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Abstract

We develop a formal language for specifying cryptographic protocols in a struc-
tured and clear manner, which allows verification of many interesting properties;
in particular confidentiality and integrity. The study sheds new light on the prob-
lem of creating intuitive and human readable languages, that are analysable with
respect to interesting properties. Furthermore it motivates and is an example of,
a novel, more general methodology of language design by first verbosely describ-
ing the semantics in a mathematical language, e.g. a logic, then restricting the
properties of interest to be computable, and finally systematically transforming
it into a more intuitive specification language, maintaining this tractability.
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Resumé

Vi udvikler et formelt sprog til at formulere kryptografiske protokoller p̊a en
strukturet og let gennemskuelig m̊ade, der samtidig tillader verifikation af flere
interessante egenskaber – navnligt fortrolighed og integritet. Studiet kaster nyt
lys p̊a problemet med at konstruere intuitive og menneskeligt læselige sprog, der
kan analyseres med henblik p̊a attraktive egenskaber. Desuden motiverer det – og
er et eksempel p̊a – en nyskabende, mere generel tilgang til sprogdesign, ved først
at udførligt beskrive semantikken i et matematisk sprog, s̊asom en logik, s̊aledes
at de interessante egenskaber kan beregnes, og derefter systematisk transformere
det til et mere intuitivt specifikationssprog, der bevarer denne beregnelighed.
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Chapter 1

Introduction

Building modern IT-systems is often a demanding task, relying on the collabora-
tion between several hundreds or even thousands of individuals with different
backgrounds. Nowadays, it is rarely the case that the systems are developed in
the dusk of someone’s basement, and that changes many aspects of the whole
development phase. System design and software engineering is becoming increas-
ingly important, not only to establish a common ground for communication, but
also to ensure that the outcome of the development is the intended result.

The design of systems in specific has spawned an entire movement in standardisa-
tion, formalisation, and terminology. The key to successful software development
seems to be dividing the project into sub-tasks, such that the individual developer
(or the responsible group) can focus efforts on a single task and abstract away
from the other parts of the project. Naturally, this also increases the demands
to common terminology, proper interface, and compatibility. Many approaches
help in these aspects, including object oriented design, UML diagrams, coding
conventions, formal standards, etc.

The introduction of a design phase, however, raises a somewhat orthogonal issue
to the implementation; namely verification of the design. If the original system
design is flawed then the quality of the implementation is of little importance.
To many, this may sound both obvious and at the same time a trivial task,
but it often, if not to say usually, turns out not to be the case. The strongest
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arguments for this statement is probably from distributed systems, where flaws
in the design can be disastrous. It turns out that more than 70% of the systems
used in our everyday life and rely on to be secure, contain fundamental design
flaws which can lead to unwanted behaviour such as break of chain of trust or
theft of confidential information [48].1

In general, flaws in systems such as stock exchanges, e-banking, missile control,
electronic voting systems, or similar are catastrophic. However, even flaws which
are eventually discovered before release of the software, can be costly. Studies
show that the cost of error-correction increases dramatically the later in the
development stages the flaw is found; in particular, the cost of correction, relative
to discovery in the design phase, is 7 in the implementation phase, 15 during
testing, and 100 during maintenance [67]. It is therefore reasonable to demand
that verification is done at the design phase and, as human error is too big a
factor to be ignored, in a mathematically provable correct manner.

But in order to attack the problem mathematically, the design must relate to
a mathematical model. Moreover, as the system being designed is supposed to
be executed in a dynamically changing environment (that is, the real world),
we must have formal meanings of execution and environment. A person with
programming experience notices that this sounds like the description of language.
In fact, the language-based approach to model and verify communication systems
has, over time, turned out to be a successful approach, and increasingly more
systems are being proven secure this way at the design phase.

The topic of this dissertation is on the formal development of one such language
for system design validation. More precisely, we shall introduce a language
for designing the way distributed, concurrent systems act and establish secure
communication. Usually, secure communication over an insecure medium (such
as the internet) is established through cryptography, and, in particular, by the
use of cryptographic protocols. These protocols are abstract descriptions of
how the participants in a concurrent system must act in order to achieve a
common goal. The description is abstract in the sense that it does not dictate
implementation details or design patterns, and often even the specifics about
the cryptographic algorithms or communication medium are omitted; they are
all considered orthogonal issues to the protocol. This conforms to the design
abstraction paradigm; the protocol abstracts from details unrelated to the task.
Unfortunately, however, such descriptions are, albeit succinct and easy to read,
informal, ambiguous and often require a fair amount of interpretation. In other
words, they do not pose a reliable foundation for a mathematical investigation.
This motivates the development of a formal language that can be used to unify
the protocol design and verification phases.

1Study based on 214 American financial institutions
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It follows that the language must allow program development in a way that
the program’s design can be easily or, preferably, automatically validated. At
the same time, the language should be simple and intuitive, and knowledge of
the underlying verification method or technique should not be a precondition
of use. In fact, the syntax of the language should stay as close as possible to
well-established informal protocols descriptions, in order to ensure that programs
in the language remains comprehensible and useful to both the protocol designer
and the engineer implementing the system; “if it works, don’t fix it”. These are
ambitious goals and to achieve them we shall rely on much related work from
the last three decades on this topic. In the remainder of this chapter, we shall
present the background for, and related work on, distributed systems design and
analysis. We will also state the contributions of the dissertation and outline the
contents of the forthcoming chapters.

1.1 Design Goals: What is Secure?

Secure is one of the most popular buzz-words relating to distributed systems.
Usually it is used in an informal manner, implying that the systems “are safe
against intrusion” or “will never crash”.

Formally, however, we describe security through a number of properties. There
are several different properties, and the formulation often vary, but in this
dissertation we will use Gollman’s definition [55]:

• Confidentiality : prevention of unauthorised disclosure of information;

• Integrity : prevention of unauthorised modification of information;

• Availability : prevention of unauthorised withholding of information or
resources:

When we discuss communication systems some are added to the list in addition
to the main ones:

• Authentication: prevention of forging communication of information;

• Non-repudiation: prevention of deniability of sending information.

These properties are usually attempted obtained through the use of cryptographic
operations. But cryptographic operations alone are not enough to guarantee
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security. A simple example of this is that an adversary may violate confidentiality
even though all communication is encrypted, if it can obtain the decryption key.
Another, less trivial, example is that an adversary can violate authentication, if
it could take information from an earlier communication and reuse this to forge
a new communication; this is usually called a replay attack.

The mentioned examples shows that proving security properties of a design is
not as trivial as it initially may seem. The design must be shown to satisfy
the properties in any thinkable or unthinkable situation; this and especially the
latter can prove to be a challenging task.

1.2 Introducing Alice and Bob

In order to discuss the internals of a distributed system, some manner of formalism
must be agreed upon. Typically, for cryptographic protocols, the formalism is
some version of the Alice-Bob notation.2 This notation technique is a syntax that
solely focuses on the order of the actions that must take place, the cryptographic
primitives being applied, and an abstraction of the content of each message being
sent.

The Alice-Bob notation enforces many simplifications to make the system analy-
sable. Specifically, implementation details such as timing, data and key length,
transport layer information, etc., are all omitted. The omission of these details
allows for an abstract algebraic view on communication, and builds on the
assumption that security of the systems should be validated on both the abstract
protocol level and on the implementation level, independently.

Sometimes an insecure protocol may be prove secure once implemented; e.g.
two messages may be mistaken for one another in the abstraction, but in the
implementation this could never happen. However, the abstraction ensures that
the opposite could never happen. In fact, correcting such a flaw in the abstract
protocol, will never introduce new flaws in the actual implementation, so in that
sense the abstraction is safe. An abstractly validated protocol can only suffer to
flaws introduced through the implementation.

2In general, cryptographic protocols originate from various sources; e.g. mathematicians,
computer scientists, and engineers. Although the presentation relies heavily on the source, the
Alice-Bob notation always seem to occur in some form in the document.
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1.2.1 Communication

The name Alice-Bob refers to a simplification usually being used in combination
with this notation. If a protocol includes an initiator (or sender) and a responder
(or recipient) we usually denote them A and B, respectively, and sometimes refer
to them as Alice and Bob. Likewise, we often refer to servers as S, certificate
authorities as CA, etc., and in general we refer to a participant in a protocol as
a principal. This brings protocols on a common ground, making similarities as
well as distinctions more apparent.

As already said, a protocol is a structured manner in which each participant
must act to obtain a common goal. In a communication system this equals
transmission and reception of specifically formatted data, as well as pre-defined
operations performed on this data. In the Alice-Bob notation these actions are
divided into two layers: the transmitting and receiving data, and the structure
of and the operations (usually cryptographic) on the data.

Each step of a protocol specifies a message that should be sent from one principal
to another. Hence, intuitively, this can easily be generalised as follows:

A→ B : M

Here a message M is being sent from principal A to principal B. This is the
Alice-Bob notation, and in it, a protocol is a just numbered sequence of steps,
referred to as a protocol narration.

1.2.2 Term Language

The basis of cryptographic protocols is, obviously, cryptography. Nevertheless,
the threat of breaking cryptography is usually distinguished from the threat
of breaking the protocols itself. Thus, a protocol designer may assume that
cryptography is working perfectly and focus exclusively on its usage (analogously,
the cryptographer will usually analyse the cryptographic algorithms independent
of the context that they are being used in). In other words, we shall assume that,
if a cipher text is obtained by encrypting a plain text with an encryption key, then
the plain text can only be recovered from the cipher text using the corresponding
decryption key. This assumption is usually called perfect cryptography and
renders security and complexity issues of the various cryptographic algorithms
unimportant in this context, as all algorithms are considered secure. Hence we
shall only be concerned with two abstract types of cryptography: symmetric (or
shared key, e.g. DES or AES [2, 1]) and asymmetric (or public key, e.g. RSA
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or ElGamal [113, 51]). Later, in §3.5.2, we shall discuss other cryptographic
operations as well, but, for now, the two mentioned will suffice.

The assumption of perfect cryptography allows an algebraic formulation of the
cryptographic operations. For symmetric cryptography, where encryption and
decryption keys are identical, we shall write {text}K for the cipher text obtained
by encrypting the plain text text with the symmetric key K, and use bold
font brackets to keep the notation distinct from set delimiters. The perfect
cryptography assumption then dictates that retrieving text from {text}K , that
is, decrypting the latter, requires knowledge of K. For asymmetric cryptography
we shall require a key pair, (K+,K−), comprised by a public key and a private
key (denoted by their superscripts), respectively. We then write [[text]]K+ for a
cipher text, which can only be decrypted using knowledge of K−.

Often asymmetric cryptography also allow digital signature schemes, simply by
reversing the applied order of the keys. Thus we may write [[text]]K− for the
digital signature of text , using the private key K−. It is important to note that
a digital signature does not provide any confidentiality, i.e. anybody can read
the signed content text , but it provides non-repudiation on the message, in the
form that anybody knowing the corresponding public key K+, can prove the
message was sent by someone knowing the private key K−.

Key pairs for asymmetric encryption are generated by a single principal, and
usually this principal is intended to have exclusive knowledge of the private
key, whereas the public key is allowed for everyone to know. These intentions
are usually indicated by the syntax and for a key pair generated by A we shall
write (Ka+,Ka−). Analogously, symmetric keys are usually intended only to be
shared by two principals, and thus we shall denote these as well in the name;3

e.g. A and B are intended to share and have exclusive knowledge of key Kab.

This has basically summarised the key notation. Apart from cryptography,
protocols also involve elements such as nonces (randomly generated strings),
time stamps, etc. But we are solely interested in the usage of cryptography in the
protocol, and we shall not be concerned with neither time or time outs, and thus
we shall merely view all of the above as unstructured binary strings of unspecified
type. Following this line of thought, we may also consider principal names and
symmetric keys as just different unstructured binary strings, and we shall refer
to the any such unstructured binary string as a name and denote it n. Note
that this is a safe assumption, as it means that we cannot distinguish between
the different types of data; if we could, it would only increase the security of the
protocol. Key pairs must, however, still be handled separately from names, and,

3Often the protocol includes a trusted third party (e.g. a server S), and in these protocols
it is customary to leave out the third parties name in the keys. Thus, for example, we would
write Ka instead of Kas.
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1. A → B : A,Na
2. B → S : B,{A,Na,Nb}Kb

3. S → A : {B,Kab,Na,Nb}Ka ,{A,Kab}Kb

4. A → B : {A,Kab}Kb ,{Nb}Kab

Figure 1.1: The Yahalom protocol

as already mentioned, we shall use the superscripts + and − to distinguish them
and denote their relationships.

As a result, a message is basically built up by cryptography from names according
to a simple syntax:

M ::= n | n+ | n− | 〈M1, · · · ,Mk〉 | {M1}M0 | [[M1]]M0

This inductive definition of a syntax is usually referred to as an abstract syntax
or a term language. Apart from the primitives introduced above, we also allow
concatenation of terms, the so-called tuples. For example if a message consists of
four concatenated fields M1,M2,M3 and M4, in that particular order, then we
write 〈M1,M2,M3,M4〉. Usually, however, the brackets 〈〉, are omitted in the
Alice-Bob specification, when they are implicit.

The syntax is abstract in the sense that all the basic components of the message
are, as described above, coalesced into one group of names. This serves only
a theoretical purpose, and in our modelling we shall still employ the naming
conventions introduced above; i.e. capital letter for principals, capital K for keys
followed by the lowercase name of each of the principals intended to know the
key, etc.

Example 1.1 (Yahalom) An example of the Alice-Bob notation is given in
Figure 1.1 where the Yahalom [31] protocol description for symmetric key distri-
bution is presented.

The protocol introduces three principals; the initiator A, the responder B, and
the server S, and relies on the pre-existence of the long term symmetric keys
Ka, Kb, shared between the principal denoted in the subscript and the server, all
modelled as names.

The goal of the protocol is to introduce a new symmetric key, Kab, shared
by A and B, such that after a successful protocol run, these principals may
communicate safely. This is obtained through the mutually trusted third party, S.
During the four steps of a protocol run the nonces Na and Nb are generated, as
well as the new shared key Kab. The intended scope of the shared keys are the



8 Introduction

principals noted in the lowercase letters, although the trusted server, S, will also
know Kab after generating it. Accordingly, the lowercase letters on the nonces
denote the principal generating them.

1.3 Related Work

Before we embark on the task at hand, we shall present some of the related
literature on language design for concurrent systems, the so-called process calculi,
existing languages for modelling cryptographic protocols, and state-of-the-art
techniques for verifying security properties of the designs.

1.3.1 Foundational Process Calculi

Process calculus (or process algebra) is a formal approach to the study of
concurrent processes which uses algebraic structures to model processes and
reason about them. It differs from other concurrency models, such as Petri Nets
[106], the Actor Model [62], or Input/Output Automata [74], by its linguistic
character and, specifically, its algebraic properties.

A process calculus is constituted by two main ingredients:

Syntax. The language is given as a term language with recursive structure,
defined inductively by one or more syntactic categories.

Semantics. A process calculus is given formal meaning through a semantics.
The semantics describe how a system, represented in the process calculus,
may evolve (or execute). As in programming languages, three main styles
of formal semantics are distinguished: operational, denotational, and
axiomatic semantics. The most popular style, operational semantics, exists
in two styles: Structural Operational Semantics [110] producing labelled
transition systems and the Chemical Abstract Machine (CHAM) [16] where
the semantics is given as a set of simple reduction rules for term rewriting
and a structural congruence on terms with equivalent behaviour. The
denotational semantics were originally developed with the purpose of
modelling the meaning of a program as a function that maps input to
output, an approach which has been generalised in domain theory. The
same approach has been used for process calculi as well, for example on
CSP [63], where processes are mapped into their sets of traces, failures,
and divergences. Finally, Axiomatic Semantics has been used for ACP
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[15], which is described by a set of axioms with respect to a simple process
algebra syntax.

Originally, process calculi were created with the purpose of serving as a founda-
tional model for concurrent computation, a “λ-calculus of concurrency”. History
has shown, however, that the nature of processes, systems and communication
is much too diverse to capture with a single model. Instead, a wide range of
different calculi has been developed, each with the purpose of modelling a partic-
ular aspect of the distributed systems, but only few of them can be considered
fundamental. Most specialised calculi rely on the same basic concepts and differ
in aspects of theoretical character of importance to the verification phase. Hence,
we introduce only a few of the most foundational ones, before moving to those
of specific relevance to this dissertation.

CCS. The Calculus of Communicating Systems (CCS) by Milner [78, 79] is a
static, non-distributed model of processes with synchronous communication. A
CCS process, P , is given by the abstract syntax:

P ::= 0 | α.P | P1 |P2 | P1 + P2

α ::= a | ā | τ

Processes rely syntactically on actions, α, representing atomic execution steps;
either internal (not observable) in the case of τ and otherwise externally observ-
able.

The semantics of CCS is given as an operational semantics in the form of a
ternary relation, →, called the labelled transition relation. We say that the
process P can evolve to P ′ by action α whenever 〈P, α, P ′〉 ∈→ and write
P

α→ P ′. The semantics is defined inductively where sequential composition α.P ,
nondeterministic choice P1 + P2, and the terminated process 0 have straightfor-
ward inference rules. In the case of parallel composition P1 |P2, the branches
may execute individually, or synchronise:

P1
a−→ P ′1 P2

ā−→ P ′2

P1 |P2
τ−→ P ′1 |P ′2

Restriction P\A expresses that actions contained in A can only be used for
internal communications within P , and renaming yields a process P [f ] in which
all actions α of P are relabelled to f(α).4 Infinite behaviour is achieved by
defining a process identifier A, via equations A , P where A occurs recursively
in P . Execution of A is then defined as the execution of P by process invocation.

4If f is the map of a to b we write either P [a 7→ b] or P [b/a]. In this dissertation we shall
prefer the former.
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A value-passing variant of CCS also exists [79]. Here the calculus is extended
with expressions e, values v, and variables x, and and actions then work as
channels through which values can pass. Prefixes are accordingly redefined to
a(x) | ā〈e〉 | τ and evaluated using the following new rules:

a(x).P
a(v)−→ P [x 7→ v] ā〈e〉.P ā〈v〉−→ P, if e evaluates to v

The value-passing variant can be encoded in the basic calculus and it is therefore
not more expressive than the above-mentioned calculus. However, in some cases
the extension may be preferred, as it allows more elegant and succinct programs
than the regular CCS.

CSP. Hoare [63, 64] and Brookes, Hoare, and Roscoe [28] proposed Communi-
cating Sequential Processes (CSP), providing a process model similar to CCS. In
fact, the calculi were highly influenced each other. Differences are CSP’s concepts
of choice (external choice of the environment and nondeterministic choice) as
well as that its parallel composition operator does not hide communications and
thus allows any number of processes to participate in the same event.

π-calculus. The π-calculus of Milner, Parrow, and Walker [80, 81, 116], is
most prominent and influential among the calculi with a notion of mobility. In
pure π-calculus mobility is obtained through links, which can be passed around
and then used for interaction with other processes. This is achieved syntactically
by action prefixes π ::= x(y) | x̄〈y〉 | τ , much like the value-passing version of
CCS. However, instead of keeping values and actions distinct as in CCS, they
are coalesced in the syntactic category names. The implication of this change
is that communicated names can be used for new communication links after
reception. Names are treated based on their scope and the restriction (νx)P
limits the scope of a name x to the process P , similar to restriction in CCS,
but the scope of a restriction may change dynamically5 to allow communication.
Infinite behaviour is introduced by the replication operator !P , semantically
defined by the equivalence rule !P ≡ P |!P of the structural congruence. The use
of structural congruence implies that the language uses an operational semantics
in CHAM style leading to very concise descriptions. The semantics is given by a
binary relation → over processes, where the most interesting case is reaction:

(x(y).P1 +M1) | (x̄〈z〉.P2 +M2) → P1[y 7→ z] |P2

Where M ranges over processes with only prefixing, choice, and termination.

5This is called scope extrusion, similarly to the λ-calculus [35, 12]. The scope is only
changed to make the semantics function properly and is not reflected in any real change of
state under program control.
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Klaim. The above three mentioned calculi have no notion of distribution; i.e.
all processes share a single execution space. The process calculus Klaim [17] by
Bettini et al. differs from this approach in that it extends process algebra with
aspects from coordination languages. Coordination languages view concurrent
systems as a conjunction of two ingredients [54]: a computation model and a
coordination model. The computation model can be described by any sequential
calculus and the coordination model by a coordination language, such as Linda
[53]. Linda introduces the concept tuple space which is a multiset of tuples.
Interaction is then modelled through the tuple space by placing and retrieving
tuples via pattern matching mechanisms, realising asynchronous communication.

Klaim extends the Linda paradigm by having multiple tuple spaces, which can
be accessed remotely. Technically, each tuple space is given a unique identifier,
l, called a locality. Klaim also introduces a new syntactic category of nets, N ,
containing either a located tuple, a located process, or a parallel composition of
nets:

N ::= l :: P | l :: 〈t〉 | N1 ‖ N2

Processes are built from Linda actions such as out (t)@l and in (t)@l for, re-
spectively, placing and retrieving tuples from localities. Klaim also includes
operators for creating new tuple spaces and to allow distribution of the associated
localities, in order to model code mobility and remote execution.

1.3.2 Calculi for Cryptographic Protocols

Focussing on communication in concurrent system and abstracting from practical
issues, process calculi seems suitable for the analysis of the design of commu-
nication systems or protocols. Especially cryptographic protocols have been
researched and used in conjuction with methods for establishing security proper-
ties of the systems. In order to express these protocols, specialised calculi have
surfaced to provide ways to model cryptographic primitives.

CSP. Modelling cryptographic protocols in a process calculus setting first
showed its worth when Lowe successfully found a number of flaws in well-known
protocols [70, 71, 72, 73]. Lowe used CSP (see §1.3.1) and expressed encryption
of a message m with a key k by the CSP event Encrypt.m.k. In Lowe’s setting,
protocols were analysed against attacks by modelling an attacker that was
capable of all actions allowed by the assumption of perfect cryptography, a so-
called Dolev-Yao attacker [44], and Lowe then investigated whether any possible
execution trace could result in an event that violated a security property (in
particular the properties authentication and confidentiality). Later, the CSP-
approach has been further developed [115] to successfully cover a variety of
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protocols.

Spi Calculus. Abadi and Gordon [7] proposed the Spi Calculus as a variant of
the π-calculus with explicit modelling of cryptographic primitives. For example,
in the case of symmetric key cryptography, they extend the set of terms of
π-calculus with {M}N , representing encryption of the message M under key N ,
where M and N are names. Similarly, processes are extended with a construct
for decryption,

case L of {x}N in P

and the reduction relation → then dictates that only encryptions with the key
N can be decrypted:

case {M}N of {x}N in P → P [x 7→M ]

The language incorporates similar constructs for asymmetric cryptography.

Initially, Gordon and Jeffrey [58] used correspondence assertions to show that
the protocol reached its goals by typing (see §1.3.3). Specifically, they embedded
labelled begin and end assertions into the specification, and then proved that every
end had to be proceeded by a corresponding begin). This, however, only helped
them establish non-repudiation, which is arguably one of the less interesting
properties for most cryptographic protocols. Later the same researchers were
inspired by Abadi’s seminal work on confidentiality by typing [3], and extended
the technique to the Spi Calculus [57]. As for CSP, this work was based on a
formalisation of an attacker in the Dolev-Yao style.

Applied pi calculus. Another variant of the π-calculus, called the applied pi
calculus, was proposed by Abadi and Fournet [5]. The applied pi calculus allows
transmission of messages composed of simple function and equations instead
of just names. The perfect cryptography assumption is ensured by a careful
definition of the equational theory for functions representing cryptographic
primitives. The changes loses some of the elegant simplicity of the original
calculus, but establishes a robust framework that can cope with a variety of
cryptographic operations without extensive encodings. Recently, Bhargavan,
Fournet, and Gordon [18] used the applied pi calculus as a basis for a theorem
prover-driven (see §1.3.3) protocol verifier for industrial protocols in the SOAP
standard.

LySa. Bodei et al. [22] introduced the calculus LySa, a polyadic version of
π-calculus (i.e. a version that allows tuples to be transmitted) that employs
cryptographic primitives in the same way as the Spi Calculus. The language
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uses pattern matching on input to distinguish between messages of different
formats. In connection with the calculus, a control flow analysis framework, with
a Dolev-Yao style attacker, was developed and shown capable of successfully
analysing most of the well-known cryptographic protocols [24]. Buchholtz,
Nielson, and Nielson [30] later suggested a more extensive calculus, LySaNS,
which incorporated a complex pattern matching to allow more succinct and
comprehensible protocol specifications. The article also suggested a control flow
analysis for the language, but this analysis resulted in constraints which lacked
solver support and was never implemented.

1.3.3 Formal Protocol Analysis

We now turn to formal methods for verification of protocols. Roughly speaking
there are two main trends in this area; proof-based approaches and language-based
approaches. Proof-based approaches use a mathematical formalism to describe
each step of the protocol, whereafter proof techniques are applied to establish
various properties. We shall describe Belief logics, Strand Spaces, and theorem
proving as examples of proof-based verification methods. Language-based ap-
proaches use process calculi to model the protocols and base an investigation of
the protocol on the formal semantics of the language. We mention model check-
ing, control flow analysis, and type systems as representatives of language-based
verification methods.

Belief Logics. In their seminal work [31], Burrows, Abadi, and Needham
developed BAN Logic, which is probably the first attempt at formal reasoning
on cryptographic protocols. BAN Logic uses relations to represent the beliefs of
principals and uses inference systems to derive the results of executing the steps
of the protocol. Each step of the protocol is therefore a logical formula and the
initiation of the protocol is described as a set of postulates (facts).

The central statement is that principal A believes statement X, which is written
A|≡ X. This means that A may behave as if X was true. Other constructs
includes: A K←→ B expressing that A and B share the key K and may use that
for communication; A / X means that A has seen X at some point; {X}K for
the encryption of X with the key K. A typical rule could then be that if A
believes that he shares a key K with B and has seen a message encrypted with
K then A can see the contents of the encryption:

A|≡ (A
K←→ B) A / {X}K

A / K

The original semantics turned out to be unsatisfactory and later several attempts
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were made to mend the technique [8, 21]. It is, for example, not clear whether
A can believe something which is, in fact, false. BAN Logic has been seminal
to security analysis, but it is also infamous for the unfortunate fact that it
claimed several protocols to be secure, which later turned out to be flawed
(e.g. Otway-Rees and the Needham-Schroeder Public-Key). It should also be
noted that belief logics are only capable of establishing authentiation and that
confidentiality must be established on top of the formula [56, 75], which tends
to sacrifice the intuitive nature of the logic itself.

Strand Spaces. Another important approach [47] is due to Fábrega, Herzog,
and Guttman. The technique relies on the notion of a strand strand ; a sequential
protocol history (message sending or receiving) from the viewpoint of a single
peer. A strand space is then an unspecified set of strands, some for the principals
of the system, some for the attacker.

The verification of processes rely on bundles; a set of strands sufficiently expres-
sive to formalise a protocol session. Bundles relating to a particular protocol
participant may then be seen as all possible combinations of events from that
participants’s view of the protocol run. Verification is then performed by showing
that the bundles do not contain any strands where the attacker is allowed to
do evil. Originally proofs of this type was carried out by pen and paper using
inductive reasoning techniques, and was successfully applied to three classical
protocols: Needham-Schroeder [47], Otway-Rees, and Yahalom [46]. Temporal
logic has also been used to assist the verification methodology [33] and Song,
Berezin, and Perrig [120] have combined model checking and theorem proving
techniques in a tool called Athena, based on the Strand Spaces model.

Theorem Proving. Paulson [104] used higher-order logic and the interactive
theorem prover Isabelle/HOL for protocol verification. Here protocols are
described by inference rules producing sets of event sequences. Authentication
and confidentiality properties are defined and shown as predicates over these
event sequences. The technique allows verification of infinite state systems, but
relies heavily on user interaction for generating proofs.

Model Checking. Model checking is a general verification technique perform-
ing exhaustive exploration of the possible states of a system. Model checking
faces a problem of intrinsic character, the so-called state explosion problem: the
state space grows exponentially with the size of the system specification. Over
the years techniques, such as symbolic model checking [76], has been developed
to overcome this limitation and model checking has significantly contributed to
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the advance of the entire protocol verification field.

The use of model checking for verification purposes dates back more than two
decades, where Lowe used CSP (see also §1.3.1 and §1.3.2) and the model
checker FDR [114] to discover a number of attacks on classical cryptographic
protocols [70, 71, 72]. Other model checkers such as ASTRAL [41], Brutus
[36, 37], and Murphi [82], just to mention a few, have also been used for protocol
verification purposes yielding perhaps less seminal results. Recent research by
Basin, Mödersheim, and Viganò [13] should be mentioned, as it makes significant
contributions to the field. Here infinite elements are represented using lazy
datatypes : constructors that build datatypes without evaluating their arguments.
This leads to a finite representation of the model which can be extracted on-
demand. Another recent trend in model checking is the use of SAT-based
techniques which have boosted the efficiency of protocol verification [11, 10].

Control Flow Analysis. Program analysis is concerned with statically esti-
mating how programs may behave under execution [93]. Bodei et al. [25, 26, 22,
24] show how these techniques, namely control flow analysis, can be adapted to
the verification of cryptographic protocols. Initially, the control flow analysis is
applied to the π-calculus [25] and focusses on the use of channels. The authors
then show [26] how to safely over-approximate variable bindings in Spi Calculus
processes. The work is further matured in [22, 24], where a new variant of the
π-calculus, LySa, is introduced. The authors here use control flow analysis to
verify confidentiality and, with manual annotation techniques, authentication.
The method is supported by an automated constraint solver, Succinct Solver [97],
and has been applied successfully to a variety of protocols to find well-known as
well as new flaws [23, 86].

Type Systems. Another program analysis approach to protocol security is
based on type systems. A type systems is a set of inference rules that assign types
to program expressions or terms. A type is identified with a certain meaning
or behaviour and, thus, the type system assign meanings to programs. In his
seminal paper [3], Abadi presents a type system for controlling information flow
in a polyadic version of the Spi Calculus (see §1.3.2). This helps him to prove
confidentiality and gave rise to a multitude of type systems for establishing
various security properties of process calculi [58, 57, 65]. Abadi and Blanchet [4]
have also extended it to a language in the applied pi calculus family (see §1.3.2)
and shown its relation to the Prolog-based protocol checker ProVerif [19], which
translates a process into a formula in first-order logic that can be automatically
solved.
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1.4 Contributions

Despite the fact that formal protocol modelling and verification has been an
active research topic for three decades, it is still in the embryonic stage in many
respects. Typically, verification methods assume that a protocol is executed in
isolation, without other protocols sharing the network. However, studies [9, 68]
show that attacks exists on protocols, otherwise considered secure, when executed
multi-protocol scenarios. This is bad news for the classical protocol validation
community, because it basically states that the verification of a security protocol
is relatively uninteresting, unless the cryptographic preconditions of the protocol
(i.e. the shared keys, key pairs, etc.) are used exclusively for that protocol.
This criterion is rarely met as modern day systems have complex structures and
seldom rely on the use of a single cryptographic protocol.

Instead the verification should be moved to the system design phase, taking the
entire system design into account; ideally as a sub-component of the design tool
where verification is done by the press of a button. To accommodate this, we
shall, in this dissertation, be concerned with the creation of a language that can
serve as a basis for such a component. Specifically, we build a formal language,
CryptoKlaim, that allows modelling and automatic verification of cryptographic
protocols and systems.

The works of Abadi and Gordon [7] and Buchholtz et al. [22, 24], which we
have described above, are based on the same general idea and deserve thus a
critical comparison with our approach. Both of the calculi created in these
lines of work, that is the Spi calculus and LySa, are variations of the π-calculus
with simple cryptographic constructs. CryptoKlaim differs from these languages
in two respects: (1) it employs complex patterns matching on input using a
term language in patterns; (2) it is based on the coordination language Klaim
and allows distribution of processes. The complex pattern matching allows
succinct protocol specifications closely simulating the Alice-Bob notation, making
CryptoKlaim a convenient and more intuitive alternative to the contemporary
calculi. The support for distribution of processes allows the designer to take
the structure of the network into account in the verification phase. It should
be mentioned that the language LySaNS, suggested by Buchholtz, Nielson, and
Nielson in [30], has similar features. However, this language succumbed to its
own expressiveness in that the control flow analysis for it was outside any known
decidable domain, and never implemented. We ensure that CryptoKlaim will not
suffer the same fate by designing the language in a analysis-directed manner.
Specifically, we shall begin by showing how cryptographic protocols may be
modelled and analysed in first-order predicate logic, the so-called Horn clauses,
whereafter we shall engineer the process calculus around the same methodology.
This way we are certain that CryptoKlaim remains verifiable.
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As part of reaching the above stated goal, the dissertation makes a number of
research contributions. These are summarised as follows:

(1) An iterative framework for Horn clauses. In Chapter 2 we present a
generic iterative algorithm for finding a suitable model of Horn clauses.
The algorithm promises termination and soundness, and gives sufficient
criteria for completeness. The introduction of a terminating, sound manner
of deciding a model (i.e. a solution to the constraints) of a Horn formula,
makes Horn clauses much more attractive for static analysis purposes.

(2) Implementation of the iterative H1-solver. A specific instance of the it-
erative framework, using the decidable class of Horn clauses H1, was
implemented. In Appendix B we give a succinct pseudo-code implementa-
tion of the H1-normalisation part, i.e. an H1-solver. This is a non-trivial
programming task and we consider this succinct solution a programming
pearl.

(3) Definition of cryptographic components. As a stand-alone module, we intro-
duce the cryptographic components, encodings and patterns, in Chapter 3.
The modelling of cryptography is orthogonal to the modelling of communi-
cation, and, thus, it seems natural to design the elements independently.
The cryptographic components employ complex pattern matching features
and allows modelling of both symmetric and asymmetric cryptography.

(4) Definition of CryptoKlaim. The core language of this dissertation is built as
a conjunction of the coordination language, Klaim, and the cryptographic
components. The development is presented in Chapter 4 and requires
subtle changes to the semantics of Klaim. Several examples of use are
also given, both in the form of running examples as well as in Appendix C.

(5) Definition of well-formedness. CryptoKlaim is equipped with a well-formed-
ness condition that statically guarantees that programs never violate the
assumption of perfect cryptography and that they remain closed under
evaluation. Well-formedness is developed in two stages, first for the crypto-
graphic components in Chapter 3 and afterwards extended to the language
setting in Chapter 4.

(6) A control flow analysis of CryptoKlaim. a proof-of-concept control flow
analysis is presented in Chapter 5 which safely approximates all messages
that may be sent on the network and all values variables may be bound to
during execution of a program. The correctness of the analysis is shown as
well as how it may be implemented in Horn clauses.

(7) Implementation of the control flow analysis. The control flow analysis
was implemented and applied to a number of well-known cryptographic
protocols in Chapter 6, yielding the expected results.
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(8) A formal verification of an e-banking system. A non-trivial case study
was undertaken on an e-banking system provided by a commercial partner.
The case study is a multi-protocol system which involves distribution, and
it was formally verified using the control flow analysis.

This basically also establishes the outline of the remainder of the dissertation.
Apart from the above-mentioned results, we shall, in Chapter 7, discuss future
work and make concluding remarks. Although the reader is expected to have
a basic understanding of set and order theory, we include, in Appendix A, the
most important definitions and standard notations used in the theoretical parts
of the dissertation.



Chapter 2

Analysis Base

In this chapter, we present an analysis base that will serve as the foundation
of the language design in the following chapters. To ensure that we choose a
proper such base, capable of expressing all the subtleties of the cryptographic
systems, we turn to one of the oldest techniques in the book: Horn clauses.

Horn clauses have proven to be useful in many areas of computer science. They
are very expressive (they are, in fact, Turing complete [123]) and yet they
maintain a high clarity due to the simple format. This makes them attractive
for many theoretical developments as well as for practical purposes, exemplified
by the Prolog language.

Using Horn clauses for verifying cryptographic protocols is by no means a
new idea. Since it was suggest in [69], it has shown a legitimate approach
over the years [19, 118, 119]. Unfortunately, Horn clauses are not the panacea.
The practicality of Horn clauses is limited by the very same reason that they
are interesting: unrestricted Horn clauses are Turing complete. Thus, Horn
clause-based problems are often undecidable, and, similarly, Horn clause-based
algorithms usually have termination problems.

These are unsettling properties if we are to base an entire language design on
Horn clauses. A verification module that sometimes cannot terminate will have
a hard time finding any practically oriented users. Instead we shall approach the
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ϕ ::= {c1, . . . , ck} g ::= p(t1, . . . , tm)
c ::= g0 ⇐ g1 ∧ · · · ∧ gl t ::= X | f (t1, . . . , tn)

Table 2.1: Horn syntax

problem in the typical static analysis manner; we will develop a framework that
always presents us with an answer, by accepting that this answer may involve
some approximation.

The following sections develop this framework. Specifically, we shall build an
algorithm for finding models of Horn clauses that is guaranteed to terminate and
be sound (i.e. the output of the algorithm is, in fact, a model of the clause) while
giving sufficiency criteria for completeness (the algorithm finds the least model).
Additionally, we shall show how cryptographic protocols may be modelled in
Horn clauses, and how our framework may be used for verifying these models.

2.1 Horn Clauses

A Horn formula ϕ ∈ HC is a finite set of implications, usually referred to as
clauses. Every clause, c, is of the form g0 ⇐ g1 ∧ · · · ∧ gl where the literals g0

and g1 ∧ · · · ∧ gl are the conclusion and the precondition of c, respectively. A
literal is of the form p(t1, . . . , tm) where p is an m-ary predicate symbol and ti
is a term built up from variables (indicated by a capitalised first letter) through
constructor applications. In the following, we shall sometimes refer to nullary
constructors as constants, and clauses without preconditions as facts, written
without the implication arrow. Table 2.1 presents the resulting syntax of Horn
clauses.1

We let expressions, e, range over formulae, clauses, literals and terms, and define
Var(e), Con(e), and Pred(e), to be the set of variable, constructor and predicate
symbols, respectively, that occur in e.2 A term, t, is called ground if it does not
contain any variables variables, i.e. Var(t) = ∅, and for a given formula, ϕ, the
entire set of all ground terms built from Con(ϕ) is called its Herbrand universe,
denoted Hϕ.

1The visually inclined reader notices the use of a simple notational scheme where predicate
names in sans font, constructor names are written in red, and variable names in blue.

2Variables occurring in a clause are implicitly universally quantified in that clause; thus,
without loss of generality, one may assume that variables in different clauses are α-renamed
apart.
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(HSat1) ρ |= ϕ iff ∀c ∈ ϕ : ρ |= c

(HSat2) ρ |= g0 ⇐ g1 ∧ · · · ∧ gl iff ∀θ :
∧l
i=1 (ρ, θ |= gi) ⇒ (ρ, θ |= g0)

(HSat3) ρ, θ |= p(t1, . . . , tm) iff 〈t1θ, . . . , tmθ〉 ∈ ρ(p)

Table 2.2: Satisfaction relation

Horn formulae are interpreted relative to an interpretation, ρ ∈ R, that maps
predicate symbols to corresponding term relations; i.e. an m-ary predicate
symbol is mapped to an m-ary term relation, which is a subset of Hm

ϕ . Letting
θ denote a substitution, mapping variables to ground terms, we then define a
satisfaction relation |= as presented in Table 2.2.3

An interpretation, ρ, which satisfies a Horn formula ϕ is called a model of ϕ. We
then state the following well-known result:

Proposition 2.1 (Least model [125]) The set of models of a Horn formula
ϕ ∈ HC constitutes a Moore family (i.e. it is closed under arbitrary intersection),
and thus it has a unique least model: ρϕ =

⋂
{ρ | ρ |= ϕ}.

Given a set of Horn clauses, we usually want to answer questions such as
membership (does 〈t1, . . . , tm〉 belong to the least model of p) or satisfiability (is
p mapped to a non-empty set in the least model). Unfortunately, unrestricted
Horn clauses are Turing complete [123], and these questions may be undecidable.
Therefore, we are particularly interested in subsets of Horn clauses where they
are decidable, and we shall refer to these fragments as decidable classes.

All our questions concern the least model of the formula, but as this model may
include infinite sets, we need a finite representation. This finite representation
can, in fact, also be Horn clauses; namely a carefully selected subset of Horn
clauses on a form which allows membership in the least model to be determined
in a straightforward manner (i.e. linear time). Such a form is called a normal
form, and a transformation from a decidable class into a normal form is referred
to as a normalisation, when it preserves the set of models from the original
formula and can be performed through a finite number of operations. We present
an example of a normal form in Table 2.3; notice that we require the conclusions
to be linear ; i.e. no variable occurs twice. This normal form essentially describes
context-free grammars in a succinct manner and provides a linear time lookup
for both membership and satisfiability.

3We adopt the usual postfix notation for substitutions, i.e. θσ stands for σ ◦ θ; for an
expression e then eθ represents the expression resulting from replacing all variables X ∈ dom(θ)
in e with their corresponding ground terms. When convenient, we shall use the notation
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(N1) p(X1 , . . . ,Xm) ⇐ q1(X1 ) ∧ · · · ∧ qm(Xm) , ∀i 6=j Xi 6= Xj ∧m ≥ 2
(N2) p(f (X1 , . . . ,Xn)) ⇐ q1(X1 ) ∧ · · · ∧ qn(Xn) , ∀i 6=j Xi 6= Xj

Table 2.3: A normal form for Horn clauses

To ease the understanding of the development in the following sections, the reader
may think of this particular normal form whenever we refer to an unspecified
normal form for Horn clauses, bearing in mind, of course, that the results still
apply to any other normal form as well. We shall denote the set of formulae
belonging to a given normal form ĤC and write ϕ̂ for a formula belonging to
this set.

2.2 Modelling Protocols

Before we delve more into decidable classes and the search for the least model of
Horn clauses, we shall digress shortly, to argue that Horn clauses are a proper
choice of basis for modelling and analysing cryptographic protocols.

2.2.1 Horn Clause Interpretation

Modelling protocol narrations in Horn clauses is relatively straightforward, as
Horn clauses provide the means for an almost direct translation from the classic
notation. One such translation scheme was presented intuitively in [19] and
refined in [119] and we shall draw inspiration from these approaches.

Initially we notice that the protocol narration does not reveal all actions that
must take place within each step; e.g. recall the third step of Yahalom from
Example 1.1:

3. S → A : {B,Kab,Na,Nb}Ka ,{A,Kab}Kb

This specifies that the server S sends a message to principal A as well as the
syntax of this particular message. However, the notation assumes the existence
of some sort of medium, upon which the message is sent, and implies that A must
perform a series of actions after receiving the message. First A must recognise
the principal S, and look up the key Ka that it shares with S. Afterwards, it

[X 7→ t] for the substitution mapping only the variable X to the ground term t.
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1. net(〈a,na〉)

2. net(〈b,{〈Xa ,Xna ,nb〉}kb〉) ⇐ net(〈Xa ,Xna〉)

3. net(〈{〈b, kab,Xna ,Xnb〉}ka ,{〈a, kab〉}kb〉) ⇐ net(〈b,{〈a,Xna ,Xnb〉}kb〉)

4. net(〈Xenc ,{Xnb}Xkab 〉) ∧ a key(Xkab) ⇐ net(〈{〈b,Xkab ,na,Xnb〉}ka ,Xenc〉)

5. b key(Xkab) ⇐ net(〈{〈a,Xkab〉}kb ,{nb}Xkab 〉)

Figure 2.1: Yahalom in Horn clauses

must decrypt the first encrypted sequence of the message, using this key, and
verify that the first part of that sequence is, in fact, the principal B that it
wishes to establish a key with. Secondly, A must verify that the third part of the
sequence is the nonce Na that it generated earlier during the protocol execution,
and only then should it accept the key Kab and the nonce Nb. Finally, as A
does not know Kb, A can only store the entire second encryption for use in the
following step, without performing any checks on it.

This kind of interpretation is usually done manually by the protocol analyst and
often results in some sort of extended protocol narration [77, 24]. Although some
work has been done on automating this process [32, 34, 27], we shall settle for
the manual method in this dissertation, because it is usually a trivial task. Note,
however, that the Alice-Bob narration may be ambiguous, relying on an verbal
description of intent, in which case an automatic interpretation is impossible.

For the purpose of this chapter, we will assume that all messages are sent on
a single global network, here represented by the predicate net, meaning that
all principals have access to this network. This is supposed to be a realistic
model of the internet, without adding an extra layer of security to the protocol.
Additionally, we shall model encryptions and concatenation through constructors,
but to ease readability, we will employ the familiar notation {t1}t0 for the binary
encryption constructor, and 〈t1, . . . , tn〉 for the n-ary concatenation constructor
representing tuples. Finally, in order to stress the intent of the protocol, we add
the predicates a key and b key for recording the ground terms that principals
A and B, respectively, binds and believes to be the distributed key; that is,
hopefully, Kab.

The resulting translation of Yahalom into Horn clauses is given in Figure 2.1,
where we have used the notation g0 ∧ g′0 ⇐ g1 ∧ · · · ∧ gl as a shorthand for the
clauses g0 ⇐ g1 ∧ · · · ∧ gl and g′0 ⇐ g1 ∧ · · · ∧ gl. Notice that all constants
are converted to lower-case to adhere to the Horn syntax. Each step of the
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protocol is translated into one clause, where the right-hand side represents the
requirements imposed by the sender, and the left hand side the message sent
upon the network in that particular step. In addition to the four steps of the
protocol, a fifth step is added to simulate the reception of the fourth message.
Observe that the basic assumption of the protocol is preserved, namely that the
initiator A and the server S both know the two other principals on advance,
but that the responder B does not necessarily need to initially know (or trust)
A. This is apparent in the second step, where B simply registers the sender’s
identity, unable to perform any validation of it.

2.2.2 Multiple Sessions and Instances

Modelling protocols as depicted in Figure 2.1 is sufficient for analysing the
properties of a single execution of the protocol. But, in general, a protocol may
be executed many times, leading to an unbounded number of sessions, and may
also be used between many different principals, leading to an unbounded number
of instances. Unfortunately, history shows that attacks may occur through
multiple instances or parallel sessions, and thus a general framework should be
able to cover this as well.

For Yahalom, there are several interesting scenarios one could think of, but for
simplicity we shall settle for one, namely multiple A’s and B’s and one server S.
Notice, though, that the methodology presented can easily be applied to model
other scenarios as well, and we discuss this further in §2.6.

We assume that the same protocol (Yahalom) is used to establish a key between an
arbitrary number of initiators A1, . . . , Ak and an arbitrary number of responders
B1, . . . , Bl through a single server S. This means that the number of instances
is unbounded and immediately poses a modelling problem. To deal with this, we
shall proceed in the manner of [29], and adopt the abstraction that the infinite
number of principals are divided into finitely many groups, usually referred to
as equivalence classes; in particular, we shall use three equivalence classes for
each role. Each equivalence class is then appointed a unique representative, a
canonical name, indicated by the enclosing b·c, and the modelling will then only
be concerned with the canonical names of the equivalence classes, such that two
different principals, from the same equivalence class, are indistinguishable.

Between each canonical initiator bAic and canonical responder bBjc, we may
also have an unbounded number of sessions, each creating new nonces and a
fresh key. Again, we may model this through equivalence classes, but this time
we shall only introduce one equivalence class for each generated element in the
protocol for each initiator and responder pair. For now it shall suffice to remark
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0. a(ba1 c), a(ba2 c), a(ba3 c), b(bb1 c), b(bb2 c), b(bb3 c)

1. net(〈Xa , bnac(Xa ,Xb)〉) ⇐ a(Xa) ∧ b(Xb)

2. net(〈Xb ,{〈Xa ,Xna , bnbc(Xa ,Xb)〉}k(Xb ,s)〉) ⇐ net(〈Xa ,Xna〉) ∧ b(Xb)

3. net(〈{〈Xb , bkabc(Xa ,Xb),Xna ,Xnb〉}k(Xa ,s),{〈Xa , bkabc(Xa ,Xb)〉}k(Xb ,s)〉)
⇐ net(〈Xb ,{〈Xa ,Xna ,Xnb〉}k(Xb ,s)〉) ∧ a(Xa) ∧ b(Xb)

4. net(〈Xenc ,{Xnb}Xkab 〉) ∧ a key(Xa ,Xb ,Xkab)
⇐ net(〈{〈Xb ,Xkab , bnac(Xa ,Xb),Xnb〉}k(Xa ,Xb),Xenc〉) ∧ a(Xa) ∧ b(Xb)

5. b key(Xa ,Xb ,Xkab) ⇐ net(〈{〈Xa ,Xkab〉}k(Xb ,s)〉,{bnbc(Xa ,Xb)}Xkab ) ∧ b(Xb)

Figure 2.2: Multiple instances and sessions of Yahalom in Horn clauses

that both of these abstractions are sound ; i.e. they retain any true behaviour of
the system, but may introduce additional false behaviour. We shall, however,
justify this claim in §2.6.

The resulting modelling of multiple instances and sessions of the Yahalom protocol
is given in Figure 2.2. Here we introduce the canonical names ba1 c, ba2 c, and
ba3 c for the initiators, and similarly bb1 c, bb2 c, and bb3 c for the responders,
and model the scenario in which all initiators may attempt to establish a key
with all responders. Note that bnac and bnbc are now represented by binary
constructors instead of nullary, as this allows for a much more generic modelling;
by using the name of the initiating principal as the first argument and the
name of the responder as the second, we uniquely identify the nonce with the
instance that it is generated in. The same modelling trick is used for the initially
shared keys between the server and the principals, as well as for the generated
key. Finally, the arities of the predicates a key and b key are also extended
with information about the initiator and responder, to distinguish keys that are
distributed between different principals, and thus, in different instances.4

Observe that also this modelling captures the basic assumption of the protocol.
Each action of the server and the initiators are guarded by the existence of the
interacting principals, whereas the actions of the responders are not guarded by
the existence of the initiator.

4Note that the long-term keys shared with the server need not be canonical, as they are
static throughout the execution, in this protocol.
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2.2.3 Network Attacker and Analysis

After modelling how the legitimate principals of the system interact, we usually
want to apply an analysis for ensuring that the protocol cannot be compromised
by one or more malicious principals.

One method that has been employed successfully numerous times before is
modelling the so-called Dolev-Yao attacker [44], also known as the hardest
network attacker [94], and investigate whether various security properties are
upheld in presence of this attacker. In the Dolev-Yao model, the capabilities of
this attacker are defined to be:

(1) receive and intercept all messages sent on the global network and send new
messages onto the global network;

(2) decrypt encrypted messages, if it knows the encryption key, and construct
new encryptions from known terms;

(3) decompose and compose tuples; and

(4) generate new ground terms.

The attacker can, in principle, compose and decompose tuples of any arity.
However, in [24] it is shown that restricting the attacker to work on a limited
set of arities, does not limit its capabilities, as long as the set includes the finite
set of arities occurring in the protocol and at least one additional arity. This
means that a Dolev-Yao attacker, for a specific protocol, is directly translatable
into a finite set of Horn clauses. Assuming that K denotes the finite set of
occurring arities (for Yahalom this set is {2, 3, 4}), we can create an extended set
K+ = K ∪ {1}, as unary tuples never occurs, and a generic Dolev-Yao attacker
can then be formulated as in Figure 2.3.

The attacker is described through a predicate dy, storing its accumulated knowl-
edge. As the formulae in Table 2.1 and Table 2.2 uses the predicate net for
transmitting all messages, then sending, receiving and intercepting becomes just
a matter of using this predicate as well. The first three rules are then straight-
forward, and the rule (DY4) expresses that the attacker may generate arbitrary
ground terms, m1 ,m2 , . . ., but, in the modelling, all of these are coalesced into
one equivalence class represented by the canonical constant bm•c. Note that a
direct consequence of the rule (DY1) is that the attacker’s knowledge and the
net are identical.

A conjunction of a protocol description with the attacker in Figure 2.3 constitutes
an instance of an analysis problem, and the least model of such a problem allows
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(DY1) dy(X ) ⇐ net(X )
net(X ) ⇐ dy(X )

(DY2) dy(X ) ⇐ dy({X }Xkey ) ∧ dy(Xkey)
dy({X }Xkey ) ⇐ dy(X ) ∧ dy(Xkey)

(DY3)
dy(X1 ) ∧ · · · ∧ dy(Xk ) ⇐ dy(〈X1 , . . . ,Xk 〉)
dy(〈X1 , . . . ,Xk 〉) ⇐ dy(X1 ) ∧ · · · ∧ dy(Xk )

}
if k ∈ K+

(DY4) dy(bm•c)

Figure 2.3: Dolev-Yao attacker in Horn clauses

us to investigate certain properties of the protocol. In its most simple form,
such as the formulae in Figure 2.1 or Figure 2.2, the protocol description allows
direct verification of confidentiality of certain secrets, e.g. the distributed keys.
This simply amounts to investigating whether they are present in the attacker’s
knowledge (the predicate dy) according to the least model.

Furthermore, the protocol fulfills its purpose if the only key that may be success-
fully distributed between Ai and Bj , is KAiBj

. Hence, we can also validate in-
tegrity through the predicates a key and b key; e.g. for Figure 2.2 by investigating
whether they are only bound to tuples of the form 〈baic, bbj c, bkabc(baic, bbj c)〉
in the least model. Several additional properties can also be verified with the
same methodology using annotations on the protocols and embedding them into
the the Horn clause modelling. The use of annotations is an orthogonal issue to
the development of the static analysis itself, and lies beyond the scope of this
dissertation. We shall, however, do a cursory review on how annotations can
improve the verification process in §7.2.

2.3 Finding the (Least) Model

In §2.2 it is shown how gently cryptographic protocols can be translated into
Horn clauses. Although the presentation may seem somewhat informal, in
particular we did not prove the soundness of the analysis, it hopefully still
appears convincingly through the transparency of the translation scheme and
the limited amount of approximation steps involved. At least it seems to achieve
its goal, namely showing that analysing cryptographic protocols in Horn clauses
can be done in a simple and elegant manner.

Thus, it appears, that it only remains to show how the least model of these
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clauses can be determined. Unfortunately, as already mentioned, problems
formulated in unrestricted Horn clauses may be undecidable.

In this section we shall attempt to circumvent this shortcoming of Horn clauses,
thereby making them more attractive for theoretical purposes; in particular
for static analysis and our purpose. Specifically, we shall present a framework
for finding, and iteratively improving the precision of, a model for any set of
unrestricted Horn clauses. This framework guarantees soundness (i.e. it always
returns a correct model) and termination, and it may in some cases also provide
completeness (the model is the least model). Completeness depends on the
chosen instance of the framework, as the framework is generic in the sense that
it can be instantiated with any known decidable fragment of Horn clauses.

2.3.1 Decidability and beyond. . .

In general, it may be undecidable whether a given protocol violates a specific
security property [45]. It follows, that any attempt at constructing a complete
framework for modelling and precisely analysing protocols, will in some cases
also lead to undecidability. Our attempt in §2.2 is not an exception to this rule.
In fact, an inspection of the most general decidable classes in related literature
[49, 38, 118, 119] reveals that both the formulae in Figure 2.1 and Figure 2.2 fall,
at least to the best of our knowledge, outside the known decidable subclasses of
Horn clauses. In particular we have that:

- The clauses do not belong to H1 (the class of strongly connected clauses
originally introduced by Nielson, Nielson, and Seidl [96]). For Figure 2.2
this can be directly concluded from the first requirement to H1 clauses,
namely that they must have linear conclusions (no variables occur twice),
which is obviously not the case for step 1, 2, and 3. The formula in
Figure 2.1 is, in fact, also outside H1, due to the second, more complicated,
requirement which we shall elaborate on in §2.4.1.

- The clauses do not belong to the general flat class (a generalisation of the
flat clauses introduced by Seidl and Verma [118]), as flat clauses are only
allowed to contain literals of the form p(X ) and p(f (X1 , . . . ,Xn)). The
clauses generated in the previous section are obviously outside this class.

- The clauses do not belong to the k-variable class.5 This class includes

5This class was introduced by Seidl and Verma [119] as k-variable and flat clauses. The flat
clauses are, however, subsumed by the k-variable class and the distinction was only made to
improve complexity.
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weakly covering6 clauses with at most k variables, for some constant k.
A term or literal is defined to be weakly covering if every non-ground
functional sub-term contains all variables of the entire term or literal. A
clause is then called weakly covering if all literals in it are weakly covering
and every non-ground non-unary literal contains all variables of the entire
clause. It is quite obvious that even this general class cannot contain the
clauses produced in the previous section.

Furthermore, the classes One-Variable Clauses and One-Variable and Flat Clau-
ses are also specified in [119], but these are both subsumed by the k-variable
class. This is also the case for the extension of the Skolem class S+ from [49], as
well as the Skolem class extension presented in [38].

So it seems that a relatively simple, classical key distribution protocol has forced
us beyond known decidable fragments, illustrating the complexity of protocol
analysis. So we may not be able to find the least model of the problem, but we
can always find some model (although the Herbrand universe is a rather useless
model). Sometimes this model is small enough to guarantee some properties,
whereas in other cases it gives some insight into how the search space can be
restricted, such that a new, better model can be determined. This motivates an
iterative approach.

2.3.2 The Iterative Framework

The general structure of our iterative framework is shown in Figure 2.4. It is
parameterised on a decidable fragment H and assumes four main ingredients:

• an H-normalisation (sometimes called an H-solver), η, a function that
finds the least model of any formula in H;

• an H-relaxation, α, a function producing approximations within H of any
unrestricted Horn formula;

• a specialisation, β, a function that, given a formula and the corresponding
model, produces a specialised formula that preserves all models smaller
than or equal to the input; and

• a simplification ordering, ≺, a well-founded order on formulae.

6Note that this was referred to as covering in [119], but that we have chosen to follow the
weakly covering definition of [49], to avoid confusion.
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Horn formula ϕ

ϕ ∈ H?
Return least
model: η(ϕ)

- relax ϕ to ϕ̃ = α(ϕ)
- normalise ϕ̃ to ϕ̂ = η(ϕ̃)
- specialise ϕ to ϕ′ = β[ϕ̂](ϕ)

ϕ′ ≺ ϕ?
Return approx.
model: ϕ̂

ϕ
Yes

No

ϕ′, ϕ̂

NoYes

ϕ := ϕ′

Figure 2.4: Iterative framework

Later we shall give a more formal definition of each of these operators.

The algorithm then proceeds as follows. Given a formula, ϕ, the first step is
to check whether ϕ is in H. If so, then we can immediately construct its least
model using the normalisation procedure for H (denoted η(ϕ) in the figure) and
we are done.

If ϕ is not in H then we apply an H-relaxation, α, and the resulting formula,
ϕ̃ = α(ϕ), will be in H. The relaxation also guarantees that the least model
of this formula (denoted by the normal form ϕ̂ = η(ϕ̃) on the figure) is also a
model of ϕ, but it is possibly too large to be useful by itself. It may, however,
contain useful information that can be used to specialise the original formula
ϕ; this operation is denoted ϕ′ = β[ϕ̂](ϕ) on Figure 2.4. In order to compare
the new and the original formula, we introduce a well-founded, simplification
ordering, �, over formulae; if the new formula is an improvement of the old,
according to this ordering, then the above steps can be repeated. Otherwise the
iteration stops and ϕ̂ will be the resulting (approximative) model of ϕ.

We shall now present the key ingredients that we, in addition to the normali-
sation, informally introduced in §2.1; including the relaxation mechanism, the
specialisation function and the simplification ordering.
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2.3.3 The Refinement Scheme

Recall that HC and ĤC denote the (infinite) sets of Horn formulae and normal
form Horn formulae, respectively. We then define the premise of our intuition as
follows: there exists a function that takes a general Horn formula and returns an
over-approximative formula (ie. a formula, for which all models are also models
of the original formula, and thus its least model is a super set or the same as the
least model of the original) which belongs to some decidable class H. We shall
call such a function an H-relaxation and formally define it as follows:

Definition 2.2 (H-Relaxation) Let H ⊆ HC, then a function α : HC→ H
is an H-relaxation if:

∀ϕ : ∀ρ : ρ |= α(ϕ)⇒ ρ |= ϕ

The definition allows the relaxed formula to have a larger least model than
the original and even define additional predicate symbols. However, as we are
only concerned with the predicate symbols from the original formula, we shall
introduce the notation, vϕ, for relations between models with respect to a
formula ϕ:

ρ vϕ ρ′ ⇔ ∀p ∈ Pred(ϕ) : ρ(p) ⊆ ρ′(p)

We shall furthermore adopt the familiar notation ≡ϕ to denote the symmetric
subset of vϕ. Notice that from the definition of the relaxation, it then follows
that ρϕ vϕ ρα(ϕ).

As H is decidable, then there also exists a function that takes a formula ϕ ∈ H
and returns a formula in normal form representing its unique least model ρϕ.
Such a function is usually called an H-normalisation:

Definition 2.3 (H-Normalisation) Let H ⊆ HC, then a function η : H →
ĤC is an H-normalisation if:

∀ϕ ∈ H : ρϕ ≡ϕ ρη(ϕ)

Thus, a formula ϕ̂ is a normalisation of a formula ϕ when it is in normal form
and the least models of the formulae agrees on the map of all the predicates in
ϕ.

The combination of the relaxation and the normalisation establishes that we
can always find some model of a formula, but we are usually only interested
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in the least model or a model close to the least model. Naturally, if α returns
a formula with the same least model as the original, then the result is precise
and we are done. But this is usually not the case, and often the approximation
will be too coarse to be useful for the intended purpose. In this case, we may
inspect this coarse model and look for information that allow us to produce
a safe transformation of the formula that may produce better results. This is
called a specialisation.

Definition 2.4 (Specialisation) A specialisation is a higher-order function
β : ĤC→ HC→ HC that satisfies:

∀ϕ : ∀ϕ̂ : ∀ρ vϕ ρϕ̂ : ρϕ̂ |= ϕ⇒ (ρ |= β[ϕ̂](ϕ)⇔ ρ |= ϕ)

A specialisation takes a formula in normal form ϕ̂ and specialises the formula ϕ,
such that the specialised formula β[ϕ̂](ϕ) maintains the set of models, smaller
than or equal to ρϕ̂; in particular it preserves the least model. Notice that,
contrary to the relaxation and normalisation, the specialisation may not introduce
any auxiliary predicates.

The fourth, and last, ingredient we shall require for the iterative framework, is
an order that ensures termination.

Definition 2.5 (Simplification ordering) A relation � : HC × HC is a
simplification ordering if it is a well-founded, partial order.

When convenient, we shall use familiar notation � for the dual of � and likewise
� and ≺ for their respective strict counterparts.

The combination of these operators is then supposed to form the basis of the
iterative framework for finding solutions for unrestricted Horn problems. But, for
this to be achieved, we shall furthermore require them to form an H-refinement
scheme:

Definition 2.6 (H-Refinement Scheme) A quadruple (α, η, β,�); consist-
ing of an H-relaxation, an H-normalisation, a specialisation, and a simplification
ordering, is an H-refinement scheme whenever:

∀ϕ : ∀ϕ̂ : ρα(β[ϕ̂](ϕ)) vϕ ρα(ϕ)

Or in plain terms: we require the specialisation to weakly reduce (i.e. reduce or
maintain) the over-approximation introduced by the relaxation.
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2.3.4 Properties of the Framework

The refinement scheme forms the basis of the larger iterative framework, that
was graphically presented in Figure 2.4 in §2.3.2. Essentially, for any decidable
class H for which there exists an H-refinement scheme, (α, η, β,�), the algorithm
will determine a best solution to any unrestricted Horn problem.

Recall that the algorithm can terminate in two ways: (1) Either the scheme,
through specialisation, eventually produces a formula withinH, which is therefore
decidable and the result is the normalised formula; or (2) the scheme eventually
fails to improve the formula further, with respect to �, and the result is then
the normalised, relaxed formula.

As part of justifying the proposed framework, we shall then show that it satisfies
three key properties: we shall prove that the algorithm always terminates, that
the normalised output represents a model of the input formula, and that if the
algorithm produces a formula within the decidable class then the corresponding
normal form represents the least model of the original input formula.

First we shall give the termination result.

Theorem 2.7 (Termination) If α, η, and β are terminating then the algo-
rithm is terminating.

Proof The result follows directly from the fact that � is well-founded. �

The next result states that the algorithm is sound and justifies the iterative
approach.

Theorem 2.8 (Soundness) The algorithm will always produce a model of the
input formula ϕ. Each iteration (weakly) improves precision of this model.

Proof Let ϕi be the formula used as input in the ith step of the protocol. It
follows, that if the algorithm terminates in the ith iteration then the result is
either the least model of η(ϕi) or ϕ̂i = η(α(ϕi)). Thus, the proof amounts to show
that these normalised clauses represent models of the input formula for all i. This
is proven by showing that each iteration maintains ∀ρ vϕ ρϕ̂i

: (ρ |= ϕi ⇔ ρ |= ϕ).
This follows by induction:

Case i=0 holds vacuously by Definition 2.4.
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Case i+1. Assume the input ϕi and ϕ̂i = η(α(ϕi)):

ϕ̂i = η(α(ϕi))
⇒ ρϕ̂i |= ϕi (by Def. 2.2 & 2.3)
⇒ ∀ρ vϕ ρϕ̂i : (ρ |= β[ϕ̂i](ϕi)⇔ ρ |= ϕi) (by Def. 2.4)
⇔ ρα(β[ϕ̂i](ϕi)) vϕ ρα(ϕi) ∧
∀ρ vϕ ρϕ̂i : (ρ |= β[ϕ̂i](ϕi)⇔ ρ |= ϕi)

(by Def. 2.6)

⇔ ρϕ̂i+1 vϕ ρϕ̂i ∧ ∀ρ vϕ ρϕ̂i : (ρ |= ϕi+1 ⇔ ρ |= ϕi) (by Def. 2.3)
⇔ ρϕ̂i+1 vϕ ρϕ̂i ∧ ∀ρ vϕ ρϕ̂i : (ρ |= ϕi+1 ⇔ ρ |= ϕ) (by Ind. Hyp.)
⇔ ∀ρ vϕ ρϕ̂i+1 : (ρ |= ϕi+1 ⇔ ρ |= ϕ)

Where the last step uses the transitivity of vϕ. As both ρϕi+1 vϕ ρϕ̂i+1

and ρϕ̂i+1 vϕ ρϕ̂i+1 this concludes the proof. �

And lastly we have the partial completeness result:

Theorem 2.9 (Partial Completeness) If the algorithm terminates in state
(1), then it produces the least model of the input formula ϕ.

Proof The result follows directly from the proof for Theorem 2.8. �

2.4 H1-Refinement Scheme

We now present an instance of, or rather a specific refinement scheme for, the
iterative framework of §2.3.2. For this purpose, we have chosen the decidable
subclass H1 [96].

H1 describes strongly recognisable relations; i.e. finite unions of Cartesian
products of recognisable tree languages. In fact, every clause inH1 is normalisable
(to the normal form presented in §2.1) and the equivalent normal form can be
constructed in deterministic exponential time [96].

Previously, this class has proven very useful for static analysis purposes, both
for specifying a Control-Flow Analysis of Spi [96] as well as for verifying real
implementations of cryptographic protocols in the C language [60]. Yet, as we
discussed in §2.3.1, a direct attempt at specifying protocol analysis, results in
clauses even outside this class. This motivates the use of the iterative framework
of §2.3.2.

We begin by briefly introducing the H1-class itself, whereafter we shall define
the operators in the H1-refinement scheme, (α1, η1, β1,�1), needed for using the
iterative framework.
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(H1.1) g0 is linear.
(H1.2) If X ,Y ∈ Var(g0) are connected in {g1, . . . , gk}, then they are siblings

in g0.

Table 2.4: Property H1 for clauses of the form g0 ⇐ g1 ∧ · · · ∧ gk.

2.4.1 The Class H1

Let the relation connected be the transitive closure of variables occurring in the
same literal over a set of literals; i.e. two variables X and Y are connected within
the set {g1, . . . , gk} if there exists a sequence of literals gn1 . . . gnl

with l ≥ 1 and
ni ∈ {1, . . . , k} such that X ∈ Var(gn1), Y ∈ Var(gnl

) and Var(gni
)∩Var(gni+1) 6=

∅ for all i ∈ {1, . . . , l − 1}. Hence, for example, X and Y are connected in
{p(X , f (Y ))} and {p(X ,Z ), q(Z , f (Y ))}, but not in {p(X ,Z ), q(f (Y ))}.

We then say that the clause g0 ⇐ g1, . . . , gk has the property H1 if it satisfies
the requirements given in Table 2.4. Here we call two variables siblings in a
literal or term, if they occur as arguments of a common parent; e.g. X ,Y are
siblings in p(X ,Y ) and p(Z , f (X ,Y )) but not in p(X , f (Y )).

A formula ϕ belongs to the class H1 if all clauses in ϕ have property H1.

Example 2.10 Recall the following clause from the modelling of Yahalom in
Figure 2.1 in §2.2:

net(〈Xenc ,{Xnb}Xkab
〉) ⇐ net(〈{〈b,Xkab ,na,Xnb〉}ka ,Xenc〉)

Remembering that 〈t1, . . . , tn〉 is an n-ary constructor and {t1}t0 a binary con-
structor, it follows that this clause is not in H1; the variables Xenc and Xnb (and
similarly Xenc and Xkab) are connected in the precondition but are not siblings
in the conclusion, thus violating the rule (H1.2) in Table 2.4.

2.4.2 Relaxation Operator

We now want to define a relaxation function, α, that always produces clauses
within H1. In [59] it is shown how general Horn clauses can be approximated
by H1 clauses. We shall follow this approach, but slightly improve it, as the
relaxation operator we suggest, for clauses violating (H1.2), is more precise as
compared to the approximation technique suggested in [59].
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Let e be an expression. We then write e[X  t] for the expression that is as e,
except that the leftmost occurrence of X is replaced by t. We shall also employ
the shorthand notation ω for a sequence of literals g1 ∧ . . . ∧ gl when convenient,
and point-wise extend substitutions and |= for this. We then define a function
α1(ϕ) =

⋃
{α1(c) | c ∈ ϕ} as follows:

α1(g ⇐ ω) =





α1(g[X  Y ] ⇐ ω[X 7→ Y ] ∧ ω) , if Y is fresh (a)

α1(g ⇐ ω[X 7→ Y ] ∧ p(X ,Z1 , . . . ,Zk )) , if Y and p are fresh (b)
∪ {p(X ,Z1 , . . . ,Zk ) ⇐ ω}

{g ⇐ ω} (c)

Here (a) is chosen if g ⇐ ω violates (H1.1), (b) if if g ⇐ ω satisfy (H1.1) but
violates (H1.2), and otherwise (c) applies. In both (a) and (b) X is the leftmost
variable that gives rise to the violation, and in (b) the siblings Z1 , . . . ,Zk of X
in g are carried on to the auxiliary predicate, to retain the highest amount of
precision.7

From the definition it is apparent that the set of clauses generated by α1 will
always be in H1, and that, if applied to a set of clauses already within H1, α1

will be the identity function. Furthermore, as the set of variables in a clause is
always finite, it should be fairly obvious that α1 will always terminate.

Now, prior to showing that α1 indeed constitutes a relaxation function, we shall
give an auxiliary result that benefits the presentation of the proof.

Fact 2.11 If ρ |= c then ∀X ,Y : ρ |= c[X 7→ Y ].

Proof The proof follows straightforwardly from the definitions:

ρ |= g ⇐ ω
⇔ ∀θ : ρ, θ |= ω ⇒ ρ, θ |= g
⇒ ∀θ : ∀X ,Y : θ(X ) = θ(Y )⇒ (ρ, θ |= ω ⇒ ρ, θ |= g)
⇔ ∀θ : ∀X ,Y : ρ, θ |= ω[X 7→ Y ]⇒ ρ, θ |= g[X 7→ Y ]
⇔ ∀X ,Y : ρ |= (g ⇐ ω)[X 7→ Y ]

This leads to the result we seek. �

Lemma 2.12 The function α1 is a H1-relaxation operator.

Proof The proof amounts to showing that if ρ |= α1(ϕ) then ρ |= ϕ; i.e. if
ρ |= α1(c) then ρ |= c. This is proven by induction in the derivation sequence
establishing α1(c):

7 The approximation technique suggested in [59] does not include the siblings in the auxiliary
predicate.
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(a) remembering that Y /∈ Var(g ⇐ ω) the result follows from Fact 2.11 :

ρ |= g[X  Y ] ⇐ ω[X 7→ Y ] ∧ ω
⇒ ρ |= (g[X  Y ] ⇐ ω[X 7→ Y ] ∧ ω)[Y 7→ X ]
⇔ ρ |= g ⇐ ω ∧ ω
⇔ ρ |= g ⇐ ω

(b) is shown analogously to (a):

ρ |= {g ⇐ ω[X 7→ Y ] ∧ p(X ,Z1 , . . . ,Zk ), p(X ,Z1 , . . . ,Zk ) ⇐ ω}
⇔ ρ |= (g ⇐ ω[X 7→ Y ] ∧ p(X ,Z1 , . . . ,Zk )) ∧ ρ |= (p(X ,Z1 , . . . ,Zk ) ⇐ ω)
⇒ ρ |= g ⇐ ω[X 7→ Y ] ∧ ω
⇒ ρ |= (g ⇐ ω[X 7→ Y ] ∧ ω)[Y 7→ X ]
⇔ ρ |= g ⇐ ω ∧ ω
⇔ ρ |= g ⇐ ω

(c) holds vacuously. �

Example 2.13 (Example 2.10 continued) Recall that the clause from Ex-
ample 2.10 was not in H1, as the variables Xenc and Xnb violated rule (H1.2).
Thus, the relaxation α1 applied to this clause will decouple these variables,
resulting in the following two clauses, now both in H1.

net(〈Xenc ,{Xnb}Xkab 〉) ⇐ net(〈{〈b,Xkab ,na,Xnb〉}ka ,X
′〉) ∧ p(Xenc)

p(Xenc) ⇐ net(〈{〈b,Xkab ,na,Xnb〉}ka ,Xenc〉)

2.4.3 H1-Normalisation

Normalising a set of H1-clauses amounts to bringing the clauses onto the normal
form given in Table 2.3 in §2.1. This is a well-known procedure that was initially
described in [96] in a direct manner and later using resolution techniques in [59].
Basically the procedure consists of iteratively extending the set of normal clauses
by simplifying non-normal clauses using the current set of normal clauses, this
procedure is continued until no further simplification can be performed; then
the non-normal clauses are redundant and can be removed.

In Table 2.5 we presents the normalisation procedure as an inference system.8

Assuming that preconditions may be ordered freely to match the rules, each rule
should be read as follows:

8We follow the convention of omitting the ∧’s between multiple preconditions or conclusions
of the inference rules, to ease readability.
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(Norm1) (pH(f (X1 , . . . ,Xn)) ⇐ pH(X1 ) ∧ · · · ∧ pH(Xn)) ∈ ϕ if f ∈ Con(ϕ)

(Norm2) (g ⇐ ω) ∈ ϕ X ∈ Var(g) X /∈ Var(ω)

(g ⇐ pH(X ) ∧ ω) ∈ ϕ

(Norm3) (p(t1, . . . , tm) ⇐ ω) ∈ ϕ ti = f ′(t′1, . . . , t
′
n′)

(p(t1, . . . ,Xi , . . . , tm) ⇐ aux(Xi) ∧ ω) ∈ ϕ
(aux(ti) ⇐ ω) ∈ ϕ

if Xi /∈ Var(ϕ)
aux /∈ Pred(ϕ)

(Norm4) (p(f (t1, . . . , tn)) ⇐ ω) ∈ ϕ ti = f ′(t′1, . . . , t
′
n′)

(p(f (t1, . . . ,Xi , . . . , tn)) ⇐ aux(Xi) ∧ ω) ∈ ϕ
(aux(ti) ⇐ ω) ∈ ϕ

if Xi /∈ Var(ϕ)
aux /∈ Pred(ϕ)

(Norm5) (g ⇐ p(t1, . . . , tm) ∧ ω) ∈ ϕ (p(X1 , . . . ,Xm) ⇐ ω′) ∈ ϕ̂ m ≥ 2

(g ⇐ ω′[X1 7→ t1, . . . ,Xm 7→ tm] ∧ ω) ∈ ϕ

(Norm6) (g ⇐ p(f (t1, . . . , tn)) ∧ ω) ∈ ϕ (p(f (X1 , . . . ,Xn)) ⇐ ω′) ∈ ϕ̂
(g ⇐ ω′[X1 7→ t1, . . . ,Xn 7→ tn] ∧ ω) ∈ ϕ

(Norm7) (p(X ) ⇐ q(X )) ∈ ϕ (q(t) ⇐ ω) ∈ ϕ̂
(p(t) ⇐ ω) ∈ ϕ̂

(Norm8) (g ⇐ q1(X ) ∧ q2(X ) ∧ ω) ∈ ϕ
(g ⇐ (q1 ∪ q2)(X ) ∧ ω) ∈ ϕ

(Norm9) (p(f (X1 , . . . ,Xn)) ⇐ p1(X1 ) ∧ · · · ∧ pn(Xn)) ∈ ϕ̂
(q(f (Y1 , . . . ,Yn)) ⇐ q1(Y1 ) ∧ · · · ∧ qn(Yn)) ∈ ϕ̂

((p ∪ q)(f (X1 , . . . ,Xn)) ⇐ (p1 ∪ q1)(X1 ) ∧ · · · ∧ (pn ∪ qn)(Xn)) ∈ ϕ̂

(Norm10) (p(X1 , . . . ,Xm) ⇐ q1(X1 ) ∧ · · · ∧ qk(Xk )) ∈ ϕ∧k
i=1 ρϕ̂(qi) 6= ∅ k ≥ m ≥ 2

(p(X1 , . . . ,Xm) ⇐ q1(X1 ) ∧ · · · ∧ qm(Xm)) ∈ ϕ̂

(Norm11) (p(f (X1 , . . . ,Xn)) ⇐ q1(X1 ), . . . , qk(Xk )) ∈ ϕ∧k
i=1 ρϕ̂(qi) 6= ∅ k ≥ n

(p(f (X1 , . . . ,Xn)) ⇐ q1(X1 ) ∧ · · · ∧ qn(Xn)) ∈ ϕ̂

Table 2.5: Normalisation of an H1-formula.
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(Norm1) introduces a universal predicate pH , mapped to the entire Herbrand
universe in the least model, i.e. ρϕ(pH) = Hϕ;

(Norm2) takes a clause that contains an unrestricted variable X , i.e. a variable
only present in the conclusion, and produces an equivalent clauses where
X is restricted, using the universal predicate pH ;

(Norm3) and (Norm4) decomposes conclusions that do not adhere to the
normal form through introduction of auxiliary predicates;

(Norm5) and (Norm6) simplifies non-normal literals in preconditions by using
clauses already in normal form;

(Norm7) ensures that clauses of the form p(X ) ⇐ q(X ) becomes superfluous,
by simply replicating all clauses where q occurs in the conclusion, replaced
by p;

(Norm8) takes clauses that requires an intersection of unary predicates in the
precondition, introduces an auxiliary predicate that denotes the intersection,
and add a new clause for the intersection;

(Norm9) computes intersections by introducing a clause for every construc-
tor, for which a clause exists in the normal form for each literal in the
precondition; and9

(Norm10) and (Norm11) simply add all clauses in normal form, for which the
precondition is satisfiable.

We may add a few comments to the normalisation procedure. The technique
used in the rules (Norm5) and (Norm6) is related to ordered resolution [49],
although in a restricted manner as we only apply it to preconditions. In general,
unrestricted ordered resolution does not terminate on most interesting clauses, as
it allows for composing arbitrarily large conclusions. However, when restricting
it to preconditions it will always terminate, as it will only introduce strictly
simpler clauses.

Rule (Norm8) introduces clauses for intersections, to allow the intersections to
be calculated in (Norm9). Using this approach, we adhere to the normal form of
Table 2.3 in §2.1 and furthermore we only add satisfiable clauses, thus obtaining
the most succinct representation of the least model. Observe that satisfiability
of a predicate in the least model, e.g. ρϕ̂(p) 6= ∅, in this case simply amounts
to determining if any clause in ϕ̂ contain p in conclusion; as only satisfiable

9We assume here that variables in clauses are α-renamed to match this rule. A more
rigorous definition would include a total substitution of each precondition, but this would
unnecessarily complicate the definition.



40 Analysis Base

predicates are added to ϕ̂ such a clause would imply non-emptiness. Alternatively
we could have allowed the clauses denoting intersections in the normal form
instead, thus following the customs of classical resolution theory. This would have
resulted in a quadratic time normalisation, but an exponential time membership
lookup in the least model. Instead, by precalculating all intersections, we have
an exponential time normalisation, but linear time membership lookup. For us,
this option is more appealing, as the membership lookup time is, as we shall see,
crucial for the specialisation because it requires a thorough investigation of the
least model.

We then let η1 denote a function that performs the normalisation of Table 2.5;
i.e. a function that given a formula ϕ ∈ H1, finds the least ϕ̂ that satisfies the
rules. We then have the following result from [96]:

Lemma 2.14 The function η1 is an H1-normalisation operator.

Note that to ensure that this function terminates, it is, of course, necessary that
the rules (Norm3), (Norm4) can be applied at most once for each compound
term in each clause, to avoid a continuous introduction of auxiliary predicates.
Similarly, (Norm8) should only abide a unique naming scheme for intersections,
to avoid that the same intersections may be computed an unbounded number of
times. For the benefit of the practically inclined reader, we have included the
pseudo-code for a succinct, yet efficient, implementation of the normalisation
function (also known as a solver) in Appendix B.

2.4.4 Specialisation Operator

The specialisation is supposed to utilise information in a given normal form
approximation ϕ̂ of a formula ϕ, to produce a new formula ϕ′ that maintains the
set of models smaller than or equal to ρϕ̂, but may yield smaller approximations.
One approach to define such an operator, is to define a function that safely
eliminates variables from the formula.

First we shall require a formulation of which ground terms a variable may be
substituted by in a clause.

Definition 2.15 (Substitution set) The substitution set for X ∈ Var(ϕ) is
given by Tϕ(X ) = {X θ | ρϕ, θ |= ω ∧ (g ⇐ ω) ∈ ϕ ∧ X ∈ Var(g ⇐ ω)}.

Or plainly: the substitution set Tϕ(X ) denotes the set of ground terms that the
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variable X can be replaced by, while still allowing the precondition of the clause
it occurs in to be satisfiable in the least model ρϕ.

Some of these substitution sets may be infinite and we are therefore particularly
interested in the set Fϕ of variables X ∈ Var(ϕ) for which Tϕ(X ) is finite.
However, it may not always be feasible to determine the complete set Fϕ, or the
corresponding substitution sets, and thus we shall say that a finiteness substitution
map Iϕ is permissable if dom(Iϕ) ⊆ Fϕ and ∀X ∈ dom(Iϕ) : Iϕ(X ) ⊇ Tϕ(X ).

As neither the relaxation nor the normalisation renames variables, and as ρϕ̂ |= ϕ,
it follows that for all X ∈ Var(ϕ) then Tϕ(X ) ⊆ Tϕ̂(X ). Thus a permissable Iϕ̂ is
also a permissable Iϕ, and the idea is then to use the former to perform a complete
expansion of the formula. This is done by the function, β1 : ĤC→ HC→ HC,
defined as follows:

β1[ϕ̂](ϕ) =
⋃
{ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀X ∈ dom(θ) : X θ ∈ Iϕ̂(X )}

Note that β1[ϕ̂] is the identity function if there are no variables in ϕ with finite
substitution sets in Iϕ̂.

Lemma 2.16 The function β1 is a specialisation function.

Proof Assume ϕ̂, ϕ and ρ, such that ρϕ̂ |= ϕ and ρ vϕ ρϕ̂. The proof burden
then amounts to showing that ρ |= β1[ϕ̂](ϕ)⇔ ρ |= ϕ. The proof is twofold, first
showing ρ |= β1[ϕ̂](ϕ)⇒ ρ |= ϕ:

ρ |= β1[ϕ̂](ϕ)
⇒ ρ |= ⋃ {ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀X ∈ dom(θ) : X θ ∈ Iϕ̂(X )}
⇒ ρ |= ⋃ {ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀X ∈ dom(θ) : X θ ∈ Tϕ̂(X )}
⇒ ρ |= ⋃ {ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀(g ⇐ ω) ∈ ϕ : ρϕ̂, θ |= ω}
⇒ ρ |= ⋃ {ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀(g ⇐ ω) ∈ ϕ : ρ, θ |= ω}
⇒ ρ |= ⋃ {ϕθ | dom(θ) = dom(Iϕ̂) ∧ ρ |= ϕθ}
⇒ ρ |= ϕ

He we use that ∀X ∈ dom(θ) : Iϕ̂(X ) ⊇ Tϕ̂(X ) in the second step, and in the
fourth step we use the assumption that ρ vϕ ρϕ̂. It then remains to show that
ρ |= ϕ⇒ ρ |= β1[ϕ̂](ϕ), which follows trivially:

ρ |= ϕ
⇒ ∀θ : ρ |= ϕθ
⇒ ρ |= ⋃ {ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀X ∈ dom(θ) : X θ ∈ Iϕ̂(X )}
⇒ ρ |= β1[ϕ̂](ϕ)

That concludes the proof. �
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∀(p(t) ⇐ ω) ∈ ϕ̂ : Pred(ω) ⊆ dom(F )

∀(p(f (X1 , . . . ,Xn)) ⇐ q1(X1 ) ∧ · · · ∧ qn(Xn)) ∈ ϕ̂ :
∀〈t1, . . . , tn〉 ∈ F (q1)× · · · × F (qn) :

f (t1, . . . , tn) ∈ F (p)

(g0 ⇐ g1 ∧ · · · ∧ gl) ∈ ϕ̂ q(X ) ∈ {g1, . . . , gl} q ∈ dom(F )

Iϕ̂(X ) = F (q)

Table 2.6: Computing a finiteness substitution map; Iϕ̂.

It then only remains to show how Iϕ̂ can be determined for H1, or more
specifically, for the normal form in Table 2.3. Such a map can be obtained by
the inductively defined procedure in Table 2.6.

The map is built by first finding an auxiliary map F of the unary predicates
with a finite map in ϕ̂; i.e. dom(F ) ⊆ Fϕ and ∀p ∈ dom(F ) : F (p) = ρϕ̂(p). A
predicate is simply finite if all predicates in all preconditions of clauses defining
it are finite. Once F is determined, it can be used to build Iϕ̂ straightforwardly.

Example 2.17 (Example 2.10 continued) Assume the finiteness substitu-
tion map Iϕ̂ = [Xnb 7→ {nb},Xkab 7→ {kab,m•}], then a complete expansion of
the clause from Example 2.10 is:

net(〈Xenc ,{nb}kab〉) ⇐ net(〈{〈b, kab,na,nb〉}ka ,Xenc〉)
net(〈Xenc ,{nb}m•〉) ⇐ net(〈{〈b,m•,na,nb〉}ka ,Xenc〉)

2.4.5 Simplification ordering

As the specialisation expands the clauses of the formula, an obvious choice
of simplification ordering is an ordering where clauses are greater than their
expanded counterpart.

∀ϕ : ∀ϕ′ : ϕ �1 ϕ
′ ⇔ (∃ϕ̂ : ϕ = β1[ϕ̂](ϕ′))

It follows that equivalence resolves to equality, and thus the check ϕ′ ≺ ϕ in the
iterative framework will amount to the test for identity. We then have the result:

Lemma 2.18 The operator �1 is a simplification ordering.

Proof We have trivially that �1 is a partial order. That it is also well-founded
follows from the fact that any formula ϕ can only hold a finite set of variables:
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a complete expansion (modulo identity) expands each clause into a finite set of
new clauses holding a strictly lower number of variables, hence any formula can
only be completely expanded a finite number of times. �

2.4.6 H1-Refinement Scheme

Finally, to show that the different ingredients work together as intended, we
must show that they form an H1-refinement scheme.

Lemma 2.19 The quadruple (α1, η1, β1,�1) forms an H1-refinement scheme.

Proof To prove this, we must show that for any ϕ and ϕ̂ then ρα1(β1[ϕ̂](ϕ)) vϕ
ρα1(ϕ); i.e. that for all t ∈ Hϕ and p ∈ Pred(ϕ) then t ∈ ρα1(β1[ϕ̂](ϕ))(p) implies
t ∈ ρα1(ϕ)(p). This is shown by contradiction.

Assume that t ∈ ρα1(β1[ϕ̂](ϕ))(p) and t /∈ ρα1(ϕ)(p). As ρβ1[ϕ̂](ϕ) vϕ ρϕ (in
particular ρβ1[ϕ̂](ϕ) = ρϕ if ρϕ̂ |= ϕ) and ρϕ vϕ ρα1(ϕ), the latter implies that
t /∈ ρβ1[ϕ̂](ϕ)(p). Thus, t ∈ ρα1(β1[ϕ̂](ϕ))(p) is an over-approximation introduced
by the relaxation α1 on β1[ϕ̂](ϕ), but not on ϕ. However, we then easily arrive
at a contradiction, using induction in the length of the derivation sequence
establishing β1[ϕ̂](ϕ); α1 only introduces over-approximation when decoupling
variables violating H1, but as β1[ϕ̂] only eliminates variables, then any variable
pair present in β1[ϕ̂] is also present in ϕ. This establishes the result we seek.�

Thus the refinement scheme (α1, η1, β1,�1) is suitable for the iterative framework
of §2.3.2. We then give a slightly larger example, showing the inter-operability
of the framework and the need for the iterative behaviour.

Example 2.20 Assume that ϕ consists of the clauses:

(1) q(a)
(2) q(b)
(3) p(X ,Y ) ⇐ q(X ) ∧ q(Y )
(4) p(b, f (Y )) ⇐ p(b,Y )
(5) r(X , g(Y ,Y )) ⇐ p(X ,Y )

We see that only (5) violates H1, and we get that applying α1 to this clause
yields:

(5a) r(X , g(Y ′,Y )) ⇐ p(X ′,Y ′) ∧ p(X ′,Y ) ∧ aux(X )
(5b) aux(X ) ⇐ p(X ,Y ′) ∧ p(X ,Y )
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Introducing the fresh variables X ′ and Y ′, and the auxiliary predicate aux. 10

Using the normalisation, η1, we can then find an equivalent formula of the clauses
(1), (2), (3), (4), (5a), and (5b) in normal form, denoted ϕ̂1. Indeed, we find:

ρϕ̂1(q) = {a, b}
ρϕ̂1(p) = {〈X ,Y 〉 | X ,Y ∈ {a, b}} ∪

{〈b, f n(Y )〉 | Y ∈ {a, b} ∧ n ≥ 1}
ρϕ̂1(r) = {〈X , g(Y ′,Y )〉 | X ∈ {a, b} ∧Y ′,Y ∈ {f n(a) ∨ f n(b) | n ≥ 0}}

Where we write f n(t) for the term t enclosed by n applications of the constructor
f . By inspection, we see that the result is precise for p and q, whereas for r, it is
imprecise. However, the model reveals that the variable X in the clause (5) has
the finite substitution set {a, b}, and thus we may perform a complete expansion
of this clause11 and get:

(5.1) r(a, g(Y ,Y )) ⇐ p(a,Y )
(5.2) r(b, g(Y ,Y )) ⇐ p(b,Y )

Analogously to above, these clauses may be relaxed (now requiring no auxiliary
predicates), and then normalised together with (1), (2), (3), and (4). This
produces a new normal form, ϕ̂2, which is a more precise approximation of r:

ρϕ̂2(r) = {〈a, g(Y ′,Y )〉 | Y ′,Y ∈ {a, b}} ∪
{〈b, g(Y ′,Y )〉 | Y ′,Y ∈ {f n(a) ∨ f n(b) | n ≥ 0}}

Again, the model reveals a variable with finite substitution set; namely Y in (5.1)
which has the finite substitution set {a, b}. A complete expansion of this clause
then gives:

(5.1.1) r(a, g(a, a)) ⇐ p(a, a)
(5.1.2) r(a, g(b, b)) ⇐ p(a, b)

Which are both within H1 and thus they can be normalised together with (1), (2),
(3), (4), and the relaxation of (5.2). This, finally, produces the normal form, ϕ̂3,
which is the most precise approximation of r we can obtain:

ρϕ̂3(r) = {〈a, g(Y ,Y )〉 | Y ∈ {a, b}} ∪
{〈b, g(Y ′,Y )〉 | Y ′,Y ∈ {f n(a) ∨ f n(b) | n ≥ 0}}

Hence, to find the most precise model for ϕ, three iterations of the algorithm was
required.

We should remark that ϕ̂3 still does not represent the least model of ϕ, as the
two occurrences of Y in the conclusion of (5.2) remains decoupled. However,
a finite description of the least model of ϕ, in the normal form of Table 2.3 in
§2.1, does not exist, and thus we cannot hope to obtain it.

10The precondition of (5a) contains some superfluous literals. There are, of course, engineering
tricks to avoid this overhead, some of which are mentioned in §B.2 of Appendix B.

11Both variables in (3) also have finite substitution sets, but as this clause is already in H1

the specialisation will not improve precision, and thus is less interesting.
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1. net(〈a,na〉)

2. net(〈b,{〈Xa ,Xna ,nb〉}kb〉) ⇐ net(〈Xa ,Xna〉)

3. net(〈{〈b, kab,Xna ,nb〉}ka ,{〈a, kab〉}kb〉) ⇐ net(〈b,{〈a,Xna ,nb〉}kb〉)

4. net(〈Xenc ,{nb}kab〉) ∧ a key(kab)⇐ net(〈{〈b, kab,na,nb〉}ka ,Xenc〉)

5. b key(kab) ⇐ net(〈{〈a, kab〉}kb ,{nb}kab〉)

Figure 2.5: Specialised clauses of single instance Yahalom.

2.5 Verifying Protocols

Having presented the iterative framework, as well as an instance of it using H1,
we now return to protocol analysis. In §2.2 we gave an intuitive presentation of
a translation scheme from protocol narrations into Horn clauses, exemplified by
the key-distribution protocol Yahalom, both when modelling a single instance
of the protocol in §2.2.1 as well as multiple instances of the protocol in §2.2.2.
We also showed how a generic network attacker could be formulated in Horn
clauses, such that the protocol descriptions could be used for analysing for
various security properties. In this section, we shall show how the H1-instance
of the iterative framework can be used to find suitable models of these protocol
analysis problems; in particular we shall validate the confidentiality and integrity
of the Yahalom protocol.

2.5.1 A Single Instance of Yahalom

The conjunction of protocol description of a single instance of the Yahalom
protocol, Figure 2.1 in §2.2.1, and the network attacker, Figure 2.3 in §2.2.3,
constitutes an instance of an analysis problem. This problem falls, as we discussed
in §2.3.1, outside the known decidable classes of Horn clauses, and thus we must
rely to the iterative framework to deliver us a suitable model of it.

The H1-instance of the iterative framework requires only a single iteration
to produce such a model; after the first iteration the algorithm produces the
specialised clauses shown in Figure 2.5. We omitted the clauses for the attacker,
as all variables occurring in them have trivially infinite substitution sets and,
thus, these clauses remain unchanged.
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The first observation is that all the clauses are within H1, thus the algorithm
has found the least model of the analysis problem; i.e. the analysis estimate is
complete. Inspecting the analysis estimate, ϕ̂, also reveals that both a key and
b key may only be mapped to kab (i.e. the constant kab has been substituted
for the variable Xab). This proves that one instance of the protocol will always
successfully establish the correct shared key between the intended principals,
hence we have certified that the protocol satisfies integrity. We also find that
ka, kb, kab /∈ ρϕ̂(dy), which certifies that confidentiality of all the shared keys
is preserved. Both of these results were expected as Yahalom is considered a
secure protocol (cf. [31, 105]).

The analysis estimate provides us additional interesting insight. Namely, that all
variables except Xa and Xna in step 2, Xna in step 3, and Xenc in step 4 can be
completely expanded into their intended values, which is also apparent from the
specialised clauses in Figure 2.5. Hence, these four variables represent the only
elements of the protocol that the attacker can possibly interfere with; it can in
fact get them substituted for arbitrary ground terms. However, the result shows
that such an invalid substitution will result in a rejection of the key establishment
at a later point and, thus, it will at most pose an annoyance to the principals
attempting to establish a key. Such an attack is called a denial-of-service attack,
and although it may be considered a vulnerability in the protocol, it is not a
flaw.

2.5.2 Multiple instances of Yahalom

Turning to the more interesting analysis problem with multiple instances and
multiple sessions, namely the conjunction of the protocol description in Figure 2.2
in §2.2.2 and the network attacker in Figure 2.3 in §2.2.3, a single iteration of the
algorithm suffices for certifying confidentiality: ∀i, j : bkabc(baic, baj c) /∈ ρϕ̂(dy).

Integrity, on the contrary, requires more than one iteration of the iterative frame-
work. Indeed, the first iteration yields the approximation that the predicates a key
and b key may be mapped to tuples of the form 〈baic, baj c, bkabc(bai′c, baj ′c)〉
for all i, i′, j, j′ ∈ {1, 2, 3}. In other words, any keys generated as part of a
protocol run can be distributed to any combination of principals baic and baj c.
This, obviously, violates integrity, but at least it shows that the mappings of
a key and b key are finite. Hence the clauses can be specialised, and already
after the second iteration we arrive at the specialised clauses presented in Figure
2.6. The description is slightly abbreviated in that each clause is quantified over
i, j ∈ {1, 2, 3}.

We notice first that the iterative framework was unable to produce clauses
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0. a(baic), b(bbj c)
1. net(〈ai , bnac(baic, bbj c)〉) ⇐ a(baic) ∧ b(bbj c)
2. net(〈bbj c,{〈Xa ,Xna , bnbc(Xa , bbj c)〉}k(bbj c,s)〉) ⇐ net(〈Xa ,Xna〉) ∧ b(bbj c)
3. net(〈{〈bbj c, bkabc(baic, bbj c),Xna ,Xnb〉}k(baic,s),{〈ai , bkabc(baic, bbj c)〉}k(bbj c,s)〉)

⇐ net(〈bbj c,{〈baic,Xna ,Xnb〉}k(bbj c,s)〉) ∧ a(baic) ∧ b(bbj c)
4. net(〈Xenc ,{Xnb}bkabc(baic,bbj c)〉) ∧ a key(baic, bbj c, bkabc(baic, bbj c))

⇐ net(〈{〈bbj c, bkabc(baic, bbj c), bnac(baic, bbj c),Xnb〉}k(baic,bbj c),Xenc〉) ∧
a(baic) ∧ b(bbj c)

5. b key(baic, bbj c, bkabc(baic, bbj c))
⇐ net(〈{〉}k(bbj c,s)〈baic,bkabc(baic,bbj c)〉,{bnbc(baic, bbj c)}bkabc(baic,bbj c)) ∧

b(bbj c)

Figure 2.6: Specialised clauses of multiple instances Yahalom; i, j ∈ {1, 2, 3}.

within H1. The generic formulation for nonces, using initiator and responder
names to generate new nonces, forces step 2 beyond H1, as the variable Xa

has infinite substitution set and occurs multiple times in the conclusion. This
over-approximation introduced by the algorithm carries over to step 3 and 4,
in which the variables representing b’s nonce, Xnb , are found to have infinite
substitution set.

Fortunately, the analysis estimate is still precise enough to certify the integrity
of Yahalom with multiple instances and sessions; i.e. a key and b key may only
be mapped to tuples of the form 〈baic, bbj c, bkabc(baic, bbj c)〉 for i, j ∈ {1, 2, 3}.

It is noteworthy that merely applying the relaxation and then the solver, equiva-
lent to a single iteration, in the style of [59], would yield the unsatisfactory and
incorrect result that all keys generated by the solver could be accepted at any bj

as coming from any ai . This is the false positive that any context-independent
analysis (see §5.6) will face when analysing Yahalom. In fact, even the approach
of manually expanding the analysis with the information about sender and recip-
ient of each message, results in this false positive for Yahalom [24]. Interestingly,
the iterative algorithm performs this expansion, along with other expansions,
but automatically, thus allowing a clearer protocol description and leaving less
room for human errors.
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2.6 Discussion

In §2.2 we sketched a methodology for specifying static analyses of cryptographic
protocols; in particular we showed how to model and analyse the non-trivial key-
distribution protocol Yahalom. To avoid too much digression in the presentation
and to adhere to the topic of the chapter, we omitted some insights behind some
of the choices we made. These are discussed in detail below.

2.6.1 Alternative Modelling Choices

The modelling reflects important design choices. First we see that all principals
are divided into the disjoint sets of initiators, responders and servers, which is the
classical modelling approach. But more general alternatives, letting principals act
in more than one role, could be chosen. These could easily be accommodated by
Horn clauses as well, by simply using the same set of ground terms to represent
different roles; e.g. principals may act as both initiators and responders in Figure
2.2 if ρ(a) = ρ(b) = {i1 , i2 , i3}. Interestingly, this would introduce yet another
decision, namely whether the principals should use the same key for acting in
both roles or use different keys. Again both options are translatable to Horn
clauses.

Secondly, there is the choice of modelling the pre-existing key between the
principals and the server with the constructor k and the generated key with the
constructor kab. The different constructors reflect the typical distinction between
long term keys and short terms keys, and that only long term keys can be used
for generating short term keys. In the current scenario, this distinction does not
make a difference. But it would, if the server could also act in the responder
role, as the generated short term key might then be used for generating other
short term keys.

All of the above variations require loosening some of the assumptions, and it
is important to be conscious that modelling choices as more general scenarios
may also introduce new attacks. In this chapter we have only considered the
usual setting, but later, when verifying protocols with our developed analysis in
Chapter 6, we will consider other alternatives as well.
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2.6.2 Security Properties

A conjunction of one of the formulae in Figure 2.1 or Figure 2.2 with the attacker
in Figure 2.3 constitutes an instance of an analysis problem, and the least model
of such a problem allows us to investigate certain properties of the protocol.

When we are interested in guaranteeing that the protocol has some important
properties, we must ensure that the analysis captures all possible violations.
In other words, it must be sound. Hence, we must review the two abstraction
techniques, introduced in §2.2.2, for modelling an unbounded number of instances
and sessions.

In [39] it is shown that it is always sufficient to consider only a bounded number
of principals. In particular, it is only necessary to consider two principals for
verifying confidentiality, and in general, for any property, (k + 1) is enough,
where k is the number of principal variables used in the specification of that
property.12 Thus, for example, three principals are enough for verifying integrity,
as we validated Yahalom for through the predicates a key and b key.

However, instead of restricting the number of principals, and thus the semantics
of the protocol, we follow the approach of [29] and project the semantic behaviour
of all principals onto this limited number of principals. This projection is onto
the canonical values in the analysis estimate, rather than onto the semantic
behaviour as in [39], and thus a verification of this type covers the general case
of an unlimited number of principals.

The other abstraction, coalescing the generated nonces in each instance of the
protocol into one equivalence class for each syntactic occurrence, is also safe with
respect to most security properties. The abstraction means that the analysis
is unable to distinguish two messages generated from different sessions but at
the exact same point of the protocol. This, again, means that the analysis
can capture all but a specific type of replay attacks, namely the type where a
message from a previous session is reused at the same step of the protocol. This
specific kind of replay attacks are usually of little interest and easily caught by
the implementation. Nevertheless, in §7.2 we shall discuss how the analysis can
be extended to capture also this kind of attack.

Returning to the properties, the analysis obviously allows for verifying confi-
dentiality of a particular ground term t, as this merely resolves to investigating
whether t belongs to the possible bindings of the predicate dy.

12An interesting observation is that k seems to enough for protocols where principals have
unique roles (e.g. A 6= B). However, as this is an unproven conjecture, we have chosen to
abide by the rule of k + 1 throughout this dissertation.
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Integrity is the dual of confidentiality, and with respect to protocols, this means
that the message received is the one intended. This can also be verified through
the analysis, as one may inspect that all possible variable bindings within each
step correspond to those intended. Usually only specific parts are interesting in
a protocol, and for Yahalom these are the bindings of predicates a key and b key;
i.e. that the key distributed to A and B after a successful run of the protocol
can only be Kab.

Finally, one may enrich all encryptions with information about the sender and
the intended recipient in the style of [22, 24], allowing for verifying message
authentication. For the remainder of this dissertation we shall only be concerned
with the verification of protocols up to integrity and confidentiality, but in §7.2
we shall revisit this subject and discuss how other properties could be verified as
well, by the simple use of annotations.

2.7 Concluding Remarks

In this chapter we have shown how Horn clauses allow for a clear and intuitive
specification of protocol analysis problems. Unfortunately, as it often is with
clean and simple analyses, the resulting instances of analysis problems are outside
any of the known decidable fragments of Horn clauses, threatening the analysis
itself with being a mere theoretical exercise.

Contrary to the traditional approach of modifying the analysis and introduce
abstractions that would force it into a decidable fragment, we proposed an itera-
tive framework for solving unrestricted Horn clauses, guaranteeing termination
and soundness, and in some cases achieving even completeness. The suggested
algorithm uses a known decidable class of Horn clauses to produce a sound
approximation method; the latter being achieved by iteratively specialising the
analysis problem and improving the analysis estimate, until either no further im-
provements can be made or the analysis estimate is complete. We also presented
an instance of the iterative framework, using the decidable class H1, and with
it we successfully validated the Yahalom key-distribution protocol, a protocol
infamous for being particularly difficult to analyse.

So it seems that modelling and analysing cryptographic protocols using Horn
clauses is both reasonable and viable. However, the manual method used in
this chapter, although the most common and typical approach, is both tedious
and error-prone. These issues do not become any less serious when we enlarge
the scope from a single protocol to the simulation of an entire system, where
several protocols may be applied – in this case the manual method is simply not
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tractable, nor trustworthy.

In the remainder of this dissertation, we will work on this issue and develop
a process calculus specifically designed to bridge the gap between the analysis
formulation and a human comprehensible model.
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Chapter 3

Cryptographic Components

The Horn clause approach gave us some insights on a succinct, clear model for
cryptographic protocols. Predicates were used for modelling the communication
medium and terms were used to model the cryptographically composed messages.

In a process calculus we would now expect constructs such as a.P to denote the
sequential composition of some action, a, and the continuation process, P . We
would also expect constructs for composition of concurrent processes, P1 | P2,
where the processes would communicate using actions for sending and receiving
messages.

Imagine then that a process calculus employs two operations, out e and in p, for
transmission and reception, respectively, of cryptographically composed messages.
Output involves some encoded message, e, and input uses a pattern, p, specifying
which messages that are accepted. Coming from Horn clauses, it seems natural to
construct messages with a term language and allow expressions such as out {m}k

for the transmission of the message m encrypted with the key k . Likewise,
we would expect that the input pattern specifies the structure of the messages
accepted and allows introduction of new variables. For example, we could write
in {x}k for the input which matches any message encoded with key k and binds
contents of the encryption to a variable x .

Those are typical constructs in process calculi with cryptography; e.g. LySa
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[22, 24] and the Spi Calculus [6]. In fact, from these languages we see that the
modelling of cryptography and the underlying communication model may be
developed independently, as both LySa and the Spi Calculus are based on the
π-calculus, which itself has no support for cryptography. This motivates an
independent development of the cryptographic components, which is the topic
of this chapter.

Contrary to the above-mentioned calculi, we will allow composite terms on input.
For example, writing in 〈x ,{x}k 〉 should be allowed – clearly this pattern would
match any value of the form 〈〈v,{v}k 〉〉. This seems a natural choice, this is
basically how we modelled it in Horn clauses and they are clearly more intuitive
and succinct than an tedious encoding of how the pattern should be decomposed
in a step-wise manner.

In the remainder of this chapter we develop the syntax and semantics of the
cryptographic components for the calculus. This is done in two steps: (1) we
create the intuitive model that directly reflects the encoding in Horn clauses,
and (2) we extend the simple model with asymmetric cryptography, which
introduces some non-trivial problems. After the development, we shall justify
the components, by showing that they satisfy some attractive properties and
show they may be used to express protocol narrations in an unambiguous way.

3.1 A Mundane Approach

3.1.1 Syntax

The basic building blocks used for modelling cryptography are encodings and
patterns. These are defined as term languages and their abstract syntax is listed
in Table 3.1. Patterns require introduction of yet another syntactic category,
decodings, denoted d. We also introduce the countably infinite set of names, N ,
ranged over by k ,n,m, . . ., and the countably infinite set of variables X , ranged
over by x , y , z , . . ., and assume that these sets are disjoint.

Encodings are built up from names, representing all basic elements such as text,
nonces, symmetric keys or time stamps, all coalesced into the same syntactic
class, and variables, which are placeholders that may be substituted for names
or composite encodings during execution. The tuple construct 〈e1, . . . , ek〉 is
used for concatenation of encodings and finally the construct {e1}e0 represents
symmetric encryption of an encoding e1 using the key e0. In this setting a value
is a closed encoding, that is an encoding with no variables, and we denote it



3.1 A Mundane Approach 55

e ::= n Name, n ∈ N
| x Variable, x ∈ X
| 〈e1, . . . , ek〉 Tuple
| {e1}e0 Symmetric encryption

d ::= e Comparison
| 〈d1, . . . , dk〉 Decompose tuple
| {|d|}e Symmetric decryption

p ::= d / X Pattern, X ⊆ X

Table 3.1: Syntax for encodings, decodings and patterns.

v ∈ Val.

Upon receipt of a value, the recipient party may perform certain actions in order
to decompose the encoding and obtain the intended information. These actions
are modelled as decodings and there are three main actions the recipient may
perform: (1) compose a new value from known data and bit-wise compare it to
the received message, (2) decompose a tuple, and (3) decrypt encrypted value
using a known key. It is important to note that a key may itself be a complex
encoding, but must not contain any decomposition constructors, as keys should
be known prior to use.

The decompositions combined with the set of variables, X, the recipient expects
to bind to a value within the matching, establishes a pattern. The intent of these
components is best illustrated through a small example.

Example 3.1 Assume the existence of a matching operator as for matching
a value v against a pattern p, written v as p, and an operator . for sequential
composition. The former could be used for decomposition or decryption in a
process calculus, and the general idea is then that a process (v as e / X).P would
first verify that v structurally matches e; if this is the case then the continuation
process P is updated with any newly bound variables in X, and executed; otherwise
the execution will be blocked.

The matching (〈n,m〉 as 〈y ,m〉 / {y}).P should succeed because the tuple 〈n,m〉
matches 〈y ,m〉. This results in the substitution of the name n for the variable y in
the continuation process P . The matching (〈n,m〉 as 〈y , y〉 / {y}).P on the other
hand would not succeed, as the distinct names n and m cannot simultaneously
match the pattern y, and thus further execution is garbled.



56 Cryptographic Components

Following the process calculus tradition (as introduced by the λ-calculus [35, 12]),
we shall handle names and variables based on their scope. Scopes are introduced
by a defining occurrence, whereafter all uses of the name or variable is linked to
that occurrence, and therefore said to be within its scope. This allows for reusing
the same syntactic identifier for different names or variables, while maintaining
their distinction in the semantics.1 In patterns, d / X, we explicitly list the
variables that are defined, X, whereas we leave the defining occurrence of names
to the surrounding calculus.

Whenever a variable or name is contained by a scope we say that it is bound.
The opposite of bound, that is when a name or variable occurs outside any
scope, is usually referred to as free. In that respect, we introduce a function for
finding free names, fn, and free variables, fv, in an encoding, decoding or pattern.
Their definitions are straightforward and given in Table 3.2 and Table 3.3; all
names and variables occur free in encodings and decodings, as these components
contain no defining occurrences of either, whereas only the free variables in d
not included in the set X occurs free in the pattern d / X. Sometimes we may
also refer to the bound variables in a pattern, written bv(p), which is directly as
indicated by the syntax; namely bv(d / X) = X.

Remark 3.2 A name or variable is always either free or bound in an encoding
or pattern, and never both.

fn(n)
def
= {n}

fn(x )
def
= ∅

fn(〈e1, . . . , ek〉) def
= fn(e1) ∪ · · · ∪ fn(ek)

fn({e1}e0)
def
= fn(e0) ∪ fn(e1)

fn(〈d1, . . . , dk〉) def
= fn(d1) ∪ · · · ∪ fn(dk)

fn({|d|}e) def
= fn(e) ∪ fn(d)

fn(d / X)
def
= fn(d)

Table 3.2: Free names; fn.

1This feature is widely used in programming languages; e.g. in for loops where the same
iterator name may be reused throughout the entire program.
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fv(n)
def
= ∅

fv(x )
def
= {x}

fv(〈e1, . . . , ek〉) def
= fv(e1) ∪ · · · ∪ fv(ek)

fv({e1}e0)
def
= fv(e0) ∪ fv(e1)

fv(〈d1, . . . , dk〉) def
= fv(d1) ∪ · · · ∪ fv(dk)

fv({|d|}e) def
= fv(e) ∪ fv(d)

fv(d / X)
def
= fv(d)\X

Table 3.3: Free variables; fv.

3.1.2 Semantics

Having presented the syntax of the components, we now extend them with a
formal meaning in the form of a semantics. For this we choose to rely on a
substitution-based semantics; i.e. a semantics that uses substitutions to collect
bindings to variables, as they occur, and then replace all future uses of the
variables with their corresponding value binding. Substitution-based semantics
has the advantage of being, arguably, the most comprehensible type of semantics,
and it also appears to be the most common semantics used for expressing process
calculi. The semantics choice implies that we also require the calculus to adopt
the cryptographic components to use a similar semantics, although it should
be fairly easy to convert the semantics given in this chapter to other types of
semantics.

Substitution-based semantics are only concerned with closed processes; i.e.
processes that contain no free names or variables. Thus it follows that the
semantics of encodings are merely values, as the semantics will ensure that any
variable within an encoding will be replaced by a value before that encoding is
used. The semantics of pattern matching, on the other hand, must record any
new binding of variables. Formally, the semantics needs to specify the criterion
for a value v to successfully match a pattern p, as well as produce a partial map

θ : X → Val

mapping the bound variables in the matching to their respective value.2

As for Horn clauses, we shall write [ ] for the empty map and θ[x 7→ v] for the
substitution that is like θ except it maps x to v. Furthermore, we define an

2We slightly abuse notation here, as we use the same symbol for both substitutions on Horn
clauses and on the cryptographic components. This is chosen because the substitutions will be
used analogously analysis-wise later and thus the notation eases this transition.
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equivalence relation for substitutions, =s, as

θ1 =s θ2 ⇔ ∀x ∈ (dom(θ1) ∩ dom(θ2)) : θ1(x ) = θ2(x )

The equality operator =s ensures that the substitutions agree on the mapping
of the variables they share; i.e. if a variable is in the domain, indicated by the
operator dom(·), of both substitutions then it must be mapped to the same value
in both substitutions. Thus, we may unambiguously unite two substitutions,
θ1 ∪ θ2, whenever θ1 =s θ2.

The judgement for the semantics of pattern matching takes the form v as p : θ
and states that the value v correctly matches the pattern p, giving rise to the
variable mappings in θ. As usual, this is defined as a set of inference rules, as
listed in Table 3.4. Whenever a value v is matched against a variable x we use
the rule (Bind), specifying that the resulting substitution is the mapping of
x to v. We know that all variables that have been bound prior to the pattern
matching are already replaced by their corresponding values, and thus the rule
(Bind) simply requires the variable x to belong to the list of variables intended
to be bound in the matching X. Symmetric decryption (SDec) requires both
the key and the content to match the pattern, and tuples, (ETup) and (DTup),
require each sub-pattern to match. The semantics assumes that all sub-patterns
are matched simultaneously and ensures that possible, multiple mappings of
variables are identical using the =s relation.

(Name) n as n / X : [ ]

(Bind)
x ∈ X

v as x / X : [x 7→ v]

(ETup)

∧k
i=1 vi as ei / X : θi

〈v1, . . . , vk〉 as 〈e1, . . . , ek〉 / X : θ1 ∪ · · · ∪ θk
if ∀i, j : θi =s θj

(SEnc)
v0 as e0 / X : θ0 v1 as e1 / X : θ1

{v1}v0 as {e1}e0 / X : θ0 ∪ θ1
if θ0 =s θ1

(DTup)

∧k
i=1 vi as di / X : θi

〈v1, . . . , vk〉 as 〈d1, . . . , dk〉 / X : θ1 ∪ · · · ∪ θk
if ∀i, j : θi =s θj

(SDec)
v0 as e / X : θ0 v1 as d / X : θ1

{v1}v0 as {|d|}e / X : θ0 ∪ θ1
if θ0 =s θ1

Table 3.4: Pattern matching; v as p : θ.

The resulting substitution θ of a pattern matching is supposed to be used to
update any continuation process with the new bindings to variables, that the
matching resulted in. Therefore, in addition to the semantics, we need a formal
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definition of substitution of values for variables in the cryptographic components.
This is given in Table 3.5 and includes no surprises. Substitution on encodings
is straightforward, whereas on patterns it must respect possible rebindings of
the variables.

Remark 3.3 Later, in Chapter 4 we shall also allow free α-conversion of names;
i.e. renaming bound names. This requires an additional definition of replacing
a name by another name in encodings and patterns, but as these components
contain no defining occurrences of names, the definitions are analogous to that
of substitution in the case that a variable is never redefined.

n[x 7→ v]
def
= n

y [x 7→ v]
def
=

{
v if x = y
y if x 6= y

〈e1, . . . , ek〉[x 7→ v]
def
= 〈e1[x 7→ v], . . . , ek[x 7→ v]〉

({e1}e0)[x 7→ v]
def
= {e1[x 7→ v]}e0[x 7→v]

〈d1, . . . , dk〉[x 7→ v]
def
= 〈d1[x 7→ v], . . . , dk[x 7→ v]〉

({|d|}e)[x 7→ v]
def
= {|d[x 7→ v]|}e[x 7→v]

(d / X)[x 7→ v]
def
=

{
d / X if x ∈ X
d[x 7→ v] / X if x /∈ X

Table 3.5: Substitution; e[x 7→ v], d[x 7→ v], and p[x 7→ v].

3.1.3 Well-formedness

A well-formedness condition is an (often simple) analysis deciding whether a
specific analysis component, Θ, is an acceptable estimate for specific phrase, p,
written with the judgement Θ ` p. Hence, if we assume that components belong
to the domains Θ ∈ A and p ∈ P, we may interpret the judgement relation as a
function and type it

`: (A× P)→ {true, false}
Sometimes we may use subscripts or superscripts on ` to denote static compo-
nents.3

Usually the relation ` is defined by a finite number of inference rules specifying
which pairs that are well-formed, i.e. mapped to true, and then components

3Formally, this is equivalent to make the relation higher-order, where the sub-scripts and/or
superscripts are used for instantiating the relation.
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not satisfying the rules are mapped to false. We say that the definition is
compositional whenever the validity of the relation between complex expressions
may always be determined based on the validity of the constituent expressions and
the rules used to combine them. Conversely, relations that are not compositional
are usually referred to as abstract.

Languages are typically defined in a general and non-restrictive manner, and
specific unwanted behaviour is instead avoided with the well-formedness condition.
This allows a, possibly, more generic language design, but it also requires a strict
enforcement of the well-formedness condition. In other words, we are only
interested in components that definitely satisfy the well-formedness condition,
and all other components should be rejected; also, in the case of an abstract
well-formedness condition, components leading to an infinite derivation tree.
This is called an inductive interpretation of the definition.

The syntax and semantics given in the previous sections are examples of such
non-restrictive language definitions. There are no guarantees that names and
variables are bound before they are used and whenever v as p : θ then the
semantics allows dom(θ) ⊆ bv(p) (as opposed to the equality that our intuition
dictates) and that the inclusion might be strict. In fact, a more rigorous definition
of bv(d / X), based on the semantics alone, would be fv(d) ∩ X, but that is
much less intuitive, and most likely not the original intention of the protocol
designer. Therefore, we need a well-formedness condition that guarantees that
the language meets the expectations.

Another consideration is that the semantics does not enforce the usual assumption
of perfect cryptography; that is, the assumption that a cipher text cannot be
decrypted without knowledge of the decryption key and that the encryption
or decryption key can never be derived from a cipher text. A pattern like
{|y|}x / {x , y} obviously violates this assumption, as it allows for deriving both
the key, x , and the plain text, y , from a cipher text without any prior knowledge.
This flexibility supports scenarios where certain keys or parts of the plain text are
guessed, such as when modelling guessing attacks or similar vulnerabilities. Still,
perfect cryptography is the usual assumption in protocol analysis, and, thus, we
shall formulate the well-formedness condition such that perfect cryptography is
guaranteed by it, hereby allowing the protocol designer or analyst to choose if
the criterion should apply in each case.

The well-formedness condition will assume the existence of the sets of previously
bound names N and previously bound variables X, scoped around the crypto-
graphic component. It follows, that for an encoding, we shall simply require all
names and variables used within the encoding to belong to the sets N and X,
respectively. The resulting well-formedness condition for encodings is written as
the judgement 〈N,X〉 ` e in Table 3.6.
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(WE)
fn(e) ⊆ N fv(e) ⊆ X

〈N,X〉 ` e

Table 3.6: Well-formedness of encodings; 〈N,X〉 ` e.

The requirement for patterns is more subtle, as we must ensure that the patterns
enforce the rules of perfect cryptography. Our approach to this challenge is
based on the following observation:

Observation 3.4 A pattern, d / X, satisfies the rules of perfect cryptography,
whenever there exists an ordered sequence, x1 , x2 , . . ., of the variables in X, such
that x1 may be derived from d according to the rules of perfect cryptography and
without knowledge of the binding of the remaining variables; deriving x2 requires
at most knowledge of the binding of x1 ; etc.

To exemplify this observation, consider the pattern 〈{|x |}y ,{|y|}x 〉 / {x , y}; here
a cyclic dependency exists as neither x may be derived without knowledge
of y , nor y without knowledge of x . However, if we modify the pattern to
〈{|x |}y ,{|y|}z , z 〉 / {x , y , z} then suddenly a derivation sequence exists, namely
the sequence z , y , x . Thus, the well-formedness condition must accept any pattern
for which the variables may be derived in an orderly fashion, and disallow all
other patterns.

That a variable, x , is derivable from a decoding d, according to the rules of
perfect cryptography and assuming the knowledge 〈N,X〉, is captured by the
auxiliary judgement 〈N,X〉 `x d as defined in Table 3.7. Obviously, the variable
x is derived legally from the decoding x . If the decoding is composite, a recursive
search is initiated; in a tuple at least one of the sub-decodings must provide
knowledge of x , and a cryptographic construction should only allow x to be
derived from the contents, if the key (i.e. the encoding e) consists of purely
known names and variables. This is sufficient as knowledge of all names in a
value is enough to recreate the value, given that everybody is assumed access
to the same cryptographic operations. Note that there are, of course, no rules
allowing new variable bindings to be derived from encryptions.

The auxiliary judgement allows for specifying the well-formedness condition for
patterns, 〈N,X〉 ` d / X, as defined by the two rules (WDef) and (WEmp) in
Table 3.7. If X is not empty the rule (WDef) applies, where an element x ∈ X,
i.e. the next variable to be derived, is required not to be previously bound,
x /∈ X, and legally derivable from the decoding given the current knowledge,
〈N,X〉 `x d. If this is the case, the variable x can safely be added to the current
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set of known variables, X, and removed from the set of variables yet to be derived,
X. The inductive nature of the definition ensures that at some point X will
either consist exclusively of mutual dependent variables, or the set will be empty.
In the case of the latter, the rule (WEmp) applies, which establishes that d
is now a well-formed decoding including only known variables, fv(e) ⊆ X, and
names, fn(e) ⊆ N.

Remark 3.5 The constraint x /∈ X in (WDef) ensures that variables have a
uniquely binding occurrence, such that patterns like {x}x /{x} are never accepted;
not even when x is also previously bound. If multiple definitions of variables
within a pattern is allowed, then patterns, such as the above-mentioned, becomes
ambiguous; i.e. it is unclear which x that the protocol designer is referring to.
Note that this does not force the calculus employing the cryptographic components
to disallow redefinitions of variables altogether, but only that variable definitions
should be unique within each pattern.

(WDef)
x /∈ X 〈N,X〉 `x d 〈N,X ∪ {x}〉 ` d / X

〈N,X〉 ` d / X ∪ {x}

(WEmp)
fn(d) ⊆ N fv(d) ⊆ X

〈N,X〉 ` d / ∅

(WH1)

∨k
i=1 〈N,X〉 `x ei

〈N,X〉 `x 〈e1, . . . , ek〉

(WH2)
x = y

〈N,X〉 `x y
(WH3)

〈N,X〉 ` e 〈N,X〉 `x d

〈N,X〉 `x {|d|}e

(WH4)

∨k
i=1 〈N,X〉 `x di

〈N,X〉 `x 〈d1, . . . , dk〉

Table 3.7: Well-formedness of patterns; 〈N,X〉 ` p.

To fully understand the need for, and the workings of, the well-formedness
condition, consider the following example.

Example 3.6 The following three patterns are all entirely legal:

(1) {|x |}k / {x} where k ∈ N
(2) {|y|}x / {y} where x ∈ X
(3) 〈{|x |}y ,{|y|}z , z 〉 / {x , y , z}

In (1) the new variable x is derived through decryption with k, an already known
name. Similarly, in (2), y is derived using the prior knowledge of x to decrypt



3.2 Revising the Model 63

the encryption. In (3) z may be derived from the third element of the tuple,
then the second part of the tuple can be decrypted using z hereby deriving y, and
finally from the first part of the tuple x can be found using y.

All of the above patterns follow the cryptographic rules and are correctly accepted
by our well-formedness condition. However, slightly altering these patterns,
change them into patterns with unwanted properties – all correctly disqualified by
the well-formedness condition.

(1′) {|k |}x / {x} where k ∈ N
(1′′) {|k |}k / {x} where k ∈ N
(2′) {|y|}x / {x , y}
(3′) 〈{|x |}y ,{|y|}x 〉 / {x , y}

The pattern (1′) is illegal as either x ∈ X and the pattern renames x , which is not
allowed, otherwise x is not in scope, meaning that x is derived from a key, thus
violating perfect cryptography and not satisfying 〈N,X〉 `x {|k |}x . In pattern (1′′)
x is simply never bound, and in (2′) x is again only derived from a key. Finally,
in (3′), x cannot be derived without prior knowledge of y and y cannot be derived
without knowledge of x , resulting in that neither 〈N,X〉 `x 〈{|x |}y ,{|y|}x 〉 nor
〈N,X〉 `y 〈{|x |}y ,{|y|}x 〉 can be satisfied when x , y /∈ X.

3.2 Revising the Model

The modelling of cryptographic components presented in §3.1, hereafter referred
to as the basic model, captures our intuition of cryptography in a succinct
manner. It does, however, only support symmetric cryptography and most
modern systems also rely on other cryptographic operations such as asymmetric
encryption, digital signatures, hashing, etc. We now show how the basic model
may be extended with additional cryptographic operations. Specifically, we
will add support for asymmetric encryption and digital signatures, as this
extension allows for modelling most of the classical cryptographic protocols, and
it introduces some interesting new aspects that the model must cater for.

We adopt the usual abstraction for asymmetric cryptography and rely on key
pairs, 〈k+, k−〉, consisting of a public key, k+, and a private key, k−, each
identified by their superscripts. The central idea is then that any party, who
knows the public available half of the key pair, may encrypt messages. Decryption,
on the other hand, requires knowledge of the corresponding private key, which is
usually reserved for the owner of the key pair. We shall write [[e]]k+ for expressing
the cipher text result from encrypting a message e using the public key k+. An
assumption of perfect cryptography would then dictate that obtaining e from
[[e]]k+ would require knowledge of k−.
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Typically asymmetric cryptography is also used for modelling digital signatures,
simply by reversing the order of the keys. An asymmetrical encryption of a
message e using a private key k−, written [[e]]k− , represents therefore e digitally
signed by the owner of the key pair 〈k+, k−〉, and may be verified by everybody
that knows the public key k+. 4 In the remainder of this section we shall show
how the basic model may be adapted to support these operations.

3.2.1 Syntax

The introduction of asymmetric cryptography requires us to reevaluate the
model from §3.1. Recall that in the basic model we distinguish between match-
ing incoming values against values composed from the current knowledge (i.e.
encodings), or decomposing the incoming values using the current knowledge
and then match on the constituent parts. For symmetric encryption these two
approaches will have the same result because of the symmetry, and the difference
is only interesting for analyses that takes computation time into account. But
when we add asymmetric components to the model, the approaches are no longer
equivalent.

Assume, for example, that a principal A wants to encrypt a message, m, with
principal B’s public key, Kb+, and send the cipher text to B. Now, if a future
confirmation message from B includes the cipher text again, A will not be able
to decrypt it and confirm the content, as A does not know the corresponding
decryption key Kb− (only B knows this). However, A can easily recreate the
cipher text and bitwise compare the result to the received message.

It follows from the discussion above that the model requires both asymmetric
decryption and encryption in patterns, similarly to the basic model. Conversely,
it is easily seen that asymmetric cryptography also opens up scenarios where
a principal can decompose a value but cannot recreate this value afterwards.
Consider, for example, digital signatures: a principal who receives a signed
value may be able to learn the signed content (through decryption with the
signer’s public key), but cannot reproduce the signed value afterwards, because
it does not know signer’s private key. Again, this introduces complications when
modelling protocols, where a principal receives a value, verifies that it is signed
by the expected principal, and forwards it to a third party.5 To cater for this,
we shall also extend our model with a capability for enforcing restrictions on

4This modelling is arguably slightly misleading, because digital signatures in general add
no confidentiality to messages. However, as decryption only requires knowledge of the key k+,
which is assumed publicly available, the model is still sound.

5An example of this behaviour would be the administrator role in many voting protocols
(e.g. [14, 40, 50]).
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the values a variable may be mapped to. With such an extension, the example
mentioned above could be modelled by letting the principal bind the incoming
signed value to a variable x , if and only if it was signed by the expected principal.

The resulting revised syntax for the cryptographic components is given in Table
3.8. Names are now annotated with a tag; the tags + and − are used for
public and private keys in a key pair, respectively, and ε represents all other
names, equivalent to the basic model. Asymmetric encryption is modelled by
the operator [[·]]·, and for decodings we add the operator [[[·]]]· for public key
decryption.

Instead of the set X, representing variables intended to be bound in a pattern in
the basic model, we now associate each variable intended with a decoding that
any variable binding must match; i.e. we write x 7→ d for defining the variable x
which is allowed to be mapped to any value v that matches the decoding d.

Remark 3.7 Usually, encryption can be replaced by an equivalent decryption
in decodings. Thus, to avoid confusion, we shall only use decryption in decodings
and encryption in encodings in the remainder of this dissertation. However, it is
imperative to know the difference, and that in some, albeit rare, cases encryption
is needed in a decoding.

e ::= nτ Name, nτ ∈ N , τ ∈ {+,−, ε}
| x Variable, x ∈ X
| 〈e1, . . . , ek〉 Tuple
| {e1}e0 Symmetric encryption
| [[e1]]e0 Asymmetric encryption

d ::= ∗ Wildcard
| e Comparison
| 〈d1, . . . , dk〉 Decompose tuple
| {|d|}e Symmetric decryption
| [[[d]]]e Asymmetric decryption

p ::= d / [x1 7→ d1, · · · , xk 7→ dk] Pattern, {x1 , . . . , xk} ⊆ X

Table 3.8: Revised syntax.

As restrictions on variables are also enforced through decodings, we extend
decodings with a wildcard, ∗, that simply matches any value. Hence, variables
defined with the decoding ∗ may be bound unconditionally, similarly to the
variables of the basic model, and we shall refer to such variables as unrestricted
variables and all other variables as restricted variables.



66 Cryptographic Components

Convention 3.8 Each variable must have a corresponding decoding, and thus
the set of variables in the pattern may be regarded as a partial map, denoted Γ,
mapping each defined variable to its decoding.

Notice that decodings allow for both recursive variable definitions as well as
binding variables within the value binding of other variables. Recursive variable
definitions, such as in the pattern x / [x 7→ 〈x , x 〉], would in this pattern matching
context never match any values (as values are always of finite size). Thus
such decodings should be prohibited by a well-formedness condition. Defining
variables based on other variables, however, provides a useful tool when describing
protocols; e.g. the pattern x /[x 7→ [[[y]]]k+ , y 7→ ∗] allows for both binding a signed
value and the value itself to variables in one go.

As in the basic model, we shall rely on the usual definitions of free names and
variables; for completeness these are given in Table 3.9 and Table 3.10. We here
use the operator rg(·) to denote the range of a function or map. Additionally, we
may refer to the bound variables in a pattern, bv(d / Γ), which in the extended
design is simply dom(Γ).

fn(nτ )
def
= {nτ}

fn(x )
def
= ∅

fn(〈e1, . . . , ek〉) def
= fn(e1) ∪ · · · ∪ fn(ek)

fn({e1}e0)
def
= fn(e0) ∪ fn(e1)

fn([[e1]]e0)
def
= fn(e0) ∪ fn(e1)

fn(∗) def
= ∅

fn(〈d1, . . . , dk〉) def
= fn(d1) ∪ · · · ∪ fn(dk)

fn({|d|}e) def
= fn(e) ∪ fn(d)

fn([[[d]]]e)
def
= fn(e) ∪ fn(d)

fn(d / Γ)
def
= fn(d) ∪

(⋃
d′∈rg(Γ) fn(d′)

)

Table 3.9: Revised free names; fn.

Notation 3.9 We may, when convenient, omit the ε on simple names. Like-
wise, we may simply write x instead of x 7→ ∗ for unrestricted variables.
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fv(nτ )
def
= ∅

fv(x )
def
= {x}

fv(〈e1, . . . , ek〉) def
= fv(e1) ∪ · · · ∪ fv(ek)

fv({e1}e0)
def
= fv(e0) ∪ fv(e1)

fv([[e1]]e0)
def
= fv(e0) ∪ fv(e1)

fv(∗) def
= ∅

fv(〈d1, . . . , dk〉) def
= fv(d1) ∪ · · · ∪ fv(dk)

fv({|d|}e) def
= fv(e) ∪ fv(d)

fv([[[d]]]e)
def
= fv(e) ∪ fv(d)

fv(d / Γ)
def
=

(
fv(d) ∪

(⋃
d′∈rg(Γ) fv(d′)

))∖
dom(Γ)

Table 3.10: Revised free variables; fv.

3.2.2 Semantics

The judgement for the semantics still takes the form v as p : θ and is defined
in Table 3.11. It is closely related to the semantics for the basic model, but
requires a few more rules. The rule (RPEnc) is used whenever the pattern
is a comparison between an incoming value and an asymmetrically encrypted
value. The rules (RPDec) and (RSign) are used for asymmetric decryption
and validation of digital signatures, respectively, and are similar to symmetric
decryption, except we ensure that the keys are tagged as required and that they
belong to a key pair. When matching a value v against a variable x the rule
(RBind) applies, requiring the value v to match the decoding of x and update
the resulting substitution of this matching with the binding of x to v.
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(RName) nτ as nτ / Γ : [ ]

(RBind)
x ∈ dom(Γ) v as Γ(x ) / Γ : θ

v as x / Γ : θ[x 7→ v]

(RETup)

∧k
i=1 vi as ei / Γ : θi

〈v1, . . . , vk〉 as 〈e1, . . . , ek〉 / Γ : θ1 ∪ · · · ∪ θk
if ∀i, j : θi =s θj

(RSEnc)
v0 as e0 / Γ : θ0 v1 as e1 / Γ : θ1

{v1}v0 as {e1}e0 / Γ : θ0 ∪ θ1
if θ0 =s θ1

(RPEnc)
v0 as e0 / Γ : θ0 v1 as e1 / Γ : θ1

[[v1]]v0 as [[e1]]e0 / Γ : θ0 ∪ θ1
if θ0 =s θ1

(RWild) v as ∗ / Γ : [ ]

(RDTup)

∧k
i=1 vi as di / Γ : θi

〈v1, . . . , vk〉 as 〈d1, . . . , dk〉 / Γ : θ1 ∪ · · · ∪ θk
if ∀i, j : θi =s θj

(RSDec)
v0 as e / Γ : θ0 v1 as d / Γ : θ1

{v1}v0 as {|d|}e / Γ : θ0 ∪ θ1
if θ0 =s θ1

(RPDec)
n− as e / Γ : θ0 v as d / Γ : θ1

[[v]]n+ as [[[d]]]e / Γ : θ0 ∪ θ1
if θ0 =s θ1

(RSign)
n+ as e / Γ : θ0 v as d / Γ : θ1

[[v]]n− as [[[d]]]e / Γ : θ0 ∪ θ1
if θ0 =s θ1

Table 3.11: Revised pattern matching; v as p : θ.

As in the basic model, we also need a definition of substitution on encodings and
patterns. These are defined straightforwardly and listed in Table 3.12.

3.2.3 Well-formedness

The well-formedness condition must also cater for the language extension with
asymmetric cryptography. The well-formedness condition for encodings is un-
changed and listed in Table 3.13.

Well-formedness for patterns, listed in Table 3.14, still requires an auxiliary
judgement for determining whether a variable may be legally derived from a
decoding, d, given the current known names N and previously bound variables
X. This is captured by the judgement 〈N,X〉 `Γ

x d that now, in addition to the
decoding and the current knowledge, also requires the map Γ between variables
and their corresponding decoding. The auxiliary judgement is analogous to
the auxiliary judgement in the basic model, but it requires an additional rule,
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nτ [x 7→ v]
def
= nτ

y [x 7→ v]
def
=

{
v if x = y
y if x 6= y

〈e1, . . . , ek〉[x 7→ v]
def
= 〈e1[x 7→ v], . . . , ek[x 7→ v]〉

({e1}e0)[x 7→ v]
def
= {e1[x 7→ v]}e0[x 7→v]

([[e1]]e0)[x 7→ v]
def
= [[e1[x 7→ v]]]e0[x 7→v]

∗[x 7→ v]
def
= ∗

〈d1, . . . , dk〉[x 7→ v]
def
= 〈d1[x 7→ v], . . . , dk[x 7→ v]〉

({|d|}e)[x 7→ v]
def
= {|d[x 7→ v]|}e[x 7→v]

([[[d]]]e)[x 7→ v]
def
= [[[d[x 7→ v]]]]e[x 7→v]

(d / Γ)[x 7→ v]
def
=

{
d / Γ if x ∈ dom(Γ)
d[x 7→ v] / {y 7→ d′[x 7→ v] | (y 7→ d′) ∈ Γ} if x /∈ dom(Γ)

Table 3.12: Revised substitution; e[x 7→ v], d[x 7→ v], and p[x 7→ v].

(RWH6), for the asymmetric decryption construct, as well as the rule (RWH5),
which allows variables to be derived from decodings of other variables. The
latter is necessary whenever the binding of one variable is a sub-value of another
variable binding; e.g. in the pattern x / [x 7→ [[[y]]]k+ , y 7→ ∗] the variable y is
bound within the decoding of x . Notice that new variable bindings are, of course,
still not allowed to be found within encryptions, and thus there is no rule for
the asymmetric encryption construct.

(RWT)
fn(e) ⊆ N fv(e) ⊆ X

〈N,X〉 ` e

Table 3.13: Revised well-formedness of encodings; 〈N,X〉 ` e.

The auxiliary judgement allows for defining the well-formedness condition for
patterns and closely follows that of the basic model. We still require the
variables to be derivable in an orderly fashion, as well as the decodings for each
variable to include at most already known names and variables. The latter is a
reasonable requirement, as if it was not satisfied and, for example, there existed
two restrictive definitions (xi 7→ di), (xj 7→ dj) ∈ Γ such that xi ∈ fv(dj) and
xj ∈ fv(di), then either these variables would never be bound in a matching,
or the pattern would only match values of infinite depth (where the semantics
would go into an infinite loop). As the former is unacceptable behaviour and the
latter could never happen, such patterns should be prohibited.
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(RWDef)
x /∈ X 〈N,X〉 `Γ

x d fn(d′) ⊆ N fv(d′) ⊆ X 〈N,X ∪ {x}〉 ` d / Γ

〈N,X〉 ` d / Γ[x 7→ d′]

(RWEmp)
fn(d) ⊆ N fv(d) ⊆ X

〈N,X〉 ` d / [ ]

(RWH1)

∨k
i=1 〈N,X〉 `Γ

x ei

〈N,X〉 `Γ
x 〈e1, . . . , ek〉

(RWH2)
x = y

〈N,X〉 `Γ
x y

(RWH3)
〈N,X〉 ` e 〈N,X〉 `Γ

x d

〈N,X〉 `Γ
x {|d|}e

(RWH4)

∨k
i=1 〈N,X〉 `Γ

x di

〈N,X〉 `Γ
x 〈d1, . . . , dk〉

(RWH5)
〈N,X〉 `Γ

x Γ(y)

〈N,X〉 `Γ
x y

(RWH6)
〈N,X〉 ` e 〈N,X〉 `Γ

x d

〈N,X〉 `Γ
x [[[d]]]e

Table 3.14: Revised well-formedness of patterns; 〈N,X〉 ` p.

Remark 3.10 It is important to note that the definition does not explain
how the order of the derivation sequence is found, but only that if it exists,
then well-formedness is satisfied. In fact, the rule (RWH5), for the auxiliary
judgement, renders the definition of well-formedness coinductive, and thus it
must be determined through fix-point iteration.

We showed in Example 3.6 how perfect cryptography is enforced through well-
formedness in the basic model. These examples naturally also apply to the
extended model, but the addition of asymmetric cryptography introduces addi-
tional, interesting ways to circumvent perfect cryptography, and the following
example shows how the revised well-formedness condition, presented above, also
captures these.

Example 3.11 The following patterns are all legal:

(1) y / [x 7→ ∗, y 7→ [[[x ]]]m− ] where m− ∈ N
(2) 〈[[[x ]]]x , y〉 / [x 7→ ∗, y 7→ x ]
(3) 〈x , y〉 / [x 7→ [[[y]]]y , y 7→ ∗]

In both (1) and (2) x may be found through the decoding of y, whereafter y may be
found directly. In (3) we must first find y, whereafter finding x is straightforward.
Notice, that both (2) and (3) will only match values of the form 〈[[m+]]m− ,m+〉
or 〈[[m−]]m+ ,m−〉.

Again we can render these patterns illegal by modifying them slightly. The
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following patterns are all correctly disqualified by the well-formedness condition:

(1′) y / [x 7→ ∗, y 7→ [[[x ]]]m− ] where m− /∈ N
(2′) 〈[[[x ]]]y , x 〉 / [x 7→ ∗, y 7→ x ]
(3′) 〈x , y〉 / [x 7→ [[[y]]]y , y 7→ x ]

The pattern (1′) is illegal as it includes an unknown name, m− /∈ N. In (2′)
the variable y is moved, so that it is read through an encryption key instead.
This violates well-formedness, as although x may easily be found, the variable
y can never be derived from the pattern. This illustrates well the intuition
behind patterns and decodings; the decoding of a variable is used once the possible
value binding of the variable is established, to ensure that this value matches the
intention, and not to establish the binding itself. The pattern (3′) simply gives
circular definitions for x and y, and thus neither variable can be derived first, as
their decodings are not well-formed without knowledge of the other variable.

3.3 Properties of the Components

Whenever new concepts are being introduced, we are usually interested in
determining whether they adhere to the usual rules and satisfy the expected
properties. In this section, we shall show that the models for cryptographic
components satisfy the most important properties.

Instead of giving analogous proofs for the basic model and the revised model,
we draw attention to the fact that the basic design is included in the revised
model. Any encoding, e, in the basic model, is also legal in the revised model,
and any pattern e /X can be converted into an equivalent pattern in the revised
model; i.e. e / Γ where Γ = {x 7→ ∗ | x ∈ X}. For encodings and patterns,
committed to such a conversion, we see that the semantics of the two models are
also equivalent, since the rules (RPEnc), (RPDec), and (RSign) would never
be applied. This same is the case for well-formedness, and hence it is sufficient
to prove that the properties of interest hold for the revised model, whereafter,
directly and by construction, we may conclude that they also hold for the basic
model.

Some of the proofs rely heavily upon knowledge of set and order theory, and the
reader may refer to Appendix A for an introduction to the applied techniques.
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3.3.1 Semantics

We are interested in two specific properties of the component semantics, namely
termination, i.e. it is always computable whether a specific value and pattern
match, and, in the case they match, the substitution the matching gives rise to;
and determinism, i.e. the resulting substitution of a matching is always unique.
These are shown below.

Proposition 3.12 (Termination) There exists a terminating function which
for all v and p returns a θ such that v as p : θ, if one such exists, and otherwise
terminates unsuccessfully.

Proof The result is trivial as v as p : θ is compositional. Thus, defining the
function analogously promises that the matching of any finite elements will be
decided in a finite number of recursive calls. �

Proposition 3.13 (Determinism) For all v and p there exists at most one
θ such that v as p : θ.

Proof This is shown by contradiction. Assume θ and θ′ such that θ 6= θ′,
v as p : θ, and v as p : θ′. The result then follows by induction on the structure of
the inference tree establishing v as p : θ where each case results in a contradiction.

�

3.3.2 Well-formedness

We shall also show some properties of the well-formedness conditions. In partic-
ular, the properties we are looking for are:

• Well-definedness ; that the definition is unambiguous, i.e. under assumption
of sets N and X, then an encoding or a pattern is always either well-formed
or not.

• Termination; that well-formedness is a decidable relation.

• Type safety ; if a value is well-formed under assumption of the known set of
names N, then so is any variable binding that it may give rise to through
pattern matching.
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• Perfect cryptography guarantee; well-formed components will never violate
the perfect cryptography assumption.

These properties are shown below.

Proposition 3.14 (Well-definedness) The relations 〈N,X〉 ` e and 〈N,X〉 `
p are well-defined.

Proof The proof amounts to show that the judgement relations constitute
total functions. These relations are both compositional and the result follows
therefore by simple straightforward structural induction, although the proof for
〈N,X〉 ` p relies on that the auxiliary relation, 〈N,X〉 `Γ

x d, is also well-defined.

Unfortunately, the relation 〈N,X〉 `Γ
x d is not compositional, because of the rule

(RWH5), so instead we must show well-definedness by showing the existence of
a fixed point; more precisely, the existence of a least fixed point as we require
an inductive interpretation of the rules. Basing an analysis functional on the
clauses then gives us

F [`Γ
x ](〈N,X〉, 〈e1, · · · , ek〉)

def=
∨k
i=1 〈N,X〉 `Γ

x ei

F [`Γ
x ](〈N,X〉, y) def= x = y

F [`Γ
x ](〈N,X〉,{|d|}e)

def= 〈N,X〉 ` e ∧ 〈N,X〉 `Γ
x d

F [`Γ
x ](〈N,X〉, 〈d1, · · · , dk〉)

def=
∨k
i=1 〈N,X〉 `Γ

x di

F [`Γ
x ](〈N,X〉, y) def= 〈N,X〉 `Γ

x Γ(y)

F [`Γ
x ](〈N,X〉, [[[d]]]e)

def= 〈N,X〉 ` e ∧ 〈N,X〉 `Γ
x d

and where F [`Γ
x ] returns false in all other cases. It follows that F [`Γ

x ](〈N,X〉, d)
is true if and only if 〈N,X〉 `Γ

x d is. Clearly F [`Γ
x ] is monotonic on a complete

lattice (with the obvious choice of order), and, thus, by Tarski’s fixed point
theorem, the functional possesses a lattice of fixed points; in particular a least
fixed point. �

Proposition 3.15 (Termination) The functions 〈N,X〉 ` e and 〈N,X〉 ` p
are terminating.

Proof We must prove that the relations represent terminating functions. As in
the proof of Proposition 3.14, this result is straightforward as both functions are
compositional and thus recursively defined on a recursive structure, but, again,
the proof relies on that the auxiliary function, 〈N,X〉 `Γ

x d, is also terminating.
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Hence, the proof amounts to defining a terminating function fΓ,x , equivalent to
an inductive interpretation of the rules defining 〈N,X〉 `Γ

x d; i.e. the least fixed
point of the functional F [`Γ

x ] as defined in the proof for Proposition 3.14.

Recall, first, that an inductive interpretation implies that tuples 〈〈N,X〉, d〉, which
cannot be decided within a finite derivation tree, should be mapped to false.
This implies that we need only traverse through the decoding of any variable
at most once in each path of the derivation tree, as repeated traversals only
lead to non-termination and not any additional information. In other words, we
may obtain a well-founded recursion by using a simple memoisation technique
as follows:

fSΓ,x (〈N,X〉, 〈e1, · · · , ek〉)
def=

∨k
i=1 fSΓ,x (〈N,X〉, ei)

fSΓ,x (〈N,X〉, y) def= x = y

fSΓ,x (〈N,X〉,{|d|}e)
def= 〈N,X〉 ` e ∧ fSΓ,x (〈N,X〉, d)

fSΓ,x (〈N,X〉, 〈d1, · · · , dk〉)
def=

∨k
i=1 fSΓ,x (〈N,X〉, di)

fSΓ,x (〈N,X〉, y) def=

{
f
S∪{y}
Γ,x (〈N,X〉,Γ(y)) if y /∈ S

false if y ∈ S

fSΓ,x (〈N,X〉, [[[d]]]e)
def= 〈N,X〉 ` e ∧ fSΓ,x (〈N,X〉, d)

and where fSΓ,x returns false in all other cases. Defining fΓ,x as f∅Γ,x then obviously
results in a terminating function, as any decoding, d, holds only a finite number
of variables, fv(d). �

Proposition 3.16 (Type Safety) If 〈N, ∅〉 ` v and v as p : θ then 〈N, ∅〉 ` v′
for all v′ ∈ rg(θ).

Proof The result is found by structural induction in the definition of v as p : θ
where it follows directly from the fact that 〈N, ∅〉 ` v implies 〈N, ∅〉 ` v′ for any
sub-value v′ of v. �

Notice that type safety does not require the patterns to be well-formed, but only
the values, as well-formed patterns merely enforce the assumption of perfect
cryptography and that all variables are correctly mapped. This leads us to
the last and less trivial property, namely that well-formed patterns enforce the
assumption of perfect cryptography.

Perfect Cryptography. Before we can discuss whether a pattern adheres to
the assumption of perfect cryptography, we must give a formal definition of the
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concept. Naturally, patterns or encodings are malformed if they contain unbound
variables or names, but this may trivially be caught by the well-formedness
condition.

Fact 3.17 If 〈N,X〉 ` p then fn(p) ⊆ N and fv(p) ⊆ X.

Proof Follows by induction in the structure of the inference tree establishing
〈N,X〉 ` p. �

And, by definition, an analogous result holds for encodings. In other words,
unbound entities can be trivially avoided by equipping the surrounding language
with a similar well-formedness condition, ensuring that all free occurrences in
encodings and patterns are previously bound. Hence, the main concern is not for
the unbound names and variables, but for the variables bound within the pattern
matching; we want the well-formedness condition to ensure that a well-formed
pattern can never be used for abusing perfect cryptography.

To show such an abstract result, we shall first introduce a principal I that
plays according to the rules of perfect cryptography and will always attempt to
maximise its knowledge. Formally, we define I’s accumulated knowledge I(K),
assuming its initial knowledge K, as listed in Table 3.15.

(I1)
v ∈ K
v ∈ I(K)

(I2)
〈v1, . . . , vk〉 ∈ I(K)

v1, . . . , vk ∈ I(K)
(I3)

v1, . . . , vk ∈ I(K)

〈v1, . . . , vk〉 ∈ I(K)

(I4)
v0, v ∈ I(K)

{v}v0 ∈ I(K)
(I5)

{v}v0 ∈ I(K) v0 ∈ I(K)

v ∈ I(K)

(I6)
[[v]]n+ ∈ I(K) n− ∈ I(K)

v ∈ I(K)
(I7)

[[v]]n− ∈ I(K) n+ ∈ I(K)

v ∈ I(K)

(I8)
v0, v ∈ I(K)

[[v]]v0 ∈ I(K)

Table 3.15: The knowledge of I; I(K).

Rule (I1) shows that I has some initial knowledge K. It can then extend its
knowledge by decomposing and composing tuples (rules (I2) and (I3)), and
creating new encryptions and decrypting existing encryptions with known keys
(rules (I4-I8)). Given these ingredients we now define that a pattern p guarantees
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perfect cryptography if and only if allowing I to use pattern matching of any
value v ∈ I(K) against p would never produce new variable bindings, not already
in I(K). More formally we have:

Definition 3.18 The pattern p guarantees perfect cryptography if and only if
for all v and θ where v as p : θ then {v} ∪ fn(p) ⊆ I(K) implies rg(θ) ⊆ I(K).

Intuitively, if matching against p could violate this requirement, I(K) would
gain knowledge that he did not previously have – as I fully utilises perfect
cryptography, this would imply breaking perfect cryptography. This provides
us with a concrete requirement for patterns to guarantee perfect cryptography,
which we now must prove is ensured by the well-formedness condition.

Facts 3.19
(1) If v as p : θ then dom(θ) ⊆ bv(p)
(2) If v as e / Γ : θ then v = eθ
(3) If 〈N,X〉 ` d / Γ′ and Γ′ ⊆ Γ then 〈N,X〉 ` d / Γ

Proof Each result is trivial and follow by straightforward induction. �

We then ease presentation of the main result by first giving an auxiliary result
showing that 〈N,X〉 `Γ

x d is only satisfied if x can be derived from d without
violating perfect cryptography.

Lemma 3.20 If v as d / Γ : θ and 〈N,X〉 `Γ
x d where {v} ∪ fn(d) ∪ {θ(y) | y ∈

X ∩ dom(θ)} ⊆ I(K) then θ(x ) ∈ I(K).

Proof The proof proceeds by induction on the structure of d, where we show
the interesting cases:

Case y is trivially as 〈N,X〉 `Γ
x y implies x = y by (RWH2), and thus the result

follows by the assumption v ∈ I(K) and rule (RBind).

Case {|d′|}e. According to the semantics v must then be of the form {v1}v0 .
Thus, we have:

{v1}v0 as {|d′|}e / Γ : θ ∧ 〈N,X〉 `Γ
x {|d′|}e

⇒ {v1}v0 as {|d′|}e / Γ : θ ∧
fv(e) ⊆ X ∧ 〈N,X〉 `Γ

x d
′

(by RWH3,RWT)

⇒ v0 as e / Γ : θ0 ∧ v1 as d′ / Γ : θ1 ∧
fv(e) ⊆ X ∧ θ0 ∪ θ1 = θ ∧ 〈N,X〉 `Γ

x d
′

(by RSDec)

⇒ v0 = eθ0 ∧ v1 as d′ / Γ : θ1 ∧
fv(e) ⊆ X ∧ θ0 ∪ θ1 = θ ∧ 〈N,X〉 `Γ

x d
′

(by Fact 3.19 (2))
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It follows that v0 ∈ I(K) because rg(θ0)∪fn(e) ⊆ {θ(y) | y ∈ X∩dom(θ)}∪
fn(d) ⊆ I(K). Hence, by (I5), also v1 ∈ I(K), and the result then follows
by the induction hypothesis.

Case [[[d′]]]e. The matching must be due to one of two rules, (RPDec) or
(RPSign), where both follow analogously to case of symmetric decryption.

All remaining cases are trivial and follow by the assumptions and the induction
hypothesis. �

Theorem 3.21 (Perfect cryptography) If 〈N, ∅〉 ` p then p guarantees per-
fect cryptography.

Proof Assume d/Γ, v and θ such that v as d / Γ : θ where {v}∪fn(d/Γ) ⊆ I(K).
The proof then proceeds by induction on the structure of the inference tree
establishing 〈N,X〉 ` d / Γ′ showing that if Γ′ ⊆ Γ and {θ(x ) | x ∈ X∩dom(Γ)} ⊆
I(K) then {θ(x ) | x ∈ dom(Γ′)} ⊆ I(K):

Case (RWEmp) holds vacuously.

Case (RWDef) The result follows directly by Lemma 3.20, Fact 3.19 (3), and
the induction hypothesis. �

Finally, we shall point out an interesting corollary of this result.

Corollary 3.22 The judgement 〈N, ∅〉 ` p ensures that for all v and θ where
v as p : θ then dom(θ) = bv(p).

Proof Using Fact 3.19 (1), the result follows from the proof for Theorem
3.21. �

Remark 3.23 The last two results state nothing about patterns containing free
variables. However, it is, in fact, easy to extend the perfect cryptography result
to show that: if 〈N,X〉 ` p then pθ guarantees perfect cryptography for all θ. But
this result is not required to guarantee perfect cryptography for programs in the
language employing the components, which we shall see in Chapter 4, and, thus,
it is omitted.
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3.4 Extended Protocol Narrations

In this section we will give some examples on how to use the proposed language
extension to model security protocols. As the cryptographic components are
supposed to be useable in a large variety of process calculi, we shall not assume
anything about the underlying semantics of the communication model. Instead,
we shall formalise the protocol in an extended protocol narration (equivalent to
that of [22]), where we distinguish between outputs and corresponding inputs,
as well as between encryptions and corresponding decryptions.

For convenience and readability we shall employ the naming convention that
variables bound at the principal A are named x , usually with a superscript
indicating its expected value, and similarly we use the names y and z for the
principals B and S, respectively.

We begin with a good example of a protocol that could be modelled using the
basic model.

Example 3.24 (Wide Mouthed Frog) The Wide Mouthed Frog protocol
[31] is a symmetric key protocol used for establishing a short term key Kab
between two principals A and B, who both trust a server S. In our modelling we
shall consider the following version [6]:

1. A→ S : A,{B,Kab}Ka

2. S → B : {A,Kab}Kb

3. A→ B : {M}Kab

Here Ka and Kb are master keys that A and B, respectively, are assumed to
share with the server S. The key Kab is the session key that A and B share
after completion of the protocol, such that they in the last step can communicate
the message M encrypted.

This protocol is a commonly used example because of its simplicity and it is
also, since it only uses symmetric encryption, a well-suited choice for the basic
model. As described above, we shall formulate the protocol in an extended protocol
narration and for this we use the encodings and patterns, as well as assume a
matching operator as, similar to that of the semantics. A direct translation into
an extended protocol narration in the style of [22] is given in Figure 3.1. Each
line in the simple Alice-Bob protocol narration, has been translated into three
lines in the extended narration. The first line describes the actions of the sender,
the second line then describe how the recipient inputs the message, and the third
line describes how the recipient decrypts some of the received elements using
pattern matching. Notice that this encoding assumes that the distributed key Kab
is fresh, and that S knows the master key of A and B, Ka and Kb respectively.
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1. A → : 〈A,{〈B ,Kab〉}Ka〉
1′. → S : 〈A, z 〉 / {z}
1′′. S : z as {|〈B , zKab〉|}Ka / {zKab}
2. S → : {〈A, zKab〉}Kb

2′. → B : y / {y}
2′′. B : y as {|〈A, yKab〉|}Kb / {yKab}
3. A → : {M }Kab

3′. → B : y ′ / {y ′}
3′′. B : y ′ as {|yM |}yKab / {yM }

Figure 3.1: Wide Mouthed Frog extended narration.

1. A → : 〈A,{〈B ,Kab〉}Ka〉
1′. → S : 〈A,{|〈B , zKab〉|}Ka〉 / {zKab}
2. S → : {〈A, zKab〉}Kb

2′. → B : {|〈A, yKab〉|}Kb / {yKab}
3. A → : {M }Kab

3′. → B : {|yM |}yKab / {yM }

Figure 3.2: Wide Mouthed Frog optimised narration.

This encoding, however, can be optimised as all the decryptions can be incorporated
into the input patterns directly; the resulting narration is given in Figure 3.2.This
optimised encoding is as detailed about the actions of the participants as the
former encoding, but the readability is much higher. It is also noticeable that
this encoding uses less variables, as it is not necessary to store temporary values
in temporary variables. Naturally, however, if the temporary variables were still
needed for some reason, they could easily be incorporated; either through the
more tedious narration above or through the sub-decodings of variables in the
extended model.

The next example protocol uses asymmetric cryptography, making it ideal for
the revised model.

Example 3.25 (Needham-Schroeder Public Key) The Needham-Schroeder
public key protocol [84] is an authentication protocol, with the purpose of mutually
authenticating two principals A and B. In our modelling we shall consider the
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1. A → : [[〈Na,A〉]]Kb+

1′. → B : [[[〈yNa ,A〉]]]Kb− / [yNa ]

2. B → : [[〈yNa ,Nb〉]]Ka+

2′. → A : [[[〈Na, xNb〉]]]Ka− / [xNb ]

3. A → : [[xNb]]Kb+

3′. → B : [[[Nb]]]Kb− / [ ]

Figure 3.3: Needham-Schroeder Public Key extended narration.

usual version:
1. A→ B : [[Na, A]]Kb+

2. B → A : [[Na,Nb]]Ka+

3. A→ B : [[Nb]]Kb+

In brief, the principals are authenticated by exchanging the nonces Na and Nb.
Note that the protocol assumes that A and B know each other’s public key prior
to the protocol run. The original version of the protocol (in [84]) includes steps
for retrieval of the public keys from a trusted third party, but these steps are
usually omitted for simplicity and readability.

Again we may easily translate this into an extended protocol narration using the
language components. The result of this translation is given in Figure 3.3. The
translation is straightforward, although it is noteworthy that no variables are
bound in the third step, as this is a simple confirmation message for B.

The above two protocols are chosen as running examples in the remainder of
this dissertation, not only because they are relatively simple and well-known to
the community, but also because they are infamous for the attacks that exist on
them. Especially the Needham-Schroeder Public Key has gained notoriety after
it took more than one and a half decades from the protocol was first published
in [84] till the attack was found in [70]. An example of why automated protocol
analysis and verification is necessary.

3.5 Discussion

When designing a language or language components, there are always several
considerations and choices one must take. Below we shall discuss some of the
most interesting aspects of our development.
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3.5.1 Binding Auxiliary Variables

The semantics does not allow introduction of auxiliary variables which do not
correspond to a structural sub-term of the pattern matching; e.g. the pattern
(x / {x 7→ ∗, y 7→ {x}k}) would never result in the binding of y and it is also
correctly discarded by the well-formedness condition. But, although it is clearly
obvious what the intention of the pattern above is, it should be considered an
example of bad programming style, instead of changing the semantics. The
program should always explicitly reflect that the introduced y represents a newly
composed value (as opposed to a sub-value of an existing value), and a much
clearer formulation uses a two-step approach by first binding x and afterwards
matching {x}k to a binding occurrence of y .

3.5.2 Hashing and Other Cryptographic Primitives

We mentioned in §3.2 that many modern protocols rely on more than just
symmetric cryptography, and that was the motivation for introducing asymmetric
encryption and digital signatures. But although asymmetric and symmetric
cryptography accounts for most common protocols, there are also other primitives
that one could find interesting.

A cryptographic hash function, or just hashing, is the transformation of input
to a fixed-size string, called the message digest. The perfect cryptography
assumption for hashing dictates two properties: (1) it is a one-way function (i.e.
it is impossible to recreate the original input from the message digest); (2) it is
collision free (i.e. different inputs give different message digests).

Obviously such a construct could easily be added to the language components,
but, in fact, the revised model can already simulate a function with the above
properties. Notice that an asymmetrically encrypted value, encrypted with
a key that is not part of a key pair, can never be decrypted. Thus, any
asymmetric encryption with such a key represents a one-way function. Indeed,
if we introduced a unique name H and assumed it publicly available, then
asymmetric encryption using this name would correctly model hashing; e.g. a
hashed value of the tuple 〈A,B〉 would be modelled as [[〈A,B〉]]H .6

Apart from hashing, there are several other cryptographic operations that are
used in protocols. Some may be easily added to the cryptographic constructs,
whereas others may not be easily translated to an algebraic abstraction. For the

6This approach could also be used for modelling message authentication codes (MAC),
simply by substituting the secret key for H .
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interested reader we refer to [89] where we show how the cryptographic function
blinding, which is used in electronic voting systems and for anonymous digital
payment, can be modelled and analysed; this work also led to the discovery of a
flaw in a well-known voting protocol (see [86]).

3.5.3 Distinguishing Between Encoding and Decoding

In [30] a calculus is suggest modelling cryptography with the same operator for
encryption and decryption, and, based on this work, we introduced a stand-alone
model for cryptographic components in [87] that took a similar approach. This
approach results in an elegant and persuasive model, which needs only one
term language, instead of both encodings and decodings, and if the language is
restricted to symmetric encryption, it is also theoretically sound.

But, in addition to the obvious drawback that the abstraction makes the it
impossible to perform analyses where the difference between encryption and
decryption is important (e.g. timing analyses), this modelling approach yields
complications when dealing with asymmetric cryptography.

This is easily illustrated. Assume that the symmetric operator {·}· and the
asymmetric operator [[·]]· are used for modelling both encryption and decryption,
which would result in a semantics with rules along the lines of

(1)
v0 as e0 : θ0 v1 as e1 / Γ : θ1

{v1}v0 as {e1}e0 / Γ : θ0 ∪ θ1
(2)

n− as e0 : θ0 v as e1 / Γ : θ1

[[v]]n+ as [[e1]]e0 : θ0 ∪ θ1

(3)
n+ as e0 / Γ : θ0 v as e1 / Γ : θ1

[[v]]n− as [[e1]]e0 / Γ : θ0 ∪ θ1

where each rule is also guarded by θ0 =s θ1.

Intuitively this may seem correct, but there is a caveat. By definition, symmetric
encryption and decryption requires the keys to match, but by abusing the rules
for asymmetric decryption, we may now violate this rule; e.g. the encoding
{m1}[[m2 ]]n+ matches {m1}[[m2 ]]n−

, and not itself, according to the semantics
above. This problem is not easily dealt with, as a key property of the crypto-
graphic components is that keys may also be composite values, and thus the
distinction between encodings and decodings is required.
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3.6 Concluding Remarks

This chapter developed an expressive syntax, general semantics and a notion
of well-formedness for capturing the assumptions of perfect cryptography. The
syntax builds on and refines ideas found in the Spi-calculus [6], in LySa [22, 24],
and in LySaNS [30], in order to express patterns that allows derivation of a
number of secrets from a single transmitted message, as is common in security
protocols.

The formal development has taken the form of defining a semantics that can also
deal with imperfect cryptography (as when secret keys can be broken by brute
force attack or successful guessing) which has been supplemented by general
well-formedness conditions for ruling out those behaviours not allowed when
assuming perfect cryptography.

The theorems established in §3.3 aim at showing that the well-formedness
conditions are sufficiently restrictive that no improper behaviour is admitted;
conversely the example protocols modelled in §3.4 aim at showing that the
well-formedness conditions are sufficiently flexible to be of widespread interest.

In Chapter 4 we will show how the cryptographic components can be incor-
porated into a process calculus, but they are, by no means, restricted to this
particular language. In fact, we believe that any process calculus with a notion
of communication, could be extended with the components, thereby allowing
the language designer to choose the communication model that fits.
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Chapter 4

The Language

4.1 Introduction

Having built the cryptographic primitives, we now turn to the design of the
process calculus. The calculus should include operators for sending and receiving
messages, but apart from that we have few requirements for the language.

In the Horn clause model we used a predicate net to model all communication.
This is in line with many language-based approaches, everything happens on
a single, global communication medium. In that respect, an obvious choice of
calculus would simply have an operation for sending an encoding and receiving
with a pattern, apart from the usual components for parallel composition,
sequential composition, etc.

Modern IT-systems, however, rarely have such a simple structure. With respect
to security, it is safe to assume all communication as global, but it is often much
too coarse an assumption to be of any practical use. Most systems rely heavily
on infrastructure to obtain the required security properties and that cannot be
modelled in a calculus where all communication is visible to everyone. Instead
we shall adopt ideas from languages with distribution and build our language
around the process calculus Klaim.
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Klaim [17] is a language specifically designed for describing distributed systems
with structured communication. It allows programmers to distribute processes
and specify the scope of communication. Informally we may say that Klaim
allows several net’s, as opposed to just the one we used in the Horn clause
modelling. Klaim processes are sequential processes which communicate across
the so-called tuple spaces. These tuple space are multisets of tuples, corresponding
to our values, and interaction is established by placing and retrieving tuples via
pattern matching mechanisms.

But in order to correctly simulate cryptographic protocols, the language must
be extended with the cryptographic constructs of Chapter 3. We shall formally
specify such an extension of Klaim and name it CryptoKlaim.

The remainder of this chapter is structured as follows. In §4.2 we present the
syntax of CryptoKlaim and give an informal description of how each construct
in the language behaves. This is properly formalised in §4.3 in the form of
a reduction semantics for the language. We then extend the well-formedness
condition of the components to the language setting in §4.4 and define the
notion of a program. In §4.5 we show that programs remain well-formed under
evaluation. Finally, in §4.6, we show how protocols can be formulated in the
language, before we in §4.7 discuss some theoretical aspects of the development.

4.2 Syntax

We now introduce CryptoKlaim. It is defined via three syntactic categories as
presented in Table 4.1: actions, processes, and nets. The syntax relies on the
cryptographic components, as defined in Chapter 3. The main entity of the
calculus, nets, consists of parallel compositions of located processes or values. A
net, thus, is the finite collection of nodes, representing executable processes or
sent data, each associated with a locality identifying the tuple space it is placed
on. Localities are used as addresses (i.e. network references) of nodes, and are
the syntactic ingredient used to expressing the idea of administrative domain:
computations at a given locality is under the control of a specific authority. We
assume the existence of a countable infinite set of such localities, L, ranged over
by l, l′, l0, l1, . . . ,, and disjoint from the sets of names and variables.

To allow recursion and infinite behaviour the language supports process invoca-
tion. Thus, execution requires a process environment, ∆, which is a (static, finite,
partial) map from process identifiers to processes; we write1 A[x1 , . . . , xk ] , P

1We follow the process calculus tradition of denoting process definition with square brackets
and invocation with parenthesis.
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a ::= out e Local Output
| out e@l Output, l ∈ L
| in p Local Input
| in p@l Input, l ∈ L
| e as p Pattern matching

P ::= 0 Terminated process
| a.P Action prefixing
| P1 | P2 Parallel composition
| A(e1, . . . , ek) Invocation
| (νT n) P Local name restriction (T ∈ {±, ε})

N ::= l :: P Single node, l ∈ L
| l :: 〈v〉 Located value, l ∈ L
| N1 ‖ N2 Net composition
| (νT n) N Global name restriction (T ∈ {±, ε})

Table 4.1: Language syntax.

whenever the identifier A[x1 , . . . , xk ] is mapped to a process P in ∆.

Below we informally discuss the meanings of the constructs in each of the
syntactic categories.

Actions. The behaviour of a process is described through its actions upon the
tuple spaces. These actions are defined in Table 4.1 and depend syntactically on
the cryptographic components, encodings and patterns, as introduced in Chapter
3.

(1) Local output, written out e, outputs a value to the tuple space the action
is executed in. The encoding being output is ensured to be a value (i.e.,
closed) as we are assuming a substitution-based semantics and all variables
in e will be replaced by their corresponding mapping prior to execution
of the action. Local output models communication between concurrent
processes controlled by the same authority; e.g. communication between a
server and a database.

(2) Output, written out e@l, is as (1) except that the output value will be
placed in the locality l instead of locally. This allows communication across
tuple spaces and between computations controlled by different authorities
(or principals).
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(3) Local input, written in p, inputs a value from the tuple space the action is
executed from. Input works according to the semantics of the cryptographic
components as defined in Chapter 3: (i) first a value on the tuple space that
matches the pattern is chosen, if one such exists; (ii) the value is matched
against the pattern according to the semantics of pattern matching; and
(iii) the resulting substitution of the matching is used for updating the
continuation process. In the case that multiple values match the pattern,
one will be chosen non-deterministically, such that execution of the process
may use any of the eligible values to proceed. Naturally, further execution
is blocked until a successful input has been recorded.

(4) Input, written in p@l, is as (3) except that the value is chosen from l instead
of locally.

(5) In addition to input and output, a process may also use an in-lined, explicit
pattern matching action, by directly invoking the matching construct e as p.
The consequence of matching is the same as outputting e (or rather, the
value it corresponds to when all variables are substituted away), whereafter
the value is again input and matched against p. The advantage, however,
of the explicit matching is obvious, as it avoids any unintended, unneces-
sary interaction with concurrent processes, while allowing introduction of
auxiliary variables. Clearly the matching action blocks further execution if
e and p do not match.

Processes. Processes are then inductively defined in Table 4.1 and depend
syntactically on actions and names.

(1) The nil process, 0, denotes a process that can do nothing. Technically, this
is the terminal process that is the end of all things.

(2) Action prefixing, a.P , denotes the sequential process that first executes
the action a, awaits termination, whereafter the continuation process P is
updated with any variable bindings from a and executed.

(3) Parallel composition, P1 | P2, where P1 and P2 may proceed independently
of each other and communication is asynchronous, using the tuple spaces as
communication medium. Consider, for example, the concurrent processes:

out v@l.P1 | in p@l.P2

Communication between these processes requires two steps: (i) the leftmost
process will place the value v on the tuple space indicated by the locality l;
whereafter, (ii) the rightmost process will input v from l, if it matches the
pattern p, update the continuation process P2 with any variable bindings
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the matching resulted in, and execute the resulting process. Sometimes
we may consider a parallel composition of a family of processes Pi with
indices from set I, and abbreviate it with the notation |i∈I Pi.

(4) Process invocation, A(e1, . . . , ek), assumes that a process definition exist
A[x1 , . . . , xk ] , P ; if this is the case, then all occurrences of the variables x1

to xk in P are replaced by the values corresponding to, e1 to ek, respectively,
and the resulting process is then executed.

(5) The constructor, (νT n) P , is simply a scoping operator for names, syntac-
tically indicating the defining occurrence. The superscript T may either
be: ε, binding the name nε ∈ N within the scope of the process P ; or
±, binding the names n+,n− ∈ N within the scope of P , as well as indi-
cating that 〈n+,n−〉 is a key pair. Naming scopes may be expanded or
contracted to allow communication; e.g. two concurrent processes P1 and
P2 will only agree on a name nε that occurs free in both processes, if the
occurrences belong to the same scope, such as in (νε n) (P1 | P2). As for
parallel composition, we may sometimes need to create a family of scopes
(νT n1 ) · · · (νT nk ) P over a process P and which we shall abbreviate with
the notation (νTi∈{1,...,k} ni) P .

In the following, we shall impose a notational convention for the scoping con-
structors:

Notation 4.1 The superscripts in scoping constructors, ± and ε, are shorthand
notations for the sets {+,−} and {ε}, respectively.

This gives a more succinct definition of various relations. We may also use the
term T as a placeholder for either ± or ε, whenever both are applicable.

Nets. Nets are inductively defined in Table 4.1. They are the main entities of
the language and depend syntactically on processes and values (i.e. encodings
without variables).

(1) The node l :: P is a located process P at the tuple space l. The locality of
the process determines where locally output values are placed and which
values that are available for locale inputs. In this way, the locality decides
the local resources of the process, and, thus, two syntactically equivalent
processes may behave differently in different localities. Note that the
process may still access resources from other localities as well, by explicitly
specifying this.
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(2) The node l :: v is a located value v at the tuple space l. Located values are
used for communication between processes and the locality decides which
processes the value can be accessed by.

(3, 4) Parallel composition and name scoping works similarly to their process
counterparts.

In §4.4 we shall formally define the notion of a program. Until then, it may
be convenient to think of a program as the combination of: (i) a tuple space
environment, L ⊆ L; (ii) a net, N ; and (iii) an associated process environment,
∆, mapping each process identifier occurring in N to a process.

Free names and variables. Finally, the notions free names and variables are
extended to the language in Table 4.2 and Table 4.3, respectively. Again the
definitions are straightforward, relying on their equivalent counterparts for the
cryptographic components, and respecting the naming scopes of the language.

fn(l :: P )
def
= fn(P )

fn(l :: 〈v〉) def
= fn(v)

fn(N1 ‖ N2)
def
= fn(N1) ∪ fn(N2)

fn((νT n) N)
def
= fn(N)\{nτ | τ ∈ T}

fn(0)
def
= ∅

fn(out e.P )
def
= fn(e) ∪ fn(P )

fn(out e@l.P )
def
= fn(e) ∪ fn(P )

fn(in p.P )
def
= fn(p) ∪ fn(P )

fn(in p@l.P )
def
= fn(p) ∪ fn(P )

fn(e as p.P )
def
= fn(e) ∪ fn(p) ∪ fn(P )

fn(P1 | P2)
def
= fn(P1) ∪ fn(P2)

fn(A(e1, . . . , ek))
def
= fn(e1) ∪ · · · ∪ fn(ek)

fn((νT n) P )
def
= fn(P )\{nτ | τ ∈ T}

Table 4.2: Free names; fn.

Remark 4.2 Note that we assume that whenever A[x1 , . . . , xk ] , P then
fn(P ) = ∅ and fv(P ) ⊆ {x1 , . . . , xk}. This is due to technical reasons (variable
name capture, see §4.7), and will be enforced by the well-formedness condition
introduced in §4.4.
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fv(l :: P )
def
= fv(P )

fv(l :: 〈v〉) def
= ∅

fv(N1 ‖ N2)
def
= fv(N1) ∪ fv(N2)

fv((νT n) N)
def
= fv(N)

fv(0)
def
= ∅

fv(out e.P )
def
= fv(e) ∪ fv(P )

fv(out e@l.P )
def
= fv(e) ∪ fv(P )

fv(in p.P )
def
= (fv(p) ∪ fv(P ))\bv(p)

fv(in p@l.P )
def
= (fv(p) ∪ fv(P ))\bv(p)

fv(e as p.P )
def
= fv(e) ∪ (fv(p) ∪ fv(P ))\bv(p)

fv(P1 | P2)
def
= fv(P1) ∪ fv(P2)

fv(A(e1, . . . , ek))
def
= fv(e1) ∪ · · · ∪ fv(ek)

fv((νT n) P )
def
= fv(P )

Table 4.3: Free variables; fv.

4.3 Semantics

In this section, the informal description of the behaviour of CryptoKlaim as
given in §4.2 is made precise by a concrete semantics. Following the process
calculus tradition, the semantics shall define how nets evolve in a step-by-step
fashion. Specifically we shall give an operational semantics, formalised by a
binary relation over nets called the reduction relation. The reduction relation
holds between a pair of nets, written N → N ′, precisely when N can evolve into
N ′.

An aim of a reduction semantics is that the definition of the reduction relation
should be kept simple and only focus on central behavioural aspects, so it will
usually require the components to be on a specific form to match the rules. Hence,
in order to loosen up these rigid requirements, some syntactic manipulations of
nets are introduced before moving to the reduction relation itself.

4.3.1 Structural Congruence

The concept of a structural congruence was first introduced in Berry and Boudol’s
Chemical Abstract Machine [16] and later transferred to process calculi by Milner
[80]. The idea is that two nets are considered equal when they only differ in
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syntactic aspects of no importance to the way nets evolve. The structural
congruence relation, N ≡ N ′ is defined as the smallest relation satisfying the
rules in Table 4.4, and the definition of structural congruence is mostly trivial:

(Reflex) through (Assoc) establish reflexivity, symmetry, and transitivity of
the structural equivalence and provide standard definitions of commutativ-
ity and associativity for parallel compositions of nets;

(Comp1) and (Comp2) show how structural changes in parallel branches or
within scopes imply structural equivalence of the composed system;

(Clone) and (Abs) show that parallel process nodes with the same locality
behave equivalently regardlessly of whether they are represented in one or
two nodes, and that parallel composition have the nil process, 0, as neutral
element; and

(Res1) through (Res4) allow scope extrusion, i.e. they define how naming
scopes may be expanded or contracted without changing the meaning of
the net.

The rule (Alpha), however, is noteworthy. This rule says that two nets, N1

and N2, are considered structural congruent, if they are α-equivalent, written
N1 =α N2. That two processes are α-equivalent means that they are identical,
except that they possibly differ in the naming of bound names.2

The binary relation α-equivalence is defined in Table 4.6 and relies on the
procedure of replacing all occurrences of a bound name in a process with another
name, called α-renaming (or sometimes α-conversion), which is defined in Table
4.5. The definition of α-renaming is relatively straightforward and it is only
interesting to point out that the substitution must respect the naming scopes; i.e.
when a free occurrence of a name mτ is substituted into a process where mτ is
already bound, the free mτ becomes spuriously bound or captured, called name
capture. This is unintended behaviour, as it changes the binding occurrence of
mτ , thereby its meaning, and thus the binding occurrence must be renamed to
avoid the name capture. As already mentioned in Remark 3.3, α-renaming on
the cryptographic components is straightforward, as they contain no defining
occurrences of names and thus no name capture can take place.3

2For readers with programming experience it may be convenient to think of α-equivalent
nets as identical programs, except some syntactic parts (such as function or variable names,
datatypes, etc.) are named differently; indeed the programs will still behave equivalently.

3It is interesting to note here that we define only α-equivalence on bound names and not
variables. Naturally, α-equivalence could also be defined for bound variables, but this is not
necessary for the theoretical development and is therefore left out for the sake of simplicity.
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(Reflex) N ≡ N

(Sym)
N ≡ N ′
N ′ ≡ N

(Trans)
N ≡ N ′′ N ′′ ≡ N ′

N ≡ N ′

(Comm) N1 ‖ N2 ≡ N2 ‖ N1

(Assoc) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(Comp1)
N1 ≡ N ′1

N1 ‖ N2 ≡ N ′1 ‖ N2

(Comp2)
N ≡ N ′

(νT n) N ≡ (νT n) N ′

(Clone) l :: (P1 | P2) ≡ l :: P1 ‖ l :: P2

(Abs) l :: P ≡ l :: (P | 0)

(Res1) l :: (νT n) P ≡ (νT n) (l :: P )

(Res2) (νT1 n1 ) (νT2 n2 ) N ≡ (νT2 n2 ) (νT1 n1 ) N

(Res3) l :: 0 ≡ (νT n) (l :: 0)

(Res4)
∀τ ∈ T : nτ /∈ fn(N1)

N1 ‖ (νT n) N2 ≡ (νT n) (N1 ‖ N2)

(Alpha)
N1 =α N2

N1 ≡ N2

Table 4.4: Structural congruence; N ≡ N ′.
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0[nτ 7→ mτ ]
def
= 0

(out e.P )[nτ 7→ mτ ]
def
= out e[nτ 7→ mτ ].P [nτ 7→ mτ ]

(out e@l.P )[nτ 7→ mτ ]
def
= out e[nτ 7→ mτ ]@l.P [nτ 7→ mτ ]

(in p.P )[nτ 7→ mτ ]
def
= in p[nτ 7→ mτ ].P [nτ 7→ mτ ]

(in p@l.P )[nτ 7→ mτ ]
def
= in p[nτ 7→ mτ ]@l.P [nτ 7→ mτ ]

(e as p.P )[nτ 7→ mτ ]
def
= e[nτ 7→ mτ ] as p[nτ 7→ mτ ].P [nτ 7→ mτ ]

(P1 | P2)[nτ 7→ mτ ]
def
= P1[nτ 7→ mτ ] | P2[nτ 7→ mτ ]

A(e1, . . . , ek)[nτ 7→ mτ ]
def
= A(e1[nτ 7→ mτ ], . . . , ek[nτ 7→ mτ ])

((νT k) P )[nτ 7→ mτ ]
def
=





(νT k) P [nτ 7→ mτ ] if ∀τ ∈ T : kτ /∈ {nτ ,mτ}
(νT k) P if ∃τ ∈ T : kτ = nτ

(νT k2 ) (Pθ)[nτ 7→ mτ ] if ∃τ ∈ T : kτ = mτ

and ∀τ ∈ T : kτ2 /∈ (fn(P ) ∪ {mτ})
and θ = {kτ 7→ kτ2 | τ ∈ T}

Table 4.5: α-renaming of processes; P [nτ 7→ mτ ].

(l :: P )[nτ 7→ mτ ]
def
= l :: P [nτ 7→ mτ ]

(l :: 〈v〉)[nτ 7→ mτ ]
def
= l :: 〈v[nτ 7→ mτ ]〉

(N1 ‖ N2)[nτ 7→ mτ ]
def
= N1[nτ 7→ mτ ] ‖ N2[nτ 7→ mτ ]

((νT k) N)[nτ 7→ mτ ]
def
=





(νT k) N [nτ 7→ mτ ] if ∀τ ∈ T : kτ /∈ {nτ ,mτ}
(νT k) N if ∃τ ∈ T : kτ = nτ

(νT k2 ) (Nθ)[nτ 7→ mτ ] if ∃τ ∈ T : kτ = mτ

and ∀τ ∈ T : kτ2 /∈ (fn(P ) ∪ {mτ})
and θ = {kτ 7→ kτ2 | τ ∈ T}

Table 4.6: α-renaming of nets; N [nτ 7→ mτ ].

(AEq) (νT n) N =α (νT m) Nθ if ∀τ ∈ T : mτ /∈ fn(N)
and θ = {nτ 7→ mτ | τ ∈ T}

Table 4.7: α-equivalence; N1 =α N2.
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Remark 4.3 The structural congruence rule (Res3) should be conceived as for
garbage collection purposes only; e.g. assume (νε n) (l :: P ) where nε /∈ fn(l :: P ),
then the restriction can be removed as follows:

(νε n) (l :: P )
≡ (νε n) (l :: (P | 0)) (by Abs)
≡ (νε n) (l :: P ‖ l :: 0) (by Comp2,Clone)
≡ l :: P ‖ (νε n) (l :: 0) (by Res4)
≡ l :: P ‖ l :: 0 (by Comp1,Res3)
≡ l :: P (by Clone,Abs)

This is its only purpose, because if rule (Res3) instead is used to introduce a
fresh name scope then, due to the nature of (Res4), any process or net within
that scope is not allowed to contain a free occurrence of the fresh name.

Finally, we require the notion of substitution to be extended to cover processes
as well. This is done in Table 4.8 in a straightforward manner, relying on
substitution on the cryptographic components as defined in Chapter 3 and
α-renaming of processes. Note that, as substitutions are always from variables
to values and we assume that the set of names, N , and variables, X , are disjoint,
a substitution-based semantics will not lead to variable name capture, and thus
we do not need to define α-equivalence of variables.

0[x 7→ v]
def
= 0

(out e.P )[x 7→ v]
def
= out e[x 7→ v].P [x 7→ v]

(out e@l.P )[x 7→ v]
def
= out e[x 7→ v]@l.P [x 7→ v]

(in p.P )[x 7→ v]
def
=

{
in p[x 7→ v].P [x 7→ v]
in p.P

if x /∈ bv(p)
if x ∈ bv(p)

(in p@l.P )[x 7→ v]
def
=

{
in p[x 7→ v]@l.P [x 7→ v]
in p@l.P

if x /∈ bv(p)
if x ∈ bv(p)

(e as p.P )[x 7→ v]
def
=

{
e[x 7→ v] as p[x 7→ v].P [x 7→ v]
e[x 7→ v] as p.P

if x /∈ bv(p)
if x ∈ bv(p)

(P1 | P2)[x 7→ v]
def
= P1[x 7→ v] | P2[x 7→ v]

A(e1, . . . , ek)[x 7→ v]
def
= A([e1[x 7→ v], . . . , ek[x 7→ v])

((νT n) P )[x 7→ v]
def
=

{
(νT n) P [x 7→ v]
(νT m) (Pθ)[x 7→ v]

if ∀τ ∈ T : nτ /∈ fn(v)
if ∃τ ∈ T : nτ ∈ fn(v)

and ∀τ ∈ T : mτ /∈ (fn(v) ∪ fn(P ))
and θ = {nτ 7→ mτ | τ ∈ T}

Table 4.8: Substitution; P [x 7→ v].
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4.3.2 Reduction Relation

We are now ready to present the reduction relation itself. The reduction relation,
→, is the least relation induced by the rules in Table 4.9. The semantics follows

(L-Out) l :: out v.P → l :: P ‖ l :: 〈v〉
(Out) l :: out v@l′.P → l :: P ‖ l′ :: 〈v〉

(L-In)
v as p : θ

l :: in p.P ‖ l :: 〈v〉 → l :: Pθ

(In)
v as p : θ

l :: in p@l′.P ‖ l′ :: 〈v〉 → l :: Pθ

(Match)
v as p : θ

l :: v as p.P → l :: Pθ

(Par)
N1 → N ′1

N1 ‖ N2 → N ′1 ‖ N2

(Invoc)
A[x1 , . . . , xk ] , P

l :: A(v1, . . . , vk)→ l :: P [x1 7→ v1, . . . , xk 7→ vk]

(New)
N → N ′

(νT n) N → (νT n) N ′

(Struct)
N ≡ N ′′ N ′′ → N ′′′ N ′′′ ≡ N ′

N → N ′

Table 4.9: Reduction semantics of nets; N → N ′.

the intuitive definition given in §4.2, and consists of eight rules:

(L-Out) and (Out) simply output values to the designated localities;

(L-In) and (In) shows how input behaves, by invoking the semantics of pattern
matching;

(Match) directly invokes the semantics of pattern matching;

(Invoc) says that the process invocation evaluates into its invoked process
counterpart.

(New) and (Par) shows that reductions are allowed within naming scopes or
in parallel sub-branches; and

(Struct) loosens some of the structural requirements of the relation by allowing
structural changes on the nets in accordance with the structural equivalence.
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As usual, the semantics is best understood through a couple of examples.

Example 4.4 (α-renaming) Consider the net:

l ::
(
(νε n) out n.P ′1 | (νε n) in x / [x ].P ′2

)

Now, obviously, the processes should communicate locally, resulting in that x is
mapped to n in process P ′2. However, the processes do not agree on the meaning
of n, hence these processes cannot communicate as is. Therefore, as allowed by
the rule (Struct), we shall use the structural equivalence to put the net on a
form that allows the communication to happen. Assume that m /∈ fn(P ′1)∪ fn(P ′2)
then:

l :: ((νε n) out n.P ′1 | (νε n) in x / [x ].P ′2)
≡ l :: ((νε n) out n.P ′1) ‖ l :: ((νε n) in x / [x ].P ′2) (by Clone)
≡ (νε n) l :: (out n.P ′1) ‖ (νε n) l :: (in x / [x ].P ′2) (by Res1)
≡ (νε n) l :: (out n.P ′1) ‖ (νε m) l :: (in x / [x ].P ′2[n 7→ m]) (by Aeq)
≡ (νε n) (νε m) (l :: (out n.P ′1) ‖ l :: (in x / [x ].P ′2[n 7→ m])) (by Res4)

The processes now agree on the meaning of n, and if we let P ′′2 = P ′2[n 7→ m]
then we proceed:

(νε n) (νε m) (l :: (out n.P ′1) ‖ l :: (in x / [x ].P ′′2 ))
→ (νε n) (νε m) (l :: P ′1 ‖ l :: 〈n〉 ‖ l :: (in x / [x ].P ′′2 )) (by New,Par,L-Out)
→ (νε n) (νε m) (l :: P ′1 ‖ l :: P ′′2 [x 7→ n]) (by New,Par,L-In)

Establishing the communication we seek.

Example 4.5 (Process Invocation) Consider the net,

lA :: A ‖ lB :: B

and the associated process definitions,

A , (νε n) out n.A

B , in x / [x ]@lA.out x .B

In short, A continuously creates new names, n, and outputs them locally, and B
continuously inputs a name from the locality of A, lA, and outputs it locally. A
possible execution of this could be:

lA :: A ‖ lB :: B
→ lA :: ((νε n) out n.A) ‖ lB :: (in x / [x ]@lA.out x .B) (by Par,Invoc)
≡ (νε n) (lA :: (out n.A) ‖ lB :: (in x / [x ]@lA.out x .B)) (by Res1,Res4)
→ (νε n) (lA :: A ‖ lA :: 〈n〉 ‖ lB :: (in x / [x ]@lA.out x .B)) (by New,Par,L-Out)
→ (νε n) (lA :: A ‖ lB :: (out n.B)) (by New,Par,L-In)
→ (νε n) (lA :: A ‖ lB :: B ‖ lB :: 〈n〉) (by New,Par,L-Out)
≡ lA :: A ‖ lB :: B ‖ (νε n) lB :: 〈n〉 (by Res4)



98 The Language

Whereafter A and B may continue in this manner. Notice that the next time
A outputs, it will be a different n, as indicated by the scopes. We should also
point out that this is only one possible execution, since the processes are not
synchronised, and thus A may output more than once before B inputs.

A trivial, yet important, observation is that the semantics implicitly ensures
that name capture through pattern matching does not occur. In other words,
if P → P ′ and nτ /∈ fn(P ) then nτ /∈ fn(P ′). Notice also that the semantics
prohibits malicious use of α-renaming for illegal pattern matching; e.g. the
processes,

l :: ((νε n) in (n / [ ]).P1) ‖ l :: ((νε n) out n.P2)

would never synchronise, as the rules would require at least one of the n’s to be
α-renamed before the scopes could be enlarged and (L-In) attempted applied.

4.4 Well-formedness and Programs

In §4.2 we informally introduced the notion of a program as the combination of
a set of localities, L, a net that operates on those localities, N , and a process
environment, ∆, mapping all process identifiers to processes. In this section we
shall give the formal requirements to such a program, and, in particular, define
what it means for a net, N , to be well-formed under the assumption of a set L
and a map ∆.

4.4.1 Well-formedness Condition

The well-formedness condition for CryptoKlaim is given in Table 4.10 for processes
and Table 4.11 for nets, respectively as judgements of the form 〈N,X〉 `L

∆ P and
N `L

∆ N . The definitions are fairly simple, given the well-formedness conditions
for the cryptographic components, and all that the relations must ensure is that
each variable or name that occurs free in the components belong to a containing
scope. Note that variable rebinding is allowed, as we simply remove variables
being defined in a pattern from X before checking for well-formedness.

4.4.2 Programs

The well-formedness predicate gives us the means to distinguish well-behaved
processes. This allows us to formally define the notion of programs.
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(Wnil) 〈N,X〉 `L
∆ 0

(Wlout)
〈N,X〉 ` e 〈N,X〉 `L

∆ P

〈N,X〉 `L
∆ out e.P

(Wout)
l ∈ L 〈N,X〉 ` e 〈N,X〉 `L

∆ P

〈N,X〉 `L
∆ out e@l.P

(Wlin)
〈N,X\bv(p)〉 ` p 〈N,X ∪ bv(p)〉 `L

∆ P

〈N,X〉 `L
∆ in p.P

(Win)
l ∈ L 〈N,X\bv(p)〉 ` p 〈N,X ∪ bv(p)〉 `L

∆ P

〈N,X〉 `L
∆ in p@l.P

(Wmatch)
〈N,X〉 ` e 〈N,X\bv(p)〉 ` p 〈N,X ∪ bv(p)〉 `L

∆ P

〈N,X〉 `L
∆ e as p.P

(Wppar)
〈N,X〉 `L

∆ P1 〈N,X〉 `L
∆ P2

〈N,X〉 `L
∆ P1 | P2

(Winv)
A[x1 , . . . , xk ] , P 〈∅, {x1 , . . . , xk}〉 `L

∆ P
∧k
i=1 〈N,X〉 ` ei

〈N,X〉 `L
∆ A(e1, . . . , ek)

(Wpnew)
〈N ∪ {nτ | τ ∈ T},X〉 `L

∆ P

〈N,X〉 `L
∆ (νT n) P

Table 4.10: Well-formedness of processes; 〈N,X〉 `L
∆ P .

(Wnode)
l ∈ L 〈N, ∅〉 `L

∆ P

N `L
∆ l :: P

(Wnpar)
N `L

∆ N1 N `L
∆ N2

N `L
∆ N1 ‖ N2

(Wval)
l ∈ L 〈N, ∅〉 ` v

N `L
∆ l :: 〈v〉 (Wnnew)

N ∪ {nτ | τ ∈ T} `L
∆ N

N `L
∆ (νT n) N

Table 4.11: Well-formedness of nets; N `L
∆ N .
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Definition 4.6 (Programs) A triple 〈L,∆, N〉 is called a (well-formed) pro-
gram, written Prg(L,∆, N), if it satisfies the following conditions:

• The set of localities, L ⊆ L, is finite.

• The process environment, ∆, is a finite map, such that fn(∆(A)) = ∅ for
each A ∈ dom(∆).

• The net, N , is closed and well-formed: ∅ `L
∆ N .

Convention 4.7 In the following we shall assume that all net expressions
considered are part of a (well-formed) program.

4.5 Properties of Programs

The concept of a program allows us to discard nets that do not conform to the
assumptions and may exhibit unwanted behaviour. Thus, in the remainder of
this dissertation, we shall only concern ourselves with the properties and analysis
of programs. First we shall see that the concept of programs is tractable (i.e.
that well-formedness is well-defined), and that programs may be composed.

Proposition 4.8 (Well-definedness) The relation N `L
∆ N is well-defined.

Proof The result holds trivially as the relation is compositional. �

It follows that also programs are compositional:

Proposition 4.9 (Compositionality) If Prg(L1,∆1, N1) and Prg(L2,∆2, N2)
where dom(∆1) ∩ dom(∆2) = ∅ then Prg(L1 ∪ L2,∆1 ∪∆2, N1 ‖ N2)

Proof The result holds vacuously as N `L
∆ N is compositional. �

Type Safety. The above results are somewhat trivial and we now turn to a far
less trivial result: that the typing of a program is safe under evaluation. Later,
when proving properties of the analyses, we shall rely on the well-formedness
conditions of programs, and this is only allowed because programs evaluate into
programs,



4.5 Properties of Programs 101

If Prg(L,∆, N) and N →∗ N ′ then Prg(L,∆, N ′)

We here use the notation N →∗ N ′ whenever N may evolve into N ′ in zero or
more steps according to the semantics relation →.4 To see that this is indeed
correct, we shall first state some minor results before proceeding to the main
result itself.

Lemma 4.10 If 〈N,X〉 `L
∆ P and 〈N′, ∅〉 ` v then 〈N ∪ N′,X\{x}〉 `L

∆ P [x → v].

Proof The result is found by simple structural induction in P, relying on an
analogous result for the cryptographic components, also shown straightforwardly.

�

Lemma 4.11 If N ≡ N ′ then N `L
∆ N if and only if N `L

∆ N ′.

Proof The proof proceeds by induction in the shape of the proof tree es-
tablishing ≡, where most cases follows directly from the induction hypothesis.
Indeed, the rules for the congruence requirements, parallel distribution, and
scopes are trivial, recalling that logical conjunction is associative, commutative,
and distributive. Finally, the case of α-equivalence is trivial, as α-renaming only
changes the naming of bound names. �

Theorem 4.12 (Subject Reduction) If N `L
∆ N and N → N ′ then N `L

∆

N ′

Proof This is shown by induction on the structure of the inference tree
establishing N → N ′:

Case (L-Out). Assume l :: out v.P → l :: P ‖ l :: 〈v〉 by (L-Out). We then
have:

N `L
∆ l :: out v.P

⇔ l ∈ L ∧ 〈N, ∅〉 `L
∆ out v.P (by Wnode)

⇔ l ∈ L ∧ 〈N, ∅〉 ` v ∧ 〈N, ∅〉 `L
∆ P (by Wlout)

⇔ N `L
∆ l :: P ‖ l :: 〈v〉 (by Wnode,Wval,Wnpar)

Case (Out) is analogous.

4Formally →∗ is the reflexive, transitive closure of →.
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Case (L-In). Assume l :: in p.P ‖ l :: 〈v〉 → l :: Pθ by (L-In) because v as p : θ.
We then have:

N `L
∆ l :: in p.P ‖ l :: 〈v〉 ∧ v as p : θ

⇔ N `L
∆ l :: in p.P ∧ N `L

∆ l :: 〈v〉 ∧ v as p : θ (by Wnpar)

⇔ N `L
∆ l :: in p.P ∧ l ∈ L ∧ 〈N, ∅〉 ` v ∧ v as p : θ (by Wval)

⇒ N `L
∆ l :: in p.P ∧ ∀v′ ∈ rg(θ) : 〈N, ∅〉 ` v′ (by Prop. 3.16)

⇔ l ∈ L ∧ 〈N, ∅〉 `L
∆ in p.P ∧ ∀v′ ∈ rg(θ) : 〈N, ∅〉 ` v′ (by Wnode)

⇒ l ∈ L ∧ 〈N, ∅〉 ` p ∧ 〈N, bv(p)〉 `L
∆ P ∧

∀v′ ∈ rg(θ) : 〈N, ∅〉 ` v′
(by Wlin)

⇒ l ∈ L ∧ 〈N, dom(θ)〉 `L
∆ P ∧ ∀v′ ∈ rg(θ) : 〈N, ∅〉 ` v′ (by Cor. 3.22)

⇒ l ∈ L ∧ 〈N, ∅〉 `L
∆ Pθ (by Lem. 4.10)

⇔ N `L
∆ l :: Pθ (by Wnode)

Case (In) and (Match) are analogous.

Case (Invoc). Assume l :: A(v1, . . . , vk) → l :: P [x1 7→ v1, . . . , xk 7→ vk] by
(Invoc) because A[x1 , . . . , xk ] , P . We then have:

N `L
∆ l :: A(v1, . . . , vk) ∧ A[x1 , . . . , xk ] , P

⇔ l ∈ L ∧ 〈N, ∅〉 `L
∆ A(v1, . . . , vk) ∧ A[x1 , . . . , xk ] , P (by Wnode)

⇔ l ∈ L ∧ 〈∅, {x1 , . . . , xk}〉 `L
∆ P ∧ ∧ki=1 〈N, ∅〉 ` vi (by Winv)

⇔ l ∈ L ∧ 〈N, ∅〉 `L
∆ P [x1 7→ v1, . . . , xk 7→ vk] (by Lem. 4.10)

⇔ N `L
∆ l :: P [x1 7→ v1, . . . , xk 7→ vk] (by Wnode)

Case (New) and (Par) follow by the induction hypothesis.

Case (Struct) is a direct consequence of Lemma 4.11 and the induction
hypothesis. That concludes the proof �

Leading to the main result:

Corollary 4.13 (Type Safety) If Prg(L,∆, N) and N →∗ N ′ then Prg(L,∆, N ′)

Proof The result follows by induction of the length of the derivation sequence
N →∗ N ′, where the base case holds by assumption and the inductive step is
established by Theorem 4.12. �

It follows that the perfect cryptography guarantee, that we showed for the
cryptographic components in §3.3, is guaranteed for any execution of a program.

Corollary 4.14 (Perfect Cryptography) If Prg(L,∆, N) and N →∗ N ′ →
N ′′ where the reduction N ′ → N ′′ is due to pattern matching on a pattern p
then p guarantees perfect cryptography.
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Proof From Corollary 4.13 it follows that Prg(L,∆, N ′) and as p must be
a structural sub-component of N ′, then the result follows by induction on the
structure of the inference tree establishing N ′ → N ′′, where each case follows
trivially analogous to the proof for Theorem 4.12. �

4.6 Modelling Protocols

In §3.4 we showed how classical protocol narrations can be extended with
more information using the cryptographic components. In this section we shall
show how these extended narrations may, again, be converted into full protocol
specifications in our language.

The translation into CryptoKlaim is quite simple; transmission of a message is
modelled with output and reception with input. The structure of the net, however,
should be considered, as it is not mentioned at all in the protocol narration.
This is important as a wrong abstraction may rule out events that could happen
in reality; e.g. if we assumed that two principals were communicating through a
safe, private tuple space, although they were using unsafe means in reality, then
reality could allow attacks even when the model showed none. To avoid this, we
shall be as conservative in our modelling as possible. Each principal is located
on separate localities and all inter-locality communication happens through a
single tuple space, the ether, denoted by the locality l. This is analogous to the
abstraction we suggested in §2.2.1, and is supposed to be a realistic model of
the internet; all communication is by default insecure and visible to everyone,
and required security must be obtained through cryptography.5

Example 4.15 (Wide Mouthed Frog [Example 3.24 cont.]) Recall the ex-
tended protocol narration for the Wide Mouthed Frog protocol of Figure 3.2. To
translate this into a CryptoKlaim net, we will need to split the actions up into
sequential processes describing each participant. Each sent message corresponds
to an output action, and each received message to an input action. The processes
are defined straightforwardly as illustrated in Figure 4.1. This is a direct trans-
lation of the actions of the principals, and each process definition is recursive
to allow multiple protocol runs. Notice that all names that are assumed defined
prior to the protocol run, i.e. principal names and long term keys, are passed to
the processes through variables to allow sharing of names between the processes.

5Locating the principals on separate localities is in general good coding practice, and
convenient when modelling systems where principals use databases or other means of local
communication.
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A[xA, xB , xKa ] , (ν Kab) (ν M )
out 〈xA,{〈xB ,Kab〉}xKa 〉@l.

out {M }Kab@l.
A(xA, xB , xKa)

S[zA, zB , zKa , zKb ] , in 〈zA,{|〈zB , zKab〉|}zKa 〉 / {zKab}@l.
out {〈zA, zKab〉}zKb @l.
S(zA, zB , zKa , zKb)

B[yA, yKb ] , in {|〈yA, yKab〉|}yKb / {yKab}@l.
in {|yM |}yKab / {yM }@l.
B(yA, yKb)

Figure 4.1: Wide Mouthed Frog processes.

We then define the corresponding net:

NWMF = (ν A) (ν B) (ν Ka) (ν Kb) (

lA :: A(A,B ,Ka)

‖ lS :: S(A,B ,Ka,Kb)

‖ lB :: B(A,Kb)

)

Notice how the specification explicitly shows the assumed prior knowledge of
the principals; e.g. the invocation A(A,B ,Ka) reflects that the principal A is
assumed to know the names A and B as well as the symmetric key Ka, prior to
protocol execution, and that the well-formedness of the program (with a suitable
choice of L) ensures that principles do not exceed their assumed knowledge.

Example 4.16 (Needham-Schroeder Public Key [Example 3.25 cont.])
The extended protocol narration for the Needham-Schroeder Public Key was given
in Figure 3.3. As for the Wide Mouthed Frog protocol, we translate this into a
process calculus by splitting the actions up into a process for each participant;
one for A and one for B. This results in the following process definitions of
Figure 4.2 and the corresponding net definition,

NNS =
(ν A) (ν B) (ν± Ka) (ν± Kb) (

lA :: A(A,B ,Kb+,Ka−)

‖ lB :: B(A,B ,Kb−,Ka+)

)

Again we see the assumptions of prior knowledge, the principals must know their
own private key and each other’s public key on advance.



4.6 Modelling Protocols 105

A[xA, xB , xKb+
, xKa− ] , (ν Na)

out [[〈Na, xA〉]]
xKb+ @l.

in [[[〈Na, xNb〉]]]
xKa− / [xNb ]@l.

out [[xNb]]
xKb+ @l.

A(xA, xB , xKb+
, xKa−)

B[yA, yB , yKb− , yKa+
] , (ν Nb)

in [[[〈yNa , yA〉]]]
yKb− / [yNa ]@l.

out [[〈yNa ,Nb〉]]
yKa+ @l.

in [[[Nb]]]
yKb− / [ ]@l.

B(yA, yB , yKb− , yKa+
)

Figure 4.2: Needham-Schroeder Public Key processes.

4.6.1 Multiple Principals

Cryptographic protocols are usually specified in a manner that only deals with
a few participants, one in each role. However, in reality these protocols are
applied in systems with many, theoretically infinitely many, participants, and
thus any serious analyst should take multiple principals into account. To cater for
this we shall assume that a countably infinite set of principals in each role, and
consider the situation where any one of them may participate in a communication.
Formally, we shall introduce the set of initiators A1, A2, . . . ∈ A and responders
B1, B2, . . . ∈ B.

The introduction of multiple principals raises different questions.

Do principals have unique roles in all runs of the protocol?

Assuming A = B, then principals could be allowed to act as either initiator and
responder, and possibly both. Thus, to clarify that principals may not have
unique roles in all scenarios, we employ the naming scheme Ii where the index i
denotes the current role of the principal; i.e. Ia where a ∈ A is a principal that
acts as an initiator and, likewise, Ib where b ∈ B is a principal that acts as a
responder. When principals are allowed to play more than one role, the question
arises whether they use the same key in both roles:

If principal Ii uses the key Kai for initiating and Kbi for responding, is
Kai = Kbi?
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This is also an important question, and often the answer depends on the intended
use of the protocol, rather than the actual protocol design. In the following we
leave our models generic so that we may assume different scenarios later when
analysing them.

A naive attempt to model the communication between all these participants
would then trivially lead into infinitely large models, which, obviously, is not very
attractive. Fortunately, as we discussed in §2.6.2, Comon-Lundh and Cortier
proved a result in [39] stating that it is enough to consider only a finite number
of participants in each role when investigating for a particular security property,
and for integrity and confidentiality this number is 3. Hence, we shall use a
finite canonicalisation of the principal sets, bAc and bBc, and only consider
communication between the canonical representatives. The actual size of these
sets is, as already noted, dependent on the security property in question, but for
the properties considered in this dissertation 3 is sufficient.

Let us return to the running examples to see how these modifications apply.

Example 4.17 (Wide Mouthed Frog [Example 4.15 cont.]) We wish to
model the scenario where multiple initiators and responders may attempt to es-
tablish a key through the same trusted third party. More precisely, the network
we are interested in is as follows:

N∗WMF = (νi∈bAc∪bBc Ii) (νa∈bAc Kaa) (νb∈bBc Kbb) (

‖a∈bAc la ::
(
|b∈bBc Aab(Ia , Ib ,Kaa)

)

‖ lS ::
(
|a∈bAc |b∈bBc Sab(Ia , Ib ,Kaa ,Kbb)

)

‖ ‖b∈bBc lb ::
(
|a∈bAc Bab(Ia ,Kbb)

)

)

Here multiple A’s (denoted Ia) may each attempt to establish a key with multiple
B’s (denoted Ib), through a server S; each attempt is modelled by a process
invocation Aab. The server will only allow key establishment between known
principals, and thus it has a unique process, Sab, ready to serve any pair of
principals that it shares a key with. Finally, each responder B is willing to
communicate with any initiator, which is modelled by the process Bab. The
subscripted process definitions are as those of Figure 4.1, except that names,
variables and scopes are subscripted analogously to the process.

It is important that the names and keys assumed known prior to protocol execution,
are scoped around all instances of the protocol, as principals should use the same
name and long term key in all protocol executions. Notice that the specification
also supports assumptions like A = B (implying bAc = bBc) or Kai = Kbi ; in
the first case bAc ∪ bBc = bAc = bBc and in the latter the scopes (νa∈bAc Kaa)
are superfluous as they contain no free occurrences of the names.
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The observant reader notices that a more simple modelling is possible by simply
reusing the same process definition for all arguments, and we should remark why
this is not done:

Remark 4.18 We ensure that the variable parameters in the process invocations
are restricted to singleton bindings, by creating a unique process definition for
each combination of arguments. This is needed for the context-independent
analysis, which we shall present in Chapter 5, to obtain sufficient precision.
A more precise and context-dependent analysis, which would not require this
extensive encoding, will be discussed in Chapter 5.6.2.

Example 4.19 (Needham-Schroeder Public Key [Example 4.16 cont.])
Analogous to the Wide Mouthed Frog protocol, we may extend the modelling
of the Needham-Schroeder Public Key protocol to cover multiple initiators and
responders.

NNS∗ =
(νi∈bAc∪bBc Ii) (ν±a∈bAc Kaa) (ν±b∈bBc Kbb) (

‖a∈bAc la ::
(
|b∈bBc Aab(Ia , Ib ,Kb+

b ,Ka−a )
)

‖ ‖b∈bBc lb ::
(
|a∈bAc Bab(Ia , Ib ,Kb−b ,Ka+

a )
)

)

Again the model assumes process definitions similar to those of Figure 4.2, except
that names, variables and scopes are subscripted analogously to the process.

4.7 Discussion

4.7.1 Differences to cKlaim

The syntax and semantics of CryptoKlaim is based on cKlaim [17], the core
of the Klaim-family of calculi. As opposed to CryptoKlaim, however, cKlaim
supports dynamically changing systems, and allows construction of new tuples
spaces as well as remote evaluation of a process.6 These operations are not
supported by CryptoKlaim, but could pose interesting extensions to the language
at a later point.

CryptoKlaim assumes a static set of localities, L, instead of allowing a dynamic cre-
ation of new localities under execution as cKlaim (with the construct newloc(l)).

6Interestingly, though, cKlaim does not have a notion of local communication and, thus,
the execution of a process is independent of the tuple space it is executed in.
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While localities are the key primitive in cKlaim, being the only communicated
value, they are assumed predefined and known to all participants in CryptoKlaim.
This is intended to be a more realistic modelling of communication in networks,
as the structure of wired networks rarely change, and practically never during a
protocol run. Possibly, however, the dynamic creation of localities could be used
for modelling ad-hoc networks and wireless protocols; but it should be carefully
considered whether such a modelling would be realistic and sound, before the
extension was made, and that is outside the scope of this dissertation.

The evaluation action, eval(P ) @ l, from cKlaim is also omitted. This action
simply allows a process to be executed in another tuple space, intended to model
transaction of executable code. But, obviously, this only makes sense in a security
context in collaboration with some access control primitives, which is also beyond
the scope of this dissertation. However, we direct the interested reader to the
work of Probst et al. in [111], where cKlaim is extended with access control;
an extension that should be directly compatible with CryptoKlaim.

Instead CryptoKlaim supports local communication, as denoted by the omission
of @l on input and output actions, making process evaluation context sensitive
to the locality it is executed in; the same process may behave differently in
two different tuple spaces, which is the key ingredient to allow generic process
definitions. In fact, a context-dependent analysis, as the one suggested in §5.6.2,
could allow the modelling to benefit from this, and result in much more succinct
specifications.

4.7.2 Semantical Changes

There are also some more subtle differences between the languages of technical
character. First, the output action is not guarded in the semantics by the
existence of the targeted locality in CryptoKlaim as it is in cKlaim. This is
because the set of localities is static and therefore this requirement can be
enforced statically by the well-formedness condition.

Next, processes are invoked in the semantics instead of through the structural
congruence as in cKlaim. Process invocation through the structural congruence
also allows process devocation (i.e. using the process definition from right-to-
left) because of symmetry. Thus, a strict enforcement of fv(P ) = {x1 , . . . , xk}
would be required instead of the more common ⊆ for all process definitions
A[x1 , . . . , xk ] , P , as a devocation could otherwise yield unbound variables and
cause variable name capture. Additionally, it would not allow the usual subject
reduction result for control flow analyses tracking variable bindings (in particular,
Lemma 5.9 from Chapter 5 would not hold).
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Finally, we require processes in process definition not to contain any free names.
This is also to avoid name capture under evaluation and is the simplest solution
to the problem; as names may be passed as arguments then there is no reason
to allow free names in the processes. Alternative solutions and a more detailed
discussion of free names in calculi with recursion may be found in [95].

4.7.3 Distinguishing Names and Variables

Classically, names and variables are considered equivalent and combined into
one syntactical class in process calculi. But coming from Horn clauses, where
the distinction is always made, it seems an obvious choice to also keep them
separate in the language design. Hence, already at this point, prior to the formal
construction of an analysis for the language, it should be clear that variables
and names in the Horn formulation and in the language design are related.

Apart from the presentational benefits, it also turns out that some of the required
complexities surrounding names are not needed for variables; e.g. we do not
need to allow free α-renaming for variables. Nevertheless, it is subjective which
approach one prefers, and it is sufficient to point out that a similar development
with a combined syntactic class could be made.

4.8 Concluding Remarks

This chapter presented CryptoKlaim which is the core of this dissertation. Specif-
ically, we have given the syntax and semantics of the language and defined the
requirements to well-formed programs. Using a well-formedness criterion, instead
of a more restrictive syntax, allows a flexible calculus and intuitive semantics that
maintains attractive properties. In particular, programs are shown to always
evaluate into programs, which means that the properties of the well-formed
cryptographic components are always guaranteed under execution.

CryptoKlaim is intended as a simple, intuitive language for designing cryptographic
systems. Recursive infinite behaviour is encoded by parameterised process
invocations. As a result, we see that protocol specifications are cleanly separated
into a description of the net model and a number of process definitions. This
separation is supposed to ease the design phase even further; it allows a high
amount of code reusability and explicitly shows the assumptions of the model.
This was demonstrated through the modelling of a few well-known cryptographic
protocols.
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Chapter 5

Control Flow Analysis

Control flow analysis is a technique from program analysis to statically compute
approximations of the result of a program execution. In this chapter we apply
this technique to CryptoKlaim to determine the sets of values that may be
generated by communication or bound to variables. More precisely, the result of
our analysis for a net N yields an over-approximation of

(1) the set of values which each variable may be bound to during evaluation
of N , and

(2) the set of values which may be placed on each locality during evaluation of
N .

In other words, if the analysis estimate for N states something will not happen
then it is guaranteed never to happen during any evaluation of N . Such an
analysis is beneficial for establishing security properties of the system. Used in
conjunction with a model of possible malicious activity (we shall present one such
in §6.1), it provides a static safe approximation of all events that may happen.

The following sections are divided as follows. In §5.1 we present Flow Logic, a
notational style for program analysis, which we use in §5.2 to define a control
flow analysis of CryptoKlaim. We then show the correctness of the analysis in
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§5.3 and how the analysis may be implemented in Horn clauses in §5.4. Finally,
in §5.5 we return to our two running examples, and see how the analysis is
applied to protocols, before we in §5.6 discuss aspects of the analysis.

5.1 Flow Logic

Flow Logic, as introduced by Nielson, Nielson [91, 98, 100], and with Hankin
[93], is a notational style for specifying analyses across programming paradigms.
In the Flow Logic framework a clear distinction between the specification of
an analysis and the computation of corresponding analysis estimates is made.
Essentially, Flow Logic is concerned with the former. By abstracting from domain
specific formalisms and instead using standard mathematical notations, the Flow
Logic constitutes a meta-language that can present an analysis without requiring
additional knowledge about particular formalisms. Deriving an analysis estimate
from the resulting analysis specification is then left as a separate activity, usually
involving orthogonal considerations and tools.

This approach allows the designer to focus on the specification of analyses without
making compromises dictated by implementation considerations. Similarly,
implementation is simplified and improved, as the implementor is always free to
choose the best available tool.

Acceptability Judgement. A Flow Logic specification defines the relation-
ship between programs, P, and analysis estimates, A. This is given by a binary
relation,

|=: (A× P)→ {true, false}
called the acceptability judgement. For a specific program component, p ∈ P,
and analysis estimate, Θ ∈ A, we write Θ |= p whenever 〈Θ,p〉 is mapped to
true in |=. In this case we say that Θ is an acceptable analysis estimate for p.
As for the well-formedness relation introduced in §3.1, we may sometimes use
subscripts or superscripts on |= to denote static components.

Flow Logic. The judgement is defined by a set of clauses – usually this
definition is syntax-directed and consists of one clause for each syntactic construct
� of P resulting in a compositional judgement relation:

Θ |= �(· · ·p′ · · · ) iff some formula ϕ containing Θ |= p′

for various sub-components p′

Here ϕ may be a formula of (any fragment of) First Order Logic.
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Generally, however, the definition may not be syntax-directed (i.e. the program
component on the left-hand-side may be a syntactic sub-component of the
formula on the right-hand-side or if just the sides are incomparable), resulting
in an abstract specification.

An analysis which has a single, global analysis component Θ, such as shown
above, is called verbose. Alternatively, it is called succinct in the case there is
an additional component ψ, local to the expression p in question and written
Θ |= p : ψ. Occurrences of components ψ on the right-hand side of rules are
implicitly existentially quantified. As shown in [100], succinct specifications
can always be reduced to verbose ones, but are often preferred due to their
conciseness.

5.1.1 Correctness

The correctness of a Flow Logic is determined by establishing the following
properties [93, 100]:

(1) Well-definedness

(2) Semantic correctness

(3) Moore-family

Which, in order, are explained below.

Well-definedness. In order to establish well-definedness, note that the rules
define an analysis functional F : Q → Q for a complete lattice (Q,v), namely
the set of functions A× P→ {true, false} with the ordering:

Q1 v Q2 iff ∀〈Θ,p〉 ∈ A× P : Q1(Θ,p)⇒ Q2(Θ,p)

In the case that the specification is compositional, then the least and the
greatest fix-point of the functional coincides, resulting in a unique definition of
|=, adequately established by ordinary induction. But in the general case the
specification might be abstract and should be co-inductively interpreted, as we
are always interested in the largest relation satisfying the specification (the least
restrictive).

Thus, the analysis is called well-defined if the functional F has a greatest fixed
point. This can be guaranteed by showing that F is monotonic, so that it follows
from Tarski’s fixed point theorem that it possess a complete lattice of fixed
points in Q.
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Semantic correctness. Intuitively, an analysis is semantically correct if the
analysis estimate contains information about the entire evolution of the program,
as described by its formal semantics. This is usually expressed through a subject
reduction theorem:

if Θ |= p and p→ p′ then Θ |= p′

So if Θ is an acceptable analysis estimate for p, and p evolves to p′ according to
the formal semantics described by relation →, then Θ is an acceptable analysis
estimate for p′ as well.

Moore-family property. It is also reasonable to ask whether each program
p (a) admits an acceptable analysis estimate and (b) has a best analysis estimate.
Both questions can be answered by proving the Moore-family property (see
Appendix A). A subset S of a complete lattice L is called a Moore-family if and
only if

d
S′ ∈ S for all S′ ⊆ S. The Moore-family property is then stated as

follows:

{Θ | Θ |= p} is a Moore-family for all p ∈ P

By definition, a Moore-family is never empty, which shows (a), and
d
{Θ | Θ |= p}

is a least solution, showing (b).

5.2 Control Flow Analysis

Using Flow Logic, we shall now define an analysis of the language to assist
us in verifying protocols. Recall the verification methodology for Horn clauses
we outlined in Chapter 2. Using Horn clauses, we described the protocol in a
step-by-step fashion. The predicate, net, represented the network containing
all values that may be transmitted during or after execution of the protocol.
Similarly, by introducing auxiliary predicates, we could extract information
about all bindings to specific variables that may occur during execution, in order
to establish the integrity of the protocol.

The keyword may indicates that we are interested in an over-approximation of
the possible protocol executions; we want the analysis to tell us everything that
could happen. This type of analysis allows us to establish guarantees such as “x
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can only be bound to the name n” or “the value {m}K will never be sent on the
ether”, and, in turn, establish security properties of the protocol.

We also notice that the Horn clause verification of protocols is based on the
possible variable bindings and which values that may be sent on the network at
any given point. Therefore we can now state the purpose of our analysis. We
want to specify an acceptable analysis estimate, ρ, of a program, Prg(L,∆, N),
such that: (1) if the variable x could become bound to a value v during any
execution of N then v ∈ ρ(x ); and (2) if the value v could ever exist in a locality
l during execution of N then v ∈ ρ(l). It follows that the analysis estimate, ρ,
belongs to:

ρ : L ∪ X → ℘(Val)

The idea is then to specify the analysis in a simple, syntax-directed manner,
ensuring that the analysis over-approximates the semantics in all cases. We
shall define the analysis in a bottom-up manner, first describing the analysis of
pattern matching, then processes, and finally of nets.

Pattern matching. First we must be able to decide whether the matching
of v against p may return the substitution θ assuming the analysis estimate ρ.
This is captured by the judgement ρ |= v as p : θ as defined in Table 5.1. Most
of the rules are simple, we simply require v to structurally matching the pattern
and that the subcomponents of v matches the corresponding subcomponents
of p. Here the right-hand-sides of the rules are implicitly quantified over the
subcomponents of v.1

Two rules stand out as interesting though, namely (AVar) and (APDec). In
the former, we distinguish between two cases: (1) either the variable x is bound
outside the matching (i.e. x /∈ dom(Γ)) and we shall simply require it to belong
to the estimate of possible bindings in ρ(x ); or (2) it is defined in the matching
x ∈ dom(Γ), whereafter we shall require θ to contain this map as well as v to
match the decoding of x .

In the case (APDec), we say that at value v = [[v1]]v0 matches a pattern [[[d]]]e /Γ
if there exists a value v̄0 such that 〈v0, v̄0〉 is a key pair and v̄0 and v1 matches
e and d, respectively. The condition that 〈v0, v̄0〉 is a key pair is written as
〈v0, v̄0〉 ∈ kp. We, thus assume that kp denotes the infinitely enumerable set of
key pairs; i.e. if k+ and k− is a key pair then 〈k+, k−〉, 〈k−, k+〉 ∈ kp. This is
tractable as, although kp is theoretically infinite, it is, for any particular program,
always sufficient to only consider the smallest set of pairs containing the names
occurring in that program. Hence, as this set is always finite, we may use kp for
analysis purposes.

1An equivalent, but less intuitive, way of formulating the rules would be to put the structure
of v explicitly on the left-hand-side.
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(AName) ρ |= v as nτ / Γ : θ iff v = nτ

(AVar) ρ |= v as x / Γ : θ iff (x /∈ dom(Γ)⇒ v ∈ ρ(x )) ∧
(x ∈ dom(Γ)⇒

θ(x ) = v ∧ ρ |= v as Γ(x ) / Γ : θ)
(AETup) ρ |= v as 〈e1, . . . , ek〉 / Γ : θ iff v = 〈v1, . . . , vk〉 ∧∧k

i=1 ρ |= vi as ei / Γ : θ

(ASEnc) ρ |= v as {e1}e0 / Γ : θ iff v = {v1}v0 ∧
∧1
i=0 ρ |= vi as ei / Γ : θ

(APEnc) ρ |= v as [[e1]]e0 / Γ : θ iff v = [[v1]]v0 ∧
∧1
i=0 ρ |= vi as ei / Γ : θ

(AWild) ρ |= v as ∗ / Γ : θ iff true

(ADTup) ρ |= v as 〈d1, . . . , dk〉 / Γ : θ iff v = 〈v1, . . . , vk〉 ∧∧k
i=1 ρ |= vi as di / Γ : θ

(ASDec) ρ |= v as {|d|}e / Γ : θ iff v = {v1}v0 ∧
ρ |= v0 as e / Γ : θ ∧ ρ |= v1 as d / Γ : θ

(APDec) ρ |= v as [[[d]]]e / Γ : θ iff v = [[v1]]v0 ∧ 〈v0, v̄0〉 ∈ kp ∧
ρ |= v̄0 as e / Γ : θ ∧ ρ |= v1 as d / Γ : θ

Table 5.1: Analysis of patterns; ρ |= v as p : θ.

Processes. The analysis for processes is specified in Table 5.2. A process
must be analysed in the context of a process environment, ∆, and its locality,
l, resulting in the judgement relation ρ |=l

∆ P . Each of the rules defining the
analysis is described below.

Rule (Anil) is trivial, as any analysis estimate is acceptable for the terminated
process.

Rule (Appar) says the analysis of parallel composition holds if it holds for the
constituent processes.

Rule (Apnew) shows scopes are simply ignored by the analysis.

Rules (Alout) and (Aout) state the analysis estimate is acceptable for
transmission of an encoding e to a locality l (respectively l′) if each value,
v, produced as a result of replacing all free variables in e by a value
from their respective analysis estimate in ρ, is guaranteed to be in ρ(l).
Essentially, this is equivalent to requiring:

{v | v = eθ ∧ ∀x ∈ dom(θ) : θ(x ) ∈ ρ(x )} ⊆ ρ(l)

Rules (Alin) and (Ain) says that the analysis estimate is acceptable for input
with a pattern p from a locality l (respectively l′) if for all values, v, and
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substitutions, θ, where ρ |= v as p : θ then the result of the matching is
contained in the analysis estimate; i.e. θ(x ) ∈ ρ(θ) whenever x is bound
within the matching.

Rule (Amatch) says that the analysis holds for a matching of an encoding
e against a patterns p if there exists some locality, l′, for which the
analysis correctly models the transmission of e and the reception of p.
Practically this can be satisfied by assigning a unique locality, l′, to each
match construct and simply require the analysis to hold for that particular
locality.2

Rule (Ainv) states the analysis requirements of a process invocation in a
straightforward manner; analogously to output, all possible value arguments
passed to the process are ensured to be contained in the analysis estimate
of the corresponding variables in the process definition, whereafter the
analysis is required to also hold for the invoked process counterpart.

Nets. Finally, the analysis specification of nets is straightforward and defined
in Table 5.3. It contains no surprises or non-trivial rules.

To see how the analysis works, consider the following example:

Example 5.1 (Analysis of input) Assume that we wish to analyse the pro-
cess,

in [[[x ]]]k− / [x ].P

attempting to input a matching, asymmetrically encrypted value from the local
tuple space and bind the variable x .

First, we shall establish the requirements to ρ, a substitution θ and a value v
to successfully match against the pattern in the input. These are, according to
Table 5.1, as follows:

ρ |= v as [[[x ]]]k− / [x ] : θ
⇔ v = [[v1]]v0 ∧ 〈v0, v̄0〉 ∈ kp ∧

ρ |= v̄0 as k− / [x ] : θ ∧ ρ |= v1 as x / [x ] : θ
(by APDec)

⇔ v = [[v1]]v0 ∧ 〈v0, v̄0〉 ∈ kp ∧
v̄0 = k− ∧ θ(x ) = v1

(by AName,AVar,Awild)

⇔ v = [[v1]]v0 ∧ 〈v0, k
−〉 ∈ kp ∧ θ(x ) = v1 (?)

2Note that we do note require l′ to be unique but only that it exists. In general, however,
unique localities for each matching is preferred, as it achieves the best analysis estimate.
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(Anil) ρ |=l
∆ 0 iff true

(Appar) ρ |=l
∆ P1 | P2 iff ρ |=l

∆ P1 ∧ ρ |=l
∆ P2

(Apnew) ρ |=l
∆ (νT n) P iff ρ |=l

∆ P

(Alout) ρ |=l
∆ out e.P

iff ∀θ :
∧

x∈fv(e) θ(x ) ∈ ρ(x ) ⇒ eθ ∈ ρ(l)

∧ ρ |=l
∆ P

(Aout) ρ |=l
∆ out e@l′.P

iff ∀θ :
∧

x∈fv(e) θ(x ) ∈ ρ(x ) ⇒ eθ ∈ ρ(l′)

∧ ρ |=l
∆ P

(Alin) ρ |=l
∆ in p.P

iff v ∈ ρ(l) ∧ ρ |= v as p : θ ⇒ ∧
x∈bv(p) θ(x ) ∈ ρ(x )

∧ ρ |=l
∆ P

(Ain) ρ |=l
∆ in p@l′.P

iff v ∈ ρ(l′) ∧ ρ |= v as p : θ ⇒ ∧
x∈bv(p) θ(x ) ∈ ρ(x )

∧ ρ |=l
∆ P

(Amatch) ρ |=l
∆ e as p.P

iff ∃l′ : ρ |=l′
∆ out e ∧ ρ |=l′

∆ in p
∧ ρ |=l

∆ P

(Ainv) ρ |=l
∆ A(e1, . . . , ek)

iff A[x1 , . . . , xk ] , P ⇒∧k
i=1

(
∀θ :

∧
y∈fv(ei) θ(y) ∈ ρ(y)⇒ eiθ ∈ ρ(xi)

)

∧ ρ |=l
∆ P

Table 5.2: Analysis of processes; ρ |=l
∆ P .

(Anode) ρ |=∆ l :: P iff ρ |=l
∆ P

(Aval) ρ |=∆ l :: 〈v〉 iff v ∈ ρ(l)

(Anpar) ρ |=∆ N1 ‖ N2 iff ρ |=∆ N1 ∧ ρ |=∆ N2

(Annew) ρ |=∆ (νT n) N iff ρ |=∆ N

Table 5.3: Analysis of nets; ρ |=∆ N .
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We may then apply the analysis of input to find the analysis constraints:

ρ |= in [[[x ]]]k− / [x ].P as :
⇔ v ∈ ρ(l) ∧ ρ |= v as [[[x ]]]k− / [x ] : θ ⇒

θ(x ) ∈ ρ(x )

∧ ρ |=l
∆ P

(by Alin)

⇔ [[v1]]v0 ∈ ρ(l) ∧ 〈k−, v0〉 ∈ kp ⇒ v1 ∈ ρ(x )

∧ ρ |=l
∆ P

(by ?)

And we can continue this way on P . The produced constraints are then ready to
be fed into a solver.

5.2.1 Handling α-renaming

There is a non-trivial problem in analysing programs with a substitution-based
semantics allowing free α-renaming [91]. In short, the analysis can never remain
acceptable under evaluation, i.e. the subject reduction result cannot be proven,
if the analysis must keep track of possible substitutions. This is because α-
renaming allows every single name in the programs to change arbitrarily under
evaluation, and, thus, a static analysis estimate containing applied occurrences
of names is not tractable.

Environment-based semantics does not encounter this problem, as names are
linked to a unique handle in the environment that remains static under evaluation.
This allows the analysis to refer to names by their handle and thereby remain
acceptable under α-renaming. We shall deal with the problem in a similar
manner, and assume a canonical operator b·c : N→ bNc that maps each name
to a unique canonical representative, which is preserved under the semantics
and in particular under α-renaming. Thus, if we extend b·c homomorphically to
processes and nets, we have that if N =α N

′ then bNc = bN ′c.

Remark 5.2 Tags are invariant under canonicalisation; i.e. bnτc = bncτ .

This allows us to show that the analysis estimate, with respect to the canonical
entities, remains acceptable under evaluation:

If ρ |=∆ bNc and N → N ′ then ρ |=∆ bN ′c

The implications of this abstraction may be hard to comprehend at first, but an
easy way to regard it is to assume that the canonical representative is the original
name in the initial process, prior to any α-renaming, and that the canonical
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operator is simply a method for recalling this name; i.e. if the initial net is
denoted N? then bN?c = N?. The analysis estimate is then only concerned with
the initial names, ignoring dynamic renaming required to make the semantics
work, and gives the result in terms of the original naming scheme.

Convention 5.3 (Initial programs) As a matter of convenience we shall
also assume that programs, Prg(L,∆, N), subjected to static analysis, are initial
in the sense that they satisfy bNc = N .

5.3 Properties of the Analysis

In this section we will show the correctness of the analysis; i.e., according to
§5.1.1 that it has the following properties:

(1) Well-definedness

(2) Semantic correctness

(3) Moore-family property

These are shown below.

5.3.1 Well-Definedness

As described in §5.1, a Flow Logic is well-defined if it has a greatest fixed point.

Theorem 5.4 (Well-Definedness) The judgement ρ |=∆ N is well-defined.

Proof Since the judgement is compositional, a simple structural induction
shows that the analysis functional it defines is monotonic. Thus the functional
possesses a lattice of fixed points by Tarski’s fixed point theorem. Furthermore,
the compositional specification entails that the functional has exactly one fixed
point so that the least and the greatest fixed points coincide. �
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5.3.2 Semantic Correctness

Informally, we may say that semantic correctness expresses that the analysis esti-
mate remains acceptable when the program evolves. Formally this is formulated
with respect to the operational semantics of §4.3 as follows:

The proof follows closely that of type safety of the well-formedness condition in
§4.5. First we shall show some auxiliary results that ease the presentation of the
main result.

Fact 5.5 ρ |= v as v′ / Γ : θ if and only if v = v′.

Proof The result is found by induction in the shape of the proof tree estab-
lishing v as v′ / Γ : θ where each case holds by assumption and the induction
hypothesis. �

Lemma 5.6 If v as p : θ and 〈N, ∅〉 ` p then ρ |= v as p : θ for all ρ.

Proof The result is found by induction in the shape of the proof tree es-
tablishing v as p : θ where each case holds by assumption and the induction
hypothesis. The proof for case (Rbind) also relies on Corollary 3.22 stating that
bv(p) = dom(θ) and, thus, for each x in p it will be the case that x ∈ dom(Γ).�

Lemma 5.7 If ρ |= v as p[x → v′] : θ and v′ ∈ ρ(x ) then ρ |= v as p : θ.

Proof Recall that if x ∈ bv(p) then p[x → v′] = p in which case the result
holds trivially. Thus, the interesting case is when x /∈ bv(p) which is shown by
structural induction over patterns by regarding each of the rules in the analysis.
Whenever one has to do a proof that concerns substitution the only interesting
cases are the ones where the substitution modifies something. In this proof the
interesting case, thus, is (Avar), as e.g.

Case (Aname). Assume that ρ |= v as (nτ / Γ)[x 7→ v′] : θ. By definition of
substitution, for arbitrary choices of x and v′ it holds that nτ [x 7→ v′] = nτ

so it is immediate that also ρ |= v as nτ / Γ : θ.

Case (AVar). Assume that ρ |= v as (y / Γ)[x 7→ v′] : θ then there are two
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cases: either (1) x 6= y in which case

ρ |= v as (y / Γ)[x 7→ v′] : θ ∧ v′ ∈ ρ(x )
⇔ ρ |= v as y / Γ[x 7→ v′] : θ ∧ v′ ∈ ρ(x ) (by Tab. 3.12)
⇔ θ(y) = v ∧ v′ ∈ ρ(x )

∧ y /∈ dom(Γ)⇒ v ∈ ρ(y)
∧ y ∈ dom(Γ)⇒ ρ |= v as Γ(y)[x 7→ v′] / Γ[x 7→ v′] : θ

(by Avar)

⇒ θ(y) = v
∧ y /∈ dom(Γ)⇒ v ∈ ρ(y)
∧ y ∈ dom(Γ)⇒ ρ |= v as Γ(y) / Γ : θ

(by Ind. Hyp.)

⇔ ρ |= v as y / Γ : θ (by Avar)

alternatively x = y in which case we have

ρ |= v as (y / Γ)[x 7→ v′] : θ ∧ v′ ∈ ρ(x )
⇔ ρ |= v as v′ / Γ[x 7→ v′] : θ ∧ v′ ∈ ρ(x ) (by Tab. 3.12)
⇔ v = v′ ∧ v ∈ ρ(x ) (by Fact 5.5)
⇔ ρ |= v as v′ / Γ : θ ∧ v ∈ ρ(x ) (by Fact 5.5)
⇔ ρ |= v as x / Γ : θ (by Avar)
= ρ |= v as y / Γ : θ

The second-to-last step also uses that x /∈ dom(Γ). All remaining cases follow
directly by the induction hypothesis. �

Lemma 5.8 If ρ |=l
∆ P and v ∈ ρ(x ) then ρ |=l

∆ P [x → v].

Proof The proof proceeds by induction in the shape of the proof tree estab-
lishing ρ |=l

∆ P .

Cases (Anil), (Appar), (Anew) hold by assumption and the induction
hypothesis.

Case (Alout). Assume that ρ |=l
∆ out e.P by (Alout). The result then holds

trivially if x /∈ fv(e) and assuming the opposite, namely that x ∈ fv(e), we
find

ρ |=l
∆ out e.P ∧ v ∈ ρ(x )

⇔ ∀θ :
∧

y∈fv(e) θ(y) ∈ ρ(y) ⇒ eθ ∈ ρ(l)

∧ ρ |=l
∆ P ∧ v ∈ ρ(x )

(by Alout)

⇒ ∀θ :
∧

y∈fv(e)\{x} θ(y) ∈ ρ(y) ⇒ e[x 7→ v]θ ∈ ρ(l)

∧ ρ |=l
∆ P ∧ v ∈ ρ(x )

⇒ ∀θ :
∧

y∈fv(e)\{x} θ(y) ∈ ρ(y) ⇒ e[x 7→ v]θ ∈ ρ(l)

∧ ρ |=l
∆ P [x 7→ v]

(by Ind. Hyp.)

⇔ ρ |=l
∆ (out e.P )[x 7→ v] (by Alout)
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Case (Aout) is analogous.

Case (Alin). Assume that ρ |=l
∆ in p.P by (Alout), we then find:

ρ |=l
∆ in p.P ∧ v ∈ ρ(x )

⇔ ∀θ : v′ ∈ ρ(l) ∧ ρ |= v′ as p : θ ⇒∧
x∈bv(p) θ(x ) ∈ ρ(x )

∧ ρ |=l
∆ P ∧ v ∈ ρ(x )

(by Alin)

⇒ ∀θ : v′ ∈ ρ(l) ∧ ρ |= v′ as p[x 7→ v] : θ ⇒∧
x∈bv(p) θ(x ) ∈ ρ(x )

∧ ρ |=l
∆ P ∧ v ∈ ρ(x )

(by Lem. 5.7)

⇒ ∀θ : v′ ∈ ρ(l) ∧ ρ |= v′ as p[x 7→ v] : θ ⇒∧
x∈bv(p) θ(x ) ∈ ρ(x )

∧ ρ |=l
∆ P [x 7→ v]

(by Ind. Hyp.)

⇔ ρ |=l
∆ (in p.P )[x 7→ v] (by Alin)

Case (Ain) is analogous.

Case (Amatch) follows by the induction hypothesis.

Case (Ainv) is analogous to (Alout). �

Lemma 5.9 If N ≡ N ′ then ρ |=∆ bNc if and only if ρ |=∆ bN ′c.

Proof The proof proceeds by induction in the shape of the proof tree estab-
lishing ≡. The rules for the congruence requirements and parallel distribution
follow by the induction hypothesis and the fact that that logical conjunction
is associative, commutative, and distributive. For the scoping rules for name
bindings the lemma holds vacuously as name restrictions are ignored by the
analysis. Finally, the case of α-equivalence relies on the fact that if N =α N

′

then bNc = bN ′c and, thus, ρ |=∆ bNc ⇔ ρ |=∆ bN ′c follows by referential
transparency. �

Theorem 5.10 (Subject Reduction) If N `L
∆ bNc, ρ |=∆ bNc, and N →

N ′ then ρ |=∆ bN ′c

Proof The proof proceeds by induction on the structure of the inference tree
establishing N → N ′. To retain readability of the proof, the b·c operator on all
program parts is omitted, as it is only used for case (Struct) and otherwise
merely passed around.
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Case (L-Out). Assume l :: out v.P → l :: P ‖ l :: 〈v〉 by (L-Out). We then
have:
ρ |=∆ l :: out v.P
⇔ ρ |=l

∆ out v.P (by Anode)

⇔ v ∈ ρ(l) ∧ ρ |=l
∆ P (by Alout)

⇔ ρ |=∆ l :: P ‖ l :: 〈v〉 (by Anode,Aval,Wnpar)

Case (Out) is analogous.

Case (L-In). Assume l :: in p.P ‖ l :: 〈v〉 → l :: Pθ by (L-In) because v as p : θ.

ρ |=∆ l :: in p.P ‖ l :: 〈v〉 ∧ v as p : θ
⇔ ρ |=∆ l :: in p.P ∧ ρ |=∆ l :: 〈v〉 ∧ v as p : θ (by Anpar)
⇔ ρ |=∆ l :: in p.P ∧ v ∈ ρ(l) ∧ v as p : θ (by Aval)

⇔ ρ |=l
∆ in p.P ∧ v ∈ ρ(l) ∧ v as p : θ (by Anode)

By assumption also N `L
∆ l :: in p.P ‖ l :: 〈v〉 which by (Wnpar), (Wnode),

and (Wlin) implies that 〈N, ∅〉 ` p, we then have

ρ |=l
∆ in p.P ∧ v ∈ ρ(l) ∧ v as p : θ ∧ 〈N, ∅〉 ` p

⇔ ρ |=l
∆ in p.P ∧ v ∈ ρ(l) ∧ ρ |= v as p : θ (by Lem. 5.6)

⇔ ρ |=l
∆ P ∧ ∧x∈bv(p) θ(x ) ∈ ρ(x ) (by Alin)

⇒ ρ |=l
∆ Pθ (by Lem. 5.8)

⇔ ρ |=∆ l :: Pθ (by Anode)

The second-to-last step also uses Corollary 3.22; i.e. that bv(p) = dom(θ).

Case (In) and (Match) are analogous.

Case (Invoc). Assume l :: A(v1, . . . , vk) → l :: P [x1 7→ v1, . . . , xk 7→ vk] by
(Invoc) because A[x1 , . . . , xk ] , P . We then have:

ρ |=∆ l :: A(v1, . . . , vk) ∧ A[x1 , . . . , xk ] , P
⇔ ρ |=l

∆ A(v1, . . . , vk) ∧ A[x1 , . . . , xk ] , P (by Anode)

⇔ ∧k
i=1 vi ∈ ρ(xi) ∧ ρ |=l

∆ P (by Ainv)

⇔ ρ |=l
∆ P [x1 7→ v1, . . . , xk 7→ vk] (by Lem. 5.8)

⇔ ρ |=∆ l :: P [x1 7→ v1, . . . , xk 7→ vk] (by Anode)

Case (New) and (Par) follow by the induction hypothesis.

Case (Struct) is a direct consequence of Lemma 4.11, Lemma 5.9 and the
induction hypothesis. �

Corollary 5.11 (Semantic Correctness) If Prg(L,∆, N), ρ |=∆ bNc, and
N →∗ N ′ then ρ |=∆ bN ′c

Proof The result follows by induction of the length of the derivation sequence
N →∗ N ′, where the base case holds by assumption and the inductive step is
established by Theorem 4.12 and Theorem 5.10. �
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The semantic correctness result entails that the analysis estimate is invariant with
respect to evaluation, but it does not show that the analysis actually achieves its
purpose; namely that it may be used for verifying protocols. The usefulness of
the analysis is stated by the following two corollaries of the semantic correctness
result.

Corollary 5.12 (Values in ρ) If Prg(L,∆, N) and ρ |=∆ bNc and N →∗
N ′ → N ′′ where the reduction N ′ → N ′′ outputs the value v to the locality l then
bvc ∈ ρ(l).

Proof The result is a direct consequence of Corollary 5.11, (Aval), and the
fact that output of a value v to a locality l is reflected syntactically by l :: 〈v〉,
which, thus, must be a structural sub-term of N ′′. �

Corollary 5.13 (Bindings in ρ) If Prg(L,∆, N) and ρ |=∆ bNc and N →∗
N ′ → N ′′ where the reduction N ′ → N ′′ involves the binding of a variable x to
a value v then bvc ∈ ρ(x ).

Proof That ρ |=∆ bN ′c follows from Corollary 5.11 and then the result is
shown analogously to Theorem 5.10 as the binding of x can only be due to either
rule (L-In), (In), or (Match). �

5.3.3 Moore-family property

Recall that a subset, S, of a complete lattice, (L,v), is called a Moore-family if
and only if ∀S′ ⊆ S :

d
S′ ∈ S. Proving that the set of all acceptable analysis

estimates is a Moore-family for all programs enables us to state that there is a
least analysis estimate for any program, where least is to be understood with
respect to the partial order ⊆.

As we shall see in §5.4, the right-hand-side of the analysis is, in fact, equivalent
to Horn clauses, thus the Moore-family property is a direct consequence of
Proposition 2.1. Nevertheless, the result may also be shown by a structural
induction on N , by assuming for some index set I that if ∀i ∈ I : ρi |=∆ N then
also

⋂
i∈I ρi |=∆ N . We shall prove two auxiliary results before proceeding to

the main result.

Fact 5.14 If ∀i ∈ I : ρi |= v as p : θ then (
⋂
i∈I ρi) |= v as p : θ.

Proof The result follows by straightforward structural induction on v. �
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Lemma 5.15 If ∀i ∈ I : ρi |=l
∆ P then (

⋂
i∈I ρi) |=l

∆ P .

Proof This also is shown straightforwardly by structural induction on P , and
we will thus only show two exemplary cases of the proof of the auxiliary result.

Case out e.P . Assume ∀i ∈ I : ρi |=l
∆ out e.P . Thus by (Alout) we have

∀i ∈ I : ρi |=∆ l :: out e.P
⇔ ∀i ∈ I : ∀θ :

∧
x∈fv(e) θ(x ) ∈ ρi(x ) ⇒

eθ ∈ ρi(l′)
∧ ∀i ∈ I : ρi |=l

∆ P

(by Alout)

⇒ ∀θ :
∧

x∈fv(e) θ(x ) ∈ (
⋂
i∈I ρi)(x ) ⇒

eθ ∈ (
⋂
i∈I ρi)(l

′)
∧ (
⋂
i∈I ρi) |=l

∆ P

(by Ind. Hyp.)

⇔ (
⋂
i∈I ρi) |=l

∆ out e.P (by Alout)

Case in p.P . Assume ∀i ∈ I : ρi |=l
∆ in p.P . Thus we have

∀i ∈ I : ρi |=l
∆ in p.P

⇔ ∀i ∈ I : ∀θ : v ∈ ρi(l) ∧ ρi |= v as p : θ ⇒∧
x∈bv(p) θ(x ) ∈ ρi(x )

∧ ρ |=l
∆ P

(by Alin)

⇒ ∀θ : v ∈ (
⋂
i∈I ρi)(l) ∧ (

⋂
i∈I ρi) |= v as p : θ ⇒∧

x∈bv(p) θ(x ) ∈ (
⋂
i∈I ρi)(x )

∧ ρ |=l
∆ P

(by Fact 5.14)

⇒ ∀θ : v ∈ (
⋂
i∈I ρi)(l) ∧ (

⋂
i∈I ρi) |= v as p : θ ⇒∧

x∈bv(p) θ(x ) ∈ (
⋂
i∈I ρi)(x )

∧ (
⋂
i∈I ρi) |=l

∆ P

(by Ind. Hyp.)

⇔ (
⋂
i∈I ρi) |=l

∆ in e.P (by Alin)

The remaining cases follow either by the induction hypothesis or in an analogous
fashion to one of the cases above. �

This allows us to show the main result.

Theorem 5.16 (Moore-family) The set {ρ | ρ |=∆ N} is a Moore-family for
all Prg(L,∆, N).

Proof The result follows trivially by structural induction relying on Lemma
5.15. �
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5.4 Implementation

The control flow analysis is formulated such as to make the transition from
semantics to analysis as gentle as possible. However, as the language design
was analysis-directed, we should expect that implementation of the analysis
is straightforward. Fortunately this is the case, in fact, the right-hand-side of
the analysis is basically already in Horn clauses, although it may require some
rewriting to realise this.

First, analogous to the approach of §2.2, we see that an encoding, e, always have
a corresponding term, te; i.e. each constructor in the cryptographic components
is simply modelled by a unique constructor of the same arity, names are nullary
constructors, and variables are variables.

Next, each implication produced by the analysis corresponds to one or more
Horn clauses. This is seen as follows:

• Horn clauses are, similarly to the right-hand-side of the analysis, implicitly
quantified over substitutions.

• In Horn clauses the domain of the model, ρ, is predicate names. Hence,
we shall introduce a unique predicate name for each variable for each
locality. This obtains the one-to-one correspondence between the ρ’s; e.g.
eθ ∈ ρ(x )⇔ ρ, θ |= x (te). Note that this is tractable as any program will
only use a finite set of variables and localities.

• Introduce a predicate kp such that ρ(kp) is the set of all key pairs, again
this is tractable as only a finite number of key pairs will occur in any
program.

• For each encoding, which is (implicitly) quantified over values, we replace
the unspecified values by corresponding fresh variables and leave the
quantification to the substitution; e.g. [[v1]]v0 ∈ ρ(l) ⇔ ∀θ : ([[x1 ]]x0 ) θ ∈
ρ(l)⇔ ρ, θ |= l([[x1 ]]x0 ).

• Clauses with more than one literal in the conclusion are split up; i.e.
(ω ⇒ g1 ∧ · · · ∧ gk)⇔

∧k
i=1 (ω ⇒ gi)

It follows that each right-hand-side rule for nets and processes may be translated
into equivalent Horn clauses.3

3A very compact Horn formulation can be obtained by encoding families of names through
arguments of the constructors and leave the instantiation to the iterative framework; e.g for
|i∈I Pi one may use a unary constructor n(I ) for each ni occurring in Pi, add the literal I(I )
to each precondition, and a fact I(i) for each i ∈ I to the formula.
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Example 5.17 (Analysis of Input [Example 5.1 cont.]) Recall that the
analysis of the process,

in [[[x ]]]k− / [x ].P

required solving the constraint:

∀θ : [[v1]]v0 ∈ ρ(l) ∧ 〈k−, v0〉 ∈ kp ⇒ v1 ∈ ρ(x )
⇔ ∀θ : ([[x1 ]]x0 ) θ ∈ ρ(l) ∧ 〈k−, x0 〉θ ∈ kp ⇒ x1 ∈ ρ(x )
⇔ ∀θ : ρ, θ |= l([[X1 ]]X0 ) ∧ ρ, θ |= kp(k−,X0 ) ⇒ ρ, θ |= x (X1 )
⇔ ρ |=

(
x (X1 ) ⇐ l([[X1 ]]X0 ) ∧ kp(k−,X0 )

)

In other words, equivalent to the Horn clause,

x (X1 ) ⇐ l([[X1 ]]X0 ) ∧ kp(k−,X0 )

which, in conjunction with the analysis of P , may be solved using the techniques
presented in Chapter 2.

5.5 Examples

We now ready to establish the constraints specifying an acceptable analysis
estimate for each of the running examples.

Example 5.18 (Wide Mouthed Frog [Example 4.15 cont.]) The analy-
sis constraints for the protocol, ρ |=∆ NWMF, from Figure 4.1, amounts to the
conjunction of the analysis constraints for the three process invocations:

ρ |=lA
∆ A(A,B ,Ka) ∧ ρ |=lS

∆ S(A,B ,Ka,Kb) ∧ ρ |=lB
∆ B(A,Kb)

Each of which is shown in Figure 5.1 alongside their corresponding, fully expanded
logical constraints. Finding the least analysis estimate satisfying the conjunction
of these constraints, thus, corresponds finding the least model ρ satisfying Horn
clauses listed in Figure 5.2.4

Example 5.19 (Needham-Schroeder Public Key[Example 4.16 cont.])
Similarly, the analysis constraints for the protocol, ρ |=∆ NNS, from Figure 4.2,
amounts to the conjunction of the analysis constraints for the two process invo-
cations:

ρ |=lA
∆ A(A,B ,Kb+,Ka−) ∧ ρ |=lB

∆ B(A,B ,Kb−,Ka+)

The fully expanded right-hand-side counterpart of the analysis is shown in Figure
5.3, and the corresponding Horn clauses in Figure 5.4. The Horn clause for-
mulation also includes the key pair sets occurring in the protocol. Notice how
the analysis ignores the last integrity check at B in the protocol, as part of the
over-approximation, as this check does not introduce new variable bindings.

4Note that we use a variable naming scheme similar to that of Chapter 2 to make the
analysis constraints more intelligible.
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ρ |=l∆ A(A,B ,Ka)
iff A ∈ ρ(xA) ∧ B ∈ ρ(xB ) ∧ Ka ∈ ρ(xKa)
∧
∀θ : θ(xA) ∈ ρ(xA) ∧ θ(xB ) ∈ ρ(xB ) ∧ θ(xKa) ∈ ρ(xKa)⇒

〈xA,{xB ,Kab}xKa 〉θ ∈ ρ(l)
∧
{M }Kab ∈ ρ(l)

ρ |=l∆ S(A,B ,Ka,Kb)

iff A ∈ ρ(zA) ∧ B ∈ ρ(zB ) ∧ Ka ∈ ρ(zKa) ∧ Kb ∈ ρ(zKb)
∧
〈vA,{〈vB , vKab〉}vKb 〉 ∈ ρ(l) ∧ vA ∈ ρ(zA) ∧ vB ∈ ρ(zB ) ∧ vKb ∈ ρ(zKb)⇒

vKab ∈ ρ(zKab)
∧
∀θ : θ(zA) ∈ ρ(zA) ∧ θ(zKab) ∈ ρ(zKab) ∧ θ(zKb) ∈ ρ(zKb)⇒(

{〈zA, zKab〉}xKb

)
θ ∈ ρ(l)

ρ |=l∆ B(A,Kb)

iff A ∈ ρ(yA) ∧ Kb ∈ ρ(yKb)
∧
{〈vA, vKab〉}vKb ∈ ρ(l) ∧ vA ∈ ρ(yA) ∧ vKb ∈ ρ(yKb)⇒

vKab ∈ ρ(yKab)
∧
{vM}vKab ∈ ρ(l) ∧ vKab ∈ ρ(yKab)⇒

vM ∈ ρ(yM )

Figure 5.1: Analysis of Wide Mouthed Frog; ρ |=∆ NWMF

xA(A) ∧ xB (B) ∧ xKa(Ka)
l(〈X A,{X B ,Kab}XKa 〉) ⇐ xA(X A) ∧ xB (X B ) ∧ xKa(X Ka)
l({M }Kab)

zA(A) ∧ zB (B) ∧ zKa(Ka) ∧ zKb(Kb)

zKab(Z Kab) ⇐ l(〈Z A,{〈Z B ,Z Kab〉}ZKa 〉) ∧ zA(Z A) ∧ zB (Z B ) ∧ zKa(Z Ka)

l({〈Z A,Z Kab〉}ZKb ) ⇐ zA(Z A) ∧ zKab(Z Kab) ∧ zKb(Z Kb)

yA(A) ∧ yKb(Kb)

yKab(Y Kab) ⇐ l({〈Y A,Y Kab〉}Y Kb ) ∧ yA(Y A) ∧ yKb(Y Kb)

yM (Y M ) ⇐ l({Y M}Y Kab ) ∧ yKab(Y Kab)

Figure 5.2: Analysis of Wide Mouthed Frog in Horn clauses.
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ρ |=l∆ A(A,B ,Kb+,Ka−)

iff A ∈ ρ(xA) ∧ B ∈ ρ(xB ) ∧ Kb+ ∈ ρ(xKb+
) ∧ Ka− ∈ ρ(xKa−)

∧
∀θ : θ(xKb+

) ∈ ρ(xKb+
) ∧ θ(xA) ∈ ρ(xA)⇒(

[[〈Na, xA〉]]
xKb+

)
θ ∈ ρ(l)

∧
[[〈vNa , vNb〉]]v ∈ ρ(l) ∧ 〈v , vKa−〉 ∈ kp ∧ vKa− ∈ ρ(xKa−) ∧ vNa ∈ ρ(xNa)⇒

vNb ∈ ρ(xNb)
∧
∀θ : θ(xKb+

) ∈ ρ(xKb+
) ∧ θ(xNb) ∈ ρ(xNb)⇒(

[[xNb]]
xKb+

)
θ ∈ ρ(l)

ρ |=l∆ B(A,B ,Kb−,Ka+)

iff A ∈ ρ(yA) ∧ B ∈ ρ(yB ) ∧ Kb− ∈ ρ(yKb−) ∧ Ka+ ∈ ρ(yKa+
)

∧
[[〈vNa , vA〉]]v ∈ ρ(l) ∧ 〈v , vKb−〉 ∈ kp ∧ vKb− ∈ ρ(yKb−) ∧ vA ∈ ρ(yA)⇒

vNa ∈ ρ(yNa)
∧
∀θ : θ(yKa+

) ∈ ρ(yKA+
) ∧ θ(yNa) ∈ ρ(yNa)⇒(

[[〈yNa ,NB〉]]
yKa+

)
θ ∈ ρ(l)

Figure 5.3: Analysis of Needham-Schroeder Public Key; ρ |=∆ NNS

kp(Ka+,Ka−) ∧ kp(Ka−,Ka+) ∧ kp(Kb+,Kb−) ∧ kp(Kb−,Kb+)

xA(A) ∧ xB (B) ∧ xKb+
(Kb+) ∧ xKa−(Ka−)

l([[〈Na,X A〉]]
XKb+ ) ⇐ xKb+

(X Kb+
) ∧ xA(X A)

xNb(X Nb) ⇐ l([[〈X Na ,X Nb〉]]X ) ∧ kp(X ,X Ka−) ∧ xKa−(X Ka−) ∧ xNa(X Na)

l([[X Nb]]
XKb+ ) ⇐ xKb+

(X Kb+
) ∧ xNb(X Nb)

yA(A) ∧ yB (B) ∧ yKb−(Kb−) ∧ yKa+
(Ka+)

yNa(Y Na) ⇐ l([[〈Y Na ,Y A〉]]Y ) ∧ kp(Y ,Y Kb−) ∧ yKb−(Y Kb−) ∧ yNa(Y Na)

l([[〈Y Na ,Nb〉]]
Y Ka− ) ⇐ yKa−(Y Ka−) ∧ yNa(Y Na)

Figure 5.4: Analysis of Needham-Schroeder Public Key in Horn clauses.
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5.6 Discussion

In this chapter we have presented a control flow analysis for CryptoKlaim. The
analysis serves to show that the language can be easily verified. Indeed, as we
shall see in the following chapter, we may apply the analysis successfully to
several well-known protocols; specifically we shall pin-point the known attacks
without getting any false positives and even verify an industrial case study.

The main topic of this dissertation is, however, the construction of the language
and not the analysis. Thus, to avoid too much digression in the presentation, we
have opted for a simple, yet powerful analysis, to establish proof-of-concept. This
section addresses some of the topics that were left out during the presentation.

5.6.1 Complexity

There is an almost one-to-one correspondence between the representation in the
language and the number of Horn clauses in the analysis. Each output action
translates into exactly one Horn clause and each input action corresponds to a
number of Horn clauses equal to the number of variables bound in the action.

The complexity of solving the Horn clauses depends on the solving technique.
If this is the H1-iterative framework of Chapter 2, then the complexity of each
solving operation is, as already mentioned, deterministic exponential in the
number of clauses. Furthermore, each refinement step exponentially increases
the number of clauses. This, however, is a crude approximation of the worst
case complexity, and, as discussed in Appendix B.2, there are techniques for
reducing the latter. In fact, the protocols are specified in a way where each
variable corresponds to a single ground term, resulting in a linear instantiation.

The theoretical exponential complexity is a result of the complexity of protocol
analysis in general, and the fact that we seek to retain as much information
throughout our abstraction as possible. Since protocols are usually only a few
lines of code, even industrial sized systems would be unlikely to exceed 100 lines
of code, the theoretical complexity is of little importance for these cases.

In general, however, language-based techniques and analyses are used on programs
consisting of several million lines of code. For such uses, the H1-iterative
framework is much too expensive, and fortunately there are ways to reduce the
complexity – of course at the cost of precision.

Consider that we wanted to optimise the analysis presented in this chapter. The
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high cost of verification can, in fact, be narrowed down to two specific problems:
(1) non-linear output actions and (2) non-linear input actions. Here non-linear
refers to encodings or decodings where at least one variable occurs more than once.
Non-linear outputs result in Horn clauses with non-linear conclusions, which are
approximated by the relaxation, whereafter they are, possibly, instantiated by
the iterative framework. A simple way to reduce complexity is therefore to simply
apply the relaxation suggested in §2.4 and then use the normalisation only once,
instead of the iterative framework. Non-linear inputs can be handled in much the
same way, by treating the multiple occurrences of variables separately. With this
approach, the resulting clauses would be guaranteed to have linear conclusions
and each variable would have a non-cyclical dependance in the precondition.
This class of Horn clauses is called H3 and is proven to be normalisable in cubic
time [96].

5.6.2 History-based Analyses

Presently, concurrent processes and nets are analysed without information about
context or execution history. This is evident, as if a value may eventually be
transmitted in a locality then we assume that it is always present on that locality.
Secondly, if a variable could be bound to a value in any execution of the program
then we analyse all executions as if the variable had have been bound to that
value. Below we discuss how the analysis could be improved in these respects.

Relational analysis. The first assumption means that the analysis cannot
distinguish between values being sent only once and values sent repeatedly.
This is an over-approximation and it follows that the analysis cannot be used
for establishing reachability results (i.e. whether particular actions can always
be executed successfully) or, specifically, establishing the security property
availability. Later, in Chapter 6, we shall introduce a strongest attacker that
is assumed present during all protocol executions. This is supposed to allow
verification of the protocols in a worst case scenario, but in the context of such
an attacker, who, among other things, can duplicate values on the localities it
has access to, the approximation seems adequate. Furthermore, as protocols are
usually designed to obtain something good all program parts are usually trivially
reachable.

Nevertheless, there are still systems for which a more fine-grained analysis would
be interesting.5 One solution is to make the analysis relational and associate each

5Electronic payment or voting systems are good examples of systems where users have
limited, finite execution rights.
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value on each locality with an element of a finite lattice indicating its quantity
(e.g., distinguishing between zero, one, or multiple occurrences, an element from
the set {0, 1,∞}). The term relational denotes that the analysis is obtained by
relating two or more individual analyses. Informally, we say that a relational
analysis records “sets of tuples” instead of “tuples of sets” and it should be noted
that the complexity increases accordingly. The useability of relational analyses
is well-known from abstract interpretation (e.g. in pointer analysis) and a good
introduction to the subject is given in [93].

Flow-dependent analysis. As it is, the current analysis has a single, global
analysis estimate which must be acceptable for the entire program execution. It
follows that the analysis cannot differentiate between when in the program’s life
cycle something happens; in other words, it is flow-independent. Alternatively
the analysis could be made flow-dependent, and take the order in which actions
occurs into account.

The flow of a program could be found by decorating each action with a unique
annotation (such as ai.P where i ∈ N) and then use a simple analysis to establish
the possible execution order of the actions; i.e. finding the set Flow such that
〈i, j〉 ∈ Flow means that action j may be executed right after i). The analysis
estimate could then be extended accordingly, creating an instance for each
annotation, written ρ[i]. Using these ingredients an analysis for local output
could then be formulated as:

ρ |=l
∆ outi e. P iff ∀j : 〈i, j〉 ∈ Flow ⇒

∀θ :
∧

x∈fv(e) θ(x ) ∈ ρ(x ) ⇒ eθ ∈ ρ[j](l)

∧ ρ[i] ⊆ ρ[j]

All other rules should be written in a similar manner. It is important to stress
that the set Flow may be relatively large, as it must take interleaving of concurrent
processes into account. Nevertheless, it is still finite and can be calculated on
advance. It follows that the analysis is directly translatable to Horn clauses,
and, obviously that the modification increases the complexity in the size of the
number of program points.

Note that the flow-dependent analysis of input must still retain the value in the
locality estimate, as a value in the analysis estimate of a locality represents “one
or more”. Therefore, as protocol participants usually exhibit infinite behaviour,
the flow becomes superfluous and is only interesting in conjunction with a
relational analysis, such as the one suggested above. For examples on and
techniques for flow-dependent analyses in Flow Logic, see [101, 108], and for
combination with a relational analysis, see [99, 107, 109].
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Context-dependent analysis. The last, but probably the most interesting,
extension to the analysis is context-dependent. The analysis estimate collects all
possible value-bindings to variables but does not remember the context that the
binding occurred. If multiple variables are bound simultaneously, such as in the
action in 〈x , y〉 / [x , y ], then the analysis estimate does not relate these bindings.
Consider, for example, that the pattern above could be matched against either
〈a, b〉 or 〈b, a〉 then the analysis estimate would yield ρ(x )×ρ(y) = {a, b}×{a, b}.

Alternatively, the analysis could be modified, such that variable bindings were
recorded in tuples according to the patterns they occurred in; in particular,
the analysis estimate of the above-mentioned pattern would include ρ(x , y) =
{〈a, b〉, 〈b, a〉}. This approach is closer to the intuitive one we constructed in
Chapter 2. It is also a highly attractive improvement, as it would allow the
analysis to deal with reuse of process definitions, such that the extensive encoding
mentioned in Remark 4.18 would not be necessary. However, the improvement
comes at a cost, and, in addition to the obvious increase in complexity in the size
of the cartesian products, it results in that the expected subject reduction result
(Theorem 5.10) no longer holds [92]. The correctness of the analysis can still
be shown, but it is more demanding and does not belong in a proof-of-concept
chapter.

5.6.3 Canonical Names

The canonical name approach is a solution to a well-known problem pointed
out in [91], where it is shown that analyses of languages with substitution-based
semantics and free α-renaming cannot be defined straightforwardly in a sound,
tractable manner. This result was surprising as other semantics did not cause the
problem, despite the close resemblance in the definitions. As already mentioned,
the solution is to introduce an operator that fixes all names to a static entity, and
focus the analysis around the static entities. This solution is, in fact, completely
analogous to the static entities that are given directly by the alternative semantics
formulations, but it allows us to use the, arguably, much nicer substitution-based
semantics.

Since the discovery of canonicalisation technique, various formulations for it
have surfaced. In [26, 90] the canonical representatives are ensured preserved
under α-renaming, by using a weaker α-renaming, called disciplined α-renaming
that retains the canonical representatives. The formulation adopted in this
dissertation, which is also used in [102], differs from that approach in that the
subject reduction result is instead shown with respect to the original program and
naming scheme. This allows the usual and expected definition of α-renaming and
postpones the technicalities to the proof-burden. Nevertheless, the approaches
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are essentially equivalent and differ only in the presentation.

It should be pointed out that enforcing a Berendragt convention (i.e. every
bound name is distinct from the other bound and free names in the process, see
[12]), prior to choosing the canonical names, results in the best analysis estimate,
but is not a necessary condition. Without it, an analysis will only be coarser,
as different names or variables with the same canonical name, will be coalesced
in the analysis estimate. In fact, the precision obtained from the Berendragt
convention is somewhat illusionary, as different names, introduced through
process invocation and recursion, will be mapped to to the same canonical entity
and, thus, introduce inevitable approximation.

5.6.4 Rebinding Variables

Let us finish off the discussion by showing a small encoding trick that greatly
increases the practicality of the control flow analysis. The control flow analysis
produces safe estimates of all the values each variable may be bound to. In this
context, it is often interesting to differentiate between the value bindings that
will result in a preemptive termination of the protocol and those that result in a
successful termination. Consider, for example, the following naive protocol:

1. A→ B : Na
2. A→ B : {Na}Kab

Here we assume that A and B share the key Kab prior to protocol execution.
This is easily translated into the following extended protocol narration:

1. A→ : Na
1′. → B : x / [x ]
2. A→ : {Na}Kab

2′. → B : {|x |}Kab / [ ]

This obviously simulates the intention of the protocol. It is, however, easy to
see that this protocol allows anything to be bound to x in step 1′ and, thus,
the analysis will show that ρ(x ) includes everything that may float on the net.
This result is of practically no use to us; we would rather know how many value
bindings that are allowed to get through to step 2′. Fortunately, the pattern
matching mechanism provides us with the possibility to encode exactly this.
Indeed, by writing,

1. A→ : Na
1′. → B : x / [x ]
2. A→ : {Na}Kab

2′. → B : {|x ′|}Kab / [x ′ 7→ x ]

we dictate the same behaviour to B, but enforce a new variable to be bound in
the second matching. Using the control flow analysis on a program based on
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the last narration will then show all the bindings to both x and x ′ and satisfy
that ρ(x ′) ⊆ ρ(x ). This small trick allows us to investigate the protocol in a
step-by-step manner when necessary.

5.7 Concluding Remarks

This chapter has presented a control flow analysis for CryptoKlaim that computes
all values that may be transmitted or bound to variables during execution of
a net. In the following chapter, we shall formally define an attacker process
and, with it, analyse and verify several cryptographic protocols. This is possible
because the analysis captures all events that may occur.

We also prove the correctness of the analysis and, as it produces Horn clauses, it
is always possible to find an acceptable analysis estimates automatically with
the techniques presented in Chapter 2.



Chapter 6

Verifying Protocols

The theoretical development of a language and a corresponding analysis is all
good and well, but one big question remains: “can it be used for anything in
practice?” In this chapter we shall try to affirm this.

We begin by formally defining an attacker process representing all malicious
activity. This will, when used in conjunction with a protocol specification, reveal
how the protocols behave under attack. Afterwards, in §6.2 and §6.3, we attempt
to use our analysis to verify a number of well-known cryptographic protocols.
Typically, protocol analyses are empirically justified by proving them capable of
detecting known flaws to the classical protocols. We will follow this trend, but
also show how different scenarios may be taken into account.

Finally, in §6.4, we shall show how to model and verify an industrial system
design. We will present a real-life e-banking case study and in a step-wise manner
model each part of the system in CryptoKlaim. The resulting specification is then
verified using the analysis.
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6.1 The Attacker

The environment in which a protocol is run, may not be secure. This means that
in order to validate a protocol we generally must assume that it is executed in
an environment where there is malicious activity. As for most process algebras,
we shall consider the characteristic context [30] as described by:

N ‖ N•

Here N is the protocol and N• the attacker. This attacker can see all messages
sent on the tuple spaces that it has access to, but not those restricted from its
view or any of the internal values in the net N .

Given any concrete attacker N•, the analysis presented in Chapter 5 can account
for the behaviour of N under attack from N•. But if we want to analyse the
protocol against an arbitrary attacker we need to define an attacker that captures
the capabilities of all possible attackers. The standard approach to find this
attacker is to define a net that captures the capabilities of an attacker as defined
in [44] – the so-called Dolev-Yao attacker. This approach was in [94] also shown
to be the hardest attacker, thus justifying this approach.

Dolev and Yao [44] defined the capabilities of the strongest possible network
attacker. If we extend this definition to a calculus with distribution and where
we assume that the attacker has access to the localities in L•, then this attacker
can:

(1) receive and intercept all messages sent on the localities L• and send new
messages onto the localities L•;

(2) decrypt encrypted messages, if it knows the encryption key, and construct
new encryptions from known terms;

(3) decompose and compose tuples; and

(4) generate new names.

Due to absorbing input in the semantics of CryptoKlaim, we shall add a fifth
rule: (5) duplicate messages.

We now want to define an attacker net, N•, and an attacker process environment,
∆•, that captures these capabilities, such that for all N if ρ |=∆∪∆• N ‖ N• then
ρ |=∆∪∆′ N ‖ N ′ for an arbitrary attacker N ′ and environment ∆′.
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(1a) DY1 , |l∈L• in x• / [x•]@l. out x•. DY1

(1b) DY2 , |l∈L• in x• / [x•]. out x•@l. DY2

(2a) DY3 , in x•0 / [x•0 ]. in {|x•1 |}x•0
/ [x•1 ]. out x•1 . DY3

(2b) DY4 , in x•0 / [x•0 ]. in [[[x•1 ]]]x•0 / [x•1 ]. out x•1 . DY4

(2c) DY5 , in x•0 / [x•0 ]. in x•1 / [x•1 ]. out {x•1 }x•0
. DY5

(2d) DY6 , in x•0 / [x•0 ]. in x•1 / [x•1 ]. out [[x•1 ]]x•0 . DY6

(3a) DY7 , |k∈K+ in 〈x•1 , . . . , x•k 〉 / [x•1 , . . . , x
•
k ]. out x•1 . . . out x•k . DY7

(3b) DY8 , |k∈K+ in x•1 / [x•1 ] . . . in x•k / [x•k ]. out 〈x•1 , . . . , x•k 〉. DY8

(4a) DY9 , (ν n•) out n•. DY9

(4b) DY10 , (ν± n•) out n+
• . out m−• . DY10

(5) DY11 , in x• / [x•]. out x•. out x•. DY11

Figure 6.1: Dolev-Yao attacker processes.

As explained in §2.2.3, the attacker can, in principle, compose and decompose
tuples of any arity. But, as already mentioned, it is in [24] shown that restricting
the attacker to work on a limited set of arities, does not limit its capabilities, as
long as the set includes the finite set of arities occurring in the protocol and at
least one additional arity. Assuming that K denotes the finite set of occurring
arities in the net to be analysed, we then create an extended set K+ = K ∪ {1},
as unary tuples never occurs, and a specific Dolev-Yao attacker for any given
net can then be formulated with the process environment, ∆•, defined in Figure
6.1, with the following corresponding net definition:

N• = ‖i∈{1,...,11} l• :: DYi

The attackers accumulated knowledge is described by the values in the locality l•.
Each process definition is then straightforward and correspond to the Dolev-Yao
definition.

It follows that N• constitutes a program together with L• and ∆• (that is
Prg(L•,∆•, N•)) and thus, by Proposition 4.9, it will also constitute a program
in conjunction with another program. Furthermore, by Corollary 4.14, we have
that the attacker does not violate perfect cryptography, thus establishing the
completeness of the attacker definition. For the modelling approach described in
§4.6, it is usually natural to assume that L• = {l}, but in general other scenarios
may be interesting as well.
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A 6= B
Ka 6= Kb

A = B
Ka 6= Kb

A 6= B
Ka = Kb

A = B
Ka = Kb

WMF [6, 31]
√ √ √

(1)

WMF (fix) [72]
√ √ √

(2)

WMF (corr. fix) §C.1.1
√ √ √ √

NS [84]
√ √ √ √

NS (fix) [70]
√ √ √ √

Ya [31]
√ √ √ √

OR [103]
√ √ √ √

AS [117]
√ √ √ √

Table 6.1: Analysis results.
√

means no problems found, whereas (1) and (2)
means that a problem was found.

6.2 The Usual Suspects

There is a handful of protocols which is represented in virtually any piece of
literature about analysis of security protocols written in the last decades; these
are the the usual suspects. To justify the control flow analysis, it must be shown
capable of handling these protocols; that is, verify those that are considered
secure and find the known attacks on the flawed ones.

This section presents the accumulated results from worked examples. We have
investigated five renowned protocols, the running examples Needham-Schroeder
Public Key (NS) and Wide Mouthed Frog (WMF), the protocol Yahalom (Ya)
discussed in Chapter 1 and Chapter 2, and two additional protocols: Otway-Rees
(OR) and Andrew-Secure RPC (AS). The modelling of NS and WMF has been
carried out throughout the chapters and for the remaining three protocols the
specification can be found in Appendix C. Some of the protocols also exist in
improved versions and we added two of these to the list, bringing the total to
seven protocols.

Each protocol has been analysed in different settings with multiple initiators and
responders. Specifically, we investigated the impact of when the same keys are
used for both initiating and responding in the protocols, Kaτi = Kaτi , and when
principals are allowed as both initiators and responders, A = B. The different
scenarios are modelled simply by changing the definition of the net, following
the guidelines described in §4.6.1.
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The result of our labour is listed in Table 6.1 and each interesting finding is
listed below:

(1) A well-known flaw in WMF, originally pointed out by Lowe in [72], is
found. The analysis shows that Kabij ∈ ρ(yKab

ji ) for all i and j. In other
words; a key intended to be established between A and B can be incorrectly
distributed in a protocol session in the reverse direction. The corresponding
attack, explained in the Alice-Bob notation, is as follows:

1. A→ S : A,{B,Kab}Ka

2. S → B : {A,Kab}Kb

1. I(B)→ S : B,{A,Kab}Kb

2. S → A : {B,Kab}Ka

The attacker uses the second message to impersonate B and initiate a new
protocol session in the opposite direction (the second session is indicated
with bold font numbers).

(2) Lowe suggested in [72] an amended version of WMF to correct the flaw.
However, our analysis shows that the protocol is still vulnerable, even
in the amended version. The attack is an extension to the attack to the
original protocol, using interleaving of the two protocol sessions, and a full
narration for it is given in §C.1.1. We believe this attack must also be
known, as it is fairly straightforward, but we have not been able to find a
reference to it in the literature. The flaw is easily corrected and in §C.1.1
we also give the narration for a version that is correctly verified with our
analysis.

The reader familiar with the above-mentioned protocols notices that the famous
flaw on the Needham-Schroeder protocol is not found. This is not because
the analysis is incorrect, but simply a consequence of the scenarios we have
considered – it will be found properly in the following section.

6.3 The Insider Threat

Until now, all protocol models and analysis instances have only been concerned
with the interaction between legitimate, well-behaved principals, and ensuring
that a malicious third party cannot do evil. However, in practice the most
effective attacks coming from the inside of a system, based on confidential
information that should never have been in the hands of a malicious person in
the first place. In this section we shall discuss how such a threat may be taken
into account when analysing protocols.
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A 6= B
Ka 6= Kb

A = B
Ka 6= Kb

A 6= B
Ka = Kb

A = B
Ka = Kb

WMF [6, 31]
√ √ √

(1)

WMF (fix) [72]
√ √ √

(2)

WMF (corr. fix) §C.1.1
√ √ √ √

NS [84] (3) (3) (3) (3)

NS (fix) [70]
√ √ √ √

Ya [31]
√ √ √ √

OR [103]
√ √ √ √

AS [117]
√ √ √ √

Table 6.2: Analysis results for the insider threat; • ∈ A ∧ • ∈ B.
√

means no
problems found, (1), (2), and (3) means that a problem was found.

Let us first consider what an insider is. Obviously, the insider may have access to
some information that an outsider does not or access to restricted communication
channels. In the protocol setting, we have assumed that all communication is
done on one insecure tuple space, so in this context there is no additional
information to be gained for an insider. However, each of the cryptographic
protocols that we have discussed up until now rely on some sort of confidential
information, known prior to a protocol session; namely the shared long-time key
or private keys of a trusted key pair. Obviously, an attacker can do harm to
legitimate principal’s protocol sessions, if it has guessed their secrets. A much
more interesting question is the following:

If the attacker is a trusted party, can it interfere with other trusted parties’
protocol execution?

In other words, we are interested in verifying protocol executions in a context
where the attacker is allowed to be an initiator, • ∈ A, or a responder, • ∈ B.
We must also ensure that the attacker knows all keys necessary for participating
legally with the intended principals; specifically it should know the names passed
as arguments to the process invocation describing the principal it simulates.1

This small adjustment is enough to verify the same protocols for the insider
threat.

1Practically this can be encoded by transmitting the compromised names without encryption
in a locality the attacker has access to.
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The results from the insider analysis are presented in Table 6.2. Apart from
(1) and (2), which were explained in the previous section, we find the following
attack:

(3) Lowe showed in [70] the Needham-Schroeder Public Key protocol to be
flawed. This attack is also visible from the analysis result as we see that
Nai• ∈ ρ(yNa

ij ) and Nbij ∈ ρ(yNa
i• ) for all i and j. This reflects the following

man-in-the-middle attack, where the attacker tricks B into believing that
it is A:

1. A→ I : [[Na, A]]Ki+

1. I(A)→ B : [[Na, A]]Kb+

2. B → I(A) : [[Na,Nb, B]]Ka+

2. I → A : [[Na,Nb, B]]Ka+

3. A→ I : [[Nb]]Kb+

3. I(A)→ B : [[Nb]]Kb+

Notice that the attacker must be a legitimate responder as otherwise A
would never initiate a session with it in the first place. Lowe shows how
the protocol can be fixed in the same article and this version is correctly
verified by our analysis.

It should be noted that while Yahalom is considered a secure protocol, the
protocols Otway-Rees and Andrew Secure RPC have flaws with respect to the
security property authentication. In both protocols, messages produced in one
step of the protocol can be illegally reused at another step by the attacker. Such
attacks are known as Type flaw attacks. Type flaw attacks will only violate
confidentiality or integrity, if they actually result in either that the attacker
gains confidential information or that the protocol session results in something
unintended. Neither is the case for the attacks to the two protocols and, thus,
they are not mentioned in the tables above. In section §7.2 we discuss a simple
extension to the analysis that can detect these attacks as well.

6.4 Case Study : E-banking Credit Request

This section presents the case study and its various ingredients. The setting is a
credit request from a customer to a bank, and as part of determining whether
to grant the credit, the bank has to verify the customer’s Balance Total Assets
(the bank’s internal term, denoted Bta).

In a service-oriented architecture, such a transaction involves several principals:
the Credit Request Client (C), a process handling the credit request; a Validation
Service (VS ) who delegates the validation of the balance to the correct service
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Figure 6.2: The Credit Request case study.

(via WS-Security); a SOAP-Mediator (SM ), who works as an application level
router using WS-Addressing and through whom all services are invoked; these
services are located on machines in a so-called demilitarised zone (DMZ).

The setup and overview is presented in Figure 6.2 and execution is performed as
follows. The Client C establishes a TLS connection to the Validation Service
VS , thereby establishing a shared key for encryption of all communication, and
through this connection it submits the Bta to be validated. Upon reception of
the Bta, the Validation Service will determine the which service that should
perform the validation and invoke this service. This invocation is done using
WS-Security, which involves encryption of the content of the message but leaves
the header in plain text, allowing the SOAP Mediator (SM ) to route the message
correctly within the DMZ. Finally, the Bta is received by the invoked service Si,
analysed, and an answer is replied to the Validation Service, who forwards it to
the Client.

The dashed line on the figure symbolises a firewall and it is assumed that the
Client is placed outside the banks intra-net, and all other processes within.
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6.4.1 X.509 Certificate

The protocols used in the case study both rely on the X.509 ITU-T standard
[66] for public key infrastructure. More specifically, the X.509 standard format
for public key certificates.

In the X.509 system, a Certificate Authority (CA) issues certificates, which bind
public keys to corresponding principals, or rather, to corresponding names. The
certificates also include additional information, such as version and serial number,
encryption algorithm, issuer, etc., none of which, however, we shall be concerned
with in our modelling.

The certificate is authenticated through the Certificate Authority’s digital signa-
ture. Hence a certificate for a principal A can be formulated in the Alice-Bob
notation as:

[[A,Ka+]]Kca−

Describing the tuple, consisting of principal name and corresponding public key,
digitally signed with the certificate authority’s private key.

6.4.2 TLS One-Way Handshake

The Transport Layer Security (TLS) standard [43] presents a range of cryp-
tographic protocols. In this case study we are interested in the TLS one-way
handshake protocol, which is used for establishing a symmetric key between a
client C and (here) a certified Validation Service VS . The protocol basically
involves 3 steps, omitting details for agreeing on encryption algorithm and version
number:

1. The Client sends a ClientHello message including a freshly generated nonce
Nc.

2. The Server responds with a ServerHello, containing a new nonce Nvs as
well as the Server’s certificate [[VS ,Kvs+]]Kca− , issued by the Certificate
Authority CA.

3. The Client responds with a ClientKeyExchange message, containing a nonce
PMS , called the Pre-Master Secret, encrypted with the Server’s public
key. The Client and Server can now use the nonces Nc, Nvs and PMS to
compute a common secret, called the Master Secret, by concatenating the
three and hashing them, resulting in [[Nvs,Ns,PMS ]]H (we here use the
encoding for hashing explained in §3.5.2).
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The Master Secret is the shared key, and the omitted remainder of the protocol
merely serves to establish that the principals agree on it.

This description can be directly translated into an Alice-Bob notation as follows:

1. C → S : Nc
2. S → C : Nvs, [[VS ,Kvs+]]Kca−

3. C → S : [[PMS ]]Kvs+

Note that the one-way handshake version of TLS only guarantees one-way
authentication; i.e. the Client knows that it is talking to the Server, through
the Server’s certificate, but the Server does not know the identity of the Client.
After successful execution of the protocol, the Client and the Server can now
communicate through a secure connection:

4. C → S : {m}[[Nc,Nvs,PMS ]]H

Here the Client sends a message, m, to the Server through the newly established
tunnel.

6.4.3 WS-Security

WS-Security (Web Services Security) is a communications protocol suite pro-
viding security to Web Services, while guaranteeing end-to-end integrity and
authentication. WS-Security includes details on the use of various protocols and
gives a standardised format for the respective SOAP messages involved in these
protocols. However, in the Credit Request case study its use is restricted to
signing and encryption of message content, while leaving the message header in
plain, to allow SOAP-routing. This is done using the X.509 certificate format.

Assume that a certified principal A wishes to send an encrypted message m (left
unspecified) to a certified principal B on a SOAP-routed network, and that A
knows and trusts B’s certificate [[B ,Kb+]]Kca− . The simplest abstraction of the
message format is then:

A→ SM : A,B, [[[[m]]Kb+ ]]Ka−

SM → B : A,B, [[[[m]]Kb+ ]]Ka−

The intuition is clear. A encrypts the secret content, using B’s public key, signs
it, and appends the result to A’s and B’s names in plain text, indicating the
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sender and the receiver and allowing SOAP-routing of the message. The message
is then sent on to the network, where it is received by the routing principal SM ,
who can read the intended recipient and forward the message. Optionally, A
may include its certificate in m, in the case it is unknown to B, to allow B to
reply.

6.4.4 The Grand Scheme

A necessary assumption for the Credit Request scenario is that all principals trust
the Certificate Authority, and thus the certificates. Furthermore the scenario
requires prior establishment of some trust relationships. For each principal it
assumes that:

• All participants trusts the Certificate Authority CA.

• The Client knows the name of the Validation Service, VS (recall that the
Validation Service’s certificate is distributed as part of TLS).

• The Validation Service knows the name of the service it should invoke.

• The services requires no additional knowledge.

These requirements are all established in the Trust Establishment case study,
which should be verified separately.

Given these assumptions a successful balance validation can be executed. In
Table 6.3 a full Alice-Bob specification of such an execution is given.

Step 1-3 establishes an TLS tunnel between the Client and the Validation
Service, and in step 4 the Client then submits the Balance Total Assets, Bta, to
the Validation Service. The Validation Service then invokes the corresponding
service in step 5-6, using WS-Security and SOAP-routing performed by the
SOAP-Mediator. This invocation includes both the Bta, a serial number SN to
ensure uniqueness of the request, and the Validation Service’s certificate, allowing
the invoked service to reply using encryption. Finally, in step 7-9, the service
replies its evaluation result, Res, to the Validation Service, stating whether the
credit has been approved or not. This is again performed through WS-Security
and SOAP-routing. Once the Validation Service receives the evaluation result,
this is forwarded to the client through the TLS-tunnel, successfully terminating
the validation.
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(tls)
1. C → VS : Nc
2. VS → C : Nvs, [[VS ,Kvs+]]Kca−

3. C → VS : [[PMS ]]Kvs+

(balance validation request)
4. C → VS : {Bta}[[Nc,Nvs,PMS]]H

(service invocation and routing)
5. VS → SM : VS ,S , [[[[SN ,Bta, [[VS ,Kvs+]]Kca− ]]Ks+ ]]Kvs−

6. SM → S : VS ,S , [[[[SN ,Bta, [[VS ,Kvs+]]Kca− ]]Ks+ ]]Kvs−

(evaluation and reply)
7. S → SM : S ,VS , [[[[SN ,Res]]Kvs+ ]]Ks−

8. SM → VS : S ,VS , [[[[SN ,Res]]Kvs+ ]]Ks−

9. VS → C : {Bta,Res}[[Nc,Ns,PMS]]H

Table 6.3: Alice-Bob specification of the Case Study.

6.4.5 Modelling in CryptoKlaim

Without further ado we present the specification of the three main processes (C,
VS , and S) in CryptoKlaim in Figure 6.3. Having already explained each step,
there is little surprise in the process definitions. The interesting parts are the
use of certificates and the model of the communication structure.

The certificate authority sends out certificates whenever needed which, in our
modelling, is reflected by placing them on the tuple space lInt. This is used in the
modelling of the Validation Service, VS , who must both use certificates to find
the public key of the invoked service and to forward its own certificate. Hence the
two first actions of VS are local inputs to bind these values to variables. Similarly,
the invoked service, S, is assumed only to trust the Certificate Authority. Thus,
in order to establish trust to the invoking process as well, a prerequisite of
invocation is the existence of a certificate of that process. This is reflected by
the first input action of S.
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C[xVS , xKca+
, xH ]

, (ν Nc) (ν PMS) (ν Bta)
out Nc@l.

in 〈xNvs , [[[〈xVS , xKvs+〉]]]
xKca+ 〉 / [xNvs , xKvs+ ]@l.

out [[PMS ]]
xKvs+ @l.

out {Bta}[[〈Nc,xNvs ,PMS〉]]
xH

@l.
C(xVS , xKca+

, xH )

VS [yVS , yKvs+ , yKvs− , yKca+
, yS , yH ]

, (ν Nvs) (ν Sn)

in yCert / [yCert 7→ [[[〈yVS , yKvs+〉]]]
yKca+ ].

in [[[〈yS , yKs+〉]]]
yKca+ / [yKs+ ].

in yNc / [yNc ]@l.
out 〈Nvs, yCert〉@l.

in [[[yPMS ]]]
yKvs− / [yPMS ]@l.

in {|yBta |}[[〈yNc ,Nvs,yPMS 〉]]
yH
/ [yBta ]@l.

out 〈yVS , yS , [[[[〈Sn, yBta , yCert〉]]
yKs+ ]]

yKvs− 〉.
in 〈yS , yVS , [[[[[[〈Sn, yRes〉]]]

yKvs− ]]]
yKs+ 〉 / [yRes ].

out {yBta , yRes}[[〈yNc ,Nvs,yPMS 〉]]
yH

@l.
VS(yVS , yKvs+ , yKvs− , yKca+

, yS , yH )

S [zS , zKs+ , zKs− , zKca+
]

, (ν Res)

in [[[〈zVS , zKvs+〉]]]
zKca+ / [zVS , zKvs+ ]@lInt .

in 〈zVS , zS , [[[[[[〈zSN , zBta , [[[〈zVS , zKvs+〉]]]
zKca+ 〉]]]zKs− ]]]

zKvs+ 〉 / [zSN , zBta ].

out 〈zVS , zS , [[[[[[〈zSN ,Res〉]]]
zKvs+ ]]]

zKs− 〉.
S(zS , zKs+ , zKs− , zKca+

)

Figure 6.3: Credit Request processes.
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SM1 , in 〈vA, vB , vEnc〉 / [vA, vB , vEnc ].
out 〈vA, vB , vEnc〉@lDMZ .

SM1

SM2 , in 〈vA, vB , vEnc〉 / [vA, vB , vEnc ]@lDMZ .
out 〈vA, vB , vEnc〉.

SM2

CA[uKca− , uVS , uKvs+ , uS , uKs+ ] , out [[〈uVS , uKvs+〉]]
uKca− .

out [[〈uS , uKs+〉]]
uKca− .

CA(uKca− , uVS , uKvs+ , uS , uKs+)

Figure 6.4: Credit Request aux. processes.

The net is then structured as follows:

NCR =
(ν VS) (ν S) (ν± Kca) (ν± Kvs) (ν± Ks) (ν H ) (

l :: C(VS ,Kca+,H )

‖ lInt :: VS(VS ,Kvs+,Kvs−,Kca+,S ,H )

‖ lInt :: (SM1 | SM2 )

‖ lInt :: CA

‖ lDMZ :: S(S ,Ks+,Ks−,Kca+)

)

The client is placed on the ether, l. The Validation Service, the Certificate
Authority, and the SOAP Mediator are all placed on the intra net, lInt, and
the service is placed on the DMZ, lDMZ . This structure simplifies the SOAP
Mediator to be a conjunction of two processes; one which moves messages from
the intra net to the DMZ and another for the converse direction. The Certificate
Authority is also reduced to a simple process which simply outputs the certificates
required to the local tuple space. These processes are specified in Figure 6.4.

6.4.6 Analysis Results

As one might expect, the analysis shows that an outside attacker (i.e. an attacker
constrained to the locality l) cannot interfere with the Credit Request regardless
of whether there are single or multiple clients. More interestingly, the system
remains safe when the attacker is an insider and has access to lInt (or even
lDMZ , although such an attacker would probably be capable of doing quite some
damage anyway).
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It follows, that the Credit Request satisfies integrity and confidentiality; it is
impossible for an attacker to violate these properties. It should be mentioned,
however, that the security of the system relies entirely on the trust to the
Certificate Authority, CA, and that the attacker may trivially attack the system
if it itself is certified by CA (in that case S and possibly VS , depending on the
implementation, would implicitly trust the attacker). Thus, it should be stressed
that proper guideline for design is that the Certificate Authority should be local
to the system and that certificates should not be easily obtained.
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Chapter 7

Conclusion

7.1 Recapitulation

Modelling and analysis of distributed systems has been an active area of research
for many years; indeed, the first attempts at formally analysing cryptographic
protocols were produced three decades ago. So how can we claim that it is still
in the embryonic stage in many respects?

The intrinsic problem with the theoretical approaches are that they usually do
not reach their most important audience – the developers of communication
systems. Modern development traditions seem to defy the application of formal
techniques: technical standards are written in prose, focussing on implementation
issues, and security is seldom a primary concern. Academic models, on the other
hand, are usually proven mathematically correct and equipped with automated
tools for verification, but formulated in languages that requires a wizard to
decipher.

This dissertation has presented an attempt to bridge this gap. We formulated a
formal language, CryptoKlaim, that is intended to be intuitive to the developer
while maintaining the attractive property that it is verifiable. To reach this goal,
we have presented contributions to the areas of constraint solving, process calculi
and automated verification in networking system.
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The dissertation took its offset in one of the oldest approaches to modelling
cryptographic protocols: first-order logic. To deal with the problem of unde-
cidability and non-termination, we introduced a general framework for finding
approximative models of Horn clauses that guarantees soundness and termination.
This serves as a perfect base of static analysis, where we allow some amount of
approximation as long as it is on the safe side.

Based on the modelling in Horn clauses and the underlying framework, we built,
in turn, the cryptographic components and CryptoKlaim itself. The language is
equipped with a formal semantics, describing the entire execution space, and a
well-formedness condition which, among other things, guarantee the assumption
of perfect cryptography.

The design of the language was analysis-directed and, fortunately, this resulted
in a straightforward development of a corresponding Control Flow Analysis. This
analysis was naive in many respects, yet it proved precise enough to find the
usual well-known flaws in many of the classical protocols. It even showed to
be capable of verifying an industrial case study: an e-banking credit request.
The case study was not only interesting because it was an example of a high-
security, modern system design, but also because the entire modelling was done
in collaboration with the original developers of the system. For confidentiality
issues, this company wishes to remain anonymous, but it still serves to show
that our original goal has been somewhat reached.

The remainder of this chapter, and the dissertation, will present a number of
suggestions for future lines of work, extensions to the calculus and the analysis.

7.2 Directions for Future Work

Each chapter, which presented a theoretical development, has been concluded
with a discussion of some of the alternatives or technicalities that were omitted
during the presentation. The purpose of this section is not to reiterate those
sections, but to extract the three most promising lines of future work from those
discussions.

7.2.1 Dynamic Networks

Originally, Klaim includes the actions eval(P ) @ l and newloc(l), for remote
evaluation of processes and dynamic creation of tuple spaces. In CryptoKlaim
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the tuple spaces are assumed static under evaluation and the language does not
allow communication of localities, thus these actions would be superfluous and
are omitted in the presentation. This means that CryptoKlaim cannot model
dynamically changing networks properly, and while it is probably fair to assume
that the structure of a wired network remains static, it is less likely for an ad-hoc
network.

Technically, the language should be extended so that communication of localities
is possible; either by coalescing the set of localities and names into one unified
set, or, perhaps more elegantly, allow an additional syntactic category, localities,
in terms. It should, however, be carefully considered if such a model of ad-hoc
networks is realistic or whether it would be better to assume a topology in the
style of [83].

7.2.2 Security Properties by Annotations

In this dissertation we have focussed on the security properties confidentiality
and integrity. As mentioned in the introduction, there are numerous other prop-
erties, and in relation to cryptographic protocols one is particularly interesting:
authentication.

Authentication is the prevention of forging communication of information. With
respect to cryptographic protocols this is usually in the form of prevention of
replay attacks. Syverson [122] presents the following taxonomy of replay attacks:

1. Replay of messages between sessions.

a. Interleavings (requiring contemporaneous protocol runs)

i. Deflections (message is directed to other than the intended recip-
ient)

ii. Straight replays (intended principal receives message, but message
is delayed)

b. Classic replays (runs need not be contemporaneous)

i. Deflections (message is directed to other than the intended recip-
ient)

ii. Straight replays (intended principal receives message, but message
is delayed)

2. Replay of messages within the same session.

a. Deflections (message is directed to other than the intended recipient)
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b. Straight replays (intended principal receives message, but message is
delayed)

Any replay attack that would result in a variable being bound to an unintended
value will be caught by the analysis presented in this dissertation. However,
replay attacks, such as those on the Otway-Rees protocol (same value from a
different step replayed) or the Andrew-Secure RPC (same value and step but
different session), will not.

Such attacks require an authentication analysis such as the correspondence
assertion analysis by Gordon and Jeffrey [58] or Blanchet [20]. However, Bodei
et al. [22] show how a restricted type of authentication, called destination/origin
authentication, suffices to detect all but one of the replay attack types (it cannot
detect classic, straight replay attacks). This work is purely based on annotations
and relies on a Control Flow Analysis similar to the one presented in this
dissertation. In short, the technique amounts to decorating each encryption and
decryption with a label and a destination/origin set. This could be incorporated
in CryptoKlaim in the following way:

{t1}`t0 [dest L] {|t1|}`t0 [orig L]

The annotations would then be ignored by the semantics but guide the analysis.
Specifically, if a value {v1}`v0 [dest L] is successfully matched against a decoding
{|d1|}`

′

d0
[orig L′] then the pair 〈`, `′〉 turns up in an error estimate whenever ` /∈ L′

or `′ /∈ L. This analysis is also translatable to Horn clauses.

Later work by Gao et. al [52] has shown that the last type of replay attacks
can also be detected using similar annotation techniques and unfolding of the
recursive process definitions. It follows that authentication is simply a question
of correct annotation of the protocol and an orthogonal issue to the Control
Flow Analysis. It would, however, be interesting to automatically extract these
annotations from the protocol specification, thereby easing the amount of human
interaction and work involved in the process.

7.2.3 Simpler Specifications

The language CryptoKlaim is created with the purpose of being intuitive and
verifiable. The language itself allows a large amount of code-reusability and
other clever encoding tricks, but unfortunately these are not supported by the
current analyses.

First and foremost it would be convenient if it was not necessary to ensure
singleton bindings of the variables in the process. This would allow reuse of



7.2 Directions for Future Work 157

process definitions for various purposes; e.g. the protocol specifications in §4.6.1
could reuse the process definitions instead of having to create one for each
combination of initiator and responder. To reach this goal, the analysis must
be extended in several ways, and some of the required techniques for this are
discussed in §5.6.2.

Interestingly, however, the challenge is mostly related to the formalisation and
proof for soundness as it is already supported by Horn clauses. The two main
ingredients would be context-dependent variable bindings (i.e. collecting variable
bindings in the context of the previous variable bindings) and context-dependent
name generation (creating different names for different instances of the process
invocations). The former can be introduced by collecting tuples of variable
bindings and the latter by modelling names with non-nullary constructors. This
is analogous to the technique we suggested in Chapter 2 and shown to yield very
precise models when normalised with the iterative scheme.
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Appendix A

Theoretical Preliminaries and
Notation

All definitions, notation and proofs in this dissertation rely heavily on knowledge
of basic set and order theory, as well as the most common proof techniques.
Although the reader is assumed to have a basic understanding of this mathe-
matical branch, the simplicity and elegance of set theory allows us to present
most relevant definitions and results for this dissertation in a succinct way in
this appendix. However, as it is only supposed to be used for reference as it is
stripped of all proofs, and the interested reader should refer to [42] or [124] for
a more detailed explanation. The mathematical foundation of set theory and
logic is well presented in [121] and also, very elegantly using the naive set theory
approach, in [61]. Finally, for a briefer introduction to lattices and orders than
the above mentioned, yet more elaborate than this appendix, see [93].

A.1 Order Theory

The foundation of program analysis is partial orders and the theory thereof.

Definition A.1 (Partial order) A partial order (A,v) is a set A accompa-
nied by a binary relation v: A×A that is reflexive, transitive and antisymmetric.
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Notation A.2 When necessary, we shall use subscripts to disambiguate the
denotation of operators.

If A has an element a ∈ A such that ∀a′ ∈ A : a v a′, then this element is called
the least element of A and is denoted ⊥. Analogously, the greatest element of A
is an element a ∈ A such that ∀a′ ∈ A : a′ v a and is denoted >. This may be
generalised:

Definition A.3 (Upper bound) For a partial order (A,v) and subset S ⊆ A
the element a ∈ A is an upper bound of S if and only if

∀s ∈ S : s v a

Definition A.4 (Least upper bound) For a partial order (A,v) and subset
S ⊆ A the element a ∈ A is a least upper bound of S if and only is

(i) a is an upper bound of S

(ii) For all upper bounds s of S then a v s

Whenever a is the least upper bound of S we denote it
⊔
S.

Specifically, we may denote the binary least upper bound of a1, a2 ∈ A as a1 ta2

representing
⊔
{a1, a2}. The dual of the least upper bound is the greatest lower

bound, which is defined analogously. We write
d
S when referring to the greatest

lower bound of S and a1 u a2 represent
d
{a1, a2}.

Definition A.5 (Lattice) A non-empty partial order (L,v) that is closed
under t and u (i.e. for all l, l′ ∈ L then (lt l′) ∈ L and (lu l′) ∈ L) is a lattice.

Definition A.6 (Complete lattice) A non-empty partial order (L,v) that
has

⊔
S ∈ L and

d
S ∈ L for all S ⊆ L is a complete lattice.

It follows that if (L,v) is a complete lattice then ⊥ =
⊔
∅ =

d
L is the least

element and > =
d
∅ =

⊔
L is the greatest element. Furthermore, Definition

A.5 and Definition A.6 ensure that a complete lattice is also a lattice, and that
any finite lattice is complete.
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Proposition A.7 (Cartesian product of lattices) If (L1,v1) and (L2,v2)
are both complete lattices then so is the Cartesian product

(L1 × L2,v)

where the componentwise order is defined by

〈l1, l2〉 v 〈l′1, l′2〉 ⇔ (l1 v1 l
′
1) ∧ (l2 v2 l

′
2)

Proposition A.8 (Function space of lattices) Let A be a set and (L,vL)
be a complete lattice, then the function space (A→ L,v) where the pointwise
order is defined by

f v g ⇔ ∀a ∈ A : f(a) vL g(a)

is also a complete lattice.

Definition A.9 (Moore-family) A subset, S, of a complete lattice, (L,v),
is a Moore-family if it is closed under greatest lower bounds, i.e.,

∀S′ ⊆ S :
l
S′ ∈ S

It follows that a Moore-family always contains a least element,
d
S, and a

greatest element,
d
∅ = >L; thus it is never empty.

Definition A.10 (Monotone function) A function, f : A → B, between
partially ordered sets, (A,vA) and (B,vB), is monotone if

∀a1, a2 : a1 vA a2 ⇒ f(a1) vB f(a2)

Definition A.11 (Chain) A subset, S, of a partial order, (A,v), is a chain
if it is totally ordered (i.e. ∀s1, s2 ∈ S : (s1 v s2) ∨ (s2 v s1)). If S is a finite
subset then it constitutes a finite chain.

We say that a sequence (an)n∈N of elements in (A,v) is an ascending chain,
whenever

∀n ≤ m : an v am
and, similarly, that it is a descending chain if

∀n ≤ m : an w am

Clearly both ascending and descending chains are also chains.
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Definition A.12 (Ascending chain condition) A partial order, (A,v), sat-
isfies the ascending chain condition if any ascending chain, (an)n∈N, eventually
stabilises, i.e.

∃k : ∀n ≥ k : ak = an

And, analogously, we define the descending chain condition by substituting
“descending” for “ascending” in Definition A.12. Note that any finite lattice
trivially satisfies both the ascending and descending chain condition.

Definition A.13 (Fixed point) Consider a monotone function, f : L→ L,
on a complete lattice, (L,v). A fixed point of f is an element, l ∈ L, such that
f(l) = l. We write

Fix(f) = {l | f(l) = l}

for the set of such fixed points.

Proposition A.14 (Tarski’s fixed point theorem) Any monotone function,
f : L→ L, on a complete lattice, (L,v), has a unique least fixed point, lfp(f),
defined by:

lfp(f) =
l

Fix(f) =
l
{l | f(l) v l} ∈ Fix(f)

and, similarly, a unique greatest fixed point, gfp(f), given by:

gfp(f) =
⊔

Fix(f) =
⊔
{l | f(l) w l} ∈ Fix(f)

We usually say that f is reductive upon the elements of {l | f(l) v l} and
extensive upon the elements of {l | f(l) w l}. Clearly, if L satisfies the ascending
chain condition, then lfp(f) may be computed in a finite number of iterations,
from any element l that f is reductive at, as the sequence (fn(l))n∈N will
eventually stabilise. It is customary to choose ⊥ at the starting point of the
sequence; i.e.

⊔
n∈N f

n(⊥) = lfp(f). Analogously, we have that if the lattice
satisfies the descending chain condition then

d
n∈N f

n(>) = gfp(f).

A.2 Proof Techniques

This appendix gives a brief introduction to the proof techniques used in this
dissertation. The presentation relies heavily on the one given in [93], but
presented in the notation chosen for this dissertation, for convenience of the
reader.
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A.2.1 Induction

Induction is most well-known in the form of mathematical induction, originally
introduced by Euclid, where a logical property Q(n) is shown to hold for all
natural numbers, n ∈ N, by showing that it holds for the base case, Q(0), and
for the inductive step, ∀n ∈ N : Q(n)⇒ Q(n+ 1). In proving the inductive step,
one assumes that Q(n) holds, referred to as the induction hypothesis, in order
to show that Q(n + 1) holds. However, the principle carries on over to other
algebraic structures as well, and we here outline the most important ones.

Structural Induction

Structural induction is a generalisation of mathematical induction, and relies
on structural recursion on any recursively defined structure as mathematical
induction relies on ordinary recursion. Consider an algebraic data type, given by
the abstract syntax:

d ∈ D

d ::= base | � d | d⊕ d

where base is the base case, � is a unary constructor, and ⊕ is a binary constructor.
We may then prove that a certain property

Q : D→ {true, false}

holds for all elements, d ∈ D, by structural induction, if we can show:

(i) Q(base)

(ii) ∀d ∈ D : Q(d)⇒ Q(�d)

(iii) ∀d1, d2 ∈ D : Q(d1) ∧ Q(d2)⇒ Q(d1 ⊕ d2)

Here, (i) is the base case, and (ii) and (iii) the inductive steps. Moreover, the
preconditions Q(d) in (ii) and Q(d1) ∧ Q(d2) in (iii) represent the induction
hypothesis.

Induction on the Shape

Equivalently to induction in the structure of a data type, we may also use
induction on the rules defining a relation. This is usually used upon natural
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semantics. Consider the binary relation −→ (typed D×N) given by the rules:

(base) base −→ 0

(con1)
d −→ n

�d −→ n+ 1

(con2)
d1 −→ n1 d2 −→ n2

d1 ⊕ d2 −→ n1 + n2

It follows that we have a notion of inference trees (or equivalently evaluation
trees or derivation trees), d1

O−→ d2, expressing the entire tree used to derive the
relation between two elements.1 Now, we may prove that all such inference tree
satisfies a certain logical property, Q, by showing that the property holds for
each base case, and that if it holds for the precondition of a recursive rule, then
it also holds for the inference tree of the conclusion. This is called induction on
the structure of the inference trees, and for −→ it amounts to showing:

(i) Q(base −→ 0)

(ii) ∀(d O−→ n) : Q(d O−→ n)⇒ Q

(
d

O−→ n

�d O−→ n+ 1

)

(iii) ∀(d1
O−→ n1), (d2

O−→ n2) : Q(d1
O−→ n1) ∧ Q(d2

O−→ n2)⇒

Q

(
d1

O−→ n1 d2
O−→ n2

d1 ⊕ d2
O−→ n1 + n2

)

From which we conclude

∀(d O−→ n) : Q(d O−→ n)

Again we say that (i) is the base case, and that the precondition in the inductive
steps (ii) and (iii) is the induction hypothesis.

We say that a relation defined recursively upon a recursive structure, such as
−→ above, is compositional (sometimes syntax-directed); i.e. the validity of the
relation between complex expressions may be determined based on the validity of
the constituent expressions and the rules used to combine them. Compositional
definitions are considered attractive, as they (usually) allow straightforward
proofs by induction. Relations that are not defined compositionally are usually
referred to as abstract.

1Usually
O−→ is written in infix style, but a more rigorous definition would represent it by a

function. As the structure of the inference trees is usually superfluous, the operator in the

example above could simply be typed
O−→: (D×N)→ ℘(D×N).
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Well-founded induction

The last type of induction that we shall present in this appendix is well-founded
induction. Assume a logical relation, Q : A → {true, false}, on a partially
ordered set, (A,v), that satisfies the descending chain condition. If we prove

∀a ∈ A : (∀a′ v a : Q(a′)) ⇒ Q(a)

then we may conclude
∀a ∈ A : Q(a)

Notice that the base cases are concealed within the definition, as each descending
chain must have a least element, for which the precondition is universally true.

A.2.2 Co-induction

Assume that we wish to show a logical property

Q : D→ {true, false}

defined by the means of clauses

Q(base) iff · · ·
Q(�d) iff · · ·Q(d′) · · ·

Q(d1 ⊕ d2) iff · · ·Q(d′1) · · ·Q(d′1) · · ·

holds for some or all elements of D. Notice that the clauses are given by
biimplication, and thus deciding Q(d) for an element d may be deduced through
application of either direction of a clause. In fact, there may even exist elements,
d, for which an inductive approach to deciding Q(d) would never terminate. In
these cases we may attempt an alternative approach.

Let us first use the clauses above as a basis for a definition of a functional (i.e. a
function whose argument and result also contain functions):

A[Q′](base) iff · · ·
A[Q′](�d) iff · · ·Q′(d′) · · ·

A[Q′](d1 ⊕ d2) iff · · ·Q′(d′1) · · ·Q′(d′1) · · ·

We say that A is the analysis functional defined by Q. Clearly Q holds for all
elements of D if and only if A[Q] holds for all elements of D. Furthermore, we
have that (D→ {true, false},v) is a complete lattice under the ordering

Q1 v Q2 ⇔ ∀d : Q1(d)⇒ Q2(d)
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It follows that the least element, ⊥, is given by ∀d : ⊥(d) = false, and the
greatest element, >, by ∀d : >(d) = true. Hence, we may apply Tarski’s fixed
point theorem whenever A is monotone (i.e. Q does not contain clauses such as
“Q(�d) iff ¬Q(d)”).

Specifically, if the ascending chain (An[⊥])n∈N eventually stabilise then we may
find Q as the least fixed point of A:

Q = lfp(A) =
⊔

n∈N
An[⊥]

This is equivalent to a proof by induction. Conversely, if the descending chain
(An[>])n∈N eventually stabilise then we may find Q as the greatest fixed point
of A:

Q = gfp(A) =
l

n∈N
An[>]

This is known as co-induction. Note that the inductive and co-inductive approach
may result in different Q’s if the least and the greatest fixed point do not coincide,
but that both approaches will find a Q which satisfies the clauses used for defining
it.
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A Succinct Solver for H1

B.1 Solver Implementation

In §2.4.3 we presented an inference system for, as well as an example of, the
inductive steps needed for normalisation of anH1-clause. But, naturally, formulae
consisting of more than a mere few clauses are generally not feasible to manually
normalise; we need automated support for this. This appendix suggest a succinct,
yet efficient, implementation of an H1-solver ; i.e. an automated normalisation
procedure for H1.

The solver is implemented in a demand-driven manner, and it relies on efficient
implementation of some basic methods. In particular, we shall assume the
existence the general methods defined in Table B.1.

The algorithm is then divided into four phases:

• Phase 1. First a universal predicate, i.e. a predicate including the entire
Herbrand universe, is added in order to allow the solver to cope with
unrestricted variables.

• Phase 2. The conclusion of each clause is flattened.
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new pred () Returns a fresh predicate name.
new var () Returns a fresh variable name.
var e Returns the set of variables occurring in e.
cons e Returns the set of constructors, fn, where f is the constructor name and

n is the arity, occurring in e.
register fun Stores the unary function fun, to be invoked whenever a clause is added

to the least solution, ϕ̂, with this clause as argument.

Table B.1: Basic methods

let solve ϕ =
forall (f , n) in (cons ϕ)
do add (pH(f (X1 , . . . ,Xn)) ⇐ pH(X1 ) ∧ · · · ∧ pH(Xn));
forall c ∈ ϕ do norm con c

Figure B.1: Phase 1 - Introduce universal predicate; pH .

• Phase 3. The precondition of each clause is transformed into a set of
unary predicates.

• Phase 4. The core solving; determining satisfiability of all (intersections
of) predicates in the precondition of each clause, and, if all the predicates
are satisfiable, adds the conclusion to the least solution.

Each of the phases are described in detail below along with a pseudo-code
implementation.

B.1.1 Phase 1

The first phase introduces a predicate pH , for which the least solution is the entire
Herbrand universe, Hϕ, of the formula ϕ. Using the method cons that returns
the set of constructors in an expression, this is done by adding a self-referential
transition for every constructor. The resulting pseudo-code is given in Figure
B.1.
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let rec norm con (g ⇐ ω) =
match g with
| p(t1, . . . , tn) → let (〈X1 , . . . ,Xn〉, ω′) = split 〈t1, . . . , tn〉 ω

in norm pre (p(X1 , . . . ,Xm) ⇐ ω′)
| p(f(t1, . . . , tn)) → let (〈X1 , . . . ,Xn〉, ω′) = split 〈t1, . . . , tn〉 ω

in norm pre (p(f (X1 , . . . ,Xn)) ⇐ ω′)

and split 〈t1, . . . , tn〉 ω =
if n = 0 then (ε, ω)
else match t1 with

| X1 → let (〈X2 , . . . ,Xn〉, ω′) = split 〈t2, . . . , tn〉 ω
in if X1 ∈ (var ω)

then (〈X1 , . . . ,Xn〉, ω′)
else (〈X1 , . . . ,Xn〉, pH(X1 ) ∧ ω′)

| → let (〈X2 , . . . ,Xn〉, ω′) = split 〈t2, . . . , tn〉 ω and
(X1 , p1) = (new var (), new pred ())

in norm con (p1(t1) ⇐ ω);
(〈X1 , . . . ,Xn〉, p1(X1 ) ∧ ω′)

Figure B.2: Phase 2 - Normalise conclusion.

B.1.2 Phase 2

In the second phase, each clause is transformed into an equivalent set of clauses,
in which each clause is of the form:

p(X1 , . . . ,Xm) ⇐ ω
p(f (X1 , . . . ,Xn)) ⇐ ω

Additionally we require all variables in the conclusion to also occur in the
precondition. Notice that if the same variable occurs multiple times in the
conclusion, then this is simply ignored by the solver, and the occurrences are
treated individually.

The pseudo-code for Phase 2 is given in Figure B.2. The implementation consists
of two mutually recursive functions, norm con and split. norm con simply uses
split to flatten the conclusion of the current clause, and then forwards this to
Phase 3. split introduces an auxiliary predicate and a new clause for each term
in the conclusion that violates the form above. It then uses norm con to flatten
the new clause. If an unbound variable X is encountered, i.e. if it is not present
in the precondition, then it is bound by the Herbrand universe by adding the
literal pH(X) to the precondition.
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let norm pre c = norm pf c ε
and rec norm pf (g ⇐ ω) ω′ =

match ω with
| ε → add (g ⇐ ω′)
| p(X ) ∧ ω′′ → norm pf (g ⇐ ω′′) (p(X ) ∧ ω′)
| p(t1, . . . , tm) ∧ ω′′ →

let fun c = match c with
| (p(X1 , . . . ,Xm) ⇐ ω′′′) → let θ = [X1 7→ t1, . . . ,Xm 7→ tm]

in norm pf (g ⇐ ω′′′θ ∧ ω′′) ω′
| → ()

in register fun;
forall c ∈ ϕ̂ do fun c

| p(f (t1, . . . , tn)) ∧ ω′′ →
let fun c = match c with

| (p(f (X1 , . . . ,Xn)) ⇐ ω′′′) → let θ = [X1 7→ t1, . . . ,Xn 7→ tn]
in norm pf (g ⇐ ω′′′θ ∧ ω′′) ω′

| → ()
in register fun;

forall c ∈ ϕ̂ do fun c

Figure B.3: Phase 3 - Normalise precondition.

B.1.3 Phase 3

The third phase converts the precondition into a set of unary literals, resulting
in clauses of the form:

p(X1 , . . . ,Xm) ⇐ q1(Z1 ) ∧ · · · ∧ qk(Zk )
p(f (X1 , . . . ,Xn)) ⇐ q1(Z1 ) ∧ · · · ∧ ql(Zl)

Where the variables occurring in the conclusion also occurs in the precondition.
This is done through resolution; iterative simplification of the precondition using
clauses already in normal form (i.e. the transitions in the automaton describing
the least model). Furthermore, if future normal clauses are added, these may
also be used for resolving the clauses.

The pseudo-code for Phase 3 is given in Figure B.3. The function keeps track of
the precondition already normalised, ω′, and uses the method call register fun
to store a function fun to be invoked whenever a new clause is added to the
solution. When the precondition is empty, then the normalised clause is added
to the solution, which is handled by Phase 4.
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store c Add the clause c to the set of normalised clauses ϕ̂
wait p fn Adds the nullary function fn to the queue waiting for p to be

non-empty.
requested {p1, . . . , pk} Returns a boolean indicating whether the intersection of the

predicates p1, . . . , pk has been requested yet.

Table B.2: Methods for the Core Solver.

B.1.4 Phase 4

Phases 1,2, and 3 essentially described result in resolution, and we could simply
stop after Phase 3, resulting in a polynomial normalisation, but an exponential
time lookup in the least model. However, we wish to bring the clauses onto the
normal form of Table 2.3 and that is performed by Phase 4. This phase is the
Core Solver and it relies on the additional methods described in Table B.2.

The Core Solver adds only clauses to the solution if their precondition is satisfiable.
The pseudo-code for a function, add, that does this is given in Figure B.4.
The solver must compute all intersections occurring in the preconditions, i.e.
unary predicates referring to the same variable, and for this we now assume
that all predicates handles are sets of predicate names. This set indicates
the intersection of original predicates they represent; i.e. the predicate {p, q}
represents the intersection of the predicates {p} and {q}, or analogously, as only
intersection of unary predicates must be calculated, the solution to {p, q}(X ) ⇐
{p}(X ) ∧ {q}(X ).

The function add checks that the preconditions, i.e. the predicates in the
precondition of the normalised clause, are satisfiable one by one. If a predicate
is not yet satisfiable, the continuation function is delayed until this precondition
is met. For this purpose, the function uses the method wait for awaiting that a
particular predicate is satisfiable. Once all preconditions are met the clause is
added to the least model, if it is not already present, and the predicate in question
is declared non-empty1. This also declares the clause eligible for resolution of
other clauses waiting in Phase 3. A special case applies if the transition is of the
form p→ q, i.e. a replication rule. In this case all transitions of q are copied to
p, instead of adding the replication itself, to avoid cyclic redundancy.

As already mentioned, predicate handles are sets describing an intersection of
original predicates. Hence, when a predicate is checked for being satisfiable,

1If a clause is added for a predicate, then the predicate must be non-empty, as all intersections
in the precondition are non-empty.
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this intersection may not have been calculated yet. This task is performed by
the functions request, inter, and unify. request ensures that each intersection
is only calculated once. inter calculates the intersection, by computing the
intersection of every combination of compatible transitions of the predicates.
Lastly, the combination of two rules into one rule that describes their intersection
is straightforwardly done by unify.

B.2 Engineering the Solver

From a theoretical point of view, the pseudo-code above is succinct and correct.
But in an actual implementation, there are a few caveats that one must sidestep
to ensure efficiency. We shall discuss the most important of these below.

Avoiding redundant auxiliary clauses

The function split introduces a new predicate and a new clause, for each splitting
performed. This extensive introduction of auxiliary predicates and clauses can
somewhat be avoided by reusing, if possible, existing clauses; e.g. it is redundant
to introduce a new auxiliary predicate aux1 and a clause aux1(f(a,X)) ⇐
q(X) ∧ r(Y ), if another auxiliary clause aux2(f(a, Y )) ⇐ r(X) ∧ q(Y ) already
exists, as we may as well reuse aux2. Notice, however, that this reuse is only
safe with predicates introduced by the solver, as original predicates may exist in
conclusions of more than one clause.2

For proper detection of equivalent clauses, the solver must be able to detect that
permutated preconditions are equivalent. One option is to use sets to model
preconditions and hash functions for comparison. Using hash is efficient, but
risks collision. Furthermore, clauses with variables ω-renamed apart should also
be detected equivalent.

Simplifying clauses upon splitting

The function split introduces copies the precondition from the original clause
onto the introduced clause. However, some of the precondition may force the

2Implemented, but somewhat a hack. Would be nice to incorporate in the pseudo-code in
some way.
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let add (g ⇐ ω) = add f (g ⇐ ω) [ ]
and rec add f c θ =

match c with
| (p(X ) ⇐ ε) → let fun c = match c with

| (θ(X )(t) ⇐ ω) → store (p(t) ⇐ ω)
→ ()

register fun;
forall c ∈ ϕ̂ do fun c

| (p(X1 , . . . ,Xm) ⇐ ε) →
store (p(X1 , . . . ,Xm) ⇐ θ(X1 )(X1 ) ∧ · · · ∧ θ(Xm)(Xm))

| (p(f (X1 , . . . ,Xn)) ⇐ ε) →
store (p(f (X1 , . . . ,Xn)) ⇐ θ(X1 )(X1 ) ∧ · · · ∧ θ(Xn)(Xn))

| (g ⇐ q(X ) ∧ ω) → let θ′ = θ[X 7→ {q} ∪ θ(X )]
in request θ′(X );

wait θ′(X ) (add f (g ⇐ ω) θ′)

and request p =
if ¬(requested p)
then requested p := true;

inter p
and inter p =

match p with
| {p1} → ()
| {p1, p2, . . . , pk} →

let fun1 c = match c with
| ({p1}(t) ⇐ ω) → forall ({p2, . . . , pk}(t′) ⇐ ω′) ∈ ϕ̂

do unify c ({p2, . . . , pk}(t′) ⇐ ω′)
| → ()

let fun2 c = match c with
| ({p2, . . . , pk}(t′) ⇐ ω′) → forall ({p1}(t) ⇐ ω) ∈ ϕ̂

do unify c ({p1}(t) ⇐ ω)
| → ()

let fn () = register fun1;
register fun2;
forall c ∈ ϕ̂ do fun2 c

in request {p2, . . . , pk};
wait {p2, . . . , pk} (wait {p1} fn)

let unify c c′ =
match (c, c′) with
| ( p(f (X1 , . . . ,Xn)) ⇐ q1(X1 ) ∧ · · · ∧ qn(Xn) ,

p′(f (Y1 , . . . ,Yn)) ⇐ q′1(Y1 ) ∧ · · · ∧ q′n(Yn) )
→ add ((p ∪ p′)(f (X1 , . . . ,Xn)) ⇐ (q1 ∪ q′1)(X1 ) ∧ · · · ∧ (qn ∪ q′n)(Xn))

| → ()

Figure B.4: Phase 4 - Core solver.
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solver to perform redundant checks. Consider, for example, the following clause:

p(X , f(Y )) ⇐ q1(X ) ∧ q2(Y )

For splitting this clause, an auxiliary predicate would be introduced, and the
resulting clauses would be produced:

p(X ,Z ) ⇐ q1(X ) ∧ q2(Y ), aux(Z )
aux(f(Y )) ⇐ q1(X ) ∧ q2(Y )

Thus both q1 and q2 will be investigated twice upon solving these clauses.
An optimisation to this is to only include the set of literals, that contain
variables connected to variables in the conclusion of the auxiliary predicate,
in the precondition of the auxiliary predicate. We may then remove the subset
of these literals, that no longer contain variables connected to variables in the
conclusion of the original clause, from the precondition of the original clause.
Doing this, on the clauses above, yields the following optimal splitting:

p(X ,Z ) ⇐ q1(X ) ∧ aux(Z )
aux(f(Y )) ⇐ q2(Y )

It may not be apparent why this is an optimisation to the original solver, as
computing the set of variables connected in the precondition is usually much
more requiring than redundant detection of satisfiability of predicates. But, in
conjunction with the optimisation of §B.2, this optimisation will usually result
in a drastic decrease of clauses introduced, and thus, a much more efficient
resolution procedure.

Detecting Tautologies

If a precondition of a clause includes the conclusion or a literal that trivially
implies the conclusion, we can safely stop further resolution.

That the conclusion is included in the precondition; i.e. if g ∈ ω for g ⇐ ω,
is easily detected. Detecting literals that trivially implies the conclusion in the
precondition, is a more vague case. However, whenever we have detected a
copy-clause p(X ) ⇐ q(X ) and we are faced with a predicate p(t) ⇐ q(t) ∧ ω,
we may conclude that the latter is a tautology.



Appendix C

Protocol Specifications

This appendix holds the specification of five cryptographic protocols: the
amended Wide Mouthed Frog, the amended Needham-Schroeder Public Key,
Yahalom, Otway-Rees, and the Andrew Secure RPC. The specification of the
original Wide Mouthed Frog and Needham-Schroeder Public Key protocols have
been carried out in running examples and may be found there. For succinctness
the protocols are translated directly to CryptoKlaim the extended narration step
is omitted.

C.1 Wide Mouthed Frog (Amended)

Lowe suggests in [72] an amended version to the Wide Mouthed Frog protocol:

1. A→ S : A,{B,Kab}Ka

2. S → B : {A,Kab}Kb

3. B → A : {Nb}Kab

4. A→ B : {Nb + 1}Kab

An exchange of a nonce is added to avoid an attack pointed out in the same
article (see §6.3 for a detailed explanation of the attack).

To encode this protocol we must use both the trick mentioned in §5.6.4, although
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A[xA, xB , xKa , x succ ] , (ν Kab)
out 〈xA,{〈xB ,Kab〉}xKa 〉@l.

in {|xNb|}Kab / [xNb ]@l.
out {{xNb}x succ}Kab@l.
A(xA, xB , xKa , x succ)

S[zA, zB , zKa , zKb ] , in 〈zA,{|〈zB , zKab〉|}zKa 〉 / [zKab ]@l.
out {〈zA, zKab〉}zKb @l.
S(zA, zB , zKa , zKb)

B[yA, yKb , ysucc ] , (ν Nb)

in {|〈yA, yKab〉|}yKb / [yKab ]@l.
out {Nb}yKab @l.

in y ′ / [y ′ 7→ {{Nb}ysucc}yKab ]@l.
B(yA, yKb , ysucc)

Figure C.1: Wide Mouthed Frog (Amended) processes.

in a slightly modified version, and a technique similar to that of §3.5.2 to model
Nb+1. Lets discuss the latter first. Modelling an increment is easy; we introduce
a name succ, ensure that the attacker knows it (by placing it on the net l), and
use this to model increment of a nonce Nb as {Nb}succ .

The other technique required is due to a more complex issue. The exchange of the
nonce is introduced to ensure that K is the intended key, thus the possible value
bindings of yKab (the variable B believes to hold Kab) should be guarded by
this exchange. As pointed out in §5.6.4, a simple solution to this is to introduce
a new variable, yKab′ , and restrict it to the bindings of yKab . In the above
protocol, however, we cannot do this, as we are not allowed to bind variables
exclusively based on keys, and instead we shall bind the entire last construct
{succ(Nb)}K to a variable y ′, if it is structured as expected. This allows us to
inspect the bindings to y ′ and thereby conclude the possible bindings to yKab .
This results in the specification of processes in Figure C.1. We also define the
corresponding net:

NWMF-a = (ν A) (ν B) (ν Ka) (ν Kb) (ν succ) (

lA :: A(A,B ,Ka, succ)

‖ lS :: S(A,B ,Ka,Kb)

‖ lB :: B(A,Kb, succ)

‖ l :: 〈succ〉
)
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C.1.1 An attack

The attack to the amended version of the Wide Mouthed Frog uses interleaving
of sessions and is as follows:

1. A→ S : A,{B,Kab}Ka

2. S → B : {A,Kab}Kb

1. I(B)→ S : B,{A,Kab}Kb

2. S → A : {B,Kab}Ka

3. A→ I(B) : {Nb′}Kab

3. I(B)→ A : {Nb′}Kab

4. A→ I(B) : {Nb′ + 1}Kab

4. I(B)→ A : {Nb′ + 1}Kab

The attacker uses the message from the second step of the first session to initiate
a new session with A. The attack now requires interleaving as the increment of
the nonce must be done by someone with knowledge of Kab; i.e. by A.

C.1.2 Correcting the flaw

From above we see that the exchange of the nonce does not fix the problem,
because it does not include any information that links it to the current session.
This is easily solved by including B’s name in the exchange:

1. A→ S : A,{B,Kab}Ka

2. S → B : {A,Kab}Kb

3. B → A : {B,Nb}Kab

4. A→ B : {Nb + 1}Kab

C.2 Needham-Schroeder Public Key (Amended)

Lowe suggests in [70] an amended version to the Needham-Schroeder Public Key
protocol:

1. A→ B : [[Na, A]]Kb+

2. B → A : [[Na,Nb, B]]Ka+

3. A→ B : [[Nb]]Kb+

The second transmitted message is simply extended with the name of the sender
to avoid an attack pointed out in the same article (see §6.3 for a detailed
explanation of the attack).
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A[xA, xB , xKb+
, xKa− ] , (ν Na)

out [[〈Na, xA〉]]
xKb+ @l.

in [[[〈Na, xNb , xB 〉]]]
xKa− / [xNb ]@l.

out [[xNb]]
xKb+ @l.

A(xA, xB , xKb+
, xKa−)

B[yA, yB , yKb− , yKa+
] , (ν Nb)

in [[[〈yNa , yA〉]]]
yKb− / [yNa ]@l.

out [[〈yNa ,Nb, yB 〉]]
yKa+ @l.

in [[[Nb]]]
yKb− / [ ]@l.

B(yA, yB , yKb− , yKa+
)

Figure C.2: Needham-Schroeder Public Key (amended) processes.

The modification is easily added to the specification we gave in Example 4.15,
resulting process definitions of Figure C.2. The net remains unaltered:

NNS-a =
(ν A) (ν B) (ν± Ka) (ν± Kb) (

lA :: A(A,B ,Kb+,Ka−)

‖ lB :: B(A,B ,Kb−,Ka+)

)

C.3 Yahalom

The Yahalom protocol is, as already described in Example 1.1, given by the
following Alice-Bob narration:

1. A → B : A,Na
2. B → S : B,{A,Na,Nb}Kb

3. S → A : {B,Kab,Na,Nb}Ka ,{A,Kab}Kb

4. A → B : {A,Kab}Kb ,{Nb}Kab

This is directly translatable into CryptoKlaim, no encoding tricks requires, result-
ing in the processes of Figure C.3 and the net definition:

NYa = (ν A) (ν B) (ν Ka) (ν Kb) (

lA :: A(A,B ,Ka)

‖ lS :: S(A,B ,Ka,Kb)

‖ lB :: B(A,B ,Kb)

)
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A[xA, xB , xKa ] , (ν Na)
out 〈xA,Na〉@l.

in 〈{|〈xB , xKab ,Na, xNb〉|}xKa , xEnc〉 / [xKab , xNb , xEnc ]@l.
out 〈xEnc ,{xNb}xKab 〉@l.
A(xA, xB , xKa)

S[zA, zB , zKa , zKb ] , (ν Kab)

in 〈zB ,{|〈zA, zNa , zNb〉|}zKb 〉 / [zNa , zNb ]@l.
out 〈{〈zB ,Kab, zNa , zNb〉}zKa ,{〈zA,Kab〉}zKb 〉@l.
S(zA, zB , zKa , zKb)

B[yA, yB , yKb ] , (ν Nb)
in 〈yA, yNa〉 / [yNa ]@l.

out 〈yB ,{〈yA, yNa ,Nb〉}yKb 〉@l.
in 〈{|〈yA, yKab〉|}yKb ,{|Nb|}yKab 〉 / [yKab ]@l.
B(yA, yB , yKb)

Figure C.3: Yahalom processes.

C.4 Otway-Rees

The Otway-Rees protocol is given by the following Alice-Bob narration:

1. A → B : M,A,B,{Na,M,A,B}Ka

2. B → S : M,A,B,{Na,M,A,B}Ka ,{Nb,M,A,B}Kb

3. S → B : M,{Na,Kab}Ka ,{Nb,Kab}Kb

4. B → A : M,{Na,Kab}Ka

Here M is the session number, a unique nonce for each session. Notice that
B cannot decrypt the encrypted component in step 1, but must forward it
unverified. Similarly, in step 3, B cannot decrypt the first encrypted component
and must also forward this. The protocol is then translated into CryptoKlaim in
Figure C.3 given the following net definition:

NOR = (ν A) (ν B) (ν Ka) (ν Kb) (ν M ) (

lA :: A(A,B ,Ka,M )

‖ lS :: S(A,B ,Ka,Kb,M )

‖ lB :: B(A,B ,Kb,M )

)
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A[xA, xB , xKa , xM ] , (ν Na)
out 〈xM , xA, xB ,{〈Na, xM , xA, xB 〉}xKa 〉@l.

in 〈xM ,{|〈Na, xKab〉|}xKa 〉 / [xKab ]@l.
A(xA, xB , xKa , xM )

S[zA, zB , zKa , zKb , zM ] , (ν Kab)
in 〈zM ,{|〈zNa , zM , zA, zB 〉|}zKa ,

{|〈zNb , zM , zA, zB 〉|}zKb 〉 / [zNa , zNb ]@ l
out 〈zM ,{〈zNa ,Kab〉}zKa ,{〈zNb ,Kab〉}zKb 〉@l.
S(zA, zB , zKa , zKb , zM )

B[yA, yB , yKb , yM ] , (ν Nb)
in 〈yM , yA, yB , yEnc〉 / [yEnc ]@l.

out 〈yM , yEnc ,{〈Nb, yM , yA, yB 〉}yKb 〉@l.
in 〈yM , yEnc′ ,{|〈Nb, yKab〉|}yKb 〉 / [yEnc′ , yKab ]@l.

out 〈yM , yEnc′〉@l.
B(yA, yB , yKb , yM )

Figure C.4: Otway-Rees processes.

C.5 Andrew Secure RPC

The Andrew Secure RPC protocol was introduced in [117]:

1. A→ B : A,{Na}Kab

2. B → A : {Na + 1 ,Nb}Kab

3. A→ B : {Nb + 1}Kab

4. B → A : {Kab′,Nb′}Kab

The protocol assumes that A and B already shares Kab and wants to establish
a new key Kab′. The nonce Nb′ is supposed to be used for a future protocol
execution. The encoding in CryptoKlaim is straightforward using the techniques
described for the amended version of Wide Mouthed Frog in §C.1.

The encoding in CryptoKlaim is given in Figure C.5 and should be associated
with the following net:

NAS = (ν A) (ν Kab) (ν succ) (

lA :: A(A,Kab, succ)

‖ lB :: B(A,Kab, succ)

‖ l :: 〈succ〉
)
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A[xA, xKab , x succ ] , (ν Na)
out 〈xA,{Na}xKa 〉@l.

in {|{|〈Na, xNb〉|}x succ |}xKab / [xNb ]@l.
out {{xNb}x succ}xKab @l.

in {|〈xKab′ , xNb′〉|}xKab / [xKab′ , xNb′ ]@l.
A(xA, xKab , x succ)

B[yA, yKab , ysucc ] , (ν Nb) (ν Kab′) (ν Nb′)
in 〈yA,{|yNa |}yKab 〉 / [yNa ]@l.

out {{〈yNa ,Nb〉}ysucc}yKab @l.
in {|{|Nb|}x succ |}yKab / [ ]@l.

out {〈Kab′,Nb′〉}yKab @l.
B(yA, yKab , ysucc)

Figure C.5: Andrew Secure RPC processes.
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