subprograms of the MUSSIM software. 
This section describes the sequence of steps in the optimisations performed by the 
OESI.  
 
The optimisation process for the equation system contains the following phases: 

1. Parsing: In this phase a partial Fortran 95 parser processes the model source 
file. The parser, which was written as part of this work, determines which 
variables and shared evaluations that each shared evaluation and equation 
depends on. Note that the parser is not used for building a new model from the 
model source file. The Fortran 95 source file is compiled as is and the 
executable code is optimised by the compiler. The parser is only used to 
determine the dependencies in the model so that the OESI can perform 
additional optimisations on the fly, in addition to the optimisations performed by 
the compiler. 

2. Mapping shared evaluations into layers: During this phase the shared 
evaluations are divided into groups of independent shared evaluations. The first 
group (layer) contains the shared evaluations that do not depend on any other 
shared evaluations, i.e. the shared evaluations in the first layer depend only on 
static variables, and/or dynamic variables, and/or time. The shared evaluations in 
each following layer can depend only on variables, time, and/or on shared 
evaluations from the preceding layers. The shared evaluations inside each layer 
are hence independent of each other and can be calculated concurrently using 
multi-threading. The automated mapping of layers will reveal if there are any 
circular dependencies between the shared evaluations, i.e. if any of the shared 
evaluations need to be converted into algebraic equations. 

3. Accumulate the dependencies of the equations: In this phase the non-zero 
pattern is mapped for the iteration matrix which is needed by the IVP solver. 
The dependencies of equations on shared evaluations are traced back through the 
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tree of dependencies for the shared evaluations, in order to determine all the 
dependencies of equations on dynamic variables and static variables. 

4. Optimise the iteration matrix non-zero pattern: The next step is optimising 
the non-zero pattern of the iteration matrix. The optimisation is performed in 
order to minimise the fill in, i.e. the increase in the number of non-zero 
elements, during LU-decomposition of the iteration matrix. This optimisation is 
performed only at program start-up because all possible non-zero entries in the 
iteration matrix are known from the previous phases of the equation system 
optimisation process. During simulations some of the mapped elements may 
actually be zero. In this work the column reordering code COLAMD (University 
of Florida, 2005) has been used with good results for optimising the non-zero 
pattern. 

5. Generate info for optimised evaluation of Jacobians: The next step is 
mapping the calculations that are needed to compute a Jacobian matrix by 
numerical differencing. To compute a column in a Jacobian matrix by numerical 
differencing one must perturb the value of a variable, re-compute the residuals, 
and compute the corresponding entries in the Jacobian by dividing the changes 
in the residuals by the perturbation applied to the variable. The mapping carried 
out in this phase ensures that only the individual shared evaluations and 
residuals, which actually depend on the perturbed variable, are updated. 

 
A central aspect of compiler technology, that can significantly influence the 
computation times for the adopted method for making an optimisable equation system, 
is the ability to select individual shared evaluations and right hand sides to evaluate in a 
model. It is optimal to use a selection structure for the individual shared evaluations and 
right hand sides, which incurs a minimal overhead when selecting the blocks of code to 
execute. The case construct of Fortran is one construct that is superior in this respect to, 
say, successive if statements. The following is an example of a case construct: 
 
integer :: i 
 
integer, parameter :: N_block_1 = 1 
                      N_block_2 = 10 
 
integer, parameter :: block_1_offset = 1, & 
                      block_2_offset = block_1_offset + N_block_1, & 
                      block_3_offset = block_2_offset + N_block_2 
 

⋮ ! Omitted code 

 
select case(i) 
  case(block_1_offset) ! Selector for i=1 
    Code block 1 
  case(block_2_offset:block_3_offset-1) ! Selector for i=2,3,4,...,11 
    Code block 2 
  case(block_3_offset) ! Selector for i=12 
    Code block 3 

  ⋮ ! Omitted code 

end select 
 
The case construct needs only one expression to be evaluated for each selection and this 
single evaluation determines which code block is executed. In the above example the 
evaluation of the single expression reduces to reading the value of the scalar integer i. 
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The values in the individual selectors must be constants known at compile time and this 
allows compilers to make powerful optimisations.  
 In this work the time spent selecting expressions to evaluate has been studied by 
looking at run time profiles for executable built with different compilers. The time 
spend selecting expressions can range from completely insignificant, when a highly 
optimising compiler is used, to a noticeable fraction of the running time, when the 
selection is less well optimised. 
 The main disadvantage of using the case construct is that it is necessary to 
recompile a model if the discretisation is changed, say by changing the value of a 
parameter like N_block_2 in the example above, because this will change the values of 
the selectors. 
 
One can imagine a model with only non-zero entries in the Jacobian. For such a model 
one would actually be wasting time on selecting individual right hand sides for 
evaluation when computing a Jacobian matrix because all the right hand sides would 
have to be computed anyway. If the residuals and right hand sides were also very cheap 
to evaluate then the overhead of using this implementation, instead of an 
implementation without selection, could be noticeable when computing Jacobians. For 
the application considered in this work, however, Jacobians are generally quite sparse 
and evaluating the right hand sides is computationally expensive 
 The selections in the approach described here also incurs an overhead when 
computing residuals. But the overhead, on good compilers, is insignificant compared to 
the time spent on computations in the right hand sides. Also the approach chosen here 
enables parallel (multi-threaded) evaluation of the right hand sides, and this advantage 
usually outweighs the minor overhead of the selections. 
 

3.3.7. The MUSSIM Initial Value Problem Solver 

The IVP solver of the MUSSIM software is a general Runge-Kutta type solver which 
can use both explicit and semi-implicit Runge-Kutta schemes. The schemes must have 
an embedded Runge-Kutta pair for error estimation and have a continuous extension 
which can be used when determining the exact times of events. The solver contains a 
small collection of both explicit and semi-implicit schemes and it is easy to add new 
schemes. 
 
Explicit and semi-implicit Runge-Kutta schemes 
The computational cost of performing an integration with a Runge-Kutta method 
depends both on the number of steps needed for the integration and on the average 
computational cost pr. step. The needed number of steps depends both on the desired 
accuracy, the order of the scheme, and on the properties of the equation system. 
 The semi-implicit Runge-Kutta schemes can typically use larger step sizes than 
explicit schemes when stiff problems are integrated with moderate requirements for 
accuracy. But the semi-implicit schemes require the iterative solution of a non-linear 
equation system at the stages of each step and hence the computational cost pr. stage is 
larger for semi-implicit schemes than for explicit schemes. The cost pr. iterative 
solution of the non-linear equation system in the stages of a semi-implicit scheme 
depends both on the properties of the equation system, on the needed accuracy, and on 
the step size; when the step size is large it is generally more difficult to compute an 
accurate guess for the solution at a new stage from previous solutions, and this can lead 
to a need for more iterations pr. solution. 
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 The computational cost of integrating an equation system is thus influenced by 
many factors. For a new type of problem it is, hence, generally necessary to test the 
performance of different schemes at different tolerances in order to determine which 
scheme is optimal for the problem at hand. The differences in performance between 
different Runge-Kutta schemes can be significant and hence it is advantageous with 
respect to performing fast simulations that the IVP solver supports multiple schemes. 
 
Recycling of Jacobians and iteration matrices for semi implicit schemes 
The non-linear equation system in the stages of semi-implicit Runge-Kutta methods is 
solved using the AE solver of the MUSSIM software. To compute the stage solutions the 

AE solver requires an iteration matrix, IM , which is constructed from the Jacobian 

matrix for the equation system. The iteration matrix is used in LU-decomposed form 
during the solution process. For an equation system consisting of only ODEs the 
iteration matrix is given simply by: 
 

 stepIM I t Jγ= − ∆ ⋅ ⋅  (20) 

 

where I  is the identity matrix, stept∆  is the step size, J  is the Jacobian matrix and γ  is 

a constant specific to the semi-implicit Runge-Kutta scheme. If algebraic equations are 

also present then IM  will contain both rows corresponding to (20) and rows 

corresponding to the algebraic equations. In any case IM  depends both on stept∆  and on 

J . 

 

The AE solver should only attempt to use an already LU-decomposed IM  from a 

previous solution to compute a new solution if the step size has not changed and if J  is 

still valid. The IVP solver of the MUSSIM software therefore passes information to the 
AE solver regarding changes in step size and regarding events, such as changes of states 

or samplings that influence the equation system, which invalidate J . This information 

enables the AE solver to minimise the computational efforts expended on maintaining 

an up to date version of the LU-decomposed IM . 

 
Step size control 
The step size controller of the IVP solver uses error estimates from embedded Runge-
Kutta pairs in the Runge-Kutta schemes for estimating the errors pr. step. Prediction of 
step sizes is performed with a simple formula which depends only on the step size and 
the infinity norm of the estimated relative errors in the last step (Numerical Recipes, 
1997): 
 

 

1

     

, ,
 

   

Order of leading error estimator term

step new step last

safety factor tolerance
t t

last relative error estimates ∞

 ⋅ ∆ = ∆ ⋅   
 (21) 

 
When semi-implicit schemes are used it is desirable to take several consecutive steps 

with the same step size because this makes it possible to recycle IM  between the steps 

if J  remains valid. The steps must be small enough to produce error estimates that stay 

within the required tolerance. But a small step size should not be maintained for too 
long if a significant increase in step size is possible because this could waste 
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computational effort. For semi-implicit schemes the step size controller therefore only 
increases the step size if the predicted possible increase in step size is larger than a 
threshold value. Also the step size is only decreased if the error, which the step size 
controller predicts will result from maintaining the current step size, is larger than a 
threshold fraction of the tolerance. There are also limiting values imposed on how large 
increases and decreases in step sizes are allowed. 
 The step size controller hence has a number of tuneable parameters. In this work 
reasonable values for these parameters have been determined by using the optimisation 
facilities of the MUSSIM software to minimise the time needed for short sample 
simulations. 
 
More complex step size controllers, such as PI-controllers, also exist. But the limited 
experimentation performed in this work has not revealed any such controller which 
performs significantly better with semi-implicit methods than the simple expression in 
(21) for models built using the modelling approach described above. 
 

3.4. A Stirling machine model for testing 

This section describes a Stirling machine model that has been used for testing the 
modelling approach and the implementation described above. In most of the tests input 
parameters corresponding to the gas fired Stirling engine, SM5, by Carlsen (Carlsen and 
Bovin, 2001) have been used. But the model has also been used for a comparison 
between simulation results and experimental data for a commercially available free 
piston Stirling cooler by Twinbird (Twinbird, 2006). 
 

3.4.1. The SM5 Stirling engine 

The SM5 Stirling engine is a hermetically sealed unit and has a generator built into a 
sealed and pressurised crank case. The engine was designed for producing 9 kW of 
electric power but can deliver more than 10 kW electric power under optimal operating 
conditions. Two pictures of the SM5 engine and a drawing of the working volume of the 
engine are shown in Fig. 12. 
 

The SM5 engine is a so called β-type Stirling engine. This means that, in contrast to the 
engine schematic shown in Fig. 2, the SM5 engine has only a single cylinder. The 
cylinder is divided into two cylinder volumes, the compression volume and the 
expansion volume, by an elongated displacer piston. The SM5 engine hence has the 
same five basic components as the schematic in Fig. 2: A compression volume, a cooler, 
a regenerator, an expansion volume, and a heater. But in addition to these five 
components the SM5 engine has an extra gas filled space which must be taken into 
consideration: The displacer clearance gap (a.k.a. the appendix gap). The appendix gap 
exists between the displacer piston and the cylinder wall. 
 The displacer separates the compression volume from the expansion volume, 
and hence it also separates the cold and hot ends of the engine. Any gas flow between 
the compression and expansion volumes, which travels through the appendix gap, is like 
a thermodynamic short circuit and has a negative impact on the performance of the 
engine. To minimise such gas flow there is a seal between the displacer piston and the 
cylinder wall. This seal must be kept cool to have a good wear resistance and hence it 
must be located near the compression space. This means that the appendix gap is open 
to the expansion volume at one end and extends all the way down to near the 
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compression space. There are practical limits to how small this gap can/should be made. 
In the SM5 engine the hot end of the displacer piston will grow on the order of 
magnitude 0.5 % in diameter when heated from room temperature to typical operating 
conditions. If the gap is made too small then the risk of jamming the displacer piston in 
the cylinder during heating or cooling of the engine becomes too great. 
 

 

 
Fig. 12. The gas fired 9 kW Stirling engine, SM5, with its heater exposed (top left) and mounted in a 
frame with a natural gas burner system covering the heater (top right).  Bottom: A drawing of the 

working volume of the engine.  

 

3.4.2. The Stirling machine model 

The Stirling machine model contains the five basic components of a Stirling machine 
and a component representing the appendix gap. The heat absorber is subdivided into 
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three discretised components in order to make it easier to take into account the 
variations in the outer boundary conditions of the heater; the tube sections closest to the 
expansion volume and the regenerator are covered by insulation while the central 
section of the tubes are exposed to radiation and hot flue gasses from the burner. 
 A schematic of the discretisation of the gas domain is shown in Fig. 13. The 
figure also illustrates the abstraction from the actual geometry of the SM5 engine to the 
one-dimensional discretisation of the gas domain in the model. 
 

 
Fig. 13. Discretisation of the gas domain in the Stirling engine model. The abstraction between the 

components of the discretisation and the actual engine is shown by the arrows. 

 
The solids in the engine are discretised axially as described in section 3.2.7. The 
temperatures of the regenerator matrix are modelled using the lumped formulation of 
Eq. (15). All other surface temperatures are assumed constant during each cycle. It has 
been verified that the lumped formulation is appropriate for the regenerator matrix 
control masses by simulating the radial temperature variations within single wires at 
different positions within the regenerator. Radial heat conduction is included between 
the cylinder wall and the components surrounding the cylinder (regions 2 through 6 in 
Fig. 13). 
 
For the appendix gap there are some additional technicalities that must be considered 
when implementing the modelling approach described in section 3.2. These 
technicalities are due to the fact that the displacer is moving relative to the cylinder 
wall. The consequence of this is that the control volumes containing the gas in the gap 
slide over the discretisation of the cylinder wall, i.e. a sliding mesh is needed. The 
details of how the technicalities related to modelling the appendix gap have been 
addressed are described in the accompanying Paper D. 

Regions of computational domain: 
1:   Compression volume 7, 9, 11:  Heat absorber 
2, 4, 6, 8, 10, 12:  Manifold volumes 13:   Expansion volume 
3:    Heat rejector 14:  Displacer piston clearance gap 
5:   Regenerator 

Symmetry 
axis 

1 2 3 4 5 6 7 12 13 14 8 9 10 11 
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3.4.3. Initial values for testing the Stirling machine model as an initial 
value problem 

When testing the model formulation it is useful to be able to directly compare 
simulation results for different spatial discretisations. There are, at least, two different 
options when choosing initial values for such studies: 

1. Explicitly prescribing initial temperature-, pressure-, and velocity distributions 
that depend only on the axial space coordinate and hence are independent of the 
discretisation. With this approach one must usually expect to have a significant 
transient at the beginning of the cycle when the gas settles from the prescribed 
initial distributions and onto distributions that corresponds to the conditions in 
the machine. 

2. Using the initial temperature-, pressure-, and velocity distributions from periodic 
steady state solutions. These distributions will only become independent of the 
discretisation in the sense that when the discretisation is sufficiently refined it 
should produce a grid independent solution. With this approach there should be 
no transient at the beginning of the cycle. 

Results for both of these options are presented below. 
 
The Stirling machine model has a subroutine for generating a standard initial guess for 
the distributions of temperatures-, pressures-, and velocities in the machine. In this 
initial guess all gas velocities are zero. The pressure is taken to be constant and equal to 
the cyclic mean pressure throughout the machine. The guess for the temperature 
distribution is generated from the input parameters to the model. The temperature 
distribution of the standard initial guess is illustrated in Fig. 14. The distribution 
corresponds to the input parameters, both the geometry and operating conditions, used 
in the tests below. For a given set of input parameters this temperature distribution is a 
function of the axial space coordinate only, i.e. it is independent of the discretisation.  
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Fig. 14. Standard initial guesses for the temperature distributions in the gas, the stationary walls, 
and the wall of the displacer in the Stirling machine model. The axial positions of the components 

are laid out as in the bottom drawing in Fig. 13. The distributions correspond to the input 
parameters used for testing the modelling approach. 
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3.4.4. The spatial discretisations used for the testing 

In the tests performed with the Stirling machine model the fineness of the spatial 
discretisation was varied. The discretisations of varying fineness were derived from a 
common base discretisation with six solid line control volumes pr. discretised 
component. The discretisation was refined by successively doubling the number of solid 
line control volumes pr. discretised components to, respectively, 12, 24, 48, 96, 192, 
and 384 control volumes. 
 
The control masses on the cylinder wall cover a section of wall which is longer than the 
appendix gap. Hence it appeared natural to have a slightly larger number of control 
masses on the cylinder wall than there are solid line control volumes in the appendix 
gap. In the base discretisation, with six solid line control volumes in each discretised 
component, it was chosen to divide the cylinder wall into 10 control masses. The 
number of control masses on the cylinder wall was also doubled with every refinement 
to, respectively, 20, 40, 80, 160, 320, and 640. 
 As explained in the accompanying Paper D the sliding mesh in the appendix gap 
causes discontinuous derivatives in the heat fluxes to the cylinder wall control masses. 
These discontinuities are handled as events (changes of states). The number of events 
pr. simulated cycle increases with the number of control masses on the cylinder wall. 
The Jacobian matrix for the IVP method must be updated at each event. The refinement 
of the spatial discretisation therefore caused a need for more Jacobians, end thereby also 
for more LU-decompositions. 
 
The numbers of control volumes, ODEs, and shared evaluations in the different 
refinements of the spatial discretisations are shown in Table 1 together with the 
numbers of events pr. simulated revolution of the SM5 engine. 
 

Refinement N_cv/comp N_cm/cyllwall N_cv N_ODEs N_SEs N_events/cycle

0 6 10 44 214 952 16

1 12 20 80 380 1728 32

2 24 40 152 712 3280 62

3 48 80 296 1376 6384 120

4 96 160 584 2704 12592 236

5 192 320 1160 5360 25008 466

6 384 640 2312 10672 49840 934  
Table 1: Solid line control volumes pr. component, control masses on cylinder wall, total number of 

solid line control volumes, number of ODEs, number of shared evaluations, and the number of 
events pr. cycle for the different refinements of the spatial discretisations of the Stirling machine 

model. The numbers of events pr. cycle are specific to the geometry of the SM5 engine. 

 
It is possible to refine the discretisation further than this and still have memory 
requirements that are manageable on a standard PC. But the requirements for CPU time 
on a PC would make such fine discretisations impractical for simulations of more than a 
few cycles. 
 
It should be emphasized that discretisations as fine as the last refinements in Table 1 
usually have little relevance for practical applications; they are used here only to study 
the convergence properties of the modelling approach. Also it will often vary between 
different components how many control volumes are needed to obtain the desired 
accuracy. A significant reduction in the total number of control volumes in a model can 
result from only using fine discretisations in the components where this is necessary. 
 For most practical applications it would usually be a waste of effort to use a 
spatial discretisation that provides more than 2-3 significant correct digits for the power 
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output and the heat intake. By comparison the error due to the assumption of one-
dimensional flow can be expected to be of the order of magnitude of several percent. 
 For many purposes discretisation errors up to several percent can be acceptable. 
One such case is when optimisation is performed. In this case one can first perform the 
optimisation using a coarse discretisation, and then use a finer discretisation only to 
compute how much the optimum is relocated by refining the discretisation. 
 

3.4.5. An example solution for the SM5 engine 

In some of the following tests the convergence of the spatial discretisation have been 
studied. In that context it is relevant to have an idea of how the solutions actually look. 
Fig. 15 shows an example of a how the pressure-, temperature- and velocity 
distributions in the gas domain can look in a periodic steady state solution for the SM5 
engine.  
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Fig. 15. Distributions in space and time (plotted as crank angle) of pressures, pressure losses, 
temperatures, and velocities in a periodic steady state solution for the SM5 engine. 

 
In Fig. 15 the top left plot shows the variations in time of the pressure and the shape of 
the computational domain. But it is difficult to see any spatial pressure variations. The 
plot to the top right shows the difference between the pressures in the computational 
domain and the pressure in the compression volume. The pressure difference changed 
sign twice in the cycle as the gas flow between the cylinder volumes changed direction 
twice. It can be seen that the pressure gradients were larger in the regenerator than 
anywhere else in the engine.  
 
The effects of inlet pressure losses are also visible in the plot of the pressure differences 
in Fig. 15. The clearest example is at the inlet from the expansion volume to the heater 
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at approximately 90 degrees crank angle. Here a pressure drop was caused by the 
acceleration of the gas from almost stationary in the expansion volume to the flow speed 
in the heater, and by an inlet pressure loss coefficient that was applied at the inlet. Wave 
phenomena are visible in the plot near the expansion volume in the last quarter of the 
cycle. They were induced when low Reynolds numbers during a flow reversal caused a 
momentary dip in the heat exchange predicted by the empirical correlations used in the 
model. Note that the visible waves are in the time wise direction; no waves can be seen 
travelling along the domain. 
 
The bottom left plot in Fig. 15 shows the large variations in temperature in the gas 
domain caused by heat exchange and by the compression and expansion of the gas. 
Steep temperature gradients can be seen in the regenerator and in the appendix gap. The 
gas temperature oscillations in the regenerator are small due to the powerful heat 
exchange with the regenerator matrix and the large heat capacity of the matrix. Between 
the regenerator and the heater one can see how the connecting manifold volume 
smoothed what could have almost been a step input in temperature to the heater at flow 
reversal. 
 
The bottom right plot in Fig. 15 shows the flow velocities in the domain. The velocities 
are plotted as positive when the flow was towards the expansion volume. Abrupt 
changes in velocities are clearly visible at the area discontinuities between the 
components. The largest velocities can be seen in the heater of the engine where it is 
just visible that velocity changes travelled along the domain; they did not occur 
simultaneously throughout the domain. 
 

3.5. Overview of tests  

A number of tests have been performed to illustrate the properties of the modelling 
approach and the implementation. A brief overview of these tests is presented here.  
 

1. Tests of the optimising equation system interface. The purpose of these tests 
was to illustrate performance enhancing features of the optimising equation 
system interface of the MUSSIM software. It was studied how much the OESI 
can speed up the calculation of Jacobians. It was also quantified how much 
multi-threading can speed up simulations. The performance of three different 
linear algebra packages was also tested. 

2. Tests of the MUSSIM IVP solver. The purpose of these tests was to 
demonstrate the accuracy and performance of the IVP solver of the MUSSIM 
software when it is applied to the Stirling machine model from section 3.4.  The 
performance and accuracy of seven Runge-Kutta schemes were compared. The 
influence of the spatial discretisation on the IVP solvers accuracy for integral 
values, such as the work output and regenerator loss, was studied. The abilities 
of the IVP solver to minimise the needed number of Jacobian updates and LU-
decompositions were illustrated. 

3. Tests of the spatial discretisation of the modelling approach. These tests 
were carried out to test the convergence of the spatial discretisation of the 
modelling approach. The stability of the spatial discretisation was tested by 
continuously refining the spatial discretisation. The consistency of the 
discretisation was tested for two test problems with known analytical solutions. 
The conservativeness of the formulation was also documented. 
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4. Validation of the modelling approach against experimental data and 
simulation results from Sage and PROSA. These tests were performed to 
show that the modelling approach is sufficient to produce simulation results in 
good agreement with experimental data and with simulation results from current 
state of the art simulation software. The Stirling machine model from section 3.4 
was validated against the SM5 Stirling engine and the Twinbird free piston 
Stirling cooler. A comparison of results from the Stirling machine model to 
PROSA simulation results for the Twinbird cooler was also performed. Results 
for two pulse tube cooler models based on the modelling approach presented 
above were also compared to simulation results for two pulse tube cooler models 
created using the Sage software. 

 
The individual tests and the results are described in the sections that follow. 
 

3.6. Tests of the optimising equation system interface 

The optimising equation system interface (OESI) can help to enhance the performance 
of the IVP solver in the following ways: 

• It can speed up the calculation of Jacobian matrices by reducing the number of 
operations needed to compute them. 

• It can, assisted by the parser of the MUSSIM software, determine layers of 
independent shared evaluations, so that the shared evaluations within each layer 
can be calculated in parallel using multi-threading. The evaluation of the 
residuals themselves and the LU-decomposition of iteration matrices can also 
use multi-threading. 

• It can use different linear algebra packages, so that one can choose the package 
that performs best for the problem at hand. 

 
To illustrate these features the following studies and measurements have been 
performed: 

1. The patterns of non-zero elements in the Jacobians corresponding to the 0th and 
the 6th refinements of the spatial discretisation from Table 1 have been 
visualised. 

2. The speedups achieved by the OESI for calculating Jacobians have been 
measured for different spatial discretisations. 

3. The speedups achieved by going from a single-threaded to a dual-threaded 
program have been measured for simulations of one unsteady cycle of the SM5 
engine with different spatial discretisations. 

4. The influence of using equations of state of different complexities for the gas in 
the SM5 engine on the simulation time and on the speedup from dual-threading 
has been measured. 

5. The time needed for performing LU-decomposition of Jacobians corresponding 
to different spatial discretisations have been measured for three different linear 
algebra packages. 
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3.6.1. Optimised evaluation of Jacobians 

 
The structure of the Jacobian matrix for the Stirling machine model 
Fig. 16 shows the patterns of non-zeros in Jacobians for the Stirling machine model 
corresponding to the 0th and the 6th refinements of the spatial discretisation from 
Table 1. The patterns represent the maximum possible number of non-zeros. During 
simulations some of these elements may actually be zero valued. 
 

 
Fig. 16. Non-zero patterns for the 0th (top) and 6th refinements (bottom) of the spatial discretisation. 
The plots on the left show the non-zero patterns corresponding to the order in which variables and 
equations are set up in the Stirling machine model. The plots on the right show the same non-zero 

patterns optimised for minimum fill-in during sparse LU-decomposition. 

 
In the plots on the left hand side in Fig. 16 one can clearly identify six clusters of non-
zeros corresponding to the six spatially discretised components in the model. Counting 
from left to right the clusters represent: The appendix gap, the cooler, the regenerator, 
and the three sections of the heater.  
 The cluster corresponding to the regenerator is larger than the clusters for the 
cooler and heater, because this component has extra equations to model the regenerator 
matrix and both the inner and outer walls of the annular regenerator cavity. 
 The cluster of non-zeros corresponding to the appendix gap is very dense 
because of the moving mesh used in the gap. The parser cannot determine from the 
model source code how the control volumes in the gap will line up with the control 
masses on the cylinder wall. Also splines that extend the entire length of the gap are 
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used in order to obtain a smooth and conservative formulation for the gap. The 
technicalities due to the moving mesh are described in more detail in the accompanying 
Paper D. 
 
Fig. 16 shows that the cluster of non-zeros due to the equations for the appendix gap 
begin to dominate the non-zero pattern of the Jacobian matrix when the spatial 
discretisation is refined. For the 6th refinement approximately 95 % of the non-zero 
elements in the Jacobian come from the equations for the appendix gap. The average 
number of non-zeros pr. equation for the entire Jacobian increases by a factor of 16 
from the 0th to the 6th refinement. 
 
For the very fine discretisations of the appendix gap the computational performance of 
the Stirling machine model suffered due to the inclusion of the equations for the 
appendix gap into the model. In addition to increasing the time needed to compute 
Jacobians the appendix gap equations also increased the number of events, and hence 
the numbers of needed Jacobians and iteration matrices, and the computational cost of 
performing linear algebra on the iteration matrix. 
 For practical applications, however, adequate accuracy for the appendix gap can 
be achieved with relatively coarse discretisations. For production use of the Stirling 
machine model the added computational cost due to the inclusion of the appendix gap in 
the model has not been an issue. 
  
Speedup for calculating Jacobians 
The speedup from using the OESI for calculating Jacobians has been measured for 
simulations of one unsteady cycle of the SM5 engine for each of the spatial 
discretisations in Table 1. 
 Un-optimised evaluation of a Jacobian matrix for a system of N equations by 
one-sided numerical differencing usually requires N+1 evaluations of all the residuals. 
For each simulation the speedup for computing Jacobians has therefore been calculated 
as the time needed to evaluate the residuals N+1 times for each Jacobian evaluation 
divided by the actual time needed by the OESI for computing Jacobians. The results are 
shown in Table 2. 
 

Refinement N_cv/comp N_cm/cyllwall N_ODEs Speedup

0 6 10 214 31.2

1 12 20 380 29.8

2 24 40 712 52.0

3 48 80 1376 62.3

4 96 160 2704 57.8

5 192 320 5360 45.7

6 384 640 10672 31.9  
Table 2. Measured speed achieved by the OESI for computing Jacobians for each of the spatial 

discretisations in Table 1. 

 
Table 2 shows that speedup factors between 31 and 62 were achieved for computing 
Jacobians. The speedup initially increased with the size of the Jacobian. But the speedup 
decreased again when the discretisation was further refined. For the finest 
discretisations the many non-zero elements due to the moving mesh in the appendix gap 
dominated the Jacobian matrix. Evaluating these elements also became more expensive 
when the size of the moving mesh was increased. This was the reason why the speedup 
decreased for the finest discretisations. 
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3.6.2. Speed up of IVP solving from multi-threading 

The speedup from multi-threading, or more precisely dual-threading, has been measured 
for the simulation of one unsteady cycle of the SM5 engine for the different spatial 
discretisations in Table 1. The tests were run a PC with an AMD Athlon64X2 3800+ 
processor operating at 2 GHz clock frequency, i.e. on a platform where two processor 
cores with independent caches (512 KB L2 cache pr. core) share the same memory bus 
bandwidth. The Intel Visual Fortran 9.1 compiler, which supports OpenMP, was used 
for compiling the executables used for these tests. 
 
First the simulations were run in single-threaded configurations so that there was no 
overhead from the additional code needed for multi-threading. These runs were profiled 
to measure the fractions of the total running time spent on: 

• Calculating shared evaluations for residual updates. 

• Calculating the residuals. 

• Performing LU-decompositions. 
The sums of these three fractions were the total parallel (multi-threaded) fractions of the 
running times. The measurements were performed using the built in profiling tool of the 
MUSSIM software, which typically causes less than 2 % runtime overhead for the 
Stirling machine model. 
 
The same simulations were then profiled in parallel configurations (two threads). The 
speedups were calculated as the times needed during the single-threaded runs divided by 
the times needed during the dual-threaded runs. 
 
The gas in the engine was modelled as an ideal gas in the tests of the speedup from 
multi-threading. When more complex equations of state are used then the fraction of the 
running time spent doing shared evaluations increases. Using an equation of state with 
more computationally expensive property function evaluations hence influences the 
multi-threaded scalability of a model. To document this effect the measurements for the 
the first refinement of the spatial discretisation in Table 1 were repeated for two 
additional equations of state: The Redlich-Kwong equation of state for helium and a 
more complex equation of state by (Reynolds, 1979) for CO2. 
 
Profiles of single-threaded simulations 
The profiles of the single-threaded simulations are shown in Table 3.  
 

Ref. N_ODEs Norm. wall time SE fraction Deriv. fraction LU fraction Par. fraction

0 214 1.0 0.832 0.037 0.013 0.883

1 380 1.4 0.842 0.021 0.014 0.877

2 712 3.1 0.820 0.027 0.020 0.867

3 1376 7.7 0.758 0.023 0.059 0.841

4 2704 24.6 0.615 0.017 0.189 0.822

5 5360 135.2 0.291 0.009 0.552 0.852

6 10672 1134.4 0.091 0.002 0.834 0.927  
Table 3. Profiles of single-threaded simulations of one unsteady cycle of the SM5 engine. Shown are 

the normalised running times, the fractions of the running time spent on shared evaluations for 
residual updates, on calculating the derivatives, and on performing LU decompositions. The total 
fractions of the running time used for tasks which have been parallelised by multi-threading are 

also shown. 

 
Table 3 shows that the dependence of the running time on the fineness of the spatial 
discretisation was very non-linear. The increase in running time was quite moderate for 
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the first few refinements but increased rapidly for the last refinements. The dependence 
of the running time on the number of equations was not a simple power function. 
 
For the coarsest discretisation 83 % of the running time was spent on calculating shared 
evaluations for derivative updates. When the discretisation was refined the profile 
gradually changed so that a smaller fraction of the running time was spent on shared 
evaluations and more time was spent on LU-decompositions. This was partly because 
the size of the Jacobian matrix increased with the refinements and partially because the 
refinements of the discretisation of the cylinder wall increased the number of events 
and, thereby, the number of LU-decompositions. For the finest discretisation 83 % of 
the running time was spent on LU-decompositions. State changes caused 93 % of the 
Jacobian updates and 60 % of the LU-decompositions. 
 
The fractions of the running time spent calculating the derivatives were not very 
significant. 
 
The total fractions of the running time spent in parallel sections varied between 82 % 
and 93 % for all the discretisations. 
 
Speedups from dual-threading 
Table 4 shows the measured speedups achieved by the dual-threaded runs. 
 

Ref. N_ODEs SE speedup Deriv. speedup LU speedup Speedup

0 214 1.62 1.02 1.21 1.45

1 380 1.69 0.85 0.95 1.54

2 712 1.69 1.31 0.98 1.55

3 1376 1.79 1.85 1.25 1.54

4 2704 1.84 1.57 1.72 1.57

5 5360 1.80 1.42 1.80 1.60

6 10672 1.85 1.13 1.66 1.54  
Table 4: Measured speedups for the simulation of one unsteady cycle of the SM5 engine. Shown are 

the speedups for performing shared evaluations, for calculating derivatives, and for performing 
LU-decompositions. The resulting overall speedups for the entire simulations are also shown. 

 
The speedups for the shared evaluations and the LU-decompositions generally improved 
when the discretisation was refined. Since these two tasks constituted the majority of the 
parallel fractions of the simulations the total speedups for the simulations generally also 
improved when the discretisation was refined. The total speedup factors for the 
simulations varied between 1.45 and 1.60. 
 The speedups for the calculation of the derivatives were more sporadic, but in 
any case this task constituted only a minor fraction of the total running time. 
 
Imperfect load balancing, i.e. the inability of the code to distribute the computational 
load perfectly between the two processor cores, was suspected to be the main reason 
that the speedup factors for the individual parallel sections were well below 2.0. But 
shared memory programming is generally hard to analyse and many other factors, such 
as the two processor cores invalidating the contents of each others caches (a 
phenomenon known as false sharing) and the two cores competing for the same memory 
bandwidth, could also be significant. 
 Measurements of the speedup from multi-threading were also attempted on a 
Sun Fire 15000 server. The speed of inter-processor-core communication varied 
significantly on the Sun Fire 15000 because it consisted of multiple system boards with 
multiple dual-core processors on each system board. The measurements on the Sun Fire 
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15000, unlike the measurements on dual-core PC, resulted in sporadic results. This 
indicated that the overhead from inter-processor communication was significant. 
 
Influence of the equation of state for the gas on the running time and the multi-
threaded scalability 
Table 5 shows the results for the simulations performed with different equations of state 
for the first refinement of the spatial discretisation from Table 1. 
 

Gas: Helium Helium CO2

Equation of state: Ideal gas Redlich Kwong Reynolds PTV3

Normalised seq. wall time 1.00 1.45 2.21

SE fraction 0.84 0.88 0.89

Derivativs fraction 0.02 0.02 0.01

LU decomp. fraction 0.01 0.01 0.02

Total parallel fraction 0.88 0.91 0.91

SE speedup 1.69 1.77 1.85

Derivatives speedup 0.85 1.61 1.02

Total speedup 1.53 1.64 1.67  
Table 5. Speedups measured for the simulation of one unsteady cycle of the SM5 engine using the 

first refinement of the spatial discretisation and different equations of state for the gas in the 
engine. 

 
The results in Table 5 show that the sequential running time increased with the 
complexity of the equation of state. The total parallel fraction, however, increased only 
slightly because the time spent on calculating Jacobians also increased. 
 The speedup for the shared evaluations, which contained all the property 
function evaluations, increased significantly with the complexity of the equation of 
state. The speedup for the shared evaluations increased the total speedup from 1.53 for 
ideal gas helium to 1.67 for the more complex equation of state for CO2. 
 
Summary of multi-threaded tests 
The parallel fractions of the simulations accounted for 82-93 % of the sequential 
running time.  
 
Speedup factors from 1.45 to 1.67 were achieved for equation systems of moderate size 
on a PC with a dual-core processor. Load balancing appeared to limit the speedup. In 
tests on a Sun Fire 15000 supercomputer the overhead from inter-processor-core 
communication appeared to also limit the speedup. 
 
Given the fractions of the running time spent in parallel sections and the fact that load 
balancing appeared to be an issue it would appear, that the speedup achievable by this 
implementation for equation systems of such moderate size would probably be less than 
5 even on a supercomputer with very fast inter-processor communication. 
 

3.6.3. Comparison of Linear Algebra packages 

The run time performance of three different linear algebra packages were tested for the 
Stirling machine model.  In the tests it was measured how much time was needed to 
perform LU-decomposition of iteration matrices during simulations for the different 
refinements of the spatial discretisation. The packages included in the tests were: 
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1. The custom linear algebra package, DCRM (Dynamic Compressed Row Matrix), 
of the MUSSIM software. 

2. The PARDISO package from the commercial Intel Math Kernel Library 
(commonly known as Intel MKL). 

3. LAPACK from Intel MKL. 
 
The packages were tested in both single-threaded and dual-threaded configurations on 
the PC with the dual-core AMD Athlon64X2 processor. The results from the tests are 
plotted in Fig. 17. 
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Fig. 17. Comparison of needed time pr. LU-decomposition of the iteration matrix for different 

discretisations (top) and speedup from dual-threading (bottom). Results are shown for LAPACK 
and PARDISO from the Intel Math Kernel Library (MKL) and for the built in DCRM package of 

the MUSSIM software.  

 
Fig. 17 shows that the optimal choice of linear algebra package depended on the 
problem size. For matrix sizes below approximately 2000 x 2000 the DCRM package 
was the fastest of the tested packages. For matrix sizes above 4000 x 4000 PARDISO 
was the fastest package. LAPACK was not competitive for any of the tested problem 
sizes. LAPACK exhibited the best parallel scalability and achieved a good speedup 
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from dual-threading even for small problem sizes. The DCRM package only benefited 
appreciably from multi-threading for matrix sizes above 1000 x 1000. The PARDISO 
package did not scale well in the experiments. 
 
For the 0th and 6th refinements of the spatial discretisation the total single-threaded 
running time was, respectively, 20 % longer and 43 % shorter when using the 
PARDISO package instead of the DCRM package. For the dual-threaded runs the total 
running times for the 0th and 6th refinements were, respectively, 21 % longer and 20 % 
shorter when using the PARDISO package instead of the DCRM package. 
 

3.6.4. Conclusions 

Speedup factors of 31-62 relative to the time that would be needed by an non-optimising 
implementation, were measured for the evaluation of Jacobians by the OESI. The 
speedups and the sparsities of the Jacobian matrix were limited for fine discretisations 
by a dense cluster of non-zero elements related to the moving mesh used in the 
appendix gap. 
 
The multi-threading enabled by the OESI was found to speed up the solution of IVPs 
appreciably. But the maximum possible speedup did appear to have a relative low upper 
limit. Speedups between 1.45 and 1.67 were achieved for moderate problem sizes, i.e. 
for coarse discretisations, on a PC with a dual-core processor. But even with a 
supercomputer with very fast inter-processor communication the maximum achievable 
speedup for the relevant problem sizes appeared to be less than a factor of 5. 
 
It was found that there were significant differences between the times needed by 
different linear algebra packages for performing LU-decomposition and that the 
differences depended on the problem size. The differences in the performance of the 
linear algebra packages also had significant impact on the total running time of 
simulations. No single linear algebra package appeared to be optimal for all problem 
sizes, and hence the OESIs capability to switch between different linear algebra 
packages is valuable. 
 

3.7. Tests of the MUSSIM IVP solver 

The MUSSIM IVP solver can use different Runge-Kutta schemes and has been designed 
to recycle as many Jacobians and iteration matrices as possible. Test have been 
performed to: 

• Illustrate the accuracy and performance of different Runge-Kutta schemes for 
the Stirling machine model. 

• Demonstrate that for one of the best performing Runge-Kutta schemes the 
accuracy, measured as the numbers significant correct digits in the power output 
and regenerator loss, is largely independent of the spatial discretisation. 

• Show that the step size control and the recycling algorithms are effective at 
limiting the needed number of Jacobians and LU-decompositions. 

 
To address these points the following tests have been performed: 

1. Simulations of one unsteady cycle for the SM5 engine for the second refinement 
of the spatial discretisation in Table 1 were performed with seven different 
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Runge-Kutta schemes. For each scheme the tolerance for the error pr. step was 
varied from 10-1 to 10-11. From the simulation results the accuracies and the time 
consumptions of the methods were extracted and visualised. 

2. Simulations of both unsteady and periodic steady state cycles for the SM5 
engine were performed for the different spatial discretisations in Table 1 using 
one of the Runge-Kutta schemes. For all the different spatial discretisations the 
tolerance for the error pr. step was varied between 10-1 and 10-11. From the 
simulation results the accuracy as a function of the tolerance was plotted. 

3. The distributions of step sizes, state changes, Jacobian updates and LU-
decompositions during a cycle have been visualised for a simulation with the 2nd 
refinement of the spatial discretisation from Table 1. 

 

3.7.1. Accuracy and performance of different Runge-Kutta schemes 

The accuracy and performance of two explicit and five semi-implicit Runge-Kutta 
schemes were tested for the Stirling machine model. The tests were performed for the 
second refinement of the spatial discretisation in Table 1. The Runge-Kutta schemes 
were used in turn for integrating one periodic steady state cycle of the SM5 engine with 
relative tolerances for the IVP solver between 10-1 and 10-11. For the semi-implicit 
methods the relative tolerance of the algebraic equation solver, which was used to find 
the stage solutions during each step, was kept two orders of magnitude smaller than the 
tolerance used for the IVP solver. The tests were run sequentially on a PC with 2 GHz 
AMD Athlon64X2 processor. 
 
The electric power output, which is one of the primary performance indicators for the 
engine, was used to gauge the accuracy of the integration results. The power output 
predicted by the model is computed from integrations that are performed over the entire 
simulated cycle. At the same time the tolerance of the IVP method is a measure for 
maximum acceptable relative error in the variables of the model pr. integration step. So 
this test was really on how the final accuracy of integrated values depended on the 
tolerance for errors pr. step during the integration. 
 In the following the number of significant correct digits (SCD) in the power 
output calculated by the IVP solver is discussed. The number of significant correct 

digits is calculated as 10Log−  of the relative deviation from the exact solution. This 

accuracy is related solely to the accuracy of the IVP solver in the solution corresponding 
to the applied spatial discretisation. We do not yet consider the combined accuracy of 
the IVP method and the spatial discretisation in relation to the true solution to the 
model. 
 
It was found that the relative differences were less than 2.10-11 between the power 
outputs computed using a tolerance of 10-11 with three of the Runge-Kutta schemes. The 
three methods were: 

1. The GERK scheme by Thomsen (2002). This is a semi-implicit Runge-Kutta 
method of order 3 with an embedded 4th order method. The first stage is explicit, 
since it is merely the values and derivatives at the start of the integration step. 

2. An ESDIRK34 scheme by Alexander (2003). This scheme is also a semi-
implicit Runge-Kutta method of order 3 with an embedded 4th order method and 
with an explicit first stage. The scheme has exactly the same structure as the 
GERK method by Thomsen but the coefficients are slightly different. 
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3. A 5th order explicit Runge-Kutta scheme by Cash and Karp with an embedded 
4th order method found in Numerical Recipes (1997). 

Extrapolations to an infinitely fine tolerance were made for these three methods, and the 
average of the extrapolated values was taken to be the true solution. This value was used 
for calculating the accuracies of all the solutions and the results are shown in Fig. 18. 
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Fig. 18. Comparison of explicit and semi-implicit Runge-Kutta methods for simulation of one 

periodic steady state cycle for the second refinement of the spatial discretisation in Table 1. Top: 
Significant correct digits in the computed power output from a periodic cycle vs. -log10 of the 

relative tolerance pr. step. Bottom: CPU time needed for simulation of one periodic cycle vs. the 
number of significant correct digits in the computed power output (lower is better). 

 
The top chart in Fig. 18 shows that for most of the schemes the numbers of significant 
correct digits in the computed power outputs were at least as good as -log10 of the 
relative tolerance used in the IVP method. For some of the methods, however, the 
accuracy appeared to break down for very fine tolerances. 
 
The bottom chart in Fig. 18 shows that the two 3rd order semi-implicit schemes by 
Thomsen and Alexander were consistently very competitive over a wide range of 
tolerances when one looks at the needed CPU time versus the achieved accuracy. Note 
that the vertical axis of the bottom chart in Fig. 18 is logarithmic. The differences 
between the times needed by the different semi-implicit schemes to produce a given 
accuracy were as large as an order of magnitude. 
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 The CPU times needed by the explicit schemes were almost independent of the 
specified tolerances. This is because the equation system of the model is stiff. The 
explicit methods therefore needed to take many steps in order to maintain stability. 
From the bottom chart in Fig. 18 it appears that the equation system of the model is so 
stiff that the requirements for accuracy would have to be extreme in order for the 
explicit schemes to become competitive with the semi-implicit schemes. 

3.7.2. Dependence of the integration accuracy on the spatial 
discretisation 

In this test it was studied how the integration accuracy depended on the fineness of the 
spatial discretisation.  
 
The Runge-Kutta scheme by Alexander (2003) was used for integrating both unsteady 
and periodic steady state cycles for the different spatial discretisations in Table 1. For 
each case integrations were performed with tolerances from 10-1 to 10-11. For each case 
the power output and the regenerator loss were then extrapolated to the case of an 
infinitely fine tolerance for the IVP method. The extrapolated values were assumed to 
be the true solutions and were used for computing the number of significant correct 
digits in all the solutions. The regenerator loss was defined as the cycle averaged energy 
flux carried by the gas across the axial midpoint of the regenerator in the direction of 
decreasing temperature. The computed accuracies are plotted in Fig. 19. 
 
Again the considered numbers of significant correct digits are related solely to the 
accuracy of the IVP solver for the solutions corresponding to each of the test cases. We 
are still not considering the combined accuracy of the IVP method and the spatial 
discretisation in relation to the true solution to the model. 
 
Fig. 19 shows that the dependencies on the specified tolerances of the numbers of 
significant correct digits in the integrated values appeared to be largely independent of 
the spatial discretisation. There was possibly a weak tendency towards the integrated 
values being slightly less accurate for periodic steady state solutions than for unsteady 
solutions. 
 The numbers of significant correct digits in the computed regenerator losses 
appeared to be on average 1 to 2 digits less than -log10 to the tolerance of the IVP 
method. To this it can be added that the amplitude of the instantaneous energy flux 
through the regenerator was of the order of magnitude 500 kW for these solutions. The 
regenerator loss is actually the integral mean value of this large oscillating energy flux. 
If the inaccuracies in the regenerator loss were scaled with the amplitude of the 
instantaneous energy flux through the regenerator, then the inaccuracies in the 
regenerator loss would be of approximately the same order of magnitude as the 
inaccuracies in the power output. 
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Fig. 19. The number of significant correct digits (SCD) for the power output (top) and the 

regenerator loss (bottom) versus the relative tolerance pr. step for one cycle of the SM5 Stirling 
engine model. Data is plotted for the different refinements of the spatial discretisation from Table 1 

for both unsteady and periodic steady state solutions. The model was integrated using the 
ESDIRK34 method by Alexander (2003). 

 

3.7.3. Step size control and recycling of Jacobians and iteration 
matrices 

The distributions of step sizes, state changes, Jacobian updates and LU-decompositions 
during a cycle have been visualised in order to illustrate the effectiveness of the IVP 
solver and its step size control algorithm with respect to recycling Jacobians and 
iteration matrices.  
 The visualisation, which is shown in Fig. 20, was made for a simulation with the 
second refinement of the spatial discretisation from Table 1 and a relative tolerance for 
the IVP solver of 10-6. The semi-implicit Runge-Kutta scheme by Alexander (2003) was 
used in the IVP solver. 
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Fig. 20. Step sizes, state changes, Jacobian updates, and LU-decompositions during the integration 

of one cycle of the SM5 engine with the 2nd refinement of the spatial discretisation from Table 1 and 
a relative tolerance of 10-6 for the IVP solver. The top chart shows the entire cycle and the lower 

chart is a close up of the results where the cycle is between 20 and 30 % completed. 

 
The total number of accepted steps during the integration was 3153. The solver 
discarded 51 steps due to too large error estimates. The step size was changed a total of 
183 times out of which 51 times were due to discarded steps and 11 times were at state 
changes. 
 A total of 9612 solutions were computed to the implicit equation system of the 
semi-implicit Runge-Kutta scheme. On average 1.65 iterations were used pr. solution. 
 The solver expended 63 Jacobian updates during the cycle. Fig. 20 shows that 
one update was at the starting point of the integration, one was during flow reversal, and 
that the 61 remaining Jacobian updates were at state changes. 
 During the cycle 235 LU-decompositions of the iteration matrix were needed; 
Most of the decompositions occurred at step size changes as only 63 of the 
decompositions were due to Jacobian updates. 
 
The above statistics and Fig. 20 show that the step size control algorithm generally 
enabled the solver to take many consecutive steps with the same step size. This enabled 
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the IVP solver to recycle each iteration matrix for an average of 67 iterations in an 
average of 41 solutions. 
 Fig. 20 also shows that the simple asymptotic error estimation in the step size 
control algorithm appeared to lead to sub-optimally large step size changes, so that it 
was sometimes only possible to take one step with a new step size before the step size 
was reduced again. So it appears that a minor speedup might be possible by using a 
better step size control algorithm. 
 
For reference it can be noted that the two pulse tube cooler models, which are validated 
in the sections 3.9.3 and 3.9.4 below and which do not contain events, typically required 
approximately 5 Jacobians and 50 LU-decompositions when integration a cycle with a 
tolerance for the IVP solver of 10-7. 
 
In summary it appears that the step size control algorithm and the recycling algorithms 
of the IVP solver are effective at optimising the integration speed by minimising the 
numbers of Jacobians and LU-decompositions needed during integrations with semi-
implicit Runge-Kutta methods. 
 

3.7.4. Conclusions 

From the numerical test on the accuracies and performance of different Runge-Kutta 
schemes for the IVP solver it was found that: 

• The tested Runge-Kutta schemes produced results for integrated values that 
agreed very well; three of the schemes produced results that agreed up to 10.7 
significant digits. The fact that independent methods produced results that 
agreed to such a high level of precision indicated that the implementation of the 
schemes is correct and that the schemes converge towards the same true 
solution. 

• Two semi implicit schemes of order three by Thomsen (2002) and Alexander 
(2003) had the best performance of the tested schemes in terms of the CPU time 
needed to produce a given number of significant correct digits. 

• The numbers of significant correct digits in the computed power outputs 
corresponded approximately to -log10 of the relative tolerance for the error pr. 
step used in the IVP solver. That is, a tolerance of 10

-7 for the IVP solver 
produced approximately 7 significant correct digits in the power output. The 
accuracies for the computed regenerator losses were generally 1-2 significant 
correct digits lower than -log10 of the tolerance. 

• The correlation between the numbers of significant correct digits in integrated 
values on the tolerance for errors pr. step appeared to be independent of the 
spatial discretisation. 

 
It was also found that the algorithms for step size control and recycling in the IVP 
solver worked well when the solver was applied to the Stirling machine model. This 
means that: 

• The equation system of the Stirling machine model is linear enough and the 
solutions are smooth enough to allow effective recycling of Jacobians. 

• The IVP solver and its step size control algorithm do well at recycling Jacobians 
and iteration matrices. 
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3.8. Tests of the spatial discretisation of the modelling 
approach 

A discretisation scheme is said to be convergent if it converges onto the correct solution 
when the discretisation is refined, i.e. when the number of subdivisions of the 
computational domain is increased. In solutions where discontinuities may be present 
three conditions are needed to ensure convergence: Stability, consistency, and 
conservativeness (Bauwens, 1993b): 

• A discretisation scheme is said to be stable, if the numerical solution approaches 
a final limiting value when the discretisation is refined. 

• A discretisation scheme is said to be consistent if its local behaviour approaches 
that of the underlying discretised differential equations when the discretisation is 
refined. For a stable discretisation scheme consistency should result from 
programming a correct version of the governing equations into the discretisation 
scheme. 

• A discretisation scheme for a flow problem is said to be conservative, if it 
conserves mass and energy, even across jumps in the solution that do not vanish 
when the mesh size becomes small. 

 
The stability, consistency, and conservativeness have been tested for the complete 
Stirling machine model described in section 3.4. In these tests of the spatial 
discretisation the results from the tests on the accuracy of the IVP solver were applied: 
The relative tolerances for the IVP solver were chosen, so that any errors due to the 
finite accuracy of the IVP solver were orders of magnitude smaller than the deviations 
due to the coarseness of the spatial discretisations.  
 
The following tests were performed to document the convergence of the spatial 
discretisation: 

1. The stability of the spatial discretisation was tested by numerical experiments 
for both unsteady and periodic steady state solutions by continuously refining 
the discretisation as shown in Table 1. 

2. The consistency of the discretisation was tested by applying the model to two 
different flow problems with known analytical solutions: 

• Propagation of a temperature discontinuity. 

• The shock tube problem by Sod (1978). 
The test problems were studied directly in the heat rejector of the Stirling 
machine model from section 3.4. 

3. The conservation of mass and energy, which by design should be enforced both 
locally and globally in the control volume based modelling approach, has been 
tested for both unsteady and periodic steady state solutions for the different 
discretisations in Table 1. 

 

3.8.1. The stability of the spatial discretisation for unsteady solutions 

In this section the results from a grid convergence study on the spatial discretisation for 
unsteady solutions are presented. 
 Unsteady solutions were calculated with the different discretisations from Table 
1. The simulations were started from the initial distributions of temperature-, pressure-, 
and velocity described in section 3.4.3, i.e. from distributions where the initial values 
were functions of the axial space coordinate only. The stability of the discretisation 
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scheme was studied in terms of the convergence of the power output and regenerator 
loss onto finite values when the spatial discretisation was refined. 
 The tolerance for the IVP solver was kept fixed at 10-7. According to the results 
of section 3.7 and the findings below, the errors due to the finite accuracy of the IVP 
solver should hence be insignificant compared to the deviations caused by the 
coarseness of the spatial discretisation. The results shown below should thus correctly 
reflect the properties of the spatial discretisation. 
 
Fig. 21 shows the computed electrical power output and the regenerator loss for one 
cycle of the SM5 engine plotted against the inverse of the number of solid line control 
volumes in the spatial discretisation. Results are shown for the upstream approximation, 
the CILE method, and the van Leer method for interpolating enthalpies at control 
volume boundaries. 
 Please note that the high power outputs and the large negative regenerator losses 
do not correspond to a periodic steady state solution. They are artefacts caused by using 
the standard initial temperature-, pressure-, and velocity distributions from section 3.4.3. 
 
Fig. 21 shows, that both the power output and the regenerator loss exhibited stability, 
i.e. they converged onto finite values when the discretisation was refined. The results 
for the three tested methods appeared to converge onto the same finite values. These 
finite values, which correspond to the case of infinitely many control volumes, are from 
here on denoted as the converged solutions.  
 The figure also shows that for a given fineness of the discretisation, the solutions 
calculated using the CILE and van Leer methods were significantly closer to the 
converged solution than the solutions calculated using the upstream approximation. 
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Fig. 21. Electrical power output and regenerator loss from one unsteady cycle of the SM5 Stirling 

engine plotted against the reciprocal of the number of solid line control volumes in the model. 
Results are shown for the upstream approximation, the CILE method, and the van Leer method for 

approximating enthalpies at control volume boundaries. Extrapolations to the case of infinitely 
many control volumes are shown as thin lines extending from the leftmost data points to the 

vertical axis. 

 
The results for the CILE method were fitted with functions that have a constant term 
and a power function term. The constant term is intended to fit the value corresponding 
to the converged solution. The power function term is intended to fit the deviation from 
the converged solution. In the power function term it is assumed that the deviation is 
proportional to the reciprocal of the number control volumes raised to a constant power, 
i.e. that the deviations are a power function of the size of the control volumes. 
 



3. Modelling of 1D, oscillating, compressible flow in reciprocating machines 

3.8. Tests of the spatial discretisation of the modelling approach 74 

12.460

12.480

12.500

12.520

12.540

12.560

12.580

12.600

12.620

0.000 0.005 0.010 0.015 0.020 0.025

1/N_cv [-]

W
_

d
o

t_
e

le
c

 [
k

W
] 

Fit

W_dot_elec

Fit = 12.470 + 349.156*(1/N_cv)
2.083

 

-6.900

-6.700

-6.500

-6.300

-6.100

-5.900

-5.700

-5.500

0.000 0.005 0.010 0.015 0.020 0.025

1/N_cv [-]

R
e

g
_

lo
s

s
 [

k
W

] 

Reg loss

FitFit = -6.619 - 15.838*(1/N_cv)
0.930

 
Fig. 22. Data and fitted functions for the electrical power output and the regenerator loss from one 
unsteady cycle for the SM5 Stirling engine plotted against the reciprocal of the number of solid line 

control volumes in the model. The CILE method was used for interpolating enthalpies at control 
volume boundaries. 

 
Fig. 22 shows that the data was not fitted very well for the coarsest discretisations. But 
for the finer discretisations the power function model for the deviations from the 
converged solution appeared to be plausible. Parts of the deviations from the converged 
solution were caused by the coarsest discretisations not being able to properly resolve 
localised phenomena, such as localised matrix temperature oscillations in the ends of 
the regenerator which affect the regenerator loss (see the accompanying papers A and 
B). 
 
Fig. 23 shows the relative deviations from the converged solution for the upstream 
approximation, the CILE method, and the van Leer method plotted against the 
reciprocal of the number of solid line control volumes in the model.  
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Fig. 23. The relative deviations in the electrical power output and the regenerator loss from one 
unsteady cycle for the SM5 Stirling engine due to the spatial discretisation. The deviations are 

plotted against the reciprocal of the number of solid line control volumes in the model. 

 
Fig. 23 shows that the CILE and van Leer methods produced nearly identical deviations. 
The deviations for the upstream approximation were 1-2 orders of magnitude larger than 
the deviations for the CILE and van Leer methods. 
 The deviations for all three interpolation methods appear as nearly straight lines 
in the double logarithmic plot in Fig. 23, and hence the deviations can be approximated 
well by the power functions. For the CILE and van Leer methods the deviations in the 
power output were approximately proportional to the size of the control volumes raised 
to the second power. For the regenerator loss the deviations for the CILE and van Leer 
methods appeared to be approximately proportional to the size of the control volumes 
(raised to the first power). 
 
It is important to note that for the CILE and van Leer methods the observed deviations 
all corresponded to modest fractions of the values in the converged solution. The largest 
observed deviation for the power output corresponded to approximately 0.8 % of the 
converged value. The largest deviation for the regenerator loss corresponded to 
approximately 16 % of the converged value. 
 For the CILE and van Leer methods it can hence be observed that even though 
the dominant terms in the deviations due to the spatial discretisation did not vanish very 
quickly when the discretisation was refined, the accuracy was still quite acceptable 
because the dominant terms in the deviations were not very large to begin with. In order 
to ensure approximately 3 significant correct digits for the power output it appeared 
sufficient to use the second refinement of the spatial refinement, i.e. 24 solid line 
control volumes pr. component. 
 
Fig. 24 shows the numbers of significant correct digits in the power output and the 
regenerator loss for the upstream approximation, the CILE method, and the van Leer 
method as a function of the expended CPU time. The relative tolerance for the IVP 
solver was kept fixed at 10-7. 
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Fig. 24. Significant correct digits in the computed power output and regenerator loss from an 
unsteady cycle as a function of the expended CPU-time. Results are shown for the upstream 

approximation, the CILE method, and the van Leer method. The relative tolerance for the IVP 
solver was fixed at 10-7. 

 
From Fig. 24 it is clear that the upstream approximation produced the least accuracy pr. 
unit expended CPU time. The differences between the accuracies of the CILE method 
and the van Leer method were smaller but there was a tendency that the CILE method 
delivered better accuracy pr. unit of expended CPU time. 
 

3.8.2. The stability of the spatial discretisation for periodic steady 
state solutions 

In this section the results from a grid convergence study on the spatial discretisation for 
periodic steady state solutions are presented. In contrast to the results for unsteady 
solutions presented in section 3.8.1, the initial temperature-, pressure-, and velocity 
distributions depended on the spatial discretisation. All the results presented below were 
calculated using the CILE method for interpolating enthalpies at control volume 
boundaries 
 
Fig. 25 illustrates the convergence of the spatial discretisation onto a periodic steady 
state solution. The figure contains both the computed values and fitted power functions 
of the type described in section 3.8.1. Results are included for the base discretisation 
and the first four refinements from Table 1. Results for the two finest refinements of 
Table 1 are not included because it would be very time consuming to find the 
corresponding periodic steady state solutions using a shooting method. 
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Fig. 25. Data and fitted functions for the electrical power output, heat intake, and the regenerator 

loss from periodic steady state solutions for the SM5 Stirling engine. The values are plotted against 
the reciprocal of the number of solid line control volumes in the model. The CILE method was used 

for interpolating enthalpies at control volume boundaries. 
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Fig. 25 shows that the discretisation of the modelling approach also appeared to be 
stable for periodic steady state solutions. As in Fig. 22 the correspondence between the 
data and the fitted functions was generally best for the finer discretisations. 
 
Fig. 26 shows the relative deviations from the converged solution plotted against the 
reciprocal of the number of control volumes. The deviations were all approximated well 
by power functions whose values are proportional to the size of the control volumes 
raised to the power of approximately 1.5. For periodic steady state solutions it also 
appeared that it would be sufficient to use the second refinement with 24 solid line 
control volumes pr. component in order to ensure 2-3 significant correct digits for the 
heat intake and power output. 
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Fig. 26. The deviations in the computed electrical power output, heat intake, and regenerator loss 
from a periodic steady state solution for the SM5 Stirling engine due to the spatial discretisation. 

The deviations are plotted against the reciprocal of the number of solid line control volumes in the 
model. 

 

3.8.3. The consistency of the spatial discretisation 

In this section results are presented from tests which were performed to document that 
the discretisation scheme of the modelling approach is consistent, i.e. that the local 
behaviour of solutions approach the true behaviour of the underlying governing 
equations for compressible one-dimensional fluid flow when the discretisation is 
refined. 
 
The consistency of the spatial discretisation was tested using test problems with 
propagating discontinuities. The discontinuities can be thought of as the limiting worst 
case scenarios for steep propagating wave fronts. If the modelling approach is consistent 
for problems with discontinuities then it will also be consistent for actual solutions to 
Stirling machine models. The consistency was tested for the following scenarios: 

1. Propagation of a temperature discontinuity: This problem tests the 
consistency of the discretisation for steep propagating temperature wave fronts 
which may be generated at the inlets to discretised components during flow 
reversals. 
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2. The Sod shock tube problem: This problem tests the consistency of the 
discretisation with the governing equations for compressible flow when shocks 
and sonic velocities are present in solutions. 

Both tests were carried out in the heat rejector of the Stirling machine model. 
 
Propagation of a temperature discontinuity 
The consistency of the modelling formulation was tested for the case of a temperature 
discontinuity propagating at constant velocity through a tube with uniform pressure. The 
following modifications were made to the Stirling machine model: 

• The heat rejector was made 3 m long. 

• The initial temperature was set equal to 273 K. 

• The initial temperature in the leftmost manifold was locked and set equal to 

0.9⋅273 K. 

• The velocities in the heat rejector were set equal to 10 m/s and the velocities in 
the leftmost and rightmost boundary nodes were locked. 

• The pressures in the manifolds at the ends of the heat rejector were locked. 

• Friction and heat exchange with the wall were neglected. 
 
The analytical solution to this test problem is a step in temperature which is smoothed 
only by molecular heat diffusion and which is travelling at 10 m/s from left to right 
through the tube. Fig. 27 shows the analytical solution and a number of numerical 
solutions calculated for different numbers of solid line control volumes in the tube. 
Snapshots were made at t = 0.1 s and t = 0.2 s. Results are shown for both the CILE 
method and the van Leer flux limiter for interpolating enthalpies at control volume 
boundaries. 
 
Fig. 27 shows that the numerical solutions for both the CILE method and the van Leer 
flux limiter appeared to converge onto the analytical solution when the discretisation 
was refined. This means that the numerical solutions converged onto a solution where 
both the speed of propagation and the predicted rate of heat diffusion were correct. 
 
The numerical solutions deviated from the analytical solutions in three different ways:  

1. The step input was smeared as it entered the tube from the leftmost manifold 
volume. 

2. Numerical diffusion lead to excessive smoothing of the front while it travelled 
through the domain. 

3. The CILE method caused non-physical temperature oscillations. 
The smearing due to the entry into the tube and due to numerical diffusion clearly 
diminished as the discretisation was refined.  
 With respect to numerical diffusion it can be seen that even for the coarsest 
discretisations there was only moderate difference in the gradients between the two 
snapshots for both the CILE and the van Leer method. This indicates that the influence 
of numerical diffusion was moderate for the smeared front. 
 The non-physical oscillations caused by the CILE method also diminished as the 
discretisation was refined. The overshoot that preceded the front was made narrower by 
the refinements of the discretisation. Once the discretisation was fine enough the 
resulting large temperature gradients at the narrow overshoot caused the overshoot to be 
smoothed away by heat diffusion. 
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Fig. 27. Temperature discontinuity travelling through a tube discretised into different numbers of 

control volumes. Snapshots were made at t = 0.1 s and t = 0.2 s. Boundary enthalpies were 
interpolated using the CILE method (top chart) and the van Leer flux limiter (bottom chart). 

 
 
The Sod shock tube problem 
The shock tube problem by Sod (1978) is a widely used test problem for compressible 
flow codes. The problem setup consists of a channel which is divided into two halves by 
a membrane. The fluid on both sides of the membrane is initially at rest. On the left 
hand side of the membrane the pressure and density are, respectively, 10 times and 8 
times higher than on the right hand side. The initial conditions used here in this test, 
which was conducted with ideal gas helium in the channel, are illustrated in Fig. 28. 
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Fig. 28. Initial conditions for the Sod shock tube problem. 

 
At time zero the membrane is burst and three different types of discontinuities form and 
begin to propagate through the tube. The following descriptions of the discontinuities 
are based on Fedkiw et al (1998): 

1. A shock in the form of an increase in pressure and density begins to travel to the 
right at high velocity. The shock propagates by a mechanism by which strong 
impulses move faster than weak ones. The “top” of the shock wave is hence 
travelling faster than any smearing that precedes the front and hence the front of 
the shock wave is self sharpening. The speed of propagation is given by the 
difference in influx and outflux of conserved quantities to the region 
surrounding the shock. Therefore the shock will only propagate at the correct 
speed if the  conservation laws are fulfilled across the shock 

2. A rarefaction zone expands towards the left as the gas in the left end of the tube 
begins to expand. The front edge of the rarefaction propagates at the local speed 
of sound. 

3. A contact discontinuity, which is a localised jump in density, travels towards the 
right at the bulk convection speed. The density jump is a remnant from the initial 
discontinuity at the membrane. There is no pressure difference or velocity 
difference across the contact and hence the only mechanism of transport across 
the contact is molecular diffusion. The density jump is hence similar to the 
propagating temperature discontinuity simulated above but the mechanism 
which forms it is different. Any spurious oscillations and inaccuracies due to the 
initial transient at the location of the membrane will persist at the contact. 

 
The initial conditions of the shock tube problem were applied to the control volumes in 
the heat rejector. The following additional changes were made to the Stirling machine 
model: 

• The heat rejector was modified to be a 6 m long tube. 

• The properties in the outermost nodes of the heat rejector were locked. 

• Friction and heat exchange with the wall were neglected. 
 
An analytical solution to the test problem at 1 ms after the bursting of the membrane 
was calculated using a program made available by Chandrashekar (2006). The solution 
is for the Euler equations, which correspond to the Navier-Stokes equations with zero 
viscosity. Fig. 29 shows the pressure-, density, and velocity distributions of this 
analytical solution together with numerical solutions calculated with different numbers 
of solid line control volumes for the CILE method. Fig. 30 shows the corresponding 
results calculated using the van Leer method. 

x 

1 p MPa=  
31 /kg mρ =

0 /V m s=  

0.1 p MPa=  
30.125 /kg mρ =

0 /V m s=  

Membrane 
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Fig. 29. Pressure, density, and velocity distributions for the Sod shock tube test problem. Results 
were calculated using the CILE method for interpolating pressures and enthalpies. 
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Fig. 30. Pressure, density, and velocity distributions for the Sod shock tube test problem. Results 
were calculated using the van Leer flux limiter for interpolating pressures and enthalpies. 

 

Fig. 29 and Fig. 30 show that the distributions of pressure, density, and velocity in the 
numerical solutions appeared to converge onto the analytical solution when the 
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discretisation was refined. The shock was travelling at the correct speed and this means 
that the conservation equations were fulfilled across the shock. The rarefaction was also 
propagating at the correct speed of sound.  
 
The numerical solutions in Fig. 29, which were calculated using the CILE method, 
contained significant oscillations. But the oscillations appeared to diminish when the 
discretisation was refined. There appeared to be no evidence for any of the spatial 
discretisations that the shocks should destroy solutions calculated using the CILE 
method. Fig. 30 shows that the oscillations and overshoots could be almost eliminated 
by using the van Leer flux limiter for interpolating pressures and enthalpies. 
 

3.8.4. Conservation of mass and energy 

The test results for the shock tube problem showed that shocks propagate at the correct 
speed and this means that the conservation laws are fulfilled locally across the shock. It 
has also been tested that mass and energy is conserved globally for the Stirling machine 
model. 
 
It is always possible to test for conservation of mass by monitoring the sum of the 
masses in all the solid line control volumes.  
 Conservation of energy can be verified for periodic steady state solutions by 
looking at an energy balance for a control volume surrounding the entire simulated 
machine, i.e. by looking at the heat and work flows in and out of the simulated machine. 
For periodic steady state solutions the rate of energy accumulation inside the machine 
should be zero. Note that zero energy accumulation is not used as an equation in the 
conditions for periodic steady state given in section 3.2.8. But if a solution is a periodic 
steady state solution and if all aspects of the model formulation are energy conserving 
then zero energy accumulation will automatically follow. 
 
Table 6 shows results for conservation of mass and energy from the solutions calculated 
with the CILE method for the tests of the stability of the spatial discretisation. 
 

Unsteady solutions Periodic steady state solutions

(m_max-m_min)/m_avrg (m_max-m_min)/m_avrg dE/dt / Q_dot_in

Refinement N_cv N_ODEs [-] [-] [-]

0 44 214 3.1E-09 1.1E-09 -3.4E-09

1 80 380 4.7E-09 9.1E-09 -3.0E-06

2 152 712 2.6E-09 3.4E-09 -1.5E-06

3 296 1376 1.9E-09 2.9E-09 -5.5E-07

4 584 2704 1.2E-09 3.0E-09 -1.3E-06

5 1160 5360 6.2E-10

6 2312 10672 1.2E-08  
Table 6. Summary of results for the fluctuations of the total mass during both unsteady and 

periodic steady state solutions for different spatial discretisations and results for energy 
accumulation from periodic steady state solutions. 

 
Table 6 shows that mass was conserved globally to a very strict tolerance for both the 
unsteady and periodic steady state solutions. 
 The rates of energy accumulation in the periodic steady state solutions were also 
insignificant compared to the rate of energy flow through the engine. This indicates that 
all aspects of the modelling formulation, including the energy transport at the moving 
mesh, are energy conserving. It also indicates that the periodic steady state solutions 
were very close to being true periodic steady state solutions.  
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3.8.5.  Conclusions 

Tests on the stability of the spatial discretisation scheme showed that the scheme was 
stable for both unsteady and periodic steady state solutions. The tests also showed that 
the CILE method, the upstream approximation, and the van Leer method for 
interpolating enthalpies and pressures at boundaries all converged onto the same 
solution when the discretisation was refined. 
 Using the CILE or van Leer methods instead of the upstream approximation 
improved the accuracy of the solutions. The CILE and van Leer methods also produced 
better accuracy pr. expended unit of CPU time than the upstream approximation. The 
CILE method delivered slightly more accuracy pr. unit of CPU time than the van Leer 
method. 
 When the CILE or van Leer methods were used a discretisation with 24 control 
volumes pr. component appeared sufficient to produce 2-3 significant correct digits in 
the computed heat intakes and power outputs, i.e. 2-3 significant correct digits of the 
values which would result from using infinitely many control volumes pr. component. 
 
The tests of the consistency of the spatial discretisation showed that the discretisation 
appeared to be consistent even when shocks and sonic velocities were present in the 
solutions. Both numerical diffusion and non-physical oscillations in the solutions 
diminished when the discretisation was sufficiently refined. 
 It must be noted, however, that for the CILE method the non-physical 
oscillations at the discontinuities and shocks in the test problems persisted to 
discretisations which were significantly finer than the discretisations which it would 
typically be practical to use in a Stirling machine model. But periodic solutions to 
models created using the modelling approach presented here will not contain any 
propagating discontinuities due to the way in which components are connected. They 
will at most contain relatively steep faced temperature waves. The tests on the stability 
of the spatial discretisation also showed that using the CILE method for relatively 
coarse discretisations produced performance values which were accurate to several 
significant digits. Hence it was conclude that either the oscillations introduced into 
solutions to the Stirling machine model by the CILE method are small or at least they 
are not very important to the predicted machine performance. 
 But if a situation arises where there are doubts as to whether the non-physical 
oscillations introduce significant errors into solutions then it appears advisable to check 
if switching to the van Leer method changes the solutions significantly. 
 
In this context, where we seek a sensible balance between accuracy and needed 
computational efforts for models which already contain the significant assumption of 
one-dimensional flow, the oscillations introduced by the CILE method appear to be an 
acceptable trade off for increasing the speed of simulations. 
 
It was also shown that mass was conserved to very strict tolerance for both unsteady and 
periodic steady state solutions. Conservation of energy was also confirmed for periodic 
steady state solutions by looking at the rate of energy accumulation in the machine. This 
test also confirmed that the periodic steady state solutions used in the tests were 
accurate steady state solutions. 



3. Modelling of 1D, oscillating, compressible flow in reciprocating machines 

3.9. Validation of models against experimental data and simulation results 86 

3.9. Validation of models against experimental data and 
simulation results 

In section 3.9.1 simulation results, which were computed using the Stirling machine 
model described in section 3.4, are compared to experimental data for the SM5 engine. 
 
In section 3.9.2 simulation results for the same Stirling machine model are compared to 
experimental data for a commercially available free piston Stirling cooler from 
Twinbird. The simulation results for the Twinbird cooler are also compared to 
simulation results calculated with the PROSA software. 
 
In sections 3.9.3 and 3.9.4  simulations results for two pulse tube cooler models based 
on the modelling approach presented above are compared to simulation results for two 
pulse tube cooler models created using the Sage software. 
 

3.9.1. Validation against experimental results for the SM5 Stirling 
engine 

The Stirling machine model described in section 3.4 has been validated by comparing 
simulation results to experimental data for the SM5 Stirling engine at 28 distinct 
operating conditions.  
 
The experimental data 
The experimental data was provided for use in this thesis by Carlsen (2006). The 
experiments with the SM5 engine were performed with the engine mounted on a test 
bed where the following quantities were measured during steady state operation: 

• The electrical power output. 

• The mass flow rates and temperatures of the cooling water flows which cooled 
the engine and its generator. 

• The temperatures on the heater tubes, the temperatures at different locations in 
the flue gas system, and the temperature of the ambient air surrounding the test 
bed. 

• The minimum and maximum pressures during the cycle. 

• The mass flow of fuel (natural gas) into the system. 

• The chemical composition of the flue gasses. 
In the experiments the geometric mean pressure in the engine was varied between 53 

and 84 Bar, the mean cooling water temperature was varied between 34 °C and 66 °C, 

the average heater tube temperatures were varied between 558 °C and 736 °C, and both 
helium and nitrogen were tested as working gases. Using nitrogen instead of helium 
results in much larger flow friction and a larger heat capacity pr. unit volume for the gas 
in the engine. The experiments hence covered a wide range of operating conditions. 
 
By looking at overall energy balances for the test bed at steady state operation it was 
determined that the measurements contained some inaccuracies. When the energy flows 
in and out of the setup were determined from the measured data then the overall energy 
balance was off by up to 3.5 kW for some of the measurements. The inaccuracies in the 
measurements were believed to be partly due to problems with measuring true average 
temperatures for the flue gas, due to problems with maintaining a constant cooling water 
temperature for long enough to reach true steady state operation, and due to inaccuracies 
in the estimations of the heat losses from the burner system to the air in the lab. 
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 Given the amount of data, however, it was assessed that the data was sufficiently 
accurate to see if the model was able to capture the dependence of the performance of 
the engine on its operating conditions. 
 
The measured data defined 28 different operating points by the heater tube temperatures 
and the cooling water temperatures. The rate of energy absorption by the heater tubes 
was derived from the rate of fuel consumption of the burner, the measured flue gas data, 
and approximate calculations of the heat losses from the burner system to the air 
surrounding the test bed. The electric power output at each operating point had been 
measured and the efficiency of the engines built in generator was known to be 
approximately 90 %. The shaft power produced at each operating point could hence be 
calculated by dividing the measured electrical power outputs with the generator 
efficiency. 
 Hence data was available for a comparison of 28 sets of measured and calculated 
values for the shaft power output and the thermal efficiency of the engine. The thermal 
efficiency was defined as the ratio between the shaft power output and the heat input to 
the heater tubes. 
 
The model setup 
The Stirling machine model computed the work that the gas exerted on the work piston 
and on the displacer. In order to be able to compare measured and calculated values for 
the shaft power the simulation results had to be corrected for: 

• Friction due to the seals sliding against the cylinder wall. 

• Friction in the crank mechanism. 
 
Approximate values for the friction forces at the seals between the cylinder wall and the 
piston and displacer were known from previous experiments. These forces were used 
directly in the Stirling machine model for computing the piston rod forces from the 
forces exerted on the piston and displacer by the gas. The heat produced by the friction 
at the sliding seals was added directly to the seal and the cylinder wall in the 
simulations. 
 
The friction in the crank mechanism itself was needed in the model for computing the 
shaft power from the power transmitted through the piston rods. The magnitude of the 
friction in the crank mechanism was not well known. But it was known that, as long as 
the operating speed of the engine and the temperature of the grease in the bearings were 
constant, then the friction torque in the bearings of the crank mechanism would be an 
approximately linear function of the forces on the bearings. It was hence assumed that 
the friction in the crank mechanism was a linear function of the average forces 
transmitted to the crank mechanism by the piston rods. 
 The shaft power outputs were known from the experiments and the average 
forces transmitted by the piston rods to the crank mechanism were known from 
simulations of the engine. The crank mechanism friction torque was then fitted as a 
linear function of the piston rod forces so that the resulting losses minimised the 
differences between the measured and calculated shaft power at the 28 operating points. 
The fitted linear function for the crank mechanism friction torque was then incorporated 
into the Stirling machine model. 
 
The Redlich-Kwong equation of state was used in the model for describing the helium 
and nitrogen because of the high pressures in the SM5 engine. For the simulations 
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performed with nitrogen it did make a significant difference in the computed power 
output when the Redlich-Kwong equation of state was used instead of the ideal gas 
equation of state. 
 
The spatial discretisation corresponding to the second refinement in Table 1 was used 
for the simulations. The computed power outputs and heat intakes should hence 
correspond to the converged solution to the model with an accuracy of 2-3 significant 
correct digits. Hence the deviations due to numerical inaccuracies in the solutions 
should be insignificant compared to the deviations due to the assumptions and 
simplifications in the one-dimensional model. 
  
Comparison of experimental data and simulation results 
It was chosen to plot the shaft power outputs and the shaft efficiencies against the 
Carnot efficiency which was calculated from the hottest heater tube temperatures and 
the average cooling water temperatures. This allowed the data from the experiments to 
be plotted against a single axis and it also spread out the data points nicely. The 
comparison of the experimental data to simulation results is shown in Fig. 31. 
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Fig. 31. Comparison of experimental data (O symbols) and simulation results (+ symbols) for the 
SM5 engine. The left column of charts show measured and calculated shaft powers. The charts in 
the right column show the shaft efficiencies. The rows of charts correspond to the pressures and 

working gasses shown in the legends on the right. The data is plotted against the Carnot efficiency 
calculated from the average cooling water temperature and the maximum heater tube temperature. 
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Fig. 31 shows that the model predicts the work output of the engine with good accuracy 
(deviations < 3 % for helium, deviations < 7 % for nitrogen) over the tested range of 
operating conditions. The efficiency of the engine predicted by the model is generally a 
little higher than the experimental results (deviations up to approx. 20 % for both 
helium and nitrogen).  
 
The inaccuracies in the experimental data are apparent in Fig. 31. The measurement that 
shows an efficiency of 40 % in the topmost chart for the efficiency, for instance, is not 
believed to be accurate. 
 
Sources of uncertainties 
Uncertainties were introduced into the results at three levels: 

• Uncertainties in the experimental results. 

• Uncertainties in the thermodynamic analysis. 

• Uncertainties in the estimation of the mechanical friction. 
 
The uncertainties in the experimental results were significant as discussed above. 
 
The uncertainties in the thermodynamic analysis of the engine were introduced by the 
simplifications inherent to a one-dimensional model and by uncertainties related to the 
empirical correlations used for computing heat transfer and flow friction. The 
correlations used in the simulations of the engine were developed for steady state flow. 
The simplifications made in the description of the multi-dimensional heat conduction in 
the steel of the engine also contributed with uncertainties. 
 
Both the calculated power output and the calculated efficiency were sensitive to the 
choices of empirical correlations for calculating heat transfer and flow friction in the 
regenerator and for calculating heat transfer in the displacer clearance gap. 
 The correlation for flow friction in the regenerator is especially important when 
nitrogen is used as working gas. In the simulations that produced the results in Fig. 31 a 
correlation by Thomas (2000) for data by Kühl was used for computing friction in the 
regenerator. For these simulations using a different regenerator correlation could offset 
the calculated power outputs by up to a couple of kilowatts. However, the flow friction 
through this particular type of regenerator has been studied in separate experiments by 
Marcus-Moeller and Mortensen (2005), and hence it was known that the friction 
correlation by Kühl is reasonably accurate for the regenerator in the SM5 engine. 
 The correlation used for heat transfer in the regenerator directly affected the 
regenerator loss. The regenerator loss mainly affected the heat intake of the engine but it 
also had an influence on the power output. In Fig. 31 the choice of regenerator heat 
transfer correlation hence mainly affected the calculated efficiencies. The regenerator 
loss was significantly larger with nitrogen than with helium and hence the results for 
nitrogen as working gas were more sensitive to the heat transfer correlation than the 
results for helium. In the simulations that produced the results in Fig. 31 a correlation by 
Thomas (2000) for data by Tanaka was used for computing heat transfer in the 
regenerator. 
 The correlation for heat transfer inside the displacer clearance gap affected the 
amount of energy transported along the gap from the expansion volume and down to the 
cooler. This loss mainly affected the heat intake and, hence, the efficiency of the engine. 
In this study a heat transfer correlation by Huang and Berggren (1986) was used in the 
gap. 
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Due to the way that the mechanical friction was estimated and included in the model it 
should tend to reduce the errors in the predicted work output. But because the 
mechanical friction was estimated as a simple linear function of the bearing forces and 
because such a wide range of operating conditions was studied it appears unlikely that 
the mechanical friction should have been able to hide any significant model errors. 
 
Conclusion 
The agreement with experimental data over a wide range of operating conditions was 
good, even considering that the friction in the crank mechanism was adapted to the 
experimental data. 
 

3.9.2. Validation against experimental results for the Twinbird 
Stirling cooler and PROSA simulation results 

The Stirling machine model from section 3.4 was also validated by comparing 
simulation results from the model to experimental data for a commercially available free 
piston Stirling cooler (FPSC) by Twinbird (2006). A comparison was also made to 
results from a PROSA model of this cooler. For convenience the Stirling machine model 
from section 3.4 is denoted as the MUSSIM model in the rest of this section.  
 
The Twinbird FPSCs are sold integrated into portable 25 litre cool boxes (SC-C925) for 
food and beverages. The vertical inner walls of the cool box are cooled by a 
thermosyphon connected to the FPSC. A photo of a Twinbird FPSC and a drawing 
illustrating its construction are shown in Fig. 32. 
 

The Twinbird FPSC is a hermetically sealed β-type free piston Stirling cooler. The 
FPSC has no crank mechanism. Instead the work piston and the displacer are mounted 
on flat springs. The work piston is driven to oscillate in its suspension by a linear motor. 
The displacer is animated by pressure forces, which have two main contributions:  

• The oscillating pressure pushes on different sizes of areas on the ends of the 
displacer due to the rod which connects the displacer to its flat spring. 

• The flow friction for the oscillating gas flow through the regenerator and heat 
exchangers causes an oscillating pressure difference between the ends of the 
displacer. 

 
Two Twinbird SC-C925 cool boxes were used for an experimental validation of the 
Stirling machine model. 
  The FPSC was removed from one of the boxes. The FPSC was disassembled so 
that its internal geometry could be studied in order to generate input data to the Stirling 
machine model. The moving masses, the rigidities of the flat springs, and the 
dimensions of the linear motor were also measured. 
 The other cool box was used for conducting experiments to determine sets of 
values for the temperatures at the heat absorber and heat rejector, the heat flow to the 
heat absorber, and the electric power input to the linear motor. 
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Fig. 32. Photo of the Twinbird FPSC (top) and sketch of the Twinbird FPSC (bottom). The sketch is 

from the patent US 6,857,267 B2.  

 
Experimental data 
The experiments were conducted with the FPSC still mounted in the cool box. The cool 
box was instrumented so that the following values could be determined: 

• The electrical power input into the FPSC through the wires that connected the 
FPSC to the electronics of the cool box. 

• The temperatures on the outer casing of the FPSC at the locations of the heat 
absorber and the heat rejector. 

• The temperature on a vertical inner wall in the cool box. 

• The temperature of the ambient air. 
 
Experiments were performed in order to determine the overall conductivity of the cool 
box, i.e. to determine the net heat transport between the inner wall of the box and the 
ambient air as a function of the temperature difference between the inner wall and the 
ambient air. 
 In these experiments the power supply to the cool box was disconnected and a 
light bulb was inserted into the box. By supplying power to the light bulb the cool box 
was heated internally. The amount of power supplied to the light bulb and the 
temperature difference between the inner wall and the ambient air were measured at 
steady state conditions and were used for calculating the overall conductivity of the box. 
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Eight other experiments were conducted where the cool box was operated at different 
ambient temperatures with different settings for its internal temperature. In the 
experiments the measured temperatures were plotted as a function of time. Due to the 
temperature control method of the cool box the measured temperatures never became 
constant. Therefore mean values for the measured temperatures and the power input to 
the FPSC were recorded when visual inspection of the plots of the measured 
temperatures indicated that the temperatures were oscillating around their steady state 
levels. The ambient temperature was varied between 25 and 43 oC. The temperatures at 
the heat absorber varied between -28.5 and 1.5 oC and the temperatures at the heat 
rejector varied between 26.7 and 53.8 oC. The temperature difference between the heat 
rejector and the heat absorber therefore varied between 25.7 and 78.6 oC. 
 The previously measured overall conductivity was used for computing the rates 
of heat conduction through the walls of the box in the experiments from the measured 
temperatures. The thermosyphon, which cooled the vertical inner walls of the cool box, 
was well insulated between the FPSC and the inner walls of the cool box. It was 
therefore assumed that the rate of heat flow into the heat absorber of the FPSC, i.e. the 
cooling power of the FPSC, was equal to the rate of heat conduction through the walls 
of the cool box.  
 
The model setup 
The temperatures measured on the outside of the casing of the FPSC at the locations of 
the heat rejector and the heat absorber were used directly as boundary conditions for the 
Stirling machine model in the simulations. The operating frequency and the filling 
pressure of the FPSC were printed on the label on the outer casing of the FPSC as 
shown on the photo in Fig. 32. But the strokes of the piston and displacer were not 
measured in the experiments. 
 It was chosen to set the strokes of the work piston so that the calculated values 
for the cooling power agreed with the values determined in the experiments. The 
comparison of simulation results and experimental data for the FPSC hence had to be 
done by checking if the model was able to predict the power consumption and thereby 
the coefficient of performance, COP. 
 
The experimental data contained the time averaged electrical power input to the linear 
motor of the FPSC, and the MUSSIM model calculated the time averaged rates at which 
the linear motor had to exert work on the work piston. In order to compare simulations 
and experiments it was therefore necessary to use an approximation for the efficiency of 
the linear motor of the FPSC. The approximation was made by deriving simple 
expressions for the losses in the copper winding and the iron of the linear motor. 
 
The copper losses are proportional to the electrical resistance of the winding and to the 
square of the RMS electric current flowing through the winding. 
 The electrical resistance of the winding was measured directly on the 
disassembled FPSC. An equation for the RMS current was established by setting the 
work output from the motor equal to the product of the motors electromagnetic constant, 
the RMS current, and the RMS work piston velocity. The electromagnetic constant was 
estimated from the geometry of the linear motor and a guess for the magnetic properties 
of the magnet in the linear motor. The RMS work piston velocity was known from the 
simulations. The RMS current could then be calculated as it was the only unknown 
quantity. 
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The iron losses were estimated by multiplying the specific iron losses (W/kg), expressed 
as a function of magnetic flux density, with the total iron mass in the linear motor. 
 The magnetic flux density in the iron material was estimated from the geometry 
of the magnetic circuit of the linear motor and from the RMS current. The estimated 
flux density contained uncertainties both due to the guess for the magnetic properties of 
the magnet material and because fringe fields were not considered. 
 It has been published (Jansson, 2004)(Powder Metallurgy, 2005) that the iron 
material in the linear motor of the Twinbird FPSC is made from a Somaloy iron powder 
by Höganäs. The specific iron loss as a function of magnetic flux density was expressed 
as a polynomial fit of catalogue data for Somaloy 500 iron powder at 80 Hz frequency. 
The fit introduced some uncertainties because it could actually have been a different 
material from the Somaloy product family, and because only few data points could be 
read from the catalogue. 
  
Comparison of experimental data and simulation results 
The temperatures at both the compression and expansion ends of the Twinbird FPSC 
had been varied in the experiments. Therefore it was chosen to plot the results from the 
comparison using the Carnot coefficient of performance, COPCarnot, as the horizontal 
axis. The values for COPCarnot were calculated from the measured temperatures at the 
heat absorber and heat rejector. The results of the comparison are shown in Fig. 33. 
 
In Fig. 33 there is only one data series for the cooling power because the simulations 
were made to match the measured values for the cooling power by adjusting the strokes 
of the work piston. The experimental and calculated values for the cooling power were 
therefore identical. 
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Fig. 33. Comparison of experimental data (solid lines) and simulation results (dashed lines) for the 

power consumption and COP of the Twinbird FPSC. The calculated values of the work input to the 

gas cycle are also shown (∆∆∆∆-symbols) and the vertical dashed lines indicate the power dissipated in 
the linear motor. 

 
Fig. 33 shows that the MUSSIM model, which included the simple expressions for the 
losses in the linear motor, appeared to slightly overestimate the COP of the Twinbird 
FPSC. The electric power consumption was underestimated by 6 to 19 %. 
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The calculated efficiencies of the linear motor varied between 66 and 75 %. The vertical 
dashed lines in the figure show how much of the input power was dissipated as losses in 
the linear motor in the simulations. The rates of work input to the work piston from the 

simulations are also shown in Fig. 33 (∆-symbols). 
 Due to the moderate efficiency of the linear motor the uncertainties in the 
calculations of the losses in the linear motor contributed significantly to the 
uncertainties in the calculated electrical power consumptions of the FPSC. 
 
The phase angle lead of the displacer relative to the work piston varied between 80 and 
88 degrees in the simulations. 
 
The simulations of the Twinbird FPSC required less than 25 % of the CPU time needed 
for simulations of the SM5 engine with the same model, spatial discretisation, and 
settings for the IVP solver. This was because the compression ratios and the Reynolds 
numbers were smaller for the Twinbird FPSC than for the SM5 engine. This caused the 
equations to be more linear so that fewer steps and fewer iterations pr. solution were 
needed. 
 
Comparison to simulation results from PROSA 
The simulation results from the MUSSIM model were also compared to results 
calculated using the PROSA simulation program by Thomas (2006). The linear motor 
was not included in the comparison with PROSA. The results compared below are 
therefore for the gas cycle only, and hence the calculated values for COP are higher than 
the values presented in Fig. 33. 
 
A PROSA input file for the Twinbird FPSC was created so that the geometry 
corresponded closely to the geometry modelled by the MUSSIM model. This input file 
was then used with both the current version 2.4 of PROSA and a beta version of the new 
PROSA 3.0. PROSA 2.4 is based on closed form solutions whereas the new version 3.0 
uses a time stepping integration to perform an actual simulation of the cycle. 
 
Both the tested versions of PROSA use a number of simplifications compared to the 
MUSSIM model. 
 PROSA uses a lumped formulation for the heat exchangers and just four control 
volumes for the regenerator. PROSA relies on a log mean temperature difference 
approximation in order to correctly predict the heat transfer. The appendix gap is not 
modelled directly but the appendix gap losses are taken into account using empirical 
correlations. Matrix temperature oscillations are also not modelled directly and are also 
accounted for by correction terms. PROSA does not include radial heat conduction. 
 The simplifications contribute to making even the new version 3.0c of PROSA 
very fast compared to the MUSSIM model. But the simplifications can also affect the 
accuracy of the simulations. However, the simulations using the MUSSIM model 
indicated that the design of the Twinbird FPSC was such that the simplifications made 
in PROSA should not have a major impact on the calculated performance. 
 
The beta version, PROSA 3.0c, did not support simulation of free piston machines, 
although this will be supported in the release version. With PROSA 3.0c the Twinbird 
FPSC therefore had to be modelled as a crank operated machine by importing the 
motion of the pistons from the MUSSIM model. The comparison with PROSA 3.0c was 
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therefore restricted to be a comparison of the thermodynamics only, as the calculated 
piston kinematics could not be compared. 
 
Initial simulations showed that there were significant differences between the 
regenerator losses predicted by the two models. Through correspondence with Thomas 
(2006) it was found that different assumptions were made in the two models about the 
Nusselt numbers in the foil type regenerator of the Twinbird FPSC. 
 In the MUSSIM model it was assumed that the Nusselt number for laminar flow 
between the layers of foil was equal to 8.23. This value corresponds to the analytical 
solution for incompressible steady state flow between infinite parallel plates where the 
heat flux is constant in the flow direction. In PROSA it was assumed that the Nusselt 
number for laminar flow between the layers of foil was equal to 3.65. This value 
corresponds to the Nusselt number for steady, incompressible, laminar flow in a circular 
tube with a constant wall temperature in the flow direction. Both PROSA and the 
MUSSIM model defined the hydraulic diameter as twice the distance between the layers 
of foil. Therefore the heat transfer coefficients for laminar flow in the regenerator were 
more than twice as large in the MUSSIM model as in the PROSA model. 
 The difference between the assumptions meant that the regenerator losses 
predicted by PROSA were significantly larger than the regenerator losses predicted by 
the MUSSIM model. In order to make a comparison where the large difference in the 
regenerator loss would not mask other differences between the models, the MUSSIM 
model was temporarily modified so that it used the same assumption as PROSA for the 
Nusselt number for laminar flow in the foil regenerator. 
 
A comparison of results for the following model setups was made: 

1. The MUSSIM model with the second refinement of the spatial discretisation 
from Table 1. 

2. The MUSSIM model with the second refinement of the spatial discretisation, and 
the Nusselt number for laminar flow in the foil regenerator set equal to 3.65. 

3. PROSA 3.0c where the FPSC was modelled as a crank operated machine. The 
motion of the pistons was imported from setup 2. 

4. PROSA 2.4 where the FPSC was modelled as a crank operated machine. The 
motion of the pistons was again imported from setup 2. 

5. PROSA 2.4 where the FPSC was modelled as a free piston machine. 
 
The 8 operating conditions corresponding to the above mentioned experiments with the 
cool box were simulated. For the setups 1, 2, and 5 the strokes of the work piston were 
adjusted so that the cooling powers matched the experiments. The cooling powers from 
setup 3 and 4 deviated slightly from the experimental values because the PROSA 
models gave slightly different results than the MUSSIM model for the same piston 
motions. 
 
The comparison of results showed that the results predicted by the model setups 2 
through 5 were very similar, but that the results calculated using setup 1 had a 
significantly higher COP. The calculated COPs for the different model setups are 
compared in Fig. 34. 
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Fig. 34. Comparison of the COP predicted for the gas cycle of the Twinbird FPSC by the PROSA 

2.4, PROSA 3.0c, and the MUSSIM model. 

 
Fig. 34 shows that: 

• The different assumptions about the Nusselt numbers in the regenerator caused a 
9 to 15 % difference in the COP values for the gas cycle. 

• The simulations with PROSA 3.0c yielded COP values that deviated less than 2 
% from the results from the MUSSIM model where the Nusselt number for 
laminar flow in the regenerator was set equal to 3.65. 

• PROSA 2.4 predicted COP values that were 2 to 4.5 % lower than the COP 
values predicted by PROSA 3.0c when the same piston motions were used. 

• The COP values predicted by PROSA 2.4 were almost identical when the FPSC 
was modelled as a free piston machine and as a crank operated machine with 
piston motions from the MUSSIM model. 

 
For the model setups 2, 3, and 4, which all used the same piston motions, there were 
some differences between the predicted cooling powers: 

• PROSA 3.0c predicted cooling powers which were 4 to 7.5 % larger than the 
cooling powers predicted by the MUSSIM model. 

• The cooling powers predicted by PROSA 2.4 were 6 to 9 % smaller than the 
cooling powers predicted by the MUSSIM model. 

• The cooling powers predicted by PROSA 3.0c were 14 to 15 % larger than the 
cooling powers predicted by PROSA 2.4. 

 
The results indicated that the major difference between the COP values calculated with 
PROSA and with the MUSSIM model were due to the different assumptions about the 
Nusselt numbers for laminar flow in the regenerator. Without this difference the results 
were very similar; especially for the new PROSA 3.0 and the MUSSIM model. 
 The results also show that the closed form solutions used in PROSA 2.4 were 
quite close to the results of the time stepping solution from PROSA 3.0c for this 
particular Stirling machine design. 
 There were some differences in the cooling powers predicted by the different 
models even when the same piston motions were used. But to this it must be added that 
the cooling power was quite sensitive to the strokes of the pistons. 
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Uncertainties 
The uncertainties in the comparison of the MUSSIM model with the Twinbird FPSC 
were also divided into the following three categories: 

• Uncertainties in the experimental results. 

• Uncertainties in the thermodynamic analysis. 

• Uncertainties in the calculations of the efficiency of the linear motor. 
 
The measurements of the temperatures and the power input to the FPSC were believed 
to be accurate. The measurements of the cooling power were probably less accurate as 
the method of using an overall conductivity to determine the cooling power was quite 
indirect. 
 One source of uncertainty due to this method was related to the temperature 
distribution on the inner surfaces of the cool box. In the experiments where the overall 
conductivity was determined the box was heated internally with a light bulb. In these 
experiments the temperature distributions on the inner walls of the box were probably 
reasonably uniform. But the FPSC was connected via a thermosyphon to only the 
vertical inner walls of the box. So when the FPSC was cooling the box the vertical walls 
might have been colder than the lid of the cool box. This would presumably cause the 
need for cooling to be slightly overestimated by the overall conductivity. 
  
The materials and the shape of the FPSC are such that the losses due to heat conduction 
in the solids of the machine were moderate. This reduced the impact of the 
simplifications made when modelling the multi-dimensional heat conduction in the 
FPSC. 
 By making additional parametric studies it was also found, that the 
thermodynamic analysis in the MUSSIM model was relatively insensitive to moderate 
changes in the heat transfer and pressure losses predicted by the empirical correlations 
used in the model. When all calculated friction factors in the model were multiplied by a 
factor of 1.5 then the calculated values for COP were reduced by only 3 to 10 % with 
the largest changes for the smallest cooling powers. The sensitivity of COP to the 
Nusselt numbers for the regenerator was also found to be moderate in the comparison 
with PROSA results. 
 The comparison with PROSA also indicated that the performance prediction for 
the Twinbird FPSC was relatively insensitive to simplifications which could be made 
when modelling the FPSC. 
 Based on these results it was concluded that the uncertainties in the 
thermodynamic analysis appeared to be small. 
 
The uncertainties in the estimation of the efficiency of the linear motor were discussed 
above, but the magnitudes of the uncertainties have not been quantified. 
 
Conclusions 
The study yielded good agreement between simulation results and experimental data for 
the COP of the Twinbird FPSC; the Stirling machine model from section 3.4 appeared 
to underestimate the power consumption of the FPSC by 6 to 19 %. When an important 
assumption made in PROSA about the Nusselt number in the regenerator was 
duplicated, then close agreement was also found between PROSA and the Stirling 
machine model from section 3.4. 
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The simulation results were relatively insensitive to small perturbations of the empirical 
correlations used for calculating friction and heat transfer. A comparative study with a 
PROSA model supported that the thermodynamic analysis of the FPSC was also 
relatively insensitive to the assumption made when modelling the machine. The major 
contributors to the observed differences between simulation results and experimental 
data were therefore assumed to be related to the experiments and the simplified 
calculation of the losses in the linear motor. 
 

3.9.3. Validation against Sage simulation results for a large Stirling 
type Pulse Tube cooler 

A model of a Stirling type pulse tube cooler (PTC) was created for studying temperature 
inhomogeneities which had been observed in the regenerator of a large PTC with a 10 
kW Pressure Wave Generator (Dietrich, Yang, and Thummes, 2005)(Gromol et al., 
2006).  
 In order to verify that the PTC model was good enough to be usable for the 
numerical study on temperature inhomogeneities in regenerators the model was 
validated against results from a model built by Dietrich in the simulation software Sage. 
For convenience the two PTC models are denoted simply as the MUSSIM model and the 
Sage model in the remainder of this section. 
 The MUSSIM model was needed for the study on temperature inhomogeneities 
in regenerators because the existing Sage model could not be used for studying the 
temporal evolution of the inhomogeneities; Sage is strictly for computing periodic 
steady state solutions. The MUSSIM model was used to reproduce and study an 
instability phenomenon which can occur in parallel regenerator channels or in 
regenerators with wide aspect ratios. After the instability had been reproduced by the 
MUSSIM model the effects of the instability on periodic steady state solutions were also 
studied using a modified version of the Sage model by Dietrich. Results that explain the 
driving mechanism behind the instability phenomenon which caused the observed 
temperature inhomogeneities in regenerators were presented in the accompanying Paper 

C. 
 
The Sage model had previously been validated against experimental results for the PTC. 
It had been found that the model was able to predict the cooling power of the PTC with 
acceptable accuracy. The wave form of the pressure oscillations at different locations in 
the PTC had also been compared to experimental data. It had been found that the model 
could reproduce with reasonable accuracy the amplitudes and the phase angles between 
the pressure waves at different locations in the PTC but that there were some 
discrepancies between the shapes of the measured and calculated pressure waves. 
 
In the comparison of the models reported on here the models both contained the basic 
components of a PTC shown in Fig. 5. But there were some additions in order to take 
into account the geometry of the actual PTC. The heat exchangers at the ends of the 
pulse tube itself, for instance, were designed so that they had wire mesh sections facing 
the pulse tube in order to straighten the gas flows blowing into the pulse tube. The 
designs of the heat exchangers were taken into account in both models by representing 
the heat exchangers with appropriate serial connections of simple components. 
 The Sage model included a detailed description of the dual opposing piston 
pressure wave generator whereas the volume variation in the pressure wave generator 
was prescribed explicitly in the MUSSIM model. In the MUSSIM model simplifications 
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relative to the Sage model were also made at the locations where the inertance tube was 
connected to its neighbouring components. Except for these differences, however, the 
models were close to identical with respect to the modelled geometry. 
 Heat conduction in the solids of the components in the PTC were included in 
both models. But the conduction paths between the different components were not 
included in the MUSSIM model. To get from one component to the next the heat 
conducted inside the walls of components hence had to get absorbed and transported by 
the gas in the PTC. 
 The Sage model used empirical correlations developed by Gedeon and Wood 
(1996) for friction and heat transfer in the regenerator. The MUSSIM model used 
regenerator correlations of the form suggested by Thomas (2000) which had been fitted 
to match the correlations by Gedeon and Wood. The Sage model also used empirical 
correlations to account for multi-dimensional flow patterns in the pulse tube. These 
correlations had only negligible influence on the results of the Sage model and were not 
included in the MUSSIM model. 
 It should be noted that these multi-dimensional flow patterns in the pulse tube 
are likely to be one of the major sources of uncertainties for the one-dimensional PTC 
models. The actual flow patterns inside a pulse tube could depend strongly on 
inhomogeneities in the gas flows into the pulse tube. Hence some PTC designs could 
render the predictions of empirical correlations for the associated energy transport 
inaccurate. 
 
The two models were compared at an operating frequency of 50 Hz and a mean pressure 
in the pressure wave generator of approximately 2 MPa. Heat was absorbed at 60 K and 
was rejected at 300 K. The volume oscillations in the pressure wave generator found by 
the Sage model were prescribed explicitely in the MUSSIM model, so that the volume 
variations were identical in the two models. 
 
Comparison of performance numbers 
For the two models the following performance numbers were collected and compared: 

• The rate of work input by the pressure wave generator to the gas. 

• The cooling power of the PTC. 

• The net flux of heat pumped against the axial temperature gradient in the gas in 
the pulse tube. 

• The net axial enthalpy flux carried by the gas though the regenerator. 
The results of the comparison are shown in Table 7. 
 

Sage model MUSSIM model Rel. difference [%]

Work input [kW] 7.06 6.88 -2.5

Cooling power [W] 230 225 -2.2

Pulse tube heat pumping [W] 499 484 -3.1

Regenerator loss [W] 245 260 6.1  
Table 7. Comparison of the rates of work input, the cooling powers, heat fluxes pumped in the pulse 

tube, and the regenerator losses predicted by the MUSSIM model and the Sage model. 

 
Table 7 shows that the results from the two models agreed to within a few percent. The 
differences were of the same order of magnitude as the expected errors due to the 
coarsenesses of the discretisations used in the models. This indicates that the differences 
between the models appear to have only minor impact on the performance prediction of 
the two models. 
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Comparison of pressure waves 
Fig. 35 shows a comparison of the pressure waves predicted by the two models for 
different locations in the PTC. 
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Fig. 35. Comparison of pressure waves predicted by the MUSSIM model and the Sage model. The 

pressure waves are depicted for two full cycles at 50 Hz operating frequency. 

 
Fig. 35 shows that the shapes and phase angles of the pressure waves predicted by the 
models were very similar. But some differences between the pressure waves were 
visible.  
 
The most obvious difference was that the Sage model predicted higher pressures in the 
buffer volume than the MUSSIM model. The shapes and phase angles of the pressure 
waves in the buffer volume were almost identical but Sage predicted a mean pressure 
which was approximately 23 kPa higher than in the results of the MUSSIM model. 
 The differences between the mean pressures in the buffer volume were attributed 
to the differences between the ways that the inertance tube was connected to its 
neighbouring components in the two models. In the Sage model the mean pressure in 
the buffer volume was approximately 23 kPa higher than the mean pressure at the end 
of the hot heat exchanger facing the inertance tube; the MUSSIM model predicted 
almost no difference in mean pressures between these two locations. 
 
There were also minor differences in the calculated pressure differences between the 
ends of the regenerator. The differences were attributed partly to inaccuracies in the 
recalculations of the regenerator correlations and partly to a difference between the 
assumptions made about flow velocities in the regenerator. 
 In Sage the average flow velocities in the regenerator were calculated from the 
assumption that the effective flow area in the regenerator was given by the product of 
the flow area of the empty regenerator canister and the porosity of the regenerator 
matrix. This assumption was shared by the MUSSIM model for foil type regenerators 
but not for regenerators made from wire screens, such as the regenerator in the PTC 
model. In the MUSSIM model the effective flow area in wire screen matrices was 
assumed to be given by the area of the “holes between the wires” in one of the wire 
screens. This assumption lead to higher average flow velocities in the MUSSIM model 
and hence to momentum being more important. Note that the differences in flow areas 
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were taken into account when the regenerator correlations by Gedeon were recalculated 
for the MUSSIM model. 
 
Conclusions 
The performance data and pressure waves calculated with the MUSSIM model agreed 
very well with the corresponding results calculated with the experimentally validated 
Sage model. 
 Both models solved discrete approximations to the governing equations for one-
dimensional compressible fluid flow on Eulerian grids. There were differences between 
the discretisations of the governing equations used in the Sage model (differential form) 
and the MUSSIM model (integral form) and there were differences between the 
assumptions made about the one-dimensional flow. But the results presented above 
indicate that the differences between the models did not make a big difference for this 
particular PTC design. 
 

3.9.4. Validation against Sage simulation results for the AIM Pulse 
Tube cooler 

The PTC model described in section 3.9.3 was further refined for a study on radial heat 
conduction in a small PTC prototype developed by the company AIM INFRAROT-
MODULE GmbH for infrared applications. The AIM pulse tube cooler had a compact 
coaxial design where the pulse tube was placed inside the regenerator. The capabilities 
of the commercial AIM PTCs have been described in detail by Korf et al. (2005). The 
AIM pulse tube cooler is shown in Fig. 36. 
 

 
Fig. 36. Coaxial AIM pulse tube cooler designed for infrared applications. 

 
In Fig. 36 the largest cylindrical object is the pressure wave generator. The pressure 
wave generator is connected via a transfer line to the so called pulse tube cold head in 
the right hand side of the image. Despite its name the cold head actually has both a 
warm end and a cold end, and the cold head contains both the after cooler, regenerator, 
cold heat exchanger, pulse tube, and hot heat exchanger (see Fig. 5). The narrow 
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cylindrical protrusion on the cold head is known as the cold finger. It is the tip of the 
cold finger which is used for cooling infrared sensors. The regenerator and the pulse 
tube are placed inside the cold finger. The warm end of the cold head is positioned at 
the opposite end from the cold tip, and this is where the after cooler and the hot heat 
exchanger are located. The cold head is connected via the inertance tube to the buffer 
volume, which is shown in the lower left corner of Fig. 36.  
 
The refined PTC model was validated against a Sage model, which was being 
developed at AIM. In the remainder of this section the two models of the AIM PTC are 
denoted as the MUSSIM model and the Sage model. 
 
The Sage model of the AIM PTC included a detailed description of the pressure wave 
generator whereas the volume variation in the pressure wave generator was prescribed 
explicitly in the MUSSIM model. Except for differences in the internal geometry of the 
pressure wave generator there were no significant differences between the geometries 
defined in the two models. 
 The radial heat conduction in the cold head was not included in the Sage model. 
The radial heat conduction in the cold finger in the MUSSIM model was disabled during 
the comparison of the models. Axial heat conduction in and between components were 
included in both models. The models used the same empirical correlations for flow 
friction and heat transfer as were used in the comparison with the large PTC described 
in section 3.9.3.  
 For the AIM PTC, however, the correlations used in the Sage model to account 
for axial heat transport due to multi-dimensional flow patterns in the pulse tube did have 
a significant impact on the simulation results. Sage applied the corrections for the multi-
dimensional effects in the pulse tube as a multiplier to the molecular heat conduction in 
the pulse tube. Sage also produced estimates for the net contributions to the axial heat 
transport in the pulse tube. According to these estimates the multi-dimensional effects in 
the pulse tube caused an axial energy transport which was approximately 70 times as 
large as the energy transport due to molecular heat conduction. In order to compensate 
for the absence of this energy transport due to multi-dimensional flow patterns in the 
MUSSIM model the rates of molecular heat conduction in the pulse tube were multiplied 
by a factor of 70 in the MUSSIM model. Note that this quick fix for the missing loss 
terms in the MUSSIM model is in no way general; the fix is specific to both the 
operating conditions and geometry of the PTC. 
 
The two models were compared at an operating frequency of 42 Hz and a mean pressure 
in the pressure wave generator of nearly 3.5 MPa. Heat was absorbed at 75 K and was 
rejected at 300 K. The volume oscillations in the pressure wave generator found by the 
Sage model for a specific rate of work input to the gas by the pressure wave generator 
were prescribed directly in the MUSSIM model. 
 
Comparison of performance numbers 
For the comparison of the two models of the AIM PTC the same performance numbers 
as in section 3.9.3 were studied, namely: 

• The rate of work input by the pressure wave generator to the gas. 

• The cooling power of the PTC. 

• The net flux of heat pumped against the axial temperature gradient in the gas in 
the pulse tube. 

• The net axial enthalpy flux carried by the gas though the regenerator. 
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The results of the comparison are shown in Table 8. 
 

Sage model MUSSIM model Rel. difference [%]

Work input [W] 37.2 35.8 -3.8

Cooling power [W] 1.40 1.19 -14.9

Pulse tube heat pumping [W] 4.45 4.33 -2.8

Regenerator loss [W] 2.53 2.85 12.6  
Table 8. Comparison of the rates of work input, the cooling powers, the rates of heat pumping by 

the pulse tube, and the regenerator losses predicted by the two models of the AIM PTC. 

 
Table 8 shows that the results from the two models agreed quite well, but that there 
were some differences. The Sage model predicted slightly better heat pumping in the 
pulse tube, a smaller regenerator loss, and, hence, a better cooling power. The cooling 
powers predicted by the models are relatively close to experimental data for the AIM 
PTC published by Korf et al. (2005). 
 
The larger regenerator losses in the MUSSIM model were attributed to the slightly 
different regenerator correlations used in the models, as described in section 3.9.3. 
 The constant multiplication factor applied to the molecular heat conduction in 
the MUSSIM model, in order to compensate for the lack of correlations for multi-
dimensional flow effects in the pulse tube, presumably contributed to the differences in 
the heat pumping of the pulse tube. 
 The coarseness of the discretisations used in the models might also have 
contributed to the differences. 
 
Comparison of pressure waves 
Fig. 37 shows a comparison of the pressure waves predicted by the two models for 
different locations in the PTC. 
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Fig. 37. Comparison of pressure waves predicted by the two models at different locations in the 

AIM PTC. The pressure waves are depicted for two full cycles at 42 Hz operating frequency. 

 
Fig. 37 shows that the pressure waves predicted by the models at different locations in 
the PTC were very similar with respect to both amplitudes and phase angles, but that 
there were some differences. 
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The pressure waves in the buffer volume were very similar for the two models but there 
were some differences in the pressure losses across the inertance tube. The models both 
simulated a composite inertance tube which consisted of several tube sections with 
different diameters. 
 Fig. 37 shows that at a position inside the inertance tube the pressure waves 
agreed quite well although the pressure wave predicted by the Sage model is somewhat 
more irregular than the pressure wave predicted by the MUSSIM model. A contribution 
to the irregularity could be due to the Sage model approximating a nearly triangular 
wave form with only eight harmonics due to the chosen temporal discretisation in the 
Sage model. 
 Fig. 37 also shows that there were minor differences in the magnitudes of the 
total pressure drops predicted across the composite inertance tube. A possible 
explanation for this is that the localised losses at tube inlets and outlets were handled 
differently in the two models when the simulations for the comparison were made. In 
the MUSSIM model a local loss coefficient of 0.5 was applied when the gas flow went 
through a reduction in the available flow area. When the gas flow went through an 
expansion in the flow area a local loss coefficient of 1.0 was applied. The local loss 
coefficients were applied locally at the flow area discontinuities. In the Sage model the 
pressure losses due to the local loss coefficients were distributed evenly over the entire 
lengths of the components. Each of the components, which represented a section of the 
inertance tube with a specific diameter, were prescribed a loss coefficient of 1.5 
corresponding to the sum of the local loss coefficients for one inlet and one outlet. At 
the locations where two inertance tube sections with different diameters were connected 
this practice resulted in each flow area discontinuity contributing with loss coefficients 
for both an inlet and an outlet. 
 
It also appears that the pressure losses in the regenerator were predicted as slightly 
larger by the MUSSIM model than by the Sage model. The reasons for the slightly larger 
pressure losses in the regenerator were assumed to be the same as were discussed in 
section 3.9.3. 
 
The differences in the pressure waves must have also contributed to the differences 
between the performance numbers predicted by the two models. 
 
Conclusions 
The agreement between the two models of the AIM PTC was good. The cooling powers 
predicted by the models were close to published experimental data for the AIM PTC. 
 

3.9.5. Conclusions 

It was found that the performance predicted for the SM5 Stirling engine by the Stirling 
machine model described in section 3.4 agreed well with experimental data over a wide 
range of operating conditions.  
 
The Stirling machine model was also found to predict the performance of a free piston 
Stirling cooler by Twinbird well. When an important assumption about the heat transfer 
in the regenerator was matched to the assumption made in PROSA then the results from 
the Stirling machine agreed very well with simulation results from PROSA. 
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In a comparison of a model of a large pulse tube cooler with an experimentally 
validated Sage model it was found that there were close agreement between the two 
models. Both the predicted performance numbers and the predicted pressure waves at 
different locations inside the PTC were found to agree closely. 
 
Comparison of two different models of a small pulse tube cooler prototype, which had 
been developed by the company AIM for infrared applications, also showed good 
agreement between a Sage model and a model built using the modelling approach 
described above. The cooling powers predicted by the models were also close to 
published experimental data for the AIM pulse tube coolers. 
 
It is therefore concluded that the one-dimensional modelling approach presented above 
is sufficient to produce results in good agreement with experimental data for both 
Stirling machines and pulse tube coolers. It was also found to produce results in good 
agreement with the current state of the art software, Sage. 
 Pulse tube coolers, however, stretch the assumptions of the one-dimensional 
models further than Stirling machines do. This is because multi-dimensional flow 
patterns in the pulse tube, which are difficult to accurately account for in a one-
dimensional model, can have significant impact on the performance of the coolers. 
 

3.10. Summary 

The theory behind a control volume based approach for modelling oscillating, 
compressible flow in one space dimension has been presented. The approach chosen in 
this work for implementing the modelling approach has also been described. The 
necessary conditions for solutions to models to be unique, periodic steady state 
solutions have been stated. 
 The chosen approaches produce models where all the equations, which are on a 
form that should be understandable to someone with a background in engineering 
thermodynamics, can be accessed and modified individually. The implementation was 
designed to be easy to work with when creating and modifying models and to make 
simulations fast. 
 
Comprehensive testing of both the implementation and the intrinsic properties of the 
modelling approach has been performed. 
 The results from the tests of the implementation showed that a high level of 
accuracy could be achieved for integrations of a model created using the modelling 
approach. It was also found that the level of accuracy depended on the settings for the 
numerical solvers in a very predictable way. The tests also showed that the choices of 
numerical methods made a significant difference to the speed of simulations. By making 
appropriate choices of numerical methods for a given model and a given fineness of the 
discretisation used in that model, one can ensure that simulations are performed with 
good computational performance. 
 The tests of the modelling approach showed that the modelling approach is 
convergent, i.e. that solutions converge onto the correct solutions for one-dimensional 
compressible flow when the discretisation is refined. This was found to be the case even 
when discontinuities and shocks were present in the flow fields. It was also found that 
all aspects of the modelling approach are conservative. This means that checks for 
conservation of mass and energy can be used for checking that models have been 
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constructed correctly, and for checking if solutions are true periodic steady state 
solutions. 
 
Models created using the modelling approach described here have been validated 
against both experimental data and against simulation results calculated with the 
simulation packages Sage and PROSA. The validation was performed for both a Stirling 
machine model and two pulse tube cooler models. 
 It was found that the modelling approach presented here produced simulation 
results in good agreement with both experimental data for Stirling machines and pulse 
tube coolers and with simulations results from Sage. When an important assumption 
made in PROSA was duplicated the agreement with PROSA simulation results was also 
very good. 
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4. Numerical methods for finding periodic steady state 
solutions 

This chapter is on the theory, implementation and testing of a numerical method for 
finding periodic steady state solutions to models built using the modelling approach 
presented in chapter 3. 
 
This chapter begins with a definition of the numerical problem which must be solved to 
find periodic steady state solutions. This is followed by a discussion of different 
methods for solving such problems. In this discussion it is explained why shooting 
methods were found to be suitable. 
 
The following sections explains the theory of a single shooting method and a multiple 
shooting method for finding periodic steady state solutions. A method for reducing the 
dimension of the BVP which must be solved by shooting is discussed along with other 
methods for reducing the computational efforts needed to find solutions. It is also 
discussed how the shooting methods have been parallelised. 
 The section on the theory of the single and multiple shooting methods is 
followed by sections which describe the tests performed to compare the shooting 
methods. 
 
The next section is on the additional potential for parallelisation in batch jobs for the 
shooting methods. The chosen parallelisation approach is described and it is described 
how the implementation handles failed simulations. The possibility of letting the 
shooting methods manage the tolerance used in IVP solver based on the current 
accuracy of the shooting solution is also discussed. Numerical results are presented for 
the parallel batch method and the results are compared to the performance which was 
achieved without the specialised batch handling method. 
 

4.1. Problem definition 

The problem is to solve a BVP for a system of first order ODEs (or a system of DAEs) 
which can consist of both periodic variables, integral conditions, and a scaling 
condition. The solution must satisfy the conditions (17) described in section 3.2.8. Eq. 
(17) is repeated below for convenience: 
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A model built using the modelling approach presented in chapter 3 needs only contain 
ODEs. But one can imagine situations where algebraic equations are convenient or 
necessary for computing the right hand sides of the ODEs, i.e. where models will 
actually be DAEs. Consider systems of DAEs where: 

• The states in the model can be determined directly from py  and ic .  

• The algebraic equations have a unique solution for a given set of values in py , 

and ic . 
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If py  satisfies (17) then the states in the model will vary in a periodic fashion and the 

model will be in the same state at the beginning and the end of a periodic cycle. The 
algebraic variables will then automatically also satisfy periodic boundary conditions. 
 In the remainder of this chapter we consider only systems of ODEs. But the 
analysis should be extensible to DAEs of the type outlined here, where the algebraic 
equations can be considered as nothing more than an intermediary step in the evaluation 
of the right hand sides of the ODEs. 
 
As mentioned in section 3.2.8 the scaling condition is necessary in order to get a unique 
solution which corresponds to one specific amount of gas contained inside the gas 
domain of a model. The scaling condition can be formulated either explicitly in the 
mass of gas, or in a mean value for the pressure at a given location in the gas domain. 
 For a given model one group of periodic variables, such as the pressures or 

energy densities, eρ ⋅ , in the control volumes of the gas domain, can be expected to be 

more or less directly proportional to the mean pressure. Another group of periodic 
variables, such as the specific energies, e , or oscillating regenerator matrix 
temperatures, can be expected to depend only weakly on the mean pressure. 
 Consider a scenario where we have a solution which satisfies (17) at, say, 10 
MPa mean pressure. If we wish to compute a guess for a new solution with a similar 
temperature distribution at 11 MPa mean pressure then it makes sense to distinguish 
between the two groups of periodic variables. We could make a guess for the new 
solution by increasing the values of the periodic variables which are directly 
proportional to the mean pressure by 10 % and leave the remaining periodic variables 
and the wall temperatures unchanged. The scaling condition target value, SCTV , and 

the ODE for the scaling condition can be chosen so that ( )0 ,0; , 1.1s p iSCTV y t t y c+ ∆ =  

for this case. 
 

In the following treatment we collect all the periodic variables in the vector py  of length 

pN . We consider py  to be the concatenation of the two vectors s
py  and ns

py , where s
py  

contains the periodic variables which scale with the mean pressure and where ns
py  

contains the periodic variables which depend only weakly on the mean pressure. We 
denote the integration variables in the integral conditions for the wall temperatures as 

the vector iy  of length iN . Finally, we denote the integration variable for the scaling 

condition as sy . The total number of dynamic variables in the model, dynN , is then equal 

to 1p iN N+ + . 

 

To solve the BVP we must find the pN  initial values, ,0py , and the iN  parameters, ic , so 

that the corresponding solution to the IVP satisfies the 1p iN N+ +  equations in (17). 

 

4.2. Numerical methods for finding periodic steady state 
solutions 

For systems of ODEs, such as the ones produced by the modelling approach presented 
in chapter 3, there are several numerical methods which could be considered for finding 
periodic steady state solutions. Some of these methods are discussed below. 
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4.2.1. Integration to convergence, convergence acceleration, and 
extrapolation methods 

One approach could be to integrate the equation system forward in time using an IVP 
method so that the solution evolves towards the periodic steady state solution. This 
approach will be denoted as integration to convergence or fixed point iteration from 

hereon. This approach can be applied to py  in a model. 

 In the methods most basic form the final values from one cycle become the 
initial values of the next cycle. The approach can be enhanced by using the scaling 

condition to scale the final values of s
py  so that py  will approach the solution with the 

correct mean pressure. We can think of the integration and the scaling towards the mean 
pressure as a black box function. The input to this function is the initial values and the 
output is the scaled final values. We iterate the function to find a fixed point, i.e. a point 
where the output from the function is equal to the input to the function. 
 Using such a method for finding periodic steady state solutions has the 
advantage that any issues with discontinuous derivatives can be dealt with as events by 
the IVP solver used for integrating the equation system inside the black box function. 
 
One problem with integration to convergence is that solutions to models where the 
regenerator matrix temperatures are modelled as being dynamic, for instance using the 
lumped formulation (15), will evolve slowly and asymptotically towards periodic steady 
state. The simulation of several minutes running time for the simulated machine may be 

required in order for py  to get within the desired tolerance from a true periodic steady 

state solution. This can mean that a sequence of several thousand revolutions of the 
machine must be simulated in order to compute a single periodic steady state solution. 
 
Convergence acceleration 
The problem with the slow convergence was addressed by Kühl (1990) by using a 
specialised method to accelerate the convergence of the slowly evolving regenerator 
matrix temperatures towards their periodic steady state values. The remaining variables, 
which should converge much faster, were found by fixed point iteration. 
 The basis for the approach by Kühl is that at periodic steady state the cycle 
averaged rate of axial energy transport through a cross section of the regenerator should 
be independent of the axial position within the regenerator if there is no conduction 
from the outer walls of the regenerator canister. The approach by Kühl corrects the 
temperatures of the regenerator nodes so that the cycle averaged rates of energy 
transport between the nodes become more similar. 
 
Extrapolation methods 
Extrapolation methods, such as the ε -algorithm discussed by Skelboe (1977, 1980), are 
a more general approach for finding periodic steady state solutions to systems of ODEs. 
The ε -algorithm is a method for computing the limit of a series with exponentially 

decaying terms. The ε -algorithm could be applied either to all elements of py  or just to 

the slowly evolving elements such as the regenerator temperatures. 
 Each iteration of the ε -algorithm requires a few consecutive cycles to be 
simulated in the same way as consecutive cycles would be simulated for the integration 

to convergence method. The values of ,0py  after each cycle are stored. The ε -algorithm 
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then tries to extrapolate from the stored values to the value of ,0py  when all 

exponentially decaying terms have died out. 
 The ε -algorithm is not difficult to implement and it has been tested with some 

success for accelerating the convergence of py  for the Stirling machine model with a 

coarse spatial discretisation. The algorithm required on the order of 10 to 20 iterations 

to find values of ,0py  which satisfied the periodic boundary conditions in (17) with good 

accuracy. For the tested implementation of the ε -algorithm each iteration required the 
simulation of four cycles.  
 
Fulfilling the integral conditions 
The integration to convergence approach with or without convergence acceleration or 
extrapolation is not trivial to apply to models built with the modelling approach 
presented above. The main difficulty with respect to finding periodic steady state 

solutions is to find ic  so that the integral conditions are fulfilled. The wall temperatures 

in ic  depend on the heat transfer between the surface segments and the working gas, 

and the wall temperatures can be strongly coupled due to the heat conduction between 
the control masses. 
 

An intuitive approach to iterating for ic  is to divide the net energy accumulation in each 

control mass during a cycle with the heat capacities of the respective control masses. 
This approach produces estimates for the changes of the temperatures of the control 
masses during each cycle. These temperature changes could then be added to the current 
values of the wall temperatures in order to produce a new guess for the wall 
temperatures. 
 This approach has some similarities to solving a coupled system of ODEs from a 
lumped formulation for the wall temperatures using an explicit Euler method with a step 
size equal to the cycle period t∆ . Unfortunately, this approach can be unstable. 
 If any wall temperatures are not coupled then one can also think of the 
difficulties with achieving convergence in terms of the condition for convergence in 
fixed point iteration. If the absolute value of the derivative of the output from the black 
box function with respect to the input is too large (larger than 1), then the fixed point 
iteration will not converge. 
  
Commiso (1994) concluded that in order to have a general method for fulfilling integral 
conditions in Stirling machine models one would need to wrap the integration to 
convergence method in an outer iteration loop that solves the integral conditions. In 
every iteration of the outer loop one would need to compute at least one periodic steady 

state solution corresponding to the current guess for ic  using the integration to 

convergence method. If the outer iteration loop is a Newton-Raphson type solver, which 

requires a Jacobian matrix for the integral conditions, then 1iN +  periodic steady state 

solutions would have to be computed in order to compute a Jacobian matrix by one-
sided numerical differencing. The integral conditions would then increase the cost of 

finding a periodic steady state solution by a factor of at least iN . 

 
Other methods, which require less computational effort than the approach suggested by 
Commiso (1994), but are still stable enough for practical use, could possibly be 
developed for fulfilling the integral conditions. 
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 One such approach, which is similar to the approach suggested by Commiso, is 
to compute a Jacobian matrix for the integral conditions from transient cycles. Such a 
Jacobian matrix can then be used after each transient cycle to solve for the changes in 
wall temperatures which would eliminate the residuals in the integral conditions 
produced by the transient cycle. When the equation system has sufficiently benign 
properties the Jacobian matrix could be recycled for many or all of the transient 
simulations needed to find a periodic steady state solution using integration to 
convergence (with or without acceleration towards periodic steady state). This approach 
reduces the cost of computing the Jacobian for the integral conditions from finding 

1iN +  periodic steady state solutions to simulating 1iN +  cycles. 

 It is also possible that an approach which does not require a Jacobian matrix for 
the integral conditions could be developed. The approach would have to remain stable 
even for strongly coupled wall temperatures, such as the wall temperatures in an axially 
discretised heat exchanger made from copper. Also the approach would have to be 
general enough to handle, for instance, regenerator wall segments which interact both 
convectively with the gas, through conduction with a regenerator matrix with oscillating 
temperatures, and with the neighbouring wall segments. Such a method could be very 
attractive for finding periodic steady state solutions to models with many integral 
conditions where the efforts required to find periodic steady state solutions with other 
methods would be unacceptable. No attempts at deriving or implementing such an 
approach have been made in this work. 
 
Another alternative would be to abandon the use of integral conditions for the wall 
temperatures altogether so that the ε -algorithm could be used for finding periodic 
steady state solutions. This approach has also not been pursued in this work. 
 

4.2.2. Finite difference methods 

Finite difference methods can also be applied for finding solutions to the boundary 
value problem (17). The general reference for what follows is Commiso (1994). 
 
To apply the finite difference method the cycle would be discretised on a mesh with a 

number of time points. Each mesh point would correspond to one set of values for y . 

The derivatives of the ODEs at the mesh points would be approximated by finite 

differences involving the values of y  at the neighbouring mesh points. For the periodic 

variables one could choose to apply a finite difference method similar to the method 
used in Sage by Gedeon (1994) which approximates the solution with harmonics. 
 The complete finite difference equation system could be formulated so that it 
included the conditions (17) for a periodic steady state solution. The approach would 
thus produce one large system of non-linear equations. The number of equations would 

be approximately proportional to dynN  and to the number of time points in the finite 

difference mesh. When the large system of finite difference equations was solved it 

would produce the complete solution to the problem including ic  and the values of y  at 

all the mesh points. 
 
An advantage of using a finite difference method would be that stability could be 
obtained for a very coarse temporal discretisation (Commiso, 1994). This would enable 
fast computation of coarse periodic steady state solutions. This advantage was one of 
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the original motivations for using such a method in the GLIMPS code by Gedeon 
(1986). 
 
Dealing with discontinuous derivatives when using the finite difference method is not 
trivial. Ideally one should place mesh points at each discontinuity and use one sided 
differences on both sides of each discontinuity. If the positions of the discontinuities in 
the cycle changed during the iterations on the finite difference equation system then the 
mesh should be changed to reflect this. This would be the case, for instance, when the 
Stirling machine model from section 3.4 was used for modelling free piston machines 
such as the Twinbird Stirling cooler. In this case it would be the motion of the displacer 
relative to the cylinder wall which would determine the locations of the discontinuities. 
The motion of the displacer would not be precisely known until the solution had 
converged. 
 Due to the difficulties in dealing with discontinuous derivatives Commiso 
(1994) chose to ignore their presence and just used equidistant mesh points when using 
the finite difference method.  
 When discontinuous derivatives are present it could sometimes be completely 
acceptable to ignore them if the errors due to the coarseness of the spatial discretisation 
dominate over the integration errors anyway. This, of course, requires that convergence 
in the finite difference equation system can be achieved in spite of the unhandled 
discontinuities. 
 Some models may not contain any significant discontinuities in the derivatives 
of the equations. In such cases finite difference methods appear to be attractive. 
 
The finite difference method could become very computationally intensive if highly 
accurate solutions are needed. When a fine spatial discretisation and a large number of 
temporal mesh points are needed then the non-linear system of finite difference 
equations becomes very large.  
 The periodic steady state solution found to the 4th refinement from Table 1 of the 
spatial discretisation for the Stirling machine model, for example, had 2704 ODEs and 
integration of one periodic steady state cycle required approximately 3300 time steps. If 
we assume that a similar discretisation was used with a finite difference method then the 
finite difference equation system would contain on the order of magnitude 9 million 
non-linear equations. A quick estimate indicated that the Jacobian matrix for such a 
non-linear system of equations would contain more than 560 million non-zero entries if 
the discretisation was made using a 4th order divided differences approach. Using a 
sparse matrix technique each element would typically require 12 bytes of storage. The 
(non-LU-decomposed) Jacobian would hence require roughly 6.5 GB of storage. It 
appears to be a daunting task to LU-decompose such a matrix on a present day personal 
computer. 
 

4.2.3. Shooting methods 

The basic idea of the single shooting method is to solve the equations for the boundary 
conditions just as one would solve any other system of non-linear residual equations. 

 The solution to the equation system is a set of initial values, ,0py , and a set of 

parameter values ic . Evaluating the residuals of the equation system for the boundary 

conditions requires one entire cycle to be integrated. An iterative equation solver will be 
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applied to find a set of values for ,0py  and ic  so that the final values of the integration 

process result in zero residuals for the equation system.  
 
If one imagines plotting curves for the integration variables while the IVP solver 
progresses through the integration interval during the solution process, then it is not 
hard to imagine how the method got its name. An imaginary example of such a set of 
“tracer” curves generated by a single shooting method is shown in Fig. 38. The shooting 
method will continue to shoot until it has a solution corresponding to “a perfect 
broadside” where all integration variables simultaneously hit their targets at the end of 
the integration interval. 
 

 
Fig. 38. Illustration of the single shooting method. 

 
One cannot use a standard Newton-Raphson solver to solve (17) because the number of 
equations is one higher than the number of variables which we solve for. The additional 
equation can be dealt with by introducing an additional variable, a scaling factor, and 
this will be discussed below. 
 
For some types of boundary value problems the shooting method can be unreliable. This 
is the case for problems where the integrations of the cycle can easily fail if the initial 
values and parameter values lead to an unfortunate integration path. 
 One example of such a problem could be diffusion of gaseous components into a 
catalyst pill where some of the components are consumed. The concentration 
distributions of the components could be computed by integrating a suitable system of 
ODEs from the surface of the pill towards the centre of the pill. To find the steady state 
concentration distributions one could try to guess the correct concentration gradients at 
the surface of the catalyst pill which would lead to vanishing gradients at the centre of 
the pill. But if the shooting method makes a guess with too steep a gradient at the 
surface of the pill then a concentration could well become negative during the 
integration process even though negative concentrations are physically impossible. 
Negative concentrations could make it impossible to compute the right hand sides of the 
ODEs and thereby make an integration fail (Andersen, 2003). 
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 Such problems, however, are not relevant for models built using the modelling 
approach presented above. The properties of the equation systems for the models are 
such that unfortunate initial values may cause fast transients and different types of 
shocks and discontinuities. But the fast transients and shocks will dissipate and will not 
make integrations impossible. 
 
A number of variants of shooting methods exist. In multiple shooting methods the 
integration interval is cut into multiple sub-intervals. The splitting of the cycle into sub-
intervals means that additional equations for the continuity of the solution across the 
cuts are needed. The concept of multiple shooting is illustrated in Fig. 39. Both single 
and multiple shooting methods can be applied for finding periodic steady state 
solutions. 
 Some variants of multiple shooting integrate in different directions in different 
sub-intervals. But the properties of the models considered here are such that solutions 
are unstable if integrated backwards in time and hence this is not an option. 
 

 
Fig. 39. Illustration of the multiple shooting method. 

 
One advantage of the multiple shooting method over the single shooting method can be 
increased reliability for problems where integrations can easily fail. In such cases the 
subdivision of the cycle can help because the integration path through the cycle 
becomes less sensitive to individual initial values. 
 
The splitting of the cycle into sub-intervals can also have advantages if the shooting 
method is parallelised. 
 For the models considered here it is so that almost all of the computational effort 
needed to perform single or multiple shooting is spent in the IVP solver which is used 
for integrating the model. Each residual update requires the entire cycle to be integrated 
once and each Jacobian update requires a larger number of integrations; the exact 

t 

to to+∆t 

y 

SCTV 

yp 

yi 

ys 

t1 t2 

∆t0 ∆t1 ∆t2 

Residual for a 

periodic variable 

Residual for the 

scaling condition 

Residual for an 

integral condition 

it t∆ = ∆∑  

Residual for continuity 
residual 



4. Numerical methods for finding periodic steady state solutions 

4.2. Numerical methods for finding periodic steady state solutions 115 

number depends on the assumptions which can be made about the equations. The 
simulations needed for a Jacobian update are independent of each other and can be 
performed in parallel for both single and multiple shooting. For multiple shooting the 
integrations of the sub-intervals during a residual update can also be done in parallel. 
 The independent integrations each represent a relatively significant amount of 
computational work. This means that the shooting methods can be parallelised in a 
coarse grained way suitable for distributed memory platforms (clusters) by distributing 
the independent integrations between multiple processors. 
 
For shooting methods discontinuous derivatives can be dealt with as events by the IVP 
solver used for integrating the equation system.  
 
Shooting methods, just as finite difference methods, become cumbersome for finding 
periodic steady state solutions when fine discretisations are needed. For the shooting 
methods it turns out to be the cost of updating the Jacobian matrix which becomes 
dominant when the number of dynamic variables in a model increases. For both the 
single and multiple shooting methods the number of cycles which must be integrated in 
order to update a Jacobian is roughly proportional to the number of dynamic variables. 
The cost of performing each of the integrations, of course, also increases with the 
number of variables. 
 One positive aspect, however, is that the potential for parallelisation of Jacobian 
updates also increases with the number of dynamic variables. Another positive aspect is 
that the memory requirement is significantly smaller than for the finite difference 
method. When single shooting was performed for the 4th refinement from Table 1 of the 
spatial discretisation for the Stirling machine model the LU-decomposed Jacobian for 
the shooting method required only 37 MB of memory. For the second refinement of the 
spatial discretisation the Jacobian required only 2.6 MB of memory which is 
insignificant on a present day computer. Even though additional memory was required 
by the IVP solver and the OESI the memory requirements were still very manageable. 
 

4.2.4. Choice of method 

Convergence acceleration or extrapolation methods appear to be the methods which 
could be most attractive when the number of dynamic variables in models are very 
large. Unfortunately, no cheap and stable way to solve integral conditions for constant 
wall temperatures has been found for these methods and therefore the methods do not 
appear suitable for the models at hand. 
 
For the sizes of equation systems, which have been typical for the models used in this 
work, both finite difference methods and shooting methods appear to be attractive. A 
common feature of these methods is that they completely eliminate the slow asymptotic 
evolution of an IVP and instead offer the rate of convergence for a solution process for a 
non-linear equation system. 
 Previous work by Commiso (1994) showed that shooting methods can be 
competitive for finding periodic steady state solutions to models of Stirling machines. It 
is also attractive properties of shooting methods that discontinuous derivatives are 
uncomplicated to handle, and that the shooting methods can be parallelised with a 
coarse granularity suitable for execution on distributed memory platforms. 
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In this work it was chosen to focus on shooting methods. Significant efforts have been 
dedicated to parallelise and refine shooting methods. Finite difference methods have not 
been studied further. 
 

4.3. Single and multiple shooting methods 

4.3.1. Formulation for the single shooting method 

To define a single shooting method we reformulate the conditions (17) for periodic 

steady state for ,0py  and ic  as a slightly modified system of residual equations. By 

introducing a scaling factor, λ , as an additional variable we can write the modified 
system of residual equations as: 
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The last term in the residual equations for ,0
s
py  is a penalty factor that forces λ  towards 

a value of one. We choose to solve this system of 1p iN N+ +  equations for the 

p iN N+  values in ,0py  and ic  using a modified Newton-Raphson method. 

 We denote the Jacobian matrix for the equation system (22) as sJ  and the 

residuals of (22) as sr . Due to the complexity of the models that must be handled by the 

shooting method sJ  cannot be calculated analytically and must be calculated by 

numerical differencing. This means that we must perform, at least, one integration of the 

model in order to evaluate a column in sJ . When we compute sJ  we set 1λ =  as it will 

be for the solutions we seek. 

 In the iterations of the modified Newton-Raphson method we set 1λ =  and then 
solve a linear system and correct our guess for the solution as: 
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The modification of the Newton-Raphson method is, hence, that we keep setting 1λ =  

and thereby ignore λ∆ . 
 

4.3.2. Formulation for the multiple shooting method 

In the single shooting method defined above we shoot across an entire cycle. As 
mentioned above we can extend the single shooting method to a multiple shooting 
method by slicing the cycle into multiple sub-intervals as shown in Fig. 39. Additional 
equations for the continuity of the solution are then needed. 
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 To define a multiple shooting method we introduce cuts at ipN  internal points. If 

we choose to number the resulting 1ipN +  intervals from 0  to ipN  and label the 

variables belonging to interval j  with subscript ( )j , then we can write the complete 

system of residual equations for the multiple shooting method as: 
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 (24) 

 

We denote the Jacobian matrix for the equation system (24) as msJ  and the residuals of 

(24) as msr . In the multiple shooting method we also choose to solve our residual 

equation system of ( )1ip p iN N N⋅ + +  equations for the ( )1 1ip p iN N N⋅ + + −  values in  

( )0 , ,0py , ic , and ( ),0 , 1..j ipy j N=  using a modified Newton-Raphson method. In the 

modified Newton-Raphson iterations of the multiple shooting method we also keep 

setting 1λ =  and we solve a linear system and correct our guess for the solution as: 
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 (25) 

 

When the equations are ordered as in (24) then the sparse structure of msJ  takes the 

form (26) where I  is the identity matrix and the X  symbols mark other non-zero 

entries: 
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4.3.3. Reducing the dimension of the boundary value problem with 
single shooting 

For the single shooting method we can sometimes use insight into the different time 
scales of the physical phenomena being modelled to reduce the dimension of the BVP 
handled by the shooting method. 
 
For some models it is so, that when a simulation is started as an initial value problem 
then the velocity and pressure distributions will very quickly reach a sort of equilibrium 
with the remainder of the solution. 
 An example of this can be observed when a simulation of a Stirling machine is 
performed as an initial value problem. In such a simulation the pressure and velocity 
distributions may undergo fast initial transients but they will very quickly decay onto 
distributions which are given more or less by the movement of the pistons and the flow 
friction in the heat exchangers and the regenerator. The initial fast transients will 
typically last only a small fraction of the cycle period. Other variables, such as the 
regenerator matrix temperatures, will evolve much more slowly. 
 When such a difference in the time scales of the periodic variables exists it is 
possible to exclude the fastest components of the solution from the single shooting 
method. The idea is then to apply the shooting method only to the integral conditions 

and the slowly evolving components of py , such as the regenerator matrix temperatures 

and the gas temperatures, and to perform fixed point iteration on the excluded rapidly 

evolving components of py . 

 
If we choose to exclude the variables which behave like pressures and velocities from 
the single shooting method then we must also remove the equations corresponding to 

the excluded variables and sy  from (22). We then perform fixed point iteration on the 

excluded variables by changing the corrections for py  in the modified Newton-Raphson 

iterations in (23) as follows: 
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By reducing the number of variables included in the shooting method the effort needed 

to compute sJ  is reduced. 

 
It has been observed that the convergence of shooting methods suffers significantly if 
both the pressures and velocities are excluded when finding periodic steady state 
solutions to models of pulse tube coolers. This could be because pressure transients take 
somewhat longer to equalise across the inertance tube. For models of pulse tube coolers 
it appears to be optimal to exclude only the velocities from the shooting. 
 
Unfortunately, there appears to be no obvious way to extend the method described here 
for reducing the dimension of the BVP to the multiple shooting method. The problem is 
that there appears to be no efficient way to perform fixed point iteration on the excluded 
variables simultaneously in multiple intervals. 
 

4.3.4. Comparison of work for shooting methods 

The shooting methods described above require the entire cycle of length t∆  to be 
integrated in order to update the residuals. But the total amounts of running time of the 
simulated machine that must be integrated in order to compute a Jacobian matrix differ 
for the methods. 
 
If we calculate the elements of the Jacobian using one sided differences and if we 
already know the current residuals, then we need to integrate the entire cycle 

1p iN N+ +  times in order to compute sJ  for the single shooting method. If we reduce 

the dimension of the boundary value problem by omitting the variables which behave 
like pressures and velocities then we reduce the required number of integrations by the 

number of pressures and velocities plus one; the plus one comes from λ  which is not 
used in the shooting method when the pressures are excluded. 
 

Determining the number of integrations required to calculate msJ  for the multiple 

shooting method is slightly more complex.  
 Calculating the non-zero elements corresponding to the X  symbols in (26) 

requires ( ) ( ) ( )1 1 1ip p i ip iN N N N N+ ⋅ + + + ⋅ +  integrations of sub-intervals. The term 

( ) ( )1 1ip p iN N N+ ⋅ + +  is the effort needed to integrate the entire cycle 1p iN N+ +  

times, and it corresponds to the effort needed to compute sJ . The term ( )1ip iN N⋅ +  

comes from the continuity equations for the integral conditions and the scaling 
condition at the internal points, and it represents an overhead relative to the effort 

needed to compute sJ . 

 For some models the overhead corresponding to the term ( )1ip iN N⋅ +  can be 

fully or partially avoided. If the values of iy  and sy  do not affect py  during an 

integration then ( )1ip iN N⋅ +  perturbations of iy  and sy  at the internal points in the 

cycle can be omitted during updates of msJ . Any changes in the initial values of iy  and 

sy  in a sub-interval will then transfer directly to the final values of iy  and sy  in the same 

sub-interval. The corresponding elements of unit magnitude can be inserted directly in 

msJ . 
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 Here it has been chosen to skip the perturbations of iy  and sy  only at the first 

1ipN −  internal points so that the effects of structural heat conduction calculations, 

which change the values of iy  after integration of the last sub-interval (interval number 

ipN ), can be included in the Jacobian matrix. 

 
Even when the total machine running time that must be integrated is approximately the 

same for Jacobian updates in the single and multiple shooting methods, msJ  can still be 

more costly to evaluate than sJ  because of the increased number of simulation start ups. 

 At the beginning of each integration there can be a fast transient in the pressure 
and velocity distributions. During such a transient the IVP solver will take very small 
steps. The transient will hence increase the needed number of steps pr. integration and 
hence the computational effort. In practice, the perturbing during a Jacobian update of 
variables which behave like pressures also induces fast transients. 
 There can also be a minor overhead due to restarting the IVP solver and its step 
size control algorithm. 
 

4.3.5. Reducing computational work 

Fast transients at the beginning of integrations will cause an overhead when sJ  or msJ  

are updated. This overhead can be especially significant when sJ  and, in particular, msJ  

are computed from a solution with poor initial guess for the pressure distribution so that 
every integration begins with a large fast transient. 
 
Smoothing runs 
The overhead from fast transients can be reduced by filtering the major fast transients 
from the current guess for the solution before updating a Jacobian. The filtering can be 
performed by simulating all sub-intervals in the cycle once and then cyclically shifting 
the final values to be new initial values in the following way: 
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Such simulations will be denoted as smoothing runs from hereon.  
 
Smoothing runs which scale the solution 
Smoothing runs can also be applied to filter fast transients from the initial guess for the 
solution before the shooting method is applied. In that context the smoothing runs can 

be extended so that they also help to scale s
py  to the correct level before the shooting 

method is applied. This can be done by modifying (28) to the form (29): 
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Recycling of shooting Jacobians 
When iterating the shooting method it is usually possible to recycle the Jacobian matrix 
for multiple iterations, and sometimes even between multiple solutions to the same 
model, if convergence remains satisfactory.  
 A robust criterion for the recycling of Jacobian matrices is needed. Here it has 

been chosen to base the criterion on the 2L -norms of four groups of residuals: pres , 

ires , sres , and ( ),  1..j ipres j N= . When none of the four 2L -norms have decreased better 

than a threshold value in either of the last two iterations then the Jacobian matrix is 
updated. This requirement is not very strict and it leaves the possibility that the solution 
can get stuck or diverge at some point during the iterations with the individual residuals 
norms alternately increasing and decreasing in such a way that the Jacobian matrix is 
not updated. To rule out this possibility the maximum residual is continuously 
monitored and if it has not decreased in 10 iterations then the Jacobian is updated. 
 When the Jacobian matrix for the shooting method must be updated the current 
guess for the solution is rolled back to the solution which produced the smallest 
maximum residual since the last Jacobian update. This solution is then filtered with a 
smoothing run before computing the Jacobian. 
 

4.3.6. Parallelisation of shooting methods 

When the shooting methods discussed above were applied to models of Stirling 
machines and pulse tube coolers nearly all the CPU-time needed by the methods was 
spent in the IVP method used for integrating the model. Hence the efforts to parallelise 
the shooting methods were concentrated on the parts of the methods that require 
simulations to be performed: Performing smoothing runs, calculating residuals, and 
updating Jacobians.  
 
For both the single and multiple shooting methods one integration of all sub-intervals in 
the cycle is needed to update the residuals or to perform a smoothing run as shown in 
(28) and (29). Hence the shooting methods use of the IVP solver was encapsulated in 

two subroutines: A subroutine that computes ( ) ( ),  0..j j j ipy t t j N+ ∆ =  and a subroutine 

that computes sJ  or msJ . Parallel and sequential versions were made of these two 

subroutines. 
 
The two subroutines that perform integrations for the shooting methods can be thought 
of as being parallelised with two different levels of granularity. 
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 At the fine grained level the IVP method was parallelised to use multi-threading 
as discussed in section 3.3.6. The implemented multi-threading can only be used on a 
shared memory platform with an OpenMP compliant compiler. As demonstrated in 
3.6.2 the maximum speedup which can be achieved by multi-threading is significant but 
somewhat limited for the relevant size of equation systems. 
 At a much coarser level of granularity the two subroutines have been parallelised 
by making them distribute independent integrations of sub-intervals between multiple 
processes. The communication between the processes has been implemented using the 
Message Passing Interface, MPI.  
 In the remainder of this chapter we consider only the coarse level parallelisation. 
 
Throughout this chapter a clear distinction is made between jobs and tasks: 

• A job corresponds to one solution to the BVP. 

• A task corresponds to the integration of one sub-interval for the shooting 
method. 

Example: The batch job, which was used to validate the Stirling machine model against 
experimental data for the SM5 engine in section 3.9.1, contained 28 jobs and each 
individual job required a number of tasks to be performed in order to find the solution 
using a shooting method. 
 
For the parallelised subroutine, which integrates all sub-intervals in the cycle, the 
number of tasks which can be distributed between different processes is equal to 

1ipN + . This subroutine can hence only achieve a parallel speedup if 0ipN > . 

 For the subroutine which updates the Jacobian the number of tasks which can be 
distributed increases as a function of both ipN  and of the number of variables in the 

model. The exact number of tasks which can be distributed also depends on the 
assumptions which can be made about the equation system as discussed in section 4.3.4. 
In general the subroutine which updates Jacobians for the shooting methods will always 
have a number of tasks which can be performed in parallel. 
 For both of the subroutines the number of tasks which can be distributed 

increases with ipN  and therefore the achievable speedup from parallelisation should also 

increase with ipN . 

 
The parallelisation of the two subroutines was done using the pool of tasks paradigm 
(Wilkinson and Allen, 1999). With this paradigm one master process tries to keep a 
number of worker processes busy by distributing independent tasks to idle processes 
until all tasks in the pool of tasks is complete. 
 The pool of tasks approach is advantageous because it allows the worker 
processes to work independently and asynchronously. This means the parallel program 
can be relatively insensitive to inhomogeneities in the parallel computing environment. 
Such inhomogeneities can be processors running at different speeds, communication 
between processors running at different speeds, or it could be some processors being 
slightly loaded with other work. The main disadvantage of the pool of tasks approach, 
when it is possible to apply it, is that all communication goes through the master 
process. If the communication is excessive the master can become a bottleneck. 
 In the implementation, which is tested below, it was the process running the 
shooting algorithm that acted as the master process. The independent tasks were the 
integrations of (sub-intervals of) the cycle. The worker processes performed no other 
services than integrations. 
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4.4. Overview of tests 

The shooting methods described above were first implemented and tested early in this 
work. At that time the modelling formulation used in this work for modelling Stirling 
machines was significantly less refined than the approach described in chapter 3. The 
most important difference in this context turns out to be that the momentum balance had 
been simplified by neglecting the inertia of the gas. When the modelling approach was 
refined to include the inertia of the gas in the momentum equation the performance of 
the multiple shooting methods changed significantly. 
 
The emphasis in the tests presented here are on the performance of the shooting 
methods for a model like the Stirling machine model described in section 3.4, i.e. the 
performance for models which include the full momentum balance. But tests, where the 
shooting methods were applied to a model with a simplified momentum balance, have 
been included in order to illustrate the impact on the performance of the shooting 
methods from including the inertia of the gas. 
 
The tests performed on the single and multiple shooting methods can be categorised in 
the following way:  
 

1. Tests on a model with a simplified momentum balance. The purposes of these 
tests were to illustrate: 1) the performance of the shooting methods for a model 
where the momentum balance has been simplified by neglecting the inertia of 
the gas, and 2) the performance of the parallel methods on a cluster with a slow 
interconnect between the nodes. The computational overhead from using 
multiple shooting instead of single shooting was studied. The scalabilities of the 
parallel sections and of the different shooting methods were studied. 

2. Tests on a model with a complete momentum balance. The purpose of these 
tests was to illustrate the performance of the shooting methods for a Stirling 
machine model very similar to the model described in section 3.4. The shooting 
methods and the integration to convergence method were profiled in sequential 
runs. The scalabilities of the shooting methods up to 33 processors were 
measured on a shared memory computer. 

 
The parallel scalabilities of the tested methods were assessed in terms of the absolute 
speedups that were achieved when the methods used multiple processors. The absolute 
speedup was defined as the sequential running time divided by the parallel running time. 
 The parallel and sequential methods were compared on basis of the relative 
speedups. The relative speedup achieved in a given experiment was defined as the 
sequential running time of the fastest sequential method divided by the running time in 
the given experiment. 
 
The individual tests and the results are described in the sections that follow. 
 

4.5. Tests on a model with a simplified momentum equation 

The tests described here are intended to illustrate for a model with a simplified 
momentum balance: 
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• The overhead from splitting the cycle into multiple intervals when integrating 
the entire cycle on and when updating a Jacobian matrix for the shooting 
method. 

• The scalabilities of the parallelised subroutines of the shooting methods on a 
distributed memory platform with a 100 Mbit/s Ethernet interconnect. 

• The relative scalabilities of the single and multiple shooting methods on a 
distributed memory platform. 

 

4.5.1. Method 

 
The model and the spatial discretisation 
A model of the SM5 engine was used for the tests. The model was based on the methods 
described in the accompanying Paper A. The model was significantly different from the 
Stirling machine model described in section 3.4. The primary differences from the 
model described in section 3.4 were: 

• The inertia of the gas was neglected. The instantaneous mass flow rates between 
the control volumes in the spatial discretisation were calculated from the 
instantaneous pressure differences between the control volumes. Because of this 
there were no ODEs for the momentum balance. 

• The appendix gap was not included in the model.  

• The inner wall temperatures in some of the heat exchangers were prescribed 
explicitly so that there were no integral conditions for the inner wall 
temperatures. The walls of the regenerator canister were not accounted for; only 
the regenerator matrix was modelled. These simplifications led to fewer integral 
conditions. 

• The model used masses and energies directly as integration variables for the 
governing equations. 

 
In the tests the spatial discretisation in the model contained 61 control volumes. This 

discretisation resulted in 151pN =  and 16iN =  corresponding to a total of 168 

variables in the IVP. 
 
The platform 
For these tests a computer cafe at the Technical University of Denmark was used as a 
non-dedicated cluster. The computer cafe contained 14 Dell Optiplex PCs equipped 
with 1.4 GHz Intel Pentium 4 processors with 512 KB Level 2 cache and 512 MB 
RAM. The PCs were connected via 100 Mbit/s Ethernet and were running the Microsoft 
Windows 2000 Professional operating system. In order to use the computer room as a 
cluster the NT-MPICH (LfBS RWTH Aachen, 2002) open source implementation of 
MPI was installed after being slightly modified to accommodate the security 
requirements of the computer room. 
 
The test jobs 
Two different test runs were used: 

• Jacobian update: These test runs were started from periodic steady state 
solutions. One residual update was performed, the Jacobian was then updated 
and LU-decomposed, and a single iteration was performed. 
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• 7 MPa to 8 MPa: These experiments were started from a periodic steady state 
solution with 7 MPa mean pressure, and with a precalculated Jacobian matrix. 
The precalculated Jacobian matrix was used for finding a new solution at 8 MPa 
mean pressure. The Jacobian was not updated in these tests and the only 
integrations performed were integrations of the entire cycle. 

 
The tests 
First both test jobs were completed sequentially for the single shooting method and for 
the multiple shooting method with the cycle divided into 2, 5, 10, 20, 50, 100, 200, and 
500 sub-intervals. No variables were excluded from the shooting. 
 From these experiments the times required to update the Jacobian matrix 
and the average time to simulate one cycle were recorded. The number of iterations 
needed for the test job 7 MPa to 8 MPa were also recorded. The timings recorded in the 
experiments were divided by the timings recorded for the single shooting method so 
that, for instance, a ratio of 1.1 meant that there was a 10 % overhead relative to the 
single shooting method. 
 
The test jobs were then completed in parallel for the single shooting method and for the 
multiple shooting method with 100 sub-intervals in the cycle. 2 to 14 processors were 
used in the parallel tests. On the PCs it was possible to run multiple MPI processes with 
different priorities on the same processor. This feature was used to run both the master 
process and a worker process with a lower priority on the same processor. In this way 
the processor running the master process could be fully utilised.  
 
The numbers of tasks in a simulation of a cycle and in a Jacobian update are 
summarised in Table 9 for the single shooting method and the multiple shooting method 
with 100 sub-intervals in the cycle. 
 

Name of method Variables excluded Nip Tasks in simulation Tasks in a 

  from shooting   of a cycle Jacobian update 

Single shooting None 0 1 168 

Multiple shooting, 100 int. None 99 100 16817 

Table 9. Parallel characteristics of methods included in the numerical tests on a model with a 
simplified momentum balance. 

 
From these experiments the total running time and the time spent in the parallel sections 
was recorded. The absolute speedups for the parallel sections and the relative speedups 
for the methods were computed from the recorded timings. 
 
Solver settings 
The semi implicit GERK scheme of order three by Thomsen (2002) was used for 
integrating the model. A relative tolerance of 710−  was used for the error pr. step taken 
by the GERK method, and a relative residual tolerance of 1110−  was used by the 
Newton-Raphson solver at the stages of the GERK method. 
 

4.5.2. Numerical results and discussion 

Fig. 40 shows the measured overhead for simulations of an entire cycle and for updates 
of the Jacobian matrix for the shooting method with 1 to 500 sub-intervals in the cycle. 
The figure shows that the overhead for both integration of a cycle and for Jacobian 
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updates appeared to be approximately proportional to the number of sub-intervals in the 
cycle.  The figure also shows that the overhead was insignificant for less than 20 sub-
intervals. 
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Fig. 40. Overhead from subdivisions of the cycle for a model with a simplified momentum equation. 

 
Table 10 shows that the number of iterations needed in the 7 MPa to 8 MPa test job 
varied between three and five for all the tested shooting methods. Table 10 does not 
appear to show any strong and consistent dependence of the speed of convergence on 
the number of sub-intervals in the cycle. 
 

Number of sub intervals 1 2 5 10 20 50 100 200 500

Shooting iterations 7 to 8 MPa 3 4 3 3 5 3 4 4 4  
Table 10: Number of iterations needed by the shooting methods for the test job 7 MPa to 8 MPa. 

 
Fig. 41 shows the absolute speedups achieved for the parallel sections for the single 
shooting method and for multiple shooting with 100 sub-intervals in the cycle. The 
figure shows that the parallel sections scaled very well with the number of processors. 
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Fig. 41. Absolute speedups for parallel sections for the single shooting method and the multiple 

shooting method with 100 intervals in the cycle. 

 
By correlating with Table 9 it can be seen that the scalabilities of the parallel sections 
increased with the number of tasks in each parallel section. This indicates that, as 
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expected, the load balancing between the processors improved with the number of tasks 
that could be distributed. 
 
The almost perfect scaling of the Jacobian update for the multiple shooting method with 
100 sub-intervals in the cycle showed that the communications overhead was minimal 
during the test. 
 The integrations of sub-intervals of the cycle required 0.5 seconds of CPU time 
on average. When using 14 processors this meant that every second the master process 
had to receive approximately 28 messages with results and send approximately 28 
messages with new jobs. The messages contained a number of floating point values 
close to the number of dynamic variables in the model and a few additional flags and 
settings; the largest messages were less than 2 kB in size. 56 messages of 2 kB size 
every second corresponds to a bandwidth need of only approximately 0.9 MBit/s for the 
master process. The results show that the 100 Mbit/s interconnect was perfectly 
adequate for handling such a low communications load. The low communications load 
was due to the coarse grained parallelisation of the shooting methods. 
 
Fig. 42 shows a comparison of the relative speedups achieved for the single shooting 
method and the multiple shooting method with 100 sub-intervals in the cycle for the two 
test jobs described in section 4.5. Since the single shooting method was the fastest 
sequential method for both test jobs the results for single shooting have been used as 
numerator when computing the relative speedups. 
 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Dell Optiplex 1.4 GHz PCs [-]

R
e

la
ti

v
e

 s
p

e
e

d
u

p
 [

-]

SS Jac. update

SS 7 MPa to 8 MPa

MS 100 int. Jac. update

MS 100 int. 7 MPa to 8 MPa

 
Fig. 42. Comparison of single shooting and multiple shooting with 100 intervals for a model with a 

simplified momentum balance for the two test jobs described in section 4.5.1. 

 
Fig. 42 shows that the optimal choice of method depended both on the test problem and 
on the number of processors. For the test job, which consisted mainly of a Jacobian 
update, the single shooting method was always preferable. For the test job, which 
consisted of iterations, the multiple shooting method with 100 intervals in the cycle was 
fastest when 3 or more processors were used. 
 

4.5.3. Conclusions 

In the tests where the shooting methods were applied to the model with a simplified 
momentum balance it was found that: 
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• The division of the cycle into sub-intervals caused an overhead when the entire 
cycle was integrated and when the Jacobian matrix was updated. The overhead 
was insignificant if 20 or less intervals were used. With 100 sub-intervals the 
overhead varied between 10 and 35 %. 

• There was no strong and consistent dependence of the speed of convergence on 
the number of sub-intervals in the cycle. 

• The parallelised subroutines scaled very well with the number of processors on a 
cluster where the PCs were connected using 100 Mbit/s Ethernet. The results 
indicated that the communications overhead was minimal. This indicates that the 
coarse grained parallelisation of the shooting methods is suitable for distributed 
memory platforms. 

• The optimal choice of method depended on the balance between the time spent 
on integrating the entire cycle and the time spent on Jacobian updates in the 
problem to be solved. If the majority of the time was spent on Jacobian updates 
then the single shooting method was preferable because the method had minimal 
overhead and already scaled well to a moderate number of processors. If a 
significant fraction of the time was spent on iterations, i.e. on integrating the 
entire cycle, then the multiple shooting methods were competitive. 

 

4.6. Tests on a model with a full momentum equation 

The tests described here are intended to illustrate the performance and scalabilities of 
the shooting methods for finding periodic steady state solutions to a model with a 
complete momentum balance. 
 

4.6.1. Method 

 
The model and the spatial discretisation 
The shooting methods were tested using a Stirling machine model very similar to the 
model described in section 3.4. The model was configured to model the SM5 Stirling 
engine. The model used for these tests included the full momentum balance for the gas 
and it contained the same components as the model described in section 3.4. The model 
described in section 3.4 does contain some improvement over the model used for these 
tests. But the characteristics of the model used for these tests with respect to the 
performance of the shooting methods does not differ significantly from the model 
described in section 3.4. 
 
In these tests the spatial discretisation in the model contained 93 solid line control 

volumes. With this discretisation 319pN =  and 78iN =  giving a total of 398 variables 

in the IVP. The discretisation used in the tests hence had 5 % more variables in the IVP 
than the first refinement of the spatial discretisation in Table 1. 
 
The test job 
A batch job with the 28 simulations of the SM5 engine, which were also used for the 
experimental validation of the Stirling machine model in section 3.9.1, were used as test 
job. 
 The test job was considered difficult with regards to recycling of the Jacobians 
for the shooting methods because the solutions spanned wide ranges of temperatures, 
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pressures, and ratios between gas and matrix heat capacities, and because flow friction 
was much larger for nitrogen as working gas than for helium. 
 In the test job the measure for the accuracy of the solutions was based on the 
imbalance in the overall energy balance for the engine. For each solution shooting was 
terminated when the absolute value of the imbalance in the overall energy balance was 
less than 0.1 Watts. 
 The test job was started without a Jacobian from a common reference solution 
not included in the test job. 
 
The computer platform 
The tests were run on a Sun Fire 15000 server with 42 UltraSparc III processors 
operating at 1.05 GHz and running the Solaris 9 operating system. The Sun Fire 15000 
is a shared memory machine and the communications overhead from MPI 
communications should thus be minimal. The timing results contain a small amount of 
noise because the tests were run in a multi-user environment. 
 
The tests 
To evaluate the performance of the methods the test job was completed in the following 
tests: 

1. Integration to convergence without acceleration towards periodic steady state.  
2. Sequential tests of the shooting methods. 
3. Parallel tests of the shooting methods. 

 
The first test was performed to have a base case against which to compare the shooting 

methods. The test was carried out by excluding all elements of py  from the single 

shooting method and then iterating as described by (27). Thereby the shooting method 
was used to update the wall temperatures after each simulated cycle so that only one 
integration to convergence was needed for each of the 28 simulations in the batch job. 
 
The measurements of the sequential performance of the shooting methods were carried 
out in order to compare the computational costs of the methods without including any 
overhead from communications and load balancing.  
 For the multiple shooting method it was chosen to place, respectively, 1, 3, 7, 
and 15 internal points in the cycle. To facilitate good load balancing the internal points 
were placed so that the resulting sub-intervals of the cycle required approximately the 
same computational effort to simulate. The placement of the internal points was made 
by integrating a periodic steady state cycle and storing the position in the cycle and the 
wall time at every step taken by the IVP solver. The positions of the internal points were 
then determined by interpolation in the stored data. 
 For both integration to convergence and for the shooting methods the average 
time required to integrate one complete cycle and the average time needed to perform a 
Jacobian update were computed from the measured data. 
 
The parallel tests were performed to measure the scalabilities of the shooting methods 
on a parallel computer platform. In the tests the total running times, profiles, and the 
numbers of evaluations were recorded. 
 The scalabilities of the shooting methods were measured by running them on 3, 
5, 9, 17, and 33 processors. This corresponds to 2, 4, 8, 16, and 32 worker processes 
being available to perform tasks for the master process. The scalabilities of the shooting 
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methods were assessed by the absolute speedups. The methods were compared using the 
relative speedups achieved by the methods.  
 For each of the shooting methods the solutions be bitwise identical 
independently of the number of worker processes. For each of the shooting methods the 
sequential and parallel runs therefore must have expended exactly the same amount of 
work in the integrations of sub-intervals. 
 
The numbers of tasks in a simulation of a cycle and in a Jacobian update are 
summarised for the tested methods in Table 11. 
 

Name of method Variables excluded Nip Tasks in simulation Tasks in a 

  from shooting   of a cycle Jacobian update 

Integration to convergence py  (319 vars.) 0 1 78 

Single shooting, excl. P, V ,  Vp  (191 vars.) 0 1 206 

Single shooting None 0 1 398 

Multiple shooting, 2 int. None 1 2 875 

Multiple shooting, 4 int. None 3 4 1671 

Multiple shooting, 8 int. None 7 8 3263 

Multiple shooting, 16 int. None 15 16 6447 

Table 11. Parallel characteristics of methods included in the numerical tests on a model with a full 
momentum balance. 

 
Solver settings 
The semi implicit GERK scheme by Thomsen (2002) was used for integrating the 
model. A relative tolerance of 710−  was used for the error pr. step taken by the GERK 
method, and a relative residual tolerance of 1110−  was used by the Newton-Raphson 
solver at the stages of the GERK method. 
 
The threshold value for the decrease in the residuals, which was used for controlling the 
recycling of Jacobians for the shooting methods, was set to 0.85  for the single and 
multiple shooting methods. For integration to convergence the criterion was changed so 
that the Jacobian was updated only if the imbalance in the overall energy balance had 
not decreased in two consecutive iterations. 
 

4.6.2. Numerical results and discussion 

 
Integration to convergence 
Fig. 43 shows an example of how the residual norms and the imbalance in the overall 
energy balance of the engine decreased during integration to convergence for the model 
with a full momentum balance. This particular solution had helium at 6.5 MPa mean 
pressure as working gas. 
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Fig. 43: Example of the decrease in the residual norms and the imbalance in the energy balance of 

the engine when performing integration to convergence. 

 
 
Fig. 43 shows that simulation of approximately 2600 cycles was needed to achieve the 
desired tolerance. The SM5 engine operates at 1025 RPM so this corresponds to 
approximately 2.5 minutes running time for the engine. After the initial 500 cycles the 
residual norms and the imbalance in the overall energy balance of the engine appeared 
to decrease linearly in the semi-logarithmic plot in Fig. 43. This indicated that the 
solution approached periodic steady state exponentially. 
 
After approximately 1500 cycles random noise began to show in the residual norms 
indicating that the changes from the evolution of the solution during each cycle 
approached the level of noise due to the chosen tolerance for the IVP method. The noise 

was most significant for pres  which contained the largest number of variables and 

included the fast variables for pressures and velocities. The imbalance in the overall 
energy balance for the engine, though, still decreased monotonously. 

 If the residual norms had been used to determine when sJ  should be updated, 

the observed noise would have caused sJ  to be updated more frequently than what was 

needed here to obtain the desired accuracy. Hence the choice of basing the criterion for 
recycling Jacobians on the imbalance in the overall energy balance was appropriate for 
this test. 
 
The number of iterations required to reach the desired accuracy appeared to be strongly 
influenced by the ratio of the heat capacity of the gas to the heat capacity of the 
regenerator matrix. Integration to convergence with helium at 5 MPa and 8 MPa mean 
pressures required approximately 3200 and 2100 cycles, respectively. Integration to 
convergence with nitrogen at 6.5 MPa and 8 MPa mean pressure required 
approximately 1400 and 1200 cycles to converge. 
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Comparison of sequential methods 
The results from the sequential tests of the shooting methods and of integration to 
convergence are summarised in Table 12. 
 

 Running time Profile       Evaluations     Avrg. cost of evals. 

 Time Index Resid. Sm. r. Jac. LA Other Iter. Resid. Sm. r. Jac. Int. cycle 
Jac. 

update 

Method  [h] [-] [%] [%] [%] [%] [%] [-] [-] [-] [-] [s] [h] 

Integration to convergence 472.4 100 99.2 0.1 0.2 0.0 0.5 69271 69301 58 2 24.3 0.50 

Single shooting, excl. P, V 4.4 0.9 34.1 8.8 61.1 0.0 0.1 196 226 58 2 24.1 1.36 

Single shooting 7.0 1.5 22.2 5.6 84.3 0.0 0.0 201 231 58 2 24.4 2.97 

Multiple shooting, 2 int. 12.8 2.7 14.6 3.3 88.9 0.0 0.1 215 265 59 3 25.4 3.79 

Multiple shooting, 4 int. 16.6 3.5 12.8 2.8 84.3 0.1 0.1 227 284 59 3 27.1 4.66 

Multiple shooting, 8 int. 32.3 6.8 10.4 1.8 87.6 0.2 0.1 316 352 60 4 34.3 7.08 

Multiple shooting, 16 int. 84.0 17.8 6.4 1.0 92.3 0.2 0.0 307 345 63 7 55.0 11.08 

Table 12. Results from sequential tests of integration to convergence and the shooting methods. The 
profiles show: The percentages of the running time spent calculating residuals, performing 

smoothing runs, computing Jacobians, doing linear algebra on the shooting Jacobians, and the time 
spent on other tasks. The columns under the heading Evaluations show: The number of iterations, 
residual evaluations, smoothing runs, and Jacobians needed by the methods to complete the test 
job. The rightmost columns show: The average time needed per evaluation when integrating the 

entire cycle once and when updating the Jacobian matrix. 

 
Table 12 shows that the shooting methods were significantly faster than integration to 
convergence. The fastest sequential method was the single shooting method where the 
dimension of the BVP had been reduced by excluding the variables for pressures and 
velocities from the shooting.  
 
The profile in Table 12 shows that more than 99 % of the CPU time was spent on 
updating residuals when integration to convergence was performed. For the shooting 
methods the time spent computing Jacobians was more significant. Jacobian updates 
accounted for approximately 61 % of the total running time for the single shooting 

method with reduced dimension of the BVP, and it increased with ipN  to approximately 

92 % for the multiple shooting method with 16 sub-intervals in the cycle. The time 
spent performing linear algebra on the Jacobians for the shooting methods was not 
significant. 
 

Table 12 shows that the numbers of needed iterations and Jacobians increased with ipN  

and that the evaluations became significantly more costly as ipN  was increased. 

Jacobian updates typically occurred when changing the working gas or when a new 
solution had a mean pressure which was significantly different from the last solution. 
 These results differ from the observations made in the tests where the shooting 
methods were applied to a model with a simplified momentum balance. For the model 
with a simplified momentum balance the speed of convergence did not appear to depend 

on ipN  even when as many as 500 sub-intervals were used, and the overhead from 

splitting the cycle into multiple sub-intervals was negligible for less than 20 intervals in 
the cycle. 
 
The differences between the results for the two types of models indicate that multiple 
shooting methods are less attractive for models which include the full momentum 
balance. 



4. Numerical methods for finding periodic steady state solutions 

4.6. Tests on a model with a full momentum equation 133 

 When integrations were started from imperfect initial pressure distributions, as 
could occur for every sub-interval in the cycle, then pressure transients occurred. For 
the model with the full momentum balance waves would bounce back and forth until 
they were finally dissipated. The artificial dissipation described in section 3.2.5 
accelerated the dissipation of acoustic waves but the waves still required some time to 
dissipate completely. As long as acoustic waves were present the IVP solver took very 

small steps. The number of such transients increased with ipN  and this was the main 

reason for the increase in the computational effort required to perform integrations. 
 When the sub-intervals of the cycle became short enough the acoustic waves did 
not have sufficient time to dissipate completely during the integrations. The Jacobians 
for the multiple shooting method were then polluted by noise which was due to the 
decaying waves. This noise then masked the true interdependence between the variables 
and residuals in (24) for periodic steady state solutions. This was believed to be the 

main reason for the slower convergence observed as ipN  was increased. As an 

experiment ipN  was increased to 31 and with this discretisation convergence was 

difficult to achieve.  
 
Comparison of parallel methods 
The absolute speedups from the parallel tests of the shooting method on the model with 
a full momentum balance are shown in Table 13: 

 

  Speedup: Integrating cycle  Speedup: Updating Jacobians Speedup: Test job  

 N worker processes N worker processes N worker processes 

Method 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 

Single shooting, excl. P, V 1.0 1.0 1.0 1.0 0.9 2.0 4.0 7.9 15.7 29.1 1.4 1.8 2.0 2.2 2.2 

Single shooting 1.0 1.0 1.0 1.0 1.0 2.0 4.0 8.0 15.4 30.3 1.6 2.3 2.9 3.3 3.7 

Multiple shooting, 2 int. 2.0 2.0 1.9 2.0 2.0 2.0 4.0 7.9 15.9 31.3 2.0 3.4 5.2 7.2 8.9 

Multiple shooting, 4 int. 1.9 3.5 3.5 3.5 3.5 2.0 4.0 7.9 16.0 31.5 2.0 3.9 6.6 10.1 13.7 

Multiple shooting, 8 int. 1.9 3.6 6.0 6.1 6.1 2.0 4.0 7.9 15.9 31.6 2.0 3.9 7.5 13.0 20.1 

Multiple shooting, 16 int. 2.0 3.6 5.8 7.3 7.2 2.0 4.0 8.0 15.9 31.1 2.0 4.0 7.7 14.1 23.0 

Table 13. Absolute speedups for integrating entire cycles, for computing Jacobians, and for the 
complete test job for each of the shooting methods. 

 

Table 13 shows that the parallel updates of  sJ  and msJ  achieved near linear speedups. 

This shows that the communications overhead was small and that good load balancing 
was achieved. 
 
The integrations of the cycle achieved lesser speedups. The best possible speedup for an 

integration of the cycle was ( ) min 1,ip worker processesN N+  if perfect load balancing was 

achieved. Significantly smaller speedups were achieved for 1ipN >  on more than two 

processors. The limited speedups were mainly due to imperfect load balancing. The 
imperfect load balancing was caused by the fast transients in the beginnings of the sub-
intervals. The fast transients caused different amounts of overhead in the different sub-
intervals. 
 



4. Numerical methods for finding periodic steady state solutions 

4.6. Tests on a model with a full momentum equation 134 

Table 13 also shows that the absolute overall speedups achieved by the methods for the 

test job improved with ipN . One reason for this is that the speedups achieved for 

integrations of the cycle were higher for larger ipN . Another reason was that 

computations of Jacobians required a larger fraction of the total running time when ipN  

was increased. 
 
The speedups relative to the sequential running time of the single shooting method, 
where the pressure and velocities were excluded from the shooting, are shown in Fig. 
44: 
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Fig. 44: Speedups relative to sequential single shooting with reduced dimension of BVP achieved by 

the shooting methods for the model with the full momentum balance.  

 

Fig. 44 shows how the increases in the absolute speedup achieved by increasing ipN  for 

the shooting methods were neutralised by the overhead caused by increasing ipN . The 

multiple shooting method with 3ipN =  on 33 processors achieved the largest relative 

speedup of all the tested methods, and this relative speedup was only 3.8 for the test job. 
 

4.6.3. Conclusions 

The tests where the shooting methods were applied to a batch of 28 solutions to a model 
with a full momentum balance showed that: 

• The single shooting method, where the variables for pressures and velocities 
were excluded from the shooting, was the fastest of the tested sequential 
methods. This method also had the fastest convergence. It required less than 1 % 
of the computational efforts needed to complete the test job with the integration 
to convergence approach. 

• There was a significant overhead from dividing the cycle into sub-intervals. 
When the cycle was split into 16 sub-intervals the average time to integrate the 
entire cycle was more than doubled compared to single shooting; the time to 
update a Jacobian matrix was more than tripled. The convergence also became 
slower when the number of sub-intervals was increased. 
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• The absolute scalabilities of the shooting methods on a parallel computer 
improved with the number of sub-intervals in the cycle. For the batch job of 28 
simulations the largest absolute speedup of 23 on 33 processors was observed 
for the multiple shooting method with 16 sub-intervals in the cycle. The absolute 
speedups were mainly limited by load balancing issues when integrating the 
entire cycle. 

• Due to the overhead in the shooting methods caused by increasing the number of 
sub-intervals the best achieved speedup relative to the fastest sequential method 
was only 3.8. This speedup was achieved for multiple shooting with 4 sub-
intervals in the cycle using 33 processors. 

 

4.7. Conclusions for single and multiple shooting methods 

The following overall conclusions were drawn from the tests of the single and multiple 
shooting methods: 

• The shooting methods appeared to be reliable for finding periodic steady state 
solutions to Stirling machine models. 

• The multiple shooting methods could be attractive for models where 
perturbations of initial values do not lead to computationally expensive 
transients. It is also important that the fast transients are short lived relative to 
the lengths of the sub-intervals in the cycle, so that the transients do not cause 
pollution of Jacobians. 

• For models built using the modelling approach presented in chapter 3, i.e. for 
models which include the inertia of the gas in the momentum balance, the single 
shooting methods with appropriate exclusion of fast variables appear to be the 
most attractive of the tested methods. Multiple shooting appears to be less 
attractive unless a large number of processors are freely available. 

• For the single shooting methods it was only the updating of shooting Jacobians 
which achieved a parallel speedup. The parallel computation of the Jacobian 
made a significant difference for the time needed to produce the first solution. 
But the overall speedup decreased when the same Jacobian could be recycled for 
many iterations and solutions during a batch job. 

 

4.8. Parallelisation of shooting batch jobs 

Batches of independent simulations are common in practical use of simulation models. 
Examples of situations where such batch jobs can be found are: 

• Parameter studies where the influences of one or more parameters are mapped 
by changing the parameter(s) in small steps. 

• Comparison of sets of simulation results with sets of experimental data. 

• Design optimisation. For a conjugate gradients optimisation method, for 
instance, multiple independent simulations are needed to update the gradient 
vector of the optimisation method (Numerical Recipes, 1997). If a multipoint 
approximation method is used then batches of new designs are simulated to 
update the approximate response functions (Toropov, 2006). 

Because such batches of independent simulations occur frequently it has been 
investigated if the parallel scalability of the single shooting method could be improved 
for such batch jobs. 
 



4. Numerical methods for finding periodic steady state solutions 

4.8. Parallelisation of shooting batch jobs 136 

The straight forward way to achieve a speedup for a batch job on a parallel computer is 
to simply run the individual jobs from the batch on different processors. However, 
shooting jobs which require Jacobians to be computed require a far more CPU time than 
shooting jobs which do not require a Jacobian to be computed. In practice the long 
running shooting jobs would dictate the lowest obtainable time required to complete a 
batch job using this approach. 
 
To achieve better scalability a new parallel shooting method was devised where the 
parallel shooting methods described above were integrated into a system for performing 
batch jobs in parallel. The method was created to increase the scalability of the single 
shooting method, but the implementation was made so that it also works for the multiple 
shooting methods. 
 

4.8.1. Splitting of batch jobs into sub batches 

Because the method will shoot for several solutions simultaneously it is necessary to 
give some consideration to which jobs should share Jacobians and initial guesses. 
 When performing optimisation many solutions must be found for only slightly 
different design parameters. In practice this means that one should always attempt to 
recycle the newest shooting Jacobian. The Jacobian will then be updated when/if the 
design optimisation changes the design parameters sufficiently to make the current 
shooting Jacobian obsolete.  
 But if a batch job contains solutions corresponding to very different input 
parameters to a model then it can be difficult to achieve convergence in all the jobs 
using the same Jacobian. Therefore an option has been added to specify sub batches 
within a batch job. Jacobians will be shared between the different jobs in the same sub 
batch, but not between jobs in different sub batches. 
 Consider the batch of 28 simulations, which was used when validating the 
Stirling machine model against experimental data for the SM5 engine and which was 
also used for testing the shooting methods above. This batch job contained simulations 
with two different working gasses which behaved very differently in the Stirling engine. 
For this batch job it would be prudent to split the simulations into two sub batches so 
that each sub batch contained only simulations with one specific working gas. 
 

4.8.2. Parallelisation approach for batch jobs 

In section 4.3.6 it was described how the parallelisation of the shooting methods was 
made using a pool of tasks approach where a single master distributes tasks to a number 
of worker processes. In order to coordinate concurrent shooting for multiple solutions 
an additional level of management was added to the parallelisation approach. 
 The new parallel shooting method for batch jobs uses a single master that 
controls a group of polymorphic worker processes. The master process can distribute 
shooting jobs to the worker processes and when a worker process receives a job it 
becomes a shooter. When a shooter completes a shooting job it reverts to being a 
worker. 
 Performing a shooting job requires tasks (integrations of sub-intervals) to be 
performed. The master process hosts a shared pool of tasks for all the shooters. The 
shooters can submit groups of tasks to the master and the master then distributes the 
tasks among the available worker processes. 
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 Each worker will perform a task, send the results directly to the shooter that 
submitted the task, and send a short message notifying the master that the task was 
completed. The message to the master is necessary to let the master know that the 
worker is available for a new task. Sending the results directly to the shooter that 
submitted the task, instead of sending the results through the master process, reduces the 
bandwidth requirement for the master process. 
 With this new approach there will hence typically be 3 types of processes 
coexisting simultaneously: A master, some shooters, and some workers. 
 
Integrations of the cycle 
When a shooter needs the entire cycle to be integrated it can either submit the 
integration(s) as a group of tasks to the master or it can perform the integration(s) itself.  
 If single shooting is performed, so that there is only one sub-interval in the 
cycle, then it will usually be optimal if the shooter performs the integration itself, 
instead of submitting it to the master. The shooters will then spend no time waiting for 
results, no communications overhead is induced, and no parallelism is lost. If multiple 
shooting is performed then a speedup can be achieved by integrating the sub-intervals in 
the cycle in parallel and so the integrations should be submitted to the master. The exact 
behaviour can be customised via settings passed to the shooting method. 
 The master will always accept requests for simulations of the entire cycle and 
the corresponding tasks will be added to the shared pool of tasks. 
 
Jacobian updates 
When a shooter needs an update of its Jacobian then it will check if a newer Jacobian 
than the one currently in memory has been stored in a file on disk. If it finds a newer 
Jacobian in a file it will load the new Jacobian and continue its iterations with the newer 
Jacobian. 
 If no newer Jacobian is found on disk then the shooter will submit a request for a 
Jacobian update to the master. The master will check if a Jacobian update is already in 
progress within the same sub batch. If no Jacobian update is in progress in the same sub 
batch then the master will accept the group of tasks corresponding to the Jacobian 
update and add it to the shared pool of tasks. If, however, a Jacobian update is in 
progress in the same sub batch then the shooter will be enqueued to wait for the 
completion of that Jacobian update.  
 When a shooter is waiting for another shooter to complete a Jacobian update it 
will act as a worker and will be treated as such by the master, with one exception: A 
shooter that is acting as a worker while waiting for a Jacobian update will not receive 
any new jobs, only tasks. When a Jacobian update is completed the Jacobian will be 
stored in a file, and then all shooters that are waiting for the Jacobian are released. They 
then read the new Jacobian from the file and continue their iterations. 
 
Task prioritisation and performance issues 
The master generally loops through the task buffer in a cyclic fashion so that all 
shooters are served successively in a round robin manner. This behaviour can be 
customised through the settings of the method so that, for instance, the master can be 
forced to concentrate all workers on finishing one Jacobian update at a time instead of 
working simultaneously on multiple Jacobian updates for different sub batches.  
 
The number of concurrent shooters can be important to performance.  
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 When a shooter submits a group of tasks to the master and the group of tasks is 
accepted then the shooter will begin to wait for the results from the tasks. While waiting 
and receiving results the shooter does not fully utilise a CPU for performing useful 
work. Having a large number of shooters running simultaneously can thus result in 
wasted CPU resources. Sometimes this problem can be eliminated by running multiple 
processes pr. processor and letting the operating system balance the load. But some MPI 
implementations spend excessive amounts of CPU resources when waiting for messages 
in order to keep processes in as high a state of readiness as possible. This is done to 
reduce the latency for receiving messages but it has the side effect that running multiple 
processes pr. processor becomes impractical. 
 If on the other hand the number of shooters is small then there is a risk that the 
flow of submitted tasks from the shooters is too moderate to keep all the workers busy. 
One can thus expect that an optimum number of shooters exist for a given batch job. 
 

4.8.3. Handling failed simulations 

Robustness is very important when simulation programs are used in conjunction with 
numerical optimisation algorithms. Because of this it is necessary to have methods for 
handling failed simulations in the shooting methods. A failed simulation can occur if a 
simulation is started with a very poor guess for the initial values and shooting 
parameters. This can occur, for instance, if the shooting diverges because the Jacobian is 
not sufficiently up to date. 
 
Failed simulations are most likely to occur during the updates of the residuals that take 
place in the iterations of the shooting method. This is because the residual updates are 
performed when the initial values and shooting parameter have been updated as shown 
in (23), (25), or (27); it is hence in the residual updates that a divergence would first be 
observed. 
 Simulations during an update of the Jacobian matrix are less likely to fail. 
Before a Jacobian update is performed the residuals have already been calculated at the 
current guess for the solution. The initial values and shooting parameter values used 
during Jacobian updates differ from the current guess for the solution only by the small 
perturbations applied in the numerical differencing when calculating the elements of the 
Jacobian. 
 
If a group of tasks contain tasks that cause failed simulations then the following series 
of events illustrate the general scheme used to recover from the failure(s): 

1. When a task fails then the worker, which was trying to complete the task, sends 
a results message containing a raised error flag to the shooter that submitted the 
task to the master. This causes the shooter to listen for a message directly from 
the master. The same worker then sends a message to the master that the task 
caused a failed simulation. 

2. Notification of a failed task causes the master to send a message to the listening 
shooter specifying how many of the tasks in current group of tasks have already 
been dispatched to workers. The master then removes any remaining tasks in the 
current group of tasks from the task buffer so that no more of the tasks will be 
dispatched. 

3. The shooter continues to receive results until the results from all the tasks, which 
had already been dispatched by the master, have been received.  

4. The shooter will then act on the failure. 
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The handling of failed simulations is illustrated in the Fig. 45. 
 
 

 
Fig. 45. Illustration of the general scheme for recovering from failed simulations when performing 

multiple integrations in parallel.  

 
If the group of tasks, which contained the failed task, was an integration of the entire 
cycle, then the subroutine that submitted the tasks will exit with an error flag when the 
results from all dispatched tasks have been received. It is then the shooting method itself 
that, if possible, tries to recover from the failed simulation. The shooting method can try 
to recover by going back to the best known guess for the solution since the last Jacobian 
update and: 

1. Try to apply only a fraction of the current corrections. 
2. Request a new Jacobian which can be used for computing a new and better 

estimate for the needed corrections. 
 
When working on batch jobs the shooting method can actually also attempt to recover 
from a failed simulation in a Jacobian update. If a Jacobian update fails and if another 
shooters within the same sub batch is waiting for the Jacobian, then the shooters can 
swap roles. The shooter which was waiting for the failed Jacobian update will then try 
to have its own Jacobian updated. If the new Jacobian update is successful then the 
shooter whose Jacobian update failed can load the successfully updated Jacobian 
instead. 
 

4.8.4. Dynamic IVP solver tolerance management  

It has been observed that the speed of convergence for the shooting methods, when 
applied to models of Stirling machines and pulse tube coolers, is usually not larger than 
a reduction of one or two orders of magnitudes for the residuals in each iteration. In the 
results presented in Table 12 the fastest converging method, single shooting with 
pressures and velocities excluded, required seven iterations on average. This 
observation indicates that the IVP method probably integrated using a stricter tolerance 
than needed in the early iterations. Almost certainly there was little benefit from using a 
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strict tolerance in the smoothing runs performed at the beginning of the shooting for 
each new solution. 
 
As shown in Fig. 18 it can sometimes, but not always, save computational effort to use a 
less strict tolerance during integrations of a model. It is thus plausible that a speedup can 
sometimes be achieved by managing the tolerance applied in the IVP method 
dynamically. 
 
The strategy attempted here has been to estimate the needed tolerance for the IVP 
method as a fraction of the size of the maximum relative residual corresponding to the 
current guess for the solution. This strategy was applied when updating residuals and 
performing smoothing runs. A strict tolerance was always used when performing 
integrations for updates of the Jacobian matrix for the shooting method. 
 

4.9. Tests of the shooting method for batch jobs 

The new implementation of the shooting method for batch jobs was tested with the same 
batch job and on the same platform as described in section 4.6. 
 

4.9.1. Method 

The following configuration appeared reasonable for this batch of 28 simulations and 
was used in the tests: 

• The shooters used single shooting where the variables for pressures and 
velocities were excluded from the shooting.  

• The shooters performed the integrations of the cycle sequentially.  

• No limit was imposed on the number of shooting jobs that the master could 
distribute simultaneously. 

• The tolerance for the IVP method was adjusted by setting it two orders of 
magnitude smaller than the largest relative residual in the shooting method. The 
tolerance for the IVP method was limited to vary in the interval from 510−  to 

710− . 
 
I did not succeed in coercing the MPI implementation and operating system on the test 
platform into running multiple processes pr. processor without significant overhead. 
Therefore each process occupied one processor in the tests. 
 
With these settings the following events would occur during a typical test run: 

• The master would start min( , 1)
jobs processors

N N −  shooting jobs. 

• The shooters would run sequentially until they needed to update their shooting 
Jacobians. 

• Requests for Jacobian updates were processed by the master. Only one Jacobian 
update pr. sub batch was allowed to be in progress at any one time. 

• Shooters that submitted requests for Jacobian updates which were not accepted 
worked together with any worker processes on completing the first Jacobian(s). 
Only the shooter(s) of the accepted Jacobian update(s) remained lightly loaded 
during the update(s). 

• When the first Jacobian(s) were completed the shooters continued their iterations 
using the new Jacobians. 
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• When the shooters finished their jobs they would receive new jobs if any jobs 
remained in the batch, and otherwise they would remain available as workers. 

• As the batch job neared completion the last few shooters would be iterating to 
finish their last jobs. The remaining worker processes would remain idle until 
the completion of the batch job unless a Jacobian update was needed. 

 

4.9.2. Results and discussion for the shooting method for batch jobs 

The speedups measured in the tests of the new parallel shooting method for batch jobs 
are shown in Fig. 46. The new method is denoted MSS excl. P.V. (multiple-single-
shooting with pressures and velocities omitted from the shooting process) in the figure.  
 
When run sequentially the new method required 2 hours and 45 minutes on one of the 
1.05 GHz processors on the Sun Fire 15000. This was 37 % faster than the results 
presented in section 4.6.2 for the single shooting method with pressures and velocities 
excluded. This difference was due to the dynamic management of the tolerance of the 
IVP method.  
 The relative speedups for the previously tested shooting methods, i.e. the results 
presented in Fig. 44, have been recalculated to reflect the new fastest sequential method 
and have been included in the figure for reference. 
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Fig. 46: Speed up of the new shooting method for batch jobs measured during benchmarking on a 
Sun Fire 15000 server. The results from Fig. 44 have been recalculated to reflect the new fastest 

sequential method and have been included in the figure. 

 
When run with two processes, i.e. with one shooter and one master which each occupied 
one processor, the performance of the new method was identical to the sequential 
performance of the new method. 
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When three processors were used there was one master and two shooters. In this 
configuration the shooters had to wait on each other during Jacobian updates. This 
meant that one of the shooters would act as a worker and would perform the integrations 
needed for the Jacobian update on the other shooter. This meant that there was no 
speedup for Jacobian updates even though both shooters would be tied up when 
performing the Jacobian update. This was the reason for the poor speedup on 3 
processors. 
 
When more than 3 processors were used the new method scaled well. A speedup of 22 
was achieved for the batch job when the method was run on 33 processors. In this case 
the batch of 28 simulations was completed in approximately 7.5 minutes. 
 
In a sequential run with the new implementation an average of seven iterations pr. 
solution was needed. This is the same number of iterations as in the results presented in 
section 4.6.2 and this shows that the dynamic management of the tolerance of the IVP 
method did not significantly affect the speed of convergence for the shooting method. 
 When jobs had been completed the shooters would use the solutions from the 
completed jobs as initial guesses for new jobs. Because the order in which initial 
guesses became available depended on the number of processors the numbers of 
iterations also depended slightly on the number of processors. The maximum average 
needed number of iterations observed in the tests was 7.8. 
 Two Jacobians, one for helium and one for nitrogen as working gas, were 
needed to complete the batch job. This was independent of the number of processors. 
 

4.9.3. Conclusion 

The implementation for batch jobs of the single shooting method with suitable 
exclusion of variables was the fastest and most reliable method tested in this work.  
 

4.10. Summary 

Single- and multiple shooting methods for finding periodic steady state solutions have 
been studied. The study showed that the shooting methods appeared to be fast and 
reliable for finding accurate periodic steady state solutions. 
 
It was found that the single shooting method had a significantly lower computational 
cost pr. solution than multiple shooting methods when applied to models built using the 
modelling approach from chapter 3. This was primarily because the cost of integrating 
the cycle and the cost of updating Jacobians increased significantly when the number of 
sub divisions of the cycle was increased. The overhead for the multiple shooting method 
was found to be specific to models which included the inertia of the gas in the 
momentum balance for the gas. For a model where the momentum balance had been 
simplified by excluding the inertia of the gas the multiple shooting method was more 
competitive. 
 The computational cost of the single shooting method could be reduced by 
excluding the fastest variables, such as pressure and velocities, from the shooting. Fixed 
point iteration was then performed on the excluded variables. 
 The performance could be further increased by letting the shooting method 
manage the tolerance used by the IVP solver when integrating the model. In this way a 
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less strict tolerance could be used until the shooting method was close to the true 
periodic steady state solution. 
 
The shooting methods were parallelised on a coarse grained level using MPI. The 
parallelisation was first made using a simple pool of tasks approach. The parallel 
speedups for the shooting methods were measured on a batch job with 28 solutions 
which covered a wide range of operating conditions for a model of the SM5 Stirling 
engine. 
 
With respect to absolute speedups for the shooting methods it was found, that the 
updates of Jacobians for both the single and multiple shooting methods scaled well. 
Absolute speedup factors between 29.1 and 31.6 were achieved on 33 processors for 1 
to 16 sub-intervals in the cycle. Jacobian updates scaled better for the multiple shooting 
methods because they facilitated better load balancing. 
 Integrations of the cycle, which were performed to update residuals or as 
smoothing runs, achieved absolute speedups up to 7.2 on 33 processors for the multiple 
shooting method with 16 sub intervals in the cycle. It was found that load balancing 
issues limited the speedup for integrations of the cycle. The single shooting method 
achieved no parallel speedup for integrations of the cycle. 
 When computing one solution at a time the absolute speedups which could be 
achieved by the shooting methods for a given batch job hence depended on the mix 
between Jacobian updates and iterations. When most of the time was spent on updating 
Jacobians the parallel speedup would be very good. But if Jacobians could be recycled 
for many iterations then the parallel speedup would decrease. For the batch of 28 
simulations the achieved absolute speedups on 33 processors varied from 2.2, for the 
single shooting method with pressures and velocities excluded, and up to 23 for the 
multiple shooting method with the cycle divided into 16 sub-intervals. 
 
When the relative speedups of the methods were studied it was found that the larger 
computational efforts required to perform multiple shooting instead of single shooting 
almost neutralised the advantages of multiple shooting with respect to absolute 
scalability. The largest speedup relative to the sequential performance of the single 
shooting method with pressures and velocities excluded was only 3.8 on 33 processors 
for the batch of 28 simulations. This speed up was achieved for multiple shooting with 
four sub-intervals in the cycle. 
 
The implementation of the shooting methods was refined so that it could use the 
parallelism inherent in batch jobs for improving the scalability of the parallel shooting 
methods for batch jobs. The new implementation was also based on a pool of tasks 
approach and it was designed for robustness, so that the parallel shooting methods were 
suitable to be used in conjunction with a numerical optimisation algorithm. 
 The new implementation enabled the single shooting method with pressures and 
velocities excluded to achieve a speedup of 22 on 33 processors for the batch of 28 
simulations. This method was the fastest of all the tested methods. 
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5. Numerical studies on phenomena in Stirling 
machines and pulse tube coolers 

During this work the developed simulation tools have been used for performing a 
number of numerical studies on different phenomena in Stirling machines and pulse 
tube coolers. Results from these studies have been published (or submitted for 
publication) in journals and at conferences. Four of these papers accompany this thesis 
as self contained studies. Brief introductions to the papers are given below.  
 

5.1. Preliminary Results from Simulations of Temperature 
Fluctuations in Stirling Engine Regenerator Matrices (Paper 
A) 

Results from a study on the differences caused by using, respectively, constant matrix 
temperatures and oscillating matrix temperatures when modelling the SM5 Stirling 
engine were published in this paper. 
 
The study was performed using a model which contained a number of simplifications 
compared to the Stirling machine model described in section 3.4. In particular the model 
used for this study neglected the inertia of the gas. It was this simplified model which 
was used for the tests of the shooting method described in section 4.5. 
 In the study the SM5 engine was simulated with both constant and oscillating 
matrix temperatures, and the influence of the spatial discretisation was studied for both 
cases. It was also documented that the periodic steady state solutions, which had been 
calculated for the study using a shooting method, were true steady state solutions. 
 
In the study it was found that the axial temperature profile in the regenerator matrix 
looked significantly different when matrix temperature oscillations were taken into 
account. In the results which included matrix temperature oscillations there were 
significant matrix temperature oscillations in the ends of the regenerator and a smaller 
temperature gradient in the central part of the regenerator. 
 It was also found that the matrix temperature oscillations had a significant 
impact on the performance of the SM5 engine and that the matrix temperature 
oscillations therefore deserved further study. 
 

5.2. Numerical study on optimal Stirling engine regenerator 
matrix designs taking into account the effects of matrix 
temperature oscillations (Paper B) 

This paper presented results from a study on the effects of regenerator matrix 
temperature oscillations on the performance of the SM5 Stirling engine for a wide range 
of regenerator matrix thread diameters and porosities. 
 
In this study a model similar to the Stirling machine model described in section 3.4 was 
used for simulating the SM5 engine. This model included the inertia of the gas in the 
momentum balance equations. In the study the heat transfer and flow friction in the 
regenerator was described using empirical correlations for metal felt regenerators. 
 The performance of the SM5 engine was mapped for wire diameters between 15 

and 150 mµ  and fill factors between 0.01 and 0.27 (equivalent to void fractions between 
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0.99 and 0.73). This mapping was performed for both oscillating and constant matrix 
temperatures. The influence of the matrix temperature oscillations was isolated by 
subtracting the results for constant matrix temperatures from the results for oscillating 
matrix temperatures. 
 
From the numerical results it was observed that the regenerator matrix temperatures 
appeared to oscillate in two modes. The first mode was oscillation of a nearly linear 
axial matrix temperature profile while the second mode bended the ends of the axial 
matrix temperature profile when gas flowed into the regenerator with a temperature 
significantly different from the matrix temperature. The first mode of oscillation 
improved the efficiency of the engine but the second mode reduced both the work 
output and efficiency of the engine. The magnitudes of the different modes of 
oscillation depended on the matrix design. 
 The results showed that the efficiency of the SM5 Stirling engine could be 
slightly improved by using a new regenerator with three differently designed matrix 
sections. The new matrix design amplified the first mode of oscillation and reduced the 
second mode. 
 

5.3. Numerical study on transverse asymmetry in the 
temperature profile of a regenerator in a pulse tube cooler 
(Paper C) 

This paper documented the findings of a numerical study on transverse asymmetry in 
the temperature distribution of a regenerator matrix in a pulse tube cooler. The study 
was performed to identify the mechanism which had caused a transverse asymmetry in 
the temperature distribution of a geometrically symmetric regenerator in a PTC 
prototype. It had been observed in experiments that the performance of the PTC was 
reduced when the asymmetry was present. 
 
The study reproduced the experimentally observed transverse asymmetry using the PTC 
model which was validated in section 3.9.3. The model was built so that the regenerator 
could either be modelled as a single channel or be divided into two parallel regenerator 
channels, each with half the cross sectional area of the single regenerator channel. To 
reproduce the asymmetry the regenerator was modelled with two parallel channels and 
the PTC was simulated as an initial value problem. 
 It was found that a small perturbation of the symmetric periodic steady state 
solution was sufficient to trigger an instability that caused the axial temperature profiles 
in the two regenerator channels to diverge and become very different. It was found that 
the asymmetry was caused by a circulating flow in the closed circuit formed by the two 
parallel regenerator channels and the manifolds at the ends of the regenerator. The 
circulating flow was superimposed on the oscillating axial flow through the regenerator. 
The asymmetry and the circulating flow increased the regenerator loss by up to a factor 
of five in the simulations. 
 
A separate simple model of a single regenerator channel was used to identify the 
mechanism driving the circulating flow. In the simple model the entire regenerator 
channel was lumped into a single control volume. The dependence of the net flow rate 
through the regenerator channel on the average matrix temperature, matrix temperature 
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oscillations, and oscillations in the average pressure was studied for various wave forms 
for the pressure difference between the ends of the regenerator channel. 
 The primary mechanism driving the circulating flow was found to be due to the 
shape of the pressure difference wave, and the dependence of the instantaneous mass 
flow rate on the instantaneous pressure difference between the ends of the regenerator 
and on the temperature in the regenerator. A smaller contribution to the circulating flow 
was linked to the temperature oscillations in the regenerator. These mechanisms were 
found to increase the tendency of a regenerator channel to draw in mass from the cold 
end of the regenerator if the temperature in the channel decreased, and conversely to 
make a hot regenerator channel draw in more mass from the hot end of the regenerator. 
These mechanisms hence induced a circulating flow that amplified transverse 
asymmetry in the regenerator matrix temperature profiles. A weaker mechanism due to 
the oscillations in pressure was found to have the opposite effect and hence worked 
against the transverse asymmetry. 
 

5.4. Numerical study on the appendix gap losses in a Stirling 
engine (Paper D) 

This paper reported on a numerical study on the appendix gap losses in the SM5 Stirling 
engine. 
 
The study was performed using the Stirling machine model described in section 3.4 
which was validated against experimental data for the SM5 engine in section 3.9.1. The 
appendix gap is included directly in the Stirling machine model where both the 
displacer wall, the cylinder wall, and the gas in the gap are discretised. Because the 
displacer is moving relative to the cylinder wall the control volumes containing the gas 
in the gap slide over the control masses used for discretising the cylinder wall. The 
technicalities related to the moving mesh are discussed in the paper. 
 
The influence of the spatial discretisation on the calculated appendix gap losses was 
studied. Parametric studies on the size of the gap were then performed using two 
different methods for computing the heat transfer in the gap. One method for computing 
the heat transfer in the gap was to use simple polynomial approximations for the radial 
temperature profiles in the gap. The second method for computing the heat transfer in 
the gap was to use empirical correlations from the literature. The results from the 
parametric studies were compared to analytically derived formulas for the appendix gap 
losses. 
 
The study on the convergence of the spatial discretisation in the gap showed that a 
relatively coarse discretisation appeared to be adequate for studying the appendix gap 
losses. The wall temperature profiles calculated during the study also showed that the 
axial gradients in the wall temperatures varied significantly along the gap. 
 The parametric studies on the gap size yielded larger appendix gap losses for 
small gap sizes but smaller losses for large gap sizes compared to the analytically 
derived formulas for the appendix gap losses. The larger losses for smaller gap sizes 
were attributed to a steep temperature gradient on the cylinder wall at the location of the 
regenerator. The smaller appendix gap losses for large gaps occurred because the heat 
transfer in the gap was less effective when the hydraulic diameter of the gap was large; 
this effect was neglected in the analytically derived formulas. 
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 The calculations where empirical correlations for the heat transfer in the gap 
were used yielded lager appendix gap losses than the calculations where the heat 
transfer was calculated from approximate polynomial temperature profiles. But the gap 
sizes where local extrema in the appendix gap losses occurred were very similar for the 
two methods for computing heat transfer in the gap. 
 The impact of the appendix gap losses on the heat intake and work output of the 
engine was also studied. A close correspondence was found between the appendix gap 
losses and an increased heat intake of the engine. The appendix gap losses were also 
found to reduce the work output of the engine; especially for relatively large gaps where 
the pumping loss dominated the appendix gap losses. The results indicated that the 
appendix gap losses in the SM5 engine could be reduced by making the gap larger than 
in the present design. 
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6. Summary and perspective 
 
A simulation approach, where models are formulated using a control volume based 
modelling approach for one-dimensional compressible flow and where the shooting 
method is used for finding periodic steady state solutions, has been developed. The 
simulation approach represents a compromise between model complexity and accuracy 
on one side, and practical waiting times for results on the other. 
 
The modelling approach has been implemented in a way that generates a model source 
file where individual equations can be accessed and modified. This makes the models 
very flexible and adaptable. This flexibility has been an asset when performing the 
numerical studies reported on in this work. 
 
The consistency, accuracy, and computational performance of models built using the 
developed modelling approach have been studied. The abilities of the models to predict 
the performance of actual Stirling machines and pulse tube coolers have also been 
successfully tested against both experimental data and results from current state of the 
art software. The models have been used for numerical studies on phenomena and loss 
mechanisms in Stirling machines and pulse tube coolers. 
 
Significant efforts were put into finding fast numerical algorithms for the simulations 
because good numerical efficiency means that more details can be included in models 
without making simulations impractically slow. Parallel programming has also been 
used as a method for speeding up IVP solving and calculations of periodic steady state 
solutions. 
 
The time needed to find periodic steady state solutions depends on a number of factors 
including the model, the simulated machine and its operating conditions, and the chosen 
discretisation. For the models developed in this work it was possible to choose the 
discretisations so that numerical optimisations of complete machine designs were 
practical on a PC. 
 
The methods and tools developed in this work appear to function well, but significant 
amounts of further work and development is necessary if the tools are to become fully 
accessible and useful to users other than their developer. 
 
When this work began parallel computers were probably considered to be somewhat 
exotic. But today “parallel computers” are becoming widespread in PCs and laptops 
through the advent of inexpensive dual-core processors. Quad-core processors for PCs 
have already been showcased. The trend towards multi-core processors is backed by the 
company Intel whose vision for the future of PC processors includes processors with 
“...many tens of cores, potentially even hundreds of cores...” (Intel, 2005). The trend 
towards multi-core processors has made the efforts expended on parallelisation in this 
work less exotic because parallel algorithms are necessary to fully utilize the potential 
of new PCs and notebook computers. 
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Abstract

The objective of this study has been to create a Stirling engine model for studying the effects of regenerator

matrix temperature oscillations on Stirling engine performance.

A one-dimensional model with axial discretisation of engine components has been formulated using the control

volume method. The model contains a system of ordinary differential equations (ODEs) derived from mass and

energy balances for gas filled control volumes and energy balances for regenerator matrix control masses.

Interpolation methods with filtering properties are used for state variables at control volume interfaces to reduce

numerical diffusion and/or non-physical oscillations. Loss mechanisms are included directly in the governing

equations as terms in the mass and energy balances.

Steady state periodic solutions that satisfy cyclic boundary conditions and integral conditions are calculated

using a custom built shooting method.

It has been found possible to accurately solve the stiff ODE system that describes the coupled thermodynamics

of the gas and the regenerator matrix and to reliably find periodic steady state solutions to the model. Preliminary

results indicate that the regenerator matrix temperature oscillations do have significant impact on the regenerator

loss, the cycle power output, and the cycle efficiency and thus deserve further study.

q 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Computer simulation has been used for design and optimisation of Stirling engines for several

decades. Early modelling efforts resulted in very simple models that could be solved on the computers of
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the day. As computers grow ever more powerful the many assumptions in early models can be gradually

relaxed in order to achieve a more accurate prediction of engine behaviour. With more accurate models

new insight into phenomena occurring in engines can be gained and engine designs can be optimised to

achieve higher thermal efficiencies.

One classical assumption in Stirling engine models is that the temperature of all metal in the engine

remains constant during the cycle. In one of the key components in a Stirling engine, the regenerator, the

validity of this assumption can be questionable. Analytical studies, such as the studies by Jones [1]

suggest that metal temperature oscillations in regenerators can have an impact on engine performance.

Experimental studies of regenerators have mostly been conducted in order to generate correlations for

heat transfer and flow friction, such as those compared by Thomas and Pittman [2], that can be used in

simulation programs. Several experimental studies, for instance the work of Gedeon and Wood [3] and

of Isshiki et al. [4], have been performed by placing small samples of regenerator matrix material into

specialised regenerator test equipment instead of performing the measurements on complete

regenerators inside actual engines. These studies have yielded information about the flow friction and

heat transfer in regenerator matrices but they do not show the influence of regenerator performance on

machine performance. In the heat transfer study by Siegel [5], measurements have been performed on a

full regenerator inside an actual Stirling engine. But it has only been possible to measure bulk

temperatures and pressure losses that result from the combined effects of all phenomena, such as heat

transfer, compression/expansion, matrix temperature oscillations, and flow friction, occurring in the

regenerator in the engine; The influence of the individual phenomena has not been revealed. Some

authors report applying correction terms to simulation results calculated with constant regenerator

matrix temperatures in order to account for the effects of regenerator matrix temperature oscillations, see

for instance Jones or Kühl and Schultz [1,6].

This paper presents an overview of the method and the initial findings of an effort to explore the

effects of dynamic temperature oscillations in regenerator matrices using a numerical simulation model.

Nomenclature

A wetted surface area [m2].

cp spec. heat for const. pressure [J/(kg K)]

cv spec. heat for const. volume [J/(kg K)]

E energy [J]

h conv. heat transfer coeff. [W/(m2 K)]

m mass [kg]

_m mass flow [kg/s]

p pressure [Pa]

t time [s]

T temperature [K]

V volume [m3]

cv in control volume

lbnd at left boundary of control volume

rbnd at right boundary of control volume

S.K. Andersen et al. / Energy 31 (2006) 1371–13831372



2. The stirling engine

Similarly to an internal combustion engine the Stirling engine is based on a gas cycle, where work is

expended to compress a cold working gas and where work is extracted by expanding the gas after it has

been heated in order to increase the pressure. The Stirling engine, however, works on a closed gas cycle,

where the working gas does not take part in combustion and is not exchanged in every cycle. Instead the

heating and cooling of the working gas is achieved by sending the working gas back and forth through a

serial connection of three heat exchangers, viz. a heater, a cooler, and a regenerator, configured as

sketched in Fig. 1.

The efficiency of a Stirling engine can be improved by the regenerator because it can recycle

some of the heat that is removed from the gas during transfer to the cold cylinder to preheat the

gas when it is transferred back to the hot cylinder. The regenerator is usually made as a porous

matrix with a large heat transfer area and a large specific heat capacity from, for instance, metal

felt. The regenerator acts as a thermal heat storage that absorbs heat when hot gas flows through it

and then releases it again when the flow direction is reversed and the gas flow becomes cooler than

the matrix. At steady state periodic operating conditions there is a steep temperature gradient

through the regenerator matrix dictated to some degree by the temperatures of the heater and

cooler. In order to achieve a high thermal efficiency, it is very important to have a well performing

regenerator so that the energy flux loss through the regenerator from the heater to the cooler is

minimised. At the same time the pressure drop across the regenerator must be kept as low as

possible in order to avoid wasting too much work on pushing the gas back and forth. Regenerator

optimisation is thus at the heart of Stirling engine design.

Many practical Stirling engine designs look very different from Fig. 1 but the net effects of

compression, expansion, and pushing gas back and forth through heat exchangers and a regenerator are

the same.

The engine design parameters and operating conditions that are needed as input parameters for

the Stirling engine model used in this study are based on an existing 9 kW engine design by

Carlsen and Bovin [7]. A drawing of the region around the cylinder of this engine can be seen in

Fig. 2. This engine uses one working piston and a displacer piston instead of the two working

pistons in the engine of Fig. 1.

RegeneratorCold Cylinder Cooler Heater Hot Cylinder

Fig. 1. Stirling engine with two heat exchangers and a regenerator.
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3. The stirling engine model

The Stirling engine model has been formulated as a system of ODEs using the control volume method

and conservation of mass and energy.

3.1. Discretisation in model

For the sake of simplicity the geometry of the model is not referred to Fig. 2 but to the equivalent

geometry in Fig. 1.

The cylinder volumes and the manifold volumes between the components are represented by single

control volumes. The sizes of the control volumes representing the cylinder volumes vary in a cyclic

fashion.

In the model, the regenerator and the heater are split into three sub components each. In the case of the

heater this division has been chosen because the end sections of the heater tubes do not receive the same

external heat input as the central part of the tubes. Treating the inactive parts of the heater as separate sub

components simplifies the model code. The regenerator has been split into three components to facilitate

non-uniform spatial discretisation where finer grids are used in the ends of the regenerator than in the

central part. This helps to better resolve localised phenomena in the ends of the regenerator with minimal

computational efforts.

The cooler and the sub components in the regenerator and heater are further subdivided into

parameterised numbers of control volumes.

The control volumes in the discretisation described above are linked together into a string of control

volumes that represents the space in the engine occupied by the working gas.

Heater

Regenerator

Cooler

Displacer piston

Working piston

Hot cylinder volume

Cold cylinder volume

Fig. 2. Cylinder region of 9 kW Stirling engine.
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A string of control masses that represents the regenerator matrix has also been defined. This string of

control masses only spans the length of the regenerator and uses the same axial discretisation as the

corresponding control volumes for the working gas.

The resulting discretisation of the engine is illustrated in Fig. 3.

3.2. Phenomena included in model

The working gas is helium and is modelled as an ideal gas with non-constant thermophysical

properties.

The model has been formulated using control volumes, control masses, and conservation of mass and

energy. Conservation of momentum has been reduced by assuming that the axial inertia of the gas is

negligible. More accurately, the velocities of gas flows between control volumes are found using steady

state correlations for pressure losses in tube flow, through regenerator matrices, and through flow

constraints.

Heat transfer is included between the gas and the wetted metal walls of all components. The

instantaneous rates of heat exchange between gas and walls is calculated from the wall temperatures and

the average temperatures in the gas filled control volumes using empirical correlations for heat exchange

in tube flow, flow through porous matrices and flow in cylinder volumes. The temperatures of the walls

in the cylinders, manifold volumes, the heater, and the cooler are assumed fixed at their cycle mean

values.

In the regenerator heat transfer is included between the gas and the regenerator matrix. The

temperatures of the regenerator matrix control masses can be treated in two different ways. Either the

temperatures can be assumed fixed at their cycle mean values or they can be modelled using ODEs

derived from an energy balance for a lumped control mass, i.e. a control mass with a uniform

temperature. The validity of using a lumped formulation for the matrix thread material has been verified

using a separate model that resolves the radial temperature variations inside a thread subjected to the

conditions in the regenerator.

Heat conduction inside the metal walls of the engine is also included. This heat conduction affects the

temperatures of the metal walls in contact with the gas and thus also the gas. The main heat conduction

paths in the model are illustrated by the arrows in Fig. 4.

1 2 3 4 5 6 9 10 11 13127 8

Components:
1: Cold cylinder volume 3: Cooler 5, 6, 7: Regenerator
13: Hot cylinder volume 9, 10, 11:Heater  2, 4, 8, 12:Manifold volumes

Fig. 3. Discretisation used in Stirling engine model.
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3.3. Model equation system

The control volumes that represent the working gas are described by two ODEs each, viz. a mass

balance and an energy balance. The mass balance ODEs take the form of Eq. (1).

dmcv

dt
Z _mlbndK _mrbnd (1)

Flows across boundaries are represented as positive in the direction from left to right (from cold to hot)

in Fig. 3. The influence of flow friction on the mass distribution in the engine is directly included in the

mass balance equations because the mass flow rates are calculated from correlations for pressure losses.

In the energy balances for the control volumes, it has been assumed that kinetic and gravitational

potential energies in the control volumes are of negligible magnitudes. The total energy in the control

volumes has thus been assumed equal to the internal energy. Because of this the energy balances for the

control volumes take the form of Eq. (2).

dEcv

dt
Z

dðmcvcvTcvÞ

dt
Z _mlbndcpTlbndK _mrbndcpTrbndChAhtðTwKTcvÞKpcv

dVcv

dt
(2)

The first two terms in Eq. (2) represent enthalpy flows between neighbouring control volumes. Notice

that interpolated boundary temperatures are used in these terms to avoid numerical diffusion. The

interpolation is carried out using interpolation methods with filtering properties similar to the mixed

interpolation and extrapolation method presented in by Kühl and Schultz [8]. The third term represents

convective heat exchange between gas and metal. The last term represents work from volume changes

and is only relevant for the cylinder volumes. Energy loss terms such as metal heat conduction typically

affect the wall temperatures in the engine and are thus included in the ODEs through the convective heat

exchange term.

The control masses that represent the regenerator matrix are described either by ODEs of the form

Eq. (2) with only a heat exchange term or by a constant temperature. Heat conduction through the metal

in the matrix is not taken into account.

1 2 3 4 5 6 9 10 11 13127 8

Fig. 4. Heat conduction paths in Stirling engine model.
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In order to be able to find the temperatures of metal walls throughout the engine it is also necessary to

integrate the heat transfer to the wall sections during each cycle. ODEs that have just the heat exchange

term of Eq. (2) are used for this purpose.

The governing equations in the model make up a coupled system of first order ODEs.

3.4. Mathematical problem definition

For the purposes of this investigation steady state periodic solutions to the ODE system of the model

are needed. In a steady state periodic solution the values of all variables representing masses and

energies must be the same at the end and the beginning of the cycle. This requirement is a cyclic

boundary condition. The initial masses and energies in the control volumes and control masses must be

found so that cyclic boundary conditions are satisfied.

Cyclic heat transfer is assumed to take place for the metal walls in the cylinders, manifold volumes,

and in the end sections of the heater. When constant regenerator matrix temperatures are assumed then

conditions for cyclic heat transfer are also used for finding the matrix temperatures.

Integrations of heat transfer to or from the wall sections and portions of the regenerator matrix, where

cyclic heat transfer is assumed must result in zero net heat transfer if the prescribed constant

temperatures are to be true steady state cycle mean values. The fixed wall and matrix temperatures must

be found so that this is achieved.

An infinite number of solutions satisfy the above conditions for steady state solutions for the model

investigated here. In order to get solutions that are directly comparable, it is necessary to add an

additional condition that fixes the total mass of the working gas in the engine. For this purpose, an

integral condition that measures the deviation from a user specified mean pressure in the hot cylinder has

been chosen. The amount of mass and energy in the string of control volumes representing the working

gas must be scaled to eliminate this deviation.

The mathematical problem that must be solved thus contains a cyclic boundary value problem for a

system of ODEs, a set of integral conditions for cyclic heat transfer, and an integral condition that must

be used for scaling the masses and energies in the gas filled control volumes. The numerical method must

also allow additional integrations that can be used for integrating the heat absorbed in the heater and/or

cooler and the work done on the pistons, so that performance characteristics, such as power output and

thermal efficiency, can be calculated.

4. Implementation of model and numerical method

The mathematical problem of the model is solved numerically using the MusSim (Multi purpose

software for Simulation) software by Andersen [9,10]. The software and the model is implemented in

standard Fortran95 and has been tested to be compatible with Compaq, Intel, Lahey/Fujitsu, HP, IBM,

and Sun compilers and thus runs on a large number of platforms.

A good Stirling engine model should approach periodic steady state asymptotically if integrated

forward in time from a given set of initial values, but the convergence may be slow and asymptotical. To

drastically accelerate this convergence the MusSim software uses a purpose built shooting method. This

shooting method treats the ODEs in the model as a boundary value problem that is solved for initial

values and parameters corresponding to a periodic steady state solution to the initial value problem (IVP)
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defined by the ODEs. The cyclic boundary conditions and the integral conditions are treated as residual

equations that must be solved in much the same way as a Newton–Rhapson method solves non-linear

residual equations. The main difference is that the shooting method requires some of the variables to be

scaled based on a residual.

The system of ODEs turns out to be very stiff. This is not surprising as the variables in the system have

very different inertial properties. For instance, the mass of gas and the energy in a control volume where

gas is blowing through at high velocity can change on a much smaller time scale than the thermal energy

stored in a control mass in the regenerator matrix. In order to handle this stiffness a suitable IVP method

must be used in the shooting method. During this investigation the semi-implicit GERK method by

Thomsen [11] has been successfully applied.

To be able to achieve accurate results it has proven necessary to solve ill conditioned non-linear

equation systems with very strict tolerances in the internal iterations of the GERK method. This is

handled using the built in non-linear equation solver of the MusSim software. It can be time consuming

to robustly seek out difficult solutions of this kind but the MusSim software has features to speed up this

process and this makes the model manageable for many purposes on a standard PC.

5. Model verification

A great deal of effort has been put into verifying the correctness of the model.

One of the most obvious and also most important tests is to make sure that the model does not leak

mass and/or energy due to misconnected control volumes or control masses. Testing for conservation of

mass is trivial and has been done by monitoring the sum of the masses of gas in the control volumes.

Testing for conservation of energy in the same manner is slightly more involved as it requires the system

to be kept adiabatic from the surroundings and it requires the work terms from the movement of the

pistons to be zeroed out. For steady state solutions, though, conservation of energy can be verified by an

overall energy balance applied at the outer boundaries of the model. These tests are integrated into the

model and are performed for every calculated periodic steady state solution. Conservation of mass and

energy has been found to satisfy relative tolerances that are stricter than the tolerance enforced by the

GERK method for the individual masses and energies.

The correctness of the implementations of the correlations needed in the model have been tested by

exchanging them with different correlations and checking the differences caused by the exchanges. The

variations have been found to be within the expected ranges.

The calculated performance of the engine according to the assumed best model has been compared to

values measured on the actual 9 kW engine. Depending on the combination of correlations used to describe

pressure losses and heat transfer the model overestimates the work output from the gas cycle by 8–21% and

the efficiency of the gas cycle by 6–18%. These results were expected as the model does not account for

certain known losses associated with the displacer piston that divides the cylinder volume of the engine.

6. Preliminary results and discussion

After initial verification of the model had been carried out it was studied how the spatial discretisation

in the regenerator influences the calculated temperature profile for the regenerator matrix. During this

S.K. Andersen et al. / Energy 31 (2006) 1371–13831378



investigation the cooler was divided into 10 control volumes and the total length of the heater was

divided into 20 control volumes.

For fixed matrix temperatures the total length of the regenerator was divided into 10, 20, and 50

control volumes of uniform size in subsequent simulations. The resulting matrix temperature profiles are

shown in Fig. 5. The slightly curved shape of the calculated temperature profiles is largely independent

of the fineness of the discretisation.

This experimentwas repeatedwith dynamic regenerator temperatures. In order to present the information

from these simulations it has been chosen to plot themaximum andminimum energy based temperatures in

the regenerator matrix control masses during a cycle. These plots are shown in Fig. 6 and it is apparent that

the shapes of the profiles depend on the fineness of the discretisation. It also appears that the curvatures of the

temperature profiles are largest in the ends of the regenerator. This large curvature in the ends of thematrix is

caused by the matrix exchanging considerable amounts of energy with incoming gas flows whose

temperatures differ significantly from the temperatures of the ends of the matrix.

Based on these observations a new non-uniform discretisation with a larger density of control

volumes in the ends of the regenerator was devised. In this discretisation the ends of the regenerator

(components 5 and 7 in Fig. 3) were both given lengths corresponding to 8% of the total length of the

regenerator while component 6 covered the remaining central part. Component 5 was divided into 10

control volumes, component 6 into five control volumes, and the fineness of the discretisation in

component 7, located where the largest gradients were observed in Fig. 6, was varied between 10 and 20

control volumes. Temperature profiles showing the maximum and minimum temperatures in the matrix

control masses during the cycle when using the new discretisation are shown in Fig. 7. The temperature

profiles in Fig. 7 appear very similar and because of this the discretisation has not been further refined.

Fig. 8 shows comparisons of the temperature profiles for fixed and dynamic matrix temperatures

calculated using fine discretisations. The figure shows that the temperature profile in the regenerator

matrix looks significantly different when the oscillations of the matrix temperatures are taken into

account. The main differences are the temperature oscillations in the ends of matrix and a slightly flatter

temperature gradient in the central part of the regenerator.

In order to verify that the solutions with dynamic matrix temperatures found by the shooting method

of the MusSim software are true steady state solutions a test procedure was devised.

In this test procedure the initial values found by the shooting method are used as initial values for

sequential simulations. These simulations run the engine for an additional 100 consecutive cycles from
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Fig. 5. Axial temperature profiles in the regenerator matrix calculated with fixed matrix temperatures.
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the initial values found by the shooting method. After completing the 100 cycles the final values are

recorded. The initial values found by the shooting method are then subtracted from these final values and

the resulting differences are divided by the initial values. The results of this procedure we label as the

relative drifts in the periodic steady state solution.
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Fig. 6. Max. and min. matrix temperature profiles calculated with dynamic matrix temperatures and uniform discretisation.
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uniform discretisation.
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This test procedure has been completed for the above mentioned five discretisations used in the

simulations with dynamic regenerator temperatures. The calculated relative drifts for all variables are

shown in Fig. 9 for the case, where shooting has been carried out to a tolerance of 10K5 using a relative

tolerance of 10K6 in the GERKmethod. The figure shows that the relative drifts of all variables in all the

tested solutions are below the tolerance enforced by the shooting method. The figure also shows that the

signs of the largest drifts seem random in nature within components. They can thus be interpreted as

noise from the integration of the ODEs. The variables most affected by this noise are the masses of gas in

the regenerator control volumes and, to a lesser extent, the masses and energies in and close to the

cylinder volumes.

The visual inspection of the temperature profiles presented above illustrates that the temperature

profiles appear to be shaped differently when oscillations in matrix temperatures are taken into account.

The visual inspection does not, however, show that the temperature oscillations have an impact on the

performance of Stirling engines. The effect on performance by the temperature oscillations is shown by

Table 1 that contains characteristic numbers for the performance of the gas cycle in the engine for all the

solutions presented above. The values in the table are the work output, the heat intake from the heater,

the thermal efficiency, and the regenerator loss defined as the average net energy flux through the

regenerator from the hot end towards the cold end of the regenerator.
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The numbers in Table 1 show several distinct differences in performance caused by taking dynamic

temperature oscillations in the regenerator matrix into account.

The net energy flux loss through the regenerator is reduced by roughly two thirds. In spite of the

reduction of this loss term the thermal efficiency is reduced due to a significant reduction in the power

output of the cycle. These differences will be further investigated.

When comparing the above performance numbers for the gas cycle of the engine to the performance

of this and other engines it is important to remember that the above performance numbers are for the gas

cycle of the engine and not for the shaft power from the engine or for the electrical power output from an

engine-generator assembly.

7. Conclusion

It has been found that true steady state periodic solutions can be reliably calculated for a cyclic

boundary value problem that describes a Stirling engine and includes the coupled thermodynamics of a

gas and a regenerator matrix.

It has also been found that the calculated temperature profile in a regenerator matrix can look

significantly different when matrix temperature oscillations are taken into account. The main differences

have been found to be significant matrix temperature oscillations in the ends of the regenerator and a less

steep matrix temperature gradient in the central part of the regenerator.

Finally, it has been found that the oscillations in the regenerator matrix temperatures influence the

calculated performance of the gas cycle in the engine. The observed effects include a reduction of the

regenerator loss, the power output, and the thermal efficiency.

Future work will include improvements to the model and the MusSim software as well as

comparisons of obtained simulation results with measurements on a test bench.
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Abstract

A new regenerator matrix design that improves the efficiency of a Stirling engine has been developed in
a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine
model that delivers results in good agreement with experimental data was used for mapping the per-
formance of the engine, for mapping the effects of regenerator matrix temperature oscillations, and for
optimising the regenerator design. The regenerator matrix temperatures were found to oscillate in two
modes. The first mode was oscillation of a nearly linear axial matrix temperature profile while the second
mode bended the ends of the axial matrix temperature profile when gas flowed into the regenerator with a
temperature significantly different from the matrix temperature. The first mode of oscillation improved the
efficiency of the engine but the second mode reduced both the work output and efficiency of the engine. A
new regenerator with three differently designed matrix sections that amplified the first mode of oscillation
and reduced the second improved the efficiency of the engine from the current 32.9 to 33.2% with a
3% decrease in power output. An efficiency of 33.0% was achievable with uniform regenerator matrix
properties.
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1. Introduction

The Stirling engine is a closed cycle, regenerative, external combustion engine. In a Stirling en-
gine, work is expended to compress a cold gas, and the gas is then heated to further increase the
pressure. The hot, high pressure gas is then expanded, and more work can be extracted than was
needed to compress the cold gas. Finally, the gas is cooled before the next cycle begins with a new
compression. The heating and cooling of the working gas is achieved by sending the working gas
back and forth through a serial connection of heat exchangers, i.e. a cooler, a regenerator and a
heater. The regenerator is a void filled with a porous matrix with a large heat transfer area and a
large heat capacity, made, for instance, from metal felt. The main purpose of the regenerator is to
act as a thermal heat storage that minimises the amount of energy that must be added in the hea-
ter, thereby increasing the thermal efficiency. The regenerator does this by absorbing energy when
the gas is flowing from the heater towards the cooler and releasing the energy again when the gas
is flowing from the cooler towards the heater. Because the matrix alternately absorbs and releases
energy, the temperature profile of the matrix oscillates in time.

Because of their large heat transfer area, porous matrix regenerators also, typically, greatly in-
crease the heat transfer in an engine and, hence, increase the power output. Regenerators and
their design are, thus, central to the performance of Stirling machines, and their influence on
the performance of the machines has been studied intensively. Both efficiency and a high power
output are important because they influence the cost of power produced by an engine. Further-
more, the efficiency directly influences the environmental impact per unit produced power. This
paper presents a new way to design regenerator matrices so that Stirling engines can achieve high-
er efficiencies while maintaining a high power output. The new design is based on the results of a
numerical study on the influence of the regenerator matrix temperature oscillations on the perfor-
mance of a Stirling engine.

1.1. Previous regenerator studies

Experimental studies of regenerators have mostly been conducted in order to generate correla-
tions for heat transfer and flow friction, such as those compared by Thomas and Pittman [1], that
can be used in simulation programs. Several experimental studies, for instance, the work of
Gedeon and Wood [2] and of Isshiki et al. [3], have been performed by placing small samples
of regenerator matrix material into specialised regenerator test equipment instead of performing
the measurements on complete regenerators inside actual engines. These studies have yielded
information about the flow friction and heat transfer in regenerator matrices, but they do not
show the influence of regenerator performance on machine performance. In the heat transfer
study by Siegel [4], measurements have been performed on a full regenerator inside an actual Stir-
ling engine, but it has only been possible to measure bulk temperatures and pressure losses that
result from the combined effects of all phenomena, such as heat transfer, matrix temperature oscil-
lations and flow friction, occurring in the regenerator in the engine; the influence of the individual
phenomena has not been revealed.
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Analytical and semi-analytical studies of Stirlingmachines require that the equations and bound-
ary conditions of the models be simple enough that analytical solution methods can be successful
applied. Hence, significant simplifications compared to real world conditions are needed, and the
agreement between predicted and actual machine performance suffers accordingly. Analytical
models, however, are useful for identifying phenomena and for predicting trends. In 1982 and
1986, Jones used an analytical model with a piece wise linear axial matrix temperature profile to
show that matrix temperature oscillations influence the performance of Stirling engines because
they induce a heat pumping effect and cause a loss of power output [5,6]. More recently, Bauwens
has shown that thermoacoustic effects in regenerators can be significant when the flow passages in
the regenerator are of significant magnitude compared to the heat penetration depth in the gas [7].

Detailed numerical studies of regenerators, see, for instance, the work of Gary et al. from 1984
[8], have been performed. When the regenerator models are not integrated into detailed and com-
plete machine models, the influence of the regenerators on their own boundary conditions and on
machine performance cannot be determined.

1.2. Regenerator matrix design

The design of metal felt regenerators can be characterised by the geometry of the regenerator
volume, the diameter of the wire from which the metal felt is made and the fill factor (or, con-
versely, the void fraction) of the metal felt. In this study, only the wire diameter and fill factor
are considered.

The amount of heat that must be added in the heater of a Stirling engine can be reduced by
decreasing the net average flux of energy that is carried from the heater to the cooler by the
gas in the engine, i.e. by reducing the regenerator loss. The regenerator loss can be reduced by
reducing the temperature difference between the gas and the matrix by increasing the heat transfer
area per unit volume. The heat transfer area can be increased by reducing the wire diameter
and/or by increasing the fill factor but doing so will increase the flow resistance. Pressure losses
caused by flow resistance in the regenerator cause a loss of power output from the engine.

When a regenerator design is optimised without taking into account the effects of matrix tem-
perature oscillations on engine performance, a design that balances the heat transfer properties
and the flow resistance in the matrix can be found. In this study, matrix temperature oscillations
are taken into account and regenerator designs that take into account the thermal inertia of the
matrix in addition to the heat transfer properties and flow resistance are discussed.

1.3. The effects of matrix temperature oscillations

The findings of Jones [6] suggest that the magnitudes of the heat pumping and power loss in-
duced by regenerator matrix temperature oscillations are inversely proportional to the heat capac-
ity of the matrix and, hence, to the magnitudes of the matrix temperature oscillations. The study
of Jones does not account for the influence of the matrix temperature oscillations on the boundary
conditions of the regenerator. We have presented results [9] that indicate that the inverse propor-
tionalities are only approximate. Still, this dependence on the heat capacity of the matrix makes it
possible to extrapolate reliably to the case of infinite matrix heat capacity from simulations per-
formed with finite matrix heat capacity. If, for instance, simulations are performed where the heat
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capacity of the matrix is increased by a factor of 100, the magnitudes of the effects of matrix tem-
perature oscillations are reduced to the fraction 0.01; the extrapolation from this case to the case
of infinite matrix heat capacity is a small one.

1.4. The present study

The effects of regenerator matrix temperature oscillations on the performance of a Stirling en-
gine have been studied by using a detailed Stirling engine model to map the performance of an
existing Stirling engine and the effects of matrix temperature oscillations for a wide range of regen-
erator matrix designs. The information gained about the influence of different modes of matrix
temperature oscillations on the performance of the engine leads to a suggestion for a new regen-
erator matrix design where the regenerator is divided into three sections with different matrix de-
signs. The new regenerator design allows the engine to obtain a higher efficiency than can be
achieved with a regenerator with a uniform matrix design while maintaining a high power output.

2. Methods

2.1. The studied Stirling engine

The engine design parameters and operating conditions used as input for the Stirling engine
model in this study were based on the 9 kW b-type Stirling engine, SM5 [10]. The engine is a her-
metically sealed unit and has a generator built into a sealed and pressurized crank case. The regen-
erator of the engine is an annular shaped void with a stainless steel felt matrix. A picture of the
engine and a drawing of the cylinder region of the engine are shown in Fig. 1.

Fig. 1. The SM5 Stirling engine with exposed heater (left) and a drawing of the cylinder region of the engine.
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2.2. The Stirling engine model

In this study, we used a new Stirling engine model that we have documented [9] is capable of
delivering results that are in good agreement with experimental data over a wide range of oper-
ating conditions with both helium and nitrogen as working gas. This Stirling engine model is a
refinement of the modelling approach we first presented in Ref. [11]. We have documented
[9,11] that the model is able to reproduce the heat pumping and power loss effects caused by
the matrix temperature oscillations that were originally predicted by Jones [5,6].

The outer boundary conditions of the model are the temperature profile on the outside of the
heater tubes, the power outlet from the generator and the flow rate and temperature of the cooling
water. Because the model does not include the burner system, the heat intake and electrical effi-
ciency calculated by the model is based on the heat absorbed by the heater tubes and do not in-
clude burner losses.

In the model, an equivalent one-dimensional geometry is used to represent the working volume
of the Stirling engine, i.e. the computational domain. The computational domain includes the dis-
placer piston clearance gap and the manifolds of the engine in addition to the cylinder volumes,
cooler, regenerator and heater. In the displacer piston clearance gap, the control volumes follow
the motion of the displacer piston, but everywhere else in the engine, the control volumes are fixed
in space. The discretization of the computational domain into control volumes was locally refined
where solutions contain large gradients, and this was done so that grid convergent solutions were
obtained throughout the studied range of regenerator designs. The discretization of the computa-
tional domain is illustrated in Fig. 2.

In formulating the governing equations for the gas in the computational domain, the time
dependent forms of the balance equations for mass, energy and momentum were used for writing
ordinary differential equations (ODEs) that describe the gas in the control volumes. The balance
equation for momentum was applied on a staggered mesh, i.e. to a second set of control volumes
centred on the boundaries of the control volumes used for the mass and energy balances. The
ODEs for the mass and energy balances were transformed into ODEs for pressure and tempera-
ture using the ideal gas equation of state. ODEs for the flow velocities were then derived from the
balance equations for momentum. Asymmetric interpolation methods with filtering properties,
similar to the quadratic polynomial method presented by Kühl and Schultz in Ref. [12], were

Regions of computational domain:
1: Cold cylinder volume 7: Heater
2, 4, 6, 8: Manifold volumes 9: Hot cylinder volume
3: Cooler 10: Displacer piston clearance gap 
5:  Regenerator

1 2 3 4 5 6 7 8 9 10

Symmetry
axis

Fig. 2. Discretization of computational domain used in Stirling engine model.
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included in the model to minimise numerical diffusion of quantities that are transported by advec-
tion. Artificial dissipation based on the 2nd and 4th order spatial derivatives of the flow velocities
was included to dissipate acoustic phenomena with short wavelength. We have previously de-
scribed [13] this method for modelling the gas more closely.

All wetted surfaces of the engine components are divided into control masses that interact with
the gas filled control volumes. Most of the metal control masses correspond spatially to the gas
filled control volumes, but in the displacer piston clearance gap, the control volumes that resolve
the gas in the gap slide over the control masses that resolve the cylinder wall. The temperatures of
the control masses containing the regenerator matrix material are modelled as dynamic, and the
temperatures of all the remaining control masses are modelled as constant at their periodic steady
state mean values. The periodic steady state mean values are found from the integral conditions
that the net heat transfer to the control masses during one engine cycle must be zero. The control
masses containing the regenerator matrix material are modelled using ODEs derived from an en-
ergy balance for a lumped control mass, i.e. a control mass with a uniform temperature. The
validity of using a lumped formulation and, hence, of assuming that radial temperature gradients
inside the regenerator matrix wires are not significant has been verified using a separate model
that resolves the radial temperature variations inside a single matrix wire. In this study, the heat
transfer rates between the gas and matrix and the flow friction were calculated using the correla-
tions by Kühl presented by Thomas and Pittman [1].

Losses caused by flow friction and heat losses are coupled directly into the governing equations
in the model by including their effects in the balance equations of the model formulation. Flow
friction, for instance, is included as terms in the momentum balance equations. Heat conduction
in the walls of the engine components, to mention another example, affects the energy balances
of the metal control masses in the model and, hence, the temperatures of the control masses. Be-
cause the control masses interact with the gas filled control volumes through convective heat ex-
change, the heat conduction in the walls of the engine components is also coupled into the
governing equations for the gas. Coupling loss terms directly into the governing equations breaks
with more traditional Stirling engine modelling approaches, such as the approach of Uriele and
Berchowitz [14], where losses are assumed to be decoupled from each other and from the govern-
ing equations and, hence, can be applied as correction terms to the calculated performance of an
idealised engine.

Heat transfer and flow friction are calculated using empirical correlations for heat transfer and
flow friction inside tubes, flow constraints, engine cylinders and regenerator matrices. Correla-
tions derived for steady state conditions are used for tube flow. Approximated velocity and tem-
perature profiles are used for calculating friction and heat transfer in the displacer piston
clearance gap. The working gas and the steel in the engine are modelled with temperature depen-
dent thermophysical properties. The bearing and seal friction forces are calculated from the forces
exerted on the pistons by the gas in the engine. The efficiency of the generator is assumed to be
load independent.

2.3. The simulation tool for computing steady state solutions

Periodic steady state solutions to the model were computed by formulating a boundary value
problem (BVP) in the governing equations of the model and then applying the shooting method of
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the MusSim software to solve the BVP. MusSim, or Multi Purpose Software for Simulation, is a
general purpose simulation tool being developed in house at the Department of Mechanical Engi-
neering at the Technical University of Denmark. A paper describing the shooting method of the
MusSim software has been submitted for publication [15].

2.4. Engine operating conditions

The input to the model defined operating conditions where the engine operated at 1025 rpm
with helium as the working gas at a mean pressure of 7.9 MPa. The temperature profile on the
outside of the heater tubes spanned between 640 �C in the ends nearest the regenerator and
760 �C near the ends that connect to the hot cylinder volume. The cooling water had an average
temperature of 36 �C. These conditions are near optimal operating conditions for the SM5 engine
where the engine delivers 10.7 kW of electric power with an efficiency of almost 33%.

2.5. Mapping of engine performance

The studied range of regenerator designs was defined by the range of wire diameters from 15 to
150 lm and the range of fill factors from 0.01 to 0.27 (equivalent to void fractions from 0.99 to
0.73). The mapping of engine performance was done by simulating the SM5 engine on a mesh
with 72 regenerator matrix design points defined by the nine wire diameters 15, 20, 35, 50, 65,
100, 150, 200 and 250 lm and the eight fill factors 0.01, 0.02, 0.04, 0.07, 0.12, 0.17, 0.22 and
0.27. The regenerator currently installed in the SM5 engine has a wire diameter of 60 lm and a
fill factor of 0.22.

2.6. Mapping of the effects of matrix temperature oscillations

The specific heat of the matrix material was varied by multiplying the temperature dependent
specific heat of the stainless steel with a factor. Simulations were performed with this multiplica-
tion factor equal to 2, 10 and 100 for each of the 72 regenerator design points. Together with the
simulations performed to map the performance of the engine, this yielded a total of four perfor-
mance data sets for the different matrix heat capacities for extrapolating to the cases of no matrix
temperature oscillations. In order to take into account deviations from linear dependence between
the performance data and the reciprocal of the matrix heat capacity, the extrapolations were done
in the reciprocal of the matrix heat capacity using cubic polynomials through the four data points
at each of the regenerator designs. The effects of the matrix temperature oscillations on the per-
formance of the engine were isolated by subtracting the extrapolated results for the cases of no
matrix temperature oscillations from the mapping of the performance of the engine.

2.7. Regenerator design optimisation

Two optimisations of the regenerator matrix were performed using the efficiency of the engine
as the objective function to be maximised. In the first optimisation, the efficiency was optimised by
adjusting the wire diameter and fill factor uniformly throughout the matrix. In the second opti-
misation, the regenerator matrix was divided into three sections where the two end sections were
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each 5 mm long, leaving a central section of 51 mm. The lengths of 5 mm for the end sections were
chosen for convenience; the 5 mm end sections correspond to the sections used to refine locally the
discretization in the ends of the regenerator. In the second optimisation, the efficiency was opti-
mised by adjusting the individual wire diameters and fill factors for the three sections. The opti-
misations were performed using a conjugate gradients method available in the MusSim software.

3. Results

3.1. Axial temperature profile in the regenerator matrix

Fig. 3 shows the computed axial matrix temperature profile in the regenerator currently in-
stalled in the engine at the chosen operating conditions. The matrix temperature profile is shown
as the minimum and maximum temperatures reached during the cycle at the centres of the matrix
control masses. A curve extrapolated to the case of infinite matrix heat capacity is also shown.
Fig. 3 shows that the axial temperature profile was almost linear in the central part of the regen-
erator, and that the slope of the profile was slightly less steep when matrix temperature oscilla-
tions were taken into account. The figure also shows that the matrix temperatures oscillated
approximately 12 �C in the central part of the matrix, and that larger temperature oscillations oc-
curred in the ends of the matrix. In the hot end of the regenerator, the matrix temperature oscil-
lations were as large as 70 �C.

3.2. Mapping of engine performance

Fig. 4 shows contour plots of the calculated power output, electrical efficiency, regenerator loss
and heat intake of the SM5 Stirling engine for the range of regenerator designs studied. The hor-
izontal axis in the plots represents the fill factor, and the vertical axis represents the wire diameter
in the matrix. On horizontal lines in the plots, the ratio of heat transfer area to heat capacity is
constant, and on vertical lines in the plots, the heat capacity is constant.
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Fig. 4 shows that the power output from the engine decreased sharply for low fill factors and
large wire diameters where the heat transfer area in the matrix was relatively small. A decrease in
the power output also occurred for very small wire diameters and relatively large fill factors where
the pressure drop across the regenerator was large. The contour plot for the electrical efficiency
shows a peak near the present regenerator design.

For fill factors above approximately 0.07, the regenerator loss increased with smaller fill factors
and larger wire diameters, i.e. with smaller heat transfer area in the matrix. For fill factors below
0.05, the regenerator loss decreased with decreasing fill factor for wire diameters above 50 lm.
The heat intake of the engine showed similar trends, but for fill factors above 0.05, the variations
with wire diameter were smaller in magnitude and the dependence on the fill factor was less
pronounced.

3.3. Mapping of the effects of matrix temperature oscillations

Fig. 5 shows contour plots of the influences of the matrix temperature oscillations on the power
output, electrical efficiency, regenerator loss and heat intake of the SM5 Stirling engine for the
studied range of regenerator designs.
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crosses mark the locations of calculated values. The dots mark the current regenerator design.

902 S.K. Andersen et al. / Energy Conversion and Management 47 (2006) 894–908



Fig. 5 shows that the matrix temperature oscillations reduced the electrical power output of the
engine for most of the explored regenerator designs, and that the reduction was largest for low fill
factors and small wire diameters. In very sparse regenerator matrices with relatively large wire
diameters, the electrical power output was slightly increased by the matrix temperature oscilla-
tions. At the current regenerator design, the matrix temperature oscillations reduced the electrical
power output of the engine by approximately 5%. The electrical efficiency was increased by the
matrix temperature oscillations for low fill factors and large wire diameters and reduced for larger
fill factors and small wire diameters.

In Fig. 5, the plots for the differences in the regenerator loss and the heat intake look very sim-
ilar, suggesting a strong coupling between them. The regenerator loss and the heat intake were
reduced the most by the matrix temperature oscillations when the fill factor was low. The decrease
was largest for small wire diameters.

3.4. Regenerator design optimisation

The optimisation of the regenerator where the design of the matrix was kept uniform through-
out the matrix showed that the electrical efficiency could be improved by 0.1% points from 32.9%
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to 33.0% by reducing the fill factor from 0.22 to 0.185 and reducing the wire diameter from 60 lm
to 49 lm. This design change reduced the power output of the engine by 2% and reduced the
regenerator loss by 31% from 1.15 kW to 0.79 kW.

The optimisation where the regenerator matrix was split into three sections resulted in a design
with a fill factor of 0.22 and a wire diameter of 90 lm in the cold end section, a fill factor of 0.15
and a wire diameter of 36 lm in the central section and a fill factor of 0.21 and a wire diameter of
84 lm in the section at the hot end of the regenerator. With this regenerator design, the electrical
efficiency of the engine was improved by 0.3% points from 32.9% to 33.2%, while the power out-
put was reduced by 3% and the regenerator loss was reduced by 5% from 1.15 kW to 0.52 kW.

4. Discussion

4.1. The matrix temperature profile and temperature oscillations

The matrix temperature oscillations shown in Fig. 3 appear to consist of two contributions:
an overall oscillation and additional oscillations near the ends of the regenerator. The overall
oscillation did not bend the axial matrix temperature profile but only shifted it up and down.
It would be the only contribution if the ratio of heat transfer to heat capacity was constant
throughout the regenerator. The additional oscillations near the ends of the regenerator did
bend the axial matrix temperature profile. They were induced when the temperature difference
between the matrix and the gas flowing into the regenerator was significantly different from the
temperature difference between the matrix and the gas in the central part of the regenerator.
They are denoted as the inflow induced matrix temperature oscillations in the remainder of this
paper. The characteristics of the shape of the temperature profile changed slightly when the fill
factor was 0.01 because the cold end of the profile straightened slightly at the gas inflow tem-
perature during inflow from the cooler.

The magnitudes and the penetration depths of the inflow induced matrix temperature oscil-
lations depended on the design of the matrix. When the wire diameter was reduced, the heat
transfer area and the ratio of heat transfer area to heat capacity were increased. This reduced
the penetration depths of the inflow induced temperature oscillations and increased their mag-
nitudes. When the fill factor was increased, the heat capacity of the matrix was increased, but
the ratio of heat transfer area to heat capacity did not change. This reduced the penetration
depths of the inflow induced temperature oscillations without having much effect on their
magnitudes.

The magnitudes of the overall matrix temperature oscillations depended almost entirely on the
heat capacity of the matrix and, therefore, on the fill factor.

4.2. The effects of matrix temperature oscillations

Fig. 5 shows that the largest decrease in power output from the matrix temperature oscillations
was found for low fill factors and small wire diameters where both the inflow induced- and overall
matrix temperature oscillations were largest. At the same time, the electrical efficiency was in-
creased by the matrix temperature oscillations for low fill factors and large wire diameters and
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reduced for larger fill factors and small wire diameters. Hence, the electrical efficiency was in-
creased where the overall temperature oscillations were largest and the inflow induced tempera-
ture oscillations were smallest, and vice versa. These observations suggest that the inflow
induced matrix temperature oscillations had a negative influence on both power output and elec-
trical efficiency, while the overall matrix temperature oscillations sometimes had a positive influ-
ence on electrical efficiency. Since positive effects were found, it was concluded that, of the heat
pumping and the power loss due to matrix temperature oscillations documented by Jones in
Ref. [6], the first could be predominant in the SM5 engine when the overall matrix temperature
oscillations were large.

4.3. A new regenerator design with three sections

The optimisation of a regenerator divided into three sections showed that a notably higher elec-
trical efficiency could be achieved than with a uniform matrix design. The optimisation yielded a
matrix in which the fill factors and thread diameters in the end sections of the matrix were larger
than in the central section. In this design, the ratio of heat transfer area to heat capacity was smal-
ler in the ends of the matrix than in the central part, and the ratio was also smaller than in the
optimal uniform regenerator design. The smaller ratio of heat transfer area to heat capacity re-
sulted in smaller inflow induced matrix temperature oscillations. The central section of the matrix
had a smaller wire diameter and a smaller fill factor than the optimal uniform matrix design, and
this caused the overall matrix temperature oscillations in the central part of the matrix to be lar-
ger. The differences in the magnitudes of the inflow induced- and overall matrix temperature oscil-
lations can be seen in Fig. 6. In addition to balancing heat transfer and pressure losses, the new
matrix design with three sections, thus, reduced the negative effects of the inflow induced matrix
temperature oscillations and intensified the positive effects of the heat pumping driven by the over-
all matrix temperature oscillations.
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4.4. Engine performance with uniform matrix

The mapping of engine performance in Fig. 4 shows that the current regenerator of the SM5
engine is already well optimised with respect to electrical efficiency. Optimisation showed that
only a 0.1% point improvement of electrical efficiency was achievable with uniform wire diameter
and fill factor throughout the matrix. Fig. 4 also shows that the work output of the engine could
be increased by increasing both the wire diameter and the fill factor compared to the current ma-
trix design and that doing so would have only a moderate impact on the efficiency of the engine.

4.5. Uncertainties and the generality of the results

The largest source of uncertainty of the results was the Stirling engine model itself; the shooting
method used for finding periodic steady state solutions to the model delivers accurate solutions to
the model as we documented in Ref. [15]. Because the model is one-dimensional, it yields little
information about gradients transverse to the main flow direction, and it cannot resolve the flow
patterns in open volumes such as cylinder volumes. Heat transfer and flow friction calculations,
therefore, depended entirely on empirical correlations and their accuracy for the flow conditions
in the model in the simulations. The largest uncertainty in this regard was the use of steady state
correlations for heat transfer and flow friction in the tubular heat exchangers. It was also not cer-
tain that transverse gradients in the flow channels of the sparsest regenerator matrices studied
were properly taken into account. However, the regenerator designs that yielded optimal perfor-
mance were both relatively close to the present regenerator design, where we have documented
that the model accurately predicts the performance of the engine [9].

The deviations from linear dependencies between the performance characteristics for the engine
and the reciprocal of the matrix heat capacities were small, and using cubic polynomial extrapo-
lations to the cases of infinite matrix heat capacities was, thus, adequate.

It has been documented using simple axial matrix temperature profiles that heat pumping and
power loss effects are caused by matrix temperature oscillations, and the same effects have been
observed in models that resolve more intricately shaped matrix temperature profiles. Hence, it ap-
pears likely that the effects of, at least, the overall matrix temperature oscillations can be expected
to be general and to follow the trends, such as dependence on phase angle between mass flow var-
iation and pressure oscillation in the engine, predicted in analytical studies. It was not studied
whether the negative effects of the inflow induced matrix temperature oscillations are general
or if they follow some of the same trends as the overall matrix temperature oscillations. The mag-
nitudes of the observed effects of matrix temperature oscillations will most likely be different for
engines with different designs.

5. Conclusions

Using a detailed numerical model to study the existing SM5 Stirling engine, we found that the
temperature oscillations of the regenerator matrix could be viewed as consisting of two contribu-
tions: an overall oscillation of a nearly linear temperature profile and additional inflow induced
oscillations near the ends of the regenerator. By mapping the effects of matrix temperature oscil-
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lations, we found that, as predicted in the literature, the overall matrix temperature oscillations
induced a heat pumping effect and caused a reduction of power output. When the overall matrix
temperature oscillations were large, the heat pumping effect could dominate so that the efficiency
of the engine was slightly improved. The inflow induced temperature oscillations were found to
reduce both the efficiency and the power output.

An optimisation of a new regenerator design where the matrix was divided into three sections
was performed for the SM5 engine. The optimisation resulted in the end sections having larger fill
factors and wire diameters than the central section. The new design reduced the inflow induced
matrix temperature oscillations and intensified the overall matrix temperature oscillations, and
it improved the efficiency of the engine from 32.9% to 33.2% while causing a 3% reduction of
the power output. By comparison, a maximum electrical efficiency of 33.0% could be achieved
with a 2% loss of power using a uniform matrix design with a smaller fill factor and made from
thinner wire than the current regenerator of the engine.

A mapping of the performance of the SM5 engine also indicated that an increase in power out-
put could be achieved with a moderate loss of efficiency by choosing a matrix with a larger fill
factor and made from thicker wire than the current regenerator.
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Abstract 
Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube 

cooler as observed in experiments was analysed in a numerical study. The asymmetry was 

reproduced using a one-dimensional model of the cooler where the regenerator was modelled 

using two identical parallel regenerator channels. The asymmetry was caused by a circulating 

flow that was superimposed on the oscillating flow. The primary mechanism driving the 

circulating flow was due to the wave form of the pressure difference between the ends of the 

regenerator and the dependence of the instantaneous mass flow rate on the pressure difference 

and temperature. 

Keywords: Pulse Tube Cooler; Regenerator; Temperature profile; Transverse asymmetry; 

Circulating flow; Streaming 

 

Nomenclature 

fdC  Form drag coefficient 

sfC  Skin friction coefficient 

estE
ɺ  Estimated rate of energy transport, W  

matEɺ  Rate of heat transfer to matrix, W  

reglossEɺ  Regenerator energy flux loss, W  

fricp∆  Pressure difference due to friction in the regenerator, Pa  

regp∆  Instantaneous pressure difference between ends of regenerator, Pa  

�
regp∆  Wave form of the time variation of pressure difference between ends of regenerator, Pa  

f  Operating frequency, 1/s  

n  Number of wire screens 

mɺ  Mass flow rate, /kg s  

p  Pressure, Pa  

p   Space averaged pressure, Pa  

Re  Reynolds number 

t  Time, s  

T   Temperature, K  

T   Space averaged temperature, K  

V  Cup velocity, /m s  

w  Open mesh width, m  

∫�  Integral in time over one cycle of the machine 

Greek symbols 

ν  Kinematic viscosity, 2 /m s  

µ  Dynamic viscosity, ( )/kg m s⋅  

ρ  Density, 3/kg m  

 

1. Introduction 
In contrast to the traditional regenerative cryocoolers, such as the Stirling- and Gifford-

McMahon (GM)-cryocoolers, the pulse tube cryocooler (PTC) operates without a cold moving 
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displacer. This feature leads to increased reliability, lower manufacturing costs and reduced 

mechanical vibrations at the cold head. Stirling-type high frequency PTCs are particularly 

attractive, since they can be operated with rubbing-free linear compressors that significantly 

increase the maintenance free operation time of the cooling system (see [1] for a recent review). 

At present, there is growing interest in large Stirling-type PTCs with electrical input power 

higher than 4 kW for potential use in gas liquefaction and power applications of 

superconductors ([2-5]). For hydrodynamic reasons, the up-scaling of the cooler size for high 

power leads to regenerators with large cross section areas and low aspect ratios. Such a 

geometry can give rise to unwanted temperature inhomogeneities in the regenerator, as has been 

recently observed [3-6]. 

 

Temperature differences up to 160 K transverse to the main flow direction have been measured 

in the temperature distribution in the regenerator of a high-power Stirling-type pulse tube cooler 

targeted for 80 W cooling at 25-30 K [4,5]. In the experiments it appeared that the transverse 

temperature asymmetry was initiated when the input power to the cooler, and hence the 

oscillating mass flow through the regenerator, exceeded a temperature dependent critical value. 

Dependent on the input power and the wire diameter and material of the wire screen mesh in the 

regenerator the asymmetry would then need on the order of magnitude one hour of cooler 

operation to evolve to the fully asymmetric temperature distribution. The transverse asymmetry 

in the temperature profile was shown [4,5] to considerably reduce both the available cooling 

power and the efficiency of the PTC and to limit the obtainable no-load temperature. It was 

found that the transverse asymmetry and its detrimental effects on the performance of the PTC 

could be reduced by increasing the transverse heat conductivity of the regenerator matrix by 

replacing some of the stainless steel wire screens in the matrix with copper wire screens.  

 The basic geometry of the problem is illustrated in Fig. 1. A cylindrical regenerator is 

subjected to the oscillating flow in the PTC. Three Pt-100 temperature sensors were placed at 

the mid plane of the regenerator interspaced by 120 degrees along the periphery of the 

regenerator canister. The sensors were expected to show identical temperatures during 

operation. But at some point in time during the cool down phase of the PTC the temperatures 

measured by the sensors began to diverge. Once the temperatures measured by the sensors 

scattered the sensors did not converge back to having the same temperature until the PTC was 

turned off. 

 The orientation of the asymmetry was observed to vary between different experimental 

runs with the same experimental setup, i.e. it varied from experiment to experiment which of the 

three temperature sensors that measured the highest temperature and which of the temperature 

sensors that measured the lowest temperature. In some experiments it was even observed that 

the asymmetry appeared to rotate very slowly with a period of the order of magnitude 5 hours. 

Due to these observations the transverse asymmetry in the temperature profile was not believed 

to be caused only by geometric asymmetry in the experimental setup. 

 
 

Cold 
end 
Tcold 

Sensor 2 

Sensor 1 Sensor 1 

Sensor 3 Sensor 2 

T 

Tcold 

Sensors 
1-3 

Position 

T 

Twarm 

Tcold 

Sensors 
1-3 

Position 

Expected 
temperature 
profile 

Expected  
sensor  
temperatures 

Actual 
sensor  
temperatures 

Oscillating 
flow 

Warm 
end 
Twarm 

Twarm 

 
Fig. 1. Basic geometry of problem. 
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In regenerators there are a number of mechanisms for energy transport transverse to the main 

flow direction that would be expected to work against transverse asymmetry in a matrix 

temperature profile. Prime amongst these mechanisms are: 

• Conduction in the wires of the regenerator matrix. This conduction will be more 

powerful in wire screen matrices than in metal felt matrices, because the wires run 

unbroken across the entire cross section of the regenerator in the wire screens. The 

magnitude of the energy transport by conduction in the matrix wires will be 

proportional to the transverse temperature gradient, the thermal conductivity of the 

matrix material, and to the amount of matrix material in the regenerator. The transverse 

temperature gradient corresponding to a given temperature difference between opposing 

sides of the regenerator is inversely proportional to the diameter of the regenerator. The 

conduction in the wires will hence be most effective in removing transverse temperature 

differences in regenerators with small diameters. As mentioned above it has been 

verified experimentally [4,5] that replacing a fraction of the stainless steel wire screens 

in a regenerator by copper wire screens can reduce the magnitude of a transverse 

asymmetry in the matrix temperature profile. 

• Molecular conduction in the gas in the regenerator. The thermal conductivity of helium 

is two orders of magnitude smaller than the thermal conductivity of stainless steel 

matrix wires. For regenerator matrices, which typically have porosities between 50-80 

%, the energy transport by conduction in the gas is therefore expected to be much 

smaller than the conduction in the wires. 

• Enhanced transverse energy transport due to the turbulence and mixing in the flow 

through the porous matrix of the regenerator. Gedeon and Wood [7] have derived a 

correlation for the axial conduction enhancement due to turbulence in wire screen 

regenerators. This correlation predicts that the axial energy transport due to turbulence 

is between one and two orders of magnitude larger than the axial energy transport due 

to molecular conduction in the gas in the regenerator of the pulse tube cooler from the 

experimental study described in refs. [4,5]. If the energy transport transverse to the flow 

direction due to turbulence is of similar magnitude, then this energy transport could be 

of the same order of magnitude as the conduction in the wires in regenerator with 

stainless steel wire screens. 

• Bulk cross flow induced by the transverse temperature asymmetry. The gas density in a 

regenerator is almost inversely proportional to the temperature. If a parallel flow with 

uniform temperature and velocity distributions enters a regenerator matrix where there 

is transverse asymmetry in the temperature distribution, then part of the mass flow must 

flow from the hot side towards the cold side inside the regenerator. The magnitude of 

the energy transport carried by cross flow is difficult to estimate. 

Axial energy transport can also smooth out the asymmetry. Imagine, for instance, that the 

regenerator canister was emptied so that only two identical wires remained in the canister and 

that these wires were at the same axial position in the regenerator. If bursts of hot and cold gas 

were alternately sent through the regenerator canister then surely the temperatures of the wires 

would soon be identical regardless of any differences in their initial temperatures. 

 

The aims of this study were: 1) to reproduce the experimentally observed transverse asymmetry 

in the matrix temperature profile in numerical simulations, and 2) to identify the mechanisms 

that can cause and sustain a transverse asymmetry in the temperature profile of a regenerator 

with no transverse geometric asymmetry. The study was performed in two stages using two 

separate numerical models. 

 As the first stage of the study we used a complete simulation model of a PTC, where the 

regenerator was divided into two parallel regenerator channels, to reproduce the transverse 

temperature asymmetry in the regenerator. We found that the cause of the asymmetry was a 

circulating flow in the closed loop formed by the two parallel regenerator channels and the 

manifold volumes at the ends of the regenerator. This circulating flow was superimposed on the 
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oscillating flow through the regenerator. The circulating flow (or streaming) amplified any 

small transverse asymmetry in the regenerator temperatures. 

 As the second stage we used a separate, simplified model of one regenerator channel to 

identify the mechanism driving the circulating flow, i.e. to study the influence of the regenerator 

matrix temperature on the mass flow predicted by the equations for the regenerator. We found 

that the circulating flow was due to the shape of the pressure difference wave, �regp∆ , that drives 

flow through the regenerator, and the dependence of the instantaneous mass flow rate through 

the regenerator on the instantaneous pressure difference, regp∆ , and the temperature. We also 

found that the temperature oscillation in the regenerator had a small amplifying effect on the 

circulating flow and that the oscillation of the pressure in the regenerator damped the circulating 

flow. The net result was that a regenerator channel would draw in mass from the cold end of the 

regenerator if the temperature in the channel decreased, and conversely draw mass from the hot 

end of the regenerator if the temperature increased.  

 

2. Method 

In the first stage of the study we used a complete model of a PTC to reproduce the transverse 

asymmetry in the regenerator temperatures and the circulating flow which caused the transverse 

asymmetry. In the second stage of the study we used a separate, simple model of one 

regenerator channel to study the mechanisms that can drive a circulating flow. 

 

2.1 The complete Pulse Tube Cooler Model 

The complete PTC model was used to reproduce the experimentally observed transverse 

regenerator temperature asymmetry in numerical simulations. 

 The complete PTC model was built using the control volume based approach described 

by Andersen et al [9,10] for modelling oscillating, compressible flow which is primarily one 

dimensional. This modelling approach has been successfully validated for both Stirling 

machines and pulse tube coolers [9,10], and has been used specifically to study regenerators in 

Stirling engines [11,12]. The model used in this study has been verified by Andersen [10] to 

produce results in good agreement with the experimental data and with another pulse tube 

cooler model constructed in the state of the art simulation software Sage of Gedeon [8]. 

 

The complete PTC model was built so that the regenerator could either be modelled as a single 

regenerator channel or be divided into two parallel regenerator channels, each with half the 

cross sectional area of the single regenerator channel. The components of the PTC included in 

the computational domain are shown in Fig. 2 for the case where the regenerator is divided into 

two parallel channels. 

 When two regenerator channels were used they were not connected in the transverse 

direction. Hence the two channels functioned as two identical, parallel, and completely separate 

regenerators that shared the same boundary conditions. Because the two channels were 

completely separate the mechanisms for transverse energy transport that normally work against 

transverse temperature asymmetry were not included in the model. The model thus represents an 

extreme case: It represents the situation which we would expect to be least stable. 

 The model with two parallel regenerator channels was verified to give results for 

symmetric solutions that were identical to the results obtained with one regenerator channel. 

 

In the regenerator of the complete PTC model the flow friction was calculated using the 

empirical correlation described by Thomas & Pittman [13] with coefficients for data by Gedeon 

& Wood [7] for flow through wire screen matrices: 
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The regenerator had a porosity of 64.4 % and consisted of stainless steel wire screens with a 

wire diameter of 30 mµ , corresponding to an open mesh width of 41.7w mµ= . 

 
 

Components in computational domain: 

1:  Compressor internal volume 11:  Woven mesh flow straightener 

2,4,6,...,18:  Manifold volumes 13:  Pulse tube 

3:   Transfer line 15:   Hot heat exchanger (Woven mesh type) 

5:  After cooler 17:  Inertance tube 

7:  Regenerator channels 19:  Reservoir 

9:   Cold head 
 

Qɺ  Qɺ  Qɺ  

1 2 3 5 7 8 13 14 4 6 9 10 16 15 19 17 18 11 12 

 
Fig. 2. Computational domain of pulse tube cooler model. 

 

2.2 Reproducing the transverse asymmetry 

A simulation using the complete PTC model with two parallel regenerator channels was started 

as an initial value problem with a slightly asymmetric initial temperature distribution to see if 

the asymmetry would increase or decrease with time. The initial asymmetry was introduced by 

modifying a symmetric solution by making a notch in the axial matrix temperature profile in 

one of the parallel channels. By performing the experiment twice with the notch in the 

temperature profile placed in different channels it was also verified that the complete PTC 

model itself was symmetric. 

 

In the complete PTC model the two regenerator channels and the manifold volumes at the ends 

of the regenerator formed a closed loop flow path. Gedeon [14] has previously shown that 

circulating flows are to be expected in oscillating flow in machines with closed loop flow paths 

that are not geometrically symmetrical. In the complete PTC model, however, the closed loop 

flow path formed by the two regenerator channels had perfect geometrical symmetry. The only 

asymmetry that could drive a circulating flow in the numerical experiments was hence the 

transverse asymmetry in the temperature profiles of the two regenerator channels. 

 

A circulating flow was found and it was tested if the circulating flow could be the main energy 

transport mechanism increasing the asymmetry. This was tested by comparing the energy 

transport by the circulating flow to the rates of change in the amounts of energy stored in the 

matrices of the regenerator channels. The energy transport by the circulating flow was estimated 

as the circulating mass flow times the enthalpy change in the gas when it travelled from the 

inflow end of a regenerator channel to the outflow end. 

 

2.3 The separate, simple model of a regenerator channel 

A separate, simple model of a single regenerator channel was used to isolate and study the 

sensitivities to temperature changes of the individual mechanisms that influence the cycle 

averaged mass flow rates through a regenerator channel. 

 In the simple regenerator model the regenerator channel was lumped into a single 

control volume. The mass flow rate through the regenerator was calculated from the average 

conditions in this control volume and from the pressure difference between the ends of the 

regenerator. The mass flow was calculated by setting the pressure drop across the regenerator, 

regp∆ , equal to fricp∆  from Eq. (1) and solving for V . The simple regenerator model thus 

assumed quasi-steady flow and ignored effects due to the inertia of the gas. The pressure 
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difference between the ends of the regenerator and the average pressure in the regenerator were 

prescribed explicitly, so that they could be either simple analytical functions of time or be 

generated by use of data exported from the complete PTC model or from the Sage model of the 

PTC. 

 Because there was only one control mass for the regenerator matrix inside the single 

control volume for the regenerator it was only the average matrix temperature which was known 

in the simple regenerator model. The matrix temperature could either be assumed constant or be 

simulated using an energy balance for a lumped control mass. The average temperature 

difference between the gas and the regenerator matrix was assumed constant but dependent on 

the flow direction. The average gas temperature in the matrix, which was needed to evaluate Eq. 

(1), could then be calculated from the matrix temperature and the temperature difference 

between the gas and the matrix. The gas temperatures outside the ends of the regenerator were 

set equal to 300K and 60 K. When matrix temperatures were modelled as dynamic, in order to 

take into account the effect of matrix temperature oscillations, these temperatures were used as 

the inlet temperatures to the single control volume of the regenerator. The outflow temperature 

was calculated as the temperature outside the outlet end +/- the constant temperature difference 

between gas and matrix depending on the flow direction. The method used for calculating the 

inlet and outlet temperatures only affected the magnitude of the matrix temperature oscillations 

because it was the before mentioned average gas temperature in the control volume which was 

used when evaluating Eq. (1). 

 The calculations performed with the simple regenerator model hence depended mainly 

on Eq. (1), the boundary conditions, and the gas viscosity used in the calculations. The 

temperature dependent gas viscosity only varied during individual cycles when the gas 

temperature varied, i.e. when the matrix temperatures were non-constant and/or there was a 

finite temperature difference between the gas and the matrix. 

 The tendencies observed for the single control volume in the simple regenerator model 

should be the same as the tendencies of individual control volumes in a more complex model, 

such as the complete PTC model. 

 

2.4 Identifying mechanisms which can contribute to the circulating flow 

The simple regenerator model was used for studying how changes in the regenerator matrix 

temperature influenced the cycle averaged mass flow rate, f m⋅ ∫ ɺ� , when there was an 

oscillating mass flow through the regenerator. In practice all the phenomena in the oscillating 

flow through the regenerator are coupled. But in order to understand the mechanisms driving 

and opposing the circulating flow, the oscillating flow was split into simpler phenomena which 

each influence f m⋅ ∫ ɺ�  through a regenerator channel. 

 

Firstly, it is clear that the wave form of the time dependent pressure difference between the ends 

of a regenerator channel, �regp∆ , influenced f m⋅ ∫ ɺ� . �regp∆  was identical for the parallel 

regenerator channels. But if the contribution from �regp∆  to f m⋅ ∫ ɺ�  through a regenerator 

channel depended on temperature, then the contributions from �regp∆  to f m⋅ ∫ ɺ�  would be 

different for different channels with different temperatures. 

 

Secondly, the oscillation of the absolute pressure, p ,  in the regenerator also influenced 

f m⋅ ∫ ɺ� . In the studied PTC p  in the regenerator oscillated with an amplitude that was roughly 

12 % of the cyclic mean pressure f p⋅ ∫� . The pressure oscillation had a small phase lead of 

approximately 20 degrees over the pressure difference oscillation, and hence over the mass flow 

oscillation. The pressure was thus above average when the flow was towards the cold end of the 

regenerator and below average when the flow was towards the hot end. In Eq. (1) it can be seen 

that in the limit where fricp∆  approaches zero, the term fdC  becomes insignificant. In this case 
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the dependence of Re  on ρ cancels the dependence of fricp∆  on ρ, so that the velocity 

becomes: 
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The volumetric flow rate therefore becomes independent of p  as µ  is essentially independent 

of p . Since the density of the gas is proportional to the pressure the mass flow rate then also 

becomes proportional to p . For the range of regp∆  in the PTC model it remains true that the 

mass flow rate, as computed by use of Eq. (1), was nearly proportional to p . Because the 

oscillation in p  was almost in phase with the oscillation in regp∆ , and hence with the mass flow 

rate, the oscillation in p  increased the cycle averaged mass flow rate towards the cold end of a 

regenerator channel. Because the pressure oscillation was the same for parallel regenerator 

channels it is, as before, the derivative with respect to T  of the contribution to f m⋅ ∫ ɺ�  which is 

of interest, because this derivative tells us what happens when the temperatures in two parallel 

regenerator channels are different. 

 

Thirdly, the oscillation in time of the space averaged temperature, T , in the regenerator also 

influenced f m⋅ ∫ ɺ�  through a regenerator channel. The temperature oscillation, which had an 

amplitude of approximately 0.7 K in the studied PTC, was partly due to the finite heat capacity 

of the regenerator matrix, and partly due to imperfect heat transfer between gas and matrix and 

the oscillation of the flow direction. The combined effect of the matrix temperature oscillations 

and of the imperfect heat transfer was that T  was a little higher when gas flowed towards the 

cold end of the regenerator than when gas flowed towards the hot end. 

 The temperature oscillation caused a slight increase in µ  and a slight decrease in ρ  

when the flow was towards the cold end of the regenerator compared to when the flow was 

towards the hot end. The oscillation in temperature thus had the effect of decreasing the cycle 

averaged mass flow through a regenerator channel towards the cold end of the regenerator. 

 Again it is the derivative of the contribution to f m⋅ ∫ ɺ�  due to the oscillation in T  

which is of particular interest with respect to the circulating flow. 

 

2.5 Testing the possible contributions to the circulating flow 

The contribution to the cycle averaged mass flow rate due to the shape of the pressure difference 

wave was first studied by mapping how the instantaneous mass flow rate, mɺ , through the 

regenerator depended on instantaneous pressure difference between the ends of the regenerator, 

regp∆ , in the temperature interval from 50 K to 350 K. 

 The simple regenerator model was then used to integrate mɺ  during cycles to find the 

cycle averaged mass flow rates for different pressure difference waves for matrix temperatures 

between 50 K and 350 K. In each of these integrated cycles p  and the matrix temperature were 

kept constant, and it was assumed that T  was equal to the constant regenerator matrix 

temperature. The calculations were performed for ideal gas helium with temperature dependent 

viscosity at 2p MPa= . The derivative of f m⋅ ∫ ɺ�  with respect to T  was then calculated from 

the results. 

 

The contribution from the oscillation in p  to f m⋅ ∫ ɺ�  was studied by including the oscillation in 

oscillations in p  into the simple regenerator model. We then repeated the integrations of the 

instantaneous mass flow rates through a regenerator channel during cycles to determine the 

value of f m⋅ ∫ ɺ�  for different matrix temperatures. The only difference between these 
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integrations and the integrations for constant T  and p  in the regenerator was that p  oscillated 

in time. Again the derivative of f m⋅ ∫ ɺ�  with respect to T  was calculated from the results. 

 

Finally, the contribution from the oscillation in T  was studied by also including the matrix 

temperature oscillations into the simple regenerator model, and calculating f m⋅ ∫ ɺ�  for different 

initial values of T . In these calculations it was assumed, based on observations of the solutions 

to the complete PTC model, that the constant temperature difference between the gas and the 

matrix was 0.3 K. The derivative of f m⋅ ∫ ɺ�  with respect to T  was also calculated for these 

results. 

 

The results from the simple regenerator model depend strongly on Eq. (1) and the viscosity of 

the gas is used in Eq. (1). As the final test the calculations for oscillating T  and p  were 

repeated with a constant viscosity equal to the viscosity at 200 K. 

 

3. Results and Discussion 
3.1 Reproducing the circulating flow using the complete Pulse Tube Cooler model 

The results from the experiment where a simulation using the complete PTC model was started 

with a slightly asymmetric initial temperature distribution, i.e. with a hand made notch in the 

temperature profile in one channel, are shown in Fig. 3. 
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Fig. 3.  The evolution in time of the asymmetry in the temperature profiles in the two regenerator 

channels. At 0f t⋅ =  a notch is introduced in the temperature profile of one channel. 

 

Fig. 3 shows that the slightly asymmetric solution was indeed unstable. After a fast initial 

transient where the notch in the temperature profile was smoothed out by axial energy transport 

the temperature profiles in the two regenerator channels began to diverge at an accelerating rate. 

The divergence continued until the temperature profiles were very asymmetric. At the 

asymmetric periodic steady state solution (number of cycles, f t⋅ , 30000>  in Fig. 3) the 

mechanisms that caused the asymmetry were balanced by axial energy transport mechanisms. 

 

Inspection of the mass flow rates in the two channels in the simulation revealed a circulating 

flow (streaming) superimposed on the oscillating flow. The mass flow rate of the circulation 

increased as the asymmetry developed and it increased the total flux loss through the 

regenerator by up to a factor of 5, as shown in Fig. 4. The increase in the regenerator loss agrees 
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with the experimental observation that the performance of the PTC suffered when the 

regenerator matrix temperatures became asymmetric. 

 The circulating flow drew mass from the cold end of the regenerator into the channel 

with the lowest average temperature and conversely drew mass from the hot end of the 

regenerator into the channel with the highest average temperature. The circulating flow removed 

energy from the coldest channel because the circulating gas was heated when it travelled from 

the cold end to the hot end of the regenerator. Conversely, the circulating flow transported 

energy into the warmest regenerator channel, because the circulating gas was cooled on its way 

from the hot to the cold end. The circulating flow thus amplified the asymmetry in the 

temperatures of the regenerator channels. 

 In Fig. 3, the temperature profile in the hottest channel of the regenerator appears to be 

more extreme than that in the coldest channel. This can be explained by the circulating flow 

causing approximately the same magnitude of energy transport for both channels while the 

oscillating mass flow had a smaller amplitude in the hottest channel due to the lower density. 

Therefore the axial mechanisms that balance the circulating flow must do so with a smaller 

oscillating mass flow in the hottest channel. 
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Fig. 4. The evolution in time of the DC flow plotted in percent of the regenerator mass flow 

amplitude for the symmetric solution, and the evolution of the total energy flux loss through the 

regenerator, plotted relative to the total energy flux loss for the symmetric solution. 

 

3.2 Energy transport due to circulation and changes in the energy stored in the matrix 

The results from test to determine if the circulating flow could be the main energy transport 

mechanism increasing the asymmetry are shown in Fig. 5. Fig. 5 shows that the rates of change 

in the energy stored in the matrices in the regenerator channels are smaller than the estimated 

rates of energy transport due to the circulating flow. The differences between the estimated and 

the actual rates are moderate in the beginning of the simulation ( 5000f t⋅ <  in Fig. 5) and then 

become larger as the asymmetry increases. The differences are largest at the asymmetric 

periodic steady state solution ( 30000f t⋅ >  in Fig. 5), where the time averages of the amounts 

of energy stored in the matrix channels are constant. Fig. 5 shows that the energy transport due 

to the circulating flow was large enough to be the mechanism that increases the asymmetry. 
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Fig. 5. The time evolutions of the rates of change of energy stored in the matrices of the regenerator 

channels and of the estimates for the rates of energy transfer by the circulating flow. All quantities 

have been made dimensionless with the amplitude of the oscillation in the amount of energy stored 

in the regenerator matrix in the symmetric solution. 

 
3.2 Contribution to the circulating flow from the pressure difference wave form 

The results for how the instantaneous mass flow rate in the simple regenerator model depends 

on the temperature and pressure difference are shown in Fig. 6. Fig. 6 shows that the mass flow 

rate for a given pressure difference increases with decreasing temperature and that this 

temperature dependence is largest for small pressure differences.  
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Fig. 6. Regenerator instantaneous mass flow rate relative to regenerator instantaneous mass flow 

rate at 200 K as function of the pressure difference between the ends of the regenerator. 

 

Fig. 6 shows that the shape of a pressure wave �regp∆  that drives flow through two regenerator 

channels with different T  can induce a circulating flow. Imagine, as the extreme case, that the 

pressure difference driving the flow through the regenerator channels looks like the square wave 

illustrated in Fig. 7. The shape of this pressure wave was calculated so that it gives zero cycle 

averaged mass flow at 200 K. In Fig. 7 the pressure difference is positive and of magnitude 100 

kPa when it drives flow towards the cold end of the regenerator and negative and of magnitude 

50 kPa when it drives flow towards the hot end. The pressure difference is negative during 63 % 

of the cycle. If we apply this square wave to a regenerator channel where T  is 100 K, then Fig. 
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6 shows that the flow towards the cold end would be 1.94 times larger (read at ∆preg = 100 kPa) 

and that flow towards the hot end would be 2.15 times larger (read at ∆preg = 50 kPa) than for 

T  =  200 K. At 100 K there would thus be a net cycle averaged mass flow rate, f m⋅ ∫ ɺ� , 

towards the hot end. If we try with T  larger than 200 K then the result is that there will be a 

larger cycle averaged mass flow towards the cold end. 

 Let us define the direction of the mass flow so that it is positive when it is towards the 

cold end. Then we can say that for the square wave pressure difference wave form from Fig. 7 

and a regenerator with constant T  and a constant p  of 2 MPa, the derivative of f m⋅ ∫ ɺ�  with 

respect to T  is positive. If we the change sign on the pressure difference wave from Fig. 7, then 

the largest absolute pressure difference will drive flow towards the hot end. In this case the 

derivative of f m⋅ ∫ ɺ�  with respect to T  will be negative. For a sine wave shaped pressure 

difference then the derivative of f m⋅ ∫ ɺ�  with respect to T  is zero. The derivative of f m⋅ ∫ ɺ�  

with respect to T  in the regenerator channel thus depends on the shape of the pressure 

difference wave �regp∆ .  
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Fig. 7. Square wave pressure difference that gives zero cycle averaged flow in a regenerator channel 

at 200 K constant temperature and 2 MPa constant space averaged pressure. 

 

Fig. 8 shows the pressure difference wave �regp∆  over the regenerator from the complete PTC 

model plotted so that the pressure difference is positive when it drives flow towards the cold end 

of the regenerator. The pressure difference wave in Fig. 8 is nearly identical to the pressure 

difference wave predicted by the Sage model of the PTC. The curve in Fig. 8 shares some of the 

characteristics of the square wave in Fig. 7. The peak values of the positive pressure difference 

are 10 % larger than the peak values of the negative pressure difference, and the pressure 

difference is negative during 54 % of the cycle. 

 

Fig. 9 shows the derivative of the net mass flow rate towards the cold end of a regenerator 

channel with respect to T  for the pressure difference wave from Fig. 8 when neither T  or p  

oscillate. The derivative is positive throughout the examined region and largest at low T . This 

makes the symmetric situation unstable when there are more than one regenerator channel. 

Since the derivative of the cycle averaged mass flow rate with respect to T  is largest at low T  

the situation will become increasingly unstable as the regenerator cools down. 
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Fig. 8. Pressure difference over the regenerator versus time in the pulse tube cooler model. The 

pressure difference is positive when the pressure at the warm end is larger than the pressure at the 

cold end. 
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Fig. 9. Derivative of cycle averaged mass flow rate with respect to space averaged temperature T  

calculated at 2 MPa constant space averaged pressure calculated using the simple model of a 

regenerator. The derivative has been divided by the amplitude of the mass flow oscillation at 200 K 

in the simple regenerator model. 

 

3.3 Effects of the oscillations in pressure and temperature, and the effect of the temperature 

dependent viscosity 

The results from the test of the contributions to the cycle averaged mass flow rate from the 

pressure oscillation, temperature oscillation, and the effect of the temperature dependent 

viscosity are shown in Fig. 10. 

 

At an average regenerator temperature of 200 K the 12 % pressure oscillation increased f m⋅ ∫ ɺ�  

towards the cold end of a regenerator channel by approximately 4.5 % of the amplitude of the 

mass flow oscillation. 

 Fig. 10 shows, that the pressure oscillation decreased the derivative with respect to T  

of f m⋅ ∫ ɺ�  towards the cold end of a regenerator channel. The contribution to f m⋅ ∫ ɺ�  from the 

oscillation in p  hence had a stabilising effect when there was transverse asymmetry in the 
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temperatures of the regenerator channels, and it did not contribute to the instability of the 

temperature profiles. Fig. 10 shows that the derivative with respect to T  of f m⋅ ∫ ɺ�  towards the 

cold end of a regenerator channel was reduced by 40 to 75 %, but that is remained positive. The 

stabilising effect of the oscillation in p  was therefore not large enough to remove the instability. 
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Fig. 10. Derivatives of cycle averaged mass flow rate with respect to space averaged temperature 

for different combinations of oscillating and constant temperatures and pressures, and constant or 

temperature dependent viscosity. The derivatives have been divided by the amplitude of the mass 

flow oscillation at 200 K in the simple regenerator model. 

 

At an average regenerator temperature of 200 K the 1.4 K gas temperature oscillation decreased 

the cycle averaged mass flow through a regenerator channel towards the cold end of the 

regenerator by a mere 0.1 % of the amplitude of the mass flow oscillation. 

 Fig. 10 shows that temperature oscillation slightly increased the derivative with respect 

to T  of f m⋅ ∫ ɺ�  towards the cold end of a regenerator channel. That is because the magnitudes 

of the derivatives of both µ  and ρ  with respect to temperature decrease with increasing 

temperature, and hence the effect due to the oscillation in T  also decreases with increasing 

temperature. The temperature oscillation thus contributes to the instability, but the contribution 

is small. 

 

Fig. 10 shows that removing the temperature dependence of the viscosity reduced the magnitude 

of the derivative with respect to T  of f m⋅ ∫ ɺ�  towards the cold end of a regenerator channel, 

but that the derivative remained positive. This shows that the temperature dependence of the 

viscosity contributed to the instability but that even with constant viscosity the flow resistance 

predicted by Eq. (1) would still lead to instability. 

 

4. Generalisation of the results 
In the complete PTC model there was a temperature gradient of 3600 K/m in the regenerator. In 

a short control volume in the regenerator, however, the variation in temperature inside the 

control volume was small compared to the average temperature in the control volume. For such 

a control volume the result of the above analysis, that used a space averaged temperature, 

should be valid, i.e. the control volume should exhibit the same tendencies as the single control 

volume of the simple regenerator model. 

 

The effects driving the circulating flow were studied using Eq. (1) with coefficients for data by 

Gedeon & Wood [7] for flow through wire screen matrices to compute the flow friction in the 
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regenerator. Thomas and Pitmann [13] provide 8 sets of coefficients for Eq. (1) corresponding 

to experimental data and to correlations derived from experimental data from different authors 

for both wire screen and metal felt regenerator matrices. The curve in Fig. 10 for oscillating T  

and p  was recalculated for each of the 8 sets of coefficients provided by Thomas and Pitmann 

and there was only a slight spread between the curves for the different sets of coefficients. 

Hence the results of the above analysis should be valid for both felt and wire screen 

regenerators. 

 

In this study the regenerator channels in the PTC model were identical and it was necessary to 

introduce the initial transverse asymmetry in the regenerator temperatures by hand (the notch in 

one of the channels). In real life it is impossible to create a perfectly symmetrical regenerator or 

PTC and hence some transverse asymmetry in the regenerator temperatures are to be expected. 

This transverse temperature asymmetry due to the geometrical asymmetry in a real PTC will 

hence always be available as a trigger for the temperature dependent effects discussed above. 

 

5. Conclusions 
A circulating flow that amplifies transverse asymmetry in the temperature profile in the 

regenerator of a pulse tube cooler has been reproduced using a complete simulation model of a 

pulse tube cooler where the regenerator is divided into two identical, parallel regenerator 

channels. The mechanisms governing the circulating flow have been identified and studied 

using a separate, simple model of a regenerator. 

 The primary mechanism driving the circulating flow was found to be due to the shape 

of the pressure difference wave and the dependence of the instantaneous mass flow rate on the 

instantaneous pressure difference between the ends of the regenerator and on the temperature in 

the regenerator. A small contribution to the circulating flow was also linked to the temperature 

oscillations in the regenerator. These mechanisms caused a regenerator channel to draw in mass 

from the cold end of the regenerator if the temperature in the channel decreased, and conversely 

to draw in more mass from the hot end of the regenerator if the temperature in the cannel 

increased. These mechanisms hence induced a circulating flow that amplified transverse 

asymmetry in the regenerator matrix temperature profiles. A mechanism due to the oscillations 

in pressure was found to have the opposite effect and hence worked against transverse 

asymmetry. 

 The asymmetry and the circulating flow increased the energy flux loss through the 

regenerator towards the cold heat exchanger by up to a factor of 5. The circulating flow was 

thus detrimental to the cooling power and the efficiency of a PTC. 

 It appears possible to reduce the magnitude of the asymmetry and hence of its 

detrimental effects on PTC performance by increasing transverse energy transport relative to 

axial energy transport in the regenerator. This can be done either by increasing the transverse 

heat conductivity of the regenerator matrix or by putting less heat load on the regenerator, so 

that the existing transverse heat conductivity is sufficient to keep the asymmetry at an 

acceptable level. It appears that dividing a single regenerator into two or more parallel 

regenerators with smaller cross sections is likely to maximise transverse asymmetry because it 

will inhibit the transverse energy transport that takes place in a single regenerator. It should thus 

lead to the largest circulating flow and the largest regenerator energy flux loss. Strong cooler 

losses have been experimentally observed by Kirkconnell in a specially designed small-size 

PTC with three parallel regenerator tubes [15]. 

 Finally, it should be noted, that the shape of the pressure difference wave depends both 

on the design and the operating conditions of the PTC. It may be possible to sufficiently modify 

the shape of the pressure difference wave by changing the design or the operating conditions of 

the PTC in such a way that the tendency to induce circulating flow and instability is reduced. 
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ABSTRACT 
Analytical expressions for the losses in the displacer clearance gap, a.k.a. the appendix 

gap, have been refined during the last decades. But most real life Stirling engines violate the 

assumptions behind these expressions and hence the expressions may not be applicable. In 

this study the gap has been included directly into a one dimensional Stirling engine model. 

Practical aspects of the method, such as handling the moving wall in the gap while achieving 

an energy conserving model formulation and handling discontinuous derivatives in the 

equations, are discussed. A study on the convergence of the spatial discretisation in the gap 

showed that a relatively coarse discretisation was adequate for studying the appendix gap 

losses and showed significant variations in the axial wall temperature gradients along the gap. 

A parameter study on the size of the displacer clearance gap was performed with different 

algorithms for computing the heat transfer in the gap. The results showed higher losses for 

small gap sizes but smaller losses for large gap sizes when compared to analytical expressions 

for the appendix gap losses. The appendix gap losses were found to influence both the heat 

intake and work output of the engine. 

 

 

INTRODUCTION 

In Stirling engines an elongated displacer piston is often used to separate the compression 

and expansion volumes. The elongated displacer piston keeps the displacer piston seal remote 

from the hot working gas temperature in the expansion volume. Between the side of the 

displacer piston and the cylinder wall there is a clearance gap, often denoted the appendix 

gap, that extends from the hot end of the displacer piston and down to the displacer piston 

seal. This clearance gap is filled with the working gas of the engine. The temperature 

difference between the hot end of the displacer and the location of the seal can be several 

hundred Kelvin in magnitude, leading to a significant axial temperature gradient in the gap. 

Due to the pressure oscillation in the engine the pressure also oscillates in the gap and there is 

an oscillating mass flow in and out of the gap. If the gap is very narrow the gas temperatures 

along the gap are expected to be governed mainly be heat transfer with the walls in the gap; if 

the size of the gap is increased then the gas temperatures in the gap will also be influenced by 

the pressure oscillation in the gap that follows the pressure oscillation in the engine. In the 

clearance gap heat transfer processes, that constitute losses for the Stirling engine, take place. 

These loses are known as the appendix gap losses and they are the subject of this study. 

 

In classical Stirling analysis, such as the work of Urieli & Berchowitz [1], these heat 

transfer processes have been treated as three individual losses that are calculated separately 

from analytical solutions: a conduction loss, a pumping loss, and a shuttle conduction loss. 
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• The conduction loss is designed to take into account the heat conduction in the displacer 

piston and cylinder walls induced by the axial temperature gradient along the gap.  

• The pumping loss takes into account the energy transport carried by gas flowing in and 

out of the clearance gap when the pressure oscillates in the hot expansion cylinder 

volume. 

• The shuttle conduction loss covers the loss caused by the displacer piston moving back 

and forth along the temperature gradient in the gap. When the displacer piston is close 

to the top of its stroke it absorbs energy from the cylinder wall, and this heat is released 

to the cylinder wall again when the displacer piston is close to the bottom of its stroke. 

In classical Stirling engine analysis these three losses are applied as independent parasitic 

loss terms to Stirling simulation results that do not include the losses directly. In a real 

Stirling engine, however, these losses are mutually coupled with each other and with the 

thermodynamic cycle of the engine. 

 

Efforts have been put into deriving ever more accurate analytical expressions for the 

appendix gap losses. Some of this work has been in the context of cryogenics because the 

appendix gap losses directly reduce the refrigeration power in miniature cryogenic coolers [2]. 

The analytical solution to a simplified problem, where there is no seal at the bottom of the 

gap, where temperature gradients are constant and the walls are thin and of uniform 

thicknesses, has been successively refined to include more effects, such as the finite heat 

capacity of the walls and even some flow in the appendix gap. A comparison of a number of 

analytical solutions can be found in the work of Baik and Chang [3]. Unfortunately, most 

Stirling engines violate several of the assumptions of the analytical solutions for shuttle 

conduction and hence it is difficult to say how accurate the analytical expressions are for these 

engines. 

In this work we have studied the 9 kW Stirling Engine, SM5, by Carlsen [4]. Some of the 

general problems related to applying the analytical expressions for the appendix gap also 

apply to this engine. This is illustrated by Fig. 1 that shows a drawing of the SM5 Stirling 

engine. In the SM5 engine there is a seal at the bottom of the displacer clearance gap. Also the 

thickness of the cylinder wall varies significantly along the gap in this engine where the 

regenerator is placed around the cylinder. At the bottom of the gap near the seal the cylinder 

wall is thick and the outside of the cylinder wall is cooled by the cooling water in the cooler 

of the engine. At the middle of the gap the cylinder wall is thin and the outside of the cylinder 

wall is, presumably, almost adiabatic due to the way the regenerator is packaged and inserted 

into the engine. Finally, at the top of the gap the cylinder wall is thick and the outside of the 

wall experiences powerful heat exchange with the working gas in a manifold between the 

regenerator and the heater tubes. The varying wall thicknesses and the changing boundary 

conditions on the outside of the cylinder wall make it unlikely that there is a uniform 

temperature gradient along the gap. 

 

The displacer clearance gap can be included directly into existing one-dimensional Stirling 

engine models as an alternative to computing the appendix gap losses using the analytically 

derived expressions. This approach seems favourable since previous attempts to compute the 

appendix gap losses numerically, such as the work of Huang & Berggren [5], have obtained 

reasonable agreement with experimental data for actual engines. Also this approach allows the 

appendix gap losses to be included directly into the governing equations of a Stirling engine 

model so that the assumption of having no coupling between the losses and the 

thermodynamic cycle of the engine can be avoided. 
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Fig. 1. Drawing of the cylinder region of the 9 kW Stirling engine, SM5. 

 

This paper describes our approach to including the displacer clearance gap in our one 

dimensional Stirling engine models. The models are built using the control volume based 

modelling approach which we have previously described in detail [6]. In this modelling 

approach the gas filled volume of the engine is discretised into two overlapping strings of 

control volumes using a staggered mesh approach. The governing equations for the gas are 

derived from the balances for mass, energy, and momentum for the control volumes. The steel 

of the engine is then discretised into control masses and equations for the temperatures of the 

control masses are derived from an energy balance for the control masses. The governing 

equations for the steel and gas are coupled through heat exchange terms in the energy 

balances for the control masses and control volumes. The main challenges of using this 

modelling approach to model the displacer clearance gap are computing heat transfer and 

keeping track of the surfaces that move relative to each other. 

 Much emphasis was placed on deriving an energy conserving model formulation for the 

the clearance gap. Energy conservation is important because the overall energy balance for an 

energy conserving engine model is a valuable test for the correctness of the model and for the 

accuracy of periodic steady state solutions to the model. The main difficulty in this respect 

was the motion of the displacer piston relative to the cylinder wall. The focus of this paper is 

on the practical aspects of making an energy conserving formulation that yielded a system of 

ordinary differential equations (ODEs) that could be easily solved. Results from a study on 

the fineness of the discretisation are shown and illustrate that a relatively coarse discretisation 

was adequate for studying the appendix gap losses. The results also show the varying 

temperature gradients that were found on the walls of the gap. Results from a parameter study 

on the clearance gap size where different algorithms were used for computing the heat 

transfer in the gap are also presented. The results showed higher losses for small gap sizes but 

smaller losses for large gap sizes when compared to analytical expressions for the appendix 

gap losses by Urieli & Berchowitz [1]. The appendix gap losses were found to increase the 

heat intake and decrease the work output of the engine. 
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METHOD 

Discretisation 

In order to model the clearance gap it was necessary to use a discretisation that resolved 

both the gas in the gap, the walls of the displacer piston, and the cylinder wall surrounding the 

gap. The cylinder wall was discretised using control masses that were fixed in space. The 

displacer piston wall and the gas in the gap were discretised using control masses and control 

volumes that followed the motion of the displacer piston.  

The discretisation used in the model is illustrated in Fig. 2. The control volumes shown 

inside the gap in Fig. 2 are the control volumes used for the mass and energy balances in the 

staggered mesh of the modelling approach [6]. The control volumes used for the mass and 

energy balances in the gap were directly matched to the control masses on the displacer 

piston, i.e. each control volume in the gap covered precisely one control mass on the displacer 

piston wall. The control volumes used for the momentum balances in the staggered mesh flow 

model are not shown in the figure.  

 
Fig. 2. Discretisation of the displacer wall, cylinder wall, and the displacer clearance gap. 

 

In the discretisation in Fig. 2 there are 4 distinct zones with different heat transfer 

conditions that need to be considered: The expansion volume, the displacer clearance gap, the 

seal section, and the compression volume. This means that there are 3 interfaces between the 

4 zones. During simulations the positions of these interfaces move relative to the fixed 

coordinate system shown in Fig. 2 and hence also relative to the cylinder wall. 

 

Wall and gas temperatures 
In the model the gas temperatures in the control volumes vary in time. The temperatures 

of the control masses on the walls of the cylinder and displacer were assumed constant, i.e. it 

was assumed that the oscillations of the wall surface temperatures were insignificant 

compared to the oscillation of the gas temperatures; we expect this assumption to become 

better with increasing gap size. To find the constant wall temperatures the integral conditions 

were used that the net energy transport to each control mass during a cycle must be zero, i.e. 

the instantaneous rates of heat transfer including solid conduction to the control mass were 

integrated over a cycle, and the wall temperatures were found so that the results of these 

integrations were zero. 

 

x 

Manifold 

y 

 
 

Regenerator 

Cooler 

Motion of displacer piston Expansion volume Compression volume 

Seal 



 5

Computing and distributing heat transfer 
Because the displacer moves back and forth the conditions seen by each of the control 

masses on the cylinder wall change during the cycle. For instance, the fractions of each of the 

control masses on the cylinder wall that are exposed to the expansion volume vary with time. 

In the gap it also varies which of the control volumes in the gap that cover the individual 

control masses on the cylinder wall. 

To deal with this complexity a general scheme using interpolation and integration with 

splines was devised. The basic idea was to compute the heat transfer pr. unit length at 

convenient points and to generate a cubic spline through these known points. This spline was 

then integrated analytically to compute the amounts of heat transfer to individual control 

masses and control volumes. The use of this scheme will be explained using the displacer 

clearance gap as example. 

In the displacer clearance gap we needed to compute the heat transfer from the cylinder 

wall to the gas and from the displacer wall to the gas. To compute the heat transfer at a 

position in the gap we needed, depending on the precise algorithm used for computing the 

Nusselt number, the conditions in the gas and the wall temperatures at that position. It was a 

convenient choice to compute the heat transfer at the locations corresponding to the centres of 

the control volumes in the gap; here the conditions in the gas and the wall temperatures on the 

displacer were already known and only the wall temperatures on the cylinder wall needed to 

be interpolated. Because the wall temperatures were assumed constant only one cubic spline 

through the cylinder wall temperatures needed to be generated for each cycle. 

Because the control volumes in the displacer clearance gap were directly matched to the 

control masses on the displacer wall there was no complication in distributing the heat 

transfer from the displacer wall to the gas in the gap. To compute and distribute the heat 

transfer from the cylinder wall to the gap, however, a spline was drawn through the calculated 

values of heat transfer pr. unit length from the cylinder wall to the gas in the gap. This spline 

was then integrated analytically over the extents of the individual control masses and control 

volumes to compute the heat transfer from each of the control masses on the cylinder wall to 

the gas in the gap, and to compute the heat transfer from the cylinder wall to each of the 

control volumes in the gap. 

 

Discontinuous derivatives in the governing equations 
The motion of the displacer along the cylinder wall brings with it a numerical 

complication. When the interfaces between the 4 zones with different heat transfer 

characteristics move over the boundaries between the control masses on the cylinder wall then 

the rates of heat transfer to the control masses change abruptly, i.e. the derivatives with 

respect to time of the rates of heat transfer to the control masses become discontinuous in 

time. The rates of heat transfer to the control masses on the cylinder wall are integrated to find 

the temperatures on the cylinder wall; the solutions to these equations thus have 

discontinuities in their second derivatives. 

Take, for instance, a control mass on the cylinder wall that sees the expansion volume, and 

assume that the heat transfer in the gap is more efficient than the heat transfer in the 

expansion volume. When the displacer moves towards the expansion volume and the interface 

between the expansion volume and the gap reaches the leftmost edge of the control mass, then 

the rate of heat transfer to the control mass suddenly begins to change because the gap 

suddenly begins to cover a fraction of the control mass. When the top of the gap reaches the 

rightmost edge of the control mass the rate of heat transfer to the control mass suddenly levels 

at the rate of heat transfer in the gap. 
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Discontinuous derivatives are a difficulty for many numerical methods used for solving 

ODEs. Runge-Kutta methods, for instance, approximate solutions to ODEs with smooth and 

continuous functions between discrete solution points. The smooth functions can only make a 

good approximation to a solution with a sharp corner if there is a solution point placed exactly 

at the corner. A time marching Runge-Kutta method that regulates its own step size will, 

typically, fail some steps due to large error estimates when a sharp corner in a solution is 

encountered. When the Runge-Kutta method successively reduces its step size as a reaction to 

the large error estimates, a solution point will eventually land near enough to the corner, so 

that the first step after the corner does not cause an unacceptable error estimate, and then the 

solver will march on. Failing steps and changing step sizes, however, wastes computational 

resources. Also having a solution point near, instead of at, a sharp corner usually causes some 

inaccuracy in the solution.  

We considered two basic options for handling the discontinuous derivatives in the 

equations for the cylinder wall temperatures: Either the sharp changes in heat transfer at the 

interfaces between the 4 zones could be smoothed, or the sharp corners could be identified 

and dealt with numerically. We chose the latter approach because we found no simple answer 

to how the smoothing at the interfaces should be performed. 

 

In the following we denote it as an event when an interface between two heat transfer 

zones crosses a boundary between two control masses on the cylinder wall. To numerically 

handle events the model must provide additional information to the numerical solver: The 

model must provide equations that let the numerical solver determine exactly when events 

occur, and the model must provide equations for the wall temperature that do not 

automatically reflect that an event has occurred. 

To explain the conditions we used to let the solver determine when events occurred, we 

denote the positions of the left and right boundaries of a control mass as leftx  and rightx  and the 

position of an interface between two heat transfer zones as interfacex . If an interface is located 

on a control mass on the cylinder wall then for that control mass equation (1) will always 

yield a positive value of g . 

min( , )interface left right interfaceg x x x x= − −           (1) 

If g  becomes negative during the integration of the ODEs then it means that the interface 

has crossed one of the boundaries of the control mass. To locate the point in time when the 

event occurred the solver must find the point in time where 0g = . 

In order to avoid generating large error estimates when events are encountered the 

equations should initially behave as if the events do not occur. Only when the solver has 

located the exact time of an event should the equations be updated to reflect that the event has 

occurred. 

As an example of how this was done consider the situation where the interface between 

the expansion volume and the gap is moving towards the expansion volume; specifically, 

consider the equation with the integral condition for the temperature of the cylinder wall 

control mass on which the interface is located. The equation for the temperature of this 

control mass contains a term with an integration of the cubic spline representing the heat 

transfer pr. unit length from the cylinder wall to the gas in the gap. If we denote the rate of 

heat transfer pr. unit length from the control mass to the gap as _ _cw to gapQ ′ɺ  then the rate of heat 

transfer from the control mass to the gap _ _cm to gapQɺ  was computed using Eqs. (2) and (3); Eq. 

(2) was used until the solver signalled that the event had occurred and Eq. (3) was used after 

the solver had signalled that the event occurred. Eq. (2) is not physically correct when 
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interface leftx x< . But it is valid right up the time of the event and it does not have the 

discontinuous derivative at the event. 

( )_ _ _ _

right

interface

x x

cm to gap cw to gap

x x

Q Q dx

=

=

′= ∫ɺ ɺ           (2) 

( )_ _ _ _

right

left

x x

cm to gap cw to gap

x x

Q Q dx

=

=

′= ∫ɺ ɺ           (3) 

The big savings in handling the discontinuous derivatives come when using a solver that 

can cheaply and accurately interpolate inside an already taken step when it solves (1) for the 

time of an event. We primarily use the semi implicit GERK method by Thomsen [8] that has a 

continuous extension for interpolation inside already taken steps. 

 

Computing heat transfer in the expansion and compression volumes 
In the expansion volume and the compression volume the heat transfer will be governed 

by the amount of turbulence and the temperatures in these volumes. Directly resolving the 

turbulence is beyond a one dimensional model so the heat transfer in these volumes must be 

calculated using empirical correlations. In this work the classical correlation by Woschni [7] 

has been applied. 

 

Computing heat transfer in the displacer clearance gap 
The radial temperature profiles in the gap can be expected to depend strongly on the size 

of the gap. If the gap is very narrow then the radial temperature profile in the gas will be 

governed by molecular heat conduction through the gas in the gap and the temperature profile 

in the gap will be almost linear. If the gap is made larger then it would be expected that 

compressibility effects, gas flowing in and out of the gap, and eventually even turbulent 

mixing would govern the temperature profile in the gap so that the heat transfer with the walls 

in the gap only affects a thin thermal boundary layers near the walls. There may also be a 

zone with circulation near the seal at the bottom of the gap. Making a one dimensional model 

that behaves correctly in all these different situations appears impossible. 

In this work we ignored effects due to the inlet to the gap and the circulation at the bottom 

of the gap, and we ignored the influence of any leakage flow across the seal on the radial 

temperature profiles in the gap. We implemented two methods for computing the 

instantaneous rates of heat transfer between the walls and the gas in the gap. 

In the first method the radial temperature profiles in the gap were approximated with 

quadratic polynomials. The polynomials were constructed from the conditions that the gas 

temperatures must be equal to the wall temperatures at the wall, and that the mean 

temperatures of the temperature profiles must be equal to the mean gas temperature. With this 

approach the heat fluxes from the walls QuadraticQ ′′ɺ  were calculated using (4), where cwT  is the 

temperature of the cylinder wall, dwT  is the temperature of the displacer wall, gasT  and k  are 

the average temperature and the thermal conductivity of the gas, and a  is the size of the gap. 

( )

( )

4 2 6 ,   

2 4 6 ,   

dw cw gas

Quadratic

dw cw gas

k
T T T displacer wall

a
Q

k
T T T cylinder wall

a

 ⋅ ⋅ + ⋅ − ⋅′′ =  ⋅ ⋅ + ⋅ − ⋅

ɺ

       (4) 
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For very small gaps (4) will produce the expected linear radial temperature profiles. The 

approach should be better at larger gap sizes than simply assuming a linear temperature 

profile but for large gaps results will likely not remain accurate. 

 In the second approach we used the Nusselt number correlations (5) experimentally 

determined by Huang & Berggren [5] for the P40-R test engine. 

0.322

0.415

4 0.4456 Re ,   
,  2

4 0.7093 Re ,   

h

h

h

D

D h

D

displacer wall
Nu D a

cylinder wall

 + ⋅= = ⋅ + ⋅
       (5) 

If the Reynolds number is zero then (5) also reduces to the case where the temperature 

profile is linear. For working gasses like Helium, however, gaps must be very small if friction 

is to have a significant impact on the velocities in the gap. We therefore expect (5) to 

overestimate the heat transfer in small gaps. For large gaps, however, (5) might be more 

accurate than (4). 

 

The displacer seal section 
In the displacer seal section heat transfer was modelled as taking place between two 

parallel plates separated by a very narrow gap, i.e. with a linear temperature profile in the gas 

going from the temperature of the displacer at the seal to the temperature of the cylinder wall 

at the location of the seal. In this study we assumed that no gas flowed through the seal. 

 

Test for convergence of the spatial discretisation 
In order to test the spatial discretisation, and to get a feel for the shapes of the wall 

temperature profiles, a solution to the Stirling engine model was recalculated with different 

numbers of control masses and control volumes. A solution was first calculated with 15 

control masses on the cylinder wall and 10 control volumes in the gap using the quadratic 

temperature profiles; since the control volumes in the gap and the control masses on the 

displacer piston wall in the gap were directly matched there was thus also 10 control masses 

on the displacer piston wall in the gap. The solution was then recalculated twice, each time 

doubling the number of control masses and control volumes. The discretisations used in the 

test are summarised in Table 1. The PV work, heat intake, total appendix gap loss, and wall 

temperature profiles were compared for the three solutions. The total appendix gap loss was 

computed as the amount of heat conducted directly from the cylinder wall to the cooling 

water of the cooler. 

 

Table 1. The numbers of control masses and control volumes used when testing the 

convergence of the spatial discretisation. 

CMs on disp. CVs in gap CMs on cyl wall

Case 1 10 10 15

Case 2 20 20 30

Case 3 40 40 60  
 

Comparison of results for varying gap sizes for the different methods 
From an engine design point of view it is interesting to know the optimum size of the 

displacer clearance gap. The gap should be small enough to effectively insulate the displacer 

seal from the hot gas in the expansion volume and with that constraint it should have the size 

that results in the best engine performance. Therefore a parameter variation was performed for 

the size of the displacer gap using (4) and (5) for computing heat transfer in the gap. The gap 

size was varied between 0.05 mm and 5 mm. The PV work, heat intake, and total appendix 

gap loss were recorded for the calculated solutions. 
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In this study we focussed on the effects due to the heat transfer between walls and gas in 

the gap. To remove effects due to changes in dead volume and in metal cross section areas 

from the results of the parameter variation, the parameter variation was also performed with a 

model where the heat fluxes computed using (4) were multiplied by 0.001, i.e. where the 

walls in the gap were almost adiabatic. Of the three classical appendix gap losses these results 

hence included mainly the conduction loss. When the walls were almost adiabatic the main 

influences on performance from increasing the gap size were from the added dead volume and 

from the reduced steel cross section area available for conduction in the displacer. Estimates 

for the effects of the pumping loss, shuttle conduction, and the change in the conduction loss 

from the heat transfer in the gap were calculated by subtracting the results for near adiabatic 

walls from the results with full heat transfer in the gap. The results were compared to 

analytical expressions for the appendix gap losses by Urieli & Berchowitz [1] 

 
NUMERICAL RESULTS 

Table 2 shows the total appendix gap loss, the heat intake, and the PV-work for the three 

solutions calculated with the discretisations from Table 1. Fig. 3 shows the wall temperatures 

on the cylinder wall and on the displacer piston for the corresponding solutions. In Fig. 3 the 

wall temperatures are plotted against the dimensionless distance from the top of the cylinder 

wall; the displacer is positioned at its bottom dead center position. The different boundary 

conditions on the outside of the cylinder wall, that were explained in the introduction, are 

indicated on the figure.  

 

Table 2. Gap losses, heat intake, and PV work from the three solutions with varying fineness 

of the spatial discretisation. 

App. Gap. Loss Q_dot_in PV work

[kW] [kW] [kW]

Case 1: 10 / 15 3.118 32.515 13.276

Case 2: 20 / 30 3.098 32.500 13.276

Case 3: 40 / 60 3.069 32.470 13.277  
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Fig. 3. Displacer and cylinder wall temperatures for varying fineness of the spatial 

discretisation. 
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Fig. 4 shows the appendix gap losses calculated using (4) and (5) for gap sizes between 0.05 

and 5 mm. The results calculated for a nearly adiabatic gap have been subtracted from the 

results calculated with heat transfer in the gap to produce the data plotted in Fig. 4. The 

shuttle loss, pumping loss, and the sum of the shuttle and pumping losses calculated using the 

formulas of Urieli & Berchowitz are also plotted in the figure. 
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Fig. 4. Gap losses for quadratic temperature profiles, the correlations by Huang and Berggren 

(H&B), and the shuttle and pumping loss correlations by Urieli and Berchowitz (U&B). 

 

Fig. 5 shows the differences in heat intake, PV work, and appendix gap losses caused by the 

heat transfer in the gap calculated using (4) and (5) for gap sizes between 0.05 and 5 mm. 
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Fig. 5. Impact on engine performance by the shuttle and pumping losses for quadratic 

temperature profiles and the Nusselt number correlation by Huang and Berggren (H&B). 
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DISCUSSION 

The results in Table 2 show that the calculated appendix gap loss changed less than 1.6 %, 

or approx. 50 W, when the discretisation was refined. A change of less than 50 W was also 

seen in the heat intake. The PV work was practically unaffected by the discretisation. 

The results in Fig. 3 show that the wall temperature profile on the displacer was 

practically independent of the discretisation. Changing the fineness of the discretisation 

caused slight changes in the cylinder wall temperature profile at the positions of the 

regenerator but the temperature profile on the cylinder wall did appear to be converging. 

Based on these results it was decided that it was adequate to use the coarsest of the tested 

discretisations, i.e. 10 control masses on the displacer in the gap and 15 control masses of the 

cylinder wall, for the remainder of the study. 

 

The wall temperatures plotted in Fig. 3 show significant variations in the axial temperature 

gradient, especially on the cylinder wall. The axial temperature gradients are small at the top 

manifold volume where the cylinder wall is thick, and at the cooler where the wall is also 

thick and where the outside of the cylinder wall is subjected to efficient cooling by the 

cooling water from the cooler. The temperature gradients are steep at the thin section of the 

cylinder wall surrounded by the regenerator. 

 

Fig. 4 shows that for gap sizes smaller than 0.5 mm the methods all give the same 

characteristic curve shape with minima at a gap size of approximately 0.23 mm. The increase 

in the appendix gap losses at gap sizes below 0.23 mm is caused by the increase in the shuttle 

conduction with smaller gap size. The increase in the appendix gap losses for gap sizes above 

0.23 mm is due to more energy being carried into the gap from the expansion volume by the 

oscillating mass flow in the gap. In this region the losses predicted using the quadratic 

temperature profiles are between 0.7 and 0.9 kW larger than the losses predicted by the 

formula of Urieli & Berchowitz and the losses predicted using the correlations by Huang and 

Berggren are between 1.6 and 1.8 kW larger than the losses predicted by the formula of Urieli 

& Berchowitz. 

In the formula by Urieli and Berchowitz the temperature gradient is assumed to be 

uniform along the gap and this results in a smaller temperature gradient than in our results at 

the position where the regenerator surrounds the cylinder wall. Part of the difference between 

the losses we calculate with (4) and (5) and the losses predicted by the formula of Urieli & 

Berchowitz were likely due to the differences in the temperature gradients. The differences 

between the losses calculated with (4) and (5) for very small gap sizes were attributed to the 

Reynolds number dependence of (5). 

 

Fig. 4 also shows that the analytical solution by Urieli & Berchowitz gives very different 

results than what was calculated using (4) and (5) for gap sizes above 0.5 mm. In the 

analytical solution the pumping loss kept increasing as the size of the gap was increased. In 

the results calculated using (4) and (5) the appendix gaps losses had maxima at gap sizes of 

approximately 1 mm and 0.8 mm and the losses decreased when the gap size was further 

increased. The decrease in the losses for large gap sizes when using (4) and (5) to compute 

heat transfer in the gap were attributed to the heat transfer between the walls and the gas in 

the gap becoming less efficient when the hydraulic diameter was increased. In general, it was 

noted that the tendencies in the results calculated using (4) and (5) were quite similar even 

though the methods, and their origins, are very different. 
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Fig. 5 shows that the appendix gap losses calculated using (4) and (5) translated very 

closely into increases in the heat intake for the engine. The appendix gap losses also reduced 

the PV power output from the engine; this reduction was largest at the maxima in the gap 

losses at 0.8 to 1 mm even though the gap losses were larger at lowest end of the studied 

range of gap sizes.  

This was attributed to the way that energy was transported into the gap. At gap sizes of 0.8 

to 1 mm, energy was mainly carried into the gap by the gas from the expansion cylinder 

volume; the heat transfer in the gap hence drained energy directly from the gas when the 

pressure in the engine was increasing and this reduced the amplitude of the pressure 

oscillation in the engine. For very small gap sizes, where the shuttle conduction mechanism 

constituted the bulk of the appendix gap losses, the energy transport into the gap was mainly 

by shuttle conduction from the thick wall section of the top of the cylinder. This cooled down 

the top of the cylinder wall so that it absorbed more energy from the gas in the expansion 

space; but this heat exchange between the cylinder wall and the gas in the expansion space 

occurred with a different phase angle than the flow of gas into the gap and it had less impact 

on the pressure oscillation in the engine. 

 

CONCLUSIONS 

In this paper we have described our approach for including the displacer clearance gap, 

a.k.a. the appendix gap, directly in our one dimensional Stirling engine models. 

A study on the convergence of the spatial discretisation used in the gap showed that a 

relatively coarse discretisation was adequate for studying the appendix gap losses. The wall 

temperature profiles calculated during the study showed that the axial gradients in the wall 

temperatures varied significantly along the gap. 

A parameter study on the size of the displacer clearance gap was performed with different 

algorithms for computing the wall to gas heat transfer in the gap, and the results were 

compared to analytical expressions for the appendix gap losses by Urieli & Berchowith. The 

simulations resulted in higher losses for small gap sizes but smaller losses for large gap sizes 

compared to the analytical expressions. The impact of the appendix gap losses on the heat 

intake and PV work output of the engine was also studied. A close correspondence was found 

between the appendix gap losses and an increased heat intake of the engine. The appendix gap 

losses were also found to reduce the work output of the engine; especially for relatively large 

gaps where the pumping loss dominated the appendix gap losses. 
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