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Abstract

Since post World War II and until 2008 the Danish pig producing industry
(DPPI) has been in a continuing state of growth. In spite of an ever fiercer
competition DPPI has managed to protect its position as export leader by
maintaining a focus on research and development. Today, DPPI is in a state
of recession and must increase the efficiency if not to reduce the production
capacity further.

The industry recognizes that a more efficient use of the raw materials is one
of the largest and most important challenges. To meet this challenge it is a
necessity to get a better understanding of the biological variation of pigs. The
development of models for describing the biological variation of pigs is one of
the key components needed to attain a better sorting of the pig carcasses and
an improved cutting in the abattoirs. Such models can be related to possible
products, which can be related to potential yield and order books.

The Danish Meat Research Institute (DMRI) is currently constructing a rep-
resentative database of virtual representations of pigs using X-ray Computed
Tomography (CT). The database will serve as the foundation for the diversity
modeling of pigs and for extracting predictors of quality and optimal use.

This thesis integrates well-known techniques from the medical image analysis
into the development of tools for automated analysis of the morphology of pigs.
E.g. elastic image matching has been applied to establish spatial correspondence
between the virtual representations of pigs in the database. The establishment
of spatial correspondence is an essential preprocessing step for most automated
analysis using the database.



ii

The main application of the thesis is a so-called cutting atlas which provides
the functionality to construct combination of virtual cuts on the virtual repre-
sentations of pigs. The cutting atlas application uses the spatial normalization
to transfer anatomical information from a reference pig to the entire database
of pigs, which are subsequently used to guide the virtual cuts. The ability to
consistently perform and experiment with virtual cuts on a representative set of
pigs provide the link between biological variation and possible product ranges.
The thesis also provides a pilot study on evaluation of the consistency between
virtual products and real products. A cutting atlas is of little value unless the
virtual cuts resemble the real cuts from the abattoirs.

As a final note, the thesis contains a fairly comprehensive chapter on image
registration with an emphasis on elasticity and a number of image registration
papers, which may be interesting for readers outside the pig and food industry.



Resume

Den danske svineindustri (DSI) har siden anden verdenskrig og indtil 2008 været
i konstant vækst. P̊a trods af en voksende konkurrence har DSI formået at
forsvare sin position som førende eksportør ved en løbende satsning p̊a forskning
og udvikling. Vækst er i dag erstattet med recession, og DSI er derfor nødsaget
til at øge effektiviteten, hvis produktion ikke skal sænkes ydereligere.

Det er anerkendt i branchen, at en af de primære udfordringer ligger i en
forbedring af udnyttelsen af r̊amaterialet. For at imødekomme denne udfordring
er det en nødvendighed, at der opn̊as en bedre forst̊aelse for den biologiske vari-
ation i svin. Udviklingen af modeller, som kan beskrive denne variation, er en
af nøglekomponenterne for at opn̊a forbedret sortering af slagtekroppe samt en
mere optimal udskæring p̊a slagterierne. Disse modeller kan relateres til mulige
produkter, som kan relateres til afkast og ordrebøger.

Slagteriens forskningsinstitut er p.t. i gang med at skabe en database af virtuelle
repræsentationer af svin vha. røntgen Computer Tomografi (CT). Denne database
skal udgøre det datamæssige grundlag for konstruktionen af modeller af den bi-
ologiske variation i svin samt udtrækning af prædiktorer for kvalitet og optimal
udnyttelse af r̊amateriale.

Denne afhandling benytter anerkendte metoder fra medicinsk billedanalyse i
udviklingen af værktøjer til automatisk form-analyse af svin. For eksempel er
billedregistering blevet anvendt til at opn̊a rumlig korrespondence mellem de
virtuelle repræsentationer af svin.

Den primære applikation i denne afhandling er et s̊akaldt skæreatlas, som kan
udføre virtuelle udskæringer p̊a de virtuelle repræsentationer af svin. Skæreat-
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lasset benytter den rumlige normalisering til at overføre anatomisk viden fra et
referencesvin til databasen af svin, som dernæst bruges til at styre den virtuelle
udskæring. Muligheden for at udføre og eksperimentere konsistent med virtuelle
udskæringer p̊a en representativ mængde af svin bygger bro mellem biologisk
variation og mulige produkter. Desuden indeholder denne afhandling et indle-
dende forsøg, som omhandler sammenligning af virtuelle og virkelige produkter.
Et skæreatlas er af ringe værdi, hvis de virtuelle udskæringer ikke ligner de
virkelige udskæringer fra slagterierne.

Til sidst skal det nævnes, at denne afhandling indeholder et omfangsrigt kapi-
tel om billedregistrering med fokus p̊a elasticitet og flere artikler om billedreg-
istrering, der kan være interessante for læsere udenfor svin- og fødevareindustrien.
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Chapter 1

Introduction

With the first recorded shipment of Danish bacon arriving in England in 1847
[4] Denmark embarked on the journey of becoming the world largest exporter of
pork. At the time of the establishment of the Federation of Danish Cooperative
Bacon Factories1 (1890s) 90% of the export of Danish Bacon was bound for the
UK. Since post World War II the production of pork has grown steadily to an
astonishing 26 million pigs/year, and the export markets have been expanded
to include more that 130 countries world-wide. In 2007, the export of pork
accounted for 5% of the total Danish export or 27 billion DKK [5], which makes
the pig producing industry a significant part of the Danish economy.

By maintaining a focus on food safety, quality and efficiency through research
the Danish Pig Producing Industry (DPPI) has managed to protect its posi-
tion as market and export leader for decades despite difficult challenges such
a high salary pressure and stringent safety restriction. To quantify these chal-
lenges it can be mentioned, that the cost of producing meat is twice as high
in Denmark compared to international competitors U.S. and Brazil [6], and
the hourly salary of a Danish butcher was 210DKK in 2005 which contrasts
the mere 90DKK salary of a butcher in the neighboring country of Germany.
The increase in oil and fodder prices through 2007 and 2008 has put additional
pressure on the DPPI to the extend that the Danish pig producers have lost
352DKK per produced pig in the first quarter of 2008[9]. Forecasts estimate

1Known today as the Danish Meat Association
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Figure 1.1: Distribution of cost and profit of the Danish production of pigs (Courtesy
of Kjærsgaard[87]).

that the population of pigs in Denmark will have dropped with 5-10% at end of
2008 [8, 9].

To avoid further recession in the pig production DPPI need to continue or
rather intensify the process of improving the efficiency in the abattoirs. As
the companies behind the abattoirs are completely owned by the Danish pig
producers, their main goal is to maximize the price, which they can pay for
the raw material (pigs). To increase the pay to the Danish pig producers the
abattoirs need to cut production wages by reducing the use of manual labor
and to improve the utilization of the raw material. The graph in Figure 1.1
visualizes the distribution of cost and profit in the modern abattoirs. As the
production wages in the modern abattoirs are relative small compared to the
price of the raw material the hypothesis is, that there is more money to be made
in a better utilization of the raw materials than in a further reduction in the
use of manual labor.

As pigs are a biological material they exhibit a natural dispersion in weight and
in the local and global distribution of meat and fat. In the modern abattoirs pig
carcasses are sorted after their weight and a global estimate of the lean meat
content obtained using an ultrasonic measuring device known as AutoFom [160].
The lack of local information and a considerable uncertainty in a global estimate
of the lean meat content imply that the sorting of pig carcasses and the resulting
utilization of the pig carcasses are far from optimal. The work by Kjærsgaard
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et al. [87] confirmed that an improvement of the carcass measurement will
result in a substantial improvement in profit due to a better utilization of the
carcasses. Better measurements will also result in more uniform and higher
quality products which may have a considerable strategic value in the future.

Before a better raw material utilization can be achieved the DPPI is faced with
a number of challenges:

1. Improvement of the online measuring in the abattoirs.
The online measuring devices in the abattoirs have to be improved to
provide more local information with less uncertaincy. The industry is
currently in the process of investigating the possibility of constructing
an industrial CT scanner which can be used for online measuring in the
abattoirs.

2. Better understanding of the biological variation in pigs.
A crucial step on the road for better raw material utilization is the con-
struction of a model of the biological variation in pigs. Today, the biologi-
cal variation of pigs is mostly described in terms of the variation in weight
and lean meat content.

3. Development of methods for relating the biological variation
with the optimal use.
Given an improved model of the biological variation of pigs the subsequent
step is to relate the model to the possible product ranges, which then can
be linked to the order books and the potential yield.

To develop better methods for determining the lean meat content and for model-
ing the biological variation in pigs the Danish Meat Research Institute (DMRI)2

turned their attention to the non-invasive imaging technique X-ray Computed
Tomography and initiated the Virtual Slaughterhouse (VSH) project in collab-
oration with DTU Informatics in 2006. The primary reason for using CT as the
imaging modality in the VSH project is that the tissue types of interest (meat,
fat and bone) are clearly distinguishable on a CT scan. This Ph.D. project is
partially sponsored the VSH.

1.1 Objective

The primary objectives of this thesis are to study the morphology of pigs and
to construct tools which can aid to bridge the gap between the virtual abattoirs

2DMRI is owned by the Danish pig producers through DMA.
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and the actual abattoirs. More formally the aims of thesis are:

• To construct a deformable pig atlas from CT scans of pigs carcasses which
can be used to analyze the biological variation of pigs.

• To build a prototype for a virtual cutting tool upon the deformable pig
atlas which can imitate the real cuttings from abattoirs.

• To construct a methodology for validating the virtual cuts against the real
cuts from abattoirs.

1.2 Thesis outline

This thesis consists of an introductory part (chapter 1-5), a contribution part
of papers (chapter 6-12) and a discussion part (chapter 13).

Chapter 2 gives the unacquainted reader an introduction to the Danish meat
industry. This chapter provides additional motivation for this thesis and
the VSH project in general.

Chapter 3 introduces the concept of morphology and gives a brief overview
of image based morphology. The chapter can be skipped by the familiar
reader as it primarily is a small literature study.

Chapter 4 describes the fundamental building blocks of image registration.
The chapter focuses on elastic deformation modeling which has been used
extensively in this thesis.

Chapter 5 takes image registration to the practical level of discretization and
optimization. The emphasis of the chapter is placed on the discretize-
optimize approach which is the applied method for solving the image
registration problem. In addition, it offers a small comparison of non-
parametric and parametric image registration.

Chapter 6 gives a quick summery of the contributions of this thesis and an
overview of the functionality of the RegLab registration framework.

Chapter 7 introduces the concept of a cutting atlas and its applicability. It
further describes the construction of the Horsens cutting atlas and presents
concrete examples of virtual cuts.
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Chapter 8 visualizes the gap between virtual cutting and real cutting. 37
virtual back 2 products are geometrically compared to the corresponding
real back 2 products after spatial normalization. The validation of the
virtual cuts is vital for the success of the VSH.

Chapter 9 presents an approach for aligning a set of 3D surfaces without cor-
respondences using signed distance maps for shape representation. The
alignment approach is compared with the well-known iterative closest point
algorithm on a set of pelvic bones from pigs.

Chapter 10 deals with the construction of diffeomorphic deformation models.
The chapter provides a theoretical discussion and solution to the problem
of constructing deformation models which are guaranteed to be diffeo-
morphic. The solution is tested by registration of a set of 2D Magnetic
Resonance Images (MRIs) of the Corpus Callosum.

Chapter 11 presents an approach for constructing conditional statistical pri-
ors on compositional parameterized deformation models. The ability to
capture biological variation is tested on a set of 2D MRIs of the Corpus
Callosum.

Chapter 12 presents an approach for tessellating binary shapes with Tetra-
hedra. The tetrahedral mesh is the basis for the finite element based
discretization applied in this thesis.

Chapter 13 discusses the contribution of the thesis and finishes the thesis with
a conclusion.

1.3 Nomenclature

1.3.1 Basic Linear algebra

Vectors are represented in columns and typeset in italic, lower-case, boldface
using spaces to separate elements: v = [v1 v2 v3]

T .

Matrices are represented row wise and typeset in italic, upper-case, boldface:

M =

[
m11 m12

m21 m22

]
.

Vector functions are typeset in italic boldface: f(v) = v+v and F (v) = vvT .
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1.3.2 Norms, function and operators

Inner product is typeset using angle parentheses or central dot < a, b >=
a · b =

∑n
i=1 aibi.

Tensor product is denoted by ⊗. For matrices (Kronecker product) we have

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 .

The outer product (tensor product of vectors) a⊗ b will be treated as the
Kronecker product and therefore not produce the usual m×n matrix abT

but a vector with length mn.

The trace operator is denoted tr(M) =
∑n

i=1 mii =
∑n

i=1 λi.

p-norm is a sequence of norms of the form ∥x∥p = (
∑n

i=1 |xi|p)
1
p .

Weighted 2-norm is denoted by ∥x∥M = ∥M 1
2x∥2.

Frobenius norm is denoted by ∥M∥ = tr(M2)
1
2 .

The Vectorization operator is denoted with vect. In general, vect(M) pro-
duces a lexicographically ordered vector with the elements of M . If M
is a n × n symmetric matrix vect(M) produces an vector of length n! of
the upper diagonal elements, where the first n elements are the diagonal
elements, and the remaining elements are lexicographically ordered.

The determinant is denoted det(M) =
∏n

i=1 λi.

The element quotient is denoted a./b =
[
a1/b1 a2/b2 · · · an/bn

]
.

The floor operator floors the elements of a vector and is denoted ⌊x⌋.

The remainder operator returns the remainder after a floor operation and
is denoted ⌋x⌊= x− ⌊x⌋.

Floor lattice operator upon the lattice 0 is denoted ⌊x⌋0 = ⌊(x−x0)./∆⌋.

Remainder lattice operator upon the lattice 0 is denoted
⌋x⌊0= (x− x0)./∆− ⌊(x− x0)./∆⌋.

The convolution operator of the function f and g is denoted
(f ∗ g)(t) =

∫∞
−∞ f(τ)g(t− τ)dτ .
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1.3.3 Symbols and constants

Symbol Explanation
Ω Domain of an image.
Cn The space of functions where the nth derivative is continu-

ous.
0 A rectangular lattice (a.k.a. regular grid) is represented by

the tuple (x0,∆,S), where x0 is the first point in the lat-
tice, ∆ is the spacing between the points, and S is the size
of the lattice.

I(x) An image function.
R(x) A reference image function.
T (x) A template image function.
I A discrete image.
ϕ(x) Warp function or geometrical transformation.
u(x) Displacement function.
R Orthonormal or rotation matrix.
E or E(x) Strain tensor.
F or F (x) Deformation gradient tensor.
U or U(x) The right stress tensor.
C or C(x) The right Cauchy-Green deformation tensor.
D Dissimilarity measure.
S Regularizer.
Rn n dimensional space of real numbers.
I The identity matrix.

1.3.4 Acronyms and abbreviations

CT X-ray Computed Tomography
DMA Danish Meat Association
DMRI Danish Meat Research Institute
DPPI Danish Pig Producing Indutry
HU Hounsfield Units
IRP Image Registration Problem
MRI Magnetic Resonance Imaging
US Ultrasound
VSH Virtual Slaughterhouse
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Chapter 2

Background

This chapter gives the unacquainted reader an introduction to DDPI, the mod-
ern abattoirs, pig carcass classification and CT. The acquainted reader can jump
directly to the last section of this chapter which provides a small description of
the data sets used in this thesis

2.1 The Danish meat industry

The Danish meat industry is essentially a large cooperative society of meat
producers who have chosen to unite on a number of areas such as research and
development, food safety, veterinary alert systems, marketing, communication,
administration and financial management. These responsibilities are handled
by the branch organization Danish Meat Association (DMA) which is owned by
the cooperative companies running the abattoirs. All research and development
within DMA is carried out by DMRI which was founded back in 1956. DMRI
is responsible for handling all research branches of the pig production process
from the time the pigs are picked up at the farmers to consumption.
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The core research areas of DMRI are:

• Product quality.

• Food safety.

• Automatization and product efficiency.

The topic of this thesis lies within the last of these research areas.

2.2 The modern abattoirs

Figure 2.1 gives a schematic overview of the modern abattoirs. In a modern abat-
toir the pigs enter the black slaughter-line (marked by A in Figure 2.1), where
they are sedated using carbon dioxide, bled-to- death and finally cleaned with a
number of contraptions. At the black slaughter-line the carcasses are graded/-
classified with the AutoFom measuring device. From the black slaughter-line the
pigs enter the white slaughter-line (marked by B in Figure 2.1), where intestines
are removed and the carcasses are split through the middle of the spine. From
the white slaughter-line the carcasses are moved into a cooling facility where
they are chilled and sorted into batches. The day after slaughtering the chilled
carcasses enter the cutting line (marked by C in Figure 2.1), where they are tri-
sected into the fore-end, the pork middle and the ham part. The fore-end, the
pork middle and the ham part are subsequently cut into a number of products
depending on the grading.

2.3 Classification

To optimize the use of the pig carcasses the pigs have been graded with an
objective measure since the 1930s. The lean meat percentage (LMP) is the stan-
dard measure today and is defined as the ratio between the weight of the meat
and the total weight of the carcass without organs. As the pig carcasses enter
the cooling facility they are sorted into batches using the LMP and the weight
of the carcasses. Today, all carcasses in a batch are cut into the same range of
products. In modern abattoirs, the AutoFom system estimates the LMP from
an ultrasonic measure of the fat thickness at a number of anatomical positions
along the back of the pig. Approximately every decade the measures of the fat
thicknesses are calibrated against the LMP by having specially trained butchers
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Figure 2.1: The slaughter-line. Part A: Sedation, killing and cleaning. Part B:
Removal of organs, inspection and grading. Part C: Chilling and major cut. Courtesy
of DMA.
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dissect a representative set of pigs. A relatively high uncertainty in both the
dissected LMP and the fat thickness measures (due to inter-butcher variation
and to ultrasonic measuring problems with distinguishing between different tis-
sue transitions) questions the reliability of the estimates of the LMP. A newly
development algorithm for virtual dissection using CT by Vester-Christensen
et. al. [167] has however lowered the uncertainty of the dissected LMP to a
negligible level.

Even though future estimates of the LMP may be more precise, the global nature
of the LMP implies, that it does not provide enough information to guarantee
an optimal sorting and raw material utilization. Therefore, one of the main
challenges is to identity new local predictors of quality which will lead to an
improvement of the utilization of raw material.

2.3.1 The virtual slaughterhouse

The search for new predictors was one of the primary reasons that DMRI in 2004
invested in their first medical CT-scanner. Simultaneously with acquisition of
the scanner DMRI initiated a new research collaboration with the DTU Infor-
matics which resulted in establishment of the Virtual Slaughterhouse (VSH)
project in 2006. The VSH project focuses on the development of morphological
tools for investigating and analyzing 3D models of pig carcasses. It is the belief
that these tools can aid the identification of the new quality predictors, the op-
timization of raw material use, the development of new cutting robots and the
development of new products.

2.4 Computed tomography

CT was the first non-invasive imaging technique to construct a 3D image of the
internals of an object. The word tomography arises from the greek words tomos
(slice) and graphy (describing) and refers to the fact a 3D CT image is often
represented as a series of 2D slices. The theoretical foundation of the CT system
was publicized by Allan McLeod Cormack in 1963 and in 1964 . However, little
attention was given to the technique until Godfrey Newbold Hounsfield build
the first CT scanner in 1972. Both scientist received the nobel prize in 1979 for
their contribution to medical imaging.

In X-ray computed tomography an X-ray tube (source / photon emitter) is ro-
tated around a given object while detectors on the opposite side of the source
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Figure 2.2: The principle of CT.

measure the attenuations of the rays. Figure 2.2 illustrates the principle. As
different tissues have different densities and attenuations, an image of the in-
terior of an object can be constructed by estimating the spatial distribution of
the linear attenuation coefficient. In practice, this means to recover the linear
attenuation coefficients at a finite number of spatial positions (regular grid).
The mean number of recorded photons from a ray traveling along a line L is in
theory given by

b exp−
∫
L
µ0(x)dl, (2.1)

where µ0(x) is the linear attenuation coefficient and b is a constant. The field or
image of linear attenuation coefficients is traditionally reconstructed from the
recorded attenuation profiles by applying filtered backprojection (cf. [30] and
[147]) which reduces to an inverse Radon transform of the line integrals (Eq. 2.1)
and the application of high-pass filters to eliminate blurring.

The reconstructed attenuation coefficient image is scaled or calibrated against
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Figure 2.3: Topogram of full body scan of half pig carcasses . The two green lines
approximately mark the beginning and the end of the part of the pig known as pork
middle.

the Hounsfield scale such that the attenuation of air receives HU -1000, and the
attenuation of distilled water receives HU 0.

2.5 Data sets

The section gives a brief description of the data sets which have been used in
this thesis. Two of three data sets consist of CT scans of the pork middle which
is the area of the half pig carcass marked by the green lines in Figure 2.3.

2.5.1 Thisted

The Thisted data set consists of 37 paired CT scans of the pork middle and the
resulting products (back bacon, streaky, ribs and spine) from the pork middle
cutting robot[7]. Voxel dimensions are [0.87×0.87×10]mm3 with a 10mm spac-
ing between consecutive slices. The data set was created with a reconstruction
algorithm which emphasizes bone. As a consequence of this choice the meat
and fat tissue areas are noisy and affected by shade artifacts from the bone
areas. This data set was acquired in early 2006 at the Danish Crown abattoir
in Thisted.
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2.5.2 Horsens

The Horsens pork middle data set consists of 300 CT scans of the pork middle
of carcasses of mixed breeds and representative of the Danish pig population
w.r.t. weight and LMP. Voxel dimensions are [0.87 × 0.87 × 10]mm3 with a
10mm spacing between consecutive slices. This data set was acquired in early
2007 at the Danish Crown abattoir in Horsens.

2.5.3 Duroc

The Duroc data set consists of 40 full body CT scans of 40 half pig carcasses
of the breed Duroc, both gender. Voxel dimensions are [0.87 × 0.87 × 10]mm3

with a 10mm spacing between consecutive slices. 7 of the 40 observations were
discarded due to missing structures.
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Chapter 3

A short introduction to
morphology

Morphology is the study of form, shape and structure of objects. The history
of morphology dates back to ancient Greece, where Aristotle in his work His-
toria animalium[2] offered numerous descriptions of species and their anatomy.
The dissections and the concurrent illustrations of human bodies by Andreas
Vesalius (De humani corporis fabrica, 1543) are one of the earliest signs of sci-
entific morphology, as we know it today. In the 1970s the world of morphology
was revolutionized by the introduction of 3D non-invasive imaging techniques
such as CT and MRI. Since the pioneering work on elastic matching of images
by Broit [24] and Bajcsy et. al. [13–15, 141] the descriptive power of morphol-
ogy has grown almost exponentially with continuing development of models
for shape and deformation representation, and statistical methods for relating
the morphological information to biological functioning (physiology). Today,
morphometry is one of the most valuable and applicable tool in medical and
biological science.

Shape is an abstract idea or concept which makes the task of describing the
shape of an object complicated. The shape or structure of an object is to some
extent related to the configuration of the surface of the object. If you ask a
person to describe the shape of an apple you will probably get the answer “it is
kind of round” or the answer “it is almost shaped like a ball”. In almost every
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case people will describe the shape of an object in terms of its deviation from
some simple but similar geometric entity (circle, triangle etc.). Interestingly, it
is probably easier to explain the difference in shape between two apples than
to describe the shape of one of them. The point to be made is that shape is a
relative quantity, or rather it is measured relatively to some known reference.
This is also reflected in the definition of shape proposed by Kendall [84] which
will be used throughout this thesis.

Definition 3.1 Shape is all the geometrical information that remains when
location, scale and rotational effects are filtered out from an object.

Thus, a reference shape is needed in order to fix a reference coordinate frame,
to filter out location, scale and rotational effects and to measure the remaining
geometrical information. The process of transforming two or more shapes to
the same coordinate system is called alignment. To quantify the remaining
geometrical information in term of deviation or distance between shapes it is
necessary to have the correspondence between the shapes. We call the process
of establishing this correspondence for registration.

In the early years of image based morphology, registration was done manu-
ally by landmarking – placing points of correspondence along the boundaries
or surfaces of the objects. Shape alignment using e.g. generalized Procrustes
analysis [67] followed the landmarking procedure, leading the way for a sub-
sequent covariance-based analysis of shape. Landmark based representation of
shape is still today one of the most applied forms of shape representation but
the use is often hindered (especially in 3D) by the reliance on manual landmark-
ing. Methods such as the Iterative Closest Point (ICP) [27] and the Minimum
Description Length method for correspondence optimization (MDL) [46] have
partially eliminated the need for manual landmarking. The applicability of the
MDL method is limited to surfaces of the objects which are topologically equiv-
alent to a sphere. The standard ICP algorithm applies the Euclidean distance to
measure the distance between corresponding points and hereby assumes, that all
point classes are normally distributed with the same standard deviation. Hansen
et. al. [75] proposed an extension to the usual ICP algorithm which uses the
Mahalanobis distance with a spatially dependent covariance matrix instead of
the Euclidean distance. The spatially dependent covariance matrix is updated
iteratively during the alignment.

Image registration or spatial normalization as coined by the neuroimaging com-
munity establishes correspondences between two images by maximizing the sim-
ilarity w.r.t. a spatial deformation of one of the images. The underlying assump-
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tion being that the present anatomical structures begin to match spatially as
the images becomes more similar.

In most registration schemes, a regularizer is applied to ensure a valid spatial
deformation which is smooth and topology preserving. The majority of regu-
larization approaches find their motivation in continuum mechanics. Broit [24]
initially proposed the idea of using linear elastic body forces to regularize the
deformation which was later adapted into a registration algorithm by Bajcsy
et. al. [15]. Pennec et. al. [122] introduced Riemannian elasticity which in con-
trast to linear elasticity is rotation invariant and therefore capable of capturing
much larger deformations. Rohlfing et. al. [128] and Tanner et. al. [159] essen-
tially performed elastic image registration by incorporating volume-preserving
soft constraints in registration of pre- and post-contrast MRIs of female breasts.
Almost similarly, Haber and Modersitzki [71] used volume-preserving hard con-
straints together with linear elasticity for the registration of pre- and post-
contrast MRIs. Fisher and Modersitzki [56] proposed diffusive regularization
which is the squared Fröbenius norm of the displacement gradient.

Christensen [31] introduced the use of viscous-fluid priors which regularize the
flow of the deformation rather than the relative spatial displacements. Fluid
registration has become widely popular in the neuroimaging community [25, 26,
40, 43, 62, 63, 152, 168] because of its ability to model large deformations.

Rueckert et. al. [135] reduced the dimensionality of the image registration prob-
lem and ensured a smooth deformation field by using B-splines to describe
the deformations between images. Many research groups have since adapted
this approach – among those Studholme et. al. [26, 151, 155] , Thevenaz
et. al. [148, 162], Kybic et. al. [91, 92], Rohlfing et. al. [127–129] and Hansen
et. al. [77]. Other typical parameterizations of the deformation field are the
cosine kernel proposed by Cootes et. al. [37] and different kinds of radial basis
functions [60, 61, 65, 102, 126, 146].

In morphometry studies, image registration can in be divided into two groups:

Intra-subject, which refers to the case where two images of the same subject
are registered to each other.

Inter-subject, which refers to the case where two images of different subjects
are registered to each other.

Intra-subject registration is typically used in surgical planning applications [66,
80, 100, 153, 174], in comparisons of pre- and post-operative images [132, 140],
in clinical diagnostics, e.g. registration of pre- and post-contrast images [71,
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129, 134, 159], and in neurodegenerative studies [40, 62, 63, 138, 152].

Inter-subject registration is in most cases interchangeable with atlas registration,
where a set of target images is registered to a reference image. The simplest
way of constructing a model or atlas image is simply to choose an image of a
normal subject among the targets. An unbiased atlas can be constructed by
selecting an initial reference image which is registered to the remaining images
and subsequently updated with the mean deformation of the registrations [82].
Spatial normalization against an atlas is an essential part of population based
morphometry studies, as it allows for an morphological comparison between a set
of abnormal subjects and a control group of normal subjects [3, 25, 112, 116, 130,
150]. Also, atlases are commonly used for automated segmentation by mapping
labels from the atlas image to spatially normalized targets [19, 49, 53, 98, 101].
The construction of statistical atlases by incorporating statistical deformation
priors from a set of previously registered images has been proposed by Rueckert
et. al. [133] and Cootes et. at. [37]. The constructed statistical deformation
models were however unable to capture the statistics of the deformations with
a sufficient accuracy which perhaps can be contributed to a relative small set of
training samples. Closely related to the notion of a statistical atlas is the active
appearance model (AAM) proposed by Cootes [35], which combines statistical
spatial deformation modes with statistical synthesis of texture from a training
set of annotated images.
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Image registration

The image registration problem (IRP) is the task of uncovering a suitable ge-
ometrical transformation, which transforms a template image such that it be-
comes similar to a reference image. More formally, it can be formulated as the
minimization of the objective function

C[R, T ;ϕ] = D[R, T ◦ ϕ] + αS[ϕ], (4.1)

where R and T are the reference and the template images, ϕ is the transforma-
tion, D is the (dis)similarity measure, S is a regularizer and finally α is trade-off
constant. This chapter contains a comprehensive but not exhaustive description
of the four fundamental building blocks of image registration

Image representation: Of the four building blocks the representation of an
image is probably the most neglected as it on a first hand basis may
seem trivial. A correct and suitable representation may have a dramatic
influence on the convergence of the optimization and have a significant
impact on the final accuracy of the registration. The most widely spread
misconception is the computation of the image derivatives. Many people
choose to compute the image derivatives by approximating the derivatives
on the data lattice using e.g. a finite difference scheme and then interpo-
late the finite difference derivatives. The correct approach is to compute
the derivatives directly from the chosen interpolation scheme. Not doing
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so leads to a mismatch between the image values and image derivatives,
which at best leads to a slower convergence and in some cases makes the
optimization fail to produce the correct optimum. The theory of scale-
space is another important aspect of image representation which reduces
the chance of falling into a local minimum. Image interpolation, image
derivatives and scale-space theory will be discussed in this chapter.

Similarity measure: The ability to measure the degree of similarity or rather
the dissimilarity between two images is the basis of image registration.
The (dis)similarity measure provides the forces which drive the registra-
tion between two images. The measures presented in this thesis are all
dissimilarity measures, and thus return a non-negative score, which quan-
tifies the degree of dissimilarity between the reference and template im-
ages. Zero implies that the two images are identical or completely similar.
Therefore, dissimilarity measures are often conceived as being distance
functions, which is unfortunate as most dissimilarity measures are not
distance functions or metrics in a strict mathematical sense. This chapter
will provide an overview of the most widely used measures and discuss
their applicability.

Geometrical Transformation: In the literature, it is customary to differ-
entiate between two types of transform representations; parametric and
non-parametric. While this distinction exists in theory it becomes some-
what blurry in practice, as the discretized transformation in either case
is in the linear form x + wTq. This statement will be discussed further
in the next chapter 5 Discretization and optimization. The representation
ϕ(x) = x+u(x) will be used throughout this thesis, where x is the spatial
position to be displaced and u(x) is the displacement. In the parametric
case, the representation will be extended to ϕ(x;w) = x+u(x;w) where
w is some displacement parameter. Parameterization can be interpreted
as a restriction of the space of possible transformations from the space of
all transformation to a subset, which is homeomorphic to some parameter
space1. In many cases there are large advantages in using a parametric
representation to model the transformation in terms of fast optimization,
dimensionality reduction and stability. On the other hand, it may not
always be feasible to model the set of possible deformations using a para-
metric representation, and doing so may lead to sub-quality registrations.
An overview of parameterization types will be given and discussed.

Regularization: The IRP is in almost every circumstance an ill-posed problem
and thus requires additional information to be solved. Regularization e.g.
by imposing smoothness restrictions is probably the best method to add
the information which is needed to make the problem well-posed. A good

1Normally RM where M is the number of parameters.
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parametric model is sometimes enough to guarantee that all transforma-
tions are suitable. For this reason some researchers consider parameteri-
zation to be a form of implicit regularization. Indisputably, a parameter-
ization restricts the space of possible transformations, but it can only be
considered to be a very crude form for regularization as it assumes a uni-
form distribution on the space of possible transformations. It is the view
of the author that the label implicit constraint gives a much better under-
standing of parameterization than implicit regularization. Most regulariz-
ers belong to one of two categories of regularizers or perhaps even both;
Bayesian motivated regularizers where the interpretation of regularization
is a matter of imposing a prior on the parameters, or physically motivated
regularizers where neighboring particles interact with each other and thus
exert force upon each other under deformation caused by external forces.
In image registration, we are mostly interested in regularizers which are
rotation and scale invariant. This chapter focuses on elastic regulariza-
tion as the majority of these regularizers fall into the category of elastic
regularization. Basic elasticity theory will be covered in this chapter and
examples of elasticity energies will be given and compared.

4.1 The notion of an image

If you decide to look up the word image in the Merriam-Webster dictionary
[107] you will find the following definition

A reproduction or imitation of the form of a person or thing...

In most ways this definition fully captures our understanding of an image but
it gives no information on the representation of an image. For a more formal
definition we turn our attention to the world of mathematics where image is a
synonym for range.

Definition 4.1 (Range) Let f : Ω → Y be a function over the domain
Ω, then the range of f is defined as the set of all values that f can take as
its argument varies over Ω, i.e.,

Range(f) = f(Ω) = {f(X) : X ∈ Ω}
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While the definition of range is precise it does not harmonize with our under-
standing of an image. Range provides the tools for describing the colors of an
object but not shape and placement of the object. In order for us to reproduce
or describe an object we need to combine spatial information with spectral in-
formation. E.g. if we wanted to describe the famous Venus de Milo Statue we
could make a map which relates all psychical positions in Louvre (domain) with
a value telling whether a given position is inside or outside the statue. As such
an image is just a function which relates some type of information to physical
positions. In this thesis the notion of an image will be restricted to the set of
functions which have a smooth mapping from a subset of the Cartesian space
to the space of real numbers.

Definition 4.2 (Image) An image is a C1 function I : Ω → R where
Ω ⊆ RN .

In practice, image acquisition devices return image data uniformly sampled and
not a smooth function. In this thesis, a rectangular lattice is represented by
the tuple 0 = (x0,∆,S), where x0 is the physical position of the first point in
the lattice, ∆ is the spacing between the points and finally S is the size of the
lattice. This leads to the definition of a discrete image

Definition 4.3 (Discrete image) A discrete image I of an image I is the
set of samples

I = (I(x),0) = {(x0, I(x0)), (x1, I(x1)), . . . (xn−1, I(xn−1))}, n =
N∏
i

Si,

where Ii = I(xi) is the sampled intensity at the sample point xi. The
samples are lexicographically ordered such that first dimension has the most
frequent oscillations.

To bridge the gap between the discrete image and image function we introduce
the concept of an interpolator.
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Definition 4.4 (Interpolator) A function II : Ω → RN is an interpola-
tor of I if ∀iII(xi) = Ii.

Interpolation is the special case of regression where the error/noise term is
assumed to be zero. As such it relies on the assumption that the two samples
I0 = I(x0) and Ih = I(x0 + h) are correlated. It is customary to model this
correlation by representing II as a weighted sum of basis functions, i.e.

II(x;w) =

n∑
i=1

wiki(x) = ⟨k(x),w⟩ . (4.2)

4.1.1 Interpolation of regularly sampled data

This thesis will restrict the field of interpolation to the case, where data are
sampled on a rectangular lattice. Techniques such as kriging [103] can be ap-
plied in the case of irregularly sampled data as well as regular.

Since image interpolation is frequently used in image registration we require
an interpolator which can be evaluated quickly. For this reason, the scope
of considered basis functions is further limited the to subset which fulfill the
constraints:

• The basis functions can be represented as the tensor product of a set of
1D uniform basis functions.

• The basis functions are compactly supported.

• The knots of the basis functions coincide with the sample points of the
discrete image, and thus it is possible to represent the weight coefficients
w of the basis functions as a discrete image W with same dimensionality
as I.

The uniform B-spline described in Eq. 4.8 is an example of such a mentioned
1D function. The tensor product of these 1D functions spans the space of the
desired k. As k is compactly supported most entries are equal to zero, and we
can represent the non-zero elements by a tensor product of l translates of our 1D
function. These translates are represented by b. To be able to compute the inner
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Figure 4.1: The neighborhood index operator returns the indices of the knots within
blue box in a lexicographical ordering.

product between the non-zero elements of k(x) and the corresponding weights,
we introduce the neighborhood index operator η0(x, l) upon the lattice 0 which
returns the set of weight indices given x. The functioning of the neighborhood
index operator is illustrated in 4.1.

With the introduction of the above definitions it is possible to rewrite Eq. 4.2
to

II(x) =
⟨
b⊗(x̃),Wη0(x,l)

⟩
=

⟨
b(x̃N )⊗ b(x̃N−1)⊗ . . .⊗ b(x̃1),Wη0(x,l)

⟩
, (4.3)

where x̃ =⌋x⌊0, b(t) is a 1D basis function andWη0(x,n+1) is a vector containing
the weights given by the neighborhood index operator.

An advantage of these basis functions is that the computation of the spatial
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derivatives reduces to

∂II(x)

∂xi
=

⟨
∂b⊗(x̃)

∂xi
,Wη0(x,l)

⟩
=

⟨
b(x̃N )⊗ . . .⊗∆i

∂b(x̃i)

∂x̃i
⊗ . . .⊗ b(x̃1),Wη0(x,l)

⟩
. (4.4)

The special case, where W = I, is designated classical interpolation. Typical
examples of basis functions, which satisfy the constraint, are the linear inter-
polation kernel, cosine interpolation kernel and the Hermite cubic interpolation
kernel.

Linear interpolation kernel:

blin(t) =

[
1− t
t

]
=

[
1 −1
0 1

] [
1
t

]
(4.5)

Cosine interpolation kernel:

bcos(t) =
1

2

[
(1 + cos(πt))
(1− cos(πt))

]
=

1

2

[
1 1
1 −1

] [
1

cos(πt))

]
(4.6)

Hermite cubic interpolation kernel:

bhrm(t) =


0 α −2α α
1 0 −α− 3 α+ 2
0 −α 2α+ 3 −α− 2
0 0 α −α



1
t
t2

t3

 , (4.7)

where α controls the behavior of the cubic interpolator. Common choices of
α ranges from −0.5 to −0.75. The recipe for constructing cubic interpolation
splines was proposed by Keys [85].

Uniform B -splines or basis splines can be used as an alternative to the above
kernels [72]. The jth basis B -spline of degree n defined upon the knot sequence
t0 ≤ t2 ≤ . . . ≤ tm (ti ∈ [0 1]) can be computed with the Cox-de Boor recursion
formula [79]

bj,0(t) =

{
1 if tj ≤ t < tj+1

0 otherwise
(4.8)

bj,n(t) =
t− tj

tj+n − tj
bj,n−1(t) +

tj+n+1 − t

tj+n+1 − tj+1
bj+1,n−1(t). (4.9)

In the case of uniform B -splines (equivalent spaced knots ti), the translates of
degree 1, 2 and 3 are:
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Linear B-spline kernel (n = 1):

bbs1(t) =

[
1 −1
0 1

] [
1
t

]
(4.10)

Quadratic B-spline kernel (n = 2):

bbs2(t) =
1

2

1 −2 1
1 2 −2
0 0 1

 1t
t2

 (4.11)

Cubic B-spline kernel (n = 3):

bbs3(t) =
1

6


1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1



1
t
t2

t3

 (4.12)

To apply the B -splines for interpolation the weight coefficients have to be calcu-
lated, which requires computing the solution of a large but sparse linear system
of equations. For the 1D cubic B -spline the linear system of equations becomes

Bw =
1

6


1 4 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 4 1

w = I:. (4.13)

Note, this problem is under-resolved as there are n+2 columns but only n rows.

4.1.2 Short note on the boundary value problem

The boundary value problem arises in tensor spline interpolation when the size
of the translates become larger than two. In these cases, the number of basis
function required to interpolate the entire domain, surpasses the number of
data samples, and the regression problem becomes ill-posed. This problem is
redeemed by including a set of additional constraints on the boundary, called
boundary conditions. Most common is probably the zero Dirichlet boundary
condition which assumes that the weights of the knots placed outside the domain
of the image are equal to zero. Hence, the first and last elements of w are
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removed together with the first and last columns of B

Bzero =
1

6



4 1 0 · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 4


. (4.14)

Another common boundary condition is the circular boundary condition, which
in the 1D case means that the left neighbor of the left most knot in the lattice
is the right most knot. The new B matrix becomes

Bcirc =
1

6



4 1 0 · · · 0 1

1
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . 1
1 0 · · · 0 1 4


(4.15)

Due to the uniformity of the knot placement (rectangular lattice) and the pe-
riodic boundary condition the system arising from Bcirc can be solved quickly
using the discrete cosine transform. The interested reader is referred to [171].

4.1.3 Scale-space

Scale-space theory provides a way of representing image structures at different
scales. The motivation emerges from the fact that objects in the real-world
appear different depending of the scale of observation. E.g. a snowflake will
appear visually different depending on the distance from where it is observed.
From afar it is just a white dot, but as you zoom in closer and closer a finer
and finer ice crystal structure will appear with more and more branches. This is
illustrated in Figure 4.2. In image registration you decrease the chance of falling
into a local minimum dramatically by registering the coarser structures first and
gradually incorporating finer and finer structures. In practice this is done by
performing a sequence of image registrations in a course-to-fine manner, where
the final result of scale k is used an initial guess on scale k − 1.
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(a) Scale 0. (b) Scale 1. (c) Scale 2.

(d) Scale 3. (e) Scale 4. (f) Scale 5.

Figure 4.2: Scale space representation of a snowflake.

4.1.3.1 Gaussian scale-space

The most widely applied type of scale-space is the Gaussian scale-space which
can be derived from a small set of scale-space axioms [96, 97]. In Gaussian
scale-space a sequence of signals {L(x, t)} is derived from an image I(x) by

convolving the image with the Gaussian kernel G(x, t) = 1√
2πt

N e−
1
2t∥x∥

2

L(x, t) = G(x, t) ∗ I(x). (4.16)

4.1.3.2 Smoothing splines

As an alternative to Gaussian scale-space one can merge the concept of scale-
space with the concept of an interpolator using smoothing splines [79]. That is
instead of solving a linear system equation to get the weights w from Eq. 4.2
we compute

argmin
w
∥I: −Kw∥2 + α∥w∥2Θ, (4.17)

where

Θ =

N∑
i=1

N∑
j=1

∫
Ω

∂2k(x)

∂xi∂xj

∂2k(x)

∂xi∂xj

T

dx (4.18)
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and K = [k(x1) . . . k(xn)]
T and α is a smoothing parameter. The last term of

E.q. 4.17 penalizes curvature.

4.2 Geometrical Transformation

As mentioned, it is customary to distinguish between two general types of ge-
ometrical transformation representations. The non-parametric representation
stores a displacement for every single point in some chosen mesh topology with
a suitable resolution, and the parametric representation represents the entire
deformation field or transformation with a finite number of parameters. The
advantages with the parametric representation are the inherit dimensionality
reduction and the fact that the transformation derivatives can be computed di-
rectly, while they have to be approximated using e.g. finite differences in the
non-parametric case. These advantages will often lead to a faster and a more
stable optimization. On the other hand, the non-parametric representation can
represent any transformation down to some resolution, while it may difficult to
find a suitable parametric representation for complex deformations. The best
choice of representation is naturally depended on the application – e.g. if you
tracking the 2D rigid motion of an object there are only three degrees of freedom
(one rotation and two translations), which implies that the displacement field
can be modeled using only three parameters.

Independent of your choice of representation a rule of thumb in medical image
registration is that a transformation as a minimum should be diffeomorphic.
The word diffeomorphic is a contraction of differentiable and homeomorphic.

Definition 4.5 (Diffeomorphism) A function f between two topological
spaces X and Y is called a diffeomorphism if

• f is a bijection

• f and the inverse mapping f−1 are C1.

The diffeomorphism definition translates into the requirement that a deforma-
tion field has to be smooth and may not contain tears or folds. If f and the
inverse mapping f−1 are only C0, we say that f is a homeomorphism.

The diffeomorphism constraints surface due to practical circumstances rather
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than from real demands. In inter-subject image registration of biological objects
the homeomorphism assumption may even conflict with reality. There may be
structures in the human brain of one individual which do not exist in the brain
of another individual, and some pigs have more ribs than others. The lack of
topological equivalence between images is difficult to handle so we simply choose
to ignore it. How do you represent a transformation where a displacement in a
point x may or may not exists, and how do we detect it? And even if we could
handle topological difference problems, we often want to do statistical analysis
on the displacement fields afterwards. The lack of one-to-one correspondence
can easily complicate the statistical analysis. At last, it is impossible to apply a
gradient based optimization technique if the transformation is not differentiable.

4.2.1 Parametric representation

All parametric transformations used in this thesis are on the form

ϕ(x;w) = x+ u(x;w) = x+A(x)g(w), (4.19)

where A is a spatial basis and g is a parameter kernel.

If A is linearly dependent on x we say that the transformation is linear w.r.t.
x, i.e.

Alin =
[
xT 1

]
⊗ I. (4.20)

Typical linear transformations are the rigid transformation, the similarity trans-
formation and the affine transformation. In 3D these transformations are given
by the following parameter basis

gsim

αs
t

 = s

[
vect

(∏3
i=1 Ri(αi)− I

)
t

]
,

grig

([
α
t

])
= gsim

α1
t

 ,

gaff(w) = w,

where α are the rotation angles, t are the translations, Ri is the 2D rotation
around the ith axis and s is the scale parameter.

ϕ(x;w) models a non-rigid deformation when A has a non-linear dependency
on x. To ensure a fast evaluation it is customary to construct A from compactly
supported basis functions, e.g. B-spline basis functions. If the knots of the basis
functions are placed in a rectangular lattice topology it is most natural to use
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the basis functions presented in Section 4.1.1 Interpolation of regularly sampled
data. Compactly supported radial basis functions are another type of basis
function which have been used frequently for modeling deformation in image
registration [60, 61, 65, 102, 126, 146].

Most choices of A will guarantee that ϕ is smooth with no tears, but there is no
guarantee that it will not fold. If A is non-linear w.r.t. x and ϕ is linear w.r.t.
w, e.g. g(w) = w, then there exists an instance of w which produces a folding
instance of ϕ [78]. It is possible to construct a mapping g : RM → P ⊂ RM ,
where P is a bounded subset of RM , which ensures that ϕ is diffeomorphic for all
w. The included paper Diffeomorphic Statistical Deformation Models (Chapter
10) proposes a general solution to this problem.

4.3 Regularization

In this thesis all regularizers will be in the form

S[ϕ] =
∫
Ω

r(ϕ;x)dx, (4.21)

where r(ϕ;x) is a regularization density function.

This thesis work has primarily been focussed on elastic regularization and secon-
darily on regularization from statistical priors on the displacement parameters.
The section gives a thorough description of elastic regularization and a basic
introduction to Tikhonov regularization for reasons of completeness. For details
about regularization from statistical priors and statistical prior building the
reader is referred to the included paper Conditional Statistical Model Building
(Chapter 11).

4.3.1 Tikhonov based regularization

The simplest type of regularization is probably a quadratic penalty on the dis-
placements

rquad(ϕ;x) = ∥ϕ(x)− x∥2Q = ∥u(x)∥2Q. (4.22)

where Q is a quadratic weighting matrix. This regularizer is for several reasons
not suitable for image registration:

• It is not rotation or scale invariant. Semi-rigid deformation accounts for
a significant part of the total deformation in many IRPs.
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• It treats the displacement penalty in every point x independently. It is
likely to assume that the displacement at x is correlated with the dis-
placement of its neighborhood. In the case of parametric registration, it
may not be such a big problem as the basis functions already model the
correlation between neighboring points. Nevertheless, it makes little the-
oretical sense to assume correlation between neighboring points and then
discard it. With a parametric representation of the transformation one
could apply Tikhonov regularization directly on the displacement param-
eters w

Spar[ϕ] = ∥Γw∥2 = ∥w∥2Q, Q = ΓTΓ, (4.23)

where Γ is the Tikhonov matrix.

To redeem the latter of the problems, it is possible to change the quadratic reg-
ularizer to work on the relative displacements represented by the displacement
gradient ∇u

rder(ϕ;x) = ∥vect(∇u(x))∥2Q. (4.24)

For Q = I, this regularizer is known as the diffusive regularizer [56, 108]. The
name diffusive regularizer originates from the observation that a generalized
version of the diffusion equation can be obtained from the combination of Eq. 4.1
and Eq. 4.24 by setting the Gâteaux derivatives of Eq. 4.1 equal to zero.

The regularizer given by Eq. 4.24 will after discretization reduce to Eq. 4.23 in
the case of parametric registration, and to the Tikhonov form

Stik[ϕ] = ∥Γû∥2 (4.25)

in the case non-parametric registration, where Γ serves as a linearized differen-
tiation operator with built-in weighting and û is the discretized displacement
field.

4.3.2 Elastic regularization

In physics, an elastic material will deform under stress (e.g. from external
forces) but revert to its original shape when the stress is removed. The amount
of relative displacement between neighboring particles is known as the strain. It
is important to think of stress and strain as concepts rather than specific physical
quantities as there are several ways of representing and defining them. Elastic
deformation modeling is essentially a problem of relating stress to strain. This
simplest way of relating stress and strain is through Hooke’s law which states
that stress and strain are proportional to each other. This is known as linear
elasticity. For hyperelastic materials, the relationship between stress and strain
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(a) (b)

(c)

Figure 4.3: Stress illustration.

is modeled through a strain energy density function (elastic potential energy).
The theory of elasticity covered in this thesis has been compiled from a number
of articles and books [20, 50, 108, 122] and the author’s own interpretation. For
in-depth descriptions of the concepts of stress and strain the reader is referred
to [50].

4.3.2.1 Cauchy Stress

Stress is the internal distribution of force per area which balances and reacts
with the external forces. Let us assume that a body has been separated into
a left and a right part by an imaginary plane defined by the point P and the
normal n as shown in Figure 4.3. Due to the internal reaction the left part
exerts a total force ∆f in an area ∆A on the right part. If the body is in a state
of equilibrium (no motion) the right part will exert an equally sized and opposite
directional force on the left part. According to the Cauchy stress principle the
limit of the ratio between ∆f and ∆A, when ∆A shrinks around P , exists, and



38 Image registration

Figure 4.4: Stress tensor illustrated on an infinitesimally small cube.

the limit is called the traction or stress vector at the shrinkage point P

T (n) = lim
∆A→0

∆f

∆A
=

df

dA
. (4.26)

The stress in a 3D body can by represented by a second-order Cartesian tensor
defined in the reference coordinate system V = span{e1, e2, e3}

[σij ] =

T (e1)

T (e2)

T (e3)

 =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (4.27)

[σij ] is known as the Cauchy stress tensor. An illustration of the Cauchy stress
tensor can be found in Figure 4.4. σii and σij with i ̸= j are entitled the normal
stresses and the shear stresses, respectively. When the body is in an equilib-
rium state the shear stresses are equal across the diagonal elements σij = σji.
As we are only interested in the final configuration of the deformed (regis-
tered) image and not the deformation path itself, this thesis will only deal with
symmetric stress tensors. Thus, it is natural to represent the stress tensor by
σ = vect([σij ]) = [σ11 σ22 σ33 σ12 σ13 σ23]

T .
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Figure 4.5: Deformation of a continuum body.

4.3.2.2 Deformation and strain

Consider the point P and the neighboring point Q in a material positioned
at x and x + ∆x, respectively. The material body undergoes a diffeomorphic
deformation such that the points P and Q move to positions P̃ and Q̃ given by
x̃ and x̃ + ∆x̃. Assuming that ∆x and ∆x̃ are infinitesimally small they can
be replaced by dx and dx̃.

From Figure 4.5 it follows that

x̃+ dx̃ = x+ dx+ u(x+ dx)⇔ (4.28)

dx̃ = x− x̃+ dx+ u(x+ dx) (4.29)

= dx+ u(x+ dx)− u(x). (4.30)

du = u(x + dx) − u(x) is called the relative displacement. By performing a
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first-order Taylor expansion of u(x+ dx) around P we get

dx̃ ≈ dx+ u(x) +∇xu(x)dx− u(x) = (I +∇xu(x))dx = F (x)dx (4.31)

The tensor F (x) = ∇ϕ(x) = I + ∇u(x) is called the material deformation
gradient tensor and describes the local deformation at the material point given
by the position x. As the tensor F is based on the displacement gradient it is
translation invariant but not rotation invariant. However, F can be decomposed
into an orthonormal tensor (representing the rotation) and a positive definite
symmetric tensor (representing the stretch), i.e.

F = RU = V R. (4.32)

U and V are denoted the right stretch tensor and the left stretch tensor respec-
tively. U and V have identical eigenvalues or principal stretches but different
eigenvectors. The decomposition is illustrated in Figure 4.6

From the right stretch tensor we define a sequence of rotation and translation
invariant tensors which are known as the Lagrangian strain tensors

Em =
1

2m
(U (2m) − I). (4.33)

These tensors essentially model the deviation of the right stretch tensor from
the identity. The special case E0 = log(U) is called the Hencky strain tensor
and is by many considered to be the natural strain tensor. The special case E1

is called the Green-Lagrangian tensor or the Green - St-Venant strain tensor
and is often written in the form

E1 =
1

2
(C − I), (4.34)

where C = F TF is the right Cauchy-Green deformation tensor.

4.3.3 Hooke’s law and linear elasticity

After having visited stress and strain it is time to link the two concepts together.
The theory of elasticity is governed by Hooke’s law which states that the restor-
ing force in a spring is directly proportional to extension or compression of the
spring. As stress is related to force and strain to deformation the extension of
Hooke’s law to a 3D elastic material becomes

σ11

σ22

σ33

σ12

σ13

σ23

 =

s11 · · · s16
...

. . .
...

s61 · · · s66



ϵ11
ϵ22
ϵ33
ϵ12
ϵ13
ϵ23

 , (4.35)



4.3 Regularization 41

Figure 4.6: Polar decomposition of material deformation gradient tensor.
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where S = [sij ] is the stiffness matrix and ϵij is the ijth element of the strain
tensor. As the stress and strain tensors have 6 unique components the stiffness
matrix is a 6 × 6 matrix which gives a total of 36 degrees of freedom. For
an isotropic elastic material the stress and strain tensors share principal axes
which implies that the linear relationship can be expressed through the principal
components of the tensors. Hence,σ1

σ2

σ3

 =

s̃11 s̃12 s̃13
s̃21 s̃22 s̃23
s̃31 s̃32 s̃33

ϵ1ϵ2
ϵ3

 , (4.36)

where σi is the ith principal component of the stress tensor and ϵi is the ith
principal component of the strain tensor. Furthermore, as the reaction must be
independent of the direction, the diagonal elements of [s̃ij ] must be equal and
the off-diagonal elements of [s̃ij ] must be equal. This leaves only two degrees of
freedom for the case of an isotropic elastic material - yielding Hooke’s law for
an isotropic elastic material

σ11

σ22

σ33

σ12

σ13

σ23

 =


λ+ µ λ λ 0 0 0
λ λ+ µ λ 0 0 0
λ λ λ+ µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ




ϵ11
ϵ22
ϵ33
ϵ12
ϵ13
ϵ23

 = Υ


ϵ11
ϵ22
ϵ33
ϵ12
ϵ13
ϵ23

 (4.37)

where µ and λ are the Lamé constants.

In linear elasticity it is customary to model stress with the Cauchy’s strain
tensor

Elin =
1

2
(∇u(x)T +∇u(x)). (4.38)

For an infinitesimal deformation ∥u(x)∥ ≪ 1, ∥∇u(x)∥ ≪ 1, the Cauchy’s strain
tensor is an approximation to the Green-Lagrangian tensor

E1 =
1

2
(F TF − I) =

1

2
(∇u(x)T +∇u(x) +∇u(x)T∇u(x))

≈ 1

2
(∇u(x)T +∇u(x)) = Elin.

The linearized elastic potential energy for an isotropic material is derived by
integration of Eq. 4.37

Wlin(x) = ∥vect(Elin)∥2Υ = µtr(E2
lin(x)) +

λ

2
tr(Elin(x))

2. (4.39)

The use of linear elasticity in image matching was initially proposed by Chaim
Broit in his doctoral dissertation [24] in 1981 and refined over the following years
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by Bajcsy et al. [13–15, 141]. The linear elastic model with the Cauchy’s strain
tensor is still today the most widely used model in surgical simulators despite
some limitations. The main drawback of linear elasticity is its lack of rotation
invariance which is due to the small deformation assumption inherited from the
use of Cauchy’s strain tensor. Lets assume that a solid 2D body undergoes a
rotation

ϕ(x) = Rx = x+ (R− I)x, RTR = I, x ∈ R2. (4.40)

By inserting Eq. 4.40 into Eq. 4.38 we get

Elin =
1

2
(RT +R− 2I) = (cos(α)− 1)I (4.41)

and

Wlin(x) = 2µ(cos(α)2 + 1− 2 cos(α)) + 2lambda(cos(α)− 1), (4.42)

which shows that the energy is depended on the rotation angle α.

4.3.3.1 Hyperelastic

For hyperelastic materials the strain energy density function is the instrument
in which the relationship between stress and strain is modeled. The definition
of elasticity informs us, that work associated with a deformation of an elastic
body is independent on deformation path, and only depends on the end configu-
ration given by the deformation gradient F . The strain energy density function
quantifies the work/energy stored in an infinitesimal neighborhood due to the
deformation. Hence, the strain energy density function W (F ) is a function of
F .

There are a number of requirements which one should take into account when
designing a strain energy density function. First of all the energy should be
zero in a stress free state (rotation invariance) and it should be monotonically
increasing

W (F ) = 0 for C = F TF = I and W (F ) ≥ 0. (4.43)

Furthermore, it should take an infinite amount of energy to do an infinite ex-
pansion and to do a black hole (collapse) deformation

W (F )→∞ for det(F )→∞ and for det(F )→ 0. (4.44)

If W̄ (E) = W (F ) is a strain energy density function defined upon a some tensor
E then the energy conjugate stress tensor is defined by

[σij ]E =
∂W̄ (E)

∂E
. (4.45)
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The easiest way to design an energy function is probably just to define it in
terms of the length or size of a suitable tensor E. E.g. we can use the squared
Fröbenius norm as the strain energy density function

W̄fro(E;x) =
1

2
∥E(x)∥2fro =

1

2
tr(E(x)2). (4.46)

Many biological structures and shapes will often exhibit a preferred direction
of deformation in the reference coordinate system. If such a priori information
is available it is natural to base the energy function on the weighted quadratic
form

W̄wgh(E;x) = ∥vect(E(x))∥2Q(x). (4.47)

In the case of isotropic materials the above form can be rewritten into

W̄iso(E;x) = µtr(E(x)2) +
λ

2
tr(E(x))2, (4.48)

where µ and λ are the Lamé constants. Note, the similarity to linearized elastic
potential energy in Eq. 4.39.

The strain energy density function of an isotropic material is normally defined
using the invariants2 of the deformation and strain tensors. That is, the energy is
expressed by unbiased combinations of the principal stretches (eigenvalues ofU).
Common invariants are IE1 = tr(E), IE2 = tr(E2)− tr(E)2 and IE3 = det(E).

4.3.3.2 Examples of isotropic elastic regularizers

The most natural isotropic regularizer to start with is the St. Venant Kirchoff
elasticity energy [123]

rsvk(ϕ;x) = W̄iso(E1;x) =
µ

4

N∑
i=1

(ε2i − 1)2 +
λ

8

(
N∑
i=1

(ε2i − 1)

)2

, (4.49)

which is the extension of linear elasticity to large deformations. ε is the principal
stretches. In contrast to linear elasticity, this energy is rotation invariant but
its ability to handle large compression is questionable, i.e.

W̄iso(E1;x) =
Nµ

4
+

N2λ

8
(4.50)

2Invariant w.r.t. reference frame.
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when det(F (x)) = 0. Hence, it does not take an infinite amount of energy to do
the back hole deformation. The energy as function of the principal stretches is
visualized in Figures 4.7) with different material constants. From the figure we
observe that the elasticity energy grows faster for expansion than compression.

Pennec et al. [122] proposed to replace the Green-Lagrangian tensor with the
Hencky strain tensor and hereby introduced the isotropic Riemannian elasticity
energy

rrie(ϕ;x) = W̄iso(E0;x) =
µ

2

N∑
i=1

log2 εi +
λ

4

(
N∑
i=1

log εi

)2

. (4.51)

The Riemannian elasticity energy fulfills the requirements from Eq. 4.43 and
Eq. 4.44. The energy as function of the principal stretches is visualized in
Figure 4.8 with different material constants. From the figure, we observe that
Riemannian elasticity energy almost mirrors the St. Vernant Kirchoff energy in
the bottom-left to top-right diagonal in the displayed interval of the principal
stretches, and that the energy landscape of the Riemannian elasticity energy
matches the no-compression line.

It is possible exploit the incompressibility constraint det(F ) = 1 to build a
strain density energy function, i.e.

rvol(ϕ;x) = (det(F )K − 1)2M = (
N∏
i=1

εKi − 1)2M , (4.52)

where K and M are material constants. For M > 0 and K ̸= 0, rvol penalizes
changes in volume. This energy as function of the principal stretches is visualized
in Figure 4.9(a,b) with different material constants. For K > 0, this volumetric
elasticity energy suffers from the same black hole defect as St. Venant Kirchoff
elasticity energy.

Rohlfing et al. [128] used the absolute value of natural logarithm of the deter-
minant of the deformation gradient as a soft constraint for the registration of
pre-contrast and post-contrast MR breast images. A generalized version of this
regularizer is

rlog(ϕ;x) = log(det(F ))2M =

(
N∑
i=1

log εi

)2M

, (4.53)

where M is a material constant. Note, for M = 1 this energy is equal to
the second term of isotropic Riemannian elasticity energy (see Eq. 4.51). This
energy as function of the principal stretches is visualized in Figure 4.9(c) with
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Figure 4.7: The St. Vernant Kirchoff density energy as a function of the principal
stretches ε1 and ε2. The green line represents the no compression cases (det(F ) =
ε1ε2 = 1).

material constant M = 1. As could be expected the volumetric energies in
Figure 4.9 follows the no-compression line.

Biological tissue behaves similar to natural rubber which means that is nearly
incompressible and very compliant to shear. The best model for describing
rubber-like materials is the Ogden material model [115]

rogden(ϕ;x) =
M∑
p=1

µp

αp
(−N +

N∑
i=1

ε
αp

i ). (4.54)

where M , αp and µi are material constants. For M = 2, α1 = 2, α2 = −2 the
model reduces to the Mooney-Rivlin solid, and for M = 1, α1 = 2 it reduces
to the Neo-Hookean solid. Example energies of the Ogden material model, the
Mooney-Rivlin solid, and the Neo-Hookean solid are shown in Figure 4.10. Note,
the Ogden material model assumes that the material is incompressible, and
consequently is only valid when the constraint det(F ) = 1 is fulfilled. This is
the explanation for the negative energy areas found in Figure 4.10 – the energy
functions are only valid along the green line. However, the Ogden material model
can be extended to the compressible case by combining it with e.g. Eq. 4.52 or
Eq. 4.53 and normalizing the principal stretches, i.e. ε̂i = εi(

∏N
i=1 εi)

− 1
N .
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(b) rrie, λ = 1, µ = 3
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Figure 4.8: The Riemannian density energy as a function of the principal stretches
ε1 and ε2. The green line represents the no compression cases (det(F ) = ε1ε2 = 1).

ε
1

ε 2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) rvol, K = 1,M = 1

ε
1

ε 2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(b) rvol, K = −1,M = 1
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Figure 4.9: Volumetric density energy as a function of the principal stretches ε1 and
ε2. The green line represents the no compression cases (det(F ) = ε1ε2 = 1).
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(a) rogden, α1 = 2, µ1 =
4.225 (Neo-Hookean rubber)
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(b) rogden, α1 = 2, α2 = −2
µ1 = 4.225, µ2 = −0.528
(Mooney-Rivlin rubber)
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Figure 4.10: The Neo-Hookean, Mooney-Rivlin and Ogden density energies as a func-
tion of the principal stretches ε1 and ε2. The green line represents the no compression
cases (det(F ) = ε1ε2 = 1).

4.3.3.3 Examples of anisotropic elastic regularizers

Only limited research has been done on the use of anisotropic elastic regularizers
for image registration. One advantage with the anisotropic elastic regularizers
are that they can be used to incorporate statistical priors into the elastic regular-
ization framework. Pennec et al. proposed the statistical Riemannian elasticity
energy

rsrie(ϕ;x) =
1

4

∫
Ω

∥vect((E0(x)− Ē0(x)))∥2Σ−1(x), (4.55)

where Σ is a covariance matrix and Ē0 is a mean tensor calculated from a set
of n previously observed deformations. Hence,

Ē0(x) =
1

n

n∑
i=1

E0,i(x) (4.56)

and

Σ(x) =
1

n

N∑
i=1

vect(E0,i(x))vect(E0,i(x))
T . (4.57)

Woods [177] proposed a similar statistical framework but he used the matrix
logF instead of the Hencky tensor. There are a number of theoretical problems
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with using a non-symmetric tensor instead of a symmetric one. Primarily, logF
is not rotation invariant.

It is tempting to extend Eq. 4.55 by replacing the Hencky tensor with an ar-
bitrary strain tensor. However, only a few strain tensor spaces lie on a linear
manifold, and as such the usual matrix addition and substraction operations
are not valid in general. That is, the matrix substraction of two strain tensors
of the same type may not produce a strain tensor of that type.

4.4 Similarity measures

The similarity measure is the term in Eq. 4.1 which drives the registration. The
derivatives of the similarity measure can be interpreted as a force field, which
acts on the template image causing it to deform. In contradiction to the name
most similarity measures do not measure the degree of similarity between images
but rather the dissimilarity between them. Thus, most similarity measures
quantify the degree of (dis)similarity by returning a non-negative real number
– zero meaning that the images are completely similar or identical. This leads
to the common misconception that a similarity measure is a distance function
or metric. The truth is that many (dis)similarity measures fail to satisfy the
symmetry and the triangle inequality conditions from the definition of a metric.

Under the assumption that two images are identical except for some spatial
deformation the most instinctive approach for measuring the (dis)similarity be-
tween images is probably to compute the squared difference. The squared dif-
ference is in fact the optimal measure when the images are affected by indepen-
dent additive Gaussian noise [170]. The applicability of the squared difference
measure is unfortunately limited as the noise in medical images are often non-
Gaussian. In addition to detector noise, medical images may also be corrupted
with motion artifacts and reconstruction artifacts. In this section, it will be
assumed that the images either contain an insignificant amount of noise, or that
they have been noise corrected.

Another limitation of the squared difference measure is its incapability of mea-
suring the similarity between multi-modality images, as they have different spec-
tra. The most applied similarity measure for multi-modality registration is prob-
ably normalized mutual information [169, 174]. The choice of similarity should
in general rely on the mapping type between the spectra of the two images. Ta-
ble 4.1 lists, which mapping type, the included similarity measures are suitable
for. The included similarity measures are squared difference, correlation coeffi-
cient, correlation ratio, normalized mutual information and normalized gradient
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Mapping Suitable measure(s)
Identity Squared distance.
Linear Correlation coefficient.
Monotone Correlation ratio.
Otherwise Mutual information and normalized gradient.

Table 4.1: The best choice of similarity measure depends on the mapping between
the spectra of the two images to be registered.

fields. The registration framework implemented during the thesis work contains
implementations of squared difference, correlation ratio and normalized gradient
fields. The remaining measures have been included in the thesis for reasons of
completeness.

4.4.1 Squared difference

The measure is given by

Dsd =
1

2

∫
Ω

(R(x)− Tϕ(x))
2dx. (4.58)

4.4.2 Correlation coefficient

The correlation coefficient is the optimal measure to use when there are a linear
relationship between the intensities in the two images, e.g. registration of X-ray
images. The measure is given by

Dcc =

∫
Ω
(R(x)− R̄)(Tϕ(x)− T̄ϕ)dx∫

Ω
(R(x)− R̄)2dx

∫
Ω
(Tϕ(x)− T̄ϕ)2dx

. (4.59)

4.4.3 Correlation ratio

The correlation ratio was introduced as a similarity measure by Roche et al.
[125], and it is given by

Dcr =

∫
Ω
(Tϕ(x)− E[Tϕ(x)|R(x)])2dx∫

Ω
(Tϕ(x)− T̄ϕ)2dx

, (4.60)

where E[Tϕ(x)|R(x)] is the expected value of Tϕ(x) given R(x). This mea-
sure can handle non-linear monotone mappings between spectra which makes it



4.4 Similarity measures 51

suitable for intra-modal registration of MR images, where the mapping is not
necessarily linear. The measure is not suitable for multi-modality image reg-
istration as it is unable to handle one-to-many mappings from the spectra of
the reference image. This drawback is inherited from the use of E[·|·]. Note,
this dissimilarity measure is comparable to the partioned intensity uniformity
measure proposed by Woods et. al. [178].

4.4.4 Normalized mutual information

Normalized mutual information is the normalized version of the mutual infor-
mation similarity measure which was introduced by Viola and Wells [169, 174].
Studholme et al. [154] showed that misregistration may cause an increase in mu-
tual information and proposed the normalized mutual information as a better
alternative. The normalized mutual information between two images is given
by

Dmi =
H(R) +H(Tϕ)

H(R, Tϕ)
, (4.61)

where H(I) is the entropy of the image I, and H(R, Tϕ) is the joint entropy
between the reference and deformed template image.

4.4.5 Normalized gradient fields

Haber et al. [73] introduced normalized gradient fields as an alternative to
mutual information. They were motivated by the observation that mutual in-
formation is highly non-convex and has a tendency to fall into local minima
during optimization. The basic idea behind the measure is that two images are
similar, if the changes in intensities occur at the same locations. The normalized
gradient field similarity measure is given by

Dng = −1

2

∫
x∈Ω

< nϵ(R,x),nϵ(Tϕ,x) >
2, (4.62)

where

nϵ(I,x) =
∇I(x)√

∇I(x)T∇I(x) + ϵ2
.

ϵ is the jump-parameter, which ensures that the measure is differentiable, even
if one of the image gradients is zero, and it decreases the sensitivity to image
noise.
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Chapter 5

Discretization

While Chapter 4 dealt with the theoretical aspects of image registration this
chapter deals with the image registration on a practical level. That is, to solve
the definite IRP of Eq. 4.1 it has to be transformed into a finite problem which
is solvable on a computer. The most common approach for discretization of the
IRP with a regularization term formulated upon the transformation derivatives
is to differentiate Eq. 4.1 to obtain the Euler-Lagrange equations. The equations
are subsequently discretized and solved numerically [15, 21, 32]. In this thesis,
the discretize-optimize approach [71–73] is pursued, which means that Eq. 4.1
is discretized and then differentiated. The advantages with the this approach is,
that it can be efficiently optimized with a gradient based optimizer, and it has
no problem with handling non-linearity in the derivatives of the regularization
term.

5.1 Discretization of D

To compute the (dis)similarity between two images, we need to replace the
integral of the (dis)similarity measure with a finite sum. Numerical integration
is the approximate computation of the integral∫

Ω

f(x)dx. (5.1)
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(a) Midpoint quadrature rule (b) Trapezoidal quadrature rule

Figure 5.1: Quadrature rules for numerical integration

The simplest and the most common approach for numerical integration is the
midpoint quadrature rule (MQR), where the function f is locally approximated
with a constant function (polynomial of zero order). The MQR is illustrated in
Figure 5.1 (a). In order to apply the midpoint quadrature rule, the continuous
image domain Ω needs to discretized into a finite set of discrete sub-domains.
In practice, this means that the image domain is tesselated into a mesh repre-
sentation consisting of convex polytopes. The MQR is

∫
Ω

f(x)dx ≈
n∑

i=1

Vif

 1

L(Ti)
∑
j∈Ti

vj

 , (5.2)

where Vi is the volume of the ith element, vj is the jth vertex in the mesh, Ti
is the set of vertex indices of the ith polytope, and L(Ti) is the length of Ti.

As most discrete images are discretized on a regular grid 0n = (x0,∆, s) it is
customary to use this tessellation for the discretization of D. The MQR for a
rectangular lattice 0n is

∫
Ω

f(x)dx ≈ V
∑

xi∈0c

f(xi), (5.3)

where 0c = (x0 + 1
2∆,∆, s − 1) is the cell-centered lattice of 0n and V =∏N

i=1 ∆i.

While it is not the standard in image registration one can alternatively ap-
proximate f locally with a higher order polynomial. Figure 5.1 (b) exemplifies
the Trapezoidal quadrature rule(TQR), where f is locally approximated linearly
(polynomial of first order).
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5.2 Discretization of S and ϕ

Discretization of the regularization term S is straight forward when dealing with
a parametric representation of the transformation. In these cases, it is possible
to compute the spatial derivatives of the transformation directly, and S can
be approximated with numerical integration techniques as above. In practice,
this type of discretization becomes unstable when the number of transformation
parameters approaches the number of discretization samples.

For a more stable discretization we turn our attention to Finite Element Dis-
cretization (FED). FED is the applied discretization in the Finite Element
Method (FEM), which is a popular technique for solving partial differential
equations and integral equations. The FEM has, since the pioneering work of
Courant [38], been the topic of many engineering textbooks [55, 179] and ap-
plied in many image registration and virtual surgery applications [18, 21, 22,
54, 89, 139]. The basic idea behind FED is to discretize the domain into a
finite number of discrete sub-domains (similar to numerical integration) where
f can be approximated with a linear function. In the FEM terminology the
discrete sub-domains are called elements which give reason to the name Finite
Element Method. In some sense, the FED is related to the TQR of numerical
integration, which is illustrated in Figure 5.1 (b). That is, the only difference
between FED and TQR is that the FED approximates the function f itself,
while TQR approximates the integral of f . In FED it is custom to discretize
the domain using simplices (lines, triangles, tetrahedrons, etc.). A simplex of
a ND space consists of exactly N + 1 points/vertices, which is the minimum
number of points required to model N linearly independent vectors. Thus, the
name refers to the fact that it is the simplest polytope in any given space. The
reason, that the simplex topology is the preferred mesh topology, is that the
local linear approximation function of f can be represented by the linear inter-
polation of the function values of f in the vertices of the simplex. There exists a
number of non-linear extensions to the standard FEM, e.g. hp-FEM [10, 70, 83]
and the spectral-FEM[83, 121].

Let x be an arbitrary point and let the vertices {v1, . . .vN+1} define a simplex
in a ND space. Now, x can be written as a linear combination of the vertices

x =
[
v1 · · · vN+1

]
η = V η. (5.4)

η is called the barycentric coordinates of x w.r.t. v1, · · ·vN+1. As V is
N × (N + 1) matrix η is not uniquely defined for a given x. By adding the
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Figure 5.2: Illustration of the linear/affine transformation Φ(x) from triangle
{v1,v2,v3} to triangle {v1 + ∆v1, . . .vN+1 + ∆vN+1} with x ∈ {v1,v2,v3} corre-
sponds to the point ϕ(x) in {v1 +∆v1,v2 +∆v2,vN+1 +∆vN+1}.

homogenous constraint
∑N+1

i=1 ηi = 1, we get

[
x
1

]
=

[
v1 · · · vN+1

1 · · · 1

] η1
...

ηN+1

 =

[
V
1T

]
η, (5.5)

η =

[
V
1T

]−1 [
x
1

]
=
[
D η0

] [x
1

]
. (5.6)

A point x is inside or on the edge of the simplex {v1, . . .vN+1} if 0 ≤ ηi ≤ 1
for all i. Geometrically speaking, the first barycentric coordinate of a point x
inside a triangle {v1,v2,v3} is the area of the triangle {x,v2,v3} normalized
with the area of the triangle {v1,v2,v3}. This is illustrated in the left triangle
of Figure 5.2.

The linear or affine transformation between a simplex {v1, . . .vN+1} and a sim-
plex {v1+∆v1, . . . ,vN+1+∆vN+1} can be defined by assuming that the point
x inside {v1, . . .vN+1} corresponds to the point ϕ(x) in {v1+∆v1, . . . ,vN+1+
∆vN+1} which has the same barycentric coordinates. Hence,

ϕ(x) = x+∆V η = x+∆V
[
D η0

] [x
1

]
, ∇Φ(x) = I +∆V D. (5.7)

During this thesis work, domain discretization has been limited to two types
of mesh topologies. The regular grid topology was applied in the case of para-
metric transformations, and tetrahedral mesh topology was applied in the FED
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case. The included paper Generating Quality Tetrahedral Meshes From Binary
Volumes (Chapter 12) describes an approach for tessellating binary shapes using
tetrahedral meshes.

5.3 Parametric vs non-parametric registration

In the image registration community there is a tendency to put emphasis on
the difference between parametric and non-parametric image registration. To
stress this point it took the author a couple of minutes to find six image registra-
tion papers [41, 86, 92, 113, 149, 165] with six different first authors, which all
had parametric or non-parametric in the title. This section will try to demon-
strate that the distinction between parametric and non-parametric registration
is mostly a matter of interpretation.

Let X be a N×n matrix containing n discretization or sample points. Indepen-
dent of the choice of discretization and type of transformation representation,
the discrete transformation can be written in the form

X +WQ, (5.8)

where W is a N×m matrix with the transformation parameters and Q is a pro-
jection matrix. Likewise, the derivatives in the ith direction can be represented
on the matrix form

Ii ⊗ 1+WQi, (5.9)

where Ii is the ithe column of the identity matrix, 1 is a row vector of ones
with n elements, and Qi is the projection matrix, which gives or approximates
the spatial displacement derivatives in the ith direction. In a finite difference
scheme Q is simply the identity matrix, and each column of Qi will contain
a finite difference operator. In a finite element scheme each column of Q will
contain an average operator, and each column of Qi will contain a vectorized
version ofD from Eq. 5.6. In a parametric scheme each column ofQ will contain
the basis functions of the parameterization, and each column of Qi will contain
the spatially differentiated basis functions.

The discretized version of Eq. 4.1 with a diffusive regularizer can be written on
the form

D̂[R(X), T (X +WQ)] + α
N∑
j=1

wj

(
N∑
i=1

QiQ
T
i

)
wT

j (5.10)

and the derivatives w.r.t. W are

∇x̃D̂[R(X), T (X +WQ)]QT + αW
N∑
i=1

QiQ
T
i , (5.11)
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where D̂[R(X), T (X + WQ)] is the discretized similarity measure, and wj is
the jth row of W . The spatial derivatives of the similarity measure
∇x̃D̂[R(X), T (X + WQ)] are in most image registration literature (e.g. in
[108]) called the forces or the force field. By multiplying the force field with QT

(n > m) the force field is projected into a lower dimensional subspace. For most
choices of Q this will have a smoothing effect on the force field. The Thirion’s
demons based image registration approach[163] and the viscous fluid model in
[43] apply Gaussian convolution upon the force field to ensure a topology pre-
serving deformation. The same smoothing effect could be achieved by param-
eterizing the displacement field with Gaussian radial basis functions (GRBFs)
where the knots of the basis functions coincide with the sample points. The dif-
ference being that the weights of the GRBFs would be the actual displacements
in [43, 163].

Here is an example where the distinction between parametric and non-parametric
registration disappears. Consider modeling a displacement field with the cubic
interpolation kernel (cf. Eq. 4.7) with α = −1 on a rectangular lattice. With
this model the transformation derivatives at the knot position are identical to
the central difference approximation, and the displacement at a knot position
corresponds to the weight of the kernel at the knot.

The FED can be interpreted as being a true parametric representation of the
transformation, which has been discretized in the center of the simplices instead
of being a finite element approximation to the transformation. There is one
theoretical problem with this interpretation, which is that the transformation
is non-differential along the borders of the simplices. The non-differentiability
of the transformation makes Eq. 4.1 non-differentiable. However, this problem
is circumvented by not sampling the transformation along the borders of the
simplices.

The point to be made is that non-parametric image registration to a large extend
is the gray zone of parametric registration, where the number of discretization
samples is close to number of transformation parameters. The important ele-
ments for a stable discretization are Q and Qi. To support this statement we
end the section with a small example.

Let us represent a 1D freeform deformation by storing the individual displace-
ments of a set of n equivalently spaced points and approximate the derivatives
using the first-order central difference operator. The derivatives of the first point
and last point in the sequence are approximated with the first-order forward and
backward finite difference operators, respectively. Now Q1 is a n × n matrix
with rank n− 1 which implies that QT

1 Q1 is an n×n semi-definite matrix with
rank n − 1. Figure 5.3(a) shows a plot of the normalized eigenvalues of QT

1 Q1

for n = 40. Figure 5.3(b) contains a plot of the elements in the eigenvector



5.3 Parametric vs non-parametric registration 59

5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) Normalized eigenvalue plot.

0 5 10 15 20 25 30 35 40
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(b) Eigenvector with second smallest eigen-
value.

Figure 5.3: The eigenvalues and eigenvectors of QT
1 Q1 for n = 40.

with the second smallest non-zero eigenvalue. From the plots in Figure 5.3 we
conclude that oscillating displacement patterns, as shown in Figure 5.3(b), will
almost not get penalized by the regularizer as the second smallest eigenvalue is
almost zero relatively speaking. Furthermore, as Q in this case is the identity
matrix it has no smoothing effect on the force field. All-in-all this is not a stable
discretization and therefore not suited for a discretize-optimize approach.
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Contributions





Chapter 6

Summery of contribution

The six following chapters present the main contributions of the thesis. Each
chapter contains a self-contained paper which can be read independently.

The central point of research in the papers is the study of morphology using
image registration. The first two papers are application papers which use shape
information to do virtual cutting. The included applications are build upon
image registrations made by the RegLab image registration framework, which
is the primary practical contribution of this thesis. A small description of the
use and the functionality is given later in this chapter.

The following three chapters are image registration papers of a more theoretical
nature. The first image registration paper presents a shape alignment algo-
rithm, which aligns shapes by performing rigid image registration on the signed
distance map representations of the shapes. The next image registration pa-
per deals with the construction of diffeomorphic deformation models. The final
image registration paper presents an approach to construct conditional statis-
tical priors on compositional deformation models. The papers are included as
submitted and may therefore apply a different notation than the rest of the
thesis.

The final paper introduces a tessellation approach which generates quality tetra-
hedral meshes from binary volumes. This tessellation provides the basis for the
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finite element discretization which is used by the RegLab image registration
framework.

6.1 RegLab

RegLab is a collection Matlab classes which put together provide the necessary
tools to do image registration. The easiest way to access the functionality of the
framework is through the class RegistrationController. The matlab code
snippet below rigidly registers the images 1.gipl.gz through n.gipl.gz to the
reference image ’atlas.gipl.gz’.

1 initialize;
2 dataDir = ´/.../mydatadir/´;
3 outDir = ´/.../myoutputdir/´;
4 referenceDir = ´/.../myreferencedir/´;
5

6 contr = RegistrationController(dataDir, outDir, referenceDir);
7 %TYPE = Linear, SUBTYPE = Rigid
8 opt = getDefaultSettings(contr, ´Linear´, ´Rigid´);
9

10 opt.masker = @standardMask;
11 opt.targets = {´1.gipl.gz´, ´2.gipl.gz´, .. , ´n.gipl.gz´}
12 opt.atlas = ´atlas.gipl.gz´;
13 opt.mask = ´mask.gipl.gz´;
14 register(contr, opt);

The member function RegistrationController.getDefaultSettings with ar-
guments ’Linear’ and ’Rigid’ gets the default settings for doing rigid registration.
If you want to do cubic B-spline registration instead you simply change the ar-
guments of getDefaultSettings to ’NRP’ and ’Cubic’. To do Riemannian
elasticity registration with a tetrahedral mesh topology you change the argu-
ments to ’NRNP’ and ’Riemannian’. Line 10 specifies that you only want to
register the part of the reference image which is specified by the mask image
given by option opt.mask. As default no mask is applied, and the registration
is done on the entire domain of the reference image. For all possible settings
simply open the getDefaultSettings.m file with the Matlab editor.

6.1.1 Functionality

This section contains a brief description of the functionality of the RegLab.
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6.1.1.1 Geometrical transformations

The Reglab framework offers a number of possible geometric transformations:

• Global linear.

– Rigid.

– Similarity.

– Affine.

• Regular grid topology.

– Linear interpolation.

– Cosine interpolation.

– Quadratic and cubic B-spline.

• Tetrahedral mesh topology.

– Linear interpolation.

6.1.1.2 Similarity measures

The framework currently implements three different similarity measures, which
are

• squared difference,

• correlation ratio,

• and normalized gradient.

6.1.1.3 Regularization

The framework currently contains implementations for six regularizers or soft
contraints. The regularizers can be combined if necessary by the CombinedRegularizer
class. The regularizers are

• general quadratic regularization (this regularizer can be used to model
linear elasticity and diffusion),
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• St. Vernant elasticity regularization,

• Riemannian elasticity regularization,

• Ogden material model (standard),

• volumetric regularization (cf. Eq. 4.53 and Eq. 4.52).

• and soft surface and point constraints.

The Ogden material model and the volumetric regularizers are implemented for
the tetrahedral mesh topology only.

6.1.1.4 Interpolation

The framework currently contains implementations of four interpolators. All
interpolators are wrapped in the Matlab class ImageFunction which also incor-
porates Gaussian scale-space. The types of interpolation are

• linear interpolation kernel,

• cosine interpolation kernel,

• cubic interpolation kernel,

• and cubic B-spline.



Chapter 7

Virtual cutting atlas

Mads Fogtmann Hansen, Lars Bager Christensen and Rasmus Larsen

Abstract

This paper presents the concept and the construction of a virtual cutting
atlas. A virtual cutting atlas is a framework for performing virtual cutting
on a database of images of pigs. Anatomical labeling from a reference image
can be transferred to the images of the database by establishing correspon-
dence between the images of the database and the reference image. The
gained anatomical knowledge can subsequently be used to guide and secure
a consisting virtual cutting of the images. From a database of 300 CT scans
of the pork middle a single scan is selected to be the reference image, and
a number of masks are traced on the reference. The remaining 299 scans
are registered to the reference image with a finite element based image
registration approach using the squared difference dissimilarity measure to
drive the registration and the Riemannian elasticity energy to regularize
the deformation. It is assumed that information needed to guide and define
virtual cuts fall into three categories; anatomical, semi-anatomical and ge-
ometrical. The types of information are embedded in masks and combined
with the usual set operations to define cuts and products. Two examples
of virtual product ranges are presented in the paper.

7.1 Introduction

Since the first shipment of Danish bacon arrived in England in 1847 the Danish
pig producing industry (DPPI) has grown to become one of the most important
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industries in Denmark with an annual production of nearly 26 million pigs and
an export totalling approximately 27 billion DDK in 2007[5]. Increased compe-
tition from countries such as the U.S. and Brazil, which have considerably lower
wages and restrictions on food safety, threatens the continuing success of DPPI.
To maintain a competitive edge DPPI continues to focus on the optimization of
the pig production and slaughtering process.

Over the last decade DPPI has implemented a number of changes to increase
the efficiency of the modern abattoirs. Especially, more and more slaughter
and cutting robots are introduced to decrease the reliance on expensive manual
labor. Because of the success of this automation, the largest potential increase
in earnings lies in an optimized use of the raw materials. Pig carcasses are a
natural material and thus exhibit a natural anatomical variation. The shape
and the distribution of meat and fat in a given pig have a large impact on which
product range is the optimal choice w.r.t. the yield of the individual pig. To get
a deeper understanding of the optimal use it is important to link the anatomical
variation of pigs to the vast combination of possible cuts and the potential yields
of the combinations.

To gain this knowledge we build a virtual cutting atlas (VCA). A VCA is a
framework which provides the ability to imitate the real cuts from the abattoirs
automatically and consistently on a database of virtual representations (images)
of pig carcasses. As the majority of cuts in an abattoir are based on the anatomy
of the pig, the key to achieving consistent cutting in the virtual setting lies
in the consistent identification of the anatomical structures in the images of
pigs. In medical imaging and neuroscience, deformable atlases are often used
for automated labeling and segmentation. The basic idea behind a deformable
atlas is to propagate the manual labeling of a reference image to a set of target
images by establishing correspondence between the reference and the targets
using automated image registration.

We define a standard set of cutting tools upon the anatomical labeling, which
allows us to combine different cuts and to propagate them to the database of
pigs. The virtual cutting atlas presents the opportunity to test and experiment
with the different product ranges upon a representative database of pigs.

7.1.1 Related work

Brain atlases have been used for decades in medical imaging to study and an-
alyze the variation of structures across age, gender, diseases, etc [15, 19, 34,
44, 49, 82, 104, 127, 130, 164, 177]. An atlas is a map of some anatomy built
from a set of annotations of a reference representation of the anatomy. Image



7.1 Introduction 69

registration techniques can map new observations to the atlas by geometrically
deforming the reference to match the new observations. Deformable atlases,
which can adapt to the anatomy of a new subject, allow for an automatic la-
beling of incoming subjects and subsequent analysis of structural differences.
In tensor based morphometry the relative displacement (often represented by
the determinant of the Jacobian of the deformation tensor) is used to relate
structural difference to clinical variables.

The idea of a cutting atlas was originally presented by Vester-Christensen [168].
Vester-Christensen constructed a cutting atlas from 57 CT scans of half pig car-
casses. A single scan was selected to be the reference, and 50 3D landmarks were
placed into the reference. The remaining 56 scans were subsequently spatially
normalized using a tensor B-spline image registration technique. The atlas was
used to perform a trisection on the half pig carcasses into the fore-end, pork
middle and the ham part (see Figure 7.1), and to cut a single pork middle
product combination. The cuts were modeled by planes which were defined
upon the landmarks. The current work differentiates itself from the work of
Vester-Christensen on a number of points:

• Our atlas only contains the pork middle. All pigs are trisected in the
abattoirs, and thus there is no advantage in building an atlas on the entire
half pig carcass. That is, it is better to build three individual atlases.

• We apply a rotation invariant elasticity energy to regularize the deforma-
tion field under the image registration process, while Vester-Christensen
used a diffusion regularizer which is not rotation invariant. Hence, our
image registration should be able to uncover much larger deformations.

• We define cuts with masks which are more flexible than planes.

7.1.2 Data

The used data set consists of 300 CT scans of the pork middle. Figure 7.1 shows
the tomogram of a half pig carcass with vertical lines marking the beginning
and the end of the pork middle. Voxel dimensions are [0.87 × 0.87 × 10]mm3

with a 10mm spacing between consecutive slices. The pigs are of mixed breed
and representative of the Danish pig population w.r.t. weight and fatness. The
low out-plane resolution may cause topological difference problems between the
atlas and some of the targets scans. That is, many of the structures are thin and
run parallel with the slice planes which makes them vulnerable to the partial
voluming caused by the low out-plane resolution. In practice, this means that
the ribs are geometrically distorted (appear twice as thick as they really are),
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Figure 7.1: The topogram of a full body scan of a half pig carcass. The two green lines
approximately mark the trisection of the pig carcass into the fore-end, pork middle
and the ham part.

and some of the thin muscles vanish or fade out. This is naturally suboptimal
for intensity based image registration.

7.2 Deformable atlas

For the construction of the atlas, a single scan was chosen to be the reference
image of the atlas. In most situations it is an advantage to select a reference
which resembles the mean of the population. Our selection was complicated
by the existence of rapid surface oscillations on the skin side of the pork mid-
dles. The problem with skin folding and bending is illustrated in Figure 7.2.
Non-anatomical skin folding and bending develop while the pig carcasses are
hanging on cambrels in the cooling facility before cutting. The problem exists
in all the scanned pigs but with different severity. It is likely to assume that
the inter-subject registration of two individuals will fail to produce satisfactory
correspondences, if both individuals contain many oscillations. The selected ref-
erence pig is only mildly affected by folding and bending but it is a little bit on
the slim side and larger than average. The bias inherited from selection of the
reference can be removed by updating the reference with the mean deformation
between the reference pig and the remaining pigs of the database.

Anatomical knowledge has been added to the atlas by tracing a number of
anatomical structures upon the reference image. The structures are visualized
in Figure 7.3.



7.2 Deformable atlas 71

Figure 7.2: A slice of pig 290. The red ellipse marks a surface area with many folds
and bends.

(a) Loin (green), ribs (yellow), dark muscle (red), spine (purple), false lean (blue).

(b) Lower fat (cyan)

Figure 7.3: Anatomical masks superimposed on slice from reference image.
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To transfer the anatomical labeling to the pigs of the database the pigs have
to be spatially normalized against the reference pig. For this purpose we apply
intensity based image registration.

7.2.1 Spatial normalization

Anatomical structures vary across the population in size and shape. The pur-
pose of image registration is to establish correspondence between two images
by spatially deforming one image such that the structures in two images match
spatially. This is by done minimizing the dissimilarity between the images sub-
ject to a regularized deformation. In CT-to-CT registration it is custom to use
the squared difference dissimilarity measure to quantify the degree of similarity
between images

Dsd[R, T,ϕ] =
1

2

∫
Ω

(R(x)− Tϕ(x))
2dx, (7.1)

where Tϕ = T ◦ ϕ is the deformed template image w.r.t. the transformation ϕ,
R is the reference image and Ω is the domain of R.

There exists a range of spatial deformation models for modeling the mapping
between biological structures of the same class. Many of these originate from
the world of continuum mechanics, e.g. elasticity [24] and viscous elasticity [32].
That is, the transformation between a reference image and a template image
is assumed to be equivalent to that of an elastic material or fluid undergoing
deformation due to external forces. We apply the Riemannian elasticity [122]
to regularize the deformation

S[ϕ] =
∫
Ω

µtr(E0(x)
2) +

λ

2
tr(E0(x))

2dx, (7.2)

where µ and λ are the Láme constants, and E0 is the Hencky strain tensor

E0(x) =
1

2
log(∇ϕ(x)T∇ϕ(x)). (7.3)

Riemannian elasticity has a number of nice properties compared to widely used
linear elasticity [24]. Primarily, the Riemannian elastic energy is rotation-
invariant which enables it to handle large deformations. The linear elastic en-
ergy is not rotation-invariant as it inherits a small deformation assumption from
its use of the Cauchy-Green deformation tensor. Secondly, it takes an infinite
amount of energy in Riemannian elasticity to do the black hole deformation
(collapse) which protects the deformation against folding.



7.2 Deformable atlas 73

The template image T is registered to the reference image R by minimizing the
cost function

Dsd[R, T,ϕ] + αS[ϕ], (7.4)

where α is constant weighting the influence of the regularization.

To minimize Eq. 7.4 w.r.t. the transformation ϕ(x), we discretize the transfor-
mation using finite elements, i.e. tessellating the non-background in the refer-
ence image with a tetrahedral mesh. Our tessellation method is described in
details in [76]. An example of the tessellation of the reference pigs is shown in
Figure 7.4. At each vertex of the mesh, we store a vector describing the spatial
displacement of the vertex. The transformation ϕ(x) of a point x inside the
tetrahedron defined by the vertices V is approximated linearly, i.e.

ϕ(x) ≈ ϕ̂V (x;∆V ) = x+∆V

[
V
1

]−1

x = x+∆V Dx, (7.5)

where ∆V is the displacement of the vertices V . Thus, the spatial gradient of
discretized transformation is

∇ϕ̂V (x;∆V ) = I+∆V D. (7.6)

The similarity measure is discretized with the usual midpoint quadrature rule
with the same tessellation as used to discretize the transformation. The dis-
cretized version of Eq. 7.4 is minimized using the conjugated gradient optimiza-
tion method.

In theory, Riemannian elasticity should protect the deformation against folding
but it does not in practice. The Riemannian elasticity energy from Eq. 7.2 will
only evaluate to infinity in case of a collapse and not in the case of folding.
A given optimization method may take a long step (over a peak of infinite
energy), which makes the deformation fold, without successful intervention from
the regularization. To protect the deformation against folding we modify the
Riemannian elasticity energy to return infinity in the a case of a folding and
implement a folding check. For all tetrahedra, we order the vertices {v1, . . . ,v4}
such that

det

([
v1 v2 v3 v4

1 1 1 1

])
(7.7)

is positive. A deformation is non-folding as long as

det

([
v1 +∆v1 v2 +∆v2 v3 +∆v3 v4 +∆v4

1 1 1 1

])
(7.8)

remains positive for all tetrahedra.
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(a) Reference. (b) Reference with surface mesh visualiza-
tion of tessellation.

(c) Reference with surface visualization of
tessellation.

Figure 7.4: Reference image with tessellation. The average volume of the tessellation
elements is 27mm3
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7.3 Virtual cutting

The cutting in the abattoirs is based on a combination of anatomy and geo-
metrical measuring. Figure 7.5 shows a few examples of the possible products
which can be produced from the pork middle.

Figure 7.5(c) and Figure 7.5(d) contain a couple of typical loin products. Loin
products are specified by the loin muscle, a trimmed fat layer on the outside
of the loin with a thickness of x mm, and the inclusion or exclusion of the
neighboring support muscles and ribs. Another typical product from the back
area is back bacon (not shown in the figure) which consists of the back area
without ribs and spine and with a width of 18 cm measured from the beginning
of the skin closest to the spine along the surface of the skin.

From these examples we perceive that a cut may be guided by combination of:

Anatomical information The cut follows the boundary of some anatomical
structure.

Semi-anatomical information The cut runs parallel with the boundary of
some anatomical structure at an x mm distance.

Geometrical information The cut ensures that the product has some specific
length or width.

Anatomical information can be embodied in an anatomical mask in the atlas
and transferred to a target image by spatially normalizing the target against the
reference of the atlas. As the transformation from the reference to the target
is modeled with a piecewise affine transformation the inverse transformation is
given explicitly, i.e

ϕ̂−1
V (y;∆V ) = ϕV +∆V (y;−∆V ). (7.9)

Thus, a voxel in the target image at the position y is inside some anatomical
structure, if the mapped position ϕ̂−1

V is contained in the anatomical structure
of the reference image.

Semi-anatomical information can be modeled similarly to purely anatomical
information with the extension that the anatomical mask is dilated after being
transferred to the target.

Cuts, which apply geometrical information for guidance, are the most difficult
to handle as the deformable atlas provides limited geometrical information on
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(a) 1648/1645 (b) 1838/1830/1836

(c) 1601 (d) 1660

(e) 1817 (f) 1826

Figure 7.5: Selected products from the Danish Crown product catalogue[39]. All
products stem from the pork middle. The numbers written below the products are
their product numbers.
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(a) Wanted cut. (b) Masked version of cut

Figure 7.6: Example of combinatorial masking.

the target. A tailored implementation for extracting a geometrical measure
on a target image is in principal necessary for each cut employing geometrical
information. In practice, most geometrical cuts can be modeled by measuring
a distance of x mm from the left/right most point of the input product along
the top/bottom surface of the product and then performing a vertical cut in the
individual slices of the scan.

Most cuts will apply a combination of the different types of information. As
anatomical and semi-anatomical information are represented by masks and ge-
ometrical information can be converted to mask representations, we combine
the different types of information with the usual set operations such as union
and intersection. Figure 7.6 displays a simple example of how to construct cuts
by combining the different types of information. In Figure 7.6(a), we have a
schematic drawing of a boneless pork middle with a broken green line repre-
senting the product, we want to cut. The product consists of the loin muscle
with a trimmed fat layer and the dark muscle. The product can be modeled
by dilating the transferred loin mask and uniting it with the transferred dark
muscle mask. The masked modeled cutting is illustrated in Figure 7.6(b).

The cutting of a pig carcass can be viewed as a hierarchical tree, where the top
node corresponds to the carcass, the internal nodes to the cuts, and the leaves to
the end products. To maintain the simplest model possible we suggest to model
the cutting of a carcass (or in this case the pork middle) with a binary tree. For
each cut a mask embodies the main product, and the complement of the mask
embodies the bi-product. The mask of an end product is extracted by traversing
from the top node to the leaf of the end product. At each visited node, the mask
of the parent is intersected with mask of the node or its complement depending
on the path, and the resulting mask is forwarded on to the child in the path.
The binary tree model from our cutting application is shown in Figure 7.7.
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  Spine cut

  2: Spine

  Ribs cut

  4: Ribs

  Back 18cm cut

  6: Back bacon

  7: Streaky

Figure 7.7: An example of cut hierarchy. Made from screen dump of cutting atlas
application

Level 4 3 2 1 0
Avg. element vol. in mm3 64 64 27 8 3.38
Gaus. scale space std. dev 4 3 2 1 0.5
α (E.q. 7.4) 5e-3 2.5e-3 1.2e-3 6e-4 3e-4

Table 7.1: Table of parameters used in multi-resolution image registration scheme.

7.4 Experiments

The Riemannian elasticity energy with µ = λ = 1 was applied to normalize 299
CT scans against the reference scan. For a fast convergence a multi-resolution
scheme was applied. Table 7.1 lists the parameters used for the different levels.

From the first experiments it was observed that existence of topological differ-
ences between reference image and target image led the registration to recover
incorrect correspondences. The pork middle originates from the half pig car-
casses which is made by splitting the carcass through the middle of the spine.
The topological difference arises as the split is not perfectly symmetrical. It
is estimated that 10-20% of the pigs in the data set have an unsymmetrical
split which affects the registration. An example of the problem is displayed
in Figure 7.8. To solve the problem the similarity measure is disabled in the
tetrahedra situated in those areas. That is, only internal elastic forces drive the
deformation of these tetrahedra. As a consequence the obtained correspondence
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(a) Reference. (b) Target after rigid registra-
tion.

(c) Target after non-rigid reg-
istration.

Figure 7.8: Example of misregistration due to topological difference.

may be suboptimal in the excluded areas.

Figure 7.9 (very skinny), Figure 7.10 (skinny), Figure 7.11 (normal), Figure 7.12
(fat with very unsymmetrical split) display the deformed images of the pig 214,
pig 210, pig 270 and 100 after rigid, affine and non-rigid registration. The
selected pigs represent the distribution w.r.t. fatness. In general, it seems that
the registration is able to match the images and remove most of the skin folds
and bends. From Figures 7.9(b,k) it is noticeable that the fat layer on the
outside of the loin muscle is thinner in the non-rigidly registered image than in
the reference image. This is a reappearing problem in many of the very skinny
pigs.

As the anatomical masks shown in Figure 7.3(a) only have been traced in the
reference and not in any of the remaining images in the database there are no
ground truth data available for validating the registrations. To generate an
artificial validation set the 299 resulting displacement fields of the registrations
were fitted with a uniform tensor B-splines with a knot spacing of 15 mm.
A compact deformation model was created by applying principal component
analysis (PCA) on the fitted B-spline parameters. 11 modes of variation were
selected explaining approximately 76% of the total variation. From the PCA
model, 30 virtual pigs with anatomical masks were created by

• generating 30 virtual transformations by sampling the PCA model ran-
domly,

• approximating the inverse transformations of the newly generated trans-
formations by fitting uniform tensor B-splines,

• and finally interpolating the inverse transformations in the reference image
and in the anatomical masks shown in Figure 7.3(a).

The virtual pigs were subsequently registered to the reference pig, and the dice
scores between the anatomical masks of the reference and anatomical masks
of the registered virtual pigs were computed. The mean dice scores for the
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(a) Reference, slice 20. (b) Reference, slice 40. (c) Reference, slice 60.

(d) After rigid, slice 20. (e) After rigid, slice 40. (f) After rigid, slice 60.

(g) After affine, slice 20. (h) After affine, slice 40. (i) After affine, slice 60.

(j) After non-rigid, slice 20. (k) After non-rigid, slice 40. (l) After non-rigid, slice 60.

Figure 7.9: Registration result of pig 214. The figure displays slice, 20, 40 and 60 of
the reference image and the template image after rigid registration, affine registration
and non-rigid registration. The rows correspond to the images and the columns to the
slices.
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(a) Reference, slice 20. (b) Reference, slice 40. (c) Reference, slice 60.

(d) After rigid, slice 20. (e) After rigid, slice 40. (f) After rigid, slice 60.

(g) After affine, slice 20. (h) After affine, slice 40. (i) After affine, slice 60.

(j) After non-rigid, slice 20. (k) After non-rigid, slice 40. (l) After non-rigid, slice 60.

Figure 7.10: Registration result of pig 210. The figure displays slice, 20, 40 and 60 of
the reference image and the template image after rigid registration, affine registration
and non-rigid registration. The rows correspond to the images and the columns to the
slices.
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(a) Reference, slice 20. (b) Reference, slice 40. (c) Reference, slice 60.

(d) After rigid, slice 20. (e) After rigid, slice 40. (f) After rigid, slice 60.

(g) After affine, slice 20. (h) After affine, slice 40. (i) After affine, slice 60.

(j) After non-rigid, slice 20. (k) After non-rigid, slice 40. (l) After non-rigid, slice 60.

Figure 7.11: Registration result of pig 270. The figure displays slice, 20, 40 and 60 of
the reference image and the template image after rigid registration, affine registration
and non-rigid registration. The rows correspond to the images and the columns to the
slices.
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(a) Reference, slice 20. (b) Reference, slice 40. (c) Reference, slice 60.

(d) After rigid, slice 20. (e) After rigid, slice 40. (f) After rigid, slice 60.

(g) After affine, slice 20. (h) After affine, slice 40. (i) After affine, slice 60.

(j) After non-rigid, slice 20. (k) After non-rigid, slice 40. (l) After non-rigid, slice 60.

Figure 7.12: Registration result of pig 100. The figure displays slice, 20, 40 and 60 of
the reference image and the template image after rigid registration, affine registration
and non-rigid registration. The rows correspond to the images and the columns to the
slices.
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Loin Ribs Spine Dark muscle False lean
0.97 0.91 0.86 0.94 0.89

Table 7.2: Mean dice scores from registrations of the 30 virtually generated pigs.

anatomical masks are listed in Table 7.2. If the validation set was not statis-
tically generated from a set of prior registrations the relative high dice score
would have been impressive. It is however highly idealized that the differences
between the reference image and the template image solely are due to a spatial
deformation, and it is natural to expect that the applied deformation model can
capture a deformation, which has been generated from a set of prior registra-
tions with the same deformation model. We conservatively conclude that the
pseudo validation did not uncover anything unexpected – and nothing else.

7.4.1 Examples of virtual cuts

This section presents two examples of virtual cuts on the pork middle. The first
product range consists of (i) a spine (purple), (ii) a loin product with ribs and
a width of 18 cm plus a 6 mm fat layer (red), (iii) spare ribs (blue), (iv) a layer
of fat (green), and (v) a pork belly (yellow). The virtual products are shown in
Figure 7.13 with the corresponding cutting tree.

The second product range consists of (i) a spine (purple), (ii) a loin product with
the dark muscle and false lean plus a 4 mm fat layer (green), (iii) ribs (red), and
(iv) a pork belly with some left-over skin and fat (blue). The virtual products
are shown in Figure 7.14 with the corresponding cutting tree. The main product
cut in Figure 7.14(a) is constructed by computing the intersection between the
loin mask dilated 4 mm, the false lean mask dilated 4mm and the dark muscle
mask.

The modeled product ranges demonstrate the versatility of our cutting tool.
That is, they show that detailed and complex cutting can be achieved through
a simple combination of masking, mathematical morphology (dilation) and set
operations.

7.5 Discussion

This paper has presented a prototype for a virtual cutting framework based on
a deformable atlas which applies elastic image registration to establish spatial
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(a) Product tree.

(b) 100, slice 20. (c) 100, slice 40. (d) 100, slice 60.

(e) 210, slice 20. (f) 210, slice 40. (g) 210, slice 60.

(h) 214, slice 20. (i) 214, slice 40. (j) 214, slice 60.

(k) 270, slice 20. (l) 270, slice 40. (m) 270, slice 60.

Figure 7.13: Superimpositions of first product range.
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(a) Product tree.

(b) 100, slice 20. (c) 100, slice 40. (d) 100, slice 60.

(e) 210, slice 20. (f) 210, slice 40. (g) 210, slice 60.

(h) 214, slice 20. (i) 214, slice 40. (j) 214, slice 60.

(k) 270, slice 20. (l) 270, slice 40. (m) 270, slice 60.

Figure 7.14: Superimpositions of second product range.
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correspondence. The quality of the obtained registrations looks promising but
awaits future validation. We propose to validate the registration in the future
using 5 skinny, 10 normal and 5 fat pigs from the database. The same masks,
as those traced upon the reference image, will be traced upon the validation
pigs and subsequently compared to the transferred masks from the reference pig
using the Dice score.

There is evidence indicating that the registration algorithm is having problems
with capturing the deformations between the reference pig and skinny pigs. One
way to solve this is to use multiple references in the atlas – one for skinny pigs,
one for normal pigs and one for fat pigs. The fatness of an incoming pig would
determine the reference of the registration.

The usage of masks for representing and constructing cuts makes the cutting
framework flexible and adaptable to new cuts.
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Chapter 8

Validation of virtual cuts

Mads Fogtmann Hansen and Rasmus Larsen

Abstract

This paper presents a methodology for comparing virtual cuts against real
cuts from the abattoirs. The Danish meat research institute plans to use
virtual cutting on a representative set of Computed Tomography (CT)
scans of pig to simulate different cut scenarios with goal of ensuring that
every pig passing through the abattoirs is cut into the optimal selection of
products. For such an application to be a success, it is a necessity that
the virtual products resemble the real products sufficiently well. In this
pilot study, we compare so-called virtual back 2 products extracted from
CT scans of pork middles with CT scans of the real back 2 products. As
products non-rigidly deform subsequent to the cutting, virtual and real
products cannot be compared until this deformation have been estimated.
We apply a nearly incompressible elastic image matching technique to re-
cover the deformation and use the Euclidean surface-to-surface distance to
evaluate the resemblance of the virtual products. The study revealed an
overall satisfactory resemblance between virtual and real back 2 products
but with the existence of unwanted inconsistencies.

8.1 Introduction

The Danish Meat Research Institute (DMRI) and DTU Informatics are currently
constructing a virtual cutting atlas which can be used to simulate different cut
scenarios on a database of Computed Tomography (CT) scans of pig carcasses
[168]. This atlas will enable DMRI to experiment with new cuts and to relate
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Figure 8.1: Illustration of deformation problem.

the biological variation of pigs against a set of possible products to determine
the optimal selection of products for the specific type of pig.

For a cutting atlas to be of value the virtual cuts have to resemble the real cuts
from the abattoirs, and vice versa. To ensure a good consistency between the
virtual cuts and the real cuts, we propose to CT scan the input product and the
output products of a cut, and subsequently to compare the output products with
the similar virtual output products extracted from scan of the input product.

As soft tissue behaves similarly to rubber materials the output products of a
cut will often undergo large non-rigid deformations after the execution of the
cut. This makes a direct geometrical comparison between the virtual products
and the real products meaningless. The problem is illustrated in Figure 8.1. In
Figure 8.1 an input product (left coordinate system) is cut into two products
along the broken red line. After the cut product 1 is deformed producing the
deformed product shown in the right coordinate system. Before the virtual
product 1 (represented by the broken green line) can be compared to the real
product 1, the real product 1 has to be spatially normalized against the input
product. That is, the geometrical transformation ϕ(x) between the right and
the left coordinate has to be estimated to recover the undeformed version of the
real cut in the left coordinate system.

We apply an elastic image registration approach to recover the transformation
between the deformed output product and the input product, and measure the
surface-to-surface distance between the virtual output product and the spatially
normalized output product to quantify and visualize the difference.
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8.1.1 Data

The data used in this study consist of 37 CT scans of the pork middle of pigs
(cf. Figure 8.2 (a)) and 37 CT scan of the resulting output products of the pork
middle cutting robot (cf. Figure 8.2 (b)). The output products from the the
top-left to the bottom-right are pork belly, back 2, ribs, spine. Voxel dimensions
are [0.87×0.87×10]mm3 with a 10mm spacing between consecutive slices. The
scans were constructed with a reconstruction algorithm which emphasizes bone.
As a consequence of this choice the meat and fat tissue areas are noisy and
affected by shade artifacts from the bones.

As the back 2 product is the main product of the cut, this paper will focus
on the comparison between the real and the virtual back 2 products. From
the remainder of this paper we will refer to the back 2 product as the output
product and the pork middle as the input product.

The BackBatch program developed from the master thesis work of Hansen [74]
produces virtual back 2 products from CT scans of the pork middle of pigs.
37 virtual back 2 products were extracted from the 37 CT scans of the pork
middle with the BackBatch program. An example of a virtual back 2 product
is shown in Figure 8.2 (c). For simplicity all virtual products have a length of
41cm measured perpendicular to the slice planes which is realized by including
20 slices on either side of the middle slice of the CT scan of the pork middle.

To aid the registration corresponding landmarks have been placed in the pork
middle and in the back 2 product. The landmarks were placed by identifying
approximately corresponding slices in the input product scan and the output
product scan, and then placing a number of in-slice correspondence points (1-4
landmarks per slice). Note, the landmarks are of a questionable quality due to
the low out-plane resolution and to small changes in the orientation between
the scans. As such the landmarks can only be used as initial guidance marks
for the registration and not as ground truth.

Figure 8.3 shows the histogram of the voxel intensities in the back 2 product
of pig 1. The first and second peak correspond to fat and muscle, respectively.
It is observed that both the muscle intensities and fat intensities look nearly
normally distributed.
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(a) Pork middle.

(b) Products. (c) Virtual back 2 product.

Figure 8.2: Selected slices from pig 1.
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Figure 8.3: Histogram of the voxel intensities in back 2 product of pig 1. The first
peak is fat, and the second peak is meat.
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8.2 Related work

Elastic image matching was originally proposed by Broit [24] and completed
by Bajcsy et. al. [14, 15]. Broit and Bajcsy et. al. applied linear elasticity to
regularize the deformation, which was a synonym for elasticity in general until
Pennec et. al. [122] introduced the use of Riemannian elasticity. Riemannian
elasticity is in contrast to linear elasticity rotation invariant and can therefore
model much larger and more complex deformations. The viscous elastic or fluid
registration approach by Christensen [31] is closely related to linear elastic image
registration but differentiates itself by regularizing the flow of the deformation
rather than the spatial displacements.

This study separates itself from most non-linear intra-subject registration stud-
ies and applications such as early diagnosis and monitoring of the progression
of dementia [25, 62, 63] as our deformation is nearly incompressible. Volume-
preserving or nearly volume preserving image registration has been applied for
the registration pre- and post-contrast MRIs of female breasts [71, 128, 159].
Haber et. al. [71] combine a volume-preserving hard constraint with ordinary
linear elasticity, and Tanner et. al. [159] and Rohlfing et. al. [128] combine a
tensor B-spline representation of the geometrical transformation with a volume
penalty term. We believe that the use of linear elasticity in [71] and the B-spline
representation in [128, 159] render both approaches incapable of modeling the
relatively large non-rigid deformation between input and output products.

Inspired by virtual surgical application [93, 173], we apply a nearly incompress-
ible Ogden material model to regularize the deformation. The primary reason
for using the Ogden model is that it is considered to be the reference model
for rubber materials. Soft tissues fall into this category of materials. DMRI
and DTU Informatics are currently working on the development of models for
soft tissue deformation in pig carcasses by scanning products with inserted steel
markers prior to and after a deformation. Mosbech et. al. [111] present a pre-
liminary study.

8.3 Spatial normalization

For the image registration process, we select the output product scan to be the
reference image, the input product scan to be the deformable template image,
and restrict the domain Ω of the reference image to the spatial positions in the
output product scan which lay within the output product. The choice is an
implication of the fact that there only exists a partial mapping from the input
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product scan to the output product scan – an input product is cut into multiple
output products.

8.3.1 Image and landmark matching

To drive the registration between reference and the template image we apply
a mixture of image matching and landmarks matching. The inclusion of land-
marks is necessary as the deformation between input and output product is
too large for an initial rigid or affine registration to provide a sufficiently good
starting estimate for the non-rigid registration.

We apply the mean squared difference dissimilarity measure as the image match-
ing criterion as the only difference between the images in principal should be
some spatial deformation, and as the Gaussian sensor model is appropriate for
these CT scans (cf. section 8.1.1). Thus, the dissimilarity is given by

D[R, T,ϕ] =
1

2VΩ

∫
Ω

(R(x)− Tϕ(x))
2dx, (8.1)

where Tϕ = T ◦ϕ is the deformed template image, R is the reference image and
VΩ is the volume of the domain.

To match a set of landmarks {xi} with a set of a corresponding set of landmarks
{yi} we use the mean squared Euclidian distance, i.e.

L[{xi}, {yi},ϕ] =
1

2M

M∑
i

⟨ϕ(xi)− yi,ϕ(xi)− yi⟩, (8.2)

where M is the number of landmarks.

8.3.2 Spatial deformation modeling

Biological studies [42, 81, 95, 117, 118, 137, 156, 158, 161] show that biological
tissues are nearly incompressible and compliant to shear, which makes biological
tissue similar to rubber. The reference model for modeling the elastic potential
energy in rubber-like materials subject to a deformation ϕ is the Ogden material
model [115]

S[ϕ] = 1

VΩ

∫
Ω

Q∑
p=1

µp

αp

(
−3 + tr

(
C(x)

αp
2

))
=

1

VΩ

∫
Ω

Q∑
p=1

µp

αp

(
−3 +

3∑
i=1

λ
αp

i

)
dx,

(8.3)
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where Q, αp and µi are material constants, C(x) = ∇ϕ(x)T∇ϕ(x) and λi

is the ith principal stretch. The Ogden model is only valid for compressible
materials and as such assumes that the constraint det(∇ϕ(x)) = 1 is fulfilled.
For nearly incompressible materials the principal stretches are normalized, and
a volume penalty term is introduced, i.e.

S2[ϕ] =
1

VΩ

∫
Ω

Q∑
p=1

µp

αp

(
−3 + det(C(x))−

αp
6 tr

(
C(x)

αp
2

))
+ β log(det(C(x)))2dx

=
1

VΩ

∫
Ω

Q∑
p=1

µp

αp

(
−3 +

3∑
i=1

λ̃i
αp

)
+ β

(
3∑

i=1

log λi

)2

dx (8.4)

where λ̃i = λi(
∏3

i=1 λi)
− 1

3 and β is a constant controlling the volume penalty.

8.3.3 Discretization and optimization

The template image T is registered to the reference image R by minimizing the
cost function

D[R, T,ϕ] + γL[{xi}, {yi},ϕ] + S2[ϕ] (8.5)

w.r.t. ϕ(x), where γ controls the influence of the landmarks.

To minimize Eq. 8.5 w.r.t. transformation ϕ(x), the transformation is dis-
cretized using finite elements by tessellating the mask of the output product in
the reference image with a tetrahedral mesh. Our tessellation method is de-
scribed in details in [76]. At each vertex of the mesh a vector describes the
spatial displacement of the vertex. The transformation ϕ(x) of a point x inside
the tetrahedron defined by the vertices V is approximated linearly, i.e.

ϕ(x) ≈ ϕ̂V (x;∆V ) = x+∆V

[
V
1

]−1

x = x+∆V Dx, (8.6)

where ∆V is the displacement of the vertices V . Thus, the spatial gradient of
discretized transformation is

∇ϕ̂V (x;∆V ) = I+∆V D. (8.7)

The dissimilarity measure is discretized with the usual midpoint quadrature
with the same tessellation as used to discretize the transformation. The dis-
cretized version of Eq. 8.5 is minimized using the conjugated gradient optimiza-
tion method.
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8.4 Evaluating the distance between cuts

We evaluate the distance between real and corresponding virtual products by
computing the Euclidean surface-to-surface distance between the products. The
surface-to-surface distance is computed by

(i) transferring the mask of deformed product using the inverse transforma-
tion of ϕ(y) to the coordinate system of the input product,

(ii) converting the mask of the virtual product and the transferred mask to
signed distance maps,

(iii) extracting the iso-surfaces of the signed distance maps,

(iiii) and finally interpolating the iso-surface of the virtual product in the dis-
tance map of the transferred mask and the iso-surface of the non-deformed
real product in the distance map of the mask of the virtual product.

As the transformation from the reference image to the template image is mod-
eled with a piecewise affine transformation the inverse transformation is given
explicitly by

ϕ̂−1
V (y;∆V ) = ϕV +∆V (y;−∆V ). (8.8)

8.5 Validation of virtual cuts

For the image registration a simple Ogden model was used with Q = 1 and
α1 = 12 for both muscle and fat tissue. Oomens et. al. [117] reported empirical
derived values α1 = 30 and α1 = 5 for muscle and fat tissue respectively in living
humans. We have experimented with a common α1 between 5 and 30, and it is
our experience that any 10 ≤ α1 ≤ 20 yield almost identical registration results.
Moreover, we applied a multi-level registration scheme for a faster convergence.
The parameters for the different levels are listed in Table 8.1.

Figure 8.4 displays the surface of the tetrahedral mesh representation of the
output product in the output product scan and the surface of the deformed
tetrahedral mesh in the input product scan at the end of the level 2 registration
of pig 11. From Figure 8.4(d), we observe that the deformed mesh closely borders
the ribs which is expected for a quality registration.

1Level 2 was chosen for the visualization as lower level meshes become to dense for visual-
ization.
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(a) Output scan (b) Output scan with mesh

(c) Input scan (d) Input scan with deformed mesh

Figure 8.4: Tetrahedral mesh on slice visualization of CT scans.
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Level 3 2 1 0
Avg. element vol. in mm3 64 27 8 3.38
Gaus. scale space std. dev (mm) 2 1.5 1 0.5
α1 12 12 12 12
β 0.05 0.1 0.2 0.4
µ1 1e-5 0.5e-6 0.25e-6 0.1e-6
γ 10 5 2.5 0

Table 8.1: The used registration parameters for each level.

(a) R(x) slice 10 (b) R(x) slice 30 (c) R(x) slice 50

(d) T (ϕ(x)) slice 10 (e) T (ϕ(x)) slice 30 (f) T (ϕ(x)) slice 50

Figure 8.5: Slice comparison of back 2 scan and registered back 2 of pig 1.

Figures 8.5-8.7 show slice-by-slice illustrations of the reference image and the
deformed template image for pig 1, 2 and 3. The reference and the deformed
template images are in general very similar but there is a noticeable difference
in the top of slice 50 for pig 1.

Columns 2-5 in Table 8.2 list the minimum, maximum, mean and the standard
deviation of the determinant of the Jacobian of the transformation. The deter-
minant of the Jacobian quantifies the amount of local compression or expansion.
A determinant of the Jacobian larger than 1 indicates a local expansion, a de-
terminant of the Jacobian smaller than 1 indicates a local compression, and
finally a determinant of the Jacobian smaller than 0 indicates a local folding.
As the deformation is nearly incompressible it is expected that the determinant
of the Jacobian in every spatial location is close to 1. From the fourth and fifth
column in Table 8.2 we observe that the mean determinant of the Jacobian is
very close to 1 for all registrations, and that the standard deviation for all but
one of the registrations ranges between 0.010 and 0.020. Thus, we conclude that
the estimated deformations are nearly volume preserving. The combination of
a good visual resemblance between the reference images and the deformed tem-
plate images and the nearly volume preserving deformation adds evidence to
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(a) R(x) slice 10 (b) R(x) slice 30 (c) R(x) slice 50

(d) T (ϕ(x)) slice 10 (e) T (ϕ(x)) slice 30 (f) T (ϕ(x)) slice 50

Figure 8.6: Slice comparison of back 2 scan and registered back 2 of pig 2.

(a) R(x) slice 10 (b) R(x) slice 30 (c) R(x) scan slice 50

(d) T (ϕ(x)) slice 10 (e) T (ϕ(x)) slice 30 (f) T (ϕ(x)) slice 50

Figure 8.7: Slice comparison of back 2 scan and registered back 2 of pig 3.
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the validity of the registration.

Figures 8.8-8.10 contain the surfaces of the virtual products for the first 18 pigs
color-coded with the minimum distance to the surface of the spatially normalized
output products, and vice versa. A couple of general trends can be observed in
the figures:

• Indentations from the ribs and spine are clearly visual on virtual products
but not on the real products, which suggest that the virtual cuts follows
the surfaces of the ribs and spine to closely.

• The virtual products seem to be wider in the middle and more narrow in
the ends.

The quartiles of the absolute surface-to-surface distances are listed in the last
two columns of Table Figure 8.2. Whether, this is acceptable or not, is a question
for the expert butcher.

8.6 Discussion

This paper presented a methodology for the comparison of the virtual and real
cuts. The comparison method was demonstrated on a set of virtual and real
back 2 products. In general, there was a good consistency between the virtual
and the real products but a couple of tendencies or biases were discovered. Thus,
we conclude that the resemblance of virtual back 2 product and against the real
back 2 product can be improved.

The quality of the geometrical comparison is dependent on the estimate of the
deformation between the real output product and the input product. Unfortu-
nately, there are a number of weaknesses in the obtained registration:

• The reliance on landmarks for initial guidance of the registration threatens
the applicability of the method. The need for landmarks can probably
be eliminated by placing the products in a half pipe while scanned in
order to preserve the the natural curve of the product and to decrease
the size of the deformation between input and output products. As an
alternative approach it may be possible simulate the deformation of the
output product prior to the registration. In this example, one could try
to simulate how gravity deforms the pork middle without ribs and then
register the back 2 product to the deformed pork middle.
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det(∇ϕ) Quartiles

ID Min Max Mean Std. R→V V→R

1 0.858 1.169 1.000 0.014 0.67 /1.20 /3.06 0.74 /1.50 /4.39
2 0.811 1.162 1.000 0.020 0.58 /1.13 /2.51 0.67 /1.42 /3.94
3 0.902 1.099 1.000 0.010 0.66 /1.18 /2.21 0.72 /1.34 /2.93
4 0.881 1.150 1.000 0.032 0.74 /1.32 /3.34 0.76 /1.52 /4.21
5 0.848 1.170 1.000 0.012 0.77 /1.53 /4.76 0.83 /1.64 /5.24
6 0.890 1.099 1.000 0.015 0.64 /1.15 /2.13 0.70 /1.33 /2.98
7 0.846 1.178 1.000 0.012 0.76 /1.47 /3.33 0.77 /1.53 /4.49
8 0.856 1.173 1.000 0.010 0.75 /1.39 /2.93 0.77 /1.51 /3.87
9 0.855 1.126 1.000 0.010 0.80 /1.47 /3.15 0.87 /1.56 /4.37
10 0.810 1.163 1.000 0.014 0.83 /1.53 /3.39 0.93 /1.66 /4.33
11 0.861 1.147 1.000 0.011 0.73 /1.31 /2.76 0.76 /1.49 /3.86
12 0.881 1.147 1.000 0.012 0.74 /1.32 /2.39 0.76 /1.53 /3.85
13 0.871 1.120 1.000 0.011 0.76 /1.38 /2.53 0.77 /1.53 /3.82
14 0.841 1.176 1.000 0.015 0.76 /1.49 /3.13 0.82 /1.59 /4.53
15 0.849 1.174 1.000 0.011 0.74 /1.36 /2.93 0.76 /1.50 /3.57
16 0.891 1.105 1.000 0.010 0.76 /1.53 /3.36 0.77 /1.58 /3.66
17 0.871 1.133 1.000 0.012 0.72 /1.37 /2.70 0.76 /1.56 /3.86
18 0.867 1.126 1.000 0.011 0.62 /1.16 /2.53 0.71 /1.42 /3.84
19 0.845 1.153 1.000 0.012 0.76 /1.35 /3.36 0.77 /1.51 /4.26
20 0.870 1.129 1.000 0.013 0.72 /1.30 /2.26 0.75 /1.42 /2.76
21 0.875 1.156 1.000 0.012 0.73 /1.39 /3.15 0.76 /1.59 /4.72
22 0.880 1.114 1.000 0.011 0.76 /1.47 /2.94 0.81 /1.55 /4.51
23 0.861 1.158 1.000 0.012 0.72 /1.40 /3.89 0.75 /1.50 /4.48
24 0.829 1.169 1.000 0.012 0.81 /1.54 /3.65 0.90 /1.70 /4.64
25 0.853 1.168 1.000 0.011 0.75 /1.40 /3.75 0.76 /1.53 /4.80
26 0.863 1.157 1.000 0.012 0.76 /1.33 /2.29 0.76 /1.45 /2.89
27 0.903 1.091 1.000 0.011 0.76 /1.44 /2.90 0.78 /1.53 /3.67
28 0.892 1.122 1.000 0.010 0.75 /1.41 /3.06 0.75 /1.41 /2.99
29 0.890 1.111 1.000 0.011 0.74 /1.39 /2.99 0.76 /1.51 /3.91
30 0.854 1.129 1.000 0.010 0.76 /1.51 /3.06 0.77 /1.53 /4.08
31 0.864 1.127 1.000 0.012 0.71 /1.39 /3.22 0.76 /1.53 /4.44
32 0.868 1.117 1.000 0.011 0.70 /1.29 /3.49 0.73 /1.41 /4.04
33 0.864 1.100 1.000 0.011 0.71 /1.43 /3.82 0.76 /1.58 /5.16
34 0.885 1.109 1.000 0.012 0.65 /1.31 /3.22 0.69 /1.44 /3.87
35 0.855 1.143 1.000 0.012 0.77 /1.51 /3.82 0.86 /1.77 /5.39
36 0.841 1.207 1.000 0.015 0.78 /1.53 /3.91 0.81 /1.53 /4.38
37 0.876 1.120 1.000 0.011 0.76 /1.44 /3.03 0.80 /1.53 /3.98

Table 8.2: The table lists the minimum, maximum, mean and the standard devia-
tion of determinant of the Jacobian of the recovered transformations as well the mean
absolute surface-to-surface distance between the virtual and real output product. Dis-
tances are in mm, and V → R is an abbreviation for the distance from the surface of
the virtual product to the surface of the real spatial normalized product.
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(a) Virt. prod. 1 (b) Real prod. 1 (c) Virt. prod. 2 (d) Real prod. 2

(e) Virt. prod. 3 (f) Real prod. 3 (g) Virt. prod. 4 (h) Real prod. 4

(i) Virt. prod. 5 (j) Real prod. 5 (k) Virt. prod. 6 (l) Real prod. 6

mm
−30 −20 −10 0 10 20 30

Figure 8.8: 3D Surface distance plots. Pigs 1-6
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(a) Virt. prod. 7 (b) Real prod. 7 (c) Virt. prod. 8 (d) Real prod. 8

(e) Virt. prod. 9 (f) Real prod. 9 (g) Virt. prod. 10 (h) Real prod. 10

(i) Virt. prod. 11 (j) Real prod. 11 (k) Virt. prod. 12 (l) Real prod. 12

mm
−30 −20 −10 0 10 20 30

Figure 8.9: 3D Surface distance plots. Pigs 7-12
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(a) Virt. prod. 13 (b) Real prod. 13 (c) Virt. prod. 14 (d) Real prod. 14

(e) Virt. prod. 15 (f) Real prod. 15 (g) Virt. prod. 16 (h) Real prod. 16

(i) Virt. prod. 17 (j) Real prod. 17 (k) Virt. prod. 18 (l) Real prod. 18

mm
−30 −20 −10 0 10 20 30

Figure 8.10: 3D Surface distance plots. Pigs 13-18.
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• The low quality of the data questions the accuracy of the registration. Es-
pecially, the low out-plane resolution is a problem for intensity based image
registration as the spatial image derivatives in the out-plane direction be-
come significantly smaller than the in-plane derivatives. In addition, thin
structures running parallel with the slice planes may fade out and almost
disappear.

If these issues are addressed in the future, we believe that the presented method-
ology is appropriate for inspecting the consistency between virtual and real
cuts.



106 Validation of virtual cuts



Chapter 9

Surface-to-surface registration
using level sets

Mads Fogtmann Hansen, Søren Erbou, Martin Vester-Christensen, Rasmus
Larsen, Bjarne Ersbøll and Lars Bager Christensen

Abstract

This paper presents a general approach for surface-to-surface registration
(S2SR) with the Euclidean metric using signed distance maps. In addition,
the method is symmetric such that the registration of a shape A to a shape
B is identical to the registration of the shape B to the shape A.
The S2SR problem can be approximated by the image registration (IR)
problem of the signed distance maps (SDMs) of the surfaces confined to
some narrow band. By shrinking the narrow bands around the zero level
sets the solution to the IR problem converges towards the S2SR problem.
It is our hypothesis that this approach is more robust and less prone to
fall into local minima than ordinary surface-to-surface registration. The
IR problem is solved using the inverse compositional algorithm.
In this paper, a set of 40 pelvic bones of Duroc pigs are registered to each
other w.r.t. the Euclidean transformation with both the S2SR approach
and iterative closest point approach, and the results are compared.

9.1 Introduction

This paper addresses the problem of shape registration or alignment which plays
an essential role in shape analysis. Many registration procedures such as general-
ized Procrustes analysis [51, 67] rely on a prior manual annotation of landmarks.
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The main drawback with these approaches is the reliance on manual annota-
tion which becomes cumbersome and infeasible for larger 2Ddatasets and for 3D
data.
Methods for explicitly deriving landmarks form training curves/surfaces based
on information theoretic theory has been published [46]. Unfortunately these
often suffer form exceeding use of computation time.
The iterative closest point (ICP) algorithm by Besl et al. [17] solves the problem
of landmark dependence by iteratively updating the point correspondence after
the closest point criterium. Since the introduction in 1992 many extensions and
improvements of original ICP have been proposed in literature [57, 68, 136].
Most of these methods still require a good initial estimate in order not to con-
verge to a local minimum. Furthermore, common for these methods are that
they do not utilize the knowledge of the connectedness of the point cloud, which
is available in many cases.
The approach described in this paper is in many ways related to the approach
presented by Darkner et al. [45], which aligns two point clouds by minimizing
the sum of squared difference between the distance functions of the point clouds
in some rectangular box domain. The problem with the scheme by Darkner
et al. is that it is likely produce a suboptimal result when applied to concave
shapes. That is, the concave parts of a shape will not propagate as far out in a
distance map as the convex parts. As a consequence points placed on the con-
vex parts of a shape are given more weight than points on concave parts. Our
approach differs from the approach presented in [45], as it uses signed distance
maps and minimizes the squared difference between the signed distance maps
restricted to a shrinking narrow band. Thus, it does not suffer from the same
defect as [45].

9.2 Theory

The registration of a surface Sx to a surface Sy w.r.t the Euclidean metric can
be expressed as the minimization of the functional

F1(p) =

∮
Sx

d(W (x;p),Sy)2dx, (9.1)

where W ( ;p) is the warp function.
A minor flaw with this approach is that the registration of Sx to Sy is not
necessarily equivalent to the registration Sy to Sx. If W ( ;p) is invertible (9.1)
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can be extended to

F2(p) =

∮
Sx

d(W (x;p),Sy)2dx+

∮
Sy

d(W (y;p)−1,Sx)2dy

=

∮
Sx

d,Sy (W (x;p))2dx+

∮
Sy

dSx(W (y;p)−1)2dy, (9.2)

where dSx and dSy are the distance maps of the surfaces Sx and Sy, respectively.
This energy functional ensures a symmetric registration.
A minimum of F2 can be obtained by any gradient or Newton based optimization
scheme. However, such schemes may very well get stuck in a local minimum
instead of the global minimum. To overcome this problem we introduce a slightly
different energy functional

F3(p) =

∫
Ur

x

(Φy(W (x;p))− Φx(x))
2dx+

∫
Ur

y

(Φx(W (y;p)−1)− Φy(y))
2dy,

(9.3)
where Φx(x) and Φy(y) are the signed distance maps (SDMs) of the surfaces
Sx and Sy, and Ur = {x | x ∈ Rd, |Φ(x)| < r}. And we note that

F3 → F2 for r → 0. (9.4)

Now, consider the shape in Figure 9.1(a) consisting of two identical rectangles.
If we translate the shape in both the x and the y direction between -25 and 25
pixels and calculate the energy in each position using F2 and F3 with r = 25
pixels, we get energy landscapes shown in Figure 9.1(b,c). In this case, the F2

cost function produces three minima while the F3 cost function produces only
the global minimum.

9.3 Method

The energy functional defined in F3 can be viewed as an image registration
problem between two SDMs Φx and Φy, where the points to be warped are
those inside the narrow bands Ur

x and Ur
y . The problem is solved using an

extended version of the inverse compositional algorithm presented by Baker et
al [16]. To preserve the same notation as in [16], we assume that Φx and Φy are
discretized SDMs. Thus, F3 becomes

F4(p) =
∑
x∈Ur

x

(Φy(W (x;p))−Φx(x))
2 +

∑
y∈Ur

y

(Φx(W (y;p)−1)−Φy(y))
2. (9.5)
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(a) A simple shape.
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(b) F2 cost functional.
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(c) F3 cost functional.

Figure 9.1: Cost as a function of translation in x and y direction.
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If the set of warps forms a group the minimization of F4 is equivalent to the
minimization of

F5(p) =
∑
x∈Ur

x

(Φy(W (x;p))− Φx(W (x;∆p)))2

+
∑
y∈Ur

y

(Φx(W (y;p)−1)− Φy(W (y;∆p)−1))2. (9.6)

with the update rule W (x;p) ← W (x;p) ◦W (x;∆p)−1. By applying the first
order Taylor expansion to (9.6) we get

F5(p) ≈
∑
x∈Ur

x

(
Φy(W (x;p))− Φx(W (x;0))−∇Φx

∂W (x;0)

∂p
∆p

)2

+
∑
y∈Ur

y

(
Φx(W (y;p)−1)− Φy(W (y;0)−1)−∇Φy

∂W (y;0)−1

∂p
∆p

)2

.(9.7)

By taking the derivatives of F5 w.r.t. ∆p and setting them equal to zero we get
the update equation

∆p = −H−1

∑
x∈Ur

x

S⊤
x Ex +

∑
y∈Ur

y

S⊤
y Ey

 , (9.8)

where Sx = ∇Φx
∂W (x;0)

∂p , Sy = ∇Φy
∂W (y;0)−1

∂p , Ex = Φy(W (x;p)) − Φx(x),

Ey = Φx(W (y;p)−1) − Φy(y) and H =
∑

x∈Ur
x
S⊤
x Sx +

∑
y∈Ur

y
S⊤
y Sy. Note

that H−1, Sx and Sy only have to be computed once. A S2SR can be obtained
with Algorithm 1.

Algorithm 9.1 S2SR

1: r = [r1 . . . rn]; { ri > ri+1}
2: for each ri ∈ r do
3: k = 0;
4: repeat
5: update p using (9.8) with Uri

x and Uri
y ;

6: k = k + 1;
7: until convergence or k > kmax

8: end for

The best sequence of ri’s is properly highly depended on the problem. We have
applied the following scheme with success:

ri+1 ≈
ri
2
. (9.9)
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Selecting a suitable initial narrow band r0 is however not entirely straight for-
ward. If the choice of r0 is too small the algorithm may get stuck in a local
minima, and if it is too large the algorithm will use an unnecessary amount of
computational power. Note, that the computation time is much more depended
on the radius of the initial narrow band than the number of narrow bands as
the global minimum of F3 for the narrow band ri properly is relatively close
to the global minimum of F3 for ri+1. In general, r0 should be larger than the
width of largest structure or feature in the image which might introduce a local
minimum in F3.

9.3.1 Extending approach to open surfaces

SDMs are in principal only defined for closed surfaces as it is impossible to label
the inside and outside of an open surface. Thus, our approach can only be
applied to closed surfaces. To overcome this problem we introduce the notion
of a pseudo SDM.
The pseudo SDM of triangle mesh of an open surface is computed using the
following recipe:

1. Close the surface by triangulating all the holes in the triangle mesh.

2. Compute the SDM of the closed tiangle mesh. Bærentzen et al. [11, 12]
describe how to compute the SDM of a closed triangle mesh.

3. Set all voxels in the discretized SDMs with distances to the added faces
to an undefined value.

Under the registration, voxels from one SDM may be warped to an undefined
volume of the other SDM. In such cases, it is reasonable to assume that the
distance in the undefined volume is 0, as we have no way of knowing whether
the point is on the outside or inside of the shape. This hack allows for a bit
of slack around the open areas of a surface. In many cases a surface is only
open as it has been chosen to disregard a part of the shape - cutting away part
of a shape in the exact same place is impossible. Furthermore, the gradient of
a SDM at the borders between the defined and undefined volumes is likewise
assumed to be equal to 0.

Sometimes, it is impossible to close an open surface with triangulation without
introducing intersections between the new faces and the existing faces. Also,
it might not be reasonable to close a surface if the hole is very large. In such
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(a) Initial position. (b) Final position for S2SR
with narrow band r=1.

(c) Final position for S2SR
with narrow bands 30, 15, 7.5,
1.

Figure 9.2: Rigid registration of left (green) and right hand (red).

cases, it might be more advisable simply to use unsigned distance maps instead
of SDMs. The question of how large a hole in a surface can be, before the
registration algorithm fails or produces suboptimal result with pseudo SDMs,
needs to be investigated in the future.

9.4 Experiments

Two experiments were conducted to test the surface registration approach; (i)
a toy example where the outline of the right and left hand of one of the authors
were registered to each other, and (ii) a real example where 40 pelvic bones of
Duroc pigs were registered with the ICP algorithm by Fitzgibbon [57] and with
our S2SR algorithm.

9.4.1 Hand example

To test the robustness of the S2SR algorithm a left and a right hand were
traced on a piece of paper and scanned into a computer. The left hand was
flipped horizontally, displaced 100 pixels in the x-direction and -25 pixels in
the y-direction, and rotated 5 degrees counter clockwise. Figure 9.2 shows the
initial position of the hands, the final position with regular S2SR1 and the final
position with our S2SR algorithm with the narrow bands r = 30, 15, 7, 3, 1.
Evidently, the regular S2SR approach gets stuck in a local minimum or saddle
point, while the shrinking narrow band S2SR approach registers the left and
right hand perfectly.

1Simulated with the small narrow band r=1.
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Figure 9.3: Example of a pelvic bone from a Duroc pig.

9.4.2 Pelvic bones

Half pig skeletons were automatic extracted from CT scans of half pig carcasses
and fitted with implicit surfaces. From the implicit surfaces triangle meshes
were created, and the pelvic bones were manually removed from the triangulated
skeletons. An example of a pelvic bone can be found in Figure 9.3.

From the set of pelvic bone shapes a shape was selected to be the reference,
and the remaining shapes were registered to the reference shape with ICP and
our level set based S2SR algorithm with r = 20, 10, 5, 2.5, 1mm. To compare
the two registration approaches we use the mean squared error (MSE) and the
maximum error (ME). As ICP minimizes the point-to-closest-point (CP) dis-
tance and our algorithm minimizes the surface-to-surface distance2, we evaluate
the performance of the registration algorithms using both distance concepts.
Furthermore, as our registration algorithm does symmetric minimization of the
squared distances and ICP does not, the MSE and the ME are calculated in
the same direction as the ICP registration, in the other direction and in both
directions combined. The registration results for ICP and S2SR can be found
in Table 9.1 and 9.2, respectively. As no surprise, the ICP registration has a
lower MSE and ME in the same direction as the registration, when we are using
the CP distance. It is neither a surprise that our S2SR algorithm has lower
MSEs and MEs in the opposite direction of the ICP registration and in both
directions. It is however a bit of a surprise, that our S2SR algorithm has a
smaller MSE than ICP when using the SDMs to extract distances. A possible
explanation for this result is that our algorithm allows for a bit of slack around
the open regions of the surface and is therefore better at fitting the remaining

2The distances are found by interpolating the SDMs. To ensure fairness, when evaluating
the MSE and ME, points, which are warped to an undefined area of a SDM, are ignored
instead of receiving the distance 0.
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Method ICP (A→ B)
Direction A→ B A← B A↔ B

Measure
√
MSE ME

√
MSE ME

√
MSE ME

SDM 11.92 20.13 12.70 27.04 12.34 27.24
CP 12.32 20.85 14.40 29.41 13.44 29.48

Table 9.1: The MSE and ME averaged over the 39 registrations after ICP registration.

Method S2SR (A↔ B)
Direction A→ B A← B A↔ B

Measure
√
MSE ME

√
MSE ME

√
MSE ME

SDM 11.69 24.11 12.18 24.03 11.90 26.28
CP 12.77 25.70 13.11 26.34 12.95 28.30

Table 9.2: The MSE and ME averaged over the 39 registrations after S2S registration.

regions of the surface. Figure 9.4 illustrates this by color-coding the surfaces of
two registered pelvic bones with the shortest distance.

W.r.t. computation time, it can be mentioned that it took approximately 20
minutes to run the 39 registrations with ICP and approximately 50 minutes to
run 39 registrations with S2SR on a standard Dell laptop with a 1.6Ghz Centrino
CPU and 2Gb ram. It is difficult to compare the computation time of the two
algorithm as the computation time for the S2SR algorithm is vastly depended
on the chosen parameters, e.g. the chosen narrow bands and the resolution of
the discretized SDMs.

9.5 Conclusion

This paper has presented a method for S2SR. The registration algorithm was
tested on two examples, where its properties were highlighted; (i) it is less prone
to fall into local minima than ordinary S2SR, (ii) and it does symmetric registra-
tion. As the method relies on SDMs it only works in theory on closed surfaces.
Nevertheless, this paper has demonstrated that it can work on open surfaces by
introducing a pseudo SDM, where distances are not defined in volumes close to
the open regions of the surface.
In the future, we will use non-rigid transformations with the registration ap-
proach.
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Figure 9.4: Distance color-coded surfaces after registration. Black areas are areas
where the distance could not be interpolated in the SDM because the point is situated
in a undefined area.



Chapter 10

Diffeomorphic Statistical
Deformation Models

Michael S. Hansen, Mads F. Hansen and Rasmus Larsen

Abstract

In this paper we present a new method for constructing diffeomorphic sta-
tistical deformation models in arbitrary dimensional images with a nonlin-
ear generative model and a linear parameter space.

Our deformation model is a modified version of the diffeomorphic model
by Cootes et al. The modifications ensure that no boundary restriction
has to be enforced on the parameter space to prevent folds or tears in the
deformation field.

For straightforward statistical analysis, principal component analysis and
sparse methods, we assume that the parameters for a class of deformations
lie on a linear manifold and that the distance between two deformations
is given by the metric introduced by the L2-norm in the parameter space.
The chosen L2-norm is shown to have a clear and intuitive interpretation
on the usual nonlinear manifold.

Our model is validated on a set of MR images of corpus callosum with
ground truth in form of manual expert annotations.

We anticipate applications in unconstrained diffeomorphic synthesis of im-
ages, e.g. for tracking, segmentation, registration or classification purposes.

10.1 Introduction

Registration is the problem of establishing correspondence between points in
different images. It has been used for building models of variation in groups of
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images for several years. Cootes et al. proposed the very successful active ap-
pearance models in 1998 [35], which, once trained, can establish correspondence
between points in the model and the images using a piecewise affine mapping.
Rueckert et al. presented a statistical deformation model based on registrations
of an atlas to the images of the group [133]. Joshi et al. demonstrate how to
construct an unbiased atlas from a population [82], and Cootes et al. presented
a guaranteed diffeomorphic shape model [37] by using smooth kernels for inter-
polating a warp field and putting restrictions on the variation of the parameters.
Vester-Christensen et al. have presented an accelerated version of this algorithm
[166], which is based on the inverse compositional method by Baker et al., which
we have also made extensive use of in the presented work [16].

10.2 Methods

We define image registration as the identification of correspondence between
positions in images. In the current work we address problems where the cor-
respondences can be represented by a diffeomorphic function f ∈ H, where H
denotes the infinite dimensional group of diffeomorphisms on RN . The mapping
from one image to the other is differentiable and the inverse exists and is also
differentiable. Popularly speaking this limits the problem of registration to the
problem of finding smooth warps without folds or tears. More precisely this is
fulfilled, when the Jacobian of the warp field is positive and well defined.

In the statistical analysis of the warp functions we are interested in estimating
an unbiased atlas of the structures we are registering. We identify such an atlas
as the groupwise maximizer of similarity between the atlas R and the deformed
images Ii, while minimizing the deformation fields ϕi.

[ϕi, R̂] = min
ϕi,R̂

∑
i

S[R̂, Ii ◦ ϕi] + αD(ϕi)
2 . (10.1)

where S denotes the similarity measure and D(ϕ) denotes the regularization
term, introduced to regularize the warp ϕ further than just restricting it to the
space of the parameters, and α is the regularization parameter.

10.2.1 Parameterized diffeomorphisms

Fletcher et al. have investigated geodetic curves on the nonlinear manifolds of
the parameters of the M-reps parameterization [58]. Most of the current statis-
tical analysis, however, is based on the assumption that the data are located on
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a linear manifold with the Euclidean metric, e.g. principal component analysis
(PCA) and independent component analysis (ICA), which have nice properties
as analytical tools. This is our motivation for introducing a function G which
identifies RM with a (hopefully interesting) subset of diffeomorphisms.

Let H(RN ) denote the set of diffeomorphisms (f : RN → RN ). Now let G be a
bijective mapping:

G : RM → Ht . (10.2)

where Ht = G(RM ) ⊂ H. We let Ht inherit the Euclidean metric from the
parameter space RM

d(G(t1),G(t2)) ≡ d(t1, t2) = ∥t1 − t2∥2 ,

t1, t2 ∈ RM and G(t1),G(t2) ∈ Ht , (10.3)

from which we conclude that G is a homeomorphism, and that the spaces Ht =
G(RM ) and RM are topologically equivalent. To conclude it can be observed
that the defined metric on the space of parameterized warps is the L2 norm on
RM as intended.

10.2.1.1 Composition of warps

The composition of more diffeomorphisms is diffeomorphic, which is a very
important property of diffeomorphisms in the present context.

fi ∈ H , i ∈ {1, 2, . . . , n}
ϕ = fn ◦ fn−1 ◦ . . . ◦ f1 ⇒ ϕ ∈ H (10.4)

This allows for the construction of diffeomorphisms of higher complexity by the
composition of several simpler warps. We shall assume we are dealing with pa-
rameterized warp functions, and our statistical analysis of warps can be reduced
to the analysis of the warp parameters, in line with (10.3). For all images in
our set the warp parameters shall warp from our reference, R, into the current
target, I. In order to be able to compare parameters from different warp com-
positions it is evident that all our parameters exist in the same space. This is
achieved by ensuring that all warps fi in a composition warp from the reference
coordinate system[37].

10.2.1.2 Grid based diffeomorphisms

Several grid based representations of diffeomorphisms have been presented and
they are commonly used at different levels of detail and composed succeedingly
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[37, 108, 133]. A general trait of the grid methods is that they manipulate the
parameters of the functions describing the diffeomorphism, and that the func-
tions have a local support in the image, either as points defined in the image or
as basis functions with support around a control point. Often this parameteri-
zation of the grid is linear in the parameters and this obviously imposes some
restrictions on the parameters to produce diffeomorphic warps. Cootes et al.
specify a cut-off at displacements larger than 1

π of the cosine based kernel [37]
and Lee et al. find a threshold bound on the B-spline parameters to secure that
the B-spline based warp function is diffeomorphic [94].

10.2.1.3 A proposed G

Let F be the function mapping from a real parameter space RM into the space
of functions from RN to RN , e.g. in case of the B-spline warps, F maps from
the parameter space into the space of N -dimensional B-spline functions f : RN

to RN , the image of F , K can be shown to contain functions that are not
diffeomorphic.

As discussed in the previous section there can for some parameterized warps be
specified a threshold such that P = ]−τ1, τ1[ × · · ·×]−τM , τM [ and F : P → Ht,
where Ht ≡ F(P) ⊂ H. In the current study we have investigated the use of a
function g : RM → P, that is, a bounded monotonic injective function into the
space of thresholded displacement parameters. Constructing G = F ◦ g, where
G : RM → Ht gives us the desired function G, namely a homeomorphic mapping
from the parameter space RM into the space of diffeomorphisms. As an example
of the function g we have chosen a set of hyperbolic tangent function, because
the range where it is close to linear is large. In this the composed mapping G
and the different ranges are illustrated in Figure 10.1.

We define g coordinate-wise by

g = {g1, ..., gM} where gi : R→ ]−τi, τi[

si = gi(ti) = τi tanh aiti , for i ∈ {1, ...,M} (10.5)

where τi are the threshold parameters reducing the displacement parameter
space of the warp to P ⊂ RM , s = {s1, ..., sM} ∈ P are the displacement
parameters and ai are constants ensuring that the impact of each ti is of the
same order of magnitude.
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Figure 10.1: Illustration of the mapping G from RN to G, along with our proposed
composed mapping G = F ◦ g

.
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10.2.1.4 Properties of the g mapping

Before we continue with an empirical validation of our proposed mapping we will
make some theoretical considerations over the choice of homeomorphic mapping
g. For small values t ∈ RM the L2 norm in RM is equivalent to a scaled L2

norm in g(RM ) to a first order. In other words, relating this to diffeomorphic
warps, for small deformations the defined norm is equivalent to the usual metric
applied in analysis of the warp fields [37, 133].

10.2.1.5 The parameter distribution

We believe that the distribution of the parameters is well described by the
normal distribution and we will show what distribution this describes in the
displacement parameter space of the warp function. Let fti be the marginal
distribution of the parameter ti and fgi be the marginal distribution of the
warp parameter si = gi(ti), then

fi(ti) =
1√
2πσ2

i

e
− t2i

2σ2
i (10.6)

fgi(si) =
1

2ai · τi
√
2πσ2

i

(
e
− g−1(si)

2

2σ2
i +

e
µ2
i

2σ2
i

2
e
− (g−1(si)−µi)

2

2σ2
i +

e
µ2
i

2σ2
i

2
e
− (g−1(si)+µi)

2

2σ2
i

)
(10.7)

where µi =
σ2
i ai

2 and this distribution is seen to be the composition of three
Gaussian distributions scaled by g−1. For small µi this is approaching the
Gaussian distribution which is often the distribution for the warp parameters in
the small deformation domain and for µi big the two µi displaced distributions
dominate, and we observe a high concentration of parameters around the thresh-
old τi. In the presence of strong deformations this also what we expect when
imposing a threshold on the warp deformation parameters. Based on these con-
siderations we expect an M -dimensional normal distribution of our parameters
to be well suited for modelling the distributions of the observed deformations.

10.2.1.6 Statistical deformation model

In the previous section we argued that the expected distribution of warps could
be modelled as an M -dimensional normal distribution. If this is the case PCA
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is known to be the optimal choice of analysis tool for creating a compact model
of the observations, and is therefore the method of choice in the current imple-
mentation.

10.3 Implementation

To validate our approach for construction of diffeomorphic deformation model
we have adapted the grid based diffeomorphisms by Cootes [37] with our g
mapping. These diffeomorphisms can be viewed as an extension to standard
linear interpolation, where the interpolation coefficients are transformed by a
suitable kernel k(r) which ensures smoothness across the grid boundaries. The
displacement of a 2D point x ∈ R2 is given by

u(x,d) =
1∑

m=0

1∑
n=0

kn(v)km(w)di+n,j+m

=

1∑
m=0

1∑
n=0

ai+m,j+n(x)di+n,j+m (10.8)

=

[
a(x)⊤ 0

0 a(x)⊤

]
d (10.9)

where k0(r) = k(r), k1(r) = 1 − k(r), i and j are the local indices of the
neighboring grid points, v and w are relative positions of x in the neighborhood
and d and di,j are all the displacements and the displacement of the (i, j)-node,
respectively. By substituting the displacements d with the g mapping with a
suitable threshold τ , this deformation model will no longer be able to generate
non-diffeomorphisms. In the present example we are using the Cootes kernel,
τ = 1/π.

For notational simplicity the displacement in the ith direction will represented
by

ui(x, ti) = a(x)⊤gτ (ti), (10.10)

and the warp function is written in the form

φ(x, t) = x+ u(x, t). (10.11)

10.3.1 Image registration

To drive the registration between a reference image R and a target image I we
apply the sum-of-squared-differences (SSD) as our similarity measure and the
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regularization term is given by D(ϕ) = d(e, ϕ) = ∥t∥2, where e is the identity
map corresponding to t = 0. The SSD comparison leads us to calculate the
reference image as the arithmetic mean of the warped target images, as this is
the optimum SSD solution to (10.1) [82].

F (t) =
1

2

∑
x

(R(x)− I(φ(x, t))2 + α∥t∥22 (10.12)

=
1

2

∑
x

E2(x, t) + α∥t∥22. (10.13)

To achieve a fast optimization we apply the inverse compositional optimization
approach by Baker et al. [16] to the cost function. Thus, we obtain a minimum
by iteratively minimizing

Fic(t) =
1

2

∑
x

(R(φ(x,∆t))− I(φ(x, t))2

+α∥t− ∂t′

∂∆t
∆t∥2 (10.14)

with respect to ∆t and updating t according to

φ(x, t′)← φ(x, t) ◦φ−1(x,∆t). (10.15)

In Appendix 10.b it is shown how t′ is derived from (10.15).

By performing a first-order Taylor-expansion onR(φ(x,∆t) around x in (10.14),
taking the derivatives wrt. ∆t and setting them equal to zero we get

∆t = H−1

[∑
x

SD(x)⊤E(x, t) + α
∂t′

∂∆t

⊤
t

]
(10.16)

where

SD(x) = ∇R(x)
∂φ(x,0)

∂t
(10.17)

and

H =
∑
x

SD(x)⊤SD(x) + α

[
∂t′

∂∆t

]⊤ [
∂t′

∂∆t

]
. (10.18)

The advantage with this inverse compositional approach is that SD(x) can be
pre-computed as it is not dependent on t.
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10.4 Validation: corpus callosum model

To demonstrate our approach we have created a deformation model of the Cor-
pus Callosum from 62 two dimensional MR images of the mid-sagittal cross-
section of the corpus callosum brain structure. This data set is part of the
LADIS (Leukoaraiosis and DISability) study [119], a pan-European study in-
volving 12 hospitals and more than 700 patients. Furthermore, each corpus
callosum has manually been annotated with 72 landmarks by a clinician, which
we will later use for validation.

Prior to the non-rigid registration a rigid registration was performed to filter out
non-anatomical variation. This was achieved by performing Procrustes analy-
sis on the sets of annotations. After the rigid registration an initial reference
was created by computing a mean image of the rigidly registered images. All
corpus callosum images were then non-rigidly registered to the reference, and
a new reference was computed by averaging. This was done multiple times
until the reference stabilized. For the non-rigid registration the cosine kernel
k(r) = 0.5(1 + cos(πr)) was applied [37]. The non-rigid warps were modelled
by composing three grid based diffeomorphisms in a fine-to-coarse manner. The
dimensions of the applied grids were 5 × 4, 10 × 8 and 20 × 16. The non-rigid
registrations were carried out in coarse to fine order. After each level φi of the
warp was estimated the target image was updated by warping the target image
back into the reference coordinate frame by Tn+1(x) = Tn(φ(x)). This was done
to ensure that different parameters from different warps could be compared [37].
ai of the g mapping was set proportional to the inverse of the squared grid node
distance because the grid was 2 dimensional. The image registration was vali-
dated using the Dice measure, which is twice the intersecting area between the
ground truth shape outline of the warped image and the outline of the reference
shape divided by the total area inside the two outlines. The ground truth was
obtained from the expert annotations. The Dice measure was 0.884± 0.048. In
Fig. 10.2 we show an example of a typical registration of an image. In Fig. 10.3
the cumulative overlap of the aligned corpus callosum shapes before and after a
rigid registration is illustrated, showing a clear improvement in correspondences
between the shapes.

(a) Template image (b) Warped template (c) Reference image

Figure 10.2: Registration of an image to the reference.
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(a) Before nonrigid registra-
tion

(b) After nonrigid registra-
tion

Figure 10.3: Cumulative overlap of the aligned corpus callosum shapes before and
after a rigid registration

To create a compact deformation model, PCA was applied to the parameters
after the groupwise registration of the images. 13 modes of variation could
describe 95 % of the observed variation in the population as observed in Figure
10.4, and the first three modes are illustrated in Fig. 10.5. The first mode of
variation is seen to be related to a vertical stretch and in particular to the size of
the septum pellucidum (the dark area between the bright corpus callosum and
the bright Fornix), the second mode is related to the kink of the corpus callosum
and the thickness of the structure and the same goes for the third mode but
with a different bending of the Fornix. Rueckert et al. have also analyzed the
corpus callosum and they found modes quite similar to the ones found in the
current study [133]. For comparison we applied a regularized version of Cootes’
algorithm to the same problem, and constructed a similar PCA model of the
variation. The variance of the modes is nearly identical, as shown in Figure
10.4 and the obtained Dice scores were also the same. However the described
modes are not completely identical, and to point out the major difference, we
note that the most extreme sites in the Cootes warp (in terms of curvature) are
more expressed than the same sites in the model based on the current method.
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(b)

Figure 10.4: Plot relating described variance with number of modes included in the
model. a: the presented method. b: method introduced by Cootes et al. [37].

s



10.4 Validation: corpus callosum model 127

(a) 1st mode, −3 std. dev. (b) 2nd mode, −3 std. dev. (c) 3rd mode, −3 std. dev.

(d) Reference

(e) 1 st mode, +3 std. dev. (f) 2nd mode, +3 std. dev. (g) 3rd mode, +3 std. dev.

Figure 10.5: First three modes of the corpus callosum deformation model estimated
with the current method, shown as the reference warped ± 3 std. deviations.

(a) 1st mode, −3 std. dev. (b) 2nd mode, −3 std. dev. (c) 3rd mode, −3 std. dev.

(d) Reference

(e) 1 st mode, +3 std. dev. (f) 2nd mode, +3 std. dev. (g) 3rd mode, +3 std. dev.

Figure 10.6: First three modes of the corpus callosum deformation model estimated
with a constrained version of Cootes’ method, shown as the reference warped ± 3 std.
deviations
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10.5 Discussion

We have shown how a parametric function can be defined on the unbounded lin-
ear space RM and still produce diffeomorphic warps. When this is accomplished
by first mapping RM into an open bounded subset of RM , which inevitably leads
to an asymptotic behavior at the closure of the bounded set. In our implemented
example the parameters of the model by Cootes et al. asymptotically approach
1
π where singularities in the warp may occur. We believe that our distance
measure is very reasonable when we are indeed approaching a singularity, as
a small change in the displacement parameters of the warp will cause a huge
impact on curvature of the warp function. In Fig. 10.7 we show the Corpus
Callosum which results from -6 std. deviations of the first mode. We see that a
singularity starts to form in the contracting area but this is highly unlikely as
predicted by our model and metric.

Figure 10.7: -6 Std. deviations of the first mode, normal view and a zoomed view
on the beginning singularity.

With the choice of the tanh function, the asymptotic behavior is assumed to be
exponential, which may not always be the case. There are obviously an infinite
variety of monotonically bounded functions, e.g. the arcus tangent, and we will
be investigating the choice of function in more detail.

A problem, we believe, that may occur with the proposed method is that we
cannot be sure that the threshold does actually mark a singularity. A simple
translation would for instance be asymptotic as well, which is why initial rigid
alignment is very important indeed. Currently we investigate more involved
parameter restrictions than the simple threshold to circumvent this possible
problem.

Our validation on corpus callosum data showed that we were able to learn the
important modes of variation, similar to previous obtained results, while the
relatively high Dice coefficient illustrated that our warp representation was able
to capture the large variations in the data set. We believe it is an advantage that
all configurations in our parameter space are valid diffeomorphism, such that all
gradients and derivatives during the optimization are well defined. Also we find
it an advantage for tracking etc. that the the deformation as a function of the
deformation model parameters is smooth, when using the presented method.
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10.6 Conclusions

This paper proposed a new warp representation which allows statistical analysis
on an unrestricted linear parameter space, where all derivatives are defined.
Furthermore, we have shown that the L2-norm in the parameter space introduces
a reasonable metric in the actual space of modelled diffeomorphisms, and that
our results compare well with those obtained using Cootes’ deformation model.
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10.a Warp inversion

Theorm 10.1 Consider the function φ : RN×RM 7→ RN of type φ(x, t) =
x+u(x, t) and let φt(x) = φ(x, t) be a C1-diffeomorphism. If u(x,0) = 0
and u(x, t) = −u(x, t), φ(x,−t) converges with second-order to φ−1(x, t).

Proof.

|ξi(ht)| = |φi(φ(x, ht),−ht)− xi|
= |xi + ui(x, ht)− ui(x+ u(x, ht), ht)− xi|

< |ui(x, ht)− ui(x, ht) +
∂ui

∂x
(x, ht)u(x, ht)|

< |ht⊤ ∂2ui

∂x∂ht
(x,0)

∂u

∂ht
(x,0)ht|

< |c| · |h2| (10.19)
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10.b Derivation of update function

In general, it is unlikely that φ(x, t) ◦ φ−1(x,∆t) can be parameterized with
φ(x, t′), and thus it has to be approximated.
In Appendix 10.a, it was shown that φ(x,−t) is a first-order approximation to
φ−1(x, t) as the error converges with second-order to zero. The composition
in Eq. 10.15 is approximated with the parameters t′ which minimizes the SSD
between the true compositional warp and the warp φ(x, t′)∑

x

∆φ(x)⊤∆φ(x) (10.20)

where

∆φ(x) = φ(φ(x,∆t), t)−φ(x, t′)

= a(x)⊤(gτ (∆t)− gτ (t
′))

+a(φ(x,∆t))gτ (t). (10.21)

If

A =

a(x1)
⊤

...
a(xn)

⊤

 , and Aφ =

a(φ(x1,∆t)⊤

...
a(φ(xn,∆t)⊤


the updated warp parameters t′ can be found by solving the system

0 = A(gτ (∆ti)− gτ (t
′
i)) +Aφgτ (ti). (10.22)

The least square solution to the system is

t′i = g−1
τ

(
A†Aφgτ (ti) + gτ (∆ti)

)
(10.23)

where A† =
[
A⊤A

]−1
A⊤.

As Aφ has to be evaluated on warped points it is relatively computational ex-
pensive to evaluate. Thus, we perform a first-order Taylor expansion on Aφ and
arrive at

t′i = k−1
(
A†AJiAgτ (∆ti) + gτ (∆ti) + gτ (ti)

)
, (10.24)

where

AJi = I + diag
∂a(xj)

∂xi

⊤
gτ (ti)

j=1...n

(10.25)



Chapter 11

Conditional Statistical Model
Building

Mads Fogtmann Hansen, Michael Sass Hansen and Rasmus Larsen

Abstract

We present a new statistical deformation model suited for parameterized
grids with different resolutions. Our method models the covariances be-
tween multiple grid levels explicitly, and allows for very efficient fitting of
the model to data on multiple scales.

The model is validated on a data set consisting of 62 annotated MR images
of Corpus Callosum. Five sixth of the data set was used as a training set.
The images of the training set were non-rigidly registered to each other
without a shape prior. From the non-rigidly registered training set a shape
prior was constructed by performing principal component analysis on each
grid level and using the results to construct a conditional shape model,
conditioning the finer parameters with the parameters from the coarser
grid levels. The remaining shapes were registered with the constructed
shape prior. The dice measures for the registration without prior and the
registration with a prior were 0.875±0.042 and 0.8615±0.051, respectively.

11.1 Introduction

Image registration has for many years been vastly explored by the imaging
processing community. Especially in medical imaging, registration has proven
a fundamental part of many medical application and studies; Cardenas et al.
[26] and Rohlfing et al. [130] have studied the effect of alcohol consumption on
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the human brain, Wierzbicki et al. [175] and Meinzer et al. [106] used image
registration for surgery planning and Rousseau et al. [131] create high-resolution
MR images of human fetal brains by registration of multiple sets of orthogonal
fast two-dimensional MRI slices. Image registration seeks to find a reasonable
geometrical deformation such that the dissimilarity between to images vanishes
or becomes small. What is meant by reasonable is naturally dependent on the
application. However, in medical applications the common consensus is that
these deformations at least are diffeomorphic - smooth and invertible.

It is often favorable to parameterize the deformations as this allows the appli-
ance of gradient based optimization approaches. Rueckert et al. [135] proposed
the use of cubic B-splines basis functions on a regular lattice. In general these
parameterizations ensure smoothness but not invertibility unless constraints are
applied to parameters. Consequently, simple parametric representations such as
the cubic B-splines by Rueckert [135] are not well suited for handling large defor-
mations. Christensen et al. [32] introduced fluid registration which in contrast
is capable of handling arbitrarily large deformations but sensitive to the initial-
ization. Another approach is to compose several parametric warps together to
construct a warp model capable of handling large and complex deformations. In
this paper, we will model deformations by composing a sequence of grid based
diffeomorphisms in a fine-to-coarse manor as described by Cootes et al. [37].

Furthermore, Cootes et al. [37] constructed a diffeomorphic statistical shape
model by learning a linear model of the variation of the warp parameters from a
set of non-rigidly registered images. Such models are however not well suited for
searching images as the warps are compositions of several grid based diffeomor-
phism, and thus have complex derivatives. Instead, we propose a conditional
deformation model that conditions the warp parameters of a level on the warp
parameters of the coarser levels. This allows us to optimize the levels sequen-
tially in a coarse-to-fine manner and provides a natural regularization. This
approach is in many ways similar to the conditional shape model by Bruijne et
al. [48] who condition the shape of a vertebra on the shapes of the neighboring
vertebrae.
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11.2 Methods

11.2.1 Bayesian formulation of the compositional image
registration problem

We will pose the registration problem in a Bayesian setting, which in turn will
allow for a more straightforward interpretation of the presented method. We
identify an atlas by the reference, R, and the deformation fields ϕi that max-
imize the posterior probability given a set of images Ii. The deformation field
will be parameterized on different grid levels by t = {t1, t2, ..., tm}. It is com-
mon to maximize the posterior probability P (t, R|I) by sequentially maximizing
P (ti, R|I, {t1, ..., ti−1}), [37].

P (ti, R|I, {t1, ..., ti−1}) = P (I|{t1, ..., ti}, R)P (ti, R|{t1, ..., ti−1})
P (I|{t1, ..., ti−1})

(11.1)

It is reasonable to assume that the warp parameters and the reference are inde-
pendent. We shall assume a Gaussian distribution of the parameters ti, condi-
tional on the previous parameters

P (ti|{t1, ..., ti−1}) = e
−γ∥ti−µi∥Σ

i|t1,...,ti−1 (11.2)

where the conditional mean µi and and covariance matrix Σi|t1,...,ti−1 are given
in [1]

Σ =


Σ1 Σ1,2 . . . Σ1,i

ΣT
1,2 Σ2 . . . Σ2,i

...
...

. . .
...

ΣT
1,i ΣT

2,i . . . Σi

 =

[
Σ1:i−1 Σ1:i−1,i

ΣT
1:i−1,i Σi

]
(11.3)

Σi|t1,...ti−1 = Σi − ΣT
1:i−1,iΣ

−1
1:i−1Σ1:i−1,i (11.4)

µi|t1,...ti−1 = µi +ΣT
1:i−1,iΣ

−1
1:i−1(t

1:i−1 − µ1:i−1) (11.5)

The likelihood of the images is taken to be the usual Laplacian of the integral
over the difference between the template and the warped image.

P (I|{t1, ..., ti}, R) = e−β
∫
Ω
{R−I(φ1(...(φi(x,ti),...))t1)}2δx (11.6)

where Ω denotes the support of the reference. We maximize the posterior prob-
ability by minimizing minus the logarithm of the measure. Assuming a uniform
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distribution of R and ignoring the scaling factor P (I) we seek to maximize the
following measure on each scale∫

Ω

{R− I(φ1(...(φi(x, ti), ...)t1))}2δx+ α∥ti − µi∥2Σi|t1,...,ti−1
(11.7)

where α = γ/β is assumed to be known. The important contribution in the
presented work, is the changes in the regularization term, which is usually based
on a simple regularization on the current level alone. In (11.7) this is changed to
regularization according to what our previous knowledge levels tells us. Sections
11.2.2 and 11.2.3 describe how statistical models are build, and especially how a
conditional statistical model is build taking advantage of this result, in creating
a sparse parameterization of the composed image registration problem.

11.2.2 Statistical deformation models

In statistical deformation models principal component analysis (PCA) is the
preferred method [133]. The attractive properties of the PCA for shape modeling
include optimal linear reconstruction of the data set variance, the estimated
modes of variation are orthogonal and uncorrelated, and a closed form solution
exists for calculating the principal components at a relatively low computational
cost. For Gaussian distributed random variables, PCA yields the most compact
representation of the model.

The deformation model is built from n displacement fields U = {Ui} repre-
senting the deformations. In the present work these displacement fields are
parameterized by the set of parameters t = {t1, t2, ..., tm}. The d-dimensional
deformation fields parameterized by a total of k parameters on the m different
levels are collected in random vectors ti ∈ Rdk.

From ti, a linear shape model, which approximates the parameterization of a
given field t is given by t̄ and Φ as

t = t̄+Φb . (11.8)

Here t̄ is the mean of all n parameter sets. That is

t̄ =
1

n

n∑
i=1

ti . (11.9)

The matrix Φ is constructed from the l first eigenvectors Φi of the covariance
matrix Σ, given by

Σ =
1

n− 1

n∑
i=1

(ti − t̄)(ti − t̄)⊤ . (11.10)



11.3 Validation 135

As usual the eigenvalues corresponding to Φi are denoted by λi. The vectors
Φi are also referred to as the principal modes. Finally, b ∈ Rl is the parameter
vector, describing the contribution of the principal modes contained in Φ in
order to approximate t by the estimated linear model. By assuming a Gaussian
distribution on the single displacement entries, the variance of the elements of
b, the parameters bi, are best approximated by λi [133].

11.2.3 Conditional Statistical Model Building

Returning to (11.7), and optimizing on level i, the conditional variance of the
parameters is in effect determining the regularization. Consequently some com-
binations of parameters are deemed very unlikely, given the correctness of the
model, which encourages us to choosing a more dense representation, which ex-
plicitly rules out the unlikely configurations. This is the motivation for changing
the parameterization from ti to the model described in the current section.

Given the conditional covariance matrix Σi|t1,...,ti−1 , define

V T
i|t1,...,ti−1Li|t1,...,ti−1Vi|t1,...,ti−1 = Σi|t1,...,ti−1 , (11.11)

whereΦi|t1,...,ti−1 are the orthonormal eigenvectors of Σi|t1,...,ti−1 andΛi|t1,...,ti−1

contains the corresponding eigenvalues. We will denote a submatrix with the l
biggest eigenvalues and the matrix with the corresponding eigenvectors by Λ′

and Φ′ respectively. Then the following will be approximating ti

ti ≈ µi|t1,...ti−1 +Φ′Λ′b′ , (11.12)

where b′ is a random vector with uncorrelated univariate elements, according to
the general assumption of Gaussian distributed deformation parameters. With
this representation we are ready to state the major result of the presented work,
which relates to conditional regularization described in (11.7).

α∥ti − µi∥2Σi|t1,...,ti−1
≈ α∥Φ′Λ′b′∥2Σi|t1,...,ti−1

= α∥b′∥2L2
. (11.13)

This means that the regularization reduces to simple sum of squared distances
on the introduced parameters. Using this representation we have gained a sparse
parameterization with l parameters instead of all the parameters on level i.

11.3 Validation

The LADIS (Leukoaraiosis and DISability) study [119], is a pan-European study
involving 12 hospitals and more than 700 patients. The purpose of the current
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work is to analyze the Corpus Callosum based on mid-sagittal cross-sections
of the brain. A subset consisting of 62 annotated two dimensional MR images
of the Danish patients were selected for the current work. In this study it is
of great interest to infer the possible variations in shape that we can expect to
observe. To analyze these variations we need a pixelwise correspondence, which,
we believe, is best achieved using image registration. Each corpus callosum has
been manually annotated by a clinician with 72 landmarks, which we use for
validating our method.

Our approach for building statistical deformation models was tested on a set
of 62 2D MR images of the Corpus Callosum. Due to the limited number of
images 6-fold cross validation was used to obtain the results presented in this
section. Prior to the model building the 62 images were rigidly aligned to each
other by performing Procrustes analysis on the ground truth outline. Initially,
the images in the training set were non-rigidly registered to the mean image,
as an estimator of the reference image, a registration result is illustrated in
Figure 11.2. A new reference was then constructed by averaging the non-rigidly
aligned images, and a new non-rigid alignment was subsequently performed.
This process was repeated multiple times until the reference stabilized. Four
grid levels were used to model the deformation with node spacings equal to 60,
30, 15 and 8 pixels, respectively.

To validate our registration we computed the Dice measures between the ground
truth outline and the outline of the warped reference. The dice measure was
0.875± 0.042, which is very satisfactory, and much better than the on obtained
from just the alignment. Figure 11.3 displays the cumulative overlap before and
after non-rigid registration.

From the final deformation fields a statistical deformation model was created
by performing PCA separately on each grid level. At each level the number of
modes was chosen such that at least 95% of the total variation was explained,
and the modes were scaled with the std. dev. to ensure that all parameters had
unit variance. Figure 11.1 plots the total explained variance in the coarsest level
model as a function of the number of modes. When the entire dataset was used
for the model construction this resulted in 50 modes distributed among the grid
levels (6, 8, 14 and 22 components). Each deformation field was parameterized
with the model and the covariance between parameters across the grid levels
were computed. Figure 11.4 displays the first mode of the first level displaced
±3 std. dev. and illustrates how the covariance creates a conditional prior on the
following modes. Afterwards, the remaining Corpus Callosum were registered
to the reference using the deformation model. First, the coarsest level was
fitted. At each level the parameters of the prior levels were then used to create
a conditional prior on the current level. The dice measure for the registrations
with the deformation model was 0.8615± 0.051
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Figure 11.1: Plot relating explained variance of the coarsest level with number of
modes included in the coarsest level model.

(a) Template image

(b) Warped template

(c) Reference image

Figure 11.2: Registration of an image to the reference.
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(a) Before nonrigid registration (b) After nonrigid registration

Figure 11.3: Cumulative overlap of the aligned corpus callosum shapes before and
after our non-rigid registration

(a) t11 = +3, t1j = 0 for j ̸= 1 (b) t11 = −3, t1j = 0 for j ̸= 1

(c) E(t4, t3, t2|t11 = +3) (d) E(t4, t3, t2|t11 = −3)

Figure 11.4: (a) and (b) illustrate the first mode of the PCA model for the coarsest
grid level. (c) and (d) show the deformation resulting from the conditional means of
t4, t3, t2 for t11 = ±3.
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11.4 Discussion

We present a novel deformation model especially designed for optimization in
grid based models, while retaining most of the covariance between grid resolu-
tions. The method is validated on a data set of MR images of the brain of 62
patients. We presented a new statistical deformation model suited for param-
eterized grids with different resolutions. Our method models the covariances
between multiple grid levels explicitly, and allows for very efficient fitting of the
model to data on multiple scales. We obtained a dice measure of 0.875± 0.042
when we registered the training set without a shape prior, and a dice measure
of 0.8615 ± 0.051 when we registered the remaining shapes while constraining
the shape prior.

11.a Implementation

The compositional warp used in this paper was constructed by composing a se-
quence of the grid based diffeomorphisms introduced by Cootes et al [37]. These
diffeomorphisms can be viewed as an extension to standard linear interpolation,
where the interpolation coefficients are transformed by a suitable kernel k(r)
which ensures smoothness across the grid boundaries. The displacement of a
2D point x ∈ R2 is given by

u(x,d) =
1∑

m=0

1∑
n=0

kn(v)km(w)di+n,j+m =
1∑

m=0

1∑
n=0

ai+m,j+n(x)di+n,j+m =

[
a(x)⊤ 0

0 a(x)⊤

]
d

(11.14)
where k0(r) = k(r), k1(r) = 1 − k(r), i and j are the local indices of the
neighboring grid points, v and w are relative positions of x in the neighborhood
and d and di,j are all the displacements and the displacement of the (i, j)-node,
respectively. For this problem the kernel k(r) = 1

2 (1 + cos(πr)) was chosen.
According to Cootes et. al. [37] this kernel ensures diffeomorphism as long as
no node is displaced more than 1/π of the original node spacing.

11.a.1 Image registration

To drive the registration between a reference image R and a target image I we
apply the sum-of-squared-differences (SSD) as our similarity measure and the
Mahalanobis distance ∥.∥Σ as our regularization term
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F (t) =
1

2

∑
x

(R(x)− I(φ(x, t))2 + α∥t∥2Σ

=
1

2

∑
x

E2(x, t) + α∥t∥2Σ. (11.15)

To achieve a fast optimization we apply the inverse compositional optimization
approach by Baker et al. [16] to the cost function. Thus, we obtain a minimum
by iteratively minimizing

Fic(t) =
1

2

∑
x

(R(φ(x,∆t))− I(φ(x, t))2 + α∥t− ∂t′

∂∆t
∆t∥2Σ (11.16)

with respect to ∆t and updating t according to

φ(x, t′)← φ(x, t) ◦φ−1(x,∆t). (11.17)

In [78] we showed how t′ can be derived from (11.17).

By performing a first-order Taylor-expansion onR(φ(x,∆t) around x in (11.16),
taking the derivatives wrt. ∆t and setting them equal to zero we get

∆t = H−1

[∑
x

SD(x)⊤E(x, t) + α
∂t′

∂∆t

⊤
Σ−1t

]
(11.18)

where

SD(x) = ∇R(x)
∂φ(x,0)

∂t
(11.19)

and

H =
∑
x

SD(x)⊤SD(x) + α

[
∂t′

∂∆t

]⊤
Σ−2

[
∂t′

∂∆t

]
. (11.20)

The advantages with this inverse compositional approach is that SD(x) can be
pre-computed as it is not dependent on t.
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Generating Quality
Tetrahedral Meshes from

Binary Volumes

Mads Fogtmann Hansen, Jakob Andreas Bærentzen and Rasmus Larsen

Abstract

This paper presents two new quality measures for tetrahedra which are
smooth and well-suited for gradient based optimization. Both measures
are formulated as a distance from the regular tetrahedron and utilize the
fact that the covariance of the vertices of a regular tetrahedron is isotropic.
We use these measures to generate high quality meshes from signed dis-
tance maps. This paper also describes an approach for computing (smooth)
signed distance maps from binary volumes as volumetric data in many cases
originate from segmentation of objects from imaging techniques such as CT,
MRI, etc. The mesh generation is split into two stages; a candidate mesh
generation stage and a compression stage, where the surface of the can-
didate mesh is moved to the zero iso-surface of the signed distance maps,
while one of the quality measures ensures that the quality remains high.

We apply the mesh generation algorithm on four examples (torus, Stanford
dragon, brain mask, and pig back) and report the dihedral angle, aspect
ratio and radius-edge ratio. Even though, the algorithm incorporates none
of the mentioned quality measures in the compression stage it receives a
good score for all these measures. The minimum dihedral angle is in none
of the examples smaller than 15o.
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12.1 Introduction

High quality tetrahedral mesh generation is an important element in many med-
ical imaging applications such as virtual surgery [47, 90, 157], image registra-
tion [23, 110] and biological modeling [36, 105]. Creation of meshes, which can
sustain large soft tissue deformations, is challenging due to high demands in
accuracy, efficiency and structural integrity. Efficiency is achieved by having
only the minimum required resolution in all areas of the mesh. High resolution
is required in high curvature areas near the interface of the object, while lower
resolution is sufficient in areas far from the interface and in areas with low cur-
vature. Accuracy and structural integrity are primarily a matter of ensuring
that the number of very anisotropic tetrahedra are kept at an absolute mini-
mum. Such tetrahedra will often be biased1 or/and invert under deformation.
Unfortunately, efficiency does not go hand-in-hand with accuracy and structural
integrity as anisotropic tetrahedra will emerge when large and small tetrahedra
are in close proximity of each other.

In this paper, we propose to generate quality meshes from signed distance maps
(SDMs) by generating a candidate mesh as proposed by Molino et al. [109] and
subsequently compressing the candidate mesh to the surface of the object. The
compression is formulated as a gradient based optimization problem where the
surface points of the candidate mesh iteratively are moved to zero iso-surface of
SDM. A selected quality measure is applied during the compression to regularize
the evolution in order to ensure that the quality of the final mesh is high.

An extensive number of quality measures for triangles and tetrahedra can be
found in the literature, c.f. [120, 145] for surveys. Most of these measures are
non-smooth, only piecewise smooth or difficult to differentiate, and thus not
suited for gradient based optimization. Therefore, we propose two new quality
measures for tetrahedra which essentially measure the distance or deviation from
a given tetrahedron to the regular tetrahedron. They are both differentiable
(smooth) and rotation- and scale-invariant.

In many of the above mentioned applications the objects to be tesselated are
segmented from medical images and therefore represented as binary volumes.
We convert a binary volume to a SDM by computing all distances in the volume
to the nearest zero-crossing voxel, fitting an implicit function to a suitable nar-
row band of the zero-crossing distance map and finally computing the distances
to the zero iso-surface of the implicit function.

1They exhibit a referred direction of deformation
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12.2 Related work

Early mesh generation in 2D was pioneered with the Delaunay triangulation
[142], and it is probably the most widely used technique for 2D mesh generation
today. The extension of the Delaunay triangulation to 3D [143, 172] has un-
fortunately proven to be unsuitable for many practical application as it admits
so-called slivers which are collapsed tetrahedra with a negligible volume. Several
methods for sliver removal [28, 52] have been proposed yet none of these meth-
ods have proven to work convincingly [142]. Another problem with Delaunay
triangulation is that it tessellates the entire convex region of the set of input
points, and thus it does not conform to the boundary of the object. Constrained
Delaunay methods [29, 59, 144] have been proposed but they are complex and
maybe too complex for unstructured mesh generation.

A number of unstructured mesh generation techniques implement a two stage
strategy which is similar to our approach. Neugebauer and Klein [114] use a
marching cube mesh as a candidate mesh, Radovitzky and Ortiz [124] use a
face-centered cubic lattice, Molino et al. [109] use a body-centered cubic (BCC)
lattice followed by a subdivision strategy and finally Fuchs [64] uses a Delaunay
triangulation of vertices placed on a BCC lattice.

In general, two types of strategies have been suggested for the compression: pro-
jection and evolution. Neugebauer and Klein [114] and Grosskopf and Neuge-
bauer [69] implement projection strategies while Kobbelt et al. [88], Wood et
al. [176] and Molino et al. [109] apply evolution strategies using connectivity,
spring forces or Laplacian smoothing to regularize the evolution. Molino et al.
[109] also suggest using aspect ratio (defined as the shortest altitude divided by
the longest edge) as a regularizer in a discrete optimization scheme.

12.3 Methods

We wish to construct a tetrahedral mesh representation of an object Ω given a
signed distance map or binary volume representation of the object. For now we
will assume a SDM representation is available and later in this section present
an approach for converting a binary volume to a SDM. Formally, we define the
Euclidian SDM of an object Ω as a function

Φ(x) = sgn(x)min
y∈Γ
∥x− y∥,
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where

sgn(x) =

{
−1 x ∈ Ω
1 x /∈ Ω

and Γ is the interface/boundary of the object.

A candidate mesh is generated as described in Molino et al. [109]. A BCC
lattice covering the boundary box of the object is chosen as an initial mesh.
Tetrahedra, which are certain to be outside the object, are removed and the res-
olution of the mesh is increased in the high curvature areas of the SDM of the
object using a Red-Green subdivision approach. More tetrahedra are removed
in a final step, such that (i) the boundary is a manifold, (ii) no tetrahedra have
all four nodes on the boundary, and (iii) no interior edge connects to boundary
nodes, cf. [109] for a detailed description. The process is illustrated in Fig-
ure 12.4.

In the compression phase the surface points of the candidate mesh are moved
towards the zero iso-surface of the signed distance map (SDM) while a regular-
izer is applied to ensure a high mesh quality. This is done by minimizing the
functional

F (∆V ) =

Ns∑
1

Φ(Vsi +∆Vsi)
2 + γ

Nt∑
i=1

r(VTi +∆VTi), (12.1)

where V are the vertices of the candidate mesh, ∆V are the displacements of
the vertices, s is the set of boundary vertices, Ti contains the id’s of the vertices
of the ith tetrahedron and r is a regularizer, which measures the quality of a
single tetrahedron.

12.3.1 The quality of a tetrahedron

As mentioned, we are interested in generating meshes which are suitable for large
deformations, and as such we wish to define the quality of a tetrahedron in terms
of its ability to handle large deformations. In general, if a mesh is biased, such
that the tetrahedra are primarily elongated in one direction, the mesh will tend
to be either more soft or stiff in the thin direction [109]. Essentially, the optimal
tetrahedron is a regular (equilateral) tetrahedron. It is however not possible to
tessellate a 3D Euclidian space with regular tetrahedra.
Therefore, we wish to describe the quality of a tetrahedron in terms of its
distance from a regular tetrahedron. A unique property of a regular tetrahedron
is that the covariance matrix of the vertices is isotropic.
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Theorm 12.1 The covariance matrix ΣT of the vertices of a tetrahedron
T is isotropic ΣT = sI iff T is a regular tetrahedron, where s is a scaling
factor.

Proof. Let T be an arbitrary tetrahedron represented by a 3x4 matrix Q
containing the four vertices of T . Without loss of generality we will assume that
the barycenter of T lies in the origin. Thus, we must prove that

ΣT = QQT = I, (12.2)

iff T is a regular tetrahedron. s is neglected as it is just a scaling factor.

The regular tetrahedron Q̃ represented by the vertices (− 1√
2
,− 1√

12
, 1√

6
), ( 1√

2
,− 1√

12
, 1√

6
),

(0,
√
3
2 , 0) and (0,− 1√

12
,−

√
2√
3
) is a solution to Eq. 12.2.

For any Q there exists a transformation matrix A such that Q = AQ̃. If Q
fulfills Eq. 12.2 we get

QQT = AQ̃Q̃TA = AAT = I.

Thus, A is a rotation matrix, which implies that all solutions are geometrically
equivalent. It follows that all solutions are regular tetrahedra.

In contrast to the regular tetrahedron, an elongated tetrahedron has a high
variance in the stretched direction and smaller variation perpendicular to that
direction. As such an eigenvalue decomposition of the covariance matrix of an
elongated tetrahedron will give one eigenvalue (corresponding to the stretched
direction) which is relative large compared to the two remaining eigenvalues.
The normalized covariance matrix of a regular tetrahedron has eigenvalue 1 with
multiplicity 3 (isotropic). This implies that the disparity of the eigenvalues is
related to the degree of anisotropy of a tetrahedron. Inspired by the Riemannian
elastic [122] and the St Venant-Kirchoff elastic [33] energies we propose to use
the measures

rlog(V ) =
3

4
tr

(
log2

(
Σ(V )

det(Σ(V ))
1
3

))

=
1

4

3

3∑
i=1

log(λi)
2 −

(
3∑

i=1

log(λi)

)2
 , (12.3)
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and

reig(V ) =
1

4
tr

((
Σ(V )

det(Σ(V ))
1
3

− I

)2)

=
1

4

(
3 +

∑3
i=1 λ

2
i

(
∏3

i=1 λi)
2
3

− 2

∑3
i=1 λi

(
∏3

i=1 λi)
1
3

)
, (12.4)

where Σ(V ) is the covariance of the vertices V (represented by a 3x4 matrix),
λi is the ith eigenvalue of covariance matrix Σ and log is the natural logarithm
(matrix logarithm when applied to a matrix). The term Σ

det(Σ)
1
3
will be denoted

the normalized covariance matrix. The two measures rlog and reig are similar
to the above mentioned elastic energies with the exception that the Cauchy-
green deformation tensor has been replaced by the normalized covariance matrix.
Note, that both measures are rotation-invariant as they are based purely on the
eigenvalues of the covariance matrix, and scale-invariant as we normalize the
covariance matrix. Figure 12.1 illustrates how the two quality measures behave
when a tetrahedron deviates from the regular tetrahedron. A nice property of
both measures is that they will evaluate to infinity when V describes a collapsed
tetrahedron. Furthermore, both quality measures will return zero when applied
to a regular tetrahedron.

(a) Deformation illustration.
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(b) Quality as a function of deforma-
tion.

Figure 12.1: Comparison plot of quality measures. Tetrahedra were generated by
moving a vertex along the line defined by the normal and the barycenter of the opposite
face (regular triangle). The deformation has been scaled such that -1 corresponds to
the collapsed tetrahedron and 0 corresponds to the regular tetrahedron.

Given the eigenvalue decomposition Σ = RLRT , we can compute the derivative
of the measures with respect to Σ by

∂Σrlog =
1

2
RL−1

(
3 log(L)− I

3∑
i=1

log(λi)

)
RT .
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and

∂Σreig =
1

2

(( ∑3
i=1 λi

(
∏3

i=1 λi)
1
3

−
∑3

i=1 λ
2
i

(
∏3

i=1 λi)
2
3

)
Σ−1

− 1

(
∏3

i=1 λi)
1
3

I +
1

(
∏3

i=1 λi)
2
3

Σ

)

Let Po denote the projection matrix which centers a tetrahedron such that its
barycenter lie in the origin. Hence, E(V ) = V PoP

T
o V T . Thus, the derivatives

of the measures with respect to V are

∂V rlog = 2PoP
T
o V T∂Σrlog

and
∂V reig = 2PoP

T
o V T∂Σreig.

12.3.2 Converting a binary volume to a signed distance
map

A binary volume can be converted to a discretized SDM by computing the
Euclidian signed distance Φzc(x) from all voxels in the binary volume to the
nearest zero-crossing voxel, fitting an implicit surface Isrf (x,w) to a suitable

narrow band of Φzc(x), and finally computing the distances Φ̃(x) from all vox-
els to the zero iso-surface of Isrf (x,w).

In this paper, we model the implicit surface Isrf (x,w) with a set of cubic B-
spline basis functions placed on a regular lattice. The weight parameters w are
estimated by minimizing

F (w) =
N∑
i=1

C(xi, w) + α(∥∇Isrf (xi, w)∥ − 1)2, (12.5)

where

C(x,w) =

 (∆d(x,w)− 1
2s)

2 if ∆d(x,w) > 1
2s

(∆d(x,w) + 1
2s)

2 if ∆d(x,w) < −1
2s

0 otherwise
,

∆d(x,w) = Φzc(x)− Isrf (x,w) and s is the width of the voxels. The reason to
use C(x,w) as measure of the ‘fit’ and not the usual least-squares fit is that the
error of dzc(x) is uniformly distributed. The term (∥∇Isrf (xi, w)∥−1) provides
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a natural regularization, especially in the zero-crossing areas, as ∥Φ(x)∥ = 1 is
a fundamental property of the Euclidian distance field. The property is not ap-
plied as a hard constraint as the B-spline will not be able to fulfill the constraint
in the entire narrow band, and the narrow band might contain areas where the
true Euclidian distance field is discontinuous.

Given the implicit surface we can find the shortest distance from any voxel x to
the zero level set of Isrf using the nearest zero-crossing voxel as an initial guess

of y. Thus, the task is to find the point y which minimizes Φ̃2(x, y) = ∥x− y∥2
s.t. Isrf (y, w) = 0. This problem can be solved with the Augmented Lagrangian
method [99]. Alternatively, y can be updated iteratively with −τdy, where dy
is given by

dy = ∇Isrf (y, w)Isrf (y, w) + β(I − nnT )(x− y), (12.6)

and n =
∇Isrf (y,w)
∥Isrf (y,w)∥ is normal of the iso-surface at the point y. The first term of

dy pushes the point y towards the zero iso-surface, while the second term tries
to minimize the distance between x and y by moving y in the tangential plane
of the surface. A suitable τ can be found with line-search. Selecting β = 0.1
seems to work in most cases.

12.4 Implementation issues

If Eq. 12.1 is differentiable it can be minimized by a gradient based optimization
scheme. As the discrete representation of the SDM is obviously not differen-
tiable we wrap the SDM with a cubic B-spline interpolator such that the signed
distances and derivatives can be evaluated in the entire Euclidean space. Fur-
thermore, as the regularization term in Eq. 12.1 works independently on each
tetrahedron it does not directly discourage overlap between the tetrahedra in a
mesh. We handle this issue by having the regularizer return infinity if an inver-
tion/overlap occurs. This is theoretically correct as our measures evaluate to
infinity in the case of a collapsed tetrahedron - in an evolution based approach
a tetrahedron must collapse before it can invert. We minimize Eg. 12.1 using a
limited memory BFGS optimizer.
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Torus Dragon Brain Carcass

MiDA 36o 190 26o 15o

MaDA 144o 1570 146o 165o

MaRE 1.1 2.3 1.5 2.2
AvRE 0.7 0.8 0.8 0.8
MaAR 3.3 6.7 4.4 7.9
AvAR 1.8 1.9 1.8 2.1

Table 12.1: Quality of generated meshes using rlog.

12.5 Results

To test the quality measures, we have selected four examples. The first example
is the torus where the SDM was computed directly from the parametrization
of the torus. The second example is the Stanford dragon where the SDM was
computed from the polygonal mesh. The third example is a brain mask which
was extracted from an MRI of a human brain. The final example is a half pig
back which was extracted from a CT scan by thresholding the background. The
SDMs of the two last examples were computed as described in Section 12.3.2.

The resulting tetrahedral meshes are displayed in Figures 12.2, 12.3, 12.4 and
12.5. The meshes shown in the figures were generated with reig. Tables 12.1 and
12.2 list the minimum and maximum dihedral angles (MiDA and MaDA), the
maximum and average aspect ratio (MaAR and AvAR) as well as the maximum
and average radius-edge2 ratio (MaRE and AvRe) for rlog and reig, respectively.
From Tables 12.1 and 12.2 we note that reig in general obtain slightly better
results than rlog.

Molino et al. [109] report the MiDA, MaDA MaAR and AvAR for a tetrahedral
mesh of the Stanford dragon consisting of approximately 500k elements (com-
parable to our dragon mesh) as shown in Table 12.3. In the case of the Stanford
dragon our measures rlog and reig obtain better scores for MiDA and AvAR
and a worse score for MaDa than the two approaches in Molino et al. Futher-
more, Molino et al. are able to obtain only a lower MaAR when minimizing
the aspect ratio. It should be noted that our approach regardless of the quality
measure is able to obtain a lower AvAR than Molino et al., even though they
use the aspect ratio as a regularizer. The elastic regularizer reported in Molino
et al. is likewise able to obtain a better AvAR which indicates that our applied
optimization procedure fails to produce the optimal result.

2Radius of circum-cycle over the minimum edge length
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Torus Dragon Brain Carcass

MiDA 36o 19o 27o 16o

MaDA 144o 159o 144o 163o

MaRE 1.1 2.4 1.3 2.3
AvRE 0.8 0.8 0.8 0.8
MaAR 3.1 6.4 3.9 7.9
AvAR 1.8 1.9 1.8 2.0

Table 12.2: Quality of generated meshes using reig.

Elastic regularizer Aspect ratio

MiDA 13o 16o

MaDA 154o 150o

MaAR 7.6 5.3
AvAR 2.2 2.3

Table 12.3: Quality of dragon mesh (500K elements) reported in [109]. Two different
regularizers were applied in the compression phase; one which uses elastic springs and
one which tries to minimize the aspect ratio.

12.6 Discussion

We have proposed two new quality measures and tested them on four examples.
In section 12.5 Results we compared our results for the Stanford dragon with
the results presented in [109]. It should be stated that this comparison may not
be fair, as we have not used the same SDM or candidate mesh as Molino et al
[109]. Our final dragon mesh is visually close to identical with the dragon mesh
in [109], and the numbers of the tetrahedra in the two meshes are almost equal.
Thus, we believe that the comparison is quite fair. In the future, we will test
the proposed measures in different applications and develop them further. Eg.
it is possible to incorporate a weighting matrix into the quadratic form of the
measures allowing for preferred deviations from the regular tetrahedron

rW (V ) =
3

4
tr

(
log

(
Σ(V )

det(Σ(V ))
1
3

)
W log

(
Σ(V )

det(Σ(V ))
1
3

))

and to normalize the covariance matrix with its trace (sum of eigenvalues)
instead of its determinant (product of eigenvalues)

rtr(V ) =
3

4
tr

(
log2

(
3

Σ(V )

tr(Σ(V ))

))
.
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(a) Full (b) Sliced

Figure 12.2: Tetrahedral mesh of torus.

Figure 12.3: Tetrahedral mesh of dragon (540K elements).
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(a) Initial (b) Candidate (c) Final

Figure 12.4: Tetrahedral mesh from mask of human brain (80K elements).

Figure 12.5: Tetrahedral mesh of half pig back (280k elements).



Part III

Discussion





Chapter 13

Discussion

This chapter discusses the presented results w.r.t. the objectives and ends the
thesis with a conclusion.

13.1 Discussion

The applications presented in the thesis rely on spatial correspondences obtained
from elastic image matching. This naturally implies that the accuracy and
the reliability of the applications depend on the accuracy and the reliability
of the applied image matching. The intra-subject registrations made on the
Thisted data set were implicitly validated by checking the quantity of local
compression and expansion. As the deformations were nearly incompressible
and the visual differences between reference images and deformable template
images were minimal, it was concluded that the estimated deformations were
good approximations of the real deformations. No validation has been performed
on the inter-subject registrations made by the deformable atlas. The lack of
validation of these registrations is the primary short-coming of this thesis project
and should be conducted as soon as possible.

A couple of reappearing problems were visually identified in the inter-subject
registrations, but they were mostly contributed to poor data quality rather
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than limitations in the deformation modeling. An inherit conclusion from these
problems is, that the used data set is suboptimal for the purpose of image
registration. The author believes that the following observations should be
taken into consideration before acquiring new data:

• The low out plane resolution geometrically distorts structures such as the
ribs and smooths the spatial image derivatives in the out plane direction.

• It is not always possible to register areas in the proximity of rapid skin
surface oscillations.

• Topological difference between the scans of the pork middles greatly com-
plicates the inter-subject registration of the scans or renders it even im-
possible.

• Deformation due to gravity can be reduced by placing the products, which
are to be scanned, in a half pipe resembling the shape of the non-slaughtered
pig carcasses.

The first objective of the thesis was to construct a deformable pig atlas from
CT scans of pigs carcasses which can be used to study the variation of pigs.
The deformable atlas has currently been applied to spatially normalize 299 CT
scans of the pork middle and contains five anatomical masks traced upon the
reference pig. In addition to virtual cutting, the atlas presents the opportunity
to perform a range of studies on the biological variation of pigs, e.g. the statis-
tical extraction of predictors with application to the sorting of pig carcasses. A
determination of the value and quality of the atlas awaits a future validation of
the quality of the registrations.

The second objective and the main application of the thesis involved the con-
struction of a virtual cutting tool/atlas with the capacity of performing iden-
tical virtual cuts on the database of pigs. The cutting atlas uses a mixture of
anatomical mask transference, mathematical morphology and simple geometric
measures to define cuts. The usage of masks for representing anatomical regions
and products provides an elegant and easy way of constructing even complex
cuts. The finite element representation of the transformation between reference
and template allows for a straightforward transferral of the anatomical masks
from the reference frame to the frames of the targets, as the inverse transforma-
tion can be explicitly computed. The cutting tool is robust and flexible under
the assumption that the recovered spatial correspondences are correct.

The final objective was the development of a methodology for comparing vir-
tual and real products. The method can serve as a form for certification tool
of the virtual products to raise confidence in the ability of the virtual products



13.2 Conclusion 157

to simulate the real products from the abattoirs. The method requires the esti-
mation of the deformation between the output products and the input product.
The deformation in the presented example was unfortunately too large for the
image matching criteria alone to drive the registration, and thus required the
assistance of landmarks. The dependence on manual intervention is largely un-
acceptable which demands for a future effort in ensuring a minimal deformation
between input product and output products at the time of the scanning. The
approach combined with the virtual cutting atlas can facilitate the development
of new cutting robots by defining a goal cut in the cutting atlas prior to the
development. That is, instead of evaluating the accuracy of the virtual cuts we
evaluate the accuracy of the cutting robot against the goal cut defined in the
cutting atlas.

The papers included in chapters 9-11 can primarily be considered to be a product
of preliminary studies and academic development of the author. They have
not been directly applied in the applications of the thesis but they do contain
interesting theoretical work in the field of morphology. Chapter 12 presented a
tetrahedra tessellation approach which is an essential part of the foundation of
the developed image registration framework, RegLab.

13.2 Conclusion

The thesis represents a gateway between the worlds of medical image analysis
and meat science, which can be beneficial for both sides. The meat science com-
munity can adapt many of the methodologies developed by the medical imaging
community and use them to obtain new and useful knowledge, as exemplified by
this thesis. Likewise, an interdisciplinary collaboration is helpful for the medical
image community as fewer restrictions apply for data acquisition on animals.
Thus, the meat science community and industry can supply the researcher in
medical imaging with larger and better data sets for test and development of
new methods.
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Appendix A

Derivatives

The chapter lists the derivatives of the elasticity energies used in the thesis w.r.t.
the Jacobian J of the relative displacement, i.e.

F = I +∇u(x) = I + J . (A.1)

I have tried to write the derivatives in a form which is easy to implement. In
some cases, the computation of the derivatives requires the computation of the
Green-Lagrangian tensor C = F TF = U2 and its eigenvalue decomposition
C = V DV T . Note, the eigenvalues in the diagonal of D are the squared
principal stretches.

1.1 St. Vernant Kirchoff and Riemannian elas-
ticity

The energies and their derivatives will be written in the general anisotropic form
of Eq. 4.47. That is, St. Vernant Kirchoff elasticity is on the form

rsvk =
1

4
∥vect(C − I))∥2Q, (A.2)
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and Riemannian elasticity is on the form

rrie =
1

4
∥vect(log(C))∥2Q. (A.3)

The derivative of rsvk w.r.t. J is

∂Jrsvk = (I + J)mat(Qvect(C − I)) (A.4)

The derivative of rrie w.r.t. J is

∂Jrrie2 = (I + J)C−1mat(Qvect(log(C))), (A.5)

where log(C) = V log(D)V T and C−1 = V D−1V T .

Note, to construct isotropic elasticity energies use a Q on the form shown in
Eq. 4.37.

1.2 Volumetric elasticity

The derivative of rvol w.r.t. J is

∂Jrvol = 2M(det(F )K − 1)2M−1 det(F )F−1 (A.6)

The derivative of rlog w.r.t. J is

∂Jrlog = 2M log(det(F ))2M−1F−1 (A.7)

1.3 Ogden material model

The derivative of Ogden material model w.r.t. J is

∂Jrogd = (I + J)V

(
M∑
p

µpD
αp
2 −1

)
V T . (A.8)
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1.4 Normalized Ogden material model

In the normalized Ogden material model, the principal stretches εi is replaced
by their normalized version ε̃i = εi(

∏N
j=1 εj)

− 1
N . The derivative w.r.t. J is

∂Jrogd2 = (I + J)V

(
M∑
p

det(C)−
αp
2N µp

(
D

αp
2 −1 − 1

3
tr
(
D

αp
2

)
D−1

))
V T .

(A.9)
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