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Summary

Pancreatic β-cells secrete insulin in response to raised glucose levels. Malfunctioning
of this system plays an important role in the metabolic disease diabetes. The bio-
logical steps from a glucose stimulus to the final release of insulin are incompletely
understood, and a more complete description of these processes and their interactions
would provide important input in the search for a better treatment of the disease.

This thesis describes several aspects of mathematical modeling of β-cells relevant for
the understanding of glucose stimulated insulin secretion. It consists of an introductory
part with successive chapters tying together the ten original articles, which I have (co-)
published, or submitted for publication, during my ph.d. studies. These papers consist
the last and most substantial part of the thesis. Besides the results presented in the
articles, I have included new, preliminary results in chapters 3, 4 and 5 concerning,
respectively, stochastic events in β-cells, excitation wave propagation and entrainment
of insulin pulses to a periodic glucose stimulus.

The title of the thesis indicates that it provides a study of dynamic aspects of β-cell
biology with attention to the difference between single cell behavior and the synchro-
nized behavior of many coupled β-cells as well as to the synchrony of islets. Rather
than developing new biophysical models, I have studied existing models, their inte-
gration and simplifications, and analyzed the corresponding dynamics, in order to use
these models for investigating biological hypotheses. Thus, the reader who looks for
models of so-far unexploited parts of β-cell biology will look in vain. Rather, I have
aimed at harvesting the advantage of models compared to real biology: The precise
description of the underlying assumptions and mechanisms, which allows us to test
well-defined hypotheses without confounding ’unknowns’ in the system.

The questions addressed are: Quasi-steady-state approximations of enzyme reactions
(Chapter 2, Paper V and Papers VIII-X), the effect of noise on bursting electrical be-
havior (Chapter 3, Paper III and Paper VI), excitation wave propagation in pancreatic
islets (Chapter 4, Paper I and Paper II), intra- and inter-islet synchronization and pul-
satile insulin secretion (Chapter 5 and Paper IV), and mitochondrial dynamics (Chap-
ter 6 and Paper VII). Finally, I suggest future directions for β-cell modeling in Chapter
7.
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Preface

I got introduced to mathematical biology as an exchange student at the Department
of Mathematics, University of Columbia, Vancouver, Canada, where Professor Robert
Miura gave a course on the topic during the fall of 1999. As the final course project,
he suggested me to work on models of β-cells, since he knew that researchers in Den-
mark had been, and are still, working on the subject. When I finished my Master of
Science at the University of Copenhagen and was looking for a possible ph.d. project
on mathematical biology, I contacted Professor Miura, who kindly suggested me to
contact my ph.d. supervisor, Mads Peter Sørensen.

Mads Peter has let me develop freely starting off from his previous work on wave
propagation. I thank him for always believing in my ideas based on the phrase (I
quote him from my memory): “Don’t interfere with a project that is going well”.
To have this freedom and support has been invaluable during my many travels and
collaborations around the globe. At the same time, Mads Peter never left me alone, but
was always interested in my work, and had always time for a discussion about an idea
or a manuscript.

Besides him, I would like to thank a number of people, who have made these last four
years during which I have worked on the project a truly enjoyable time.

Here it would be appropriate to mention that I have had a year of leave, thus explaining
the four years, due to receiving the amazing scholarship “Rejselegat for matematikere”
(Travelling Scholarship for Mathematicians), which was used to spend time at research
laboratories in Rome, Italy, Rio de Janeiro, Brazil and Bethesda, Maryland, USA. I
thank warmly late Valdemar Julius Andersen and his wife, Else Andersen, for founding
such an scholarship, hoping that all wealthy people would think like they did. Let me
thank Andrea De Gaetano, IASI, CNR, Rome, Marcelo Viana, IMPA, Rio de Janeiro
and Arthur Sherman, NIH, Bethesda for letting me stay and work at their respective
institutes during the travel.

Tom Høholdt, the responsible faculty member for the ph.d. students at MAT, receives a
warm thought for not only supporting but encouraging my staying in Italy for extended
periods. Rather than keeping the department or the mathematician at center stage, Tom
is ready to support the person inside the mathematician. A great human capacity!

Also thanks to Alberto Bersani for having me visiting DMMM, Università La Sapienza,
Rome, and to Alberto and Enrico for their warm and friendly personalities, which have
made my stays in Rome really wonderful. Ringrazio particularmente “Il Baretto” su
Viale Ippocrate per sostegno e svago.
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My stay in Padova has also been a truly memorable one. To visit the great capacities
of Professors Claudio Cobelli and Gianna Toffolo, Bioengineering group, University
of Padova, is a pleasure for any young researcher in this area. I am happy to be able
to say that from January, I will again stay in Padova for a Post. Doc. project with Prof.
Cobelli as supervisor.

Let me also mention and thank Professor Erik Mosekilde and Anne Marie Clemensen,
FYS, DTU, coordinator and administrator, respectively, of the European Network of
Excellence BioSim. First of all for offering me a Post. Doc. position for the fall 2006. It
is a privilege to have a job immediately after finishing my ph.d. But more importantly
for creating a focus point for European mathematical biology right here at DTU.

But above all these people shines my star, whom I met at the very first days of my ph.d.
in the beautiful town of Urbino, Italy. You have lived with traveling, long periods far
from each other, staying away from your friends and family, but have always done
what was possible in order for me to pursue my professional goals. To have a support
like yours is more than I could ever ask for, and it has taught me that work and career,
intellectual stimuli and conquests, are nothing and meaningless compared to the true
beauty. Grazie, amore mio.

Morten Gram Pedersen

Copenhagen, June 2006
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1.1 The glucose/insulin feedback system 1

Chapter 1

Glucose, insulin and diabetes

Glucose (sugar) is an utmost important energy source for the human body. The brain
works almost exclusively on glucose and requires large amounts of this substrate. An
insufficient concentration of glucose in the blood (plasma glucose) can lead to drowsi-
ness, fainting, coma and even death. On the other hand, too high glucose levels are also
dangerous leading to kidney failure, heart diseases and other serious complications.

Our body has developed a finely tuned control system to keep the plasma glucose con-
centration in a fairly narrow range (4-7 mM), and the failure of this system is what
characterizes diabetes. Diabetes is one of the western worlds most widespread dis-
eases, and the World Health Organization (WHO) has described the current develop-
ment as a “diabetes epidemic” (Wild et al., 2004). This has lead to extensive research
in the reasons for and implications of the disease.

This chapter gives the necessary biological background for the following, more math-
ematical chapters.

1.1 The glucose/insulin feedback system

The discovery of insulin by Frederick Banting and Charles Best in Toronto in 1921
opened up for an understanding and treatment of diabetes. Insulin is a hormone se-
creted from the pancreas into the blood in response to glucose and other stimuli, and
its main effect is to signal to cells in the body that they should increase the uptake of
glucose. The glucose is then either used as a fuel, for example in muscles, or stored
as glycogen in the liver for later use, in this way decreasing plasma glucose levels. On
the other hand, low glucose levels reduce the amount of insulin released such that the
body uses less glucose, keeping the glucose supply for the brain at sufficient levels.
Hence, the glucose/insulin system constitutes a classical negative feedback system as,
e.g., a normal thermostat. It should be noted that the glucose consumption in the brain
is unaffected by insulin since a steady supply of sugar is so crucial for the brain.

Insulin controls the blood sugar levels in concert with other hormones of which glucagon
plays an important role. This hormone is also secreted from the pancreas, but it has the
opposite effect of insulin. It is secreted in response to low glucose levels, and promotes
breakdown of glycogen to glucose in the liver in this way raising the plasma glucose
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Figure 1.1: Glucose is controlled by glucagon and insulin through feedback processes
(from http://health.howstuffworks.com).

concentration. This effect of glucagon is counteracted by insulin, see Fig. 1.1.

Diabetes occurs as the result of either insufficient production and secretion of insulin
(type I diabetes), or as an insufficient efficacy of insulin signaling in the target cells
despite of fairly high plasma insulin levels, a phenomenon known as insulin resistance.
Insulin resistance is the main symptom in type II diabetes, which is by far the most
common type in the western world. Usually people develop insulin resistance before
entering the diabetic state of the disease. This is because at the beginning of the disease
the pancreas is still able to compensate for the insulin resistance by releasing more
insulin. If the disease is not reversed, the pancreas can eventually not keep up to the
demand and diabetes develops.

1.1.1 Plasma glucose and insulin oscillations

The dynamics of plasma glucose and insulin is complex and far from static. Glucose
is known to fluctuate on at least two time scales. The so-called ultradian oscillations
have a period of 80-170 minutes, and are believed to be a result of the glucose/insulin
feedback system (Sturis et al., 1991). Superimposed on these slow oscillations are
faster fluctuations with a period of 4-10 minutes, which are paralleled by insulin os-
cillations with a similar time scale (Lang et al., 1979; Goodner et al., 1982; Sturis
et al., 1993; Pørksen et al., 2000; Pørksen, 2002). In contrast to the ultradian oscil-
lations, the fast insulin oscillations do not seem to be a result of systemic feedback
mechanisms, but are believed to be a result of pulsatile insulin secretion (Chou and
Ipp, 1990; Sturis et al., 1994; Ritzel et al., 2003; Pørksen, 2002). However, it is plau-
sible that the fast glucose and insulin fluctuations interact to provide a synchronization
mechanism (Sturis et al., 1994; Pørksen, 2002) as studied in Paper IV .
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1.2 The islet of Langerhans

As mentioned above insulin is released from the pancreas. The hormone secreting
endocrine cells constitute a very small part of the pancreas, and are located in some
millions micro-organs called pancreatic islets of Langerhans. The islets consist of
four kinds of cells; insulin-secreting β-cells, glucagon-releasing α-cells, somatostatin-
producing δ-cells and pancreatic polypeptide-containing PP-cells, and each islet con-
tains of the order of 2000-4000 cells (Kulkarni, 2004). In rodents the relative distri-
bution in an islet is approximately 65-90 % β-cells, 15-20 % α-cells, 3-10 % δ-cells
and 1 % PP-cells (Brissova et al., 2005; Kulkarni, 2004; Ashcroft and Rorsman, 1989;
Cabrera et al., 2006), but humans have a quite different distribution with approximately
55 % β-cells, 35 % α-cells and 10 % δ-cells, and have a greater inter-subject variation,
as well as a different architecture of the islet, compared to mice (Brissova et al., 2005;
Cabrera et al., 2006). This thesis study the insulin secreting β-cells, which are directly
coupled within an islet by gap junctions (Meissner, 1976; Eddlestone et al., 1984),
which are small pores in the plasma membrane that allows diffusion of ions and even
small molecules between the cytoplasm of the coupled cells. However, β-cells do not
seem to be coupled electrically to the other types of islet cells, nor are these other cells
coupled among each other, but paracrine (cell signaling in which the target cell is close
to the signal releasing cell) interactions between the different groups of cells do exist
(Nadal et al., 1999; Göpel et al., 1999b).

1.3 Glucose Stimulated Insulin Secretion (GSIS)

Although several physiological and pharmacological stimuli, such as glyceraldehyde,
glucagon and sulphonylureas, lead to insulin release from β-cells, glucose is by far the
most important of these (Ashcroft and Rorsman, 1989).

Insulin release is the last step of the process starting with insulin synthesis, packaging
of insulin in secretory granules, granule trafficking between different pools, docking
and priming of granules in the membrane and finally the exocytotic process, where
insulin is released into the blood (Orci, 1985; Rorsman et al., 2000). Little is known
of this movement or about the dynamics of docked granules, but due to improved
experimental techniques, this has been changing recently (Niki et al., 2003; Kwan and
Gaisano, 2005).

It is widely accepted that glucose stimulate insulin secretion through both triggering
and amplifying pathways (Henquin, 2000). The triggering pathways are characterized
by leading to the signal that triggers insulin release, namely an increased intracellular
calcium concentration. The main pathway through which this occurs in glucose stim-
ulated insulin secretion (GSIS) is described as follows (Ashcroft and Rorsman, 1989;
Henquin, 2000). Glucose is broken down glycolytically, and the resulting pyruvate
is further metabolized in the mitochondria. Through oxidative phosphorylation ATP
is produced, and the increase in the ATP/ADP ratio closes ATP-sensitive potassium
channels (K(ATP) channels) in the plasma membrane. The cell then depolarizes, thus
opening voltage sensitive Ca2+ -channels through which calcium enters the cell finally
triggering insulin release. This is summarized in Fig. 1.2. The amplifying pathways
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Figure 1.2: The main triggering pathway in glucose stimulated insulin secretion (from
the Beta Cell Biology Consortium, http://www.betacell.org).

are less understood, but are believed to result in higher calcium sensitivity of the exo-
cytory machinery, in this way amplifying the action of calcium on insulin release.

1.3.1 Bursting electrical activity

When the β-cell is subjected to a sufficiently high glucose concentration, the electrical
potential across the cell membrane, the membrane potential, exhibits a characteristic
electrical behavior known as bursting (Ashcroft and Rorsman, 1989). Bursting consist
of a periodic variation between a silent phase where the cell is hyperpolarized at ap-
proximately -70 mV, and an active phase where the membrane potential shows spiking
activity with an amplitude of the order of 40 mV, rising from a plateau of approxi-
mately -50 mV, see Fig. 1.3. A burst consists of a silent phase followed by an active
one, and the burst period in intact islets range from tens of seconds to a few minutes (as
in Fig. 1.3). The cytoplasmic calcium concentration varies in synchrony with bursting
electrical activity and correlates with pulsatile insulin secretion (Santos et al., 1991;
Barbosa et al., 1998; Henquin, 2000). The plateau fraction is defined as the ratio of
the length of the active phase to the total burst period. When the glucose challenge
increases, the plateau fraction also increases, and insulin secretion correlates well with
the plateau fraction (Meissner and Schmelz, 1974). Hence, understanding what con-
trols bursting electrical activity is of great importance for an insight in the mechanisms
behind proper insulin secretion.

The electrical potential across the cell membrane is due to concentration differences
of ions between the extracellular (outside) and intracellular, cytoplasmic side of the
cell membrane. These differences are a result of ion fluxes and pumping through the
plasma membrane. The membrane contains a series of channels and ATP consuming
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Figure 1.3: Bursting of membrane potential in mouse β-cell stimulated with 10 mM
glucose. Insert: Details of the initial action potential spikes of the first burst. (From
Luciani (2004)).

pumps, and the periodic activation and inactivation of a series of these channels are
believed to underlie bursting electrical activity (Ashcroft and Rorsman, 1989).

The channels change their conductivity (activity) in response to changes in the mem-
brane potential and the concentrations of various ions and molecules. One can think of
the channels having gates that open or close depending on the controlling factors for
that particular type of channel. Moreover, the gates open and close stochastically, for
example because of thermal fluctuations (Atwater et al., 1983; Sherman et al., 1988).

Single cells vs. islet behavior

It is remarkable that single, isolated β-cells in general behave very differently from
intact islets (Rorsman and Trube, 1986; Göpel et al., 1999a; Larsson et al., 1996). In
a large study (Kinard et al., 1999) it was found that isolated cells can be divided into
three categories based on the behavior of the membrane potential: Cells with repetitive
spikes (spikers; 33 % of the population studied), cells with small spikes superimposed
upon brief (less than 5 seconds) plateau depolarizations (fast bursters; 52 %), and cells
with periodic plateaus of longer duration (10-20 seconds) with small fluctuations on
top (plateau cells; 15 %). The same group confirmed that this distinction is reflected in
the intracellular calcium dynamics, which show small and fast oscillations reflecting
the electrical activity of the cell (Zhang et al., 2003). It should be noted that other
groups have found isolated cells to be very slow, especially when measuring intracel-
lular Ca2+ (Jonkers et al., 1999; Larsson et al., 1996), but also very slow membrane
potential bursting has occasionally been observed (Larsson et al., 1996; Bertram et al.,
2000). Noteworthy is also the recent study with islets from genetically modified mice
lacking gap junctions (Ravier et al., 2005). When monitoring cells located in a cluster,
but uncoupled to neighboring cells due to the loss of gap junctions, asynchronous slow
Ca2+ oscillations were seen in some but not all of the cells. Unfortunately, the authors
did not measure the electrical activity of these cells and not of single, uncoupled cells
in intact islets.

Thus, it seems that single, isolated cells are either much faster or significantly slower
than intact islets or clusters of β-cells. Moreover, going from isolated cells to clusters
to islets the orderliness increases, both when considering the electrical behavior (Rors-
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man and Trube, 1986; Zhang et al., 2003) and the Ca2+ oscillations (Jonkers et al.,
1999; Zhang et al., 2003).

Several hypotheses have been proposed to explain the discrepancy between isolated
cells and islets. Atwater et al. (1983) suggested that stochastic fluctuations of ion
channels disrupt the bursting behavior in single cells. When the cells are coupled
they effectively share the ion channels, and hence the stochastic fluctuation have less
influence on the individual cell. This is known as the channel sharing hypothesis, and
can explain how bursters are transformed to spikers or fast bursters when isolated.

The heterogeneity hypothesis (Smolen et al., 1993) is based on the fact that since β-
cells have heterogeneous properties, some of them will be spikers or fast bursters,
while other will be slow bursters, but very few will have a medium bursting pattern as
seen in islets. The coupling between the heterogeneous cell population will change the
dynamics of the population such that they become medium bursters.

In the islet, paracrine interactions from α- and δ-cells could play a role, and such
stimulus, which could be crucial for obtaining bursting behavior, would of course be
lost when removing the β-cells from their natural neighbors. However, clusters of β-
cells, without or with very few α- or δ-cells, often show bursting and Ca2+ oscillations
(Rorsman and Trube, 1986; Jonkers et al., 1999).

Finally, the biophysical properties such as ion channel conductances of islet cells have
been claimed to be changed after the isolation procedure (Göpel et al., 1999a), and
hence, the isolated β-cells could be spikers only because of human intervention. If
it was possible to isolate the β-cells, for example by blocking gap junction without
interfering with the single cell physiology, we should, in the light of this idea, still
be able to observe bursting. Indeed, such an experiment would be the ideal test of
the different hypotheses. Genetically modified cells with reduced gap junction ex-
pression (Calabrese et al., 2003; Ravier et al., 2005) could be an alternative approach,
although these cells might maintain a low degree of coupling (Calabrese et al., 2003).
It should be noted that other studies could not confirm that isolated cells have channel
conductances differing greatly from cells located in the islet, thus questioning this idea
(Goforth et al., 2002).

These questions and hypotheses have inspired a great deal of mathematical studies,
which are discussed further in chapter 3.

1.3.2 Calcium homeostasis

Calcium provides the triggering signal for insulin release from the β-cells. The in-
tracellular calcium concentration increases during the active phase of the burst due
to calcium influx through voltage-gated calcium channels, which open when the cell
membrane is depolarized. During the silent phase Ca2+ is cleared from the cell by
ATP-consuming pumps and the Na+-Ca2+ -exchanger (Chen et al., 2003; Chay and
Kang, 1988). Thus, calcium oscillates in phase with the membrane potential (Valde-
olmillos et al., 1989; Zhang et al., 2003), often in a mixed pattern with slow waves with
a period of approximately 5 minutes having faster fluctuations riding upon them. This
pattern has been suggested to be a result of compound bursting, a pattern composed of
clusters of bursts separated by silent phases (Bertram et al., 2004). This was recently
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confirmed experimentally (Beauvois et al., 2006).

Intracellular calcium is sequestrated by the endoplasmic reticulum (ER) stores and the
mitochondria. Ca2+ enters the ER through ATP-consuming SERCA pumps, while the
flux out of the ER is mainly through inositol 1,4,5-triphosphate (IP3) sensitive channels
or by passive leak. The ER stores plays an important role in shaping the Ca2+ oscilla-
tions (Arredouani et al., 2002; Tengholm et al., 2001; Bertram and Sherman, 2004b).
The way of entry into the mitochondria is provided by the Ca2+ uniporter, while the
exit is mainly by the mitochondrial Na+-Ca2+ -exchanger (McCormack et al., 1990;
Rizzuto et al., 2000). The role of calcium in the mitochondria is described below.

1.3.3 Glycolysis

Glycolysis has a crucial role in GSIS of the β-cell. It is an ubiquitous pathway con-
sisting of a series of enzymatic reactions, which break down each molecule of glucose
entering the pathway into two molecules of pyruvate along with two molecules of ATP
and NADH (reduced nicotinamide adenine dinucleotide). Pyruvate in then further me-
tabolized in the mitochondria.

The β-cell has some kinetic peculiarities, which plays an important role in GSIS. First,
the initial phosphorylation of glucose is catalyzed by glucokinase (GK), and, second,
the phosphofructokinase (PFK), catalyzing phosphorylation of fructose 6-phosphate
(F6P) to fructose 1,6-biphosphate (FBP), is of the muscle type (PFK-M).

GK has been regarded as the β-cell ’glucose sensor’, mainly since the glucose phos-
phorylation of glucose by GK is rate limiting for glucose usage in β-cells, and it fol-
lows a sigmoidal relation similar to the dose-response curve of GSIS (Matschinsky
et al., 1998).

PFK-M is another important regulator of glycolytic flux. It is inhibited by ATP, the
final product of glucose metabolism, but activated by its product FBP, and by the nu-
cleotides AMP and ADP. Due to these feedback mechanisms, it mediates oscillations
in glycolysis in skeletal muscle extracts (Tornheim and Lowenstein, 1974). Hence,
glycolytic oscillations in β-cells should also be possible, and this has indeed been sup-
ported by oscillations in glucose consumption (Jung et al., 2000) and G6P (Nilsson
et al., 1996). Indirect support is given from oscillations in oxygen levels (Longo et al.,
1991; Jung et al., 2000), NAD(P)H (Luciani et al., 2006) and ATP levels (Ainscow and
Rutter, 2002), but we should keep in mind that these oscillations could be the result of
periodic metabolism in the mitochondria, not in glycolysis.

Since oscillations in glycolysis typically have a time scale of approximately 5 minutes,
they have been suggested to underlie pulsatile insulin secretion due to the similar pe-
riod (Tornheim, 1997). The mechanism would be that oscillating glycolysis provides
oscillating input for the mitochondria, which in turn synthesizes ATP periodically.
This leads to rhythmic closure of K(ATP) channels, depolarization and Ca2+ influx
finally triggering pulsatile insulin secretion. These steps have been incorporated in a
mathematical model (Bertram et al., 2004), which is used in Paper IV .

One might speculate that the slow bursts and Ca2+ oscillations observed in isolated β-
cells are glycolytic in nature. If the resulting ATP/ADP changes are sufficiently large,
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they will overcome stochastic channel openings. Thus, the slow periodic pattern will
persist but be less regular when going from islets to single β-cells (Jonkers et al., 1999),
while a medium bursting pattern will be disrupted by the fluctuations in isolated cells
as hypothesized in the channel sharing hypothesis. Thus, the mechanisms underlying
the oscillations on various time scales are important for single cell versus islet behavior
(see chapter 3 for a further discussion on this idea).

1.3.4 The mitochondria

The end product of glycolysis, pyruvate, is further metabolized in the mitochondria
through oxidative phosphorylation. After being transported into the matrix of mi-
tochondria, pyruvate is decarboxylated by pyruvate dehydrogenase (PDH) forming
acetyl-coenzyme A (acetyl-CoA). In this process NADH is produced, but more im-
portantly the generated acetyl-CoA is oxydized in the tricarboxylic acid (TCA) cycle
yielding even more NADH and FADH2 (reduced flavin adenine dinucleotide). Most
NADH originates from the TCA cycle, but there is also an indirect transfer from the cy-
tosol through two shuttle complexes, the malate-aspartate and the glycerol phosphate
shuttles.

NADH and FADH2 are carriers of energy rich electrons, which are delivered to the
electron transport chain (ETC) when NADH and FADH2 are metabolized. The energy
in the electrons is harvested for pumping protons out of the mitochondrial matrix,
and the proton gradient created is then used for driving the ATP synthase, which is
the enzyme phosphorylating ADP, thus producing ATP, the end product of glucose
metabolism in the β-cell. The produced ATP is finally exchanged with cytosolic ADP
through the adenine nucleotide transporter.

The proton gradient created by the ETC results in an electric potential across the mi-
tochondrial inner membrane, ∆Ψm of approximately 150 mV. It is this potential that
drives, besides the ATP synthase, e.g., the pyruvate transporter, the adenine nucleotide
transporter and uptake of Ca2+ through the uniporter. The flux of Ca2+ into the mito-
chondria has two opposing effects. Mitochondrial Ca2+ stimulates several dehydroge-
nases, thus enhancing NADH production and eventually ATP production (McCormack
et al., 1990). On the other hand the current introduced from the flux of the positive cal-
cium ions lowers ∆Ψm and thus ATP synthesis (Magnus and Keizer, 1998a). The
competition between these two opposing effects is the question treated in Paper VII.

See chapter 6 for more about the role and function of the mitochondria.

1.3.5 Inter-islet synchrony

β-cells are coupled through gap-junctions, and it has been established that the islet
responds to stimulatory glucose levels as a functional syncytium, since electrical and
calcium oscillations are quasi-synchronized across an islet (Meissner, 1976; Eddle-
stone et al., 1984; Santos et al., 1991; Aslanidi et al., 2001; Valdeolmillos et al., 1996).
However, small phase-shifts of up to 2 seconds across the islet can be observed, which
is due to the calcium signal spreading across the islet in the form of an excitation wave
(Bertuzzi et al., 1999; Aslanidi et al., 2001). Also, metabolic synchronization was



1.3.6 Pulsatile insulin release 9

demonstrated by Jung et al. (2000), who showed that oxygen levels measured at two
different sites in an islet were synchronized. We showed in Paper IV that surprisingly
electrical coupling is sufficient also for metabolic synchrony.

Genetically modified mice without gap junctions lose the synchronization (Calabrese
et al., 2003; Ravier et al., 2005) such that the overall Ca2+ signal is flat even though
oscillations can be seen in smaller areas of the islet and in single cells. This flat signal
is reflected in constant insulin secretion in contrast to pulsatile secretion from control
islets (Ravier et al., 2005), underlining the importance of gap junction communication.

Synchronization has very recently been questioned to hold in human islets, maybe be-
cause of the unique architecture of human islets (Cabrera et al., 2006). That study did
not find oscillations in calcium when imaging intact human islets, but only in small ar-
eas within the islet or in isolated cells. The authors proposed, but did not show directly,
that the lack of communication between β-cells led to phase-shifts between different
areas of the islet, and thus the local oscillatory signals were masked when averaged
over the entire islet. However, these observations are in direct contrast to previous
results, which showed a clear oscillatory calcium signal from human islets (Martin
and Soria, 1996; Kindmark et al., 1991, 1994), which was found to be synchronized
between different regions of the islet (Martin and Soria, 1996). Moreover, oscillatory
insulin secretion from human islets speaks in favor of overall oscillatory calcium levels
on the islet level (Song et al., 2002; Ritzel et al., 2003, 2006).

1.3.6 Pulsatile insulin release

As mentioned above, plasma insulin is oscillatory with a period of 4-10 minutes, which
is believed to be a result of pulsatile insulin secretion from the pancreas. The ability
to release insulin periodically resides in the individual islet, where is correlates with
oscillatory Ca2+ levels, a result of synchronized oscillations in the β-cell population in
the islet. Both oscillatory Ca2+ and pulsatile insulin secretion are lost in islets lacking
gap junctions as a result of the lack of intra-islet synchronization (Ravier et al., 2005).

In order to see an overall pulsatile insulin profile from the pancreas it is furthermore
necessary that the millions of islets are synchronized (inter-islet synchronization). The
mechanisms underlying this synchrony are far from understood, but two hypotheses
have been suggested.

One hypothesis is that an intrapancreatic neural pacemaker may be responsible for
inducing periodic insulin release from the population of islets (Stagner et al., 1980;
Pørksen, 2002; Gilon et al., 2002). However, pulsatile insulin secretion has been ob-
served in individual islets (Westerlund and Bergsten, 2001; Sturis et al., 1994; Ritzel
et al., 2003; Ravier et al., 2005) demonstrating that such a pacemaker has at most a syn-
chronizing function. It has also been shown that groups of islets (Chou and Ipp, 1990;
Berman et al., 1993; Sturis et al., 1994) and pieces of pancreas containing electrically
silent nerves (ganglia) (Sha et al., 2001) exhibit oscillatory release of the hormone.
Hence, there must be additional synchronizing mechanisms.

An alternate synchronization mechanism has been postulated based on data showing
that plasma glucose levels fluctuate on the timescale of pulsatile insulin release as
mentioned above (Sturis et al., 1994; Pørksen, 2002). This is the mechanism studied
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in Paper IV , which can be summarized as follows. The insulin pulses from the islets
interact with the liver and other tissues to produce the glucose fluctuations, which on
the other hand entrain the islets and in this way synchronize the insulin pulses. The
islets are from this point of view globally coupled oscillators interacting through the
liver and plasma glucose. This idea is supported by the ability of oscillatory glucose
to entrain insulin secretion in vitro (Chou and Ipp, 1990; Sturis et al., 1994; Ritzel
et al., 2006) and in vivo (Mao et al., 1999; Pørksen et al., 2000), as well as entrain-
ment of metabolism and Ca2+ (Luciani, 2004). However, pulsatile secretion has been
observed even when the glucose concentration was held constant. This has been ob-
served in vitro for the perifused pancreas (Stagner et al., 1980) as well as in vivo when
plasma glucose was clamped (Song et al., 2002). Thus, it seems plausible that both
mechanisms, an intrapancreatic pacemaker and feedback from glucose, are at play.
Such redundancy is not uncommon in biological systems.
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Chapter 2

Enzyme kinetics

All cells, and thus also the β-cells, transduce information arriving to the cell membrane
through a complex network of enzyme reactions. The first network that is activated in
glucose stimulated insulin secretion in the β-cell, is that of glycolysis which break
down glucose to pyruvate entering the mitochondria for further metabolism.

Henri (1901a,b, 1902) and Michaelis and Menten (1913) laid the foundation of the de-
scription of enzyme reactions. This formulation considers a reaction where a substrate
S binds reversibly to an enzyme E to form a complex C. The complex can decay ir-
reversibly to a product P and the enzyme, which is then free to bind another substrate
molecule. This is summarized in the scheme

E + S
k1−→←−

k−1

C
k2−→ E + P, (2.1)

where k1, k−1 and k2 are kinetic parameters (supposed constant) associated with the
reaction rates.

The reaction (2.1) can be described by a system of two nonlinear ordinary differential
equations. Assuming that the complex is in a quasi-steady-state leads to the Michaelis-
Menten-Briggs-Haldane approximation (Briggs and Haldane, 1925; Segel, 1988; Segel
and Slemrod, 1989)

d S

dt
≈ − VmaxS

KM + S
, S(0) = S0, (2.2)

Here Vmax = k2 E0 = k2 E(0) is the maximal reaction rate and KM = k−1+k2

k1
is

the Michaelis constant, identifying the substrate concentration giving the half-max
reaction rate, i.e., KM reflects the substrate affinity of the enzyme.

The Michaelis-Menten-Briggs-Haldane approximation (2.2), also known as the stan-
dard quasi-steady-state approximation (sQSSA), is widely used, although it is known
that it holds only when the enzyme concentration is much lower than either the sub-
strate concentration or the Michaelis constant, KM , as stated in the relation (Segel,
1988; Segel and Slemrod, 1989)

E0 � S0 + KM . (2.3)

This criterion is not satisfied in a wide range of intracellular situations, and hence the
sQSSA (2.2) is sometimes inappropriate, in particular in glycolysis (Albe et al., 1990).
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One should therefore model either each step of the reaction (2.1) or find approxima-
tions valid in a wider setting. One very promising candidate for such a new approxi-
mation is the total quasi-steady-state approximation (tQSSA) (Borghans et al., 1996;
Tzafriri, 2003), which is summarized in Paper IX and Paper X.

In Paper X we studied the importance of using a valid approximation when estimating
unknown parameters in a biochemical system. A common method to obtain these
parameters is to fit a mathematical model to experimentally obtained data, for example
by least square methods. This is often referred to as reverse engineering. However,
a model formulated with the sQSSA can not be expected to be a good representation
of the full system as discussed above. As for most other approaches, the use of the
sQSSA produces excellent goodness of fit. But for the sQSSA such a good fit will
necessarily correspond to parameter values far from the true ones. Indeed, inserting
the true values in the sQSSA model does, in general, not approximate the full system.
Instead, we expect that the tQSSA will reduce this problem consistently. This was
confirmed for the simple reaction (2.1) in Paper X.

The newer approximations such as the tQSSA have so far only been found for isolated
reactions. However, in vivo the reactions are coupled in complex networks or cascades
of intermediate, second messengers with successive reactions, competition between
substrates, feedback loops etc. In Paper V , we found an extension of the tQSSA to
enzymes with competing substrates; in Paper VIII, Paper IX and Paper X we investi-
gated the use of the tQSSA in phosphorylation cycles; and in Paper VIII and Paper IX
in the mitogen activated protein kinase (MAPK) cascade.

This ubiquitous cascade is also present in the β-cells, where it is activated by glucose.
The calcium dependent activation of the MAP kinases ERK1 and ERK2 promotes
transcription of the insulin gene, but has little effect on insulin secretion. Thus, it
seems to be involved on a relatively slow time scale to maintain appropriate insulin
production (Khoo et al., 2004). The next chapters deal with processes on a faster time
scale, and taking the MAPK cascade into account does not seem necessary for what
follows.
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Chapter 3

Modeling β-cell electrophysiology

The foundation to our present models of bursting electrical activity in β-cells was
laid by Atwater et al. (1980), on which Chay and Keizer (1983) formulated the first
mathematical model based on the Hodgkin-Huxley formalism. Virtually all models of
the β-cells since then are variations of this model.

The main characteristics of the models are a fast subsystem, consisting of the mem-
brane potential and at least one fast gating variable, usually of delayed rectifying potas-
sium channels, and one or more slow variables, which make up the slow subsystem.
’Fast’ and ’slow’ refer to the timescales of the subsystems. The fast subsystem gen-
erates the spikes during the active phase, while the slow subsystem is responsible for
switching between the active and silent phases.

3.1 Early models

The first models are characterized by having one slow variable as in the first β-cell
model by Chay and Keizer (1983). Following the proposal by Atwater et al. (1980)
this model was based on Ca2+ being the slow variable modulating a calcium sensitive
potassium current, K(Ca), and it predicted that Ca2+ would show a sawtooth oscil-
lation. This hypothesis was proven wrong when better methods for measuring Ca2+

were invented, which showed that Ca2+ is closer to having square wave oscillations
(Valdeolmillos et al., 1989). Thus, Ca2+ levels change not quite slow enough to pace
bursts with a period of tens of seconds. For this reason, Ca2+ was for many years con-
sidered unlikely to drive bursting (Sherman, 1997). However, a novel slowly activat-
ing calcium dependent potassium current, Kslow, has reintroduced Ca2+ as a potential
candidate for the slow variable (Göpel et al., 1999a). This has been supported by a
mathematical model with two slow variables (Goforth et al., 2002; Zhang et al., 2003),
which is a so-called phantom burster model, see the following section. Other proposed
candidates for the slow variable have included cytosolic ATP/ADP ratio (Keizer and
Magnus, 1989; Magnus and Keizer, 1998a) and the concentration in the endoplasmic
reticulum (ER) (Chay, 1997). Moreover, the underlying dynamics of these models
have been reproduced in a minimal, polynomial model (Pernarowski, 1994), which is
the model used in Paper VI.
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Figure 3.1: Bifurcation diagram of the fast subsystem with z as the bifurcation pa-
rameter. Thin, full curves indicate stable fixpoints; thin, broken curve correspond to
unstable fixpoints and the thick, full curve shows the extrema of periodic solutions.
The dotted curve shows the z-nullcline, d z

dt = 0. A simulation of the deterministic
system is projected onto the z− u plane for comparison. See the text for more details.

In the case of one slow variable, Rinzel (1985) elegantly explained the mechanism
underlying bursting using a bifurcation diagram of the fast subsystem with the slow
variable as the bifurcation parameter. This fundamental analysis is reproduced here
(taken from Paper VI).

We denote the slow variable by z, and the membrane potential is mimicked by u. The
fixpoints of the fast system fall on a Z-shaped curve, see Fig. 3.1. The fast system is sta-
ble for low z values, but increasing z, this stability is lost in a Hopf-bifurcation (HB).
The fixpoints on the middle branch of the Z-shaped curve are saddle-points, while they
are stable on the lower branch. The middle-branch meets the upper and lower branch in
saddle-node bifurcations (SN). The Hopf-bifurcation gives rise to stable periodic solu-
tions around the unstable fixpoints on the upper branch, but these periodics disappear
in a homoclinic bifurcation (HC) for sufficiently large z. The mechanism underlying
bursting is based on the bistability between the stable fixpoints on the lower branch
and the stable periodics for a range of z-values. When we reintroduce the slow varia-
tion of z, we can explain bursting. When the system is near the lower branch, it moves
slowly to the left since u is low and thus d z

dt < 0 here. This continues until the stable
branch disappears in the left saddle-node bifurcation. The system now leaves the lower
branch (silent phase) and goes to the stable periodics (active phase), where u is high
and d z

dt > 0. Hence, the system now moves to the right until it meets the homoclinic
bifurcation and the stable periodics disappear. The system then leaves the active phase
and settles on the lower branch and the scenario is repeated.
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3.2 Phantom bursting

Isolated β-cells show a wide range of behavior, with the majority showing either spik-
ing or very fast bursting activity (Kinard et al., 1999; Zhang et al., 2003). However,
bursting slower than observed in islet is also seen, especially in Ca2+ measurements
(Zhang et al., 2003; Jonkers et al., 1999). Only rarely do isolated cells burst with
a period of tens of seconds (medium bursting) as observed in intact bursting islets.
Furthermore, no convincing slow variable, which changes on a time scale of tens of
seconds has been found. As mentioned above, Ca2+ reacts to fast, and the K(Ca) cur-
rent has a time scale of less than 10 seconds (Göpel et al., 1999a). The ATP/ADP
ratio on the other hand seems to change too slowly (Nilsson et al., 1996; Ainscow and
Rutter, 2002), while the ER Ca2+ concentration is insufficient in explaining bursting,
since bursting and Ca2+ oscillations can persist, although with a changed profile, when
ER stores are emptied by the SERCA pump blocker thapsigargin (Tg) (Bertram et al.,
1995; Tamarina et al., 2005; Gilon et al., 1999; Miura et al., 1997). However, it is also
often seen that Tg converts bursting and Ca2+ oscillations to continuous spiking and
stable, raised Ca2+ (Kanno et al., 2002; Gilon et al., 1999; Miura et al., 1997)

These problems of finding an appropriate slow variable led to the development of
the phantom burster model (Bertram et al., 2000). The idea is to combine a slow
variable, z1, with a rather small time constant of the order of a few seconds, with a
very slow variable, z2, with a time constant of more than a minute. The interplay
between these two slow processes yield a slow modulation of the fast subsystem on an
intermediate time scale of tens of seconds. Besides, depending on the relative strength
of the two slow processes the system can exhibit either fast or slow bursting, while
medium bursting occurs when both slow processes contribute to the dynamics. Thus,
the model can account for the full spectrum of observed burst periods.

I have constructed a minimal polynomial phantom burster model based on the model
by Pernarowski (1994) as follows (compare with Eq. 2.2 in Paper VI):

d2u

dt2
+ F (u)

d u

dt
+ G(u) + ρzz1 + z2 = (3.1a)

−(h1(u)− z1)/τ1 − (h2(u)− z2)/τ2 − σΓt,

d z1

dt
= (h1(u)− z1)/τ1, (3.1b)

d z2

dt
= (h2(u)− z2)/τ2, (3.1c)

The fastest of the two slow variables z1 has a time scale of τ1 = 40 time units, while
the slowest variable z2 has a time scale of τ2 = 2000. The functions hi, i = 1, 2, are
both linear, but with different parameters, and F and G are as in Paper VI. Introducing
a parameter ρz , which modifies the relative strength of z1 versus z2 enables us to
switch from slow phantom bursting with a period greater than, e.g., 1000 time units
(ρz ≈ 0.7) to medium (period of 200-1000, ρz ≈ 1.1) to fast (period less than 200,
ρz ≈ 2.5, see the black curve in Fig. 3.4A. This polynomial phantom burster is also
used in the following section when studying the influence of noise modelled by the
term σΓt, but for now we consider the deterministic case, σ = 0.

To explain the mechanism behind phantom bursting we take advantage of the bifur-
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cation diagram from the previous section (Fig. 3.1) with z1 playing the role of z. We
consider z2 constant. The Z-curve is given by d2u

dt2
= d u

dt = 0 yielding

z1 = −G(u) + z2

ρz
. (3.2)

z2 then effectively moves the Z-curve horizontally: for large z2 it is shifted to the left,
and for smaller z2 to the right.

Now, if the z1-nullcline is steeper than in Fig. 3.1 such that it always has at least one
intersection with either the upper or the lower branch of the Z-curve with z1 between
the values of the left saddle-node and the homoclinic bifurcation (more precisely, it is
not the intersection with the Z-curve that matters in the active phase, rather with the
average of u over a spike period, i.e., the appropriate intersection with the periodic),
then, for constant z2, the system will come to rest in either a constantly spiking state
(when intersecting the periodic) or a silent state (when intersecting the lower branch).

The bifurcation diagram for the model with ρz = 1 is shown in Fig. 3.2. We explain
phantom bursting as follows. Assume that the system is at rest in the silent state and
that z2 now behaves similarly to z1 but much slower. Since u is low, z2 decreases, and
the Z-curve moves to the right (Fig. 3.2, right panel). At a certain point the z1-nullcline
no longer intersects the lower branch of the Z-curve and the fast subsystem escapes
to the active phase. Now z1 increases until it reaches the point where its nullcline
intersects the periodic where it then stalls (Fig. 3.2, left panel). z2 now increases slowly
moving the Z-curve to the left, and at a certain point the intersection of the z1-nullcline
and the periodics passes the homoclinic bifurcation and the fast subsystem jumps to the
silent phase. Here z1 decreases finally reaching the reintroduced intersection between
the z1-nullcline and the lower branch, and again it stalls waiting for z2 to decrease
sufficiently (Fig. 3.2, right panel). The scenario is then repeated.

Increasing (respectively decreasing) ρz compresses (respectively stretches) the Z-curve
as seen from (3.2). Hence, for large ρz the system will never be trapped and we get
fast bursting driven almost exclusively by z1. For small ρz the situation is the opposite,
since z2 now has to change a lot before the system escapes, and thus we get slow
bursting driven almost exclusively by z2. See the black, full curve with squares in
Fig. 3.4, upper, left panel, for the influence of ρz on the burst period.

Examples of physiological phantom bursters, all having cytosolic calcium as the fastest
slow feedback variable z1, differ by having either the ER calcium concentration (Go-
forth et al., 2002; Zhang et al., 2003) or the ATP/ADP ratio (Bertram and Sherman,
2004a) as the slowest variable. The latter is the model used for the electrophysiological
and calcium handling part of the model in Paper IV .

3.3 Stochastic fluctuations

As mentioned, isolated single cells behave differently from coupled cells, and usually
either spike or have very short bursts (Kinard et al., 1999). It was suggested by Atwa-
ter et al. (1983) that stochastic fluctuations (noise) of ion channels destroy the bursting
pattern, but that these fluctuations are less influential on the individual cell when it is
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Figure 3.2: Bifurcation diagram explaining phantom bursting. The first panel shows
the bifurcation diagram from Fig. 3.1 shifted 0.37 (∼ z2) to the left, corresponding to
the beginning of the active phase. A numerical solution for the entire burst trajectory
superimposed (blue). The red asterisk indicates that the system becomes trapped in the
active phase until z2 has grown sufficiently such that the underlying Z-curve has moved
sufficiently to the left, and the system meets the homoclinic bifurcation. This happens
for a shift of 0.57 (∼ z2, second panel). The system is then trapped in the silent phase
where the z1-nullcline intersect the lower branch of the Z-curve (red asterisk). The
time series is shown in Fig. 3.3A, where it is also seen that z1 reaches a constant value
where it stays until z2 has grown sufficiently.
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coupled to other cells, since the channels are effectively shared between cells. This
idea, known as the channel sharing hypothesis, was investigated using computer sim-
ulations by Chay and Kang (1988) and Sherman et al. (1988).

In Paper VI, we analyzed the influence of noise from a more analytical point of view.
More specifically, we showed that the bifurcations that determine the burst period,
i.e., the left saddle-node bifurcation and the homoclinic bifurcation (see Fig. 3.1) can
be followed for varying noise strength using a collective coordinate method for the
exit from the silent phase at the saddle-node bifurcation, and a stochastic Melnikov
method for determining the homoclinic bifurcation, which ends the active phase. We
found that noise effectively moves the homoclinic bifurcation to the left, see Paper VI.

When introducing noise into a phantom bursting model, the effect on the burst period
is much more dramatic than in the case of a standard bursting model, i.e., a model
with only one slow variable, see Fig. 3.3. I have used the model (3.1) introduced
above. A medium phantom burster with a period of roughly 400 time units (Fig. 3.3A)
is converted to a fast burster with a period of approximately 150 time units by even
extremely low noise intensity (σ = 0.01, Fig. 3.3B). A standard burster with a period
similar to the phantom burster (Fig. 3.3C) is influenced very little by such a low noise
intensity (Fig. 3.4, lower, left panel), and even the stronger intensity σ = 0.05 only
shortens the burst period to approximately 300 time units (Fig. 3.3D). This pattern
is consistent: Noise is more efficient at shortening the period of slow and medium
phantom bursters than of standard bursters and fast phantom bursters (Fig. 3.4). Fast
phantom bursting is effectively driven by only one slow variable, and hence, it comes
as no surprise that noise has little effect on this kind compared to medium and slow
bursting, since moving the homoclinic bifurcation does not have the ability to change
the type of phantom bursting. Note that for strong noise there is almost no dependence
on ρz indicating that the stochastic fluctuations have disrupted the bifurcation structure
and the effect of the slowest variable z2 (Fig. 3.4, upper left panel, dash-dotted curve).

The dramatic noise dependence is due to the fact that moving the homoclinic bifurca-
tion to the left will shorten the time that the system is stalled in the active phase, and
for a larger shift it can even be expected that the system will follow the fastest of the
two slow time scales since it will never be trapped in the active phase. Alternatively, it
can be explained by noticing that while the system is stalled, it is near the z-nullcline,
and thus small perturbations are sufficient to push the system into the basin of attrac-
tion for the silent branch. This scenario is reflected in the large flux factor Φstoch near
the deterministic homoclinic bifurcation, see Paper VI, Fig. 4.2, and is more important
for low noise strengths since the homoclinic bifurcation is moved much less to the left
than for larger noise intensities. In the standard bursting model the system is only near
the z-nullcline in a relatively small fraction of the active phase. The same holds true
for the end of the silent phase although to a less degree (Paper VI). The effect on burst
period in relation to the relative time that the system is stalled taking into account the
Melnikov process and flux factor, would merit a more thorough study.

These simulations speak against the proposed role of phantom bursting in creating
either fast or slow bursters when considering isolated cells, since the ever present
stochastic effects in single cell will tend to make all the cells rather fast. In other
words, the mechanism behind the channel sharing hypothesis will shorten the burst
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Figure 3.3: Noise has a stronger effect on phantom bursters than on regular bursters.
Panel A shows a medium phantom burster without noise. Panel C is a standard burster
with a period similar to the phantom burster in panel A. When subjected to noise
(σ = 0.01) the burst period of the phantom burster shortens significantly (panel B),
and more than for the standard burster with stronger noise influence (σ = 0.05, panel
D). The blue curves show the membrane potential u, while the red curves are in panels
A & B (respectively, C & D) the fastest of the two slow variables z1 (respectively, the
slow variable z).
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Figure 3.4: Burst periods for various type of bursters and noise strengths. Upper,
left panel: Period of phantom bursters as a function of ρz for various noise strengths
(σ = 0, full, black curve with squares; σ = 0.01, full, blue curve; σ = 0.05, dashed
curve; σ = 0.1, dotted curve; σ = 0.3, dash-dotted curve). Note the logarithmic scale
on the y-axis. Upper right panel: Relative period (compared to the deterministic case
σ = 0) for the curves from the upper, left panel with same legends. Lower, left panel:
Burst period as a function of noise intensity σ for a slow phantom burster (blue, full
curve), a medium phantom burster (blue, dashed curve), a fast phantom burster (blue,
dotted curve), a standard burster as in Fig. 3.3, panels C and D (red, dashed curve),
and the standard burster investigated in Paper VI (red, full curve). Note the logarithmic
scale on the y-axis. Lower, right panel: Relative periods for the curves in the lower,
left panel with respect to the deterministic case (σ = 0) for each of the curves.
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period dramatically in single cells in contrast to several experiments, e.g., by Jonkers
et al. (1999), who found single cells to show mainly slow Ca2+ oscillations that in-
creased in regularity when coupled in cell clusters. These authors found that ∼25%
of single cells did not show oscillations, while ∼10% (∼13% of all oscillating cells)
showed a mixed pattern of fast oscillations on top of slow oscillations and the remain-
ing ∼65% had only slow oscillations In islets, the distribution of the various patterns
is in contrast ∼40% of islets showing oscillating Ca2+ levels have slow oscillations,
∼35% fast oscillations (corresponding to medium bursting) and 25-30% have a mixed
pattern (Bergsten et al., 1994; Liu et al., 1998). Thus, mixed oscillations are seen
mostly in islets, indicating that compound bursting is rarely seen in single islets, since
the mixed Ca2+ pattern has been shown to be a consequence of compound bursting
(Beauvois et al., 2006).

These observations would be explained by a scenario where the slow envelope is con-
trolled by glycolysis and the individual bursts by a phantom mechanism (Bertram et al.,
2004). When the cell is isolated, noise will disrupt the phantom bursting, while the
glycolytic oscillations will continue. In contrast, intermediate islet phantom burst-
ing will be changed to fast, noisy bursting as in the channel sharing hypothesis. Thus,
where islets show intermediate, compound or slow glycolytic bursting, individual cells
should mainly show fast bursting or spiking with a relatively flat Ca2+ signal (corre-
sponding to an islet with intermediate bursting) or slow bursting and Ca2+ oscillations
(corresponding to compound or glycolytic bursting). Interestingly, the numbers for
the distribution of various Ca2+ patterns cited above correspond quite well to this hy-
pothesis, although it would be even better to have data from the same group using
identical experimental settings for the isolated cells and islets. The only group that, to
my knowledge, compared islets and isolated cells found that isolated cells are either
fast bursters or spikers and correspondingly show very fast (<5 sec) Ca2+ oscillations
(Zhang et al., 2003). Thus, their study does not provide any insight in the mechanism
behind slow bursting and Ca2+ oscillations in isolated cells. For comparison, these
authors found that 47% of islet show fast Ca2+ oscillations (corresponding to medium
bursting), 11% have slow oscillations, and the remaining 42% show a mixed pattern
(Zhang et al., 2003).

I am currently investigating this idea of combining the channel sharing hypothesis and
the role of glycolytic oscillations using modeling. As shown in Fig. 3.5, the above
considerations seem to be well represented by preliminary simulations of a stochastic
version of the model by Bertram et al. (2004), which is the model used in Paper IV .
The noise term is included as a stochastic K(ATP) channel as in De Vries and Sher-
man (2000) and Paper III. The Ca2+ response is even more convincing as seen in
Fig. 3.6, where I show a 5 second moving average of the Ca2+ level for comparison
with experiments such as by Jonkers et al. (1999) to include non-continuous image
sampling, buffering, possible slower responding subspaces (Zhang et al., 2003), etc.
The case with a low number of K(ATP)-channels corresponding to a single cell does
indeed show a slow Ca2+ oscillations, while the “islet” with many K(ATP)-channels
show mixed oscillations.
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Figure 3.5: Simulations of a stochastic version of the model by Bertram et al.
(2004). The upper panels show the deterministic version for medium (left; parameters
Jgk = 0.4, gk,ca = 400 pS, λ = 0.005), compound (center; Jgk = 0.2, gk,ca = 400
pS, λ = 0.005), and slow bursting (right; Jgk = 0.2, gk,ca = 80 pS, λ = 0.01).
The corresponding stochastic versions are shown below, with the number of K(ATP)-
channels given by NK(ATP ) = 100000 and NK(ATP ) = 100 in the middle and lower
row, respectively. A lower number of channels correspond to a stronger noise term
(De Vries and Sherman, 2000).
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Figure 3.6: Simulations of a stochastic version of compound bursting in the model
by Bertram et al. (2004) as in Fig. 3.5, center panels. The figures show Ca2+ levels,
smoothed by averaging over 5 sec windows. Parameters are as in Fig. 3.5, center
panels, except ḡK(ATP ) = 1700 pS, λ = 0.01, and the number of K(ATP)-channels is
given by NK(ATP ) = 20 (left panel) and NK(ATP ) = 100000 (right panel).

3.4 Two coupled cells

Puzzling to understand the difference between isolated and coupled cells, researchers
have modeled just two coupled cells, where the bifurcation structure of the system
can be analyzed similarly to the case of one cell. It has been shown that cells that
spike when isolated can become bursters when coupled (Sherman and Rinzel, 1991).
This observation has been reported to be more robust when the cells have heteroge-
neous properties (De Vries and Sherman, 2001), or when they are subjected to noise
(De Vries and Sherman, 2000). Paper III shows that it is necessary that the two cells
have different stochastic perturbations, and suggests that it is the effective heterogene-
ity induced by the two noise sources that change the spikers to bursters. Thus, het-
erogeneity, even when masqueraded as noise, can robustly make spiking cells burst.
It should be interesting to apply the methods from Paper VI to coupled, noisy cells,
especially with the scope to further understand the result from Paper III, i.e., how pre-
cisely does the noise-induced heterogeneity break the symmetry such that the bursting
behavior occurs.

Bertram et al. (2000) showed that when coupling slow and fast phantom bursters they
synchronize in a medium bursting pattern. Moreover, when two fast phantom bursters
are weakly coupled a medium bursting pattern can be obtained (R. Bertram, unpub-
lished results). Zimliki et al. (2004) simulated larger populations of coupled phantom
bursters, and they found that when moderately coupled, medium bursting can arise
from cells that are either all fast, all slow or a mixture of the two. It would be in-
teresting to thoroughly investigate the bifurcation structure and the effect of noise in
coupled phantom bursters.
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Chapter 4

Excitation waves in pancreatic
islets

Nonlinear waves is a commonly observed phenomenon in excitable media. Since the
β-cells are electrically excitable, and coupled through gap-junctions, it could be en-
visaged that wave propagation would occur in the islets of Langerhans. This has in-
deed been observed as mentioned below, and using mathematical modeling it has been
suggested to be nonlinear waves similar in nature to those arising from the Nagumo
equation (sometimes referred to as Fisher’s equation, although Fisher (1937) studied a
second degree polynomial)

ut = uxx − u(u− 1)(u− a), (4.1)

where subscripts denote differentiation and 0 < a < 1, see Aslanidi et al. (2001) and
Paper I and Paper II.

4.1 Experimental facts

In vitro experiments have shown that calcium waves propagate through glucose stimu-
lated pancreatic islets and monolayers of insulin secreting cells (Bertuzzi et al., 1999;
Cao et al., 1997; Aslanidi et al., 2001; Rocheleau et al., 2004). Also electrical activity
is slightly out of synchrony such that a burst starts with a time difference of a few
seconds at different cells in the islet, again indicating that an electrical wave is prop-
agating across the islet (Eddlestone et al., 1984; Palti et al., 1996). These excitation
waves are likely to be a synchronization mechanism by which the β-cells in an islet
secrete insulin almost simultaneously. Moreover, it could be a mechanisms by which
cells that become active and secrete insulin in response to an elevated glucose stimu-
lus, could signal to otherwise non-responding cells in order to activate them (Aslanidi
et al., 2001). The opposite could also be envisaged; that hyperactive cells, i.e., because
of a permanently closed K(ATP)-channel, could behave normally when coupled to
normally functioning cells. This has been supported recently (Rocheleau et al., 2006).

When imposing a glucose gradient across the islet, wave propagation is again ob-
served, but now the waves pass only partly across the islet (Rocheleau et al., 2004).
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When the wave enters the region where the β-cells would be silent if uncoupled, it
progresses slightly further than the active (when uncoupled) region, but then it stops
(see also simulations below). Hence, excitation waves might function as a triggering
signal from active to silent cells, but only over limited ranges.

The waves have been hypothesized to be a result of electrical and/or chemical coupling
through gap junctions, or to be mediated by diffusion of some messenger in the extra-
cellular medium. As in many other biological systems, there is here some redundancy
where several mechanisms can serve the same purpose. A likely extracellular messen-
gers could be ATP, which is secreted together with insulin from the granules (Cao et al.,
1997; Hellman et al., 2004). The idea of a diffusing messenger came mainly from the
fact that groups of cells that are not physically coupled have the ability to communi-
cate, such that an excitation wave can jump the physical gap between the clusters (Cao
et al., 1997; Bertuzzi et al., 1999). However, these diffusion waves are much slower
that the ones seen in intact islets (Bertuzzi et al., 1999; Aslanidi et al., 2001), and thus,
electrical communication is more likely to be the main mechanism for wave propaga-
tion in intact islets. This is also supported by the asynchronous calcium oscillations in
islets from genetically modified mice lacking gap junctions (Ravier et al., 2005), since
if the diffusible messenger was able to synchronize the cells, then the lack of gap junc-
tions should not disrupt the coordinated periodic behavior. The response in intact islets
thus seems to be different from that of monolayers of insulin secreting cells, where gap
junction communication is not crucial for wave propagation (Cao et al., 1997; Bertuzzi
et al., 1999).

4.2 Modeling

These experimental facts were studied using mathematical modeling (Aslanidi et al.,
2001). It was found that electrical coupling is indeed enough to see excitation waves
propagate, but the model used in that study predicted too fast waves in comparison
to the experimentally found wave speeds. The authors suggested that a lower glucose
concentration in the center of the islet, due to slow diffusion of glucose, would explain
this discrepancy. This was based on theoretical considerations. Lower glucose con-
centration was modelled by a higher conductance of the K(ATP) channels, gK(ATP ),
and it was argued that this would lower the wave speed.

However, in Paper II I showed both by simulations and theoretical considerations,
that changing the value of gK(ATP ) should have minimal effect on the speed of the
waves. I suggested in Paper I that heterogeneous coupling strength could explain the
discrepancy between experimental and simulated wave speed. This was supported by
a homogenization procedure (Bensoussan et al., 2002).

We note here that this homogenization procedure does not interfere with the assump-
tions leading to the Nagumo-like equation (personal communication, M. Amar, La
Sapienza University of Rome). More specifically, in Paper I a model equivalent to the
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following was considered for ε > 0,

uε
t = I(uε, nε, sε) + (κ(

x

ε
)uε

x)x,

nε
t =

n∞(vε)− nε

τn
,

sε
t =

s∞(vε)− sε

τs
,

(4.2)

and following Aslanidi et al. (2001) it was assumed that nε = n∞(uε) and sε = s∗
(constant). This results in a single Nagumo-like equation for uε which is then homog-
enized by letting ε → 0, see Paper I, yielding the homogenized equation, say for u0.
If instead, we homogenize (4.2) directly by letting ε → 0, we get a system similar
to (4.2), say for u0, n0 and s0. If we then assume n0 = n∞(u0) and s0 = s∗, we
obtain again a Nagumo-like equation for u0, which is identical to the one for u0, i.e.,
u0 = u0, and thus the homogenization method commutes with the procedure leading
to the Nagumo-like equation.

I studied further the influence of oscillating gap junction conductance on wave propa-
gation (Paper II). Andreu et al. (1997) reported that the conductances of gap junctions
oscillate in phase with the bursting phenomena of the β-cells such that during the ac-
tive phase the conductance is almost four times greater than in the silent phase. The
gap junctions are not voltage sensitive, so such an oscillation would have to be medi-
ated by other messengers. It should be noted that the results presented by Andreu et al.
(1997) should be interpreted with care, since the authors used very strong currents in
their experiments, likely to interfere with the normal electrophysiological behavior of
the β-cells (A. Sherman, NIH, personal communications). However, from a theoretical
point of view there is nothing that hinders the investigation of oscillating gap junction
conductance. I showed in Paper II that this scenario can be studied along the lines
of the case of constant gap junction conductance described above, now leading to a
density dependent Nagumo diffusion equation. Moreover, using a simple transforma-
tion I found a new expression for the wave speed of such density dependent Nagumo
diffusion equations.

Rocheleau et al. (2004) imposed a glucose gradient across an islet and observed wave
propagation, but only across a part of the islet. To simulate this scenario, I have used
the model from Paper I of a line of 20 β-cells coupled with constant gap-junction
conductance. The glucose gradient is imposed by letting gK,ATP decrease linearly
across the islet, such that cell no. 1 has gK,ATP = 292 pS (low glucose concentration),
while cell no. 20 has gK,ATP = 140 pS (high glucose concentration). As seen in
Fig. 4.1, a calcium wave propagates from the cell with the highest glucose stimulus,
but stops in the middle of the islet. However, the wave travels into the region where the
cells would be silent if uncoupled (here cell no. < 15) as observed experimentally. In
collaboration with M.P. Sørensen, I am currently investigating this phenomenon along
the lines of Paper I and Paper II.
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Figure 4.1: Simulation of wave propagation in an islet with an imposed glucose gra-
dient. Upper panel: Several burst episodes leading to wave propagation. Lower panel:
Close up of a wave front. The figure has been turned 90 degrees counter-clock wise
compared to the upper panel.
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Chapter 5

Entrainment and synchrony of
pulsatile insulin secretion

5.1 Background

Insulin is secreted in pulses with a period of 4-10 minutes, both when measured in
vitro from single islets (Westerlund and Bergsten, 2001; Ritzel et al., 2003; Sturis et al.,
1994), groups of islets (Chou and Ipp, 1990; Sturis et al., 1994; Song et al., 2002) or
the pancreas (Stagner et al., 1980), or in vivo from the blood immediately after the
pancreas in the portal vein (Song et al., 2000; Pørksen et al., 2002). These pulses
are believed to underlie oscillatory plasma insulin levels (Sturis et al., 1994; Pørksen,
2002). In humans more than 70-75 % of the total insulin secretion is released in bursts
(Pørksen et al., 1997; Song et al., 2000; Pørksen et al., 2002), and it is primarily the
amplitude of the pulsatile insulin secretion, rather than the period, that is affected by
changes in glucose concentration (Song et al., 2000; Ritzel et al., 2003; Pørksen et al.,
2002; Song et al., 2002; Pørksen, 2002).

It has been suggested that glycolytic oscillations drive the periodic insulin release
pattern through periodic modulation of bursting electrical activity (Tornheim, 1997).
Bertram et al. (2004) described a model, where the glycolytic subsystem has the ability
to oscillate due to positive product feedback onto the glycolytic enzyme PFK. The os-
cillatory glycolysis leads to oscillations in ATP production which drive periodic activ-
ity of K(ATP)-channels. This slow rhythm interacts with the faster activity-dependent
Ca2+ rhythm that drives simple bursting. The possible outcome of the interaction
can occur as clusters or episodes of bursts followed by long silent phases (“compound
bursting”), very slow bursting driven entirely by glycolysis (“glycolytic bursting”), or
as a periodic variation in the plateau fraction (“accordion bursting”). These various
forms of bursting have in common a slow modulation of the intracellular calcium con-
centration, and consequent pulsatile insulin secretion (Bertram et al., 2004).

To observe an overall oscillatory insulin profile it is necessary that the insulin secretion
from individual β-cells is synchronized within islets (intra-islet synchronization), and
that the population of islets is also synchronized (inter-islet synchronization). If the
cells or islets were not synchronized we would observe a flat, averaged signal even
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though the single cells and islets released insulin in pulses.

5.2 Intra-islet synchrony

In Paper IV we showed how electrical coupling through gap-junctions can be sufficient
to synchronize not only membrane potentials and Ca2+ levels, but more surprisingly,
also metabolic oscillations within an islet. Thus, diffusion by glycolytic intermediates
or other metabolic messengers does not seem to be strictly necessary for intra-islet
synchronization. It should be noted that because of the sizes of the molecules, dif-
fusion of ATP or the glycolytic intermediate FBP through gap-junctions is unlikely,
while diffusion of G6P is expected to happen. Diffusion of either FBP or G6P syn-
chronizes slow oscillations, but sufficiently strong coupling through G6P can kill gly-
colytic oscillations (Tsaneva-Atanasova et al., 2006). Thus, glycolytic oscillations can
be synchronized by gap-junction coupling, thus explaining the intra-islet synchrony
of oxygen consumption (Jung et al., 2000). Since the slow metabolic oscillations are
hypothesized to underlie pulsatile insulin secretion, the islet should then release clear
insulin pulses as observed experimentally (Sturis et al., 1994; Westerlund and Berg-
sten, 2001; Ritzel et al., 2003). The next question at hand, which is studied in the
following section, is then how groups of isolated islets or the millions of islet in the
pancreas are synchronized.

In Paper IV we showed that if glycolysis is not synchronized, there is less insulin
secretion (Figs. 4 and 5). The positive effects of glycolytic synchronization would be
accentuated by any K(ATP)-independent, amplifying pathway (Henquin, 2000), since
amplifying signals would plausibly be in phase with the glycolytic oscillator, since
they are believed to result from mitochondrial metabolism (MacDonald et al., 2005).
If the calcium levels in different cells were in synchrony, but the glycolytic components
were not, then the amplifying signals would not be synchronized, and thus would not
have maximal effect.

5.3 Entrainment by glucose oscillations

It has been shown that pulsatile insulin secretion can be entrained by a periodic glu-
cose stimulus in islets from healthy rats (Chou and Ipp, 1990; Sturis et al., 1994) and
humans (Ritzel et al., 2006), as well as in healthy humans in vivo (Mao et al., 1999;
Pørksen et al., 2000). Moreover, slow NAD(P)H, Ca2+ and mitochondrial membrane
potential oscillations, which are thought to underlie pulsatile insulin release, can be
entrained in mouse islets (Luciani, 2004). The entrainment is impaired in ZDF rats
(Sturis et al., 1994) and diabetic humans (Mao et al., 1999; Hollingdal et al., 2000),
pointing to a possibly crucial mechanism for normal overall pulsatility. Similar results
have been obtained for entrainment of the slower ultradian oscillations (Sturis et al.,
1991, 1995).

As shown in Paper IV , the modified model by Bertram et al. (2004) can be entrained.
Also, an earlier model (Magnus and Keizer, 1998a) shows entrainment (Luciani, 2004),
but this model seems too sensitive as seen by the extremely wide Arnold tongue
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(Fig. 5.1).

The model used in Paper IV can undergo 2:1 entrainment, meaning that for each period
of the glucose oscillations we have two Ca2+ oscillations and pulses of insulin release
(Fig. 5.2). 2:1 entrainment is a general phenomenon of forced oscillatory systems and
is also observed in the model by Magnus and Keizer (1998a) as shown by Luciani
(2004). Such 2:1 entrainment was recently observed for entrainment of insulin pulses
from human islets (Ritzel et al., 2006), and of NAD(P)H, Ca2+ and mitochondrial
membrane potential oscillations (Luciani, 2004). It was also seen in an in vivo study
with human patients (Mao et al., 1999). Moreover, the phenomenon is observed for
ultradian oscillations (Sturis et al., 1995).

5.4 Inter-islet synchrony

The entrainment phenomena has been suggested to be a mechanism by which pul-
satile insulin secretion is coordinated between islets (Sturis et al., 1994; Ritzel et al.,
2006). Luciani (2004) showed very convincingly that endogenous Ca2+ oscillations
adjust both their phase and amplitude to a periodic glucose stimulus. Since plasma
glucose levels fluctuate in vivo, it has been suggested that they are responsible for
synchronizing insulin pulses from the dispersed islets and letting the overall pulsatile
release pattern from the pancreas appear (Sturis et al., 1994; Pørksen, 2002; Goodner
et al., 1991; Gilon et al., 2002). Moreover, in vivo, hepatic glucose production fol-
lows plasma insulin oscillations (Goodner et al., 1982), which suggests a mechanism
by which pulsatile insulin release leads to periodic glucose production and plasma
glucose levels. Hence, we have a scenario where pulsatile insulin secretion leads to
fluctuations in plasma glucose, which might be able to synchronize the pulses from
individual islets thus reinforcing the signal to the liver and plasma glucose. This is the
mechanism investigated in Paper IV by adding a simplified “liver”. We showed that
this mechanism of globally coupled oscillators (islets) is indeed able to provide inter-
islet synchrony. As mentioned in chapter 1, this feedback scenario is likely to work in
parallel with neural synchronizing signals (Stagner et al., 1980; Pørksen, 2002; Gilon
et al., 2002).
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Figure 5.1: Both the models from Paper IV (red, upper panel) and Magnus and Keizer
(1998a) (blue, lower panel) are entrainable to an oscillating glucose concentration
around 10 mM. Upper and lower panels show brute force scans (stroboscopic Poincaré
section) through the 1:1 Arnold tongue (middle panel).
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Chapter 6

Mitochondria

6.1 Structure and function in GSIS

The mitochondria, which are present in the cells of virtually all organisms (including
fungi, animals, and plants), are responsible for the production of the majority of the
“energy currency” molecule ATP. They are surrounded by double membranes, the in-
ner of which is organized in folds, where aerobic respiration takes place. This inner
membrane bounds the compartment called the mitochondrial matrix. Mitochondria
contain their own DNA and are only formed by the fission of other mitochondria, and
are in some sense independent organisms living in symbiosis with the host cell (Alberts
et al., 2002).

6.1.1 ATP production

The primary function of the mitochondria, which is also its main role in GSIS of β-
cells, is the production of ATP. This is done by metabolizing the major products of
glycolysis, pyruvate and NADH, as summarized in Fig. 6.1.

Each pyruvate molecule produced by glycolysis is actively transported across the inner
mitochondrial membrane, and into the matrix where it forms acetyl-CoA, which is fed
into the tricarboxylic acid (TCA) cycle, also known as the citric acid cycle or the Krebs
cycle. This process creates 3 molecules of NADH and 1 molecule of FADH2, which
go on to participate in the electron transport chain (ETC). Also NADH from glycolysis
is transported into the mitochondrial matrix by a shuttle system.

The energy from NADH and FADH2 is transferred to oxygen in several steps via the
electron transfer chain. The protein complexes in the inner membrane that perform the
transfer use the released energy to pump protons against a gradient (the concentration
of protons in the intermembrane space is higher than that in the matrix). As the proton
concentration increases in the intermembrane space, a strong concentration gradient is
built up, as well as a large hyperpolarization of the inner membrane. The main exit
from the intermembrane space for these protons is through the ATP synthase complex.
By transporting protons back into the matrix, the ATP synthase complex can make
ATP from ADP and inorganic phosphate (Pi). The produced ATP is then exchanged
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Figure 6.1: Schematics of mitochondrial ATP production. (From Alberts et al. (2002))

with cytosolic ADP.

6.1.2 Role of Ca2+

The flux of Ca2+ into the mitochondria has to opposing effects. Mitochondrial Ca2+

stimulates several dehydrogenases, thus enhancing NADH production and leading to
hyperpolarization of the inner membrane and eventually ATP production (McCormack
et al., 1990). On the other hand the current introduced from the flux of the positive cal-
cium ions through the uniporter lowers the proton motive force and thus ATP synthe-
sis (Magnus and Keizer, 1998a; Krippeit-Drews et al., 2000; Kindmark et al., 2001).
These competing effects are studied in Paper VII.

6.1.3 Anaplerotic products and signaling

β-cells show remarkedly high levels of the enzyme pyruvate carboxylase (PC), which
produces the TCA cycle intermediate oxaloacetate from pyruvate, rather than acetyl-
CoA produced by pyruvate dehydrogenase (PDH). The carboxylation pathway can
increase the levels of TCA cycle intermediates due to a net input of carbon atoms,
while decarboxylation by PDH does not raise the net levels of intermediates. It has
been shown that approximately 50% of glucose-derived pyruvate enters mitochondrial
metabolism via carboxylation by PC, thus quantitatively equaling the metabolism of
acetyl-CoA in the TCA cycle. Anaplerosis, the net synthesis of TCA cycle interme-
diates, has been suggested to be important in GSIS in the β-cell, since the excess
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amounts of intermediates is exported from the mitochondria to the cytosol for specific
purposes, such as signaling and supporting insulin secretion (Schuit et al., 1997; Mac-
Donald et al., 2005). A recent study showed that inhibition of PC, and thus anaplero-
sis, lowered both first and second phase insulin secretion, possibly by lowering the
ATP/ADP ratio, which was attributed to decreased pyruvate cycling in the mitochon-
dria (Fransson et al., 2006).

Malate and citrate levels increase in response to glucose and pyruvate, and the export
of malate and citrate to the cytosol by mitochondrial shuttles, permits the export of
NADPH equivalents from the mitochondria. Cytosolic NADPH has multiple signaling
roles, including stimulating insulin production and secretion (MacDonald et al., 2005).

Exported citrate has another putative messenger role besides being involved in the
pyruvate-citrate shuttle and NADPH export. In the cytosol, it is converted into cy-
tosolic acetyl-CoA, which can be carboxylated to malonyl-CoA. Malonyl-CoA itself
is believed to have a signaling role, because it is should raise the level of long-chain
acyl-CoAs in the cytosol, which has been proposed to influence K(ATP) channels, glu-
cokinase, ATPases and trafficking of insulin granules (Corkey et al., 2000; MacDonald
et al., 2005).

Interestingly, citrate oscillates both in isolated mitochondria and in intact insulin se-
creting INS-1 cells (MacDonald et al., 2003). This demonstrates that besides oscilla-
tions in glycolysis and electrical activity, the mitochondria have the ability to oscillate
by themselves. A possible mechanism could be the inhibition of citrate production by
citrate itself and by succinyl-CoA, another TCA cycle intermediate.

Synchronization between mitochondria within a cell could be achieved by glycolytic
oscillations and Ca2+ feedback in the spirit of Paper IV , but in addition by citrate oscil-
lations due to the inhibition of its own production (MacDonald et al., 2005). Moreover,
citrate inhibits PFK, as does ATP, providing feedback from mitochondria to glycolysis
and a mechanisms for synchrony.

6.2 Modeling

Magnus and Keizer (1997) summarized the most important components of mitochon-
drial Ca2+ handling and ATP production in a minimal model including proton pump-
ing via respiration and proton uptake by the ATP synthase complex, a proton leak,
ADP/ATP exchange, the Ca2+ uniporter and Na+/Ca2+ exchange. The main result
was that in the absence of significant Ca2+ activation of mitochondrial dehydroge-
nases, Ca2+ uptake would reduce the ATP production rate substantially by reducing
the proton motive force, thus suggesting a potential role for mitochondrial Ca2+ han-
dling in determining the ATP/ADP ratio in β-cells by a negative feedback loop. The
model was later improved and extended to include the TCA cycle for a study of cardiac
mitochondria (Cortassa et al., 2003).

In Paper VII we simplified the extremely complex Magnus-Keizer expressions, and
used the simple model to study the competing effects of Ca2+ in the mitochondria;
stimulus of dehydrogenases and lowering of the mitochondrial membrane potential.

Magnus and Keizer (1998a,b) incorporated their mitochondrial model into a elec-
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trophysiological model of the cell membrane, and showed that the combined model
exhibits bursting electrical behavior. They proposed in line with their earlier article
(Keizer and Magnus, 1989), that the negative feedback from Ca2+ on ATP/ADP was
the mechanism initiating and terminating the active phase of a burst.

In collaboration with R. Bertram, D.S. Luciani and A. Sherman, I coupled the original
Magnus and Keizer (1997) model of the mitochondria to the model used in Paper IV
in order to investigate the effect of coupling the glycolytic system to a detailed model
of ATP production and Ca2+ handling. This was what led us to simplify the Magnus
and Keizer (1997) model as done in Paper VII. We are currently working on cou-
pling our simplified mitochondria model (Paper VII) to the β-cell model from Paper
IV . A main motive for this is the possibility of comparing simulations to experimental
observations of mitochondrial variables such as NAD(P)H, mitochondrial membrane
potential and oxygen consumption. Our results so far indicate that the model describes
these variables appropriately. For example, NAD(P)H leads slow Ca2+ oscillations
(Luciani, 2004), and intracellular Ca2+ concentrations are out of phase with extracel-
lular oxygen levels (Jung et al., 2000), both of which are reproduced accurately by the
model. Moreover, it provides an explanation for the termination of oscillations in oxy-
gen consumption and NAD(P)H levels by plasma membrane hyperpolarization. We
suggest that the drop in Ca2+ induced by hyperpolarization reduces ATP hydrolysis
by pumps and increases mitochondrial ATP production. The resulting increase in ATP
concentration inhibits PFK and in this way terminates glycolytic oscillations.

Other aspects of mitochondrial functions in β-cells have also been modeled, such as
the NADH shuttles and the TCA cycle (Westermark, 2005). This model was used to
analyze the production of the potential messengers in the amplifying pathway, NADPH
and malonyl-CoA, besides ATP production. It also reproduced the findings that block-
ing the NADH shuttles attenuates ATP production while retaining the rate of glucose
oxidation (Eto et al., 1999). Modeling the citrate oscillations seen by MacDonald et al.
(2003) and investigating synchronization of individual mitochondria would be another
interesting task to pursue.
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Chapter 7

Outlook

A scenario where the global response and dynamics of a population of enzymes, cells
or islets are created from the individual properties, is at the core of the fashionable
system biology. The parts constitute the whole. Such a hierarchy was followed in the
present thesis, which started off by studying the correct formulation of enzyme kinet-
ics, moving on to the electrical behavior of individual β-cell behavior where stochastic
effects are important. The electrophysiological descriptions were then complemented
by models of glycolysis and mitochondria. At a higher level the cells are synchro-
nized within an islet, and I investigated the role of excitation waves and synchrony
of metabolic oscillations. Finally the overall signal from the pancreas in the form of
pulsatile secretion with importance for whole body glucose homeostasis, was studied.

β-cell modeling has helped in clarifying the dynamics underlying mainly bursting elec-
trical activity, which were the topics of Paper III and Paper VI. Also, excitation wave
propagation has been supported by modeling within the framework of nonlinear partial
differential equations as in Paper I and Paper II. I presented preliminary simulations
showing waves propagating only partly through an islet in chapter 4, and we are cur-
rently trying to understand this phenomena from a mathematical point of view. These
models have, roughly speaking, been spurred by the relatively well-understood trigger-
ing pathway where electrophysiological behavior is crucial for the Ca2+ rise leading
to insulin release.

The future questions to be addressed by β-cell modeling will be phenomena within the
cell, such as glycolysis and mitochondrial metabolism. This was initiated in the work
by Magnus and Keizer (1997, 1998a,b), and we have made further steps in this direc-
tion in Paper IV and Paper VII. I would also like to mention the work by Westermark
(2005) on both glycolysis and NADH shuttles and the TCA cycle in the mitochondria.
The scope here is two fold. 1) To understand how metabolism interacts with Ca2+

dynamics in shaping various bursting patterns and pulsatile insulin release as in Paper
IV , and, 2) to include the amplifying pathway, which is believed to include metabolic
signals, for example derived from anaplerosis. Modeling could help in gaining a better
understanding of the less well-characterized amplifying pathway.

Interestingly, the last and medically most important step, insulin release by exocytosis
following granule trafficking and priming, has been in great parts neglected by model-
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ing efforts. Grodsky and co-workers (Grodsky et al., 1970; Grodsky, 1972; O’Connor
et al., 1980), made a relatively crude two-compartmental model, but since then it ap-
pears that no one has attempted to make a more detailed model of these crucial last
steps of GSIS including the biological facts obtained since Grodsky’s work in the sev-
enties. This fact is highly related to the lack of modeling of the amplifying pathway,
which is thought to act on the mechanisms controlling the dynamics of the insulin
granules such as trafficking, docking, priming and exocytosis. It is now known that
granule movement is not directly controlled by calcium in contrast to insulin release,
but rather by various kinases such as protein kinases A and C, and by calmodulin phos-
phorylation of myosin light chains (Niki et al., 2003) in addition to cAMP-mediated
enhancement of mobilization and priming of secretory granules (Kwan and Gaisano,
2005). Moreover, ATP levels and other mitochondrial products are involved in control-
ling priming (MacDonald et al., 2005) and mobilization (Rorsman et al., 2000). Thus,
several putative pathways seem to interact in establishing the amplifying signal con-
trolling insulin granule dynamics. Mathematical modeling would help investigate the
relative strength of the different signals. I have received a one-year Post. Doc. grant
for a project going in this direction, which will be carried out in Prof. C. Cobelli’s
group at the University of Padova, Italy.

A result that still needs explanation, is the fact that islets from SUR-deficient mice
lacking functional K(ATP)-channels show compound bursting (Düfer et al., 2004).
Islets from these mice show very little dependence on the extracellular glucose con-
centration, emphasizing that the ATP/ADP ratio does not play a significant role for
the bursting activity due to the dysfunctional K(ATP)-channels. Plausibly, bursting
is driven by the Ca2+ dependent Kslow channels described by Göpel et al. (1999a)
(Haspel et al., 2005). But the glycolytic mechanism that we have proposed to under-
lie the clustering of individual burst can not be at play since periodic ATP/ADP ratio
and K(ATP)-channels activity would play no role. A speculative idea could be that
oscillating ATP concentration would drive the SERCA pumps, and thus the ER Ca2+

concentration, rhythmically with a period of several minutes. This could then yield
periodic activation of the Kslow channels. Mathematically modeling could be used to
test such an idea and give suggestions for experiments to support it.

A more fundamental issue is the use of correct approximations when modeling bio-
chemical reaction as discussed in Paper VIII and Paper X. As shown in Paper VIII
the use of an invalid approximation could predict, e.g., oscillations while the original
system shows stable behavior, and could lead to incorrectly estimated parameter val-
ues as shown in Paper X. This might lead our research off track when studying the
system further, for example with the scope to look for drugs changing the behavior of
the system. I refer to the discussions in Paper VIII and Paper X for further comments
on these aspects. Besides this, there is the question of stochastic versus deterministic
simulations and the underlying assumption of a well-stirred media as commented on
in the discussion of Paper V . It is known that high local Ca2+ gradients, so-called
microdomains or hot-spots, are present for example near the mitochondrial Ca2+ uni-
porter (Rizzuto et al., 2000). Ca2+ microgradients have also been directly observed
under the plasma membrane in mouse β-cells, where they are believed to be impor-
tant for exocytosis (Bokvist et al., 1995; Quesada et al., 2000). New models, not only
for the β-cell, should take spatial and stochastic effects into account, but only where
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appropriate. Thus, we should not forget Einstein’s principle of keeping the models
simple, but not too simple.
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Abstract. We consider a lattice of coupled identical differential equations. The coupling is be-
tween nearest neighbors and of resistance type, but the strength of coupling varies from site
to site. Such a lattice can, for example, model an islet of Langerhans, where the sites in the
lattice model individual but identical β-cells, and the coupling between cells is made of gap
junctions.

By using a homogenization technique we approximate the coupled discrete equations by a PDE,
basically a nonlinear heat equation (a Fisher equation). For appropriate parameters this equation is
known to have wave-solutions. Of importance is the fact, that the resulting diffusion coefficient does
not only depend on the average of the coupling, but also on the variance of the strength. This means
that the heterogeneity of the coupling strength influences the wave velocity—the greater the variance,
the slower is the wave. This result is illustrated by simulations, both of a simple prototype equation,
and for a full model of coupled beta-cells in both one and two dimensions, and implies that the natural
heterogeneity in the islets of Langerhans should be taken into account.

Key words: homogenization, calcium waves, excitation waves, propagation speed, coupled pancreatic
β-cells, gap-junctions

1. Introduction

The pancreatic islets of Langerhans consist of thousands of coupled cells, among
these the β-cells produce insulin. To have a proper functioning and insulin
production, it is very important that the β-cells co-operate in a synchronized
manner, and the coupling between cells made up of gap junctions seems to be
crucial for this synchronization ([3, 5] and references herein). In [1] it was shown
experimentally that calcium waves could provide a way to synchronize the cells.
Using a mathematical model of the β-cells the authors showed that the gap junctions
indeed could result in waves of the observed kind. However, the simulated speed
was significantly faster (about 200 µm/s) than the experimentally observed speeds
(30–100 µm/s), if standard values were used in the model. The authors gave possible
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explanations for this speed difference, all involving modifying parameter values.
It was assumed in [1] that the coupling strength was constant from site to site.

This is known not to be the case, indeed there is a natural variance of the coupling
strengths [7, 5].

We show here that if the authors of [1] had taken into account the natural variance
of the coupling strengths of the gap-junctions, they would have seen significantly
lower wave-speeds—in some cases—even in the experimentally observed region.

To understand why the average (the arithmetic mean) of the coupling strength is
not enough to estimate the propagation speed of the waves, we need the mathemati-
cal discipline homogenization theory (see [2]), which shows that, it is the harmonic
mean that determines the velocity—and this will explain why the variance is im-
portant.

The paper is organized as follows. In the next section we look at the general case,
and see that the homogenization theory can indeed be applied, and the harmonic
mean determines the wave speed. This is then used for the Fisher equation (Section
3) to see that the theory estimates the simulated wave-speed very well. We then
move on to compare it with the β-cell model, obtaining the results mentioned above.
Finally, two-dimensional simulations show that similar conclusions can be made
in both the case of the Fisher equations and the β-cell model in 2D. We discuss
the results in Section 6. A detailed description of the β-cell model is given in the
Appendix.

2. The Model and Homogenization—The Continuum Limit

We consider an finite line of cells modeled by ( j = 0, . . . , N )

dv j

dt
= f (v j ) + g j+1 · (v j+1 − v j ) + g j · (v j−1 − v j ). (1)

The relevance for β-cells is similar for Eqs. (5) and (6) in [1]. This is discussed
further in Section 4.

The distance between neighbors is set to be ε such that v j = v( jε), and we
observe the behavior when ε → 0. Let us first consider the simple case of equal
connections, where every gi = g = ε−2 D for a constant D (see also [1]). With
x = jε, we get

∂v

∂t
(x) = f (v(x)) + g · (v(x + ε) + v(x − ε) − 2v(x)),

or, using a Taylor approximation and letting ε → 0,

∂v

∂t
(x) = f (v) + D

∂2v

∂x2
, (2)
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which is known to have wave solutions for appropriate f , with propagation velocity
proportional to

√
D [1].

Now, we assume that the connection varies from site to site as described by (1).
Let κε be a family of differentiable functions with ||κε||∞ independent of ε. With
g j = g( jε) = ε−2κε(x), x = jε we get as above:

∂v

∂t
= f (v) +

(
g + ε

∂g

∂x
+ o(1)

) (
ε
∂v

∂x
+ ε2

2

∂2v

∂x2
+ o(ε3)

)

+ g ·
(

−ε
∂v

∂x
+ ε2

2

∂2v

∂x2
+ o(ε3)

)
(3)

= f (v) + κε(x)
∂2v

∂x2
+ ∂κε

∂x

∂v

∂x
+ o(ε)

= f (v) + ∂

∂x

(
κε(x)

∂v

∂x

)
+ o(ε).

2.1. PERIODIC COUPLING

We hold the total length constant, Nε = L , and assume that the coupling strength
is periodic, g j = g j+J for some J. This can be incorporated in (3) without any
loss of generality by assuming that κε(x) = κ( x

ε
), where κ is a periodic function of

period 1 with 0 < κ1 ≤ κ ≤ κ2 for constants κ1, κ2. Then we obtain

∂v

∂t
= f (v) + ∂

∂x

(
κ

(
x

ε

)
∂v

∂x

)
+ o(ε). (4)

The theory of such equations in the limit ε → 0 is understood well from
material science modeling of a periodic structure and is rigorously covered by the
mathematical discipline of homogenization theory (see [2]).

In the limit ε → 0 we get the equation [2]:

∂v

∂t
= f (v) + κ∗ ∂2v

∂x
(5)

where κ∗ is not the average of κ , E(κ), as one might expect from a first guess, but
instead is the harmonic mean

κ∗ = (
E(1/κ)

)−1
. (6)

We expect that the solution to the discrete Eq. (1) behaves similar to the solution
of Eq. (5). Of course, if κ(x) = D is constant, we obtain Eq. (2) again.
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To understand the implications for the heterogenous case, we consider the sim-
plest case, where

κ(x) =
{

g1 for 0 ≤ x ≤ 0.5,

g2 for 0.5 ≤ x < 1,
(7)

g2 > g1, modeling interchangingly strong and weak coupling.1 The unique part
is that it is not the average E(g) = g1+g2

2 that determines the wave velocity, but
instead

(
g−1

1 + g−1
2

2

)−1

= 2 · g1g2

g1 + g2
= (E(g) − σ (g))(E(g) + σ (g))

E(g)
= E(g) − σ (g)2

E(g)
,

where σ (g) = g2−g1

2 is related to a kind of “standard deviation” of g, i.e., the degree
of heterogeneity of the couplings.

In general, we have

κ∗ = (E(1/κ))−1 ≤ E(κ),

and we expect that in the case of wave propagation, a greater variance will lead to
slower waves.

2.2. RANDOMLY DISTRIBUTED CONNECTIONS

In the proof of the above [2] the periodicity of κ is not explicitly used—only that

1

κε

→ E(1/κ) weak star in L∞.

This should also be true if we choose the connections g j randomly from a fixed
distribution F, i.e., as data coming from a stochastic variable X with distribu-
tion F. For sufficiently multiple connections (i.e., ε small enough) integrating 1

κε

should be near the average of, not the original distribution, but E(1/X). This would
be a consequence of the Law of Large Numbers for weighted averages. Hence, the
theory should also work in this case.

3. Numerical Simulations of a Simple Model

3.1. PERIODIC COUPLING

We consider a line of 500 cells connected with interchangingly weak and strong
connections as indicated in Eq. (7), and with a no-flux boundary condition
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(v0 = v1, v501 = v500). We observe that the propagation velocity, c, should not
depend on the average of the connections, E(g), but instead, we have

cth = K ·
√

(E(1/κ))−1 = K ·
√

E(g) − σ 2

E(g)
, (8)

where K is a constant, which we can find from the homogeneous case, σ = 0.
We choose a simple model, the Fisher equation, with

f (v) = −v(v − a)(v − 1).

It is well known [8] that the wave speed in the homogeneous case σ = 0 is

c0
th =

√
D

2
(1 − 2a) =

√
E(g)

2
(1 − 2a), (9)

so that

cth = 1 − 2a√
2

√
E(g) − σ 2

E(g)
. (10)

We hold a = 0.1, E(g) = 2 is fixed and σ varies from 0 to 1.9. The initial
conditions are v j = 0 for all j. We start a wave by instantaneously rising v1 = 1.
Then the time is measured when respectively v100 and v500 reach the value 0.9,
from which we can calculate the speed, c. We see in Figure 1 that the theory indeed

Figure 1. Comparison between theoretical propagation velocities (cth, the curve) and the sim-
ulations (c, the circles) as a function of the “deviation”, σ , for the Fisher equation with periodic
coupling is shown. Here, a = 0.1 and E(g) = 2 so that c0

th = 0.8.
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estimates the simulated speed very well, especially if the variance is not too big, and
also get the right speed for the homogeneous case σ = 0, c0

th = 1−2·0.1√
2

√
2 = 0.8.

Varying E(g) and a does not seem to change this conclusion as long as the
parameters initiate a wave.

3.2. RANDOMLY CHOSEN COUPLING

Again we simulate a line of 500 cells modeled as given in the previous subsection.
However, now the coupling strength is chosen randomly from a gamma-distribution
GAMMA(a, b). The reasons for choosing the gamma-distribution (and not for ex-
ample a normal distribution) are that we know the average of the inverse gamma-
distribution, and will always have a positive coupling strength. We have for X ∼
GAMMA(a, b),

E(X ) = ab, Var(X ) = ab2, (11)

and

(
E

(
1

X

))−1

= (a − 1)b = E(X ) − Var(X )

E(X )
. (12)

So, also in this case we expect that the propagation velocity decreases with increas-
ing variance following

cGamma
th = K

√
E(X ) − σ 2

E(X )
. (13)

We hold E(X) = 2 constant as above, and vary σ 2 = Var (X). Figure 2 shows that
the theory predicts the simulated speed well.

The fit is not so good as in the periodic case because of the random factor.
Comparing with the so-called semi-theoretical speed

csemi = K

√√√√(
1

400

500∑
i=101

1

gi

)−1

, (14)

obtained from the actual coupling used in the simulation, we get a better fit. In this
manner, we see that a large part of the difference between simulated and theoretical
speeds arises from the random choice of coupling strengths rather than from a gap
in the theory. Again, repeating the simulations does not change the conclusion,
and of course, the average of many such simulation should fit the theoretical curve
well.
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Figure 2. Comparison is shown between theoretical propagation velocities (cGamma
th , the punctu-

ated, smooth curve), the semi-theoretical velocities (csemi, the rugged curve) and the simulations
(the circles) as a function of the variance, Var = σ 2, now for Gamma-distributed couplings.
Again c0

th = 0.8. For Var > 2.6 most of these specific coupling strengths and initial conditions
do not initiate a wave.

4. A Line of β-Cells

We simulate a line of β-cells using the same model as given in [1]. However, we
choose the coupling strengths randomly, so that they vary along the line. This is in
contrast to the simulations given in [1] where an identical coupling was assumed.
We show how the propagation speed depends on the variance of the couplings. In
particular, it is shown that the heterogeneity can provide another explanation why
the simulations in [1] gave very high wave speeds.

4.1. MODEL AND METHOD

The model is taken from [9] and is given as follows with j = 1,. . . , 20:

cm · dv j

dt
= I

(
v j , n j , s j , Cai

j , Caer
j

) + g j (v j−1 − v j ) + g j+1(v j+1 − v j ), (15)

dn j

dt
= n∞(v j ) − n j

τn
, (16)

ds j

dt
= s∞(v j ) − s j

τs
, (17)

dCai
j

dt
= f · (

α ICa(v j ) − kcCai
j

) + (Jout − Jin), (18)

dCaer
j

dt
= Jin − Jout

ρ
. (19)
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Here, v j is the membrance potential, n j and s j are, respectively, fast and slow gating
variables, Cai

j is the intra-cellular calcium concentration and Caer
j is the calcium

concentration in the ER calcium stores for the j ′th cell. The j ′th cell is coupled
through gap junctions to the neighboring cells j − 1 with conductance g j and ( j+1)
with conductance g j+1. The function I is the total membrance current, and ICa is one
of these currents, a voltage-dependent calcium current. Jin and Jout are the currents
going in and coming out of the ER stores, cm is the total membrance capacity, n∞
and s∞ are steady states depending on v, τn and τs are time constants and f , α, kc

and ρ are constants. We impose the no-flux boundary condition, v0 = v1,v21 = v20.
For details see [9, 1] or Appendix for detailed expressions and parameter values.

The relation to Eq. (1) is given as follows (see also [1]). On the wave front we can
uncouple the variables Cai and Caer , assuming that s is constant while n = n∞(v)
leaves only

cm · dv j

dt
= I (v j , n∞(v j ); s) + g j (v j−1 − v j ) + g j+1(v j+1 − v j ),

of the same form as (1).
Simulations now result in similar conclusions as seen for the Fisher equation in

Section 3: As the variance increases, the wave speed decreases.
Imposing a random initial condition on v j results in a wave pattern after a very

short transient period. The speed is found as the length between the center of the first
and the last cell, L = 20×10 µm, divided by the (absolute) difference of the times
when v1, respectively, v20 increases through −60 mV signifying the beginning of
an active period. Hence we count waves starting from either side of the line. To
ensure that we do not count “false” beginnings we require that s1, s20, is less than
0.45 at the same time. This value was found empirically.

Now we take the average speed of many successive waves (until t = 1000
s), but only counting speeds between 30 and 500 µm/s (the typical simulated
value is 100–250 µm/s, in experiments it is 30–100 µm/s). Hence, we rule out
very fast waves because these are probably waves starting almost simultaneously
from both sides, and very slow speeds because these are probably coming from
errors in the measure method. For example, one could imagine that for a brief
moment v1 passes above −60 mV without starting a wave. However, the time
is recorded, so when v20 increases above −60 mV much later, we will obtain
a very small number for the speed. Such phenomena should of course be ruled
out.

4.2. SIMULATIONS

Simulations of periodic coupling with gi = 100 pS + (−1)i · σ as given in
Section 3.1 are shown in Figure 3, where the simulated average wave speed is
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Figure 3. Comparison is shown between theoretical propagation velocities (cth, the curve) and
the simulations (the circles) as a function of the “variance,” σ , for the β-cell model with periodic
coupling, gi = 100 pS + (−1)iσ .

compared with the theoretically expected value

cth = 200 µm/s

√
1 −

(
σ

100 pS

)2

,

where 100 pS is the average coupling strength, and the value of 200 µm/s is chosen
for obtaining a reasonable fit. This speed coincides with the speed found in [1]. We
see that for σ below approximately 70 pS, the simulated and the theoretical values
coincide pretty well, although there are large deviations. We claim, that at least the
tendency seems to be, that for larger σ the wave is slower.

We repeat the simulation, but now with coupling strengths randomly chosen from
a uniform distribution on (µ − d,µ + d), i.e. coming from a stochastic variable
X ∼ UNIF(µ − d,µ + d). The simulated wave speeds should be compared with

cth = K
√

E(1/X )−1 = K

√√√√ 2d

ln
(

µ+d
µ−d

)
1pS

. (20)

To distinguish whether the differences between the simulated speed and the speed
coming from the limit equation is due to the actual chosen coupling strengths, we
also compare with the semitheoretical value

csemi = K

√√√√(
1

19

20∑
i=2

1 pS

gi

)
. (21)
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Figure 4. Comparison is shown between theoretical propagation velocities (cth, the punctuated,
smooth curve), the semi-theoretical velocities (csemi, the rugged curve) and the simulations (the
circles) as a function of d for the β-cell model with uniformly, randomly chosen coupling,
UNIF(100 pS −d, 100 pS + d). We know that the relation between d and the variance is
Var = d2

3 . Here K = 20 µm/s, corresponding to a homogeneous velocity of 200 µm/s, is
chosen to obtain a good fit.

Again, we hold µ = 100 pS as fixed and vary d. Figure 4 shows that the sim-
ulated values are predicted well by the theoretical and the semitheoretical speeds,
cth and csemi. Also, we see that these two values coincides well, and hence the
simulated speeds are not different from the theoretical values because of a wrong
predicted value for the relevant (E(1/X ))−1. This corresponds to the fact that we
have discrepancies between the simulated and predicted speed even in the perfect
periodic case.

By using the gamma-distribution the same conclusion is yielded as shown in
Figure 5. Again we get a reasonable fit with the expected theoretical wave speed
from Eq. (13), at least for Var < 8000 (pS)2, or even better also for higher values
of Var by using the semitheoretical values from Eq. (21).

The simulations with a normal distribution confirm the general picture, as shown
in Figure 6. In this case we do not have a simple theoretical expression to compare
the speed with. Instead, after many simulations, we found that the average decreases
approximately from 210 µm/s to 150 µm/s. Because the normal distribution can
result in negative values, we take special care in setting these couplings to 0, sig-
nifying no connection between the two cells (indicated with a dot in Figure 6).
This should of course prohibit wave propagation. However, because the cells are
self-excitory, we can get two independent waves on each side of the point without
connection so that the overall picture could imitate a true wave. These cases should
be ruled out which results in a slightly greater average speed (the speeds quoted
above) than if these cases were included.
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Figure 5. Comparison is shown between theoretical propagation velocities (cth, the punctuated,
smooth curve), the semi-theoretical velocities (csemi the rugged curve) and the simulations (the
circles) as a function of the variance, Var, for the β-cell model with randomly chosen coupling
from a Gamma-distribution, GAMMA(a, b) with a = µ2

Var , b = Var
µ

, where µ = 100 pS is the
average. Again we use the value 200 µm/s for the homogeneous case.

Figure 6. Several simulations were done of the wave speed for the line of β-cells with couplings
chosen from a normal distribution N(100 pS, σ 2). For each choice of σ we did 18 simulations
applying different configurations of the couplings. The circle indicates a simulation where all
the couplings were positive, the dot indicates a simulation where one or more of the couplings
were zero so that the line was not connected. The solid line indicates the average for the
connected lines (the circles), the dashed line the average of all the simulations (the circles as
well as the dots).
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Note that we get average speeds as low as 80µm/s for sufficiently large Var = σ 2

in all three cases. This is in the experimental range of (30–100 µm/s), hence we
observe, as previously mentioned, another possible explanation for the fact that
Aslanidi et al. found too large wave speeds in [1]—they did not consider the natural
variance between the coupling strengths in an islet.

5. The Two-Dimensional Case

We have successfully simulated two-dimensional wave propagation. We considered
a square lattice of 13 by 13 cells, each cell coupled to four nearest neighbors (N,
S, E and W) with a no-flux boundary condition.

Using the Fisher equation and choosing random couplings, leads to similar
conclusions as obtained in the one-dimensional case – for greater heterogeneity we
find lower propagation speed, as shown in Figure 7. The speed was found over the
center cells to rule out (part of) boundary phenomena and the fact that we start the
wave in a corner, which influences the speed measured over the first few cells. In
this case the speed is slightly higher than in the one-dimensional case (0.98 instead
of 0.8 for σ = 0). We expect that this stems from boundary phenomena.

For the β-cell model, we used the simpler (v, n, s)-system from Eqs. (15)–(17),
following Sherman [9]. We imposed heterogeneity by choosing the g j ’s from a
normal distribution N(100 pS, σ 2). Examples of two waves from our simulations
are shown in Figure 8.

Figure 7. Six simulations for each choice of σ , of the two-dimensional Fisher equation with
coupling strengths chosen from a normal distribution N (2, σ 2), showing the speed as a function
of the standard deviation σ . The curve shows the average speed of these six simulations.
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Figure 8. Two typical two-dimensional waves obtained from the (v, n, s)-subsystem of the
β-cell model. In this simulation the coupling is chosen from a normal distribution, N (100 pS,
(53 pS)2). The upper figures show the most typical case, where the wave starts from just one
corner. The lower ones show the case where the wave starts almost simultaneously from two
corners (SW, NW), with a third (SE) starting “independently” slightly later. This results in a
much higher measured wave speed.

The speed was found by requiring that all four corner cells should enter the
active phase. The time from when this happened to the first, to the time it happened
to the last of these cells, was recorded and the diameter of the “islet”, L = 12

√
2 ×

10 µm = 170 µm, was used as the distance the wave had traveled. In the two-
dimensional case we do not rule out those cases where one or more of the g j ’s have
negative value; instead, we used the value 0, which implies that the two involved
cells are not coupled. This indeed is the case for about 33% of cell pairs in an islet
[7], but the wave can still propagate, using other couplings.

Again varying Var = σ 2 seems to have the same effect as seen in the one-
dimensional case–for larger σ , the propagation velocity is lower, as shown in
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Figure 9. Propagation speeds from the (v, n, s)-subsystem of the β-cell model with coupling
chosen from a N (100, σ 2)-distribution. For each choice of σ we did 11 simulations applying
different configurations of the couplings. The circles indicate each such simulation and the
curve shows the average of these 11 simulations, which decreased from 347 µm/s to 270
µm/s almost monotonously over the range from σ = 0 pS to σ = 63 pS.

Figure 9. Note that the wave speed is significantly greater, about 1.5–2 times as
great as in the one-dimensional case.

6. Discussion

The main outcome of this paper is the fact that heterogeneity plays an important
role in determining the wave speed of an excitation wave. In natural systems such
as the islet of Langerhans, the cells are always coupled in a heterogenous manner.
So far models have applied the average coupling strength found in experiments as a
prototype coupling strength and then, assumed that the coupling was homogenous.

Here we have shown that for estimating the propagation velocity the variance of
the coupling strengths plays a crucial role, both in the (pure mathematical) Fisher
equation (Figures 1, 2 and 7) and in a standard model for the β-cells in an islet
of Langerhans (Figures 3–6 and 9), for both the case periodic case (Figures 1 and
3) and the random case (Figures 2, 4–7 and 9), and further, both in the one- and
two-dimensional cases. To the best of our knowledge, this is the first published
literature on simulations of two-dimensional waves in a lattice model of an islet of
Langerhans.

The dependence of the coupling on the variance was explained theoretically
using the homogenization theory, which gave theoretic predictions of the propaga-
tion velocities using harmonic mean (E(1/g))−1 instead of the average (arithmetic
mean) E(g). This theoretic result coincided well with the simulated speeds, espe-
cially when we took into account the deviations arising from the random choices
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of coupling strengths using the semitheoretical speed. We believe that the use of
the homogenization theory in modeling the β-cells is a new application. It has been
used for a model of the cardiac tissue in [4]. However, from a different perspective,
investigating propagation failure and the case of varying gap junctions is not con-
sidered explicitly. The heterogeneity there stems from the difference between the
resistance in the cells and the resistance of the gap junctions.

However, we obtained excellent fits which simulated the theoretical results only
for the Fisher equation. For the β-cell model the difference between the predicted
and simulated velocities was greater. We suggest several possible explanations.

The first explanation could be that we used 500 “cells” for the simulation of the
Fisher equation whereas only 20 cells were used for the β-cell model. Hence, we
are closer to the continuum limit of ε → 0 given in the homogenization theory. In
Figure 10, we see a simulation of the Fisher equation for 20 cells, and observe that
the fit is still decent when we calculate the speed over the center cells (between cell
numbers 8 and 12). The deviation for low variance seems to stem from boundary
phenomena; when we calculated the speed over all the cells the deviation was found
to be significantly greater. Similar boundary phenomena were found in the case of
500 cells, if we calculated the speed over the last 20 cells. Hence, this boundary
phenomenon might explain some of the deviation for the β-cell, but the low number
of cells do not matter directly if we take their boundaries into the account. This also
explains why we found higher speeds from in the 2D-case (since the boundary is
much larger here).

However, even for the periodic case of the β-cell in Figure 3, we did not obtain
regular results. The boundary phenomena result in a nice pattern for the Fisher
equation, and hence the same should be expected for the full β-cell model. The

Figure 10. Simulated speeds from the Fisher equation, similar to Figure 1, but for 20 cells. The
circles are simulated speed calculated as the speed over all the cells whereas the crosses are
speeds (of the same waves) calculated over the center cells. The punctuated curve is obtained
from the theoretical curve by using the theoretical result c0

th = 0.8.
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β-cell model is known to admit chaos, even for a single cell [6], and the complex
situation with 20 or more coupled cells should be expected to behave irregularly. The
above fact complicates the calculation of the simulated wave speeds. The method
chosen to find the speed in the simulations could indeed be doubted. We have done
control simulations, going through the simulation in detail, and it seems that, in
general, the automatic method described in Section 4.1 obtain the same result as a
detailed “hands-on” calculation.

The simulations of the one-dimensional β-cell model showed that heterogeneity
alone was sufficient to obtain velocities in the experimental region, and we claim
that the fact that Aslanidi et al. in [1] used a homogenous coupling can explain the
major reason why they obtained too high speeds.

Interestingly, in the case of a normal distribution, which is probably the most
“natural” for a physical islet, these low velocities happen around the standard
deviation σ = 50, i.e., for σ about half of the mean. Perez-Armendariz et al.
[7] found experimentally that 67% of cell pairs were coupled with g j = 215 ± 110
pS, i.e., the standard deviation was about half of the average value. This might be
an optimal ratio for proper islet functioning. If the variance is less, the waves are
very fast, and if the variance is higher, too many cells will be uncoupled leading
to insufficient synchronization. A low variance and/or fast waves could result in a
lower responsiveness of the islet on glucose stimulation, as seen in experiments with
gene-manipulated cell in the islet expressing abnormally strong connections [3].
The idea is that all the cells in the islets responded even to low glucose stimulations
whereas in a normal islet only parts of the islet respond at low glucose levels, and
that more cells are entrained for greater glucose stimulation. Naturally, a variating
coupling strength would help in having such a behavior.

However, our two-dimensional simulations raised a new question: why do we
obtain very high wave speeds in the 2D case but not in the 1D case? Indeed the
experiments in [1] and elsewhere were practically two-dimensional, and hence the
2D case is of greater interest.

The fact that the wave is more likely to start independently at two corners (see
Figure 8, lower part), so that it has to travel a shorter distance, can explain this.
However, for the simulation shown in Figure 8 only 1 out of 15 waves started from
two (or more) corners, and in none of the cases where the wave started from one
corner did we find wave speeds less than 200 µm/s.

We also did one-dimensional control simulation of the reduced (v, n, s)-system,
which gave results similar to the full system, that ruled out the possibility that the
(Cai ,Caer )-variables are important.

As mentioned above boundary phenomena, which are more important in two
dimensions because more cells are near the boundary, seem to be a plausible expla-
nation. Indeed, we see in Figure 10 that the boundary phenomena can explain a rise
of the wave speed of up to 50%, similar to the increased speed between one- and
two-dimensional simulations for the β-cell model. If this is so, then there might
be a property of the islet or some condition in the experiments might exist, so that
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the no-flux boundary condition become inappropriate. Indeed, the center of an islet
has a different structure than the parts near the surface ([5] and references therein).
Or maybe, we simply require simulation of greater assemblies of cells—we did
the simulations for 132 = 169 cells. But in an islet there are of the order of 2000
cells, so if the cells were squished down to 2D with a height of e.g. three cells,
we should simulate 262 cells, i.e., four times as many. Mads Peter Sørensen (per-
sonal communications) pointed out another possibility, which is that the curvature
of the wave front might result in faster waves. We should pursue this possibility
further. Finally, the 3D-case should be of interest—indeed 2000 	 133 so that the
simulations presented here have a relevant size for this case.

In summary, the heterogeneity of the islet seems to have an important role in
the control of insulin secretion in response to glucose stimulation. Here we have
shown that the excitation waves spreading through the islet are modulated by the
heterogeneity of the coupling strength, thereby suggesting a way of expressing the
heterogeneity. Similar behavior should be expected in other organs consisting of
heterogeneously coupled cells, or in ecology modeling having interactions on a
smaller scale than that which is relevant for the full problem.
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Note

1. It seems reasonable to choose κ to be piece-wise constant if κ should model gap junctions, and this
will be done in what follows. However, then κ is not differentiable so to justify the calculations
leading to the PDE (3), we should use e.g. a smooth approximation of κ .

Appendix: The Equations and Parameters for The β-Cell Model

The functions and parameters of the Eqs. (15)–(19) are as follows:

I (v, n, s, Cai , Caer ) = Is(v, s) + ICa(v) + IK (v, n) + IK ,atp(v)

+ IK,Ca(v, Cai ) + ICRAC(v, Caer )

Is(v, s) = gs · s · (v − vk)

ICa(v) = gCa · m∞(v) · (v − vCa)

IK (v, n) = gK · n · (v − vk)

IK ,atp(v) = gK ,atp · (v − vk)
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IK ,Ca(v, Cai ) = gK ,Ca · (v − vk) · (Cai )5

(Cai )5 + k5
d

ICRAC(v, Caer ) = gCRAC · z∞(Caer ) · (v − vCRAC)

m∞(v) = 1

(1 + exp((vm − v)/sm))

n∞(v) = 1

1 + exp((vn − v)/sn)

s∞(v) = 1

1 + exp((vs − v)/ss)

z∞(Caer ) = 1

1 + exp((Caer − c̄ER)/sz)

Jin(Cai ) = vp

µ
· (Cai )2

(Cai )2 + k2
p

Jout(Cai , Caer ) = p1

µ
(Caer − Cai )

The parameters used through out the work are:

gCa = 1000 pS, gK = 2700 pS,gs = 200 pS,gK ,atp = 120 pS,

gK ,Ca = 1000 pS,gCRAC = 40 pS,

vCa = 25 mV,vk = −75 mV,vm = −20 mV,vn = −16 mV, vs = −52 mV,

vCRAC = −30 mV,sm = 12 mV,sn = 5.6 mV,ss = 5 mV,

cm = 5300 fF,τn = 20 ms,τs = 20000 ms,µ = 250 ms,

f = 0.01, kc = 0.2 ms−1,α = −4.5 · 10−6µM/( f A · ms,)

kd = 0.6, kp = 0.1 µM, vp = 0.24 µM, c̄E R = 4 µM, sz = 1 µM, ρ = 5, p1 = 0.02.

The diameter of a β-cell was set at 10 µm.
In the two-dimensional simulations we uncoupled (Cai , Caer ) by neglecting IK ,Ca and ICRAC. All

parameters were left unchanged.

All simulations were done using the banded version of the CVODE solver of the program XPPAUT

with standard tolerances.
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Abstract. The equation ut = (D(u)ux)x + f (u) arises in several biological examples and
is known to have wave solutions for appropriate D and f . We give here a new formula for
finding an approximation to the wave speed, relevant for comparing experiments with model
simulations. This is done in details for the simple example D(u) = u + k and an N-shaped
f , derived from a model of coupled pancreatic β-cells, where the coupling conductance
follows the electrical activity as it is found in experiments. On the way, we claim that the
wave speed does not depend on the parameter gK,AT P , mimicking the glucose concentration
in the islet, in sharp contrast to the claim set forth in the article by Aslanidi et al. [4].

1. Introduction

Malfunctioning of the insulin secretory system is a major factor in diabetes. The
pancreatic islets of Langerhans consist of thousands of coupled cells, among these
the β-cells, which secrete insulin in response to several stimuli with glucose being
the physiologically most important. A pivotal component of the glucose stimulus-
secretion coupling is the closure of ATP-sensitive K+ channels, leading to bursting
electrical activity and calcium influx [21,16,3,20].

To have a proper functioning and insulin secretion, it is of great importance that
the β-cells co-operate in a synchronized manner, and the coupling between cells
made of gap-junctions seems to be crucial for this synchronization ([7,6,15] and
references herein).

In [4] it was shown experimentally that calcium waves could provide a way
to synchronize the cells. Using a mathematical model of the β-cells the authors
showed that the gap-junctions indeed could result in waves of the observed kind.
Furthermore, the calcium waves seem to be a result of electric waves [4,10,25],
so to understand the wave phenomena it is in great parts enough to consider the
membrane potentials. One way to compare model simulations with experiments
is to compare the wave speeds. In [4] it was found that the simulated waves were
significantly faster (approximately 200 µm/s) than the experimental waves (speeds

M. G. Pedersen: Department of Mathematics, The Technical University of Denmark, 2800
Kgs. Lyngby, Denmark. e-mail: m.g.pedersen@mat.dtu.dk

Key words or phrases: Wave speed – Density dependent diffusion – Excitation wave –
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of 30–100 µm/s). The authors suggested that a lower glucose concentration was to
be expected in the center of the islet, and that this would lead to slower waves.

Andreu et al. [1] found that gap-junction conductance oscillates in phase with
the bursting electrical activity of the β-cells. The significance of this behavior has
not been investigated, and in this paper we will explore theoretically whether the
wave propagation is altered by an oscillating gap-junction conductance with special
focus on the wave speeds.

We modify a standard β-cell model [4,24] by assuming that the coupling con-
ductance between two cells is a linear function of the average of the two relevant
membrane potentials. The model includes an ATP-dependent potassium channel
with conductance gK,AT P , which models the coupling from glucose metabolism to
the electrical behavior of the β-cell [14,24,11] where gK,AT P is inversely related
to the glucose concentration.

Simulations of the model show that it has propagating wave solutions. As men-
tioned above, it was claimed in [4] that a higher gK,AT P -value (lower glucose con-
centration) results in lower speeds. However, the simulations of the β-cell model
presented here show that the wave speed does not decrease for higher gK,AT P -val-
ues. Furthermore, control simulations show that this is not a property of the voltage
dependent coupling; it also happens in the case of constant coupling strength. The
results presented in [4] seem to be a transient phenomena arising from biologically
unrealistic initial conditions.

To understand why the model with voltage dependent coupling has wave solu-
tions and to investigate the wave speed more closely, we look only at the wave front
as in [4] and go to the continuum limit, where the model becomes a one-dimensional
density dependent diffusion Nagumo equation. Similar models occur in population
models, and have been shown to have wave solutions [12,2,22].

Because no explicit expression for the wave speed c exists, precise estimates
are important. Using a simple transformation, first described in [13,8], we arrive at
another nonlinear heat equation which gives us a way of finding the approximate
wave speed of the wave front using the formula derived by Mornev [17,4]. This
estimate for the speed of density dependent Nagumo equations is new and is illus-
trated by simulations of a standard density dependent Nagumo equation and the
full β-cell model.

To understand why the wave speed should not depend on the parameter gK,AT P ,
we will be more careful than what was done in [4] when looking at the wave front.
This will show that the reaction part of the density dependent Nagumo equation is
independent of gK,AT P , i.e., the glucose concentration. This is somewhat exactly
the opposite conclusion than what was found and used in [4,5]. We follow this up
in the discussion.

The paper is organized as follows. The model for a line of β-cells is introduced
in section 2 and we demonstrate wave propagation and find the speed of the first
wave as in [4] and of the biologically more realistic successive waves, which is
found to be independent of gK,AT P . In section 3 the continuum equation is found.
This equation is analyzed in section 4 and in particular the formula for the wave
speed is found. The theoretical formulas are compared with computer simulations,
and it is then shown in section 5 why the wave speed is to be independent of gK,AT P .

PAPER II. 65



Wave speeds of density dependent diffusion equation

Finally, we will discuss the results in section 6. A detailed description of the β-cell
model is given in appendix A.

2. Simulations of the β-cell model

We consider a model of a finite line of β-cells taken from [24] and given by (j =
1, . . . , N)

cm · dvj

dt
= I (vj , nj , sj , Cai

j , Caer
j ) + gc(vj−1 − vj ) + gc(vj+1 − vj ), (1)

dnj

dt
= n∞(vj ) − nj

τn

, (2)

dsj

dt
= s∞(vj ) − sj

τs

, (3)

dCai
j

dt
= f · (αICa(vj ) − kcCai

j ) + (Jout − Jin), (4)

dCaer
j

dt
= Jin − Jout

ρ
. (5)

Here vj is the membrane potential, nj and sj are fast and slow gating variables
respectively, Cai

j is the intra-cellular calcium concentration and Caer
j is the cal-

cium concentration in the endoplasmic reticulum (ER) calcium stores for the j ’th
cell. The j ’th cell is coupled through gap-junctions to the neighboring cells j − 1
and j + 1 with conductances gc. The function I is the total membrane current, and
ICa is one of these currents, a voltage dependent calcium current. Jin and Jout are
currents in and out of the ER, cm is the total membrane capacitance, n∞ and s∞ are
steady-states depending on v, τn and τs are time constants and f, α, kc and ρ are
other constants. We impose the no-flux boundary condition, v0 = v1, vN+1 = vN .
For details see [24,4] or appendix A for detailed expressions and parameter values.

When the cells are uncoupled,gc = 0, the membrane potentialv exhibits charac-
teristic periodic bursting consisting of active phases where the membrane potential
spikes from a plateau of approximately −50 mV to a maximum of approximately
−25 mV, interrupted by silent phases where the cell is hyperpolarized with v � −65
mV [24]. The average membrane potential during the active phase is approximately
−40 mV. When coupled, the plateau of the active phase increases to around −45
mV and the average membrane potential during the active phase to approximately
−35 mV [24,4].

Usually people have assumed that gc is constant over time, but in the light of
the results of [1], where it was found that the conductance is more than three times
greater in the active phase compared to the silent one (514 ± 137 pS, respectively
149 ± 41 pS), we will let gc follow the membrane potential of the two cells that
the gap junction couples. Although the conductance is known not to be voltage
dependent [7,19], it seems to be the easiest way to incorporate the fact that the cou-
pling strength actually follows the membrane potential, even though this might be
mediated through oscillating calcium, cAMP or other chemical concentrations [1].
Furthermore, it captures the fact that the coupling conductance decreases slightly
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Fig. 1. A front wave propagating from the bottom (cell no. 1) to the top (cell no. 20) through
a line of β-cells modeled by equations (1)–(6). Each curve shows for the corresponding cell,
the membrane potential. The curves have been scaled and translated for clarity of the figure.
We get a speed of 464 µm/s in this case.

during the active period [15], since the membrane potential does so. The gap junc-
tion conductance as a function of the membrane potentials is assumed to be linear,
since this is the simplest way to fit the data from [1]. So we set

gc(vi − vj ) = ḡc(
vi + vj

2
+ κ)(vi − vj ), i = j ± 1, (6)

where ḡc models the slope of the voltage-conductance relation, and κ is a parameter
determining the basic conductance.

To obtain conductances similar to the ones found in [1] we assume that during
the active phase v = −35 mV and during the silent phase v = −65 mV. This leads
to the parameters

ḡc = 12 pS/mV, κ = 77.25 mV. (7)

A simulation of this system (1)–(6) shows a train of excitation waves propagate
through the line of cells, as it was found for the case of constant coupling [4]. One
of these successive wave fronts is shown in Fig. 1.

Let us first look at the speed of the first wave as it was done in [4]. This wave is
initiated by setting initial conditions such that the two cells in one end of the line
enter the active phase, see appendix A. These two cells will then pull the neighbors
into the active phase and in this way start a wave. To avoid boundary phenomena
we calculate the speed only over the 10 center cells from the time when cell number
6 enter the active phase, defined as v6 passing through −55 mV, to the time when
cell number 15 becomes active.
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Fig. 2. The simulated speed of the first wave measured in µm/s as a function of gK,AT P in the
case of constant coupling conductance gc = 312 pS (x’s), and density dependent coupling
with parameters as in (7) (circles). The theoretical expected values from formula (18) are
given by the solid line for the case of constant coupling with λ = 1.45, and by the broken
line for density dependent coupling with λ = 1.3.

We see in Fig. 2 that the velocity decreases rapidly as gK,AT P increases, both
in the case of constant (as found in [4]) and density dependent coupling, but fast-
est for the constant coupling. The reason for this as well as the estimated speeds
indicated by the curves in Fig. 2 will be explained in section 4. We have used the
value gc = 312 pS for the constant coupling, which corresponds to the mean of
the values found in [1] and which is higher than what was used in [4] resulting in
higher speeds than in that paper.

We now regard the successive waves occurring after a transient period of 50
seconds, in the case of constant coupling with gc = 312 pS, and with non-constant
coupling with the parameters from (7). The simulations are repeated with random
initial conditions, see appendix A, to rule out the dependence on initial conditions,
and to avoid boundary phenomena the speed is again found over the 10 center cells.
The successive waves have different speeds, i.e., the train of waves is not perfectly
periodic, indicating that the system of coupled cells is chaotic.

This also leads to difficulties in determining the velocity of the wave front. We
neglect cases where the time measurement results in very small time differences
(apparent speeds greater than 1000 µm/s) between the instants when cells number 6
and 15 enter the active phase, since these are probably waves starting almost simul-
taneously from both sides. Also, we neglect very large time differences (apparent
speeds less than 10 µm/s). For example one could imagine that for a brief moment
v6 passes above the threshold of −55 mV without starting a wave. However the
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time is recorded, so when v15 much later increases above −55 mV, we will obtain
a very small value for the speed. Such phenomena should of course be ruled out.

We see an almost constant speed in both cases, in sharp contrast to when we
looked at the first wave, compare Fig. 3 with Fig. 2. The waves in the case of
non-constant coupling are in general faster than the waves arising from constant
coupling, as it could be expected from Fig. 2, and the average wave speeds are in
both cases faster than the speeds of the first wave.

3. The limit PDE

To analyze the observed wave phenomena for the voltage dependent coupling we
obtain a single PDE from (1)–(6) following the idea in [4]. On the wave front we
can uncouple the variables Cai and Caer , and assuming that s = s∗ is constant
while n = n∞(v) leaves only

cm · dvj

dt
= I (vj , n∞(vj ); s∗) + gc(vj−1 − vj ) + gc(vj+1 − vj )

= �(vj ) + gc(vj−1 − vj ) + gc(vj+1 − vj ).

(8)

We note that � is N-shaped for standard parameters [4], i.e.,

� has three zeros, v0 < va < v1, and

�(v) < 0 for v0 < v < va, �(v) > 0 for va < v < v1.
(9)

120 130 140 150 160
400

450

500

550

600

g
K,ATP

c

Fig. 3. Six simulations, each with different initial conditions, showing the average wave
speed in µm/s of several successive waves as a function of gK,AT P in the case of non-con-
stant coupling conductance with ḡ and κ as in (7) (circles; the average of the six simulations
is showed by the dashed line), and the case of constant coupling gc = 312 pS (x’s and solid
line).
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Using (6) we now get

cm · dvj

dt
= �(vj ) + ḡc(

vj−1 + vj

2
+ κ)(vj−1 − vj )

+ ḡc(
vj+1 + vj

2
+ κ)(vj+1 − vj )

= �(vj ) + ḡc

2
(v2

j+1 + v2
j−1 − 2v2

j ) + ḡcκ(vj+1 + vj−1 − 2vj ).

(10)

We assume that the distance between neighbors is ε (the diameter of a β-cell) and
that ḡc = ε−2cmD for a constant D. Letting x be the spatial coordinate such that
vj = v(jε) = v(x), we obtain by letting ε → 0

vt = D

2
(v2)xx + κDvxx + F(v)

= D((v + κ)vx)x + F(v),

(11)

where F = �/cm is an N-shaped function. In (11) and the following subscripts
denote differentiation with respect to the variable. The boundary conditions are

v(−∞, t) = v1, v(∞, t) = v0, (12)

since we are looking at the front where the system leaves the silent phase (corre-
sponding to v = v0) and enters the active phase (corresponding to v = v1), see
Fig. 1.

4. Analysis of the density dependent diffusion equation

We apply the transformation

u = v − v0

v1 − v0
, s = t

v1 − v0
, y = x

(v1 − v0)
√

D
,

k = v0 + κ

v1 − v0
, f (u) = F(v0 + (v1 − v0)u),

(13)

so that (11) becomes

us = ((u + k)uy)y + f (u). (14)

Note that f is N-shaped with zeros in 0, 1 and a = va−v0
v1−v0

∈ (0, 1), and for κ ≥ −v0
(as in (7)) we get k ≥ 0. The boundary conditions are now

u(−∞, t) = 1, u(∞, t) = 0. (15)

We are looking for traveling wave solutions to (14), u(y, s) = U(y − cs) =
U(ξ). Let

D =
∫ 1

0
(u + k)f (u)du.

ForD > 0, k ≥ 0 there is a unique positive value of c such that the PDE (14)–(15)
has a wave solution [12,2,22]. For k = 0 the density dependent Nagumo equation
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(14) is called degenerate, and in this case the wave is sharp [2,22], which comes
from the fact that the diffusion vanishes at u = 0. That the wave is sharp means
that there exists a ξ0 such that U(ξ) = 0 for ξ > ξ0 and the derivative U ′(ξ) is
discontinuous at ξ0. This means biologically that disturbances in the membrane
potential propagate with finite speed as opposed to the cases with k > 0 or constant
coupling strength where the disturbances propagate with infinite speed.

The Hadeler-Engler transformation [13,8] says that (14) is equivalent to

us = uyy + (u + k)f (u), (16)

in the sense that we have a wave solution to (14)-(15) if and only if we have one to
(15)–(16) and the solutions will have the same speed c.

There exists no exact expression for the speed of wave solutions to (14), (16)
or the general Nagumo equation

us = Duyy + g(u), (17)

where D is a constant and g satisfies (9) with zeros in u0 < ua < u1, except in
special cases. Mornev [17,4] found an approximation to the speed of (17) given by

c = λ

g

u1 − u0

√
D

� + 
g
, (18)

where λ is a constant of order 1 [4],

� = 1

u1 − u0

∫ u1

u0

∫ u

u0

g(u′)du′du,

and


g =
∫ u1

u0

g(u)du.

We now note that if f satisfies (9) with zeros in 0 < a < 1, then for any k ≥ 0,

g : u 	→ (u + k)f (u)

does as well and therefore formula (18) provides a formula for finding the wave
speed of equation (16) and hence our original equation (14), for which (18) becomes

c = λD
√

1

� +D , (19)

showing why D enters the picture.
To compare directly with our simulations of the β-cells, we must transform

back to v(x, t). Then v must satisfy

vt = D(v1 − v0)vxx + v + κ

v1 − v0
· F(v), (20)

or equivalently, using again the Hadeler-Engler transformation,

vt = vxx + D · (v + κ) · F(v), (21)
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so using (18) on

G : v 	→ D · (v + κ) · F(v) (22)

yields the wave speed of equation (11).
Since the parameter λ is undetermined, we have some degree of freedom. How-

ever, the formula provides a way to investigate how the speed depends on the
parameters defining the system, and is of value in this way rather than just for a
single experiment or simulation.

We finally note that all of the above can be done for the general non-linear
diffusion Nagumo equations studied in [12,13,22,8],

ut = (D(u)ux)x + f (u),

which gives a formula for the speed of the wave solutions to these equations.

4.1. Comparison between estimates and simulations

The theoretical expression (19) for equation (14) with k = 0 and the standard cubic
function

f (u) = u(1 − u)(u − a), 0 < a < 1, (23)

is now compared to simulations of the equation. From (19) we can obtain an analytic
expression for the speed as a function of the parameter a given by

c = λ

(
1

10
− a

6

) √
15

1 − a
. (24)

Varying a results in Fig. 4, where we have chosen λ = 1.17 to obtain a good
fit to the simulations, and we see that the formula indeed estimates the speed very
well. We regard only 0 ≤ a < 0.6 which insures that D > 0 and that the formula
is valid.

Also the simulations of the first wave in the voltage dependent β-cell model
(1)–(6) are estimated very well by the formula (18) used on G from (22) with
s∗ = 0.4 (the initial value), see Fig. 2. Note that gK,AT P plays a role similar to a

in Fig. 4.
It is interesting to compare the expression (24) with the well-known speed for

the case with constant diffusion constant (constant coupling)

ut = 1

2
uxx + f (u),

where we have chosen the diffusion constant 1
2 equal to the mean of u, i.e., the

mean density dependent coupling. The speed is in this case given by [23]

cc = 1

2
− a. (25)

We see in Fig. 4 that for small a the case with constant coupling has greater wave
speed, while for higher values of a the model with density dependent coupling
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Fig. 4. A simulation (circles) of a line of 100 cells approximating equation (14) with k = 0
and f (u) = u(1−u)(u−a) is compared to the theoretical expressions for density dependent
coupling (c from (24) with λ = 1.17, broken line) and for constant coupling (cc from (25),
solid line) for varying a. We look only at a’s such that D and hence c is positive.

has faster waves, even allowing propagation with positive c for 0.5 < a < 0.6,
where there can be no propagation of this kind in the model with constant cou-
pling. This explains the observation from Fig. 2 where we saw that for higher
gK,AT P the voltage dependent coupling resulted in faster waves than the constant
coupling.

5. The wave speed is independent of the glucose concentration

In [4] it was claimed that a lower glucose concentration (modeled by a higher
value of gK,AT P ) will decrease the speed of the excitation waves. This could
then give an explanation why the authors found too high simulated speeds com-
pared to experiments; the parameter gK,AT P would be higher in the center of
the islet, and the average wave speed would therefore be lower. This conclu-
sion carries apparently over to the case of non-constant coupling if one regards
the first wave, see Fig. 2. However, we found that when looking at many suc-
cessive waves the speed in nearly constant as a function of gK,AT P , see
Fig. 3.

In [4] and Fig. 2, when analyzing the function F , the value for s∗ in (8) was set
to the initial condition s(0) = 0.4. This explains the speed of the first wave since
s � s(0) is a good approximation. However, over time s will in general not be near
s(0) at the beginning of the active phase, so when we look at not the first but at
successive waves we will not get a good estimate if we use s∗ = s(0).
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The value of s when the system leaves the silent and enters the active phase can
be estimated as follows. When we regard just one cell, we can (after neglecting the
calcium currents) separate the (v, n, s)-system into a fast (v, n)-subsystem and a
slow s-subsystem, see e.g. [24]. Treating s as a parameter in the fast subsystem, we
obtain a bifurcation diagram where the fixpoints lie on a N-shaped curve in (v, s)

space given by solving I (v, n∞(v); s) = 0 for s leading to

s(v) = − 1

gs

(
ICa(v)

v − vK

+ gKn∞(v) + gK,AT P

)
.

The relevant value for s∗ is the value at the local minimum near v = −60, see
Fig. 5, which is easily found numerically. Of importance is the fact that the point v∗,
at which we have the local minimum, is independent of gK,AT P so that s∗ depends
linearly on gK,AT P ,

s∗ = σ∗ − gK,AT P

gs

, (26)

where σ∗ � 1 is the value of s∗ for gK,AT P = 0 pS.
When we plug s∗ into � we find that

�(v) =I (v, n∞(v); s∗)
= − (

ICa(v) + gKn∞(v)(v − vK) + gsσ∗(v − vK)
)
,

(27)

which is independent of gK,AT P . Hence, in the full realistic system gK,AT P should
not have any importance for the analysis of (11) and hence for the wave speed!

−70 −60 −50 −40 −30
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s∞(v) 
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Fig. 5. The function s(v) for three different values of gK,AT P Starting with the uppermost
the values are 120, 140 and 160 pS, respectively, and the s-nullcline s∞(v).
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Let us note that this analysis of the model in this paper carries over to, for
example, the more recent model from [11], where the current of the ‘artificial’ slow
variable Is is replaced by a slow calcium dependent potassium current, simply by
letting

s = [Ca2+]q

[Ca2+]q + K
q
d

.

Hence, the claim that the wave speed does not depend on the glucose concentration
is not model specific; the above can be done for any reasonable model with an
ATP-dependent potassium channel and some slow potassium channel.

6. Discussion

Our original idea was to investigate how the wave phenomena are influenced by an
oscillating gap junction conductance, in particular if the claim that the wave speed
decreases for lower glucose concentrations would still hold. Including the voltage
dependent coupling strength, we still observe waves, and the speed of the system
with voltage dependent coupling is similar to the speed in the case of constant cou-
pling (Figs. 2 and 3). Hence, including the oscillating coupling strength does not
lead to biologically significant conclusions. However, it shows another example of
how the density dependent Nagumo equation can arise in biology, and that these
equations can be analyzed in the same way as the case with constant diffusion. In
particular, it led us to find a new estimate of the speed of wave solutions to such
equations.

This new estimate arose using the transformation from [13,8], and the for-
mula from [17], and we showed that the formula predicts the simulated speeds
very well, see Figs. 2 and 4. The big advantage of the new estimate presented
here is that it is immediate to compute in contrast to earlier estimates [12,9] based
on extrema values, which are much harder to find. Since the density dependent
Nagumo equation arises in other contexts in mathematical biology the formula
for the wave speed given here by (18) used for g : u 	→ D(u)f (u), should be
of general interest, for example in ecological populations models [2,22]. Also,
in any model of coupled cells where the coupling strength is modified by one
of the relevant variables (e.g., membrane potential, calcium, cAMP), would an
analysis as the one done here be of relevance when investigating wave
phenomena.

When simulating the full β-cell model we found that the wave speed does not
depend on the parameter gK,AT P as claimed in [4], in both the case of constant and
oscillating coupling, when looking at successive waves, compare Figs. 2 and 3. We
explained why the analysis done in [4] makes a biologically unrealistic assump-
tion when changing gK,AT P without adjusting s∗ correspondently, and how such
an adjustment leads to the conclusion that F and hence the wave speed should
be completely independent from gK,AT P . Note that the formula from [17] can
explain the case of constant coupling, but that we need the newfound formula for
the non-constant coupling.

We see in Fig. 3 that the waves in the model with non-constant coupling have
higher speeds than the ones in the case of constant coupling, which could be
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expected from Figs. 2 and 4. Also, the successive waves (Fig. 3) are faster than
the the first wave (Fig. 2). We believe that this is due to the high degree of syn-
chronization of the cells; they are all very near to entering the active phase when
the wave starts, even without an impulse from the wave. So the wave propagation
should be facilitated in contrast to the first wave where s is not near the value where
the cells would have entered the active phase if there was no stimulation from the
wave. This synchronization can be seen in Fig. 1, where the cells near the bottom
(no. 1-4) enter the active phase almost simultaneously compared to the cells in the
upper half (no. 10-20). Moreover, it results in waves starting independently from
both sides almost simultaneously. We calculated the speed over the ten center cells
(no. 6-15) to minimize this problem as well as boundary phenomena, and neglected
unrealisticly high apparent wave speeds.

It would be natural to investigate experimentally how the wave speed depends
on glucose; we suggest here that there should be almost no dependence. But then,
the explanation why [4] found too fast waves can not be that there is a lower glu-
cose concentration in the center of islet. Also, we have seen that the oscillating
gap junction conductance results in yet faster waves than for the constant coupling
(Fig. 3), so non-constant coupling can also not help us. We have in [18] showed that
the natural heterogeneity of the gap junctions results in slower waves than when
one just uses the average coupling strength, which can provide one explanation of
why we get too fast waves – we must take the heterogeneity into account. Another
question that one can ask in this context is ‘what is the right value for gc?’ Since
the speed is proportional to

√
gc this choice has a strong influence on the wave

speed. In [4,5,18] the (mean) value gc = 100 pS was used, which is near the lower
value of the experimental results in [19] and of the silent phase conductance in
[1]. We have here used the average of the silent and active conductances from [1]
leading to the value gc = 312 pS, which is near the upper value from [19], but cor-
responds well to the value from [15]. Anyway, the simulated speeds of discretely
coupled β-cells have all been faster than experimentally observed, except a few in
[18].

In conclusion, we have given an investigation of the significance of the voltage
dependent gap-junction for the wave propagation in pancreatic islets of Langer-
hans leading to a new estimate for wave speeds of density dependent Nagumo
equations. From a biological point of view, the main result is that the wave speeds
are independent of gK,AT P and hence glucose.
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Matemática Pura e Aplicada (IMPA)’, Rio de Janeiro, Brazil, for kindly letting me visit the
institute, where this work was carried out. Also, thanks to anonymous reviewers for con-
structive comments and Mads Peter Sørensen, MAT, Technical University of Denmark, for
fruitful discussions on this manuscript.

76 PAPER II.



M. G. Pedersen

A. The equations and parameters for the β-cell model

The functions and parameters of the equations (1)-(5) are as follows.

I (v, n, s, Cai, Caer ) = −(
Is(v, s) + ICa(v) + IK(v, n) + IK,AT P (v)

+IK,Ca(v, Cai) + ICRAC(v, Caer )
)

Is(v, s) = gs · s · (v − vK)

ICa(v) = gCa · m∞(v) · (v − vCa)

IK(v, n) = gK · n · (v − vK)

IK,AT P (v) = gK,AT P · (v − vK)

IK,Ca(v, Cai) = gK,Ca · (v − vK) · (Cai)5

(Cai)5 + k5
d

ICRAC(v, Caer ) = gCRAC · z∞(Caer ) · (v − vCRAC)

m∞(v) = 1

(1 + exp((vm − v)/sm))

n∞(v) = 1

1 + exp((vn − v)/sn)

s∞(v) = 1

1 + exp((vs − v)/ss)

z∞(Caer ) = 1

1 + exp((Caer − c̄ER)/sz)

Jin(Cai) = vp

µ
· (Cai)2

(Cai)2 + k2
p

Jout (Cai, Caer ) = p1

µ
(Caer − Cai)

The parameters used are

gCa = 1000 pS, gK = 2700 pS, gs = 200 pS, gK,Ca = 1000 pS, gCRAC = 40 pS,

vCa = 25 mV, vK = −75 mV, vm = −20 mV, vn = −16 mV, vs = −52 mV,

vCRAC = −30 mV, sm = 12 mV, sn = 5.6 mV, ss = 5 mV,

cm = 5300 fF, τn = 20 ms, τs = 20000 ms, µ = 250 ms,

f = 0.01, kc = 0.2 ms−1, α = −4.5 · 10−6µM/(fA·ms),

kd = 0.6, kp = 0.1 µM, vp = 0.24 µM, c̄ER = 4 µM, sz = 1 µM, ρ = 5, p1 = 0.02.

The diameter of a β-cell was set to be 10 µm.
Initial conditions are (for all j ) nj (0) = 0.0001, sj (0) = 0.4, Cai

j (0) = 0.1µM,
Caer

j (0) = 10µM. For Fig. 2 we used v1(0) = v2(0) = −40 mV, v3(0) = · · · = v20(0) =
−65 mV. For Fig. 3 we chose vj (0) randomly from a uniform distribution on [−65, −55]
mV and we had a transient time of 50 seconds.

All simulations were done using the banded version of the CVODE solver of the program
XPPAUT with standard tolerances.
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Sáfnchez-Andrés, J.V., Calabrese, A., Bosco, D., Soria, B., Wollheim, C.B., Herrera,
P.L., Meda, P.: Junctional communication of pancreatic β cells contributes to the control
of insulin secretion and glucose tolerance, J. Clin. Invest. 106, 235–243 (2000)

7. Eddlestone, G.T., Goncalves, A., Bangham, J.A.: Electrical coupling between cells in
islets of Langerhans from mouse. J. Membr. Biol. 77, 1–14 (1984)

8. Engler, H.: Relations Between TravellingWave Solutions of Quasilinear Parabolic Equa-
tions, Proc. Am. Math. Soc. 93, 297–302 (1985)

9. Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection-
reaction. (Memorandum No. 1585, Faculty of Mathematical Sciences, University of
Twente 2001)

10. Gilon, P., Henquin, J.-C.: Influence of Membrane Potential Changes on Cytoplasmic
Ca2+ Concentration in an Electrically Excitable Cell, the Insulin-secreting Pancreatic
B-cell, J. Biol. Chem. 267, 20713–20720 (1992)

11. Goforth, P.B., Bertram, R., Khan, F.A., Zhang, M., Sherman, A., Satin, L.S.: Calcium-
activated K+ Channels of Mouse β-cells are controlled by Both Store and Cytoplasmic
Ca2+: Experimental ad Theoretical Studies, J. Gen. Physiol. 120, 307–322 (2002)

12. Hadeler, K.P.: Travelling fronts and free boundary value problems, in Albrecht, J., Col-
latz, L., and Hoffmann, K.-H.: Numerical Treatment of Free Boundary Value Problems
(Birkhauser Verlag, Basel, 1982) pp. 90–107

13. Hadeler, K.P.: Free boundary problems in biological models, in Fasano,A., and Primice-
rio, M. (eds.): Free Boundary Problems: Theory and Applications, Volume II. (Pitman
Advanced Publishing Program, Boston, 1983) pp. 664–671

14. Keizer, J., Magnus, G.: ATP-sensitive potassium channel and bursting in the pancreatic
beta cell. A theoretical study. Biophys. J. 56, 229–242 (1989)

15. Mears, D., Sheppard, N., Atwater, I., Rojas, E.: Magnitude and Modulation of Pancre-
atic β-Cell Gap Junction Electrical Conductance In Situ, J. Membr. Biol. 146, 163–176
(1995)

16. Misler, S., Falke, L.C., Gillis, K., McDaniel, M.L.: A metabolite-regulated potassium
channel in rat pancreatic B cells, PNAS 83, 7119–7123 (1986)

17. Mornev, O.A.: Modification of the Biot method on the basis of the principle of minimum
dissipation (with an application to the problem of propagation of nonlinear concentration
waves in an autocatalytic medium), Russian J. Phys. Chem. 72, 112–118 (1998)

18. Pedersen, M.G.: Homogenization of heterogeneously coupled bistable ODE’s - applied
to excitation waves in pancreatic isles of Langerhans, J. Biol. Phys. In press.

19. Perez-Armendariz, M., Roy, C., Spray, D.C., Bennett, M.V.: Biophysical properties of
gap junctions between freshly dispersed pairs of mouse pancreatic beta cells, Biophys.
J. 59, 76–92 (1991)

78 PAPER II.



M. G. Pedersen

20. Prentki, M., Matschinsky, F.M.: Ca2+, cAMP, and Phospholipid-Derived Messengers in
Coupling Mechanisms of Insulin Secretion, Physiol. Rev. 67, 1185–1248 (1987)

21. Rutter, G.A.: Nutrient secretion coupling in the pancreatic islet β-cell: recent advances,
Mol Aspects Med. 22, 247–284 (2001)

22. Sánchez-Garduño, F., Maini, P.K.: Travelling wave phenomena in non-linear diffusion
degenerate Nagumo equations, J. Math. Biol. 35, 713–728 (1997)

23. Scott, A.C.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. (Ox-
ford University Press, Oxford 1999)

24. Sherman, A.: Calcium and membrane potential oscillations in pancreatic β-cells, in
Othmer, H.G., Adler, F.R., Lewis, M.A., and Dallon, J.C. (eds.): Case Studies in Math-
ematical Modeling: Ecology, Physiology, and Cell Biology. (Prentice-Hall, New York
1997) pp. 199-217

25. Valdeolmillos, M., Santos, R.M., Contreras, D. Soria, B., Rosario, L.M.: Glucose-
induced oscillations of intracellular Ca2+ concentration resembling bursting electrical
activity in single mouse islets of Langerhans, FEBS Lett. 259, 19–23 (1989)

PAPER II. 79



80 PAPER II.



PAPER III. 81

Paper III



Journal of Theoretical Biology 235 (2005) 1–3

Letter to the Editor

A comment on noise enhanced bursting in pancreatic

b-cells

De Vries and Sherman (2000) study the electrical
behavior of coupled pancreatic b-cells with focus on
the beneficial influence of noise. When subjected to
glucose the b-cells produce and secrete insulin, and
the amount of secreted insulin correlates with the
intracellular calcium levels (Jonas et al., 1998). Early
recordings of single, isolated pancreatic b-cells showed
that the membrane potential exhibits noisy spiking
activity. On the other hand, the b-cells are electrically
coupled in the islets of Langerhans where they show
bursting electrical activity. Bursting consists of the
membrane potential alternating between a silent
hyperpolarized phase, and an active phase of spiking
rising from a depolarized plateau. The importance of
bursting is that it leads to higher average intracellular
Ca2þconcentrations and insulin secretion than contin-
uous spiking (De Vries and Sherman, 2000, and
references herein). The question under investigation is
whether the electrical coupling between the b-cells is
enough to change the behavior from spiking to
bursting. It had previously been shown that weak
coupling between identical cells can induce bursting
(Sherman and Rinzel, 1991), and it is known that
heterogeneous but spiking cells start to burst when
coupled with physiologically realistic coupling strengths
(De Vries and Sherman, 2001). The main result
presented by De Vries and Sherman (2000) is that noise
dramatically increases the interval of coupling strengths
for which bursting is seen for identical cells, and this
observation was supported by analyzing a bifurcation
diagram. This letter will show that the beneficial
influence is more likely through heterogeneity mas-
queraded as noise, and that the explanation of the
enhancement of emergent bursting must be modified
accordingly.
The single cell model (De Vries and Sherman, 2000) is

t
dv

dt
¼ �ICaðvÞ � IK ðv; nÞ � Isðv; sÞ � IKðATPÞðv; pÞ, (1)

t
dn

dt
¼ lðn1ðvÞ � nÞ, (2)

ts

ds

dt
¼ s1ðvÞ � s, (3)

dp

dt
¼

1

tp

ðapð1� pÞ � bppÞ þ gpðtÞ, (4)

where gpðtÞ is a Gaussian zero mean white-noise process
with mean square

h gpðtÞgpðt
0Þ i ¼

apð1� pÞ þ bpp

tpNKðATPÞ

dðt � t0Þ. (5)

Eq. (1) describes the membrane potential, v:
ICa; IK ; Is; IKðATPÞ are ion-currents through the mem-
brane controlled by v; the fast gating variable n (Eq. (2)),
the slow gating variable s (Eq. (3)) and noisy opening
and closing of ATP sensitive Kþ-channels modeled by
the Stratonovich stochastic differential equation (4). For
details see De Vries and Sherman (2000). We note that
in all simulations (De Vries and Sherman, 2000) the
opening (ap) and closing (bp) probabilities are assumed
identical, ap ¼ bp ¼ 1; and in this case the Stratonovich
and Itô interpretation coincide since the mean square
of gpðtÞ in Eq. (5) is constant. This model for a single
cell produces noisy spiking (De Vries and Sherman,
2000, Fig. 3) arising from the spiking solution of
the corresponding deterministic system with p ¼ 0:5
constant.
The model is extended to two coupled cells by adding

the term �gcðvi � vjÞ to Eq. (1) for cell i, where jai:
Although not explicitly stated, De Vries and Sherman
(2000) use two independent white-noise processes, p1
and p2; for the two cells, which makes perfect sense
biologically. They show that the inclusion of noise
enhances the interval of coupling strengths inducing
bursting (De Vries and Sherman, 2000, Figs. 4 and 5).
For example, for gc ¼ 0:08 they obtain a very clear
bursting profile (Fig. 5(c)). However, a simulation with
identical noise p1 ¼ p2 does not produce bursting for
gc ¼ 0:08; see Fig. 1. In fact, the interval of coupling
strengths resulting in bursting is not significantly larger
than the deterministic case when p1 ¼ p2: This indicates
that the heterogeneity introduced by p1ap2 is of great
importance in explaining the phenomena.
De Vries and Sherman (2000) explain the emergent

bursting from the bifurcation diagram of the fast ðv; nÞ-
subsystem for the deterministic case p1 ¼ p2 ¼ 0:5: As
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mentioned above this deterministic, homogenous case
has a spiking solution which corresponds to a stable
periodic solution of the fast subsystem. (De Vries and
Sherman, 2000, Fig. 6(c)). According to De Vries and
Sherman (2000) the noise ‘‘shakes’’ the bifurcation
diagram forcing the system to leave the in phase (IP)
periodic branch and instead follow another periodic
branch, the anti-phase (AP) branch, resulting in burst-
ing. However, as seen in Fig. 1 the ‘‘shaking’’ by noise
alone is not enough to make the system burst. Instead
we propose that the heterogeneity introduced by the two
independent processes p1ap2 changes the bifurcation
diagram making the stable part of the IP branch
unstable, so that the system settles on the AP branch,
and in this way induces bursting.
As a measure of the heterogeneity we found that on

average jp1 � p2j � 0:0115: That is, 1000 time series,
dj
ðtÞ:¼jp1ðtÞ � p2ðtÞj; j ¼ 1; . . . ; 1000; were calculated,

and it was seen that
P1000

j¼1 dj
ðtÞ=1000 is approximately

constant and equal to 0.0115. A simulation of the
deterministic case with p1 ¼ 0:5; p2 ¼ 0:5115 confirms
that heterogeneity of this order in the p variables induce
bursting similar to the full stochastic system (simulation
not shown). Moreover, the bifurcation diagram for the
heterogeneous, deterministic case p1 ¼ 0:5; p2 ¼ 0:5115
confirms that the IP branch has lost its stability, see
Fig. 2. For the homogeneous case, p1 ¼ p2 ¼ 0:5; a
pitchfork-of-periodics (PFP) bifurcation exists for
s � �0:22 on the IP branch (De Vries and Sherman,
2000, Fig. 6(a)). We note that this PFP bifurcation
‘‘unfolds’’ into a saddle-node bifurcation of periodics,
one of which is the IP branch. Since the stable part of
the IP branch near the saddle-node on invariant circle
(SNIC) bifurcation, which result in spiking in the
homogeneous case, is born in another PFP bifurcation
(De Vries and Sherman, 2000, Fig. 6(c)) we expect that

the unfolding of this other PFP bifurcation is underlying
the disappearance of the stable periodic solution
resulting in spiking, and consequently, the appearance
of bursting. Such unfoldings of pitchfork bifurcations
are well-known to happen when a system loses its
symmetry, in this case p1ap2; and are often called
imperfect bifurcations (Strogatz, 1994, Ch. 3.6).
In summary, two spiking, noisy cells are transformed

into bursters when coupled only in the case when the
noise in the two cells is independent. The reason for the
emergence of bursting is not the ‘‘shaking’’ of the
bifurcation diagram. Instead, the heterogeneity intro-
duced by the noise makes the cells burst. This highlights
the idea (De Vries and Sherman, 2001) that hetero-
geneity of cell properties (Kinard et al., 1999; Pipeleers
et al., 1994) is more important than noise in transform-
ing spikers into bursters.
All simulations and bifurcation diagrams were done

using XPPAUT (Ermentrout, 2002).
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ABSTRACT Insulin secretion from pancreatic b-cells is pulsatile with a period of 5–10 min and is believed to be responsible
for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin profile it is necessary that the
insulin secretion from individual b-cells is synchronized within islets, and that the population of islets is also synchronized. We
have recently developed a model in which pulsatile insulin secretion is produced as a result of calcium-driven electrical
oscillations in combination with oscillations in glycolysis. We use this model to investigate possible mechanisms for intra-islet
and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and
metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on
a simple model ‘‘liver,’’ which responds to the level of insulin secretion by adjusting the blood glucose concentration in an
appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet
insulin oscillations. Thus, we demonstrate how intra-islet and inter-islet synchronization of insulin oscillations may be achieved.

INTRODUCTION

Insulin secretion from pancreatic b-cells, located in the islets

of Langerhans, is pulsatile with a period of 5–10 min and is

believed to be responsible for in vivo pulsatility with similar

frequency (1–3). It has been suggested that this is due to

oscillations in glycolysis mediated by the allosteric enzyme

phosphofructokinase (PFK), resulting in rhythmic activity of

ATP-dependent potassium channels (K(ATP)-channels) (3–

6). Insulin pulsatility is impaired in diabetic humans (7), their

relatives (8,9) and in animal models such as ob/ob mice (10)

and ZDF rats (2). Moreover, target tissues are more sensitive

to pulsatile insulin levels than to constant levels (11–14).

Hence, understanding the mechanisms underlying pulsatile

insulin secretion is important for a potential medical treat-

ment of diabetes.

The link between metabolism and Ca21 influx leading to

insulin secretion is provided by the electrical activity of

the b-cells, which has a characteristic behavior known as

‘‘bursting.’’ A burst consists of an active phase of spiking

followed by a silent phase of hyperpolarization. During the

active phase Ca21 enters the cell through voltage-gated

calcium channels leading to an elevated cytosolic Ca21

concentration and the consequent release of insulin. During

the silent phase Ca21 is cleared by Ca21 ATPases. When the

glucose concentration is increased, increasing the strength of

the metabolic stimulus, K(ATP)-channels close and the

plateau fraction increases, i.e., the active phases become

longer compared to the silent phases. In this way, glucose

increases the average Ca21 concentration, which increases

the rate of insulin release (15). The period of this ‘‘simple’’

bursting is often tens of seconds.

Another form of bursting called ‘‘compound bursting’’

consists of clusters or episodes of bursts followed by long

silent phases (6). Compound bursting has often been ob-

served in electrical and calcium recordings from b-cells in

islets (6,16–18). The period of a compound burst is several

minutes, considerably longer than a single simple burst. It

has been suggested that compound bursts are responsible for

pulsatile insulin secretion (6).

In Bertram et al. (6) a potential mechanism for compound

bursting was described. In this model, the glycolytic

subsystem has the ability to oscillate due to positive product

feedback onto the glycolytic enzyme PFK. The oscillatory

glycolysis leads to oscillations in ATP production which lead

to periodic activity of K(ATP)-channels. This slow rhythm

interacts with the faster activity-dependent Ca21 rhythm that

drives simple bursting, producing episodes of bursting fol-

lowed by long silent phases. In addition to compound

bursting, oscillations in glycolysis were shown to have other

possible effects. These include production of a very slow

form of bursting driven purely by glycolysis (‘‘glycolytic

bursting’’), and a periodic variation in the plateau fraction

(‘‘accordion bursting’’). These various forms of bursting

have in common a slow modulation of the intracellular cal-

cium concentration, and consequent pulsatile insulin secretion.

To observe an overall oscillatory insulin profile it is neces-

sary that the insulin secretion from individual b-cells is syn-

chronized within islets (intra-islet synchronization), and that the

population of islets is also synchronized (inter-islet synchro-

nization). If the cells or islets were not synchronized we would

observe a flat, averaged signal even though the single cells

and islets released insulin in pulses. This raises the questions
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of how metabolic oscillations are synchronized within and

among islets. These questions are the focus of this report.

Insulin secretion from the isolated pancreas is pulsatile

(19,20), and this has lead to the hypothesis that an intra-

pancreatic neural pacemaker may be responsible for in-

ducing periodic insulin release from the population of islets

(3,19,21). However, pulsatile insulin secretion has been

observed in individual b-cells (22) and islets (1,2,23), dem-

onstrating that such a pacemaker has, at most, a synchroniz-

ing function. It has also been shown that groups of islets

(2,24) and pieces of pancreas containing electrically silent

ganglia (25) exhibit oscillatory release of the hormone.

Hence, there must be additional synchronizing mechanisms.

An alternate synchronization mechanism has been postu-

lated based on data showing that plasma glucose levels

fluctuate on the timescale of pulsatile insulin release (26–30).

According to this mechanism, classical glucose/insulin feed-

back pathways account for the synchronization of the islets

(2,3,20,21). We stress that this is a synchronization mech-

anism only, since the ability to secrete in 5–10 min pulses

resides within the individual cells and islets. This is in

contrast to the slower ultradian oscillations of insulin which

have periods of hours. Here the feedback between the islets

and the liver is believed to create the oscillations, not just

synchronize those that are already present in the islets (31).

The possibility that oscillations in glucose feed back onto

the 5–10 min insulin pulses is supported by the following

facts. It has been shown that pulsatile insulin secretion can be

entrained by a periodic glucose stimulus in healthy rats (1,2)

as well as in healthy humans (29,30). Moreover, slow

NAD(P)H, Ca21, and mitochondrial membrane potential

oscillations, which are thought to underlie pulsatile insulin

release, can be entrained in mouse islets (32). The entrain-

ment is impaired in ZDF rats (2) and diabetic humans

(29,33), pointing to a possibly crucial mechanism for normal

overall pulsatility. Similar results have been obtained for

entrainment of the slower ultradian oscillations (31,34).

Not all data support the glucose/insulin feedback mech-

anism for synchronization. For example, pulsatile secretion

has been observed even when the glucose concentration was

held constant. This has been observed in vitro for the per-

fused pancreas (19) as well as in vivo when plasma glucose

was clamped (35). Our aim here is not to reconcile all of the

in vitro and in vivo data, but rather to test the plausibility that

insulin oscillations can be produced and coordinated in the

absence of an intrapancreatic neural pacemaker.

Using the model of Bertram et al. (6), we investigate

possible mechanisms for intra-islet and inter-islet synchro-

nization. We show that, surprisingly, electrical coupling is

sufficient to synchronize both electrical bursting activity and

metabolic oscillations. We also demonstrate that inter-islet

synchronization is possible through the glucose/insulin

feedback mechanism described above, here modeled by the

interaction of b-cells with a ‘‘liver.’’ The simple model liver

responds to the level of insulin secretion by adjusting the

external glucose concentration in an appropriate way. Fur-

thermore, we show that some degree of pulsatile secretion

from groups of islets can be expected even when glucose is

kept constant. Thus, intra-islet and inter-islet synchroniza-

tion are possible for a model b-cell in which pulsatile insulin

secretion is produced through compound bursts involving

glycolytic oscillations.

MATERIALS AND METHODS

Modeling

We use the model developed by Bertram et al. (6), which combines a model

for electrical and Ca21 dynamics from Bertram and Sherman (36) with

a model for glycolysis that is modified from Smolen (37). To this model we

add a first-order equation for insulin secretion. The link between glycolysis

and the electrical/ Ca21 component of the model is provided by the adenine

nucleotides adenosine monophosphate (AMP), adenosine diphosphate (ADP),

and adenosine triphosphate (ATP) (3,4,6). The model is summarized in Fig. 1.

The glycolytic component of the model (left side of Fig. 1) is modified

from an earlier model for glycolytic oscillations in muscle extracts (37). The

key player in glycolysis for the production of oscillations is the allosteric

enzyme phosphofructokinase (PFK). This is activated by its product fructose

1-6-bisphosphate (FBP) and by adenosine monophosphate, and inhibited by

ATP. The main difference from the recent model by Westermark and

Lansner (38) is that their model does not include feedback of ATP and AMP

onto PFK.

The glycolysis model consists of equations for intracellular glucose (Gi),

glucose 6-phosphate (G6P) and FBP,

d Gi

dt
¼ Jglut � Jgk; (1)

d G6P

dt
¼ kðJgk � JPFKÞ; (2)

d FBP

dt
¼ kðJPFK � 1

2
JGPDHÞ: (3)

The concentrations of G6P and fructose 6-phosphate (F6P) are assumed

to be in equilibrium through rapid catalytic activity of the enzyme phospho-

glucose isomerase. They satisfy the equilibrium relation F6P ¼ 0.3 G6P.

The parameter k ¼ 0.005 (in 2–3) converts milliseconds to seconds and

increases the frequency of glycolytic oscillations by a factor of 5 with respect

to the earlier Smolen model (37). Jglut is the rate of the GLUT-2 facilitated

glucose transporter (39),

Jglut ¼ Vglut

ðGe � GiÞKglut

ðKglut 1GeÞðKglut 1GiÞ
; (4)

where Ge is the extracellular glucose concentration, Vglut is the maximal rate,

and Kglut is a constant. The value Jgk is the glucokinase reaction rate, which

is described by a Hill function of Gi (40), where it is assumed that the

reaction is irreversible:

Jgk ¼ Vgk

G
ngk

i

K
ngk

gk 1G
ngk

i

: (5)

Furthermore,

JGPDH ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffi
FBP

1mM

s
mMs

�1
(6)
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is the glyceraldehyde 3-P dehydrogenase (GPDH) reaction rate. The PFK

reaction rate, JPFK, reflects the binding of activators (AMP and FBP), an

inhibitor (ATP), and the substrate F6P (¼ 0.3 G6P). ATP is both a substrate

and an inhibitor of PFK. As substrate, it is assumed to be saturating, so it is not

explicitly included in the model. The PFK reaction rate function is given by

JPFK ¼ Vmax

ð1 � lÞw1110 1 l+
ijl

wij1l

+
ijkl

wijkl

; (7)

where i, j, k, l take value 0 or 1, and

wijkl ¼
1

f
ik

13f
jk

23f
il

41f
jl

42f
kl

43

AMP

K1

� �i
FBP

K2

� �j
F6P

2

K3

� �k
ATP

2

K4

� �l

:

(8)

We refer to Smolen (37) for a discussion of these expressions.

We assume that the total concentration of adenine nucleotides is con-

served, and that the adenylate kinase reaction, which converts two molecules

of ADP to one molecule of AMP and one of ATP, is at equilibrium

AMP 1 ADP 1 ATP ¼ Atot, AMP 3 ATP ¼ ADP2.

Glycolysis provides input to the mitochondria. Magnus and Keizer (41)

developed a model for the mitochondrial production of ATP, in which the

production rate decreases with the concentration of free cytosolic Ca21. In

Bertram et al. (6) the Keizer-Magnus model was modified by including the

time dynamics of glycolysis. The GPDH reaction rate, JGPDH, is used as

a measure of the time-varying input to the mitochondria.

The differential equation for the ADP concentration includes the effects

of cytosolic Ca21 concentration (Ca), and the effects of glycolysis:

d ADP

dt
¼ 1

ta

ATP � ADP exp ðr 1 gÞð1 � Ca

r1

Þ
� �� �

: (9)

The Ca21 effect is through the factor ð1 � ðCa=r1ÞÞ; increases in Ca21

concentration lead to increases in ADP. The total substrate-dependent rate is

r 1 g. Input from glycolysis is incorporated through the function g, which

depends on the GPDH rate. We describe this with a sigmoidal function of

Michaelis-Menten form,

g ¼ ng JGPDH

kg 1 JGPDH

; (10)

where ng and kg are constants. The dependence of ADP on g (and thus on

FBP) is the means through which glycolytic oscillations are transduced into

oscillations in nucleotide production. In the earlier Keizer-Magnus model

the factor g was not included (42). The parameter ta ¼ 5 min is a slow time

constant.

The electrical and Ca21 handling components of the model are based on

an earlier b-cell model in which bursting is driven by calcium-dependent

oscillations in the K(Ca) current and the K(ATP) current (36). The K(Ca)

current is directly activated by calcium. The K(ATP) current conductance is

dependent on the concentrations of ADP and ATP; the conductance is lower

for higher values of the ratio ATP/ADP. Changes in the cytosolic Ca21

concentration (Ca) take place on a moderately slow timescale (a few seconds

to tens of seconds), whereas changes in ADP and ATP occur on a slower time-

scale (tens of seconds to minutes). The interaction of these two slow pro-

cesses with disparate timescales can give rise to bursting with periods

ranging from a few seconds to a few minutes. This is an example of a phan-

tom bursting model (36,43). The equation for the membrane potential (v) is

cm

d v

dt
¼ �ðIK 1 ICa 1 IKðCaÞ 1 IKðATPÞÞ; (11)

where cm is the membrane capacitance, IK is a v-dependent K1 current,

ICa is a v-dependent Ca21 current, IK(Ca) is a calcium-activated K1 current,

and IK(ATP) is an ATP-sensitive K1 current, IK ¼ �ggKnðv � vKÞ;
ICa ¼ �ggCamNðvÞðv � vCaÞ; IKðCaÞ ¼ gKðCaÞðv � vKÞ; and IKðATPÞ ¼ gKðATPÞ
ðv � vKÞ; where gKðCaÞ ¼ �ggKðCaÞðCa2=K2

D 1Ca2Þ; gKðATPÞ ¼ �ggKðATPÞoN
ðADP;ATPÞ:

The equation for the IK activation variable is

d n

dt
¼ nNðvÞ � n

tnðvÞ
; (12)

FIGURE 1 An overview of the pathways in the

model. Glucose enters the b-cell through GLUT-2

transporters, and is broken down during glycolysis.

(Left column) Part of the glycolytic pathway, high-

lighting the enzyme PFK and its regulators. The

products of glycolysis feed into the mitochondria

where ATP is produced. ATP links the glycolytic

component to the electrical component (right column)

by regulating K(ATP)-channels. These, in turn,

regulate membrane potential and Ca21 flow leading

to insulin secretion. The electrical/Ca21 component is

linked back to glycolysis through Ca21 regulation of

ATP production and AMP/ATP feedback onto PFK.

(Dashed line) Function of insulin to lower the plasma

glucose concentration through the actions of the liver.

The negative insulin feedback is added to the model

when in vivo synchronization is discussed.
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where tnðvÞ ¼ ð1=0:035 � coshððv1 16Þ=22:4ÞÞ is the timescale and nN(v)

is the equilibrium value of n, nNðvÞ ¼ ð1=11 expð�ðv1 16Þ=5:6ÞÞ:
Activation of Ca21 current is assumed to be instantaneous, with equilibrium

function mNðvÞ ¼ ð1=11 expð�ðv1 20Þ=12ÞÞ:
The K(ATP) conductance is assumed to adjust instantaneously to the

concentrations of ADP and ATP, and the form of the conductance function

(oN) is described in detail in Magnus and Keizer (41). We use the Magnus-

Keizer expression for oN without modification:

oNðADP;ATPÞ¼
0:08 11

2MgADP
�

17mM

� �
10:89

MgADP
�

17mM

� �2

11
MgADP

�

17mM

� �2

11
ADP

3�

26mM
1

ATP
4�

1mM

� � :

(13)

As discussed in Magnus and Keizer (41), the nucleotide concentrations

are related to the total concentrations of ADP and ATP by MgADP2� ¼
0.165 ADP, ADP3� ¼ 0.135 ADP, and ATP4� ¼ 0.005 ATP.

The equation for the free cytosolic Ca21 concentration is

d Ca

dt
¼ fcytðJmem 1 JerÞ; (14)

where fcyt is the fraction of free to total cytosolic Ca21, Jmem is the Ca21

flux across the plasma membrane, and Jer is the Ca21 flux out of the endoplas-

mic reticulum (ER). The plasma membrane flux term is given by Jmem ¼
�(aICa 1 kPMCACa), where a converts current to flux, and kPMCA is the

Ca21 pump rate. We do not consider the actions of IP3-generating mus-

carinic agonists, so flux out of the ER is due only to leakage (Jleak). Ca21 flux

into the ER is through SERCA pumps (JSERCA): Jer ¼ Jleak � JSERCA, where

Jleak ¼ pleak(Caer � Ca), JSERCA ¼ kSERCACa, and pleak is the leakage

permeability and kSERCA is the SERCA pump rate. The differential equation

for the Ca21 concentration in the ER is

d Caer

dt
¼ �ferðVcyt=VerÞJer; (15)

where fer is analogous to fcyt, and Vcyt, Ver are the volumes of the cytosolic

and ER compartments, respectively.

Finally, we add an equation for insulin secretion to the model from

Bertram et al. (6). We describe the rate of insulin secretion, I, by a first-order

relation

d I

dt
¼ INðCaÞ � I

tI

; (16)

where tI is a time constant. IN(Ca) is the equilibrium secretion rate, modeled

as a linear function of Ca21 (44) by

INðCaÞ ¼ IslopeðCa � CanullÞ for Ca$Canull

0 for Ca , Canull

;

�

where Canull is the minimal Ca21 concentration necessary for insulin release,

and Islope measures the Ca21 sensitivity of secretion. The simple Eq. 16 is

motivated by the fact that the most important trigger of insulin release is

cytosolic calcium (44–46). For simplicity we do not include the amplifying

(K(ATP)-independent) pathway, nor vesicle transportation between differ-

ent pools. I is measured in arbitrary units.

Values of all parameters used in the model are given in Table 1. Details of

the model not described here and discussion of parameters can be found in

Bertram et al. (6), Bertram and Sherman (36), Smolen (37), and Magnus and

Keizer (41). The differential equations were integrated numerically with the

CVODE solver in the software package XPPAUT (47). The computer code

for the model can be downloaded from http://www.math.fsu.edu/;bertram

or http://mrb.niddk.nih.gov/sherman.

RESULTS

Single-cell simulations

As discussed in Bertram et al. (6), the model can give rise to

pulsatile insulin secretion through compound bursting (Fig. 2)

with a natural period of ;5 min. The slowest component of

the compound bursting is due to oscillatory glycolysis,

reflected by an oscillatory FBP concentration (Fig. 2 A). This

causes slow oscillations in ADP, which superimpose with

the faster ADP oscillations driven by Ca21 (Fig. 2 B). This

multimodal ADP rhythm leads to oscillations in the con-

ductance gK(ATP) of the ATP-dependent potassium channel,

which drives the burst episodes of the membrane potential, v
(Fig. 2 C). This then gives compound bursting of in-

tracellular calcium (Fig. 2 D), leading to pulsatile insulin

secretion (Fig. 2 E). We show the one-minute moving

average of the insulin secretion (Fig. 2 F) to facilitate

comparison with insulin measurements such as in Sturis et al.

(2), where insulin is sampled only about once per minute.

We will be varying the glucose sensitivity parameter Vgk.

Glycolysis oscillates for intermediate values of this param-

eter. For Vgk too small or too large the glycolytic subsystem

is stationary (6). The oscillation period for a range of Vgk

values is shown in Fig. 3. We note that the period is rela-

tively insensitive to changes in the value of Vgk. Importantly,

the period is always on the order of several minutes, con-

sistent with data on pulsatile insulin secretion.

Fig. 3 is constructed by finding the period for some Vgk,

and then we use the endpoint of the previous solution as

initial condition for a new solution with Vgk slightly changed.

TABLE 1 Parameter values used in the model, except where noted

Vglut ¼ 8 mM/ms Kglut ¼ 7 mM Vgk ¼ 0.8 mM/ms Kgk ¼ 7 mM

ngk ¼ 4 Vmax ¼ 2 mM/ms l ¼ 0.06 K1 ¼ 30 mM

K2 ¼ 1 mM K3 ¼ 50,000 mM K4 ¼ 1000 mM f13 ¼ 0.02

f23 ¼ 0.2 f41 ¼ 20 f42 ¼ 20 f43 ¼ 20

Atot ¼ 3000 mM ng ¼ 2.2 kg ¼ 0.1 mM/ms ta ¼ 300,000 ms

r ¼ 0.5 r1 ¼ 0.35 mM �ggK ¼ 2700 pS vK ¼ – 75 mV

�ggCa ¼ 1000 pS vCa ¼ 25 mV �ggKðCaÞ ¼ 400 pS KD ¼ 0.5 mM

�ggKðATPÞ ¼ 40; 000 pS cm ¼ 5300 fF Vcyt/Ver ¼ 31 pleak ¼ 0.0002 ms�1

fcyt ¼ 0.01 fer ¼ 0.01 kPMCA ¼ 0.18 ms�1 kSERCA ¼ 0.4 ms�1

tI ¼ 10,000 ms Islope ¼ 210 mM�1 Canull ¼ 0.055 mM k ¼ 0.005

a ¼ 4.5 � 10�6 mM/ms
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When increasing Vgk (Fig. 3, solid curve) the system follows

a branch of stable periodic solutions, corresponding to

pulsatile insulin secretion, until such a periodic solution no

longer exists at Vgk ¼ 0.84 mM/ms. The system then follows

the branch of steady states, corresponding to constant insulin

release with small oscillations that reflect simple bursting.

For decreasing Vgk (Fig. 3, dashed curve) the system follows

this branch of steady states until the steady state loses its

stability at Vgk ¼ 0.74 mM/ms. The system then follows the

branch of periodic solutions for lower Vgk values.

Note that there is bistability for Vgk between 0.71 and 0.83

mM/ms. Thus, pulsatile insulin release patterns and constant

release patterns coexist, corresponding to a coexisting peri-

odic solution and a stable stationary state of the glycolytic

subsystem. The values of the initial conditions determine

which behavior is produced. This model prediction was

confirmed experimentally in Bertram et al. (6). We also note

that another type of bistability, consisting of two coexisting

periodic solutions, is present for Vgk near 0.71 mM/ms. We

hypothesize that this corresponds to an S-shaped periodic

branch where the two stable branches shown in Fig. 3 with

periods ;4 and 5 min, respectively, are connected with

a branch of unstable periodic solutions, which is created and

destroyed in two saddle-node bifurcations.

Intra-islet synchronization

It is well established that electrical and Ca21 oscillations of

b-cells are synchronized within an islet (10,48–51), a neces-

sary fact in order to see a pulsatile insulin signal from an

islet. This synchronization is impaired in islets from ob/ob

mice (10). If glycolysis is driving pulsatile secretion, then

metabolism should be synchronized throughout the islet.

This metabolic synchronization was demonstrated by Jung

et al. (52), who showed that oxygen levels measured at two

different sites in an islet were synchronized.

Although it is generally believed that gap junctions

synchronize cells via electrical coupling, it is also possible

that gap junctions are permeable to glycolytic intermediaries.

By allowing FBP to diffuse between two cells, we can easily

obtain synchronization of both insulin secretion and gly-

colysis. This is possible even for very low diffusion rates and

without electrical coupling (simulations not shown). On the

FIGURE 3 The natural period of the pulsatile insulin secretion as

a function of the glucose sensitivity parameter Vgk. The solid curve is pro-

duced by increasing Vgk, using the previous solution as initial conditions,

whereas the dashed line is generated by decreasing Vgk. The shaded area

indicates the region of bistability between stationary glycolysis and oscil-

latory glycolysis.

FIGURE 2 Compound bursting leading

to pulsatile insulin secretion for a constant

glucose stimulus, Ge ¼ 7 mM, with Vgk ¼
0.8 mM/ms. The period of the pulses is 5.2

min.

Synchronization of Insulin Secretion 111

Biophysical Journal 89(1) 107–119

90 PAPER IV.



other hand, electrical oscillations can be synchronized by

electrical coupling through gap junctions (53).

More surprisingly, we now show that electrical coupling

alone can synchronize glycolytic oscillations without the

need for the diffusion of glycolytic intermediates. We model

the electrical coupling between two cells by adding

�gcðvi � vjÞ (17)

to Eq. 11 for cell i ¼ 1, 2, j 6¼ i.
In this case v and c are synchronized by the electrical

coupling (not shown), leading to synchronized secretion

(Fig. 4 A). Surprisingly, glycolytic oscillations also synchro-

nize when the two cells are electrically coupled (Fig. 4 B).

The figure also illustrates that the average insulin secretion

signal is not clearly pulsatile when the cells are uncoupled,

since the two glycolytic oscillations are often out of phase.

This lack of phasing would be more pronounced with more

cells.

The mechanism behind the synchronization is that the

coupling rapidly synchronizes electrical activity. This then

synchronizes Ca21 levels and, consequently, insulin release

(Fig. 4 A). Synchronization of metabolism takes longer to

achieve (Fig. 4 B), due to the indirect manner in which Ca21

affects the glycolytic oscillator. The Ca21 inhibits mito-

chondrial ATP production, thus disinhibiting PFK activity.

Without Ca21 feedback onto ATP production, or ATP and

AMP feedback onto PFK, synchronization of glycolysis

would not occur, even though gap junctions could

synchronize electrical activity. This is illustrated for the

case of no Ca21 feedback in Fig. 5, where the glycolytic

oscillator drives pulsatile insulin release. The electrical

subsystem synchronizes when the cells are coupled leading

to synchronized insulin secretion (Fig. 5 A) but the glycolytic

subsystems do not synchronize (Fig. 5 B).

Interestingly, in Fig. 4 there is virtually no insulin

secretion at ;t ¼ 20 min, even though the average FBP

concentration is fairly high. The FBP concentrations of the

two cells are out of phase, and one is low at t ¼ 20 min. So, if

uncoupled at any time at ;t ¼ 20 min, one of the cells would

be silent and the other one would be active. Fig. 4 shows that

the silent cell is enough to terminate the (synchronized)

insulin secretion. The same phenomenon is seen in Fig. 5.

This points to the importance of having synchronized gly-

colysis, since insulin release is lower when glycolysis is out

of phase.

The period of the coupled cells is similar to that of the

faster of the two uncoupled cells. Thus, the faster cell drives

the slow cell when coupled.

Entrainment by a rhythmic glucose stimulus

Several labs have examined the entrainability of insulin

secretion from the perfused pancreas, groups of islets, and

single islets (1,2). They found that in all three cases it is

possible to entrain the insulin secretion to an oscillating

glucose stimulus. Moreover, slow NAD(P)H, Ca21, and

mitochondrial membrane potential oscillations, which are

thought to underlie pulsatile insulin release, can be entrained

in mouse islets (32). Finally, it has been confirmed in vivo

that pulsatile insulin release can be entrained to a periodic

glucose infusion (29,30). We next demonstrate that it is

possible to entrain our model cells with a low-amplitude

glucose stimulus, and that the period of the entrained

oscillation can be lower or greater than the natural period.

Sturis et al. (2) showed that pulsatile insulin secretion from

an isolated pancreas and from isolated islets can be entrained

by a sinusoidal glucose stimulus with amplitude as low as

5% of the mean. The present model describes the behavior of

a representative cell located in an islet, and indeed, applying

a sinusoidal external glucose stimulus to the model entrains

the insulin secretion (Fig. 6). In Fig. 6 A, the natural

pulsatility for Vgk ¼ 0.8 mM/ms with a period of ;5 min is

FIGURE 4 Two cells become synchronized when electrically coupled. Parameters as in Fig. 2, except Vgk, 1 ¼ 0.6 mM/ms, Vgk, 2 ¼ 0.8 mM/ms, and gc is

raised from 0 pS to 100 pS at t ¼ 15 min (arrow). (A) Rapid synchronization of insulin secretion. Red is the faster I1, green is the slower I2, and black is the

average insulin secretion �II from the two cells. (B) Slower synchronization of glycolysis. Red is FBP1, green is FBP2, and black is the average of the two cells.

112 Pedersen et al.

Biophysical Journal 89(1) 107–119

PAPER IV. 91



shown. This pulsatile secretion is entrained to a faster (4-min

period, Fig. 6 B) as well as to a slower (7-min period, Fig. 6

C) periodic glucose stimulus. However, for Vgk ¼ 0.6 mM/

ms the entrainment is impaired; the pulses are no longer

entrainable to a glucose signal with period of 7 min (Fig. 6

D). In all cases, the external glucose concentration oscillates

at ;7 mM on average, with 1-mM amplitude. The insulin

pulses are in phase with the maximal glucose concentrations

when forced by slower glucose oscillations as found by

Sturis et al. (2).

As demonstrated in Fig. 6, it is possible to entrain the

model b-cells at periods shorter or longer than the natural

period. The entrainment window depends on the amplitude

of the glucose oscillations and on the glucose sensitivity

parameter Vgk. Fig. 7 shows the entrainment windows for

a range of values of Vgk, with the glucose oscillation

amplitude fixed at 1 mM. Note that the range of entrainment

periods is larger when we enter the region with bistability

(Vgk . 0.7 mM/ms, see Fig. 3) and larger yet in the region

with no unforced glycolytic oscillations. In this region, the

forced system has a clearly pulsatile behavior even though

the unforced system does not. This is because the varying

glucose concentration, which is similar to varying Vgk,

pushes the system into the region with oscillatory glycolysis.

Electrical coupling between cells within an islet facilitates

the entrainment of the heterogeneous cell population of the

islet. Cell number one (red) in Fig. 4 with Vgk ¼ 0.6 mM/ms

is difficult to entrain, i.e., the cell is only entrainable in

a narrow interval of forcing periods, see Fig. 6 D and Fig. 7.

However, when coupled to cell number two (green), which is

easier to entrain (Vgk ¼ 0.8 mM/ms), the cell pair is

entrainable (Fig. 8), even though one of the two cells was not

entrainable when uncoupled. In this way, the coupling

between cells not only synchronizes the secretion within the

islet but also helps the islet to synchronize to an external

glucose signal. If the cells were uncoupled, some would not

follow the external signal because of heterogeneity of cell

properties, and the overall response from the collection of

cells (the islet) would not follow the glucose stimulus as

nicely as shown in Fig. 8.

We can regard the pancreas as an assembly of many

uncoupled islets, and the mechanism for the entrainment of

the pancreas could be the following. With a constant glucose

concentration the islets drift with respect to each other, so

that even though each islet gives a pulsatile insulin signal,

the total signal will be relatively flat; it has been averaged

over all the islets. But when the glucose concentration

oscillates, the islets synchronize their insulin secretion so

that the total signal will be clearly pulsatile.

To illustrate this, we simulate 20 uncoupled islets with

different glucose sensitivity (Vgk chosen from a uniform

distribution between 0.6 and 0.9 mM/ms) with glucose

concentration first constant, then oscillatory, and then

constant again. (Here and in the following we represent

each islet as a single cell whose properties are the average of

those in the islet.) Fig. 9 shows that the islets start off

desynchronized and the average signal consists of small

irregular pulses. When the glucose stimulus oscillates, the

islets synchronize and the average signal becomes clearly

pulsatile.

In vivo inter-islet synchronization

Several in vivo studies have shown that in healthy humans,

pulsatile insulin secretion can be entrained to rhythmic

glucose stimuli with periods of 7–12 min (30) or, yielding

a more complex pattern, to pulses every 29 min (29),

demonstrating that the pancreas is tightly controlled by the

fast oscillations in plasma glucose levels that occur in vivo

(26–30). Although ultradian oscillations are also entrained to

FIGURE 5 Without Ca21 feedback the cells do not synchronize glycolysis when electrically coupled. The absence of feedback is attained by keeping Ca ¼
0.1 mM constant in Eq. 9. The parameters are as in Table 1 except Vgk, 1 ¼ 0.6 mM/ms, Vgk, 2 ¼ 0.5 mM/ms, k1 ¼ 0.003, k2 ¼ 0.004, �ggK, ATP ¼ 37,000 pS, and

gc is raised from 0 pS to 100 pS at t ¼ 15 min (arrow). (A) Rapid synchronization of insulin secretion. Red is the slower I1, green is the faster I2, and black is the

average insulin secretion �II from the two cells. (B) Lack of synchronization of glycolysis. Red is FBP1, green is FBP2, and black is the average of the two cells.
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periodic infusions (31), the underlying mechanisms seem to

be different. Ultradian oscillations are believed to be created

by glucose/insulin feedback (31,54), and the infusions

interact directly with this feedback system. For the faster

insulin pulses under investigation here, the glucose stimulus

rather seems to have a synchronizing role of the oscillating

secretion from individual cells and islets.

We have shown that oscillations in the extracellular

glucose concentration can synchronize insulin secretion. In

vivo, hepatic glucose production follows plasma insulin

oscillations (27), which suggests a mechanism by which

pulsatile insulin release leads to periodic glucose production

and plasma glucose levels. We investigate next whether

insulin itself, through its action on the liver, could produce

oscillations in the glucose concentration that could then

entrain insulin secretion from the islets, as proposed by

several authors (2,3,20,21).

To our model system we add a very simple representation

of the liver, modeled by a first order equation for the dynamic

response of plasma glucose, Ge, to the average insulin

secretion �II;

d Ge

dt
¼ GNð�IIÞ � Ge

tG

; (18)

where GN is a decreasing sigmoidal function,

GNð�IIÞ ¼ Gmin 1
Gmax � Gmin

11 exp
II � Î

SG

� �: (19)

Here Gmin corresponds to a very high insulin concentration,

whereas Gmax corresponds to a very low insulin concentra-

tion. The value Î is the insulin secretion, which gives the

half-maximal glucose level, Ge ¼ ð1=2ÞðGmax 1GminÞ: The

parameters are listed in Table 2. Note that the timescale set

by tG ¼ 7.5 min allows the liver to respond to changes in

insulin release on a scale of minutes. This is in contrast to the

much slower response time used in the models of ultradian

oscillations (34,54).

In Fig. 10 A we see that we can synchronize 20 islets using

this model for the external glucose feedback, even though the

islets are not directly (e.g., electrically) coupled to each

FIGURE 6 Entrainment of the pulsatile insulin secretion to a sinusoidal glucose stimulus. (A) The natural pulsatile insulin secretion with Vgk ¼ 0.8 mM/ms

and constant Ge ¼ 7 mM. The period of the pulses is ;5 min. (B) Entrainment to a faster oscillating glucose stimulus with a period of 4 min. Vgk ¼ 0.8 mM/ms.

(C) Entrainment to a slower oscillating glucose stimulus with a period of 7 min. Vgk ¼ 0.8 mM/ms. (D) Lack of entrainment to a glucose stimulus with a period

of 7 min when Vgk is reduced to 0.6 mM/ms. All glucose oscillations are centered at ;Ge ¼ 7 mM with 1 mM amplitude.
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other. We begin by keeping Ge constant, and then at time

t ¼ 20 min we let Ge vary according to Eq. 18. Soon

afterwards the previously unsynchronized islets become

synchronized, resulting in a clearly pulsatile insulin signal,

even though the individual bursts are out of phase as found in

vivo (51); only the burst episodes are in phase. This is

reflected in the lack of large-amplitude spikes on top of the

slow pulses in the average insulin release (Fig. 10 A), in

contrast to the intra-islet synchronization (Fig. 4 A).

Synchronization by feedback from the liver is possible

even for islets that would not give pulsatile secretion in

constant glucose, but when the glucose begins to oscillate

they become entrained, which results in a pulsatile signal.

Fig. 10 B shows a simulation of nine islets with Vgk $ 0.87

mM/ms. Glycolysis does not oscillate in any of these islets

when Ge ¼ 7 mM is constant. At time t ¼ 10 min we let Ge

vary as before and now a pulsatile insulin signal emerges.

Note that, in constant glucose, the islets release insulin in fast

pulses as observed experimentally in vitro (55,56). These

fast fluctuations are driven by bursting electrical activity

since glycolysis is stable. They are of much smaller

amplitude than the slower pulses driven by glycolysis, due

to the lack of synchrony of individual bursts between islets.

Thus, bursting electrical activity can drive insulin oscil-

lations, but it is not likely to drive the slower insulin

pulsatility with a period of several minutes.

The difference between dynamic and constant extracellu-

lar glucose is even clearer in Fig. 11 A, where the smoothed

insulin secretion from Fig. 10 A is compared with the

secretion with a fixed glucose concentration. The power

spectrum of the two curves beyond the point where the

glucose concentration is allowed to vary (after a 10-min

transient phase) confirms that the insulin secretion is much

more pulsatile when Ge is allowed to vary and the islets

synchronize (Fig. 11 B). However, even in constant glucose

the average insulin secretion oscillates. This is due to the fact

that the drifting between the islets leads to times when some

of the islets are nearly in phase, resulting in pulses of insulin

secretion.

These observations could mean that pulsatile insulin

secretion would be seen more often and be more regular in

vivo than in vitro, where Ge is usually kept constant. This

observation is confirmed by the fact that, in vivo, .70–75%

of the total insulin secretion is released in bursts (35,57,58),

whereas the corresponding fraction in vitro is ,40% (23,59).

Moreover, the in vitro pulses from the perfused pancreas are

less regular than the in vivo pulses when analyzed by

autocorrelation (20).

FIGURE 8 Two cells are entrainable to a stimulus with a larger period when coupled. Parameters as in Fig. 4, except gc is raised from 0 pS to 100 pS at t ¼ 30

min (arrow). The glucose concentration (sinusoidal red curves) oscillates with a period of 7 min and amplitude of 1 mM. (A) Entrainment of insulin secretion.

Red is the faster non-entrainable cell, green is the slower entrainable cell, and black is the average insulin secretion �II from the two cells. The blue curve is the

1-min moving average of �II: (B) Entrainment of glycolysis. The color scheme is the same as in A.

FIGURE 7 The entrainment window (shaded) for a range of values of Vgk

and period of the Ge oscillations (Forcing Period). Glucose oscillations are

1 mM in amplitude, with an approximate mean value of 7 mM. B–D cor-

respond to the panels in Fig. 6.
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DISCUSSION

The role of the glycolytic oscillator could be to add a

component slower than that driving bursting so that b-cells

are capable of resonating with a feedback signal (glucose)

from the body. The timescale of insulin signaling in the liver

is on the order of 5–15 min (12–14,60,61), and the sensitivity

of the liver to pulsatile insulin is frequency-dependent (14),

which indicates that, for optimal functioning, the b-cells

would need a system sensing as well as secreting on the

timescale of insulin signaling. The glycolytic pathway is

ideal for sensing glucose feedback, since glucose is a

substrate for glycolysis. Furthermore, the period of the gly-

colytic oscillator is relatively insensitive to changes in

plasma glucose concentration (Fig. 3). This frequency-

insensitivity is consistent with studies that have shown that

it is primarily the amplitude of the pulsatile insulin secretion,

rather than the period, that is affected by changes in the

glucose concentration (3,23,35,58,59).

In this scenario, the glycolytic oscillator produces insulin

pulses with a period of 5 min, which is of the ideal timescale

for optimal insulin sensitivity in the liver. The liver responds

to the insulin pulses so that the plasma glucose concentration

oscillates, which then entrains the population of islets, in this

way regularizing and amplifying the insulin release pattern

(Figs. 10 and 11). For this to work, the entrainability of each

islet is crucial. The model presented here can be entrained by

both faster and slower glucose oscillations (Fig. 6), and this

mechanism indeed synchronizes the insulin pulses from

uncoupled islets (Fig. 9).

In contrast, it has been suggested that an intrapancreatic,

neuronal pacemaker is responsible for synchronizing the

pulsatile insulin secretion from the many islets in the

pancreas (3,19,25). However, as mentioned, and studied

previously (2,24,39), this would not explain how single islets

or groups of islets can be entrained. If a pancreatic

pacemaker was solely responsible for the entrainment, then

this effect would be lost when the islets were separated from

the pancreas. Furthermore, in Sha et al. (25) pulsatile insulin

secretion was observed from a piece of the pancreas, even

though the intrapancreatic ganglion nerves were electrically

silent, showing that neuronal activity is not essential for at

least some degree of synchrony and pulsatile release. We

showed that the entrainability of each cell, and hence each

islet, is sufficient to provide the synchronization mechanism

(Figs. 10 and 11). However, it cannot be ruled out that a

neuronal pacemaker mechanism enhances this effect in vivo.

Indeed, pulsatile insulin secretion has been observed in condi-

tions of constant glucose (19,35), arguing for a role of a

neuronal pacemaker.

The first step toward a pulsatile signal from the pancreas is

the pulsatile secretion from the individual islets. Fig. 4

showed that electrical coupling of the cells through gap

junctions is enough to synchronize not only the membrane

potential, intracellular calcium, and insulin secretion, but the

glycolytic oscillations as well. Two essential elements for

synchronization in our model are the feedback of Ca21 onto

the mitochondria (Fig. 5) and the feedback of AMP and ATP

onto PFK. Without these feedback pathways the membrane

potential, which is coupled to the membrane potential of

neighboring cells through gap junctions, could not be com-

municated to the glycolytic subsystem, and it would not be

possible for electrical coupling to synchronize glycolytic

oscillations. Our simulations showed that if glycolysis is not

synchronized, there is less insulin secretion (Figs. 4 and 5).

The positive effects of glycolytic synchronization would be

accentuated by any K(ATP)-independent glucose pathway

(45), since amplifying signals would plausibly be in phase

with the glycolytic oscillator. If the calcium levels in differ-

ent cells were in synchrony, but the glycolytic components

were not, then the amplifying signals would not be syn-

chronized, and thus would not have maximal effect. Finally,

we do not count out the possibility that synchronization

of glycolytic oscillations could be aided by the diffusion

through gap junctions of glycolytic intermediates, ATP, or

other signaling molecules.

It was demonstrated in Fig. 4 that gap-junctional coupling

between cells leads to a pulsatile secretion with a period

close to that of the fastest of the cells. Moreover, this

coupling enhances the entrainability of the islets to plasma

glucose feedback (Fig. 8). This shows an advantage of

having the cells clustered into islets and not scattered around

in the pancreas as single cells.

FIGURE 9 A population of 20 islets becomes synchronized by an

oscillatory glucose stimulus, resulting in pulsatile insulin secretion. The

figure shows the insulin secretion averaged over the 20 islets (dotted black

line), the average insulin secretion smoothed using a 1-min moving average

(blue), and the glucose concentration (red), which is either constant or os-

cillatory with a period of 7 min and an amplitude of 1 mM. Vgk, i, i ¼ 1, . . . ,

20 are randomly chosen from a uniform distribution over [0.6, 0.9] mM/ms.

TABLE 2 Parameter values defining the response of plasma

glucose, Ge, to the average insulin secretion �II

Gmin ¼ 1 mM Gmax ¼ 15 mM tG ¼ 450,000 ms SG ¼ 1 Î ¼ 5
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The present model can undergo 2:1 entrainment, meaning

that for each period of the glucose oscillations we have

two pulses of insulin release (simulations not shown). The

2:1 entrainment is a general phenomenon of forced oscil-

latory systems and is also observed for ultradian oscillations

(34). Such 2:1 entrainment was recently observed for

entrainment of NAD(P)H, Ca21, and mitochondrial mem-

brane potential oscillations (32). It was also observed in an in

vivo study with human patients (29). We will continue the

investigation of various kinds of entrainment in a future

article.

We have previously proposed ‘‘the metronome model’’

for insulin secretion (6). The idea is that, whereas the gly-

colytic component is responsible for setting the period of the

insulin pulses (the metronome), the electrical component is

responsible for the pulse mass (the amplitude of the beat of

the metronome). Although the period of the metronome is

relatively insensitive to the glucose level, the amplitude is

highly sensitive, and is adjusted by modulating the plateau

fraction of bursting in response to changes in the glucose

level. The K(ATP)-independent, amplifying pathway could

further accentuate the effects of glucose on the pulse am-

plitude. This model provides a way for the b-cells to meet

two demands: matching the frequency to the timescale of the

target issues and being able to adjust the insulin secretion

level to match the demands of the body. It also gives a raison
d’être for both the glycolytic oscillator and for the electrical

bursting behavior. We have shown here that the metronome

model is consistent with the experimental findings that

b-cells are synchronized within an islet, that islets can be

entrained by sinusoidal glucose oscillations, and that insulin

secretion is oscillatory in vivo.

FIGURE 10 (A) 20 islets become synchronized when coupled through the plasma glucose concentration. The value Ge is dynamic from t ¼ 20 min. Legends

and Vgk, i as in Fig. 9. (B) Islets without pulsatile secretion can become pulsatile when coupled through the plasma glucose concentration. The value Ge is

dynamic from t ¼ 10 min. Vgk, i ¼ 0.85 1 0.02i mM/ms, i ¼ 1, . . . , 9.

FIGURE 11 (A) The smoothed insulin signal from Fig. 10 A (blue curve) is compared to the smoothed insulin signal when the glucose concentration remains

fixed (black dashed curve). (B) The normalized power spectra of the two signals from the last 30 min (t from 30 to 60 min) of A with dynamic (blue curve) or

fixed (black dashed curve) glucose concentration.
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Abstract

The validity of the Michaelis-Menten-Briggs-Haldane approximation for single enzyme
reactions has recently been improved by the formalism of the total quasi-steady-state ap-
proximation. This approach is here extended to fully competitive systems, and a criterion
for its validity is provided. We show that it extends the Michaelis-Menten-Briggs-Haldane
approximation for such systems for a wide range of parameters very convincingly, and in-
vestigate special cases. It is demonstrated that our method is at least roughly valid in the
case of identical affinities. The results presented should be useful for numerical simulations
of many in vivo reactions.

Key words: Michaelis-Menten kinetics, competitive substrates, substrate-inhibitor system,
quasi-steady-state assumption.

1 Introduction

Biochemistry in general and enzyme kinetics in particular have been heavily influ-
enced by the model of biochemical reactions set forth by Henri (1901a,b, 1902) and
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Michaelis and Menten (1913), and further developed by Briggs and Haldane (1925).
This formulation considers a reaction where a substrate S binds reversibly to an en-
zyme E to form a complex C. The complex can decay irreversibly to a product P
and the enzyme, which is then free to bind another substrate molecule. This is sum-
marized in the scheme

E + S
k1−→←−

k
−1

C
k2−→ E + P, (1)

where k1, k−1 and k2 are kinetic parameters (supposed constant) associated with
the reaction rates.

Assuming that the complex concentration is approximately constant after a short
transient phase leads to the usual Briggs-Haldane approximation (or standard quasi-
steady-state assumption or approximation (standard QSSA, sQSSA)), which is
valid when the enzyme concentration is much lower than either the substrate con-
centration or the Michaelis constant KM (Segel, 1988). This is usually fulfilled for
in vitro experiments, but sometimes breaks down in vivo (Straus and Goldstein,
1943; Sols and Marco, 1970; Albe et al., 1990). See Schnell and Maini (2003) for
a nice and complete review of the kinetics and approximations of scheme (1).

The advantage of a quasi-steady-state approximation is that it reduces the dimen-
sionality of the system, and thus speeds up numerical simulations greatly, espe-
cially for large networks as found in vivo. Moreover, while the kinetic constants in
(1) are usually not known, finding the kinetic parameters characterizing the sQSSA
is a standard procedure in in vitro biochemistry (Bisswanger, 2002). However, to
simulate physiologically realistic in vivo scenarios, one faces the problem that the
sQSSA might be invalid as mentioned above. Hence, even if the kinetic constants
such as KM are identical in vivo and in vitro, they need to be implemented in some
other approximation which must be valid for the whole system and initial concen-
trations under investigation.

Approximations such as the reverse QSSA (rQSSA) (Segel and Slemrod, 1989;
Schnell and Maini, 2000), which is valid for high enzyme concentrations, and the
total QSSA (tQSSA) (Borghans et al., 1996; Tzafriri, 2003), which is valid for a
broader range of parameters covering both high and low enzyme concentrations,
have been introduced in the last two decades. Curiously, the rQSSA is equivalent
to the rapid-equilibrium approximation proposed by Michaelis and Menten (1913),
although their names are often connected to the sQSSA introduced by Briggs and
Haldane (1925).

Tzafriri (2003) showed that the tQSSA is at least roughly valid for any set of pa-
rameters. Also, the tQSSA for reversible reactions has been studied (Tzafriri and
Edelman, 2004), i.e. reactions of form (1), but where enzyme and product can re-
combine to form the complex.

These newer approximations have so far only been found for isolated reactions.
However, in vivo the reactions are coupled in complex networks or cascades of
intermediate, second messengers with successive reactions, competition between
substrates, feedback loops etc. Approximations of such scenarios have been carried
out within the sQSSA scheme (Bisswanger, 2002), but often without a thorough

2
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investigation of the validity of the approximations. An exception is the case of fully
competitive reactions (Segel, 1988; Schnell and Mendoza, 2000), i.e., reactions
with competing substrates, also known as substrate-inhibitor systems,

S1 + E

k
(1)
1−→←−

k
(1)
−1

C1
k
(1)
2−→ E + P1,

S2 + E

k
(2)
1−→←−

k
(2)
−1

C2
k
(2)
2−→ E + P2,

(2)

where Si, Ci and Pi represent substrate, enzyme-substrate complex and product
i = 1, 2, respectively. However, since the sQSSA cannot be expected to be valid in
vivo, employing the tQSSA to these more complex situations would be beneficial.

This paper investigates the tQSSA for fully competitive reactions and is organized
as follows. In Section 2 we recall the most important results in terms of quasi-
steady-state approximations for a single reaction and for a fully competitive sys-
tem. In Section 3 we introduce the tQSSA for a fully competitive system, discuss
the timescales of the reactions and introduce a sufficient condition for the validity
of the tQSSA. Moreover, the form of the concentrations of the complexes Ci in
the quasi-steady-state phase is investigated. In Section 4 we study the special case
of identical affinities (K

(1)
M ≈ K

(2)
M ). The first order approximation is obtained in

terms of a perturbation parameter r, related to the characteristic constants of the
system. Finally, a closed form solution for the total substrate concentrations is ob-
tained in this special case. In Section 5 the situation of very different affinities,
for example reflecting a slow or fast competitive inhibitor, is studied. The corre-
sponding approximations for the concentrations of Ci are found and used to obtain
a general first order approximation to the tQSSA for fully competitive reactions
for any choice of K(i)

M , by means of Padé approximant techniques. In Section 6 we
show numerically that for a very large range of parameters our tQSSA provides
excellent fitting to the solutions of the full system, better than the sQSSA and the
single reaction tQSSA, and we discuss the obtained results.

2 Theoretical background

We recall briefly the mathematical description of the sQSSA for (1), using the same
symbols for the concentrations of the reactants. The reaction (1) can be described
by a system of two nonlinear ordinary differential equations. Assuming that the
complex is in a quasi-steady-state leads to (Briggs and Haldane, 1925; Segel, 1988;
Segel and Slemrod, 1989)

d S

dt
≈ − VmaxS

KM + S
, S(0) = S0, (3)

Here Vmax = k2E0 = k2E(0) is the maximal reaction rate and KM = k
−1+k2

k1
is

the Michaelis constant, identifying the substrate concentration giving the half-max

3
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reaction rate, i.e., KM reflects the substrate affinity of the enzyme. This approxi-
mation is valid whenever (Segel, 1988; Segel and Slemrod, 1989)

E0

KM + S0

� 1, (4)

i.e., when the enzyme concentration is low with respect to either the Michaelis
constant or to the substrate concentration.

The tQSSA (Borghans et al., 1996; Tzafriri, 2003) arises by changing to the to-
tal substrate originally introduced by Straus and Goldstein (1943) S̄ = S + C.
Assuming that the complex is in a quasi-steady-state yields the tQSSA

d S̄

dt
≈ −k2 C−(S̄), S̄(0) = S0, (5)

where

C−(S̄) =
(E0 +KM + S̄)−

√

(E0 +KM + S̄)2 − 4E0S̄

2
. (6)

Tzafriri (2003) showed that the tQSSA is valid whenever

εTz :=
K

2S0





E0 +KM + S0
√

(E0 +KM + S0)2 − 4E0S0

− 1



� 1, K =
k2

k1
, (7)

and that this is always roughly valid in the sense that

εTz ≤
K

4KM

≤ 1

4
. (8)

The parameter K is known as the Van Slyke-Cullen constant. Tzafriri (2003) found

d S̄

dt
≈ − VmaxS̄

KM + E0 + S̄
, S̄(0) = S0, (9)

as a first order approximation to (5). This expression (9) is identical to the formula
obtained by Borghans et al. (1996) by means of a two point Padé approximant
technique (Baker, 1975), and it is valid at low enzyme concentrations (4) where
it reduces to the sQSSA expression (3), but holds moreover at low substrate con-
centrations S0 � E0 +KM (Tzafriri, 2003). We wish to highlight the fundamental
fact that performing the substitutions of S by S̄ and ofKM byKM +E0 one obtains
a significantly improved sQSSA-like approximation with minimal effort.

The system (2) under investigation in this paper is governed by the coupled ODEs
(Rubinow and Lebowitz, 1970; Segel, 1988; Schnell and Mendoza, 2000), i = 1, 2,

d Si

dt
= −k(i)

1 E · Si + k
(i)
−1Ci, Si(0) = Si,0, (10a)

dCi

dt
= k

(i)
1 (E · Si −K(i)

M Ci), Ci(0) = 0, K
(i)
M =

k
(i)
−1 + k

(i)
2

k
(i)
1

. (10b)

4
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and the conservation laws

Si,0 = Si + Ci + Pi, i = 1, 2, (11)
E0 = E + C1 + C2. (12)

The sQSSA of this system is (Rubinow and Lebowitz, 1970; Segel, 1988)

d Si

dt
= − k

(i)
2 E0Si

K
(i)
M (1 + Sj/K

(j)
M ) + Si

, Si(0) = Si,0, i = 1, 2, j 6= i, (13)

which is valid when (Schnell and Mendoza, 2000)

E0

K
(i)
M (1 + Sj,0/K

(j)
M ) + Si,0

� 1 , i = 1, 2, j 6= i. (14)

Rubinow and Lebowitz (1970) showed that the equations (13), i = 1, 2, can be
uncoupled when introducing the parameter

δ =
k

(1)
2 K

(2)
M

k
(2)
2 K

(1)
M

,

which produces a measure of the competition. This parameter enters when dividing
(13) for i = 1 with (13) for i = 2 and solving, which yields S1/S1,0 = (S2/S2,0)

δ.
The equations (13), i = 1, 2, then become

d S̄1

dt
≈ − k

(1)
2 E0S̄1

K
(1)
M (1 + S2,0(S̄1/S1,0)1/δ/K

(2)
M ) + S1

, S̄1(0) = S1,0, (15a)

d S̄2

dt
≈ − k

(2)
2 E0S̄2

K
(2)
M (1 + S1,0(S̄2/S2,0)δ/K

(1)
M ) + S2

, S̄2(0) = S2,0. (15b)

These expressions were used by Schnell and Mendoza (2000) to find analytic,
closed form solutions for the cases δ ≈ 1 and δ � 1 using the so-called Lam-
bert W -function.

3 Total quasi-steady-state approximation of the competitive system

Following Borghans et al. (1996), we introduce the total substrates

S̄i = Si + Ci, i = 1, 2, (16)

and rewrite equations (10) in terms of these, obtaining the system of ODEs, i = 1, 2,

d S̄i

dt
= −k(i)

2 Ci, S̄i(0) = Si,0, (17a)

dCi

dt
= k

(i)
1

(

(E0 − C1 − C2) · (S̄i − Ci)−K(i)
M Ci

)

, Ci(0) = 0. (17b)

5

104 PAPER V.



We require 0 < Ci < S̄i, i = 1, 2, because of (16), and apply the quasi-steady-state
assumption (Borghans et al., 1996; Tzafriri, 2003),

dCi

dt
≈ 0, i = 1, 2,

which is equivalent to the system

C1 = E0 − C2

(

1 +
K

(2)
M

S̄2 − C2

)

, (18a)

C2 = E0 − C1

(

1 +
K

(1)
M

S̄1 − C1

)

, (18b)

which should hold for any time t after the initial transient. From this system, it
follows that Ci < E0, i = 1, 2, in agreement with (12). As shown in Appendix A,
the system (18) has a unique solution with 0 < Ci < min{S̄i, E0}. For C1 it is
given by finding the appropriate root of the third degree polynomial

ψ1(C1) = −(K
(1)
M −K

(2)
M )C3

1

+
[

(E0 +K
(1)
M + S̄1)(K

(1)
M −K

(2)
M )− (S̄1K

(2)
M + S̄2K

(1)
M )

]

C2
1 (19)

+
[

− E0(K
(1)
M −K

(2)
M ) + (S̄1K

(2)
M + S̄2K

(1)
M ) +K

(2)
M (E0 +K

(1)
M )

]

S̄1C1

− E0K
(2)
M S̄2

1 .

When K(1)
M = K

(2)
M = KM , ψ1 becomes a second degree polynomial, and the root

is given by

C1 =
S̄1(S̄1 + S̄2 +KM + E0)

2(S̄1 + S̄2)



1−
√

√

√

√1− 4E0(S̄1 + S̄2)

(S̄1 + S̄2 +KM + E0)2



 . (20)

An analogous polynomial ψ2 for C2 can be found by interchanging the indexes 1
and 2 in (19), because of the symmetry of the system (17), and C2 is again found
as the appropriate root.

3.1 Validity of the tQSSA

We expect that after a short transient phase the complex concentrations equal at any
time t the instantaneous quasi-steady-state concentrations,Ci(t) = Ci(S̄1(t), S̄2(t)),
given by the roots in the respective polynomials as discussed above. Then the evo-
lution of the system can be studied by means of the tQSSA

d S̄i

dt
≈ −k(i)

2 Ci(S̄1, S̄2), S̄i(0) = Si,0. (21)

Segel (1988) proposed the following two criteria for the validity of a QSSA.

(i) The timescale for the complex(es) during the transient phase, tC , should be much
smaller than the timescale for changes in the substrate(s) in the beginning of the
quasi-steady-state phase, tS .
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(ii) The substrate(s) should be nearly constant during the transient phase.

In our case, (ii) can be translated to (Segel, 1988; Tzafriri, 2003)

Si,0 − S̄i

Si,0
≤ tC
Si,0

max

∣

∣

∣

∣

∣

d S̄i

dt

∣

∣

∣

∣

∣

=
k

(i)
2 tC
Si,0

Ci(S1,0, S2,0)� 1, i = 1, 2, (22)

where the maximum is taken over the transient phase, i.e., with S̄i ≈ Si,0. Since
Ci is increasing during the transient phase, the maximum is given by k(i)

2 Ci(S1,0, S2,0).

The substrate timescale (Segel, 1988; Tzafriri, 2003) is estimated from (21) to be

tS̄i
≈ Si,0

k
(i)
2 Ci(S1,0, S2,0)

, (23)

and we see that (22) translates into (i), i.e.,

max
i=1,2

tC
tS̄i

=
max{tC1 , tC2}
min{tS̄1

, tS̄2
} � 1. (24)

The timescale for the complexes is estimated following Borghans et al. (1996):

tCi
≈ Ci(S1,0, S2,0)

max
∣

∣

∣

d Ci

dt

∣

∣

∣

=
Ci(S1,0, S2,0)

k
(i)
1 E0Si,0

, (25)

where the maximum is again taken during the transient phase. The timescale for
the transient phase is then the maximum of the two individual scales; we want both
complexes to be in the quasi-steady-state at the end of the transient phase, and both
substrates to be nearly constant during it.

Hence, we propose the following sufficient condition for the validity of our tQSSA
(21),

ε := max
i=1,2





k
(i)
2 Ci(S1,0, S2,0)

Si,0



max
i=1,2





Ci(S1,0, S2,0)

k
(i)
1 E0Si,0



� 1. (26)

Whenever the two maxima occur for the same i, (26) simplifies to

ε̄ = max
i=1,2





Ki

E0

(

Ci(S1,0, S2,0)

Si,0

)2


� 1, (27)

where we introduced the Van Slyke-Cullen constants Ki = k
(i)
2 /k

(i)
1 .

4 Identical affinity,K(1)
M

≈ K
(2)
M

.

When K
(1)
M 6= K

(2)
M the roots of ψ1 are given by a very complicated formula in

contrast to the formula (20) when K (1)
M ≈ K

(2)
M = KM . To deepen our understand-

ing of the problem we follow this latter case further. It should be noted that the
situation is biologically realistic, for example for bacterial carbohydrate sulfotrans-
ferase (NodST) with chitotriose and chitopentose as competitive substrates (Pi and
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Leary, 2004), for IκB kinase (IKK-2) phosphorylation of IκBα and p65, which
is of importance in inflammatory diseases (Kishore et al., 2003) and for the dou-
ble phosphorylation of MAPK by MAPKK (Huang and Ferrell, 1996; Bhalla and
Iyengar, 1999; Kholodenko, 2000). Following Tzafriri (2003) we let

r(X) =
4E0X

(X +KM + E0)2
,

where X is some unspecified substrate concentration. Then we can rewrite (20) as

C1(S̄1, S̄2) =
S̄1(S̄1 + S̄2 +KM + E0)

2(S̄1 + S̄2)

(

1−
√

1− r(S̄1 + S̄2)
)

. (28)

Setting

K =
max{k(1)

2 , k
(2)
2 }

min{k(1)
1 , k

(2)
1 }

, S0 = S1,0 + S2,0, r0 = r(S0), (29)

we get from (26) and (28) that

ε =
K

E0

(

S0 +KM + E0

2S0

(

1−
√

1− r0
))2

=
K

S0

(1−
√

1− r0)2

1− (1− r0)

=
K

S0

1−
√

1− r0
2

2

1 +
√

1− r0
≤ K

2S0

1−
√

1− r0√
1− r0

= εTz,

where εTz is the expression from (7). Let us remark that the constant K in (29) is
different from the Van Slyke - Cullen constant appearing in a single reaction. We
can now use the result (8) to get

ε ≤ εTz ≤
K

4KM

. (30)

Inequality (30) tells us that, for identical affinities, we have that, the smaller the
ratio K/KM , the better the tQSSA approximation (21). If K = k

(i)
2 /k

(i)
1 (same i),

then K ≤ KM , and hence, ε ≤ 1
4
, such that in this case the tQSSA (21) is at least

roughly valid. However, this is not necessarily true if K = k
(i)
2 /k

(j)
1 (j 6= i).

4.1 First order tQSSA for identical affinities

Developing (28) in r yields

C1 =
E0S̄1

S̄1 + S̄2 +KM + E0
+ O(r2). (31)
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In this case (compare with Borghans et al. (1996))

ε =
KE0

(S1,0 + S2,0 +KM + E0)2
+O(r2), K =

max{k(1)
2 , k

(2)
2 }

min{k(1)
1 , k

(2)
1 }

. (32)

When r � 1 and the tQSSA is valid (ε � 1), we obtain the first order tQSSA
(with respect to r) for competing substrates with identical affinity

d S̄i

dt
≈ − k

(i)
2 E0S̄i

S̄1 + S̄2 +KM + E0
, S̄i(0) = Si,0, i = 1, 2. (33)

The sufficient conditions for r � 1 from Tzafriri (2003) translate into either of

S1,0 + S2,0 +KM � E0, (34)
E0 +KM � S1,0 + S2,0. (35)

The condition (34) also guarantees ε � 1 because of (32), unless K � KM +

S1,0 + S2,0. As noted above, K ≤ KM if K = k
(i)
2 /k

(i)
1 (same i), and then indeed

ε� 1.

However, (35) does not imply ε � 1 but must be accompanied by K � KM , in
which case (30) guarantees ε � 0.25. When K ' KM we must require E0 � K
such that (32) yields ε � 1, and in this case (35) simplifies to E0 � S1,0 + S2,0.
In summary, any of the following conditions imply the validity of the first order
tQSSA for identical affinities:

E0 � S1,0 + S2,0 +KM , and K / KM + S1,0 + S2,0 (36)
E0 +KM � S1,0 + S2,0, and K � KM , (37)

E0 � S1,0 + S2,0, and E0 � K ' KM . (38)

NeglectingE0 in the denominator in (33) we obtain again the sQSSA of competing
substrates with identical affinities (see (13) with K

(1)
M = K

(2)
M = KM ). This is

valid when (36) holds, as seen from (14). On the other hand, when (37) or (38) is
fulfilled, (33) does not reduce to the sQSSA (13). Hence, (37) or (38) extend the
parameter region where (33) is valid.

4.2 Uncoupled equations and closed form solutions

WhenK(1)
M ≈ K

(2)
M as above, the two equations given by (21) can be uncoupled (Ru-

binow and Lebowitz, 1970; Segel, 1988; Schnell and Mendoza, 2000) by dividing
one by the other and using (20), leading to

dS̄1

dS̄2
=
k

(1)
2

k
(2)
2

S̄1

S̄2
,

such that
S̄1

S1,0
=

(

S̄2

S2,0

)δ

, δ =
k

(1)
2

k
(2)
2

. (39)
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This relation can then be used to eliminate S̄2 in (20) and, similarly, eliminate S̄1 in
the expression for C2. It also shows that when δ = 1, i.e. k(1)

2 = k
(2)
2 = kcat,

the two substrates behave identically with the only difference given by their initial
concentrations. This can also be observed from (21) with (20) inserted.

In the following we assume that the first order tQSSA (33) holds. Using (39) we
write (33) as

d S̄1

dt
≈ − k

(1)
2 E0S̄1

S̄1 + S2,0(S̄1/S1,0)1/δ +KM + E0

, S̄1(0) = S1,0, (40)

d S̄2

dt
≈ − k

(2)
2 E0S̄2

S̄2 + S1,0(S̄2/S2,0)δ +KM + E0

, S̄2(0) = S2,0. (41)

These equations are identical to (15) studied by Schnell and Mendoza (2000) setting
K

(1)
M = K

(2)
M and applying the substitution KM → KM + E0. Hence, the same

techniques can be used to find closed form solutions.

When δ = 1, (40) and (41) are identical except from the initial conditions and hence
the two substrates develop identically, as observed above. The solution is given in
closed form by

S̄i(t) ≈ Si,0
KM + E0

S1,0 + S2,0

·W
(

S1,0 + S2,0

KM + E0

exp
(

S1,0 + S2,0 − kcatE0t

KM + E0

)

)

, (42)

where W is the Lambert W -function introduced in enzyme kinetics by Schnell and
Mendoza (1997a). It is defined as the real valued solution toW (x) exp(W (x)) = x.

The case when δ � 1 corresponds to a slow (resp. fast) competitor, when S̄1 is
regarded as the competitor (resp. substrate) and S̄2 as the substrate (resp. competi-
tor). The closed form solution can again be found following Schnell and Mendoza
(2000), giving

S̄2(t) ≈ (S1,0 +KM + E0)W





S2,0

S1,0 +KM + E0
exp(

S2,0 − k(2)
2 E0t

S1,0 +KM + E0
)



 ,

S̄1(t) ≈ S1,0

(

S̄2(t)

S2,0

)δ

. (43)

At low substrate concentrations (see formula (35)), the argument of W in (42) and
(43) is small and the approximation W (x) ≈ x holds. Hence, for both δ ≈ 1 and
δ � 1 we find after some algebra

S̄i(t) ≈ Si,0 exp
(

− k
(i)
2 E0

KM + E0
t
)

, (44)

which is identical to the expression for the tQSSA of an isolated reaction (Tzafriri,
2003). Hence, the two substrates behave completely independently as if they were
isolated. The same result is found directly by neglecting S̄1 + S̄2 in the denominator
of (33). This is due to either KM or the enzyme concentration being much greater
than the substrate concentrations, such that the fraction of free enzyme in the sys-
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tem is near to unity. Schnell and Mendoza (1997b,c) studied this scenario for the
sQSSA.

5 K
(1)
M � K

(2)
M and the general first order approximation

We now turn to the case of very different affinities as stated by K
(1)
M � K

(2)
M .

To investigate this situation closer we perform a perturbation around K
(2)
M = 0.

When K
(2)
M = 0, we see from (17b) that in the quasi-steady-state, C2 ≈ S̄2 or

E0 − C1 − C2 ≈ 0. In the former case, C2 ≈ S2,0 since k(2)
2 = 0. In the latter case,

again from (17b), but now for i = 1, it follows that C1 ≈ 0, C2 ≈ E0. Since
C2 ≤ min{S2,0, E0} we get that, when K(2)

M = 0,

C2 ≈ min{S2,0, E0}. (45)

We study these two cases independently, and by means of their corresponding solu-
tions we build a two point Padé approximant (TPPA) (Baker, 1975) in η = S2,0/E0

developed around η = 0 (E0 � S2,0) and η =∞ (E0 � S2,0).

When E0 � S2,0 (i.e., η � 1), we expect that after the transient phase the system
evolves as two independent reactions: S2 binds with a part of the enzyme during
the transient phase as seen from (45), C2 ≈ S2,0, leaving E∗0 = E0 − S2,0 to react
with S1. Hence, we obtain from (5) and (9)

d S̄1

dt
≈ −k(1)

2

(E∗0 +K
(1)
M + S̄1)−

√

(E∗0 +K
(1)
M + S̄1)2 − 4E∗0 S̄1

2
(46)

≈ − k
(1)
2 E∗0 S̄1

K
(1)
M + E∗0 + S̄1

. (47)

Note that here K(2)
M = 0, such that (18a) is not valid. The solution can also be

found by setting C2 = S2,0 in (17b) with i = 1.

In the case when 0 < K
(2)
M � K

(1)
M , we neglect terms involving K (2)

M in (19) and
obtain that C1 should satisfy

(

C2
1 − (E0 +K

(1)
M + S̄1 − S̄2)C1 + (E0 − S̄2)S̄1

)

· C1 = 0.

Since C2 ≤ S2,0 < E0, C1 = 0 is in contradiction with (18b). Thus, C1 solves the
second degree polynomial which is exactly the polynomial given from the tQSSA
for an isolated reaction, i.e., S̄1 follows again (46) but now with E∗0 = E0 − S̄2.

We now turn to the case when C2 ≈ E0 � S2,0 (i.e., η � 1). Recall that this is the
case of the usual in vitro experiments. From the conservation law (12) C1 ≈ 0. We
expand ψ1/K

(1)
M in terms of the small parameter ρ = K

(2)
M /K

(1)
M and find that the

first order term for the root is given by

C1 = ρ
E0S̄1

S̄2 − E0

=
K

(2)
M

K
(1)
M

× E0S̄1

S̄2 − E0

. (48)
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Using (48) for 1/η ≈ 0, and the first order approximation (47) for η ≈ 0, the TPPA
in η = S̄2/E0 is

C1 =
E0S̄1

K
(1)
M + S̄1 + E0 + S̄2/ρ

=
E0S̄1

K
(1)
M (1 + S̄2/K

(2)
M ) + S̄1 + E0

. (49)

Plugging (49) into (21) (for i = 1) yields then

d S̄i

dt
= − k

(i)
2 E0S̄i

K
(i)
M (1 + S̄j/K

(j)
M ) + S̄i + E0

, S̄i(0) = Si,0, j 6= i. (50)

where i = 1, j = 2. Similar computations can be performed for C2, when K(1)
M �

K
(2)
M , yielding the same equation (48), where i = 2, j = 1.

The two approximations hold for two different regions of parameter space, K (1)
M �

K
(2)
M and K(1)

M � K
(2)
M , respectively. However, let us observe that they reduce not

only to the case of identical affinities, (33), for K (1)
M = K

(2)
M , but also to the sQSSA

(13) whenever this approximation holds as guaranteed by (14), and to the single
reaction first order tQSSA (9) when S̄j/K

(j)
M can be neglected.

Motivated by this and further encouraged by numerical simulations (see the follow-
ing section), we propose the expression (50) (for i = 1, 2) as the general first order
approximation to the tQSSA for fully competitive reactions.

Although not strictly theoretically founded, the above considerations using the
TPPA can be seen as the motivation for the formula. However, as shown in Ap-
pendix B, we can indeed expect C1 from (49) (and C2 in the corresponding expres-
sion) to be a good approximation to the true root of ψ1 (ψ2 for C2) when either (14)
holds, or when

K
(i)
M � S1,0 + S2,0 or E0 � K

(i)
M (1 + Sj,0/K

(j)
M ) + Si,0, i = 1, 2, j 6= i.

Hence, (50) extends both the sQSSA (13) as well as the single reaction tQSSA (5).

The considerations in Appendix B tell us only when the first order tQSSA (50) is a
good approximation of the full tQSSA (21), but neither might be a good represen-
tation of the full system. To assure that, ε must be small.

When (49) approximates the full tQSSA we have from (26)

ε = max
i=1,2

k
(i)
2 E0

K̃
(i)
M,0 + Si,0 + E0

max
i=1,2

1

k
(i)
1 (K̃

(i)
M,0 + Si,0 + E0)

≤ K max
i=1,2

E0

K̃
(i)
M,0 + Si,0 + E0

max
i=1,2

1

K̃
(i)
M,0 + Si,0 + E0

= max
i=1,2

K E0

(K̃
(i)
M,0 + Si,0 + E0)2

(51)
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where

K =
max{k(1)

2 , k
(2)
2 }

min{k(1)
1 , k

(2)
1 }

, K̃
(i)
M,0 = K

(i)
M (1 + Sj,0/K

(j)
M ), i = 1, 2, j 6= i. (52)

The above considerations yield that either one of the following conditions guaran-
tees the validity of the first order approximation (50) (i = 1, 2):

E0 � Si,0 + K̃
(i)
M,0, and K / K̃

(i)
M,0 + Si,0, (53)

K
(i)
M � S1,0 + S2,0, and K � K̃

(i)
M,0, (54)

K
(i)
M � S1,0 + S2,0, and E0 � K ' K̃

(i)
M,0, (55)

E0 � K̃
(i)
M,0 + Si,0, and E0 � K. (56)

6 Numerical Results and Discussion

In vivo reactions are usually modelled by ordinary differential equations using the
concentrations of the involved biochemical species. This idea has been questioned
to hold for a low number of involved molecules or in a crowded environment, where
stochastic methods should be used (Turner et al., 2004). However, in a comparison
between the deterministic (sQSSA) and stochastic approaches it was found that the
two approaches agreed reasonably well for as few as 100 molecules, and thus it
was concluded that intracellular enzyme reactions as a rule are well described by
the deterministic approach using concentrations (Turner et al., 2004).

The introduction of the recent total quasi-steady-state approximation (tQSSA) (Borghans
et al., 1996; Tzafriri, 2003) is motivated by the need to extend the sQSSA to sit-
uations where the enzyme concentration is comparable to or greater than both the
substrate concentration and the Michaelis constant. Albe et al. (1990) found that
the enzyme concentration was greater than the corresponding substrate concen-
tration in 12% of investigated substrate-enzyme pairs was, and the two concen-
trations comparable were in other 13%, such that the enzyme concentration was
more than ten times lower than the substrate concentration in only 75% of the
substrate-enzyme pairs. For comparison, Stayton and Fromm (1979) found that for
the sQSSA to hold, one needs that the enzyme concentration is at least 100 times
lower than the substrate concentration. However, it should be noted that we find
excellent fits for the competitive sQSSA, when the enzyme to substrate ratio is 0.1
(Fig. 2A). Nonetheless, even though the majority of the enzyme-reaction pairs in-
vestigated by Albe et al. (1990) could be expected to be well-approximated by the
sQSSA, a significant number cannot, and such an approximation would break down
in particular in the glycolytic pathway (Albe et al., 1990). It seems reasonable to
expect that the same conclusion might hold for other pathways. And even in path-
ways where a few steps are badly approximated by the sQSSA, the inappropriate
use of the sQSSA through out the pathway could yield erroneous predictions of the
overall behavior (Pedersen et al., 2006).

In the present manuscript we have extended the total quasi-steady-state assumption
to competing substrates, investigating its validity and deepening some special cases.
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Figure 1. The competitive tQSSA ((21), full curve) approximates the full system ((10),
circles) very well (R2 = 0.9997), also when both the competitive sQSSA ((13), dotted
curve, R2 = 0.9321) and the single reaction tQSSA ((5), dashed curve, R2 = 0.9531)
do not. However, in this case we can not obtain that the competitive first order approx-
imation ((50), dash-dotted curve, R2 = 0.9298) is good. Parameters (based on Pi and
Leary (2004)): K

(1)
M = 23µM, K

(2)
M = 25µM, k

(1)
2 = 42 min−1, k

(2)
2 = 25 min−1,

S1,0 = S2,0 = E0 = 50µM (ε = 0.022). To fix k
(i)
j we have used the constraint

k
(i)
−1 = 4k

(i)
2 (Bhalla and Iyengar, 1999).

As seen in Fig. 1, the approximation (21) is indeed excellent as long as ε is small.
This figure is based on the data from Pi and Leary (2004) for carbohydrate sul-
fotransferase (NodST) with chitopentaose and chitotriose as competing substrates.
Of importance, our approximation (21) captures the competition as does the sQSSA
(13) and in contrast with the single reaction tQSSA (5), but also at intermediate or
high enzyme concentrations where the sQSSA (13) does not hold anymore (Fig. 1).
However, when the competition can be neglected due to, e.g., low substrate con-
centrations, the single reaction tQSSA (5) does indeed estimate the full system well
(see, e.g., Fig. 2, panels B and C).

A crucial step of our analysis is finding the roots of the third degree polynomialsψi.
Although we have shown that there is exactly one physically possible root for each
complex, and that there exists, e.g., Cardano’s formula for this root, the formula is
hard to interpret and even to implement. We have used a differential-algebraic equa-
tions (DAE) approach, i.e., finding the roots numerically. Such a DAE approach is
easier to implement than using the closed form for the root, but increases the time
needed for computations.

These problems can partly be resolved by using approximations of the roots of ψi.
Compared to the full solution, such an approximation should preferably be easier
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Figure 2. The first order approximation (dash-dot curve) coincides with the compet-
itive sQSSA (dotted curve) when it is valid (panel A), and with the single reaction
tQSSA (dashed curve) when the competition is negligible (panel B). However, at high
enzyme concentrations the single reaction tQSSA is often a better approximation than
the first order tQSSA (panel C). Parameters are as in Fig. 1, except: In A: E0 = 5µM
(ε = 0.0027). R2 values (in the following order [competitive tQSSA (21), competi-
tive sQSSA (13), single reaction tQSSA (5), competitive first order approximation (50)]):
[1.0000, 0.9994, 0.6485, 0.9967]. In B: S1,0 = S2,0 = 5µM (ε = 0.0694). R2 val-
ues: [0.9985, 0.5113, 0.9980, 0.9969]. In C: E0 = 200µM (ε = 0.029). R2 values:
[0.9998, 0.4736, 0.9992, 0.9637].

to interpret and to relate to previously known formulas. Furthermore, it should be
clearly stated when it is valid. We found a first order approximation (50), which
is valid when the sQSSA approach (13) is as stated in (53), and in this case they
coincide (Fig. 2A). Moreover, it is valid for high K (i)

M values (conditions (54) and
(55)), where it reduces to the single reaction first order approximation (5), see Fig.
2B. Hence, it extends these two approximations beyond the regions where they
are known to hold. Finally, the first order approximation is valid at high enzyme
concentrations (56), but it is not always accurate if the enzyme concentration is
only moderately high. In this case, the single reaction tQSSA (5) is often a better
approximation (Fig. 2C).

The case of very different affinities was used to derive the first order approxima-
tion (50) using a two-point Padé approximant. However, it is of its own biological
interest as seen for example from the data by Pi and Leary (2004) for carbohydrate
sulfotransferase (NodST) with chitopentaose as substrate (K (1)

M = 23 µM), and
chitobiose as a competing substrate (K (2)

M = 240 µM). Fig. 3 shows that the full
tQSSA (21) approximates the full system very well also in this specific example of
K

(1)
M � K

(2)
M , even when all other approximations fail. For P2 (Fig. 3B) it is seen

that the sQSSA (13) overestimates the transient phase in which mainly P1 (Fig. 3A)
is produced, where after it is accelerated, such that the overall behavior is not only
quantitatively, but also qualitatively wrongly estimated in this example. Curiously,
the single reaction tQSSA (5) estimates P1 well. The reason is the low degree of
competition felt by the first reaction as seen from K̃

(1)
M,0 ≈ 2K

(1)
M � E0, so both
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Figure 3. Also K
(1)
M � K

(2)
M is captured well by the competitive tQSSA (21). Leg-

ends and kinetic parameters for reaction 1 are as in Fig. 1, but K
(2)
M = 240µM,

k2(2) = 19.5 min−1 and S1,0 = S2,0 = E0 = 300µM (ε = 0.0387). R2 values; panel
A: [0.9992, 0.7778, 0.9974, 0.8858]; panel B: [0.9954, 0.7641, 0.8556, 0.5321].

K̃
(1)
M,0 and K(1)

M are negligible compared to E0. This is not true for the second reac-
tion as illustrated in Fig. 3B.

The fractional errors associated with the different approximations are estimated as√
1− R2, where R2 = 1 − ∑

i(yi − ŷi)
2/
∑

i(yi − ȳ)2 represents the goodness
of fit (Kvålseth, 1985; Tzafriri and Edelman, 2004, 2005). Here yi are the data
points extracted from the full system (10), ȳ is the average of yi and ŷi is the fitted
(approximated) value corresponding to yi for each i. R2 = 1 for a perfect fit, lower
R2 value indicates a worse fit, and R2 < 0 represents that the constant ȳ is a better
fit than the approximating curve. It should be remarked thatR2 values must be used
with great care for nonlinear models, and that there exist several definitions of the
R2 value. However, the definition applied here seems to be preferable (Kvålseth,
1985).

Fig. 4A show the fractional errors for different enzyme to substrate ratiosE0/S0, S0 =
S1,0 = S2,0 and for comparable affinities. Our competitive tQSSA (21) gives very
low errors for the full range of ratios, and is consistently better than all the other
approximations. The figure also show that the first order approximation (50) is a
decent fit for all values of E0/S0, but that it is inferior to the competitive sQSSA
(13) at low enzyme to substrate ratios, and to the single reaction tQSSA (5) at high
ratios. Hence, the advantage of the first order approximation (50) is, that we have
an approximation giving reasonable predictions for a wider range of parameters,
rather than an approximation, which is more accurate than the best of the competi-
tive sQSSA (13) and the single reaction tQSSA (5).

When varying the ratio of the affinities K (1)
M /K

(2)
M , we obtain again that the com-

petitive tQSSA (21) is an excellent approximation for all values of this ratio (Fig.
4B), and it is again superior to the other approximations. The fractional errors asso-
ciated with both the competitive sQSSA (13) and the single reaction tQSSA (5) are
almost unchanged for different K (1)

M /K
(2)
M ratios, and for low ratios they are both

comparable to the error related to the first order approximation (50). For high val-
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Figure 4. The fractional errors associated with the different approximations. Panel A shows
the effect of varying the enzyme to substrate ratio E0/S0, where S0 = S1,0 = S2,0, mea-
sured by the fractional errors of P1. Panel B shows the total fractional error, i.e, for the sum
of the fractional errors for P1 and P2, when varying K

(2)
M reflected in the ratio K

(1)
M /K

(2)
M .

Line styles correspond to Fig. 1 with markers: Competitive tQSSA (21) (×); competitive
sQSSA (13) (◦); single reaction tQSSA (5) (♦) and first order approximation (50) (+).
Parameters are as in Fig. 1 except: Panel A: S0 = 5, 15, 25 µM for E0/S0 > 1 and

E0 = 5, 15, 25 µM for E0/S0 < 1. Panel B: K
(2)
M = 2.5, 5, 10, 25, 50, 100, 250 µM. The

points in panel A for E0/S0 = 0.1, 1 and 10 correspond to Figs. 1, 2A and 2B, respectively.

The case K
(2)
M = 25 µM (K(1)

M /K
(2)
M ≈ 1) correspond to Fig. 1.

ues of K(1)
M /K

(2)
M , or more precisely low K

(2)
M values, the first order approximation

breaks apparently down. This is due to large fractional errors with respect to P1,
and is related to the large value of K̃(1)

M,0 compared to K(1)
M . This is not the case for

the low K
(1)
M /K

(2)
M ratio in Fig. 4B, since these are for high K (2)

M values and since
K

(1)
M and S1,0 are of the same magnitude, and hence K̃(2)

M,0 and K(2)
M are of similar

magnitude.

In the special case of identical affinities we saw that our approach should be at least
roughly valid if only K ≤ KM . This last assumption seems to be reasonable, since
if K(1)

M ≈ K
(2)
M , we expect that the kinetic parameters k(i)

1 and k(i)
2 are similar for

the two substrates. This would implyK ≈ k
(i)
2 /k

(i)
1 for the same i and consequently

K / KM . Interestingly, for many metabolic enzymes k2 � k−1, i.e. K � KM

(Atkinson, 1977). This implies that for competing substrates with identical affini-
ties the relation K ≤ KM is even more reasonable, and even K � KM can be
expected, in which case the tQSSA (21) is a very good approximation, as seen
from (30). Based on the above mentioned fact that often k(i)

2 � k
(i)
−1, Bhalla and

Iyengar (1999) use the relation k(i)
−1 = 4k

(i)
2 . Then for identical affinities k(i)

1 =

5k
(i)
2 /K

(i)
M = 5k

(i)
2 /KM , such that

K =
maxi k

(i)
2

mini k
(i)
1

=
maxi k

(i)
2

(5/KM) mini k
(i)
2

=
KM

5

maxi k
(i)
2

mini k
(i)
2

,

from which it is seen thatK ≤ KM unless k(1)
2 and k(2)

2 differ by more than a factor
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(i)
M , to force a

large ε = 0.1005 (ε̄ = 0.0580 from (27)). R2 values: [0.9907, 0.9555, 0.9568, 0.9119].

5. This is not the case for any of the IKK-2 data with K (1)
M ≈ K

(2)
M from Kishore

et al. (2003), nor for carbohydrate sulfotransferase (NodST) with chitotriose and
chitopentaose as substrates (Pi and Leary, 2004). In fact, their kcat (our k(i)

2 ) values
differ by less than a factor 2.

The assumption K ≤ K
(i)
M cannot be expected to hold when K

(1)
M � K

(2)
M , as

illustrated by Fig. 3. Assuming again k(i)
−1 = 4k

(i)
2 , such that k(i)

1 = 5k
(i)
2 /K

(i)
M , then

gives

K =
maxi k

(i)
2

mini k
(i)
1

=
maxi k

(i)
2

5 mini k
(i)
2 /K

(i)
M

≤ K
(2)
M

5

maxi k
(i)
2

mini k
(i)
2

,

so again K ≤ K
(2)
M unless k(1)

2 and k(2)
2 differ by more than a factor 5. On the other

hand

K =
maxi k

(i)
2

5 mini k
(i)
2 /K

(i)
M

≥ maxi k
(i)
2

5(maxi k
(i)
2 )(mini 1/K

(i)
M )

=
K

(2)
M

5
,

such that if K(2)
M > 5K

(1)
M we will have K > K

(1)
M . The parameters in Fig. 3 are

such that K(1)
M < K < K

(2)
M .

Related to the conditionK ≤ K
(i)
M is the difference between ε from (26) and ε̄ from

(27), which can be significant. In Fig. 5 the (inaccurate) expression from (27) gives
ε̄ = 0.0580, which is lower than ε in Fig. 2B where the tQSSA (21) is a reason-
able approximation. But in Fig. 5 the tQSSA (21) does not fit as well as in the
previous figures (R2 = 0.9907), and indeed the correct formula from (26) gives a
significantly higher value ε = 0.1005.

Our results are immediately applicable to, e.g., successive reactions catalyzed by
the same enzyme, such as nonprocessive or distributive double phosphorylation or
dephosphorylation processes, as seen for example in the MAPK cascade (Burack
and Sturgill, 1997; Ferrell and Bhatt, 1997; Zhao and Zhang, 2001; Markevich
et al., 2004). The reaction scheme can be seen as a special case of (2) with P1 = S2
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Figure 6. The tQSSA (21) estimates the development of the product of two succes-
sive reactions catalyzed by the same enzyme well, and the discussion of the valid-
ity of the sQSSA (13), the single reaction tQSSA (5) and the first order tQSSA (50)
apparently carries over to this case. Legends are as in Fig. 1, and parameters as in
Fig. 2 except for the initial substrate concentrations, which are S2,0 = 0 in all pan-
els and: In A: S1,0 = 100 (R2 = [1.0000, 0.9988, 0.5759, 0.9949]). In B: S1,0 = 10
(R2 = [0.9984,−0.3307, 0.9973, 0.9931]). E0 = 5. ε = 0.0832. In C: S1,0 = 100
(R2 = [0.9997,−0.0351, 0.9986, 0.9076]).

and is summarized as

S1
E−→ S2

E−→ P,

where it is usually assumed that at the beginning only S1 is present. Fig. 6 shows
that the results presented here yield a good approximation (R2 > 0.998 in the three
examples). This is in great contrast to the competitive sQSSA (13), which in both
panels B and C of Fig. 6 gives negative R2 values.

However, it should be remarked that our theoretical investigation of the validity
of the tQSSA does not work in the case of successive reactions. The problem is
that there is no S2 at time t = 0, and hence the timescales can not be found fol-
lowing Segel (1988) because the definition of the transient phase no longer holds.
Nevertheless, it seems like the conclusions concerning the validity of the first order
approximation from above carry over to this scenario (compare the three panels of
Fig. 2 with the panels of Fig. 6). We will present the investigation of such reactions
in another paper.

Finding approximations extending the classical sQSSA approach for complex re-
actions such as successive reactions, open systems, loops such as the Goldbeter-
Koshland switch (Goldbeter and Koshland, 1981), feedback systems etc. should be
of great interest for further improving investigations and simulations of such reac-
tions in vivo, where the sQSSA description breaks down. The alternative is to sim-
ulate each step of the reaction, i.e., the full system of ODEs, but for larger systems
this can quickly become very computer expensive. Moreover, all of the (often un-
known) kinetic parameters are needed for a full simulation, while a QSSA usually
needs only KM and Vmax values. Furthermore, the QSSA can provide theoretical
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insight which is hard to gain from the full system, for example in the way the clas-
sical sQSSA (3) explains the saturation curve. We expect that the ideas presented
here can be used to extend the tQSSA to the above (and, hopefully, other and more
complex) reactions.
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A Existence and uniqueness of the solution for the complexes

We show the existence and uniqueness of a solution to the system (18) with 0 <
Ci < min{S̄i, E0}. First we note that (18) implies

K
(1)
M C1

S̄1 − C1
=

K
(2)
M C2

S̄2 − C2
,

from which it is seen that 0 < C1 < S̄1 if and only if 0 < C2 < S̄2.

Substituting (18b) into (18a) leads to the following equation in C1

C1 = E0 −
(

E0 − C1(1 +
K

(1)
M

S̄1 − C1
)
)(

1 +
K

(2)
M

S̄2 − (E0 − C1(1 +
K

(1)
M

S̄1−C1
))

)

(A.1)

and C2 can then be found from (18b).

Solving (A.1) is equivalent to finding roots of the third degree polynomial

ψ1(C1) = −(K
(1)
M −K

(2)
M )C3

1

+
[

(E0 +K
(1)
M + S̄1)(K

(1)
M −K

(2)
M )− (S̄1K

(2)
M + S̄2K

(1)
M )

]

C2
1 (A.2)

+
[

− E0(K
(1)
M −K

(2)
M ) + (S̄1K

(2)
M + S̄2K

(1)
M ) +K

(2)
M (E0 +K

(1)
M )

]

S̄1C1

− E0K
(2)
M S̄2

1 .

An analogous polynomial ψ2 for C2 can be found by interchanging the indexes 1
and 2 in (A.2), because of the symmetry of the system (17). Rearranging the terms,
ψ1 can also be written

ψ1(C1) =K
(2)
M (C1 − E0)

(

S̄1 − C1

)2

+K
(1)
M C1(C1 +K

(2)
M + S̄2 − E0))

(

S̄1 − C1

)

+ (K
(1)
M C1)

2.
(A.3)
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From (A.2) we see that ψ1(0) < 0, and from (A.3) that ψ1(S̄1) > 0. Hence, ψ1 has
at least one root between 0 and S̄1, which shows existence.

When K(1)
M 6= K

(2)
M , we can without loss of generality assume that K (1)

M > K
(2)
M

because of the symmetry of (2). In this case lim
c→±∞

ψ1(c) = ∓∞, and we see that

ψ1 has one negative root and one root larger than S̄1. Hence, there is a unique root
C1 ∈ (0, S̄1), which also solves (A.1). This implies the uniqueness of the solution.

When K(1)
M = K

(2)
M = KM , ψ1 becomes a second degree polynomial. Because of

(A.2) we have lim
c→∞

ψ1(c) = −∞, so the second root is larger than S̄1. Hence, also

in this case we have only one root between 0 and S̄1, given by (20).

The approach to solving (18) taken above helps the theoretical reasoning, but is
practically cumbersome, since we need to find the largest K (i)

M . In addition, the
formula (18b) for finding C2 is numerically imprecise when both C1 and S̄1 are
small. Both these problems can be overcome by finding the root of the polynomial
ψ2 for C2; ψ2 has a single root in (0, S̄2) as a consequence of the uniqueness result.

B Validity of the first order approximation of the root of ψi

To investigate the validity of (50) we evaluate ψ1 from (19) at C1 given by (49) This
yields the remainder

R1 := ψ1(C1) = −E2
0 S̄

2
1K

(2)
M

[

K
(2)
M (E0 +K

(1)
M ) +K

(2)
M S̄1 +K

(1)
M S̄2

]−3×
[

K
(1)
M K

(2)
M

(

S̄1S̄2(K
(1)
M +K

(2)
M ) + E0(S̄1K

(2)
M + S̄2K

(1)
M )

)

+

S̄1(K
(2)
M )3(S̄1 +K

(1)
M ) + S̄2(K

(1)
M )3(S̄2 +K

(2)
M )

]

. (B.1)

The term "remainder" is used, since if R1 were zero, then C1 given by (49) would
be a true root, not only an approximation. To have a good approximation of the true
root, |R1| must be small compared to typical sizes of ψ1 such as

|ψ1(0)| = E0K
(2)
M S̄2

1 and ψ1(S̄1) = (K
(1)
M S̄1)

2.

Similar conditions should hold for C2 and ψ2, but calculations and results are iden-
tical, and we show them only for C1 in the following.

When (14) holds we expect (50) to hold, and then it reduces to the sQSSA (13).
In this case the terms involving E0 in R1 are negligible and the condition |R1| �
|ψ1(0)| implies

E0

(S̄1 + K̃
(1)
M )2

× K
(1)
M

K
(2)
M



S̄2
K

(1)
M

K
(2)
M

+ S̄1
S̄2 + K̃

(2)
M

S̄1 + K̃
(1)
M



� 1, (B.2)

where we have introduced the so-called apparent Michaelis constants (see, e.g.,
Schnell and Mendoza (2000))

K̃
(i)
M = K

(i)
M (1 + S̄j/K

(j)
M ), j 6= i. (B.3)
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Similarly |R1| � ψ1(S1) can be restated as

(

E0

S̄1 + K̃
(1)
M

)2




S̄2

K
(2)
M

+
S̄1

K
(1)
M

S̄2 + K̃
(2)
M

S̄1 + K̃
(1)
M



� 1. (B.4)

These conditions are both clearly satisfied by (14) as long as S̄i is not much greater
than K(i)

M , and K(1)
M and K(2)

M are of similar magnitude.

At high enzyme concentrations, (50) is a good approximation whenever K (1)
M ≈

K
(2)
M , as stated in (35), which stimulates the assumption

E0 +K
(i)
M � S1,0 + S2,0, i = 1, 2. (B.5)

Our condition |R1| � |ψ1(0)| then becomes

E0

(E0 + K̃
(1)
M )2

× K
(1)
M

K
(2)
M



S̄2
K

(1)
M

K
(2)
M

+ S̄1
E0 + K̃

(2)
M

E0 + K̃
(1)
M



� 1, (B.6)

which is guaranteed by (B.5) if K (1)
M and K(2)

M are of similar magnitude.

The other condition, |R1| � ψ1(S1), is now

(

E0

E0 + K̃
(1)
M

)2




S̄2

K
(2)
M

+
S̄1

K
(1)
M

E0 + K̃
(2)
M

E0 + K̃
(1)
M



� 1. (B.7)

This is on the other hand not guaranteed by (B.5); we must require, for example,
that

K
(i)
M � Si,0. (B.8)

Then (50) reduces to the single reaction first order tQSSA (9).

At high enzyme concentrations, but low S̄i and K(i)
M values, we can estimate the

error that we make by using the first order tQSSA. The remainder R1 from (B.1)
is negative, which implies that (49) is an underestimate. The relative error errrel,
given as the actual error err ≤ S̄1 − C1 divided by the maximal possible error S̄1,
is then bounded by

errrel ≤
S̄1 − C1

S̄1
=

K
(1)
M (1 + S̄2/K

(2)
M ) + S̄1

K
(1)
M (1 + S̄2/K

(2)
M ) + S̄1 + E0

≤ K̃
(1)
M,0 + S1,0

K̃
(1)
M,0 + S1,0 + E0

,

which is indeed small for large E0, say

E0 � K̃
(i)
M,0 + Si,0, i = 1, 2. (B.9)

Hence, only for an intermediate range of large, but not too large, values of E0 is
the first order approximation bad. When K (1)

M ≈ K
(2)
M , we can use (B.5) instead

of (B.8) or (B.9) as a criterion for the first order approximation to be near the full
tQSSA in agreement with (35).
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THE EFFECT OF NOISE ON β-CELL BURST PERIOD

MORTEN GRAM PEDERSEN∗ AND MADS PETER SØRENSEN∗

Abstract. Bursting electrical behavior is commonly observed in a variety of nerve and endocrine cells,
among these in electrically coupled β-cells located in intact pancreatic islets. However, individual β-cells usually
display either spiking or very fast bursting behavior, and the difference between isolated and coupled cells has
been suggested to be due to stochastic fluctuations of the plasma membrane ions channels, which are supposed
to have a stronger effect on single cells than on cells situated in clusters (the channel sharing hypothesis). This
effect of noise has previously been studied based on numerical simulations. We show here how the application of
two recent methods allows an analytic treatment of the stochastic effects on the location of the saddle-node and
homoclinic bifurcations, which determine the burst period. Thus, the stochastic system can be analyzed similarly
to the deterministic system, but with a quantitative description of the effect of noise. This approach supports
previous investigations of the channel sharing hypothesis.

Key words. bursting oscillations, stochastic Melnikov method, stochastic bifurcations

AMS subject classifications. 37H, 34F05, 60H10, 60H30, 92C

1. Introduction. The pancreatic β-cells are crucial for maintaining the blood sugar
levels in a narrow range. When subjected to glucose the β-cells produce and secrete insulin,
and the amount of secreted insulin correlates with the intracellular calcium levels [10].

In situ the β-cells are electrically coupled in the islets of Langerhans where they show
bursting electrical activity with burst periods of tens of seconds. Bursting consists of the
membrane potential alternating between a silent hyperpolarized phase, and an active phase
of spiking rising from a depolarized plateau. During the active phase, calcium enters the
cells, raises the intracellular Ca2+ concentration and triggers insulin secretion. The plateau
fraction, i.e., the ratio of the active phase duration to the burst period, is decisive for the
intracellular Ca2+ concentrations and for the amount of secreted insulin [2].

However, early recordings of single, isolated pancreatic β-cells showed that the membrane
potential exhibits noisy spiking activity [19], and although it was later found that only ap-
proximately one third of isolated cells spike, while half of the single cells are fast bursters
with burst period less than 5 seconds [11], there is a fundamental difference in the be-
havior of single and electrically coupled cells. Importantly, this difference is reflected in
intracellular calcium levels [24].

It was early suggested that stochastic fluctuations of ion channels in the plasma membrane
were responsible for disrupting the bursting behavior, and transform the isolated cells to
spikers, but that the effective sharing of the channels by electrically coupled cells, averages
the noise and let the bursting phenomena appear [3]. This was analyzed by Chay and Kang
[4] and Sherman, Rinzel and Keizer [21] using mathematical modeling. The burst period
and plateau fraction in the deterministic version of the Sherman-Rinzel-Keizer model was
later analyzed by bifurcation analysis and Melnikov’s method [16].

De Vries and Sherman [6] studied the electrical behavior of coupled pancreatic β-cells
with focus of the beneficial influence of noise. It had previously been shown that weak
coupling between identical, spiking cells can induce bursting [20], and it is now known that
heterogeneous but spiking cells start to burst when coupled with physiologically realistic
coupling strengths [7]. The main result presented in [6] is that noise dramatically increases
the interval of coupling strengths for which bursting is seen for identical cells, and this
observation was supported by analyzing a bifurcation diagram. It was later shown that the
beneficial influence is more likely through heterogeneity masqueraded as noise, and that the
explanation of the enhancement of emergent bursting must be modified accordingly [14].

The investigations of the effect of noise on beta-cells have so far been done partly by nu-

∗Department of Mathematics, Technical University of Denmark, Matematiktorvet Building 303, 2800 Kgs.
Lyngby, Denmark (m.g.pedersen@mat.dtu.dk, m.p.soerensen@mat.dtu.dk).
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merically solving the stochastic differential equations (SDEs) describing the system, partly
by analyzing deterministic bifurcation diagrams [1, 4, 6, 14, 21]. The transition from the
SDEs to the bifurcation analysis was rather weakly motivated from a theoretical point of
view.

We look for a more natural deterministic description of the stochastic system with the aim
to characterize how noise shortens or interrupts bursting. This is based on the ideas from
Pernarowski et al. [16] using a stochastic version of a polynomial, minimal model [15].

For the transition from the silent to the active phase, we consider the distribution of the
solution over time, i.e., we follow the probability that the system is in a certain area of state
space over time. The time evolution of the distribution is described by the Fokker-Planck
Equation (FPE), which is a partial differential equation. Since bifurcation analysis is better
performed on a system of ordinary differential equations (ODEs), and the FPE is computer
expensive to solve, we assume that the distribution solving the FPE, and, hence, describing
the system, is Gaussian at any point in time. Doing this, we obtain a set of ODEs describing
how the the distribution evolves in time. This approach is based on work on models of
noisy, spiking neurons [18,22] and the ODEs describe the evolution of the mean and lower
order moments of the assumed Gaussian distribution. A similar approach [12,13] assumed
a Gaussian-like distribution around the deterministic solution, and was used to describe a
neural burster [13]. For the transition out of the active phase we use a stochastic Melnikov
method [9], thus allowing us to use the ideas from [16] in a stochastic setting.

We find that noise shortens both the active and the silent phase, but has a stronger effect
on the exit from the active phase than from the silent phase. Thus, we explain why simula-
tions show that noise shortens the burst period and can transform normal bursters into fast
bursters. This supports the idea that stochastic fluctuations in membrane ion channels can
disrupt normal bursting and channel sharing restore it [3, 4, 21].

2. The β-cell model with noise. Pernarowski [15] introduced a minimal, determin-
istic, polynomial model capable of modeling both the spiking and the bursting phenomena
seen in β-cells. The fact that the involved functions are polynomials will be of importance
when describing the moments of the distribution [22]. The model is

d u

dt
= f(u)− w − z, (2.1a)

d w

dt
= g(u)− w + σΓt, (2.1b)

d z

dt
= ε(h(u)− z), (2.1c)

where we have added the white noise term Γt to include noise, the strength of which is given
by σ. f and g are third order polynomials, while h is a first order polynomial. u mimics
the membrane potential of the cell, while w is a fast gating variable. We assume that the
ion-channel controlled by w is fluctuating stochastically, and hence we add the noise term
to this equation. z is on the other hand a slow gating variable due to the small number ε.
Thus, we have a fast subsystem (u, w) responsible for the spikes during an active phase of
bursting, and a slow z controlling the transition between the silent and active phases.

Following [15] we differentiate (2.1a) with respect to t and then transform system (2.1) to

d2u

dt2
+ F (u)

d u

dt
+ G(u) + z = −ε(h(u)− z)− σΓt, (2.2a)

d z

dt
= ε(h(u)− z), (2.2b)
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FIGURE 2.1. Numerical simulations of bursting with different noise strengths. The left panels show time
series of the membrane potential u, while the right panels show the corresponding projection on the z − u plane
and the deterministic bifurcation diagram from figure 2.2. The upper panels show the deterministic case σ = 0,
in the center panels σ = 0.1, and in the lower panels σ = 0.3. Other parameters are here and through out the
manuscript: a = 0.25, û = 1.6, β = 4, uβ = −0.954, ε = 0.0025, and η = 0.7.

or, equivalently,

d u

dt
= y, (2.3a)

d y

dt
= −F (u)y −G(u)− z − ε(h(u)− z)− σΓt, (2.3b)

d z

dt
= ε(h(u)− z), (2.3c)

where

F (u) = a
(

(u− û)2 − η2
)

, (2.4)

G(u) = u3 − 3(u + 1), (2.5)

h(u) = β(u− uβ). (2.6)

With appropriate parameters, the system shows a bursting pattern, but increasing the strength
of the noise shortens the bursts, see figure 2.1, left panels.

The deterministic system (σ = 0) can be analyzed from a bifurcation diagram of the fast
subsystem with z as the bifurcation parameter [15, 17]. This is done by setting ε = 0. The
fixpoints of the fast system falls on the Z-shaped curve G(u, z) = 0, see figure 2.2. The fast
system is stable for low z values, but increasing z, this stability is lost in a Hopf-bifurcation
(HB). The fixpoints on the middle branch of the Z-shaped curve are saddle-points, while
they are stable on the lower branch. The middle-branch meets the upper and lower branch
in saddle-node bifurcations (SN). The Hopf-bifurcation gives rise to stable periodic solu-
tions around the unstable fixpoints on the upper branch, but these periodics disappear in a
homoclinic bifurcation (HC) for sufficiently large z. The mechanism underlying bursting is
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FIGURE 2.2. Bifurcation diagram of the fast subsystem with z as the bifurcation parameter. Thin, full curves
indicate stable fixpoints; thin, broken curve correspond to unstable fixpoints and the thick, full curve shows the
extrema of periodic solutions. The dotted curve shows the z-nullcline, d z

dt
= 0. A simulation of the deterministic

system is projected onto the z − u plane for comparison. See the text for more details.

based on the bistability between the stable fixpoints on the lower branch and the stable pe-
riodics for a range of z-values. When we reintroduce the slow variation of z for 0 < ε � 1,
we can explain bursting. When the system is near the lower branch, it moves slowly to the
left since u is low and thus d z

dt < 0 here. This continues until the stable branch disappears
in the left saddle-node bifurcation. The system now leaves the lower branch (silent phase)
and goes to the stable periodics (active phase), where u is high and d z

dt > 0. Hence, the
system now moves to the right until it meets the homoclinic bifurcation and the stable pe-
riodics disappear. The system then leaves the active phase and settles on the lower branch
and the scenario is repeated.

This explanation gives a hint on how noise shortens the bursts. The random perturbations
to the system can make it leave the silent as well as the active phase prematurely when the
system is randomly kicked across the corresponding thresholds. When the noise intensity
increases, this will happen more often since the kicks are stronger. In figure 2.1, right
panels, we see that in general, the noisy system leaves the active phase prematurely, while
the early exit from the silent phase is less pronounced. We now aim at understanding this
observation better.

3. Location of the left saddle-node bifurcation. The exit from the silent phase hap-
pens near the left saddle-node bifurcation, see figure 2.2. We expect that for increasing
noise, the bifurcation will effectively happen for larger z-values, since the noise will tend
to push the system across the threshold and into the active phase prematurely.

To analyze this, we look at the distribution of the system under all possible realizations of
the noise. Since the fluctuations of u and w are rather small during the active phase, we
expect that for fixed z (ε = 0) the distribution will be approximately Gaussian. This allows
us to use the so-called G-method [22], which is a development of the method from [18].

The idea is that a Gaussian distribution is described completely by its mean and covariance
matrix. Hence we follow, for fixed z, the means ū = 〈u〉 and ȳ = 〈y〉, the variances
Su = V ar(u) and Sv = V ar(y) and the covariance C = Cov(u, y).
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Following [22], we average (2.3a), (2.3b) and the time derivative of the (co)variances
(u− ū)2, (y− ȳ)2 and (u−ū)(y− ȳ) using Itô’s formula and the fact that the odd moments
vanish for a Gaussian distribution. To illustrate the procedure, we derive the equation for
C in greater details as follows.

d C

dt
=

d

dt

〈

(u− ū)(y − ȳ)
〉

=
〈 d

dt
[(u− ū)(y − ȳ)]

〉

=
〈

(u− ū)
d (y − ȳ)

dt

〉

+
〈

(y − ȳ)
d (u− ū)

dt

〉

=
〈

(u− ū)(−F (u)y −G(u)− z − σΓt)
〉

+
〈

(y − ȳ)2
〉

= −
〈

(u− ū)F (u)y
〉

−
〈

(u− ū)G(u)
〉

+ Sy.

(3.1)

The first term is found from the Taylor polynomial of F around ū,
〈

(u− ū)F (u)y
〉

=
〈

(u− ū)
(

(y − ȳ) + ȳ
)(

F (ū) + F ′(ū)(u− ū) + 1
2F ′′(ū)(u− ū)2

)

〉

= F (ū)C + F ′(ū)ȳSu + a
〈

(u− ū)3(y − ȳ)
〉

,

(3.2)

where we have again used that the odd moments vanish. Finally, the last term of (3.2) is
equal to 3aSuC by the Gaussian joint variable theorem. The second term of (3.1) is treated
similarly.

In summary, we obtain the equations,

d ū

dt
= ȳ, (3.3a)

d ȳ

dt
= −F (ū)ȳ −G(ū)− z −

(

F ′′(ū)ȳ + G′′(ū)
)Su

2
− F ′(ū)C, (3.3b)

d Su

dt
= 2 C, (3.3c)

d Sy

dt
= 2

[

− F (ū)Sy −
(

F ′(ū)ȳ + G′(ū)
)

C
]

+ σ2 − 6aS2
u, (3.3d)

d C

dt
= Sy −

(

F ′(ū)ȳ + G′(ū)
)

Su − F (ū)C − 3aSuC. (3.3e)

These are exact equations for the means and (co)variances due to F and G being polyno-
mials [22]. Since the system (3.3) is deterministic, we can perform bifurcation analysis
on these equations using z as the bifurcation parameter. Starting from the silent phase
ū ≈ −1, ȳ = Su = Sy = C = 0, we find a branch of stable fixpoints similar to the
lower branch of Fig. 2.2 (not shown). This branch ends in a saddle-node bifurcation as for
the deterministic case. However, the rest of the bifurcation structure breaks down, and the
system (3.3) has, e.g., fixpoints with negative Sy values, which are of course impossible
solutions since Sy is a variance. We believe that this break down is because the assumption
of a Gaussian distribution holds only in the silent phase, and hence, the system (2.3) is no
longer described by system (3.3) after leaving the lower branch. Nevertheless, the saddle-
node where the silent phase branch ends can be followed in a two parameter bifurcation
diagram with σ as the other bifurcation parameter, see Fig. 3.1. For increasing noise inten-
sity σ the saddle-node moves to the right, indicating that the noisy system leaves the silent
phase earlier for greater noise strength. This corresponds well to direct simulations of the
z-value for which the noisy system (2.2) leaves the silent phase (Fig. 3.1).

4. Location of the homoclinic bifurcation. To follow the exit from the active phase
for different noise intensities, we apply a stochastic Melnikov method. The deterministic
Melnikov technique was first applied to β-cell models by Pernarowski et al. [16] and for
the model we use here in [15].
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FIGURE 3.1. Two-parameter bifurcation diagram showing the location of the saddle-node bifurcation where
the silent phase branch for system (3.3) ends (broken curve). This bifurcation corresponds to the left saddle-node
bifurcation in figure 2.2. Direct simulations of the noisy system (2.2) shows that the prediction from (3.3) is
faithful, since the z values for which the system (2.2) leaves the silent phase (measured as u passing through the
Poincaré section u = −0.55 from below) agree well. The bars are mean values of z ± one standard deviation
for a simulation until t = 10000. We have shifted the broken curve 0.03 to the left, since the deterministic version
overestimates the z-value by this amount.

The Melnikov function is used to determine the distance between the stable and unstable
manifolds of a saddle-point for systems, which are perturbations of a Hamiltonian system
with a homoclinic saddle-point. In the deterministic case of the β-cell model, the active
phase ends in a homoclinic bifurcation, which happens exactly when the stable and unstable
manifolds of the saddle-point coincide, i.e., when the Melnikov function is zero.

We write (2.3) with ε = 0 as

d u

dt
= y, (4.1)

d y

dt
= −G(u)− z + [−F (u)y − σΓt], (4.2)

from which it is seen that the term in the square brackets is a perturbation of the Hamilto-
nian system d2u

dt2 + G(u) + z = 0, which has a saddle-point (as(z), 0) with a homoclinic
orbit (us, ys) [5, 15]. The Hamiltonian is H(p, u) = 1

2p2 + V (u; as(z)) with potential

V (u, as) =
1

4
(u− as)

2[u2 + 2asu + 3a3
s − 6]. (4.3)

The homoclinic orbit can then be written as

(us, ys) = (us,±
√

−2V (us, as(z)) ). (4.4)

For the deterministic case, σ = 0, the square bracket in (4.1) is indeed small and the
Melnikov function is [5, 15]

Mdet = −a
[

e2(as(z))(û2 − η2) + e1(as(z))û + e0(as(z))
]

, (4.5)
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where

e0(as) = −12

5

√
3(a4

s − 2a2
s − 4)

√

1− a2
s + 6

√
2as(a

2
s − 3)∆(as), (4.6)

e1(as) = 6
√

3as(3− a2
s)

√

1− a2
s + 3

√
2(a2

s − 3)(a2
s + 1)∆(as), (4.7)

e2(as) = 4
√

3
√

1− a2
s + 2

√
2as(a

2
s − 3)∆(as), (4.8)

∆(as) = cos−1(2as/
√

6− 2a2
s). (4.9)

We have changed sign of Mdet compared to [15] such that Mdet > 0 when the unstable
manifold is outside the stable manifold of the saddle-point [23].

The Melnikov function is related to the phase space flux, which is a measure of the transport
across the pseudo separatix approximating the separatix of the Hamiltonian system [23].
For the β-cell model, we are interested in the transport from the inside to the outside of the
pseudo separatix, since this will terminate the active phase. The flux is given by the area of
the turnstile lobe [23], and to first order it is found as

φdet ≈
∫ t2

t1

M+
detdt = (t2 − t1)M

+
det, (4.10)

since Mdet does not depend on t. Here and in the following M+ = max{0, M} is the
positive part of M , and t1 and t2 are the time points that define the lobe. Note that as
long as Mdet < 0, i.e., the unstable manifold lies inside the unstable manifold, φdet = 0
indicating that there is no transport (flux) from inside to outside the separatix, i.e., the
system is trapped. For the beta-cell model it then follows the limit cycle characterizing the
active phase, see Fig. 2.2.

Another related variable is the average phase space flux. To first order it is approximated
by the flux factor given by [9]

Φdet = lim
T→∞

1

2T

∫ T

−T

M+
detdt = M+

det. (4.11)

When 1 � σ > 0 in (4.1), we expect that the square bracket in (4.1) is still small, and that
the stochastic Melnikov method can be applied. This approach uses a Melnikov process
instead of the Melnikov function [9]. It is given by

Mstoch(t) = Mdet + σΞt, (4.12)

where Ξt is a stochastic process with Gaussian distribution in the case of white noise per-
turbations Γt, which is the case considered here for the β-cell model. Ξt has mean zero
and variance

σ2
Ξ =

∫ ∞

0

|H(k)|2dk, (4.13)

where H(k) =
∫

R
h(t)e−iktdt is the Fourier transform of h(t) = ys(−t). For the Hamil-

tonian system (4.1) ys is odd, and hence, also h and H are odd. By Parseval’s equation and
(4.4) we then get

σ2
Ξ = 1

2

∫

R

|H |2 = 1
2 2π

∫

R

|h|2 = 2π

∫ ∞

0

|ys|2 = 2π

∫ bs

as

√

−2V (u, as(z))du, (4.14)

where bs = −as +
√

6− 2a2
s is the largest zero of V , corresponding to the point (bs, 0) on

the separatix (us, ys) furthest from the saddle-point [5]. Using standard tables we get the
following expression from (4.3)

σ2
Ξ =

√
2π

(

2
√

6− 6a2
s + as(a

2
s − 3)(π − 2 sin−1 2as

√

6− 2a2
s

)
)

. (4.15)
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The saddle-point as = as(z) can be determined analytically. Thus, we have a complete
description of the Melnikov process (4.12).

The unstable and stable manifolds of the saddle-point intersect when Mstoch(t0) changes
sign and becomes positive, and then the system can escape from the inside of the pseudo-
separatix. Hence, we expect that the probability of terminating the active phase at t0 is
proportional to the probability Pr(Mstoch(t0) > 0).

Now, X = Mstoch(t0)−Mdet

σσΞ

∼ N(0, 1) is a standard Gaussian variable, so the probability

of ending the active phase at t0 is roughly proportional to Pr(X > −Mdet

σσΞ

). It seems plau-
sible that we need at least a certain probability α in order to effectively end the active phase
during a spike period, and there seems to be no a priori reason why this probability should
depend on σ. Note that for increasing σ and Mdet < 0, the probability Pr(X > −Mdet

σσΞ

)
increases (for fixed z, and hence, Mdet and σΞ), such that there is a higher probability of
ending the active phase prematurely for higher noise strengths as expected (see Fig. 2.1).
In the deterministic limit σ → 0, this probability is either 0 (for Mdet < 0) or 1 (for
Mdet > 0) in accordance with the above observations for the deterministic scenario.

Continuing this idea, we look for the z value for which the active phase terminates. This
is a stochastic event, but on average we expect it to be closely related to the probability
discussed above. Since the relation Pr(X > −Mdet

σσΞ

) = α determines a fixed −Mdet

σσΞ

,
we get that for larger σ, a larger value of −Mdet/σΞ will be needed for the system to
effectively leave the active phase. −Mdet/σΞ is a decreasing function of z (Fig. 4.1), so
the escape from the active phase will happen before.

These considerations are supported by numerical simulations, which also confirm that the
end of the active phase on average happens for a fixed value of −Mdet

σσΞ
≈ 0.45 (Fig. 4.1),

corresponding to Pr(X > −Mdet

σσΞ

) ≈ 0.32. However, for very low or high σ this is not
true. For high σ, the reason is that the system enters the active phase at z > 1, e.g., z ≈ 1.1
for σ = 0.3 (Fig. 3.1). Hence, there is a lower limit on the z value for which the escape
can occur, and thus, the average value will be higher than predicted by the considerations
above. For high σ we are near the case where Mdet = 0, and hence the considerations
above might break down in this deterministic limit, especially considering the probability
considerations. Moreover, the Melnikov approach predicts a too large z-value for which
the system leaves the active phase, even for the deterministic case. This imprecision could
be more important for low noise strengths.

The instant flux

φstoch ≈ M+
stoch = (Mdet + σΞt)

+ (4.16)

is at every time t a truncated normal distribution. It has mean equal to the (nonrandom)
flux factor Φstoch given by [9]

Φstoch = Mdet + σσΞf(−Mdet/(σσΞ))−MdetF (−Mdet/(σσΞ)), (4.17)

where f = 1√
2π

e−z2/2 is the standard Gaussian density, and F (z) =
∫ z

∞ f(x)dx is the

corresponding distribution function. We remark that Φstoch → M+
det = Φdet for σ → 0.

However, it is the flux during a finite interval that is relevant for the transition out of the
active phase. This finite time flux varies randomly, and hence the mean flux Φstoch needs to
be held against the variance of φstoch in order to determine when the system escapes from
the active phase, in the same spirit as for Mstoch above. The variance of φstoch is given by

V ar (φstoch) =

(σσΞ)2

[

(

1 +
(Mdet

σσΞ

)2
)(

1− F
(

− Mdet

σσΞ

)

)

+
Mdet

σσΞ
f
(

− Mdet

σσΞ

)

−
(

f
(

− Mdet

σσΞ

)

+
Mdet

σσΞ

(

1− F
(

− Mdet

σσΞ

)

)

)2
]

, (4.18)
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FIGURE 4.1. Stochastic escape from the active phase is explained by the condition Pr(X > −
−Mdet

σσΞ

) ≈

0.32 for X ∼ N(0, 1). This corresponds to −Mdet

σσΞ

≈ 0.45 (horizontal, black line). The decreasing curves

are −Mdet

σσΞ

calculated for different z-values using (4.5) and (4.15) for different values of σ: 0.3 (dashed, black
curve), 0.15 (dashed, grey curve), 0.1 (full, black curve), 0.075 (full, grey curve), 0.05 (dash-dotted, black
curve), 0.01 (dash-dotted, grey curve). Each of the dotted vertical lines indicate for a value of σ (from left to
right: σ = 0.3, 0.15, 0.1, 0.075, 0.05, 0.01) the mean value of a series of z values for which the system left the
active phase, defined as passing from above to below u = −0.8, in a simulation of system (2.3) until t = 40000.
For comparison, the full, increasing curve is the deterministic Mdet. Note that Mdet does not pass through
zero at the z value (◦) for which the deterministic system leaves the active phase. This mismatch between the
homoclinic bifurcation and the simulated escape from the active phase is also seen in Figs. 2.1 and 2.2.

and it is readily seen that V ar(φstoch) → 0 for σ → 0.

From simulations, it again appears that the end of the active phase happens for a roughly
constant value of Φstoch/

√

V ar(φstoch)
)

≈ 0.182 (Fig. 4.2). Thus, as seen above for the
Melnikov process, the related approach using phase space flux predicts that the exit from
the active phase occurs for a fixed value of the standardized variable φstoch−Φstoch√

V ar(φstoch)
.

5. Discussion. We have shown that the escape from the silent as well as from the
active phase of the noisy β-cell model can be studied analytically. For the silent phase
we used a collective coordinate approach by assuming a Gaussian distribution and the G-
method [18, 22]. We could then follow the saddle-node bifurcation at which the silent
phase terminates as the noise strength σ varies (Fig. 3.1). For the active phase we used
a stochastic Melnikov approach [9], which is new in the context of noisy bursting. We
gave an explanation of why a fixed value of −Mdet

σσΞ

would predict the z value, for which
the system would leave the active phase for different values of σ. The value of Pr(X >
−−Mdet

σσΞ

) ≈ 0.32 is not obvious, and it should be interesting to see if it holds for other
stochastic systems that are nearly Hamiltonian.

Noise has a bigger influence on the exit from the active phase than on the escape from the
silent phase. However, the plateau fraction is roughly unchanged, since a faster escape from
the active phase corresponds to the system entering the silent phase later and vice versa.
This is in agreement with the fact that although single cells have shorter burst periods, the
plateau fraction is similar to that of intact islets [11].
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FIGURE 4.2. Stochastic escape from the active phase is explained by Φstoch/V ar(φstoch) ≈ 0.182
(horizontal, black line). The thick curves show Φstoch/V ar(φstoch) with the same legends and range of σ
values as in Fig. 4.1. They were calculated from (4.15), (4.17) and (4.18). The full curve is Mdet and vertical
lines are means of simulated z values as in Fig. 4.1.

Assuming that single cells and small clusters of β-cells have shorter burst periods due to
noise, the channel sharing hypothesis can explain why. As seen in both simulations as
well as the treatment presented here, the stronger the noise intensity, the lower the burst
period. If we assume that the cells are coupled with infinite coupling strength (the super-
cell hypothesis) [4, 21], then in larger groups of cells, the noisy channels will be shared
among several cells, and the individual cell would feel smaller fluctuations than if it was
isolated, leading to longer burst periods. Extending the methods presented here to groups
of coupled cells with finite coupling strength would be interesting in an attempt to gain
deeper insight in previously published results [1, 6, 14].

All simulations and bifurcation diagrams were done using XPPAUT [8].
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Summary

The main goal of computational biology, and in particular of Systems Biology, is to

define a comprehensive model that can accurately represent the experimental data and

serve as a tool to generate and test hypotheses. Consequently, a high accuracy of the

model is necessary in order to give a satisfactory prediction, both by a qualitative and

quantitative point of view. Enzyme reactions play a pivotal role in intracellular signal

transduction. Many enzymes are known to possess Michaelis-Menten (MM) kinetics

and the MM approximation is often used when modeling enzyme reactions. However,

it is known that the MM approximation is only valid at low enzyme concentrations,

a condition not fulfilled in many in vivo situations. Thus, using the MM approxi-

mation with its parameter values obtained from in vitro experiments will often lead

to false conclusions when simulating in vivo systems. Recently several other mathe-

matical approaches, such as the total quasi steady-state approximation (tQSSA), have

been developed for enzymes with MM kinetics. These new approximations are valid

not only whenever the MM approximation is, but moreover in a greatly extended pa-

rameter range. Starting from a single reaction and arriving at the mitogen activated

protein kinase (MAPK) cascade, we give several examples of biologically realistic

scenarios where the MM approximation leads to quantitatively as well as qualitatively

wrong conclusions, and show that the tQSSA improves the accuracy of the simulations

greatly. Moreover, we discuss the use of approximations in reverse engineering and

the biological importance of our findings.

Introduction

Every living cell responds to external stimuli, like hormones, ions, heat shock, etc.,

which are transduced by a complex intracellular molecular network. When an external

ligand binds a plasma membrane receptor, intracellular second messengers interact-

ing with membrane receptors are activated, and by means of biochemical reactions
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transduce the signal.

In the last decade many mathematical models have been formulated to investigate the

behavior of complex intracellular biochemical networks. Many of those are based on

the well-studied MAPK cascade (see for example [1–5]), and although not crucial for

the results presented here, this ubiquitous signalling pathway will be given special

attention in the following.

The aim of such modeling (which is an integral part of the ’Systems Biology’ large

scale project) is roughly twofold: to reproduce and study some particular phenom-

ena observed experimentally (like bistability, oscillations, ultrasensitivity, hysteresis,

etc.) and to investigate the properties of these networks as information processing

and transducing devices. As a hope for the future, this modeling could be used for

pharmaceutical scopes (first of all drug discovery) as a reliable tool to make predic-

tions about the effects of drugs on the biochemical networks, thus shortening the pre-

clinical phase. This goal is related to the ambitious project of a “Virtual Cell” ( [6],

http://www.vcell.org/) or “Silicon Cell” ( [7], http://www.siliconcell.net/), which aims

at simulating the behavior of whatever cell as closely as possible to the physiologi-

cal reality: “A silicon cell is a precise replica of (part of) a living cell” (cited from

http://www.siliconcell.net/).

Surprisingly, the mathematical formulation of these highly interconnected enzyme re-

actions is usually based on in vitro studies of isolated reactions, without a serious

criticism of the delicate passage from the kinetics of simple reactions to the kinetics

of a network of reactions shared by several cascades in a crowded molecular envi-

ronment [8]. This can be justified when analyzing underlying mechanisms (e.g., the

importance of feedback or the creation of oscillations), where the exact kinetic ex-

pressions and parameters are less important since one is usually only interested in the

qualitative behavior that the system can perform. However, in the light of the Silicon

Cell project, which aims at being a both qualitative as well as quantitative precise rep-

resentation of the living cell, the use of correct parameters, kinetic expressions and

initial conditions (i.e., steady-state concentrations of molecular species) becomes cru-
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cial. This is the subject of the present work.

One of the principal components of the mathematical approach to Systems Biology is

the model of biochemical reactions set forth by Henri in 1901 [9–11] and Michaelis and

Menten in 1913 [12], and further developed by Briggs and Haldane in 1925 [13]. This

formulation considers a reaction where a substrate � binds an enzyme � reversibly to

form a complex � . The complex can then decay irreversibly to a product � and the

enzyme, which is then free to bind another molecule of the substrate. This process is

summarized in the scheme

���	� 
��� �� � ��� ������� (1)

where ����� and � are kinetic parameters (supposed constant) associated with the reac-

tion rates.

This scheme is mathematically represented by a system of two nonlinear ordinary

differential equations (ODEs), corresponding initial conditions and two conservation

laws as shown in the Methods section. The initial conditions give the concentrations

of � and � at the beginning of the reaction, and their time development is described

by the ODEs, while � and � are linked to � and � through the conservation laws.

Assuming that the complex concentration is approximately constant after a short tran-

sient phase leads to the usual Michaelis-Menten (MM) approximation (or standard

quasi steady-state assumption or approximation (standard QSSA, sQSSA)), which is

valid when the enzyme concentration is much lower than either the substrate concen-

tration or the Michaelis constant ��� [14, 15]. This condition is usually fulfilled for

in vitro experiments, but often breaks down in vivo [16, 17]. We refer to the Methods

section for the mathematical formulation of scheme (1), and to [18] for a nice, general

review of the kinetics and approximations of (1).

The advantage of a quasi steady-state approximation is that it reduces the dimensional-

ity of the system, passing from two equations (full system) to one ( MM approximation

or sQSSA) and thus speeds up numerical simulations greatly, especially for large net-

works as found in vivo. Moreover, the kinetic constants in (1) are usually not known,
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whereas finding the kinetic parameters for the MM approximation is a standard in

vitro procedure in biochemistry [19]. However, to simulate physiologically realistic in

vivo scenarios, one faces the problem that the MM approximation is no longer valid as

mentioned above. Hence, even though the kinetic constants such as ��� are identical

in vivo and in vitro, they need to be implemented in an approximation which is valid

for the system under investigation.

Approximations such as the total QSSA (tQSSA) [20, 21], which is valid for a broader

range of parameters covering both high and low enzyme concentrations, have been

introduced recently. Tzafriri [21] showed that the tQSSA is at least roughly valid for

any set of parameters in the case of the reaction in (1). Importantly, the tQSSA uses

the same parameters ( ��� 
 � ���!� ) as the sQSSA. Hence, the parameters found in vitro

from the MM approach can be used by the tQSSA for modeling in vivo scenarios.

The roles of ��� 
"� , the maximal reaction velocity, and �#� , the Michaelis constant

describing the concentration of the substrate at which the reaction rate is half maxi-

mal, become essential when characterizing biochemical reactions in vitro as well as

in vivo. Moreover, descriptions of cooperative reactions, inhibition and many other

biochemical processes have exploited the fundamental ideas of the MM scheme, i.e.,

the sQSSA and the parameters �$� 
 � and �%� (see, e.g., [19]). However, since these

approximations cannot be expected to be valid in vivo, employing the tQSSA to these

more complex situations would be preferable. Tzafriri & Edelman [22] studied the

completely reversible enzyme reaction in terms of the tQSSA. We have recently de-

rived the tQSSA for fully competitive reactions [23].

In this paper we show that the use of the sQSSA can lead to gross quantitative as well

as qualitative wrong conclusions even in the case of simple networks. The tQSSA is

shown to estimate the behavior significantly better, and therefore we propose to use

this approximation when modeling intracellular signalling networks.
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Results

Our investigation applies to every biochemical network which includes enzyme re-

action cascades. Many mathematical models have been applied to the phosphoryla-

tion and dephosphorylation reactions with special attention to the MAPK cascade, for

which there exist many experimental [24–26] and theoretical results [1–5]. We discuss

the validity limits of the sQSSA and the advantage of the tQSSA, starting from sub-

components of this cascade and finally arriving at the full cascade including feedback.

To fully appreciate the differences between the sQSSA and the tQSSA we recall the

simpler and very general cases of, firstly, a single reaction, and then two reactions with

substrates competing for the same enzyme. All mathematical expressions are given in

the Methods section or the Appendix.

For the single reaction represented in (1) it has been known for many years that the

sQSSA (MM approximation) holds when the initial substrate concentration is much

higher than the initial enzyme concentration ( �'&)( �*& ), but it was later realized that

this is not a necessary condition; if the enzyme concentration is much less than the

Michaelis constant, then the sQSSA also holds [14, 15]. This is summarized in the

validity criterion �+&	, �-&.���%� , which loosely says that the sQSSA holds at low

enzyme concentrations (with respect to either the substrate concentration or the ���
value).

This can not be expected to hold in vivo, and the tQSSA has been introduced in order

to have an approximation applicable to in vivo reactions as well [20, 21]. This ap-

proximation holds for a much larger region of parameter space, and is in fact always

roughly valid [21]. Importantly, the tQSSA coincides with the sQSSA when the latter

is expected to hold, i.e., at low enzyme concentrations. Fig. 1 shows that the tQSSA

approximates the full system very well also for high enzyme concentrations where the

sQSSA fails.

[Figure 1 about here.]
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Competing substrates and the double phosphorylation mechanism

A theoretically well-studied example of a slightly more complicated network is the

case of fully competitive reactions [14, 23, 27], i.e., reactions with competing sub-

strates, �0/ and �21 , also known as substrate-inhibitor systems,

�3/'�4� 
65�2�� �� 5 �7/ � 5�� �����8/6�
�210�4� 
:9�2�� �� 9 �*1 � 9�� �����01;� (2)

where �<=���>< and �?< represent substrate, enzyme-substrate complex and product ( @0ACBD��E )

for the two competing reactions. Note that this reaction scheme also covers competi-

tive inhibition (for �F1>AHG with �21 being the inhibitor).

The validity criterion of the sQSSA for (2) is known [14,27], and says basically that the

sQSSA holds at low enzyme concentrations as in the case of a single, noncompetitive

reaction, which can be seen as a special case of (2) which negligible inhibitor concen-

tration. We [23] extended the region of validity by employing the tQSSA to (2), and

as shown in Fig. 2 it approximates the full system very well. We have not found any

values of the parameters for which numerical simulations show that our tQSSA breaks

down dramatically. Of importance, our approximation captures the competition as

does the competitive sQSSA (18) and in contrast with the single reaction tQSSA (10),

but also at intermediate or high enzyme concentrations where the sQSSA does not

hold anymore (Fig. 2). However, when the competition can be neglected due to, e.g.,

low substrate concentrations, the single reaction tQSSA does indeed estimate the full

system well (not shown).

Our results are immediately applicable to, e.g., successive reactions catalyzed by the

same enzyme, such as nonprocessive or distributive double phosphorylation or de-

phosphorylation processes, as seen for example in the MAPK cascade [28–32]. The

reaction scheme can be seen as a special case of (2) with �>/*AC�21 and is summarized

as �3/ I�� �21 I�� ��� (3)
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where it is usually assumed that at the beginning only �J/ is present. Here �0/ and�21 compete for the same enzyme, � . For the case of the MAPK cascade one can

think of, e.g., diphosphorylated and thus activated MAPKK (MAPKK-PP, here � )

phosphorylating MAPK (here �K/ ) twice, producing first mono-phosphorylated MAPK

(MAPK-P, here �21 ) and then double-phosphorylated MAPK (MAPK-PP, here � ). See

also scheme (4) below.

In the MAPK cascade literature every single reaction is often treated by a MM ap-

proximation for an isolated reaction of the form (1), not only without any a priori

examination of its applicability, but also neglecting the other terms involved in the

double reaction and, in particular, the important fact that, for example, MAPK and

MAPK-P are competing substrates for MAPKK-P (however, see [31,32]). This means

that even when the sQSSA for (3) holds, the neglect of the competition leads to wrong

estimations of the behavior, and can only be expected to be an even greater problem

when the sQSSA breaks down, in which case the tQSSA should be used. This situ-

ation is illustrated in Fig. 2B, which shows that even when both the non-competitive

sQSSA and tQSSA as well as the competitive sQSSA fail, the competitive tQSSA is

an excellent approximation.

[Figure 2 about here.]

The double phosphorylation as well as double dephosphorylation of MAPK was re-

cently modelled taking into consideration the competition between the pools of MAPK

with different phosphorylation states [31,32]. We model this process by assuming that

(2) holds for both the phosphorylation as well as the dephosphorylation processes as

in [31]. In [32] both (2) as well as a more complicated process of phosphorylation were

considered, but this further step is not of our interest here although applying the tQSSA

to this more complicated scheme would be interesting. Similarly, we follow [31] and

model the dephosphorylation by (2) instead of the slightly more complicated scheme

from [32] for the sake of simplicity.

8
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Thus, we are studying the scheme

MAPKK-PP

MAPK

L:5
))

MAPK-P

LM9
))LMNii MAPK-PPL=Oii

MKP

NNPP

�� ��
(4)

where the reaction rates PF/ � PRQ are assumed to follow Michaelis-Menten kinetics

with competition between MAPK and MAPK-P for activated MAPKK (MAPKK-PP),

and between MAPK-PP and MAPK-P for the generic phosphatase MKP [33]. Us-

ing parameters from [32, Fig.1], we see in Fig. 3A that in this case the competitive

sQSSA underestimates the duration of the transient phase before reaching the steady

state. Furthermore, it underestimates the steady state level of MAPK-PP. However,

this underestimation is not a feature of the sQSSA, since lowering the total MAPK

concentration to S MAPK TU&�AWVXG results in an (even more pronounced) overestimation

of the steady state level (Fig. 3B), which of course can be of equal importance as an

underestimation. Notably, the tQSSA fits both the dynamic behavior as well as steady

state levels very well in both cases. Remark the counter-intuitive result that a ten times

lower total MAPK concentration in Fig. 3B yields a more than two times higher level

of activated MAPK, showing the strength and utility of mathematical modeling. To

illustrate the importance of a reliable estimation of the MAPK levels, we remark that

is has been shown experimentally that the dynamics of MAPK activity is crucial for

the fate of the cell [24,34,35]. For example, PC12 cells proliferate in response to tran-

sient MAPK activation, while they differentiate when the activated MAPK levels are

sustained [36]. We follow this up in the next section and in the discussion.

[Figure 3 about here.]

The MAPK cascade

[Figure 4 about here.]
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In the MAPK pathway, the upstream kinase (denoted MKKK, i.e. MAP kinase ki-

nase kinase; for example Raf) when activated phosphorylates the immediately down-

stream target, which is also a kinase (MAPKK, i.e. MAP kinase kinase, for example

MEK) successively on two specific sites, eventually activating it. This last double-

phosphorylated kinase (MAPKK-PP) acts on the MAPK (for example ERK) through

specific phosphorylation events on two distinct sites. The activated MAPK is then re-

sponsible for further downstream signalling. The activated cascade is shut down by the

reverse action of specific phosphatases [33,37], whose outcome is the time modulation

of the signal, probably through the regulation of the active kinase (for example, tran-

sient versus sustained activation). Moreover, the phosphatase controls the steady state

level of activated MAPK, which, in turn, controls downstream processes as mentioned

in the previous section.

Looking at the complete MAPK cascade, shown in Fig. 4, it is clear that all the prob-

lems arising in the simpler cases described in the previous sections may occur.

[Figure 5 about here.]

One of the most interesting phenomena in biochemical networks is the appearance

of (sustained) oscillations experimentally observed, for example, in glycolysis, in in-

tracellular calcium or in circadian networks. Recently, these oscillatory phenomena

have been investigated theoretically for signal transduction networks like MAPK cas-

cade [3].

Several authors suppose that MAPK-PP acts, by means of a feedback mechanism, on

the first layer of the MAPK cascade, and in some cases this feedback has been shown

experimentally, for example in NIH3T3 cells, where Raf-1, a MKKK, was found to

be inactivated by ERK, a MAPK [38]. See also [35, 39] for reviews. Kholodenko [3]

introduced a noncompetitive inhibition of this kind. The mathematical model of this

complex network (with or without feedback) was built using the non-competitive MM

approximation, and it was shown that oscillations could occur for several parameter

values.
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However, the appearance of oscillations could depend on the way in which the model

has been formulated. We compare the network with the full system of reactions to

both the competitive sQSSA [31, 32] and the competitive tQSSA [23]. Note that the

tQSSA used here is an ad hoc approach (see Appendix C), since a truly valid tQSSA

has not been found yet for large networks such as the MAPK cascade. In contrast

to Kholodenko [3], we model the negative feedback as a competitive inhibition with

inhibition constant �!Y to allow the use of the competitive tQSSA (see Fig. 4 and Ap-

pendix C). Our simulations confirm that the cascade can reach a steady state as well

as oscillate also in this case. However, with parameters very similar to [3] the (com-

petitive) sQSSA approximation can lead to qualitatively wrong conclusions such as

oscillations when the full system is steady (Figs. 5B and C), or quantitative wrong es-

timations of, e.g., the amplitude of the oscillations (Fig. 5A), or the steady-state levels

of MAPK-PP (Fig. 5D), while the full system is in general much better approximated

by the (competitive) tQSSA. However, for some parameters the tQSSA approach also

fails qualitatively (Fig. 5B), or with respect to the period of the oscillations (Fig. 5A).

In Table 1 we summarize the ranges of the inhibition constant �#Y for which MAPK-PP

oscillates in the three cases. It is seen that the solution of the full system undergoes

oscillations for a very narrow range of this parameter, while the use of the sQSSA

yields oscillations for a much larger range, also for values for which the solution of

the full system does not perform rhytmic behavior (Figs. 5B and D). However, the

competitive tQSSA also fails to predict the behavior for some parameters, but the

range for which this occurs is markedly reduced compared to the sQSSA (Table 1).

New improved tQSSAs should be developed in order to get a better representation of

the full system.

[Table 1 about here.]

The great majority of authors using the sQSSA usually neglects the concentration of

the complexes, as expressed, e.g., in the conservation law S MAPK TZ&WA S MAPK T[�S MAPK-P T\�]S MAPK-PP T [3, 32], but this is only valid at low enzyme concentrations.
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We suppose that this is the major reason for the poor prediction of the sQSSA. The

complex concentrations are indeed significant in our simulations of the full system

as shown in Fig. 6A. This figure shows the complex (MAPK-P)-(MAPKK-PP) of

reaction 8 in Fig. 4, the substrate MAPK-P and the free enzyme MAPKK-PP. In

contrast with the sQSSA, the tQSSA considers the complex concentrations, and it is

seen from Fig. 6A that this is necessary, since the total substrate concentration is

comparable with the complex concentration.

Taking the complex concentrations into account is not only important for the genera-

tion of oscillations, but, as it could be expected, also for the steady-state concentrations

obtained for the full system, the sQSSA and the tQSSA at high values of the inhibition

constant �!Y (Table 1). With the parameters used here the competitive sQSSA over-

estimates the steady-state level of activated MAPK (Fig. 5D) as in the simpler case

considering only the last level of the cascade (Fig. 3B). On the other hand, the compet-

itive tQSSA estimates this level well (Figs. 5C and D). As mentioned in the previous

section, the correct estimation of activated MAPK-PP has important implications for

predicting further downstream effects. We follow this question up in the discussion.

[Figure 6 about here.]

A second problem of both the QSSAs is the fact that the complex never enters a steady

state during the oscillations. In Fig. 6B we show the time derivatives of the concen-

trations from panel A, which measure the rate of change. The assumption that the

complex concentration changes much more slowly than the substrate lies at the heart

of the QSSAs, but this does not hold in general; as seen in Fig. 6B the rate of change

of the complex is comparable to that of the substrate, the total substrate and the kinase.

We believe that this is why the tQSSA also fails for some parameters and, moreover,

sometimes estimates the period of the oscillations badly (Fig. 5B). Consequently, it

would in some cases be preferable to model the network by means of the full system.

The implications of this approach and its flaws will be faced in the discussion.
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Discussion

Far from being a collection of serial chemical reactions, the higher eukaryotic intracel-

lular signal transduction networks are very intricate and highly complex. The increased

amount of data and knowledge about these networks has made mathematical modeling

and computational methods increasingly important in Systems Biology, and has led to

projects such as the Silicon Cell, which aims at being a precise replica of the living

cell. This means using experimentally found data and reproducing both qualitative and

quantitative behavior of the cell.

So far most of the models describing enzyme reactions, e.g., in the MAPK cascade,

have been based on the classical Michaelis-Menten approximation (sQSSA) and many

of these did not consider competition between substrates. These approaches were

taken, although parameters and initial conditions were chosen so that the validity cri-

terion for the sQSSA no longer held and the competition could not be neglected. As

exceptions, we mention Hatakeyama et al. [31] and Markevich et al. [32], who treated

the problem of substrate competition in terms of the sQSSA for two substrates compet-

ing for the same kinase, but they did not consider the region of validity of the sQSSA

and neglected the enzyme-substrate complexes.

Although it was known that the sQSSA will often be invalid in vivo, the sQSSA ap-

proach was necessary for many years, since no better approximations were known,

but this has changed recently with the introduction of the tQSSA. This approach was

first applied to the simplest reactions [20, 21], and later to increasingly more complex

schemes such as reversible reactions [22] and fully competing systems [23].

We have here presented the application of the tQSSA to biologically realistic networks,

and shown that it is superior to the sQSSA in all the presented cases. We did not for-

mally investigate the validity of the tQSSA for all the reaction networks examined,

and found in fact that the tQSSA has its limitations as well (Table 1), probably re-

lated to the fact that the complexes do not always enter a quasi-steady state (Fig. 6B).

However, based on our simulations we feel confident in saying that compared to the
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sQSSA it provides a more accurate estimate of the behavior of enzyme networks. For

example, it was found that the tQSSA estimates the steady state levels of activated

MAPK very well (Figs. 3 and 5A), while the sQSSA often fails dramatically. We be-

lieve that the main reason for this is the fact that the tQSSA incorporates the complex

concentrations while the sQSSA does not, as stated for example in the conservation

law S MAPK TU&.A^S MAPK T\�HS MAPK-P T_�HS MAPK-PP T [3, 32].

To illustrate the importance of a reliable estimation of the MAPK dynamics and steady-

state levels, we remark that is has been suggested that both the duration and intensity

of the activated MAPK is crucial for the fate of the cell ( [40] and references therein).

For example, rat PC12 cells differentiate if stimulated by NGF and proliferate if stim-

ulated by EGF [41, 42], although the cognate receptors use the same signaling cyto-

plasmic network to transduce the signal to the nucleus. In the two cases, the most

evident difference is that NGF induces a sustained MAPK (ERK) activity, while EGF

induces a transient MAPK (ERK) activity (see [36] for a review). Recently, it was also

shown that PC12 [42] and Kaposi Sarcoma [43] cells are sensitive to the strength of

the MAPK signal indicating a threshold phenomenon, which means that even minor

changes in the levels of activated MAPK can have dramatic consequences.

We showed that the choice of the approximation scheme could dramatically change

the size of the parameter range in which oscillations occur in the MAPK cascade with

a competitive, negative feedback (Fig. 5A and Table 1).

If any Silicon Cell should help to discover pharmaceutically sensitive targets and re-

produce the effects of drugs on these targets, the quantitative aspects of the model

would have to be carefully studied and resolved, for example in estimating the size

of the above parameter windows. For instance, continuing the example of the MAPK

cascade with inhibitory feedback, assume that we wish to apply a drug in order to cre-

ate oscillations. Lowering the �%Y value would appear promising on the basis of the

model using the sQSSA, since this model predicts oscillations in a rather wide param-

eter range (Table 1). However, this could encourage a waste of resources searching for

an appropriate pharmaceutical compound, since the drug would have to be very finely
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tuned and, hence, difficult to find, because the full system has a very narrow parameter

range yielding oscillations. Thus, one might be better off looking for a drug acting

elsewhere in the network.

Since the tQSSA, although superior to the sQSSA, also does not always work, one

could suggest to use the alternative of simulating each step of the reaction by means

of the full system of ODEs, which means describing every reaction in terms of two

equations, and facing three instead of two parameters for every reaction, as it has been

done for example for the MAPK cascade [4]. However, more equations would mean,

especially for larger systems, that this approach quickly would become computer ex-

pensive.

A more serious problem is the fact that the three rate constants ( ����� and � in (1))

are usually unknown, while finding the QSSA parameters �.� and ��� 
"� (or �D` 
 a A�b� 
 �dc �*& ) is a standard procedure in biochemistry. Thus, the reduction obtained from

the QSSA is in this sense an advantage compared to the full system. We could in

any case rebuild the parameters �������6� starting from the MM parameters, but as shown

in Appendix B, we then introduce a degree freedom. Bhalla and Iyengar [2] try to

overcome this problem supposing that �eAgfF� , but this hypothesis seems to us a bit

arbitrary without any strong experimental support, as already remarked by the authors.

However, we have applied this assumption through out this work when modeling the

full system.

The validity of the tQSSA depends on the precise values of ����� and � as stated for

example in (13) for the case of a single reaction: The smaller the ratio � c �.� , i.e., the

larger the ratio � c � , the better the approximation. However, for any choice with a large

ratio � c � , the tQSSA holds. A similar result holds for fully competitive reactions [23].

This is consistent with the choice of �)AhfF� and supported by the fact that for many

enzymes the parameter � is much greater than � [44, 45].

From a theoretical point of view, the application of the tQSSA in this way makes the

actual parameter values of ����� and � less important. When we a priori know that
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the system can be well-approximated by the tQSSA, all the possible choices of �������6�
will give approximations near each other, and hence, near the true solution, assuming

that the true parameters are such that the tQSSA is valid. This can be used in cases

where only the parameters �#� and �b� 
 � are available, the sQSSA is known not to

hold, and only a very complicated tQSSA, too complicated to implement effectively

on a computer, exists. One can then choose any relation between �$�i� and � giving

the correct values for ��� and ��� 
"� , check that the tQSSA holds using a theoretically

founded validity criteria, and then do the simpler implementation of the full system of

equations.

Related to the above, but from another point of view, is the lack of reliable experimental

data about the kinetic constants of the intracellular biochemical reactions, including�%� and ��� 
"� values. To reconstruct these missing parameter values, some authors

rely on the so-called reverse engineering (or inverse problem). The classical approach

to reverse engineering is based on least square techniques with the aim to find the set of

parameters that gives the best fitting curve, i.e., the curve passing “as close as possible”

to the experimental data. This is done searching for the global minimum of a function

of as many variables as there are unknown parameters. To find the global minimum

of these functions is in general far from trivial, for example due to the risk of finding

only local, not global, minima. Furthermore the uniqueness of this minimum cannot,

in general, be guaranteed; several sets of parameters could give the global minimum.

This is the question of a priori identifiability [46].

As shown in the present work, the misuse of the sQSSA can lead to large quantitative

and qualitative errors. However, even when the sQSSA is not a good approximation

of the system, we can still find parameters for which the sQSSA does fit the data

(the full system), by minimizing, e.g., the least square error. This would inevitably

lead to wrongly estimated parameters, since the original ones did not provide a good

approximation.

From these considerations it follows that the ability of the model to fit a certain data

set can not be used to test whether a certain approximation holds. Applying reverse
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engineering for the sQSSA, without any a priori examination of its validity, one could

argue that the (mis)use of the sQSSA causes no problems, since we obtain a good fit

anyway. However, one would prefer to have a model that works under many different

conditions, not only in a certain experimental setting. If fitting the sQSSA model to

the data yields wrong estimates of the parameters, then it is likely that the predicted

behavior using these parameters would be far from the true behavior. The same would

be true if the model was later used as a subsystem of an enlarged model. For exam-

ple, the estimation of the Michaelis or inhibition constant relying on a wrong model

formulation could be crucial as seen in the following example.

Assume that all the parameters except the inhibition constant �#Y were known for the

model illustrated by Fig. 4. If we had a data set for this model showing stable behavior,

according to Table 1, using the sQSSA we would estimate a value of �#Y greater than

3.02, even though the true value of ��Y could be between 0.18 and 3.02. Assume now

that we obtain a drug capable of lowering the ��Y value according to some known

mechanisms, and that we decide to administrate the drug to lower �#Y with the aim to

let the system oscillate. Believing that the sQSSA estimated �#Y is the true value, we

would apply a certain amount of the drug in order to get below the threshold value at�!Y*AHjlkmGnE . But the actual value of �%Y could be completely different from the wrongly

estimated one and such that the drug administration, though lowering �.Y , would leave

the system stable.

Similar problems can be expected to occur in metabolic control analysis [47–49],

which is used to find the steps in the network that controls some output behavior,

e.g., the concentration of a certain biochemical species. It seems likely that an invalid

sQSSA model might predict that a certain step is the most important, while the full

system or the corresponding tQSSA model finds that step to be less important. In

the light of applications for the pharmaceutical industry, this could lead to a waste of

money and energy focusing on an apparently sensitive target, which then turns out to

be unimportant or, viceversa, the neglect of an important target that apparently seems

unimportant.
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In conclusion, we have shown that the use of the classical MM approach (sQSSA)

should be done with much care, since it can lead to both quantitative and qualitative er-

rors. This has further impact on techniques such as reverse engineering and metabolic

control analysis. Finding approximations improving the sQSSA for complex reac-

tions such as successive reactions, open systems, loops such as the Goldbeter-Koshland

switch [50], feedback systems etc., and investigating their validity, should be of great

interest for further investigations and simulations of such reactions in vivo, where the

MM description can be expected to break down.
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Methods

We compare various approximation schemes of the time concentration development

of the chemical species involved in the reactions. This is done by numerically solving

the system of ordinary differential equations (ODEs) derived from the reaction scheme

using the methods and approximations within the various approaches. To illustrate this

idea we use the example of an isolated reaction

���	� 
��� �� � ��� ������k (5)

The fundamental step is modeling all of the intermediate steps including binding, dis-

sociation and release of the product using mass action and conservation laws. This

leads to an ODE for each involved complex and substrate. We refer to this as the full

system. For (5) the equations are�_��Do A � �-pq�*& � �sr:�t�4�u�v� (6a)�F��Do AH�-pq�*& � �urw� � pq�x�	�br"�Wk (6b)
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with the initial conditions

�+pqGnryAH�-&3� �%pzGnryAHG\� (7)

and the conservation laws

���4�{A|��&0� �)�4�}�4�WA]�-&3k (8)

Here ��& is the total enzyme concentration assumed to be free at time o!A~G . Also

the total substrate concentration, �2& , is free at o�A�G . This is the so-called Michaelis-

Menten (MM) kinetics [12, 14, 19]. Let us observe that this system (6) admits an

asymptotic solution for o � � obtained by setting the derivatives equal to zero. This

solution is given by ��A���A�G , so that from the conservation laws ��A��'& and� A��*& . This means that all the substrate eventually becomes product due to the

irreversibility, while the enzyme eventually is free and the complex concentration tends

to zero.

The next, well-known and widely used step is that of the Henri-Michaelis-Menten-

Briggs-Haldane approximation [9–15]. It leads to an ODE for each substrate while the

complexes are assumed to be in a quasi-steady state (i.e.,
�"�� a�� G ). See e.g. [19] for

a general introduction to this approach. We stress here that this is an approximation

to the full system, and that (for (5)) it is only valid at low enzyme concentrations,

i.e., ��&�, �-&)���!� [14, 15]. We refer to this as the standard quasi-steady state

approximation (sQSSA). For (5) it is given by

�>��no � � ��� 
"� ��%�H�	� � �+pzGnryA��-&0� (9)

�%pqGnryA��*&3� �b� 
"� A]����&3� �%�CA �x�	�� k
When we have more than one reaction in the system we denote the MM constant for

reaction @ by � �< , and the reaction constants by �F<=�i�n< and �X< .
As mentioned in the introduction, in vivo we cannot in general assume a low enzyme

concentration and hence, the MM approximation can not be expected to hold. A re-

cent approach to resolve this problem is that of the total quasi-steady state assumption
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(tQSSA). It was introduced by Borghans et al. [20] and refined by Tzafriri [21] for

isolated reactions. We have recently extended it to fully competitive reactions [23].

The tQSSA [20, 21] arises by introducing the total substrate���AH�)�����
and assuming that the complex is in a quasi-steady state as for the sQSSA. For (5) it

gives [21] � ���Do � � �+�7�3p ���r6� ��+pqGDr�AH�-&3� (10)

where �7�0p ��8ryA pz��&��4�!�H� ��8r ��� pq�*&����%�|� ��8r 1 � fn�*& ��E k (11)

Numerical integration of (10) easily gives the time behavior of
��*��� (by (11)) and �

(by the relation ��A �� � � ).

Tzafriri [21] showed that the tQSSA (10) is valid whenever

� &\�x��A �ED�-& � �*&��4�%�|�4�-&� pz��&��4�!�H�4�-&2r 1 � fn�*&2�-& � B���, BD� where ��A �� � (12)

and that this is always roughly valid in the sense that

� &\�7� �fn�%� � Bf k (13)

This means that for any combination of parameters and initial conditions (10) is a

decent approximation to the full system (6). The parameter � is known as the Van

Slyke-Cullen constant.

As a first order approximation to (10), Tzafriri [21] found the expression, obtained

originally in [20] by different techniques,� ���Do � � ��� 
"� ���%�H�4�*&�� �� � ���pqGnr8A��-&3k (14)

This approximation is valid at low enzyme concentrations ��&|, �-&t���%� , where

it reduces to the MM expression (9), but holds moreover at low substrate concentra-

tions �&#, �*&��4�%� [21]. Thus, with minimal effort performing the substitutions
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of � by
�� and of �%� by �%���{�*& one obtains a significantly improved MM-like

approximation, without any need of more advances mathematics.

We refer to the Appendix for the full system of differential equations describing the

different networks investigated in the Results section.

The parameter values used for the MAPK cascade are given in figure captions or Ap-

pendix C (online material), Table 1. As shown in Appendix B, when going from

experimentally obtained (MM) parameters ( �$� 
 � ���!� ) to the full system, there is one

degree of freedom with respect to the choice of parameters ( �������6� ). We have used the

constraint proposed in [2, supplementary, on-line material] that ��A^fF� . This is con-

sistent with the fact that for many enzymes the parameter � is much greater than � [44].

A The tQSSA for fully competitive enzyme reactions

The system (2) is governed by the coupled ODEs [14, 27, 51], @0ACBX�6E ,�>�<�Do A � �D<��{ ¡�<b���D<Z�><=� �<MpqGnryA]�<£¢ &3� (15a)�¤�><�Do A��D< pq�] ¥�< � � �< �><¦r§� �><MpqGnryA�G\� � �< A �D<\�	�X<�D< k (15b)

and the conservation laws

�<£¢ &�A��<l���><\�4�3<¨� @0A�BX�6E\� (16)�*&�AH�����7/?���*1;k (17)

The sQSSA of this system is [14, 51]�>�<�Do � � �X<Z�*&2�<� �< p B>�4�b© c � �© r[�	�< � �<MpqGnryA��<ª¢ &?� @0ACBX�6E\� «¬A|@w� (18)

which is valid when [27] ��&� �< p"B¤�	�b©"¢ & c � �© r[�	�<£¢ & , Bs� @0A�BD�6E_� «)¬A|@:k (19)
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As in the non-competitive case, it says that the sQSSA holds at low enzyme concen-

trations.

We have improved these results [23], applying the tQSSA to both reactions and show-

ing that the tQSSA is given by finding �®/ as the unique biologically acceptable root

( G�¯}�7/>¯}°�±ª²$³¥��&3� ��3/�´ ) of the third degree polynomialµ /�pz�7/wr8A � pq� �/ � � �1 rw�v¶/�¸·zpq�*&��4� �/ � ��3/:r¹pq� �/ � � �1 r � p ��3/w� �1 � ��216� �/ r º¹� 1/ (20)� · � ��&Jpz� �/ � � �1 r[��p ��3/ � �1 � ��216� �/ r[�4� �1 pq�*&��4� �/ r º ��3/w�7/� �*&� �1 �� 1/ �
and similarly finding ��1 as the root in the polynomial

µ 1 obtained by interchanging

the indices 1 and 2 in (20). After a short transient phase the complex concentrations

are assumed to equal the quasi steady-state concentrations, �+<[AW�><Mp ��3/6� ��21§r , given by

the roots in the respective polynomials as discussed above. Then the evolution of the

system can be studied by means of the tQSSA� ��<�Do � � �X<¦�><Mp ��3/6� ��216r§� ��< pqGDr�AH�<ª¢ &3k (21)

This approach extends both the sQSSA for competitive reactions (18) as well as the

tQSSA for isolated reactions (10) as shown in [23].

B Relationship among the kinetic parameters

While every reaction is characterized by three constant rates ( �������6� ), its QSSA works

with only two parameters: �$� 
"� and �%� . Since �%�»A ��¼b�
 and ��� 
 � A½�\��& , we

have ��A �b� 
 ��*& � ��A �v�4��%� A ��� 
 � ���_�*&�*&'�!� k (22)

Posing �.ACfF� [2, on-line material] we uniquely obtain the values of ����� and � from�%� and ��� 
 � as

��A �b� 
 ���& � �uA fF�b� 
 ���& � ��A VD�b� 
"��*&�%� k (23)
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In general, posing �¾A|¿J� we have

��A �b� 
 ���& � �uA ¿J�b� 
"��*& � ��A �v�4��%� A p"B¤��¿Jr:�b� 
"��*&�%� � (24)

with a freedom degree, related to the value of ¿ . Consequently, it is possible to vary

the triplet pz�������6�br obtaining the same pair p¨�$� 
 � ���!�¾r .
However, the different choices of pq�������6�lr could produce significantly different out-

puts, and thus predict completely different behavior in the solutions of the full system

and of its QSSAs, respectively.
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Method Oscillations

Full system �!Y7¯}GlkUB¡À
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tively, monophosphorylated and diphosphorylated M, where M is ei-

ther MKKK, MAPKK or MAPK. . . . . . . . . . . . . . . . . . . . 37

5 Simulations of the MAPK cascade with feedback as in Fig. 4. The

computed MAPK-PP concentration is shown following the legends in

Fig. 3. The values of the inhibition constant are as follows: Panel A:��Y�A�GlkUB . Panel B: �!Y*A�Glk�V . Panel C: �!Y*AWE\kÃV . Panel D: �!Y�A]EdG .

At low values of �!Y (panel A), all the three schemes, full system (cir-

cles), tQSSA (full curve) and sQSSA (dashed curve), produce oscilla-

tions, but the tQSSA follows the solution much better than the sQSSA,

especially with respect to the amplitude of the oscillations. In panel C,

although the MAPK-PP modelled by the full system (circles) almost

immediately reaches a steady-state, the sQSSA (dashed curve) shows

oscillations. On the other hand, the full system is followed very well

by the tQSSA (full curve). However, this is not always the case, since

the tQSSA can also predict oscillations when the full system is sta-

ble (panel B). Finally, at high values of ��Y all the three approaches

go to a steady state, but the sQSSA overestimates the MAPK-PP level

significantly (panel D). . . . . . . . . . . . . . . . . . . . . . . . . . 38
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6 Non-neglectible and non-constant complex concentrations in the MAPK

cascade. In the full system describing the MAPK cascade with feed-

back, the complex (MAPK-P)–(MAPKK-PP) is neither negligible (panel

A) nor approximately constant (panel B). Panel A shows the concen-

trations of the complex (MAPK-P)–(MAPKK-PP) (red, full curve),

MAPK-P (blue, dashed curve), “total MAPK-P” (MAPK-P ; blue, dot-

ted curve) and MAPKK-PP (black, dash-dot curve) during the last part

of the simulation of the full system from figure 5B. Panel B shows

the absolute value of the time derivative of the complex, MAPK-P and

MAPK-P (same legends as in panel A). . . . . . . . . . . . . . . . . 39
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Figure 1: Temporal evolution of the product � at high enzyme concentrations

for the single reaction (1). In this case, the solution of the full system (cir-

cles) is badly approximated by the MM approximation (sQSSA, dashed curve),

while the tQSSA (full curve) estimates the behavior very well. Parameters are��AHGlkmÁl���!�CAHÀl����pzGnryAH�*&�A�VXG , and �+pqGnryA]�-&#ACB¡G , all in arbitrary units.
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Figure 2: Competitive systems. Panel A: A simulation of competing substrates

(scheme (2)). Panel B: A simulation of two successive reactions catalyzed by the

same enzyme (scheme (3)). In both cases the full system (red circles) is esti-

mated very well by the competitive tQSSA (blue, full curve), while the competitive

sQSSA (blue, dashed curve) as well as the non-competitive sQSSA (black, dashed

curve) and tQSSA (black, dotted curve) do not fit. The parameters are in both

panels: �l/yAHGlk�V\�6�D1>AHGlkmÁl��� �/ A�Glk�ÂDVF��� �1 A|Àl��� aÅÄ¨a A{B¡G , and �3/¹pqGnr8AH�21¥pqGnryA{B¡G
in panel A, �0/¹pzGnr8A�EXGl���21RpqGnryAHG in panel B. All units are arbitrary.
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Figure 3: Phosphorylation and dephosphorylation. The sQSSA (dashed line)

leads to a wrong estimation of both the transient behavior as well as steady

state levels, while the tQSSA (full line) fits well, for the double phosphoryla-

tion/dephosphorylation (4) modelled with MM kinetics. The full system is shown

as circles. Parameters: S MAPK T£& A VXGDG (panel A), S MAPK TU&.A]VXG (panel B),S MKP TU& A B;GDGl�RS MAPKK TÅ&�A�VdGl��� �/ A]VdG , � �1 AHVXGDG , � �¶ A]EDE , � �Q ACB;À ,�\/8A|GlkmGlB , �n1¤ACB¡V , � ¶ A�GlkmGDÀXf , �DQ*AHGlkmGDÁlk (Concentrations and time in arbitrary

units, but for consistence with [32] one can think of nM and seconds).
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Figure 4: The MAPK cascade. The diagram is based on [3]. Each of the reactions is

assumed to follow MM kinetics, but there are competitive reactions since MKKK-P

catalyzes both reactions j and f and MAPKK-PP catalyzes both reactions 7 and 8.

Similarly, reactions 5 and 6 are assumed to compete for a phosphatase, and both reac-

tions 9 and 10 to be catalyzed by another phosphastase (MKP in (4)). The phosphatases

are not shown for clarity of the figure. The dashed line indicates inhibition of reaction

1 by MAPK-PP as in [3]. However, we assume that this inhibition is competitive.

M-P and M-PP represent, respectively, monophosphorylated and diphosphorylated M,

where M is either MKKK, MAPKK or MAPK.
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Figure 5: Simulations of the MAPK cascade with feedback as in Fig. 4. The computed

MAPK-PP concentration is shown following the legends in Fig. 3. The values of the

inhibition constant are as follows: Panel A: ��Y�AhGlkUB . Panel B: �!Y�AhGlk�V . Panel C:�!YÎAÏE_kÃV . Panel D: �!YvAhEdG . At low values of �!Y (panel A), all the three schemes,

full system (circles), tQSSA (full curve) and sQSSA (dashed curve), produce oscilla-

tions, but the tQSSA follows the solution much better than the sQSSA, especially with

respect to the amplitude of the oscillations. In panel C, although the MAPK-PP mod-

elled by the full system (circles) almost immediately reaches a steady-state, the sQSSA

(dashed curve) shows oscillations. On the other hand, the full system is followed very

well by the tQSSA (full curve). However, this is not always the case, since the tQSSA

can also predict oscillations when the full system is stable (panel B). Finally, at high

values of �!Y all the three approaches go to a steady state, but the sQSSA overestimates

the MAPK-PP level significantly (panel D).
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Figure 6: Non-neglectible and non-constant complex concentrations in the MAPK

cascade. In the full system describing the MAPK cascade with feedback, the complex

(MAPK-P)–(MAPKK-PP) is neither negligible (panel A) nor approximately constant

(panel B). Panel A shows the concentrations of the complex (MAPK-P)–(MAPKK-

PP) (red, full curve), MAPK-P (blue, dashed curve), “total MAPK-P” (MAPK-P ;

blue, dotted curve) and MAPKK-PP (black, dash-dot curve) during the last part of the

simulation of the full system from figure 5B. Panel B shows the absolute value of the

time derivative of the complex, MAPK-P and MAPK-P (same legends as in panel A).
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$/�ÿS ý�ö�ù�ö9÷�ð÷�ê�þwî��wó0ë�ì�í ôTï�ë9ì�í�ôTï�ë�÷�ò�ï�îBü´õ�ö�ôJý�î�ï�ë�÷�õwê õ�üJë�ì�í�ðí ì�÷�þwì�î�� ÷�ê�ë9í�ö�ò�õ�ê)û
ê�í�ò�ë9í�ñ í�ê��?�pô^íúö�í�ïwò�ë�÷�õwê�ð1÷�ðGø�ï�ðí�ñÂõ�êUTWVYX9TWZ*[�\úðë�ý�ñ�÷5í�ð1õwüg÷�ðõ�î�ï�ë�í�ñFö�í�ïwò�ë�÷�õwê�ð�ó
�÷5ë�ì�õ�ý)ë�ïJð�í�ö9÷5õ�ý�ð¤ò�ö�÷5ë�÷�ò�÷�ð�ô õ�üYë9ì�íGñ�í�î�÷�ò�ï�ë�íGù�ï�ð�ð9ï�þ�í�ü´ö�õ�ô ë�ì�í]�~÷5ê�í�ë�÷�ò�ðgõ�ü�ð÷�ôúû
ù�î�íFö9í�ïwò�ë�÷�õwê�ðJë9õ ë9ì�í^�~÷5ê�í�ë�÷�ò�ð^õwüBï ê�í�ë
gõ�ö�� õwü1ö9í�ï�ò�ë�÷�õwêÌðúð�ì�ïwö�í�ñÈø��Èð�í���í�ö�ï�î
ò�ïwð9ò�ïwñ�í�ð�óp÷�êFï^ò�ö9õ_
3ñ)í�ñLô^õwî�í�ò�ý�î�ïwö�í�ê��p÷�ö9õwê�ô^í�êpë5����ÿ�vì�ívôTï�÷�ê[þ�õ�ïwîpõwü�ï1ôTï�ë�ì�í�ôTï�ë9÷�ò�ï�î�ï�ù�ù�ö�õpïwò�ìPë9õGë�ì�ív÷�ê�ë9ö9ï�ò�í�î5î�ý�î�ï�ösø�÷�õ~ò�ì�í�ôúû
÷�ò�ïwî¡÷5êpë�í�ö9ï�ò�ë9÷5õ�ê�ðB÷�ðBö9í�î�ï�ë9í�ñdë�õeë9ì�íSï�ôJø�÷«ë9÷5õ�ý�ðBù�ö9õL`�í�ò�ëPõ�üvïa�p÷�ö�ë�ý�ïwî�ò�í�î�î*ó�
�÷5ë�ì
ë9ì�íOï�÷�ô ë9õÂð÷�ô[ý�î�ï�ë�íSð9ï�ë�÷�ðü�ïwò�ë9õwö9÷5î��eë�ì�íSøÌí�ì�ï1�~÷5õ�ý�öPõ�ü�
�ì�ï�ë�í���í�öDò�í�î�î�ÿ^b1ê�íTõ�ü
ë9ì�í3ù�ö9÷5êÌò�÷�ù�ï�î�ò�õwô^ù�õwê�í�êpë9ð¡õwü�ë9ì�í�ð�í3ô^õ)ñ)í�î�ð�÷�ðsë9ì�í1ð�õ�û:ò�ïwî5î�í�ñc)F÷�ò�ì�ï�í�î5÷�ð�ûd)Fí�ê�ë9í�ê'*)+)e/f�p÷�ê�í�ë�÷�ò�ð�!	�g =5 �? ��� <�"�ó�
�ì�÷�ò�ìOñ)í�ð9ò�ö9÷�øÌí�ð�í�êH���~ô^í0ö9í�ïwò�ë�÷�õwê�ð�ø��^ô^í�ïwê�ð�õwüYõwö�û
ñ)÷�ê�ïwö��Oñ�÷�3Àí�ö9í�êpë�÷�ï�î½í P ý�ï�ë9÷5õ�ê�ð�ÿh�÷�õ~ò�ì�í�ô^÷�ðë9ð�õwü�ë�í�êúý�ð�í�ë�ì�í�)+) ï�ù�ù�ö�õ1�)÷�ôTï�ë�÷�õwê(ó�õ�öji	Zdk_VmlnkL[�lpo�qHk1igTWrsigZst	kul_v_rigZdk_Zdt(ïwù�ù�ö9õ1�~÷�ôTï�ë9÷5õ�êw'�ð	x SHS �y/Yë�õGð÷�ô^ù�î5÷5üN�Bë�ì�ígô^õ)ñ)í�îpý�ê�ñ�í�ösðý�÷5ë9ïwø�î�í¤ì��~ùÌõwë�ì�í�û
ð�í�ð�ÿ��vì�÷�ðDïwù�ù�ö9õ�ïwò�ì ÷�ðR�wí�ö�� ý�ðí�ü´ý�î¤÷�ê ë�ì�íLò�ïwð�íTõ�üv÷�ðõ�î�ï�ë�í�ñ ö9í�ï�ò�ë�÷�õwêÌð�ólø�ý)ë[÷5ë
÷�ðúê�õ�ëTï�î�
�ï1�)ðJö�í�ïwð�õwê�ïwø�î�íwós÷5ê,ù�ïwöë9÷�ò�ý�î�ïwöz
�ì�í�êU
�íbì�ï1�wíOë�õ ü�ïwò�í{
�÷5ë�ì,ô^ïwê��
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÷5êpë�í�ö9ò�õwê�ê�í�ò�ë9í�ñdö�í�ïwò�ë9÷5õ�ê�ð�ÿPé:êÂë�ì�÷�ðBù�ïwùÌí�ö]
gíú÷5ê���í�ðë�÷�þ�ï�ë9íDë9ì�íúïwù�ù�î�÷�ò�ï�ø�÷�î�÷«ë�Fõwü
ë�ì�í0)+)?ïwù�ù�ö9õ1�~÷�ôTï�ë9÷5õ�êYó)ðì�õ_
�÷�ê�þ^ðõ�ô^íw'�í���í�êeð÷�ô^ù�î5í1/vò�õ�ý�êpë�í�ö9í5��ïwôúù�î5í�ð�ÿ
|½à A0}�~Â>@è�ç9}���~���è*�5��>�~~áÀâ?~~á��@�%��ã�ä��Yè�����â�è�ä�á
�vì�íJù�ì�õ�ð�ù�ì�õ�ö��~î�ï�ë�÷�õwêeö9í�ï�ò�ë�÷�õwêd÷�ðGò�ì�ï�ö�ïwò�ë�í�ö�÷���í�ñeø��bë9ì�í[ü´õ�î5î�õ_
�÷�ê�þSí���í�êpë9ð?�3ï�ê
í�ê��?�pô^í���'´÷�êSë9ì�÷�ð�ò�ï�ðíGïR�~÷5êÌïwð�í9/¡ø�÷5ê�ñ�ð¤ö9í���í�ö�ð÷�ø�î��z
�÷5ë�ìOïJðý�ø�ð�ë9ö9ï�ë�íy��ó�ü´õ�ö�ôúû
÷5ê�þ ïdò�õwô^ù�î�í5����'�ïwî�ð�õdñ)í�ê�õ�ë9í�ñ��Bû��/�ÿ��vì�íbò�õ�ôúù�î5í�� ÷�ðúïwð9ðý�ô^í�ñ ë�õdø�ö�í�ïL�
÷5ö9ö�í?�wí�ö9ð�÷5ø�î��eñ)õ_
�êÂ÷�êpë�õLë�ì�í^õwö9÷�þw÷�ê�ï�îlí�ê��?�pô^í^ï�ê�ñ ïSù�ö9õ)ñ)ý�ò�ë]��'�íwÿ þ�ÿDïLù�ì�õpð�û
ù�ì�õwö��~î�ï�ë�í�ñiü´õwö9ô õ�üPë�ì�í ð�ý�ø�ðë�ö�ï�ë9í9/�ÿ��vì�í í�ê��?�~ôúí��jø�í�ò�õwô^í�ðOü´ö�í�í ïwþ�ï�÷�êYó
ö�í�ïwñ@�Pë9õPø�÷�ê�ñw
�÷«ë9ìTõ�ë9ì�í�ö�ô^õ�î5í�ò�ý�î�í�ð¡õwüÌë9ì�í0ð�ý�ø�ðë�ö�ï�ë9íwÿ(é:êTõwë�ì�í�ö¡ë�í�ö�ôTð�ón
�í�ò�ï�ê
ù�ö�í�ðí�êpë�ë9ì�íPö9í�ïwò�ë�÷�õwêLø��Lô^í�ï�êÌðvõ�ü(ë9ì�íBü´õwî�î�õ_
�÷5ê�þTð9ò�ì�í�ô^íu�

����� ��m�� �� �����Bûd�¡ �F� �(�U��¢ ';E9/
£�ö9õwô ïúôTï�ë9ì�í�ôTï�ë9÷�ò�ï�î½ù�õw÷�êpë3õ�ü¤�p÷�í�
Pó�í��wí�ö��Tõwülë9ì�í�ð�íP÷�ê�ñ)÷��p÷�ñ)ý�ïwî½ö�í�ïwò�ë�÷�õwê�ð

ò�ï�ê øÌí ö�í�ù�ö�í�ðí�êpë�í�ñiø��,ë�ì�í ôTïwð9ðOï�ò�ë9÷5õ�ê ù�ö9÷5ê�ò�÷5ù�î5í�ó8
�ì�í�ö9íÂë9ì�ídö�ï�ë9ídõwüPë�ì�í
ö�í�ïwò�ë9÷5õ�ê ÷�ð[ù�ö�õ�ùÌõ�öë9÷5õ�ê�ï�îsë9õFë�ì�íLò�õ�ê�ò�í�êpë�ö�ï�ë�÷�õwêÌðBõ�üvë�ì�íOö�í�ïwò�ë�ï�êpë9ð�ÿa�vì�íSù�ö9õ�û
ùÌõ�öë9÷5õ�ê�ï�î�÷«ë� ò�õ�ê�ðë9ï�êpë[÷�ê�ñ)÷�ò�ï�ë�í�ðDì�õ_
 ü�ïwðë[ë9ì�íOö9í�ï�ò�ë9÷5õ�ê ÷�ð�ÿe£�ö9õwôVë�ì�íLï�ø�õ_�wí
ð�ò�ì�í�ô^íwópë�ì�íGö9í�ïwò�ë�÷�õwêS÷�ðvò�ì�ï�ö�ïwò�ë�í�ö�÷���í�ñ^ø��Tïúð;�)ðë�í�ô õ�üYü´õ�ý�ögõ�ö9ñ�÷5ê�ïwö��^ñ)÷�3�í�ö�í�ê)û
ë�÷�ï�îYí P ýÌï�ë�÷�õwêÌð

¥ B ��M¥u¦ � �8§ B �]MsB ��M�� ¥ B �yMf¨ '©Kn/
¥ B �yM¥u¦ � § B �]MsB ��M � ¥ B �yM �«ª B �yMf¨ '*Cu/
¥ B �]M¥u¦ � �8§ B �]MsB ��M�� ¥ B �yM�� ª B �yMf¨ '�¬�/
¥ B ��M¥u¦ � ª B �yMf¨ '©Dn/


�ì�í�ö9ípB ��M©¨�B �RM©¨�B �yMs¨yB ��M�ö9í�ù�ö�í�ðí�ê�ë¡ë9ì�í1ïwø�ð�õwî�ý)ë�í0ò�õwê�ò�í�êpë�ö�ï�ë9÷5õ�ê�ð¡õwü½ë�ì�íGñ)÷�3Àí�ö�û
í�êpë3í�ê��?�~ôúí�ðv÷5ê���õwî��wí�ñO÷5êbë9ì�íPö�í�ïwò�ë�÷�õwêYó)ð�ý�ø@`�í�ò�ë�ë�õ^ë9ì�íP÷5ê�÷«ë9÷�ïwîYò�õwêÌñ)÷«ë9÷5õ�ê�ð

B �]Md'�u/j�®��� 4 ��B ��¯�°;¯©Mf6±B �¤Ms'*u/j�®��� 4 ��B �²¯�°¯©Mf6B �yMd'��/��³��� 4 ��{6 B ��Md'�u/j�®��� 4 ��{¨ '*Gu/
ï�ê�ñOë�õ^ë9ì�íPôTïwð9ðvø�ï�î�ï�ê�ò�í´'�ò�õ�ê�ð�í�ö��"ï�ë�÷�õwêF/¤î�ï1
3ð

B ��¯�°;¯©M²��B �]M���B �yM 6 B �m¯�°;¯*M²��B ��M���B �yM���B ��Mf¢ 'sµL/
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é®ë¡ü´õ�î5î�õ_
3ðlë�ì�ï�ë�ë9ì�í�ö9í�ï�ö9ígõ�ê�î��Pë
gõB÷�ê�ñ)í�ùÌí�ê�ñ)í�êpë�í P ýÌï�ë�÷�õwêÌð�ïwê�ñz
gí�ò�ïwêJö9í�
�ö9÷5ë�í
ë9ì�íDð;�)ðë�í�ôX÷5êbë9ì�íBü´õwö9ô

¥ B ��M¥u¦ � �8§ ';B � ¯�°;¯ M � B �yMN/5B ��M@� ¥ B �yMs¨ '�I�/
¥ B �yM¥u¦ � § ';B � ¯�°;¯ M � B �yMN/5B ��M � ' ¥ � ª /5B �yMf¢ '�J�/

�vì�÷�ðg÷�ðgë�ì�í�)F÷�ò�ì�ïwí�î�÷�ðûs)Âí�êpë�í�ê+'�)+)e/.�~÷�ê�í�ë9÷�ò�ð !g�	 =� �? <�" ÿ�£�õwövð÷�ô^ù�î�÷�ò�÷«ë��ó�
�í$
�÷�î�î
÷�êbë�ì�íBü´õ�î5î�õ_
�÷5ê�þJî�í�ï1��íGõ�ý)ëvë�ì�íPø�ö9ï�ò	�wí�ë�ð�ó�
�ì�í�êeê�õTò�õwê�ü´ý�ð÷�õwêeò�õ�ý�î�ñLõ)ò�ò�ý�ö�ÿ

é:ê õwö�ñ)í�ö1ë9õÂð÷�ô^ù�î�÷«üN� ë�ì�íTô^õ)ñ)í�î¤ï�ê�ñ ö9í�ñ)ýÌò�í^ë�ì�íTêpý�ô[ø�í�öDõwü�ù�ïwö9ïwô^í�ë�í�ö9ð�ó)F÷�ò�ì�ïwí�î�÷�ð¡ïwê�ñw)Fí�êpë�í�êH!g��ù�ö9õwù�õ�ð�í�ñúï�êTï�ù�ù�ö�õ1�)÷�ô^ï�ë�÷�õwêYó_
�ì�÷�ò�ìT÷�ðO�~ê�õ_
�ê^ïwðsë9ì�í)F÷�ò�ì�ïwí�î�÷�ðûs)Âí�êpë�í�êYó�õ�ö�ðë9ïwê�ñ�ïwö9ñ P ý�ï�ð÷5û:ð�ë9í�ïwñ���û:ðë9ï�ë9í0ï�ù�ù�ö�õ1�)÷�ôTï�ë�÷�õwê+'�ð	x SHS �y/�ÿ
é®ë�÷�ðlø�ïwð�í�ñBõ�êPë�ì�í¤ì��~ùÌõwë�ì�í�ð÷�ðYë9ì�ï�ë�ó�ï�ü�ë9í�ölï1ðì�õwö�ëYë�ö�ï�ê�ð�÷�í�êpë(ù�ì�ï�ðí�ó�ë�ì�ívò�õ�ôúù�î5í���Ð÷�ð[ï�ù�ù�ö�õ1�)÷�ôTï�ë�í�î�� ÷5ê ïFðë9ï�ë�íSõwü3ñ@�~ê�ï�ô^÷�ò�ï�î�î�� í P ý�÷5î�÷5ø�ö�÷�ý�ôeÿe¶gõwê�ð�í P ý�í�ê�ë9î���ó
ù�ý�ëë�÷�ê�þPë9ì�í3ö9÷5þ�ìpësìÌï�ê�ñTð�÷�ñ�í�õ�ü²� P ÿH'�J�/sí P ý�ïwî)ë�õR��í�ö9õ�óL
�í�õwø�ë9ï�÷�êúë�ì�í3ü´õwî�î5õ_
�÷�ê�þ
ö9í�î�ï�ë9÷5õ�ê�ðì�÷5ù�ð

�·� � 4 �¸Q¹���� ¨ 'E?�/
¥ �¥u¦ � � ª ¹ �gº �¸ ¹ �U� ¢ 'EnE1/


�ì�í�ö�íR¸Q¹&� �	»  � ïwê�ñ ª ¹ �gº � ª·¼ � 4 ÿ�0î5ö9í�ï�ñ@�p)F÷�ò�ì�ï�í�î5÷�ð�ïwê�ñw)Fí�êpë�í�êTö�í�ï�î�÷���í�ñ[ë�ì�ï�ë�ë�ì�÷�ðgï�ù�ù�ö9õ1�)÷5ôTï�ë�÷�õwê[÷�ð�þ�ý�ï�ö�û
ïwê�ë9í�í�ñ(
�ì�í�ê ë�ì�í í�êH���~ô^í ò�õwê�ò�í�êpë�ö�ï�ë9÷5õ�ê ÷�ðLô[ý�ò�ì î5í�ð�ðOë�ìÌï�ê ë9ì�í ðý�øÌð�ë9ö9ï�ë�í
ò�õwê�ò�í�êpë�ö�ï�ë9÷5õ�êYÿ½�0ò�ë�ý�ïwî5î��wó�÷�ê¾B K@E5M¤ë�ì�íOï�ý)ë9ì�õwö�ðGü´õwý�ê�ñ ïeî5í�ð�ðBù�ö�í�ò�÷�ðí^ü´õ�ö�ôJý�î�ï�ÿ£�õwö9ô[ý�î�ïwð]'E9u/vïwê�ñ�';EnE1/f
�í�ö9íBõwø)ë�ï�÷�ê�í�ñLø���h�ö9÷5þ�þ�ð�ï�ê�ña¿0ïwî�ñ�ï�ê�íB÷�ê�E9JuKuDL="ÿ�f�wí�êOë�ì�õ�ý�þwìbë9ì�í0)+)?ï�ù�ù�ö�õ1�)÷�ô^ï�ë�÷�õwêL÷�ðvø�ï�ðí�ñOõ�êFï P ý�ïwî5÷5ë9ï�ë�÷��wíPïwð9ð�ý�ô^ù)û
ë9÷5õ�ê{'*À�ë�ì�í�ò�õwô^ù�î�í5�[÷�ð�ôúõ�ö�í�õwösî�í�ð9ð�÷5êJí P ý�÷�î5÷�ø�ö9÷5ý�ôeówð�õG÷«ë�ð¡ñ)í�ö9÷���ï�ë�÷��wí�÷�ð�Á�Â�\1i�tvë9õ��í�ö9õuÀu/�ó�ð�í���í�ö�ï�îlø�÷5õ)ò�ì�í�ô^÷�ò�ï�î�øÌõ~õn�)ðGï�ê�ñÂù�ï�ù�í�ö�ð0÷�êpë�í�ö�ù�ö9í�ë1ë�ì�í^ï�ù�ù�ö�õ1�)÷�ôTï�ë�÷�õwê
ï�ð0ë9ì�íSò�ï�ðíú÷�ê�
�ì�÷�ò�ì ë�ì�íSñ)í�ö�÷���ï�ë9÷���íJõwü¤ë�ì�íSò�õwô^ù�î�í5��TÃiTê~ý�î�î�ÿw�vì�÷�ðB÷5êpë9í�ö9ù�ö�í�û
ë�ï�ë�÷�õwêÈ÷�ðJõwø��~÷5õ�ý�ð�î�� ÷5êÌò�õwö9ö9í�ò�ë�ÿdé:êÈü�ïwò�ëú÷«ë^÷�ðp��í�ö�� ð�÷�ôúù�î5íOë�õ ð�ì�õ_
Pósü´ö9õwôÄ'*Ku/Å '*Du/�ó�ë9ì�ï�ëSð�í�ë�ë�÷�ê�þ �	Æ� ¯ ��d÷�ô^ù�î�÷5í�ðúë�ì�ï�ë^í?�wí�ö�� ò�õ�ê�ò�í�êpë�ö�ï�ë�÷�õwêÈ÷�ðTò�õwê�ðë9ïwê�ë�ÿ
é:ê õ�ë�ì�í�öc
gõ�ö9ñ�ð�ósë�ì�íbðë�ö9÷�ò�ëúò�õwê�ñ)÷5ë�÷�õwê �	Æ� ¯ �Çdò�ïwê ø�íbïwù�ù�î�÷5í�ñ õwê�î�� ü´õwöúë9ì�í
ï�ð;�~ô^ù)ë�õwë�÷�òvï�ê�ïwî��)ð�÷�ðsõwüÌë9ì�í3ð;�)ðë�í�ôÈ'*Ku/ Å '*Du/�ÿ¤)Âï�ê��Jïwý)ë�ì�õwö�ðlìÌï1�wí�ð�ë9ý�ñ)÷�í�ñúë9ì�í)+)É�~÷5ê�í�ë�÷�ò�ðDø��ÂïbôTï�ë9ì�í�ôTï�ë�÷�ò�ï�î¡ù�õw÷�êpëPõ�ü.�~÷�í�
Ê'�ð�í�íwólíwÿ þ�ÿ�ó�A�í�ü�ð�ÿaB�E_µ~ó�CHE�ó�µ)óKnI)óHKLG)ó@Cn¬_M*ó�ïwê�ñTë9ì�íGö�í?�p÷�í�
 ù�ï�ù�í�ö]B K�µ?MN/�ó)ø��Tô^í�ï�êÌðgõwülïwð��~ô^ù)ë�õwë�÷�ò3í5�)ù�ïwê�ð�÷5õ�ê�ð
ïwê�ñLð�÷�ê�þwý�î�ï�övù�í�ö�ë�ý�ö9ø�ï�ë�÷�õwêLë�í�ò�ì�ê�÷ P ý�í�ð�ÿsé:êLü�ïwò�ë�ó�÷�êOë9ì�í�ð�íPï�ö�ë�÷�ò�î�í�ð�ë9ì�íPï�ý)ë9ì�õwö�ð
÷�êpë�ö9õ~ñ�ý�ò�íDïúù�ïwö9ïwôúí�ë�í�ö8Ë�óH
�ì�÷�ò�ìe÷�ð�ö9í�î�ï�ë�í�ñSë9õ^ë�ì�í[ø�÷5õ)ò�ì�í�ô^÷�ò�ï�î P ý�ï�êpë9÷«ë9÷5í�ð�÷5ê�û��õwî��wí�ñ ÷�ê ë�ì�íSö�í�ïwò�ë�÷�õwêYósï�ê�ñÈñ)í���í�î�õwù ï�ê ï�ð;�~ô^ù)ë�õwë�÷�òTí5�)ù�ïwê�ð�÷5õ�ê ÷�ê ë9í�ö9ô^ð[õ�ü
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é:ê^E?JnG�µy¿3í�÷�ê�í?�wí�êTí�ëgï�î*ÿ®�Ï�ù�ö�õ�ùÌõpðí�ñúïwêSïwð��~ôúù�ë�õ�ë9÷�ò3í5�)ù�ï�êÌð÷�õwê^÷�ê^ë�í�ö9ôTð�õwü
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