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Kodning for
todimensionelle skiftrum

Som en del af mit Ph.D.-projekt ved COM institutet p̊a DTU under vej-
ledning af lektor Søren Forchhammer har jeg udarbejdet denne rapport.
Mit projekt omhandler kodning for todimensionelle skiftrum.

Jeg vil i dette danske resumé beskrive baggrunden for projektet, samt
opremse de væsenligste resultater. For en mere udførlig gennemgang
henvises til selve afhandlingen, der er forfattet p̊a engelsk.

Overførsel af data, det være sig i netværk eller i forbindelse med data-
lagring, modelleres normalt som transmission over en støjfyldt kanal.
Visse datasekvenser vil være mere udsat for støj end andre p̊a grund af
særlige fysiske karakteristika ved kanalen. Det giver derfor mening at
forbyde disse særlig fejlbehæftede signaler og fjerne dem ved hjælp af en
kode inden transmission.

Teorien for symbolske dynamiske systemer tilbyder en generel ramme
til at afdække konstruktion af koder, der er fri for visse forbudte ord.
En samling af sekvenser, hvori der ikke optræder forbudte ord kaldes
et skiftrum. Disse skiftrum er yderst velforst̊aede, og det er muligt at
beregne den maksimalt opn̊aelige koderate, entropien, for en given liste
af forbudte ord. Der eksisterer ogs̊a værktøjer til effektivt at frembringe
gode koder, der har koderater under (men tæt p̊a) entropien.

Nye typer lagermedier, s̊asom holografisk lagring er todimensionelle
og rejser behovet for at kunne undg̊a visse mønstre. Teorien for todi-
mensionelle skiftrum er langt vanskeligere. Det er ikke muligt eksplicit
at beregne entropien. Teknikkerne for kodekonstruktion kan heller ikke
umiddelbart generaliseres til to dimensioner.

I dette arbejde forsøger vi at afdække noget af teorien for todimen-
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sionelle skiftrum. Vi indfører en række eksempler p̊a skiftrum, der kan
modellere visse aspekter af datalagring. Eksempelvis kan skiftrummet
NIB modellere visse af de særlig fejlbehæftede mønstre, der optræder
under holografisk lagring. Vi giver en række øvre og nedre grænser for
entropien af disse skiftrum baseret p̊a endimensionelle teknikker.

Vi diskuterer brugen af stokastiske modeller for skiftrum. Vi an-
vender en første ordens Pickard model til at modellere højere ordens
skiftrum ved hjælp af en alfabetudvidelse. Dette leder til modeller med
et meget stort antal parametre. Vi præsenterer en iterativ metode, der
med udgangspunkt i et sæt betingede sandsynligheder kan hjælpe med
at vælge parametre for en stationær model.

Tanken med modellerne er at modellere opførslen af forskellige kod-
ningsteknikker. Vi giver et eksempel, der tager afsæt i kodningsmetoden
bit-stuffing for det konkrete skiftrum NIB. Vi angiver parametrene for
en stationær model, hvis sandsynligheder er induceret af bit-stuffing in-
dkoderen og beregner dens entropi.

Endelig præsenterer vi en variant af bitstuffingkodningsmetoden,
hvor det er muligt at udregne koderaten. Metoden kan anvendes p̊a alle
checkerboard skiftrum og gør det muligt at finde gode nedre grænser
for entropien af disse skiftrum. Konkret gives der grænser for en række
Run-Length-Limited skiftrum, der er blandt de hidtige bedste grænser
for disse skiftrum. Metoden demonstreres ogs̊a for det s̊akaldte diamond
skiftrum.
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Abstract

This report deals with constrained coding in two dimensions. We de-
scribe the theory of constrained fields as a framework for addressing
some of the challenges of code construction for advanced data storage
devices that treat the recording media as a surface, rather than a series
of tracks. The important concept of entropy is introduced. In general,
the entropy of a constrained field is not readily computable, but we give
a series of upper and lower bounds based on one dimensional techniques.

We discuss the use of a Pickard probability model for constrained
fields. The novelty lies in using a first order model to model higher
order constraints by the use of an alphabet extension. We present an
iterative method that based on a set of conditional probabilities can help
in choosing the large numbers of parameters of the model in order to
obtain a stationary model. Explicit results are given for the No Isolated
Bits constraint.

Finally we present a variation of the encoding scheme of bit-stuffing
that is applicable to the class of checkerboard constrained fields. It
is possible to calculate the entropy of the coding scheme thus obtaining
lower bounds on the entropy of the fields considered. These lower bounds
are very tight for the Run-Length limited fields. Explicit bounds are
given for the diamond constrained field as well.
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Chapter 1

Introduction

In many communication systems be they optical networks or data stor-
age devices, some sequences of signals are more prone to error than
others. For instance in an optical network a light pulse often signifies
a one and no pulse is interpreted as zero. But this means that long
sequences of zeroes will be difficult to distinguish from one another.

Hence in order to enhance reliable communication it seems prudent
to impose restrictions on the sequences that are allowed to be transmit-
ted (or recorded). One could say that we constrain the number of allowed
sequences. This raises the need for a theory of constrained coding. How
do we encode the sequences such that they obey certain constraints and
what rates are achievable doing this.

We will use the celebrated information theoretic model of communi-
cation as proposed by Shannon [44]. As Berlekamp has put it:

Communication links transmit information from here to there.

Computer memories transmit information from now to then.

Consider Figure 1.1. The data source generates data. A general
error correcting code is applied to the data. Then a modulation code
is applied that shapes the data to the characteristics of the channel,
by imposing certain constraints on the sequences. Our main point of
interest is this constrained coding step.

There is a large body of work dealing with constrained coding. A
recent survey article is [25]. Much of the theory has been developed
for and applied to digital storage devices. In classical storage devices

1
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2 Introduction

Data Source → ECC → Modulation
↓

Noisy channel
↓

Destination ← ECC decoding ← Demodulation

Figure 1.1: A model of digital storage

such as magnetic tape, hard disks and optical discs data is written along
tracks. From a high level point of view, ones are typically detected as
changes (shift between magnetic orientations for tape and magnetic discs
or between pits and lands in an optical disc) and zeros as no change.
Hence the amount of zeros read is determined by reading speed and a
clock. Usually the clock is reset each time a one is detected. But if a large
sequence of zeros occur, we might miss detection of one of them, due
to inaccuracies in the clock and/or variation in the symbol speed. This
problem is known as clock drift. Neighboring symbols tend to influence
each other. This pheanomen is known as Inter-symbol Interference (ISI).

Most popular codes for storage devices have obeyed certain run-
length-limited RLL(d, k) constraints where the number of 0s between
successive 1s has to be at least d and at most k. The purpose of the k
constraint is to limit clock drift whereas the d constraint serves to limit
ISI.

There is a very well-developed theory for constrained coding that not
only offers the maximum achievable coding rate for a given constraint,
but also offers an algorithm (the State-Splitting Algorithm [1], [34]) for
constructing codes with a given code rate below this maximum.

1.1 Advanced data storage devices

In the search for ever greater data densities researchers have considered
devices that treat the storage medium as a surface rather than being
essentially one dimensional.

Holographic storage, while an old idea [22], has very recently been
brought past prototyping [46]. The basic functionality of a holographic
storage system can be outlined as follows. A laser is directed towards an
array of shutters, each of which can be either shut or open, allowing light
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1.1 Advanced data storage devices 3

to pass through in the latter case. The array is programmable (i.e. a
pattern of ones and zeros). When the light beams pass through the open
shutters an object beam is created. The object beam is focused through
a lens and exposed to a reference beam. The two beams interfere with
each other and cause a pattern on the recording medium. This pattern
is the hologram.

If the hologram is illuminated by the reference beam, the object
beam (i.e. the data) is recreated and can be focused and detected with
a charge coupled device.

When a zero is surrounded by ones, the system tend to be prone to
inter-pixel interference, i.e. the pattern

1
1 0 1

1

is especially error-prone.

Hence, it makes sense to eliminate these patterns from the data
before recording.

As another example consider the millipede project [48], [9]. Here an
array of small tips usually employed in atomic force microscopy is used
to melt tiny depressions in a polymer medium. The tips can both read
and write, and it is possible to erase previously written data.

The read proces is based on a thermo-mechanical sensing. The tip
is heated up and if it is above a pit, it cools more quickly (detected
by measuring the resistance of the tip, by having a small voltage pass
through it).

In order to ensure reliable read-back the channel bits have to be
spaced sufficiently far apart that neighboring holes do not interfere with
each other.

However, by employing a two dimensional code where each one (hole)
has to be surrounded by zeros, we may be able to pack the channel
bits more closely thereby increasing the storage density of the medium
without sacrificing reliability. That is, we might wish to forbid patterns
such as: 




11, 101,

01
10

,
10
01

,
1
1
,

1
0
1






.
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4 Introduction

As can be seen from these two examples, it appears interesting to
try to investigate coding for constrained fields. This is the theme of the
present text.

1.2 Outline of the text

In Chapter 2 we introduce constrained fields. We give several examples
of concrete fields and give estimates for their entropy based on a one
dimensional approximation by a finite state machine. We introduce
the coding scheme of bit-stuffing. Finally in Section 2.7 we discuss a
method for designing two dimensional constrained codes by cascading
finite width arrays using predefined finite width periodic merging arrays.
We give concrete examples for a density constraint and a symmetric run-
length-limited constraint.

In Chapter 3 we discuss probability measures that agree with con-
straints. It general it appears to be difficult to find stationary models of
constrained fields. We explore the use of the first order Pickard model to
model higher order constraints by using an alphabet extension. We offer
an iterative method that finds a stationary model for the No Isolated
Bit constraint. In Section 3.6.4 we present the parameters for a model
determined in this fashion that sports a high entropy.

Then in Chapter 4 we present a variation of bit-stuffing and demon-
strates how to calculate the entropy of the induced measures. This
offers some very tight lower bounds on the entropy of the run-length-
limited(d,∞) constraint for d = 2, 3, 4. The method is applicable to all
checkerboard constraints and as a further example we use the method
of the diamond(3) constraint.

Finally, we sum up our work in the conclusion where we collect the
best bounds on the entropy of the constrained fields considered in this
text.
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Chapter 2

Constrained fields

In this chapter we define constrained fields by a list of forbidden patterns.
We define the important concept of entropy and discuss how to estimate
the entropy of a constrained field. Furthermore we present two examples
of coding schemes for some particular constrained fields.

2.1 Basic definitions

Let A denote a finite alphabet, usually A = {0, 1}. Consider some
finite subset, C, of the integer lattice Z

2. We are interested in different
labelings of C, that is, different mappings L : C −→ A that obeys certain
characteristics, for instance

∀x, y ∈ C : L(x) = 1, ‖x− y‖ = 1⇒ L(y) = 0.

Or expressed in a different fashion: Neighboring ones are not allowed.

We will refer to the pair (C, L) as a configuration and usually we will
omit reference to the labeling itself. Instead of specifying the labeling
explicitly, we instead list the patterns we are not interested in. One can
think of these as the especially error-prone patterns of the introduction.

Let F denote a finite list of forbidden blocks made of symbols from
A. We define the 2D constrained field C(F) to be the set of all configu-
rations in the plane where no blocks from F occur. Sometimes we will
refer to a constrained field as a constraint. When dealing with a finite
configuration C and a list of forbidden words F , we will say that the

5
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6 Constrained fields

configuration does not violate the constraint, if no blocks from F occur
in C. Equivalently, we say that C is an admissible configuration.

Let N , respectively M denote the largest height, respectively width
of a block in F . The extent of a constrained field C(F) is N ×M . If
either N or M equals 1, the constrained field is in fact one-dimensional.
Hence the smallest extent we will consider is 2× 2, which we call a first
order constraint.

Example 2.1. Let A = {0, 1}. Let

F =

{

11,
1
1

}

.

The first order field C(F) is called the Hard Square constraint.

Example 2.2. Let A = {0, 1}. Let

F =







1
1 0 1

1






.

The field C(F) is called the NIZ constraint (No Isolated Zero). The
extent of NIZ is 3× 3 and thus NIZ is a higher order constraint.

If we make the field symmetric with regards to ones and zeros, we
get the NIB constraint (No Isolated Bit). The forbidden patterns of NIB
are

F =







0
0 1 0

0
,

1
1 0 1

1






.

In the one dimensional case the capacity of a discrete noise-free chan-
nel gives the maximum achievable coding rate for transmission over the
channel. We now introduce a similar characteristic of constrained fields.

Definition 2.3. Let E(n, m) be the set of admissible configurations on
an n by m rectangle for a given field F . The combinatorial entropy, H,
of F is defined as

H(F ) = lim
n,m→∞

log2 |E(n, m)|

nm
. (2.1)
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2.1 Basic definitions 7

No code from an unconstrained binary source to F can have a code
rate higher than H(F ). In many works the combinatorial entropy is
referred to as the capacity.

One could wonder whether the limit is well-defined. Two similar
proofs of this can be found in [19], [28].

Example 2.4. Consider the Hard Square constraint. In [6] the entropy
of this particular constrained field has been determined to be approxi-
mately 0.5879.

2.1.1 Some examples of constrained fields

Let d, k be natural numbers and let k > d. The RLL(d, k) field is defined
over the binary alphabet in the following manner. Both horizontally and
vertically it is required that between any two “ones” the run-length of
“zeroes” is at least d and at most k long. Hence the name “run-length-
limited” (RLL).

Example 2.5. Consider the case where d = 1, k = 3. We have RLL(d, k) =
C(F), where

F =







11, 0000,
1
1
,

0
0
0
0







.

In the previous example we only needed to check along rows and
columns in order to see whether a constraint is violated or not. When
this is the case we say that the constraint is splitting along rows and
columns.

A variation of the RLL constraints are the symmetric run-length-
limited constraints where the run-length applies to both symbols.

Definition 2.6. Let d, k be integers, k ≥ d. The SRLL(d, k) constraint
over the binary alphabet is defined as the set of configurations where
the horizontal and vertical run-length of any symbol is at least d and at
most k.

Example 2.7. Below we give two examples of configurations. The
left is a valid SRLL(1,2) configuration, but it violates the SRLL(2,3)
constraint. The right configuration is admissible with regards to the
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8 Constrained fields

SRLL(2,3) constraint, but violates the SRLL(1,2) constraint. Note that
we do not require the constraint to be fulfilled at the borders at the con-
figuration, i.e. we allow run-lengths of 1 for the SRLL(2,3) constraint,
if it is the last symbol in a row or column.

100101100110
110110110110
011001001001
100110110101
110011001010

000111001110
110110011000
111000111001
001000110001
000111001110

Another class of constraints which is not splitting is given by impos-
ing constraints on the local average value or density of given values of
the alphabet. This constraint has some resemblance to half-toning, i.e.
rendering gray scale images by binary images.

Let xij be the symbols within any N ×M rectangle.

Definition 2.8. Given N and M , the binary density constraint is de-
fined by

dmin ≤
N∑

i=1

M∑

j=1

xij ≤ dmax (2.2)

where 0 ≤ dmin ≤ dmax ≤ NM and xij ∈ {0, 1}.

Example 2.9. Let N = M = 3 and d = 3, k = 6. An example of a
valid density(d, k) constraint is then

100101100100
110110110110
011001011001
110110110101
010011001011

2.2 Representations of a field

A natural representation of a constraint in 2D is to have two labeled
graphs G and H with the same labeling function such that the rows of
a configuration C corresponds to paths along G whereas columns of C
corresponds to paths along H [21] [20]. This representation can readily
handle the splitting constraints such as 2D RLL(d, k).
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2.2 Representations of a field 9
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Figure 2.1: A representation of the allowed vertical and horizontal
transitions for the Hard Square constraint.

Example 2.10. Consider the labeled graph in Figure 2.1. This de-
scribes the allowed horizontal and vertical transitions for the Hard Square
constraint.

However, when one deals with more general constraints where the
forbidden words are larger blocks one has to enlarge the alphabet. As
an example consider the NIB constraint from Example 2.2 which is a
higher order constraint that isn’t splitting. The extent of the constraint
is N = M = 3.

The states of the horizontal representation will then be blocks of size
N × (M − 1) whereas the states of the vertical representation will be
blocks of size (N − 1)×M .

For the vertical representation there is a transition from state i to
state j if there exists a configuration in E(N, M), for which state i is
identical to the top N − 1 rows and state j to the bottom N − 1 rows.
State i and j have an overlap of N − 2 rows. The label of the transition
is the last row of j. The transitions for the horizontal representation is
defined in a similar manner.

Example 2.11. Consider the NIB constraint from Example 2.2. NIB
has extent 3× 3, so a representation of the vertical transitions will have
states of size 2 × 3 whereas the representation of horizontal transitions
will have states of size 3× 2.

The 3× 3 configuration, G depicted below, is a valid NIB configura-
tion.

G =
000
110
010
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10 Constrained fields

A vertical transition generating G will look like

000
110

i

−→
110
010

j

whereas a horizontal transition generating G will look like

00
11
01

i

−→

00
10
10

j

Unfortunately this representation of a 2D constraint is not opera-
tional in the sense that it offers no means of computing the entropy of
the constraint. This is not a fault of this particular representation, how-
ever. In Section 2.5 we will consider the problem of actually computing
the entropy.

2.3 Checkerboard constraints

In this section we will introduce our main example of a constrained field,
the so-called checkerboard constraint.

Consider binary constraints where each 1 has to be surrounded by
an arbitrary, but specific neighborhood of 0s. These checkerboard con-
straints were introduced in [26] and further investigated in [38]. In the
latter article the neighborhood could be any measurable, bounded sub-
set of the plane, but we will restrict ourselves to neighborhoods defined
on the integer lattice Z

2. The RLL(d,∞) constraints are examples of
this. Our other main example is the diamond constraint or minimum
distance M between ones with regards to the 1-norm. We will refer to
this constraint as �(M) (in [26] this constraint is referred to as the Dia-
mond M − 1 constraint). If we refer to the Diamond constraint without
mentioning M , it is understood that M = 3.

The extent of the �(M) constraint is M ×M . However, unlike the
RLL(d, k), the forbidden words do not split along rows and columns.
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2.4 Coding 11

N�(3) :

0
0 0 0

0 0 1 0 0
0 0 0

0

N2,∞ :

0
0

0 0 1 0 0
0
0

.

Figure 2.2: The all-0 neighborhood, N for the constraints �(3) and
RLL(2,∞).

Compare the all-0 neighborhood, N required around a 1 for each of the
two constraints �(3) and RLL(2,∞) in Figure 2.2.

Given the all 0-neighborhood the extent, N×M , of the checkerboard
constraint is given by the smallest values of N and M , for which the
(2N − 1) by (2M − 1) rectangle centered at the 1 contains the all 0-
neighborhood.

2.4 Coding

Let F be some constrained field. As stated in the introduction we are
interested in coding unconstrained binary data into F . Let κ be some
code for F . The rate of a code is the ratio

R(κ) =
#bits in source signal

#bits in coded signal
.

Unlike the one dimensional case where there exists a large and pow-
erful framework for designing constrained codes [25], [33] there is no
general theory for developing codes for constrained fields.

Indeed, there have not been reported many actual codes in the lit-
erature. Examples are [47], [21], [39], [2], [41], [45], [10].

Example 2.12. Consider the following intuitive coding scheme for the
Hard Square constraint. Imagine that the field F is a checkerboard. We
then simply write the source bits to the “black” squares, whereas the
white squares are padded with zeroes.

Decoding is easy. We just read from the black squares (or every
other symbol). The coding rate of this scheme is 1/2.
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12 Constrained fields

This code has a lot of things going for it. If we define the efficiency
of a code as the ratio between its code rate and the entropy of the
constraint, the simple “checkerboard code” has an efficiency of 86%. It
has limited error propagation (assuming a binary symmetric channel).
It is extremely simple. So of course, we have to have this very simple
code in mind for comparison when considering more advanced codes.

2.4.1 A two pass code for the RLL(d,∞) constraint

In this section we describe a scheme for encoding a user bit stream S
which is assumed to be Bernoulli(1/2) onto a finite n ×m lattice such
that the RLL(d,∞) constraint is obeyed.

It is easiest to describe the coding scheme in the case where d = 1,
i.e. the Hard Square constraint, so we will begin by dealing with that
case. As we saw the simplest possible scheme is to regard the lattice as
a checkerboard and write the bit stream to the black squares and then
use the white squares for zero padding. This achieves a coding rate of a
1/2.

Now if we add a second coding pass to this, we will achieve a higher
rate. The idea is to scan over the white squares. Each time we find a
white square with four black ’zeros’ as neighbors, we can write to this
square without violating the constraint. If a bit is on the boundary, we
will relax the constraint accordingly.

Decoding is simple. We scan over the black squares reading the data
bits. After all the black squares have been processed, we scan the white
squares. If a white square is surrounded by four zeros, then it contains a
user bit. We have to decide on an ordering of the checkerboard. We will
scan the checkerboard left to right, top to bottom, black squares first,
then white squares.

Let us determine the coding rate of this scheme. Since the scheme
is variable rate we will find the average code rate. Each time a white
square is surrounded by four zeros we can encode an extra user bit. On
average this will happen 1 out of 16 times, since each of the 24 different
configurations of neighbors are equally likely (we assumed that the user
bits were Bernoulli(1/2)). That is the average rate R is

R =
1

2
+

1

16

1

2
=

17

16

1

2
.



“main” — 2007/1/15 — 23:12 — page 13 — #29
i

i

i

i

i

i

i

i

2.4 Coding 13

Now, let d > 1. We will extend the idea of a checkerboard slightly.
We still have black squares, but following each black squares are now d
white squares. The black squares are still arranged diagonally. As in
the previous case, we begin by writing the user bits to the black squares.
This achieves a rate of 1

d+1 . Assume for the moment that we only write
to the white diagonals to the right of a black diagonal. At first glance a
free position will only occur once in 24(d+1). However, because we write
to diagonals, the neighbors of a particular white square will either be
black (there are four of these) or belong to a different white diagonal
(which are already zero). Hence free positions will occur one time out
of 16. See below for the case d = 2.

W2

B
W2 B · W2 B

W2

B

All in all, we get the average coding rate of

R =
17

16(d + 1)
.

We can increase the rate by writing to any free positions in the remaining
white diagonals, but it is not clear how to analyze the gain, since the
number of free positions depend on the values stored in previous free
positions.

2.4.2 Bit-stuffing

We will now discuss a coding scheme which is very suitable for the hard
square constraint. Instead of padding every user bit with a zero, i.e. the
checkerboard code of the previous section, the idea of bit-stuffing is to
pad with zeros only whenever it is necessary.

We need to define an order of writing to a rectangle. We will use
normal writing order: that is left to right, top to bottom one row at a
time. One could write along diagonals as well or use more sophisticated
orderings.

Bit-Stuffing works as follows. Let x denote some previously writ-
ten symbol whereas y is used to illustrate the idea of “next available
position”:
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14 Constrained fields

• ’0’ is written as a ’0’ at the next available position.

0 7→
x 0 y

• ’1’ is written as a ’1’ at the next available position. However, the
position next to (to the right of) the written ’1’ and below it is
immediately “stuffed” with ’0’.

1 7→
x 1 0

y 0

This stuffing does not wrap around. If a ’1’ is written at a right
border position, there is no stuffed ’0’ next to it. Only below.
Similarly for ’1’s on the bottom border.

Example 2.13. Consider writing the data sequence 1011101001 to a
5× 4 rectangle.

1011101001 7→

1 0 0 1 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

Note that bit-stuffing is a variable rate coding scheme. Hence we
talk about its average coding rate. But it is difficult to calculate this
analytically. One easy alternative is to find an average coding rate by
simulation.

The bit-stuffer described can easily be extended to any checkerboard
constraint. Each time we write a ’1’, we immediately stuff with zeros
filling out the 0-neighborhood around the written ’1’. We only stuff in
those positions that can occur as next available positions, however. For
instance, in the case of RLL(d,∞) we stuff with d zeros to the right and
below each ’1’ where applicable.

Example 2.14. Consider a bit-stuffer for the Diamond constraint. A
’0’ is simply written as a ’0’ at the next available position, whereas
a ’1’ is written at the next available position and the 0-neighborhood
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2.4 Coding 15

is stuffed with ’0’s. This is depicted below. x denotes the previously
written symbol and y denotes the next available position.

1 7→
x 1 0 0 y

0 0 0

0

2.4.3 Biased bit-stuffing

We will present a modification to bit-stuffing based on the concept of
a biased stream. Since we pad with ’0’s whenever we write a ’1’, it
makes sense that we would use less space if the data contained less
’1’s. Normally, we assume that the data is unbiased, that is the output
of a Bernoulli(1/2) source. We now introduce a precoding step which
transforms the unbiased data into a biased stream.

Let p1 denote the probability of a ’1’ in the biased stream. If p1 < 1/2
the average coding rate of the bit-stuffer Rb will increase towards one.
However, this come at a cost, namely the rate of the precoder. If the bias
is severe, the rate of the precoder will be very low, eliminating the gain in
rate of the bit-stuffer. We view the biased bit-stuffer as the composition
of the mappings of the precoder and the ordinary bit-stuffer.

Data X −→ Precoder(p1) −→ Bitstuffer

There exists precoders which can transform unbiased streams into
p1-biased ones at the (asymptotic) rate of H(p1), where H is the binary
entropy function. One can think of such a transformation as the inverse
to an arithmetic encoder for a p1-biased stream.

The coding rate Rmb of a biased bit-stuffer is then

Rmb = H(p1)Rb. (2.3)

We have investigated (2.3) by simulation for the Hard Square constraint.
By optimizing over p1 we were able to get a coding rate around 0.58
which is within 2% of the entropy of the Hard Square constraint.

The idea of using biased streams and precoding can be extended
further by having more than one biased sequence and choose between
them depending on past data besides what is prescribed by the con-
straint. This was utilized by Roth et al. [41] to determine and optimize
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16 Constrained fields

the entropy of the bit-stuffing scheme for the Hard Square constraint.
fields. They carried out a detailed analysis for performing bit-stuffing
along the diagonals rather than row-by-row as we have done. It should
be noted that they derived analytical bounds on their scheme showing
that its coding rate was within 1% of the entropy.

For the higher order constraints 2D RLL (d,∞) lower bounds on the
entropy of the bit-stuffing scheme are presented in [20].

In Chapter 4 we will present a variation of the basic bit-stuffing
scheme applicable to all checkerboard constrained fields, where we can
calculate the coding rate explicitly.

2.5 Computability of the entropy

In the one dimensional case the combinatorial entropy of a constraint
C is easily obtained. Recall, that sequences satisfying a constraint on
N consecutive symbols such as run-length-limited sequences may be de-
scribed by finite state sources, where a state is characterized by N − 1
symbols. The transfer (or adjacency) matrix T of the source indicates
the possible transitions between two states. The largest eigenvalue λ of
the transfer matrix T determines the growth rate of the number of con-
figurations [32]. Taking the logarithm gives the maximum entropy [44]:

H = log2 λ. (2.4)

Unfortunately, in the two dimensional case things are not as simple.
Recall from the discussion in Section 2.2 that we do not have an oper-
ational representation of a constrained field. Only in very few cases do
we have analytical expressions for the entropy.

What is worse: This appears to be a general problem. Indeed, the
problem of whether H(F ) > 0 for a general constrained field F is un-
decidable [4]. In [32] it is shown that the symbolic dynamics concept
of topological entropy is what we have defined as the combinatorial en-
tropy. Unfortunately the topological entropy for general 2D shift spaces
is uncomputable [24].

In order to make precise the notion of uncomputable, we will need
a computational model. We will use an abstract computer: A RAM
machine [23]. However, we do not wish to get into the details of the
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2.5 Computability of the entropy 17

model at this point. Suffice to say that a RAM machine is very close to
a modern day computer (as opposed to a Turing machine).

Definition 2.15. A number x is computable if given ε > 0 there exists a
natural number Nε and an algorithm such that a RAM machine running
the algorithm in Nε steps will output a rational number r with |x−r| < ε.

Even though the topological entropy for general 2D shift spaces is
uncomputable, we can still hope that the combinatorial entropy is com-
putable for some class of constrained fields. Indeed, the following options
present themselves.

• Search for a more restricted class of fields, where it is possible to
compute the entropy.

• Search for good upper and lower bounds on the entropy.

While the first approach has been successful for some classes of two-
dimensional symbolic dynamical systems [30], these have additionally
algebraic structure that isn’t suitable for modeling communication as-
pects. In Section 2.6.3 we show that the entropy of a checkerboard
constraint is in fact computable, but unfortunately not in a tractable
way. Hence we turn to the second possibility.

This approach might seem counter-intuitive. How can we on one
hand have that the topological entropy is uncomputable and on the
other hand look for bounds that converge to the true value. It turns out
that for the bounds we do find we do not know the order of convergence,
so we cannot in advance know how many times we must run the algo-
rithm to obtain the desired accuracy. Thus there is no conflict with the
uncomputability of the entropy. Indeed, the whole purpose of Definition
2.15 was to resolve what at first glance appeared to be a paradox.

In the next section we introduce some upper and lower bounds on
the combinatorial entropy based on one dimensional techniques. The
reminder of the thesis deals with refining these bounds and see how
they relate to coding schemes.

Finally we remark that the coding rate of an actual code for a con-
strained field will provide us with a constructive lower bound for the
entropy of that field. This means that it may be worthwhile to investi-
gate coding schemes that have severe practical drawbacks because their
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18 Constrained fields

coding rate can provide an estimate (lower bound) on the entropy. For
instance the method of bit-stuffing is variable rate and has unlimited
error-propagation, which are serious drawbacks in a practical setting.
Nevertheless, the method achieves very high coding rates for checker-
board constraints. This has been utilized to obtain very tight lower
bounds on the entropy of the RLL(d,∞) constrained fields [20]. We will
present a variation of the bit-stuffing scheme in Chapter 4 which yields
even tighter bounds on the entropy of the RLL(d,∞) fields for d = 2, 3
and 4.

2.6 Bounding the entropy with a 1D method

In this section we will introduce a 1D process that “behaves” like a
constrained field. The entropy of the process can be calculated with 1D
methods and by utilizing a sequence of processes that expands to the
field we can approximate the entropy of the field.

The idea of using a 1D approximation is natural and have been
explored in [6], [2] and [15], [16].

Consider a band, that is a 2D array of finite (horizontal) width m and
arbitrary (vertical) height n. We think of the band as being generated
one row at a time by a finite state source and growing in the vertical
direction.

The admissible configurations of an array of width m may for all n
be described by a finite state source. For a constraint of extent N ×M ,
the states of the source are given by the symbols on the (N − 1) ×m
segment which appear as the first or last N − 1 rows of an admissible
configuration on a N ×m rectangle, i.e. a configuration of E(N, m). A
transition from state i to state j is admissible if there is a configuration
in E(N, m), for which state i is identical to the top N − 1 rows and
state j to the bottom N − 1 rows. State i and j have an overlap of
N − 2 rows. The last row of j is generated by the transition from i
to j and appended to the previous rows of the output. Any admissible
configuration of E(n, m) with fixed m and n (> N − 1) rows may be
generated as an output by starting the source in the state specified by
the first N − 1 rows and making n − N + 1 transitions appending one
row to the output in each transition.

The transfer matrix Tm = (tij) indicates which transitions that sat-
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2.6 Bounding the entropy with a 1D method 19

isfy the constraint by defining the elements tij = 1 if the transition from
state i to j is admissible and tij = 0 if it is not admissible. Accord-
ing to the Perron-Frobenius theorem [43] this non-negative matrix has
a unique positive largest eigenvalue, λm and the (per row) entropy, HB,
of the band source is therefore given by Equation (2.4):

HB(m) = log2 λm.

Hence the per symbol entropy of the source on an array of width m
(n→∞) is given by,

HB(m)

m
=

log2 λm

m
. (2.5)

Since we are not considering constraints beyond the width of the
band (there might be cases where we are not able to expand a valid band
to an admissible configuration of greater width) the per symbol entropy
of the band will be greater than the entropy of the field. However, it is
clear that as the width of the band w →∞ the per symbol entropy of the
band source will converge to the entropy of the constrained field. Hence
Equation (2.5) provides a sequence of upper bounds on the entropy H
defined by (2.1).

In Appendix B we have collected the entropy of a large number of
band sources for different constrained fields.

2.6.1 Some upper bounds from band sources

While it appears easy to utilize the upper bound (2.5) there quickly
arises a number of practical problems. We refer the reader to Appendix
A where we discuss some of these in greater detail. Here we merely note
that the number of states in the transfer matrix grows exponentially
in the width of the band. This makes it necessary to use some sort of
iterative method for computing the largest eigenvalue of the matrices as
they quickly become very large. We have used the power method [8].
Again we refer the reader to Appendix A where we offer more detail.

In Table 2.1 we have collected some upper bounds for the RLL(d,∞)
constrained fields for d = 2, 3, 4. As can be seen from the table, the rate
of convergence is very slow. Nevertheless the method of band sources
provides a relatively easy means of obtaining upper bounds for any con-
strained field.
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20 Constrained fields

RLL(2,∞) RLL(3,∞) RLL(4,∞)

w HU w HU w HU

12 0.4574 10 0.3849 9 0.3387
13 0.4564 11 0.3833 10 0.3366
14 0.4557 12 0.3820 11 0.3347
15 0.4550 13 0.3809 12 0.3332
16 0.4544 14 0.3800 13 0.3320
17 0.4539 15 0.3791 14 0.3309
18 0.4534 16 0.3784 15 0.3299

Table 2.1: Upper bounds HU based on a band source of width w for
the constrained fields RLL(d,∞) for d = 2, 3, 4.

Table 2.2 and Table 2.3 give similar upper bounds for the NIB and
NIZ constraints and the SRLL(1,2) and SRLL(2,3) constraints, respec-
tively. Again, we note that the rate of convergence is very slow.

w NIB NIZ

6 0.9475554710 0.9732
7 0.9441683911 0.9716
8 0.9415444907 0.9703
9 0.9396501864 0.9694

10 0.9380681117 0.9686

Table 2.2: Upper bounds HU based on a band source of width w on
the entropy of the NIB and NIZ constrained fields.

2.6.2 Estimating the entropy

The upper bounds obtained by a band source converge to the entropy.
However, the computational complexity of computing the transfer ma-
trix makes investigating the bounds impossible but for a few (small)
widths of the band source. It is interesting to see how far from the true
value of the entropy these upper bounds are.

If we subtract the per row entropy of a band source of width n from
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w SRLL(1,2) w SRLL(2,3)

7 0.5249 9 0.2678
8 0.5179 10 0.2650
9 0.5123 11 0.2627
10 0.5079 12 0.2610
11 0.5043 13 0.2602
12 0.5013 14 0.2583
13 0.4987 15 0.2570

Table 2.3: Upper bounds HU on the entropy of the SRLL(1,2) and
SRLL(2,3) constrained fields. The bounds are obtained with a band
source of width w.

RLL(2,∞) RLL(3,∞)

HB(10)−HB(9) 0.44548 HB(7)−HB(6) 0.36851
HB(11)−HB(10) 0.44549 HB(8)−HB(7) 0.36772
HB(12)−HB(11) 0.44549 HB(9)−HB(8) 0.36743
HB(13)−HB(12) 0.44549 HB(10)−HB(9) 0.36744
HB(14)−HB(13) 0.44549 HB(11)−HB(10) 0.36752
HB(15)−HB(14) 0.44549 HB(12)−HB(11) 0.36752
HB(16)−HB(15) 0.44548 HB(13)−HB(12) 0.36752
HB(17)−HB(16) 0.44549 HB(14)−HB(13) 0.36751
HB(18)−HB(17) 0.44549 HB(15)−HB(14) 0.36751

Table 2.4: Entropy estimates based on difference of band entropies for
RLL(2,∞) and RLL(3,∞).
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22 Constrained fields

the per row entropy of a band source of with n+1 we in a way estimate
the per symbol entropy.

Example 2.16. Consider the RLL(4,∞) constraint. Calculating the
entropy HB of a band source of width 15 and 14, respectively, for the
constraint we get HB(15) = 4.9485 and HB(14) = 4.6321. This yields
the entropy estimate

H̃ = HB(15)−HB(14) = 0.3164.

Compare this estimate with the upper bounds of Table 2.1, where the
best upper bound is 0.3299.

We can make this more precise. Let H be the entropy of some
constrained field F . Let HB(n) denote the entropy of a band source of
width n for F . We know that

lim
n→∞

HB(n)

n
= H.

The question is whether HB(n+1)−HB(n) converges to H for n→∞.
Due to the following standard result on sequences [3] we can show

that if the difference converges then it converges to the true entropy H.

Lemma 2.17. Let (xn)n be a sequence of real numbers. Then the
following holds:

lim inf

∣
∣
∣
∣

xn+1

xn

∣
∣
∣
∣
≤ lim inf |xn|

1/n ≤ lim sup |xn|
1/n ≤ lim sup

∣
∣
∣
∣

xn+1

xn

∣
∣
∣
∣

Proposition 2.18. Let H be the entropy of the constrained field F . Let
HB(n) denote the entropy of a band source of width n for F . If the
sequence (HB(n + 1)−HB(n)) converges, then it converges to H.

Proof. Assume that

(HB(n + 1)−HB(n))→ x for n→∞

for some x ∈ R. Recall that HB(n) = log2 λn, where λn is the largest
eigenvalue for the band source. Hence we have

HB(n + 1)−HB(n) = log2 λn+1 − log2 λn = log2

λn+1

λn
→ x.
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Therefore λn+1

λn
→ 2x. According to Lemma 2.17 with xn = λn we then

have

λ1/n
n → 2x

or equivalently
H(n)

n
= log2 λ1/n

n → x

and we conclude that x = H.

Regard Table 2.4 where we have given estimates of the entropy of
RLL(2,∞) and RLL(3,∞) based on this method. It can be seen that the
estimate seems to converge. Indeed, experiments for all checkerboard
constraints considered here, as well as the NIZ and NIB constraints
seems to indicate that the estimates converges.

It is not clear, though, how to actually decide whether the esti-
mates converge. For “well-behaved” constraints like the checkerboard
constraints in Table 2.4 it seems reasonable to assume that the values
indeed converge, but we have no criteria that assures convergence.

Den(2,4) Den(4,5)

HB(6)−HB(5) 0.66496 0.46171
HB(7)−HB(6) 0.69092 0.47924
HB(8)−HB(7) 0.68929 0.47422
HB(9)−HB(8) 0.67971 0.47656
HB(10)−HB(9) 0.68929 0.48164

Table 2.5: Entropy estimates based on difference of band entropies for
some density constraints.

Indeed, for other constraints one may encounter difficulties. Regard
Table 2.5 where we have given estimates for the density(2,4) and den-
sity(4,5) constraint. Note that these estimates fluctuate much more than
the ones for the RLL constraints. This might be due to the bands hav-
ing smaller widths (due to complexity issues, it is difficult to use larger
bands), but it also might have to do with the fact that the density con-
straints are not checkerboard constraints or lack some other property
that ensures that the band differences actually converge.
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SRLL(1,2) SRLL(2,3)

HB(8)−HB(7) 0.4689 HB(10)−HB(9) 0.2393
HB(9)−HB(8) 0.4678 HB(11)−HB(10) 0.2400
HB(10)−HB(9) 0.4681 HB(12)−HB(11) 0.2428
HB(11)−HB(10) 0.4681 HB(13)−HB(12) 0.2505
HB(12)−HB(11) 0.4684 HB(14)−HB(13) 0.2328
HB(13)−HB(12) 0.4678 HB(15)−HB(14) 0.2395

Table 2.6: Estimate H̃ = HB(n + 1) − HB(n) of the entropy of the
SRLL(1,2) and SRLL(2,3) constrained fields.

The symmetric RLL constraints demonstrates a similar behavior.
Regard Table 2.6 where we have collected the entropy estimates for the
SRLL(1,2) and SRLL(2,3) constraint. While estimates for SRLL(1,2)
seem to fluctuate around the value 0.468, it is much more difficult to
guess at a “true” value for the SRLL(2,3) constraint as the estimates
fluctuate much more. It is not clear from the small number of elements
in the sequence whether the fluctuations become smaller for SRLL(2,3),
so that the values converge or whether it is not the case.

For completeness we offer what appears to be converged estimates in
Table 2.7 for the NIZ constraint. In contrast to this we have shown some
estimates of the entropy for the NIB constraint based on corresponding
widths of the band sourcesas but in this case the estimates have not yet
converged.

Based on the examples given one should exercise caution when utiliz-
ing Proposition 2.18. Nevertheless, as can also be seen it offers an easy
way to obtain what appears to be good estimates for many constrained
fields.

2.6.3 Lower bounds from bands

Can we use the entropy of the band (2.5) to obtain a lower bound on
the entropy of the field?

In some cases, we can. Assume that we have two arbitrary bands X
and Y of width m over some field F with entropy H(F ). If it is always
possible to find a merging array V of width c such that the band XV Y
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NIB NIZ

HB(6)−HB(5) 0.9237815934 0.9619299
HB(7)−HB(6) 0.9238459123 0.9613020
HB(8)−HB(7) 0.9231771872 0.9617083
HB(9)−HB(8) 0.9244957524 0.9616608
HB(10)−HB(9) 0.9238294390 0.9616609

Table 2.7: Estimate H̃ = HB(n + 1) − HB(n) of the entropy of the
constrained fields NIB and NIZ.

is admissible then the following lower bound on the entropy holds:

HB(m)

m + c
≤ H(F ). (2.6)

We note that for the RLL(d,∞) constraints this is always the case.
We can simply use a merging array consisting of d columns of zeros.
Utilizing this we can complement the upper bounds of Table 2.1 with
the lower bounds found in Table 2.8. As can be seen, there is quite a
large gap between the upper and lower bounds obtained in this fashion.

RLL(2,∞) RLL(3,∞) RLL(4,∞)

w HL w HL w HL

12 0.3920 10 0.2961 9 0.2345
13 0.3956 11 0.3012 10 0.2404
14 0.3987 12 0.3056 11 0.2455
15 0.4015 13 0.3095 12 0.2499
16 0.4039 14 0.3129 13 0.2538
17 0.4061 15 0.3160 14 0.2573
18 0.4081 16 0.3186 15 0.2604

Table 2.8: Lower bounds HL for the entropy of RLL(d,∞) constraints.

The idea of the merging array for the RLL(d,∞) constraint can
be extended to any checkerboard constraint. Let F be a checkerboard
constraint of extent N ×M . Then it is clear that the band of width M
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26 Constrained fields

consisting of all zeros can be used as a merging array between any valid
bands over F .

We can use this observation to show that the entropy of a checker-
board constraint is computable.

Proposition 2.19. The entropy H(F ) of any checkerboard constraint
F is computable.

Proof. Let N ×M be the extent of F and let B be a band source of
width n for F . As we have previously seen the entropy of the band
source offers an upper bound on the entropy of F . On the other hand
we have just argued that since the extent of F in the horizontal direction
is M we can use a merging array of all zeros for any two bands from B.
Thus we can use Equation (2.6) with M in place of c. All in all we have
the following bounds on the entropy:

HB(n)

n
≥ H(F ) ≥

HB(n)

n + M
.

Considering the difference between the upper and lower bound we have

HB(n)

n
−

HB(n)

n + M
=

HB(n)(n + M)−HB(n)n

n(n + M)

=
HB(n)M

n(n + M)

≤
nM

n(n + M)
=

M

n + M

where we used that the band entropy HB(n) ≤ n for any n. Thus for a
given precision ε > 0 we have that

∣
∣
∣
∣

HB(n)

n
−H(F )

∣
∣
∣
∣
≤ ε

provided that M/(n + M) ≤ ε or equivalently that n ≥ 1−ε
ε M . Since

we can bound the number of computations needed to calculate H(n) to
Kn, where K is some suitably chosen constant, we have thus shown that
H(F ) is computable in accordance with Definition 2.15.

As can be seen from the proof of the proposition, computable does
not equal tractable. Indeed, in order to assure an accuracy of say 10−4
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we would have to compute the entropy of a band of width 104. Since
bands of widths 30 are beyond the computational resources of almost
any organization, this is clearly not an option.

Example 2.20. Let us consider the NIZ and NIB constraints for a
moment. Can we always find a merging array for these two constraints?
NIZ is easy. Since the only forbidden word is an isolated 0, we can only
violate the constraint by using a 1. Hence a single column of 0s can be
used as a merging array between any two valid NIZ bands and we get
the following lower bound on the entropy of the NIZ constraint

H ≥
HB(w)

w + 1
,

where HB(w) is the entropy (per row) of a band source of width w for
NIZ.

Let us turn to the NIB constraint. First we note that we cannot
always make do with a single column as we could for NIZ. Consider the
following configuration. No matter how we choose c2 we cannot make
the configuration valid.

1 c1 0
1 0 c2 1 0

1 c3 0

If we try to avoid isolating the 0 in the left pattern, c2 must be 0, but
this makes the right hand pattern forbidden and vice versa. However,
this offers a hint that we can always merge any two valid NIB arrays
X and Y by using two columns for a merging array C = C1C2 in the
following fashion.

The left column of C is simply the last column in X and the right
column in C is the first column in Y . C itself is valid, since the extent
of the forbidden words are 3×3. XC1 is valid, since we can only violate
the constraint by having complementary symbols next to each other.
For the same reason C2Y is valid. Let us then consider XC1C2Y . Since
both XC1 and C2Y are valid, any forbidden word in XC1C2Y must have
two of its columns in C. But the patterns 101 and 010 do not occur in
C1C1C2C2 by construction, so we conclude that XC1C2Y is valid.

Hence we have the following lower bound on the entropy of the NIB
constraint:

H ≥
HB(w)

w + 2
.
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28 Constrained fields

In Table 2.9 we have collected some lower bounds on the entropy
obtained in this fashion. Again there is a rather large gap between these
lower bounds and the upper bounds in Table 2.2. Furthermore, it can
be seen that the lower bounds are further from the entropy estimates of
Table 2.7 than the upper bounds are. As the widths of the bands grow
towards infinity, the lower bound and the upper bounds will converge to
the entropy, but for the small band widths considered here, the width
of the merging array is considerable in comparison to the total width of
the band.

It appears to be somewhat more involved to construct merging arrays
for the SRLL and density constraints. However, in Section 2.7 we will
use a variation of the merging array idea to obtain lower bounds on the
entropy for these two constraints.

w NIZ NIB

6 0.8342 0.8122
7 0.8501 0.8261
8 0.8625 0.8370
9 0.8724 0.8457
10 0.8805

Table 2.9: Lower bounds on the entropy of the NIZ and NIB constraints
using a band source of width w and a merging array of width 1 and 2,
respectively.

Finally it may be remarked that there are constraints for which it is
clear that one cannot find a finite (in the horizontal direction) merging
configuration for any two valid configurations. The standard example is
domino tiling, where the whole plane is tiled by one by two vertical and
horizontal domino pieces. Consider the case where the array X has a
vertical zig-zag boundary of all horizontal pieces where the piece in every
other row is displaced one position relative to its two neighbors. In this
case there is only one solution extending off the boundary of X, namely
that which locks up with the boundary, except for the first and last piece
of the zig-zag. (By induction it is seen that for any finite width merging
array, a long enough zig-zag boundary can lead to a conflict with the
opposing boundary.)
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2.6.4 Improved upper bounds by using cylinder sources

Calkin and Wilf were the first to produce tight upper and lower bounds
for the entropy of the Hard Square constraint [6]. Their methods de-
pend crucially on certain symmetry requirements of the transfer matrices
involved in describing the constraint and are only applicable to first or-
der constraints. In [16] some combinatorial techniques inspired by the
symmetry requirement, but applicable for higher order constraints are
investigated by Forchhammer and Justesen.

We will only refer to part of their work, namely that the upper
bound on the combinatorial entropy by (2.5) can be further tightened
by considering cylinder sources rather than bands.

Let Tm be the transfer matrix of some band source of width m for
some particular constraint of extent N×M . Let p > 1 be an integer and
set n = p + N − 1. Define the matrix Am = T p

m. The element aij gives
the number of valid configuration of size n ×m where the first N − 1
rows correspond to state i of Tn and the last N − 1 rows correspond to
state j.

The following definition is from [16]:

Definition 2.21. A configuration on a two-seam cylinder is given by
a pair of configurations which are the output of two Am transitions
having identical starting states i and identical ending states j. The Am

configurations belong to E(n, m).

We say that the width of the two-seam cylinder is 2p, where p =
n− (N − 1).

Similarly to the band sources, we can make a cylinder source for a
two-seam cylinder of fixed width 2p and n→∞. Let HC(2p) denote the
entropy of the two-seam cylinder source. It is then shown in [16] that

H ≤
HC(2p)

2p
. (2.7)

Furthermore it is shown that Equation (2.7) for small values of p provide
very tight upper bounds on the entropy of the fields considered.

But how do we actually compute the entropy HC of the cylinder
source? It turns out that we can model a two-seam cylinder by an
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ordinary band where the rows have the following form:

r =

i
︷ ︸︸ ︷
r0 . . . rd−1 rd . . .

j
︷ ︸︸ ︷
rn−d . . . rn−1

︸ ︷︷ ︸

p

i
︷ ︸︸ ︷
rn . . . rn+d−1 rn+d . . .
︸ ︷︷ ︸

p

j
︷ ︸︸ ︷
r2n−d . . . r2n−1 .

Here d = N − 1 correspond to the height of the states of Tm and the
parts of the row marked i and j correspond to states of Am, i.e. they
have to be identical.

Let B̃ denote the band source modeling the two-seam cylinder. Then
HC = log2 λB̃, where λB̃ is the greatest eigenvalue of B̃ according to
Equation (2.4).

Hence we can rewrite the cylinder upper bound as

H ≤
log2 λB̃

2p
. (2.8)

Consider Table 2.10 where we have collected some values of the
entropy of the two-seam cylinders for the RLL(d,∞) constraints for
d = 2, 3 and 4. Note that the least value of p for which we can construct
a valid two-seam cylinder varies with the constraint as p ≥ d. Results
are shown with the assured accuracy as detailed in Appendix A.2.1. It
was not possible to construct two-seam cylinders for the RLL(3,∞) and
RLL(4,∞) for widths greater than 2p = 16 using the available compu-
tational resources.

If we compare the upper bounds with the ones of Table 2.1 obtained
by utilizing band sources, we note that the new upper bounds are tighter.
Indeed, they quickly approach what we estimated the entropy to be in
Table 2.4.

We have also employed the cylinder upper bound on the Diamond
constraint. Results are shown in Table 2.11.

2.7 Cascading arrays

In [11] Etzion studies 2D SRLL(d, k) constraints. He discusses methods
for constructing a merging array, W , given any two admissible arrays, X
and Y for this particular constraint. Furthermore, he gives expressions
for the minimum width of the merging array, W , for which merging is
always possible in terms of d.
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p RLL(2,∞) RLL(3,∞) RLL(4,∞)

2 0.4807988
3 0.4541391 0.3963193
4 0.4480430 0.3782551 0.3413823
5 0.4465341 0.3720841 0.3281802
6 0.4462489 0.3698155 0.3225834
7 0.4460829 0.3688255 0.3200389
8 0.446002 0.368555 0.318804
9 0.445942

Table 2.10: Upper bounds on the entropy of RLL(d,∞) constraints
obtained by using a two-seam cylinder source of width 2p.

p �(3)

5 0.359422
6 0.357945
7 0.356841
8 0.356019
9 0.355386
10 0.354878
11 0.354462
12 0.354116

Table 2.11: Upper bounds on the entropy of the Diamond constraint
obtained by using a two-seam cylinder source of width 2p.
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This of course can be utilized to obtain lower bounds for the entropy
of SRLL(d, k) constraint. As we saw in Section 2.6.3, however, these
bounds were not tight. We will now explore a different approach whereby
we hope to improve the lower bounds on the entropy.

Instead of designing the merging array, W after X and Y , we shall
construct W first and then examine how X and Y independently may
be constrained such that the cascading WXWY W is admissible. The
merging arrays are simpler and easier to identify (e.g. for synchroniza-
tion) and we hope to obtain better lower bounds on the entropy. Alter-
natively, we independently constrain the arrays X, Y and Z, such that
the cascading XY Z is admissible.

2.7.1 Periodic merging arrays

Let F be some arbitrary but fixed constrained field of extent M ×M .
When we in the sequel says that some configuration or array is admissible
it means it is a valid configuration of F .

Consider a 2D array W of width w and infinite height. This array is
repeated at intervals of m + w columns horizontally. This leaves arrays
of width m undefined in between the repetition of two merging arrays.

Let X be another array of width m and infinite height. Let WX
be the concatenation of the two, horizontally placing them with their
boundaries next to each other.

Definition 2.22. Let the array W of width w be periodic vertically with
the period p. Let WXW and WY W be arrays admissible according to
the constraint. The periodic array W is a periodical merging array if
any pair of arrays, WXW and WY W , may be cascaded to form the
admissible array WXWY W .

The admissible array WXW in Definition 2.22 is called a W−boundary
constrained array.

For w ≥M−1 any pair of admissible arrays, WXW and WY W , may
be cascaded to form WXWY W . Thus these arrays are W−boundary
constrained arrays. The reason is that the merging array separates the
arrays X and Y in the sense that no N ×M rectangle contains sym-
bols from both X and Y . Further they are bounded by identical merg-
ing arrays. For some constraints, periodic merging arrays W of width
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w < M−1 may be specified such that the property of the W−boundary
constrained array still holds. Repeating the construction adding one ar-
ray at a time, the cascading of arrays may extend to define an admissible
configuration in the entire plane.

The admissible arrays WXW may be described by a finite state
source with states of height n ≥ N − 1. For a merging array period
p ≤ n + 1 the phase of the period is contained in the transition in the
part of the states given by symbols of W . For p ≥ n + 1 the phase
information could still be uniquely defined by the states. If this is not
the case the (missing) information about the phase has to be added to
the states. The per symbol entropy for the merged array obtained by
the use of periodic merging arrays is

H =
HW (m)

m + w
, (2.9)

where HW (m) is the entropy of the W -boundary constrained array
WXW in which X and W have widths m and w, respectively.

The array WXW may be perceived as a cylinder of circumference
m + w where the w columns of W are predefined. Thus for a given
constraint a periodic merging array may be determined by finding a
periodic sequence on w ≥M − 1 columns of the cylinder.

Besides facilitating the use of the finite state source description, the
periodic arrays may have the desired property that they provide easy
synchronization.

2.7.2 Periodic mergings arrays for SRLL

For the SRLL(d, k) constrained fields we propose the following SRLL
periodic merging array of width w = 2d and vertical period 2d.

Let x = 0d1d be a row of d 0s followed by d 1s. Let xd be d identical
rows of x on top of each other. Let x̄ be the bitwise negation of x. The
periodic configuration of W is given by alternating between xd and x̄d.

Example 2.23. For the SRLL(2, 3) constrained field the periodic merg-
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ing array will look like:

p







0011
0011
1100
1100

0011
0011
1100
1100

...

Using SRLL periodic merging arrays, W , admissible arrays WXW
are W -boundary constrained arrays whether or not w = 2d ≥ k = M−1
is satisfied. For p = 2d ≤ n + 1 the period is contained within the
transition of the finite state source.

The SRLL periodic merging array, W , above is both R and L d
balanced by the definition of Etzion [11]:

Definition 2.24. An admissible array is R (L) balanced if the last (first)
columns of W are equal and the column before (after) these d columns
is the complement of each of these d columns.

This property ensures that for any admissible array, X, of width
m ≤ k − d, WXW is also a W -boundary constrained array, i.e. WXW
is admissible. Therefore a simple lower bound on the combinatorial
entropy of an SRLL(d, k) constraint is

H ≥
H(k − d)

k + d
. (2.10)

where H(k − d) is given by (2.5).

Example 2.25. For SRLL(2, 3), the periodic merging array has the
period p = 2d = 4. The finite state source for WXW therefore also has
a period of four and thereby four phases. The W−boundary constrained
array X has the property that the column in each side which is next to
the boundary column is the negation of the nearest boundary column of
W .
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2.7 Cascading arrays 35

Let us return to the work of Etzion [11]. He presents methods to
merge any two SRLL constrained arrays (of finite width). The width w
of the merging arrays is given as a function of (d, k).

Etzion makes a distinction between three different cases:
Case 1: If k ≥ 4d− 2 then w = 2d.
Case 2: If 4d− 3 ≥ k ≥ 2d then w = 4d.
Case 3: If 2d− 1 ≥ k ≥ d + 1 then

w = 3d(d
d− 1

k − d
e+ 1). (2.11)

In the first case the width w = 2d is shown to be optimal. In this
case Etzion’s method is more efficient than using a periodic merging
arrays of width w = 2d. For Cases 2 and 3, an entropy comparison will
be a trade-off of the periodic merging arrays having a smaller width (w)
versus the higher entropy of an array X of a given width (m), when it
is not boundary constrained.

For SRLL(2,3) the periodic merging array is w = 4 compared to a
width (2.11) of w = 12 for Etzion’s merging array (Case 3.) (Etzion
considered the more general case with possibly different values of d and
k horizontally and vertically, but it is only the length of runs across the
merging array which determines the width of the merging array.)

2.7.3 Offset periodic merging

Periodic merging arrays have a period of p. The finite state source for
WXW therefore also has a period of p and thereby p phases. The con-
struction may be generalized by offsetting the phase of say the right
merging array. Define the Wφ boundary constrained array by WXWφ,
where Wφ is offset φ rows (0 ≤ φ ≤ 2d−1) relative to W . A similar con-
struction as before may be used. The entropy is still found by applying
(2.9) to WXWφ.

This approach may be generalized to use different periodic merging
arrays, but this requires the use of multiple finite state sources.

2.7.4 Density constraints

We now use the method of cascading periodic arrays on the density
constraints introduced in Section 2.1.1. Let rX denote the configuration
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given by row r followed by X having N − 1 rows. For the density
constraint, for any admissible configuration rX, the configuration Xr
is also admissible. Of course, this no longer is true if X has more than
N − 1 rows. Therefore any admissible configuration within an n = N
by m ≥M − 1 rectangle may be used as the period of a merging array.

In Section 2.7.7 we give results for the density constraint with pa-
rameters (dmin, dmax) = (4, 5) and N = M = 3.

As for the SRLL constraint merging arrays specified after X and Y
could be used. It is not clear what the width of these merging arrays for
the density constraint should be.

Example 2.26. For the (dmin, dmax) = (4, 5) and N = M = 3 density
constraint, we can show that there are no solutions to the problem of
finding a merging array Y of width w between any two arrays X and Z
where w ≤ 7. Consider the configuration:

X

0 0
0 0
1 0

Y

y11 y12 . . . y17

y21 y22 . . . y27

y31 y32 . . . y37

Z

1 1
1 1
1 0

Due to the constraint, the first column, (y11, y21, y31), of Y must be all 1.
Hence y12, y22, y32, y13, y23, y33 will contain at least four 0s and at most
two 1s. Thus the fourth column has to contain at least two 1 elements,
(yi4). On the other hand, the seventh column of Y must be all 0. Hence
columns five and six, (y15, y25, y35) and (y16, y26, y36), will contain at
least four 1s and at most two 0s. Thus the fourth column has to contain
at least two 0 elements, leading to a contradiction. This example gives
an instance for which no merging array of width seven exists.

In a similar fashion one can give examples of particular arrays X and
Z that do not have any merging arrays of width 6 or less. This is done
in Appendix C.

2.7.5 Cyclic matrices

As mentioned the use of periodic merging arrays introduces a period
p and phases in the finite state source. The states may be grouped in
classes according to their phase. With a proper ordering this means that
each transition is from a state in class i to one in class i + 1 modulo p.
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2.7 Cascading arrays 37

With a proper ordering of indices the transfer matrix Tm is block cyclic.
This matrix has a unique maximum positive eigenvalue λm. The matrix
after p transitions, Tp

m, has a block diagonal form with p blocks namely a
block for each phase. By Perron-Frobenius [43], λp

m is p−tuple eigenvalue
for Tp

m and Tm has p simple eigenvalues λmeik2π/p, k = 0, ..., p− 1.

2.7.6 Boundary constrained arrays

Consider the domino tiling constraint. Instead of defining a periodic
merging array, the array X is just boundary constrained such that no
(horizontal) piece crosses the boundary, i.e. the pieces form a tiling of the
rectangle of width m. This way the arrays may be cascaded without an
actual merging array. The array may be called a boundary constrained
array. (This solution to domino tiling could also be viewed as a special
case with w = 0.)

For the SRLL(d, k) constraint for k ≥ 2d (Etzion’s Cases 2 and
3), it is possible to use boundary constrained arrays without (periodic)
merging arrays. For k ≥ 2d define r = k − 2d and q ≤ r. An array X
may be specified with the boundary constraint that the rightmost run
is between d and d + r− q and the leftmost run is between d and d + q.
Any admissible pair of these arrays, X and Y , may be merged to the
admissible array XY .

2.7.7 Numerical results

Table 2.12 presents lower bounds on the entropy of the SRLL(2,3) con-
straint using two methods: Etzion’s merging arrays of width 12 and
W -boundary constrained arrays where the periodic merging array has
width w = 4 as given in Example 2.23.

As argued in Example 2.25, the W -boundary constrained arrays
for SRLL(2,3) have 2 deterministic columns besides the columns of W .
Therefore we have compared bounds obtained by arrays with the same
number of non-deterministic columns, i.e. width m for the merging array
and m + 2 for the periodic merging array, respectively.

For further comparison we have shown the number of transitions,
sz(·) of the transfer matrices T and T ′ where the last is for the W -
boundary constrained band.
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38 Constrained fields

Several things can be noted. HW (m)
m+4 is not monotonic. The size of the

transfer matrix T ′ is much smaller than that of T and only for m = 13
does the bound compare favorably for the W -constrained arrays.

The periodic merging array imposes constraints on the inner array
which for some values of m are particular severe. Hence the drop in the
number of configurations from m = 10 to m = 11.

The offset periodic merging of Section 2.7.3 was also applied using
Wφ. The last column in Table 2.12 gives the highest entropy (denoted
Hφ) among the offsets for each m. It may be noticed that the values
for which HW is not good one of the offsets produce better results. We
conjecture that using the offset periodic merging arrays there for all m
be a particular offset (depending on m) which would perform well.

For comparison, we give an upper bound of 0.257 for the entropy
for SRLL(2, 3). This was obtained using a band source of width 11 and
the upper bound (2.5). It is clear that there is a large gap between the
upper and lower bounds on the entropy obtained in this fashion.

m sz(Tm) sz(T ′
m+2)

H(m)
m+12

HB(m+2)
m+6

Hφ(m+2)
m+6

10 95464 18192 0.120 0.100 0.117
11 233952 10264 0.126 0.0923 0.131
12 562536 134996 0.131 0.116 0.123
13 1358632 1075216 0.135 0.136 0.136
14 3292760 2239364 0.139 0.137 0.137
15 7939920 1508272 0.143 0.124 0.138

Table 2.12: Lower bounds on the entropy of SRLL(2,3)

Table 2.13 gives the entropy using a specific periodic merging array
for the density constraint for (dmin, dmax) = (4, 5) and N = M = 3.
The chosen merging array has period p = 2, and the period is given by
10 and 01 in every other row. The results provide a lower bound on the
entropy of the constraint. An upper bound (2.5) on the entropy of 0.554
was obtained using an a band source of width m = 11.

The minimum width for which some merging array exists for any
arbitrary pair of arrays X and Y from the density constraint is not
known to us. Since, by Example 2.26, it is at least 8 we have also shown
the lower bounds on the entropy using this value in Table 2.13.
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2.7 Cascading arrays 39

It is seen that the periodic merging array approach provides signifi-
cantly higher entropy than what can be hoped for using a merging array
in this example.

m H(m)
m+8

HW (m)
m+2

7 0.269 0.353
8 0.280 0.360
9 0.289 0.372

10 0.297 0.382

Table 2.13: Lower bounds on the entropy of density(4,5)

2.7.8 Extension to 3D

In this section we give an outline of how the ideas of the previous sections
can be extended to 3D in a straightforward manner.

In general a 3D constrained volume is characterized by a set of forbid-
den volumes or equivalently an admissible subset of the configurations
within a N by M by L volume [37], [16].

The technique of periodic merging arrays may also be extended to 3-
D. The 3-D information carrying array X may be described as a sequence
of n by m arrays extending in the third direction. Periodic merging
arrays of width w are repeated at a distance of m+w. Perpendicular to
these, another set of periodic merging arrays of width v are repeated at
a distance of n + v. (These merging arrays are infinite in the two other
directions.) The two sets of merging arrays must have identical symbols
on coinciding positions where they intersect.

We consider the simple case, where the period is w and v for the
two sets of arrays, respectively. Further m is a multiple of w and n is a
multiple of v. In this case the two sets of merging arrays form a periodic
structure with a basic period of m + w by n + v in the (m, n)−plane.

The domino tiling may be generalized by packing the 3-D space with
pieces of 1 by 1 by 2 each of which are parallel to one of the axis. A
3-D boundary constrained 3-D array is given by packing the sequence
of n by m arrays with the 3-D domino pieces, thus no piece crosses the
boundary and w = v = 0.
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40 Constrained fields

The (d, k) SRLL constraint is generalized by requiring that the 2D
(d, k) SRLL is satisfied for any plane perpendicular to one of the three
axis. The periodic merging arrays are specified by setting w = v = 2d.
A period of 2d by 2d by 2d is introduced where any array perpendicular
to an axis is identical to the period of the 2D 2d by 2d periodic merging
array (or its bitwise negation). For m and n being multiples of 2d,
this period may be centered at the intersections of the merging arrays
and thereafter repeated in each of the directions. Now a sequence of
boundary constrained arrays of m by n may be specified.

2.8 Discussion

Another method of obtaining lower and upper bounds for general con-
strained fields by Markley and Paul appear in [35]. Their method is
refined by Friedland in [18]. It would be interesting to implement them
to compare them with the other bounds cited in this work.

We introduced the notion of splitting constraints as an example of
some particularly simple constrained fields where one could hope that
some of the fallacies of the general case were less severe. As an example
consider the zero capacity problem. This appears to have been solved
for a large class of splitting constraints by Kato and Zeger, namely the
asymmetric RLL [28], [29]. One could then hope that this result could
be extended to all splitting constraints.
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Chapter 3

Stochastic models of
constrained fields

We are interested in modeling the behavior of various coding schemes
for constrained fields. In 1D the theory of Markov Sources and their
entropy has been a powerful tool in ordinary constrained coding.

Hence, it seems natural to consider probability distributions when
dealing with constrained fields. The obvious generalization of a Markov
Source to 2D is a Markov Random Field (MRF). While MRFs have
found widespread use in image processing [31] their use in coding appli-
cations have been rather limited. This stems from two drawbacks of the
MRF. First of all, they are generally not causal and secondly, in order
to calculate the entropy of a MRF one has to determine the partition
function, which in all but the simplest cases is an intractable problem [5].

In this chapter we will investigate a particular simple MRF where
we are able to calculate the entropy, namely the classical construction
of the Pickard Random Field (PRF) [40], which is based on properties
of the probability distribution on 2× 2 elements.

The goal is to model the behavior of coding schemes. In our par-
ticular case we present a model of a bit-stuffer for the NIB constraint.
We do this by considering a PRF where the conditional probabilities are
induced by a bit-stuffer.

41
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42 Stochastic models of constrained fields

3.1 Measures on fields

Let F be the elements of an n ×m rectangle. Let µF be a measure on
AF that agrees with the constraint. That is, of all the |A|n×m possible
configurations those configurations that contains forbidden words have
probability zero according to µF .

The (measure theoretic) entropy of µF is defined as

H(µF ) = −
1

nm

∑

x∈An×m

µF (x) log2 µF (x). (3.1)

We are interested in measures that can be extended to a stationary
measure on an arbitrary rectangle n∗ ×m∗.

In general it appears to be difficult to find stationary probability
distributions for 2D constrained fields.

3.1.1 Symmetric Pickard Fields

We will study a special kind of probability distribution on a field that
is completely determined by the distribution on a 2× 2 rectangle.

A B
C D

where A, B, C, D are random variables over A.

Definition 3.1. Let X, Y, Z be random variables over some alphabet A.
We say that X and Y are conditionally independent given Z, denoted
X ⊥ Y | Z, if ∀x, y, z ∈ A :

Pr(X = x, Y = y|Z = z) = Pr(X = x|Z = z) Pr(Y = y|Z = z).

Definition 3.2. Let F be a stochastic field. If F satisfies the following
conditions for any 2× 2 lattice, we say that F is a Pickard Field.

1. Pr(A = x, B = y) = Pr(A = x, C = y) = Pr(A = y, B = x).

2. B ⊥ C | A.

3. The distribution on rows are identical, as is the distribution on
columns.
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3.1 Measures on fields 43

The joint distribution of (ABCD) is completely specified by the
probability distribution (A) as well as the three conditional probability
distributions (B|A), (C|A) and (D|ABC). This is due to the following
decomposition:

Pr(ABCD) = Pr(D|ABC) Pr(ABC) (3.2)

and due to the condition B ⊥ C | A

Pr(ABC) = Pr(BC|A) Pr(A) = Pr(B|A) Pr(C|A) Pr(A). (3.3)

Example 3.3. This example appears in [15]. We will construct a
Pickard field that satisfies the Hard Square constraint of no neigh-
boring ones. Let (A) be determined by Pr(1) = 1/5. By symme-
try Pr(10) = Pr(01) and due to the constraint Pr(0|1) = 1. Hence
Pr(10) = Pr(1) Pr(0|1) = 1/5 and therefore Pr(00) = 3/5. Since

Pr(1|0) = 1/5
4/5 = 1/4 we have determined (B|A) and due to symme-

try (C|A). By the decomposition (3.3) we can determine (ABC). We
only need to determine the conditional distribution (D|ABC). Due to
symmetry we have

Pr(01, 00) = Pr(10, 00) = Pr(00, 10) = Pr(00, 01)

and Pr(01, 10) = Pr(10, 01). Calculations then give Pr(01, 00) = 3/20
and Pr(10, 01) = 1/20 and hence Pr(00, 00) = 1− 12/20− 2/20 = 3/10.

The entropy H = H(D|ABC) is then H = 0.5755. By comparison
Calkin and Wilf showed that the entropy of the Hard Square constrained
field itself was approximately 0.5879 [6].

3.1.2 Extending the measure

Given the distribution on the 2 × 2 lattice, (ABCD), we can extend
this to a measure µn×m on an n ×m lattice x = (xij) in the following
manner.

First the symbol x11 is drawn according to (A). Then the first row
x12 . . . x1m is drawn according to the conditional distribution (B|A) one
symbol at a time. Then the first column x21 . . . xn1 is drawn according
to (C|A) one symbol at a time. x22 can then be drawn using (D|ABC).



“main” — 2007/1/15 — 23:12 — page 44 — #60
i

i

i

i

i

i

i

i

44 Stochastic models of constrained fields

Proceeding in this manner one has (using short hand notation for prob-
abilities given by the argument):

µn×m(x) = Pr(x11)

·Πm
j=2 Pr(x1j |x1(j−1))

·Πn
i=2 Pr(xi1|x(i−1)1)

·Πn
i=2Π

m
j=2 Pr(xij |x(i−1)(j−1), x(i−1)jxi(j−1)).

(3.4)

The construction of the extended measure shows that a Pickard Field is
causal and can be simulated in a straightforward manner.

The extended measure is stationary if the joint distribution of (ABCD)
does not depend on which 2×2 rectangle within the n×m rectangle we
regard.

While the symmetry constraints of a Pickard field greatly facilitates
computational ease, they also limits the modeling power. Both points
were illustrated in Example 3.3 where the entropy of a Pickard field
satisfying the Hard Square constraint was lower than the entropy of the
Hard Square constrained field itself.

Therefore we loosen some of the requirements of symmetry. As before
we have four stochastic variables A, B, C and D over some alphabet A
and we consider the joint distribution of (A, B, C, D) on the 2×2 lattice

A B
C D

Definition 3.4. If B ⊥ C | A, the joint distribution of (ABCD) on the
2× 2 lattice is a Pickard model.

Recall, that a constrained field is called higher order if the forbidden
blocks cannot fit in a 2× 2 lattice. Consistent with this terminology we
say that a Pickard model is first order, since it is completely determined
by the probabilities on a 2× 2 lattice.

The Pickard model suffers from being a first order model. This means
that we can not model higher order constraints such as the RLL(2,∞)
constraint on the symbol level. However, in the next sections we will
try to increase the modeling power of the Pickard model by using an
extended alphabet.
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3.2 Modeling higher order constraints

One way to model higher order constraints in the framework of the first
order Pickard model is to increase the alphabet size. We use an extended
alphabet of blocks of the same size built of symbols of the underlying
alphabet.

In order for the Pickard model to capture the constraint, the blocks
of the extended alphabet must be large enough to contain the size of
the constraint in a 2 × 2 lattice. On the other hand we want to have
the alphabet to be as small as possible, in order to keep the number of
parameters of the model tractable. As a general rule of thumb, if N×M
is the size of the constraint, then the blocks of the extended alphabet
should be of size n×m, where n = dN/2e and m = dM/2e.

Example 3.5. Consider the RLL(2,∞) constraint. It has extent 3× 3
so we will use blocks of size 2×2. The forbidden words horizontally and
vertically are F = {11, 101}. Therefore there is no need to include blocks
where 11 occurs in the alphabet. This leads to the following alphabet

A =

{
00
00

,
01
00

,
10
00

,
00
10

,
00
01

,
01
10

,
10
01

}

= {s, t, u, v, x, y, z}.

Consider the four stochastic variables A, B, C, D ∈ A in the lattice

A B
C D

The question is whether we can find probability distributions (B|A),
C(|A) and (D|ABC) that agrees with the constraint and such that
B ⊥ C | A. First, we note that one cannot have that (BC) and A
are independent, since

Pr(A = y, B = u, C = u) = 0 6= Pr(A = y) Pr(B = u, C = u).

We have shown how to choose an extended alphabet for the RLL(2,∞)
constraint. In Section 3.2.1 we will show that we can find a Pickard
model over this alphabet.

The Pickard model essentially says that there is no “diagonal inter-
action”. This is also true for splitting constraints such as RLL(d,∞).
So in a sense, we get diagonal independence “for free” when considering
splitting constraints.
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46 Stochastic models of constrained fields

Proposition 3.6. Let F be a splitting constrained field. Assume that
there exists conditional distributions (B|A) (horizontally) and (C|A)
(vertically) that agrees with F . Then there exists a Pickard model (ABCD)
for F .

Proof. Essentially, we have to show that we can define a probability
distribution (ABC) such that B ⊥ C | A. We simply define

µ(ABC) = Pr(A) Pr(B|A) Pr(C|A). (3.5)

This is by construction diagonally independent, but the question is
whether it is well-defined, i.e. whether the definition of µ(ABC) agrees
with the constraint. Assume for a moment, that a particular configura-
tion abc is invalid (and we want this configuration to have probability
zero by (3.5)). Since the constraint is splitting, the only forbidden words
occur horizontally and vertically. That means that either ab or a

c is in-
valid (or both). If ab is invalid then Pr(B = b|A = a) = 0 since we as-
sume that (B|A) agreed with the constraint. And then µ(ABC)(abc) = 0.
Similarly if a

c is invalid we also have µ(ABC)(abc) = 0. So the constructed
probability agrees with the constraint.

Note that we have not made a clear distinction between the symbol
and block level in this proof due to the notational burden. However, it
is hopefully clear that the construction is indeed valid because of the
splitting of the constraint.

3.2.1 A Pickard model for RLL(2,∞)

We now return to Example 3.5 where the alphabet

A = {s, t, u, v, x, y, z}

was introduced. We will show that several Pickard models for RLL(2,∞)
exists over this alphabet.

We need to construct distributions (B|A) and (C|A) that agrees with
the constraint. We will try to be as unbiased as possible. Hence we begin
by determining admissible |A|×|A|matrices TB and TC , that are defined
in the following manner:

(TB)ab =

{
1 if ab doesn’t violate the RLL(2,∞) constraint.
0 otherwise.



“main” — 2007/1/15 — 23:12 — page 47 — #63
i

i

i

i

i

i

i

i

3.2 Modeling higher order constraints 47

TC is defined in a similar fashion except that the constraint is now
checked vertically.

(TC)ac =

{
1 if a

c doesn’t violate the RLL(2,∞) constraint.
0 otherwise.

By inspection one can see that

TB =













1 1 1 1 1 1 1
1 0 0 1 1 0 0
1 1 0 1 1 1 0
1 1 1 0 1 0 1
1 1 1 0 0 0 0
1 0 0 0 1 0 0
1 1 0 0 0 0 0













and TC =













1 1 1 1 1 1 1
1 0 1 1 0 0 1
1 1 0 1 1 1 0
1 1 0 0 1 0 0
1 0 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 0 0













.

Note that TB 6= TC .
We now distribute the probabilities evenly among the valid transi-

tions. Define the row sum of a matrix A as sA
i =

∑

j Aij . Then we
set

(QB)ij =
1

sB
i

(TB)ij and (QC)ij =
1

sC
i

(TC)ij . (3.6)

By construction both QB and QC are stochastic matrices. Furthermore,
they can be thought of as an unbiased (with regards to the constraint)
choice of the probabilities on the border.

We will construct the distribution of (D|ABC) in a similar fashion.
First we determine the admissible matrix TD.

(TD)(abc)d =

{
1 if ab

cd is valid.
0 otherwise.

This is a |A3| × |A| matrix. Since, in this case |A| = 7 this matrix with
343 rows is a bit unwieldy. However, due to the nature of the constraint,
things simplify. Since the constraint is splitting we can ensure that A and
D are independent and that the distribution of (D|ABC) only depends
on (BC). We have

Pr(ABCD) = Pr(D|ABC) Pr(ABC)

= Pr(D|BC) Pr(ABC)
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48 Stochastic models of constrained fields

So we only need to specify the 49× 7 matrix T̃D. We will do this in an
algorithmic fashion. Note that (T̃D)(bc)d = 1 by definition if both b

d and
cd are valid configurations. But by definition of TB and TC this is the
same as (TB)cd = 1 = (TC)bd. So we simply set

(T̃D)(bc)d = (TB)cd · (TC)bd. (3.7)

We then take as an unbiased distribution:

(QD)ij =
1

sD
i

(T̃D)ij .

Hence we have constructed a Pickard model for the higher order
constraint by utilizing an alphabet extension.

3.2.2 The problem of the exploding number of
parameters

Let n = |A| be the size of the extended alphabet. In order to specify
a Pickard model over this alphabet, we need to specify the four distri-
butions (A), (B|A), (C|A) and (D|ABC). Consider first (B|A). It has
n2 parameters of the form qst = Pr(B = t|A = s). Since n of these are
given by the condition that a probability vector should sum to 1, we are
left with n(n− 1) parameters.

In a similar fashion one can see that in the general case the distri-
bution of (D|ABC) will have n3(n − 1) parameters. Thus our Pickard
model has (n − 1) + 2(n(n − 1)) + n3(n − 1) = (n − 1)(n3 + 2n + 1)
parameters. This might be slightly overparametrized in the sense that
some of these parameters will be zero due to the particular constraints
of the field in question. The point still stands however, that the number
of parameters grow fast with the size of the extended alphabet. In the
example of the RLL(2,∞) constraint, there are 2148 parameters.

The unbiased construction in Section 3.2.1 could be considered canon-
ical and thus one way with dealing with the large numbers of parameters.
However, while our construction is canonical, we would like the resulting
model to have additional properties. First of all, we would like to have a
stationary model and secondly we would like to have a model with high
entropy.

The large number of parameters in our Pickard model brings the
hope that we indeed should be able to capture these two properties. On
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the other hand it raises the question of how to choose the parameters.
In Section 3.3 we discuss when it is possible to find stationary Pickard
models and in section 3.4 we will propose a method that in some cases
can choose the parameters to ensure stationarity.

3.2.3 Limitations of the model

As long as the constrained field is splitting, we get diagonal independence
“for free” as demonstrated by Proposition 3.6. However, this is not
always the case. Consider the diamond constraint introduced in Section
2.3. We have

F� =






11, 101,

01
10

,
10
01

,
1
1
,
1
0
1






.

Hence in the hope of using a Pickard model we introduce the follow-
ing extended alphabet:

A =

{
00
00

,
01
00

,
10
00

,
00
10

,
00
01

}

= {s, t, u, v, x}. (3.8)

Now consider the configurations sv and s
t . Both of these are valid

diamond configurations. However the configuration

s v
t

=

00 00
00 10
01
00

violates the constraint. This means that B and C are not conditionally
independent given A. In this case we cannot apply the Pickard model.
Note that this problem can not be solved by extending the alphabet size
further. No matter how large the extended alphabet is, B and C will be
close to each other and possibly influence each other.

In general, this will be a potential problem when modeling any non-
splitting constrained field. However, we will propose an extension to the
model in Section 3.5 that at least from a theoretical point of view solves
the problem.



“main” — 2007/1/15 — 23:12 — page 50 — #66
i

i

i

i

i

i

i

i

50 Stochastic models of constrained fields

3.3 A stationary model

In Section 3.1.2 we saw how we could extend the distribution on a 2× 2
to an arbitrary lattice. We now turn to the question of how to ensure
that this extension is stationary.

We say that the distribution (ABCD) is stable if the distributions
on (AB) and (CD) are identical and the distributions on columns (AC)
and (BD) are identical.

The following Theorem due to Pickard [40] gives a sufficient condition
on (ABCD) for the extended measures (3.2-3.4) to be stationary.

Theorem 3.7. Let µ2×2 be a stable measure induced by (ABCD) satis-
fying B ⊥ C | A. If B ⊥ C | D then the extended measure µn×m based
on (3.2-3.4) is Markovian and stationary for any n, m ≥ 2.

Theorem 3.7 provides sufficient conditions for the measure µ2×2 to
be extended to a stationary measure. Since

B ⊥ C | D ⇔

Pr(BCD) = Pr(D) Pr(B|D) Pr(C|D)
(3.9)

Equation (3.9) expresses the independence conditions in a form which
may be checked.

Further it follows that

Theorem 3.8. The entropy per symbol of a stationary measure µn×m

defined by Theorem 3.7 and given by (3.1) is bounded by

H(µF ) ≥ H(D|ABC). (3.10)

Proof. The n×m rectangle x11, . . . xnm, of the measure µn×m, is divided
into the initial boundary xi1, 1 ≤ i ≤ n and x1j , 1 ≤ j ≤ m and the
remaining interior part. The entropy of each element of the latter is
given by H(D|ABC) due to the stationarity and the chain rule. The
entropy of the initial boundary is not less than this as the distribution
on the initial boundary is given by (A) and the Markov chains (B|A)
and (C|A), which are identical to the marginal distribution on the rows
(and columns) of the remaining interior, due to the stationarity.

Consider a row by row traversal of the rectangle. As argued in the
proof, the entropy of the elements not belonging to the initial boundary
given the causal elements is given by H(D|ABC).
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3.4 An iterative search for a stationary
solution

As noted in Section 3.2.2 a Pickard model for a higher order constrained
field has a large number of parameters. We would like to have a station-
ary model. While Theorem 3.7 gives sufficient conditions for a Pickard
model to be stationary, it is not clear how to choose the parameters of
the model to actually satisfy the conditions of the theorem. In this sec-
tion, two iterative procedures are described as a method to determine
the parameters for a stationary model.

The first procedure is part of the second and this combination pro-
vides a search for stationary solutions. The first procedure changes the
boundary distributions (B|A) and (C|A) until (ABCD) is stable. The
second procedure extends this by changing (D|ABC) until B ⊥ C | D.

We now introduce some notation in order to present the procedures.
Let |A| denote the size of the extended alphabet. Let QB = (qij) denote
the |A|× |A| transfer probability matrix for (B|A), that is qij = Pr(B =
j|A = i). Let πA denote the stationary distribution for QB. We will use
πA as the distribution of (A). For symmetry reasons we set the bound-
ary distributions (B|A) and (C|A) to be identical. This way (B|A) and
(C|A) automatically have the same stationary distribution, πA, which
is used for the distribution (A). (This symmetry constraint need not be
imposed as long as (B|A) and (C|A) have the same stationary distribu-
tion.)

Let QD = (qij) denote the |A|3 × |A| transfer probability matrix for
(D|ABC). Let QBD and QCD denote the |A|2×|A|2 transfer probability
matrices for the distributions (BD|AC) and (CD|AB), respectively.

Algorithm 3.9 iterates until the measure is stable, i.e. until (AB)
and (CD) are identical and (AC) and (BD) are identical. Algorithm
3.10 iterates until (3.9) is also satisfied calling Algorithm 3.9 in each
iteration.

In general, let PX denote the probability vector of the marginal dis-
tribution X of the joint distribution (ABCD). Let a superscript index

the iterations, e.g. QB is initialized by Q
(0)
B and after n iterations Q

(n)
B

is output. We set Q
(n)
C = Q

(n)
B due to the symmetry assumption.

Algorithm 3.9. Assume that Q
(0)
B and QD are given. Let ε denote
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some prescribed tolerance of error.

1. Calculate π
(n)
A from Q

(n−1)
B . Calculate P

(n)
ABCD (3.2-3.3).

2. Calculate PAB, PCD, PAC , PBD from P
(n)
ABCD.

3. If ‖PAB − PCD‖+ ‖PAC − PBD‖ < ε then goto 9.

4. Calculate Q
(n)
CD and Q

(n)
BD from P

(n)
ABCD.

5. Find the stationary distribution π
(n)
AB for Q

(n)
CD and π

(n)
AC for Q

(n)
BD.

6. Let π(n) be the average of π
(n)
AB and π

(n)
AC .

7. Calculate Q
(n)
B from P

(n)
AB = π(n).

8. Goto 1.

9. Output Q
(n)
B and π

(n+1)
A .

Step 3 performs the test for (ABCD) being stable. In Step 7 we
calculate the conditional distribution (B|A) from the joint distribution
(AB). By the imposed symmetry we force the conditional distribution
(C|A) to be the same as (B|A).

We cannot state sufficient conditions for Algorithm 3.9 to converge.
However, the following conditions appears to be beneficial in that

regard.

• QB and QC are identical.

• QB and QC are irreducible.

• QD obeys the following symmetry constraint

∀a, b, c ∈ A : Pr(D|abc) = Pr(D|acb). (3.11)

Now we extend the procedure to search for model parameters that
satisfy the conditional independence B ⊥ C| D. The main condition is
(3.9). We will write this in a slightly different form:

∑

x∈A

Pr(A = x, BCD) = Pr(D) Pr(B|D) Pr(C|D). (3.12)



“main” — 2007/1/15 — 23:12 — page 53 — #69
i

i

i

i

i

i

i

i

3.4 An iterative search for a stationary solution 53

Inspired by (3.12) we introduce a scale parameter for each context (bcd).
Define

λbcd =
Pr(D = d) Pr(B = b|D = d) Pr(C = c|D = d)

PBCD(bcd)
(3.13)

For each bcd configuration the two sides of (3.9) are calculated. Tem-
porary parameters for the conditional probabilities of QD involved are
modified by the scale parameter (3.13) to achieve equality for the given
bcd configuration. This leads to the following algorithm.

Algorithm 3.10. Given QB and Q
(0)
D .

1. Run Algorithm 3.9 until convergence.

2. Calculate PBCD and Pt = PDQB|DQC|D

3. If ‖PBCD − Pt‖ < ε Goto 8.

4. ∀bcd ∈ A3 : λbcd = Pt/PBCD(bcd).

5. ∀abcd ∈ A4 : Q
(n)
D (d|abc) = λbcdQ

(n−1)
D (d|abc).

6. Normalize Q
(n)
D .

7. Goto 1.

8. Output Q
(n)
D ,

In Step 2, the terms are calculated from PABCD (3.2-3.3). In Step
5, the update of QD is given by considering the terms contributing to
the difference, ‖PBCD − Pt‖ in Step 3 (3.13). After one pass over the
configurations, these parameters are normalized (Step 6) to define a

new set of conditional probabilities Q
(n)
D appropriately summing to 1.

(A stop criteria may be included for the case that the algorithm does
not converge within a given number of steps.)

The search given by Algorithm 3.10 calls Algorithm 3.9 in its itera-
tions, proceeding until both have converged. Given a solution, according
to Theorem 3.7, this output satisfying the constraints of Algorithms 3.9
and 3.10, and thus being stable as well as satisfying (3.9), can be ex-
tended to a stationary measure on any n×m rectangle.



“main” — 2007/1/15 — 23:12 — page 54 — #70
i

i

i

i

i

i

i

i

54 Stochastic models of constrained fields

Example 3.11. If we return to the RLL(2,∞) constraint, we immedi-
ately note that the boundary distributions (B|A) and (C|A) can never
be identical, since TB 6= TC . As this appears to be a requirement for the
convergence of Algorithm 3.10, it seems we cannot use the method for
this particular constraint.

As we have seen a Pickard model is still possible for this constraint,
but it is unresolved how to actually choose the parameters in order to
obtain a stationary solution.

Despite Example 3.11 we remain confident that the presented algo-
rithms will be useful for some fields with more inherent symmetry. In
Section 3.6 we discuss one such case.

3.5 Fields on lattices

We now return to the problem illustrated by the diamond constraint in
Section 3.2.3. We can solve this by considering configurations on rect-
angles of lattices rather than just horizontal-vertical rectangles. When
dealing with an extended alphabet, there are several ways to tile the
plane using the blocks of the extended alphabet. We are only interested
in configurations where the blocks have the same orientation. Let n×m
be the size of the blocks of the extended alphabet. Then consider the
lattice defined by the basis vectors

e1 =

(
1

−(max(m− 1, 1))

)

and e2 =

(
1

max(m− 1, 1)

)

. (3.14)

As an example consider the configuration, on a 3× 3 rectangle, over
A in Fig. 3.1. Here the basis vectors are e1 = (1,−1)T and e2 = (1, 1)T .

Hence our Pickard model (ABCD) would be arranged in the follow-
ing 2× 2 lattice

B
A D

C
(3.15)

In the sequel when we refer to an n×m rectangle it will be oriented
along the diagonal basis vectors of a rotated and scaled coordinate sys-
tem as in Fig. 3.1, i.e. the entries of the configuration is labeled as (row,
column), but here the “rows” and “columns” run along the diagonals.
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x13

x12 x23

x11 x22 x33

x21 x32

x31

Figure 3.1: A 3×3 rectangle on the lattice defined by the basis vectors
e1 = (1,−1)T and e2 = (1, 1)T .

The definition of entropy holds in this setting as well. The measure
theoretic entropy (3.1) has not changed whereas for the combinatorial
entropy (2.1) one has to consider rectangles defined in the manner above.
It is reasonable to question whether the combinatorial entropy defined
on a lattice agrees with the normal definition.

3.5.1 Returning to the diamond constraint

Consider once more the Diamond constraint and the following alphabet

A =

{
00
00

,
01
00

,
10
00

,
00
10

,
00
01

}

= {s, t, u, v, x}.

We now arrange our random variables A = (a1a2, a3a4), B = (b1b2, b3b4),
(c1c2, c3c4) and D = (d1d2, d3d4) in the following lattice:

b1 b2

b3 b4

a1 a2 d1 d2

a3 a4 d3 d4

c1 c2

c3 c4

(3.16)

This corresponds to basis vectors e1 = (1,−2)T and e2 = (1, 2)T . When
considering whether B = b can occur after A = a we will inspect the
configuration of ab but arranged according to (3.16). In general we write
ab for “horizontal” concatenation, i.e. along the direction of the basis
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vector e2 and a
c for “vertical” concatenation, i.e. along the direction of

the basis vector e1.

Since the extent of the constraint is 3 × 3 we have made sure that
B and C do not “interact” by this construction. Hence we have that
B ⊥ C | A. Thus we are able to employ a Pickard model in this case.

Let us consider the admissible matrices TB and TC . We define

(TB)ab =

{
1 if ab doesn’t violate the � (3) constraint.
0 otherwise.

Similarly we have

(TC)ac =

{
1 if a

c doesn’t violate the � (3) constraint.
0 otherwise.

By inspection it is seen that

TB =









1 1 1 1 1
1 1 0 0 0
1 1 1 0 1
1 1 1 1 1
1 1 1 0 1









and TC =









1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 0 1 1
1 0 0 0 1









.

We can then define the admissible matrix TD for the distribution (D|ABC)
by

(TD)(abc)d =

{
1 if ab

cd is valid.
0 otherwise.

In a similar fashion as we did for the RLL(2,∞) constraint in Section
3.2.1 we can then construct unbiased distributions (B|A), (C|A) and
(D|ABC).

Again we note that TB 6= TC so it is unclear how to choose a sta-
tionary Pickard model as we cannot use the search of Section 3.4. We
will not pursue a Pickard model for the Diamond constraint further.
Instead, in the next section we utilize the lattice Pickard model as well
as the iterative search method to completely specify a stationary model
for the NIB constraint.
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3.6 A stationary model for NIB

Until now the symbol blocks we have considered have been quadratic in
size. Now, we give an example of some rectangular blocks which lead
to a simple model for the NIB constraint. The model approximates the
behavior of a bit-stuffer for NIB.

Consider the higher order alphabet, A, over the binary alphabet
given by

A = {00, 01, 10, 11} .

The configurations considered will be on the lattice defined by the two
basis vectors e1 = (1,−1)T and e2 = (1, 1)T . In Fig. 3.2, an example of
a 3 × 3 rectangle over A is shown. If we construct admissible matrices

0 1
0 1 1 0

1 0 1 1 0 1

1 0 0 0
0 0

Figure 3.2: An example of a NIB configuration on a 3× 3 field.

TB and TC we note that TB = 1 = TC , i.e. all transitions are valid
according to the constraint. Furthermore the two matrices are identical,
so we can utilize Algorithm 3.10.

First we initialize (B|A) (and by symmetry (C|A) to be an unbiased
distribution, QB = (qij) with qij = 1/16 for all i, j ∈ A. We then
use the bit-stuffer to induce the conditional probabilities QD. This is
described in Section 3.6.1. The resulting stationary model from applying
Algorithm 3.10 is then further modified based on a search for higher
entropy, with the method described in Section 3.6.3. Finally we shall
present the optimized model in Section 3.6.4.
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3.6.1 Using a bit-stuffer to induce (D|ABC)

One can use a bit-stuffer to define the conditional distribution (D|ABC).
The bit-stuffer works on the binary symbol level in the following manner.

b1 b2

a1 a2 d1 d2

c1 c2

Whether bits are stuffed or written as is to positions d1 and d2 is decided
solely on the basis of the context a1, a2, b1, b2 and c1, c2 in order not to
violate the NIB constraint. Based on the bit-stuffer one can induce the
probabilities (D|ABC) at the block level.

Example 3.12. Consider the following context (a = 01, b = 00, c = 00):

0 0
0 1 1 f

0 0

This results in a stuffed ’1’ in position d1, whereas position d2 is ’free’,
denoted f .

Hence

Pr(D = 00|A = 01, B = 00, C = 00) = 0

and

Pr(D = 01|A = 01, B = 00, C = 00) = 0

since the bit-stuffer will stuff a ’1’ in position d1, whereas

Pr(D = 10|A = 01, B = 00, C = 00) = 1/2

and

Pr(D = 11|A = 01, B = 00, C = 00) = 1/2

since position d2 is free and an unbiased input stream was assumed. We
refer to this as the unbiased bit-stuffer.

In a similar fashion one can determine the probabilities (D|abc) for
every context (abc).
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As an alternative a biased bit-stuffer may be applied. We consider
introducing a bias for d1 given abc, such that the distribution on the
admissible values of d = d1, d2 is uniform. (This is already the case for
the biased bit-stuffer when 2 or 4 values of d are admissible for a given
context abc. The only difference is for contexts abc where three values
are admissible. In this case the conditional probability for d1 is biased
with probabilities 1/3 and 2/3. The following decision for d2 is either
forced by the constraint or unbiased.)

It may be noted that the bit-stuffing induced probabilities (D|ABC)
are symmetric in the following fashion. For any a, b, c ∈ A we have
Pr(D|abc) = Pr(D|acb).

3.6.2 Numerical results

Applying Algorithm 3.10 starting with the model with conditional prob-
abilities induced by unbiased bit-stuffing, we obtained a stationary so-
lution in accordance with Theorem 3.7. The entropy (3.10) is expressed
by H(D|ABC) = 0.9037 per binary symbol. This is less than the lower
bound of 0.9127 presented as a lower bound for bit-stuffing in [20]. The
latter lower bound was based on using both an unbiased and a biased
bit-stream. Thereafter the biased bit-stuffer above was used to initial-
ized the conditional probabilities QD. (The biased stream has the same
probabilities as in [20], but is only applied for one (d1) of the two ele-
ments of the block.) This gave a stationary solution with an entropy of
H(D|ABC) = 0.9073 per binary symbol.

3.6.3 Searching for a higher entropy

Now taking our point of departure in a model derived, the parameters
of this model may be perturbed slightly in order to search for a model
with higher entropy.

To keep things simple we insist that the boundary distributions
should still be identical. Furthermore the conditional distributions (D|ABC)
should have the same symmetry as the bit-stuffing induced probabilities,
that is Pr(D|abc) = Pr(D|acb).

Let δ > 0. For each context (abc) there are three probability param-
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eters (of which 0, 1 or 2 may be 0)

pabc = Pr(D = 00|abc)

qabc = Pr(D = 01|abc)

rabc = Pr(D = 10|abc)

For each context (abc) and for each parameter p ∈ {pabc, qabc, rabc}, we
perturb the parameter p = p + δ, ensure that conditional probabilities
Pr(D|abc) still sum to 1 and then iterate the model towards stationarity
according to the method described in Section 3.4.

Experimenting with different δ, we noted that not all parameter-
izations of the model iterated to a stationary solution satisfying the
sufficient condition, B ⊥ C| D, for the Markov property. In Section
3.6.4, the parameters of the model with the highest entropy obtained in
this fashion are presented. It should be noted that only a limited search
has been carried out, from the two initial distributions, to demonstrate
that increasing the entropy by a simple search is possible.

3.6.4 Parameters of the NIB model

In this section we present the parameters for a stationary Pickard model
of the NIB constraint that has an entropy of H(D|ABC) = 0.9082.

We obtained this by applying Algorithm 3.10 to the distribution in-
duced by the biased bit-stuffed as explained in Example 3.12. The result-
ing stationary model was then modified by the search method described
in Section 3.6.3 in an effort to increase the entropy. The parameters of
the stationary model with the highest entropy found in this manner is
presented in Tables 3.1, 3.2 and 3.3, respectively.

Note that due to the symmetry constraints imposed on the probabil-
ities, Table 3.3 only contains 40 of the 64 different contexts (abc). (The
remaining are given by the symmetry.)

For comparison we carried out a search for higher entropy based on
the stationary model obtained for the unbiased bit-stuffer. This yielded
a stationary model with an entropy H(D|ABC) = 0.9041 per binary
symbol.
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A 00 01 10 11

Pr(A) 0.2699 0.2309 0.2321 0.2671

Table 3.1: A model for NIB. Distribution of (A).

B

A 00 01 10 11

00 0.2351 0.2367 0.2224 0.3058
01 0.2574 0.1962 0.2735 0.2729
10 0.2796 0.2718 0.1919 0.2566
11 0.3073 0.2194 0.2409 0.2325

Table 3.2: A model for NIB. Boundary distribution (B|A).

3.7 Discussion

In this chapter we applied the first order model of a PRF to vari-
ous higher order constraints. The induced measures of the bit-stuffing
scheme for the Hard Square constraint [41] can be seen as a variation of
a PRF. While the entropy was optimized for this particular constraint,
the constraint itself is first order.

In [27] some higher order models for higher order constraints are
investigated. The models can be seen as a generalization of the Pickard
field.

Our iterative method for finding a stationary solution works well for
the NIB constraint. However, it is not clear under which general con-
ditions it converges. While symmetry seems beneficial, it is not always
easy to assure as was seen from the RLL(2,∞) example.

Our use of Algorithm 3.9 can be seen as a special case of the following
general problem: Given a coding method (in this case bit-stuffing) how
does the distribution on the border influence the long term behavior of
the encoder? Our experiments show that it is possible to initialize a bit-
stuffer for the NIB constraint such that the induced measure is stable.
However, we want more, namely that the measure is stationary. While
our presented model is that, we have modified the original distribution
of the bit-stuffer in order to have that B ⊥ C | D. While this ensures
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D
ABC x y z v

xxx 0.2928 0.3470 0 0.3602
xxy 0.2759 0.2475 0.2174 0.2591
xxz 0.2985 0.3416 0 0.3599
xxv 0.2705 0.2274 0.2332 0.2689
xyy 0.2616 0.2754 0.2483 0.2146
xyz 0.2705 0.2343 0.2295 0.2658
xyv 0.2440 0.3219 0.2364 0.1977
xzz 0.2718 0.3536 0 0.3746
xzv 0.2659 0.2157 0.2445 0.2740
xvv 0.2557 0.2757 0.2590 0.2095
yxx 0 0 0.5333 0.4667
yxy 0 0 0.4563 0.5437
yxz 0.2032 0.2324 0.3195 0.2449
yxv 0.2705 0.2274 0.2332 0.2689
yyy 0 0 0.5364 0.4636
yyz 0.2705 0.2343 0.2295 0.2658
yyv 0.3598 0 0.3486 0.2915
yzz 0.3008 0.2141 0.2506 0.2345
yzv 0.2659 0.2157 0.2445 0.2740
yvv 0.3531 0 0.3576 0.2893
zxx 0.2928 0.3470 0 0.3602
zxy 0.2759 0.2475 0.2175 0.2592
zxz 0.2985 0.3416 0 0.3599
zxv 0.2705 0.2274 0.2332 0.2689
zyy 0.2616 0.2754 0.2483 0.2146
zyz 0.2705 0.2343 0.2295 0.2658
zyv 0.2440 0.3219 0.2364 0.1977
zzz 0.4346 0.5654 0 0
zzv 0.5521 0.4479 0 0
zvv 0.4812 0.5188 0 0
vxx 0.2074 0.2458 0.2916 0.2552
vxy 0.2759 0.2475 0.2175 0.2591
vxz 0.2032 0.2324 0.3195 0.2449
vxv 0.2705 0.2274 0.2332 0.2689
vyy 0.3611 0 0.3427 0.2962
vyz 0.2705 0.2343 0.2295 0.2658
vyv 0.3598 0 0.3486 0.2915
vzz 0.1978 0.2573 0.2723 0.2726
vzv 0.2659 0.2157 0.2445 0.2740
vvv 0.3531 0 0.3576 0.2893

Table 3.3: A model for NIB. The conditional probabilities P (D|ABC).
x denotes 00; y, 01; z, 10 and v, 11, respectively.
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stationarity, we no longer deal with the original bit-stuffer, but only
what one could see as an approximate model of its behavior.

One could consider the opposite problem. Given the border distribu-
tion how do we choose the conditional probabilities (D|ABC) such that
the field is stationary and (preferably) have a high entropy? It turns out
that the method of iterative scaling [7] can solve this problem, indeed in
a fashion that yields the maximum entropy under the given constraints.
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Chapter 4

Bit-stuffing for
checkerboard constrained
fields

In this chapter we present a variation of the bit-stuffing scheme intro-
duced in Section 2.4.2. The method is applicable to all checkerboard
constrained fields. We investigate probability measures induced by the
bit-stuffing scheme. We show how to calculate the entropy of the mea-
sures, thus obtaining a lower bound on the entropy of the constraints
considered.

4.1 Introduction

We have already discussed how to use a bit-stuffing scheme to encode a
data stream into an n×m array W such that some arbitrary, but fixed
checkerboard constraint is obeyed. Recall, that we were not able to
calculate the average coding rate of the scheme. Indeed, this appears to
be a difficult problem. In [41], [20] a detailed analysis of the bit-stuffing
scheme for RLL(d,∞) constraints is carried out and the authors offer
several lower bounds on the average code rate of the scheme.

We will now modify the bit-stuffing scheme slightly. Instead of writ-
ing one row at a time, left to right, we will access the positions in a
different order. This enables us to calculate the average code rate of the

65



“main” — 2007/1/15 — 23:12 — page 66 — #82
i

i

i

i

i

i

i

i

66 Bit-stuffing for checkerboard constrained fields

new scheme. More precisely, we model the behavior of the bit-stuffing
encoder as a Markov band source and show how to extend this to a
measure on the quarter plane. We then find the entropy of the extended
measure.

We will first describe the modified bit-stuffer for a single RLL(d,∞)
array. We then introduce the Markov band source model of the scheme
in Section 4.2. Then in Section 4.3 we show how to extend the bit-
stuffing to the quarter plane. We then introduce measures modeling
the bit-stuffer and calculates their entropy. Finally, in Section 4.4 we
present the construction in a general setting applicable to all checker-
board constraints.

4.1.1 A modified bit-stuffing scheme

Let W denote an n ×m array. We think of W as having two borders
X and Z each of width b and an interior Y of width m − 2b such that
W = XY Z. The width of the borders has to be at least M − 1. That
is, in the case of RLL(d,∞) we have b = d.

The modification to the bit-stuffer of Section 2.4.2 is simply this: We
still write to W one row at a time, but first we write to the border X
from left to right, then to Z from left to right, and finally to Y , left to
right. Zeros as stuffed as necessary in the same manner as before.

Example 4.1. Consider a modified bit-stuffer for the RLL(2,∞) con-
straint. Assume that the array W has width m = 7. In this case the
borders have width b = 2. A ’0’ is simply written as a ’0’, but we stuff
zeros around a ’1’ and then skip to the next available position. This is
depicted below, where x is some previously written symbol (in this case
a zero) and y is the next available position. Note that y is in Z, because
we write in the order X, Z and then Y . Hence the last position in Y
will only be written after we have filled the two positions of Z.

1 7→

X Y Z

x 1 0 0 y

0

0

We show a more involved example. Again, the y denotes the next
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available position.

0110011 7→

X Y Z

0 1 0 0 0 1 0

0 0 1 0 0 0 0

1 0 0 0 y

0 0

We will model the behavior of the modified bit-stuffing scheme as the
output from a finite state band source. We first introduce the necessary
notation, then describe how to model the bit-stuffer.

4.1.2 Markov band sources

We now return to the finite state band sources introduced in Section
2.6. Let B be a finite state source with states of height N −1 and width
m. Let T = (tij) denote the transfer matrix of the source. We introduce
transition probabilities Pm = (pij) for the finite state source. We will
only consider transition probabilities satisfying that pij > 0 if and only
if tij > 0. We will refer to a band source with transition probabilities as
a Markov Band Source (MBS).

Definition 4.2. Let B be a MBS with transition probabilities Pm. Let
π be the stationary distribution of Pm. We define the entropy of B as

H(B) =
∑

i

∑

j

πipij log2(1/pij). (4.1)

One may wonder whether the definition is useful since it relies on
the existence of a stationary distribution for the transition probabilities.
However, as the following lemma shows, as long as we only deal with
checkerboard constraints, as is the focus of the present chapter, it is
well-defined.

Lemma 4.3. For a MBS B defined over a checkerboard constraint the
entropy is well-defined and given by (4.1).

Proof. If a stochastic matrix is irreducible, then the stationary distribu-
tion exists and is unique [5]. Since the stochastic matrix for B is defined
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such that pij > 0 if and only if tij > 0, it is sufficient to show that the
transfer matrix T is irreducible.

Let s and t be two states corresponding to any two valid configu-
rations. For a checkerboard constraint the all zero state 0 is always a
valid configuration. Consider the configuration obtained by stacking s,
0, and t on top of each other. Since this is a valid configuration, it is
possible to go from state s to state t in 2N − 2 transitions. Hence the
transfer matrix is irreducible. In fact, let k = 2N − 2. Then the matrix
T k is strictly positive, i.e. the transfer matrix is primitive.

Finally, we remark that the combinatorial entropy of the band is
given by the max-entropic solution based on the transfer matrix. Using
the notation of Section 2.6 we thus have H(B) ≤ HB, as originally
shown by Shannon [44].

4.2 A MBS model of the modified bit-stuffer

Let W be some valid RLL(d,∞) n×m array generated by the modified
bit-stuffing scheme and assume that m ≥ 2d + 1. We will show how to
consider the array as being generated by a MBS, W, one row at a time.

Recall, that the extent of RLL(d,∞) is (d + 1) × (d + 1) so the the
states of the MBS are d×m. The process W has the marginal processes
at the borders, X and Z, having a width b = M − 1 = d. We denote
the m new elements generated by the transition from one state, i, to the
next state, j, by

r = (r0r1 . . . rm−1) = (x0, ..., xd−1, y0, ..., ym−2d−1, z0, ..., zd−1).

In Figure 4.1 we have depicted the output of a MBS for the RLL(2,∞)
constraint in this manner.

It remains to show how to determine the transition probabilities (pij)
of the MBS such that they mimic the bit-stuffer.

Let Rl denote a binary stochastic variable defined on the element
in column l of the new row, r. In order not to violate the constraint
we have to consider the conditional distribution of R given the context
of the current symbol. We therefore introduce a series of stochastic
variables C(l), l = 1, . . . , m. We let (the size of) the context depend on
the column since we have to take into account that the bit-stuffer writes
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X Y Z

x0 y0 z0

...
...

...

xi yi zi

x0x1 y0, y1, . . . , ym−5 z0z1

Figure 4.1: Output from a MBS for the RLL(2,∞) constraint defined
by the modified bit-stuffing scheme. The source starts in state w0 =
x0y0z0. The states have height 2. At the transition from state wi to
state wi+1 the row x0x1y0y1 . . . ym−5z0z1 is output.

the bits in a different order. Below we have written the symbols of the
new row r in the causal order

r̃ = (x0, ..., xd−1, z0, ..., zd−1, y0, ..., ym−2d−1). (4.2)

Furthermore from the contexts we can deduce whether zeros are stuffed
or not.

In general the transition probabilities pij of course depends on the
elements of the state i and the elements of the state j. The idea of the
context variable is to determine the minimal set of elements necessary
to calculate the probability.

Whether it is possible to write a 1 in a given position at the time
of writing is only dependent on the d previous elements in the same
column and the previous elements of the current row after reordering,
i.e. preceding the current element in (4.2). Let s = (s1 . . . sd)

T be a
state consisting of d rows corresponding to the RLL(d,∞) constraint.
Then the contexts C(l) of rl for l = 0, . . . , m− 1 are depicted below.
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1. l = 0, . . . , d− 1. This case covers the columns in X.

s1(l)
...

sd(l)
r0 . . . rl−1

2. l = d, . . . , m− 2d. This case covers the columns in the left part of
Y , that is at least d elements away from the right border. Z.

s1(l)
...

sd(l)
rl−d . . . rl−1

3. l = m− 2d+1, . . . , m− d− 1. This case covers the columns in the
right part of Y , where we have to take Z into account. If l is say
k positions from the start of Z we have to incorporate d − k + 1
of the elements of Z into the context.

s1(l)
...

sd(l)
rl−d . . . rl−1 rm−d . . . rm−k+1

4. l = m−d, . . . , m−1. This case covers the columns of Z which has
to have the same type of contexts as X.

s1(l)
...

sd(l)
rm−d . . . rl−1

The transition probabilities of Pm is then determined by the product of
the conditional probabilities, p(Rl = rl|C(l) = c(l)),

pij =

m−1∏

l=0

p(Rl = rl|C(l) = c(l)), (4.3)
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where the conditional probabilities are given by

Pr(Rl = 1|C(l) = c(l)) =

{

p1(l) if a 1 is admissible in position l.

0 if a 1 is not admissible in position l.

(4.4)
Here p1(l) denotes the probability of a ’1’ in the input stream to col-
umn l. We consider the general case where we have several biased
streams, possibly one for each column. We refer to the vector p1 =
(p1(0), . . . , p1(m− 1)) as the bit-stuffing probabilities. The simple unbi-
ased bit-stuffer would correspond to the case where p1(l) = 1/2 for all l.
Note that to avoid pathological cases we assume that 0 < p1(l) < 1 for
all l.

We have defined the transition probabilities of the MBS, but it might
not be entirely clear that they, in fact, are transition probabilities. We
show this now.

Lemma 4.4. If the bit-stuffing probabilities p1 satisfy 0 < p1(l) < 1 for
all l = 0, . . .m−1, then the probabilities defined by (4.3-4.4) constitutes
a stochastic matrix, Pm, with pij > 0 if and only if tij > 0.

Proof. The first step is to show that pij = 0⇔ tij = 0. Assume pij = 0
for some transition with tij > 0. Since p1(l) < 1 we have Pr(Rl =
0|C(l) = c(l)) > 0 for all l. Therefore, Pr(Rl = 1|C(l0) = c(l0)) = 0 for
some specific l0. Hence a ’1’ in position l0 is not admissible given the
context c(l0). Thus the configuration, corresponding to the transition
from state i to j, is not admissible. Hence tij = 0. Conversely, if tij = 0
there is some position l0 where a ’1’is not admissible but actually occur
and hence pij = 0.

The second step is to show that (4.3-4.4) forms a stochastic matrix,
i.e.

∑

j pij = 1 for all i. Consider any given i. The new elements
generated by the transition to j are considered one element at a time.
All admissible configurations may be represented by a complete binary
tree as follows. Each time a decision may be made, i.e. Pr(Rl = 1|C(l) =
c(l)) > 0, two branches with two new nodes are created and for each new
node the bit-stuffing scheme is continued. Each node may be assigned a
probability namely the probability given by the product of probabilities
in the path of the node. As the sum of the branching probabilities
always sums to one, so will the sum over the leaves of the tree given the
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sum over all admissible configurations as determined by the bit-stuffing
scheme.

Example 4.5. Consider again F = RLL(2,∞) and let m = 7. Consider
the following three states of a MBS for a modified bit-stuffer for F .

s

0000010
0001000

t1
0001000
0000001

t2
0001000
1000001

Note that there is a transition from state s to both state t1 and state
t2. We will show how to calculate the probability of outputting the
rows 0000001 and 1000001 respectively, given that we are in state s. Or
equivalently, calculate the transition probabilities pst1 and pst2 .

For simplicity, let us assume that the bit-stuffer has two biased
streams. One feeding the borders X and Z and one feeding the interior.
Let pX denote the possibility of a ’1’ in the stream for the borders and
let pY denote the possibility of a ’1’ in the second biased stream. That
is, the bit-stuffing probabilities are p1 = (pX , pX , pY , pY , pY , pX , pX).

The transition probabilities are defined by (4.3) and (4.4). We have

pst1 =
6∏

l=0

Pr(Rl = rl|C(l) = c(l))

= (1− pX)(1− pX)(1− pY ) · 1 · 1 · 1 · 1 · pX .

The first zero of the row isn’t stuffed, since there are no ’1’ in its context.
Hence Pr(R0 = 0|c(0)) = 1 − pX , that is the probability of a ’0 in the
input stream feeding the X part. The same applies to the second and
third zero, but for the latter we use the probability of a ’0 in the stream
feeding the Y . Notice, however, that Pr(R3 = 0|c(3)) = 1 since the zero
is stuffed due to the ’1’ above it. We also have Pr(R4 = 0|c(4)) = 1,
but this time the zero is stuffed because of the ’1’ in the last part of the
row. This illustrates the order that the bit-stuffer operates in, i.e. Z
is written to before Y and is thus captured by the way the transition
probabilities is defined.

In a similar fashion we can compute pst2 . Here we note that all of
the zeros are stuffed. Hence

pst2 = pX · 1 · 1 · 1 · 1 · 1 · pX .
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4.3 Cascading bit-stuffing

We have described our MBS model of the modified bit-stuffing scheme
for a single array W of RLL(d,∞). Now we show how to extend the
bit-stuffing scheme in the horizontal direction. We will cascade bands
in a fashion similar to the method of Section 2.7. Consider arrays
W0, . . .WK−1 of the same size n × m. As before Wi = XiYiZi, but
we insist that the arrays overlap consecutively, such that Zi = Xi+1.
We denote the concatenated or cascaded array as

WK−1
0 = X0{YjZj}

K−1
j=0 = X0Y0Z0Y1Z1 · · ·YK−1ZK−1, (4.5)

The bit-stuffer writes the first row of W0. Then the first row of W1, but
here X1 = Z0 has already been written, so the bit-stuffer writes Z1 and
then Y1 and then proceeds to write Z2 and Y2 and so on concluding with
the first row of WK−1. Then the second row of W0 is written and so on.

It is the average coding rate of this cascading bit-stuffer we wish to
compute. We now show how to model the bit-stuffer with probability
measures. The idea is that the conditional entropy of the configurations
on (Yi, Zi) conditioned on the configuration Zi−1 determines the entropy
of the extended array.

4.3.1 The basic measures

Defining probability measures for constrained coding in general is a chal-
lenge. We now impose some restrictions that will facilitate analysis of
our model of the bit-stuffer.

Let W be some n×m array over RLL(d,∞). We assume that W =
XY Z with X, Y and Z defined as previously. Let µW be a probability
measure on W . We consider the restriction that the (marginal) measures
on the borders X and Z are identical, i.e.

µX ≡ µZ . (4.6)

Furthermore we insist that the borders are independent. Let X and Z
denote stochastic variables on X and Z, respectively. Then the require-
ment is that for all configurations x, z ∈ E(n, b),

Pr(X = x,Z = z) = µX(x)µZ(z). (4.7)
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In order for the marginal measures to be identical we have to use the
same bit-stuffing probabilities for Z and X. That is p1(l) = p1(m −
d + l) for l = 0, . . . d − 1. Furthermore, in order for the borders to be
independent we have to let m ≥ 3d. This will ensure that the width of
Y is at least d and since the extent of the constraint is d + 1× d + 1 we
can write to Z without regarding X. Indeed, considering the cascading
(4.5) where each new Zi may be seen as Xi+1 in relation to Yi+1, we
have that the bit-stuffing of all Zi are independent of all Yi at the time
the elements are assigned a value.

We sum up our observations so far with regards to extending the
bit-stuffing from W to a larger rectangle. Let the height of the rectangle
be n + N − 1, such that n refers to the number of transitions in a MBS
generating the rectangle. For a given d and m, let Bn,K denote the
extension of W to the array W K−1

0 as defined by (4.5) consisting of
(n + N − 1) rows by (K(m− d) + d) columns.

Definition 4.6. Given m, p1(l), 0 ≤ l < m − d and the first d rows of
the rectangle Bn,K , the elements of Bn,K are addressed row by row. The
modified bit-stuffing scheme on Bn,K for the 2D RLL(d,∞) constraint
is defined by for each row addressing the elements of Wi in order of
increasing i and within each Wi in the order given by r̃ (4.2). The same
bit-stuffing probabilities (4.4) are applied for the elements within each
Wi, i.e.

p1(l) = p1(l modulo(m− d)), 0 ≤ l < K(m− d) + d. (4.8)

Note that the behavior of the modified bit-stuffing scheme on a single
band Wi can be modeled by a MBS as detailed in Section 4.2. Combining
Lemma 4.4 and Lemma 4.3 gives that the entropy of this MBS is well-
defined and given by (4.1).

We will now proceed to construct a measure on B(n, K) where we
can exploit the independence on the borders of the individual Wi.

4.3.2 Bit-stuffing induced measures on the quarter plane

Given a MBS W based on bit-stuffing we can construct a series of mea-
sures in a natural fashion that extends towards being defined on the
quarter plane. In this section we will describe the construction in detail.
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Let wn,K−1
0 denote a configuration on Bn,K , composed as follows.

First consider the border process X of W. The transition matrix for
X has a stationary distribution πX by Lemmas 4.3 and 4.4. Draw the
initial (N − 1)× d element state x0 from πX and generate n rows using

X. This is the (n+N −1)×d left hand vertical boundary B
(v)
n of Bn,K .

Let µv(x1, . . .xn|x0) denote the conditional measure on B
(v)
n conditioned

on the initial state x0.
Given the stationary distribution, πW , of the process W, consider a

configuration w = x,y, z and let πy,z|x be the conditional distribution

πy,z|x = πW (x,y,z)
πX(x) . Draw (y0, z0) using this measure conditioned on

the initial state x0 and continue to draw (yi, zi) conditioned on zi−1,
i = 1, . . . , K − 1. This constitutes the (N − 1) ×K(m − d) + d upper

horizontal boundary, B
(h)
K , of Bn,K . Let µh(y0, z0, . . . ,yK−1, zK−1|x0)

denote the conditional measure on B
(h)
K conditioned on the initial state

x0. We denote the interior set of elements by B∗(n, K), i.e. B∗(n, K) =

Bn,K\(B
(v)
n ∪B

(h)
K ). This is depicted in Figure 4.2.

x0 B
(h)
K

B
(v)
n B∗(n, K)

Figure 4.2: A high level view of the rectangle B(n, K) consisting of
borders and interior B∗(n, K). Compare with Figure 4.3.

Considering the last row of a set of elements (y, z), i.e. the elements
of a state on Y and Z, as a single symbol of an extended alphabet, the
interior B∗

n,K may be viewed as an n × K rectangle over this alpha-
bet. Out of the elements (y, z) of a state wj the transition outputs the
elements (y0, ..., ym−2d−1, z0, ..., zd−1) and the other elements of (y, z)
overlaps with the elements of the predecessor state.

For a given transition from state wi to wj with the combined config-
uration sd+1

1 , let pre(wj) denote the predecessor state, wi = sd
1, of the

state wj = sd+1
2 .

Let t, 1 ≤ t ≤ nK, denote the index of (y, z)t. Let (·, z)t denote the
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z part of the symbol (y, z)t with the following exceptions: We define
(·, z)iK = xi+1 for i = 0, . . . , n − 1 corresponding to the first column
which is the left border of the interior.

Let P ((y, z)t|(·, z)t−1, pre(wt)) denote the probability of (y, z)t con-
ditioned on the causal part of the transition of the process Wi it is
part of. This may be seen as conditioning the new elements of (y, z)t

conditioned on the causal elements of the bit-stuffing. By drawing the
symbol (y, z)t+1 conditioned on ((·, z)t, pre(wt+1)) using the conditional
probability P ((y, z)t|(·, z)t−1, pre(wt)) one can then fill out the interior

B∗(n, K) one row at a time given the boundaries B
(v)
n and B

(h)
K . This is

illustrated in Figure 4.3.

Hence a measure µBn,K
on Bn,K is defined by

µBn,K
(wn,K−1

0 ) = πX(x0)

· µv(x1, . . . ,xn|x0)

· µh(y0, z0, . . . ,yK−1, zK−1|x0)

·
nK∏

t=1

P ((y, z)t|(·, z)t−1, pre(wt)),

(4.9)

where t is the index traversing the interior, row by row.

x0 y0 z0 y1 z1 . . . yK−2 zK−2 yK−1 zK−1

x1 (y, z)1 . . . (y, z)K

x2 (y, z)K+1 . . . (y, z)2K

...
...

...
...

xn (y, z)(n−1)K+1 . . . (y, z)nK

Figure 4.3: The rectangle Bn,K on which the measure µBn,K
is defined.

We have shown how to construct a measure µBn,K
that models the

modified bit-stuffing scheme. We now state how to actually compute
the entropy based on the MBS description.
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Theorem 4.7. Consider a modified bit-stuffing scheme on the rectangle
B(n, K) as given by Definition 4.6. Let µBn,K

be the induced measure
as defined by (4.9). Then based on µBn,K

the per symbol entropy of the
interior B∗

n,K given the boundary of Bn,K is given by

Hmb(d,∞) =
H(W)−H(X)

m− d
(4.10)

where W is the MBS induced by the bit-stuffer and X its border process.

Proof. Consider the MBS W defined by the modified bit-stuffing of W .
We have already seen how the reordering of the bit-stuffer and setting
m ≥ 3d ensures that the border processes X and Z of the MBS are
independent.

By Lemma 4.3 and Lemma 4.4, the processes X and Z are well-
defined and the stationary distributions πX and πZ of their transition
probabilities exist. Since we bit-stuff in the same order (left-to-right) and
use the same bit-stuffing probabilities for both X and Z when defining
the transition probabilities pij (4.3) we can conclude that the stationary
distributions are the same, i.e. πX = πZ . Initializing the boundary
according to these identical stationary distributions, ensures µX = µZ

(4.6).
By construction of the MBS and the cascading bit-stuffer each ele-

ment of Xi and Zi is written prior to any element in Yi which coincides
with the 0-neighborhood of the elements of Xi and Zi. Therefore any
given Wi is independent of all Xj , j /∈ {i, i + 1} and the bit-stuffing
scheme defines a MBS Wi.

The same bit-stuffing probabilities are applied for all Wi. Thus
the transfer matrix Pm is identical for all Wi. By construction of the
measure µBn,K

we can choose that the initialization of the boundary is
done by the “right” stationary distributions, ensuring that the border
process X is in the stationary regime and that all Xi have identical
measures, µXi

= µX , 0 ≤ i ≤ K−1. Initializing the boundary based on
the stationary solution πW for all Wi, gives µWi

= µW for all i ≤ K−1.
Consider the elements (y, z)t, on Yi as one symbol as in (4.9). Due

to the independence of the Xis the conditional probability of an ele-
ment (y, z)t is given by the process Wi it belongs to. The conditional
probability is given by one transition of Wi where all prior elements
coinciding with a 0-neighbor element of an element in (y, z)t are part
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of the predecessor state or one of the new elements in Xi or Zi of the
transition.

For notational consistency, let us write wt as (·, z)t−1, (y, z)t when
representing it in a decomposed form. The conditional probability de-
rived from one transition within some Wi is

P (wt|pre(wt)) = P ((·, z)t−1|pre(wt)) · P ((y, z)t|((·, z)t−1, pre(wt))

= P ((·, z)t−1|pre((·, z)t−1)) · P ((y, z)t|(·, z)t−1, pre(wt))

as (·, z)t−1 only depends on pre((·, z)t−1) of pre(wt).

We can write this as

P ((y, z)t|(·, z)t−1, pre(wt)) =
P (wt|pre(wt))

P ((·, z)t−1|pre((·, z)t−1))
(4.11)

The important thing to note is that the terms are given by stationarity
by µWi

= µW , independent of the value of the index t within the interior
(for each Wi).

Therefore calculating the conditional entropy H of the new elements,
(y, z)t, of one transition gives,

H((y, z)t|(·, z)t−1, pre(wt)) = H(W)−H(X).

Dividing by the number of elements, (m− d), of (y, z)t, gives (4.10).

Considering the combined symbols (y, z) the measure (4.9) on the
interior provides a stationary description. Viewing the individual ele-
ments in (y, zt) the measure may be seen as quasi-stationary.

4.3.3 Some practical remarks

A drawback of bit-stuffing is the fact that it is a variable length code and
has unlimited error propagation. However, the use of independent bor-
ders, in modified bit-stuffing, limits error propagation in the horizontal
direction.

Writing data row by row introduces a latency of m− d− 1 elements
if z0, ...zd−1 is written before yi. This latency may be reduced to d if the
writing of zs and ys are interleaved.
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For RLL(d,∞), the plane may be written column by column, using
the biased sequence designated to the column. Thus the choice of biased
sequence is only changed once for each new column. The column with
zi must be written before the column with ym−3d+i in this case.

4.4 Bit-stuffing for checkerboard constraints

In the previous section, we investigated bit-stuffing for RLL(d,∞) con-
straints. Since bit-stuffing including the modified bit-stuffing scheme
is applicable for all checkerboard constraints, we will now offer a more
general presentation of the modified bit-stuffing. The main difference is
that for a transition, the elements of Yi may be offset a few rows back
compared to the elements of Xi and Zi.

Example 4.8. Consider modifying bit-stuffing for the �(M) constraint.
The width of the borders is chosen as b = M − 1. To maintain inde-
pendence of the borders of the process W, the elements of a new row
of X and Z must be written prior to a new row of Y which is at least
M − 1 rows back. This is obtained by writing the new elements of X
and Z before the new elements of Y in one transition and letting these
new elements of Y be M − 2 rows behind the row with new elements of
X and Z. This is to ensure that the 1-norm distance between the last
element, xb−1, of the new row of X and the first element of the old row
of Y is M such that no element of Y in the old row will influence the
new elements in X. For an example we refer to Figure 4.4, where the
construction is shown for the �(3) constraint. Note that the lag of Y
relative to X and Z is M − 2 = 1 in this case.

Besides this modification, the bit-stuffing scheme and the calculation
of Pm may proceed as for the 2D RLL(d,∞) constraint. The transition
probabilities, (pij), are defined by a product of conditional probabilities
(4.3) derived from the bit-stuffing probabilities, p1(l), using (4.4). But
of course, the context C(l) has to be defined in an appropriate manner.
A large portion of the present section is devoted to this and how to
define the states of the MBS in a proper manner.

In the general case let the extent of the checkerboard constraint be
N×M . We shall introduce the modified bit-stuffing and the correspond-
ing MBS jointly. Note that this presentation follows [13] very closely. Let
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X Y Z

...
...

...
yi

xi zi

y0, y1, . . . , ym−5

x0x1 z0z1

Figure 4.4: The modified bit-stuffing scheme for the �(3) constraint.
The state wi consists of the three blocks xi,yi and zi, each having a
height of two rows. On the transition to state wj the new elements
x0, x1, z0, z1, y0, . . . , ym−5 are output.

b be the width of X and Z. Let x0, . . . , xb−1, z0, . . . , zb−1, y0, . . . , ym−2b−1

be the order of the new elements of state wj in the transition from the
predecessor state wi. The new elements of X and Z belong to the same
row, whereas the new elements of Y may be positioned a few rows be-
hind. Let Sb specify the number of rows the new elements of Y are
behind, e.g. for the �(M) constraint we have Sb = M −2. Let St denote
the number of rows the elements of a state of W are defined on. We
will now give conditions on the set of elements defining the states of the
Markov process W.

4.4.1 The minimal set of elements for a state

We state the following conditions for the set of elements defining the
states of W given by the modified bit-stuffing for checkerboard con-
straints.

C.1 m ≥ 2b + M − 1 ∧ b ≥M − 1.

C.2 Positioning the 1 of the 0-neighborhood N at each position of
(x0, ..., xb−1) and (z0, ..., zb−1), no 0 of N may coincide with a
causal element of Y , but all causal elements of X and Z, respec-
tively, are part of the state.
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C.3 Positioning the 1 of the 0-neighborhood N at each position of
(y0, ..., ym−2b−1), the state transition includes all elements coincid-
ing with a 0 of N , which are either an element of X or Z or a
causal element of Y .

C.4 When considering a transition, in each column the new element
and the elements of the old state of the column must form a con-
tiguous set.

Thus the conditions above specifies a minimum set of elements, which
must be included in the state of W for a given checkerboard constraint
and requirements for the elements of one transition. Theorem 4.7 is
formulated for the minimum set of elements for 2D RLL(d,∞).

For any checkerboard constraint of extent (N, M), the state specified
below will satisfy the conditions. Let the width of the borders X and
Z be b = M − 1 and the width, m, of W be a value which satisfies C.1.
In order to avoid any influence of elements of Y (C.2) on the writing of
elements on X (and Z), (x0, . . . , xb−1) of X (and (z0, . . . , zb−1) of Z) are
written N − 1 rows ahead of writing (y0, . . . , ym−2b−1) on Y . The state
of W is given by the union of the following elements:

Ui The N − 1 elements above each of the elements (y0, . . . , ym−2b−1)
due to the last part of C.3.

Ub The 2N−1 elements above each of the elements (x0, . . . , xb−1) and
(z0, . . . , zb−1). These are included to ensure C.2 and the first part
of C.3.

Based on W satisfying C.1-4, the bit-stuffing is extended to the set
of elements, Dn,K defined by the extension from W to W K−1

0 (4.5).
Assume the initial state of each Wi is given. The configuration on the
segment Dn,K is determined by the set of initial states and n transitions
of each Wi on WK−1

0 . The segment Dn,K has width K(m − b) + b.
The difference compared to the array Bn,K is that the height may vary
according to whether the column belongs to Xi or Yi. (Columns of Zi

have the same height as columns of Xi.) The height in column l is given
by n plus the height of the state in column l. Given the initial states the
bit-stuffing schemes addresses the elements of Dn,K in the order given
by one transition of each Wi in order of increasing i before proceeding
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to the next sequence of transitions. Within each transition the elements
of Zi is addressed prior to the elements of Yi.

This modified bit-stuffing scheme defines the transition probabilities
pij (4.3) based on the conditional probabilities, p(Rl = rl|C(l) = c(l)).
When a 1 is admissible given context c(l) the conditional probabilities
must satisfy 0 < p(Rl = rl|C(l) = c(l)) < 1.

The four conditions, C.1-4, above defines restrictions on the states
of W. These are supplemented by two conditions on the contexts of the
conditional probabilities.

C.5. The contexts c(l) must include the causal 0-neighborhood ele-
ments of the given Wi at position l.

When the context elements of c(l) are exactly given by the causal 0-
neighborhood elements and the conditional probabilities by p1(l) (4.4),
the bit-stuffing is called a a modified bit-stuffing scheme for a checker-
board constraint. The modified bit-stuffing for 2D RLL(d,∞) is an ex-
ample of this.

The contexts may also be extended and include more elements than
just those defining whether rl = 1 is admissible. In this case we call it a
context-based bit-stuffing scheme.

C.6. For X (and Z) the contexts are mappings of causal elements
of X (and Z) within the states of the corresponding transition. For the
elements of Y the contexts are mappings of the causal elements of the
transition, i.e. elements of the old state and the new elements of X and
Z and prior new elements of Y . The context mappings for column l in
X and column m− b+ l in Z, 0 ≤ l < b are identical and the same set of
conditional probabilities are applied. This is to ensure the independence
(4.6).

4.4.2 A context based bit-stuffing scheme

For a given checkerboard constraint, consider a Markov process W, of
width m, having states satisfying C.1-4 and transition probabilities de-
rived from a set of conditional probabilities satisfying C.5-6. Assume
the values of the elements of the initial states of all Wi on WK−1

0 are
given. The context based bit-stuffing scheme on Dn,K based on W is
defined by a set of conditional probabilities p(Rl = 1|C(l′) = c(l)),
l′ = l modulo(m− b) satisfying C.5-6. The order in which the elements
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of Dn,K are addressed is given by a transition of each Wi in order of
increasing i. Within each transition the order is given by the reordering
(4.2).

The independence of the borders (4.7) is ensured by the offset of the
new row of Y and m ≥ 2b + M − 1. The conditions C.1-2 ensures that
Yi−1 and Yi are independent given the output of Xi.

The conditional probabilities of the context-based bit-stuffing scheme
for checkerboard constraints defines the probability matrix Pm of W.
The stationary distribution is given by πWPm = πW . The construc-
tion of µBn,K

(4.9) for the 2D RLL(d,∞) constraint is generalized to a
measure µDn,K

on Dn,K , which in the same manner is based on W and
the transition matrix Pm. The stationary distribution πW is used to
initialize the initial states of all Wi on WK−1

0 defining a measure on the
upper horizontal boundary. The measure on the left vertical boundary
is defined by X0 and the stationary distribution πX . The probabilities
on the interior, D∗

n,K , is given by the conditional probabilities of (y, zt)
as for Bn,K .

The context based bit-stuffing thus defines a sequence of (2D) prob-
ability measures µDn,K

indexed by n and K. By construction, the mea-
sure µDn,K

is obtained as the marginal measure on Dn,K of any µDn′′,K′′
,

where n ≤ n′′ and K ≤ K ′′. Thus the measure is nested. Let H(µDn,K
)

denote the entropy of the measure µDn,K
. The nesting property allows

us to take the limit [41].
Let n′ and m′ denote the size of the sides of the bounding box of the

elements of Dn,K . Set the elements of the bounding box, which are not
in Dn,K , equal to 0.

Definition 4.9. The entropy, HC(m, b) of the context based bit-stuffing
for a checkerboard constraint is defined as

HC(m, b) = lim
n,K→∞

H(µDn,K
)

n′m′
, (4.12)

where the sides of the bounding box n′, m′ →∞ as n, K →∞.

Theorem 4.10. Consider a given checkerboard constraint of extent N×
M). Assume that the MBS W has states and conditional probabilities
satisfying the conditions, C.1-6 with b ≥ M − 1 and m ≥ 2b + M − 1.
A context based bit-stuffing scheme for the checkerboard constraint based
on W has the entropy
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HC(m, b) =
H(W)−H(X)

m− b
, (4.13)

where H(W) and H(X) are the entropies per row (4.1) of the processes
W and X.

Proof. The first step of the proof follows the proof of Theorem 4.7 for a
given n and K. W, X and Z are finite state Markov processes. Again
by Lemmas 4.3 and 4.4, W and the borders X and Z are all well-
defined and have stationary solutions. The conditions C.1-3 maintains
the independence of border processes, X and Z. Using the same context
mappings and conditional probabilities in the bit-stuffing scheme for all
Wi gives µWi

= µW .

Consider the output of transition j of each process Wi, 0 ≤ i < K,
which overlap such that the configuration on Xi is given by the output
of Zi−1. The elements output by this set of transitions, corresponds to
one row of elements on Bn,K in Theorem 4.7, but now possibly with the
new elements of Xi and Zi in one row and the new elements of Yi in
another row. The interior D∗

n,K of Dn,K is given by the output of these
transitions for 1 ≤ j ≤ n, where the elements of the first b columns,
i.e. the left vertical boundary, are given by X0. The distribution on
the boundary, i.e. the initial states of Wi, 0 ≤ i < K and the b first
columns, is initialized based on the stationary distribution, πW . Thus
the boundary is initialized based on the stationary distributions in the
same manner as for µBn,K

. As in Theorem 4.7, the stochastic variables
Yi−1 and Yi are independent given the output of Xi, as b ≥M − 1 and
the contexts of Xi do not have any elements of Yi−1 and Yi. Likewise Wi

is independent of all Xj , j /∈ {i, i + 1}. By definition of the bit-stuffing
scheme, Pm is identical for all Wi. This leads to identical stationary
distributions on the initial states, which in turn gives µWi

= µW , 0 ≤
i < K.

The arguments of Theorem 4.7 still hold under these generalizations
for each transition of pij . The probability of the elements (y, z)t con-
ditioned on the causal elements is given by the identical and stationary
processes Wi. Therefore the contribution to the entropy for each (y, z)t

conditioned on the causal elements is as in (4.11) given by

H(W)−H(X), m ≥ 2b + M − 1. (4.14)
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In the second part of the proof we will show that asymptotically the
expression (4.14) determines the entropy. Let n∗ and m∗ = K(m − b)
denote the sides of the largest rectangle defined on the interior, D∗

n,K .
The entropy H(µDn,K

) relative to the size of the bounding box with
sides n′ and m′ is bounded by

H(W)−H(X)

m− b

n∗m∗

n′m′
≤

H(µDn,K
)

m− b

n∗m∗

n′m′

≤
H(W)−H(X)

m− b

n∗m∗

n′m′

+
n′b + m′(St + Sb)

n′m′
|A|

(4.15)

where St is the height of the states, Sb is the number of rows which X
extends below Y , and |A| is the size of the alphabet.

As m∗ = m′ − b and n∗ = n′ − St − Sb and since m, b, St, Sb and |A|
are all fixed values, asymptotically both the lower and upper bound in
(4.15) converge to

H(W)−H(X)

m− b
for n, K →∞.

Theorem 4.10 also applies to the modified bit-stuffing scheme as
this is a special case of the context based bit-stuffing for checkerboards
constraints. Actually the assumption of initialization based on the sta-
tionary distribution, πW is not necessary as each Wi will converge to
the stationary solution for n→∞.

4.4.3 Optimizing the entropy

The use of biased sequences in the modified bit-stuffing scheme is com-
pletely predefined in the sense that which biased stream to use is decided
a priori based on the column number l.

For context based bit-stuffing, an increased number of biased se-
quences may be used. The decision of which biased sequence and thereby
the conditional probability to be used may depend on a larger context.
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Example 4.11. For the �(3) constraint, we applied context based bit-
stuffing choosing the bit-stuffing probabilities p1 conditioned on the val-
ues of the elements in the previous state. The states of W were defined
as depicted on Fig. 4.4. The next row of the processes X (and Z)
was specified according to probabilities conditioned on the two previous
rows. These processes were chosen such that they were symmetric in
the two columns. The elements of the new row of Y was then speci-
fied according to probabilities conditioned on all 3 rows of the transition
of X and Z combined with the 2 rows of the predecessor state on Y .
These conditional probabilities for the new elements (y0, . . . , ym−2b−1)
on Y were obtained from the transition probabilities of the maxentropic
solution [15] for W derived from the transfer matrix, Tm. Thus pij

was specified directly based on a product of the conditional probabili-
ties of the three sets (x0, . . . , xb−1), (z0, . . . , zb−1), and (y0, . . . , ym−2b−1)
generated in one transition.

4.5 Numerical results

In this section we will present the entropies of the induced measures
for some applications of the modified bit-stuffing scheme. The following
examples are considered: Three instances of the RLL(d,∞) constraint,
d = 2, 3, and 4, as well as the �(3) constraint.

m Hp=1/2 Hp HpX ,pY
Hpopt HU

RLL(2,∞) 19 0.3917 0.4398 0.4410 0.4415 0.4459
RLL(3,∞) 16 0.3050 0.3606 0.3628 0.3640 0.3686
RLL(4,∞) 15 0.2487 0.2982 0.3110 0.3121 0.3188
�(3) 14 0.2763 0.3440 0.3466 0.3478 0.3541

Table 4.1: Numerical results for the entropy of the bit-stuffing induced
measures using different biased streams. The final column HU provides
an upper bound on the entropy of the constraints.

Table 4.1 presents entropy results (4.10) for applying the modified
bit-stuffing scheme (4.4-4.8) to the considered checkerboard constraints.
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The width of the band used is also given. For a given width m, the mod-
ified bit-stuffing scheme is specified by the parameters, p1(l). Starting
with one unbiased sequence and increasing the number of parameters
used we calculated the following entropies (and thereby lower bounds).
Hp=1/2 gives the entropy using an unbiased bit-stuffer. Hp is the op-
timized entropy over a single biased sequence, whereas HpX ,pY

is op-
timized choosing two different biased sequences: One for the borders,
X and Z, and one for the interior, Y . Table 4.2 offers the parameters
optimizing the entropy for both one biased and two biased sequences,
respectively.

p1 p1X,Y

RLL(2,∞) 0.289 (0.220, 0.297)
RLL(3,∞) 0.250 (0.193, 0.271)
RLL(4,∞) 0.220 (0.175, 0.285)
�(3) 0.225 (0.160, 0.245)

Table 4.2: Parameters for the biased streams optimizing the entropy
of the modified bit-stuffer for the constraints RLL(2,∞), RLL(3,∞),
RLL(4,∞) and �(3) using a band of width 19, 16, 15 and 14, respectively.

By using a different biased sequence for each column l, 0 ≤ l <
m − d, and optimizing the entropy we obtained a slight improvement
of the lower bound. The optimization was performed using a steepest
descent approach, viewing the entropy as a function of the conditional
probabilities (4.4) indexed by the column, (p1(0), . . . , p1(m − d − 1)),
and searching in the direction of the gradient. The obtained entropy is
given as Hpopt in Table 4.1. The optimal parameters determined by the
search is given in Table 4.3.

Following the description in Example 4.11 in Section 4.4.3, the con-
text based bit-stuffing method was used to improve the lower bound to
0.3497 for the �(3) constraint.

Finally HU gives the best upper bound we have for the various con-
straints. The upper bounds were obtained using the method of two-seam
cylinder sources [16] as described in Section 2.6.4.
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RLL(2,∞) RLL(3,∞) RLL(4,∞)

i p1(i)

1 0.1968 0.1603 0.1261
2 0.2283 0.1841 0.1422
3 0.2761 0.2116 0.1669
4 0.2774 0.2550 0.1805
5 0.2779 0.2554 0.2417
6 0.2779 0.2558 0.2478
7 0.2778 0.2558 0.2636
8 0.2778 0.2558 0.2731
9 0.2778 0.2550 0.2733
10 0.2778 0.2531 0.2848
11 0.2778 0.2635 0.4205
12 0.2778 0.2925 0.1261
13 0.2780 0.3836 0.1422
14 0.2781 0.1603 0.1669
15 0.2762 0.1841 0.1805
16 0.3225 0.2116
17 0.4153
18 0.1968
19 0.2283

Table 4.3: The bit-stuffing probabilities p1 used to achieve Hpopt for the
three constraints RLL(2,∞), RLL(3,∞) and RLL(4,∞) with a width
of 19, 16 and 15, respectively.
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It should be noted that the upper and lower bounds are quite close
to each other, that is their relative difference is 1-2%.

For comparison the lower bounds on the entropy of bit-stuffing pre-
sented by Halevy et al. [20] are cited: For RLL(2,∞) they obtained the
lower bound 0.4267, for RLL(3,∞) the lower bound 0.3402 and finally
for RLL(4,∞) the lower bound 0.2858.

4.6 Discussion

In [41], a detailed study of the relation of actual bit-stuffing coding
schemes and the measure induced is presented. By comparison we have
restricted the analysis to determining the entropy of the scheme based
on a measure.

Simulation results [42], based on performing bit-stuffing, supports a
conjecture that the entropy of conventional bit-stuffing is slightly greater
than that of the modified bit-stuffing. If this is the case, the Hpopt of
Table 4.1 provides a new lower bound on the entropy of conventional
bit-stuffing.

As a special case of the modified bit-stuffing scheme one could con-
sider deterministic borders X and Z. This could be motivated by a
desire of having a synchronization component or by types of constraints
for which bit-stuffing is not readily applicable. An example of the latter
is 2D (d, k) SRLL constraints, which we investigated in Section 2.7. As
Etzion has shown [11] it was always possible to find find a merging array
between arbitrary arrays for this constraint. The existence of a solution
in between two given arrays is a necessary but not sufficient prerequi-
site for applying a modified bit-stuffing scheme. It is not clear how to
actually modify the scheme to work for this constraint.

However, using a deterministic periodic border defining X and Z
one can find the max-entropic solution for Y conditioned on X,Z and
in this way obtain a lower bound on the entropy of the constraint using
(2.6). This is another way of looking at the method of cascading periodic
arrays described in Section 2.7.
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Chapter 5

Conclusion

We have described the theory of constrained fields as a framework for
addressing some of the challenges of code construction for advanced data
storage devices that treat the recording media as a surface, rather than
a series of tracks.

It was shown that the two dimensional setting harbors some intrinsic
difficulties: It is not in general possible to determine the entropy of a
constrained field. However, by employing one dimensional techniques we
can in many cases obtain good bounds on the entropy. Explicit bounds
for many examples was shown.

We showed how a Pickard Model could be used to describe some
higher order constraints. Also we presented an iterative method that in
some cases can help with choosing the large numbers of parameters in
order to obtain a stationary model. A complete stationary model for
the No Isolated Bits constraint was presented.

We presented a variation of the encoding scheme of bit-stuffing that
is applicable to the class of checkerboard constrained fields. It is possi-
ble to calculate the entropy of the coding scheme thus obtaining lower
bounds on the entropy of the fields considered. The lower bounds on
the RLL(d,∞) constraints are very tight offering new improvements on
the best known bounds for these constraints.

Since a large part of this work has been concerned with obtaining
good bounds on the entropies of various constrained fields it only seems
fitting to conclude by presenting the best known bounds in Table 5.1.
We note that except for the lower bound for the NIB constraint [20]

91
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92 Conclusion

and the lower bound for the �(3) constraint [15] the bounds of Table
5.1 have been developed as part of this work. The estimate H̃ of the
entropy of the �(3) constraint is taken from [16]. Of course, several
authors have investigated constraints not dealt with here, so the list
should not be considered exhaustive in any way. As can be seen, the

F HL HU H̃(F )

RLL(2,∞) 0.4415 0.445942 0.445489
RLL(3,∞) 0.3640 0.368555 0.367515
RLL(4,∞) 0.3121 0.318804 0.31669
�(3) 0.350306 0.354116 0.35030719

Den(2,4) 0.725761 0.68929
Den(4,5) 0.382 0.561824 0.48164

SRLL(1,2) 0.42968 0.4987 0.4678
SRLL(2,3) 0.143 0.2570 0.2395

NIZ 0.8724 0.9686 0.9617083
NIB 0.9127 0.9387 0.9231771872

Table 5.1: Best lower and upper bounds on the entropy for various
constrained fields. An estimate H̃ of the entropy is given as well.

methods considered here have worked best for what could be considered
the simplest constraints, namely the splitting constraints RLL(d,∞) and
the checkerboard constraint �(3).
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Appendix A

Some notes on transfer
matrices

In this appendix we will present some relevant theory of non-negative
matrices that turn out to be crucial for calculating the entropy of the
band sources we consider. Furthermore we discuss some of the issues
dealing with the software used to calculate both the transfer matrices
and the eigenvalues. A standard reference on non-negative matrices
is [43].

A.1 Perron-Frobenius

Definition A.1. A real matrix A = (aij) is called non-negative (respec-
tively, positive if aij ≥ 0 (respectively positive) for all i, j. It is called
stochastic if

∑

j aij = 1 for all i.

We denote that a matrix A is non-negative by A ≥ 0. Similarly A > 0
means that A is positive. Given a n×n matrix A ≥ 0, we can construct
its associated communication graph with vertices V = {1, . . . , n} and
edges i→ j if and only if aij > 0.

We say that some matrix A ≥ 0 is irreducible if its communication
graph is connected. The number of connected components of the com-
munication graph is called the period of A. If there is only one such
component A is aperiodic.
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96 Some notes on transfer matrices

We say that A ≥ 0 is primitive if there exists integer k such that
Ak > 0. Clearly, a non-negative matrix is primitive if and only if it is
irreducible and aperiodic.

A proof of the following powerful theorem can be found in [43].

Theorem A.2 (Perron-Frobenius Theorem). Let A ≥ 0 be a prim-
itive matrix. There exists a real eigenvalue λA of A such that λA > 0
and λA > |λ| for any eigenvalue λ 6= λA of A. Furthermore, the left
eigenvector u and right eigenvector v associated with λA can be chosen
such that uT v = 1

If in addition A is stochastic then λA = 1.
If A is stochastic and irreducible with period d > 1 then there are

exactly d distinct eigenvalues of modulus 1, namely the dth roots of unity
and all other eigenvalues of A have modulus strictly less than 1.

We note that transfer matrices of finite state sources are non-negative
matrices. We often need to determine the largest positive eigenvalue of
some specific non-negative integer matrix when calculating the entropy.
From the Perron-Frobenius Theorem we know that such an eigenvalue
exists and that it is unique. Due to this, it is called the Perron value
of the matrix. But many of the matrices we consider are very large
(over a million rows, say), so how do we actually compute the largest
eigenvalue?

A.2 The power method

We use a variation of the power method [8]. Let A be some non-negative
matrix and let λ be its Perron value. The main idea of the power method
is to iterate the expression

x(n+1) = Ax(n),

where x(0) is some arbitrary positive vector. If φ is a linear functional
then

φ(x(n+1))/φ(x(n))→ λ for n→∞. (A.1)

The sum of the vector seems to be a popular functional. Furthermore,
renormating the vector after each iteration is done in order to combat
round-off errors.
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In order to speed up convergence we use the method of Aitken ac-
celeration which we will not cover here. We refer to [8].

Finally, we remark that in the case described in Section 2.7.5 where
the transfer matrix has a block cyclic structure we have to take this into
account when using the power method.

Thus if p is the period of the transfer matrix, we consider the ratio
φ(x(n+p))/φ(x(n)) when determining convergence to the Perron value.

A.2.1 A useful bound on the computed eigenvalue

Since we are interested in good bounds on the entropies of the various
fields we consider, we must ensure that the precision of the determined
Perron values is at least as high as what we want for the entropies.

Fortunately the following proposition [36] offers good bounds on the
computed Perron value.

Proposition A.3. Let A be a non-negative n × n matrix with Perron
value λ. Then for any non-negative vector x 6= 0 the following exact
bounds are valid

min
1≤i≤n

1

xi

n∑

j=1

Aijxj ≤ λ ≤ max
1≤i≤n

1

xi

n∑

j=1

Aijxj . (A.2)

We simply use the proposed numerically calculated eigenvector in
place of x in (A.2). If the upper and lower bounds are within some
desired accuracy we have calculated λ to that desired accuracy.

A.2.2 Computing the stationary distribution

Given an irreducible stochastic n × n matrix Q we know that its sta-
tionary distribution π exists, i.e. that π = πQ. Note that, this equation
shows that 1 is an eigenvalue of Q with right left eigenvector π. Hence,
according to Perron-Frobenius, it is actually the Perron value. Thus
we can use a variant of the power method to compute the stationary
distribution. We iterate over

π(n+1) = π(n)Q.

In each iteration we make certain that π(n) sum to 1 and renormate it,
if it isn’t the case. When ‖π(n+1) − π(n)‖ < ε we set π = π(n). This is
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98 Some notes on transfer matrices

how we determined the stationary distributions of the MBS used in de-
termining the lower bounds on the entropies of checkerboard constraints
reported in Chapter 4.

A.3 Implementation details

The actual computation of the transfer matrices and the bit-stuffing
transition probabilities as well as the subsequent execution of the power
method was done with custom made programs written in C. An inter-
esting problem is how to actually compute the transfer matrix for some
band source B. Let the extent of the constraint be N × M and the
width of B be m. The states of B are then all the valid (N − 1) ×m
configurations. It is clear that for most states s, t there will not be a
transition between s and t. That is, the transfer matrix is sparse and
we only need to store the non-zero elements. One way to compute the
valid transitions is to have two nested loops over the states. That is for
each pair of states s = s1 . . . sN−1 and t = t1 . . . tN−1 we check whether
s2 . . . sN−1 = t1 . . . tN−2 and whether the configuration s1t1 . . . tN−1 is
valid.

We note that the complexity of this algorithm runs like the square
of the number of states, which is a big problem considering the large
number of states.

Since most of the states wont overlap consecutively, it seems like a
waste of time running through all the states in the inner loop. Instead
one could simply run through the valid rows. Unfortunately, the problem
with this approach is that we then need to calculate the index of the
second state t given the first state s and some valid row r. The easy way
to calculate the index (linear search through the states) doesn’t solve
anything.

However, by building an index table of the valid patterns as we
generate the states, we are able to calculate the index by simple table
lookup. We do this by first finding the valid rows R. Then finding the
valid patterns of height 2 and so on.

Let Pd denote the valid patterns of height d (and width m where m
is the width of the band). At each height d we loop through the valid
patterns of height d− 1 and for each pattern p ∈ Pd−1 we loop through
the valid rows, r ∈ R to see whether the configuration p

r is valid or not.
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At each level d we have a |Pd−1|× |R| matrix Td defined in the following
manner.

(Td)pr =







−1 If pattern p and row r doesn’t make a valid configuration.

id If the configuration
p

r
is valid.

Here id is the index of the last valid configuration in Pd. Each time we
find a new valid configuration, we increment id and store the configura-
tion in Pd.

While this approach greatly facilitates the calculation of the transfer
matrix, especially when N > 3 it is clear that these index matrices will
be rather large indeed.

This is an example of the classical space time tradeoff, where we gain
an increase in speed by using more memory. In general, the sparser the
transfer matrix is, the faster the memory intensive approach works.
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Appendix B

Band entropies

In this appendix we have collected entropies of band sources of various
widths for most of the constrained fields considered in this text. All the
entropies are given with the assured accuracy obtained by the bound
(A.2) as detailed in Appendix A.2.1.

w RLL(2,∞) RLL(3,∞) RLL(4,∞)

9 4.151764523 3.481576435 3.04860618
10 4.584962501 3.849026673 3.36553452
11 5.042740306 4.216539810 3.68219859
12 5.488229108 4.584062103 3.99880042
13 5.933717831 4.951578811 4.315429024
14 6.321928095 5.319091814 4.63210247
15 6.824695221 5.686603617 4.94879
16 7.270183907 6.05411876
17 7.715672614
18 8.161161317
19 8.60665

Table B.1: Band entropies HB(w) for the RLL(d,∞) constrained fields
for d = 2, 3, 4.
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102 Band entropies

w NIZ NIB

5 4.877667574 4.7615512324
6 5.839597483 5.6853328258
7 6.800899900 6.6091787381
8 7.76260823 7.5323559253
9 8.7242690 8.4568516777
10 9.6859299 9.3806811167

Table B.2: Band entropies HB(w) for the NIZ and NIB constraints.

w Den(2,4) Den(4,5)

5 3.84544 3.24487
6 4.51040 3.70658
7 5.20132 4.18582
8 5.89061 4.66004
9 6.57032 5.13660
10 7.25761 5.61824

Table B.3: Band entropies HB(w) for the density constraint.

w SRLL(1,2) w SRLL(2,3)

6 3.20804 9 2.41029
7 3.67419 10 2.64961
8 4.14306 11 2.88964
9 4.61088 12 3.13240
10 5.07902 13 3.38285
11 5.54707 14 3.61572
12 6.01554 15 3.85523

Table B.4: Band entropies HB(w) for the SRLL(1,2) and SRLL(2,3)
constraints.
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Appendix C

Merging arrays for the
Den(4,5) constraint

In this appendix we expand upon Example 2.26. We give examples show-
ing that in the general case a merging array for any two valid Den(4,5)
arrays has to have width at least 8.

Our exposition is based on the following observation. If there do
not exists a merging array of width w − 1 and we can show that for
concrete X and Y that no array of width w exists then the width of the
general merging arrays has to be at least w + 1 even though we may
find a specific merging array for X and Y of width less than w. This is
easier to explain after having considered some concrete examples. We
conclude this argument when covering the specific case of w = 3 below.

We consider the following valid 3× 2 Den(4,5) configurations.

A B C
0 0 0 0 1 1
0 0 0 0 1 1
0 1 1 0 0 1

Note that these configurations are chosen for the fact that they force
any column next to them to be either all ones (in the case of A and B)
or all zeros (in the case of C).

Let Z = Z1 · · ·Zw denote a merging array of width w. In the case
of w = 0, Z is the empty array. We now use various combinations of
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104 Merging arrays for the Den(4,5) constraint

the valid configurations A, B, C to show that Z cannot exist for w =
0, 1, . . . , 7.

w = 0 Consider X = A = Y . The array XY is not valid.

w = 1 Consider X = A and Y = C. To make the array XZ valid, Z has
to be all ones. On the other hand to make ZY valid Z has to be
all zeros.

w = 2 Let again X = A and Y = C. We have

X Z Y
0 0 1 0 1 1
0 0 1 0 1 1
0 1 1 0 1 0

Note that ZY1 is not valid since it contains 6 ones.

w = 3 Let X = A = Y . We note that Z1 = Z3 has to be all ones. But
then Z contains 6 ones and are thus invalid.

X Z Y
0 0 1 1 0 0
0 0 1 1 0 0
0 1 1 1 0 1

Note that while no merging array of width 3 exists, in this case
we can actually find a merging array of width 1. We simply use
Z = Z1 consisting of all ones. This changes nothing, however. If
we consider the valid configurations consisting of A atop A and A
atop C respectively, we cannot find any merging arrays of width
w = 0, 1, 2, 3 due to the already covered examples. Of course, this
argument can be used for greater values of w.

w = 4 Let X = A and Y = C. Due to the constraint Z1 has to be all
ones and Z2 has to contain at least two ones. On the other hand
Z4 has to be all zeros and Z3 has to contain at least one and at
most two ones and hence at least one zero. We have depicted this
below:

X Z Y
0 0 1 0 1 0 1 1
0 0 1 0 0 1 1
0 1 1 0 0 1 0
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We see that Z2Z3Z4 contains 6 zeros and thus is invalid.

w = 5 Let X = A and Y = B. Then Z1 = Z5 has to be all ones.
Furthermore Z2 and Z4 has to contain at least two zeros. Thus Z2

and Z4 contains at most one one each. Hence, in order for Z2Z3Z4

to be valid, Z3 has to contain at least two ones. This is depicted
below.

X Z Y
0 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0
0 1 1 1 1 0

Note that we cannot place a one in any of the remaining positions
since then will either Z1Z2Z3 or Z3Z4Z5 contain at least 6 ones.
On the other hand if we fill the remaining positions with zeros
then Z2Z3Z4 has 7 zeros and are thus invalid.

w = 6 Consider X = A and Y = B. We have Z1 = Z6 has to be all ones.
Z2 and Z5 has to have at least one and at most two ones and hence
at least one zero. Hence Z3 and Z4 has to have at least two zeros
each. This is depicted below.

X Z Y
0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 1 1 1 1 1 1 0

Consider the free position in Z2. If it is a one then X2Z1Z2 contains
6 ones in violation of the constraint. But if it is a zero then Z2Z3Z4

contains 6 zeros, also violating the constraint.

w = 7 This case has already been covered in Example 2.26.

The above examples show that a merging array for the Den(4,5) con-
straint has to have width at least w = 8.

We have conducted an exhaustive search for merging arrays of width
w = 8 between any two valid 3× 2 arrays and were always able to find
one. However, this only shows that it is possible for arrays of height 3.
The general case of merging two arbitrary bands is still open.
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