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Summary

The topic of this thesis is the modeling of industrial process data from bioreactors for
analysis, monitoring, control and optimization of cultivations for production of in-
sulin precursors using genetically modified strains of Saccharomyces cerevisiae. The
aim of this work is to develop models in order to facilitate and support the analysis
of production data from industrial cultivation processes, which can be applied in
both offline and online process analysis.

Soft sensors are first developed for obtaining quantitative information from an
existing industrial cultivation process. Two similar models are developed for mon-
itoring of the biomass and product concentrations using first principle engineering
modeling (FPEM). Application of the two simple soft sensors on industrial data
provide reasonable descriptions of the general biomass and product concentration
trajectories. Implementation and use of the soft sensors will enable a very simple yet
highly attractive way of providing online information of the two key process vari-
ables. Process Chemometrics provide an alternative approach for monitoring the
product concentration. A multiway projection to latent structures (MPLS) regres-
sion model is presented, providing both one-step ahead and end point predictions of
the product concentration within 5-10 % of analytical offline measurements. Com-
parison of the two soft sensors for describing the product concentration indicates
that the MPLS-predictor for the one-step ahead prediction gives a slightly better
description of the variations in the product concentration.

Attempts to use the two FPEM models mentioned above on the cultivation of a
similar recombinant strain of S. cerevisiae failed, since unanticipated production of
acetate indicates a different metabolic response to the growth conditions. Literature
reviews on the transport and effect of organic acids in cultivation processes as well as
the genetic engineering performed on the strain are presented. For modeling using
mass balances the elemental composition of the biomass is required and since it has
not been reported if the elemental composition of the recombinant strain has been
influenced by the genetic engineering, this is investigated using macroscopic mass
balances. The elemental composition of the biomass is found to be similar to what
is reported in the literature.

An indicator of the onset of oxidoreductive growth is presented. The indicator is
based on comparing the measured ammonia flow rate to a modelbased estimate of
the ammonia flow rate during oxidative growth. The model of the ammonia flow
rate takes into account the effects from changes in the volume of the culture broth,
effluent flow rate and glucose syrup feed rate. The indicator not only facilitates
the monitoring of the cultivation process for onset of oxidoreductive growth. To-
gether with the modelbased residual between measured and estimated ammonia flow
rate, the indicator provides the foundation for extended modeling of the cultivation
process.

Using the information provided by the indicator of the onset of oxidoreductive
growth, a soft sensor is constructed for the estimation of the conversion rate of
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acetate as well as the production rate of biomass. The soft sensor is based on a
combination of a proton balance and a carbon balance, and using these rates in
dynamic mass balances online estimations of acetate and biomass concentrations
are provided as well. Applying the model on data from a number of cultivations,
provides a surprising observation namely that acetate is being produced in large
amounts 1-2 hours before formation of ethanol occurs. The reason for the onset of
the acetate formation has not yet been determined.

A small metabolic flux model is proposed using calculated and estimated conver-
sion rates of substrate, biomass and key metabolites combined with physiological pa-
rameters reported in the open literature on another strain of S. cerevisiae. The model
is used to illustrate and discuss observations from cultivations showing both nor-
mal and abnormal process behavior. The model illustrates how acetate is produced
prior to ethanol formation. The model also shows how the activity of the oxidative
phosphorylation changes extensively as ethanol formation starts and as ethanol con-
sumption ends, which is interpreted as effects from repression/derepression of the
oxidative phosphorylation. It has not been possible to explain what mechanism is
responsible for this control of the oxidative phosphorylation, although it is discussed
that it could not be a fixed limitation in the capacity of the oxidative phosphoryla-
tion, since an experiment using closed loop control of the ethanol concentration in
the offgas shows even higher activity of the oxidative phosphorylation than are seen
in similar open loop experiments.

Finally a simple model is proposed to describe the specific productivity of the prod-
uct. The description is based on a first order model expression for the dependence of
production rate and biomass synthesis rate, with a time constant proportional to the
specific glucose uptake rate provided by the metabolic flux model presented above.
The model gives a reasonable description of the observed trajectories of product
concentration in a normal cultivation and by a small extension of the model, it is
also able to provide a reasonable estimation of the product concentration profile
during process upset in the form of acetate formation.



Resume

Emnet for denne afhandling er modellering af industrielle procesdata fra bioreak-
torer med henblik p̊a analyse, monitering, regulering og optimering af gæringer til
produktion af insulin precursors ved brug af genmodiferede stammer af Saccha-
romyces cerevisiae. Form̊alet med dette arbejde er at udvikle modeller til at lette
og understøtte analyse af produktionsdata fra industrielle gæringsprocesser og som
kan anvendes ved b̊ade offline og online analyse af processen.

Soft sensorer er først udviklet for at opn̊a kvantitativ information fra en eksis-
terende industriel gæringsproces. To sammenlignelige modeller udvikles til moniter-
ing af biomasse- og produktkoncentrationen ved brug af first principle engineering
modeling (FPEM). Anvendelsen af de to simple soft sensorer p̊a industrielle data
resulterer i en fornuftig beskrivelse af de generelle biomasse- og produktkoncentra-
tionsprofiler. Implementering og brug af soft sensorerne vil muliggøre en meget sim-
ple men meget attraktiv m̊ade at skaffe online information af de to nøglevariable for
processen p̊a. Proceskemometri bidrager med en alternative tilgang til monitering
af produktkoncentrationen. En multiway projection to latent structures regression
model (MPLS) præsenteres og denne bibringer 1-skridts og slutpunkts prædiktion
af produktkoncencentrationen som er inden for 5-10 % af offline analyserne. Sam-
menligningen af de to soft sensorer som beskriver produktkoncentration indikerer,
at MPLS-prædiktoren for 1-skridts prædiktion giver en smule bedre beskrivelse af
variationerne i produktkoncentrationen.

Forsøg p̊a at anvende de to FPEM modeller nævnt ovenfor p̊a gæringer af en
tilsvarende rekombinant stamme af S. cerevisiae slog fejl, da uventet produktion af
acetat antydede et anderledes metabolisk respons p̊a vækstbetingelserne. Litter-
aturstudier af transport og indflydelse af organiske syrer i gæringsprocesser præsen-
teres, s̊avel som de genetiske modifikationer udført p̊a stammen. Til modellering
der anvender massebalancer skal elementarsammensætningen af biomassen gerne
kendes. Da der ikke er rapporteret, hvorvidt stammens elementarsammensætning
er p̊avirket af de genetiske modifikationer af stammen, undersøges dette ved brug
af makroskopiske massebalancer. Undersøgelsen viser, at stammens elementarsam-
mensætning er sammenlignelig med det som rapporteres i litteraturen.

En indikator for begyndelse af oxidoreduktiv vækst bliver præsenteret. Indikatoren
er baseret p̊a en sammenligning af den m̊alte flowhastighed af ammoniak med et
modelbaseret estimat af samme flowhastighed under oxidativ vækst. Modellen af
flowhastigheden af ammoniak tager hensyn til effekter fra ændringer i volumen af
kulturvæsken, væskeflow fra bioreaktoren og doseringshastigheden af glucose sirup.
Indikatoren letter ikke kun monitering af gæringer for begyndelse af oxidoreduktiv
vækst. Sammen med det modelbaserede residual mellem den m̊alte og estimerede
flowhastighed af ammoniak, bidrager indikatoren med et grundlag for yderligere
modellering af gæringsprocesser.

Med information fra indikatoren for begyndelse p̊a oxidoreduktiv vækst, kon-
strueres en soft sensor til estimering af omdannelseshastigheden af acetat og produk-
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tionshastigheden af biomasse. Soft sensoren er baseret p̊a en kombination af en pro-
tonbalance og en kulstofbalance, og ved at benytte disse i dynamiske massebalancer
kan man ydermere opn̊a online estimering af acetat- og biomassekoncentrationer.
Anvendelse af modellen p̊a data fra et antal gæringer resulterer i den overraskende
observation at acetat dannes i store mængder 1-2 timer før ethanoldannelsen starter.
Forklaring for mekanismen bag denne observation er endnu ikke bestemt.

En lille metabolisk fluksmodel er præsenteret, som anvender beregnede og es-
timerede omdannelseshastigheder af substrat, biomasse og nøglemetabolitter i kom-
bination med fysiologiske parametre rapporteret i den åbne litteratur om andre stam-
mer af S. cerevisiae. Modellen benyttes til at illustrere og diskutere observationer fra
gæringer der viser b̊ade normal og unormal opførsel. Modellen illustrerer, hvorledes
acetat produceres før ethanoldannelse. Modellen viser ydermere, at aktiviteten af
den oxidative fosforylering ændres meget, n̊ar ethanoldannelse p̊abegyndes og afs-
luttes, hvilket fortolkes som en effekt af repression/derepression af den oxidative fos-
forylering. Det har ikke været muligt at forklare, hvilken mekanisme der er ansvarlig
for denne regulering af den oxidative fosforylering. Det diskuteres, at det ikke kan
være p̊a grund af en fast begrænsning i kapaciteten af den oxidative fosforylering,
da et eksperiment, som anvender lukketsløjfe regulering af ethanolkoncentrationen
i afgangsgassen, viser endnu højere aktivitet af den oxidative fosforylering end hvad
der ses i eksperimenter med åbensløjfe regulering.

Til slut præsenteres en simpel model til beskrivelse af den specifikke produktivitet
af insulin precursoren. Beskrivelsen er baseret p̊a et første ordens modellering-
sudtryk for afhængigheden af produktionshastigheden og biomassesyntesehastighe-
den med en tidskonstant som er proportional med den specifikke glucoseoptagelse-
shastighed, som leveres af den metaboliske fluksmodel nævnt ovenfor. Modellen
giver en tilfresstillende beskrivelse af de observerede produktkoncentrationsprofiler
for normale gæringer. En lille udvidelse af modellen gør, at denne ogs̊a giver en
tilfresstillende beskrivelse af produktkoncentrationsprofilen ved procesforstyrrelse
s̊asom acetatdannelse.
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General Introduction

1.1 Background

The construction of, introduction of and use of genetically modified organisms
(GMO’s) in biotechnological and pharmaceutical production processes have ex-
tended the potential of these industries to a stage, where nothing seems impossible
or unachievable. The fund of knowledge within Microbiology and Biochemistry is
nowadays so extensive that microorganisms can literarily be tailor-made to serve
a desired purpose e.g. produce antibiotics or remove hevay metals from industrial
waste streams.

There is still a long way from successful genetically modifying a microorganism
in the laboratory to obtaining optimal productivity and effectiveness in large scale
industrial cultivations of that microorganism. The path of process development
between mL tom3 scale requires development of the cultivation method and medium
composition, screening of different suitable strains for highest productivity during
anticipated production conditions, scale-up from lab to pilot plant and further to
production scale with investigations and tests at each level, and finally optimization
of the process and process economics under industrial production conditions.

A pivotal aspect of the investigations, decision making and scale up of any pro-
duction process is the ability of monitoring the process state i.e. to follow the
most important process parameters and variables during the process. In cultivation
processes monitoring is often restricted to the measurement of macroscopic entities
such as flows, pressures, temperatures and volumes. Sometimes the off-gas from
the bioreactor is analysed online for its primary constituents, but in general the
monitoring of the biological entities in the cultivation broth is limited to a couple of
easily measured species and is carried out as off-line analyses often with a significant
time delay between sampling and availability of the analysis result.

The purchase and introdution of more advanced process analytical instruments
could be used to provide information on the process by measuring more of the bio-
logical entities and species in the culture broth. However the information the instru-
ments provide must be compared to their influcence on the process economics and
educational requirements of the operating personel. The pharmaceutical industry
has tradionally been very reluctant to introduce new process analytical technolo-
gies, since it was not clear how regulating authorities would challenge the use of
such technologies. With new guidelines from the powerful Federal Drug Adminis-
tration in USA (Guidance for Industry on Process Analytical Technologies (PAT)
USFDA (2004b)), the regulating authorities are now endorsing the integrated use of
measurements, experience and knowledge in order to improve product and process
quality.
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Most of the primary focus of the PAT discussions have concerned measurement
technologies and their use and application. However an important aspect of the
PAT guidelines concerns the use of information by integrating data from different
sources. In this thesis this aspect is approached by combining knowledge and expe-
rience of cultivating microorganisms with engineering principles such as mass and
elemental balances. This combination of different expertise is able to provide ad-
ditional information on the dynamics of the cultivation process, information that
could potentially be made available for online monitoring of the process. Even in
offline analysis of cultivation data it is desirable to ensure enhanced use of informa-
tion in order to analyse the process dynamics and improve the understanding of the
process.

1.1.1 Novo Nordisk A/S

For almost 2 decades Novo Nordisk A/S have used genetically modified organisms in
the industrial production of insulin and insulin analogues and the company is one of
the biggest producers with a market share around 45 % by volume. Insulin is used
for treatment of diabetes, a metabolic disorder in which glucose is not consumed
normally by cells, due to low concentrations of insulin. It has been estimated that
the number of diabetic patients will grow to more than 200 millions by 2010, mainly
due to the world wide development into Western life style with too little exercise
combined with too much fatty food in the diet.

At Novo Nordisk A/S a continuous improvement of existing production processes
as well as investigation and development of new processes for new products is carried
out. The cultivation of the microorganism is only one of the many steps in the
production line and each of the steps needs to be developed and improved in order
to ensure robustness and high yields. The aim of the cultivation process is to obtain
high productivity of the product a task that is intrinsicly related to the growth of the
microorganism, due to the strategy used for expression of the recombinant product.

Although many biological variables are being measured during a typical cultivation
at Novo Nordisk A/S most of these variables are measured offline at a frequency that
does not allow for detailed analysis of the state of the metabolism, and definitely not
online, since the time delay between sampling and analysis is more likely days than
hours. The cultivations are mostly evaluated based on the rate of formation of the
desired product and the biomass with only few attempts to provide a physiological
explanation for variations in the cultivation data and offline measurements.

The present industrial Ph.D. project was established on the desire to use more of
the information available in the cultivation process in order to monitor the state of
the process and detect disturbances (small variations to the process recipe occur-
ring frequently) and upsets (large and severe variations to the process recipe, less
frequently). The project activities were to be carried out in the laboratory and pilot
plant facilities of the company. Unfortunately major organizational rearrangements
in the company made it impossible to setup a dedicated bioreactor for almost 2
years of the project. In this time period work was instead carried out on modeling
of data from the production site.
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1.2 Aim and Hypotheses

The aim of this work has been to develop models in order to facilitate and support the
analysis of production data from industrial cultivation processes. The models should
1) support process engineers in documenting the course of cultivations e.g. as batch
documentation required by regulatory authorities in the pharmaceutical industry, 2)
support the evaluation of the process performance and analysis of process dynamics
and 3) support the online analysis of the cultivation by monitoring the trajectories
of essential cultivation states.

It was a further aim of the project to prove that more information and knowledge
could be extracted from the existing process data. It was desired to construct
models such that their application did not require purchasing and installation of
new instruments or changes to the sampling and analysis of the culture broth.

The hypotheses of this thesis are therefore:

• The construction of simple models of a cultivation process will enhance the
use of existing process instrumentation both in offline and online applications
thereby facilitating improved modelbased monitoring of key process variables.

• The estimation and monitoring of key process variables will support the mod-
eling and subsequent offline and online estimation of the production rate and
concentration of the desired product, insulin precursors.

Such methods may be used for process analysis, monitoring, control and optimiza-
tion.

1.3 Outline of Thesis

The thesis has been divided in two parts. The first part (chapters 2, 3, 4 and 5)
provides background information on some topics that are relevant prerequisites for
the chapters in the second part (chapters 6, 7, 8 and 9), describing the cultivation
data and the construction of models for improved analysis and interpretatation of
these data.
Chapter 2 provides an introduction to the generel concepts behind modeling.

The aim of this chapter is to provide an idea of why the use of models is attractive.
A number of modeling approaches is mentioned and it is argued that modeling
is purpose-driven. The chapter ends with a section on the vision behind the use
of models in a pharmaceutical company like Novo Nordisk A/S and a section on
how soft sensors may be used to facilitate realization of such a vision for improved
monitoring, control and optimization.

In chapter 3 the most important metabolic pathways for aerobic growth on glu-
cose as substrate are reviewed with focus on the catabolic reactions.

Surprisingly high concentrations of acetate were observed by offline analysis of
culture broth during process disturbances. Chapter 4 provides a review of the
literature on the effects of weak organic acids on the growth dynamics of Saccha-
romyces cerevisiae.

In this thesis data from cultivations of two recombinant strains of Saccharomyces
cerevisiae have been investigated. Chapter 5 presents a detailed description of the
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genetic modifications on the strain used in chapters 7, 8 and 9.
Chapter 6 presents the modeling of the production rate and concentration of

an insulin precursor. Two different modeling approaches have been used, and the
resulting models have been constructed with the aim of online application. First
principle engineering modeling based on knowledge of the physiology and genetic
modifications to the recombinant strain provides models for estimating the biomass
and product concentration. The construction of a model using Multiway Partial
Least Squares Regression is entirely driven by data. The identified model is limited
to a fixed time period consisting of the fed-batch operation and some hours of
continuous operation of a cultivation, referred to as the end point. The model is
able to provide an online estimate of the product concentration as well as continuous
prediction of the end point concentration.

In chapter 7 the elemental composition of biomass of the strain presented in
chapter 5 is investigated. Macroscopic mass balances are used to determine the
elemental composition and the result is compared to the result obtained by elemental
analysis of the biomass with respect to carbon, hydrogen and nitrogen. The two
methods provide similar estimates of the elemental composition. The investigation
also proves that the mass balances close properly under stationary conditions during
continuous operation.

Cultivation data from experiments carried out in pilot plant showed that onset of
oxidoreductive growth was accompanied by elevated ammonia flow rates in order
to maintain a constant culture broth pH. An indictor of the onset of oxidoreduc-
tive growth was constructed by identifying periods of elevated ammonia flow rates
and quantifying the extent and magnitude of the variation. A model of the ammo-
nia demand during oxidative growth in fed-batch and continuous cultivations was
constructed and the output of this model was compared to measurements of the am-
monia flow rate. Chapter 8 describes model building and verification. The chapter
also illustrates the performance of the model during oxido-reductive growth, and it
is described how the monitoring of the residual between measured and estimated
ammonia flow rates can be used to determine the onset of oxido-reductive growth.
Chapter 9 presents the construction and performance of 3 simple mathematical

models formulated as soft sensors. The first soft sensor provides estimates of biomass
and acetate conversion rate and concentration and uses the model presented in
chapter 8 to determine the onset of oxido-reductive growth. It is illustrated how
significant acetate production occurs prior to ethanol formation at the onset of
oxido-reductive growth. The second soft sensor provides estimates of the intrinsic
metabolic flux distribution in a simple metabolic network. Use of the soft sensor
is illustrated by investigating oscillations due to synchronized growth and analysis
of the critical dilution rate by a slowly increasing ramp in the dilution rate. The
third soft sensor provides estimates of the production rate and concentration of the
product, an insulin precursor. All three soft sensors have been constructed for use
both in off-line analysis of cultivation data and for online monitoring of a running
cultivation in fed- batch and continuous operation.
Chapter 10 presents the overall conclusions for the work reported in this thesis

along with suggested directions of future work.
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1.4 List of Publications

During the industrial Ph.D. project the following conference contributions and ar-
ticles have been produced:

• Mads Thaysen and Sten Bay Jørgensen; On-line Estimation and Prediction
of Biomass Concentration in Yeast Fermentations Using a Software Sensor;
Annual Meeting 2002 of AIChE, Indianapolis, USA. Oral presentation of con-
ference article.

• Mads Thaysen and Sten Bay Jørgensen; On-line Estimation and Prediction
of Biomass Concentration in Yeast Fermentation using a Software Sensor;
ESBES-4 2002 in Delft, Holland. Poster presentation of conference abstract.

• Mads Thaysen and Sten Bay Jørgensen; Process Software Sensor for Plant
Optimization; PSE 2003, Kunming, China. Poster presentation of conference
article.

• Mads Thaysen and Sten Bay Jørgensen; Application of Software Sensors for
Monitoring and Prediction in Fermentation Processes; AdChem Conference
2003, Hong Kong, China. Oral presentation of conference article.

• Mads Thaysen, Dennis Bonné and Sten Bay Jørgensen; Modeling industrial
fermentation data using Grid of Linear Models (GoLM); CAB-9 Conference
2004, Nancy, France. Poster presentation of conference article.

• Mads Thaysen, Dennis Bonné and Sten Bay Jørgensen; Modeling industrial
fermentation data using Grid of Linear Models (GoLM); BatchPro Final Meet-
ing 2004, Poros, Greece. Poster presentation of conference article.

• Mads Thaysen and Sten Bay Jørgensen; Formation of Acetate and Glycerol in
High-density Cultivations of Saccharomyces cerevisiae; Annual Meeting 2004
of AIChE, Houston, USA. Oral presentation of conference abstract.

• Mads Thaysen and Sten Bay Jørgensen; Application of Software Sensors for
Monitoring and Prediction in Fermentation Processes; Submitted to Chemical
Process Engineering Journal and correponds to chapter 6 in the present work.
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Modelbased Analysis, Monitoring
and Control in Biotechnology and

Biopharmaceutical Industries

Mathematical models are used in sciences to capture experience and knowledge in
order to pass it on to others for many different purposes. One important applica-
tion of models is testing or validation of hypotheses. By analyzing discrepancies
between proposed models and the systems they represent, it is possible to propose
model extensions, or a new model, and then validate the extended or new model
using data of the system either obtained by planned experiments or from previous
measurements of system behavior.

The purpose of this chapter is to give a brief and general introduction to modeling.
Concepts of academic mathematical modeling of bioprocesses can often seem very
different from the problems the professional is facing at a production plant when
attempting to develop models of a process. Reasons for this apparent discrepancy
could for example be that complex substrates are being used or that the constraints
or dynamics of the utility systems providing aeration, steam, cooling water, stirring
or dosing of feed streams affect the bioprocess. By introducing scientists and en-
gineers to some of the concepts of modeling for application in complex industrial
environments, the information, models and results presented in later chapters of
this thesis can be understood, appreciated and serve as a starting point for mod-
elbased analysis, monitoring and control in other areas of the bioprocess industry.
Key points to be noted in the following are that 1) modeling is purpose driven, 2)
information and control hierarchies affect not only a given plant but should rather
be approached from a holistic point of view and 3) different kinds of model types
exist depending both on how well the mechanisms of the process is understood and
described and on the actual purpose of the modeling. The aim of this chapter is
to argue that models are attractive tools for the understanding, monitoring, control
and optimization of cultivation processes and production lines in general.

The first section argues that modeling is purpose-driven and categorizes the ap-
plication of models depending on the purpose. A model of the control hierarchy
of a production line is presented and used to illustrate how different models can
be used at different levels in an organization to interpret the same process data
for different purposes. Section 2.2 presents different types of mathematical model
structures and shortly describes their potential applications. As experience and
knowledge of a given process is extended it is possible to construct more complex
and accurate process models. Section 2.3 provides a vision of how model based plant
and/or business-wide monitoring, control and optimization can be envisoned in a
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pharmaceutical company.

2.1 Purpose-driven Modeling

Before modeling of a given system is attempted it is important to clearly define
what the purpose of the modeling is. This is needed in order to limit and focus the
attention in the model construction and guiding the introduction of assumptions to
obtain the best possible performance within the intended operating regime. When
evaluating the model performance and assumptions during validation, it is likewise
important that this is done within the intended operating regime and with the
original purpose of the model in mind. When a model has been applied and validated
for a given purpose in a given operating regime it can then serve as a starting point in
order to develop an extended model for application in neighboring operating regimes.
Here it is important to keep in mind that the original purpose and assumptions can
be violated and therefore the model might need modifications to serve the altered
purpose.

In the following, five different modeling categories for process performance opti-
mization are presented. The concepts of information and control hierarchies are
then presented and discussed in order to provide a framework for understanding
how models shaped as observers or soft sensors can provide refined information at
different levels in the two hierarchies and how modelbased controllers can be applied
in the control hierarchy. In the present work only soft sensors were developed as
will be shown in chapters 6 and 9.

2.1.1 Categories

The purpose of mathematical models in relation to process performance optimization
can be divided into several categories:

• Analysis of steady state behavior

• Analysis of process dynamics

• Monitoring of key process variables

• Prediction of performance in possible future scenarios

• Control of the process

Models constructed for analysis of process data is often the first step on the path
to understanding process dynamics and subsequently the construction of models for
monitoring and control. The modeling cycle is repeated as models for monitoring
and control are constructed, validated and implemented. Further improvement of
process performance can be identified provided suitable methods are available This
leads to construction of new models for analysis of the monitored and controlled
process. This modeling cycle is illustrated in figure 2.1. In the different categories
models are constructed for different specific purposes.
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Figure 2.1. Schematic illustration of the modeling cycle. It is indicated how analysis
of process data can lead to an understanding of the process dynamics. The acquired
knowledge can then be used to change the operation of the process or be used in mod-
elbased monitoring of the process performance. The information from the modelbased
monitoring can also be used for modelbased control of the process.

Figure 2.2. Illustration of the information hierarchy at a production plant. The arrows
pointing upwards illustrate the flow of information. Process measurements are turned
into data. Analysis of data produces information on the system, which can be condensed
into knowledge in the form of justified true belief (Nonaka, 1994). The arrows pointing
downwards illustrate how increased knowledge of the system can have an influence on
the measurements, either by fine tuning of existing equipment, introduction of new
measurements and control loops or construction of state observers/ soft sensors (see
section 2.1.2.1).

2.1.2 Information Hierarchy

The key to supervision and control of production processes is to have data and in-
formation available to analyze and evaluate the process conditions. The transforma-
tion of raw process measurements to process knowledge is schematically illustrated
through an information hierarchy as shown in figure 2.2. Here the raw measure-
ments from the sensors in the process are translated to physical units e.g. pH, flows
and temperatures, and then referred to as data. Analyzing the vast amounts of data
from different sensors produces information on how the system reacts under differ-
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ent circumstances. As necessary and sufficient information is gathered to capture
and describe underlying principles responsible for the process behavior, an under-
standing of the behavior can be shaped and process knowledge can be developed.
Increased knowledge and information on the system behavior can lead to new uses
of process measurements or introduction of new derived variables or instruments in
order to improve and optimize the monitoring and control of the productivity in a
given process.

2.1.2.1 Observers

In biopharmaceutical cultivation processes it is often not possible to measure the
desired variables in-line, on-line or at-line. Having information on the important
product concentration profiles available after the production steps have been ter-
minated is adequate for quality assurance and regulatory purposes (e.g. required
by the authorities), however for process monitoring, control and optimization it is
desired to have an on-line evaluation of the state of the process.

Using mathematical models describing the known or assumed mechanisms and
dynamics of the production so-called state observers can help to infer information
about unmeasured variables (outputs) by using available information from other
measured variables (inputs). In this work the synonym soft sensor is used instead of
state observer to highlight the similarities to the hardware sensors already present,
installed and used in the process. Different frameworks can be used for formulating
the mathematical models for the development of a soft sensor depending on the na-
ture of the problem. The choice of which variables to relate can be based on analysis
of knowledge, experience and insight into a given process, but can also be attempted
through data driven approaches, where correlations between variables is evaluated.
The nature of inputs and outputs for a soft sensor ranges from physical variables
(e.g. flows and concentrations) to indicatory variables (e.g. operational/process
phases and signal quality/noise level). It should, however, be emphasized that even
though the soft sensor is mathematically formulated to measure a certain process
state, the underlying assumptions for the model might fail, thus rendering the sig-
nal from the soft sensor erroneous. If possible, evaluation of assumption validity
should be wrapped around a process soft sensor e.g. in an algorithm framework for
monitoring application of the soft sensor.

In relation to the information hierarchy shown in figure 2.2, soft sensors are posi-
tioned between the data and information layers, providing additional information on
unmeasured or infrequently measured variables. Introduction of process soft sensors
constitutes an effective way to improve the level and quality of available process
information. Essential in this discussion is the availability of specific information
at many decision levels in the production organization. Production floor personnel
can use the extended amount of information for improving the performance of a sin-
gle unit, while the production management can use the information for improving
planning and scheduling of the production line.
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Figure 2.3. Overview of the control hierarchy in a process plant. The box at the bottom
represents the plant floor where single input/single output (SISO) control loops sup-
port the process in each given process unit. This control action could both be situated
in local programmable logic controllers (PLC’s) or in a central process control system.
Above the SISO control layer is a multiple input/multiple output (MIMO) layer, where
more sophisticated multivariate process models are applied for the monitoring and con-
trol of the production line. Process optimization is carried out in the third layer, where
the evaluation of different process scenarios can be analyzed and tested for optimal
performance. At the top of the control hierarchy is the business decision making layer,
where the production strategies are (re-)evaluated and decided. The type of informa-
tion exchanged between layers is also illustrated. The characteristic time constants
for the control action increase from the bottom (seconds) to the top layer (weeks or
months), while the model specificity and detail decreases.

2.1.3 Control Hierarchy

It can be relevant to construct a number of similar process models from the same
process data, although the use of the information from the process can be rather
different. Figure 2.3 illustrates a schematic overview of the control hierarchy in a
production plant, highlighting different control objectives at the different control
layers e.g. optimization of productivity and maintaining process conditions with
respect to infections. The bottom control layer is in close contact with the process
units in the production line. Single input/single output (SISO) control ensures that
the production plans are carried out according to the set points provided by the
multiple input/multiple output (MIMO) layer. The MIMO layer contains the more
sophisticated control algorithms using multivariable information and ensures that
the information from the SISO layer is used to carry out the production plans as
scheduled in the production recipe. As a response to possible discrepancies between
desired and realized process trajectory, new set points are provided to the SISO con-
trollers to guide the system between desired phases and within these. Whereas the
control algorithms of the SISO controllers can be positioned both in decentralized
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programmable logic controllers (PLC’s) at the local process unit or in the overall
process control system (PCS), the MIMO control algorithms are mostly situated
in the central PCS. Above the MIMO layer in figure 2.3 an optimization layer is
positioned, which serves the function of identifying and evaluating optimal process
performance based on the constraints/objectives provided by the business decision
making layer and information on current or historical process dynamics and per-
formance. The function of the business decision making layer is to analyze the
market for business opportunities and threats and combining this with knowledge
of the capabilities of the production process to formulate a strategy in the form of
optimization objectives that can guide the production process.

In all the layers of the control hierarchy models are used in order to analyze the cor-
relation between inputs and outputs, monitor the variation of process variables and
attempt to control the output variables by manipulating relevant input variables.
The characteristic time constants for the control action increase from the bottom
(seconds) to the top layer (weeks, months or years), while the model specificity and
detail decreases in the same direction. With changing control objectives, the infor-
mation requirement also changes as does the involved process measurements. Most
often it is not the raw process online measurements e.g. stirring rates, pressures
and temperatures that are used in the upper layers of the control hierarchy, but
rather composite measurements such as energy consumption (power, heating, cool-
ing), productivity, quality and yield (unit product per unit raw material). Some of
the variables needed in the calculation of composite measurements might only be
sparsely available due to cumbersome offline analysis which only occurs with signif-
icant time delay (days) between sampling and measurement. Especially large time
delays can be a limitation for the responsiveness of the control hierarchy to maintain
the process at or close to optimal process performance.

At the different levels of the control hierarchy models of different detail are applied
for specific purposes. Using the same data as input different models provide different
outputs depending on the purpose of the model. Having the control hierarchy and
the categorization of process models in mind will aid to focus on a specific purpose
during model construction in order to obtain the desirable (model) performance.

2.2 Different Model Types

The previous section presented the information and control hierarchies and discussed
how models shaped as observers and predictors can serve the purpose of refining and
communicating information between the layers in the two hierarchies. It was also
discussed how models are used in the layers of the control hierarchy in order to
control and guide the process towards a desired objective.

In this section the focus is turned to the different model types which are rele-
vant in this thesis, and that can be used in the aforementioned information and
control hierarchies. A short description is provided for the main model categories.
Traditionally model types can be separated into three groups:

• White-box models

• Black-box models
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• Grey-box models

This separation is illustrated in figure 2.4. The color coding refers to the degree in
which the true mechanisms of the system are reflected in the model equations. In
other words, a black-box model is constructed without including the known mech-
anisms of the system, whereas a white-box model reflects the present knowledge
of the mechanisms behind the system and their dynamics. In this sense grey-box
models contains all the modeling types between the two extreme groups.

2.2.1 White-box Models

Examples of white-box model types are first principles engineering models which are
based on conservation laws regarding mass and energy and characterized by being
knowledge driven i.e. based on knowledge and experience of how the mechanisms of
a given system are understood and interrelated. Included in this group are among
others:

• Algebraic equations

• Differential equations (ordinary, non-linear, partial)

• Difference equations (ordinary, non-linear)

Even without data of a given system it is possible to construct knowledge driven
models. For this reason, knowledge driven models are preferred as educational
tools and in other knowledge sharing activities. When applied in processes the
performance of white-box models can deteriorate if noisy or uncertain data is used
as input to the models. Therefore the construction of suitable filters to reduce or
attenuate noise is a prerequisite before nosiy or uncertain process data can be used
for modeling, monitoring, control and optimization.

2.2.2 Black-box Models

Complementary to the knowledge driven model types are the entirely data driven
model types e.g. neural networks and other empirical datafitters. Here the term
black box models should be understood in a broad sense rather than the use of the
term in relation to modeling of physiological pathways e.g. Nielsen and Villadsen
(1994).

Application of this group of models is to a large extent dictated by the information
in the available measurement data. Clearly it is not possible to build a model of
a given system without data of how the system behaves and performs. The data
driven models are attractive for a first analysis. Under these circumstances the data
driven modeling approach is much simpler, although it can still be quite a challenge
to construct a model suitable to fulfill the desired purpose.

Examples of data driven models include among others:

• Neural networks (a number of different topologies (structures) exist)

• Time series models (ARMA(X), AR(X), CVA ...)1

1ARMAX: AutoRegressive Moving Average with eXogenous input. ARX: AutoRegressive with
eXogenous input. CVA: Canonical Variate Analysis.
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Figure 2.4. Model type categories: White-, grey- and black-box models, depending on
the amount of mechanistic or intrinsic knowledge used in the model construction. The
color code refers to the transparency of the modeling box.

• Chemometrical models (PCA, PCR, PLS ...)2

2.2.3 Grey-box Models

The need for grey-box models emerge, where some knowledge of mechanisms and
dynamics of a system is available, yet not sufficient to fulfill the desired purpose of
the modeling. Under such conditions, it is desirable to combine knowledge and data
such that mechanistic models are used to describe the known relations, while data
driven structures are used to describe the unknown relations in the mass and energy
balances.

An example of grey-box models could be the use of a neural network to use process
data in order to estimate unmeasured process variables, which in turn is used as
input to a first principles engineering model comprised of differential equations.
Another example of grey-box modeling is the use of an modeling framework which
incorporate terms that can handle the stochastic nature of process data. One such
approach is state space models build on stochastic differential equations (SDE’s) to
form grey box stochastic models (Kristensen, 2003).

2.2.4 Summary

The review in the above section has provided a very short introduction to how
different modeltypes can be used to describe a given problem depending on the level
of knowledge and information available on the mechanisms and dynamics of the
system.

2.3 A Vision for Model-based Monitoring and Con-

trol at Novo Nordisk

In a biopharmaceutical company such as Novo Nordisk surprisingly few soft sensors
are used in the analysis, monitoring, control and optimization of the processes along
the production lines. The reason for this can possibly be found in the role quality
control and quality assurance play in the development and production activities. At

2PCA: Principal Component Analysis. PCR: Principle Component Regression. PLS: Partial
Least Squares.
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a first glance this might seem contradictory, since monitoring and control is intrin-
sically related to quality assurance and quality control. The explanation for this
possible contradiction is found in the activities and documentation that are related
to the involvement of the two areas. Rather than attempting to obtain high product
quality through robust design, monitoring, control and operation of the process, ac-
cepting multivariable process dynamics, the quality of a product is often evaluated
solely on the measurement of product purity and concentration. Therefore in a mar-
ket, where first-to-market is associated with large profits and a dominating position
in the market, the focus is on fast development of a reasonable process, where prod-
uct is released from quarantine by satisfying offline quality control measurements;
there is seldom believed to be time available for using modeling in such a market,
to develop online quality control indicators such as soft sensors.

However a new approach has been proposed by the U.S. Federal Drug Admin-
istration (USFDA) to regulation and supervision of the pharmaceutical industry
(USFDA, 2004a). With their vision of a risk-based approach to complement cur-
rent Good Manufacturing Practices (cGMP’s) for the pharmaceutical industry the
USFDA will encourage the industry to embrace modern manufacturing tools pro-
vided by advances in manufacturing sciences, quality management systems and risk
management, to facilitate more robust manufacturing hereby enabling and ensuring
production of high quality pharmaceuticals and support continuous process improve-
ment.

One aspect of the risk-based approach to cGMP is the use of process analytical
technologies (PAT’s) for monitoring and control of industrial processes, where pro-
cess understanding and process modeling is an integral part of the PAT framework.
The underlying incentive for PAT is that: ”quality can not be tested into products;
it should be built-in or should be by design”(USFDA, 2004b) ... of the product and
of its production process.

In its guidance for industry on PAT (USFDA, 2004b) the USFDA recognises that
the PAT framework is not limited to the purchase and installation of new advanced
measurement equipment and instruments, but also includes the use of multivariate
modeling methods for design, data acquisition and data analysis as well as for mon-
itoring and control of the processes using the new information provided by process
analyzers as well as the traditional process measurements (e.g. material flows, tem-
perature, pressure etc.). For the continuous improvement of the process understand-
ing and knowledge management, USFDA furthermore mentions the importance of
developing tools able to support the data mining of multifactorial relationships as
well as evaluate performance of these relationships in different possible scenarios. In
summary, the use of models is a central part in the development of a PAT strategy
and the PAT framework furthermore facilitates, supports and encourages the ex-
tended use of measurements and modeling in the pharmaceutical industry to ensure
improved prodcut quality control.

2.3.1 Software Sensors Used in Production Plants

Application of process soft sensors is evident for process monitoring and control.
Primarily the information from a the soft sensor can be used in models for control,
tuning and optimizing the process. However in many cases the generated information
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from a soft sensor can be made available to other parts of the production line through
IT-systems such as manufacturing execution/information systems (MES/MIS). In
this sense process soft sensors can provide information for scheduling of subsequent
unit operations and thereby provide a possibility for tuning and optimizing not only
of the single unit, but ideally of the whole production line.

To illustrate the possible application of process sensors in an industrial production
framework, a case from the pharmaceutical industry is presented. Figure 2.5 shows a
schematic illustration of a production line, consisting of: upstream, downstream and
formulation of an active pharmaceutical ingredient (API). From the figure, it can
be seen that a number of separate yet sequentially interconnected processes serves a
common purpose, namely timely and cost-effective production of high quality API.
Unfortunately it is common that relevant information is not exchanged timely and
efficiently between these production plants as illustrated in figure 2.6. An example
of such lack of communication and exchange of information could be reporting of
minor process disturbances that has occurred upstream with possible minor effects
on the downstream processing or characteristics of the materials in the process line
e.g. concentration, composition etc.

Why is this so? Modern production and process information systems allow access
to historical data bases through company intranet, rendering it possible for person-
nel at different production plants to analyze not only their own process data, but
also the data from other production plants, which in figure 2.6 can be interpreted as
intercommunication between the data layer of the information hierarchy. Commu-
nication also exists at the information and knowledge layers e.g. meetings between
personnel from different plants for the exchange of experience and knowledge of the
processes in the production line. The reason for the horizontal spacing within the
layers in figure 2.6 is to highlight that despite the potential availability of data from
other plants, very seldom work is carried out to analyze, let alone implement moni-
toring and/or control, how data from other plants can be used to generate extended

Figure 2.5. Schematic illustration of the exchange of species and information between
upstream and downstream processes at a pharmaceutical production site. Examples
of information that could flow upstream are capacity status and demands for minimal
product concentration due to processing problems.
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information and knowledge of the behavior of the production line as a whole. To
sum up the discussion above, information exchange should ideally occur at every
level of the information hierarchy. Different plants should be able to obtain rele-
vant process information, measurements and data at their desire in order to develop
their own soft sensors and tools to monitor, control and optimize the production
line. Knowledge and experience from other plants should also be included in the
model development, maintaining a holistic approach to improve the performance of
the production line as a whole.

Whereas the use of soft sensors for vertical communication at individual plants
should be obvious, it is believed that the biggest challenge and also the biggest
potential for improving the production line as a whole, will be found when addressing
horizontal communication between plants. Building model-based soft sensors seems
to be an obvious starting point in an effort to construct plant-wide monitoring and
control. Software sensors can facilitate horizontal communication by e.g. providing
tools to monitor a given production batch while it is still physically being processed
at an upstream plant.

The vision for Novo Nordisk is that by addressing the development and use of
modelbased soft sensors for exchange of information and control of the production
line, the company will be able to:

• respond quicker to process disturbances, thereby minimizing their effects on
downstream processing

• document and demonstrate detailed process understanding, which can be a
prerequisite for parametric release3 of pharmaceutical products

• improve process performance by continuously developing, maintaining and im-
proving process models for analysis, monitoring, control and optimization

• attain a holistic approach to process optimization through information and
knowledge sharing between different plants

The model development activities should not be limited to the production sites,
but should already be initiated and addressed during process development and pilot
plant trials and seen as an activity that occurs in parallel with continuing process
development.

2.3.2 Obstacles to the Implementation of Model-based Mon-
itoring, Control and Optimization

The tight regulation imposed on production of APIs by goverment authorities calls
for substantial validation and documentation of the consequences related to a change

3Parametric release is defined by the Working Party on Control of Medicines and Inspections
as: ”A system of release that gives the assurance that the product is of the intended quality based
on information collected during the manufacturing process and on the ecompliance with specific
GMP requirements related to Parametric Release” (Working Party on Control of Medicines and
Inspections, 2001). In other words, if a given comprehensive set of in-process tests and control of
critical process parameters are within specifications, this can provide greater assurance that the
finished product meets specifications than cumbersome testing of the finished product quality.
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Figure 2.6. Illustration of how information hierarchies exist at different production
plants (A, B, C, D). (For details see text to figure 2.2). The boundries between plants
exemplified by dashed lines are results of organizational as well as physical boundries.
Horizontal exhange is highly relevant and should be carried out through communication
between personnel at the different plants, but more importantly by providing access to
data bases and documented experience e.g. reports, memos etc.

.

in operation of a process unit4. This severely hinders the implementation of soft
sensors for other purposes than monitoring in existing plants, since the expected
benefits from a change in operation must exceed the costs of documentation of
consequences, possibly resulting in a revalidation 5 of the process, while not adding
further constraints on the operation. However it is still through development of soft
sensors based on information from existing plants that experience and process insight
can be gathered for use in designing new plants and operations. The development
of sensors should be an integrated part of establishing a new process, starting in the
laboratory, through pilot plant to the final production scale validation of the process.
The PAT initiative by USFDA provides the incentive for the biopharmaceutical
industry to embrace continuing development through application of hardware and
soft sensors both in current production facilities, but especially during development
of new production process for novel pharmaceuticals.

A number of key technological aspects must be addressed in order to design pro-
cess soft sensors meeting the requirements for corrective, preventive and optimizing
action of the pharmaceutical industry. A major challenge is to build a mathematical
model which exhibits reliable predictive capabilities in a large region of operating

4The term validated process is used to describe a process for the production of a given product,
where the regulatory authorities have received extensive documentation of the process design,
performance and ability to produce the product at a given quality, including acceptance ranges for
all critical process parameters and variables.

5When large changes to a validated process is introduced e.g. as a consequence of process
optimization, regulatory authorities can require a revalidation of the process in order to verify
that the proposed changes have not had any influence on the product quality. A revalidation is
considered to be a very time and ressource consuming activity since extensive documentation is
required on product quality, new accepantance ranges and robust process performance.
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conditions. Furthermore it is required that the reliability of the sensor output most
be improved and combined with robust performance with respect to handling of
constraints. In this framework filtering of input data to the soft sensor should occur
as should a validation of the input data. Such tools should be integrated into the
soft sensor along with methods for fault detection, diagnosis and handling. Finally
strategies for continuous evaluation and recalibration of model parameters should
be available and integrated with a strategy for model improvement when needed.

It is important to stress that the understanding of process dynamics and operation
is still maintained with the production floor personnel but the overall effects of
changes in operation conditions will become more transparent and more quantitative
for business decision makers with the introduction of appropriate soft sensors and
process models. Process soft sensors support both these control levels by primarily
providing better and more specific information of variables in a process unit, and
secondarily by providing quantified information for the business decision makers
thus promoting communications between the two levels in the control hierarchy
closer together.

2.4 Summary

The aim of this chapter has been to provide a brief and general overview of the
concepts behind modeling and behind typical model types. The concept of a soft
sensor was introduced as a tool to provide online information on unmeasured or
seldomly measured process variables, possibly replacing slow and cumbersome offline
chemical analysis and provide quicker and cheaper estimates. Both an information
hierarchy and a control hierarchy was presented in order to explain how the intended
application should be kept in mind during model construction, i.e. the modeling
must be purpose-driven.

A vision for the application of models for model-based monitoring and control
at Novo Nordisk was presented with the construction and use of soft sensors as
a tool to support quicker response to process disturbances, document and demon-
strate detailed process understanding, improve process performance and attain a
holistic approach to process optimization through information and knowledge shar-
ing between sequential process units and between different plants. It was stressed
that the design and implementation of soft sensors is not trivial, however it is still
through development of soft sensors based on information from existing plants that
experience and process insight can be gathered for use in designing new plants and
operations.

In chapters 6, 8 and 9 a number of models are constructed for use in soft sensors.
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3

Physiology of Saccharomyces
cerevisiae

For the construction of mechanistic models of a cultivation process it is necessary
to have an understanding of the interplay between the numerous and intertwined
reactions responsible for making it possible for cells to survive and reproduce i.e.
the physiology of the microorganism. Identifying the most important aspects of the
physiology of Saccharomyces cerevisiae with respect to cultivation under the desired
process condition and modeling these aspects using mechanistic models have been
a cornerstone in the analysis and understanding of growth dynamics of the yeast
(Sonnleitner and Käppeli (1986); Sonnleitner and Hahnemann (1994); Nielsen and
Villadsen (1994); Stephanopoulos et al. (1998); Duboc et al. (1998); Pham et al.
(1998)).

The purpose of this chapter is to provide an overview of the physiology of S.
cerevisiae that is relevant for understanding the investigations and subsequent mod-
eling in later chapters on cultivations conducted for this thesis. Since glucose has
been the primary carbon and energy source, and since aerobic conditions have been
maintained throughout the cultivations, the emphasis is mainly on the metabolic
pathways that are active during aerobic growth on glucose and ethanol. Special
attention will be given to the overflow metabolism referred to as the Crabtree effect
(Pronk et al. (1996); Postma et al. (1989a)), since significant acetate formation has
been observed in some of the cultivations.

The first section will provide a very brief description of the cytology of S. cerevisiae
i.e. the architecture of the microorganism. Then follows an overall description of the
purpose of the metabolism of S. cerevisiae. The metabolism can roughly be divided
into two parts: the anabolism described in section 3.3 and the catabolism described
in section 3.4. Only a short description of the anabolism is given here, while a
deeper description is given in chapter 5. More details of the catabolism is presented.
In section 3.4.1 are the topics of transport and phosphorylation of substrates pre-
sented. In section 3.4.2 the glycolysis is described as a source of metabolic energy
and of precursors for the biosynthesis i.e. construction of biomass. Sections 3.4.3
and 3.4.4 present the tricarboxylic acid cycle and the oxidative phosphorylation,
respectively. The fermentative pathway responsible for the production of ethanol is
described in section 3.4.5, while the pathway for production of glycerol is presented
in section 3.4.6. Two further pathways are presented, namely the gluconeogenesis
in section 3.4.7 and the glyoxylate cycle in section 3.4.8. The chapter ends with a
brief summary.
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3.1 Cytology of Saccharomyces cerevisiae

To fulfill the tasks of survival, growth and reproduction under different environmen-
tal conditions, the S. cerevisiae has evolved over millions of years and has formed
separate compartments and organelles within the boundaries of the cell wall to fa-
cilitate this adaptation. Figure 3.1 provides a non-exhaustive schematic overview of
some of the most important subcellular compartments in S. cerevisiae.

The purpose of this section is to provide a brief overview of the cytology of S.
cerevisiae, where the different subcellular compartments are introduced and their
known functions explained. The main source of information for this chapter is
Walker (1998).

3.1.1 The Barrier

As all living organisms, the yeast is surrounded by a barrier against the environment.
For S. cerevisiae this barrier contains three layers: the cell wall, the periplasm and
the plasma membrane. The cell wall is the outer barrier and is primarily composed
of the polysaccharides glucan and mannan. The purpose of the cell wall is cell pro-
tection, shape maintenance, cellular interactions i.e. haploid cell fusion to form a
diploid cell and specialized enzymatic activities. The periplasm between the cell wall
and the inner barrier, the plasma membrane, is the space where secreted (but not
excreted) proteins and enzymes reside, whose purpose it is to catalyze the hydrolysis
of substrates that can not otherwise cross the plasma membrane. An example of
such an enzyme is invertase. The primary function of the plasma membrane in S.
cerevisiae is to control the passage of hydrophilic molecules between the environ-
ment and the cell. The plasma membrane is a lipid bilayer mainly comprised of
phosphorlipids this membrane changes both structure and functionality depending
on the growth conditions.

Reproduction is mostly carried out by budding, where the cell wall is weakened
at a certain spot as the mother cell reaches a critical size. The bud is expanded by
extrusion of cytoplasm and after migration of the new bud nucleus (formed by DNA
synthesis and mitosis) and other organelles, the bud is release from the mother cell
to become a daughter cell.

3.1.2 The Cytoplasm

The cytoplasm is the aqueous fluid that makes up the most part of the contents of
a yeast cell. A part from large organelles and the nucleous (described below), the
cytoplasm contains low and intermediate molecular weight components, dissolved
proteins and other macromolecules. The ribosomes, formed by ribosomal RNA, are
the place for translation of messenger RNA for protein biosynthesis, a vital step
in the growth and adaptation of the cell. Amongst a number of other membrane-
delimited microbodies in the cytoplasm are the perixomes, which server as a site for
oxidase activity, most importantly catalase.
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Figure 3.1. Schematic illustration of a Saccharomyces cerevisiae cell, see text for de-
tails. B: bud, C: cytoplasm, CW: cell wall, ER: endoplasmic reticulum, GA: Golgi
apparatus, , M: mitochondrion, N: nucleus, P: periplasm, Pe: perixome, PM: plasma
membrane, R: ribosome, SV: secretory vesicle and V: vacuole.

3.1.3 The Nucleus

The nucleoplasm is separated from the cytoplasm by a porous double membrane
and contains DNA, RNA and basic proteins along with extrachromosomal elements
e.g. the 2µm-DNA plasmid, as opposed to chromosomal DNA. The nucleus is the
site for transcription of DNA which forms ribosomal, messenger and transport RNA.
During cell division new DNA is synthesized to create a copy of the chromosomes
of the mother cell to be used by the daughter cell.

3.1.4 The Mitochondria

The primary function of mitochondria during aerobic, glucose limited cultivations of
S. cerevisiae is to synthesize ATP during respiration. The inner of the mitochondria,
the matrix, is separated from the cytoplasm by a double membrane. The outer
membrane contains enzymes involved in lipid synthesis, while the inner membrane
is the site for the cytochromes and the respiratory chain. In the matrix, enzymes of
the tricarboxylic acid cycle are found.

3.1.5 The Secretory Pathway

A number of membrane-delimited organelles are involved in the maturation and
transport of synthesized proteins to the cell wall. In the endoplasmic reticulum
protein folding and glycosylation occur as well as proteolytic activities to remove
signal peptides. In the Golgi apparatus further reshaping (folding and enzymatic
cutting) of the proteins occur by addition of carbohydrate side chains or removal
of parts of the amino acid chain(s). The mature proteins are transported to the
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cell wall by secretory vesicles. The vacuoles are the sites for non-specific proteolysis
and also serve the function as storage reserve for amino acids and inorganic acids.
Chapter 5 provides a more detailed description of the role of the secretory pathway
for the production of a recombinant precursor for insulin.

3.2 Purpose of the Metabolism

Simple microorganisms incorporate a vast and intrinsically complicated network of
reactions (Stryer (1995); Walker (1998)). Despite this complexity the purpose of
metabolism can be formulated quite simply: provide the means to survive, grow
and reproduce in the environment.

As mentioned above the focus of this chapter is primarily on the use of glucose
as primary carbon and energy source under aerobic conditions. However it is nec-
essary to include descriptions of growth on both acetate and ethanol, since growth
on these carbon sources occurs under some process conditions e.g. in batch op-
eration following growth on glucose and sometimes may occur following a process
disturbance.

The utilization of glucose is illustrated in figure 3.2. Assimilatory processes lead
to the formation of biomass, while dissimilation of glucose provides the energy for
the formation of biomass. For the assimilatory processes NADPH is needed, and
the middle reaction illustrates this special need (Verduyn, 1991). An important
message provided by figure 3.2 is the coupling of the different processes by energy
carriers (ATP) and redox carriers (NADH/NADPH) and that balancing between the

Figure 3.2. Schematic illustration of the central metabolic processes involved in the uti-
lization of glucose as primary carbon and energy source. Metabolism (”dissimilation”)
of glucose yields NADH which (in respiration) is used to provide large amounts of (free)
energy. Another reduction equivalent NADPH is also required for biomass production
and produced by conversion of glucose to CO2. PP: Pentose Phosphate. Adapted from
Verduyn (1991).
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production and consumption, reduction and oxidation respectively, are important
for the cell to survive and grow/reproduce.

Although as being illustrated as separate, the three processes involving the use of
glucose, depicted in figure 3.2, are tightly coupled. The more traditional approach
of subdividing the growth metabolism into anabolism and catabolism is presented
and roughly sketched in figure 3.3 and described below.

3.3 The Anabolism

The purpose of anabolic reactions in the metabolism of S. cerevisiae is to supply
and support all the essential components and compartments, enabling the survival
and growth of the microorganism in the surrounding environment. More specific the
anabolism accounts for the production of structural proteins, enzymes, structural
polysaccharides, lipids, storage carbohydrates, nucleic acids and cytochromes as well
as the assembling of these to form the organelles of the cell (Walker, 1998).

For many industrial applications producing recombinant proteins, it is of paramount
importance that the activity of the post-transcriptional modifications are neither
limiting growth nor productivity of the desired protein product. Therefore post-
translational modifications to the protein precursor, i.e. cutting off a leader se-
quence, folding of the peptide etc, have received significantly more attention than
the primary metabolism. The modifications during folding, transport and excretion
of the protein precursor occurring in the endoplasmic recticulum, the Golgi appa-
ratus and in transport vesicles i.e. the secretory pathway, define the possibility of
manipulating the precursor into the desired product, in this case an insulin precur-
sor, in the downstream processing, and at the same time avoid or at least minimize
by-product formation. A more detailed description of the secretory pathway of ex-
creted proteins is given in chapter 5. To support high and robust productivity of the
desired product significant effort has also been devoted to investigate the impacts
of medium composition and growth conditions e.g. temperature, pH and aeration.

In this thesis modeling of the growth dynamics represented by the primary metabolism
i.e. the catabolism, has been given most attention. As understanding is developed
on how the microorganism directs its flow of carbon from glucose to energy and pre-
cursor metabolites, further investigations of the fate of these precursor metabolites
can be pursued.

The precursor metabolites referred to in figure 3.3 are listed in table 3.1 along with
the building blocks and macromolecules they in turn lead to. The drainage of these
metabolites from pools in the primary metabolism calls for mechanisms replenishing
the pools, which is carried out by the anaplerotic pathways e.g. the glyoxylate cycle
(see section 3.4.8).

3.4 The Catabolism

The purpose of the catabolic reactions is to provide metabolic energy and precursors
for the anabolism. In the following the major catabolic pathways will be presented
and their influences on the overall metabolism of the microorganism discussed. Al-
though the combined transport and phosphorylation of glucose during uptake is
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Figure 3.3. Overall structure of cell synthesis from glucose. The glucose is transported
through the cell wall, and phosphorylated to enter the hexose phosphate pool. Through
reactions in the Embden-Meyerhof-Parnas (EMP) or the Pentose Phosphate (PP) path-
way the hexose phosphates are either converted to pyruvate or used in the biosynthesis
of carbohydrates. Pyruvate can be converted to carbon dioxide in the respiratory tri-
carboxylic acid (TCA) cycle, or to metabolic products through fermentative pathways.
Reducing equivalents in the form of NADH generated in the EMP and TCA cycle can
be oxidized in oxidative phosphorylation. A number of intermediates from the EMP,
PP and TCA cycle pathways serve as precursor metabolites for biosynthesis of building
blocks, which through polymerization form macromolecules e.g. DNA, RNA, proteins,
lipids and carbohydrates. ATP and NADPH formed by catabolic reactions are used for
anabolic reactions. Adapted from Stephanopoulos et al. (1998).

not directly considered as being part of the catabolism, the mechanism will also be
described.

3.4.1 Transport and Phosphorylation

Walsh et al. (1994) proposed the existence of a multicomponent glucose uptake
system with a variable affinity for glucose in S. cerevisiae. In general the sys-
tem can be formulated as two interdependent contributions as described by Postma
et al. (1989a), namely a high-affinity transporter (Km,h ≈ 1 mM) and a low-affinity
transport system (Km,l ≈ 20 mM). The uptake is known to be assisted by a phos-
phorylation of glucose leading to the entry point of the glycolysis, namely glucose
6-phosphate as shown in figure 3.4.
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3.4.2 Glycolysis

The term glycolysis is used to describe the main pathways dissimilating glucose
6-phosphate, and is here represented by the Embden-Meyerhof-Parnas (EMP) and
Pentose Phosphate (PP) pathways (see figures 3.4 and 3.5 respectively). The EMP
pathway is generally considered the primary route for dissimilation of glucose to
pyruvate during aerobic growth on a glucose-limited substrate. The overall stoi-
chiometry of this pathway can be written as:

Glucose+2 ADP+2 Pi +2 NAD+ → 2 Pyruvate+2 ATP+2 NADH+2 H+ (3.1)

From this reaction scheme it is seen that the sequence of reactions supply metabolic
energy to the microorganism in the form of ATP at the expense of the oxidized
form of the cofactor NAD+ and glucose. Furthermore some of the products of the
intermediate reactions serve as precursor metabolites as mentioned above.

The reaction scheme of the PP pathway is shown in figure 3.5. The PP pathway has
been recognized to serve both an oxidative1 (equation 3.2) as well as an anaplerotic
function (equation 3.3) (Stephanopoulos et al., 1998):

Glucose 6-phosphate + 12 NADP+ → 6 CO2 + 12 NADPH + 12 H+ (3.2)

Glucose 6-phosphate+2 NADP+ → Ribose 5-phosphate+CO2+2 NADPH+2 H+

(3.3)
Especially the oxidative function (equation 3.2) is interesting seen in the per-

spective of figures 3.2 and 3.3, since this is a major source for NADPH reducing
equivalents needed in the biosynthesis. Equation 3.3 illustrates the generation of
ribose sugars, which are important for the synthesis of nucleotide precursors for nu-
cleic acids, RNA and DNA as well as nucleotide coenzymes such as NAD+, NADP+

and FAD (Walker, 1998).

1Glucose 6-phosphate is oxidized to CO2.

Table 3.1. 12 precursor metabolites, their origin in the primary metabolism, as well as
their role in the synthesis of biomass. Adapted from Stephanopoulos et al. (1998) and
Walker (1998). Abbreviations are listed at the end of the thesis.

Precursor Origin Building block/Macromolecules
Glucose 6-phosphate EMP Polysaccharides, Inositol
Fructose 6-phosphate EMP UDP-NAG, UDP-NAM
Glyceraldehyde 3-phosphate EMP Lipids
3-phosphoglycerate EMP Amino acids
Phosphoenolpyruvate EMP Amino acids
Pyruvate EMP Amino acids
Erythrose-4-phosphate PP Amino acids
Ribose-5-phosphate PP Amino acids
Acetyl-CoA EMP and TCA Lipids, Sterols
α-ketoglutarate TCA Amino acids
Oxaloacetate TCA etc. Amino acids
Succinyl-CoA TCA Hemes
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Figure 3.4. The Embden-Meyerhof-Parnas (EMP) pathway including the glycerol path-
way. The frame signifies the cell wall, where the uptake of glucose is assisted by
phosphorylation to form glucose 6-phosphate. The arrows indicate reactions all catal-
ysed by different enzymes. Some of the reactions are accompanied by consumption
of metabolic energy in the form of ATP, while others produce metabolic energy by
adding an additional high-energy phosphate group to ADP to form ATP. Two of the
reactions involve the coenzyme NADH/NAD+. During balanced oxidative growth of
glucose the reaction path is indicated by the bold arrows, converting glucose to pyru-
vate. Note that all reactions except two are reversible as illustrated by the arrows in
the figure. Irreversible reactions are found between fructose 6-phosphate and fructose
1,6-biphosphate, and between phosphoenolpyruvate and pyruvate.
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Figure 3.5. The Pentose Phosphate (PP) pathway. The ellipses illustrate that these
components are also part of the EMP pathway and form the links between the two
pathways. The reduction equivalent NADPH is formed by reduction of NADP+. As
illustrated in figure 3.2, NADPH is involved in anabolic reactions for the formation of
biomass.

Figure 3.6. The Tricarboxylic Acid Cycle (TCA) and the glyoxylate cycle. The activities
of the TCA cycle occur exclusively in the mitochondria. Intermediates of the TCA are
used as precursor metabolites (see table 3.1). The glyoxylate cycle is essential for
growth on ethanol and acetate and is furthermore used to replenish intermediates of
the TCA cycle used for biosynthesis of amino acids and nucleotides to ensure continued
operation of the TCA cycle.
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3.4.3 Tricarboxylic Acid Cycle

The TCA cycle results essentially in the total dissimilation of pyruvate to CO2 as
illustrated in figure 3.6 and reflected by equation 3.4:

Pyruvate+GDP+FAD+4 NAD++Pi → 3 CO2+GTP+4 NADH+4 H++FADH2

(3.4)
From the equation it can be seen that a large number of NADH and FADH2 reducing
equivalents are generated when the TCA cycle is active.

As mentioned in section 3.3 four of the metabolites in the TCA cycle also act as
precursor metabolites for biosynthesis. Therefore additional reactions are necessary
to replenish the TCA cycle. These are referred to as anaplerotic pathways, and
include among others the carboxylation of pyruvate to oxaloacetate by the enzyme
pyruvate decarboxylase (see figure 3.7), the carboxylation of phosphoenolpyruvate
to oxaloacetate by the enzyme phosphoenolpyruvate carboxylase and the glyoxylate
shunt (see section 3.4.8).

3.4.4 Oxidative Phosphorylation

Both the EMP pathway (equation 3.1) and the TCA cycle (equation 3.4) result in a
net production of reducing equivalents NADH and FADH2. In the presence of oxygen
the reoxidation of the two co-factors can occur in the mitochondria in combination
with the addition of a high-energy phosphate group to ADP, thus forming ATP.

The theoretical oxidation of NADH and FADH2 is:

NADH + 1/2 O2 + 3 ADP → NAD+ + H2O + 3 ATP (3.5)

FADH2 + 1/2 O2 + 2 ADP → FAD + H2O + 2 ATP (3.6)

The number of moles of ATP formed for each oxygen atom used in the oxidative
phosphorylation is referred to as the P/O ratio. Since the ratio of FAD2 to NADH
is not constant at different operating conditions the P/O ratio is not constant.
The NADH formed in the cytoplasm (e.g. in the EMP pathway) can not pass the
mitochondrial membrane, and the oxidation to NAD+ is coupled to the reduction
of FAD to FAD2. Furthermore, incomplete coupling between the oxidation and the
phosphyrolation in the respiratory chain, renders the operational P/O ratio to be
different from the theoretical P/O ratio (Nielsen and Villadsen, 1994). van Gulik
and Heijnen (1995) report the operational P/O ratio to be 1.2-1.3.

3.4.5 Fermentative Pathway

Both mitochondrial and cytosolic reoxidation of NADH can also be achieved by the
action of alcohol dehydrogenase converting acetaldehyde to ethanol. This reaction is
however not assisted by the formation of ATP as is the case in oxidative phosphory-
lation. Acetaldehyde is the product of a decarboxylation of pyruvate as illustrated
in figure 3.7. It can be converted to acetate by acetaldehyde dehydrogenase, in-
volving either NAD+ or NADP+ for the oxidation, depending on the compartment
in which the reaction occurs. Acetyl-CoA can not be transported across the inner
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mitochondrial membrane, unless through the so-called carnitine shuttle (Swiegers
et al. (2001); Kispal et al. (1991)).

Due to the central positioning of pyruvate at the point linking glycolysis, the TCA
cycle, the fermentative pathway and the gluconeogenesis (see section 3.4.7), a lot
of work has been carried out to elucidate the dynamics of the reactions and the
enzyme systems controlling the distribution of fluxes out of the pyruvate pool (see
Pronk et al. (1996) for a review). Although referred to as a pool, pyruvate does not
appear exclusively in one compartment, but appears both in the cytosol and in the
mitochondrial matrix. Linked to the distribution of fluxes at the pyruvate branch
point is the Crabtree effect, which describes the occurrence of alcohol fermentation
under aerobic conditions (Barford and Hall (1979); Postma et al. (1989a); Pronk
et al. (1996)). Two versions of the Crabtree effect are often referred to (Barford
and Hall (1979); Pronk et al. (1996); Walker (1998)). The long-term Crabtree
effect accounts for aerobic alcoholic fermentation during high growth rates, both for
growth under sugar-limitation and at sugar excess. The short-term Crabtree effect
accounts for transient aerobic alcoholic fermentation observed at a transition from
sugar-limited growth to a sugar excess.

The overall reaction from pyruvate to ethanol becomes:

Pyruvate + NADH + H+ → Ethanol + NAD+ + CO2 (3.7)

and to acetate by:

Pyruvate + NAD(P)+ → Acetate + NAD(P)H + H+ + CO2 (3.8)

where NAD(P) indicates that two isoenzymes can catalyze the reaction from ac-
etaldehyde to acetate using either NAD+ or NADP+ as discussed above.

3.4.6 Glycerol Production

As illustrated in figure 3.4 production of glycerol in a pathway that branches off from
the EMP pathway. Under anaerobic conditions production of glycerol serves the
function of reoxidizing NADH formed by activities of the EMP pathway concurrently
with ethanol formation, since oxidative phosphorylation can not reoxidize the NADH
in the absence of oxygen (Schulze, 1995). As can be seen from equation 3.9 the
formation of 1 mole glycerol from glucose is assisted by the net hydrolysis of 1 mole
ATP. In other words, glycerol serves as a redox sink but also as an energy sink.

Glucose +2 ATP +2 NADH+2 H+ → 2Glycerol + 2 ADP+2 Pi +2 NAD+ (3.9)

3.4.7 Gluconeogenesis

The term gluconeogenesis is used to describe the metabolic processes enabling con-
version of pyruvate to glucose (Walker, 1998). This is relevant during (aerobic)
growth on non-carbohydrate substrates i.e. ethanol, acetate and glycerol. As men-
tioned above a number of the intermediates in glycolysis serve as precursor metabo-
lites for biosynthesis, and these also need to be produced during growth on other
substrates. Since two of the reactions in glycolysis are irreversible, gluconeogenic
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Figure 3.7. The pathways surrounding the pyruvate branch point. Pyruvate can either
be converted to oxaloacetate by pyruvate carboxylase, to acetaldehyde by pyruvate de-
carboxylase or to acetyl-CoA by pyruvate dehydrogenase. Several of the reactions occur
in more compartments than shown on the figure (Remize et al. (2000); Walker (1998)).
The oxidation of acetaldehyde to acetate can be accompanied by either formation of
NADPH or NADH depending on the compartment in which the reaction occur.

alternative reactions are present. One of these is the energy-demanding decarboxy-
lation of oxaloacetate to phosphoenolpyruvate:

Oxaloacetate + ATP → Phosphoenolpyruvate + CO2 + ADP + Pi (3.10)

Another gluconeogenic alternative is the conversion of fructose 1,6-biphosphate to
fructose 6-phosphate.

Fructose 1,6-biphosphate → Fructose 6-phosphate + Pi (3.11)

The overall reaction from pyruvate to glucose 6-phosphate becomes:

2 Pyruvate+2 ATP + 2 GTP + 2 NADH + 2 H+ (3.12)

→ Glucose 6-phosphate + 2 ADP + 2 Pi + 2 NAD+ (3.13)

3.4.8 Glyoxylate cycle

As mentioned above and shown in figure 3.6, the function of the glyoxylate cycle is
primarily anaplerotic and is essential for growth on C2 components, such as ethanol
and acetate, resulting in a net formation of C4 dicarboxylic acids, namely malate
and succinate. The steps in the glyoxylate cycle are:
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Isocitrate → Succinate + Glyoxylate (3.14)

Glyoxylate + Acetyl CoA → Malate + CoA (3.15)

Malate can then be converted into oxaloacetate, the starting point for gluconeo-
genesis reactions (see equation 3.10).

3.4.9 Summary

It has been the aim to provide a brief description of the catabolism in S. cerevisiae for
formulating simple mass balances and calculating flux distributions. The metabolic
pathways of S. cerevisiae are in general far more complex and intertwined than has
been portrayed here, especially due to the existence of isoenzymes and the distribu-
tion of these among different organelles, which complicates the understanding of the
flux distributions in the cell. Additional complexity is added when the behavior of
industrial strains are investigated; here only limited information on the physiology
of the organism and on the concerted or isolated kinetics of the metabolic reactions
are available.

In the following chapter the presence of weak organic acids in the culture broth
and their effects on the growth of S. cerevisiae will be illustrated through a literature
review. The aim is to provide the background for interpreting the observations made
in some of the cultivations, to be presented in later chapters. Following the chapter
on weak organic acids is a review on the genetic modifications that have been carried
out on one of the two recombinant strains of S. cerevisiae that have been cultivated
in the work behind this thesis.



36 Physiology of Saccharomyces cerevisiae



4

Transport and Effects of Organic
Acids

The previous chapter on the general physiology of S. cerevisiae briefly mentioned
that a number of weak organic acids are part of the metabolism e.g. pyruvic acid,
succinic acid, malic acid, fumaric acid, acetic acid and citric acid. The transport and
effects of organic acids will be shown in later chapters to have a significant effect on
the growth dynamics of one of the recombinant strains investigated in this thesis.
The presence of organic acids in the culture broth can have a large effect on the
growth of S. cerevisiae. The organic acids can either be produced by the organism
itself or be present in the environment. Normally during aerobic growth on glucose
as limiting substrate in a chemostat with the aim of producing products related to
the biomass production, large amounts of organic acids in the culture broth are not
anticipated, and therefore seldom measured/monitored. In some of the experiments
carried out in this work, surprising process behavior was observed during continuous
operation, which was suspected to be a consequence of organic acids being produced
by the yeast. Therefore the purpose of this chapter is to provide an overview of the
influence the presence of weak organic acids in the culture broth can have on the
growth energetics of S. cerevisiae.

In order to limit the extent of this chapter, most of the detailed information on
cultivation conditions and strains used in the cited literature is not presented here;
please refer to the original publications.

Most of the literature is based on the behavior of S. cerevisiae at glucose feed
concentrations up to 30 g/L and only few detailed descriptions are available on the
metabolic profiles of high-density cultivations, which is the focus of this study. In this
context the term high-density is defined as cultivations with a biomass concentration
above 25 g dry weight per L, which during aerobic conditions corresponds to a
substrate containing more than 50 g glucose/L. As the glucose concentration of
the feed is increased, so are the by-product concentration in the culture broth.
During transients occuring at these elevated feed concentrations levels, changes in
the distribution of metabolic fluxes can lead to the production of by-products to an
extent that activates effects which normally are not observed during transients at
lower cell densities.

Normal by-products during aerobic glucose-limited chemostat cultivations are ethanol
(mM level) and organic acids such as pyruvate, succinate and acetate at µM lev-
els. At high concentrations these metabolites have been shown to influence growth
of S. cerevisiae in several ways. Benzoate has been used to study the influence of
weak acids on the physiology of S. cerevisiae. Benzoate is a weak acid that can
not be metabolized by the microorganism and is therefore suitable for the study of
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transport of weak acids across the plasma membrane and their effect on the growth
energetics of S. cerevisiae. These effects are the topic of the following subsections
which review effects of acetate, benzoate and ethanol on growth of S. cerevisiae, as
well as observations made in a number of dynamic experiments reported in literature
involving this organism.

4.1 Effects of Acetate

A number of factors influence the transport of acetate across the plasma membrane
of S. cerevisiae. With acetate (0.5 vol%) as the sole energy and carbon source,
Makuc et al. (2001) observed a mediated transport system for acetate uptake in-
volving proton symport with Km = 0.17 ± 0.14 mM and a Vmax = 2.27 ± 0.61
nmole/s/(mg dry weight) at pH 5.0. These findings correspond to the observations
reported by Casal et al. (1996), where acetate transport across the plasma mem-
brane during growth on acetate (0.5 vol%) was carried out by mediated transport
with Km = 0.21 ± 0.039 mM and Vmax = 0.6 nmole/s/(mg dry weight) at pH 6.0.
They further observed that this transport system was repressed for cells growing
on glucose, where initial uptake rates of acetate were below 0.05 nmole/s/(mg dry
weight) for concentrations up to 0.1 mM undissociated acetic acid.

Passive diffusion of undissociated acetic acid across the plasma membrane occurs
due to a difference in pH between the cytosol (pH 6.8 - 7.2) and the culture broth
(pH ≈ 5.5-6.0) (Casal et al. (1996); Verduyn et al. (1990)). Undissociated acetic
acid diffusing inward across the plasma membrane is quickly dissociated (pKa =
4.75) due to the higher pH in the cytosol, resulting in a net transport of acetate
across the membrane along with an acidification of the cytosol by the accompanying
protons. This acidification is then balanced through proton extrusion by ATPase in
the plasma membrane at the expense of ATP (Verduyn, 1991).

When measuring acetate in the culture broth it is therefore important to keep
in mind that the primary transport during growth on glucose is diffusion of the
undissociated acid. With an intracellular pH ≈ 7.0, a pKa = 4.75 for acetic acid
and a culture broth pH = 5.9, the accumulation factor ([acidin] / [acidout]) is 12
(see details of calculation in (Verduyn et al., 1990)). This means that the theoret-
ical intracellular concentration of acetate is 12 times higher than the extracellular
concentration at equilibrium.

Pampulha and Loureiro-Dias (2000) have investigated how batch cultivations of a
respiratory deficient mutant of S. cerevisiae are influenced by acetic acid concentra-
tions between 0-170 mM. Their results show that the maximum specific growth rate
(µmax) and the yield coefficient of biomass on glucose (Ysx) decreased, while the spe-
cific glucose uptake rate increased with increasing concentration of acetic acid in the
broth, indicating that ATP was being used by ATPase to maintain the intracellular
pH by excretion of protons. Similar observations of reduced Ysx in the presence of
acetic acid were reported for chemostat cultures with a respiratory-positive strain
by Postma et al. (1989a). The acetic acid was produced metabolically by the yeast
at constant concentration of 0.6 - 2 mM. The drop in Ysx was seen for dilution rates
that were up to 25 % below the critical dilution rate (Dcrit).
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4.2 Effects of Benzoate

This section will provide an overview of investigations in the open literature on the
effect of the weak acid, benzoic acid, on chemostat experiments with S. cerevisiae.

Verduyn et al. (1992) and coworkers investigated the general effects of weak acids
on growth by using non-metabolizable benzoic acid. Glucose-limited chemostat cul-
tivations were conducted and the transport of benzoate across the plasma membrane
could only occur by passive diffusion of the undissociated acid. By increasing the
concentration of benzoate in the feed from 0 to 10 mM, maintaining a constant dilu-
tion rate of 0.10 hr−1, the yield of biomass on glucose dropped from Ysx = 51 w% to
Ysx = 15 w% without formation of ethanol. The calculated glycolytic flux increased
from 1.1 to 3.9 mmole/g/hr, while the specific oxygen consumption rate increased
from 2.5 to 19.5 mmole/g/hr. The results were similar for experiments conducted
under different concentrations of glucose in the feed, 56 and 111 mM (10 and 20
g/L). At benzoate concentrations above 10 mM, ethanol formation sets in with a
constant specific oxygen uptake at 13 mmole/g/hr. These results indicate that in
the presence of a weak acid additional energy is needed to maintain the intracellular
pH. This energy is provided by increased respiration.

Using the addition of benzoate to manipulate the activity of the oxidative phospho-
rylation, the highest attainable specific oxygen uptake rate qOmax

2 (19.5 mmole/g/hr
at 0.10 hr−1) depends on the dilution rate. Verduyn and coworkers demonstrated
that at lower dilution rates1 (below 0.20 L/L/hr), qOmax

2 was approximately 20
mmole/g/hr, while above 0.20 L/L/hr the value dropped from 15 to 13 mmole/g/hr
as the dilution rate was increased from 0.25 to 0.38 L/L/hr. The authors conclude
that it was the specific glycolytic flux (qC) that determined the qOmax

2 obtained.
As qO2 equals qOmax

2 the dilution rate where ethanol formation occurs has been
reached.

Schulze (1995) investigated the effects of adding benzoate (0-8.5 mM) to glucose-
limited anaerobic chemostat cultivations of S. cerevisiae with a feed concentration
of 25 g/L glucose (139 mM). It was observed that the protein content of the cells
increased from 46 to just below 60 w% and that the carbohydrates (glycogen and
trehalose) decreased from 40 to 23 w%. At the same time the specific glycolytic flux
and the specific rate of ethanol formation increased linearly with increasing benzoate
concentration, which was also the case for the specific rate of ATP production.
The uncoupling effect of benzoate was calculated to be 4.2 mmole ATP/g/hr/mM
benzoate.

4.3 Effects of Ethanol

On a respiratory deficient mutant of S. cerevisiae Pampulha and Loureiro (1989)
found that there were combined effects on the fermentation rate from ethanol and
acetic acid present in the culture broth. The added effect in the presence of ethanol
is explained by Casal et al. (1998) as a result of ethanol increasing the permeability
of the plasma membrane for undissociated organic acids during growth on glucose.

1For this strain in the absence of benzoate, ethanol formation is observed at dilution rates above
0.39 L/L/hr. Glucose concentration in the feed was 83 mM (15 g/L) (Postma et al., 1989b)
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4.4 Dynamic Experiments

This section will provide an overview of dynamic experiments reported in the open
literature with S. cerevisiae in presence of weak organic acids.

Verduyn et al. (1992) investigated the effects of pulse wise injection of sodium
benzoate to obtain a concentration of 10 mM benzoate in a glucose-limited chemostat
cultivation. The effects were quite surprising, since the investigations in chemostat
cultivations with constant benzoate levels in the feed had indicated that an increased
specific oxygen uptake rate, qO2, could be expected along with a decrease of the
biomass concentration. The results showed that biomass synthesis came to a full
stop, while glucose and acetate accumulated in the broth for the first 10-15 min after
the injection of sodium benzoate. At this point biomass synthesis slowly started
again, accompanied by ethanol production at the expense of glucose and acetate.
Surprisingly the qO2 decreased for the first 2-4 min after the injection to 50 %
of the level prior to the injection. From 5-20 min the qO2 increased to a level of
300 % of the initial level. Accompanying these observations were measurements of
intracellular ATP that increased to 200 % of the initial value after 7 min. and then
dropped down close to the initial value after 10-15 min i.e. as biosynthesis and
ethanol formation sets in.

Several observations are surprising in this pulse experiment. From the steady state
chemostat experiments it was expected that the ATP level would decrease, since
ATPase-facilitated excretion of protons, accompanying the passive inward diffusion
of undissociated benzoic acid would be required to maintain a constant intracellular
pH. This would then be followed by an increase of qO2 to reestablish the ATP
balance.

This was not observed. Firstly the sudden exposure to benzoate led to an increase
in the intracellular ATP combined with a decrease in both qO2 and glucose uptake.
The importance of ATP as a regulator of the glycolytic flux has been discussed by
Larsson et al. (2000), concluding that elevation of the intracellular ATP resulted in a
lowering of the glycolytic flux, where the flux control seemed to be distributed along
the glycolysis as a whole rather than at a single enzyme serving as a bottleneck.
The glycolysis was far from stopped in the studies of Verduyn and coworkers, since
both pyruvate and acetate were seen to accumulate during the first 10 min following
the pulse. The reason for the rise in ATP could be the sudden halt of biosynthesis
and its accompanying energy demanding processes leading to accumulation of ATP.

Secondly the rapid rise in acetate concentration without significant accumulation
of ethanol was surprising. The high acetate concentrations (up to 23 mM) might
have intensified the effects of the benzoate pulse, since acetate is also a weak acid
and therefore the transport of acetate across the plasma membrane will influence
the ATP balance, as mentioned earlier. This is an interesting observation opening
up for an alternative explanation for the dynamic behavior, since it could be that
the metabolic response to the pulse triggers a large production of acetate (up to
23 mM), which then is responsible for the observed fluctuations rather than the
benzoic acid (only 10 mM injected). This hypothesis would not be out of line with
the steady state observations discussed above; however no discussion on this subject
has been found in the literature.

Pons et al. (1986) investigated the influence of metabolically produced acetate
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during batch cultivation on glucose subsequently followed by growth on ethanol. At
low initial glucose concentration (19 mM or 3.5 g/L), glucose uptake for biosynthe-
sis was accompanied by ethanol and acetate production. As glucose was completely
exhausted, continued biomass formation was based on ethanol and acetate. As glu-
cose became depleted, acetate produced during glucose consumption was initially
consumed, followed by consumption of ethanol. Just before the ethanol was ex-
hausted a short period of acetate formation was observed, and this acetate was then
consumed following the depletion of ethanol. The acetate concentration was below
3 mM throughout the batch.

The behavior changed when a high initial concentration of glucose (244 mM or 44
g/L) was used. During the first part of growth on glucose the pattern reported at low
initial glucose concentration was repeated. As the acetate concentration exceeded 8
mM (0.48 g/L) a strong reduction of the growth rate was observed, whereas glucose
continued to be consumed, but it was primarily converted to ethanol. Studies of
fed-batch cultivations indicated that biomass yields on glucose and ethanol were
already affected at acetate levels of 3 mM (0.18 g/L).

Lei et al. (2004) investigated the effects of pulsing 67 mM (4 g/L) of acetic acid to
a chemostat cultivation running at 0.24 hr−1 with 167 mM (30 g/L) glucose in the
inlet for the strain CEN.PK113-7D. Immediately following the pulse, the specific
oxygen uptake rate qO2 dropped to 30 % of its value prior to the acetate pulse. At
the same time a large drop in pH was also observed (pH 5.0 to pH 3.3), however
restored within 10 min. Lei concluded that it was not possible to decide if the drop
in qO2 was due to the change in pH or a direct effect from increased levels of acetate.
Comparing with the observations of Verduyn et al. (1992) discussed above, who do
not mention a drop in pH, a similar drop in qO2 was also seen when adding benzoate.
Lei reported that acetate was continuously produced up to 1.5 hours after the pulse,
after which acetate was taken up by the cells and consumed.

Herwig and von Stockar (2002) built a small metabolic flux model to elucidate
the distribution of intracellular fluxes in transients following a step change in the
feed rate of glucose in a chemostat culture of S. cerevisiae. They reported similar,
however slightly different, production of metabolites for the strains CEN.PK113-7D
and ENY.WA-1C as a consequence of a step change in the feed rate. Whereas the
results from the first strain were similar to those reported and discussed by Lei
et al. (2004), the second strain showed a surprising response to a shift up from a
dilution rate D0 = 0.074 L/L/hr to D1 = 0.204 L/L/hr, where the critical dilution
rate for this strain was reported to be Dcrit = 0.19 L/L/hr. Immediately following
the step change, acetate is observed in the broth up to 17 mM (1 g/L) and is
continuously being produced for the next 8 hours; a steady state level at 2 mM is
reached after 20 hours. A small amount of ethanol is formed immediately after the
step change (2 mM), whereas significant ethanol production is not observed until 2
hours after the step change. The ethanol concentration rapidly increases to almost
65 mM (3 g/L) and settles at 57 mM after 20 hours. Herwig and von Stockar
explain their observations by a transient saturation of the oxidative catabolism,
shunting the glycolytic flux into the fermentative metabolism. No saturation of the
oxidative phosphorylation was seen and therefore it was not necessary to obtain
extra capacity for re-oxidation of NADH by production of ethanol, but rather to
direct the fermentative flux towards acetic acid and a production of NADH. Also a
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significant rise in the anabolic flux was seen after the step change, increasing more
rapidly than the glycolytic flux. The oxidative phosphorylation capacity obtained
its maximum after 2 hours followed by a decrease accompanied by formation of
ethanol. The authors concluded that the question of how the metabolic regulations
were controlled remains unsolved.

4.5 Discussion and Summary

From the above results it has become clear that the effects of weak acids on the
growth of S. cerevisiae are very complex. Most of the studies presented above have
only addressed the effects of adding weak acids to the abiotic phase i.e. either
directly into the broth or as a part of the feed. The studies by Verduyn et al.
(1992) on the transient effects of adding a pulse of benzoate to a chemostat culture
revealed that the dynamics and effects resulting from this type of experiment were
quite different from the observations made in a number of chemostat cultures with
benzoate added in the feed. Similar observations were reported by Lei et al. (2004)
adding acetic acid. Herwig and von Stockar (2002) described how acetate was formed
following a step change in the dilution rate to a value above Dcrit, whereas ethanol
was not produced in significant amounts until 2 hours after the step change. These
investigations were performed on a strain of S. cerevisiae with a relatively low Dcrit

= 0.19 L/L/hr. No systematic investigation on the effects of metabolically produced
acetate in high density (> 50 gDW/L) glucose-limited chemostat cultures has been
found.

From the literature review it can be concluded that a quantification of the amount
of acetate produced is essential, when attempting to construct mathematical models.
This is important since the presence of this metabolite is linked to the intrinsic
flux distribution, but can also have a severe effect on the growth energetics when
appearing in the abiotic phase. Passive diffusion of the undissociated acid into the
cell and subsequent active transport of the anion into the abiotic phase, requires use
of metabolic energy therefore decreasing the metabolic energy available for growth.
In high-density cultivations this latter effect would be expected to become very
important since minor process upsets can lead to short term production of acetate
and accumulation of significant amounts of acetate in the culture broth. If corrective
actions as a response to the minor process upset do not take the risk of acetate
accumulation into account (often the acetate concentration is not measured), the
process can enter into an undesired spiral of decreasing biomass production and
increasing acetate production, in turn leading to another and more severe process
upset.
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Genetics

The industrial strains of Saccharomyces cerevisiae studied in this work have been
genetically engineered in order to produce an insulin precursor that can be converted
into human insulin. The genetic modifications can potentially have an influence on
the growth dynamics of the recombinant strain and are therefore highly relevant
to present and discuss. The purpose of this chapter is to provide an overview of
issues related to the genetic modifications that are needed in order to construct and
optimize a genetically modified organism that can efficiently produce and express
the desired recombinant protein in its correct form. The genetics of the host strain
of S. cerevisiae in which the modifications have been introduced are also highly
relevant to discuss in relation to growth and expression of a recombinant protein,
however in the present work this will not be presented and discussed.

Reasons for choosing yeast and more specifically S. cerevisiae as a host organism
for expression of heterologeous genes are many and plentiful. A non-exhaustive list
of such reasons is provided by Walker (1998) and summarized below in table 5.1.

Table 5.1. Selected attributes of S. cerevisiae as a host organism for heterologeous protein
production. Adapted from Walker (1998).

Historical Yeast and yeast products have always had a general public acceptance
e.g. beer and bakers yeast
S. cerevisiae is non-pathological and generally regarded as safe (GRAS)
S. cerevisiae is the most studied simple eucaryote in terms of biochem-
istry and genetics

Technological Cultivation and downstream processes are well understood and devel-
oped
A wide range of carbon sources for growth and cultivation exist

Genetical Yeast can efficiently express heterologeous eucaryotic genes
Contain natural plasmids (e.g. 2µ-DNA) but no virus to kill cells in
large scale propagation

Molecular biological Post-translational modifications (e.g. glycosylation) occurs together
with proteolytic maturation and multimeric particle assembly
Protein secretion is quite efficient and controllable using endogenous
signal sequences
Yeast RNA polymerase recognize many animal promoters

From an industrial and more specifically a pharmaceutical point of view, the status
of S. cerevisiae being a GRAS organism is important as this simplifies the down-
stream processing, i.e. cumbersome and expensive process steps to ensure removal
of pyrogens and virus can be avoided and regulatory authorities are already familiar
with the microorganism due to its long and extended use in food and drug pro-
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duction. Another highly attractive attribute of S. cerevisiae is its ability to utilize
inexpensive, complex carbon sources e.g. enzymatically degraded polysaccharides.
This latter attribute has a large positive impact on the process economy and fur-
thermore reduces the dependency on suppliers.

The data used in this thesis have been produced by cultivation of two different,
yet highly similar, industrial recombinant strains of S. cerevisiae both genetically
modified for the production of insulin precursors; the two resulting insulin precursors
are also slightly different. Of the two strains only one, strain (A), will be discussed
in detail in this chapter. This strain has been used for experiments in pilot plant,
and cultivations with this strain has provided the data for the work and modeling
reported in chapters 7, 8 and 9. The other strain, strain (B), is used in chapter 6,
which presents the modeling of cultivation data from production. The approach in
the modeling of the data from production is much more data driven and therefore
less mechanistic knowledge is needed for model construction adn interpretation. The
only difference in the genetic modifications between the two strains is the engineering
of the gene that leads to the excretion of the two different insulin precursors.

The chapter is structured as follows: First the full expression route of a recom-
binant protein will be described from transcription to secretion, followed by a pre-
sentation of the genetic modifications applied to the genome of the parent strain to
construct the industrial production strain. The strategy behind the genetic modi-
fications will then be presented with a more detailed description of the expression
route of the recombinant protein until secretion into the extracellular medium. The
chapter finishes with a discussion on the possible effects on the physiology of the
recombinant strain as a result of the genetic modifications and the expected influ-
ence on the metabolism. The main sources of information for this chapter are the
doctoral dissertation by Thomas Kjeldsen (Kjeldsen, 2000) and the Ph.d. thesis by
Kirsten Væver Jochumsen (Jochumsen, 1995).

Figure 5.1. Schematic illustration of the position of the tpi catalyzed reaction between
glyceraldehyde-3-phosphate and dihydroxyacetone-3-phosphate in the glycolysis.
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Figure 5.2. Schematic illustration of the genetic modifications to the 2µm plasmid of
S. cerevisiae to facilitate production of the insulin precursor (IP). In the figure it can
be seen that the expression plasmid consists of parts of the S. cerevisiae 2µm plasmid
(top left hand side) as well as E. coli plasmid (bottom right hand side). In addition
the expression cassette consisting of the S. cerevisiae TPI1 promoter, the gene en-
coding the Pre-Pro-IP protein and the S. cerevisiae TPI1 terminator can be seen in
the upper right hand side, while the S. pombe POT promoter, S. pombe POT and S.
pombe POT terminator jointly responsible for the expression of tpi can be on the right
hand side (middle). The directions of the arrows indicate the reading direction during
transcription of the genes. Adapted with modification from Kjeldsen et al. (2001).

5.1 The 2µm-DNA Plasmid

In order to express the desired insulin precursor (IP) in S. cerevisiae genetic mod-
ifications have been used. To facilitate the transport and correct folding of the
insulin precursor protein through the secretory pathway and subsequent expression,
two extensions to the insulin precursor gene sequence have been added for the Pre-
Pro-insulin precursor gene1. The gene encoding the Pre-Pro-IP has been inserted
into the POT plasmid, which is a hybrid shuttle plasmid based on the S. cerevisiae
2µm plasmid and the E. coli pBR322 plasmid (Kjeldsen et al. (2001); Kawasaki and
Bell (1999)). The POT expression plasmid contains the Schizosaccharomyces pompe
triose phosphate isomerase (tpi), encoded by the POT gene, the enzyme catalyzing
the interconversion between glyceraldehyde-3-phosphate and dihydroxyacetone-3-
phosphate in the glycolysis (see figure 5.1 and 3.4 in chapter 3). By introducing the
POT 2µm plasmid into a host organism such as the strain MT663 (MATa/MATα
pep4-3/pep4-3 HIS4/his4 tpi1::LEU2/tpi1::LEU2 cir+), which is carrying a deletion
in the native TPI1 gene, a selection of the POT plasmid is obtained as only cells car-
rying this plasmid have the ability to grow on complex medium requiring glycolytic
and therefore tpi activity to enzymatically degrade polysaccharides (Kjeldsen et al.,
2001). The expression plasmid is illustrated in figure 5.2.

It should be noted that in the strain MT663, the PEP4 gene has also been deleted.

1This gene is different for the two strains used in this thesis
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The PEP4 gene product (proteinase A) is related to the activation of vacuolar pro-
teases, leading to an attenuation of the proteolytic system in the vacuoles (Diers
et al., 1991).

As the S. pombe POT gene is only weakly expressed in S. cerevisiae, a high copy
number of the POT plasmid is required to ensure sufficient gene product for growth
on glucose. In similar strains Egel-Mitani et al. (1988) and Jochumsen (1995) es-
timated plasmid copy numbers of approximately 20 per cell. By using the strong
constitutive native S. cerevisiae TPI1 gene promoter in the expression casette of the
Pre-Pro-IP gene, in combination with the high copy number of the POT plasmid a
high productivity of the Pre-Pro-IP gene product is ensured.

5.2 The Secretory Pathway

Figure 5.3 presents a schematic illustration of the secretory pathway for an insulin
precursor expressed in S. cerevisiae. The figure highlights some of the challenges
that need to be addressed when attempting to genetically modify microorganisms
to produce recombinant proteins. The challenge is not limited to the introduction
of the gene encoding for the desired protein in a suitable vector e.g. 2µm-DNA plas-
mid. Stabilization of the protein and correct transport through the organelles are
a prerequisite for obtaining an intermediate product that can be converted into the
correct and active form of the desired recombinant protein. Further adding to the
complexity are the optimization issues of utilizing the capabilities of the S. cerevisiae
expression system to form disulfide bridges, avoid unwanted glycosylations and ex-
crete the insulin precursor in a configuration that simplifies the operations needed
to obtain the desired final form in a purity suitable for pharmaceutical applications.

As seen in figure 5.3 the polypeptide sequence that enters into the endoplasmic
reticulum contains both a Pre- and Pro-extension to the insulin precursor as well
as a spacer peptide mentioned in the caption of figure 5.3. It is the engineering of
these peptides that have played a major role in improving the transport through
organelles and concurrent folding of the insulin precursor as well as facilitating an
easy downstream processing to obtain the desired product (Kjeldsen, 2000).

A newly formed polypeptide chain needs to be directed through the secretory path-
way in order to ensure correct folding, translocation and excretion of the recombinant
protein. The Pre-peptide of the Pre-Pro-IP gene product is a signal peptide such as
the Yap3 (yeast aspartyl protease 3) endoprotease signal peptide and the function of
Yap3 is to guide the nascent polypeptide chain into the endoplasmic reticulum (ER)
for post-translational translocation. In the ER the signal peptide is removed by a
signal peptidase, while disulfide bonds and tertiary structure of the Pro-IP protein
is formed, facilitated by the Pro-peptide of the Pro-IP protein. A large amount of
research has been carried out on how to synthesize a Pro-peptide that results in
high yield of the correctly folded insulin precursor (Kjeldsen, 2000). Within the
ER a quality control system consisting of chaperones and enzymes ensures that the
protein is correctly folded. By a vesicular system, mediated transport of the protein
to the Golgi apparatus occurs.

In the Golgi apparatus the Kex2 endoprotease removes the Pro-peptide, while
vesicles transport the IP protein to the cellular plasma membrane for excretion into
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Figure 5.3. The secretory pathway of insulin precursor expressed in S. cerevisiae. The
insert shows how the gene encoding for the Pre-Pro-insulin precursor is positioned on
the 2 µm-DNA plasmid located in the nucleoplasm of the yeast cell. The DNA sequence
is transcribed into a mRNA sequence, which in a cytoplasmic ribosome is translated
into a polypeptide forming the Pre-Pro-Insulin precursor protein. In the endoplasmic
reticulum (ER), signal peptidase removes the Pre-part, while primary oligosaccharides
(illustrated as square boxes) are attached to the of the remaining protein. A vecsicle
system mediates the transport to the Golgi apparatus where the Pro-part of the Pro-
insulin precursor protein is removed by kex2 endoprotease. The insulin precursor is
then transported to the cell wall for excretion or to a vacuole. Not shown on the
figure is a small spacer peptide positioned at the N-terminal of the insulin precursor.
Following purification of the insulin precursor, an enzymatic conversion of the insulin
precursor leads to the desired human insulin protein. The figure has been adapted with
modifications from Kjeldsen (2000).

the extracellular medium.
Kjeldsen et al. (2001) suggested a correlation between the in vitro folding stability

and the cultivation yield and suggested that this reflects a selective adaptation of
the plasmid copy number. This selective adaptation is partially a consequence of the
constitutively expressed insulin precursor’s folding properties and partially the need
for complementation of the deleted TPI1 by POT. In other words, the plasmid copy
number is adjusted based on the folding stability and the need for complementation
of the deleted TPI1 by POT, and therefore cultivation yield can not be increased
solely by increasing the plasmid copy number.

5.2.1 Expression Rate

Kjeldsen et al. (1999) performed so-called pulse chase experiments on the Pre-Pro-IP
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protein using metabolic labelling with [35S]cysteine for 2.5 min whereafter unlabelled
cysteine medium was used. Cells for the pulse chase experiment were grown in a
batch cultivation and exposed to the pulse during exponential growth. Samples
were taken for isolation of the secreted IP. The first labelled IP appeared in the
supernatant 2-4 min after the pulse, and the majority of the secreted IP appeared
in the supernatant within 15 min after the pulse, leading to a t1/2 in the range of
5-10 min.

Analysis of the intracellular retention of the IP showed that 30 min after a metabolic
labelling for 2.5 min, approximately 30% of the labelled IP was still present as pro-
cessed intracellular IP and was not secreted into the culture broth. This indicated
that two different intracellular routes for the IP was present in the late secretory
pathway, and that secretion may reflect saturation of a sorting mechanism due to
over-expression of the IP or that secretion occurs in competition with intracellular
retention. It was found that the retained IP was correctly processed indicating that
the retention occurred after the cleaving by the Kex2 endoprotease positioned in the
late Golgi apparatus. As proteins can be routed to a vacuole from the Golgi appa-
ratus, it seemed likely that the IP had been sorted to a vacuole. Normally a vacuole
is a site for proteolytic degradation of proteins, but this does only occur to some
extend in this stain, since the PEP4 gene has been deleted, leading to attenuation
of the proteolytic system in the vacuoles (Diers et al., 1991).

5.3 Effects on Physiology

Genetic manipulations in a recombinant strain can have a number of effects on
the physiology of the recombinant strain. Jochumsen (1995) investigated expres-
sion of the gene product of PEP4 (proteinase A) using different promoters in two
recombinant strains similar to the one used in this study, also based on an POT
expression plasmid. Furthermore Jochumsen conducted experiments with a dummy
strain similar to the other investigated strains, containing the same POT expression
plasmid however lacking the PEP4 gene. The observed critical dilution rates (Dcrit)
and maximal growth rates (µmax) of the two types of promoters used by Jochumsen
(1995) as well as a dummy strain are listed in table 5.2 together with results reported
by Postma et al. (1989b) for a non-recombinant strain of S. cerevisiae.

Table 5.2. Observed critical dilution rates (Dcrit) and maximal growth rates (µmax) for
two recombinant strains with different promotors and a dummy strain of S. cerevisiae
(Jochumsen, 1995) as well as the values reported for a non-recombinant strain of S.
cerevisiae (Postma et al., 1989b).
Strain Precursor promoter Type Dcrit µmax

[L/L/hr] [hr−1]
JG176 S. cerevisiae TPI1 Constitutive 0.22 0.27
JG180 S. cerevisiae PEP4 Inductive 0.16 0.29
MT888 Dummy strain - 0.29 0.48
CBS8066 None (non-recombinant strain) - 0.38 0.48

Jochumsen concludes that both presence of plasmid DNA and production of pro-
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teinase A affect the growth rate and that the type of promoter (constitutive vs.
inductive) has an influence on the growth energetics.

5.3.1 Regulation of the TPI1 Promoter During Oxido-reductive
Growth

Kjeldsen et al. (2001) mentions that the TPI1 promoter might not be strictly consti-
tutive and may exhibit regulation in response to the glucose concentration, resulting
in a sub-optimal gene expression pattern during fermentation. Jochumsen (1995)
found that presence of ethanol in the culture broth during chemostat cultivations
on glucose i.e. during oxido-reductive growth, did not seem to have an effect on the
specific productivity of pep4 when the native TPI1 promoter was used in a POT
expression plasmid similar to the one used by Kjeldsen et al. (2001)2. Jochum-
sen (1995) also noted that high glucose concentrations coincided with the highest
levels of specific productivity of the product, indicating that the production and
expression of the product was not subjected to substrate inhibition. Although no
direct measurement of the tpi was reported, the influence on the expression of pep4
did not seem to be affected by the presence of neither ethanol nor glucose. van
Hoek et al. (2000) studied the levels of glycolytic enzymes in two different strains
of S. cerevisiae (CEN.PK113-7D and DS28911, an industrial recombinant strain for
bakers yeast production3). They observed two different activity profiles of tpi as
a function of the dilution rate in chemostat cultivations of the two strains. The
two strains had almost identical critical dilution rates (Dcrit). The activity profile
for CEN.PK113-7D was constant for dilution rates up to Dcrit and then increased
almost proportional with the dilution rate up to the highest dilution rate stud-
ied; ethanol was present above Dcrit. For DS28911 the activity profile of tpi was
constantly decreasing from the lowest to the highest dilution rate studied. At the
lowest dilution rate the tpi activity was 2.5 times higher in DS28911 compared to
CEN.PK113-7D. At the critical dilution rate the tpi activity was 1.5 times higher
in DS28911 compared to CEN.PK113-7D, while at the highest dilution rate studied
the tpi activity was 3 times lower in DS28911 compared to CEN.PK113-7D. Again
ethanol was present above Dcrit. From the data it can be concluded that the activity
of tpi does not seem to exhibit regulation in response to the ethanol concentration.

From the observations cited above it does not seem that the TPI1 promoter is
regulated in response to the glucose concentration. The sub-optimal gene expres-
sion pattern during fermentation mentioned by Kjeldsen et al. (2001), is therefore
probably due to other effects.

5.3.2 Plasmid Copy Number

An explanation for the difference in critical dilution rates of the two recombinant
strains of Jochumsen (1995) can also be attributed to an observed difference in
plasmid copy numbers. In the strain containing S. cerevisiae TPI1 promoter and

2The difference between the strains investigated by Jochumsen (1995) and Kjeldsen et al. (2001)
is the recombinant gene product, pep4 and an insulin precursor respectively. The size of the insulin
precursor is approximately 6 kDa, while the size of pep4 is approximately 42 kDa.

3No information on the genetic modifications are available.
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terminator (Dcrit = 0.22 hr−1) a copy number of 52 is reported at D = 0.260 hr−1,
while the strain containing a S. cerevisiae PEP4 promoter and terminator (Dcrit =
0.16 hr−1) a copy number of 16 is reported at D = 0.188 hr−1. The combination of
a higher copy number and a strong selection of POT expression plasmids, suggests
that the tpi activity would be higher in the strain containing a S. cerevisiae TPI1
promoter and terminator leading to an increase in the Dcrit, but interestingly not
in µmax.

Attempting to explain the differences in Dcrit observed by Jochumsen solely by the
difference in plasmid copy numbers does not seem to be correct as Jochumsen also
notes. The reason for this is that the observed increase in Dcrit by an increase in
tpi activity would indicate that the rate limiting step in the glycolysis in the strain
containing S. cerevisiae PEP4 should be a limiting capacity of tpi. A consequence
of this would be an overflow metabolism at dihydroxyacetone-3-phosphate leading
to production of glycerol rather than ethanol as was observed and reported by
Jochumsen (1995). An explanation for the observed differences in Dcrit is more
likely linked to the energetics related to the expression of the recombinant proteins
than linked to the plasmid copy number and therefore the expression of tpi.

The difference in the plasmid copy numbers could be explained by an observa-
tion by Egel-Mitani et al. (1988). Attempting to increase the expression of insulin
in S. cerevisiae, also using a POT expression plasmid similar to the one used by
Jochumsen, they investigated several approaches to expressing two insulin precursor
expression units per plasmid. The result was that the average plasmid copy number
in the strains containing two insulin precursor units per plasmid was half (9.4) the
plasmid copy number of similar strains containing a single insulin precursor unit per
plasmid (18.8).

These findings indicated that the plasmid copy number is regulated in order to
keep the total number of insulin precursor units constant in a recombinant strain,
suggesting a maximal level at which the yeast system can accommodate expression
of the recombinant gene product. This was also mentioned by Kjeldsen et al. (2001).

5.3.3 Specific Productivity

Jochumsen (1995) reports further that the specific productivity of proteinase A in
chemostat cultivations of the two recombinant strains are very different. The strain
containing a S. cerevisiae PEP4 inductive promoter and terminator had a local
maximum of the specific productivity at approximately 0.70 mg/g/hr just around
and below the critical dilution rate of Dcrit = 0.16 L/L/hr resulting in a maximum
volumetric productivity of 5.5 mg/L/hr in this range. At dilution rates D > 0.18
L/L/hr the specific productivity drops with a factor of approximately 5 to 0.15
mg/g/hr at D= 0.18 L/L/hr, and slowly increases with further increasing dilution
rate to a level of 0.9 mg/g/hr at the maximum growth rate of µmax = 0.29 hr−1

resulting in a volumetric productivity of 1.4 mg/L/hr.
For the strain containing a S. cerevisiae TPI1 constitutive promoter and terminator

no local maximum is found for the specific productivity at the critical dilution rate
of Dcrit = 0.22 hr −1. Instead the specific productivity was slowly increasing with
values of 0.1 mg/g/hr at D = 0.14 L/L/hr and 0.4 mg/g/hr at D = 0.24 L/L/hr,
reaching a maximum specific productivity of 0.65 mg/g/hr at the maximum growth
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rate of µmax = 0.27 hr−1. The maximum volumetric productivity of 2.1 mg/L/hr is
obtained at D = 0.18 L/L/hr.

From these numbers it is clearly seen that the dilution rate at which the maximum
specific productivity is obtained does not necessarily coincide with the dilution rate
at which the maximum volumetric productivity occurs. Comparing the results with
the observations of plasmid copy numbers suggest that a higher plasmid copy number
does ensure a higher specific productivity, although the data material behind this
conclusion is rather small. Table 5.3 summarizes this data.

Table 5.3. Comparision of plasmid copy number (PCN) and specific productivity (qp) of
the two strains investigated by Jochumsen (1995). Ratio shows the specific productivity
divided by the plasmid copy number.
Precursor promoter D [L/L/hr] PCN qp [mg/g/hr] Ratio 1000·qp/PCN
S. cerevisiae TPI1 0.18 16 0.15 9.4
S. cerevisiae PEP4 0.26 52 0.65 12.5

5.3.4 Glycerol Production in a tpi Deficient Mutant

Compagno et al. (1996) describes how anaerobic batch cultivations with a S. cere-
visiae strain with a deletion in the TPI1 gene product, resulting in a ∆tpi strain,
yielded primarily glycerol as the major by-product during growth on glucose. Cells
collected during the exponential growth phase on a rich medium containing 20 g/L
ethanol + 1 g/L glucose media were resuspended at 100 g/L in a solution contain-
ing 50 g/L glucose as well as 7 g/L NaH2PO4, pH 6. The glucose consumption rate
was 25% slower than was the case for the wild-type strain (wt), and the glucose
was exhausted after 22 hours (wt: 4 hours). Only small amounts of ethanol were
produced by the ∆tpi strain, and the maximum value at 2 g/L was obtained after
just 3 hours (wt: 12 g/L) where furthermore a glycerol concentration of 6 g/L was
observed (wt: 0 g/L). As the glucose was exhausted after 22 hours, the glycerol
concentration had risen to 17 g/L (wt: 1 g/L) and also an acetate concentration
of 1.8 g/L (wt: 0.5 g/L) was reported. A further experiment was conducted in a
rich medium containing a yeast nitrogen base (Difco), 100 g/L glucose and 50 g/L
NaH2PO4 and pH 6. After 50 hours the glucose was not fully exhausted and the
culture broth contained 20 g/L glucose, 25 g/L glycerol and 7 g/L acetate.

The results above are interesting, since they indicate that an inefficiency in the
expression of tpi could lead to production of glycerol with simultaneous reoxidation of
NADH. The observed production of acetate rather than ethanol could be explained
by an overflow into the fermentative metabolism which then yields acetate since
the oxidative state of the cells are maintained by the reoxidation of NADH by the
glycerol production.

5.4 Discussion

Jochumsen (1995) concluded that the dilution rate at which the maximum specific
productivity was obtained did not necessarily coincide with the dilution rate at which
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the maximum volumetric productivity appeared. This was explained by the presence
of plasmid RNA and production of a recombinant protein affecting the growth rate,
since metabolic energy is needed for maintenance of the plasmid DNA and expression
of the recombinant protein. This was concluded since a comparison of the observed
critical dilution rates and maximal growth rates for two recombinant strains were
significantly different from a a dummy strain of S. cerevisiae, with the only difference
being the presence of a recombinant gene product and its promoter/terminator.
Furthermore Jochumsen (1995) showed that the type of promoter (constitutive vs.
inductive) also had an influence on the growth energetics due to slight differences in
critical dilution rates and maximal growth rates for two recombinant strains.

From analysis of the data provided in Jochumsen (1995), it was also argued that
weak indications suggested that a higher plasmid copy number did lead to a higher
specific productivity. Combining this with the findings of Egel-Mitani et al. (1988),
that the plasmid copy number is regulated in order to keep a maximal expression
level of a recombinant gene product, suggests that the specific productivity is a
function of the amount of metabolic energy that the cell can provide in addition
to the energy needed for maintenance and growth. It could be speculated that low
concentrations of key amino acids for anabolic reactions could also be responsible for
the regulation of the plasmid copy number, however no indications of this have been
reported. In the future it would be interesting to carry out further investigations to
elucidate this topic.

From these speculations an interesting dilemma appears. Could the down regula-
tion of the plasmid copy number during conditions of shortage in metabolic energy
for expression of the insulin precursor, influence the expression of tpi e.g. lowering
the activity of tpi, whereby a bottleneck at tpi appears? The results of Jochumsen
(1995) did not provide an answer to this question, since high specific productivity
of pep4 were seen for both strains investigated at the maximal dilution rate.

5.5 Conclusion

Only a couple of the many factors influencing construction of an efficient expression
system for production of recombinant proteins have been presented here. Using S.
cerevisiae as an expression host for recombinant proteins, the cultivation yield is
rather low with a maximum of 1-5% of the total protein synthesis (Kjeldsen et al.,
2001). Still the replication and transcription of a multicopy plasmid require large
amounts of energy, which in turn can have significant effects on the metabolism of
the yeast, with large differences in critical dilution rates and maximal growth rates
between wild type and recombinant strains as presented above.

It is concluded that the plasmid copy number is regulated in order to keep a max-
imal expression level of the recombinant gene product. This maximum expression
level, and therefore the plasmid copy number, is dependent on the metabolic energy
being produced and the energy requirements for maintenance and growth. Further-
more a weak indication suggested that a higher plasmid copy number leads to a
higher specific productivity.

The general conclusion of this chapter is, that despite the large efforts to investigate
and elucidate the consequences of genetic modifications in microorganisms, it is very
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difficult to understand the full impact of the modifications regarding the effects on
dynamics of growth. This is a significant dilemma, as the drive towards improvement
and optimization of process performance will attempt to push the capacity of the
recombinant microorganism to its limits. This can lead to surprising results as will
be shown in later chapters, which were not anticipated during the design of the
genetic modifications.
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6

Use of Soft Sensors for Monitoring
and Prediction in Cultivation

Processes

The development of modelbased process soft sensors for monitoring of
biomass and product concentration in fed-batch and continuous yeast cul-
tivations is presented, followed by sensor validation using data from in-
dustrial cultivations. Alternatively, using multiway projection to latent
structures (MPLS) algorithm, a model for prediction of one-step ahead
and end point product concentrations is developed and demonstrated on
industrial process data. The one-step ahead MPLS-predictor is compared
to the model based product concentration soft sensor. Both sensors show
good performance in estimating the product concentration.

To improve monitoring and control of industrial cultivation processes it is desirable
to include interpreted information of dynamic responses of relevant biological and
chemical species to changes in process conditions.

Fulfilling this objective is however not trivial, since measurements of relevant
species are often difficult to achieve and often impossible to obtain at the desired
rate. An alternative approach to the direct measurement of species is the develop-
ment of process soft sensors based on mathematical models correlating measurable
variables to the desired variables. The purpose of this work is to investigate the
development of two different types of soft sensors, one based upon first principles
engineering modelling and another upon Chemometrics, more specifically Projection
to Latent Structures regression. First the process and the basis for the developed
soft sensors are presented in sections 6.1 and 6.2. The performance of the knowledge
and the data based sensors are compared in section 6.3 using data from an industrial
yeast cultivation. Section 6.4 presents a discussion and conclusion of this study.

6.1 Introduction

The different soft sensors that will be presented below are developed in order to
improve monitoring and control of an industrial cultivation process for the produc-
tion of a recombinant strain of Saccharomyces cerevisiae genetically modified for
the production of an insulin precursor. The process is conducted in industrial scale
bioreactors and before the main cultivation is carried out the culture has been pre-
grown on agar in a Fernbach flask and in a seed bioreactor operated in batch mode
on a complex medium with glucose as the primary carbon source. The main biore-
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actor, containing similar complex medium as the seed bioreactor, is inoculated with
the contents of the seed bioreactor. For the first period of time the cultivation is op-
erated in batch mode. As the culture broth is depleted of carbon sources, feeding of
two complex substrates at a fixed ratio is initiated, with glucose as the primary car-
bon source. Continuous operation is undertaken as a predetermined level is reached.
The effluent is led to recovery and further downstream processing. The continuous
operation is carried out for a predetermined length of time after which the process
is terminated.

Offline samples are taken throughout the process in order to monitor the evolution
of the cultivation. Both of the analytical methods used for determining the biomass
and the insulin precursor concentrations require a long processing time. Often the
results from laboratory analysis are only available to process operators or engineers
with delays of more than 24 hours. This time delay limits the usefulness of the
measurements as tools to monitor and control the cultivation, and the primary use
of the measurements are limited to batch documentation and data analysis after the
cultivation has been terminated.

The proposed soft sensors are constructed for slightly different scenarios. The
soft sensor built upon a first principles engineering model (FPEM) can be used
throughout fed-batch and continuous operation, whereas the MPLS based soft sensor
is limited to the use in fed-batch and the initial period of the continuous operation.
The reduced use of the MPLS based soft sensor is due to process specific operating
procedures requiring cleaning of the effluent pipe every 24 hours1. For this reason
comparison of the two soft sensors has been reduced to the operating time range of
the MPLS based soft sensor.

6.2 Process Software Sensors

First principles engineering models (FPEM) can form the foundation for soft sensors.
The models infer information of unmeasured entities by using available information
from other measured entities. Different frameworks can be used for the model de-
velopment. First soft sensors using FPEMs will be developed and investigated for
the prediction of biomass and product (insulin precursor) concentration in a cul-
ture broth. Subsequently a chemometric model is used for developing a soft sensor
for product estimation. Finally the two types of product concentration sensors are
compared.

To evaluate the performance of the soft sensors the root mean square error of
prediction is used:

RMSEP =

√√√√ 1

K

K∑
k=1

(
ŷk − yk

)2
(6.1)

where K is the number of data points.

1The pipes are cleaned frequently in order to avoid fouling.
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6.2.1 FPEM based Sensor for Biomass Concentration

During the last decade a number of research groups have contributed to the under-
standing of the mechanisms behind the proton balance in microbes during growth
(Castrillo et al. (1995), Siano (1995), and Lei (2001)), leading to the observation
that a relationship exists between the alkali addition (KOH/NaOH) and the biomass
production rate. The inclusion of effects to the alkali addition rate due to a differ-
ence in pH between the substrates and the broth however has not been reported in
the literature, where Castrillo et al. (1995) and Pham et al. (1999) conducted their
experiments with similar pH in the substrate and medium, while Lei (2001) found
that a pH difference of 0.35 only required an increase in the base flow of 1% and
therefore could be neglected.

Lei (2001) demonstrated that it was possible to use a component mass balance
on the proton production or consumption rate in a high performance laboratory
setup to obtain a simple online estimation of the biomass concentration in batch,
fed-batch and continuous cultivation of Saccharomyces cerevisiae.

A simplified illustration of the contributions to the proton balance in a bioreactor
is shown in figure 6.1. A component mass balance for the proton concentration [H+]
in the extracellular medium yields:

V
d[H+]

dt
= Fs[H

+]s,in − Fe[H
+]e,out + FH+,gen − FNH3 (6.2)

where the dual role of NH3 is i) to maintain a constant pH-level in the medium and
ii) to act as the primary nitrogen source for biomass production.

The following assumption is used for simplification of the mass balance expression:

• Constant pH-level in the bioreactor

In the original work by Castrillo et al. (1995) the pH of the feed was adjusted to
the pH of the medium. In the present it has been estimated that approximately

Substrate feed

NH  (gas)3

[H  ]+
s, in Fs

NHF
3

Effluent

[H  ]+
e, out

Fe

+[H  ]
medium

Off-gas

NHF     = 0
3

Protons
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cellular activity

constant pH

Cells
H,genF +

Figure 6.1. Simplified schematic illustration of flows and factors that influences the
extracellular proton concentration balance in the culture broth.
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10% of the added NH3 is used for neutralizing the effect of a pH difference (of pH
2.3) between the culture broth and the complex substrate. Since the substrate and
NH3 flows are not always balanced, a continuous evaluation of the amount of NH3

needed for neutralization has to be calculated. Hence the mole balance yields:

0 = FH+,gen − FNH3 + Fs[H
+]s,in − Fe[H

+]e,out (6.3)

By assuming that Fs ≈ Fe in continuous operation and Fs � V in the fed batch
phase, equation 6.3 can be simplified to:

0 = FH+,gen − FNH3 + Fsqs,H+ (6.4)

where qs,H+ is the number of proton equivalents needed for changing the pH of the
substrate to the pH of the medium. The volumetric proton production rate can now
be calculated as:

rH+ =
FH+,gen

V
=
FNH3 − Fsqs,H+

V
(6.5)

Studies of the buffer capacity of the substrate indicate an experimental value of
qs,H+ = 36 mmole H+eq/L 2.

The following assumptions have been made concerning possible sources contribut-
ing to the proton production rate from cellular activities during aerobic growth on
a complex medium:

• Uptake of NH+
4 as primary nitrogen source

• Negligible production or consumption of carboxylic acids

• Negligible consumption of amino acids from complex medium

• No acidification of the medium due to production of CO2

• Balanced growth

During aerobic growth on glucose as substrate only negligible amounts of car-
boxylic acids are produced; CO2 and biomass being the primary carbon-containing
products formed. Contribution to the proton balance by the solution and dissoci-
ation of CO2 (H2CO3) to carbonate can be disregarded when the pH-level is sig-
nificantly below pH 7. Combined with the assumption that only negligible organic
N -sources from the complex substrate are consumed during aerobic growth 3, the
above assumptions leave the uptake of NH+

4 as the sole contributor to the proton
production rate and the only significant nitrogen source. Castrillo et al. (1995) ob-
served a 1:1 ratio between proton production rate and the NH+

4 uptake rate (using
(NH4)2SO4 as N-source) indicating that the biomass production rate is proportional
to the proton production rate, when the nitrogen content of the biomass can be
assumed constant during balanced growth.

2This value was determined by titration of the substrate by 1N NaOH.
3It has yet to be investigated if this assumption holds, since it is possible that a contribution

to the overall N -balance is provided by organic N from amino acids in the yeast extract.
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Based on the above comments and assumptions the volumetric biomass production
rate, rH+

x [unit: C-mole biomass/kg broth/hr], can be calculated from the volumetric
NH3 addition rate:

rH+

x =
MDW · rH+

YxH

(6.6)

where MDW is the formular weight of C-mole dry weight biomass and YxH is the yield
coefficient of mole protons produced per C-mole biomass produced, and is equal to
the molar content of nitrogen in biomass based on the overall growth stoichiometry:

CHxOyNz + aCO2 + YxHH
+ − bCH2O − cNH+

4 − dO2 = 0 (6.7)

From the stoichiometric equation it can be seen that YxH is constant, since NH+
4 is

the only proton source and z = c (= YxH) since NH+
4 is the only nitrogen source.

Combination of the above expressions with a dynamic mass balance for biomass (x ):

dx

dt
= rH+

x −Dx (6.8)

yields a simple biomass estimator:

xk+1 = xk · exp
((MDW · (FNH3,k − Fs,kqs,H+)

Vk · YxH · xk

−Dk

)
(tk+1 − tk)

)
(6.9)

where Dk is the dilution rate at time point tk, and the appropriate expression for
rH+

x in equation 6.6 is used.
The above model has been developed assuming ideal conditions in the bioreactor.

Both for small and large scale cultivations with high cell densities this assumption is
unlikely to be valid, for example due to changes to culture broth characteristics e.g.
viscosity. In large scale bioreactors formation of zones and concentration gradients
occur due to the physical distances between inlets of substrate streams and the
extremes of the bioreactor e.g. walls, bottom or top. An example of this could
be an inlet stream being positioned at the top of the bioreactor feeding glucose to
the process and cells positioned at the bottom of the bioreactor meters away with
several tons of high cell density culture broth inbetween.

To account for these variations the model has been modified as follows:

xk+1 = xk · exp
((α · (FNH3,k − Fs,kqs,H+)

Vk · xk
−Dk

)
(tk+1 − tk)

)
(6.10)

where α = f(t,MDW , YxH, vessel properties) is determined for the individual biore-
actor. In this work it has been assumed that α is independent of time variations
and that the contributions from physiology (MDW , YxH) and vessel properties can
be modelled as two constant values in a multiplicative model:

α = αp · αv (6.11)

where αp represents the physiological contribution and αv represents the contribution
from vessel properties e.g. vessel size, propeller configuration etc.
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6.2.2 Parameter Estimation

The estimation of parameters for the two FPEM models in sections 6.2.1 and 6.2.3
is gathered in this section since the approaches are almost identical due to the
similarities in the underlaying models; therefore only the estimation of α will be
described in detail.

The contribution from the vessel properties (αv) are first determined, since αp is
expected to be constant and independent of the vessel properties. The analysis takes
its onset from equation 6.8. By assuming stationary conditions one obtains:

dx

dt
= 0 = rH+

x −Dx (6.12)

⇔ Dx = rH+

x (6.13)

Dx = αp · αv · rH+ (6.14)

6.2.2.1 Determining αv

Plotting rH+ versus D ·x for a number of cultivations carried out in different vessels
provides an illustration of the extent of the tank to tank variation. Figure 6.2
provides such an illustration, showing the data points of cultivations carried out
in two different bioreactors of the same size. Bioreactor 1 has an average value of
the normalized volumetric proton production rate of 1.56·10−3moles/(kg hr), while
the average value of bioreactor 2 is 1.90·10−3moles/(kg hr) at comparable levels of
normalized volumetric biomass production rate, approximatly 5.3 g/(kg hr).

For all the bioreactors investigated the picture is the same as illustrated in figure
6.2, where different average values of the normalized volumetric proton consumption
rate ( r̄H+

i ) have been found for each bioreactor (i). In order to isolate the tank
variation, αv has been defined as the ratio:

αv =
r̄H+

i

maxi r̄
H+

i

(6.15)

so that αv ∈ [0, 1].

6.2.2.2 Determining αp

After determining αv for all bioreactors, attention can now be turned to the deter-
mination of αp. The approach is similar to the one used for determining αv. Figure
6.3 shows the distribution of data points from a number of batches conducted in
a number of different bioreactors. Based on this data, αp is calculated by least
squares regression. This leads to a value of αp = 220 (± 1) g biomass / N-mole.
The theoretical value of αp = MDW/YxH , however neither of these values are known
for the strain in question. Using MDW/YxH = 27 g/C-mole / 0.14 N-mole/C-mole,
a theoretical value of αp = 193 g biomass / N-mole is formed, which is 12 % lowered
than the experimentally determined value. It has not been possible to identify an
explanation for the observed discrepancy, however possible explanations could be:
incorrect estimates of MDW and YxH and non-ideal mixing properties in large scale
bioreactors.
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Figure 6.2. Illustration of vessel differences between bioreactor 1 (legends: x, ·, +) and
bioreactor 2 (legends: �, �, �, ♦, ◦). The figure shows how the average ratio between
the normalized volumetric proton consumption rate and the normalized biomass pro-
duction rate can be different due to vessel properties. A number of batches are shown
for each vessel, each represented by different legends.
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Figure 6.3. The illustration shows how the normalized biomass production rate as a
function of the corrected normalized volumetric proton consumption rate rH+/αv. Data
from a number of batches in a number of different bioreactors are shown with the same
legend.
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6.2.3 FPEM based Sensor for Product Concentration

To develop a process soft sensor for prediction of the insulin precursor concentration,
physiological knowledge of the recombinant yeast strain is used. It is known that
the control of the promoter for transcription of the product gene is linked to the
activity of the glycolysis of the recombinant strain (Diers et al., 1991). To simplify
the model formulation the following assumptions are made:

• Production rate of product (rp) proportional to production rate of biomass
(rx)

4

• High stability of recombinant gene

• No influence from transport and folding in organelles on production rate

• Effective excretion of product

A high stability of the recombinant gene ensures that no decay in specific produc-
tivity of the insulin precursor is experienced over time. Furthermore by assuming
that the transport of the insulin precursor through the organelles of the cell does
not have any influence on the production rate, combined with effective folding and
excretion of the insulin precursor to the abiotic phase, the rate limiting step of the
cellular production process becomes transcription of the recombinant gene.

Based on the above assumptions the following model for the production rate of
the product (p) is proposed:

rp ∝ rx =
MDW · rH+

YxH

(6.16)

Introducing a parameter (β) accounting for the issues relating to non-ideal pro-
cess conditions and variations in growth stoichiometry (YxH) and cell composition
(MDW ) a simple dynamic mass balance on the product becomes:

dp

dt
= rp −Dp = β

FNH3 − Fsqs,H+

V
−Dp (6.17)

leading to the product predictor:

pk+1 = pk · exp
((β · (FNH3,k − Fs,kqs,H+)

Vk · xk
−Dk

)
(tk+1 − tk)

)
(6.18)

where β = g(t,MDW , YxH, vessel properties) is determined for the individual biore-
actor. In this work it has been assumed that β is independent of time variations
and that the contributions from physiology (MDW , YxH) and vessel properties can
be modelled as two constant values in a multiplicative model:

β = βp · βv (6.19)

where βp represents the physiological contribution and βv represents the contribution
from vessel properties. The details of the parameter estimations are given in section
6.2.2.

4It is assumed that other cultivation parameteres such as temperature, pH and substrate com-
position are constant.
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6.2.3.1 Determining βp

Assuming that βv = αv, βp has been determined using an identical method to the
one illustrated for αp. βp = 376 (± 2) units of product / N-mole.

6.2.4 Results - FPEM based Sensor

The cultivation data reported in this chapter has been normalized by dividing the
process variables with a known set of normalization parameters preserving the units
of the variables. The normalization has been done in order to protect sensitive
information.

6.2.4.1 Estimating Biomass Concentration

Three validation examples of the normalized biomass concentration soft sensor are
illustrated in figure 6.4. The calculated RMSEP values indicate good agreement
between soft sensor estimations and offline measurements. The top graph in figure
6.4 shows an example of a normal trajectory of the biomass concentration, from
which it can be seen that the operation is carried out without major incidents. It
should be borne in mind that there is a delay of more than 24 hours on the offline
sample results. The offline measurements of the biomass concentration can be seen
to be rather constant during continuous operation, and it seems that no offline
measurements were taken during the fed-batch operation except for the point at the
very start of this operation.

The middle graph in figure 6.4 illustrates how a slight change in the process condi-
tions at normalized time 3 results in a slight decrease in the biomass concentration.
No information on the cause of this decrease has been found, but a decrease in the
glucose concentration in the substrate might be a valid explanation. It is interesting
to notice that the soft sensor correctly captures this change in the process conditions.
The offline measurements of the biomass concentration does not clearly indicate this
change, however the more frequently sampled offline measurements of the product
concentration shown in figure 6.5 (middle graph) indicate that the decrease indicated
by the soft sensor for the biomass concentration actually happens.

The bottom graph in figure 6.4 also shows an example of how a soft sensor can
provide valuable online information of the process conditions. At normalized time
3, an operator made a mistake while correcting the feed rate of glucose-containing
substrate. This led to a decrease in the biomass concentration in the bioreactor as
indicated by the soft sensor and supported by the offline measurements. The fault
went unnoticed for several operator shifts, since no direct indication of the process
condition was available at the time and the results of the offline measurements were
still not available. When the fault was noticed the cultivation was brought back on
track by reestablishing the correct feed rate momentarily. The soft sensor provides
two pieces of valuable information in this scenario. First, the online signal would
directly indicate to the operators that the biomass concentration was decreasing.
Second, as the fault was noticed the estimated biomass concentration would provide
an indication of how quickly the correct feed rate could be reestablished, since a risk
of triggering ethanol production is present when increasing the feed rate too quickly
(Postma et al., 1989b).
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Figure 6.4. Comparison of signals from soft sensors (−) and analytical measurements
(�) of the biomass concentration for three cultivations (top, middle and bottom). Only
data from fed-batch and continuous operation is considered. Note that in an online
scenario the results of analytical measurements are delayed more than 24 hours after
sampling the culture broth, while the soft sensor provides an online signal. The change
from fed-batch to continuous operation occurs between 0.4 and 0.5 of the normalized
process time. RMSEP : root mean square error of prediction (see equation 6.1) be-
tween offline measurement and soft sensor signal at the corresponding time point. The
relatively large RMSEP in the fed-batch period is mostly caused by to an erroneous
offline measurement at the beginning of the fed-batch operation.
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Figure 6.5. Comparison of signals from soft sensors (−) and analytical measurements
(�) of the product concentration for the same three cultivations as in figure 6.4 (top,
middle and bottom). Only data from fed-batch and continuous operation is considered.
Note that in an online scenario the results of analytical measurements are delayed up
to 24 hours after sampling the culture broth, while the soft sensors provide an online
signal. The change from fed-batch to continuous operation occurs between 0.4 and 0.5
of the normalized process time. RMSEP : root mean square error of prediction (see
equation 6.1) between offline measurement and soft sensor signal at the corresponding
time point.



68 Use of Soft Sensors for Monitoring and Prediction in Cultivation Processes

6.2.5 Estimating Product Concentration

Three application examples of the product concentration soft sensor are illustrated in
figure 6.5. The soft sensors are activated after the batch phase and used for the fed-
batch and continuous phases of the cultivation with constant β values. More offline
measurements of the product concentration are available, since it is the product
concentration trajectory rather than the biomass concentration trajectory that is
used as a measure of cultivation performance with respect to quality control and
process economics. The calculated RMSEP values indicate good agreement between
soft sensor estimations and offline measurements, although higher values are seen
than when compared to the soft sensor of the biomass concentration.

The top graph in figure 6.5 shows an example of a normal (and normalized) tra-
jectory of the offline measurements of the product concentration. Apparently cyclic
fluctuations with a period between 1 to 2 time units in the product concentra-
tion during continuous operation are present, however no explanation for this phe-
nomenon is known. In the last stage of the fed-batch operation around time point
0.5 it can be seen that there is a discrepancy between the soft sensor signal and the
offline measurements; this difference has not been explained.

The middle graph in figure 6.5 illustrates an apparent decrease in the product
concentration starting at time point 3. A decrease was also seen in the biomass
concentration (middle graph, figure 6.4). As described above an explanation for the
observed decrease could be a decrease in the glucose concentration in the substrate.
The decrease in the product concentration is more easily seen in the product con-
centration trajectories due to the more frequent sampling, and is supported by both
soft sensors.

The bottom graph in figure 6.5 shows the impact on the product concentration,
when a wrong set point for the feed rate of the substrate containing glucose was
entered into the process control system. Again the more frequently sampling of the
product concentration provides a good illustration of both the effect of the process
upset and the performance of the soft sensor. The soft sensor correctly indicates the
decreasing product concentration and also that the cultivation is brought back on
track as the faulty set point is discovered and corrected.

6.2.6 Additional Remarks

The performance of the two FPEM soft sensors appear to be good, providing valu-
able online information for monitoring and control of a yeast cultivation. As illus-
trated in this work, the use of soft sensors also provides valuable information for
batch analysis and documentation after the cultivation is terminated. The mod-
els used in the soft sensors are very simple as is the method for estimation of the
model parameters. In an attempt to improve the performance of the soft sensors
more complex models can be investigated as can methods for estimating the model
parameters.

6.2.7 Multiway Projection to Latent Structures (MPLS)

Process monitoring and prediction of end quality using MPLS have been illustrated
by a number of research groups e.g. Nomikos and MacGregor (1995), Louverse et al.
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(1999) and Gregersen and Jørgensen (1999). The general idea behind MPLS is that
an empirical model is built on measurements from reference batches operated under
normal operating conditions producing a good quality product in terms of high
concentration. This work has focused on the prediction possibilities of the MPLS.
The available online measurements are used to estimate or predict product quality,
which is desirable, since only a limited number of analytical measurements of the
quality variables is available in an offline fashion. The online measurements are
arranged in a three-way array X (I×J×K) where I is the number of data batches,
J is the number of variables and K is the number of samples. In general the quality
measurements are arranged in a two-way array Y (I ×M) where M is the number
of quality variables usually measured at the end of the data batch. By unfolding of
X (I×J ×K) by placing K (I ×J)-slides next to each other as illustrated in figure
6.6, a two-way array X (I × JK) is formed and an ordinary PLS can be performed
on the X and Y after column-wise mean centering and scaling to unit variance of
the two arrays (Nomikos and MacGregor, 1995).

By the MPLS-algorithm the arrays are decomposed into C score vectors (t (I×1),
u (I × 1)), weighting vectors (w (JK × 1)) and loading vectors (p (JK × 1), q
(M × 1)) along with two residual matrices (E (I × JK), F (I ×M)):

X =
C∑

c=1

tcp
T
c + E X = TPT + E (6.20)

Y =

C∑
c=1

ucq
T
c + F Y = UQT + F (6.21)

Figure 6.6. Illustration of construction of 3-way data array of size (I × J ×K) followed
by an unfolding to form a 2-way data array of size (I × JK). I: number of batches, J :
number of variables and K: number of sampling points.
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where T (I × C), P (JK × C), U (I × C) and Q (M × C) results when gathering
the C vectors of t, p, u and q in matrices.

Using the MPLS-algorithm a regression equation can be formulated:

Ŷ = XB, with B = W
(
PTW

)−1
QT (6.22)

This regression model B (JK×M) can then be used for online prediction of the end
quality of the batch provided that a suitable method for the estimation of future
online measurements is available (Nomikos and MacGregor, 1995). This work has
been applying the method using the J measurements obtained at the last sampling
number k to fill in the empty spaces (1 × J(K − k)) as illustrated in figure 6.7.

The number of PLS-components (C) necessary to obtain a desired level of regres-
sion can be evaluated using different (cross-)validation techniques. In this work the
root mean square error of prediction (RMSEP ) is used (see equation 6.1). For in-
creasing numbers of PLS-components C used for model identification the RMSEP
is evaluated on validation data, where the lowest value of RMSEP indicates the
number of PLS-components C to be used.

6.2.8 MPLS for On-line Prediction and Estimation

In the case where quality measurements are taken frequently during the batch run,
the MPLS- framework can be used for estimation and prediction of the intra-batch
quality. For all the batches considered in this work, both online measurements
and offline quality measurements in each batch have been subsampled to the same
frequency by interpolation. The offline data series have been linearly interpolated.
For the online measurements a kernel estimator for smoothing using a tricubic kernel
with a local linear fit of 3 nearest neighbors have been applied (Hastie et al., 2001).

Figure 6.7. The strategy for filling in future values in data series. Top: online data
series with data up until sample point k. Middle: One-step ahead prediction. Bottom:
End-point prediction. From sample point k + 1 and to the end of the data sequence
the value at sampling point k is repeated.
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With the interpolated data a Y array is obtained. At sample number k in a new
batch the full batch profiles of the quality variables Ŷk can be obtained by filling in
the empty spaces in Xk as described above and applying the regression matrix B:

Ŷk = XkB (6.23)

6.2.9 MPLS Applied on Industrial Data

In this work the only quality variable to be regressed was the product concentration.
11 online measured variables were sampled 180 times during the fed-batch operation
and the initial period of the continuous operation until the product concentration
profile was stationary as shown in figure 6.5 at time point 1. Data from this part
of the cultivation will be referred to as the data batch. Information related to the
last data point in the data batch will be referred to as the end point e.g. end
point concentration, although the process is operated beyond this time point. No
actual measurement of the end point product concentration is available, so the end
point concentrations are estimated using linearly interpolated values. The online
measured variables that have been used are shown in table 6.1.

13 cultivations conducted under normal operating conditions were used for the
model identification (M-data batches), while 7 validation batches (V-data batches)
were used to determine the number of PLS-components to be included in the model
evaluated by the RMSEP as describe above. The explained variance and RMSEP
for the 5 first PLS-components are shown in table 6.2. It is interesting to note that
the RMSEP evaluation indicates that 3 PLS-components should be included in the
model, explaining 71 % of the variation in Y.

Table 6.1. On-line variables used in the MPLS regression model. Substrate dosing
1 and 2 are the carbon and growth factor sources respectively. These are fed in a
constant ratio. CO2 production and O2 consumption are calculated as a difference in
the concentration between aeration inlet and off-gas outlet of the bioreactor.

1. Ammonia flow rate 7. CO2 production
2. pH 8. O2 consumption
3. Aeration rate 9. Weight of broth in bioreactor
4. Stirrer speed 10. Temperature
5. Substrate dosing 1 11. Dilution rate
6. Substrate dosing 2

Table 6.2. Explained variance of X and Y. Mean RMSEP from the validation.

No of PLS Comp
Expl. var 1 2 3 4 5

X 12 % 25 % 37 % 45 % 55 %
Y 38 % 59 % 71 % 85 % 90 %

RMSEP 0.085 0.071 0.071 0.100 0.100
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The model performance was then investigated using the 7 V-data batches along
with 13 additional batches (A-data batches), the latter having normal end-point
concentrations of the product, but undergoing small process upsets during opera-
tion. A comparison between the MPLS estimated and linearly interpolated product
concentration at the end of the batch is shown in figure 6.8. The latter estimator
is assumed to be comparable to the analytical measurements of the product con-
centration. From the figure it is seen how the MPLS estimates at worst are within
12 % of the linearly interpolated product concentrations for model, validation and
A-data batches, which can be considered good for an industrial process in light of
the uncertainties related to the determination of the actual product concentration
at the end point e.g. sampling uncertainty and analytical measurement uncertainty.

Figure 6.9(a) shows the prediction for a validation (V-)data batch. A reasonable
description of the variations in the offline analytical measurements can be seen by
the one-step ahead MPLS-prediction. From time 0.65 and to the end of the batch
some variations in both the one-step ahead and end point prediction (starting at
coordinates (0,1)) can be noticed. For unknown reasons the feeding of substrate to
the cultivation was temporarily stopped between a normalized time of 0.66 to 0.82
and again between 1.42 and 1.66. Despite these severe disturbances to the process
both the one-step ahead and end point predictions provide reasonable and robust
descriptions of the product concentration. The behavior of the end point predictor
at the first stop in the process between a normalized time of 0.66 to 0.82 indicates
that the process is far from its normal operating range and maintaining the process
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Figure 6.8. Estimated product concentrations at end of the data batches. No measure-
ment of the actual product concentration is available, but linearly interpolated values
are used instead. Linearly interpolated concentrations vs. MPLS estimated concentra-
tions are shown for: (◦) M-, (�) V- and (+) A-data batches. The full diagonal line
indicate x=y, while the two dotted lines above and below the full diagonal line indicate
offsets of ±0.10 to illustrate an analytical uncertainty of 10% on the measurement of
the product concentration.
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in this state will have a strong negative effect on the product concentration at the
end point. As the feeding is resumed the MPLS regression model indicates that a
positive effect on the end point concentration has been obtained, since the predicted
end point concentration is slightly above the normal average of 1.

Figure 6.9(b) presents the results of using the MPLS regression models on one of
the additional (A-)data batches, which has neither been used for modeling nor for
validation of the models. This cultivation was conducted in parallel but slightly
delayed compared to the validation cultivation described above and the same two
process upset occurred, however appearing to occur earlier in the cultivation due to
the time delay. Both process upsets were quite similar to the ones in the validation
batch. The impact on the predicted product concentration was however slightly
different, since no such process upsets have been present in the modeling batches.
Therefore comparing and discussing the predicted values during the process upset
is not relevant, since it is outside the scope of the model. It is however interesting
to note the development of the one-step ahead prediction trajectory following the
process upset, where an increase in the product concentration is predicted, which
also is indicated by the analytical measurements shown here, as in figure 6.9(a), at
a slower rate.

Figure 6.9(c) shows another example of a cultivation where a process upset occurs
around a normalized time of 1.0 to 1.2. It appears that both the one-step ahead
prediction and the end point predictions are off for the rest of the data batch, when
compared to the analytical measurements. This might be true however the discrep-
ancies are almost solely highlighted by the analytical measurement at the normalized
time of 1.45, while it appears that the subsequent analytical measurement, which
falls outside the range of the MPLS model, it is in fact close to the normal product
concentration of 1 as indicated by the linearly interpolated line.

Figure 6.9(d) shows an example of a cultivation carried out according to the pro-
duction recipe except for the time period between normalized time of 1.55 to 1.7,
where the feeding of substrates is stopped. It is interesting to see how well the
product concentration profile during fed-batch operation is captured by the one-
step ahead predictor up until the process upset occurs. It is also interesting to note
how the end point prediction slowly increases and coincides with the one-step ahead
prediction just as the process upset occurs, indicating how balanced the process was
operated up until this time.

The information on the predicted end point product concentration in figure 6.9
is highlighted in figure 6.10, where the trajectories of the prediction error between
the linearly interpolated end point product concentration and the one-step ahead
prediction are shown. The prediction errors are illustrated for the same four data
batches presented in figure 6.9. The dotted lines represents the ± 10 % value of
the linear interpolated end point concentration and it can be seen that for 3 of
the 4 cases the predicted end point concentration is within ± 10 % of the linearly
interpolated end point concentration except during process upsets. It is interesting
to note how the predicted end point concentration of data batch A3 is consistently
above the final end point concentration until the process upset occurs as described
above.
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(a) V-data batch
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(b) A-data batch 1
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(c) A-data batch 2
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(d) A-data batch 3

Figure 6.9. MPLS product concentration predictions in a validation data batch (a) and
three test A-data batches (b-d). (−) linear interpolations between analytical measure-
ments (�), (−−) one-step ahead prediction and (··) end of batch prediction. Zooms of
interesting process behavior are provided for each data batch as indicated on the indi-
vidual figures. For each modeling/sampling point, two models have been determined:
a one-step ahead prediction model and an end of batch prediction model. The strategy
for filling in future values in data series is described in figure 6.7.
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Figure 6.10. Prediction error of end point product concentration in 1 V-data batch (top
left, V) and 3 A-data batches (A1-A3). (−) MPLS-end point prediction and (··) ±
10% errors of the linearly interpolated product concentration from offline analytical
measurements.

6.3 Performance Comparison of FPEM- versus

MPLS-predictor

In the above two methods for one-step ahead prediction of the product concentration
have been developed and tested, namely a soft sensor based upon a FPEM model
(FPEM-predictor) and a soft sensor based upon a MPLS model (MPLS-predictor).
The performance of the two predictors will be compared in the following.

Figure 6.11 illustrates the performance of the two soft sensors compared to the
analytical offline product concentration measurements. Furthermore the figures dis-
play deviations from the average modeling trajectories of the product concentration
as well as the ± 10 % trajectories from this average. As a performance measure
the deviations between the two soft sensors and the average modeling trajectory are
shown, rather than comparing the soft sensors to the offline measurements. This
distintion has been made, since a number of uncertainties are associated with the
steps of sampling and handling of the offline samples prior to the analytical mea-
surement. These sampling and handling uncertainties are very difficult to quantify
and only single measurements are available at each sampling point. Therefore it has
been assumed that a better basis for comparision is the average modeling trajectory,
despite the fact that a number of data batches are known to behave different from
the modeling batches.

From the four illustrations in figure 6.11 it appears that the MPLS-predictor pro-
vides a better description of the analytical offline measurements than the FPEM-
predictor. It is however important to mention that the FPEM-predictor is very
sensitive to the choice of initial conditions i.e. initial biomass concentration. Fur-
thermore the FPEM-predictor is based on assumption of constant pH level. At
the transistion from batch to fed-batch operation fluctuations in pH can occur e.g.
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if the onset of substrate feeding is delayed. As a consequence the assumption of
a proportionality between ammonia addition and biomass formation might not be
valid during the first hours of the fed-batch operation. This is actually a general
observation in all of the four illustrations in figure 6.11. This discrepancy can be
compensated for by extending the modeling by making the parameter β (and α)
time-dependent or online adaptation of model parameter values based on offline
measurements.

In general it appears that the MPLS-predictor only shows a small variation around
the average trajectories of the product concentration compared to the FPEM-predictor
and the analytical measurement, which is seen from the RMSEP values listed in
the figure and based upon the average trajectories. It is however highly relevant to
note that despite the fluctuation and deviation in the FPEM-predictor signal, the
values are mostly within 20% of both the analytical offline measurements as well as
the MPLS-predictor signal.

From the comparison it appears that the FPEM-predictor is inferior to the MPLS-
predictor. However with the earlier discussion on initialization problems of the
FPEM-predictor in mind, the FPEM- predictor can be seen to perform reasonably
well 20% into the data-batch. Here it is important to keep in mind that in the
comparison above cultivations in which process upsets occurred were included. Since
the MPLS-predictor makes use of much more information than does the FPEM-
predictor, and considers a longer time horizon than the FPEM-predictor, it is not
surprising that the MPLS-predictor has a slightly better performance. However as
was shown in figure 6.4 the FPEM-predictor is not limited to a certain time interval
as is the MPLS-predictor in the current form and is therefore more easily applicable.

6.4 Discussion and Conclusion

In this chapter two different methods for obtaining quantitative information from a
cultivation process has been presented and preliminarily compared. The methods
have been applied using online process data from an industrial cultivation process
to illustrate the type and quality of information obtainable with these methods.

A soft sensor was developed for monitoring of the biomass concentration based on
FPEM using the feed rate of ammonia, volume of broth and the dilution rate as
inputs. Application of the soft sensor using online process data gave a reasonable
description of the variations seen in the analytical measurements, leading to the
conclusion that the implementation of this device will enable a very simple yet
highly attractive way of providing online monitoring of the biomass concentration.

A similar soft sensor was developed for monitoring of the product concentration us-
ing the same framework as the biomass concentration soft sensor. Although complex
cellular processes are involved in the processes for generating the insulin precursor
a very simple model was developed by only slightly modifying the FPEM used for
modelling the biomass concentration. Applied on the industrial data this simple soft
sensor was also able to give a reasonable description of the general product concen-
tration trajectory thereby making online monitoring of the product concentration
possible if implemented. Despite the complexity of the process and the limited
knowledge of the mechanisms behind the expression of the product, it was possible



6.4. Discussion and Conclusion 77

0 0.3 0.6 0.9 1.2 1.5 1.8
−0.2

−0.1

0

0.1

0.2

D
ev

ia
tio

n 
fr

om
 a

ve
ra

ge
 tr

aj
ec

to
ry

0.03
0.08
0.06

0 0.3 0.6 0.9 1.2 1.5 1.8
−0.2

−0.1

0

0.1

0.2
0.02
0.11
0.21

0 0.3 0.6 0.9 1.2 1.5 1.8
−0.2

−0.1

0

0.1

0.2

Normalized time

0.01
0.07
0.06

0 0.3 0.6 0.9 1.2 1.5 1.8
−0.2

−0.1

0

0.1

0.2

Normalized time

0.03
0.07
0.12

Figure 6.11. Prediction errors of one validation data batch (V,top left) and three test
A-data batches (A1-3, the same data batches and positioning as illustrated in figures
6.9 and 6.10) reported as deviations from average values of linear interpolated product
concentration profiles in the modeling data batches, and analytical measurements and
one-step ahead product concentration predictors, respectively. MPLS-predictor (−,
bold) and FPEM-predictor (−−, bold). (�) analytical measurements and (··) ± 10% on
the average values of linear interpolated product concentration profiles in the modeling
data batches. RMSEP estimates have been added.
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with very simple relations to provide reasonable online estimation of the concentra-
tion trajectory of the product; estimations that can result in a whole new way of
monitoring and controlling industrial cultivation processes.

An alternative approach for monitoring component concentrations in a process is
through process chemometrics. A model for predicting the product concentration
based on the MPLS-algorithm driven by existing on-line process measurements was
developed producing a linear model describing changes around an average trajectory.
The model was tested on the industrial data and indicated that both one-step ahead
and end point predictions of the product concentrations came within 5-10 % of
analytical offline measurements, but of course without analytical time delay.

The MPLS-predictor for the one-step ahead prediction was compared with the
simple product concentration soft sensor (FPEM-predictor), where the first gave
a slightly better description of the variations in the product concentration. It is
however important to keep in mind that the MPLS-predictor in its current shape,
has its application limited to the data period chosen in the modeling, which is the
fed-batch operation and a part of the continuous operation. The FPEM-predictor
can be used throughout both fed-batch and continuous operation.

In conclusion this work has provided insight into tools for monitoring a given
cultivation process with respect to biomass concentration and product concentration.
Using only data available in the process control system of an industrial cultivation
plant, it is possible to provide online information on the evolution of the biomass
concentration and product concentration profiles using very simple relations.



7

Estimating The Elemental
Composition of Biomass of an

Industrial Recombinant Strain of
Saccharomyces cerevisiae

Two methodologies were used to determine the elemental composition of
biomass of an industrial recombinant strain of S. cerevisiae for produc-
tion of an insulin precursor. The traditional approach using elemental
analysis revealed an elemental composition similar within 5% to the ones
reported in the literature for other strains of S. cerevisiae, while an ap-
proach using macroscopic mass balance also resulted in a composition
within 5%. It was not possible to determine which of the two method-
ologies provided the more robust estimate of the biomass composition,
since only a limited number of samples were available. It was assumed
that 3.6 w% of the biomass concentration measured as dry weight was
due to water, and an ash content of 3.8 w% accounting for the contribu-
tions of metals, sulfur and phosphorous to the biomass composition. The
combined water and ash contribution to the biomass is referred to as the
residual. The following elemental composition of the recombinant strain
of S. cerevisiae is suggested based on the methodology using elemental
analysis1:

CH1.82O0.576N0.146 κx = 4.23; MDW = 27.1 g/C-mole (fr: 7.3 w%)

In a cultivation process the biomass serves the role as catalyst for the conversion of
substrates into products, and for this reason quantitative information of the biomass
is important in order to understand, improve and enhance the performance of the
bioreactor. The work in this thesis is focussed on the construction of simple models
in order to provide tools for analysis and monitoring of cultivation processes. Since
the production of biomass accounts for a large portion of the conversion of the carbon
source in the substrate, it is important to have as accurate information as possible on
the biomass conversion rate and concentration, since these play a pivotal role for the
evaluation of mass and component balances used for model based monitoring and
control of cultivation processes. An alternative to the estimation of the elemental
composition of biomass, would be to use elemental compositions cited in literature on
Saccharomyces cerevisiae. This is however not desirable for two reasons. 1) Genetic

1κx represents the degree of reduction of biomass per C-mole biomass.
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modifications have been applied to the recombinant industrial strain investigated
in this work in order to improve productivity of the peptide product, an insulin
precursor. It is not known to what extent the genetic modifications has had an effect
on the elemental composition. 2) Even small deviations between assumed and the
true elemental composition will have an effect on models assuming the elemental
mass balances to close. So rather than addressing uncertainties by postulating
assumptions, a quantitative investigation of the elemental composition is performed.

Complex substrates are used for the industrial cultivation of the recombinant yeast
at Novo Nordisk A/S, as opposed to the defined substrates often used in scien-
tific studies of physiology and biomass composition. The presence of di- and tri-
saccharides (e.g. maltose, maltotriose2) in the glucose syrup combined with yeast
extract being part of the complex nutrient substrate could influence the enzyme
pool/protein content of the cell and therefore the composition of the cell.

In this work the elemental composition of biomass during continuous operation
will be investigated using macroscopic elemental balancing on data obtained from
pilot plant cultivations. The identified composition will be compared to results
from a chemical analysis of the elemental composition and finally the results will be
compared to compositions reported in the open literature. The purpose of estimating
the biomass composition is two-fold. Firstly, it is relevant to obtain information onto
the composition of biomass for further analysis of the metabolism and physiology
of the recombinant strain, and secondly it is interesting to see how accurately the
biomass composition derived from overall macroscopic mass balances can describe
the elemental composition, since this could open up for an extended use of mass
balances in industrial cultivations. It should be noted that all of the data reported
below has been normalized, except for the elemental compositions of biomass.

Following this introduction, a brief review of the literature on elemental compo-
sition of biomass is provided in section 7.1. The materials and methods used in
this chapter is then described in section 7.2, and followed by a presentation of the
methodologies used for setting up macroscopic elemental balances in section 7.3.
The results of the analysis of the macroscopic elemental balancing and the elemen-
tal analysis are presented in section 7.4. Section 7.5 provides a discussion of the
results, while a conclusion is presented in section 7.6.

7.1 Literature Review

For S. cerevisiae grown on glucose in carbon-limited chemostat cultivations a number
of biomass compositions have been reported in the literature. Herwig et al. (2001)
investigated the biomass composition of the research strain CEN.PK 113-7D at dif-
ferent dilution rates (0.04-0.37 L/L/hr), all using 20 g/L glucose in the feed. Based
on results obtained using elemental analysis, they reported the average biomass com-
position to be CH1.75O0.50N0.16 (ash 7.2 w%) with a increasing content of nitrogen
at increasing dilution rates, explained by an increased accumulation of protein on
behalf of storage carbohydrates that were accumulating at decreasing dilution rates.
For the same strain Lange and Heijnen (2001) performed an extensive investiga-
tion of the elemental and molecular biomass composition at dilution rates ranging

2Byproducts from the enzymatic degradation of starch to glucose.
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from 0.02-0.2 L/L/hr using glucose concentrations between 5-10 g/L. Using both
elemental analysis and measuring the intracellular concentration of macromolecules
(e.g. carbohydrates, proteins, lipids) combined with statistical data reconciliation,
they also found an increasing content of nitrogen at increasing dilution rates and
decreasing content of oxygen at increasing dilution rates, and explained this by an
increase in the protein concentration, as did Herwig et al. The ash content3 of Lange
et al. was approximately 3.7 w% at all dilution rates, and they discussed how an
additional small presence of water was unavoidable (3.6 w%), due to the method
used for analysis (drying samples at 70◦C for 48hr and storage in desiccator). Lange
and coworker reported the average biomass composition to be CH 1.748O0.596N0.148

(ash 3.7 w%). For another strain Roels (1983) reports a value of CH1.82O0.58N0.16

(ash 7.3 w%) at a dilution rate of 0.1 L/L/hr of the strain CBS 425.
Stückrath et al. (2002) reported elemental compositions of biomass for the strain

CEN.PK 113-7D grown on glucose, ethanol and acetate at 0.1 L/L/hr as shown in
table 7.1. Stückrath and coworkers pointed out that the glucose-grown cells had a
higher concentration of carbohydrates, while cells grown on either ethanol or acetate
were richer in lipids and proteins resulting in larger contents of elemental nitrogen
on behalf of elemental oxygen.

7.2 Materials and Methods

The cultivation data reported in this chapter has been normalized by dividing the
process variables with a known set of normalization parameters. The same set of
normalizing variables have been used in all batches. The normalization has been
done in order to protect sensitive information.

7.2.1 Strain and Medium

An industrial recombinant Saccharomyces cerevisiae strain was grown under aerobic,
carbon- limited conditions in a sequence consisting of successive batch, fed-batch
and continuous operation. Complex industrial substrates were used, which after
sterilization were fed to the bioreactor as a dilute glucose syrup and a complex
nutrient substrate containing salts, growth factors and yeast extract.

3The ash content being elemental sulfur, phosphor, metals etc.

Table 7.1. Elemental compositions of biomass reported by Stückrath et al. (2002) for
the strain CEN.PK 113-7D, when grown on glucose, ethanol and acetate as limiting
substrates

Glucose CH1.77O0.597N0.149 (ash 3.8 w%)
Ethanol CH1.77O0.547N0.152 (ash 4.0 w%)
Acetate CH1.78O0.545N0.164 (ash 3.9 w%)
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7.2.2 Equipment

Industrial pilot plant bioreactors with a working volume of approximately 10 L (10
kg) were used for the experiments. The process values were sampled once every
minute. The weight of the contents of the bioreactors were monitored and con-
trolled gravimetrically, while the flow rates of substrates, aeration and ammonia
were controlled by mass flow controllers. A constant set point of pH in the culture
broth was maintained by a control loop adding gaseous ammonia to the aeration
stream; the added ammonia also serving as the primary nitrogen source for cellu-
lar activities. Constant set points for temperature, aeration rate and stirring rate
were used throughout the fed-batch and continuous operation of the experiments.
The level of dissolved oxygen of the broth in the bioreactor was measured by an
oxygen electrode, which was calibrated with air before each cultivation at nominal
cultivation conditions.

7.2.3 Analytical Methods

In order to provide the means for analyzing possible changes in the state of the cul-
tivation, it is necessary to collect extensive information in the form of measurements
of the culture broth and the offgas from the bioreactor. Some of these measurements
are standard procedures at the pilot plant, while others required the use of analyti-
cal equipment (HPLC) at Biocentrum, DTU. Below a description of the analytical
methods is used in order to provide the additional information for the interpretation
of the process behavior.

7.2.3.1 Biomass Concentration

Samples were taken from the bioreactor (1-3×60 mL). Determination of the biomass
concentration was made by centrifugation (5min, 5000rpm) of 10 mL broth in a
preweighted heat resistant glass tube, followed by two cycles of washing the pellets
in 0.9% g/L NaCl, centrifugation (5min, 5000rpm) and removal of supernatant,
before a final drying in an oven for 24-36 hours at 105◦C, followed by storage in
desiccator for 20-40 min and weighing. Duplicate or triplicate determinations were
made with maximal deviation of triplicates within 1%. During sampling between
60-180 mL of culture broth is taken from the bioreactor. This corresponds to under
2 % of the total volume during continuous operation4 and up to 2.5 % during batch
operation.

7.2.3.2 Elemental Analysis

Samples for elemental analysis were prepared by centrifugation (5min, 5000rpm)
of 10 mL broth in a preweighted heat resistant glass tube, followed by two cycles
of washing the pellets in 0.9% NaCl, centrifugation (5min, 5000rpm), removal of
supernant and addition of 10 mL water. The samples were stored at -20◦C until

4During continuous operation the removal of culture broth to maintain a constant bioreactor
weight is carried out by an ejection mechanism that rapidly ejects approximately 50 g broth as the
bioreactor weight exceeds the set point value with approximately 100 g. For more details, refer to
section 9.1.11.
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analysis. The samples were thawed in cold water, centrifuged and pellets were
freeze dried to remove water and stored in dessicator, before analysis in a CHNS-O
Elemental Analyzer (EA1108-CHNS-O, Fisons Instruments, Beverly, MA, USA). To
secure that the storage in water had not led to breaking of the cells, both the thawed
sample and the supernant from the last centrifugation were inspected through a
microscope for evidence of disrupted cells, however no indication of this was found.

7.2.3.3 Metabolite Analysis

To investigate the variations in the extracellular concentrations of a number of
metabolites samples for HPLC were taken from the bioreactor and rapidly filtered
within 5 seconds after sampling through a sterile filter with a pore size of 0.45
µm, and cooled to 0◦C within 20 sec after sampling from the bioreactor, and then
stored at -20◦C until further analysis. During this sampling, metabolites are being
consumed by cells present in the sample up until filtering i.e. for 5 seconds. The
amount of glucose that can be consumed by the cells during this period can be
estimated by considering the overall glucose uptake rate in the bioreactor, assum-
ing that the residual glucose concentration in the bioreactor is negligible compared
to the amounts fed. In this case an approximate value of the normalized glucose
consumption rate is 1 mg/L/s, so up to 5 mg/L glucose is consumed in the time
it takes from sampling to filtering of the sample. It is assumed that the uptake
rates of acetate and ethanol are comparable to the glucose uptake rate. Concen-
trations of glucose, glycerol, ethanol and acetate were measured by HPLC using an
Aminex HPX- 87H column from Bio-Rad for separation. The column was kept at
60◦C and eluted with 5mM H 2SO4. Glucose, glycerol and ethanol were detected
by a refractometer, while acetate was detected by UV-spectrometry, both sensors
being positioned at the exit of the column. No quantification of the measurement
uncertainty has been performed. A few selected samples were furthermore analyzed
using Boehringer Mannheim kits for acetate and glycerol.

7.2.3.4 Ammonium Concentration

The concentration of ammonium in the culture broth has not been measured, but
measurements from similar experiments suggest that a constant value of 0.088 g/kg
can be assumed during steady state continuous operation.

7.2.3.5 Off-gas Analysis

Mass spectroscopy on the off-gas from the bioreactor provided measurements of
ethanol concentration cge, change in percent O2 (OXC, inlet: dry air) and change
in percent CO2 (CXC) between inlet and outlet streams. Measurements were con-
ducted every 10 minutes, and the data was subsampled to a frequency of 1 min −1

by using constant intervals between the original sampling points. The bioreactor
is not equipped with a condenser and therefore water evaporates with the off-gas.
Duboc and von Stockar (1998) has investigated this phenomena and found that at
T = 30◦C and 0.63 vvm the water vapor content yw,out is 4.2%. Using this value and
assuming that the ethanol concentration in the off-gas is negligible, the following
estimation of the off-gas flow rate Fair,out is used, which is based on a nitrogen (N2)
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flux balance and suggested by Duboc and von Stockar (1998):

Fair,out = Fair
1 − (yCO2,in + yO2,in)

1 − (yCO2,out + yO2,out + yw,out)
(7.1)

where Fair is the aeration rate measured at the inlet, yCO2,in and yO2,in are mole
fractions in the aeration stream of CO2 and O2, respectively, while yCO2,out and
yO2,out are the mole fractions in the off-gas. Assuming that yCO2,in = 0 and yO2,in

= 0.21, one obtains that yCO2,out = CXC/100 and yO2,out = yO2,in − OXC/100 =
0.21 −OXC/100.

The molare oxygen uptake rate (OUR) can then be calculated as:

OUR =
OXC

100
· Fair,out · p

RT
[mole/hr] (7.2)

and molar carbon evolution rate (CER) calculated as:

CER =
CXC

100
· Fair,out · p

RT
[mole/hr] (7.3)

where p is the pressure, R is the gas constant and T is the temperature. Since the
aeration rate is measured as NL/min, p = 1 atm and T = 273 K.

7.2.4 Substrates

In the conducted experiments two substrate feeds have been used. The primary
substrate, an industrial grade glucose syrup, contained the carbon source, glucose,
while the secondary substrate contained other nutrients e.g. salts, vitamins and
minerals. The indicators cdos and ndos will be used for the primary and secondary
substrates, respectively. During continuous operation the substrates are fed in a
mass flow ratio of Fm

cdos:F
m
ndos = 1:2.

The main components in the secondary substrate were phosphate and sulfate salts,
an antifoam agent and growth factors e.g. vitamins. Furthermore an industrial grade
yeast extract (hydrolyzed yeast cells) was used. The major components are: MgSO4,
KH2PO4, K2SO4, citric acid and yeast extract, and the components were dissolved
in water and sterilized before storage in sterile holding tanks.

7.2.5 Cultivation Conditions

The process investigated in this work was a scaled-down industrial production pro-
cess carried out in bioreactors with several m3 of culture broth. The production
process was carried out as a sequence of operations in the same bioreactor: batch,
fed-batch and continuous process. During both fed-batch and continuous opera-
tion the two substrates were added in a fixed ratio of mass flow rates as described
above. During the fed-batch operation the volume of the culture broth was in-
creased approximately 2.5 times before continuous operation was initiated. Due to
the construction of the pilot plant bioreactors the production process could not be
scaled-down with respect to the feeding strategy during the fed-batch operation,
since it was required that the minimum volume should be above 6 L in order to
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cover the pH and DOT electrodes. To overcome this constraint only glucose syrup
(cdos) was fed to the bioreactor during fed-batch operation, while the pre-calculated
amount of nutrient substrate (ndos) that should be fed during the fed-batch opera-
tion, was instead added to the bioreactor prior to the inoculation of the bioreactor.

The cultivations were carried out in bioreactors with a 10 L working volume. The
amount of culture broth in the bioreactor was measured gravimetrically. A constant
pH value was maintained by automatic addition of gaseous ammonia to the inlet
air stream. Both temperature, speed of stirrer N= 800 rpm, back pressure of pt,g

= 0.8 atm (gauge) and aeration rate Fair= 18 NL/min were kept constant during
cultivation. The dissolved oxygen tension was measured online and for standard
cultivations the dissolved oxygen tension was above 20 % of air saturation. Table
7.2 provides an overview of experiments presented in this chapter.

7.2.5.1 Preparation of Inoculum

A vial containing colonies of the recombinant S. cerevisiae strain was taken from
-80◦C storage and transferred to a shake flask containing 200 mL growth medium
with glucose as the main substrate. The shake flask was placed in an incubator at
200 rpm and 30◦C for 90-120 hours, before the whole content of the shake flask was
transferred to a bioreactor.

7.2.5.2 Batch Operation

Prior to the inoculation of the bioreactor glucose and nutrient substrates were
charged to the bioreactor. During the first stage of the batch operation the glu-
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Figure 7.1. Feeding profiles of glucose syrup (black line, Fm
cdos), nutrient substrate (grey

line, Fm
ndos) and the profile of the bioreactor weight (black line, W ) during fed-batch and

the beginning of continuous operation, where the effects of sampling can be observed
as upsets in the weight signal. Continuous operation is initiated as the set point of the
bioreactor weight is achieved at 55.1 hours. Data from cultivation MTS05.
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Table 7.2. Overview of presented experiments. Except for cultivation MTV03, con-
tinuous operation has been carried out without upsets to the dilution rate. In the
experiments with prefix MTS, small perturbations have been added to the standard
dilution rate of 1 kg/kg/hr. Online data in a 25 hours time span is assumed to be
representative for the conditions during continuous operation. Abbreviations: approx:
approximate, conc.: concentration, cont.: continuous, det.: determined, D: dilution
rate, dist.: disturbances, norm.: normalized, op: operation

Cultivation MTS05 MTS06 MTS07 MTS11
Batch operation (hr) 0-30 0-30 0-30 0-31
Fed-batch operation (hr) 30-55 30-55 30-54 30-54
Continuous operation (hr) 55-120 55-121 54-120 54-122
Approx. norm. D in continuous
op. (kg/kg/hr)

0.98 1.01 0.99 1.01

Number of samples 3 3 3 3
Total number of det. biomass
conc.

6 6 6 6

Sampling times (hr) 74.3 74.5 74.3 77.2
98.0 98.2 98.9 103.3
119.0 119.2 120.1 121.7

Online data sampled (hr) 90-115 90-115 90-115 90-115

Cultivation MTS12 MTV02 MTV03
Batch operation (hr) 0-30 0-29 0-29
Fed-batch operation (hr) 30-55 29-57 29-55
Continuous operation (hr) 55-123 57-120 55-122
Approx. norm. D in continuous
op. (kg/kg/hr)

1.00 0.99 0.99

Number of samples 3 2 2
Total number of det. biomass
conc.

6 6 6

Sampling times (hr) 77.2 76.5 -
103.3 98.7 100.4
121.7 - 121.1

Online data sampled (hr) 90-115 90-115 90-115

Table 7.3. Feeding strategies during different operations. Wcdos and Wndos are the
accumulated weights of glucose syrup and nutrient substrate respectively, fed to the
bioreactor during batch and fed-batch operation. The ratio Wcdos : Wndos = 1:2. In the
batch phase the substrates are charged prior to inoculation, while during the fed-batch
operation a continuous feeding profile of glucose syrup is applied as illustrated in figure
7.1.

Operation cdos ndos
Batch 1/10 Wcdos Wndos

Fed-batch 9/10 Wcdos 0
Continuous (ratio) 1 2
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cose was consumed forming biomass and ethanol, while in the second stage ethanol
was consumed to form more biomass. As the ethanol was exhausted from the cul-
ture broth, evaluated using gas analysis on the off-gas, the fed-batch operation was
initiated by continuous feeding glucose syrup.

7.2.5.3 Fed-batch and Continuous Operation

As described above only glucose syrup was fed to the process during fed-batch
operation. As the ratio between the accumulated amounts of added glucose syrup
and nutrient substrate in both batch and fed-batch operations became 1:2, the
feeding of the nutrient substrate was initiated in the ratio 2:1 of the glucose syrup
feed rate. When the desired filling of the bioreactor for continuous operation was
obtained, the effluent stream was opened and continuous operation initiated.

The feeding strategies of the batch, fed-batch and continuous operations are listed
in table 7.3, while an example of an applied feeding profile during fed-batch operation
is shown in figure 7.1. Notice that the upsets in the weight profile shown in figure
7.1 is due to sampling of the culture broth.

7.2.5.4 Cultivation MTV03

A couple of hours into continuous operation in cultivation MTV03 (at 56 hours),
large amounts of acetate and ethanol were being observed and corrective actions
were taken in order to get the system back into purely aerobic growth by lowering
the dilution rate and then slowly increasing the normalized dilution rate back to
the desired normalized steady state value of 1 kg/kg/hr at 68 hours. At 79 hours a
series of step changes to the dilution rate was performed, bringing the system into
oxido- reductive growth for 2.5 hours. From 85 hours and for the remainder of the
cultivation a constant normalized dilution rate of 1 kg/kg/hr was applied.

7.3 Methodology

Investigating the elemental composition of biomass can be addressed in a number of
ways depending on the level of detail that is needed or desired. Despite the fact that
frequent measurements of the composition of the macromolecular pool undoubtly
would provide relevant and important information for process improvement and
optimization, this is not carried out in the process studied in this work. Instead
the elemental composition of the biomass is deducted from macroscopic elemental
balances and validated by elemental analysis of two samples.

7.3.1 Macroscopic Elemental Balancing

The biomass composition can be deduced through the use of macroscopic elemental
balances for carbon, nitrogen, hydrogen and oxygen combined with the degree of
reduction, κ. During aerobic growth the major contributors to the elemental and
degree of reduction balances are: glucose, ammonia, biomass, carbon dioxide, oxygen
and water as illustrated with the following black box model:

CHaxObxNcx + YxcCO2 + YxwH2O − YxsCH2O − YxoO2 − YxnNH3 = 0 (7.4)
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where Yxc, Yxw, Yxs, Yxn and Yxo are the yield coefficients of carbon dioxide, water,
glucose, ammonia and oxygen on biomass respectively, while ax, bx and cx are the
mole contents of hydrogen, oxygen and nitrogen respectively per C-mole biomass.
Using equation 7.4, a matrix E can be constructed based on elemental balances of
C,N and the degree of reduction κ-balance:

E =


CN
κ


 =


 1 1 0 1 0
cx 0 0 0 1
κx 0 −4 4 0


 (7.5)

where the degree of reduction of the biomass is calculated from the degree of reduc-
tion of the involved elements: κx = 4+ax-2bx-3cx. The columns represent steady
state volumetric conversion rates (r)5 in moles of biomass (C-mole), carbon diox-
ide (C-mole), oxygen (O2-mole), glucose (C-mole) and ammonia (N-mole) and the
steady state component balances are written as:


0

0
0


 = E ×



rx

rc

ro

rs

rn


 (7.6)

The identification of the parameters ax, bx and cx can not be carried out before the
molecular weight per C-mole biomass (MDW ) is available. Therefore this parameter
needs to be determined together with the three other parameters: ax, bx and cx.

The identification problem is solved as a least squares nonlinear minimization
problem using the Levenberg-Marquardt algorithm of MatLab with the objective
function:

J = min
θ

(f(θ))2 with: θ =



θ1
θ2
θ3
θ4


 =




ax
bx
cx

MDW


 (7.7)

where: f(θ) = E ·



rm
x

rc

ro

rs

rn


 =


 1/θ4 1 0 1 0

θ3/θ4 0 0 0 1
(4 + θ1 − 2θ2 − 3θ3)/θ4 0 −4 4 0


 ·



rm
x

rc

ro

rs

rn




rm
x is the volumetric conversion rate of biomass based on mass rather than C-moles.

From the estimated biomass composition the residual content6 can be calculated as:

res = 1 − MDW,−res

MDW
= 1 − 12 + ax+ 16bx+ 14cx

MDW
(7.8)

where MDW,−res is the molecular weight per C-mole biomass calculated on the basis
of the elemental composition of carbon, hydrogen, oxygen and nitrogen alone.

5The rates are positive when a component is being produced and negative when consumed.
6The reason for using the term residual content rather than ash content is explained in section

7.3.1.1.
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The conversion rate of glucose (rs), biomass (rm
x ) and ammonia (rn) are calculated

as:

rs = D(cmg,f − cmg,b)/Mglu (7.9)

rm
x = Dcmx (7.10)

rn = FNH3/W − (Dcmn,b)/MNH3 (7.11)

where cmg,f is the mass concentration of glucose in the total feed7, cmg,b is the mass
concentration of glucose in the bioreactor, cmx is the mass concentration of biomass
in the bioreactor, cmn is the mass concentration of ammonia in the bioreactor, while
FNH3 is the molar flow rate of ammonia. W is the weight of the bioreactor contents
and D is the true dilution rate in kg/kg/hr; Mglu and MNH3 are the molecular
weights of glucose (per C-mole) and ammonia, respectively.

7.3.1.1 Ash Content

The biomass is composed of other elements than carbon, hydrogen, oxygen and ni-
trogen, e.g. phosphor, sulfur, potassium, magnesium and other trace metals (Roels,
1983), however these elements are only present in very small amounts compared
to carbon, hydrogen, oxygen and nitrogen. To account for these elements in mass
balances, the parameter ash content is introduced referring to the residual from an
elemental analysis. The ash content varies between 3-13 w% of the biomass investi-
gated for the laboratory strain S. cerevisiae CBS 426 under aerobic glucose-limited
cultivation for dilution rates between 0.073 and 0.259 according to Roels (1983),
while Herwig et al. (2001) report the ash content to vary between 6-8 w% in aerobic
glucose-limited cultivations of S. cerevisiae CEN.PK 113-7D for dilution rates rang-
ing between 0.04 to 0.40 L/L/hr. Lange and Heijnen (2001) pointed out that water
contributed with approximately 3.6 w% of the biomass for samples dried at high
temperatures (70◦C for 48hr) followed by storage in a dessicator and subsequent el-
emental analysis. From the data provided by Lange and coworker, an approximate
ash content of 3.8 w% can be calculated (based on the mass fraction listed in table
VII in Lange and Heijnen (2001)).

Although freeze drying has been used in the preparation of samples for elemental
analysis rather than drying at high temperatures as used by Lange and coworkers,
both sample preparation methods use storage in dessicator prior to analysis (see
section 7.2). Therefore the data obtained from elemental analysis is assumed to
contain a contribution from water content of 3.6 w%, which needs to be corrected
for before calculating the biomass composition.

In the macroscopic mass balance the water content does not directly influence any
of the balances used for calculating the composition, since hydrogen and oxygen con-
tents are determined by the κ-balance in equation 7.5. However the water content
will influence the measurement of the biomass concentration, since the method ap-
plied uses high temperature drying and storage in dessicator (see section 7.2). The
term residual content (fr) is therefore used to account for the joint contributions
from both ash and water contents:

(1 − fr) = (1 − fa) · (1 − fw) (7.12)

7In the combined cdos and ndos in a 1:2 ratio.
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where fa and fw are the fractions of ash and water respectively.
In the macroscopic mass balance the residual content is estimated using equation

7.8 and combined with equation 7.12 the ash content in percent is calculated as:

fa = 1 − 1 − fr

1 − fw

(7.13)

For the results obtained by elemental analysis both the ash content and the water
content are assumed to be constant at 3.8 w% and 3.6 w%, respectively. This yields
a residual content of:

(1 − fr) = (1 − fa,EA) · (1 − fw) = (1 − 0.038) · (1 − 0.036) ⇒ res = 7.3w% (7.14)

where fw is the fraction of water, while fa,EA signifies the ash fraction used in
calculations based on the elemental analysis.

7.3.2 Elemental Analysis

Two samples for elemental analysis were taken in the continuous part of cultivation
MTS12. These samples were analyzed for elemental carbon, hydrogen and nitrogen
using a CHNS-O-analyzer. Assuming an ash content of 3.8 w% and a water content
of 3.6% the elemental oxygen composition can be calculated based on the residuals
when the other components, ashes and water is accounted for.

7.4 Results

7.4.1 Cultivation Results

Average values of measurements obtained during a number of continuous cultiva-
tions are listed in table 7.4, all of which have been normalized using a fixed set of
normalization variables. As mentioned above the residual contents is assumed to be
7.3 w% when considering the results obtained by elemental analysis, while a water
content of 3.6 w% is assumed in case of the macroscopic mass balances, since the
applied method provides an estimate of the residual content. It is assumed that the
most important contributions to the elemental balances are accounted for and it can
be seen that the contributions of ethanol, acetate, succinate and pyruvate are negli-
gible compared to glucose. Furthermore the concentration of glucose in the feed has
not been determined explicitly for all of the cultivations. The glucose concentration
in the feed is similar in all of the cultivations, evaluated by inspection of the ratio
between CER and glucose syrup flow rate. The average of this ratio only differs with
less than 1 % in the cultivations listed in table 7.4. The listed normalized value of
37 g/kg is determined from the substrates used in cultivation MTV03. The use of
yeast extract in the nutrient substrate has an impact on the nitrogen balance of the
process, since it is known that the yeast extract provides amino acids for the growth
processes of the yeast. It is assumed that the contribution to the overall nitrogen
balance is negligible.
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Table 7.4. Averages of measured concentrations and flow rates during pseudo-steady
state conditions from 90 to 115 hours in continuous operation. Where available, stan-
dard deviations are listed in parenthesis below the mean values. Data has been nor-
malized, using the same value except for the dilution rate.

Unit MTS05 MTS06 MTS07 MTS11 MTS12 MTV02 MTV03

Component

Biomass g/kg 20 20 19 19 19 20 20

(0.38) (0.46) (0.46) (0.51) (0.27) (0.53) (0.07)

Glucose (feed) g/kg 37 37 37 37 37 37 37

- - - - - - -

Ammonia (feed) mole/hr 0.11 0.11 0.11 0.11 0.11 0.11 0.11

(0.0010) (0.0008) (0.0010) (0.0007) (0.0009) (0.0005) (0.0008)

Glucose (broth) g/kg 0.037 0.042 0.024 0.036 0.038 0.039 0.042

(0.0030) (0.0021) (0.0010) (0.0037) (0.0012) (0.0008) (0.0022)

Ethanol g/kg 0 0 0 0 0 0 0

0 0 0 0 0 0 0

Acetate g/kg 0.045 0.049 0.009 0.047 0.049 0.026 0.015

(0.0072) (0.0064) (0.0008) (0.0079) (0.0072) (0.0200) (0.0174)

Succinate g/kg 0.052 0.048 0.150 0.119 0.136 0.050 0.048

(0.0037) (0.0035) (0.0323) (0.0409) (0.0019) (0.0006) (0.0009)

Pyruvate g/kg 0.0029 0.0025 0.0034 0.0032 0.0034 0.0044 0.0036

(0.00030) (0.00015) (0.00018) (0.00043) (0.00020) (0.00015) (0.00010)

CER mole/hr 0.48 0.50 0.49 0.50 0.49 0.49 0.48

(0.0027) (0.0023) (0.0028) (0.0022) (0.0029) (0.0007) (0.0020)

OUR mole/hr 0.44 0.47 0.45 0.45 0.45 0.44 0.44

(0.0025) (0.0022) (0.0026) (0.0021) (0.0027) (0.0007) (0.0018)

Ammonia (broth) g/kg 0.088 0.088 0.088 0.088 0.088 0.088 0.088

- - - - - - -

Dilution rate kg/kg/hr 0.980 1.010 0.990 1.010 1.000 0.990 0.990

(0.032) (0.036) (0.049) (0.042) (0.054) (0.012) (0.009)

7.4.2 Elemental Analysis

Results from analyzing two samples from the continuous operation of cultivation
MTS12 are listed in table 7.5.

7.4.3 Elemental Composition

Based on the results shown in table 7.4 it can be concluded that the most impor-
tant components to the overall mass balance during continuous operation appear in
equation 7.4. Using equation 7.7 and 7.8 the parameters are estimated using all 7
cultivation data sets available:

θ =




ax
bx
cx

MDW


 =




1.82
0.583
0.142
26.9


 (7.15)
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Table 7.5. Elemental composition measured by elemental analysis (w%) from two sam-
ples from cultivation MTS12. The data has not been corrected for ash and water
contents. a− c refers to repeated measurements. Rest is the amount not accounted for
by carbon, hydrogen or nitrogen.

Sample Carbon Hydrogen Nitrogen Rest
MTS12p17a 44.03 7.11 7.52 41.34
MTS12p17b 44.59 7.27 7.60 40.54
MTS12p17c 44.31 7.13 7.54 41.02
MTS12p18a 43.88 7.00 7.49 41.63
MTS12p18b 44.20 7.03 7.55 41.22

which leads to the following biomass composition:

CH1.82O0.583N0.142 κx = 4.23; MDW = 26.9 g/C-mole (fr: 6.7 w%) (7.16)

and the ash content can be calculated by use of equation 7.13; the ash content is
3.1 w%.

An analysis of how well the three balances, C, N and κ from equation 7.5 close,
when using the identified parameters of θ is shown in table 7.6. Here the individual
deviations in the three balances are calculated for each experiment and listed as
a percentage of the total value. From the table it can be seen that the standard
deviations are small for all three balances with most variation present in the N-
balance.

Table 7.6. Relative deviations in C-, N- and κ-balance for each experiment, along with
average values and standard deviations. C-balance: %dev=(r̂x+rs+rc)/|rs|; N-balance:
%dev=(ĉxr̂x +rn)/|rn|; κ-balance: (κ̂x −4ro +4rs)/κ̂x. A negative value indicates that
the use of the estimated parameters from equation 7.15 leads to a balance closing
below 100%. Notice that the values were not obtained under stationary continuous
steady state conditions, but rather as average values during continuous operation with
perturbations to the feeding rate.

Experiment C-dev. (%) N-dev (%) κ-dev (%)
MTS05 1.73 4.43 0.42
MTS06 3.11 -0.81 1.17
MTS07 -0.08 -0.30 -0.11
MTS11 -0.74 -1.92 -0.21
MTS12 -1.54 -3.09 -0.36
MTV02 -0.25 1.38 -0.18
MTV03 -2.37 0.37 -0.63
Average -0.02 0.01 0.01
St.dev. 1.88 2.44 0.60

The data listed in table 7.5 obtained by elemental analysis on samples from culti-
vation MTS12 results in an elemental composition of the biomass as listed in table
7.7. Unfortunately it was not possible to analyze more samples and other batches
with this methodology.
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Table 7.7. Calculated elemental composition of biomass (CHaxObxNcx) from data ob-
tained using elemental analysis. For the calculations an ash content of 3.8% has been
assumed as well as a water content of 3.6 w%. Data listed in table 7.5, along with degree
of reduction (κx) and the molecular weight (MDW in g/C-mole) at a residual content of
7.3 w% (see equation 7.14). The average is calculated as 0.5·(mean(p17)+mean(p18)),
where mean(p17) signifies the mean value from sample p17. Standard deviations
(St.dev) are calculated based on the average value.

Sample ax bx cx κx MDW

MTS12p17a 1.83 0.580 0.146 4.23 27.1
MTS12p17b 1.85 0.560 0.146 4.29 26.8
MTS12p17c 1.82 0.571 0.146 4.24 27.0
MTS12p18a 1.80 0.587 0.146 4.19 27.2
MTS12p18b 1.80 0.576 0.146 4.21 27.0
Average 1.82 0.576 0.146 4.23 27.1
St. dev. 0.0100 0.0052 0.00012 0.0193 0.084
St. dev. (%) 0.548 0.91 0.081 0.458 0.309

The data in table 7.7 suggest that the elemental composition of biomass should
be:

CH1.82O0.576N0.146 κx = 4.23; MDW = 27.1 g/C-mole (fr: 7.3 w%) (7.17)

7.5 Discussion

7.5.1 Comparing Biomass Compositions

The two methods of determining the biomass composition provides almost identical
results. The small discrepancies in the amounts of elemental oxygen and hydrogen
are negligible. It is however interesting to notice that all 5 of the measurements
in table 7.7 show an elemental composition of nitrogen of 0.146 with a standard
deviation of less than 0.1%. All of the samples analyzed using elemental analysis
originates from cultivation MTS12. A number of explanations for the discrepancies
in the estimated nitrogen composition will be discussed here.

Examining the deviations of the carbon, nitrogen and the degree of reduction bal-
ances from cultivation MTS12 in table 7.6, it is interesting to notice how a relatively
large amount of nitrogen is unaccounted for (-3.1 %) in the nitrogen balance. The
ammonia concentration in the culture broth has been assumed to have a constant
value of 0.088 g/kg in all experiments, which corresponds approximately to 4% of
the total ammonia balance, so violation of this assumption could explain the ob-
served discrepancy. In the other experiments, other large discrepancies are seen in
the nitrogen content and it is therefore concluded that the assumption of a constant
ammonia concentration in the culture broth is likely to be untrue since the ammonia
concentration in the broth has a large influence on the determination of the nitrogen
content of the biomass by macroscopic mass balances.

An alternative explanation of the lack of fit of the nitrogen balance in cultivation
MTS12 can be obtained by reestimating the nitrogen content of biomass (cx) solely
on the data from cultivation MTS12, while keeping all other parameters constant.
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This leads to a value of cx = 0.142/0.97 = 0.146 an interesting observation, since
this corresponds to the average value of the nitrogen content in biomass estimated
using elemental analysis data, where only samples from cultivation MTS12 has been
analyzed. Although the biomass compositions in equations 7.16 and 7.17 appear
to have different nitrogen compositions, this might actually be as a result of the
samples analyzed rather than differences due to the use of different algorithms.
With the data at hand it is not possible to investigate these issues further and more
investigations are needed for clarification.

Table 7.8. Identified elemental compositions of biomass using macroscopic mass balanc-
ing (MMB) and elemental analysis (EA)

Method Elemental Composition κx MDW fr

MMB CH1.82O0.583N0.142 4.23 26.9 g/C-mole 6.7 w%
EA CH1.82O0.576N0.146 4.23 27.1 g/C-mole 7.3 w%

From the comparison of the results obtained in equations 7.16 and 7.17 and tables
7.6 and 7.7 (summarized in table 7.8), it appears that the estimation of biomass
composition obtained using the results from the elemental analysis is more accurate
than the one estimated using macroscopic mass balances. It is however still interest-
ing to note how close the two estimates are, suggesting that in other applications, a
good estimate of the biomass composition can be obtained using macroscopic mass
balances.

7.5.2 Effects From Ash Content

Although only small discrepancies between the two identified biomass compositions
have been found, it is still relevant to test the sensitivity of the results with respect
to the assumed ash content, hence the sensitivity of assuming the residual content
to be 7.3 w% in the results obtained from elemental analysis is discussed here.

The results for varying amounts of ash content are used on the data in table 7.5 for
ash contents varying between 2 to 6 w%. The results are listed in table 7.9. Since the
ratio between carbon, hydrogen and nitrogen is determined by the measurements
in table 7.5, it is only the amounts of elemental oxygen that varies, having a direct
effect on the degree of reduction balance and therefore κx.

From table 7.9 it can be seen that assuming that the estimated value of the ash
content obtained using macroscopic mass balancing of 3.1 w% does not lead to a bet-
ter agreement between the estimated biomass compositions of the two approaches.
It is therefore concluded that the an ash content of 3.8 w% is reasonable.

7.5.3 Selected Values from the Literature

The estimated compositions of biomass of this work are in accordance with the
results presented in the open literature. Lange and Heijnen (2001), providing the
most elaborate study of the biomass composition of the strain CEN.PK 113-7D,
arrive at an average biomass composition of CH1.748O0.596N 0.148 (fr: 7.3 w%), while
Herwig et al. (2001) presents an average composition of: CH1.75O 0.50N0.16 (fr: 7.2
w%) for the same strain. The difference in oxygen and nitrogen contents by the
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Table 7.9. Elemental biomass composition (CHaxObxNcx) determined by elemental anal-
ysis as a function of the ash content including the degree of reduction (κx) and the
molecular weight (MDW in g/C-mole). Data based on elemental analysis results listed
in table 7.5

Ash content w% ax bx cx κx MDW

2.0 1.82 0.606 0.146 4.19 27.6
3.0 1.82 0.589 0.146 4.21 27.3
3.8 1.82 0.576 0.146 4.23 27.1
4.0 1.82 0.573 0.146 4.23 27.0
5.0 1.82 0.557 0.146 4.25 26.7
6.0 1.82 0.540 0.146 4.28 26.4

two groups using the same strain is probably due to different cultivation conditions,
especially the range of dilution rates.

Comparing these results with the results obtained in this work indicates that the
hydrogen and nitrogen contents are a little different from the ones reported by
Lange and coworkers and Herwig and coworker. A possible explanation for the
discrepancy in nitrogen content could be the dilution rates investigated, as both
research groups concluded that nitrogen content was dependent on dilution rates.
A second explanation for discrepancies could be that the cultivations in this study
were not in steady state. The cultivations with prefix MTS were perturbed in the
glucose syrup feed rate is discussed in section 8.1.8, while neither cultivation MTV02
nor MTV03 had spent the recommended 5-7 residence times in continuous steady
state conditions (Lange and Heijnen, 2001). A further explanation could be that
the observed differences are due to the use of different strains. The one used in this
work is a recombinant strain and this could have an effect on the macromolecular
composition of the strain compared to the laboratory research strain CEN.PK 113-
7D.

Further experiments are needed to elucidate the reason for the small observed
discrepancy in the nitrogen content. It is also interesting to elucidate the changes
to the biomass composition brought about by changing process conditions as the
operations progress from batch through fed-batch to continuous operation. Based
on the biomass compositions reported by Stückrath et al. (2002) and listed in table
7.1 in the introduction to this chapter, it appears that during growth on ethanol and
acetate, the nitrogen content of the biomass is larger than during growth on glucose,
whereas the oxygen content is lower, explained by a large content of carbohydrates
in cells grown on glucose at the expense of lipids and proteins. In the light of
these observations it would be interesting to investigate the changes to the biomass
concentration through the different operating conditions to evaluate how and how
fast the cells adapt to the changing conditions.

7.6 Conclusion

Using two different approaches, elemental analysis and macroscopic mass balancing,
the investigations in this chapter have attempted to determine the elemental com-
position of a recombinant strain of S. cerevisiae used for production of an insulin
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precursor during aerobic glucose-limited growth. Inspired by the work of Lange and
Heijnen (2001) it was assumed that 3.6 w% of the biomass concentration measured
as dry weight was due to water, and an ash content of 3.8 w% accounting for the
contributions of metals, sulfur and phosphor to the biomass composition. The con-
tribution of water and ashes is referred to as the residual (see equation 7.14). With
these assumptions the following estimates of the biomass composition was obtained8:

MMB: CH1.82O0.583N0.142 κx = 4.23; MDW = 26.9 g/C-mole (fr: 6.7 w%)
(7.18)

EA: CH1.82O0.576N0.146 κx = 4.23; MDW = 27.1 g/C-mole (fr: 7.3 w%) (7.19)

Based on the results obtained and the discussions presented above, the following
elemental composition of the recombinant strain of S. cerevisiae is suggested based
on the methodology using elemental analysis:

CH1.82O0.576N0.146 κx = 4.23; MDW = 27.1 g/C-mole (fr: 7.3 w%) (7.20)

The estimate of the elemental biomass composition can now be used in dynamic
modeling for a cultivation process using the investigated strain. This is the topic
of the following two chapters where the information provided in this chapter will
serve an important role in the construction of models and identification of model
parameters.

8MMB: macroscopic mass balancing. EA: elemental analysis.
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Indicator for Onset of
Oxidoreductive Growth

A modelbased indicator has been constructed to monitor the onset of oxi-
doreductive growth of an industrial recombinant strain of Saccharomyces
cerevisiae for production of an insulin precursor. Using a macroscopic
proton flux balance over the bioreactor and assuming a constant pH of
the culture broth, an estimate of the ammonia flow rate demand during
aerobic growth was compared to the measured ammonia flow rate, pro-
viding a residual that could indicate the onset of oxidoreductive growth.
Inputs to the model were effects from changes in the volume of the cul-
ture broth, effluent flow rate and glucose syrup feed rate. Parameters
were identified from a number of operating conditions in three batches.
During normal operating conditions of oxidative growth the estimated
ammonia demand was within 10% of the measured addition rate of am-
monia, and the onset of process upsets and oxidoreductive growth could
easily be identified as the difference between estimated and measured val-
ues of the ammonia addition rate exceeded a detection limit of 1.5 mmole
NH3/mole biomass/hr.

In chapter 6 a soft sensor for online estimation of biomass concentration was pre-
sented for a production of insulin precursor, however using a slightly different re-
combinant strain than in this chapter. The soft sensor was based on the assumption
that the ammonia flow rate could be used for estimation of the biomass production
rate and concentration. The same approach was attempted using a different strain
of Saccharomyces cerevisiae, however surprising results were obtained. In a number
of cultivations conducted, a peculiar behavior of the ammonia flow rate just prior to
the onset of oxidoreductive growth1, Fm

NH3
has been observed in the late part of fed-

batch phases, indicating that a number of effects influence the proton flux balance
of the system. In some cases an elevated flow rate of ammonia has been followed by
ethanol production 1-2 hours later, an example of this behavior is shown in figure
8.1. In other cases HPLC analysis of the culture broth during periods of peculiar
behavior of the ammonia flow rate have indicated the presence of acetate. Both
ethanol and acetate are metabolites formed during oxidoreductive growth where the
fermentative pathway is active (see section 3.4.5). The presence of these metabolites
is unwanted during the fed-batch and continuous operating regimes in the produc-
tion of the insulin precursor, since metabolic energy is redirected from the two main
purposes: 1) obtaining and maintaining a high concentration of biomass to support

1Superscript m indicates mass flow rate.
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2) a high productivity of the insulin precursor.
It is highly relevant to develop observers and indicators that can alert operators

and/or the process control system, when the metabolic activities in the process
are about to change from oxidative to oxidoreductive growth. The purpose of this
chapter is to develop a framework, that can provide an indicator for the onset of
oxidoreductive growth. A model will be constructed that will be able to estimate
the necessary ammonia demand for neutralization of different effects on the proton
flux balance during purely oxidative growth. For this purpose the impact of different
effects on the proton flux balance will be quantified. The residual between estimated
and measured ammonia flow rate can then be used for further investigations with the
aim of elucidating what metabolic response may be responsible for the behavior seen
in figure 8.1. As the model is based on the assumption of oxidative growth without
formation of ethanol or acetate, the residual can be used to evaluate whether or not
this assumption is valid or not i.e. as an indicator of the state of the metabolism.

This chapter consists of a section describing the data used for model identification
followed by a section on the applied strategy adapted for modeling. After this, a
section presents the model identification along with the parameter estimation, before
the identified model is validated using cultivation data.

8.1 Materials and Methods

8.1.1 Normalized Data

The cultivation data reported in this chapter has been normalized in
order to blur sensitive information. The requirement to do so makes it
rather difficult to compare the findings reported in this work with results
from the open literature. Furthermore it can be difficult to check and
verify calculations and results since normalization has to be used in a
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Figure 8.1. Profiles of normalized ammonia flow rate (Fm
NH3

, black line, left hand axis)
and ethanol concentration in the offgas (cgeth, grey line, right hand axis) in cultivation
MTF04. Up until 42.5 hours the culture broth pH does not deviate more than 0.02
pH-units from its set point value. At 42.5 hours the maximum ammonia flow rate is
reached and the pH starts to decrease below the set point value (not shown here).
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way that also blurs ratios e.g. dilution rates and specific productivities.
The author apologies for the inconvenience that the normalization can

cause and for the distortion it might have on understanding the issues
addressed in this thesis.

8.1.2 Strain and Medium

Details on this topic are given in section 7.2.1. The biomass composition was inves-
tigated in chapter 7 and estimated to: CH1.82O0.576N0.146 (fr: 7.3 w%).

8.1.3 Equipment

Details on this topic are given in section 7.2.2.
A number of process parameters and variables are measured and data series of

these measurements are available with a sampling frequency, ωs, of 1 min−1. These
variables are listed in table 8.1.

Table 8.1. Variables available as online measurements at a sampling frequency ωs = 1
min −1. CER and OUR are presented in section 7.2.3.5. Note that CXC, OXC and
cge are sampled every minute, however the mass spectrometer only provides new values
every 10 minutes.

Variable Unit Description
t [hr] Elapsed time from start of cultivation
Fair [NL/min] Aeration rate of bioreactor using sterilized air
Fm

NH3
[g/hr] Ammonia dosed to the bioreactor by injection into air flow

Fm
cdos [g/hr] Feed flow rate of primary substrate: glucose syrup
Fm

ndos [g/hr] Feed flow rate of secondary substrate: nutrients
pH [-] Acidity of culture broth measured online
DOT [%] Dissolved oxygen tension; percentage of saturation
pt,g [bar] Back pressure at the top of the bioreactor (gauge)
N [rpm] Speed of stirrer
CXC [%] Difference between offgas and air inlet concentration of CO2

OXC [%] Difference between air inlet and offgas concentration of O2

cge [ppm] Concentration of ethanol in off-gas
RQ [-] Respiratory quotient: RQ = CER/OUR
θ [◦C] Temperature of culture broth inside tank
W [kg] Estimated weight of culture broth

8.1.4 Analytical Methods

Details on this topic are given in section 7.2.3.

8.1.5 Substrates

Details are given in section 7.2.4.
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8.1.6 Cultivation Conditions

Details are given in section 7.2.5. Table 8.2 provides an overview of experiments
presented in this chapter.

8.1.7 Preparation of Inoculum

Details on this topic is found in section 7.2.5.1.

8.1.8 Perturbations

In the cultivations with the prefix MTS small amplitude perturbations were intro-
duced to the nominal substrate feed rates during both fed-batch and continuous
operation to provide more dynamic data for modeling. The feeding profile during
the fed-batch phase was composed of ramps approximating an exponentially increas-
ing feeding profile, while in continuous operation a constant feed rate was used. A
grid of nodes was spanned along the combined feeding profiles, with a node for every
2 hours. Between every node linear ramps of feed rates were used to create the nom-
inal feeding profile. Perturbations were introduced to the nominal feeding profile
by multiplying the feeding rates at the nodes by a factor f and then reconstructing
the feeding profile by using piecewise linear ramps between the new values at the
nodes2.

f = (1 + pf) pf ∈ N (0, σ2) where σ = 5% of nominal dilution rate (8.1)

2This form of simple piecewise linear perturbations was chosen, since the process control system
could only handle 16 points in the construction of the dosing profile.
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Table 8.2. Overview of presented experiments. A more elaborate description of the en-
tries marked by a � can be found in the text. Standard cultivations are experiments were
no disturbances (planned or unplanned) where observed during the fed-batch and con-
tinuous operation. The control of substrate feed rate is carried out as a preprogrammed
feeding profile by a series of set points with linear ramps in between (Recipe). Abbre-
viations: op: operation, D: dilution rate, approx: approximate, norm: normalized.

MTS01 MTS05 MTS07 MTS12
Standard cultivation No Yes Yes Yes
Perturbations in fed-batch and continu-
ous operation�

Yes Yes Yes Yes

Planned disturbance� Ramp in D No No No
Unplanned disturbance (type) Ethanol No No No
Batch operation (hr) 0-26 0-30 0-30 0-30
Fed-batch operation (hr) 26-51 30-55 30-54 30-55
Continuous operation (hr) 51-144 55-120 54-120 55-123
Approx. norm. D in continuous opera-
tion (kg/kg/hr)

- 0.98 0.99 1.00

Control of substrate feed rate Recipe Recipe Recipe Recipe
Results displayed in Fig. 8.13 Fig. 8.12 Fig. 8.10 Fig. 8.11
Data used for (Modeling/Validation) Validation Validation Modeling Validation

MTE01 MTV01 MTV02
Standard cultivation No No Yes
Perturbations in fed-batch and continu-
ous operation�

No No No

Planned disturbance� Yes No No
Unplanned disturbance (type) No Yes No
Batch operation (hr) 0-30 0-28 0-28
Fed-batch operation (hr) 30-51

64-84
28-52 29-57

Continuous operation (hr) 84-120 52-123 57-120
Approx. norm. D in continuous opera-
tion (kg/kg/hr)

1.00 0.98 1.00

Control of substrate feed rate Recipe Recipe Recipe
Results displayed in Fig. 8.7 Fig. 8.15 Fig. 8.8
Data used for (Modeling/Validation) Modeling Validation Modeling
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An example of perturbations added to a nominal feeding profile is illustrated in
figure 8.2 were also a lower constraint on the minimum feed rate at a normalized
value of 10 g/hr has been added3.

8.1.9 Modeling Batches; Feeding Strategies

For the modeling of the flow rate of ammonia, data from cultivations MTE01,
MTV02 and MTS07 were used. The course of these cultivations are described in
the following.

MTV02: This cultivation was carried out using the normal feeding strategy. Prior
to the batch phase nutrient substrate containing growth factors, vitamins and yeast
extract, had been added to the bioreactor in sufficient amounts to cover both the
batch and fed-batch phases. During the fed-batch phase from 29 to 54.5 hours only
glucose syrup was fed to the bioreactor. Feeding of nutrient substrate was initiated
as the weight of the bioreactor contents exceeded 8.8 kg, bringing the process into
continuous operation at 56.3 hours. The fed-batch phase of this cultivation was
rather conservative, where the specific growth rate dropped below the nominal feed-
ing profile value halfway for 27 hours of fed-batch operation, and averaged 90 % of
the nominal feeding profile value for the second half of the fed-batch operation. The
subsequent continuous operation was conducted without any incidents for more than
60 hours. Figure 8.3(a+b) show the pH and substrate feeding profiles of cultivation
MTV02.

MTS07: During continuous operation of cultivation MTS07, perturbations in the
feeding rates were planned and carried out in order to investigate the response
of the system to such disturbances. The fed-batch phase was conducted without
any incidents at a normalized specfic growth rate of 0.9-1.0. During continuous
operation, perturbations in the substrate feeding were introduced, which resulted in
piecewise linear changes in the nominal feeding profile value between 90 - 110 %.
Figure 8.3(c+d) show the pH and substrate feeding profiles of cultivation MTS07.

MTE01: In this cultivation two types of fed-batch operation were performed. The
first of these followed the normal feeding strategy, but as the desired filling of the
bioreactor was achieved, the process was stopped. In this experiment a second
strategy for fed-batch operation was to be investigated, which was the reason for
terminating feeding before entering into continuous operation. To prepare for the
second fed-batch phase, 5/6 of the bioreactor contents were removed and 3 kg of
nutrient substrate was fed to the bioreactor4. The bioreactor was then left aerated
and stirred for 11 hours, during this batch period the pH rose to 8.3. Low amounts
of amino acids are present in the broth due to the addition of yeast extract and
these might be consumed by the biomass. This phenomenon has not been further

3The lower calibration limit of the mass flow controller.
4The reason for the design of this experiment was to investigate the fed-batch operation with a

lower initial biomass concentration.
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studied5. From 63.5 hours the second fed-batch operation was carried out using
both glucose syrup and nutrient substrate, in the 1:2 relation normally used during
continuous operation. The fed-batch phase lasted until 84.5 hours, after which
continuous operation was initiated. The feed rates reached their maxima at 86.5
hours after which they were lowered to normal continuous operation levels. A larger
filling level (weight) had been used as set point in this second fed-batch phase. This
was readjusted to the normal level before the experiment was ended by 30 hours of
continuous operation.

Figure 8.4(a+b) show the profiles of pH and ammonia flow rate. Excursions in
pH are seen in the batch phase (0-30 hours) as well as between the two fed-batch
phases (50 to 64 hours). The drops in pH around 80 hours are effects from syn-
chronization of growth resulting in oscillations. Figure 8.4(c) show the flow rates
of the two substrates, where the difference between the two fed-batch operations
can be seen; no Fm

ndos used for the first fed-batch operation. The apparent specific

5At this low level of tank filling the pH sensor is barely under the surface of the broth and the
stirring is far from effective due to the positioning of the impellers.
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(d) Feeding profile, MTS07

Figure 8.3. pH and normalized feeding profiles of glucose syrup (Fm
cdos) and nutrient

substrate ( Fm
ndos) from cultivation MTV02 (top row) and MTS07 (bottom row).
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growth rates (µ) for the two fed-batch operations have been calculated based on the
assumptions of balanced growth, constant yield of biomass on glucose (Ysx) and a
constant normalized glucose concentration of 110 g/kg in the glucose syrup. Figure
8.4(d) show the normalized growth rates being above 100 % of the nominal feeding
profile value throughout the two fed-batch phases and ending between 100 and 110
%.
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Figure 8.4. Profiles of (a) pH, (b) normalized ammonia flow rate, (c) normalized sub-
strate feeding rates and (d) calculated normalized growth rate during the two fed batch
operations in cultivation MTE01.

8.1.10 Filtering

Filtering of signals can be used in order to remove unwanted process dynamics or
sensor noise from interesting and relevant process information. In this work filtering
has been used in order to remove high-frequency information from the process data
signals. This has been done since the process dynamics that are in focus have a
characteristic time constant of approximately 10 min and above. Even faster process
dynamics are also highly interesting, however these have not been considered here.
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A fourth order Butterworth filter (see equation 8.2) with a cut-off frequency of
0.15 ·ωs (ωs is the sampling frequency) is used to filter the originally sampled data
signals.

To avoid an introduction of a time delay in the data series the signals are fil-
tered both in forward and backward (reverse) directions; the latter is conducted by
reversing the data sequence and applying the same Butterworth filter again.

The Butterworth filter is formulated as:

Gf(s) =
ω2

B

s2 + 2ζ1ωBs+ ω2
B

· ω2
B

s2 + 2ζ2ωBs+ ω2
B

(8.2)

where the filter parameters were chosen to be: ζ1 = 0.38, ζ2 = 0.92 and ωB = 0.3
ωs (Åström and Wittenmark, 1995).

8.1.11 Estimating Effluent Flow Rate and Rate of Weight

Change

The details on this subject can be found in section 9.1.11. The Kalman Filter
algorithm is used for the estimation of the effluent flow rate Fout and rate of weight
change ∆W

∆t
.

8.2 Modeling Strategy and Construction

As was mentioned in the introduction to this chapter the purpose of this investiga-
tion is to construct a model, that will be able to estimate the necessary ammonia
demand for neutralization of different effects on the proton flux balance during
purely oxidative growth. This is needed in order to use the residual between the
estimated and measured ammonia flow rate to evaluate whether the growth is ox-
idative or oxido-reductive. With such tools at hand it will be possible to construct
other models e.g. for the estimation of the biomass concentration.

This section will describe how the strategy behind the model is developed, based
on observations from process data. Three cultivations are used for model construc-
tion and parameter estimation: MTV02, MTS07 and MTE01. These cultivations
are rather different, since different feeding strategies were used. Therefore they
contained a lot of information on how variations in different variables influence the
proton flux balance. Thereafter a section on model construction and parameter es-
timation follows, where also the influence from possible contributions to the proton
flux balance are discussed and evaluated.

The model for the ammonia flow rate, Fm
NH3

, is developed from a proton balance,
where a controller is assumed to vary Fm

NH3
to maintain a constant pH. Data from

the fed-batch phases of the three modeling cultivations are used together with data
from continuous operation to model the effects of the two substrates, the effluent
flow and the buffer capacity of the cultivation broth on pH and subsequently on
Fm

NH3
used to maintain a constant pH. By inspection of the data it was found that

in the initial part of the fed-batch phase the ratio between the ammonia flow rate
and carbon emission rate (CER) is not the same as in the stationary part of the
continuous operation. This is demonstrated in figure 8.5. Both Fm

NH3
and CER
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reflect cellular activity and during balanced growth the ratio of these two signals is
expected to be constant as is seen during continuous operation. This is not the case
in the fed-batch phase, where a maximum around 40 hours can be seen. The ratio
is in general larger than during the continuous phase. A number of effects influence
the ratio between Fm

NH3
and CER. The presence of buffer pairs in the substrates

fed to the system will lead to an additional flow of ammonia to maintain the desired
pH. Dilution and effluent flow will decrease the need for ammonia by removal of
protons. These effects will be discussed and included in the modeling.
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Figure 8.5. Ratio between Fm
NH3

and CER. Left hand figure (a) shows a window of
the fed-batch phase, while the right hand figure (b) shows a window of the continuous
operation.

Table 8.3 summarizes the data used for model identification. It can be seen that
not all the data available in the cultivations has been used. This is because many
of the flow rates are highly correlated leading to an ill-conditioned identification
problem.

Table 8.3. Time frame in hours of data used for modeling
Cultivation Fed-batch Continuous
MTE01 70-80 95-100
MTV02 32-47 85-95
MTS07 35-47 51-58

8.2.1 Estimating Buffer Effect of the Substrates

A proton balance for a bioreactor is shown in equation 8.3 and illustrated in figure
8.6:

dV [H+]

dt
= V

d[H+]

dt
+[H+]

dV

dt
= Fndos·[H+]n+Fcdos ·[H+]c+FH+−FNH3−Fout ·[H+]e

(8.3)
where V is the working volume of the bioreactor, Fndos is the volumetric flow rate
of nutrient substrate, Fcdos is the volumetric flow rate of glucose syrup, FNH3 is the
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molar flow rate of ammonia, Fout is the volumetric effluent flow from the bioreactor
and [H+] is the concentration of protons with subscripts b, c, e and n referring to
broth, glucose syrup, effluent and nutrient substrate respectively. Rather than using
the concentration of hydrogen ion [H+], the buffer equivalent, β, will be used where
βn = 1/ρ[H+]n. FH+ is the net molar rate of proton production or consumption in
the broth due to cellular activities.

Assuming a constant pH of the broth, and converting to mass flows for substrate
and effluent streams, equation 8.3 simplifies to a proton flux balance:

βb
dW

dt
= βn · Fm

ndos + βc · Fm
cdos + FH+ − FNH3 − βe · Fm

out (8.4)

During oxidative growth a constant ratio between the proton production rate
(FH+) and the biomass production rate has been reported by Lei (2001) and Cas-
trillo et al. (1995). Assuming a constant yield of biomass on glucose, FH+ can be
calculated from:

FH+ = αV rx = α
Ysx

Mglu
cmglu,cdosF

m
cdos (8.5)

where rx is the volumetric biomass production rate ([mole/L/hr]), Ysx is the molar
yield of biomass on glucose, Mglu is the molecular weight of glucose ([g/C-mole]),
cmglu,cdos is the concentration of glucose in the glucose syrup ([g/kg]) and α is the
molar ratio of protons per C-mole biomass.

Using the assumptions on FH+ (equation 8.5) and dW
dt

calculated using a Kalman
Filter as described in section 9.1.11, identification of the parameters in the proton
flux balance of equation 8.4 can be performed by reformulating the flux balance to
estimate the molar flow rate of ammonia:

FNH3 = βn · Fm
ndos + (βc + αcmglu,cdos

Ysx

Mglu
)Fm

cdos − βe · Fm
out − βb · ∆W

∆t
(8.6)

which is then formulated as a least squares problem:

Y = X · θT (8.7)

with

Y = FNH3 , X = [Fm
ndos , Fm

cdos , Fm
out ,

∆W

∆t
]

θ = [βn , βc + αcmglu,cdos

Ysx

Mglu
, βe , βb] (8.8)

The parameters are estimated using least squares estimation. Using normalized
values the solution yields the results listed in table 8.4.

From the values of the estimated parameters and their standard deviations it
appears that only [βc + α · cmglu,cdos · Ysx

Mglu
] is significant. It should be kept in mind

however that variables such as Fm
out, F

m
ndos and ∆W

∆t
are needed to explain the behavior

during transition between different operational modes e.g. transition from fed-batch
to continuous operation. Taking these matters into consideration it still appears
that the contribution from Fm

ndos can be ignored since the standard deviation on the
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Figure 8.6. Schematic illustration of the contributions to the proton balance of a bioreac-
tor shown in equation 8.3. The pH is assumed to be constant and protons are produced
due to cellular activities (FH+). A contribution to the proton balance from the effluent
gas is indicated, however this contribution is assumed to be negligle i.e. all ammonia
fed to the bioreactor is absorbed by the broth.

Table 8.4. Estimated parameters of the model in equation 8.7 and 8.2.1. The column
St.dev lists the standard deviation of the estimated parameter in percentage of the
parameter value.

Parameter Estimate St.dev Unit
βn 7.3 ·10−4 ± 230% mmole NH3/g Ndos

[βc + α · cmglu,cdos · Ysx
Mglu

] 3.3 ·10−1 ± 0.76% mmole NH3/g Cdos

βe 1.7 ·10−3 ± 50% mmole NH3/g eff
βb 1.5 ·10−3 ± 60% mmole NH3/g broth

parameter is more than 200% and its contribution to the molar flow rate of ammonia
evaluated with average values during continuous operation is less than 1%.

Leaving the contribution of Fm
ndos out, the reestimation of the parameters yields

the results listed in table 8.5.

Table 8.5. Estimated parameters of the model in equation 8.7 and 8.2.1 leaving out the
contribution of Fm

ndos. The column St.dev lists the standard deviation of the estimated
parameter in percentage of the parameter value.

Parameter Estimate St.dev Unit
[βc + α · cmglu,cdos · Ysx

Mglu
] 3.3 ·10−1 ± 0.76% mmole NH3/g Cdos

βe 1.6 ·10−3 ± 45% mmole NH3/g eff
βb 1.5 ·10−3 ± 54% mmole NH3/g broth

The pH of the glucose syrup used for the experiments is pH ≈ 4, then:

ρβc ≈ [H+]c < 0.0001M ≈ 0.0001mmole H+/g Cdos (8.9)

hence the contribution of βc can be ignored. Therefore it can be assumed that
α · cglu,cdos · Ysx/Mglu = 0.33 mmole NH3/g Cdos (normalized value), and from this
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α can be determined to be:

α =
0.33 mmole NH3/g Cdos ·MNH3

cmglu,cdos
Ysx

Mglu

= 0.024 g NH3/gDW = 0.15
mole NH3

C-mole biomass

(8.10)
In chapter 7 the biomass composition was found to be: CH1.82O0.576N0.146 (fr 7.3 w%)
and it can be seen that α = 0.15 corresponds well to the nitrogen content of the
biomass cx = 0.146.

The final model for estimation of the molar flow rate of ammonia becomes:

FNH3 = α
Ysx

Mglu
cmglu,cdosF

m
cdos − βe · Fm

out − βb · ∆W

∆t
(8.11)

which can be converted to mass flow rate of ammonia using:

Fm
NH3

= MNH3 · FNH3 = 17 g NH3/mole · FNH3 (8.12)

The assumptions behind the model in equation 8.11 are listed in table 8.6.

Table 8.6. Assumptions behind the model in equation 8.11. The assumptions are listed
according to priority with the most important assumption at the top.

1 Asynchronous balanced oxidative growth with constant yield (Ysx)
2 Negligible offset or bias in measurements of ammonia flow rate
3 No significant variation in (constant) buffering capacity of the broth
4 No significant effect from feeding of nutrient substrate
5 pH controlled at set point

8.3 Modeling and Validation

Equation 8.11 has been validated using data from different cultivations and the
results are shown in the following. Filtering has been used on the data as described
in section 8.1.10 and to quantify the precision of the estimations, the root mean
square error (RMSE) is presented for selected time periods6.

RMSE =

√√√√ 1

N

N∑
i=1

(F̂m
NH3,i − Fm

NH3,i)
2 (8.13)

N being the number of measurements. RMSE has the same unit as Fm
NH3

[g NH3/hr].

8.3.1 Modeling Batches

Figure 8.7(a) shows how well the ammonia flow rate can be estimated during culti-
vation MTE01. Although the RMSE is around 10-15% of Fm

NH3
during continuous

operation, this also includes oscillations and a different fed-batch environment in
the second fed-batch phase. Here it is interesting to note that the estimation of the

6RMSE is both used on modeling batches and validation batches.
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ammonia flow rate is above the measured flow rate for most of the second fed-batch
phase from 64 to 84 hours. The first of the fed-batch phases has not been used
for parameter estimation and a very good description of the ammonia flow rate is
seen. The overall performance of the estimation is rather good, capturing the most
important features of the two fed-batch phases and the continuous operation. At
the start of the second fed-batch operation, indicated by the signal of the estimated
ammonia flow rate rising at 64 hours, it can be observed that no flow of ammonia
is measured for the first 4 hours (64 to 68 hours). This is because the pH has risen
significantly during the process stop as shown in figure 8.4(a), and therefore no am-
monia is needed for pH control. The pH is slowly brought back to the set point
value by the acidification of the culture broth due to protons being produced as
discussed in section 8.2.1. The bioreactor was not equipped with an inlet for acid,
which could have been used to control the pH during the process stop.

Figure 8.7(b) show the absolute (top) and relative (bottom) deviation between
estimation and measurement. Closer investigation of these figures reveal that the
relative deviation is less than 10 % for most of the time when glucose syrup is being
fed.
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Figure 8.7. Results from estimating Fm
NH3

in cultivation MTE01. a) Measured (light)
and estimated (dark) trajectories of Fm

NH3
. b) Absolute and relative (1-F̂m

NH3
/Fm

NH3
)

differences between measured and estimated values. Note that only data from the
periods 70-78 hours and 95-100 hours of this batch has been used for parameter es-
timation. This has been indicated by the black bars just above the x-axis. pH and
substrate dosing profiles are shown in figure 8.4.

Figure 8.8 show the same plots for cultivation MTV02. Again the fed-batch phase
show oscillations in the Fm

NH3
signal as seen in figure 8.8(a). Just before the change

to continuous operation around 56 hours, a large peak in Fm
NH3

can be seen, which
is followed by 2-3 additional peaks. The first peak appears as feeding of nutrient
substrate (Fm

ndos) is initiated, increasing from normalized values of 0 to 170 g/hr
over 1.5 hours. From investigating the acidity and buffer capacity of the nutrient
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substrate based on its composition, it was not expected that this substrate flow
would be responsible for the rapid increase in Fm

NH3
. This can also be deducted from

the signals in the continuous operation, where both high growth activity and a high
flow rate of the nutrient substrate is present at the same time. The Fm

NH3
during

this phase is constant around a normalized value of 1.9 g NH3/hr as seen in figure
8.8(a).
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Figure 8.8. Results from estimating Fm
NH3

in cultivation MTV02. a) Measured (light)
and estimated (dark) trajectories of Fm

NH3
. b) Absolute (F̂m

NH3
-Fm

NH3
) and relative

(F̂m
NH3

/Fm
NH3

-1) differences between measured and estimated values. Note that only
data from the periods 32-47 hours and 85-95 hours of this batch has been used for
parameter estimation. This has been indicated by the black bars just above the x-axis.
pH and substrate dosing profiles are shown in figure 8.3.

The characteristic peaks at the change to continuous operation do not suggest it
to be part of culture oscillations. This is seen from figure 8.9, where the fluctuations
in CER and the ammonia flow rate are shown. Between 55 and 60 hours a number
of the fluctuations in the two signals are different. The peaks in this time period are
neither due to oscillations nor due to changing feed rates, since the estimation of
the ammonia flow in figure 8.8(a) does not show such variations. This indicates that
some sort of unmodeled metabolic response triggers the excessive flow of ammonia;
the model assumption of balanced growth is violated. Four hours into the continuous
phase, as the measured and estimated values of the ammonia flow seems to merge,
an eight hour dip (between 60 - 68 hours) is observed in Fm

NH3
.

At 98.7 a sudden dip in the ammonia addition rate appears as a consequence of
adjusting for a difference between in-line measurement of pH and a off-line measure-
ment off pH performed by sampling of culture broth. After 100 hours the FNH3 and
Fm

NH3
are similar for the remainder of the cultivation. Figure 8.8(b) show how the

deviation between the two signals is mostly within a normalized value of 0.1 g NH3/
hr, corresponding to less than 5% of the measured value Fm

NH3
.

The last of the batches used for modeling was cultivation MTS07, where primarily
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the fed-batch phase was used for parameter identification. Figure 8.10(a) show how
well the measured trajectory in the fed-batch phase is estimated. Again a peak
of 200% of the estimated flow rate of ammonia appears as the feeding of nutrient
substrate is initiated increasing from 0 to 170 g/hr over less than 1 hour; followed
by a dip to approximately 50% of the estimated flow rate. Three hours after the
initial peak, Fm

NH3
seems to settle, however then a seven hour dip (between 57 - 64

hours) is observed, as was also the case of cultivation MTV02. In the continuous
phase the perturbation of the feeding rates can be seen to influence the ammonia
flow rate in a way which is not explained by the model observed as variations in the
absolute error illustrated in figure 8.10(b). It has not been possible to explain these
variations as effects from changes in the feeding rates, effluent flow or dilution, and
the discrepancies are therefore ascribed to changing metabolic activities, indicating
that the system is highly sensitive to rapid changes in the operation conditions. It
is noticeable how the RMSE is as low as 0.14 g NH3/hr even with discrepancies
around the onset of continuous operation and the perturbations during continuous
operation. The two plots in figure 8.10(b) further highlights how well the model
estimates the ammonia flow rate to within 0.1 g NH3/hr.
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Figure 8.9. Scaled trajectories of normalized carbon emission rate (CER) and ammonia
flow rate (Fm

NH3
) in the time periods 40-70 hours showing oscillations at 47 and 52

hours. Fluctuations are also seen between 55 and 60 hours, but are not believed to be
oscillations due to synchronized growth. The vertical lines labelled 1 and 2 indicate
the onset of nutrient substrate feeding and transition from fed-batch to continuous
operation, respectively Data from cultivation MTV02.
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mated values. Absolute (top) and relative
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Figure 8.10. Results from estimating Fm
NH3

in cultivation MTS07. Note that only
data from the periods 35-47 hours and 51-58 hours of this batch has been used for
parameter estimation. This has been indicated by the black bars just above the x-axis.
See caption for figure 8.8 for calculation of relative values. pH and substrate dosing
profiles are shown in figure 8.3.
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8.3.2 Validation Batches

To illustrate the performance of the model for estimation of the ammonia flow rate, it
has been applied to batches, where data have not been used in the model parameter
estimation. Both examples of normal and problematic batches will be demonstrated.

Figure 8.11 shows the result of estimating the ammonia flow rate in cultivation
MTS12, which is characterized as normal except for an error in the ammonia supply
system leading to a stop in ammonia dosing between 41 and 43.5 hours. The process
was back on track at 45 hours. From 50 to 55 hours, where continuous operation
is initiated, a small discrepancy between measured and estimated flow rates can be
observed. At 53.5 hours the feeding of nutrient substrate is initiated and increases
from 0 to 170 g/hr over less than 1 hour. As the system settles into continuous
operation the previously observed dip in measured ammonia flow rate in cultivations
MTS07 (57-64 hours) and MTV02 (60-68 hours), can again be seen between 60 - 68
hours, however disturbed by a change in dilution rate occurring at the same time.
A RMSE of 0.13 g NH3/hr is similar to the observed for cultivation MTS07.
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Figure 8.11. Results from estimating Fm
NH3

in cultivation MTS12. Validation batch.
See caption for figure 8.8 for calculation of relative values.

Figure 8.12 illustrates the results from cultivation MTS05. In the fed-batch phase
three oscillations can be seen at 43.5, 47.2 and 51.5 hours. The nutrient substrate
feeding is initiated at 53.5 hours and increases from 0 to 170 g/hr over less than
1 hour; a small increase in Fm

NH3
is seen. As continuous operation is initiated, the

measured ammonia flow rate is lower than the estimated flow rate for ten hours,
however more variations in the measured signal is seen in MTS05 than in the other
cultivations. For the remaining duration of continuous operation, perturbations
in the feeding rates are introduced, which lead to variations and discrepancies as
reported previously, however it can also be observed that the noise (or oscillations) in
the Fm

NH3
signal seems to be larger than observed in MTS07 and MTS12. With these

observations in mind the RMSE of 0.22 g NH3/hr indicates a reasonable estimation
of the ammonia flow rates.
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Figure 8.12. Results from estimating Fm
NH3

in cultivation MTS05. Validation batch.
See caption for figure 8.8 for calculation of relative values.
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Figure 8.13. Results from estimating Fm
NH3

in cultivation MTS01. Validation batch.
See caption for figure 8.8 for calculation of relative values.

Cultivation MTS01, shown in figure 8.13, was one of the more problematic culti-
vations. Not only were oscillations observed at 36 and 44 hours, but subsequently
the Fm

NH3
signal showed a lot of variations. At 48 hours the measured ammonia flow

rate increased rapidly to the maximum value of 3.75 g NH3/hr for 0.5 hours. The
signal can be seen to decrease for a short while followed by yet another peak. The
increase is initiated 20 min before the nutrient substrate feeding is started, hence
the peak can be seen as the joint effect of the onset of nutrient feeding and metabolic
activities. For the next thirty hours (50-80 hours) a peculiar pattern can be seen in
the measured ammonia flow rate, indicating that the cultivation is far from balanced



116 Indicator for Onset of Oxidoreductive Growth

growth. The possible reasons for these discrepancies is discussed in chapter 9, and
is related to conversion of acetate and ethanol, products of oxido-reductive growth.
Figure 8.14(a) show the trajectory of ethanol concentrations measured in the off-gas
for MTS01 and MTV01. Balanced growth conditions are reestablished before 90
hours, after which the feed rate is increased until the end of the cultivation. The
two signals are similar in this period, which can also be seen from figure 8.13(b).
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Figure 8.14. Normalized trajectories of ethanol concentrations (ppm) in the off-gas.
The process is operated as a batch process for the first 30 hours. Ethanol is formed
in the beginning of this phase up until 20 hours and then consumed before fed-batch
operation is initiated around 30 hours.

Cultivation MTV01 was also one of the problematic cultivations as can be seen
from figure 8.15(a). Synchronization bursts occur at 45 hours and at 49 hours.
During the second burst Fm

NH3
increases towards a maximum value of 3.75 g NH3/hr.

From 49 hours and until 65 hours, the average measured ammonia flow rate is
significantly above the estimated flow rate. At 51 hours nutrient substrate feeding
is initiated, which by close inspection of the signal does not seem to have a large
influence on the measured ammonia flow rate, which is already very high. Just
before ethanol production sets in the ammonia flow rate drops to zero. At 65 hours
the substrate feeding rate is automatically reduced due to the ethanol production
shown in figure 8.14(b) and at a normalized dilution rate of 0.38 kg/kg/hr, the
ethanol is removed by dilution and consumption. An initial attempt to reestablish
the process failed due to a too aggressive feeding strategy resulting in renewed
ethanol production at 75 hours as seen in figure 8.14(a). A second try with a more
conservative feeding ramp was successful and after 100 hours the process was back
on track.

Large variations are observed in the Fm
NH3

signal during the last 20 hours of the
cultivation. The corresponding variations is ± pH 0.05 around the pH set point.
The variations seem to be growth related, since CER, OUR and DOT signals show
the same variations, indicating synchronization of cell cycles. In figure 8.16(a) the
scaled trajectories of Fm

NH3
, CER and DOT are shown in the time period 80-120

hours, and it can be seen that the oscillations appear at a frequency of just above
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Figure 8.15. Results from estimating Fm
NH3

in cultivation MTV01. Between 65 and 85
hours the culture broth pH deviates significantly from the set point value (not shown
here) and therefore large discrepancies between estimated and measured ammonia flow
rates can be seen in this time interval. Validation batch. See caption for figure 8.8 for
calculation of absolute and relative values.

1 per hour, which can be seen from the zoom of the time period 95-105 hours
provided in figure 8.16(b). The frequency suggests that a number of subpopulations
have synchronized growth independently from each other, since the time needed to
complete a full growth cycle is reported to be above one hour (Münch, 1992).

8.4 Indicator of Oxidative Growth and Onset of

Oxidoreductive Growth

The proposed model for estimating the ammonia flow rate can be used to form
an indicator for oxidative growth. Modelbased monitoring on the error (en =
F̂m

NH3
−Fm

NH3
) between measured and estimated ammonia flow rates can be used to

maintain balanced oxidative growth conditions, where corrective actions are taken as
en exceeds certain warning limits. The model for estimating the ammonia flow rate
assumes asynchronous growth, and as a result it would not be valid for monitoring
during synchronization bursts, which were observed during some of the experiments
discussed in this chapter.

When the warning limits are exceeded the sign of en can be interpreted to provide
a possible explanation for the reason for the violation of the warning limits. As
oxidoreductive growth has in this work been seen to be accompanied by formation
of acetate (more precisely acetic acid), this leads to an acidification of the culture
broth, requiring an increased ammonia flow rate to maintain a constant pH of the
culture broth. In other words, the onset of oxidoreductive growth will result in a
violation of a negative warning/detection limit on en.

In order to construct constant detection limits that can be used both during fed-
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Figure 8.16. Profiles of scaled ammonia flow rate (Fm
NH3

), carbon emission rate (CER)
and dissolved oxygen tension (DOT ) of cultivation MTV01 during 80-120 hours (a)
and during 95-105 (b). Oscillating behavior can be observed. Scaling of normalized
values have been done to facilitate the illustration of the oscillations in one figure. Note
that RQ is only fluctuating between 1.09 and 1.12 during 95-120 hours.
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batch and continuous operation, a relative value of the error is used rather than the
absolute value presented above. This relative error value was also presented in the
caption of figure 8.8.

er
n = F̂m

NH3
/Fm

NH3
− 1 (8.14)

Considering only periods of operation where oxidative growth appears without
synchronization bursts the relative errors (e.g. the plots in the bottom of figures
8.7(b), 8.8(b), and 8.10(b)) indicate that as long as the relative error is within ±
10% oxidative growth can be assumed. Figure 8.17 illustrates how the indicator
of oxidoreductive growth performs with detection limit at - 10% of the relative
errors for validation batches MTS12, MTS05, MTS01 and MTV01. The detection
limit at +10% can be interpreted as the conversion of metabolites formed during
oxidoreductive growth i.e. consumption of acetate.

In figure 8.17(a) it can be seen how cultivation MTS12 only show a few examples
of process conditions where the onset of oxidoreductive growth could be present, and
after 60 hours of operation no sign of oxidoreductive growth is seen. During fed-batch
operation between 30 and 55 hours the indicator detects onset of oxidoreductive
growth a number of times. During the inital 5 hours of fed-batch operation (30-35
hours) the process is not yet in balance in terms of pH and ammonia flow rate as
can be seen from figure 8.11(a) (pH profile not shown). As mentioned above, a
stop in ammonia dosing is responsible for the erroneous detections of oxidoreductive
growth between 41 and 45 hours, since assumptions behind the model are violated
(assumption 5 in table 8.6). At 53.5 hours the feeding of nutrient substrate is
initiated, which triggers the indicator of oxidoreductive growth. Between 60 and 70
hours, during continuous operation of the process, the detection limit at +10% of
the relative error is violated in two periods, however from the upper plot in figure
8.17(a) it can be seen that the upper detection limit is just barely violated. An
explanation for these observations has not been determined.

Figure 8.17(b) show the performance of the indicator when used on data from
cultivation MTS05. As mentioned above this cultivation was characterized by 3
oscillations in the fed-batch phase and during continuous operation noise (or oscilla-
tions) appeared in the measurement of the ammonia flow rate. These discrepancies
from normal operation can be seen to influence the performance of the indicator of
oxidative growth as a large number of detections are seen both during fed-batch and
continuous operation. Rather than extending the detection limits, such observations
should trigger an investigation of what the explanation behind the peculiar behavior
could be.

Figure 8.17(c) show data from cultivation MTS01 where oxidoreductive growth
is known to occur between 50 to 70 hours as discussed above and shown in figure
8.14(a). It can be seen that the indicator detects oxidoreductive growth between
53 and 55 hours of operation, however it also shows that the oxidoreductive growth
continuous up until 69 hours of operation, despite the indication in figure 8.14(a)
that ethanol is being consumed up until 62 hours. It is demonstrated and discussed
in chapter 9, that between 53 and 69 hours of operation large amounts of acetate is
being formed, whereas ethanol is only formed between 53 and 55 hours and again
at 69 to 75 hours. The formation of acetate explains why oxidoreductive growth
is correctly indicated to occur between 53 to 69 hours, while from 69 hours and
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until 75 hours the indicator no longer responds correctly, propably explained by
too extensive violation of the model assumption of balanced oxidative growth in
table 8.6 (assumption 1). From 81 hours to the end of the cultivation, only a few
detections of deviation from oxidative growth is seen. It is interesting to notice that
the dilution rate is slowly increased with 20% from 100 to 130 hours, however no
onset of oxidoreductive growth is seen in this period.

Figure 8.17(d) provides another example of how the indicator reacts to the onset
of oxidoreductive growth. The consequence of a synchronization burst can be seen
at 45 hours, where onset of oxidoreductive growth is indicated. More intersting is
the extended period of time where oxidoreductive growth is indicated to take place
between 48 and 65 hours, while figure 8.14(b) show that ethanol is not being formed
up until 65 hours of operation. As ethanol is being formed the performance of the
indicator can be seen to deteriorate explained by a too extensive violation of the
model assumptions in table 8.6. As the system gets back on track around 92 hours
of operation, oscillations in the measurements of the ammonia flow rate can be seen
to trigger the indicator of oxidoreductive growth repeatedly.

8.5 Discussion

8.5.1 Effects of Buffer Capacities

Investigation of the buffer capacity of glucose syrup and nutrient substrate has been
carried out. Table 8.7 lists the ammonia demand for the two substrate to elevate
their pH with 1.7 pH-units in the upper row. In section 8.2.1 it was assumed that the
demand of ammonia to neutralize the effect of protons produced due to the growth
mechanism was much larger than the effect from a low pH of the glucose substrate.
The results listed in table 8.7 support this assumption with the need for ammonia to
increase pH of the glucose syrup accounting for 4% of the total demand of ammonia
to neutralize both effects. In case of the buffer capacity of the nutrient substrate,
it can be seen in table 8.2.1 that the value obtained when adjusting pH prior to
inoculation is four times lower than the one identified during a running cultivation,
however the order of magnitude is approximately the same. The ammonia demand
needed for neutralization of the buffer capacity of the nutrient substrate during
a continuous operation is 0.01 g NH3/hr, compared to 1.9 g NH3/hr required to
neutralize the effect of protons produced during growth.

Table 8.7. Buffer capacity of substrates. Normalized ammonia demand for increasing pH
with 1.7 pH-units. The value for the glucose syrup in a running cultivation is listed in
parenthesis, since it also includes the neutralization of protons produced due to growth.

Nutrient Glucose
Unit [g NH3/g Ndos] [g NH3/g Cdos]
Prior to inoculation 6.0·10−5 2.4·10−4

Running cultivation 1.2·10−5 (5.6·10−3)
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(c) MTS01
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(d) MTV01

Figure 8.17. Indicators of onset of oxidoreductive growth. Relative errors (upper plot)
shown together with indicator plots (lower plot) for cultivations MTS05, MTS12,
MTS01 and MTV01. The circles indicates that the action limits at ± 10% of the
relative error has been violated.

8.5.2 Process Upsets

The two examples of problematic cultivations, MTS01 (figure 8.13) and MTV01 (fig-
ure 8.15), support the hypothesis that metabolic activities different from balanced
growth contribute to the proton balance and therefore influence the ammonia de-
mand. Both cultivations illustrate that the onset of nutrient substrate feeding does
not contribute significantly to the proton balance, and is not directly responsible for
the high ammonia flow rates associated with the process upsets. The information
gained from the discrepancy between observed and estimated flow rates of ammo-
nia can be used for further studies of the metabolic mechanisms responsible for the
process upsets.

Under the assumptions listed in table 8.6, an inverse form of the model in equation
8.11 can be used for estimation of the biomass concentration along the lines described
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by Lei (2001). Combined with equation 8.5 the following estimation of the biomass
formation rate can be obtained:

rx =
1

αV

(
FNH3 + βe · Fm

out + βb · ∆W

∆t

)
(8.15)

This approach is to be investigated further.

8.6 Monitoring of Oxidative Growth

In experiments with another strain of S. cerevisiae the assumption concerning bal-
anced oxidative growth has been evaluated by considering the production of ethanol
(Lei, 2001). It is not possible to apply the same approach with the strain that has
been used in this work, since ethanol production does not appear to set in, if at all,
until after a large deviation between estimated and measured ammonia flow rates
have been observed. This can be seen by comparing figures 8.13(a) and 8.14(a)
from cultivation MTS01, where large negative deviations between estimated and
measured ammonia flow rates appear prior to ethanol formation. Similar observa-
tions can be seen in figures 8.14(b) and 8.15(a) for cultivation MTV01 except for
the disturbance around 65 hours7.

In this work the relative error (er
n) between measured and estimated ammonia flow

rates has been used to monitor that the desired oxidative growth was maintained in
the process, using relative warning/detection limits at ± 10% of the relative error.
It would be even better to define these limits in terms of the specific ammonia
flow rate i.e. the ammonia flow rate per amount biomass, since this would provide a
stronger link to the growth metabolism and thus the interpretation of the violation of
detection limits as will be demonstrated in chapter 9. The relative warning/detection
limits at ± 10% of the relative error corresponds approximately to a detection limit
of ± 1.5 mmole NH3/mole biomass/hr. It would be desirable to further tighten the
detection limits, however this requires that the model is extended to include such
factors as e.g. tank-to-tank differences in measurements and the dynamics of the
pH control loop, which is responsible for the addition of ammonia. Rather than
extending the model, the detection limit could be time-dependent or methods from
statistical process control e.g. the cumulated sum (CUSUM) approach could be
used to monitor er

n.

8.7 Conclusion

The identified model, equation 8.11, is able to provide a reasonable estimate of the
ammonia feed flow rate during balanced oxidative growth. This was demonstrated
by using the model on validation batches MTS05 and MTS12. A number of discrep-
ancies were observed between the estimated and measured signal of the ammonia
flow rates, especially during the switch over from fed-batch to continuous operation.
It is believed that these discrepancies can be ascribed to undetermined metabolic

7At this point the culture broth pH increases above its set point value only to return at 86
hours.
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activities i.e. changes in metabolic flux distribution, which influence the amount
of protons transported from the cell to the surrounding broth and subsequently the
addition of ammonia to neutralize this effect. A better description can probably be
obtained by addressing some of the assumptions and provide a better description of
changes to the elemental composition of the biomass or even to the macromolecular
(protein, carbohydrate, lipid etc.) distribution of the yeast, effects that can have an
influence on the flux distribution especially in the fed-batch phase.

The use of the proposed model for monitoring of oxidative growth condition was
also presented and discussed. During process conditions where the model assump-
tions were valid, the modelbased monitoring of the oxidative growth condition per-
formed well. Synchronized bursts due to cell cycle synchronization resulted in vi-
olations of the warning limits for oxidative growth set at ± 10% of the relative
error (er

n) between measured and estimated ammonia flow rate. The relative warn-
ing/detection limits at ± 10% of the relative error corresponds approximately to a
detection limit of ± 1.5 mmole NH3/mole biomass/hr. Violation of the lower warn-
ing limit for oxidative growth condition could be interpreted as an indicator of the
onset of oxidoreductive growth. The indicator was shown to accurately capture the
onset of oxidoreductive growth when applied on data from cultivation MTS01 and
MTV01.
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9

Soft Sensors for Estimating
Biomass and Acetate

Concentrations, Intrinsic
Metabolic Fluxes and Product

Concentration

For the analysis and online monitoring of aerobic cultivation of Saccha-
romyces cerevisiae three simple soft sensors have been constructed. The
first soft sensor is used for the online estimation of biomass and acetate
conversion rates and concentrations. This sensor illustrates how acetate
production is seen to occur prior to ethanol formation at the onset of
oxido-reductive growth. The second soft sensor provides estimates of the
intrinsic metabolic flux distribution using a model of a simple metabolic
network. By analysis and online monitoring of the metabolic flux distri-
butions, it is possible to identify changes in the metabolism e.g. oxidative
to oxido- reductive growth, as well as to investigate the magnitude of the
individual fluxes in the model for signs of bottlenecks or other limiting
conditions such as onset of repression. The third soft sensor provides
estimates of the production rate and concentration of the product, an in-
sulin precursor. It is shown that the specific productivity is not constant
throughout the process. More than 80 hours of oxidative growth is needed
for the specific productivity to reach a high constant level. Furthermore
the productivity is affected adversely by oxido-reductive growth, increasing
the time needed to reach the high constant level of specific productivity.

With the information provided by the two previous chapters it is now possible
to further investigate the information available in the online process data. Due
to the multivariate nature of a cultivation process and therefore also the process
data provided, it is desirable to construct a framework for the interpretation of this
multivariate data. By constructing simple mathematical models based on physio-
logical insight, process knowledge and data analysis, it is possible to extract useful
information, which is not directly available in the online data.

The use of mathematical modeling to describe the distribution of metabolic fluxes
can facilitate the elucidation of a number of interesting attributes related to the
growth and product formation of a recombinant strain of S. cerevisiae used in an
established industrial application for production of an insulin precursor.

The process investigated in this study is an aerobic, carbon-limited cultivation ini-
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tially operated as a batch process followed by a fed-batch phase leading to continuous
operation of the bioreactor characterized by a high cell density (> 40 gDW/L). The
process has shown peculiar behavior when tested under conditions more extreme
than the normal operating conditions. The observed phenomena could not be ac-
counted for using the accumulated experience and knowledge of the strain. It was
expected that the response to substrate overfeeding and similar disturbances trig-
gering overflow metabolisms would be ethanol formation. However it turned out
that extended flow of gaseous ammonia was needed in order to maintain a constant
pH of the culture broth prior to production of ethanol. Offline measurements of
the broth composition using HPLC also indicated the presence of acetic acid and in
some cases glycerol.

Intrigued by these observations, a more elaborate investigation of the data at hand
was carried out to unveil the mechanisms behind the observed phenomena. The
purpose of this chapter is to provide a simple metabolic flux model to provide the
means to 1) detect and 2) diagnose changes in the dynamic flux distribution during
different process conditions. First a description of the production rate of biomass
and acetate is developed and presented. Secondly, using estimated and measured
conversion rates a simple flux model is applied for estimation of the specific flux
distribution during normal operation as well as before and during process distur-
bances, highlighting critical conditions leading to significant byproduct formation.
Thirdly, the estimation of the biomass concentration renders it possible to propose a
simple model for description of the specific production rate of the insulin precursor
(the product), thereby facilitating estimation of the product concentration for online
monitoring.

The data used in this chapter has been normalized which influences the numerical
values of the identified model parameters. Although the models, which are presented
here, are evaluated on offline data, it is the aim of this work to provide a framework
and tools to facilitate online monitoring and control of cultivation processes and
also to facilitate offline data analysis and comparison of process behavior to identify
possible improvements in the process operation.

The chapter is structured as follows. After the introduction above, including
the background for and purpose of the chapter, section 9.1 provides a description
of the materials and methods used in this chapter. An important parts of this
section is the description of the methods used to provide estimated concentration
trajectories of important species e.g. estimation of effluent flow rate and weight
changes. Section 9.2 describes the construction of a soft sensor for online estimation
of the conversion rates and concentrations of biomass and acetate. Section 9.3
describes how a soft sensor for online monitoring of the intrinsic metabolic flux
distribution can be constructed based on a simple metabolic model of S. cerevisiae.
Section 9.4 describes how a simple soft sensor for monitoring of the insulin precursor
production rate can be formulated using the information from the two other soft
sensors. Following the presentation of the three software sensors, their applications
are demonstrated in section 9.5 highlighting the online information that they each
provide. The results and application of the three soft sensor are then discussed
in section 9.6 by illustrating how the new information provided can be used for a
deeper and more detailed analysis of the large amount of information available online
process data. Section 9.7 summarizes and concludes on the results and observations
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made in this chapter and also indicates possible future directions to extend the
models behind the soft sensors and thereby also extending the knowledge of the
system.

9.1 Materials and Methods

9.1.1 Normalized Data

The cultivation data reported in this chapter has been normalized in
order to blur sensitive information. The requirement to do so makes it
rather difficult to compare the findings reported in this work with results
from the open literature. Furthermore it can be difficult to check and
verify calculations and results since normalization has to be used in a
way that also blurs ratios e.g. dilution rates and specific productivities.
The author apologies for the inconvenience that the normalization can

cause and for the distortion it might have on understanding the issues
addressed in this thesis.

9.1.2 Strain and Medium

Details on this topic are given in section 7.2.1. The biomass composition was inves-
tigated in chapter 7 and estimated to: CH1.82O0.576N0.146 (fr: 7.3 w%).

9.1.3 Equipment

Details on this topic are given in section 7.2.2. A number of process parameters and
variables are measured and data series of these measurements are available with a
sampling frequency, ωs, of 1 min−1. These variables were presented in table 8.1.

9.1.4 Analytical Methods

Some of these measurements are standard procedures at the pilot plant, while others
required the use of analytical equipment (HPLC) at Biocentrum, DTU. Below is
a description of the analytical methods used in order to provide the additional
information for the interpretation of the process behavior.

9.1.4.1 Biomass and Product Concentration

Details on the determination of the biomass concentration is found in section 7.2.3.1.
A small amount of supernatant from the first centrifugation from the analysis of
the biomass concentration was used for in-house determination of insulin precursor
concentration by HPLC.

9.1.4.2 Metabolite Analysis

Details on this topic is found in section 7.2.3.3.
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9.1.4.3 Off-gas Analysis

Mass spectroscopy on the off-gas from the bioreactor provided measurements of
ethanol concentration cge, change in percent O2 (OXC) and change in percent CO2

(CXC) between inlet and outlet streams. Details on this topic is found in section
7.2.3.5.

The measured ethanol concentration in the off-gas (cge) is filtered using a fourth
order Butterworth filter with a cut-off of 0.0075·ωs. The resulting data series are
then used to estimate the ethanol conversion rate (re) in the culture broth assuming
an equilibrium between the ethanol concentration in the off-gas (cge) and in the broth
(ce). By using offline measurements of the ethanol concentration in the broth (ce)
obtained form HPLC analysis and correlating this to the ethanol concentration in
the off-gas (cge) the following relation was found1:

ce[g/L] = cge[ppm]/120[ppm/(g/L)] (9.1)

Using this the ethanol conversion rate can be calculated:

dV ce
dt

= V re − Foutce,out ⇔ (9.2)

re =
dce
dt

+

(
D + 1/V

dV

dt

)
ce (9.3)

= 1/120

(
dcge
dt

+

(
D + 1/V

dV

dt

)
cge

)
(9.4)

where D = Fout
V

and it has been assumed that there is no ethanol in the feed streams,
that the removal of ethanol by the off-gas can be ignored and that ce,out = ce. For
calculation of re please refer to the section 9.1.10.

9.1.5 Substrates

Details are given in section 7.2.4.

9.1.6 Cultivation Conditions

Details are given in section 7.2.5. The dissolved oxygen tension was measured online
and for standard cultivations the dissolved oxygen tension was above 20% of air
saturation. In one of the cultivations (MTF02) the dissolved oxygen tension came
as low as 8% of air saturation for an extended period of time (70 hours). Table 9.1
provides an overview of experiments presented in this chapter.

9.1.7 Preparation of Inoculum

Details on this topic are given in section 7.2.5.1.

1It has not been possible to verify this correlation by comparison to equilibrium data from
water/ethanol systems.
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Table 9.1. Overview of presented experiments. Further description of the entries marked
by a � can be found in the text. Standard cultivations are experiments where no dis-
turbances (planned or unplanned) were observed during the fed-batch and continuous
operation. The control of substrate feed rate is either carried out as a preprogrammed
feeding profile by a series of set points with linear ramps in-between or by closed loop
control using the feed rate to obtain a constant signal in an online measurement of
reducible gases in the offgas from the bioreactor (see section 9.1.8.4 for details). Ab-
breviations: op: operation, dist: disturbances, D: dilution rate, Approx: approximate,
norm: normalized. BAC: soft sensor for biomass and acetate conversion (page 142).
IMF: soft sensor for intrinsic metabolic fluxes (page 147). IPP: soft sensor for insulin
precursor production rate and concentration (page 152).

MTS01 MTS02 MTS05 MTS06 MTS07
Standard cultivation No No Yes Yes Yes
Perturbations in fed-batch
and continuous op.�

Yes Yes Yes Yes Yes

Planned dist.� Ramp in
D

No No No No

Unplanned dist. (type) Ethanol Ethanol No No No
Closed loop experiments� No No No No No
Batch operation (hr) 0-26 0-26 0-30 0-30 0-30
Fed-batch operation (hr) 26-51 26-51 30-55 30-55 30-54
Continuous operation (hr) 51-144 51-144 55-120 55-121 54-120
Approx. norm. D in con-
tinuous op. (kg/kg/hr)

- 1.06 0.98 1.01 0.99

Control of substrate feed
rate

Recipe Recipe Recipe Recipe Recipe

BAC-results in figure 9.11 9.12
IMF-results in figure 9.17+9.18 9.15+9.16
IPP-results in figure 9.25+9.26 9.25 9.24 9.24

MTS11 MTS12 MTE02 MTV03 MTF02
Standard cultivation Yes Yes No No No
Perturbations in fed-batch
and continuous op.�

Yes Yes No No No

Planned dist.� No No Ramp in D Steps in D Closed loop
on ethanol

Unplanned dist. (type) No No No Ethanol Ethanol
Closed loop experiments� No No No No Yes
Batch operation (hr) 0-30 0-30 0-30 0-29 0-29
Fed-batch operation (hr) 30-54 30-55 30-51 29-55 29-51
Continuous operation (hr) 54-122 55-123 51-123 55-122 51-288
Approx. norm. D in con-
tinuous op. (kg/kg/hr)

1.01 1.00 - 0.99 -

Control of substrate feed
rate

Recipe Recipe Recipe Recipe Ethanol

BAC-results in figure 9.13
IMF-results in figure 9.20+9.21 9.23
IPP-results in figure 9.24 9.24 9.25+9.26 9.25
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9.1.8 Feeding Strategies

This section will describe the different feeding strategies applied in the cultivations
used for model construction and validation. The main reason for using different
feeding strategies was to provide more information on the process dynamics. An
overview of the feeding strategy used in this chapter is given in table 7.3 on page
86 in chapter 8. Below more detailed descriptions of feeding strategies are provided,
starting with the fed-batch and continuous operation. Then the perturbations used
in a number of cultivations are presented, followed by a description of some planned
changes to the dilution rate during continuous operation. Finally a feeding strategy
based on closed loop control is described, using the signal of an additional mea-
surement of reducible gases, primarily ethanol, in the offgas from the bioreactor to
control the substrate feed rates.

9.1.8.1 Fed-batch and Continuous Operation

Details are given in section 7.2.5.3. In most of the cultivations preprogrammed pro-
files of the substrate feed rate were used. In these cultivations short-term presence
of small concentrations of ethanol in the culture broth were allowed since these pro-
vided valuable information in order to understand the process dynamics close to the
onset of ethanol formation. The long-term Crabtree effect should be suppressed in
these investigations, since the use of high concentrations of glucose in the substrate
could lead to very high ethanol concentrations, reaching levels that are toxic for the
microorganism and lead to wash-out of the cells during continuous operation. To
suppress the long-term Crabtree effect, a control strategy was used, which lowered
the substrate feed rates in steps of 10 % of the actual feed rates, if the ethanol
concentration in the offgas from the bioreactor exceeded a certain value. Follow-
ing a successful decrease of the substrate feed rates, the ethanol concentration will
decrease and purely oxidative growth resumed at lower substrate feed rates.

9.1.8.2 Perturbations

Details are given in section 8.1.8. An example of perturbations added to a nominal
feeding profile is illustrated in figure 9.1 were also a lower constraint on the minimum
feed rate at a normalized value of 10 g/hr has been added. In addition figure 9.2(a)
illustrates an example of perturbations to the feeding rates in continuous operation.

9.1.8.3 Changes to the Dilution Rate

In three of the planned cultivations, changes to the normalized dilution rate have
been carried out. Figure 9.2 illustrates the normalized dilution rates along with the
ethanol concentrations in the off-gas for the three cultivations and an example of a
cultivation, MTS05, where only perturbations to the dilution rate has been carried
out (figure 9.2(a)).

Figure 9.2(b) illustrates the trajectory of the applied dilution rate during continu-
ous operation of cultivation MTS01. A ramp increasing the normalized dilution rate
from 1.00 kg/kg/hr to 1.21 kg/kg/hr between 100 and 144 hours was carried out
with the aim of obtaining a crude determination of the critical dilution rate Dcrit at
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Figure 9.1. Left: Exponential feeding profile (grey dashed line) with grid points (grey
filled circles) and perturbed feeding profile (black line, +). Right: Difference between
exponential feeding profile (grey dashed line, grey filled circles) and perturbed feeding
profile (black line, +).

which oxido-reductive growth is activated by production of ethanol (Postma et al.,
1989b). Prior to this planned disturbance, large unplanned disturbances had oc-
curred just around the change from fed-batch to continuous operation and again 20
hours into continuous operation observed as two large peaks of ethanol.

Figure 9.2(c) illustrates the trajectory of the applied dilution rate in cultivation
MTE02, where a steeper feeding profile during fed-batch operation was attempted.
This substrate feeding profile corresponded to a linear decrease in the normal-
ized growth rate (assuming balanced oxidative growth) from 2.00 kg/kg/hr to 1.00
kg/kg/hr shortening the fed-batch phase with approximately 4 hours (16%) from 25
to 21 hours. No ethanol was formed in the fed-batch phase indicating that the use of
a more aggressive feeding profile was indeed possible. After initiation of continuous
operation the cultivation was operated at an unperturbed, normalized dilution rate
of 1.00 kg/kg/hr for 30 hours before a linearly, increasing ramp in the dilution rate
was initiated. From 80 to 116 hours the normalized dilution rate was increased from
1.00 kg/kg/hr to 1.45 kg/kg/hr at which point ethanol was observed in the off-gas
indicating activation of the fermentative pathway. At 117 hours the normalized di-
lution rate was lowered to 0.96 kg/kg/hr and the ethanol disappeared within 2.5
hours.

Figure 9.2(d) illustrates the trajectory of the applied dilution rate in cultivation
MTV03, where three step changes in the dilution rate were carried out. During
continuous operation at 79.5 hour the normalized dilution rate was instantly in-
creased from 1.00 kg/kg/hr to 1.50 kg/kg/hr, which resulted in the onset of ethanol
production indicating activation of the fermentative metabolism. At 82.5 hours
the normalized dilution rate was instantly decreased from 1.50 kg/kg/hr to 0.60
kg/kg/hr, leading to removal of ethanol through consumption and dilution within
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(a) MTS05, standard cultivation
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(b) MTS01
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(c) MTE02
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(d) MTV03

Figure 9.2. Normalized dilution rates (black lines) and scaled ethanol concentrations in
the off-gas (grey lines) of the four cultivations MTS05, MTS01, MTE02 and MTV03.
See text for detailed information on the individual plots.
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1.5 hours. At 84.5 hours the normalized dilution rate of 1.00 kg/kg/hr is reestab-
lished. Prior to the step changes, at the onset of continuous operation, ethanol was
observed in the off-gas and the dilution rate was temporarily lowered to remove the
ethanol.

9.1.8.4 Closed Loop Control of Reducible Gases in Offgas

In cultivation MTF02 a sensor able to measure reducing gases, primarily ethanol,
was placed in the off-gas stream from the bioreactor. Between the location of the
sensor and the exit port in the bioreactor, a filter is positioned to capture droplets of
culture broth in the off-gas. From the filter the main part of the off-gas is led to an
exhaust pipe, while a small gas stream is led by a heat-traced pipe to be analyzed
by mass spectroscopy. The reducible gas sensor, a Figaro TGS 822 sensor, was
positioned approximately 4 meters after the filter along the heat traced pipe. With
an aeration rate of 18 L/min and an estimated inner diameter of the pipe of 0.25 cm,
this corresponds to a time delay of less than 1 second. The Figaro sensor provided a
4-20 mA signal to a PID controller, that attempted to maintain a constant level of
reducible cases in the off-gas, assumed to be primarily ethanol. The detection range
of the Figaro sensor was 0-0.3 g ethanol/NL.

9.1.9 Filtering of Data

Details are given in section 8.1.10. A fourth order Butterworth filter is used to filter
the originally sampled data signals.

9.1.10 Mass Flux Balances

The aim of this work has been to provide a model framework for online monitoring
of a number of important and critical species in the cultivation broth, such that the
time evolution of both conversion rates (ri) and concentrations (ci) of a number of
species (i) in the cultivation broth can be used to analyze and evaluate the state of
the cultivation. Conversion rates and concentrations are related through component
mass flux balances e.g. on biomass, while elemental mass flux balances, e.g. on
carbon, can be used to estimate unmeasured components.

A mass flux balance equation for each of the species in the bioreactor can be set
up:

Accumulation = Reaction + In − Out ⇔ (9.5)

dV ci
dt

= riV + Finci,in − Foutci,out (9.6)

V is the volume of the cultivation broth, ci is the concentration of species i, Fin and
Fout are the volumetric flow in and out of the bioreactor respectively, while ri is the
volumetric conversion rate. It should be noted that equation 9.5 can be based on
a number of units e.g. amounts (moles) or mass (kg) per volume (L) or mass (kg).
Here amounts per volume (moles/L) is used as an example.
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Since operation regimes with variable volume are considered e.g. fed-batch oper-
ation, the balance equation is rewritten as:

V
dci
dt

= riV + Finci,in − Foutci,out − ci
dV

dt
(9.7)

Considering very small time differences and assuming constant intervals of variables
between the sampling points, a one-step-ahead prediction of the concentration tra-
jectory can be obtained from:

ci,k+1 = ci,k +
(
ri,k +Din,kci,in,k −Dout,kci,k − ci,k

Vk

(
∆V

∆t

)
k

) · (tk+1 − tk) (9.8)

Fout, and consequently Dout, is not directly measured, while the determination of
∆V
∆t

is subjected to a large amount of noise if the raw weight measurements are to
calculate the change in volume as:(

∆V

∆t

)
k

≈ 1

ρ

(
∆W

∆t

)
k

=
1

ρ

Wk+1 −Wk

tk+1 − tk
(9.9)

Better estimations of ∆V
∆t

and the effluent flow rate Fout can be obtained using a
Kalman Filter; this is discussed in section 9.1.11.

After having set up a framework to determine conversion rates and concentrations,
it is relevant to evaluate the conversion rates per unit biomass. This information
can be obtained by calculating the specific conversion rate qi of species i as:

qi =
ri

cx
[mole/mole/hr] (9.10)

where r is the volumetric conversion rate and cx is the biomass concentration.

9.1.11 Estimating Effluent Flow Rate and Rate of Weight
Change

In the section above on the use of mass flux balances for estimating conversion rates
and concentration of relevant species, it was mentioned that ∆V

∆t
and the effluent flow

rate Fout need to be estimated. The reason for this is the design and configuration of
the bioreactors that are used in this work. For this purpose a model for predicting
of the weight of the bioreactor contents is constructed, and formulated in a way
that suits implementation of the model in a Kalman Filter (Madsen and Holst,
2000). The flexibility of the Kalman Filter algorithm will be demonstrated during
the change from fed-batch to continuous operation, where an elegant update of the
filter states results in almost no time delay in the estimation of ∆V

∆t
and Fout.

During fed-batch operation Fout = 0 except during the occasional sampling of cul-
ture broth. Using the raw signal of the weight measurement or even the Butterworth
filtered signal to calculate the rate of weight change and subsequently the rate of
change in volume of culture broth using equation 9.9 results in very noisy estimates.
This is illustrated in figure 9.3. Observing the trajectories of both the raw and
Butterworth filtered weight signals in figure 9.3(a) illustrates that the weight signal
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does not show large fluctuations except when samples are being taken. In figure
9.3(b) it can be seen that both the raw and Butterworth filtered signals2 are very
noisy. Using such signals in the calculations of conversion rates and concentrations
as discussed in section 9.1.10 will propagate the noise into these estimates.

During continuous operation the removal of culture broth to maintain a constant
bioreactor weight W is carried out by an ejection mechanism that rapidly ejects
approximately 50 g broth as the bioreactor weight exceeds the set point value with
approximately 100 g. This is illustrated in figure 9.4 where the black line shows how
16-18 ejections occur during the time span of 1 hour. The fluctuations in the weight
signal only corresponds to 0.5 % of the weight during continuous operation and is
believed not to have a significant effect on the state of the cultivation. In most cases
it would be sufficient to estimate the effluent flow rate as:

Fout,k = Fin,k = Fcdos,k + Fndos,k (9.11)

ignoring the contribution from the weight change i.e. ∆W
∆t

= 0. However in some
of the cultivations changes to the set point of the weight occur during continuous
operation, which means that Fout and ∆W

∆t
are changed significantly at the same time

and can not be estimated correctly, since the two assumptions Fout = 0 and ∆W
∆t

= 0
are not valid. Hence the assumptions of equations 9.9 and 9.11 can not be fulfilled.

In order to provide an improved estimation of both ∆W
∆t

and Fm
out, a model is

constructed:
Wk+1 = Wk + ∆Wk + Fm

cdos,k + Fm
ndos,k − Fm

out,k (9.12)

2The filtering is performed on the raw signal and then followed by a calculation of the weight
change as a difference between the values at two neighboring sampling points.
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Figure 9.3. Left hand plot: The scaled weight profile. Both the raw signal of the weight
measurement ( black line) and the Butterworth filtered signal are shown (grey line), but
they can not be distinguished as they appear to be identical at the resolution used in the
figure. Right hand plot: The normalized profiles of the rate of weight change. Both the
raw signal of the weight measurement (black line) and the Butterworth filtered signal
are shown (grey line). Data in both plots are from fed-batch and onset of continuous
operation in cultivation MTS01.
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Figure 9.4. The scaled weight profile. The raw signal of the weight measurement (black
line) is shown together with the Butterworth filtered signal (grey line) and the estimated
weight signal from the proposed Kalman Filter (thin black line, •). Data are from fed-
batch and onset of continuous operation in cultivation MTS01.

where:

∆Wk =

(
∆W

∆t

)
k

∆tk (9.13)

For fed-batch operation equation 9.12 is rearranged to a stochastic model with
three states:

Fm
out,k+1 = 0 + e1k (9.14)

∆Wk+1 = −Fm
out,k + Fm

cdos,k + Fm
ndos,k + e2k (9.15)

Wk+1 = ∆Wk +Wk + e3k (9.16)

where e represents white noise sequences. The reason for including the variable
Fm

out in the model, although it was argued above that Fm
out = 0 during fed-batch

operation, is that this variable can be used to represent different known disturbances
e.g. sampling of culture broth. This is desirable for the calculation of ∆W in
equation 9.15, yielding a much lower variance on this variable.

In matrix form this yields:
Fm

out,k+1|k
∆Wk+1|k
Wk+1|k


 =


 0 0 0
−1 0 0
0 1 1




Fm

out,k|k
∆Wk|k
Wk|k


+


0 0

1 1
0 0


[Fm

cdos,k

Fm
ndos,k

]
+


e1ke2k
e3k


 (9.17)

Ŵk+1 =
[
0 0 1

] Fm
out,k+1|k

∆Wk+1|k
Wk+1|k


+

[
εk
]

(9.18)

e and ε are white noise sequences, the state noise and measurement noise respec-
tively, with covariance matrices E(eT e) = Q and E(εT ε) = S. Equation 9.18 is
added to the model for the use in the Kalman Filter algorithm presented below.
The reason for using the Kalman Filter is that estimates of Fm

out, ∆W and W can
be obtained by using a number of different measurements, each containing infor-
mation relevant for the estimation. In this formulation Fm

cdos and Fm
ndos are used as



9.1. Materials and Methods 137

inputs, while measurements of W is used to check the consistency of the estimates,
calculating the Kalman Filter gain K and correcting inconsistencies.

A general form of the model can be obtained by using:

Ŵ = y ;


Fm

out

∆W
W


 =


x1

x2

x3


 ;

[
Fm

cdos

Fm
ndos

]
=

[
u1

u2

]
(9.19)

where x represents model states and u are the inputs. A more general description
of equations 9.14-9.16 can be formulated as:


x

1
k+1|k
x2

k+1|k
x3

k+1|k


 = A


x

1
k|k
x2

k|k
x3

k|k


+ B

[
u1

k

u2
k

]
+


e1ke2k
e3k


 (9.20)

ŷk+1 = C


x

1
k+1|k
x2

k+1|k
x3

k+1|k


+

[
εk
]

(9.21)

The model parameters in matrices A, B and C are dependent on the state of
operation such that during batch and fed-batch operation:

A =


 0 0 0
−1 0 0
0 1 1


 ; B =


0 0

1 1
0 0


 ; C =

[
0 0 1

]
(9.22)

A slightly different model formulation is used for continuous operation:

Fm
out,k+1 = −∆Wk + Fm

cdos,k + Fm
ndos,k + e1k (9.23)

∆Wk+1 = −Fm
out,k + Fm

cdos,k + Fm
ndos,k + e2k (9.24)

Wk+1 = ∆Wk +Wk + e3k (9.25)

As illustrated by the raw data signal (black line) in figure 9.4, both Fm
out,k and ∆Wk

changes significantly depending on whether the broth ejection mechanism is active
or not. Therefore both these variables need to be estimated during continuous
operation in order to provide a good account of the process dynamics. At a first
glance the formulation of equations 9.23 and 9.24 can seem a little strange, since
Fm

cdos and Fm
ndos appear in both equations and neither Fm

out,k nor ∆Wk have a direct
influence on the prediction of states Fm

out,k+1 or ∆Wk +1 respectively. The reason for
this formulation is to support the ability of the Kalman Filter algorithm to update
its internal states depending on the prediction error between the measurement Wk+1

and the prediction Ŵk+1.
Equations 9.23 - 9.25 leads to the model parameter matrices, when using the

general model 9.20 - 9.21 :

A =


 0 −1 0
−1 0 0
0 1 1


 ; B =


1 1

1 1
0 0


 ; C =

[
0 0 1

]
(9.26)
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9.1.11.1 Kalman Filter Algorithm

The two models are now ready to be implemented in the Kalman Filter algorithm.
In the discrete Kalman Filter algorithm (Madsen and Holst, 2000) the state estimate
x and state variance estimate P is updated by:

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (9.27)

P̂ k|k = P̂ k|k−1 − KkR̂k|k−1K
T
k (9.28)

where Kk is the so-called Kalman Filter gain at grid point k calculated by:

Kk = P̂ k|k−1C
T
k R̂

−1

k|k−1 (9.29)

The predictions of states x, outputs y, state variances P and output variances R
then become respectively:

x̂k+1|k = Ax̂k|k + Buk (9.30)

ŷk+1|k = Cx̂k+1|k (9.31)

P̂ k+1|k = AP̂ k|kAT
k + Q (9.32)

R̂k+1|k = CP̂ k+1|kC
T + S (9.33)

9.1.11.2 Covariance Matrices and Initial State Estimations

Although representing the covariance matrices of the state noise and measurement
noise respectively, Q and S are often used to tune the performance of the Kalman
Filter. This is done because there is often no information available to evaluate the
structure and correlations in the covariance matrices. Furthermore by manually
tuning the covariance matrices by choosing the structure and numeric values in the
covariance matrices, different properties of the underlying model can be exploited
e.g. prediction or estimation of filter states. In this case the Kalman Filter serves
different purposes during fed- batch and continuous operation. In fed-batch opera-
tion the aim is to provide a good estimation of ∆W and subsequently of ∆V

∆t
, while

in continuous operation good estimates of both ∆W and Fout are desired.
The following matrices have been used in the initialization of the Kalman Filter

for batch and fed-batch operation:

Q =


0.0001 0 0

0 10 0.01
0 0.01 0.0001


 ; S =

[
0.01

]
(9.34)

P 0|0 =


0.001 0 0.001

0 0.01 0.001
0 0.001 0.01


 ; x0|0 =


 0

0
W0


 (9.35)

The choice of values in Q indicates that most of the information is carried in the
state ∆W corresponding Q(2,2) = 10. There is a small cross correlation between
∆W and W as illustrated by Q(2,3) = Q(3,2) = 0.01. S = 0.01 means that the
measurement of the weight is accurate, and signifies that the residual formed by
W − Ŵ is relevant in updating the filter states, x.
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The Kalman Filter is reinitialized at the change to continuous operation at sam-
pling point l. This is done since the dynamics of the process instantly changes
as ejection of culture broth is initiated. The following matrices have been found
to provide a good description of the change to as well as throughout continuous
operation:

Q =


 1 −0.1 −1
−0.1 1 10
−1 10 0.0001


 ; S =

[
400
]

(9.36)

P l|l =


 30 30 −30

30 30 1
−30 1 130


 ; xl|l =


x

2
l−1|l−1

x1
l−1|l−1

x3
l−1|l−1


 (9.37)

Compared to the value of S used during fed-batch operation (equation 9.34) the
value of S listed in equation 9.36 is 40000 times larger. This means that a smaller
amount of the residual formed by W -Ŵ is relevant in updating the filter states, x.
The values in Q reflect the structure of the model during continuous operation. Most
of the covariance is carried in Q(2,3) and Q(3,2), which accounts for the correlation
between ∆W and W .

A very important feature in the reinitialization of the Kalman Filter are the values
of xl|l in equation 9.37. The new states are initialized with the values of the last
state prior to the change in operation, however the last state of x1

l−1|l−1 is used to

initialize the new state of x2
l|l, while the last state of x2

l−1|l−1 is used to initialize

the new state of and x1
l|l. This serves the purpose of reflecting how the change to

continuous operation is characterized by the sudden ejection of culture broth i.e. a
sudden and large value of Fout at the expense of ∆W .

The Kalman Filter then provides the filtered estimates:
Fm

out,k

∆W
Wk


 =


x

1
k|k
x2

k|k
x3

k|k


 (9.38)

which is used to determine: (
∆V

∆t

)
k

=
1

ρ

∆Wk

∆tk
(9.39)

9.1.11.3 Performance of Kalman Filter

Figure 9.5 illustrates the effects of using a Kalman Filter to estimate ∆W and Fout.
Roughly speaking the combined information of the two signals in figure 9.5(a) have
been distributed between the estimates of ∆W and Fout in figure 9.5(b). Despite the
fact that the two signals in figure 9.5(b) seem to be rather noisy, the fluctuations
are the result of using the ejection strategy discussed earlier.

Figure 9.6 highlights two interesting time periods during the cultivation. Figure
9.6(a) illustrates the change from fed-batch to continuous operation at 51.4 hours,
where the effect of the reinitialization of the filter states can be seen as the sudden
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Figure 9.5. Performance of Kalman Filter. (a): Data sequences showing Wk+1-Wk

(black line) and Fcdos + Fndos (grey line), where Butterworth filtered values have been
used. (b): Kalman Filter estimates of ∆W and Fout for the raw data sequences. Data
in both plots are from fed-batch and continuous operation in cultivation MTS01.
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Figure 9.6.
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change in the two signals. Due to the strategy used the estimations are instantly
updated and no time delay due to the filter is seen. Figure 9.6(b) shows the response
in the estimates of ∆W and Fout to sampling of culture broth. The sampling occurs
from 71.67 to 71.72 hours corresponding to 3 min.3 It is interesting to see that
the response to the sampling of broth is a small overshoot and a settling time
of approximately 0.5 hours to settle to the state prior to the sampling. This is
a consequence of the parameter choice in the tuning matrices S and Q, where a
trade-off was made between a fast response time and attenuation of the fluctuations
due to the ejection mechanism.

9.1.12 Summary

The previous sections have provided a description of the methods and materials
used in order to provide intrinsic information of the process in question, the tools
to analyze this information and the framework for developing models, while taking
into account the process dynamics introduced by the configuration of the equipment
used at the industrial pilot plant.

The information, tools and framework are now set for the more specific modelling
of the process dynamics related to the growth, intrinsic flux distribution and product
formation of an industrial recombinant strain of S. cerevisiae, which is the topic of
the following section.

3The explanation for the relative long sampling time is that prior to sampling of the broth for
analytical analysis, a small sample is taken for an at-line measurement of pH, which can take 1-2
min.
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9.2 Soft Sensor for Conversion Rates of Biomass

and Acetate

In the introduction to this chapter it was mentioned how quantitative information
on key variables in industrial cultivation processes is often not available. It is not
only the concentration of the cells, often referred to as the biomass concentration,
that is relevant to monitor and control, but also the level of activity i.e. whether
the cells are dead or alive, producing or not producing the desired product.

Whereas a number of analytical technologies have emerged for the online monitor-
ing of the biomass concentration in the past two decades (for a review see Olsson
and Nielsen (1997)), the activity of the biomass is very difficult to measure. Com-
plicating the problem even more is the use of complex substrates in the cultivation
industry, which limits the number of eligible technologies for online measurement of
the biomass concentration to a few and rather expensive instruments.

This section will illustrate the construction of a simple model to provide online
estimates of the conversion rates and concentrations of biomass and acetate. The
importance of estimating the biomass concentration has been discussed above, while
the conversion of acetate will be shown later to have an important role in the on-
set of the fermentative metabolism during aerobic growth with glucose as limiting
substrate. Experiences obtained in previous investigations will be presented and
discussed, and followed by the formulation of a simple threshold model describing
the transition between two scenarios: purely oxidative growth and oxido-reductive
growth. At the end of this section an algorithm for the calculations behind the
model used in the soft sensor is presented.

9.2.1 Model Construction

The system considered is illustrated in figure 9.7. A number of species are assumed
to describe the behavior of the system. These species are listed in table 9.2, although
glycerol will not be considered here.

Based on the success and experience reported in chapter 6, the same approach was
applied here, using another recombinant strain, but resulted in surprising observa-
tions, mainly because the strain produced and consumed large amounts of acetic
acid under certain operating conditions, as will be presented in section 9.5.1.

In chapter 8 the effects influencing the ammonia flow rate during balanced growth
were investigated and modelled. There it was assumed that only cellular activities
related to the formation of biomass contributed to the proton flux balance. As
a result a large discrepancy between measured and estimated ammonia flow rates
could be observed during process upsets. Analysis of the composition of the culture
broth revealed significant concentrations of acetate to be present during the time
periods where the large discrepancies between measured and estimated ammonia
flow rates were observed. The elevated ammonia flow rate can then be interpreted
to be a result of the combined outflow of protons from the cells due to growth and
production of acetic acid by the cells followed by excretion into the broth. Excretion
of acetic acid during conditions of glucose repression is reported to occur as passive
diffusion of the undissociated form of the acid (see chapter 4). The excretion of the
acid results in an acidification of the broth, which is countered by increased flow of
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Figure 9.7. Balance envelope of bioreactor and cell. Symbols are listed in table 9.2.
Adapted with modifications from Herwig et al. (2001).

ammonia to maintain a constant pH of the culture broth.
The model framework proposed by Lei (2001) could easily be extended to construct

a soft sensor for online estimation of both biomass and acetate concentrations in the
bioreactor. By using a balance envelope similar to the one shown in figure 9.7
a proton flux balance can be formulated. Contributions to the macroscopic flux
balance are feed, aeration, off-gas and effluent streams to and from the bioreactor.
The ammonia requirement, rn, to neutralize the combined effect of production of
biomass, rx, and conversion of acetate, ra, is found by subtracting the effects of other

Table 9.2. An overview of the species considered for the description of biomass and
acetate formation. The source indicates where the species enter, appear or are measured
in the system, while information reflects whether the species are measured online or
offline. The last column indicates, if the species are considered to be known or unknown
in the model. The unit of ri is mole/L/hr. ∗: Ethanol in the broth is estimated using
the measurements of ethanol in the offgas (see section 9.1.4).

Species Symbol Source Information Known/Unknown
Glucose rs liquid feed Offline Known
Glucose - broth Offline Unknown (= 0)
Ethanol - offgas Online Known
Ethanol re broth Offline Known∗

CO2 rc offgas Online Known
O2 ro offgas Online Known
Ammonia rn gaseous feed Online Known
Biomass rx broth Offline Unknown
Acetate ra broth Offline Unknown
Glycerol rg broth Offline Unknown
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contributions to the proton flux balance from the measured ammonia flow rate4:

rn = αxrx + αara =
1

V

(
FNH3 + βe · Fm

out + βb · ∆W

∆t

)
(9.40)

The parameters βe and βb are the buffer equivalents of the effluent (e) and culture
broth (b) respectively, and were identified and estimated in chapter 8; the values are
listed in table 9.3. Equation 9.40 results from a proton flux balance for neutralization
of acidification due to metabolic activities, where ri is the volumetric conversion rate
of component i. The two α parameters in equation 9.40 represents the contributions
to the proton flux balance from the conversion of biomass (αx) and acetate (αa).
Assuming a constant concentration of extracellular nitrogen components during pure
oxidative continuous cultivation (no conversion of acetate), a nitrogen balance yields
that αx is equal to the elemental nitrogen content of the biomass, cx, which for this
strain is found to be cx = αx = 0.146 as mentioned in section 9.1.2 (see chapter 7
for details). The parameter αa can be interpreted as the amount (mole) of ammonia
required to neutralize the effects of excretion of one C-mole acetic acid into the
broth. Considering only the acidification effect, 0.5 mole ammonia would neutralize
the effect of one C-mole acetic acid, so a value of αa = 0.5 is used as an initial guess.
The choice of value for αa is not obvious, since a number of phenomena are related
to the production and excretion of acetate including ATP and NAD(P)H balances.

Table 9.3. Estimated parameters in equation 9.40. The column St.dev lists the standard
deviation of the estimated parameter in percentage of the parameter value.

Parameter Estimate St.dev Unit
βe 1.6 ·10−3 ± 45% mmole NH3/g eff
βb 1.5 ·10−3 ± 54% mmole NH3/g broth

In chapter 8 the details of a model describing the proton flux balance during bal-
anced oxidative growth was described i.e. when no acetate was converted. The
validity of that model was demonstrated by accurate estimation of ammonia flow
rates during fed-batch and continuous operation, where balanced oxidative growth
conditions were known to exist. During operations where balanced oxidative growth
did not exist, discrepancies between estimated and measured ammonia flow rates
were observed. Based on these observations it was discussed how the model of the
proton flux balance can be applied for monitoring of deviations from balanced ox-
idative growth conditions by comparing the volumetric flow rate of ammonia (rn) to
the estimated volumetric flow rate of ammonia (r̂n). It was suggested that detection
limits should be based on measurements of the specific ammonia flow rate , qn =
rn/cx (cx being the biomass concentration) and should be en = qn − q̂n = ± 1.5
mmole NH3/mole biomass/hr. The detection limits were introduced to account for
unmodelled effects such as deviations from the assumption of balanced growth or
the dynamics of the pH control loop, regulating the flow rate of ammonia to the
system.

The detection limit can be used as a threshold value to distinguish between the

4For a discussion on how to estimate ∆W
∆t and Fout, refer to section 9.1.10
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two scenarios:

Scenario 1: rn = αxrx

Scenario 2: rn = αxrx + αara

The use of such a threshold will render the model inappropriate to describe a small
continuous production of acetate within the detection limits, however the model in
its current form, is not suitable for a more accurate description of the ammonia
demand to facilitate a more precise modeling of the acetate production This was
discussed in chapter 8. An improved description can be obtained by addressing
some of the model assumptions and by providing and including a better description
of changes of the elemental composition of the biomass or even to changes in the
macromolecular (protein, carbohydrate, lipid etc.) distribution of the yeast.

A carbon flux balance of the system can be set up:

rs = rc + re + ra + rx (9.41)

Assuming αx and αa to be constant and known parameters, the two equations 9.40
and 9.41 contains only 2 unknown variables, which therefore can be estimated:

ra =
1

1 − αa/αx
(rs − rc − re − rn/αx) (9.42)

and subsequently the conversion of biomass can be determined by use of equation
9.41.

It is furthermore assumed that no degradation of biomass occurs i.e. cells dying
or in other ways becoming inactive, which means that rx ≥ 0. Negative values of
the acetate production ra can appear, indicating uptake and consumption of acetate
as passive diffusion across the cell wall of acetic acid, a topic reviewed in chapter 4.

Combining equations 9.40, 9.41 and 9.42 and the constraints on rx and ra men-
tioned above, with mass flux balances and approximated integration of these (see
section 9.1.10 for further details), it becomes possible to estimate concentration tra-
jectories of the involved components. Further constraints can be included to ensure
that the estimated concentrations are positive or zero. From this a soft sensor for
the determination of biomass and acetate conversion rates and concentrations is
constructed, which is based on the assumptions listed in table 9.4. The algorithm
of the biomass and acetate soft sensor is listed in the box entitled Algorithm 9.1.
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Table 9.4. Assumptions behind the soft sensor for determination of biomass and acetate
conversion rates (equations 9.40, 9.41 and 9.42). The assumptions are listed according
to priority with the most important assumption at the top.

1 Asynchronous balanced growth
2 Constant biomass composition
3 Proton balance described by equation 9.40
4 Constant values of αx and αa

5 Threshold value can be used to distinguish between balanced growth conditions
6 Consumption of acetate and ethanol contribute to formation of biomass
7 Transition from production to consumption of acetate and ethanol is instan-

taneous and vice versa
8 Formation of biomass: rx ≥ 0
9 Concentrations are always ≥ 0
10 Only fluxes of acetate, ammonia, biomass, ethanol, glucose, CO2 and O2 are

significant
11 Additive model structure can be used
12 Negligible offset or bias in measurements of ammonia flow rate
13 No significant variation in (constant) buffer capacity of the broth
14 No significant effect on proton balance from feeding of nutrient substrate

Algorithm 9.1
Soft Sensor for Biomass and Acetate Conversion, BAC

At sampling point k
Calculate ∆V

∆t
|k and Fout,k using the Kalman Filter algorithm

Calculate rc,k = CERk/Vk and ro,k = OURk/Vk

Calculate rs,k = cmcdosF
m
cdos,k/Mglu/Vk

Calculate re,k = 1/120

(
∆c

g
e,k

∆tk
+

(
Fout,k/Vk + 1/Vk

∆V
∆t

|k
)

cge,k

)
/Meth

Calculate rn,k = 1
Vk

(
FNH3,k − ρβeFout,k + ρβb

∆V
∆t

|k
)

Calculate r̂n,k = α · cmglu,cdos · Ysx
Mglu

Fmcdos,k

Check if |ra,k − r̂a,k|/cx,k−1 < 0.0015 then ra,k = 0

else ra,k = 1
1−αa/αx

(rs,k − rc,k − re,k − rn,k/αx)

Check if ra,k < 0 and ca,k−1 ≤ 0 then ra,k = 0

Calculate rx,k = rs,k − rc,k − re,k − ra,k

Check if rx,k < 0 then rx,k = 0

Calculate ca,k = ca,k−1 +
[
Mace · ra,k −

(
Fout,k/Vk + 1/Vk

∆V
∆t

|k
)
· ca,k−1

]
· (tk − tk−1)

Calculate cx,k = cx,k−1 +
[
MDW · rx,k −

(
Fout,k/Vk + 1/Vk

∆V
∆t

|k
)
· cx,k−1

]
· (tk − tk−1)

9.2.2 Summary

This section has presented a model for online estimation of the conversion rates
of biomass and acetate as well as their concentrations in the culture broth. The
model is based on a simple extension of the methodology presented by Lei (2001)
for online estimation of the biomass concentration and tested in chapter 6 on process
data from a production site. It was presented how the simple extension was required
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in order to account for a large unforeseen production of acetate during the onset of
oxido-reductive growth.

With estimates of the biomass concentration available online, it is now possible
to evaluate specific uptake and conversion rates of a number of species. Such in-
formation can be compiled in a new model in order to provide an online estimate
of the intrinsic metabolic flux distribution in the cells. In this way aspects of the
physiology of the microorganism can be used for the online interpretation of process
data.

9.3 Soft Sensor for Intrinsic Metabolic Fluxes

This section will illustrate the construction of an intrinsic metabolic flux model to
provide online estimates of fluxes of the most relevant metabolic pathways related to
growth during aerobic conditions. The model structure and model parameters are
discussed followed by providing an algorithm for the calculations behind the model
at the end of the section.

9.3.1 Model Construction

To elucidate how the intrinsic metabolic fluxes are distributed, a simple metabolic
model is proposed, as schematically illustrated in figure 9.8. The stoichiometry of
the different reactions are presented in table 9.5, where it can be seen that a number
of physiological parameters are required to be determined or assumed.

Figure 9.8. Simple model for metabolic flux analysis. Subscript i indicates the reac-
tion, while vi represents the specific intracellular flux via reaction i. Glucose from the
extracellular medium is taken up through reaction glc.

In the metabolic flux model the glucose taken up from the extracellular medium
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is converted into glucose-6-phosphate by reaction glc. Glucose-6-phosphate is then
converted into biomass by reaction ana, representing lumped anabolic reactions,
and into pyruvate by reaction gly, representing lumped glycolytic reactions. Pyru-
vate can either be dissimilated into carbon dioxide in the tricarboxylic acid (TCA)
cycle, also referred to as the oxidative catabolism represented by reaction cat, ox,
or converted into acetaldehyde by the reductive catabolism, reaction cat, red. Ac-
etaldehyde can either be oxidized to acetate/acetic acid by reaction hac or reduced
to ethanol by reaction etoh. In addition, the activity of the oxidative phosphoryla-
tion for the generation of ATP by oxidation of NADH by oxygen has been included,
reaction oxp.

Table 9.5. The stoichiometry in [C-mole/C-mole] of the reaction in the proposed intrin-
sic metabolic flux model of figure 9.8. Most of the stoichiometric coefficients have been
found in biochemical textbooks (Stryer (1995); Walker (1998)). A number of parame-
ters are dependent on the microorganism or strain and listed below with references to
their source and are discussed in the text. Glucose-6-phosphate is referred to as CH2O
(int).
Anabolism
ana : X + γCO2 + YxNADHXNADH − YxATPXATP − (1 + γ)CH2O − γNNH3 = 0
Catabolism
glc : CH2O(int) − CH2O(ext) = 0
gly : CH4/3O + 1/3XATP + 1/3XNADH − CH2Oint = 0
cat, ox : CO2 + 1/3XATP + 5/3XNADH − CH4/3O = 0
cat, red : 2/3CH2O1/2 + 1/3CO2 − CH4/3O = 0
etoh : CH3O1/2 − 1/2XNADH − CH2O1/2 = 0
hac : CH2O + 1/2XNADH − CH2O1/2 = 0
Oxidative phosphorylation
oxp : P/OXATP −XNADH − 1/2O2 = 0
Parameters
X : CH1.82O0.576N0.146 MDW = 27.1g/C-mole (fr : 7.3 w%)
γ : 0.17 (calculated from YxNADH)
γN : is equal to cx = 0.146 (see chapter 7)
P/O : 1.20 (van Gulik and Heijnen (1995))
YxNADH : 0.23 (Duboc et al. (1998); Verduyn et al. (1990))
YxATP : 1.7 (calculated in section 9.5.2)

In a number of the reactions in the metabolic flux model the cofactors ATP and
NADH are involved, as indicated in figure 9.8. When investigating steady state
behavior of continuous cultivations it is assumed that the concentrations of ATP
and NADH are constant and therefore can be used as constraints in the system of
equations (Lei (2001); Vanrolleghem et al. (1996); van Gulik and Heijnen (1995);
Herwig and von Stockar (2002)(only NADH)). In this work such an approach has not
been used since the metabolic flux model is used to study the response of the culture
to dynamic changes in the system. By not enforcing constraint on the concentration
of ATP and NADH, information on the variation of the cofactor levels can be used
as an indication of how much the metabolic energy and reductive requirements for
cellular activities change during the varying process conditions of fed- batch and
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Table 9.6. Equations behind the intrinsic metabolic flux model. Specific conversion
rates of biomass (qx) and acetate (qa) as well as the biomass concentration (cx) are
calculated using the soft sensor for biomass and acetate conversions (BAC) presented
in section 9.2, algorithm 9.1. Glucose-6-phosphate is referred to as CH2O (int), and
the intracellular concentration of glucose-6-phosphate, pyruvate and acetaldehyde are
assumed to be quasistationary. max(qi, 0) means that only positive values of qi is
allowed to affect the calculation of a quantity. The values of the parameters γ, P/O,
YxATP and YxNADH are listed in table 9.5.

Specific conversion rates Origin
Biomass : qx = rx/cx rx and cx from BAC
Acetate : qa = ra/cx ra from BAC
Glucose : qs = rs/cx rs = cmcdosF

m
cdos/Mglu/V

Ethanol : qe = re/cx re from equation 9.2
CO2 : qc = CER/cx CER from equation 7.3
O2 : qo = OUR/cx OUR from equation 7.2
Quasistationary flux balances
CH2O (int) : 0 = −vglc + (1 + γ)vana + vgly

Pyruvate : 0 = −vgly + vcat,ox + vcat,red

Acetaldehyde : 0 = −vcat,red + 3/2vetoh + 3/2vhac

Intrinsic metabolic fluxes
ana : vana = qx

glc : vglc = qs

gly : vgly = qs − (1 + γ)qx
cat, ox : vcat,ox = qc − γqx − 1/2(max(qa, 0) +max(qe, 0))
cat, red : vcat,red = 3/2(max(qa, 0) +max(qe, 0))
etoh : vetoh = qe

hac : vhac = qa

oxp : voxp = 2qo
Cofactor fluxes
ATP : vatp = P/Ovoxp + 1/3 vgly + 1/3 vcat,ox − YxATPvana

NAD(P)H : vnadh = −voxp + 5/3 vcat,ox + 1/3 vgly + YxNADHvana − 1/2 vetoh + 1/2 vhac

continuous operation as well as during process disturbances.
It should be noted that only two of the reactions in the metabolic flux model are

allowed to be reversible, namely the reactions to ethanol and acetate. When either of
these are negative, they do not contribute to the estimation of the flux through the
reductive catabolism, vcat,red, as the reaction, pyruvate decarboxylase catalyzing the
conversion of pyruvate to acetaldehyde is irreversible (Pronk et al., 1996). Instead
the fluxes vhac and vetoh contribute directly to the flux of biomass formation vana,
representing growth on acetate and ethanol. These special cases are not shown in
figure 9.8; they have been left out to keep the figure simple, as in most cases the
contribution from these fluxes to the overall biomass formation rate is negligible.
No time delay, also referred to as lag, to the change between different metabolisms
have been included in the model.

For the recombinant strain used in this project no information is available on the
parameters listed at the bottom of table 9.5. In chapter 7 the biomass composi-
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tion was estimated based upon measurements of the elemental composition com-
bined with macroscopic mass balances of carbon, nitrogen, oxygen and hydrogen:
CH1.82O0.576N0.146 (fr: 7.3 w%). γ and YxNADH are highly correlated through the
redox balance of vana: γ = (κx + 2YxNADH)/4 − 1, with κx = 4.23 based on the
estimated elemental composition of the strain described in section 7, YxNADH can
be determined from anaerobic experiments as described by Duboc et al. (1998) us-
ing data from Verduyn et al. (1990), however such experiments have neither been
carried out in this work, nor by others with this strain, hence the value reported by
Duboc et al. (1998) is also being used here: YxNADH = 0.23. This leads to γ = 0.17.
The P/O ratio accounts for the net output of moles ATP produced per mole oxygen
atom consumed in oxidative phosphorylation, voxp. A constant value of P/O = 1.20
is used as reported by van Gulik and Heijnen (1995) leaving the YxATP to be de-
termined by setting up an ATP balance using the glucose and oxygen consumption
rates to estimate the fluxes vana and vgly under the assumption of purely oxidative
growth (vcat,red = 0 and vcat,ox = vgly):

0 = −YxATP · vana + (2 · vgly + YxNaDH · vana) · P/O + 2/3 · vgly (9.43)

where it has been used that NADH fuels the oxidative phosphorylation, voxp. The
factor 2/3 is the overall ATP produced in the glycolysis (vgly) and TCA cycle (vcat,ox)
when converting one C-mole glucose to CO2.

qo = 2 · vgly + YxNaDH · vana (9.44)

qs = (1 + γ) · vana + vgly (9.45)

where the factor 2 in the equation 9.44 is the overall NADH produced in the glycol-
ysis (vgly) and TCA cycle (vcat,ox) when converting one C-mole glucose to CO2.

Using equations 9.44 and 9.45 to estimate vgly and vana yields:

vgly = 1 − (1 + γ) · 1 − Yso

1 + γ − 1/2 · YxNADH
· qs (9.46)

vana =
1 − Yso

1 + γ − 1/2 · YxNADH
· qs (9.47)

where Yso = qo
qs

.
YxATP can be determined using equation 9.43 with either measured fluxes of vgly

and vana or estimated fluxes using equations 9.46 and 9.47.
The individual fluxes illustrated in figure 9.8 are calculated based on flux bal-

ances using specific conversion rates (qi) of a number of species (i), which are either
measured or estimated. Furthermore it is assumed that the concentrations of the
pools of glucose-6-phosphate, pyruvate and acetaldehyde are quasistationary, mean-
ing that they do not change significantly over time. The equations behind the model
of intrinsic fluxes are listed in table 9.6. The assumptions made for the construction
of the model leading to the soft sensor of intrinsic metabolic fluxes are listed in table
9.7, while the algorithm is presented in the box entitled Algorithm 9.2.
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Table 9.7. Assumptions behind the soft sensor for intrinsic metabolic fluxes. The as-
sumptions are listed according to priority with the most important assumption at the
top.

1 Asynchronous balanced growth
2 Constant biomass composition
3 Constant values of parameters γ, P/O, YxATP and YxNADH

4 Quasistationary intracellular concentrations of glucose-6-phosphate, pyruvate
and acetaldehyde

5 Conversion rates of biomass and acetate can be calculated using algorithm 9.1
presented in section 9.2

6 Consumption of acetate and ethanol contribute to formation of biomass
7 Transition from production to consumption of acetate and ethanol is instan-

taneous and vice versa
8 Formation of biomass: rx ≥ 0
9 Only fluxes of acetate, ammonia, biomass, ethanol, glucose, CO2 and O2 are

relevant
10 Negligible offset or bias in measurements of flow rate

Algorithm 9.2
Soft Sensor for Intrinsic Metabolic Fluxes, IMF

At sampling point k
From Algorithm 9.1 obtain: ri,k = [rc,k; ro,k; rs,k; re,k; ra,k; rx,k] and cx,k

Calculate qi,k = ri,k/cx,k

Calculate vana = qx

Calculate vglc = qs

Calculate vgly = qs − (1 + γ)qx

Calculate vcat,ox = qc − γqx − 1/2(max(qa, 0) + max(qe, 0))

Calculate vcat,red = 3/2(max(qa, 0) + max(qe, 0))

Calculate vetoh = qe

Calculate vhac = qa

Calculate voxp = 2qo

Calculate vatp = P/Ovoxp + 1/3 vgly + 1/3 vcat,ox − YxATP vana

Calculate vnadh = −voxp + 5/3 vcat,ox + 1/3 vgly + YxNADHvana − 1/2 vetoh + 1/2 vhac

9.3.2 Summary

This section has presented a model for online estimation of the intrinsic flux distri-
bution between some of the major metabolic pathways active during aerobic grotwh
on glucose. The model is based on a simple metabolic network and applies online
process data in combination with the outputs from the soft sensor in section 9.2.
A number of physiological parameters are needed for the model. Some of these
parameters were calculated from the available information of the system, while the
remaining parameters were taken from literature.
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9.4 Soft Sensor for Insulin Precursor Production

Rate

The two soft sensors presented above both address issues related to the growth of
the microorganism. From an industrial production point of view, this information
might not seem as relevant as an actual description of the productivity of the desired
product. Therefore a third soft sensor has been constructed for this specific purpose,
and this is the topic of the current section.

The expression system of the insulin precursor is known to be linked to the gly-
colytic activity and is constitutive (Kjeldsen, 2000), so with information on the
biomass production rate predicted by the soft sensor presented in section 9.2, only
the specific productivity of the insulin precursor needs to be modeled. An indication
that the specific productivity is not constant throughout the process is obtained from
figure 9.9(a) showing scaled trajectories of the insulin precursor and biomass concen-
trations obtained from offline measurements in normal cultivations. It is important
and surprising to notice that the specific productivity is not constant throughout
the process.
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(b) MTS02

Figure 9.9. Scaled biomass concentration (cmx ) and insulin precursor concentration (cmp ).
(a) 5 normal cultivations: MTS05, MTS06, MTS07, MTS11 and MTS12. (b) Cultiva-
tion MTS02 were ethanol and acetate where observed around the start of the continuous
operation. The vertical lines illustrate the phase changes from batch to fed-batch (1)
to continuous operation (2). During longer cultivations the scaled insulin precursor
concentration is known to level off at a value between 0.75 and 0.85. The growth rate
is maintained at a constant value during both fed-batch and continuous operation, and
is identical for all the batches.

From figure 9.9(a) it appears that the trajectories of scaled biomass and insulin
precursor concentrations are not parallel and therefore the production rates are not
proportional. This is best seen during continuous operation, where the biomass con-
centration reaches a constant level at a scaled value of 0.9 at the onset of continuous
operation, while the insulin precursor concentration has not yet reached a constant
level after 120 hours of cultivation. From longer continuous cultivations it is known
that scaled stationary insulin precursor concentrations between 0.75 and 0.85 are
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normally obtained. These findings suggested that the specific production rate of the
insulin precursor is not constant throughout the process despite the fact that the
expression system of the insulin precursor was known to be controlled by a consti-
tutive promoter (Kjeldsen, 2000). In the construction of an expression system for
the recombinant insulin precursor, a promoter of the glycolytic enzyme triose phos-
phate isomerase (tpi) has been used in front of the insulin precursor gene sequence
(Kjeldsen et al. (2001); see chapter 5 for a detailed description).

The observations indicated that from the start of the fed-batch operation more
than 80 hours of aerobic cultivation is needed to obtain the high level of specific
productivity, which corresponds to more than 5 doubling times. This is a rather in-
teresting observation, when compared to the expression rate of the insulin precursor
reported by Kjeldsen et al. (2001) and reviewed in section 5.2.1. Using pulse chase
experiments on the insulin precursor with metabolic labelling with [35S]cysteine for
2.5 min followed by use of unlabelled cysteine medium the first labelled insulin pre-
cursor appeared in the supernatant 2-4 min after the pulse, and the majority of
the secreted IP appeared in the supernatant within 15 min after the pulse, leading
to a t1/2 in the range of 5-10 min. On the other hand analysis of the intracellular
retention of the insulin precursor showed that following 30 min after a metabolic
labelling for 2.5 min, approximately 30% of the labelled insulin precursor was still
present as processed intracellular insulin precursor, primarily in vacuoles, and was
not secreted into the culture broth. This indicated that two different intracellular
routes for the insulin precursor are present in the late secretory pathway, and that
secretion may reflect saturation of a sorting mechanism due to over-expression of
the insulin precursor or that secretion occurs in competition with intracellular reten-
tion. This can to some extent explain the slow build up of the specific productivity,
however with the expression rates of the pulse chase experiments reported above in
the range of minutes and compared to the 80 hours needed to reach the high level
of specific productivity, it appears that something else has an influence on the spe-
cific productivity. It is currently not known which physiological mechanism could
be responsible for the extended time period needed to reach the maximum specific
productivity and the findings highlights that it is not a trivial matter to tune the
expression system for production of the recombinant product.

To model the observed trajectories of the insulin precursor concentrations dur-
ing fed-batch and continuous operation up until 150 hours, it is assumed that the
following boundary conditions apply for specific productivity:

B1 The specific productivity at the start of fed-batch operation is low and there-
fore assumed to be qm

p,tfb
= 0

B2 The specific productivity obtained after 120 hours5 of combined fed-batch and
continuous operation, is proportional to the specific growth rate qx (or µ) with
the proportionality constant αp (unit: (g-product·kg-broth)/(g-biomass·L-broth)).

The reason for using the specific growth rate rather than the specific glucose uptake
rate is supported by the observation made in figure 9.9(b), where the trajectories of
the biomass and product concentrations are shown for cultivation MTS02. In this
experiment oxido- reductive conditions occurred around the change to continuous

5Approximately equal to 150 hours of total cultivation with a batch period of ≈ 30 hours.
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operation as shown in figure 9.10 (the observations in cultivation MTS02 will be
discussed in more detail below). During the period of oxido-reductive growth the
specific glucose uptake rate is high, while the specific growth rate is low. Assuming
the specific productivity of the product to be proportional to the specific growth
rate seems therefore to be a better choice. The model construction is separated
in two parts. In the first part only the observations from the normal cultivation
in figure 9.9(a) are considered, while in the second part, the observations during
oxido-reductive growth or presence of acetate are included.

9.4.1 Modeling the Adaptation of the Specific Productivity

To describe the behavior between the above stated boundary conditions, a first order
dynamic model for the adaptation of the specific productivity is proposed:

dqm
p

dt
=

1

τ
(αpqx − qm

p ) (9.48)

assuming αp to be constant, and µm (qm
x ) to change only a little ≈ constant 6, the

equation above can be solved for t > tfb with the assumption qm
p,tfb

= 0 to yield:

qm
p,k =

rm
p,k

cmx,k

= αpqx,k

(
1 − exp

(−(tk − tfb)

τ

))
(9.49)

where tfb is the starting time of the fed-batch operation, k is the sample number,
while τ is the characteristic time for the adaptation to the new specific productivity
αpqx. The value of τ reflects the rate at which the expression system of the microor-
ganism adapts to the new growth conditions during aerobic growth when feeding
glucose as the limiting substrate.

Using a constant value of τ in equation 9.49 renders the adaptation of the specific
productivity independent of how the microorganism is grown i.e. which feeding
strategy has been applied. It is therefore desirable to make τ dependent on a vari-
able that is representive of the growth conditions in order to account for different,
but similar feeding strategies. In the construction of an expression system for the
recombinant insulin precursor, a promoter of the glycolytic enzyme triose phosphate
isomerase (tpi) has been used in front of the insulin precursor gene sequence (Kjeld-
sen et al., 2001). tpi is an enzyme in the glycolysis and it has therefore been assumed
that:

1. the transcription rate of the tpi promotor is proportional to the specific growth
rate qx

2. the transcription rate of the tpi promotor is proportional to the specific pro-
duction rate of the insulin precursor

This means that at low dilution rates where the specific growth rate is low, the
transcription rate of the tpi promotor is low and so is the expression of the insulin
precursor. It is further assumed that 3) at lower expression rate the adaptation of qp

6Except for small perturbations to the substrate feed rate µm was constant during fed-batch
and continuous operation for the cultivations shown in figure 9.9(a).
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to the new specific productivity (αpqx) becomes slower. The final step is to assume
that 4) the characteristic time for adaptation, τk, is inversely proportional to the
specific growth rate qx:

τk = ψ/qx,k (9.50)

where ψ is a proportionality constant.

9.4.2 Modeling the Influence of Oxido-reductive Growth on
the Specific Productivity

While figure 9.9(a) illustrated the behavior in cultivations that were not showing
signs of oxido-reductive growth i.e. formation of ethanol or acetate, figure 9.9(b)
illustrates the observations made in cultivation MTS02, where significant amounts
of ethanol were observed both in the online measurements of the offgas from the
bioreactor (figure 9.10(a)) and in the offline analysis of the culture broth using
HPLC (figure 9.10(b)) between 50 and 57 hours. Acetate was also observed by
the offline analysis at 54.5 hours (figure 9.10(b)). The investigations related to the
construction of the soft sensor for biomass and acetate conversions in section 9.2
had used that large fluctuations in the ammonia flow rate signal could be related
to the conversion of acetate. Such fluctuations were seen in the ammonia flow rate
between 48 and 68 hours in figure 9.10(a), indicating that acetate was present in the
culture broth. An interpretation of these observations is that during conversion of
acetate, the production of the insulin precursor is slowed or stopped, and sped up
or restarted as oxidative growth is reassumed at 68 hours.

The reason for using the conversion of acetate for modeling rather than e.g. con-
version or presence of ethanol, is due to the observations reported earlier that the
estimated conversion of acetate provides a better indication of changes to the growth
condition i.e. oxidative versus oxido-reductive growth.

Only a very simple model is suggested to account for the effects of acetate on
the specific productivity, since the data available for model construction is rather
limited and only related to problems occurring at the change from fed-batch to
continuous operation. A very simple way to account for the presence of acetate is
by delaying the adaptation to the new specific productivity (αpqx), when acetate is
present in the culture broth. From figure 9.9(b) it could be noted that the specific
productivity rate seemed to be constant during process upsets i.e. the first order
behavior in equation 9.48 was replaced by a zero order behavior. In other words, as
acetate production is estimated above the threshold mentioned in section 9.2 (1.5
mmole NH3/mole biomass/hr) a zero order description is used for qm

p i.e. the value
of qm

p is kept constant during the production of acetate. A zero order behavior can
be obtained using equation 9.49 by letting tfb increase in parallel with t during the
time when acetate is being produced.

While the first order behavior of equation 9.49 can be interpreted as a slow buildup
of capacity or filling up storage for producing and expressing the insulin precursor,
the zero order behavior can be interpreted as a stop of the buildup of the capacity or
storage, so the current maximum level of the specific productivity is not increased
any further. It could be relevant to include a term for the degradation of capacity,
however this has not been attempted in this work.
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(b) Offline signal

Figure 9.10. Cultivation MTS02. (a) Scaled online signals of ethanol concentration
in off-gas (cg

e , black line) and ammonia flow rate (Fm
NH3

, grey line) around the onset
of continuous operation. (b) Scaled offline measurements of ethanol (cm

e ) and acetate
(cm

a ). The vertical lines illustrate the phases change from batch to fed-batch (1) to
continuous operation (2)

Combining equations 9.49 and 9.50 a model for describing the adaptation of the
insulin production rate becomes:

rm
p,k = qm

p,kc
m
x,k = αprx,k

(
1 − exp

(−(tk − tfb)qx,k

ψ

))
(9.51)

tk is the time passed from the beginning of the cultivation, rx, qx and cmx can be ob-
tained from algorithm 9.1 and by combining equation 9.51 with a macroscopic mass
balance of the system such as equation 9.8, a soft sensor for insulin precursor pro-
duction and concentration can be constructed. The algorithm for such a soft sensor
is listed in the box entitled Algorithm 9.3. Assumptions used for the construction
of the soft sensor are listed in table 9.8.

Algorithm 9.3
Soft Sensor for Insulin Precursor Production Rate and Concentration, IPP

At sampling point k
From Kalman Filter obtain: Fout,k and Vk

From Algorithm 9.2 obtain: qx,k, qa,k and cx,k

Check if qa,k > 0 then tfb,k = tfb,k−1 + (tk − tk−1)

else tfb,k = tfb,k−1

Calculate rmp,k = αprx,k
(
1 − exp

(−(tk−tfb,k)qx,k

ψ

))
Calculate cmp,k = cmp,k−1 +

[
rmp,k −

(
Fout,k/Vk + 1/Vk

∆V
∆t

|k
)
· cmp,k−1

]
· (tk − tk−1)

9.4.3 Summary

This section has provided a model for the online estimation of the productivity and
concentration of the insulin precursor. The model includes a term for describing
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Table 9.8. Assumptions behind the soft sensor for insulin precursor production rate
and concentration. The assumptions are listed according to priority with the most
important assumption at the top.

1 Asynchronous balanced growth
2 First order model of adaptation valid
3 Characteristic adaptation time τ inversely proportional to the specific growth

rate qx
4 At lower expression rate the adaptation of qm

p to the new specific productivity
becomes slower

5 The transcription rate of the tpi promotor is proportional to the specific pro-
duction rate of the insulin precursor

6 The transcription rate of the tpi promotor is proportional to the specific growth
rate qx

7 Specific productivity at the start of fed-batch operation qm
p,tfb = 0

8 Zero order model of adaptation valid when acetate is present in culture broth

the time varying characteristics of the product concentration profile shown in fig-
ure 9.9(a), since it was shown that the specific productivity of the product is not
proportional to the specific growth rate, although this was expected from the knowl-
edge of the genetic modifications applied to the strain. A simple adjustment of the
model during conversion of acetate was suggested in order to describe the observed
variation around the change to continuous operation in cultivation MTS02 (figure
9.9(b)).
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9.5 Results

The purpose of developing the soft sensors presented in the previous section is to
provide tools to improve interpretation of process data. Such tools can be used in
the offline analysis of cultivations that for some reason have shown inferior perfor-
mance or been exposed to process variations or disturbances resulting in interesting
responses. An example of this could be planned attempts to improve process per-
formance. A second and very interesting application area for the tools is online
monitoring and control. Implementing the soft sensors in a process control system
can provide more detailed analysis of the state of the process. This can lead to a
totally new way of approaching operator-based control of cultivations, but can also
be extended to a more automatized control of the cultivation process in order to
enhance its performance.

Using the three soft sensors developed above, a number of interesting observations
appear and many of these will be illustrated below. First, a value of αa will be
estimated and the soft sensor in algorithm 9.1, referred to as the BAC soft sensor,
will be validated on data from two cultivations with focus on the ability of the
BAC soft sensor to estimate the trajectories of biomass and acetate concentrations.
Secondly, the conversion rates of biomass and acetate from the BAC soft sensor
are used in the proposed soft sensor in algorithm 9.2, referred to as the IMF soft
sensor, for estimation of intrinsic metabolic fluxes. Data from four cultivations
are investigated, analyzed and discussed. Thirdly, results using the soft sensor in
algorithm 9.3, referred to as the IPP soft sensor, for description of the specific
production rate of the insulin precursor is presented and evaluated.

All the data presented and discussed has been normalized.
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9.5.1 Modeling Biomass and Acetate Conversion

Data from three cultivations are used in this section to elucidate the performance
of the BAC soft sensor. Cultivation MTS01 is used as a modeling batch for the
identification of αa, while cultivations MTS05 and MTV03 are used as validation
batches.

It should be noted that the acetate conversion rate is estimated using the ammonia
flow rate, which serves the purpose of maintaining a constant culture pH. The pH-
controller has been tuned to ensure good control throughout the operation regimes
of the process. The pH-controller has not been tuned for fast variations, e.g. during
synchronized growth. Therefore the pH can vary with ± 0.4 pH-units during such
variations, and hence affect the estimation of acetate conversion. In most cases the
pH is back at the desired set point within 0.5 hours after the onset of the variation,
resulting in a small delay in the estimated acetate conversion rate and concentration.

9.5.1.1 Selection of αa

The results obtained using the BAC soft sensor on data from cultivation MTS01
are shown in figure 9.11(a+b), where three different values of αa has been used ( αa

was presented in equation 9.40, page 144) . Comparing the estimated trajectories of
the acetate concentration in figure 9.11(a) with the offline measurements of acetate,
it is difficult to assess which of the values αa = 1/2 or αa = 2/3 provides the
better description. The offline measurements of the biomass concentration in figure
9.11(b) are best described using αa = 1/3, where the two other values of αa result
in too large estimations of the biomass concentration. Here it should be noted
that significant amounts of glycerol has been observed in the offline measurement
at 72 hours as shown in figure 9.11(d)7, which will have an influence on both the
estimation of biomass and acetate conversions. The effect of this influence would
be a lowering of the biomass concentration to account for glucose being used for
formation of glycerol in equation 9.41, and at the same time an increase in the
acetate concentration to balance the ammonia demand in equation 9.40 used in
the BAC soft sensor. Unfortunately it has not been possible to propose a model
for the conversion of glycerol, allowing the estimation of the trajectory of glycerol
concentration.

Based on the above observations and the assumption that the sole influence of pro-
duction of acetate on the ammonia demand is for neutralization of the acidification
as discussed in section 9.2, the value αa = 1/2 will be used in the following inves-
tigations. This value provides reasonable descriptions of both acetate and biomass
conversions.

9.5.1.2 MTS01:

In this cultivation a faulty pump in the cooling circuit of the bioreactor resulted in
a slow increase in the temperature of the broth of 3◦C from 37 to 45 hours, at which
point the cooling circuit was working properly again and the broth temperature was
back at its set point at 46 hours. It is not known to what extent this deviation

7Approximately the same concentration (C-mole) as acetate in the offline sample
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(c) Normalized flow rates of glucose syrup
(black line) and ammonia (grey line)
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Figure 9.11. Estimated trajectories of normalized concentrations of acetate (a) and
biomass (b) as a function of different values of αa in equation 9.42. Trajectories of
normalized measured values of glucose syrup feeding rate and ammonia flow rate (c)
and glycerol and ethanol concentrations (d). The ethanol concentration in the broth
is estimated from measurement of the ethanol concentration in the off-gas. Offline
measurements of acetate (a), biomass (b), glycerol and ethanol (d) concentrations have
been included for comparison. The offline glycerol measurements are connected by a
hatched line. The vertical lines labelled 1 and 2 indicate the onset of nutrient substrate
feeding and transition from fed-batch to continuous operation, respectively. The dis-
solved oxygen tension (DOT) is above 20% during the whole experiment. Data from
cultivation MTS01. (See also figures 8.13 and 8.17 for details on performance regarding
estimation of ammonia flow rate and indication of the onset of oxidoreductive growth,
respectively.)
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in temperature affects the metabolism. In figure 9.11 the trajectories obtained
using αa = 1/2 show how a large amount of acetate is being formed just prior
to the switch from fed-batch to continuous operation at 51 hours. The biomass
concentration is 20% higher than the value obtained in the stationary phase of the
continuous operation (cmx,stat ≈ 20 g/kg)8. As the biomass concentration in the fed-
batch phase increases to 15% above cmx,stat, significant production of acetate occurs
from 48.5 hours, which initially is not accompanied by production of ethanol (figure
9.11(d)). From 50 to 52.5 hours ethanol is being formed, causing a drop in biomass
concentration below cmx,stat in combination with the initiation of continuous operation
and a continuous decrease in biomass for the next 20 hours.

After the initial production, ethanol is slowly being diluted from the bioreactor
(figure 9.11(d)), however figure 9.11(a) shows that acetate is estimated to continu-
ously being produced for almost 20 hours (48.5 to 68 hours). At 69 hours a large
production of ethanol appears as the acetate concentration drops rapidly. The es-
timated biomass concentration is not as low as the measured offline value, due to
the aforementioned undescribed role of glycerol, however it is clearly seen that the
biomass concentration is much lower than the expected value of cx,stat at this point9.
By instantly lowering the substrate feeding rate to 50% of the value prior to ethanol
production (figure 9.11(c)) and slowly increasing the dilution rate back to the normal
rate over 30 hours, the process gets back on track as indicated by acetate, ethanol
and biomass measurements.

For the last 50 hours of the cultivation (100-150 hours) the two substrate feeding
rates10 are slowly and simultaneously being increased as seen in figure 9.11(c). This
is done to investigate the response of the process to increased dilution rates and to
get an indication of what the critical growth rate11 is during the growth conditions
of the continuous operation. The system is seen to respond to this slow change
without problems.

9.5.1.3 MTS05:

Whereas figure 9.11 demonstrated the performance of the model in a situation with
extensive amounts of acetate formed, figure 9.12 illustrates the performance of the
BAC soft sensor in a scenario, where no ethanol is measured in the offgas during
the fed-batch and continuous operation of the cultivation. No significant amounts
of acetate are reported to appear when evaluating the offline measurements. The
estimated trajectories of acetate and biomass are in good agreement with the offline
measurements. The changes in the acetate concentration seen between 45 to 55
hours are primarily due to oscillations due to synchronized growth, which can be
observed in the ammonia flow rate in figure 9.12(c). It is interesting to note that
the feeding strategy does not lead to an overshoot in the biomass concentration,

8Normalized value
9During operation it was expected that biomass concentration could be determined by using a

constant yield on the glucose fed to the system, since no ethanol was present in the offgas and the
appearance of acetate or glycerol was not anticipated.

10In continuous operation glucose syrup and nutrient substrate are fed in a ratio of 1:2 as
discussed in section 9.1.8.1.

11Here the critical growth rate refers to the growth rate above which ethanol is continuously
formed.
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compared to the overshoot of 20% in MTS01 (figure 9.11(b)). The feeding strategy
in cultivation MTS05 seems to have been better balanced than in cultivation MTS01.

9.5.1.4 MTV03:

In cultivation MTV03 two process disturbances occurred, one unplanned and one
planned, and the estimated trajectories of acetate and biomass concentrations are
shown in figure 9.13. At the change from fed-batch to continuous operation at
approximately 55 hours it can be seen from figure 9.13(a) that large amounts of
acetate has accumulated, and the biomass concentration is 10% higher than during
steady state conditions. Some ethanol is observed in figure 9.13(d), but at its max-
imum the ethanol concentration is less than 50% (C-mole/C-mole) of the acetate
concentration.

From figure 9.13(c) it can be seen that the feeding rate following the change from
fed-batch to continuous operation is far from ideal. The changes in feeding rate just
before 60 hours are a response to the ethanol observed in figure 9.13(d). Using a
ramp to slowly increase the substrate feed rate back to the normal value and thereby
getting the process back on track; this is obtained at 68 hours. As the process seems
to settle into stable mode at 80 hrs, a step-up in the substrate feed rate is conducted,
elevating for 3 hours the dilution rate to 150% compared to the value prior to the
step, followed by lowering of the dilution rate for 1.5 hours to a level of 60% of the
value prior to the initial step, after which the dilution rate again is set to the original
dilution rate.

It is interesting to observe the estimated trajectory obtained using the BAC soft
sensor after the peak in acetate and ethanol concentrations at 60 hours. Whereas the
ethanol is quickly consumed, acetate is only slowly being removed from the culture
broth, both by dilution and consumption. By close inspection of figure 9.13(a) (not
shown here) the estimated acetate concentration can be seen to fluctuate from 70 to
80 hours. An explanation for this can be found by inspection of the CO2 emission
rate (CER) and ammonia flow rate shown in figure 9.14(a). These signals indicate
that synchronized growth is observed from 70 hours and up until the step in dilution
rate.

The step change introduced at 80 hours is much more severe than e.g. the ramp
used at the end of cultivation MTS01 in figure 9.11(c) or the situations observed
during the fed-batch phases of cultivations MTS01, MTS05 and MTV03. This is
seen in the response of ethanol to the sudden increase in dilution rate, which occurs
more or less instantaneously as the step is introduced. The estimated trajectory of
the acetate concentration shows a significant peak as a result of the step change in
the dilution rate. However the offline measurement of acetate at 83 hours is only
1/8 of the estimated value at the same time. As the system settles after the dilution
rate is brought back to its nominal value, synchronized growth seems to reappear
at 90 hours, leading to a slight overestimation of the acetate concentration for the
remaining part of the experiment (see figure 9.14(b)).

In figure 9.13(d) it appears that the concentration of glycerol is more or less con-
stant and repeatedly observed in significant amounts (> 0.1 of the normalizing
concentration). From inspection of data from other cultivations it appears that the
offline samples analyzed by HPLC in December 2003 all show a low but constant
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(c) Normalized flow rates of glucose syrup
(black line) and ammonia (grey line)
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Figure 9.12. Estimated trajectories of normalized concentrations of acetate (a) and
biomass (b) using αa = 1/2. Trajectories of normalized measured values of glucose syrup
feeding rate and ammonia flow rate (c) and glycerol and ethanol concentrations (d).
The ethanol concentration in the broth is estimated from measurement of the ethanol
concentration in the off-gas. Offline measurements of acetate (a), biomass (b), glycerol
and ethanol (d) concentrations have been included for comparison. The variations
seen in the glucose syrup feeding rate are planned perturbations (see section 9.1.8.2).
The vertical lines labelled 1 and 2 indicate the onset of nutrient substrate feeding and
transition from fed-batch to continuous operation, respectively. The dissolved oxygen
tension (DOT) is above 20% during the whole experiment. Data from cultivation
MTS05. (See also figures 8.12 and 8.17 for details on performance regarding estimation
of ammonia flow rate and indication of the onset of oxidoreductive growth, respectively.)
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(c) Normalized flow rates of glucose syrup
(black line) and ammonia (grey line)
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Figure 9.13. Estimated trajectories of normalized concentrations of acetate (a) and
biomass (b). Trajectories of normalized measured values of glucose syrup feeding rate
and ammonia flow rate (c) and glycerol and ethanol concentrations (d). The ethanol
concentration in the broth is estimated from measurement of the ethanol concentration
in the off-gas. Offline measurements of acetate (a), biomass (b), glycerol and ethanol
(d) concentrations have been included for comparison. The vertical lines labelled 1
and 2 indicate the onset of nutrient substrate feeding and transition from fed- batch to
continuous operation, respectively. The dissolved oxygen tension (DOT) is above 20%
during the whole experiment. Data from cultivation MTV03.
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Figure 9.14. Trajectories of normalized carbon emission rate (CER) and ammonia flow
rate (Fm

NH3
) in the time periods 64-80 hours and 90-115 hours showing synchronized

growth. Data from cultivation MTV03.
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presence of glycerol. It remains to be tested if these observations are simply mea-
surement errors or actually reflect presence of glycerol, since none of the cultivations
analyzed by HPLC in September 2003 showed these tendencies.

9.5.1.5 Summary and Remarks

From the three examples shown it can be seen that the BAC soft sensor is able
to explain the observed fluctuations in the ammonia flow rate as a response to
production of acetate. In addition to the estimation of the acetate conversion rate,
the model also provides an estimation of the biomass production rate. The two
rates can then be used to estimate the concentrations of acetate and biomass in the
bioreactor using equation 9.8.

The BAC soft sensor provides a good indication of the biomass concentration,
while the estimation of the acetate concentration is more qualitative. It is however
quite interesting to note that the recombinant strain of S. cerevisiae used in this
work, show a remarkably large production of acetate during certain operating condi-
tions. Acetate production is related to the fermentative metabolism, and while other
strains of S. cerevisiae (Lei et al. (2003);Postma et al. (1989b)) are seen to produce
large amounts of ethanol as a result of activation of the fermentative metabolism,
this does not seem to be the case with this strain. The production of acetate sets
in before ethanol is being detected in the off-gas.
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9.5.2 Metabolic Flux Distributions

In the previous section it was demonstrated that the BAC soft sensor provides a good
indication of the biomass conversion rate and concentration, while the estimation of
the acetate conversion rate and concentration is more qualitative. With an online
estimator of the biomass concentration available it is possible to perform a more
quantitative analysis of the specific conversion rates of the different metabolites and
subsequently analyse the distribution of intrinsic fluxes.

The distribution of intrinsic metabolic fluxes is analyzed using the IMF soft sensor
presented in figure 9.8 and algorithm 9.2. The IMF soft sensor is used to elucidate
how the flux is distributed between the major metabolic pathways. The distribution
of fluxes onto the major metabolic pathways can provide an understanding of the
mechanisms governing the metabolic activities of the cell. This discipline has ex-
tensively been used in steady state investigations of an wide range of wild type and
engineered microorganisms (Vanrolleghem et al. (1996); Stückrath et al. (2002)),
and a few studies have used metabolic flux models for dynamic investigations (e.g.
Herwig and von Stockar (2002), Lei et al. (2003) and Lei et al. (2004)).

9.5.2.1 MTS05 Fed-batch operation:

This cultivation represents one of the experiments conducted without significant
amounts of acetate being produced. Figure 9.15 shows the estimated intrinsic fluxes
during fed-batch operation estimated using the IMF soft sensor. Three fluctuations
in the fluxes can be seen at 43, 47 and 51 hours as well as in the process variables
shown in figures 9.15(e) and 9.15(f). From the trajectory of the glucose syrup feeding
rate in figure 9.15(f), it can be seen that it is not the feed rate that is responsible for
the fluctuations, since the signal is rather smooth. The behavior can be explained
by synchronization of cellular activities, resulting in synchronized growth. A fourth
less obvious fluctuation appear at 54 hours. This last fluctuation does not have the
same shape as the previous three and may be triggered or disturbed by the onset of
nutrient substrate feeding at 53.4 hours (line 1).

The intrinsic metabolic fluxes in figures 9.15 (a-d) can be seen to vary around
a constant level during fed-batch operation, except in the vicinity for the fluctua-
tions caused by synchronized growth. Figure 9.15(a) illustrates how glucose taken
up by the cell as reaction glc in figure 9.8 is being divided between the anabolic,
ana, and catabolic pathway (the glycolysis, gly), while figure 9.15(b) shows the ox-
idative catabolic flux, cat, ox and the flux through the oxidative phosphorylation,
oxp. The normalized activity of the oxidative phosphorylation has a value of 1.0-1.2
mole/mole/hr. Fluxes of acetate and ethanol are shown in figure 9.15(c). No indi-
cations of ethanol production is observed, while production of acetate can be seen
to occur during the oscillations, while consumption occurs between these.

As discussed in section 9.3, the amount of CO2 produced during anabolic activities
(γ) has not been determined in this work. By assuming YxNADH = 0.23 as reported
by Duboc et al. (1998) a value of γ = 0.17 is obtained. These assumptions have
an effect on the estimated glycolytic and oxidative catabolic flux as well as the
conversion rate of ATP, whereas all the other fluxes are not influenced by the values
of γ and YxNADH . Figure 9.15(d) show the estimated specific conversion rate of
NADH based on the aforementioned assumptions. The figure reflects the qualitative
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Figure 9.15. Estimation of intrinsic flux distributions onto the major metabolic path-
ways (a-d). Data from fed-batch operation of cultivation MTS05. For comparison with
process variables: (e) CER and ammonia flow rates and (f) DOT and glucose syrup
flow rates. Vertical line 1 indicates the time at which feeding of nutrient substrate
is initiated, while line 2 indicates the time at which continuous operation is initiated.
(Data from continuous operation of MTS05 is reported in figure 9.16, while results
using the BAC soft sensor are shown in figure 9.12.)
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behavior of the specific conversion rate of NADH and it can be seen that production
and consumption is balanced most of the time, except during synchronized growth.

The specific conversion rate of ATP is also shown in figure 9.15(d). For this
estimation an additional assumption has been used, namely that the P/O ratio =
1.2 and constant. An estimate of YxATP can be obtained by combining equation
9.43 with data from continuous operation of 7 different cultivations listed in table
7.4, page 91 in chapter 7. A value of YxATP = 1.7 has been determined, which
corresponds well with the observations by Lei et al. (2003) reporting a value of
YxATP = 1.8-2 at steady state conditions during oxidative growth. Here it should
be noted that the determination of YxATP using equation 9.43 is sensitive to the
assumed values of YxNaDH , the P/O ratio and γ (equations 9.46 and 9.47). Since
none of these parameters have been determined for the strain investigated in this
study, it is unlikely that the reported value of YxATP is correct; however it serves
the purpose of closing the ATP-balance. To obtain more accurate values of the 4
parameters mentioned above, further and more specific studies should be conducted
to clarify this.

From figure 9.15(d) it can be seen that the specific conversion rate of ATP is more
severely affected by the synchronized growth than is the case of NADH, and in
general larger variations are seen in the conversion rates of ATP than in NADH.

9.5.2.2 MTS05 Continuous operation:

During continuous operation perturbations are introduced in the substrate feed rates
as shown in figure 9.17(f), meaning that no true steady state conditions are at-
tempted to be achieved. The resulting distribution of intrinsic metabolic fluxes is
shown in figure 9.16. The figure illustrates that the perturbations introduced in the
substrate feed rate (see figure 9.12(c)), do not result in any significant changes to
the flux distribution, except for for periods of acetate production. One exception
to this is seen at 117.3 hours where acetate suddenly appears to be formed in large
amounts, having an effect on both the anabolic and glycolytic flux. Otherwise figure
9.16(d) illustrates how the ATP and NADH balances seem to be closing throughout
the continuous operation, supporting the assumption that YxATP = 1.7, and that
the other physiological parameters YxNADH, P/O ratio and γ in table 9.5 can be
assumed constant.

9.5.2.3 MTS01 Fed-batch operation:

Cultivation MTS01 was characterized by a number of situations where ethanol was
being produced, and offline measurements indicated that both acetate and glycerol
were present in the culture broth in large amounts. The distribution of fluxes in the
fed-batch phase is shown in figure 9.17. Up until 45 hours the process is comparable
to the results shown for MTS05 in figure 9.15, also showing fluctuations at 37 and
44 hours indicating synchronization of growth activities.

At 48.5 hours (line 1) an upset in the fluxes is again observed. This time it does
not appear to be synchronized growth triggering an oscillation, since the steepness
of the rise in most of the fluxes is almost 2.5 times lower than observed during
synchronized growth, combined with no observation of significant variations in the
oxidative phosphorylation (figure 9.17(b)). Acetate is being formed from 48.5 to
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Figure 9.16. Estimation of intrinsic flux distributions between the major metabolic
pathways (a-d). Data from continuous operation of cultivation MTS05. For comparison
with process variables: (e) CER and ammonia flow rates and (f) DOT and glucose syrup
flow rates. (Data from fed-batch operation of MTS05 is reported in figure 9.15, while
results using the BAC soft sensor are shown in figure 9.12.)
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Figure 9.17. Estimation of intrinsic flux distributions onto the major metabolic path-
ways (a-d). Data from fed-batch operation of cultivation MTS01. For comparison with
process variables: (e) CER and ammonia flow rates and (f) DOT and glucose syrup
flow rates. Vertical line 1 indicates the time at which feeding of nutrient substrate
is initiated, while line 2 indicates the time at which continuous operation is initiated.
(Data from continuous operation of MTS01 is reported in figure 9.18, while results
using the BAC soft sensor are shown in figure 9.11.)
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50.5 hours and again continuously from 52.8 to 60 hours, while a small amount of
ethanol is formed between 50 and 52.5 hours. The trajectory of the ammonia flow
rate in figure 9.17(e) illustrates how the maximum flow rate of ammonia is reached
for 48.7 to 49.0 hours and again from 49.7 to 50.2 hours. Calculated variations in
the fluxes are a combination of 1) metabolic changes and 2) changes of the process
conditions since at 49.4 hours feeding of the nutrient substrate is initiated and at
51.3 hours continuous operation of the bioreactor is commenced (line 2). It is also
interesting to note the change in the flux through the oxidative catabolism occurring
at the onset of ethanol formation (50 hours). A sharp increase in the activity of the
oxidative catabolism is seen in figure 9.17(b), reaching a level around 50% above
the activity prior to the upset. Also the activity of the oxidative phosphorylation is
affected by the process upset and slowly increases to a level around 50% above (55
hours) the activity prior to the upset. The NADH balance shown in figure 9.17(d)
indicates that an imbalance exists between the reactions producing and consuming
NADH. As the activity of the oxidative phosphorylation is increased the NADH
balance is reestablished around zero at 55 hours. At the upset it can be observed
that a net production of ATP is estimated by the model. It is not obvious why this
large production rate of ATP appears, but an explanation could be found in the
assumption of constant values of YxNADH or P/O ratio.

The above analysis neither provides any clear indication of why the sudden pro-
duction of acetate occurs at 48.5 hours, nor why ethanol is being produced at 50
hours. However it is interesting to note at the onset of ethanol production, a sudden
jump in the oxidative catabolism flux appears, while this is not the case during
production of acetate at 48.5 hours, despite the fact that these two metabolic prod-
ucts are closely positioned in the fermentative pathway from pyruvate both being
products of conversion of acetaldehyde. It is not apparent whether the production
of ethanol is a consequence of or the reason for the elevated activity of the oxidative
catabolism in figure 9.17(b).

9.5.2.4 MTS01 Continuous operation:

In the continuous phase of the MTS01 cultivations interesting behavior was observed
as shown and discussed in section 9.5.1 and shown in figure 9.11. Figure 9.18 il-
lustrates the estimated flux distribution from 50 to 90 hours; it should be borne in
mind that glycerol was observed in offline sampling at 72 hours as shown in figure
9.11(d), but this effect has not been modeled.

Just after 60 hours a change in the flux distribution is observed, where the acetate
flux in figure 9.18(c) is increased and so is the activity of the oxidative phosphory-
lation (figure 9.18(b)) as well as the glycolytic flux (figure 9.18(a)). At the peak the
maximum ammonia flow rate is reached as seen in figure 9.18(e), lasting for 0.5 hours
after which a large drop in the acetate flux rate is observed at 62 hours, combined
with a drop in the activity of oxidative phosphorylation and the glycolytic flux. It
is also interesting to note the fluctuation in the DOT signal at 62 hours shown in
figure 9.18(f). Oscillations around a constantly increasing acetate flux is observed
between 63 and 66 hours, having effect on the estimation of some of the other fluxes
(anabolic, glycolytic and ATP fluxes), while neither the flux through the oxidative
phosphorylation nor the oxidative catabolism, both independent of the estimated
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Figure 9.18. Estimation of intrinsic flux distributions onto the major metabolic path-
ways (a-d). Data from continuous operation of cultivation MTS01. For comparison
with process variables: (e) CER and ammonia flow rates and (f) DOT and glucose
syrup flow rates. Vertical line 1 indicates the time at which feeding is stopped due
to large amounts of ethanol being present in the off-gas signal (see figure 9.11), while
line 2 indicates the time at which the process is back on track in continuous operation.
(Data from fed-batch operation of MTS01 is reported in figure 9.17, while results using
the BAC soft sensor are shown in figure 9.11.)
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acetate flux, can be seen to be affected by these variations. It is not known what
underlying phenomenon is responsible for the observed behavior, however it is spec-
ulated that the fluctuations are a response to the change in glucose feed flow rate,
which according to figure 9.18(f) occurs at 61 hours.

From 63 to 68.8 hours a constant increase in the acetate flux (figure 9.18(c)) can be
observed, followed by a very sharp and steep decrease into a state with acetate con-
sumption. This transition is not triggered by exceeding the maximum feed rate of
ammonia or due to changes in other process parameters (pH, aeration, stirring etc).
At the same time ethanol starts being produced, while the activity of the oxidative
phosphorylation drops significantly and the flux through the oxidative catabolism
increases (figure 9.18(b)). The NADH balance (figure 9.18(d)) show that the drop
in the oxidative phosphorylation results in a too small capacity in the reoxidation of
NADH leading to a surplus in NADH. This increase in NADH could be the reason
for the activation of glycerol production (see figure 9.11(d) on page 160) in order
to restore the redox potential of the cells. The anabolic flux can be seen to slowly
increase from 63 to 74 hours, which is misleading since the observations in figure
9.11 indicated that the biomass production rate was overestimated, even before the
ethanol production set in. In general a lower and decreasing biomass concentration
would result in larger fluxes, so rather than the observed slow decrease in the ac-
tivity of the oxidative phosphorylation up until the drastic drop at 68.8 hours, the
erroneous biomass estimation could hide that a maximum in the capacity of the
oxidative phosphorylation is reached. From figure 9.11 it can be observed that the
biomass concentration estimated using the BAC soft sensor is larger than the off-line
measurement at 71 hours. The estimated value is 20% above the measured biomass
concentration. Multiplying the estimated activity of the oxidative phosphorylation
at 68.8 hours by 1.2, yields a normalized activity of the oxidative phosphoryla-
tion close to 2.0 mole/C-mole/hr, which is comparable to the highest values of the
activity of the oxidative phosphorylation for any of the conducted experiments. As-
suming that a maximum activity of the oxidative phosphorylation is being achieved,
the consequence of such a maximum would be an increase in the NADH concen-
tration and the cell reacting to this by activating mechanisms to reoxidize NADH,
namely the ethanol and glycerol pathways. The drop in the activity of the oxidative
phosphorylation at 68 hours indicates that repression of this system occurs under
conditions of ethanol and/or glycerol production. This observation is supported by
the small drop in the activity of the oxidative phosphorylation at 50 to 52.5 hours,
where ethanol and possibly glycerol are being produced.

From 68.8 up until 74 hours ethanol is continuously being produced, at which
point the feed rates are lowered with 50% in an attempt to get the process back to
a state of balanced, purely oxidative growth. Up until the lowering of the feed rates
the acetate flux is seen to be negative, indicating consumption of acetate. During
this time period no ammonia is fed to the system, which is the reason for the more
or less constant consumption rate of acetate. The pH increases with 0.2 pH- unit
and is back at its set point at 71 hours (not shown here).

After the feed rate is lowered (line 1 figure 9.18), a slow increase in the feeding
rate is begun to restore the standard conditions at 88 hours. Ethanol is being
consumed from 74 to 79 hours, and the NADH balance shown a reoxidation of
NADH coinciding with an increasing activity of the oxidative phosphorylation. The
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apparent negative flux of NADH in this period might be due to consumption of the
glycerol formed earlier. As the last amounts of ethanol is being consumed, acetate
is seen to be formed. A similar scenario was also reported by Pons et al. (1986)
during batch operation. The acetate is quickly being consumed shortly after the
ethanol is exhausted. From 82 hours and onwards the system can be seen to have
been reestablished in a mode of balanced oxidative growth.
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Figure 9.19. Normalized estimated growth rate, carbon emission rate (CER) and dis-
solved oxygen tension (DOT) in the fed-batch phase of cultivation MTE02. (a) The
growth rate under normal operating conditions is indicated by the horizontal line at
1.0. (b) The stop of ammonia addition is indicated with arrows. Flow rates of ammonia
and glucose syrup can be seen in figures 9.20(e) and 9.20(f)

9.5.2.5 MTE02 fed-batch operation:

This cultivation was carried out in order to test if it was possible to apply a more
aggressive feeding profile in the fed-batch phase, since earlier investigations had
indicated this to be possible. At the onset of fed-batch operation a feeding profile
was imposed corresponding to a required growth rate for oxidative growth of twice
the growth rate during standard fed-batch operation. As the operation proceeded,
the feeding profile was adjusted such that as the continuous phase was initiated,
the growth rate would be slightly lower than during normal operating conditions,
or in other words a more or less constant deccelation of the required growth rate
as illustrated in figure 9.19(a). Between 41 and 44 hours a series of process upsets
occurred. First the ammonia supply system broke down from 41 to 43.5 hours as
seen in figure 9.20(e), and to avoid the growth being nitrogen limited, the feed rate
of the glucose syrup was stopped from 43 to 44 hours (figure 9.20(f)) after which
the system quickly got back on track.

Figure 9.20 shows the estimated flux distributions in the fed-batch phase. A very
high anabolic flux is obtained in the beginning of the phase, slowly decreasing for
the duration of the phase, except during the aforementioned process upsets (figure
9.20(a)). The activity of the oxidative phosphorylation can be seen to slowly increase
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from 30 to 35 hours in a response to an increased need for reoxidation of NADH,
illustrated in figures 9.20(b) and 9.20(d) respectively. In this time period acetate
is constantly being produced, up until the time point at which the activity of the
oxidative phosphorylation reaches its maximum at 34.5 hours. Again a maximum
value of the activity of the oxidative phosphorylation close to 2.0 mole/C-mole/hr
can be seen as was observed in cultivation MTS01. In this case however, the activity
of the oxidative phosphorylation is not repressed.

As the ammonia supply system breaks down a peculiar response is seen in the
estimation of the flux distributions. Whereas most of the other fluxes are being
influenced by the erroneous estimation of the anabolic and acetate fluxes, the activity
of the oxidative phosphorylation is independent of this. It is interesting to observe
that the response to the process upset is a fast increase in the activity of the oxidative
phosphorylation, an observation supported by measurements of the dissolved oxygen
tension and the carbon emission rate in figure 9.19(b). The dissolved oxygen tension
can be seen to decrease rapidly as the ammonia flow is stopped, and after an hour
returning to a value, which is similar to the level before the process upset. The
variation in the CER signal also indicates that for some reason increased metabolic
activity appears as a consequence of the stop of the ammonia flow. It is not until
the substrate feeding is stopped from 43 to 44 hours that indications of decreasing
cellular activity is seen in the two signals.

After the process is back on track at 45 hours the flux distribution is similar to
the distribution prior to the process upset. From 47 hours and until 53 hours it
appears that acetate is being produced, which however is not supported by offline
measurements of the culture broth at 48.5 and 55 hours (not shown here). It is not
known whether this discrepancy can be an artifact due to the process disturbances
from 41 to 45 hours.

9.5.2.6 MTE02 Continuous operation:

Following the variation in the fed-batch phase of cultivation MTE02, a constant
feeding strategy is maintained for more than 20 hours up to 80 hours. From 65
to 80 hours oscillations can be seen in many of the signals shown in figure 9.21,
indicating synchronization of cellular activities. The oscillations are however rather
small and not very ordered, giving an impression that a number of subpopulations
exist and oscillate with different periods. Figure 9.21 shows the estimated flux
distribution from 60 to 123 hours where the process is terminated. As the ramp in
the feeding rates is initiated the oscillations from synchronized growth can be seen to
disappear, and until 113 hours the process proceeds without any incident. At 113.5
hours acetate starts being continuously produced (figure 9.21(c)), having an effect
on the estimated anabolic and glycolytic fluxes (figure 9.21(a)) and also on the ATP
and NADH balances (figure 9.21(d)). At 115 hours ethanol starts being formed,
followed by a drop in the activity of the oxidative phosphorylation (peaking at 1.8
mole/C-mole/hr) indicating a repression and a drop in the acetate formation rate.
At 116.8 hours the feeding rates are set back to values prior to the initiation of the
ramp and a derepression of the oxidative phosphorylation (peaking at 1.9 mole/C-
mole/hr) quickly leads to a conversion of the accumulated ethanol and apparently
also accumulated NADH. As the process is terminated the system has not settled
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(b) Oxidative catabolic flux (top) and
flux through oxidative phosphorylation
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(c) Specific conversion rate of acetic acid
(top) and ethanol (bottom)
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(d) Specific conversion rate of ATP and
NADH
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Figure 9.20. Estimation of intrinsic flux distributions onto the major metabolic path-
ways (a-d). Data from fed-batch operation of cultivation MTE02. For comparison with
process variables: (e) CER and ammonia flow rates and (f) DOT and glucose syrup
flow rates. Vertical line 1 indicates the time at which feeding of nutrient substrate
is initiated, while line 2 indicates the time at which continuous operation is initiated.
Note that the flux estimations between 41 and 45 hours are questionable, since a num-
ber of process upsets occurred in this time period. (Data from continuous operation of
MTE02 is reported in figure 9.21)
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(b) Oxidative catabolic flux (top) and
flux through oxidative phosphorylation
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(c) Specific conversion rate of acetic acid
(top) and ethanol (bottom)
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(d) Specific conversion rate of ATP and
NADH
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Figure 9.21. Estimation of intrinsic flux distributions onto the major metabolic path-
ways. Data from continuos operation of cultivation MTE02. For comparison with
process variables: (e) CER and ammonia flow rates and (f) DOT and glucose syrup
flow rates. Vertical line 1 indicates the time at which a constant increase (a ramp) in
the feeding of substrates is initiated, while line 2 indicates the time at which the feed
rate is adjusted back to the original value before the initiation of the ramp. (Data from
fed-batch operation of MTE02 is reported in figure 9.20)
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yet.

It is interesting to note how the IFM soft sensor estimates that formation of acetate
begins almost 2 hours before the formation of ethanol at 115 hours. After the shift-
down it is also interesting to note that the activity of the oxidative phosphorylation
increases even as ethanol reportedly still is being produced in the time period from
116.8 to 117.7 hours.
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Figure 9.22. Normalized estimated growth rate in the fed-batch phase of cultivation
MTF02. The growth rate under normal operating conditions is indicated by the hori-
zontal line at 1.0. Between 34 and 36 hours initialization problems of the closed loop
controller led to upsets in the substrate feed rate in this time period. See figure 9.23
for flow rates of glucose syrup and ammonia as well as CER and DOT signals in the
fed-batch operation.

MTF02 Fed-batch operation: In cultivation MTF02 a control loop was closed
between a measurement of reducible components in the offgas from the bioreactor
and the substrate feed rates (the nutrient feeding was inactive during batch and
fed-batch operation), see section 9.1.8.4 for more detail. At the time when the
cultivation was conducted, the role of acetate as described above had not yet been
elucidated. It was therefore expected that ethanol would be a good indicator for
approaching the critical growth rate as reported by Lei et al. (2003). Using a small
value of ethanol concentration as set point to the controller it was thought possible
to maintain balanced oxidative growth throughout the fed-batch phase, as formation
of ethanol would lead to a decreased feeding rate of the substrate. The set point has
been changed a number of times during the cultivation, corresponding to ethanol
concentrations 0.1 - 0.3 g/L.

Figure 9.22 illustrates the estimated normalized growth rate and the normalized
feeding rate of glucose syrup during the fed-batch operation. Between 34 and 36
hours controller problems led to upsets in the substrate feed rate during this time
period. Aggressive feeding, as dictated by the controller, at almost 2 kg/kg/hr from
36 to 40.8 hours is followed by a sharply decreasing growth rate from 41 to 45
hours, after which the feeding of glucose syrup is stopped. An attempt to restart
the system at 47.5 hours is not successful, due to problems with the Figaro sensor12.

12In general the data from the Figaro sensor showed indications of ethanol being absorbed
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The variations in the feed rate are due to the combined actions of the controller in
response to the process system. Initially the concentration of ethanol in the offgas
is below the controller set point (0.1 g/L) and the substrate feeding rate is being
increased to a maximum value at 41 hours. A cellular response is triggered and
suddenly a very rapid increase in the ethanol concentration leads to a decrease in
the substrate feed rate, however the control actions are not sufficient to get the
cells to stop producing large amounts of ethanol, resulting in a feeding rate of zero
from 46 to 50 hours, after which oxidative growth condition is reestablished and
continuous operation begun at 50 hours.

The estimated flux distributions through the fed-batch and a part of the continuous
phase is shown in figure 9.23. Focusing on the time period from 36 to 40.8 hours,
it appears that acetate is continuously being produced in significant amounts as
seen in figure 9.23(c). During the same time period the activity of the oxidative
phosphorylation can be seen to go through a maximum of 2.2 mole/C-mole/hr at
39 hours, while the NADH conversion rate seems to be in balance in figures 9.23(b)
and 9.23(d), respectively. At 40.8 hours the concentration of ethanol in the offgas
exceeds the set point and the substrate feed rate is decreased. Acetate production
continues as does the decrease in the activity of the oxidative phosphorylation. A
sudden decrease can be seen in the anabolic flux, combined with a slight increase in
the glycolytic flux. At 42 hours production of ethanol is measured in the offgas by the
standard method using mass spectroscopy. This is coupled to a fast decrease in the
glycolytic and acetate fluxes as well as the activity of the oxidative phosphorylation,
while the anabolic flux continues to decrease.

In figure 9.23(d) it is interesting to see the changes to the ATP and NADH balances
during the time span from 40 to 45 hours. The production and conversion of the
two components is almost balanced at 40.8 hours, after which a fast change occurs
first in the ATP balance and a little later in the NADH balance. The feed rate is
continuously lowered until 46 hours. While ethanol is being consumed from 45.2 to
47.2 hours, acetate is not consumed until ethanol has disappeared (figure 9.23(c)).
At 50 hours the process is restarted and quickly gets back on track as shown in
figure 9.22 and figure 9.23.

During continuous operation the activity of the oxidative phosphorylation reaches
a constant level around a normalized value of 1.9 moles/moles/hr at 60 hours and
remains there for 15 hours. Compared to the observations prior to ethanol formation
in the continuous operation of cultivation MTS01, the level reached in cultivation
MTF02 is approximately 10% higher than the peak values in cultivation MTS01.

9.5.2.7 Summary and Remarks

The examples from the cultivations MTS01, MTS05, MTE02 and MTF02, show how
the IFM soft sensor is able to provide a deeper insight into the balancing of intrinsic

somewhere between the gas outlet of the bioreactor and the position of the Figaro sensor in the
exhaust line. The exhaust line was equipped with heat tracing for half of the distance between
the gas outlet and the Figaro sensor. In situations where large concentrations of ethanol had been
observed in the broth, followed by total consumption and/or dilution, ethanol was for an extended
period of time (hours) still being measured by the Figaro sensor in what appeared to be artifacts
from slow release of the condensed ethanol in the exhaust line. It was not possible to determine
the reason for the problem.
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(b) Oxidative catabolic flux (top) and
flux through oxidative phosphorylation
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(c) Specific conversion rate of acetic acid
(top) and ethanol (bottom)
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(d) Specific conversion rate of ATP and
NADH
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Figure 9.23. Estimation of intrinsic flux distributions onto the major metabolic path-
ways. Data from fed-batch operation of cultivation MTF02. For comparison with
process variables: (e) CER and ammonia flow rates and (f) DOT and glucose syrup
flow rates. Vertical line 1 indicates the time at which feeding of nutrient substrate
is initiated, while line 2 indicates the time at which continuous operation is initiated.
Note that the flux estimations between 34 and 36 hours are questionable, due to ini-
tialization problems of the closed loop controller between the measurement of ethanol
and the substrate feed rate during this time period.
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fluxes during different process conditions and more interesting during process upsets
or disturbances. The estimated flux distributions should be seen as an additional
tool for interpretation of experiments, providing information that is based on a
microscopic rather than macroscopic approach to interpreting process data.
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9.5.3 Modeling Insulin Precursor Production Rate

In section 9.4 a first-order model was suggested for the description of the specific
production rate of the insulin precursor, the product:

rm
p,k = αprx,k

(
1 − exp

(−(tk − tfb)qx,k

ψ

))
(9.52)

The model accounted for the slow adaptation of the specific productivity observed
in figure 9.9(a) and a simple adjustment of the model made was used to describe the
observed variation related to conversion of acetate. This model was implemented in
a soft sensor, the IPP soft sensor presented in algorithm 9.3.

The parameters of the model, ψ and αp, are determined by non-linear least squares
regression using data from cultivation MTS07, with minimization of the relative error
e between offline measurements and estimates of the insulin precursor concentration,
cp and ĉp at sampling number i:

ei = ĉp,i − cp,i (9.53)

The resulting normalized parameters are:

[ψp, αp] = [2.66, 0.059] (9.54)

rm
p = αprx,k is then used in an expression as equation 9.8 to obtain the trajectory

of the product concentration. To evaluate the performance of the estimations, the
root mean square error (RMSEC/V)13 is used:

RMSE =

√√√√ 1

N

N∑
i=1

(ĉmp,i − cmp,i)
2 (9.55)

Using the IPP soft sensor with the parameters in equation 9.54 on cultivation
MTS07: RMSECMTS07 = 0.003 compared to concentrations ranging between nor-
malized values from 0.004 to 0.2 g/kg.

The performance of the IPP soft sensor on validation data is shown in figure 9.24 as
estimator number 2 (Est2, dashed grey line) with corresponding specific production
rate (qp, dashed grey line); all cultivations carried out without any process upsets
or disturbances. In the plots are also shown the performance of another estimator
(1), which represents the performance when the correction for conversion of acetate
is not used. From the figure it is seen that the IPP soft sensor, estimator 2, gives a
reasonable description of the offline measurements of the product concentration in
validation data from cultivation MTS05, MTS11 and MTS12 in figures 9.24(b-d),
respectively. Since no significant amount of acetate is produced or consumed during
the fed-batch and continuous operation of these three cultivations, the performance
of estimator 1 and estimator 2 is almost identical.

In figure 9.25, the performance of the two estimators is presented for four cul-
tivations, where process upsets or disturbances were present. Cultivation MTS02,
shown in figure 9.25(a) was used to motivate the model adjustment to account for

13C: calibration and V: validation.
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the presence of acetate in the broth, and is therefore referred to as a modeling batch.
The effect of the model adjustment is best seen in the plot showing the ratio between
the volumetric production rate of the product and the volumetric production rate
of biomass, shown also in figures 9.24 and 9.25. Here it is seen that for cultivation
MTS02 in figure 9.25(a) (bottom) a discrepancy between the estimators is most
easily observed between 60 and 80 hours, although the trajectories in figure 9.25(a)
(top) indicate that the discrepancy already appears at the onset of nutrient substrate
feeding (vertical line 1). The adjustment of the model to account for the presence of
acetate in the broth (estimator 2) can be seen in figure 9.25(a) (top) to capture the
variations in the offline measurements of the product concentration rather well. The
RMSECs of the two estimators also highlight the superior performance of estimator
2.

Similar conclusions are made when observing the performance of the two esti-
mators in cultivations MTS01 and MTV03, shown in figures 9.25(b) and 9.25(c),
respectively. In figure 9.25(b) a discrepancy between the signal of estimator 2 and
the offline measurement at approximately 97 hours can be observed. This discrep-
ancy could be related to the formation and presence of glycerol reported in section
9.5.1.2, figure 9.11(d), a source of variation that has not been included in the model
construction.

For the data from cultivation MTV03, shown in figure 9.25(c) a good description
of the offline measurements of the product concentration is obtained. The signals
of the two estimators are also rather similar.

Cultivation MTE02 in figure 9.25(d) shows a rather peculiar behavior of the esti-
mators during fed-batch and continuous operation. In this cultivation an aggressive
feeding strategy was applied in the fed-batch phase. From the observed difference
between the two estimator in figure 9.25(d) (top) it appears that acetate was esti-
mated to be present in the broth during the fed-batch operation, although offline
analysis of the culture broth indicated the acetate levels to be below a normalized
concentration of 0.1 g/kg throughout the cultivation. It is furthermore surprising
to see that the offline measurements of the product concentration in the continuous
operation at 79 and 104 hours are lower than anticipated by both estimators. There
is no apparent explanation for these observations.

It was argued in section 9.4.2 that estimated acetate production rather than
ethanol production should be used to model the influence of oxido-reductive growth
on the observed variations on the specific productivity. To demonstrate the con-
sequences of using the ethanol production (qe,k > 0) in algorithm 9.3 rather than
acetate production (qa,k > 0) calculation have been performed for cultivation MTS01
and MTE02 and these are shown in figure 9.26. A slightly inferior performance is
seen in the estimation of the insulin precursor concentration profile in cultivation
MTS01 using the ethanol production as indication of oxido-reductive growth, while
no significant improvement in the performance in cultivation MTE02 was seen.

9.5.3.1 Summary and Remarks

In this section it has been demonstrated how a simple soft sensor can be used for
providing online estimates of the production rate and concentration of the insulin
precursor during a cultivation. In normal standard cultivations a good description is
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obtained, while in cultivations experiencing disturbances or upsets, the estimation
of the product concentration trajectories is reasonable. In one case, cultivation
MTE02, a rather weak performance is observed, which can not be explained. Using
the ethanol conversion rather than acetate conversion to model the influence of
oxido- reductive growth on the development of the specific productivity were shown
to provide an inferior description of the offline measurements of the insulin precursor
in cultivation MTS01, while the performance in cultivation MTE02 was not improved
significantly, compared to the results obtained using acetate conversion as indicator
for the growth condition.
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(a) Modeling data set, MTS07.
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(b) Validation data set, MTS05.
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(c) Validation data set, MTS11.
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(d) Validation data set, MTS12.

Figure 9.24. Estimation of normalized product concentration (top) and the ratio be-
tween the volumetric production rates of product versus biomass (rp/rx) (bottom) for
cultivations MTS07 (a, modeling), MTS05 (b, validation data), MTS11 (c, validation
data), MTS12 (d, validation data). All cultivations were carried out without process
disturbances or upsets. The results of two estimators are shown. Estimator 1 (full
black line) is based on soft sensor algorithm 9.3 without correction for conversion of
acetate, while estimator 2 (dashed grey line) is based on soft sensor algorithm 9.3.
•: normalized offline measurements of insulin precursor concentration. RMSE for the
estimators are given as RMSE(1) and RMSE(2), respectively. Vertical line 1 indicates
the time at which feeding of nutrient substrate is initiated, while line 2 indicates the
time at which continuous operation is initiated.
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(a) Modeling data set, MTS02.
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(b) Validation data set, MTS01.
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(c) Validation data set, MTV03.
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(d) Validation data set, MTE02.

Figure 9.25. Estimation of normalized product concentration (top) and the ratio be-
tween the volumetric production rates of product versus biomass (rp/rx) (bottom) for
cultivations MTS02 (a, modeling), MTS01 (b, validation data), MTV03 (d, validation
data), MTE02 (e, validation data). Process disturbances or upsets occurred in these
cultivations. The results of two estimators are shown. Estimator 1 (full black line) is
based on soft sensor algorithm 9.3 without correction for conversion of acetate, while
estimator 2 (dashed grey line) is based on soft sensor algorithm 9.3. •: normalized
offline measurements of insulin precursor concentration. RMSE for the estimators are
given as RMSE(1) and RMSE(2), respectively. Vertical line 1 indicates the time at
which feeding of nutrient substrate is initiated, while line 2 indicates the time at which
continuous operation is initiated.
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(b) MTE02

Figure 9.26. Estimation of normalized product concentration (top) and the ratio be-
tween the volumetric production rates of product versus biomass (rp/rx) (bottom) for
cultivations MTS01 (a) and MTE02 (b), where ethanol production (estimator 1, full
black line) and acetate production (estimator, dashed grey line) have been used as an
indication for a constant specific productivity. Process disturbances or upsets occurred
in these cultivations. •: normalized offline measurements of insulin precursor concen-
tration. RMSE for the estimators are given as RMSE(1) and RMSE(2), respectively.
Vertical line 1 indicates the time at which feeding of nutrient substrate is initiated,
while line 2 indicates the time at which continuous operation is initiated.
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9.6 Discussion

The previous section presented the application of three soft sensors, where it was
demonstrated how each of the soft sensors provided new and relevant information
on the state of the cultivation. The primary focus in this section will be on the
type of information that the models will be able to provide for analysis of the
cultivation process and what insight the soft sensors provide into the regulation of
the metabolism of the genetically engineered organism. Furthermore the aspects
of using the soft sensors in an online application for monitoring and control of
cultivation processes will also be discussed.

9.6.1 The Use of Soft Sensors

In the introduction to this chapter it was mentioned how the frequent measure-
ment of key variables e.g. once an hour, is seldom carried out in industrial cultiva-
tions. This is contradictory to the recognized importance of these measurements for
evaluation of process performance and to obtain leads for possible improvement of
productivity, robustness or process economy. To some extent the development and
introduction of more advanced process analytical technologies for process instru-
mentation e.g. near-infra red spectroscopy, GC-MS instruments14 or online HPLC,
is able to provide information on the key variables. Assuming that such advanced
analytical technologies are introduced at the pilot plant or even at the production
site, models/soft sensors are still needed in order to interpret the large amounts of
data available from these types of instruments and to related them to the process
variables that can be manipulated and thereby control and guide the cultivation
process towards enhanced performance. Since process data and process dynamics
are highly multivariate due to the combination of a complex metabolic network
with complex mass transport in the culture broth, multivariate models are needed
to capture the import changes in the process conditions. In other words, soft sensors
are used to acquire more knowledge from the available process data and therefore
constitue an important tool to improve and optimize the use of process information
and hence enhance process performance.

Application of soft sensors can take two directions: semi-hardware and inno-
vative. The semi-hardware direction represents an application, where the soft
sensor is seen as an instrument continuously providing the same type of informa-
tion. The name refers to the similarity to hard sensors e.g. a pH electrode, which
always provides the same type of information as long as it is calibrated and applied
within its application range. Focus for this type of application of a soft sensor is
production, where robustness and stable performance is important; both online pro-
cess monitoring and offline process analysis can be the areas of application. The
innovative direction refers to the use of soft sensors in environments where process
development is in focus i.e. laboratory and pilot plant. Here the performance of the
soft sensor is continuously challenged in order to gain deeper process knowledge and
understanding of the mechanisms controlling the microorganism. Again both online
process monitoring and offline process analysis can be the areas of application. The
semi-hardware and innovative directions highlights the approach to interpretation

14GC-MS: gas chromatography-mass spectroscopy
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of the information provided by soft sensors:

• Knowledge confirmation. The soft sensor provides signals that are in line with
the expected state of the process. This is either evaluated by experience or
by comparison to some kind of measurement e.g. delayed offline analytical
measurements.

• Knowledge rejection. The soft sensor provides signals that are in conflict with
the expected state of the process. More information is needed in order to
explain what is going on and construct a better model for description of the
underlying phenomena.

9.6.2 Model Mismatch

It is straight forward to interpret and evaluate data from soft sensors during periods
where a process behaves normally and as expected i.e. during knowledge confirma-
tion. It is far more difficult, but at the same time more interesting, to interpret odd
looking observations in the signals from the soft sensors or discrepancies between
measured and estimated data. All three proposed soft sensors have shortcomings as
was also demonstrated and discussed in the result section above (section 9.5).

9.6.2.1 BAC Soft Sensor

In the result section of the BAC soft sensor (section 9.5.1) it was discussed how the
observed presence of glycerol had an influence on the estimations of biomass and
acetate concentrations, since conversion of glycerol influenced the elemental mass
flux balance of carbon. Despite its relevance, it was not found possible to adjust or
expand the model to account for the conversion of glycerol, since not enough infor-
mation was available. It was attempted to use the balance of reduction equivalents
(the κ balance) for the estimation of the glycerol conversion rate. This corresponds
to assuming the NADH flux balance in the IFM soft sensor to be constant. This
extension of the model behind the BAC soft sensor did not prove to be a suitable
solution, primarily since the variations in the NADH flux balance did not only orig-
inate from the glycerol production. The indication that the extended model did not
perform well was best seen from the influence that estimated glycerol production
had on estimated production rates of biomass and acetate, as the production rates of
the three species were related through the carbon mass flux balance. The estimated
concentration profiles of biomass and acetate did not fit the offline measurements.

A second model discrepancy related to the BAC soft sensor, is the use of the
threshold value in order to diffentiate between purely oxidative growth and oxido-
reductive growth. The reason for including the threshold was unmodeled changes
to the biomass composition occurring at the change from batch to fed-batch oper-
ation and complex behavior of cellular growth, synchronized growth of subpopula-
tions combined with the transport of weak acids across the plasma membrane under
varying process conditions removed from steady state and equilibrium conditions.
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9.6.2.2 IFM Soft Sensor

In the figures shown in the result section (section 9.5.2), numerous odd fluctuations
and variations in the estimated fluxes could be observed, where especially the ATP
and NADH conversion rates showed many variations that were difficult to explain.
Here it is important to bear in mind the model assumptions presented in chapter
9 and in the materials and methods section (section 9.1), and some of these model
assumptions will be discussed below. Before entering the discussion it is important to
note that the purpose of the models are primarily to detect that unwanted process
behavior occur e.g. formation of acetate, and only secondarily to diagnose the
reason for the unwanted behavior, e.g. a high glucose uptake rate. In other words it
is the behavior in cultivation MTS05 (figures 9.15 and 9.16) and in the continuous
operation of cultivation MTE02 up until the onset of acetate formation (figure 9.21),
that the model should detect as being normal.

It was assumed that process conditions sustained growth where biomass formation
and conversion of acetate were the only physiological effects with influence on the
proton balance. During process upsets this scenario might not be valid, an example
might be that starvation in one or more substrates occurs that can have effects not
only during the process upset but also as the process gets back on track. Such a
scenario was observed in cultivation MTF02 between 34 and 35 hours and again be-
tween 45 and 50 hours where the substrate feeding was stopped for different reasons.
Most of the fluxes in figure 9.23 show peculiar behavior during these time periods,
and it has not been attempted to explain the observed patterns. Furthermore the
need for a minimal threshold value on the acetate conversion rate highlights that
assuming constant values of αx and αa might not fully capture the actual dynamics
of the system.

In the metabolic flux model in table 9.6 assumptions were made on the parameters
YxNADH, P/O and γN , as well as the parameters deducted from these namely γ and
YxATP . First it was assumed that all of these parameters were constant throughout
the process operation and secondly that values reported from studies of another
strain of S. cerevisiae could be adopted. One of the consequences of the assumptions
above is that the quantitative distribution of the glucose flux into the anabolism and
catabolism may be erroneous as YxNADH and γ influences this distribution, however
the qualitative fluctuations in the fluxes through these two major pathways provide
information as to how the microorganism reacts to changing growth conditions. The
variations in the specific conversion rate of ATP and NADH are also consequences of
the assumptions on the parameters. In most of the examples shown in section 9.5.2
the NADH balance appears to close rather well, whereas the ATP balance shows
much more variation, indicating either that the parameters related to the specific
conversion rate of ATP might be more susceptible to variation or that a component
with significant effect on the ATP balance has not been included in the model.
In general the information that these two balances provides is primarily how well
the model is able to describe the observed behavior. When the specific conversion
rates show constant, large discrepancies from being balanced, this indicates that the
model estimates should be used with caution.
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9.6.2.3 IPP Soft Sensor

In case of the results shown for the IPP soft sensor in section 9.5.3 it was mentioned
that in cultivation MTE02 shown in figure 9.25(d) a discrepancy between the esti-
mated trajectory and the offline measurement of the insulin precursor concentration
could be seen. This indicates that the proposed model provides a reasonable descrip-
tion of the productivity during growth conditions which are close to the standard
conditions, while other effects need to be included if a more comprehensive model
is required. To investigate this, more offline measurements are needed.

From the comparison of the performance of IPP soft sensors using ethanol or
acetate production as an indicator for oxido-reductive growth in figure 9.26 showed
that a slightly better performance is obtained using the acetate production.

9.6.3 Model Describing Acetate Production

The results of chapter 8 indicated that discrepancies between the anticipated and
observed ammonia consumption rate appeared just before or during a process upset.
In section 9.5.1 it was demonstrated that the large variations observed in the flow
rate of ammonia to the bioreactor could be explained by a conversion of acetate.
A parameter, αa, was used to relate the moles of protons necessary to neutralize
1 C-mole of acetate. A value of αa = 1/2 was found to reasonably well describe
the observed trends in the offline measurements of acetate. This value of αa cor-
responded well with the observations by Casal et al. (1996) that during growth on
glucose, weak acid transporters in the plasma membrane are repressed and only
undissociated acetic acid can diffuse across the membrane. Acetic acid dissociates
in the abiotic phase, because the extracellular pH is higher than the pKa of the
weak acid. For each C-mole of acetic acid that dissociates, 1/2 mole of protons are
released requiring an equal amount of ammonia to neutralize the acidifying effect
of the protons. It remains to be investigated to what extent the closeness of the
operational cultivation pH to the pKa of acetic acid has an effect on the value of αa.
Such an investigation should be combined with a determination of the variations to
the elemental composition of the biomass in the different operating regimes of the
cultivation.

As described in section 9.2 a threshold of a normalized value of ± 1.5 mmole NH

3/C-mole biomass/hr of the specific ammonia flux (qn) is used. The threshold value
is used to distinguish between the two scenarios:

Scenario 1: rn = αxrx

Scenario 2: rn = αxrx + αara

This is used in order to minimize the influence from using a simple model to describe
the rather complex behavior of cellular growth, synchronized growth of subpopula-
tions combined with the transport of weak acids across the plasma membrane under
varying process conditions removed from steady state and equilibrium conditions.
The validation data indicates that the chosen value of αa results in good descriptions
of the offline measurements of acetate, however discrepancies can be seen to occur
especially during synchronized growth as pointed out in case of cultivation MTV03
(figures 9.13(a) and 9.14).



9.6. Discussion 193

Combining the model for acetate conversion with a simple carbon balance further-
more provided an estimate of the biomass production rate. As illustrated in the
validation batches of section 9.5.1, this simple model gave a good description of the
offline measurements of biomass concentrations. In the case of cultivation MTS01
in figure 9.11(b) it could be seen that choosing another value for αa (= 1/3) would
lead to a better description of the biomass concentration, but an inferior description
of the acetate concentration. The reason for this discrepancy was explained by the
observation that another metabolic product, namely glycerol, was present in signifi-
cant amounts at the sampling close to 72 hours (see figure 9.11(d)). Taking glycerol
conversion into account, combined with the uncertainty on the possible variation in
the biomass composition as discussed above, the proposed model of equations 9.40-
9.41 with αa = 1/2 and αx = cx = 0.146 provides a reasonable description of both
the acetate and biomass conversion rates, evaluated using offline measurements of
these components in validation batches MTS05 and MTV03.

9.6.4 Analysis of Intrinsic Metabolic Fluxes

With the modeling of acetate and biomass conversion rates in place, a metabolic
flux model was proposed to facilitate the analysis of the intrinsic flux distributions
assuming constant pools of the intermediates: glucose-6-phosphate, pyruvate and
acetaldehyde. The details of the model are discussed in section 9.3 along with
assumptions on constant yield coefficients related to ATP and NADH balances,
making it possible to evaluate significant fluctuations in these cofactors.

9.6.4.1 Synchronized Growth, Fast Dynamics

In the presentation of the results obtained using the metabolic flux model on data
from cultivation MTS05 it is interesting to notice how synchronized growth occurs
during fed-batch operation of the bioreactor, where the estimated intrinsic flux dis-
tribution changes during synchronized growth as can be seen in figure 9.15. The first
of the synchronizations at 43 hours appear to be triggered by a temperature drop of
0.5◦C lasting 10 min. The reason for this drop is the activities related to prepara-
tion for sampling. Under normal operation i.e. between sampling, a steam circuit
ensures that the sampling valve is kept sterile. This setup also contributes energy
(heat) to bioreactor; energy which is removed by the cooling jacket. In preparation
for sampling of broth, the steam circuit is closed, and as the controller of the cooling
system reacts the temperature decreases 0.5◦C. The standard deviation in temper-
ature during normal operation is 0.12◦C, so even though a temperature variation of
0.5◦C seems small it is still significantly different from the normal variations. Inter-
estingly the second and third oscillation are not triggered by sampling preparation.

Surprisingly the model estimates that the anabolic flux decreases significantly as
a consequence of synchronization of growth. To understand this behavior it should
be borne in mind that the metabolic flux model has been constructed to facilitate
monitoring of the dynamic behavior of the cultivation process at a macroscopic
level, and is not sufficiently complex to account for the dynamics at the microscopic
level of the cell cycle, which becomes apparent during synchronized growth. Münch
(1992) describes how the intracellular concentration of carbohydrates i.e. trehalose
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and glycogen, varies during the cell cycle. He further explains how trehalose is
consumed during the S-phase (DNA-synthesis) coinciding with a peak in the CO2

production rate as well as production of overflow metabolites, in his case ethanol
and acetate. In the subsequent G2 (gap-2) and M (mitosis) phases, accumulation of
trehalose is reported by Münch as the budding cell prepares to separate into mother
and daughter cells. Taking these observations into account, the dips seen in the
anabolic flux at 43, 47 and 51 hours are explained by the unmodeled effects from
rapid utilization of storage trehalose leading to increased activity of the glycolysis.
Furthermore these dips in the anabolic flux has a direct effect on the estimated
ATP balance as can be seen from the ATP flux balance equation in table 9.6,
and the large fluctuations seen in 9.15(d) are therefore in part due to the effects
from trehalose utilization, and in part due to the fluctuations in the activity of
the oxidative phosphorylation, the other major contributor to the ATP balance
equation.

42.5 43 43.5 44 44.5 45 45.5 46 46.5 47 47.5 48
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Figure 9.27. Intrinsic fluxes as estimated by the IMF soft sensor during periods of
operation with synchronized growth in cultivation MTS05 (a) and MTV03 (b). The
figures shown the activities of the glycolytic flux (gly), oxidative catabolism (cat,ox),
oxidative phosphorylation (oxp) and acetate conversion (hac) as well as the reaction
consuming and producing ATP (atp) and NADH (nadh). The distance between the
ticks on the y-axis is one normalized unit, as was also used in e.g. figure 9.15.

In figure 9.27(a) the estimated intrinsic fluxes during synchronized growth in the
fed-batch phase of cultivation MTS05 are shown. From the figure it can be seen
that at the onset of the oscillation at 43.3 hours, the initial increase in the glycolytic
flux appears to lead to an overflow at the pyruvate branch point and results in
production of acetate. Only as the activity of the oxidative phosphorylation is
slowly increased, so are the flux through the oxidative catabolism. The dynamic
details of this picture is somewhat misleading since the original sampling rate of
the data from gas analysis (ethanol, CO2 and O2) is every tenth minute, and these
data sequences have been subsampled by the process control system to every minute
using a zero order hold. This setup leads to an apparent delay in the gas signals,
due to the difference in sampling frequencies. The ammonia flow rate used for the
determination of the acetate flux is sample every minute and therefore the observed
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response to dynamic changes is much faster in this signal than is the case for the
data from the gas analysis. With these comments in mind it is still interesting to
note how the activity of the oxidative phosphorylation appears to respond more
slowly to the elevated glycolytic flux than the conversion rates of acetate and ATP,
which can also be seen to be the case for the second oscillation at 46.8 hours.

It is interesting to note that no production of ethanol appeared during the cell
cycle oscillations of cultivation MTS05 (see figure 9.15(c)), in contradiction to the
observations reported by Münch (1992). This is an interesting observation, since
this indicates that alcohol dehydrogenase, the enzyme catalyzing the reaction from
acetaldehyde to ethanol, is not expressed under these conditions, since the primary
product of the overflow metabolism at the pyruvate branch point is acetate rather
than ethanol.

In cultivation MTV03 synchronized growth was reported to occur during contin-
uous operation from 65 to 80 hours and the estimated intrinsic fluxes are shown in
figure 9.27(b). This time the onset of synchronization is not related to the sampling
procedure, as was the case in cultivation MTS05. As discussed in relation to figure
9.13, ethanol production occured around 60 hours, followed by an abrupt step-down
in the dilution rate and a slowly increasing ramp in the dilution rate from 60 to 68
hours, after which continuous operation conditions had been restored. As seen in
figure 9.27(b) oscillations suddenly appeared from 71 to 79.5 hours and ceased as
a step-up of 50 % in the dilution rate was initiated15. During the oscillatory time
period 9 peaks can be observed in the ATP balance and the glycolytic flux estimates
which is supported by CER and FNH3 measurements in figure 9.14. The peaks are
positioned approximately at hours:

[71.2, 72.4, 73.4, 74.4, 75.3, 76.0, 76.9, 77.7, 78.7] (9.56)

The peaks in cultivation MTV03 are smaller and more closely positioned than re-
ported in MTS05 with 4 hours between each peak (see figure 9.27(a)). This indicates
that what is observed is the effect of synchronization of cellular activities of a num-
ber of subpopulations with different sizes and maybe also with different oscillation
periods. Prior to the first oscillation there does not seem to be any indications
as to what might have triggered the synchronization of the growth, except for the
step-down in dilution rate 11 hours before the first oscillation, the slowly increasing
ramp over 8 hours and constant continuous operating conditions for 3 hours.

Synchronized growth appearing in the time period 65-80 hours of cultivation
MTE02 was different from the synchronized growth seen in both cultivation MTS05
and MTV03. In the case of cultivation MTE02 no severe changes in the glucose
syrup substrate feeding rate occurred except for a 1 hour stop of feeding between
43 and 44 hours due to problems with the ammonia supply system and the onset
of feeding of nutrient substrate at 52 hours. Cultivation MTE02 was special in
the sense that a more aggressive substrate feeding strategy was carried out in the
fed-batch operation as discussed in section 9.5.2 in relation to figure 9.20. Figure
9.28(b) show how synchronization of growth appear at 65 hours and then continues,

15The variations following this step-up in dilution rate was discussed in section 9.5.1.4. Here it
was also shown that oscillations reappeared at 93 hours and lasted for the rest of the cultivation
(see figure 9.14(b))
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Figure 9.28. The trajectory of normalized values of glucose syrup feeding rate (a) and a
window from 60 to 80 hours of some of the intrinsic fluxes during a period of synchro-
nized growth in cultivation MTE02 (b). Figure (b) shown the activities of the glycolytic
flux (gly), oxidative catabolism (cat,ox), oxidative phosphorylation (oxp) and acetate
conversion (hac) as well as the balancing of reaction consuming and producing ATP
(atp) and NADH (nadh). The distance between the ticks on the y-axis is 1/3 normalized
unit; note that this is different from both figure 9.27 and figure 9.21.

although less pronounced after 70 hours, until a ramp in the dilution rate is initi-
ated at 80 hours. Compared to figures 9.27(a) and 9.27(b) the oscillations in figure
9.28(b) are much smaller (approximately 1/3 in amplitude), which indicates that
it is much smaller subpopulations that have synchronized their cell cycles, while it
appears that a number of subpopulations exists, as was also the case in cultivation
MTV03. The peaks are positioned approximately at hours:

[65.4, 66.4, 67.7, 68.6, 69.6, 70.7, 71.7, 72.5, 73.7, 74.7, 75.6, 76.7, 77.6, 78.7]
(9.57)

Notice that after 70 hours the identification of the individual peaks becomes difficult.

9.6.4.2 Onset of Ethanol Formation, MTS01

Two periods of ethanol formation occurs after the batch phase in cultivation MTS01
as shown in figure 9.12(d). The two situations are rather different, although in both
cases acetate formation is observed prior to the onset of ethanol formation. Focussing
on the switch from fed-batch to continuous operation in cultivation MTS01, it was
pointed out in section 9.5.2 that the cooling circuit of the bioreactor was out of
control from 37 to 45 hours leading to a 3◦C increase in the broth temperature,
which however was quickly returned to the desired set point at 46 hours. It is not
known what the possible effects could be of such temperature variations, however
it is possible that these variations have had such an effect on the yeast that the
subsequent acetate formation was a combined result of process history and process
conditions. Similar responses were observed in three other cultivations (MTS02,
MTS03 and MTS04) also experiencing problems in the cooling circuit.
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An alternative explanation could be that the capacity of an important metabolic
pathway was exceeded. Other investigators have pointed to a limited capacity (a bot-
tleneck) of the enzyme pyruvate dehydrogenase catalyzing the reaction from pyru-
vate to AcetylCoA leading to an overflow at the pyruvate node in the catabolism
(Pronk et al., 1996) or a limited capacity in the oxidative phosphorylation or respi-
ratory capacity (Barford and Hall (1979);Sonnleitner and Käppeli (1986); Sonnleit-
ner and Hahnemann (1994); Herwig (2001)). From the data presented in figure
9.17 it appears that the activity of the oxidative phosphorylation and the oxidative
catabolism are not significantly affected by the onset of acetate production, while the
NADH balancing equation is only affected momentarily at the onset and otherwise
remains in balance until the start of ethanol formation at 50 hours. Shortly after
the production of ethanol begins the acetate formation is decreased and the result
is only a very small flux through the reductive catabolism (vetoh + vhac), while a
large flux through the oxidative catabolism is estimated leading to an accumulation
of NADH from the activities of the TCA cycle. This would indicate that the max-
imum capacity of pyruvate dehydrogenase is not the bottleneck at this point, since
the sudden increasing flux through the oxidative catabolism would not be possible
otherwise. A much slower response at the onset of ethanol production was seen in
the activity of the oxidative phosphorylation, and over a time period of 10 hours
the activity of the oxidative phosphorylation is increased to a level that leads to
reestablishment of the NADH balance.

30 40 50 60 70 80 90 100
Process Time (hr)

1

Eth

q
oxp

q
glu

Figure 9.29. Scaled trajectories of the specific glucose uptake rate (qglu=qana+qgly), the
specific activity of the oxidative phosphorylation (qoxp) and the ethanol concentration
in the offgas from the bioreactor (Eth). The vertical line (1) indicates the onset of
the second ethanol production period. Note that during the time period 60-72 hours
the estimated biomass concentration is larger than the observed offline measurements,
which means that the specific rates are estimated too low during this time period.
Glycerol was observed in an offline sample taken at 72 hours. Data from cultivation
MTS01

In figure 9.17 it can be seen that at 48 hours a continuous production of acetate can
again be seen to occur and this continues with some fluctuations up until 69 hours
(figure 9.18), where ethanol formation starts. This time the mechanism responsible
for the observed behavior seems to be different from the ethanol formation at 50
hours. This is highlighted by figure 9.29, where it can be seen how the specific glucose
uptake rate (qglu=vana+vgly) increases continuously from 50 to 69 hours, assuming
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insignificant accumulation of glucose in the culture broth. The dilution rate over
this time period is more or less held at a constant level, however the production
of acetate leads to a decreasing biomass concentration. The rise in specific glucose
uptake rate as well as the activity of the oxidative phosphorylation is even more
dramatic, keeping in mind that the estimated biomass concentration is larger than
the values measured from offline samples as pointed out in section 9.5.1. From
figure 9.29 it could appear that it is a maximum in the activity of the oxidative
phosphorylation that triggers a metabolic response that leads to ethanol formation,
however the peak at 79 hours as well as observations in cultivations MTE02 (figures
9.20 and 9.21) and MTF02 (figure 9.23) suggests that even higher specific activities of
the oxidative phosphorylation can be obtained. An alternative explanation would be
that it is the onset of ethanol formation that results in a repression of the respiratory
capacity, which has also been reported by Lei et al. (2003), however at the ethanol
formation at 50 hours a repression of the oxidative phosphorylation was not seen and
in both cases the repression is not maintained as ethanol is being consumed from 51
to 62 hours and again from 74 to 79 hours, indicating that it is not the presence of
ethanol, but some other phenomenon that is responsible for the observed repression
at 69 hours. Again the flux through the oxidative catabolism can be seen to react to
the production of ethanol and the observed increase in the flux indicates that it is
neither a bottleneck in the form of a maximum capacity of pyruvate dehydrogenase
nor the sudden ethanol formation that is the reason for the acetate production. At
the beginning of the ethanol formation, acetate formation is estimated to cease and
revert to a consumption of acetate instead as was shown in figure 9.18(c).

It has been assumed above that the proposed metabolic flux model is sufficient
to describe the flux distribution, however in section 3.2, a more complex reaction
network was presented. It is possible that acetate under certain conditions is further
converted by AcetylCoA-synthetase into AcetylCoA, which is then transported into
the mitochondria, where AcetylCoA enters into the TCA cycle and is dissimilated.
The series of reactions from pyruvate through acetaldehyde, acetate, AcetylCoA
and into the TCA cycle is referred to as the pyruvate dehydrogenase by-pass by
Pronk et al. (1996), since the combined actions correspond to the function of pyru-
vate dehydrogenase. The observed variations in the acetate conversion may then
be the consequence of the activity of AcetylCoA-synthetase, where repression and
derepression is playing a key role in controlling the acetate concentration. With the
data at hand it has not been possible to investigate this possible scenario in more
detail.

9.6.4.3 Shorter Fed-batch Phase, MTE02

Despite the process upsets occurring during the fed-batch operation of cultivation
MTE02 it was possible to use a more aggressive feeding strategy and shorten the
fed-batch phase with up to 5 hours compared to cultivation MTS05 when taking the
duration of the process upset into account. The applied feeding strategy challenged
earlier observations from investigations of the critical growth rate in continuous op-
eration, where it had been concluded that the critical growth rate occurred around
a normalized value of 1.4 mole/mole/hr at a cell density corresponding to a nor-
malized value of 20 g/kg (Internal Novo Nordisk Research Report). The results of
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cultivation MTE02 showed that a normalized growth rate, µ (or qana), above 1.4
mole/mole/hr was used for more than 7 hours without ethanol being formed (figure
9.23, 33-40 hours).

During the fed-batch operation the normalized biomass concentration increases
from 3 to 20 g/kg and at the same time the estimated normalized growth rate de-
creases from 1.8 to 1.0 mole/mole/hr (figure 9.20(a)). It is speculated that these
observations could be interpreted as the critical growth rate for the onset of oxido-
reductive growth being affected by the biomass concentration in high-density culti-
vations. This is an interesting hypothesis, since it challenges the current fed- batch
strategy, suggesting that in the beginning of the fed-batch operation an aggressive
feeding strategy will lead to a faster fed-batch phase. The observations in cultiva-
tion MTE02 also suggest that an even more aggressive feeding strategy can be used.
Ideally investigations of a feeding strategy should be done using a producto-stat sug-
gested by Lei et al. (2003). Lei used a control loop to maintain a constant ethanol
concentration in the culture broth. For the recombinant strain used in this work,
setting up a control structure to maintaining a constant acetate concentration could
be used in order to investigate an optimal feeding strategy for a short and effective
fed-batch operation.

9.6.4.4 Ramping Dilution Rate, MTE02

Towards the end of cultivation MTE02 a feeding strategy of a slowly increasing
dilution rate was applied. Acetate production occurred 1.5 hours before ethanol
formation was observed. The acetate production occurred at a specific growth rate,
µ (or qana), of 1.4 mole/mole/hr, which corresponds to earlier observations in con-
tinuous operation as reported above. As ethanol starts to be formed the oxidative
phosphorylation can be seen to decrease. The flux through the oxidative phospho-
rylation is not quite as high as was observed in MTS01, and the response to the
lowering of the dilution rate following the formation of ethanol indicates that it is
not a limitation in the oxidative phosphorylation that seems to be the explanation
for the ethanol production, since the oxidative phosphorylation after the lowering
of the dilution rate at 117 hours increases to even higher levels than prior to the
ethanol formation.

9.6.4.5 Closed Loop Control, MTF02

From the experience gained in cultivation MTE02, closed loop control of the sub-
strate feeding rate was applied in an attempt to obtain not only a shorter fed-batch
phase, but also a more robust transition form fed-batch to continuous operation by
letting a physiological response in the form of ethanol in the offgas be an indicator
of the process state. Acetate was again seen in large quantities prior to formation of
ethanol and prior to the proper functioning of the controller, and the activity of the
oxidative phosphorylation decrease dramatically at the onset of ethanol formation
as did the formation rate of acetate. From figure 9.23(c) it is interesting to note that
up until 60 hours acetate appear to be consumed however at 62.5 hours acetate is
again being formed. From 50 hours and onwards there is only a modest production
of ethanol in agreement with the proper operation of the control loop. It should be
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noted that during closed loop operation the oxidative phosphorylation flux reaches
2 mole/mole/hr as seen in figure 9.23(b).

9.6.5 Insulin Precursor Production Rate

From figures 9.24 and 9.25 it could be seen how the trajectories of the offline mea-
surements of the insulin precursor concentration were reasonably well described by
the proposed model in equation 9.51.

It was mentioned in section 9.4.2 that the first order behavior of equation 9.49 could
be interpreted as a slow buildup of capacity or filling up storage for producing and
expressing the insulin precursor. The investigation of expression rates of the insulin
precursor described by Kjeldsen et al. (2001) and reviewed in section 5.2.1, argued
that secretion may reflect saturation of a sorting mechanism due to over-expression
of the IP or that secretion occurs in competition with intracellular retention. No
information has been reported on the size or capacity of this intracellular retention,
however it does not seem likely that it is the filling of such an intracellular capacity
that is the reason for the time it takes for the specific productivity of the insulin
precursor to reach the high level observed in the cultivations without significant
process disturbances shown in figure 9.24.

It is clear from Kjeldsen et al. (2001) that the proposed model does not capture
the full dynamics of the expression system of the insulin precursor, however the
model provides valuable information and a starting point for further studies into the
improvement and optimization of the productivity. It would be highly interesting to
investigate if it is possible to change the operation of the process to obtain a higher
specific productivity earlier in the process. This would require investigation of the
causes responsible for the observed slow increase in the specific productivity, where
detailed studies of the response to fast changes in the process conditions i.e. pulse
chase and other dynamic studies, will be relevant.

9.6.6 Online Analysis

One of the aims of this work has been to provide a framework and tools to facil-
itate online monitoring and control of cultivation processes. In the construction
of the models it has been important that the measurements used for estimation of
concentration profiles and flux distributions were similar to the information avail-
able in the online process control system of the production facility of an industrial
company. This makes it possible to test and implement the methodologies at the
production facility and help turning the focus onto a better utilization of the process
information available from the process control system in production.

It was furthermore the aim of this work to implement and test the proposed frame-
works and tools, however due to insufficient time for this part of the project, such
an implementation was never carried out. Implementation of the proposed modeling
framework in a pilot plant facility would facilitate further investigations of the phys-
iology of the recombinant strain, where closed loop control of the substrate feeding
rates based on the model outputs could provide new and valuable information about
the metabolic control mechanism of the strain.
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9.7 Conclusion

This work has proposed and presented 3 soft sensors that in combination provides
a framework for dynamic online monitoring of cellular activities in terms of the dis-
tribution of intrinsic metabolic fluxes as well as of the balancing of the important
cofactors ATP and NADH, combined with an estimation of the product concentra-
tion obtained by modeling the productivity of the desired product.

Firstly it was shown how unexpected fluctuations in the flow of ammonia to main-
tain a constant level of pH in the culture broth could be ascribed to the conversion
of acetate. This observation led to a model that was able to estimate the conversion
rate of acetate as well as the production rate of biomass, based on a combination
of a proton balance (equation 9.40) and a carbon balance (equation 9.41), and us-
ing these rates in dynamic mass balances online estimations of acetate and biomass
concentrations were provided. Applying the model on data from a number of culti-
vations, provided a surprising observation namely that acetate was being produced
in large amounts 1-2 hours before formation of ethanol occurred. The reason for
the onset of the acetate formation has not yet been determined. In order to closer
investigate this phenomena, dedicated experiments combined with the use of the
prosed soft sensors are needed.

A small metabolic flux model was proposed using calculated and estimated con-
version rates of substrate, biomass and key metabolites combined with physiological
parameters reported in the open literature on another strain of Saccharomyces cere-
visiae. The model was used to illustrate and discuss observations from cultivation
showing both normal and abnormal process behavior. The model illustrated how
acetate was produced prior to ethanol formation. The model also showed how the
activity of the oxidative phosphorylation changed extensively as ethanol formation
started and as ethanol consumption ended, which was interpreted as effects from
repression/derepression of the oxidative phosphorylation. It was not possible to
explain what mechanism was responsible for this control of the oxidative phospho-
rylation, although it was discussed that it could not be a fixed limitation in the
capacity of the oxidative phosphorylation, since an experiment using closed loop
control of the ethanol concentration in the offgas showed higher activity of the ox-
idative phosphorylation than were seen in similar open loop experiments.

Finally a simple model was proposed to describe the specific productivity of the
product, an insulin precursor. The description was based on a first order model
expression for the dependence of production rate and biomass synthesis rate, with
a time constant proportional to the specific glucose uptake rate provided by the
metabolic flux model presented above. The model gave a reasonable description of
the observed trajectories of product concentration in a normal cultivation and by
a small extension of the model, it was also able to provide a reasonable estimation
of the product concentration profile during process upset in the form of acetate
formation.

9.7.1 Further Work

It is highly relevant to conduct further experiments to elucidate the mechanisms
behind some of the observations reported in this work. It would be interesting using
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the proposed model for online evaluation to conduct additional experiments with the
aim of elucidating the mechanisms controlling distribution of metabolic fluxes. It is
interesting to determine how and why acetate is being formed. Investigations using
the proposed model framework should be combined with more frequent sampling and
offline analysis of the culture broth, where analysis of the activity of key enzymes
during different process conditions could provide valuable insight in the control of
physiological mechanisms related to the reductive catabolism.

It is believed that studies using closed loop control based on physiological re-
sponses, as was briefly discussed in relation to cultivation MTF02, will be able
to provide valuable information as to the mechanisms leading to changes in the
metabolic flux distribution. Closed loop control based on physiological responses is
especially interesting in relation to the investigations and screening of genetically
modified organisms in order to understand and evaluate the effects of the modifica-
tions to the genome and their impact on performance and productivity of a given
recombinant strain.
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Conclusions

10.1 Modeling Production Data

The investigations in chapter 6 illustrated how model-based soft sensors can be used
as tools for analysis and monitoring of industrial cultivation processes and enhance
the understanding of the processes. Despite using noisy, low quality process data
it was possible to provide both online estimates and predictions that would enable
an extended supervision and evaluation of cultivations. The online evaluation of
biomass and product concentrations are not only valuable for the personnel at the
cultivation plant, but also for the subsequent downstream processing, providing
information of the expected quantity and quality of the culture broth that is arriving.
In continuous cultivations such information becomes even more valuable, since the
culture broth is processed while the cultivation is still running and results from
offline analysis are not available yet.

10.2 Elemental Composition of Biomass of an In-

dustrial Recombinant Strain of Saccharomyces

cerevisiae

During the work with process data from a production facility it was found that the
current quality of data would render it impossible to construct and evaluate more
sophisticated process models. In stead experiments were carried out in pilot plant
scale using another production strain of Saccharomyces cerevisiae.

In order to use component mass balances for online monitoring of unknown com-
ponents it was found necessary to estimate the element composition of the biomass
during oxidative growth conditions. This was described in chapter 7. Two different
approaches were attempted: elemental analysis and macroscopic mass balancing.
Inspired by the work of Lange and Heijnen (2001) it was assumed that 3.6 w% of
the biomass concentration measured as dry weight was due to water, and an ash
content of 3.8 w% accounting for the contributions of metals, sulfur and phosphor to
the biomass composition. The following elemental composition of the recombinant
strain of S. cerevisiae is suggested:

CH1.82O0.576N0.146 κx = 4.23; MDW = 27.1 g/C-mole (fr: 7.3 w%) (10.1)

The results obtained from this investigation also shows that the mass balances
close under stationary conditions during continuous operation. This would not have
been the case if the biomass composition estimated using macroscopic mass balances
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was significantly different from the elemental analysis and the compositions cited in
the literature.

10.3 Estimating Ammonia Flow Rates During Ox-

idative Growth

While conducting experiments in pilot plant surprising variations in the process
variables were observed, most noticeable in the ammonia feed flow rate to maintain
a constant pH. In chapter 8 a model was proposed to provide a reasonable estimate of
the ammonia feed flow rate during balanced oxidative growth, the normal operating
conditions. Comparing the model-based estimated flow rate of ammonia to the
measured values highlighted a number of discrepancies especially during the switch
over from fed-batch to continuous operation. It is believed that these discrepancies
can be ascribed to undetermined metabolic activities i.e. changes in metabolic
flux distribution, which influence the amount of protons transported from the cell
to the surrounding broth and subsequently the addition of ammonia to neutralize
this effect. Furthermore the use of the proposed model for monitoring of oxidative
growth condition was also discussed. A detection limit of ± 1.5 mmole NH 3/mole
biomass/hr for violation of the oxidative growth condition was suggested.

The findings illustrate how model-based soft sensor can be used to provide infor-
mation on the current state of a cultivation process by comparing expected process
behavior, formulated as a model, to the observed process behavior. Discrepancies
between the two signals can then be analyzed in order to extend the understanding
of the system.

10.4 Soft Sensors for Estimating Biomass and Ac-

etate Concentrations

The construction of 3 models for dynamic online monitoring of cellular activities
were described in chapter 9.

The unexpected fluctuations in the flow of ammonia to maintain a constant level
of pH in the culture broth, as described in chapter 8, could be ascribed to the
conversion of acetate. This observation led to the development of a model in section
9.2 that was able to estimate the conversion rate of acetate as well as the production
rate of biomass, based on a combination of a proton balance and a carbon balance,
and using these rates in dynamic mass balances online estimations of acetate and
biomass concentrations were provided. The large production of acetate was quite
surprising and applying the model on data from a number of cultivations, provided
a surprising observation namely that acetate was being produced in large amounts
1-2 hours before formation of ethanol occurred. It is not yet known why the acetate
formation occur, however with the model-based soft sensor at hand it is now possible
to monitor the onset of the acetate formation as well as the acetate and biomass
concentration. This information is valuable in order to avoid the acetate formation
or to provide a robust and efficient procedure to get the system back into the desired
operation regime, balanced oxidative growth.
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The availability of online estimates of the biomass concentration will make it possi-
ble to apply more aggressive, yet robust, feeding profiles during fed-batch operation
shortening the time before the production phase, the continuous operation, is initi-
ated.

10.5 Soft Sensors for Estimating Intrinsic Metabolic

Fluxes

In process development, the information of the biomass concentration can also be
used for more detailed analysis of the physiology of the recombinant production
strain. This was attempted in section 9.3 where a small metabolic flux model was
proposed using calculated and estimated conversion rates of substrate, biomass and
key metabolites combined with physiological parameters reported in the open liter-
ature on another strain of Saccharomyces cerevisiae.

The model was used to illustrate and discuss observations from cultivation showing
both normal and abnormal process behavior. As a soft sensor the model was able to
provide estimates for online monitoring of the intrinsic metabolic flux distributions,
highlighting that acetate was produced prior to ethanol formation and how the
activity of the oxidative phosphorylation changed extensively as ethanol formation
started and as ethanol consumption ended.

Having such soft sensors available during process development would support the
investigations of the process boundaries in order to construct control strategies for
obtaining more robust operating procedures. Applying and/or improving the models
of the soft sensors in the production environment could provide a unique possibility
to monitor, control and optimize process performance.

10.6 Soft Sensors for Estimating Product Con-

centration

Finally a simple model was proposed in section 9.4 to describe the specific produc-
tivity of the product, an insulin precursor. The analysis of the specific productivity
showed surprising features, namely a slow adaptation of the specific production rate
and impact on this from process upsets such as the formation of acetate. The model
gave a reasonable description of the observed trajectories of product concentration
in a normal cultivation and through a small extension of the model, it was also
able to provide a reasonable estimation of the product concentration profile during
process upset in the form of acetate formation.

10.7 Soft Sensors for Improved Process Under-

standing

In this thesis it has been demonstrated that the construction and application of
soft sensors provide new and valuable information on the dynamics of cultivation
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processes. The modelbased analysis of cultivation process data has led to the surpris-
ing discovery that large amounts of acetate were sometimes being formed, especially
prior to the onset of ethanol formation. Constructing models with increasing com-
plexity provided the means for estimating the variations in the biomass and acetate
concentrations, and furthermore to estimate how changes to the intrinsic metabolic
flux distribution affected the performance of the cultivation.

The approach to modeling of cultivation data that has been used in this thesis,
is in line with the main idea behind PAT (see chapter 2), namely that combining
data and knowledge to improve process understanding is the correct way to ensure
product quality. Using the terminology of the information hierarchy presented in
figure 2.2 on page 11, the soft sensors condensate the data provided by the process
measurements into information and knowledge of the physiology and productivity
of the production strain.

The applicability of the information and knowledge now available is extensive.
Using the new information to formulate (better) monitoring algorithms and control
strategies is obvious, as is the use of new information and knowledge for process
optimization purposes. Other interesting applications are the use of the information
in other plants, most likely in downstream processing, but also in the research
and development departments where an explanation for the observed production
of acetate as the initial metabolic product formed during onset of oxidoreductive
growth can be investigated.

10.8 Outlook and Further Work

The investigations carried out in this thesis have demonstrated the potential of
model-based monitoring and control in the cultivation processes of biopharmaceuti-
cal company, Novo Nordisk. Already some of the ideas developed have been taken
up and are being pursued, however there are still many possible model applications
that have not yet been attempted or addressed.

In this thesis the model construction, evaluation and validation has been carried
out offline. It remains to be tested how the soft sensors perform in online environ-
ments both in pilot plant and in production. It can be expected that such testing
will lead to the uncovering of shortcomings in the soft sensors, since process condi-
tions and equipment can have changed since the model development and unforeseen
process disturbances might trigger new and unexpected metabolic responses. Dur-
ing the online testing it is important to involve plant personnel in the evaluation
of the tools in order to assure that the tools are accepted and understood by the
people who are expected to use them daily. Furthermore the involvement of quality
assurance and quality control staff is also important in order to extend the antici-
pation of model-based monitoring and control and to address possible conflicts with
quality assurance guidelines as early as possible.

If an online evaluation of the soft sensors proves to be successful, it would be at-
tractive to investigate the possibility of applying control loops based on the signals
provided by the soft sensors. Experiments in pilot plant could be used to illustrate
the potential and providing experience for extended physiological studies of pro-
duction strains and formulation of enhanced, yet robust, production process with
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the aim of optimizing the productivity. In the development of new products and
processes it would be desirable to address the process modeling for monitoring and
control as early as possible in the development project. Remember that the models
probably have to be changed, recalibrated or reconstructed as new aspects come
into play during scale up of processes. However the analysis of the required changes
to a model can be used to shed further light on the mechanisms that are responsible
for process variations.

Another area that can be addressed in future work is the use of the information
provided by the soft sensors in the downstream processes in order to estimate the
quality and quantity of inputs to these processes. Taking a more holistic approach
to optimization of the production pipeline can lead to improved overall process
economics by sharing of information and experience in order to limit the effects of
bottlenecks and optimize equipment utilization.

A big question is where the responsibility of model construction, validation and
maintenance should be placed in the company organization. With the process ana-
lytical technology (PAT) initiative by U.S. Food and Drug Administration it can be
expected that eventually model-based process monitoring and control will be given
much more attention in the biopharmaceutical industry. It is desirable that the
personnel using models in the shape of soft sensors on a daily basis have a sense
of responsibility for the tools, however it is unlikely that plant floor personnel can
be expected to have high expertise in both cultivation processes and modeling at
the same time. A better approach might be to set up a central modeling team that
can support the plant personnel in the maintenance and supervision of the models
and at the same time head project teams in the development of new models and
soft sensors. The best solution for such organization remains to be investigated and
tested as does the aspects for iterative model revalidation and calibration.
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Abbreviations
A-data additional batches used in chapter 6
ADP adenosine diphosphate
AMP adenosine monophosphate
API active pharmaceutical ingredient
ARMAX autoregressive moving average with exogenous input
ATP adenosine triphosphate
BAC software sensor for estimating biomass and acetate concentrations
cdos primary substrate: glucose syrup
cGMP current good manufacturing practice
CoA coenzyme A
CUSUM cumulated sum
CVA canonical variate analysis
DNA deoxyribonucleic acids
DOT dissolved oxygen tension
DW dry weight biomass
EA elemental analysis
EMP Embden-Meyerhof-Parnas
ER endoplasmic reticulum
FAD flavin adenine dinucleotide
FPEM first principles engineering model
GDP guanosine diphosphate
GMO genetically modified organism
GRAS generally regarded as safe
GTP guanosine triphosphate
HPLC high pressure liquid chromatography
IMF software sensor for estimating intrinsic metabolic fluxes
IP insulin precursor
IPP software sensor for estimating the insulin precursor production rate and

concentration
M-data modeling batches used in chapter 6
MES manufacturing execution system
MIMO multiple inputs/multiple outputs
MIS manufacturing information system
MMB macroscopic mass balance
MPC model predictive control
MPLS multiway projection to latent structures
MTE Cultivation code, series 2
MTF Cultivation code, series 3
MTS Cultivation code, series 1
MTV Cultivation code, series 4
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NADH nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
ndos secondary substrate: nutrients
Pi inorganic phosphate
P/O the ratio of phosphate to oxygen in the oxidative phosphorylation
PAT process analytical technologies
PCA principle component analysis
PCR principle component regression
PCS process control system
PLC programmable logic controller
PLS projection to latent structures
POT tpi from Schizosaccharomyces pompe
PP pentose phosphate
RMSE(C/P/V) root mean square error of calibration/prediction/validation
RNA ribonucleic acids
RQ respiratory quotient
SDE stochastic differential equation
SISO single input/single output
TCA tricarboxylic acid
TPI triose phosphate isomerase
UDP-NAG uradine diphosphate N-acetylglucosamine
UDP-NAM uradine diphosphate N-acetylmuramic acid
USFDA U.S. Federal Drug Administration
V-data validation batches used in chapter 6
wt wild type



List of Symbols
A Kalman filter model parameter matrix
ax mole content of hydrogen in biomass per C-mole biomass
bx mole content of oxygen in biomass per C-mole biomass
B Kalman filter model parameter matrix
B regression matrix
c concentration [mole/L, g/L, g/kg]
C number of principle components
C Kalman filter model parameter matrix
CER CO2 evolution rate [mole/hr]
cx mole content of nitrogen in biomass per C-mole biomass
CXC difference between off-gas outlet and air inlet concentration of CO2 [%]
D dilution rate [L/L/hr, kg/kg/hr]
DOT dissolved oxygen tension [%]
e residual
F flow rate [L/s, kg/min]
f function; fraction
I number of batches
J number of variables; objective function
K number of data/sample points
K Kalman filter gain matrix
Km saturation constant [mM]
M molar [g/mole]
OUR oxygen uptake rate [mole/hr]
OXC difference between air inlet and off-gas outlet concentration of oxygen [%]
p loading vector
P Kalman filter state variance matrix
q specific conversion rate [mole/(g dry weight biomass)/hr, mole/mole/hr]
q loading vector
Q covariance matrix of state noise
qs,H+ proton equivalents [mmole H+/L]
r volumetric conversion rate [mole/L/hr, mole/kg/hr]
R Kalman filter output variance matrix
res residual
S covariance matrix of measurement noise
t time [s, min, hr]
t score vector
t1/2 halftime [s, min, hr]
tfb time for start of fed-batch operation
u score vector
V uptake rate [nmole/s/(mg dry weight)], volume [L]
v specific intracellular flux
w weighting vector
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W weight [kg]
w% weight percent [g/g] · 100
x biomass concentration [g DW/L, gDW/kg]; state in Kalman filter
y mole fraction in gas phase; measurement
Ysx yield coefficient of biomass on substrate [C-mole/C-mole]
YxATP yield coefficient of ATP per biomass [mole ATP /C-mole]
YxH yield coefficient of protons per biomass [mole H+ /C-mole]
YxNADH yield coefficient of NADH per biomass [mole NADH /C-mole]
α model parameter
β model parameter
γ model parameter
κ degree of reduction
µ specific growth rate [L/L/hr, kg/kg/hr]
ω frequency [s−1, min−1, hr−1]
ψ model parameter
ρ density [kg/L]
τ characteristic time for adaptation to specific productivity
θ model parameter; temperature [◦C]
ζ filter model parameter
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Superscipts and subscripts

·̂ estimate
a ash
a acetate
ana anabolic reaction
b broth
c carbon; cdos
cat, ox oxidative catabolism
cat, red reductive catabolism
crit critical
DW dry weight biomass
e effluent; ethanol
etoh formation of ethanol
f feed
g gas phase; gauge
g glycerol
glc glucose uptake
gly glycolysis
hac formation of acetate
in inlet
m mass
max maximum
n ammonia; ndos
o oxygen
out outlet
oxp oxidative phosphorylation
p product; physiological contribution
r residual
s substrate; glucose; sampling
t top
tfb time for start of fed-batch operation
v vessel property contribution
w water
x biomass
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