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Figure on front page: 
Plot of the lift response of a sinusoidal gust as function of reduced wave number. The black line is 
the 1-D sinusoidal gust on a flat aerofoil (Section 2.1.2). The absolute value of the lift response |L| is 
the distance from the origin of the plot to a point on, say, the black line. The argument of L is the 
corresponding phase of the lift relative to the phase of the gust at the midpoint of the aerofoil to the 
gust. The green and red lines show a 2-D sinusoidal gust on a 2-D flat aerofoil (Section 2.1.4). The 
red lines are functions of the chordwise wave number for different values of fixed spanwise wave 
number. The green lines are functions of the spanwise wave number when the chord wise wave 
number is fixed. 
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Abstract (max. 2000 char.): 
Aerodynamical noise from wind turbines due to atmospheric turbulence has 
the highest emphasis in semi-empirical models. However it is an open 
question whether inflow noise has a high emphasis. This illustrates the need 
to investigate and improve the semi-empirical model for noise due to 
atmospheric turbulence.  Three different aerodynamical models are 
investigated in order to estimate the lift fluctuations due to unsteady 
aerodynamics (Sears, W. R.: 1941, Some aspects of non-stationary airfoil 
theory and its practical application; Goldstein, M. E. and Atassi, H. M.: 
1976, A complete second-order theory for the unsteady flow about an 
airfoil due to a periodic gust; and Graham, J. M. R.: 1970, Lifting surface 
theory for the problem of an arbitrarily yawed sinusoidal gust incident on a 
thin aerofoil in incompressible flow). Two of these models are investigated 
to find the unsteady lift distribution or pressure difference as function of 
chordwise position on the aerofoil (Sears, W. R.: 1941; and Graham, J. M. 
R.: 1970). An acoustic model is investigated using a model for the lift 
distribution as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil 
in a turbulent stream). The two models for lift distribution are used in the 
acoustic model. One of the models for lift distribution is for completely 
anisotropic turbulence and the other for perfectly isotropic turbulence, and 
so is also the corresponding models for the lift fluctuations derived from 
the models for lift distribution. The models for lift distribution and lift are 
compared with pressure data which are obtained by microphones placed 
flush with the surface of an aerofoil. The pressure data are from two 
experiments in a wind tunnel, one experiment with a NACA0015 profile 
and a second with a NACA63415 profile. The turbulence is measured by a 
triple wired hotwire instrument in the experiment with a NACA0015 
profile. Comparison of the aerodynamical models with data shows that the 
models capture the general characteristics of the measurements, but the data 
are hampered by background noise from the fan propellers in the wind 
tunnel. The measurements are in between the completely anisotropic 
turbulent model and the perfectly isotropic turbulent model. This indicates 
that the models capture the aerodynamics well. Thus the measurements 
suggest that the noise due to atmospheric turbulence can be described and 
modeled by the two models for lift distribution. It was not possible to test 
the acoustical model by the measurements presented in this work. 
 
 
 
 
 
 

 

ISSN 0106-2840 
ISBN 978-87-550-3727-4 

Contract no.: 
 
 

Group's own reg. no.: 
PSP: 1191014-01 

Sponsorship: 
 
 

Cover :  
Plot of the lift response of a 
sinusoidal gust as function of 
reduced wave number. The black 
line is the 1-D sinusoidal gust on a 
flat aerofoil (Section 2.1.2). The 
absolute value of the lift response |L| 
is the distance from the origin of the 
plot to a point on, say, the black line. 
The argument of L is the 
corresponding phase of the lift 
relative to the phase of the gust at 
the midpoint of the aerofoil to the 
gust. The green and red lines show a 
2-D sinusoidal gust on a 2-D flat 
aerofoil (Section 2.1.4). The red 
lines are functions of the chordwise 
wave number for different values of 
fixed spanwise wave number. The 
green lines are functions of the 
spanwise wave number when the 
chord wise wave number is fixed. 

Pages: 124 
Tables: 11 
References: 35 

Information Service Department 
Risø National Laboratory for 
Sustainable Energy 
Technical University of Denmark 
P.O.Box 49 
DK-4000 Roskilde 
Denmark 
Telephone +45 46774005 
bibl@risoe.dtu.dk 
Fax +45 46774013 
www.risoe.dtu.dk 



www.risoe.dtu.dk 



1

Acknowledgements

I thank my supervisors, Jakob Mann at Risø DTU, and Jens Nørkær
Sørensen, for the valuable discussions in the course of this work.

This work was never done without the moral support and fruitful discus-
sions with Sven-Erik Gryning. Further Lise Lotte Sørensen has contributed
with moral support, which has been highly appreciated.

I also use the opportunity to express my gratitude to my colleagues in
the Wind Energy Department at Risø DTU for their support in the course
of the Ph.D. study.



Contents

Nomenclature 4

1 Introduction 9

2 Theory and Models 13

2.1 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Steady Flow . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 1-D Unsteady Aerodynamics . . . . . . . . . . . . . . . 19
2.1.3 2-D Unsteady Aerodynamics . . . . . . . . . . . . . . . 27
2.1.4 3-D Unsteady Aerodynamics . . . . . . . . . . . . . . . 31

2.2 Statistical Measures and their Properties . . . . . . . . . . . . 38
2.3 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Inflow Noise Model . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Derivation of Acoustical Pressure Spectrum . . . . . . 43
2.4.2 Estimation of one third octave Sound Pressure Level . 49

2.5 Other Aeroacoustic Sources . . . . . . . . . . . . . . . . . . . 51
2.6 Conclusions Regarding Theory . . . . . . . . . . . . . . . . . . 52

3 Experiments 54

3.1 Setup of Experiments in Velux Wind Tunnel . . . . . . . . . . 54
3.1.1 Setup of Experiment 1: NACA0015 . . . . . . . . . . . 57
3.1.2 Setup of Experiment 2: NACA63415 . . . . . . . . . . 64

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.1 Experiment 1: NACA0015 . . . . . . . . . . . . . . . . 68
3.2.2 Experiment 2: NACA63415 . . . . . . . . . . . . . . . 78

3.3 Data from Bridge Deck Simulation . . . . . . . . . . . . . . . 82
3.4 Conclusions Regarding Experiments . . . . . . . . . . . . . . . 83

4 Comparison of Models and Experiments 85

4.1 Numerical Treatments . . . . . . . . . . . . . . . . . . . . . . 85
4.1.1 Numerical Treatment of Models . . . . . . . . . . . . . 86



CONTENTS 3

4.1.2 Model Parameters from Data . . . . . . . . . . . . . . 94
4.2 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Estimation of Pressure Spectra from Models . . . . . . 97
4.2.2 Comparison of Models and Data . . . . . . . . . . . . . 97

4.3 Fluctuating Lift . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.1 Estimation of Lift Spectra from Models . . . . . . . . . 101
4.3.2 Estimation of Lift Spectra from Data . . . . . . . . . . 102
4.3.3 Comparison of Models and Data . . . . . . . . . . . . . 104

4.4 Sound Pressure Level . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Bridge Deck Simulation . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Conclusions Regarding Analysis . . . . . . . . . . . . . . . . . 113

5 Conclusion 116

A Bessel Functions 118

A.1 Bessel Functions of First Kind . . . . . . . . . . . . . . . . . . 118
A.2 Bessel Functions of Second and Third Kind . . . . . . . . . . . 120
A.3 Modified Bessel Functions of First Kind . . . . . . . . . . . . . 121
A.4 Modified Bessel Functions of Second Kind . . . . . . . . . . . 123
A.5 Generating Function for Bessel Functions . . . . . . . . . . . . 126

B Auxiliary Functions 128

Bibliography 130



Nomenclature

a Dimensionless constant in Section 2.4.
ai Acceleration in Section 2.2.
ay Vertical acceleration in aerofoil plane.
an Normal acceleration in cylinder plane.
A(ρ, c, U) Amplification factor. A(ρ, c, U) = 1

2
ρcU

Ad Admittance.
Aij Coefficients defined in Section 2.1.4.
Am Coefficient for the complex acceleration potential, m ≥ 0.
b Half chord, b = c

2
.

B Length of bridge section.
Bij Coefficients defined in Section 2.1.4.
c Chord length.
c0 Speed of sound in air, c0 = 340m/s.

ch(z) Coefficient, ch(z) = − sin(h arccos(z))
h

, h ≥ 1, c0(z) = π
2

+ arcsin(z).
cohww Coherence of vertical turbulence.

coh
1/2
ww Co-coherence of vertical turbulence.

coh
1/2
LL Co-coherence of lift.

C(κ) Theodorsen function, C(κ) = K1(ıκ)
K0(ıκ)+K1(ıκ)

.

d Half span.
d1 Diameter of hole flush with surface of aerofoil.
d2 Diameter of microphone membrane.
E(k) Total turbulent kinetic energy.
EA(κ) Function defined in Section 2.1.3.
Ev[ ] Expected value.
f Cyclic frequency.
f(D, d) Function defined in Section 2.4.
fc Center frequency in the one third octave band.
fh Upper frequency in the one third octave band.
fl Lower frequency in the one third octave band.
fH Eigenfrequency of a Helmholtz resonator.
f0w(x) Functions defined in Section 2.1.4, w ∈ {1, 2, 3}.
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fw(z) fw(z) = f0w(x).
F Acoustic force.
F (z) Function defined in Section 2.1.4.
F±(z) Function defined in Section 2.1.3.
g Acceleration due to gravity in Section 2.1.1.
gz Vertical acceleration due to gravity in Section 2.1.1.
g Transfer function for either lift distribution or lift.
G(ω̂) Transfer function for lift distribution.
GA(z) Function defined in Section 2.1.3.
h1 Length of tube.
h2 Height to estimate V in Eqn. (3.2).
h3 Height to estimate V in Eqn. (3.2).

H
(1)
n (z) Bessel functions of third kind (Hankel functions) of order n.

H±(z) H
(1)
0 (z) ± ıH

(1)
1 (z).

ı Imaginary unit in the complex time domain.

I Turbulence intensity, I =

√
σ2

U

U
.

Iwt Turbulence intensity at tip speed of wind turbine.
j Imaginary unit in the spatial complex plane.
Jn Bessel function of first kind of order n.
J±(z) J0(z) ± ıJ1(z).
kc κ+ ıµ in Section 2.1.4.
k Wave number vector.
k Wave number vector.

ke

√
π

L
Γ(5/6)
Γ(1/3)

.

kx Chordwise wave number, ω
U
.

k̂x kx/ke.
ky Spanwise wave number.

k̂y ky/ke.
k1 Chordwise wave number.
k2 Spanwise wave number.
k3 Vertical wave number.
Kn Modified Bessel function of second kind of order n.
Kx − ω

U
.

K̂x Kx/ke.
K ′

1(z) K1(z), z > 0, K1(−z), z < 0, ±∞, z = 0.
l Lift distribution, ∆p(x), on aerofoil.
L Lift force vector.
L Absolute value of lift in Section 2.1.1.
LT Length scale of turbulence.
L′ lift fluctuation.
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L′
e Effective length of a flanged tube, L′ = h1 + 1.7d1/2, in Section 3.1.

Lβ Response (transfer) function of lift due to AOA.
Lm Response (transfer) function of lift due to camber.
L Acoustic lift.
m Second order fit coefficient to camber line.
M Mach number, U

c0
.

n Vector of unit length.
N Normal force.
o(z) Complex acceleration potential, o(z) = φ(z) + jψ(z).
O(z) Complex velocity potential.
p Pressure.
Pm Coefficient, Pm = (−ı)mJm(κ).
P1 Acoustic pressure at receiver position in Section 2.4.
r Radius of cylinder.
r1 2 cos θ1.
R Distance of integration.
Rpp Cross correlation of pressure.
RT Total response (transfer) function of lift in 2-D model
s Distance along surface of aerofoil from leading edge.
S(κ) Sears function, S(κ) = 2π[{J0(κ) − ıJ1(κ)}C(κ) + ıJ1(κ)].
S Integration domain of aerofoil surface in Section 2.1.4.
Scav Area, Scav = π(d1/2)2, in Section 3.1.
Si(x) Sine integral. Si(x) =

∫ x

0
sin t

t
dt.

Sp Pressure spectrum.
SL Lift spectrum.
SPP Cross spectrum of acoustic pressure.
SQQ Cross spectrum of pressure difference.
SU Spectrum of turbulent velocity in direction of mean flow.
SV Spectrum of Volt signal in Chapter 3.1.
SV Spectrum of turbulent horizontal velocity perpendicular to mean flow.
SW Spectrum of turbulent vertical velocity.
Svar Spectrum of variable var.
t Time.
TF Tangential force in Section 2.1.1.
T Limit of time integration in Section 2.4.
Ti(z) Chebychev polynomial of ith order, Ti(z) = cos(i arccos(z)).
u Velocity vector.
u Amplitude of chordwise gust in Section 2.1.3.
u∗ Friction velocity.

u2 Variance of velocity in direction of mean flow.
U Velocity in direction of mean flow.
Uwt Tip speed of wind turbine.
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U(z) Logarithmic wind profile.
U∞ Mean velocity in direction of mean flow.
v1D 1-D gust in Section 2.1.2.
v3D vertical gust in Section 2.1.4.
Vcav Volume between tube and microphone membrane in Section 3.1.
V Horizontal velocity perpendicular to mean flow.
w vertical gust
ˆ̂w Fourier amplitude of vertical velocity.
wF Fourier amplitude of vertical velocity at a given mode in Section 2.4.
w0 Upwash at aerofoil.
w1 Upwash in wake.
Ww Integration domain over the wake in Section 2.1.4.
W Vertical velocity (z-direction).
x Chordwise coordinate.
x0 Chordwise coordinate restricted to the aerofoil in Section 2.1.4.

yt Coordinate transformation, yt = ky

1+ky
, in Section 4.1.1.

y Spanwise coordinate.
y0 Spanwise coordinate restricted to the aerofoil in Section 2.1.4.
zc Complex coordinate, zc = x+ jz in Section 2.1.1 and Section 2.1.2.
zn Normalized chordwise coordinate, zn = 2x

c
− 1 in Section 2.1.4.

zv Variable, which can be both complex and real.
z Vertical coordinate.
zn,0 Normalized chordwise coordinate, zn,0 = 2x0

c
− 1 in Section 2.1.4.

z0,R Rougness length in Section 4.4.
αAOA Angle of attack (AOA) in Section 2.1.1.
α Spectral Kolmogorov constant set to 1.7.
αcor Free stream corrected AOA.
βt Angle to the horizontal of the trailing edge in the aerofoil plane in Section 2.1.1.

β
√

1 −M2 in Section 2.4.
βA AOA in radians, β = AOA

180◦
π.

γ Constant.
γ1 Chordwise vorticity.
γ2 Spanwise vorticity.
Γ Gamma function.
δ() Dirac Delta function.
δij Kroenecker delta, δij = 0, i 6= j, δij = 1, i = j,.
∆f The width of a frequency band in the one third octave band.
∆p Pressure difference of pressure fluctuations.
∆P Pressure difference.
∆PT Pressure difference in Fourier space (frequency domain).
ǫ Energy dissipation rate.
ζ Complex coordinate in the aerofoil plane.
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η Separation distance, η = y2 − y1.
θ Complex argument, ejθ, in the cylinder plane.
θ1

θ
2
.

Θ± Function defined in Section 2.1.3.
κc Circulation in Section 2.1.1.
κK von Kármán constant set to 0.4 in Section 4.4.
κ Reduced chordwise wavenumber, κ = kxc

2
.

λ Joukowski parameter in Section 2.1.1.
Λ± Function defined in Section 2.1.3.
µ Vertical reduced wave number, µ = kzc

2
, in Section 2.1.3.

ν Reduced spanwise wave number, ν = kyc
2

= µc
2
.

νk Kinematic viscosity ∼ 1.6 · 10−5m2/s.
ρ Air density.
ρ0 Mean air density.

σ Auxiliary distance parameter, σ =
√

x2 + β2(y2 + z2).
σi Chebychev coefficient.
σvar Standard deviation of variable var.
σ2

var Variance of variable var.
τ Time.
φv Velocity potential in Section 2.1.1.
φ Acceleration potential.
Φij Energy spectrum of turbulence by von Kármán in velocity components ij.
Φww Energy spectrum of turbulence by von Kármán of vertical velocities.
χww Cross spectrum of vertical turbulence.
χLL Cross spectrum of lift.
ψ Streamlines of acceleration.
ω Vorticity in Section 2.1.1.
ω Angular frequency.
ω̂ Reduced angular frequency, ω̂ = ωb

U
.

( ) Complex conjugate.
〈 〉 Mean of quantity in 〈 〉.



Chapter 1

Introduction

Noise from wind turbines is a subject which has a considerable public
interest in Denmark. It is a subject of much debate before establishing wind
turbines at any site. Therefore it is important to gain knowledge of noise
from wind turbines.

The noise from wind turbines can be split up into two major sources, a
mechanical source and an aero acoustic source (Wagner, Bareiß and Guidati
1996). The mechanical source of noise can be avoided or minimized by engi-
neering means (Henderson 2005). The aero acoustic part can not be avoided
but the design of the aerofoil has an important role of how much noise is
produced by aero acoustical means.

The aero acoustic source is due to turbulence in the flow around the wind
turbine blades. The turbulence is generated by different mechanisms such
as atmospheric turbulence and separation and thus the aero acoustic source
can be split up into several components (Wagner et al. 1996).

The aero acoustic noise due to atmospheric turbulence is the subject of
this thesis. It is also called inflow noise. The atmospheric flow is not steady
but contains eddies, turbulence (Panofsky and Dutton 1984). The pressure
at any point is constant in time when the flow is steady, incompressible,
and inviscid. The turbulence create pressure fluctuations. Some part of
the pressure fluctuations caused by the turbulence will be emitted as sound
(Amiet 1975). The nature of turbulence causes the noise to be emitted in
a continuum of frequencies and the inflow noise is of broadband character
(Wagner et al. 1996).

The aeroacoustic noise can be treated by computational fluid dynamics
(Zhu 2007) which is time consuming and demands powerful computer re-
sources, or it can be treated in a semi-empirical approach which simplifies
the physics (Amiet 1975).

The inflow noise has been treated in a semi-empirical approach (Amiet
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Figure 1.1: Plot of the SPL1/3 at the one third octave frequencies for aero
acoustic sources described in Moriarty and Migliore (2003). This figure is
identical to Figure 9 in Moriarty and Migliore (2003).

1975). The semi-empirical approach has the advantage that it is less de-
manding on computer resources as compared to approaches based on com-
putational fluid dynamics. The semi-empirical approach is suitable for guide-
lines for design purposes because an answer is quickly obtained when design
parameters are changed.

The semi-empirical inflow model, which is widely used, accounts for the
major part of the total aero acoustical noise, Moriarty and Migliore (2003),
as seen in Figure 1.1. According to this model inflow noise is seen to be dom-
inating. Some experimental evidence indicates, however, that inflow noise is
not the most significant aero acoustic component (Personal communication,
P. Moriarty). Trailing edge noise is argued to be responsible for major part of
the noise emitted aero acoustically (Moriarty and Migliore 2003, Oerlemans,
Sijtsmaa and López 2007).

It follows from the discussion above that the semi-empirical model of noise
due to atmospheric turbulence must be revised because it has too much em-
phasis of the total aero acoustical noise compared to trailing edge noise.
Other approaches to improve the semi-empirical noise model due to atmo-
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spheric turbulence have been carried out by Guidati (2004) and by Moriarty,
Guidati and Migliore (2005). The input models by Sears (1941), Goldstein
and Atassi (1976), and Graham (1970) in the acoustical model by Amiet
(1975) are investigated in this thesis.

The model of inflow noise shown in Figure 1.1 is based on the model by
Amiet (1975). This model assumes that the noise due to atmospheric turbu-
lence is emitted like a dipole. It is based on isotropic turbulence as described
by von Kármán (1948), and the lift distribution (pressure difference) due to
turbulence along the chord of the aerofoil described by Adamczyk (1974).

The lift distribution due to turbulence is also described by Sears (1941)
and Graham (1970). The models by Adamczyk (1974), Sears (1941), and
Graham (1970) are all based on a flat plate. Further a model for the fluc-
tuating lift due to turbulence is described, where the aerofoil is a bend flat
plate at an angle of attack (Goldstein and Atassi 1976, Atassi 1984).

This work will focus on the aerodynamical basis of the acoustical model
by Amiet (1975). Experiments have been conducted that investigate the
aerodynamical pressure at discrete points of two sections of an aerofoil. The
aerofoils that are investigated are a NACA0015 profile and a NACA63415
profile. The effects of camber and angle of attack (AOA) on the fluctuat-
ing aerodynamical pressure are investigated. The effect of thickness is not
investigated because the two profiles have identical thicknesses.

The flow is considered not to be affected by viscous effects. It is seen
in Figure 1.1 that neglecting viscous effects may be reasonable because it
appears from these semi-empirical models that those contributions are dom-
inated by the inflow noise. Inflow noise is of broad band character.

The problem handled in this thesis is aerodynamical noise from wind tur-
bines due to atmospheric turbulence. The characteristics of the flow in that
context are described below. The relative mean velocity of the flow, U , is
up to 80m/s at the span wise point where the source of noise is most signifi-
cant (Oerlemans et al. 2007), and this gives a Mach number, M = U

c0
∼0.25,

where c0 is the speed of sound. The Mach number in the experiments is
∼ 0.1 because the highest wind speed available in the wind tunnel used is
40m/s. The aerodynamical models do not depend on Mach number because
of assumed incompressibility but the acoustical model does.

Another characteristic of the flow is the Reynolds number based on the
the chord length, Re = Uc

νk
, where c is the chord length and νk is the kinematic

viscosity. The Reynolds number in the experiments described in this work
are between ∼ 1.0 · 106 and ∼ 3.0 · 106 whereas in the atmosphere it would
be ∼ 4.0 ·106. The models assume that Re → ∞ or equivalently that νk ≈ 0.

The typical turbulence length scale in the atmosphere is comparable to
the hub height of present wind turbines, which is ∼ 70m, and furthermore
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the turbulence is not isotropic because the length scale in the direction of
mean flow is typically larger than the scales perpendicular to the mean flow.
The turbulence model applied in this work assumes isotropy which simplifies
the mathematics.

The experiments on which this thesis is based do not meet the flow con-
ditions of the atmosphere completely.

This thesis is organized in 3 chapters: a chapter that describes the models
used, a chapter that describes data from two experiments conducted on two
different profiles, and a chapter that compares data from experiments with
models.

Both the aerodynamically and the acoustical models are described. De-
tails of the derivation of the models are shown.

The experiments were carried out in a wind tunnel. Two different profiles
were used, a NACA0015 and a NACA63415 profile. The data from these
experiments are obtained by various means to get the properties of the flow
such as angle of attack, mean wind speed, turbulence and surface pressure
at the aerofoil.



Chapter 2

Theory and Models

This chapter discusses and derives the models used in this thesis. The
models are aerodynamical, turbulence, and acoustical models.

The aerodynamical models describe the unsteady aerodynamics when an
aerofoil is subject for incoming turbulence. They are based on potential
theory and the incompressible and inviscid form of Navier-Stokes equations
which are linearized.

Isotropic turbulence is discussed and a model is shown that gives the
energy spectrum of the isotropic turbulence as well as the coherence of tur-
bulence. The turbulence model is used to estimate pressure and lift spectra
together with the aerodynamical models.

The acoustical model predicts the noise due to turbulence in the incoming
flow. The model is based on that the force which is responsible for emitting
sound pressure is acting as a dipole.

The width and thickness of a real wind turbine blade is not constant in the
spanwise direction, and this causes that the flow will develop aerodynamics
with 3-D characteristics and one section of the aerofoil will not have the same
characteristics as another section. Further the length of a wind turbine blade
is finite, and this causes yet other 3-D characteristics where the aerofoil ends.
However, it is for the aerodynamical models assumed that strip theory can
be applied in order that 3-D effects and tip-effects can be neglected.

The aerodynamics and acoustics are treated as if the aerofoil is fixed and
not influenced by the presence of more aerofoils and the noise is radiated
from one aerofoil only. The mean wind is perpendicular to the rotor plane,
but the movement of a wind turbine blade makes the relative wind coming
at an angle that is relatively small relatively to the chord line, such that
theories of unsteady aerodynamics are applicable. The turbulence generated
by the blade is assumed to be advected away from the rotor plane. It then
follows that it can be assumed as a first approximation that the blade is not



14 2.1 Aerodynamics

influenced by the wake of the other blades (for typically three bladed wind
turbines). The inflow model by Amiet (1975) is used in wind turbine appli-
cations (Lowson 1994) without any consideration of the number of blades or
their wakes. This seems a reasonable assumption in the light of Oerlemans
et al. (2007) where it is found that the main source of aerodynamical noise is
in a radius of approximately two thirds of the length of blade from the center
and is in position of approximately 2 O’clock when measured and visualized
in front of the rotor plane.

The models in this chapter are used throughout this thesis and are orig-
inated from three different fields, aerodynamics, turbulence, and acoustics.
The use of three different fields causes problems regarding the usual notation
in each field, thus the symbols might be different than usual.

2.1 Aerodynamics

Aerodynamics is a broad field, and this text will cover the basics needed to
understand the flow around an aerofoil. Steady flow and pressure fluctuations
due to a gust in one, two, and three dimensions will be discussed.

The dimensions of the unsteady models in this thesis are defined by the
author and might deviate from other texts in the definition. The different
definition is made to make it easy to distinguish between models throughout
the thesis. The model by Sears (1941) is regarded as a 1-D theory because it
is treating a flat plate without any spanwise effects and with no angle to the
mean flow. The model by Goldstein and Atassi (1976) and Atassi (1984) is
defined as a 2-D model because it is a profile of an aerofoil, though infinitely
thin. The 2-D model has no spanwise effects as well. The model by Graham
(1970) is regarded as a 3-D model because it includes spanwise effects from
a vertical gust.

The theory for unsteady flow is treated for both the case of a flat plate
and for an angle of attack (AOA) of zero in 1-D and 3-D. The unsteady flow
in 2-D is treated for a flat plate with camber and an arbitrary AOA. In the
case of unsteady aerodynamics the time derivative of the velocity potential
is not zero, and it has to be included when solving for the pressure by use of
Bernoulli´s theorem.

Unsteady flow is characterized by a mean part and an unsteady part,
where the unsteady part is due to turbulence. Turbulence can be split into a
range of wave numbers by Fourier analysis. This means that the turbulence
can be decomposed into a range of sinusoidal waves.
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2.1.1 Steady Flow

Steady flow is treated in many textbooks and this Section is based on the
treatment by Batchelor (1967).

The flow around wind turbine aerofoils can be treated as incompressible
because the ratio of the speed of the flow and the speed of sound in air
(c0 ≃ 340m

s
) is low and this ratio is the Mach number, M ≡ u

c0
(below

∼ 0.25, because the tip speed of a wind turbine blade is u ≃ 80 m
s

and
the relative speed decreases from tip to the center of the rotor). The flow
in an incompressible, irrotational, and inviscid fluid can be described by a
velocity potential. Furthermore, the condition of no flow through the aerofoil
is applied. The velocity potential for a section of an infinite cylinder with
circulation is

O(zc) = (U − jW )zc + (U + jW )
r2

zc
+
jκc

2π
log

zc

r
, (2.1)

where zc = x + jz is the position in complex notation and j denotes the
imaginary unit, U the x-component of the far field flow, W the z-component,
r the radius of the cylinder, and κ the circulation around the cylinder. The
lines, where the imaginary part of the complex potential, O(zc), is constant
(Im(O(zc,1)) = Im(O(zc,2)) = constant), are streamlines and the flow is
parallel with these streamlines. The flow around a subset of aerofoils can be
found by a coordinate transformation defining the so-called the Joukowski
aerofoils. They are created by the complex transformation

ζ = zc +
λ2

zc
λ = x0 +

√

r2 − z02, (2.2)

which transforms a circle in a complex plane (zc-plane) into the shape of
the profile of an aerofoil in another complex plane (ζ-plane). The shape of
the profile is dependent of the choice of the centre of the circle (x0, z0), an
example is shown in Figure 2.1. The transformation will be a flat plate if
(x0, z0) is placed in the origin of the coordinate system, (0,0). The Joukowski
airfoil will be symmetric around the x-axis if z0 is zero, and the aerofoil
will have a camber line if z0 is different from zero. The camber line will
bend downwards when z0 > 0. The streamlines for a circular cylinder are
stretched like a rubber sheet so they fit around the Joukowski profile. In
other words, the velocity potential at a given position (x, z) in the plane
of the circle has the exact same value at the new position according to the
transformation given by Eqn. (2.2) of (x, z). Figure 2.2 shows the streamlines
in the plane of the circular cylinder and in the plane of the aerofoil, and it
shows a transformation of the streamlines by Eqn. (2.2). The flow is parallel
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Figure 2.1: The Joukowski aerofoil for (x0, z0)=(-0.23173,0), which gives a
value of λ from Eqn. (2.2) using r = 2 of 1.76827. The circle shown (zc-
plane) is transformed (ζ-plane) and the centre of the circle is shown by a big
dot. The aerofoil (ζ-plane) meet the flow from the left, the curved edge.

to the aerofoil at the surface and has a non-zero value because the fluid
is assumed inviscid and has a slip condition. Another necessary condition
is that the flow at the trailing edge (the sharp edge of the aerofoil at the
opposite side of the incoming flow) is finite, has a pressure difference of zero,
and smooth outflow. This is called the Joukowski condition.

The velocities at the surface of the aerofoil in the circle plane (zc-plane)
are

U − jW =
dO

dzc

∣

∣

∣

zc=circle
(2.3)

and in the plane of the aerofoil (ζ-plane) the velocities at the surface are

U − jW =
dO

dζ
=
dO

dzc

(

dζ

dzc

)−1

(2.4)

by use of the chain rule for differentiation. In order to satisfy the Joukowski
condition on the trailing edge (finite flow at the trailing edge) then the cir-
culation (κc in Eqn. (2.1)) is given by (Batchelor 1967)

κc = 4π
√
U2 +W 2c sin(αAOA + βt), (2.5)

where c the chord length of the aerofoil, αAOA the angle to the horizontal of
the inflow in the far field, and βt the angle to the horizontal of the trailing
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(a) Circle plane (zc-plane)
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(b) Aerofoil plane (ζ-plane)

Figure 2.2: The streamlines in the plane of the circle (zc-plane) and in the
plane of the Joukowski aerofoil (ζ-plane). The parameters x0, z0, and λ are
the same as for Figure 2.1. The AOA is 5.7◦.

edge of the aerofoil in the ζ-plane. The velocities at the surface of the airfoil
shown in Figure 2.1 and Figure 2.2 are plotted in Figure 2.3, and it reveals
why the resulting force is upward according to Bernoulli’s theorem described
below in Eqn. (2.11).

Bernoulli´s theorem can be derived from the inviscid equation of motion

Du

Dt
= g − 1

ρ
∇p⇔ ∂u

∂t
+ u · ∇u = g − 1

ρ
∇p. (2.6)

In Eqn. (2.6) g is the acceleration due to gravity. When the assumption of
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Figure 2.3: The velocity vector at the surface of the Joukowski aerofoil with
parameters as the aerofoil in Figure 2.1 and Figure 2.2 and an angle of the
inflow relative to the horizontal of 5.71◦. It is noted that the resulting force
has it highest contribution at the upper side of the leading edge according
to Bernoulli´s theorem described by Eqn. (2.11). This is because the length
of the velocity vectors are largest above the aerofoil than below. Red colours
indicate long vectors (upper leading edge) relative to green colours (lower
leading edge), and blue colours are in between in length.

incompressible and irrotational flow is used

u = ∇φv, (Implied by incompressibility) (2.7)

ω = ∇× u = 0, (Irrotational) (2.8)
1

2
∇(u · u) = u · ∇u + u× ω, (Vector identity) (2.9)

the equation of motion becomes

∂

∂t
(∇φv) +

1

2
∇(u · u) = g − 1

ρ
∇p⇔ ∇

(

∂φv

∂t
+

1

2
u · u +

p

ρ
− g · x

)

= 0,

(2.10)
from which it can be concluded that the sum in the brackets has to be a
constant

∂φv

∂t
+

1

2
|u|2 +

p

ρ
− gzz = constant (2.11)

where gz is the vertical value of g and gzz is taken as a constant and therefore
can be moved to the right side of Eqn. (2.11), and the equation becomes
Bernoulli’s theorem.

Bernoulli´s theorem Eqn. (2.11) can be shown to be valid in two cases:
The case when the vorticity is zero and the case along a streamline for flow
with vorticity as long as the flow is inviscid, Batchelor (1967), Section 7.1
and Section 7.4. The latter case is used for unsteady aerodynamics.

The magnitude of the resulting force due to the flow on the aerofoil is the
lift, L, and is given by

L = ρ
√
U2 +W 2κc. (2.12)
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This equation can also be found by integration of the pressure or velocity at
the surface of the aerofoil at a cross section. This can be written as

L = TF − jN = −
∮

p(dy + jdx) = −j
∮

pdζ̄ =
1

2
jρ

∮
(

dO

dζ

)2

dζ, (2.13)

where the line integral is along the surface of the aerofoil, p the pressure
at the surface, and ( ) the complex conjugate. In the last equality in Eqn.
(2.13) Bernoulli´s theorem in Eqn. (2.11) is used to relate the pressure to the
velocity. The force is decomposed into a horizontal force which is tangential
to the flow, TF , and a vertical force which normal to the flow, N .

Eqn. (2.11) together with Eqn. (2.12) gives the information, that a high
pressure difference across the aerofoil gives a large lift, e.g. low pressure (high
velocity) at the upper side of the aerofoil and high pressure (low velocity) at
the lower side of the aerofoil.

When the problem is to find the sound pressure level produced by the force
from an aerodynamical source the distribution of the pressure fluctuations
or the fluctuations of the pressure difference between the upper side and the
lower side of an aerofoil is important to know. It is usually a simpler task
to find the lift, because this is an integral of the pressure distribution and
some terms thereby integrate to zero. The aerodynamical input to Amiet
(1975) is pressure fluctuations on the aerofoil. The most important factor is
lift fluctuations.

2.1.2 1-D Unsteady Aerodynamics

The theory for the unsteady pressure and lift fluctuations due to an 1-D
gust is derived in detail in this Subsection. The theory is derived from Fung
(1969). The theory is derived step by step in this thesis because the details
are not shown in Fung (1969).

The simplest case of turbulence is when the unsteady part of the inflow
only have a component in one direction, and in particular the upward direc-
tion. This means that fluctuations, w, are only in the vertical component of
the wind. Further the variation of w is in the direction of the mean flow,
U , see Figure 2.5. This motivates that this case of unsteady aerodynamics
is called one-dimensional. The derivation of this case uses potential theory,
and when the fluctuating part of the lift is calculated, the theory leads to
Sears’ solution (Sears 1941).

The calculation of unsteady aerodynamics on a flat plate with a gust
which is varying in the flow direction only, can be done by use of potential
theory as in the steady state case. The pressure fluctuations can be described
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by potential theory by introducing an acceleration potential as

φ = −ρp (2.14)

where ρ is taken as a constant because the flow is assumed incompressible and
has no net circulation, φ is the real part of the complex acceleration potential,
and p is the pressure fluctuation. The gust is subject of deformation caused
by the presence of the aerofoil and has vertical movements which cause an
acceleration normal to the aerofoil. The complex acceleration potential close
to an infinite cylinder is for unsteady flow in the subsonic case from thin-
aerofoil theory (Fung 1969) given as

o(zc) = φ+ jψ =
jA0

zc + 1
+

∞
∑

m=1

Am

zm
c

, |zc| ≥ 1 (2.15)

where j is the imaginary unit. Below the imaginary unit ı will be introduced.
It is important to distinguish between j and ı, because j 6= ı. The imaginary
unit j is in the spatial complex plane, whereas ı is in the time domain,
i.e. it relates to a phase. The real part of the complex potential is the
acceleration potential (φ) and the imaginary part is the stream function (ψ).
The coordinates of the surface of the cylinder is zc = ejθ which have the
property |zc| = 1. The acceleration of the fluid close to the aerofoil is given
as

ai =
∂φ

∂xi

. (2.16)

When inserting the coordinates of the cross section of the cylinder, zc,
into Eqn. (2.15) we get

φ0 =
A0 sin θ1

r1
ψ0 =

A0 cos θ1
r1

(2.17)

φm =
Am sinmθ

rm
ψm =

Am cosmθ

rm
(2.18)

φ = φ0 +

∞
∑

m=1

φm ψ = ψ0 +

∞
∑

m=1

ψm (2.19)

where the coordinates are visualized in Figure 2.4. The aerofoil is given by
the Joukowski transformation described previously in Eqn. (2.2). In order
to have the leading edge at x = −1 and the trailing edge at x = 1 at a flat
plate, the transformation is

ζ =
1

2

(

zc +
1

zc

)

(2.20)
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where the coordinates of the plate are given by transforming zc = ejθ. When
the circle described by zc = ejθ is transformed to the ζ-plane by Eqn. (2.20) it
becomes the flat plate depicted in Figure 2.4. The vertical acceleration of the
fluid, ay, at the aerofoil in the ζ-plane is related to the normal acceleration,
an, at the circle in the zc-plane. The acceleration normal to the cylinder,
an, will be normal to the plate, ay, when the cylinder is stretched like a
rubber sheet into a flat plate. It is only the vertical acceleration of the
gust (the normal acceleration to the cylinder) that is of interest because the
change in vertical velocity of the gust due to the aerofoil is to be found. The
acceleration in complex notation is given as

do

dζ
=

do

dzc

(

dζ

dzc

)−1

(2.21)

and thus the magnitude of scaling of the acceleration from the ζ-plane to the
zc-plane becomes

∣

∣

∣

∣

dζ

dzc

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1

zc

(

zc −
1

zc

)∣

∣

∣

∣

= |sin θ| . (2.22)

Then the acceleration normal to the cylinder has the relation to the acceler-
ation vertical to the aerofoil

an(θ, t) = ay(x, t) sin θ. (2.23)

The acceleration in the normal direction to the cylinder in the zc-plane is
then given from Eqn. (2.16)

an =
∂φ

∂r

∣

∣

∣

∣

r=1

= 0 +

∞
∑

m=1

−mAm sinmθ (2.24)

The first term in Eqn. (2.24) is zero because

∂φ0

∂r

∣

∣

∣

∣

r=1

=
−1

r sin θ

∂ψ0

∂θ

∣

∣

∣

∣

r=1

=
−1

r sin θ

∂

∂θ

A0

2

∣

∣

∣

∣

r=1

= 0 (2.25)

according to Figure 2.4. The velocity fluctuations an aerofoil feels due to a
1-D sinusoidal gust can be described as

v1D(x, t) = −w exp ıω(t− x/U) = −w exp(ıωt) exp(−ıκ cos θ) (2.26)

under the assumption of Taylor’s hypothesis of frozen turbulence, which in
fact follows from the linear assumption, where the wave number is kx = ω

U
,
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Figure 2.4: A circle in the zc-plane is transformed by Eqn. (2.20) into an
aerofoil (flat plate) in the ζ-plane. The circle has origin at {0,0} and is
described by reıθ. Under the angle θ1 with origin at {-1,0} the distance r1 to
the circle is 2r cos θ1, further it is quite easily seen that θ1 = θ

2
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Figure 2.5: Sketch of a skewed sinusoidal gust entering a flat plate. The
width in the x-direction is the chord length, c.
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the reduced wave number is κ = kxc
2

, and x = c
2
cos θ. The chord length, c,

is in the following set to 2 for convenience. The ı describes the oscillation
in the time domain and thus ıj 6= −1. The gust is visualized in Figure 2.5.
Eqn. (2.26) can be expanded as

v1D(θ, t) = −weıωt

(

J0(κ) + 2

∞
∑

m=1

(−ı)mJm(κ) cosmθ

)

(2.27)

= −weıωt

(

P0(κ) + 2
∞
∑

m=1

Pm(κ) cosmθ

)

, (2.28)

Pm(κ) = (−ı)mJm(κ) (2.29)

with use of Eqns. (A.52) and (A.7), where Jm(κ) is the Bessel function of
first kind of order m, see also Appendix A. Below Pm(κ) is denoted Pm for
convenience. The upward acceleration at the aerofoil in the ζ-plane is found
by

ay =
Dv1D

Dt
=
∂v1D

∂t
− U

1

r sin θ

∂v1D

∂θ
(2.30)

= iωv1D(θ, t) − 2Uweıωt
∞
∑

m=1

mPm
sinmθ

sin θ
. (2.31)

This becomes in the zc-plane with use of Eqns. (A.53) and (2.23)

an(θ, t) = −wUeıωt

(

ıκ

[

P0 sin θ +

∞
∑

m=1

Pm(sin(m+ 1)θ − sin(m− 1)θ)

]

+2
∞
∑

m=1

mPm sinmθ

)

(2.32)

= −2Uweıωt
∞
∑

m=1

sinmθ
( ıκ

2
Pm−1 +mPm − ıκ

2
Pm+1

)

. (2.33)

When this is equated to Eqn. (2.24) then the coefficients

Am = 2Uweıωt
( ıκ

2m
Pm−1 + Pm − ıκ

2m
Pm+1

)

, m ≥ 1 (2.34)

are found. To find A0 the boundary condition of the velocity at the leading
edge is a natural choice. The vertical velocity can be found by integration of
the vertical acceleration given in Eqn. (2.30) by using the condition that the
velocity is zero far upstream (x = −∞), and then the velocity in the aerofoil
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plane can be written as (Fung 1969)

v1D(x) =
e−ıκx

U

∫ x

−∞
ay(x

′)eıκx′

dx′ = −e
−ıκx

U

∫ x

−∞

( ∞
∑

m=0

∂ψm

∂x′

)

eıκx′

dx′

(2.35)
where the stream function, ψm, in the aerofoil plane from Eqns. (2.17) and
(2.18) and inversion of Eqn. (2.20) is

ψ0(x) =
−A0

−x− 1 +
√
x2 − 1

=
A0

2

(

1 +
x− 1√
x2 − 1

)

(2.36)

ψm(x) =
(−1)mAm

(

−x+
√
x2 − 1

)m = Am

(

x+
√
x2 − 1

)m

, (2.37)

x ∈] −∞,−1[, m ≥ 1.

The stream function in Eqn. (2.19) is hereby defined upstream of the aerofoil
and at y = 0 which corresponds to θ = π in the coordinates of the cylinder
in the zc-plane. At the leading edge Eqn. (2.35) is

v1D(π, t) = −eıκ

[

eıκxψ0(x)

U

]−1

−∞
+
eıκ

U

∫ −1

−∞

(

ıκψ0 −
∞
∑

m=1

∂ψm

∂x

)

eıκxdx

(2.38)
where partial integration of ψ0 is necessary because of its singularity at the
leading edge. The left hand side in Eqn. (2.38) is with use of Eqn. (2.28)
written as

v1D(π, t) = −weıωt(P0 + 2

∞
∑

m=1

(−1)mPm). (2.39)

Because ψ0 = A0

2
by use of Eqn. (2.17) on the aerofoil and ψ0 vanishes far

upstream of the aerofoil by Eqn. (2.36) then

−eıκ

[

eıκxψ0(x)

U

]−1

−∞
+
eıκ

U

∫ −1

−∞
ıκψ0e

ıκxdx = −A0

2U
ıκeıκ [K0(ıκ) +K1(ıκ)]

(2.40)
where Eqns. (2.36), (A.37), and (A.46) is recalled. The remaining terms in
Eqn. (2.38) are

−e
ıκ

U

∫ −1

−∞

∞
∑

m=1

∂ψm

∂x
eıκxdx = −weıωt

[(

P0 + 2
∞
∑

m=1

(−1)mPm

)

−2
ıκ

2
eıκP0K1(ıκ) + 2

ıκ

2
eıκP1K0(ıκ)

]

(2.41)
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Figure 2.6: The behavior of the Theodorsen function, C(κ). The Theodorsen
function is a complex function, and thus it is plotted in the complex plane.
The range of the argument, κ, in the plot is from 0 to ∞, where κ = 0 is on
the real axis at 1, and κ → ∞ is on the real axis at 0.5. The dots are from
right to left on the line for κ = {0.01, 0.1, 1, 10}, respectively.

where the details are given in Eqn. (B.4). Inserting Eqns. (2.40), (2.41) and
(2.39) into Eqn. (2.38) then finally A0 is found as

A0 = 2Uweıωt [C(κ)(P0 + P1) − P1] , C(κ) =
K1(ıκ)

K0(ıκ) +K1(ıκ)
. (2.42)

The function C(κ) is called the Theodorsen function and is illustrated in
Figure 2.6. The Theodorsen function is the solution for vertical translation
oscillations of a flat plate, Theodorsen and Garrick (1942) and Fung (1969).

The acceleration potential in the zc-plane is then easily found from Eqn.
(2.19)

φ(θ, t) =
A0

2
tan

θ

2
+

∞
∑

m=1

Am sinmθ. (2.43)

The pressure difference over the aerofoil is l(x) = −2p(x) according to thin
aerofoil theory applied to a flat plate (Fung 1969). The lift distribution, the
pressure difference across the plate, is according to Eqn. (2.14) equal to

l(x, t) = 2ρφ(x, t). (2.44)

When Eqn. (2.43) is inserted in Eqn. (2.44) then

l(θ, κ, t) = ρA0 tan
θ

2
+ 2ρ

∞
∑

m=1

Am sinmθ (2.45)
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Figure 2.7: The lift magnitude of distribution normalized with ρUweıωt as
function of the chordwise position, x, where x = −1 is the leading edge and
x = 1 is trailing edge. The red line is for κ = 0.5, and the black line is for
κ = 2.

where A0 and Am and thus also Pm are defined in Eqns. (2.42), (2.34), and
(2.29), respectively.

The magnitude of the lift distribution is seen to decrease from the leading
edge towards the trailing edge, see Figure 2.7. Furthermore the higher the
wave number is the less the fluctuation is.

The lift fluctuation is the integrated pressure difference fluctuation

L′ =

∫ 1

−1

l(x)dx (2.46)

where the integration is in the ζ-plane and

L′ =

∫ π

0

l(θ) sin θdθ (2.47)

in the zc-plane. When Eqn. (2.45) is inserted in Eqn. (2.47) then

L′ = ρUweıωt2π
[

(P0 + P1)C(k) + (P0 − P2)
ıκ

2

]

(2.48)

because only terms including A0 and A1 contribute to the lift. When the
relations Eqns. (2.29) and (A.6) are used and Eqn. (2.48) is generalized to
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any chord length, c, of the aerofoil, then

L′(κ) =
1

2
ρcUweıωt2π [(J0(κ) − ıJ1(κ))C(κ) + ıJ1(κ)] (2.49)

is obtained. It is recalled that κ = kxc
2

and c = 2 in the above derivations.
The term in square brackets is Sears function

S(κ) = 2π[(J0(κ) − ıJ1(κ))C(κ) + ıJ1(κ)]. (2.50)

Its behavior is seen in Figure 2.8, where it is seen that no frequency cause
instability. The steady state reduced wave number κ = 0 is at the real
axis at 2π. The reduced wave number is increased along the black line in
Figure 2.8 and ends at a reduced wave number of 10 (shown by a blue cross).
The absolute value of the lift is decreasing as the wave number is increased.
Dependent on the wave number the lift at the midpoint is either lagging or
ahead of the gust signal at the midpoint, see Figure 2.8. The lift is lagging
when Im{S(κ)} < 0, and ahead when Im{S(κ)} > 0.

The expressions for the fluctuating lift distribution and fluctuating lift
can for convenience be split into a transfer function and an amplitude. When
Eqn. (2.44) is split into an amplitude and a transfer function then

l(x, κ) = A(ρ, c, U)wg(x, κ) (2.51)

where the amplitude and transfer function are

A(ρ, c, U) =
1

2
ρcU (2.52)

g(x, κ) =
A0

Uw
tan
(arccosx

2

)

+ 2

∞
∑

m=1

Am

Uw
sin(m arccosx), (2.53)

respectively, and w is the amplitude of the vertical gust. The coefficients A0

and Am are defined in Eqns. (2.42) and (2.34), respectively. Similarly Eqn.
(2.49) gives

L′(κ) = A(ρ, c, U)wg(κ) (2.54)

where A(ρ, c, U) is defined in Eqn. (2.52) and g(κ) is defined in Eqn. (2.50).

2.1.3 2-D Unsteady Aerodynamics

A model is described below that will be referred to as the 2-D model.
This model is for a section of an aerofoil like the one just described and is



28 2.1 Aerodynamics

-0.2 0.2 0.4 0.6 0.8 1
ReHLL�2Π

-0.1

0.1

0.2

ImHLL�2Π

Figure 2.8: Plot of the lift response due a sinusoidal gust as function of
reduced wave number. The black line is due to a 1-D sinusoidal gust on a
flat aerofoil as discussed in section 2.1.2. Note that the absolute value of
the lift response |L| is the distance from the origin of the plot to a point on,
say, the black line. The argument of L is the corresponding phase of the lift
relative to the phase of the gust at the midpoint of the aerofoil to the gust.
The green and red lines in the plot show the case of a 2-D sinusoidal gust
on a 2-D flat aerofoil and are discussed in section 2.1.4. The red lines are
functions of κ for different values of fixed ν, where ν is varied from 0 to 2.5 in
steps of .25. The green lines are functions of ν when κ is fixed, and κ takes
values from 0 to 2.5 in steps of 0.25 and from 3 to 7 in steps of 0.5.

with a 2-D sinusoidal gust impinging the aerofoil. The gust has an u- and a
w- component which are in the x- and z-direction, respectively. Further the
model is for a bend plate with an AOA to the mean flow.

The unsteady aerodynamics can be solved for a section of a profile with
camber at an AOA to the mean flow, which means that there are mean lift
as well as fluctuating lift. A 2-D gust causes fluctuating lift on this bend
flat plate because the u- and w-components give an upwash, see Figure 2.9.
The figure shows the problem to solve and show the definitions of the wave
numbers to be explicitly defined below.

The 2-D model is based on Goldstein and Atassi (1976) and Atassi (1984).
This model is in principle valid for a section of an aerofoil with camber and
thickness at an AOA to the mean flow, Goldstein and Atassi (1976). Explicit
solutions for the model are given in Atassi (1984) for a section with camber
at an AOA to the mean flow. The model is linear so it is split up in a
contribution due to the camber and a contribution due to AOA. The 2-D
model is based on the inviscid and incompressible Navier-Stokes equations
which are linearized.
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Figure 2.9: Sketch of a skewed sinusoidal gust entering an aerofoil with thick-
ness and camber at an AOA to the mean flow.

This leads to the total response given as

RT (κ, µ) =
κ

√

κ2 + µ2

S(κ)

2π
+ βALβA

(κ, µ) +mLm(κ, µ) (2.55)

where the response due to a flat plate is included, LβA
(κ, µ) is the response

due to AOA, and Lm(κ, µ) is the response due to camber. The parameters
κ, µ, βA, and m are defined below.

When the model is linearized for small AOA it can be found that the lift
response due to the AOA in radians, βA, Atassi (1984), is

LβA
(κ, µ) =

1

|kc|

{

κ

[

− 4κµ

|kc|2
S(κ)

2π
+ Θ+

(

kc

2

)

− Θ−

(

kc

2

)

]

+ıC(κ)

[

Λ+

(

kc

2

)

− Λ−

(

kc

2

)

]}

(2.56)

where

Λ±(zv) ≡ ±ıπz2
vIm

{

H±(zv)J±(zv)
}

(2.57)

Θ ± (zv) ≡ ±ı
πzJ1(zv)Im

{

H±(zv)J±(zv)
}

− J±(zv)

J±(zv)
(2.58)

J±(zv) ≡ J0(zv) ± ıJ1(zv) (2.59)

H±(zv) ≡ H
(1)
0 (zv) ± ıH

(1)
1 (zv) (2.60)

kc ≡ κ+ ıµ, κ =
kxc

2
, µ =

kzc

2
(2.61)

where as previously c is the chord length. The Bessel functions, J0(zv), J1(zv),

J2(zv) (below), H
(1)
0 (zv), and H

(1)
1 (zv) are defined in Appendix A. Further
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S(κ) is the complex conjugated of Eqn. (2.50) and C(κ) is defined in Eqn.
(2.42).

Figure 2.10a) and b) show Eqn. (2.56). It is seen that at low µ the
response approaches zero as κ is increased and the larger µ gets the slower
it converges to zero. The absolute value of the response approaches to an
asymptotic value for values of µ large enough, see blue line in Figure 2.10b).

The camber is approximated to a parabolic line which describes the cam-
ber line best, Atassi (1984), and implies that the parameter, m, is describing
the bending of the parabolic line. When the lift response is linearized in the
camber it can be found that the lift response due to camber, Atassi (1984),
is

Lm(κ, µ) =
4

|kc|

{

− ı
8κµ(κ2 − µ2)

|kc|4
S(κ)

2π
+

4κµ

|kc|2
[

πκGA

(

kc

2

)

− EA(κ)

]

+C(κ)

[

F+

(

kc

2

)

− F−

(

kc

2

)

]}

(2.62)

where

EA(κ) ≡ κJ2(κ) + C(κ) [κJ+(κ) − J1(κ)] (2.63)

GA(zv) ≡ Im
{

H
(1)
1 (zv)J1(zv)

}

(2.64)

F±(zv) ≡ zv

z̄v

πzJ±(zv)GA(zv) − J1(zv)

J1(zv)
. (2.65)

Figure 2.10c) and d) show the response due to camber according to Eqn.
(2.62). Similar to the response function of the AOA the response function
for camber is approaching zero as κ is increased until a certain µ where an
asymptotic value of the absolute value of the response is approached, see red
and green line in Figure 2.10d).

The model is based on the convention that the time part is defined as
e−ıωt whereas it is defined as eıωt in the 1-D model above and in the 3-D
model below. In order to compare with these models the complex conjugate
of Eqn. (2.55) is taken throughout this thesis.

Figure 2.10e) and f) show the complex conjugate of the total response.
The complex response and the absolute response is shown, and when the AOA
is different from zero the total response is seen to approach an asymptotic
value that is not going to zero as κ is increased. The response with camber
and AOA=0◦ is seen to vanish as κ is increased.

When the total response function of the fluctuating lift is known the lift
fluctuation is found as

L′(κ, µ) = A(ρ, c, U)(w + u)g(κ, µ) (2.66)
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where A(ρ, c, U) is defined in Eqn. (2.52) and

g(κ, µ) = 2πRT (κ, µ) (2.67)

in order to be compared with Eqn. (2.54).
The model described above is able to take some aerodynamically im-

portant parameters of an aerofoil into account. The parameters for which
explicit expressions are given are camber and AOA to the mean flow. The
thickness is also a part of the model, Goldstein and Atassi (1976), but no
explicit expression is found for this parameter. This author has made an
attempt to solve for the thickness but further work is needed in order for an
explicit expression to be given.

2.1.4 3-D Unsteady Aerodynamics

The unsteady aerodynamics has been solved for a skewed gust on a semi-
infinite flat plate, Graham (1970). This model is referred to as the 3-D
model below. The model is called 3-D because a sinusoidal gust (where only
the w-component is taken into account) can be skewed arbitrarily when it
impinges the aerofoil which is infinite in spanwise direction. This means
that the vertical gust can have any variation in the chord wise and spanwise
directions, see Figure 2.5. The paper by Graham (1970) suggest a method of
finding the lift distribution but an explicit expression is not given. The lift
distribution is found in this Subsection and an explicit expression is given.

This model solves for the upwash for an sinusoidal wave of arbitrarily
yawed angle to the leading edge of the aerofoil. The upwash can be described
by potential theory by Poisson’s equation and is given by, v3D(x0, y0),

∫

S+Ww

γ1(x− x0) − γ2(y − y0)dxdy

4π[(x− x0)2 + (y − y0)2]3/2
+ v3D(x0, y0) = 0. (2.68)

where γ1 is the spanwise vorticity and γ2 is the chord wise vorticity. The
integration is over all space in the xy-plane in which vorticity due to the
aerofoil is present, being over the surface and in the wake. The vertical gust
is given by

v3D = U∞e
ı(kxx+kyy−ωt) (2.69)

where kx and ky are the chord wise and spanwise wave numbers, respectively,
U∞ is the mean velocity of the flow far upstream of the aerofoil, and ω =
kxU∞. The upwash at the aerofoil is thus given as

w0(x0, y0) =

∫ ∞

−∞

∫ c

0

γ1(x− x0) − γ2(y − y0)

4π[(x− x0)2 + (y − y0)2]3/2
dxdy (2.70)
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Response function due to an AOA to the mean flow.
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Figure 2.10: The transfer functions of the 2-D model. The figures a) to e) is
similar to the plots in Atassi (1984). The lines are at fixed µ and κ is varied
in a) to d). A 2-D gust for which the wave front has an angle of 45◦ to the
mean flow and the wave length of this gust is varied in e) and f).
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where x0 and y0 is any point on the aerofoil in the chord wise and spanwise
direction, respectively, and c is the chord length as previously.

Continuity of the vorticity is assumed which leads to

γ1 = 2U∞f01(x)e
ı(kyy−ωt) (2.71)

γ2 = −2ıU∞kycf02(x)e
ı(kyy−ωt) (2.72)

f02(x) =

∫ x

0

f01(x
′)
dx′

c
(2.73)

where the functions f01(x) and f02(x) are to be found. When inserting Eqns.
(2.71) and (2.72) into Eqn. (2.70) the upwash at the aerofoil can be evaluated
to give

w0(x0, y0) =
U∞
π
eı(kyy0−ωt)

∫ c

0

{

kyf01(x)
(x− x0)

|x− x0|
K1(ky|x− x0|)

−k2
ycf02(x)K0(ky|x− x0|)

}

dx (2.74)

where K0(zv) and K1(zv) are modified Bessel functions of second kind as
defined in Appendix A and zv is real.

When a coordinate transformation is made and two new functions are
defined then the upwash on the aerofoil can be given as

w0(zn,0, y0) =
U∞
π
eı(kyy0−ωt)

{
∫ 1

−1

[νF (zn)K ′
1(ν[zn − zn,0])]dzn − 4ν2f3(1)K0(ν[zn − zn,0])

}

(2.75)
where

zn =
2x

c
− 1, zn,0 =

2x0

c
− 1, x ∈ [0, c] (2.76)

ν =
kyc

2
, κ =

kxc

2

f03(x) =

∫ x

0

f02(x
′)
dx′

c
(2.77)

fw(zn) = f0w(x)

F (zn) = f1(zn) − 4ν2f3(zn) (2.78)

K ′
1(zn) = K1(zn), zn > 0

K ′
1(zn) = −K1(−zn), zn < 0

K ′
1(0) = ±∞

is defined. The wave numbers ν and κ are reduced wave numbers in the sense
that ν = kyc

2
and κ = kxc

2
.
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Similarly the upwash can be found in the wake (Graham 1970) to be

w1(zn,0, y0) =
U∞
π
eı(kyy0−ωt)ıkxcf2(1)

[

(1 + ν2/κ2)

×
{
∫ ∞

−1

νeıκ(1 + zn)K ′
1(ν[2 + zn − zn,0])dzn

}

−ν2/κ2K0(ν[1 − zn,0])

]

(2.79)

The Eqns. (2.75) and (2.79) has to be equal

w0(zn,0, y0) = w1(zn,0, y0). (2.80)

and the function, F (zn), in Eqn. (2.78) can be defined as

F (zn) =
2

π
√

1 − z2
n

N
∑

k=0

′′σkTk(zn) (2.81)

where Tk(zn) is the Chebyshev polynomial of kth order, and σk is the kth

coefficient, which is necessary to solve Eqn. (2.68). The Chebyshev poly-
nomial is useful for approximating functions that are defined in the interval
−1 ≤ zn ≤ 1. The double prime in the sum of Eqn. (2.78) denotes that σ0

and σN has to be multiplied with 1
2
, and σk has to be multiplied by 1 for

1 ≤ k < N . A coordinate transform of the aerofoil has been conducted such
that the leading edge is at zn = −1 and the trailing edge is at zn = 1, see
Eqn. (2.76). The coefficients σk is found by solving a linear system of order
k.

Eqn. (2.74) can be solved by expanding the terms in Eqn. (2.80) in
Chebychev series which have the property that they converge fast. Then
Eqn. (2.80) becomes linear system of n equations where n is the number
of Chebychev coefficients used to expand the function in Eqn. (2.80). The
transfer function of the lift is then found to be

g(κ, ν) = 4[f2(1) − ıkxcf3(1)] (2.82)

with a phase at the leading edge relative to the gust at the leading edge. In
order to get the transfer function of the lift with the phase at mid chord to
the gust at mid chord relative like the 1-D model described in Section 2.1.2
then the transfer function, Graham (1970) is

g(κ, ν) = 4eıκ[f2(1) + ıkxcf3(1)] (2.83)
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The transfer function is seen in Figure 2.8. It reduces to Eqn. (2.50) when
ν = 0, and when the spanwise wave number is different from zero the lift
fluctuations approaches zero faster when κ is increasing. Likewise the lift
fluctuations is seen to approach zero when κ is fixed and ν goes towards
infinity. The complex lift indicates a lag in the response of the lift at mid
chord in comparison to the inflow at mid chord.

The lift fluctuation is in the notation of Eqns. (2.54) and (2.66) given as

L′(κ, ν) = A(ρ, c, U)wg(κ, ν) (2.84)

where A(ρ, c, U) is defined in Eqn. (2.52) and g(κ, ν) is defined in Eqn.
(2.83).

When Eqn. (2.68) is solved the pressure distribution is (Graham 1970)

∆p(zn) =
1

2
ρcU∞w0(f1(zn) − 2ıκf2(zn)) (2.85)

where

f1(zn) = F (zn) + ν

∫ zn

−1

F (z′n) sinh[ν(zn − z′n)]dz′n (2.86)

f2(zn) =
1

2

∫ zn

−1

F (z′n) cosh[ν(zn − z′n)]dz′n (2.87)

Two singularities exist for Eqn. (2.85), namely at the leading and trail-
ing edge. The singularity at the trailing edge is not physical, because the
Joukowski condition are applied here, and this implies that ∆p(1) = 0.

An explicit expression of the pressure difference distribution in Eqn.
(2.85) is found here by another method than the one suggested in Graham
(1970). The method uses the fact that F (zn) is known. Then the expressions
can be manipulated to give the transfer function of the lift distribution.

When the following approximations are used

sinh[ν(zn − z′n)] =
N
∑

i=0

′′
N
∑

j=0

′′AijTi(zn)Tj(z
′
n) (2.88)

cosh[ν(zn − z′n)] =

N
∑

i=0

′′
N
∑

j=0

′′BijTi(zn)Tj(z
′
n) (2.89)
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then Eqn. (2.85) becomes

∆p(zn) =
1

2
ρcU∞w0

N
∑

i=0

′′

(

2

π
√

1 − z2
n

σi

+
N
∑

j=0

′′

{

N
∑

k=0

′′ 2

π
σk(νAij − ıκBij)

∫ zn

−1

1
√

1 − z′n
2
Tk(z

′
n)Tj(z

′
n)dz′n

})

Ti(zn)

=
1

2
ρcU∞w0

N
∑

i=0

′′

(

2

π
√

1 − z2
n

σi +

N
∑

j=0

′′

{

N
∑

k=0

′′ 1

π
σk(νAij − ıκBij)

×
∫ zn

−1

1
√

1 − z′n
2
(Tk+j(z

′
n) + T|k−j|(z

′
n))dz′n

})

Ti(zn). (2.90)

The identity Tk(z
′
n)Tj(z

′
n) = 1

2

(

Tk+j(z
′
n) + T|k−j|(z

′
n)
)

, Fox and Parker (1968),
is used in the equality. This can be further simplified to

∆p(zn) =
1

2
ρcU∞w0

N
∑

i=0

′′Ti(zn)

(

2

π
√

1 − z2
n

σi +
N
∑

j=0

′′

{

N
∑

k=0

′′ 1

π
σk(νAij − ıκBij)

×
[

ck+j(zn) + c|k−j|(zn)
]

})

, (2.91)

where the identity Th(x) = cos {h cos−1(x)} is used to evaluate the integrals,
which is ck+j(zn) and c|k−j|(zn), and has the value

ch(zn) = −sin (h cos−1 zn)

h
, h ≥ 1 (2.92)

ch(zn) =
π

2
+ sin−1 zn, h = 0. (2.93)

When ν is zero in Eqn. (2.91) the 1-D case is obtained, see Eqn. (2.45).
Comparison of the two models shows that they coincide in this case, and this
means that Eqn. (2.91) is validated for the 1-D case. The transfer function
for a range of normalized wave numbers are shown in Figure 2.11 for leading
edge, mid chord, and trailing edge. The figure shows that the lift distribution
is decreasing when either the chordwise, the spanwise or both of the wave
number are increased. This is expected because the fluctuations become so
small in spatial scale, much smaller than the chord, so that the waves are
averaged out.

The lift distribution can similar to Eqn. (2.51) be written as

l(x, κ, ν) = A(ρ, c, U)wg(x, κ, ν) (2.94)
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Figure 2.11: The transfer function for the lift distribution in the case of a
2-D gust. The positions are at x = −0.49, x = 0.01, and x = 0.49. The
leading edge is defined as x = −0.50, the mid chord is defined as x = 0.00,
and the trailing edge as x = 0.50. The wave numbers are normalized such
that κ = kxc

2
and ν = kyc

2
. Note the different interval in ν at x = 0.49.

where A(ρ, c, U) is defined in Eqn. (2.52) and g(x, κ, ν) is defined in Eqn.
(2.91) by

g(x, κ, ν) =
N
∑

i=0

′′Ti(zn)

(

2

π
√

1 − z2
n

σi +
N
∑

j=0

′′

{

N
∑

k=0

′′ 1

π
σk(νAij − ıκBij)

×
[

ck+j(zn) + c|k−j|(zn)
]

})

. (2.95)

Note that zn is a function x as defined in Eqn. (2.76).
Figure 2.11 also shows that the magnitude of the transfer function is

decreasing as the position at the aerofoil is changed from the leading edge
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towards trailing edge. The model in Eqn. (2.91) has to be inspected because
it gives unphysical results near the trailing edge when the spanwise wave
number is increased at a fixed chordwise wave number.

2.2 Statistical Measures and their Properties

Statistics are useful when information of e.g. pressure and lift are ob-
tained in two different spaces, which in this work are the wave number space
and frequency space. When spectra of e.g. pressure and lift are found then
the two spaces can be compared. This Section introduces properties and
relations of spectra which will be used in Chapter 3 to inspect data and in
Chapter 4 to compare data and models.

The pressure spectrum is calculated theoretically by

Sp(kx, x) = A2(ρ, c, U)

∫ ∞

−∞
Φww(kx, ky)|g(x, kx, k2)|2dky. (2.96)

where kx is the chordwise wave number, ky is the spanwise wave number,
A(ρ, c, U) is given in Eqn. (2.52), and Φww(kx, ky) is the von Kármán (1948)
spectrum of the vertical turbulence component. Further g(x, kx, ky) is the
transfer function for the lift distribution over the aerofoil and is given by
Eqn. (2.53) or Eqn. (2.95) depending on whether it is the 1-D model or the
3-D model, respectively.

The lift spectrum is found by integrating pressure over a section of the
aerofoil as

SL(kx) = A2(ρ, c, U)

∫ ∞

−∞
Φww(kx, k2) |g(kx, k2)|2 dk2 (2.97)

where A(ρ, c, U) and Φww(kx, k2) are defined above, and g(kx, k2) is the trans-
fer function for the lift. The transfer function is given by Eqn. (2.50), Eqn.
(2.67), or Eqn. (2.83) for the 1-D model, the 2-D model, or 3-D model, re-
spectively. The wave number, k2, is kz or ky in the 2-D model and in the 3-D
model, respectively.

The property below is used throughout this thesis to compare data with
models

fSvar(f) = kSvar(k), k =
2πf

U
(2.98)

where var is any variable such as wind speed, pressure, or lift etc. The models
are defined for wave numbers whereas frequency information is obtained from
data.
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When the pressure is measured at different mean velocities the spectrum
for the pressure scales with the mean velocity. This scaling is discussed here.
In order to find it, we imagine we have two measurements. One timeseries
is x(t), the other experiment is run twice as fast and is given as x2(2t). It
is understood that fluid particles are advected past the point twice as fast
in the other measurement than in the first. The first gives a velocity and
acceleration of v(t) and a(t) respectively. The other then gives 2v(2t) and
4a(2t) by partial differentiation with respect to t. Now pressure is related
to acceleration by considering Navier-Stokes equation without any viscous
forces, the so-called Euler equation,

∂vi

∂t
+ vj

∂vi

∂xj

= ai = − ∂p

∂xi

(2.99)

thus pressure at the first measurement is p(x, t) and the other is 4p(x, 2t).
The pressure spectrum is given as (von Kármán 1948)

Sp(f) =

∫ ∞

−∞
Rpp(τ)e

ı2πfτdτ (2.100)

for the first time series, where the pressure co-variance function is Rpp(τ) =
〈p(x, 0)p(x, t)〉. The pressure spectrum for the other time series is

Sp2
(f) =

∫ ∞

−∞
16〈p(x, 0)p(x, 2τ)〉eı2πfτdτ

=

∫ ∞

−∞
16Rpp(2τ)e

ı2πfτdτ

=

∫ ∞

−∞
16/2Rpp(2τ)e

ı2π f
2
2τd(2τ)

= 8Sp(f/2). (2.101)

Note the different subscripts. Now this can be generalized with p(x, t) and
γ2p(x, γt) (γ, a constant) to give

Spγ (f) =

∫ ∞

−∞
γ4〈p(x, 0)p(x, γτ)〉eı2πfτdτ

=

∫ ∞

−∞
γ4/γRpp(γτ)e

ı2π f
γ

γτd(γτ)

= γ3Sp(f/γ). (2.102)

This leads to
f

γ
Sp(f/γ) = fSpγ (f)/γ4. (2.103)
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Figure 2.12: The purple line shows the total signal. The blue and green lines
are low pass filtered. The spectra on the right plot show the effects of this
filtering. The variances are in the example, green line: σ2 = 0.50, blue line:
σ2 = 1.00, and purple line: σ2 = 1.50.

This relation is used to compare if pressure spectra at different velocities
scale with each other.

From the definition

σvar =
√

Ev[(x(t) − x̄)2] (2.104)

where var is any variable, the standard deviation valid for a stationary time
series x(t) can be derived for a double sided spectrum to be

σvar =

√

2

∫ ∞

0

Svar(f)df (2.105)

where var is any variable as above. The standard deviation in a specific
frequency range can be found as

σvar,filter =

√

2

∫ fH

fL

Svar(f)df (2.106)

where fL and fH are the low and high limit, respectively. Sometimes a time
series contains useful information at certain frequencies and thus variance in
a specific frequency range is wanted. The discrete version of Eqn. (2.106) is

σvar,filter =

√

√

√

√2

H
∑

k=L

Svar(fk)∆fk (2.107)

When different instruments with different properties are used to measure
the same quantity at the same time the statistics may not be comparable.
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Instruments may have different frequency ranges in which they can measure.
One instrument (I1) which is able to measure up to a given frequency (f1)
is compared with another instrument (I2) which is able to measure up to
frequency (f2) lower than f1. The variance (σ2

var) is not comparable, that is

σ2
var,I1

6= σ2
var,I2

(2.108)

but the spectra are comparable in the frequency range they can measure,
that is

Svar,I1(fi) = S(fi)var,I2 , fi ≤ f2. (2.109)

These two properties are illustrated in Figure 2.12.

2.3 Turbulence

Turbulence is a common state of fluids at high Reynolds numbers. It has
several properties that are universal, some will be briefly described below. In
this work the focus is exclusively on first-order and second-order statistics,
such as spectra. Several models have been proposed to describe turbulence.
The turbulence is assumed isotropic, this means that no direction is preferred.
The model that will be used to describe isotropic turbulence is proposed by
von Kármán (1948).

Turbulence is the fluctuations in velocity about a mean fluid velocity, and
exists in every atmospheric flow. The standard deviation of these turbulent
fluctuations in the wind is typically in the atmosphere in the order of 1 to
10 percent relative to the mean flow, Panofsky and Dutton (1984).

Turbulence can continuously be decomposed into sinusoidal waves. Thus
the turbulence can be described by wave numbers, and in particular the
energy spectrum tensor for isotropic turbulence can be described by the total
kinetic energy Panofsky and Dutton (1984)

Φij(k1, k2, k3) =
E(k)

4π (k2)2

(

k2δij − kikj

)

(2.110)

where the indices, i and j, are from 1 to 3 and k is the vector {k1, k2, k3}.
The indices number corresponds to U , V , and W , respectively in Φij , and
to x, y, and z in ki. The direction for x, y, and z are chordwise, spanwise,
and vertical, respectively. The turbulence spectrum for a given velocity com-
ponent will have a shape that has a maximum at a certain wave number,
kmax which is related to a certain eddy size. The maximum corresponds to
a length scale, LT , which is related as kmax = 1

LT
. The size of an eddy is

inversely proportional to the wave number. From the wave number where
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the highest kinetic energy is found towards higher wave numbers, the energy
is transported from larger eddies to smaller eddies. This range of wave num-
bers is called the inertial subrange. The spectrum is decreasing as k−5/3 in
the inertial subrange.

The energy is by the von Kármán (1948) model given as Mann (1994a)

E(kx, ky, kz) = αǫ2/3

(

k2
x + k2

y + k2
z

)2

(

k2
x + k2

y + k2
z + 1

L2

T

)17/6
. (2.111)

The vertical energy spectrum, Φww is of interest in this work because the
vertical wind component causes an upwash on the aerofoil, that gives a fluc-
tuating lift, see the previous section. When inserting Eqn. (2.111) into Eqn.
(2.110) and the ww-component is taken then

φ(k) = Φww(kx, ky, kz) = αǫ2/3

(

k2
x + k2

y

)

4π
(

k2
x + k2

y + k2
z + 1

L2

T

)17/6
. (2.112)

In the 3-D model in the previous section the upwash is dependent on the
chordwise and spanwise wave number, that is kx and ky. When integrating
Eqn. (2.112) over all wave numbers then the 2-D energy spectrum is given
as

Φww(kx, ky) =

∫ ∞

−∞
Φww(kx, ky, kz)dkz = αǫ2/3

(

k2
x + k2

y

)

Γ
(

7
3

)

4
√
πΓ
(

17
6

)

(

k2
x + k2

y + 1
L2

T

)7/3

(2.113)
For the 1-D model in the previous section then Eqn. (2.113) is further inte-
grated over all ky as

Φww(kx) =

∫ ∞

−∞
Φww(kx, ky)dky = αǫ2/3 3L

5/3
T (8k2

xL
2
T + 3)

110 (k2
xL

2
T + 1)

11/6
. (2.114)

The spectrum then gives the amplitude of the sinusoidal wave given the wave
number for both 1-D and 3-D models. The 2-D model needs a combination
because the wave numbers in x− and z−direction are affecting the aerofoil.

The cross spectrum separated by a distance, ∆y, in spanwise direction
can be derived, Kristensen and Jensen (1979). Then the coherence of the
w-component of turbulence given, Kristensen and Jensen (1979), as

cohww(kx,∆y) =
|χww(kx,∆y)|2
|χww(kx, 0)|2 (2.115)
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can be found for isotropic turbulence. When the spectrum by von Kármán
(1948) is used then the coherence becomes (Mann, Kristensen and Courtney
1991)

cohww(kx,∆y) =

∆y5/6LT (3 + 8k2
xL

2
T )K5/6

(

∆y
√

1+k2
xL2

T

LT

)

12L
1/6
T 25/6(1 + k2

xL
2
T )17/12

−
3∆y11/6

√

1 + k2
xL

2
TK1/6

(

∆y
√

1+k2
xL2

T

LT

)

12L
1/6
T 25/6(1 + k2

xL
2
T )17/12

. (2.116)

where Kν is the modified Bessel function of second kind of order ν as defined
in Appendix A. Then the co-coherence can be found. It is defined as

coh1/2(kx,∆y) =
√

cohww(kx,∆y). (2.117)

2.4 Inflow Noise Model

Inflow noise is a field of concern. The semi-empirical models that estimate
the aerodynamical noise consist of models for different components of noise
generated by the flow around an aerofoil. The inflow noise is the dominant
component and is the subject of this section. It is believed based on mea-
surements by Moriarty and Migliore (2003) and Oerlemans et al. (2007) that
inflow noise does not have that high importance for the total noise as the
inflow noise model suggests. The model for inflow noise is based on Amiet
(1975), and this model is presented below.

2.4.1 Derivation of Acoustical Pressure Spectrum

The analysis is based on flat plate theory. In this case the vertical fluctua-
tions in the flow are responsible for lift fluctuations. These force fluctuations
give pressure fluctuations that can be observed far from the flat plate. Acous-
tic noise is pressure fluctuations that travel with the speed of sound. The
task is to estimate the fraction of pressure fluctuations that are radiated
acoustically given that the force fluctuations (lift fluctuations) are known.

The vertical turbulence component will in nature vary in all dimensions,
i.e. horizontal, vertical, and in time. To simplify the analysis the turbu-
lence is considered to be advected by the mean flow, so the structure and
amplitude of turbulence are static in time. This is called frozen turbulence
or Taylor’s hypothesis. Further the vertical variation in the vertical turbu-
lence component is assumed to have no effect on the lift fluctuations. Only
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fluctuations in the plane of the plate have effect. The turbulence is assumed
to be isotropic in space, also.

The vertical turbulence, w(x, y, t), can be described as a Fourier trans-
formation

w(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞
ˆ̂w(kx, ky) exp[ı(kx{x− Ut} + kyy)]dkxdky. (2.118)

The pressure difference on the wing can be described as

∆P (x, y, t, kx, ky) = 2πρ0UbwF g(x, kx, ky) exp[ı(kyy − kxUt)] (2.119)

Where b = c
2
, c is the chord length, and wF is the Fourier amplitude of a given

mode of kx and ky ( ˆ̂w(kx, ky)). The function g(x, kx, ky) is a transfer function
for how the pressure fluctuations on the aerofoil responds to a gust at a given
chordwise position and can be given by Eqn. (2.53) or Eqn. (2.95). This
transfer function is the wave number dependent part of the lift distribution.
Eqn. (2.119) is identified as the lift distribution. Then

∆P (x, y, t) = 2πρ0Ub

∫ ∞

−∞

∫ ∞

−∞
ˆ̂w(kx, ky)g(x, kx, ky) exp[ı(kyy− kxUt)]dkxdky

(2.120)
When this is Fourier transformed into frequency space it reads

∆P̂T (x, y, ω) =
1

2π

∫ T

−T

∆P (x, y, t) exp[−ıωt]dt

= 2πρ0Ub
1

2π

∫ T

−T

∫ ∞

−∞

∫ ∞

−∞
ˆ̂w(kx, ky)g(x, kx, ky)

× exp[ı(kyy − kxUt)] exp[−ıωt]dkxdkydt. (2.121)

By use of the relations

lim
T→∞

∫ T

−T

exp[ıγt]dt = 2πδ(γ) (2.122)

δ(ax) =
1

|a|δ(x) (2.123)
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Eqn. (2.121) simplifies to

∆P̂T (x, y, ω) = ρ0Ub

∫ T

−T

∫ ∞

−∞

∫ ∞

−∞
ˆ̂w(kx, ky)g(x, kx, ky) exp[−ı(ω + kxU)t]

× exp[ıkyy]dkxdkydt

= 2πρ0Ub

∫ ∞

−∞

∫ ∞

−∞
ˆ̂w(kx, ky)g(x, kx, ky)δ(ω + kxU) exp[ıkyy]dkxdky

= 2πρ0b

∫ ∞

−∞
ˆ̂w(−ω

U
, ky)g(x,−

ω

U
, ky) exp[ıkyy]dky

= 2πρ0b

∫ ∞

−∞
ˆ̂w(Kx, ky)g(x,Kx, ky) exp[ıkyy]dky. (2.124)

The only chordwise frequency excited is Kx = −ω/U .
The cross spectrum is

SQQ(x1, x2, y1, y2, ω) = lim
T→∞

{π

T
〈∆P̂T (x1, y1, ω),∆P̂T (x2, y2, ω)〉

}

.(2.125)

When looking at Eqn. (2.124) the only statistical quantity is ˆ̂w(Kx, ky). That
is

SQQ(x1, x2, y1, y2, ω) = (2πρ0b)
2

×
∫ ∞

−∞

∫ ∞

−∞
lim

T→∞

{π

T
〈 ˆ̂w(Kx, ky) ˆ̂w(Kx, k

′
y)〉
}

×g(x1, Kx, ky)g(x2, Kx, k
′
y)

× exp[−ı(kyy1 − k′yy2)]dkydk
′
y. (2.126)

In order to get a continuous representation of the frequency the time (T ) has
to go to infinity when operating with statistical quantities.

〈∆P̂T (x1, y1, ω),∆P̂T (x2, y2, ω)〉 = (2πρ0b)
2

∫ ∞

−∞

∫ ∞

−∞
〈 ˆ̂w(Kx, ky) ˆ̂w(Kx, k

′
y)〉

×g(x1, Kx, ky)g(x2, Kx, k
′
y)

× exp[−ı(kyy1 − k′yy2)]dkydk
′
y (2.127)

The mean vertical velocity spectrum can be described by

〈 ˆ̂w(Kx, ky), ˆ̂w(Kx, k
′
y)〉 =

R

π
δ(ky − k′y)Φww(Kx, k

′
y) (2.128)

where Φww(Kx, k
′
y) is the energy spectrum of the vertical velocity fluctuations

as defined in Eqn. (2.113), and R is the distance over which ˆ̂w(Kx, k
′
y) is
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integrated to find Eqn. (2.128). Further

lim
T→∞

(

R

T

)

= U. (2.129)

Use of Eqn. (2.128) in Eqns. (2.125) and (2.127) gives

SQQ(x1, x2, y1, y2, ω) = lim
T→∞

{(2πρ0b)
2 π

T

∫ ∞

−∞

∫ ∞

−∞

R

π
δ(ky − k′y)

×Φww(Kx, k
′
y)g(x1, Kx, ky)g(x2, Kx, k

′
y)

× exp[−ı(kyy1 − k′yy2)]dkydk
′
y}

= U(2πρ0b)
2

∫ ∞

−∞
Φww(Kx, ky)g(x1, Kx, ky)

×g(x2, Kx, ky) exp[ıkyη]dky (2.130)

where η = y2 − y1 is the spanwise separation distance.

The effective distance traveled from the emitting point to the receiver
because of advection by the mean flow is

σ =
√

x2 + β2(y2 + z2) (2.131)

where β =
√

1 −M2. When the pressure fluctuations on the surface of
the aerofoil are known then the acoustic pressure at the receiver position is
(Amiet 1975)

P1(x, y, z, ω, x0, y0) =
ıωzF (x0, y0, ω)

4πc0σ2
exp

[

ıω

(

t+
M(x− x0) − σ

c0β2
+
xx0 + yy0β

2

c0β2σ

)]

=
ıωz∆P̂T (x0, y0, ω)

4πc0σ2

× exp

[

ıω

(

t+
M(x− x0) − σ

c0β2
+
xx0 + yy0β

2

c0β2σ

)]

. (2.132)

An oscillating force produces a dipole radiation. The expression in Eqn.
(2.132) is valid in the far field, where the acoustical pressure of a dipole fall
of inversely to the square of the distance. The cross spectrum of the acoustic
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pressure in the far field is then

SPP (x, y, z, ω) = lim
T→∞

{π
T

∫ b

−b

∫ b

−b

∫ d

−d

∫ d

−d

〈P1(x, y, z, ω, x1, y1), P1(x, y, z, ω, x2, y2)〉dy1dy2dx1dx2}

=

(

ωz

4πc0σ2

)2 ∫ b

−b

∫ b

−b

∫ d

−d

∫ d

−d

lim
T→∞

{π
T
〈∆P̂T (x1, y1, ω),∆P̂T (x2, y2, ω)〉}

exp

[

ı
ω

c0β2

{

(x1 − x2)(M − x/σ) + yβ2η/σ
}

]

dy1dy2dx1dx2

=

(

ωz

4πc0σ2

)2 ∫ b

−b

∫ b

−b

∫ d

−d

∫ d

−d

SQQ(x1, x2, y1, y2, ω)

exp

[

ı
ω

c0β2

{

(x1 − x2)(M − x/σ) + yβ2η/σ
}

]

dy1dy2dx1dx2 (2.133)

where d is the half span. An acoustic lift is found as

L(x,Kx, ky) =

∫ b

b

g(x0, Kx, ky) exp
[

−ıωx0(M − x/σ)/c0β
2
]

dx0. (2.134)

It is called acoustic because it is the integrated lift distribution advected by
an acoustic wave, i.e. the acoustical pressure fluctuation in the far field due
to the fluctuating lift distribution on the aerofoil. Now the cross spectrum
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of the acoustic pressure can be simplified

SPP (x, y, z, ω) =

(

ωz

4πc0σ2

)2

U(2πρ0b)
2

∫ ∞

−∞

∫ b

−b

∫ b

−b

∫ d

−d

∫ d

−d

× exp[ıkyη]Φww(Kx, ky)g(x1, Kx, ky)g(x2, Kx, ky)

× exp

[

ı
ω

c0β2

{

(x1 − x2)(M − x/σ) + yβ2η/σ
}

]

dy1dy2dx1dx2dky

=

(

ωzρ0b

2c0σ2

)2

U

∫ ∞

−∞
|L(x,Kx, ky)|2Φww(Kx, ky)

×
∫ d

−d

∫ d

−d

exp

[

ıη

(

ωy

c0σ
+ ky

)]

dy1dy2dky

=

(

ωzρ0b

2c0σ2

)2

U

∫ ∞

−∞





2 sin
(

d
[

ky + ωy
c0σ

])

ky + ωy
c0σ





2

×|L(x,Kx, ky)|2Φww(Kx, ky)dky

=

(

ωzρ0b

c0σ2

)2

Uπd

∫ ∞

−∞

sin2
(

d
[

ky + ωy
c0σ

])

(

ky + ωy
c0σ

)2

πd

×|L(x,Kx, ky)|2Φww(Kx, ky)dky. (2.135)

The following identity can be used to simplify Eqn. (2.135) further

lim
d→∞

[

sin2(ξd)

ξ2πd

]

= δ(ξ). (2.136)

When d→ ∞ and the plane in interest is the y = 0-plane then Eqn. (2.135)
can be approximated to

SPP (x, 0, z, ω) =

(

ωzρ0b

c0σ2

)2

Uπd

×
∫ ∞

−∞
δ(ky)|L(x,Kx, ky)|2Φww(Kx, ky)dky (2.137)

≈
(

ωzρ0b

c0σ2

)2

Uπd|L(x,Kx, 0)|2Φww(Kx, 0). (2.138)

This approximation uses that

f(D, d) =

∫ D

0

sin2(ξd)
dξ

ξ2
= −sin2(Dd)

D
+ dSi(2Dd) (2.139)
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where Si(D) =
∫ D

0
sin t

t
dt. The integral in Eqn. (2.137) obtains most of its

value close to D = 0 because

lim
r→∞

{f(
10

d
, d)/f(

r

d
, d)} = 0.9668. (2.140)

The approximation in Eqn. (2.138) is thus under the assumption that |L(x,Kx, ky)|2
and Φww(Kx, ky) does not vary much in the integration range given by Eqn.
(2.140).

2.4.2 Estimation of one third octave Sound Pressure

Level

The spectrum of the acoustic pressure in far field is from Eqn. (2.138)
found to be (Amiet 1975)

SPP (0, 0, z, ω) =

(

ωρ0b

c0z

)2

πUd|G(ω̂)|2Φww(Kx, 0) (2.141)

where G(ω̂) is the transfer function from Adamczyk (1974) and Kx = − ω
U

.
In the high frequency limit the transfer function becomes

lim
ω→∞

G(ω̂) =
−ı

πω̂
√
M
, ω̂ =

ωb

U
, M =

U

c0
(2.142)

and then

|G(ω̂)|2 =
Uc0

(πωb)2
. (2.143)

Φww(kx, ky) from Eqn. (2.113) is reformulated by Amiet (1975) as

Φww(kx, ky) =
4

9π

u2

k2
e

k̂2
x + k̂2

y

(1 + k̂2
x + k̂2

y)
7/3

(2.144)

where ke =
√

π
LT

Γ(5/6)
Γ(1/3)

, k̂x = kx

ke
, and k̂y = ky

ke
. Then the energy spectrum of the

w-component of turbulence in Eqn. (2.141) is

Φww(Kx, 0) =
4

9π

u2

k2
e

K̂2
x

(1 + K̂2
x)7/3

. (2.145)
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Inserting Eqn. (2.145) and Eqn. (2.143) in Eqn. (2.138) then

SPP (0, 0, z, ω) =
(ρ0

z

)2 U2dL2

π3c0

(

2

3

)2

u2

[

Γ(1/3)
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Before the sound pressure level in the one-third octave band, SPL1/3 is esti-
mated, we look at the definitions of the one-third octave band. The center
frequency, the lower limit, and the upper limit of an one-third octave band
are defined by

fc = 1000 · 100.1i, i ∈ Z ∧ i ∈ [−20, 13] (2.147)

fL = 1000 · 100.1(i−0.5), i ∈ Z ∧ i ∈ [−20, 13] (2.148)

fH = 1000 · 100.1(i+0.5), i ∈ Z ∧ i ∈ [−20, 13] (2.149)

which imply that the center frequency is between 10Hz and 20.0kHz. Then
the center frequency is defined in the human hearing range. This implies
that the frequency range of a band is

∆f = fH − fL = fc(100.05 − 10−0.05) ≈ 0.231fc (2.150)

Further ∆ω = 2π∆f = 2π0.231fc = 0.231ωc The sound pressure level in the
one-third octave band, SPL1/3 is given by

SPL1/3 = 10 log10

[

2SPP∆ω

p2
ref

]

, pref = 2 · 10−5Pa. (2.151)

When inserting Eqn. (2.146) in Eqn. (2.151) and recalling Kx = − ω
U

, it is
seen that the expression in square brackets is dimensionless. SPP is derived
for a double sided distribution of wave numbers and thus it is necessary to
multiply with 2 to get the estimate for positive frequencies. The estimate of
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the sound pressure level in the one-third octave band becomes then
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The density of air, ρ0, is set to 1.2 kg/m3 and the speed of sound in air, c0,
is set to 340 m/s (Amiet 1975) then Eqn. (2.152) becomes

SPL1/3 = 10 log10

[

LTd

z2

u2

U2
M5 K̂3

x

(1 + K̂2
x)7/3

]

+ 181.3. (2.153)

This is used in Moriarty and Migliore (2003) to estimate the noise due to
atmospheric turbulence.

The sound pressure level due to atmospheric turbulence can alternatively
be calculated by using Eqn. (2.137) in Eqn. (2.151) and the transfer function
for lift distribution in Eqn. (2.53) or Eqn. (2.95).

2.5 Other Aeroacoustic Sources

The noise generated from an aerofoil, the so-called aero-acoustical noise,
is caused by several mechanisms (Wagner et al. 1996). The main subject of
this work is inflow noise, noise due to atmospheric turbulence. In this section
noise due to other mechanisms (Wagner et al. 1996) will be discussed briefly.

Trailing edge noise occurs as a swishing sound in the frequency range of
500 to 1000 Hz. It is due to turbulent eddies in the boundary layer very close
to the surface of the aerofoil. When these turbulent eddies pass the trailing
edge they are scattered and thus the design of the trailing edge is a key factor
for the amount of trailing edge noise. Further the structure of the boundary
layer is important for the trailing edge noise.

Noise due to vortex shedding in a laminar boundary layer occurs at a
low Reynolds number, below approximately 106. It is tonal of character
and is caused by interaction of upstream traveling trailing edge (see above)
generated acoustic waves and aerodynamic instabilities.
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Tip Noise is a broadband phenomenon. It is as trailing edge noise due to
scattered turbulence and is dependent on design. Tip noise is believed to be
responsible for an increase of 1 to 2dB of the total sound pressure level due
to aero-acoustics in parts of the frequency range.

Noise from turbulence caused by separation is of the same nature as
trailing edge noise. The noise is due to scattered turbulence from the trailing
edge, in this case the size of the eddies is covering a larger range. When the
flow is fully separated from the leading edge, i.e. at stall, then the noise is
generated from the whole aerofoil. The noise due to separation and stall is
of broadband nature.

The shape of the trailing edge is causing noise as well. The design of the
trailing edge is important for how much noise is produced because the trailing
edge is not perfectly sharp, i.e. the trailing edge is blunt. The thickness of
the trailing edge and the height of the boundary layer are key parameters
to estimate the bluntness noise from the trailing edge. The thickness of the
trailing edge is furthermore dependent on the shaping of the trailing edge.
The bluntness noise is a narrow band and tonal phenomenon. The size of
the narrow band is dependent on the shaping.

Practical issues as e.g. weathering and production tolerances cause noise
as well. This means that uncontrollable factors in the operation of the turbine
cause aerodynamically generated noise. This type of noise is not predictable.

2.6 Conclusions Regarding Theory

The purpose of the derivations in the previous sections is to show the
details of existing theory. The theory will be applied in the analysis of data.
The models presented in this chapter are dimensionless which gives confi-
dence that the models can be used for several purposes.

The basic aerodynamics is described in the framework of potential theory.
A 1-D model is derived with details. The 1-D model is based on Sears (1941)
and predicts transfer functions for the fluctuations of lift distribution at any
point on a flat plate and for the fluctuations of the lift on the plate. The gust
responsible for the pressure and lift fluctuations on the aerofoil is vertical and
has a wave component in the direction of mean flow. The transfer function
for the lift fluctuations gives the Sears function, S(κ), which is a basic result
in unsteady aerodynamics.

A 2-D model, Goldstein and Atassi (1976) and Atassi (1984), is presented
which predicts the transfer function for the lift fluctuations for a flat plate
that can be bend in a parabolic fashion and placed at an angle of attack
(AOA) to the mean flow. The two parameters, camber (the plate is bend)
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and AOA, give a mean lift. Thus the 2-D model is able to predict the lift
fluctuations at aerodynamically conditions that are similar to the conditions
that an aerofoil experiences in a real flow. The gust responsible for the lift
fluctuations is 2-D, and it has a component in the direction of the mean flow
and a component in the vertical direction.

A 3-D model, Graham (1970), is discussed which predicts the lift fluctua-
tions for a flat plate that extends in chord wise and spanwise direction. The
flat 2-D flat plate experiences a vertical gust with a wave front that can be
skewed to the leading edge of the plate. A method is developed to describe
the fluctuations of the lift distribution in chord wise direction.

The 1-D model by Sears (1941) and the 2-D model by Goldstein and
Atassi (1976) do not account for spanwise effects of the gust, which the 3-D
model by Graham (1970) does. The unsteady inflow on an aerofoil will have
spanwise variations and it is therefore important to take these variations in
account as the 3-D model does. The 3-D effects due to the finite length of
the aerofoil and variation in spanwise variation in the thickness and width of
the aerofoil are assumed to be negligible.

The energy spectrum of isotropic turbulence, von Kármán (1948), is de-
scribed. The coherence of the vertical wind component, w, with a spanwise
separation distance is presented, Mann et al. (1991). The statistical theory
to obtain pressure and lift spectra from the turbulence energy spectra and
transfer functions of lift distribution and lift is discussed. Several properties
of spectra is shown as well.

The waves are in the 1-D case and in the 2-D case considered to be
advected over the aerofoil. Turbulence can be regarded as consisting of waves
equally distributed in all directions when it is isotropic. This implies that all
waves with a given wave number, kx, in the direction of the mean flow have
to be included in the 1-D and 2-D models, when the pressure or lift is found.

An acoustical model is described and the details derived that predicts
noise due to atmospheric turbulence, Amiet (1975). The model assumes that
the noise is emitted as a dipole. The model uses as input a transfer function
for the fluctuations of lift distribution and is based on the oscillations of a
flat plate. The output of the model is the sound pressure level (SPL) in the
third octave frequency band.

The lift fluctuations are sufficient for estimating sound emission in the far
field at low Mach numbers as described in Howe (2003). The low frequencies
will not be affected by the retarded time differences because the phase is
almost identical from various positions on the chord as seen from a receiver
point in the far field, and the high frequencies are not important because
they are outside the scope of this thesis. The aerodynamical pressure is used
in the acoustical model, because the Mach number is low.



Chapter 3

Experiments

The aim of the experiments was to obtain knowledge of aerodynamic
pressure phenomena at the surface of an aerofoil. Microphones were mounted
on the surface in order to obtain measurements of high frequency resolution
of the pressure fluctuations at different positions at the surface of the aerofoil.
Similar previous experiments has been made by Risø, DTU at lower frequency
resolution by using pressure tabs to measure the mean pressure.

Only the aerodynamical pressure were measured. These are used to vali-
date the unsteady aerodynamical models described in Chapter 2.

3.1 Setup of Experiments in Velux Wind Tun-

nel

The wind tunnel used to obtain the measurements analyzed below is
owned by the window manufacturer, Velux, and it is located 10 km north-
east of Horsens in Denmark. It is mainly used for tests of new product
components, and it is rented to external users for multiple purposes. The
wind tunnel is an open jet wind tunnel. The maximum wind speed of the
tunnel is 40m/s and the turbulence intensity is approximately 1%. A sketch
of the wind tunnel is shown in Figure 3.1. The test section of the tunnel
(no. 4 and 5 in Figure 3.1) is 10.5 m long from the inlet of the jet to the
outlet and 7.5 m wide. The height in the test section is 7.5 m. A detailed
sketch of the test section is seen in Figures 3.6 and Figure 3.11. The vertical
and horizontal profile of the jet are assumed to be constant. The conditions
for measurements in Velux Wind tunnel are treated in detail in Fuglsang,
Antoniou, Sørensen and Madsen (1998).

The experiments were conducted in December 2006 and in June 2007.
The microphones used in both experiments are of type Sennheiser KE-4-211-
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Figure 3.1: Sketch of Velux wind tunnel.

2, and they have a sampling frequency of maximum 50 kHz. The response
function given by the manufacturer is constant in the range between 20Hz
and 20kHz. Measurements of the pressure fluctuations at the surface of
the aerofoil are also obtained with pressure tabs, and they have a sample
frequency of maximum 400 Hz but most of the samples are obtained at 100
Hz.

The signal from the microphones was in Volts. The description of the
microphones shows that the sensitivity is 10 mV/Pa. This is used to convert
the Volt signals into pressure (Pascal). When the Volt signal is multiplied
with 100 then the pressure is obtained. The properties of spectra then gives

Sp(f) = 1002SV (f). (3.1)

This property is used in the plots for microphones shown in this chapter.
The plots are thus with Sp(f) in units of Pa2s.

The microphones were placed in a device which was mounted such that
it was flush with the surface of the aerofoil. The way the microphone was
mounted in the device left a chamber between the membrane of the micro-
phone and the surface of the aerofoil. The design of the chamber is shown in
Figure 3.2. The chamber caused the signal to be unreliable above a cut-off
frequency, which is dependent on the dimensions of the chamber between
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Figure 3.2: Sketch of the chamber attached to the aerofoil. The dimensions
necessary to calculate the cut-off frequency is shown. Further the mean wind,
U , is shown.

the microphone and the surface of the aerofoil. The cut-off frequency can be
estimated by the theory of a Helmholtz resonator. The eigenfrequency of a
Helmholtz resonator is given by Martin, Mus and Mus (2004)

fH =
c0
2π

√

Scav

L′
eVcav

(3.2)

where c0 is the speed of sound, Scav is the area of the hole of the chamber flush
with surface of the aerofoil (π(d1/2)2). The length of the tube in the device in
which the microphone is mounted is h1, where L′

e is the effective length of a
flanged tube given by L′

e = h1+1.7d1/2 (Martin et al. 2004), d1/2 is the radius
of the tube/hole. The volume of the chamber not including the volume of the
tube is Vcav. Specific values of the eigenfrequency of a Helmholtz resonator
in the experiments described in this Chapter are given in the end of Sections
3.1.1 and 3.1.2. The eigenfrequencies are different in the two experiments
because the device in which the microphones were mounted was redesigned
to increase the eigenfrequency in the second experiment. The change was
made to increase the frequency range of the pressure signal.

The angles of attack, AOA’s, are corrected due to the fact that the jet is
deflected by the proximity of the aerofoil to the floor. The vertical distance
was 1.7m and this can have an influence on the jet when the suction side
is against the floor, i.e. at negative angles of attack. The drag, the lift
and the Cp curve from the pressure tabs data are corrected to give a free
stream angle of attack by the method of Fuglsang et al. (1998) and Gaunaa,
Fuglsang, Bak and Antoniou (2004). The range of AOA’s is −5◦ to 10◦ for
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x [mm] y [mm] Mic no.
2.0 -60.0 11

24.8 -60.0 10
75.7 70.0 4
75.7 -40.0 5
75.7 -60.0 6
75.7 -70.0 7
75.7 -120.0 8
75.7 -130.0 9

113.5 -60.0 3
448.5 -60.0 2
917.2 -60.0 1

Table 3.1: Position on the NACA0015
profile of the 11 microphones.

d1 0.5mm
d2 4.7mm
h1 5mm
h2 0.4mm
h3 0.4mm
Scav 1.96·10−7m2

L′
e 5.4·10−3m

Vcav 9.53·10−9m3

Table 3.2: The dimensions
of the chamber of the de-
vice in which the microphone
are mounted in the experiment
with a NACA0015 profile. See
also Figure 3.2

the NACA0015 profile by this method in the first experiment. The range of
AOA’s is not symmetrical probably because of the relative wide chord (1m)
in combination with the short vertical distance from the floor to the aerofoil.
The NACA63415 profile in the second experiment is by experience known
to have a range of AOA of -20◦ to 10◦ in which the measurements are valid
(Fuglsang et al. 1998).

The zero lift AOA is for NACA0015 0◦ because this profile is symmetrical,
and for the asymmetrical NACA63415 it is approximately −1.5◦ (Abbott and
von Doenhoff 1959).

The section of an aerofoil used in both experiments has a span of 1.90m
and is mounted on a plate in each end, see the picture in Figure 3.3. The
assumption is made that the measurement of pressure by pressure tabs and
microphones is not affected by the flow around and the flow induced by the
end plates.

The coordinate system through out this chapter is defined with the x-
axis in chordwise direction with zero at the leading edge and positive in the
direction towards the trailing edge. The y-axis is in spanwise direction and is
zero at midspan. The z-axis is depicting the thickness and is positive towards
the suction side of the aerofoil.

3.1.1 Setup of Experiment 1: NACA0015

In this experiment 11 microphones were placed on the suction side (the
upper side) on an aerofoil with a NACA0015 profile. The dimensions of the
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Figure 3.3: Picture of the stand in which the aerofoils were mounted. The
picture is taken downstream of the aerofoil. The stand was identical in both
experiments.
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Figure 3.4: Position of microphones and pressure tabs relative to midspan
of the aerofoil in the experiment with a NACA0015 profile. Blue dots are
pressure tabs, and red dots are microphones. The microphone number refers
to Table 3.1. The red, dashed line is the section shown in Figure 3.5.

aerofoil are a span of 1.90 m and a chord length of 1.00 m. This gives a
Reynolds number of maximum 2.7 · 106 at 40 m/s. The NACA0015 profile
with the above mentioned dimensions will have a lift curve that increases
less due to separation at an AOA of approximately 12◦ at a mean flow speed
of 25m/s (Abbott and von Doenhoff 1959). Further maximum lift occurs at
an AOA of approximately 16◦ at 25m/s (Abbott and von Doenhoff 1959).
One microphone was placed on the wall for reference, see Figure 3.6. The
locations of the 11 microphones are sketched in Table 3.1 and Figures 3.4
and 3.5. The microphones were placed on the upper side (suction side) of
the profile. The measurements of the microphones were mostly sampled at
a frequency of 50 kHz in timeseries of 10 seconds. Run 3 was sampled at
5 kHz in timeseries of 120 seconds. The positions of the microphones were
chosen to match the positions of microphones in a similar study by Mish
and Devenport (2006). Because of the limited number of microphones in our
campaign not all of the positions in Mish and Devenport (2006) are chosen.

The setup of instruments in the wind tunnel is given in Figure 3.6. The
Figure shows the position of the reference microphone after Run 1 and the
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x y z no. x y z no. x y z no.
917.2 3.0 -15.6 p30 838.7 6.0 -27.1 p29 769.5 9.0 -36.5 p28
700.8 12.0 -45.0 p27 632.8 15.0 -52.9 p26 565.3 18.0 -60.0 p25
506.7 21.0 -65.2 p24 448.5 24.0 -69.4 p23 398.8 27.0 -72.3 p22
349.5 30.0 -74.2 p21 300.7 33.0 -74.8 p20 260.0 36.0 -74.4 p19
219.7 39.0 -72.9 p18 187.7 41.0 -70.6 p17 159.0 43.0 -67.7 p16
133.5 45.0 -64.6 p15 111.5 42.0 -60.8 p14 92.8 39.0 -56.9 p13
75.7 36.0 -52.7 p12 60.3 33.0 -48.1 p11 46.7 30.0 -43.1 p10
35.0 27.0 -37.9 p9 24.8 24.0 -32.5 p8 17.3 21.0 -27.5 p7
11.3 18.0 -22.5 p6 7.2 15.0 -18.1 p5 4.1 12.0 -13.8 p4
2.0 9.0 -9.6 p3 0.8 6.0 -6.0 p2 0.2 3.0 -3.1 p1
0.0 0.0 0.0 LE0 0.2 3.0 3.1 s1 0.8 6.0 6.0 s2
2.0 9.0 9.6 s3 4.1 12.0 13.8 s4 7.2 15.0 18.1 s5

11.3 18.0 22.5 s6 17.3 21.0 27.5 s7 24.8 24.0 32.5 s8
35.0 27.0 37.9 s9 46.7 30.0 43.1 s10 60.3 33.0 48.1 s11
75.7 36.0 52.7 s12 92.8 39.0 56.9 s13 111.5 42.0 60.8 s14

133.5 45.0 64.6 s15 159.0 43.0 67.7 s16 187.7 41.0 70.6 s17
219.7 39.0 72.9 s18 260.0 36.0 74.4 s19 300.7 33.0 74.8 s20
349.5 30.0 74.2 s21 398.8 27.0 72.3 s22 448.5 24.0 69.4 s23
506.7 21.0 65.2 s24 565.3 18.0 60.0 s25 632.8 15.0 52.9 s26
700.8 12.0 45.0 s27 769.5 9.0 36.5 s28 838.7 6.0 27.1 s29
917.2 3.0 15.6 s30 1000.0 0.0 00. TE0

Table 3.3: Positions of pressure tabs. Note the z-position denotes whether the instrument is on the pressure side
(negative z) or on the suction side (positive z). All measures are mm. The x-coordinates are from the leading edge.
See also Figure 3.4.
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Figure 3.5: Sketch of the NACA0015 profile. The red dots are the positions
of microphones. The positions of microphones are at the dashed line shown
in Figure 3.4

approximate position of the reference microphone at Run 1 in the initial
configuration.

The mean pressure were obtained by measurements with a known mea-
surement technique, where 62 pressure tabs were placed on the profile as
well. 30 were placed on the suction side and 30 on the pressure side. Fur-
thermore, one was placed at the leading edge and one on the trailing edge.
The positions of the pressure tabs can be seen in Figure 3.4 and Table 3.3. In
the figure only the positions on the suction side and at the edges are shown.
The pressure tabs on the pressure side are placed symmetrically in identi-
cal x- and z-positions (see Table 3.3). The pressure tabs measurements are
generally sampled with a frequency of 100 Hz in time series of 30 seconds.
Run 3 was sampled at 400 Hz in time series of ∼116 seconds. A triple wired
hotwire was used as well, and the sample frequency is 10 kHz, except in Run
3 in which it was 5 kHz. The position of the hotwire stand is seen in Figure
3.6, and the instrumentation of the hotwire stand is seen in Figure 3.8.

The background noise was measured with a microphone during all runs.
The characteristics of the runs are given in Table 3.4. The first run was
primarily at different angle of attack and constant wind speed (25 m/s), and
secondarily at different wind speed and an angle of attack of −6.6◦ , see Table
3.4. It was discovered that a bolt was not tightened at the first run, the bolt
was then fixed. At the second run the microphone measuring the background
was moved to obtain information on how the background pressure level was
changing spatially in the test section. The measurements were at different
wind speeds at three different angle of attacks, see Table 3.4. The angles
are slightly different because they are free stream corrected. In the third
run long time series (120 seconds) were obtained. The measurements were
obtained at 25.4 m/s at different angles of attack, see Table 3.4.

The cut-off frequency of the device used in this experiment is by Eqn.
(3.2) 3.4 kHz. The dimensions of the chamber according Figure 3.2 are given
in Table 3.2.
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Figure 3.6: Location of instruments and aerofoil in Velux wind tunnel in the
experiment with a NACA0015 profile. All measures are in meters. See also
Figure 3.8 for a detailed description of the hotwire stand.
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Profile of NACA63415 and microphone positions

Figure 3.7: The shape of the NACA63415 profile. The positions of micro-
phones are shown by the red dots.

Figure 3.8: Detailed diagram of the
instrumentation of the hotwire stand.
The jet is into the paper plane.

d1 1.5mm
d2 4.7mm
h1 1.5mm
h2 0.4mm
h3 0.4mm
Scav 1.77·10−6m2

L′
e 2.78·10−3m

Vcav 1.02·10−8m3

Table 3.5: The dimensions
of the chamber of the device
in which the microphones are
mounted in experiment 2 with
a NACA63415 profile. See also
Figure 3.2
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Run 1 Run 2 Run 3
Leg αcor [◦ ] U [m/s] αcor [◦ ] U [m/s] αcor [◦ ] U [m/s]

1 -6.6 15 -5.8 15 -6.5 25.4
2 -6.6 21 -5.9 20 -3.2 25.4
3 -6.6 25 -6.3 25 -1.3 25.4
4 -3.3 25 -6.5 30 0.2 25.4
5 0.1 25 -6.6 35 1.9 25.4
6 3.3 25 -6.7 40 3.5 25.4
7 4.7 25 6.3 15 5.2 25.4
8 5.9 25 6.3 20 6.7 25.4
9 7.1 25 6.2 25 8.3 25.4

10 8.6 25 6.2 30 9.9 25.4
11 9.8 25 6.0 35 12.2 25.4
12 11.2 25 5.8 40 14.3 25.4
13 -0.2 15 16.7 25.4
14 -0.3 20 20.9 25.4
15 -0.4 25 24.7 25.4
16 -0.5 30 27.4 25.4
17 -0.7 35 30.0 25.4
18 -0.8 40

Table 3.4: Characteristics of the experiment at Velux with NACA0015 profile.
U is mean wind speed and αcor is the estimated free-stream corrected angle
of attack.

3.1.2 Setup of Experiment 2: NACA63415

Here 3 runs with data from microphones of the type Sennheiser KE-4-
211-2 were obtained on a NACA63415 profile, see Figure 3.7. The three runs
investigate the influence of different angles of attack (AOA) at a sampling
frequency of 50kHz in 10s. The last of these was conducted with vortex
generators mounted 0.03m from the leading edge in all span. Run 1 was
sampled at a mean wind speed of 40 m/s and Run 2 and 3 at 30 m/s, see
Table 3.8.

The aerofoil on which the microphones were mounted is a NACA63415
profile with a chord length of 0.6m and a span of 2m. This gives a Reynolds
number of maximum 1.6 · 106 at 40 m/s, and zero lift is at an AOA of −1.5◦.
The lift curve increases less due to separation at an AOA of approximately
11◦ and attains a maximum lift at an AOA of approximately 15◦ at 30 m/s
for the dimensions of the profile mentioned above (Abbott and von Doenhoff
1959). The profile of the aerofoil is shown in Figure 3.7. The microphones
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Figure 3.9: Positions of microphones and pressure tabs on suction side on
the NACA63415 profile. Blue dots are pressure tabs, and red dots are mi-
crophones. The microphones on the green line are used in Section 4.2.2.

were placed in order to give both chordwise and spanwise information and
were placed on both suction and pressure sides of the profile. The positions
of the microphones on both sides can be seen in Table 3.7 and in Figures 3.9
and 3.10 which are a view of the aerofoil above the profile. The spanwise
positions in Figures 3.9 and 3.10 are from the midpoint of the aerofoil and
are positive to the right relative to the inflow. 69 microphones were placed
on the aerofoil, and one microphone to obtain information about the general
background level in the tunnel was placed on the wall (reference microphone),
see Figure 3.11. Microphones no. 27 and no. 35 are malfunctioning, see
Figure 3.9 and Table 3.7. In total, 66 pressure tabs were used as in the
experiment with a NACA0015 profile. The positions of the pressure tabs are
shown in Table 3.6 and in Figures 3.9 and 3.10.

The cut-off frequency of the microphone spectra is above 10 kHz in this
experiment. The estimate of the cut-off frequency given by Eqn. (3.2) for
the devices used in these measurements gives a frequency of 13.6 kHz by use
of the dimensions given in Table 3.5. This estimate of the cutoff frequency
is close to the observed frequency.
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x y z no. x y z no. x y z no.
600.0 0.0 0.0 p25 579.8 -3.0 3.8 s40 549.8 -6.0 9.5 s39
520.8 -9.0 15.2 s38 493.3 -12.0 20.8 s37 465.8 -15.0 26.4 s36
438.8 -18.0 31.8 s35 413.8 -21.0 36.5 s34 388.9 -24.0 41.0 s33
364.9 -27.0 44.9 s32 341.9 -30.0 48.2 s31 319.4 -33.0 51.1 s30
297.5 -36.0 53.5 s29 276.5 -39.0 55.3 s28 256.5 -42.0 56.5 s27
237.5 -45.0 57.2 s26 218.5 -48.0 57.4 s25 201.0 -51.0 57.2 s24
184.0 -54.0 56.5 s23 167.5 -60.0 55.4 s22 152.7 -57.0 54.1 s21
137.0 -54.0 52.3 s20 124.2 -51.0 50.6 s19 110.0 -48.0 48.3 s18
98.6 -45.0 46.2 s17 87.1 -42.0 43.9 s16 76.2 -39.0 41.4 s15
66.4 -36.0 38.9 s14 57.2 -33.0 36.3 s13 48.7 -30.0 33.6 s12
41.1 -27.0 30.9 s11 34.3 -24.0 28.3 s10 28.2 -21.0 25.7 s9
22.9 -18.0 23.2 s8 18.3 -15.0 20.8 s7 14.4 -12.0 18.5 s6
11.1 -9.0 16.4 s5 8.5 -6.0 14.6 s4 6.5 -3.0 12.9 s3
2.9 0.0 9.3 s2 0.3 0.0 5.0 s1 0.0 0.0 0.0 LE
2.3 0.0 -4.4 p1 5.6 0.0 -7.9 p2 8.7 -3.0 -9.7 p3

13.1 -6.0 -11.8 p4 19.3 -9.0 -14.2 p5 27.6 -12.0 -16.8 p6
38.0 -15.0 -19.4 p7 50.7 -18.0 -22.1 p8 65.4 -21.0 -24.6 p9
82.6 -24.0 -26.9 p10 101.6 -27.0 -28.9 p11 123.0 -30.0 -30.6 p12

147.0 -33.0 -32.0 p13 173.0 -36.0 -32.8 p14 201.0 -30.0 -32.8 p15
232.0 -27.0 -31.9 p16 265.0 -24.0 -29.9 p17 309.9 -21.0 -25.7 p18
336.9 -18.0 -22.7 p19 376.9 -15.0 -17.6 p20 418.9 -12.0 -12.0 p21
462.9 -9.0 -6.3 p22 510.0 -6.0 -1.1 p23 560.0 -3.0 1.9 p24

Table 3.6: Positions of pressure tabs on the NACA63415 profile. Note the z-position denotes whether the instrument
is on the pressure side (negative z) or on the suction side (positive z). All measures are mm.
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x y z no. x y z Mic.no. x y z Mic.no.
549.8 -86.0 9.5 63 493.3 -101.0 20.8 62 465.8 -98.0 26.4 61
438.8 -95.0 31.8 60 413.8 -92.0 36.5 59 388.9 -89.0 41.0 58
364.9 -86.0 44.8 57 341.9 -83.0 48.2 56 319.4 -80.0 51.1 55
297.5 -101.0 53.5 54 276.5 -98.0 55.3 53 256.5 -95.0 56.5 70
237.5 -92.0 57.2 52 218.5 -89.0 57.4 51 201.0 -86.0 57.2 50
184.0 -83.0 56.5 49 167.5 -80.0 55.4 47 152.7 -101.0 54.1 45
137.0 -98.0 52.3 44 124.2 -95.0 50.6 43 110.0 -92.0 48.3 42
98.6 -89.0 46.2 41 87.1 -86.0 43.9 34 76.2 -83.0 41.4 33
66.4 -80.0 38.9 32 57.2 -101.0 36.3 31 48.7 -98.0 33.6 30
34.3 -92.0 28.3 29 22.9 -86.0 23.2 22 14.4 -80.0 18.5 21
14.1 -96.0 18.4 23 14.1 -156.0 18.4 24 14.1 -396.0 18.4 25
14.1 -66.0 18.4 26 14.1 44.0 18.4 27 14.1 564.0 18.4 28
77.3 -96.0 41.7 35 77.3 -156.0 41.7 36 77.3 -396.0 41.7 37
77.3 -66.0 41.7 38 77.3 44.0 41.7 39 77.3 564.0 41.7 40

540.0 -96.0 11.4 64 540.0 -156.0 11.4 65 540.0 -396.0 11.4 66
540.0 -66.0 11.4 67 540.0 44.0 11.4 68 540.0 564.0 11.4 69
157.5 -40.0 54.6 48 142.7 -141.0 53.0 46 19.3 -80.0 -14.2 2
27.6 -83.0 -16.8 3 38.0 -86.0 -19.4 4 50.7 -89.0 -22.1 5
65.4 -92.0 -24.6 6 82.6 -95.0 -26.9 7 101.6 -98.0 -28.9 8

123.0 -101.0 -30.6 9 147.0 -80.0 -32.0 10 173.0 -83.0 -32.8 11
201.0 -86.0 -32.8 12 232.0 -89.0 -31.9 13 265.0 -92.0 -29.9 14
309.9 -95.0 -25.7 15 336.9 -98.0 -22.7 16 376.9 -101.0 -17.6 17
418.9 -80.0 -12.0 18 462.9 -83.0 -6.3 19 510.0 -86.0 -1.1 20

Table 3.7: Positions of microphones on the NACA63415 profile. Note the z-position denotes whether the instrument
is on the pressure side (negative z) or on the suction side (positive z). All measures are mm.
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Figure 3.10: Positions of microphones and pressure tabs on pressure side seen
from above (suction side) on the NACA63415 profile. Blue dots are pressure
tabs, and red dots are microphones. The microphones on the green line are
used in Section 4.2.2.

3.2 Results

The data for hotwire, microphone, 5-hole pitot tube, and pressure tabs
measurements for the experiments carried out in Velux with a NACA0015
and a NACA63415 profile will be discussed below.

3.2.1 Experiment 1: NACA0015

Hotwire Data

By inspection of the calibrated data, it was discovered that the instrument
might not have been aligned well enough with the free stream. The mean of
the two velocity components supposed to be perpendicular to the direction
of the free stream (〈V 〉, 〈W 〉, where 〈 〉 denotes mean) was not 0. Therefore
the data in each timeseries were rotated, such that 〈V 〉 = 〈W 〉 = 0. The
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Figure 3.11: Location of instruments and aerofoil in the experiment with a
NACA63415 profile. All measures are in meters. See also Figure 3.8 for a
detailed description of the hotwire stand.
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Run 1 Run 2 Run 3
Leg αcor [◦ ] U [m/s] αcor [◦ ] U [m/s] αcor [◦ ] U [m/s]

1 -10.6 40 -3.3 30 -3.4 30
2 -8.9 40 -1.6 30 -0.1 30
3 -7.3 40 0.1 30 3.3 30
4 -5.7 40 1.8 30 6.7 30
5 -3.9 40 3.4 30 10.2 30
6 -2.3 40 5.0 30 13.8 30
7 -0.6 40 6.8 30 15.9 30
8 1.0 40 8.5 30
9 2.6 40 10.2 30

10 4.3 40 12.0 30
11 5.9 40 13.8 30
12 7.6 40 16.0 30
13 9.2 40
14 11.0 40
15 13.0 40

Table 3.8: Characteristics of experiments at the experiment for a
NACA63415 profile. U is mean wind speed and αcor is the free-stream cor-
rected angle of attack estimated.

transformation is given by

R =







U
|U|

V
|U|

W
|U|

−V
|n×U|

−U
|n×U| 0

−UW
|U||n×U|

−V W
|U||n×U|

|n×U|
|Ū|











U(t)
V (t)
W (t)



 (3.3)

according to Nielsen (1998). U = {U, V,W} in Eqn. (3.3) is the mean
velocities of the timeseries. The normal vector n = {0, 0, 1} points in the
vertical direction, thus assuming that the hotwire device is perfectly vertical.
The vector {U(t), V (t),W (t)} is the single datapoint in the timeseries at the
time of measurement, t.

The angle of rotation of the alignment at each measurement is shown in
Table 3.9. Isotropic turbulence in the inertial subrange is characterized by
Mann (1994a)

4

3
SU(k) = SV (k) = SW (k) (3.4)

The above criterium is plotted in Figure 3.12 for two selected samples. If
the plots are on top of each other the turbulence is perfectly isotropic in the
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Leg Run 1 Run 2 Run 3
1 1.33 1.18 0.85
2 1.01 0.86 1.15
3 0.88 1.42 1.33
4 0.84 1.24 1.45
5 1.10 1.32 1.56
6 0.95 1.57 1.55
7 0.78 1.26 1.64
8 0.93 1.48 1.63
9 0.95 1.62 1.64

10 0.92 1.60 1.67
11 1.24 1.46 1.74
12 0.98 2.01 1.75
13 1.98 1.75
14 2.30 1.83
15 2.21 2.00
16 2.03 1.99
17 2.04 2.10
18 2.85

Table 3.9: Angle of rotation [◦ ] of hotwire data.

inertial subrange (Mann 1994a). The spectra seem not to be in the inertial
subrange except at the highest frequencies, where the 4

3
ratio of SU(k) seems

to be satisfied. The lines for the spectra of the three velocity components
(4

3
SU(k), SV (k), SW (k)) in Figure 3.12 are almost on top of each other for

wave numbers above approximately 100. The turbulence seem in general not
to be isotropic in all scales.

The turbulence intensity, I =

√
σ2

var

U
, in Table 3.10 shows, that the tur-

bulence is not perfectly isotropic. It is seen in Table 3.10 that the velocity

fluctuations in the direction of the mean wind,

√
σ2

U

U
, has lower values in

most cases than the two other velocity components. It is common in atmo-
spheric flow that the turbulence intensity in the direction of the mean wind
have a higher value than the turbulence intensity in the other two direc-
tions (Mann 1994b). Thus the turbulence intensity in Table 3.10 cannot be
compared to atmospheric conditions.
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Figure 3.12: Spectra of velocity components at isotropic scaling according to
Eqn. (3.4). The top plot is for a mean flow of 25.4m/s at Run 1, Leg 11 and
the bottom plot is for 40m/s at Run 2, Leg 12.
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Run 1 Run 2 Run 3

Leg

√
σ2

U

U

√
σ2

V

U

√
σ2

W

U

√
σ2

U

U

√
σ2

V

U

√
σ2

W

U

√
σ2

U

U

√
σ2

V

U

√
σ2

W

U

1 0.007 0.010 0.010 0.007 0.012 0.011 0.007 0.008 0.007
2 0.008 0.010 0.010 0.009 0.011 0.010 0.007 0.009 0.007
3 0.010 0.011 0.010 0.011 0.010 0.010 0.006 0.009 0.007
4 0.010 0.011 0.010 0.009 0.014 0.013 0.006 0.009 0.007
5 0.010 0.012 0.011 0.008 0.016 0.013 0.006 0.009 0.007
6 0.008 0.012 0.011 0.010 0.020 0.016 0.005 0.008 0.007
7 0.008 0.010 0.010 0.008 0.010 0.012 0.005 0.008 0.007
8 0.008 0.011 0.012 0.008 0.011 0.012 0.005 0.008 0.007
9 0.008 0.010 0.011 0.009 0.012 0.012 0.005 0.008 0.007
10 0.007 0.010 0.011 0.009 0.017 0.015 0.005 0.008 0.007
11 0.008 0.012 0.012 0.008 0.016 0.014 0.004 0.008 0.007
12 0.007 0.010 0.010 0.010 0.024 0.019 0.005 0.008 0.007
13 0.007 0.008 0.010 0.005 0.008 0.007
14 0.008 0.011 0.012 0.005 0.008 0.007
15 0.010 0.012 0.012 0.005 0.008 0.007
16 0.009 0.017 0.016 0.005 0.008 0.007
17 0.009 0.017 0.016 0.005 0.008 0.007
18 0.011 0.022 0.021

Table 3.10: Turbulence intensity of hotwire data.

Microphone Data

The background microphones were used to get a general picture of the
pressure fluctuations in the tunnel that were not influenced by aerodynamics.
Figure 3.13 shows some peaks in the spectra that are not of aerodynamical
origin. This is confirmed because the spectra from the background micro-
phone are independent of AOA. The peaks are thus related to the charac-
teristics of the wind tunnel. These peaks will also be present in the pressure
spectra for the microphones located on the aerofoil, and the peaks should
therefore be ignored in the spectra from those microphones. Acoustical phe-
nomena in the wind tunnel such as fan tones, room resonance, edge tones
and etc. are not considered because the aim of the pressure data is to obtain
information of the aerodynamical pressure and not acoustical pressure. The
tunnel is unfortunately not anechoic. The background microphone can only
be used qualitatively because the signal depends on position in space.

Eqn. (2.103) is employed to compare the spectra at different mean ve-
locities. The Eqn. (2.103) is derived under the conditions of an inviscid flow
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Figure 3.13: Pressure spectra of background microphone at Run 1 of the legs
3 to 17 according to Table 3.4

field, hence viscous effects are ignored. Thus, pressure spectra, SP (f), at dif-
ferent mean velocities normalized with U4/c4 should be on top of each other,
when plotted against fc/U . The chord length is as previously denoted c.

The measurements in run 2 are for different mean velocities. Thus they
are suitable to investigate the dependence of the pressure fluctuations on
Reynolds number of different AOA’s. The slope of the spectra in Figures 3.14
to 3.16 is in the range of reduced frequency (fc/U) of 2 to 20 nearly constant.
The figures show the scaled spectra at three different AOA’s at three positions
on the aerofoil. Figures 3.14 and 3.15 are close to the leading edge and
Figure 3.16 is at mid-chord. The flow is independent of Reynolds number
when the scaled spectra at different mean velocities collapse when plotted as
function of reduced frequency. It is seen that the pressure fluctuations are
independent of Reynolds number for an AOA of -6.31◦ in Figures 3.14 and
3.15. The microphones are in this case on the pressure side of the aerofoil
and thus do not experience a high speed up as can also be seen in Figure 2.3.
The third microphone (Mic 2) near midchord in Figure 3.16 for an AOA of
-6.31◦ shows a dependence on Reynolds number which is caused by transition
from laminar to turbulent flow in the boundary layer of the aerofoil. The
flow is dependent on Reynolds number for the AOA’s -0.46◦ and 6.13◦ for
all three microphones. The Reynolds dependence is not as pronounced for
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Figure 3.14: Scaling according to Eqn. (2.103) at microphone 4 (7.6% chord).
The colours in the plot indicate the wind speed given in the top of the plot.
The top plot is Leg 1 to 6 in Table 3.4. Leg 13 to 18 is the mid plot, and the
bottom plot is Leg 7 to 12. The AOA given for each plot is a mean because
the AOA is changing with wind speed according to the discussion in Section
3.1
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Figure 3.15: Same as for Figure 3.14 for microphone 3 (11.4% chord).
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Figure 3.16: Same as for Figure 3.14 for microphone 2 (44.9% chord).
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the microphone closest to the leading edge at an AOA 0.46◦ as for other five
cases, though.

The pressure fluctuations are from theory seen to have the highest am-
plitude at the leading edge and decrease towards the trailing edge. This is
indicated in Figures 3.14 to 3.16 as well, although a transition from lami-
nar to turbulent flow has occurred. This suggests that it is reasonable to
use the pressure fluctuations obtained by microphones to estimate the lift
fluctuations at low AOA’s.

Figure 3.17 shows the pressure spectra without scaling for similar posi-
tions as Figures 3.14 to 3.16.

Pressure Tabs Data

The pressure hole data are used to estimate corrected AOA’s from the
mean values of these pressure data. The pressure hole data are by experience
reliable in the mean values to estimate AOA’s (Gaunaa et al. 2004). The
values of estimated corrected AOA’s are seen in Table 3.4.

5-Hole Pitot Tube Data

The data are used to estimate mean wind speed data. The tubes attached
to the pitot tubes were quite long and this means that the highest frequency
that can be resolved is below 10Hz. The pressure data are converted into
velocities by Bernoulli’s theorem (Eqn. (2.11)). Figure 3.18 shows a com-
parison of hot wire data against velocities calculated from the 5-hole pitot
tubes. It shows that velocity spectra of the 5-hole pitot tube are diverging
from the hot wire at around 3Hz and are below the hot wire spectra for
higher frequencies.

The mean velocities in Table 3.4 are from the 5-hole pitot tube data. The
mean velocities obtained from the 5-hole pitot tube data are believed to be
reliable because they have similar values as a cup anemometer installed in
the wind tunnel.

3.2.2 Experiment 2: NACA63415

In this experiment with a NACA 63415 profile no hotwire or 5-hole pitot
tube data are available. Thus only pressure data from microphones and
pressure tabs will be discussed below.
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Figure 3.17: Spectra of pressure for different AOA’s at three different micro-
phones. Microphone 10 is at 2.5% chord, microphone 4 is at 7.6% chord, and
microphone 3 is at 11.4% chord. The colours indicate AOA as given in the
top of each plot.
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Figure 3.18: Comparison of velocity spectra from 5-hole pitot tube and
hotwire. The dashed lines are hot wire data and full lines are calculated
5-hole pitot tube data. Blue is u, red is v, and black is w in both cases.

Microphone Data

The transition and separation is also recognizable when the standard
deviation, σp, of the pressure is plotted as function of chordwise position and
AOA, see Figure 3.19. The standard deviation is found according to Eqn.
(2.107) because the information of transition is found in the frequency range
of 100 Hz to 5 kHz. Outside this frequency range the spectral information
contains a lot of noise that is believed to be due to the wind tunnel in the lower
frequencies and the mounting of the microphones in the higher frequencies.
The plot in Figure 3.19 is to be understood qualitatively because peak values
indicate either transition or turbulent transition depending on AOA and
chordwise position. The lesson learned from spectra of pressure (both scaled
and ordinary) in the experiment with a NACA0015 profile is that σp will
increase as transition is reached because high frequencies contain nearly as
much energy as low frequencies. Then σp decreases a little when looking both
in the direction of constant AOA and increasing chordwise position and vice
versa because low frequencies now contain less energy than at laminar flow.
Turbulent transition occurs when the standard deviation again is increasing
in both directions because the energy level at this stage is much higher in all
frequencies than at laminar flow.

Figure 3.19 shows the standard deviation for Run 3 in Table 3.8. The
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Figure 3.19: The standard deviation, σp, of the pressure normalized with
the dynamic pressure. AOA is the angle of attack and x/c is the normalized
chordwise position. The angles are given in Table 3.8 for Run 2. The chord-
wise positions is for the microphones in Figure 3.9 with a spanwise position
between 50mm and 100mm, see also Table 3.7.

"mountain ridge" at low AOA’s show the transition position as function
of AOA and position. Turbulent transition is not as recognizable but is
present at the highest AOA and starts at 33.5 % chord. This is also seen in
Figure 3.20, where the highest AOA contains most energy in all frequencies
compared to lower AOA’s. Likewise as discussed above the transition is
recognized as well in Figure 3.20. Transition is present at AOA 3.4◦ and
5.0◦ and turbulent transition is present at 16.0◦ , which is also in agreement
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Figure 3.20: Spectra of pressure for different AOA’s at microphone 50 (33.5%
chord). Colours indicate AOA as given in top of plot.

with Figure 3.19.

Pressure Tabs Data

The pressure data from pressure tabs are used for estimating AOA’s.
The arguments for this are the same as at page 78. The estimated corrected
AOA’s are seen in Table 3.8.

3.3 Data from Bridge Deck Simulation

These data are described in Larose (1997), Larose and Mann (1998),
and Larose (2003). The pressure data are obtained from pressure tabs on a
section model of the bridge build over the Great Belt in Denmark between
Zealand and Funen. They are placed on both the upper and lower side of
the section model. The pressure data are used to calculate the admittance
and coherence of the lift fluctuations due to atmospheric turbulence. The
turbulence is generated by three different grids and the flow was measured
with hotwire anemometry.

Pressure tabs were mounted on the surface of the bridge model to measure
the surface pressure. The pressure tabs were mounted in different strips or
sections of the bridge model and had at least 32 pressure tabs in each strip.
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Figure 3.21: Sketch of the model of a bridge deck which is used in Larose
(1997) on the left. The different sections that are tested are on the right.
The sketches are the Figures 3 and 4 on p. 54 in Larose (1997).

The frequency response was trusted up to 100 Hz, Larose (1997).

The lift fluctuations are obtained by discrete numerical integration (sum-
mation) because the pressure is known at discrete positions only. The nu-
merical integration which is used to find the lift in Larose (1997) is similar
to Eqn. (4.12).

The Reynolds number of the experiment was between 2.3·105 and 5.7·105

with a mean flow speed of 15m/s and width of the section, B, between 0.15m
and 0.38m, see Figure 3.21. The quantity, B/D, is used in Larose and Mann
(1998), see Figure 3.21, where D is the thickness of the bridge section and
given to be 0.03m. The section was 2.55m long. The turbulence length scale,
L, common for all three components was obtained from hotwire data. The
length scale of the w-component of the turbulence was obtained from L as
Lw = 0.561L according to Eqn. (20), p. 107 in Larose (1997), see also Table
8 in Larose (1997), p. 107.

The data described in this Section are included in this thesis because they
are used to validate the theory by Graham (1970) on yet another data set in
another application.

3.4 Conclusions Regarding Experiments

Two experiments conducted in a wind tunnel are described. The exper-
iments were on a NACA0015 profile and a NACA63415 profile. The first
profile is symmetric and has no camber and the other has camber.

Surface pressure data from two systems were obtained, by microphones
and by pressure tabs in both experiments. The data from microphones are
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suitable for analyzing lift fluctuations and lift distribution fluctuations. The
data from pressure tabs is not suitable for fluctuations of pressure but give
reliable mean pressures. The mean pressure is used to estimate the angle
of attack to mean flow of the profile. The positioning of microphones and
pressure tabs are illustrated for both experiments.

The measurements by microphones can be used to investigate the po-
sitions of transition and turbulent transition of the flow over the chosen
aerofoils in the angle of attack and chord wise position space. They capture
the fluctuations in a way that they are trusted to give reliable information
in the frequency domain when Fourier analyzed.

Data of the flow were obtained by a 5-hole pitot tube and a triple wired
hot wire. The data from the 5-hole pitot tube is suitable to describe the mean
flow. The hot wire data are used to obtain information of the turbulence in
flow. The turbulence intensity is between 1 and 2% and the turbulence is
close to be isotropic. The hotwire and the 5-hole pitot tube are both placed
upstream of the profile.

The data from the two wind tunnels experiments are of a quality such they
can be used for further analysis. The pressure spectra from microphones show
peaks that are ignored because they are characteristic for the wind tunnel.

Data from a bridge deck simulation is shortly described. They are pres-
sure and turbulence data and are given in Larose (1997), Larose and Mann
(1998), and Larose (2003).



Chapter 4

Comparison of Models and

Experiments

This chapter discusses the properties of the models and their numeri-
cal treatment. Further the models are tested against data. The statistical
measures are pressure spectrum at a point, the lift spectrum, and the sound
pressure level (SPL). The models are introduced in Chapter 2. The data are
introduced in Chapter 3.

The assumptions and adjustments made to the models in order to ob-
tain the statistical measures and the assumptions about the data will be
discussed. The data used to calculate spectra of pressure and lift are based
on measurements obtained from microphones.

4.1 Numerical Treatments

The models have certain limitations. They are defined for all wave num-
bers but they may not give reasonable results outside a certain range of wave
numbers and they have to be treated with care when integrated to obtain
spectra. Data are obtained at discrete points in a limited time interval. This
gives rise to considerations on how to treat data. These issues are discussed
in this section.

Spectra of pressure or lift fluctuations are obtained differently for models
and data. Spectra from models are obtained in the wave number regime,
and spectra from data are obtained in the frequency regime. The property,
Eqn. (2.98), is used in order to compare the two regimes. The plots in the
sections for pressure and lift fluctuations are given with two vertical lines at
10Hz and 20Hz shown cyan and magenta, respectively. The reason for this
is that the frequency response of the microphones has a lower limit of 10 Hz.
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Figure 4.1: Illustration of a skewed gust and its mirror image. The figure on
the left shows a gust with given chordwise wave number and spanwise wave
number. The figure on the right shows a gust with the identical wave number
in the chordwise direction but the spanwise wave number is of opposite sign.
The chord wise wave number is given and the spanwise is defined positive
at the left plot and negative at the right plot. The plots illustrates the gust
given in Eqn. (4.1).

Further the microphone frequency response is constant between 20 Hz and
20 kHz.

4.1.1 Numerical Treatment of Models

Some assumptions must be made in order to find the spectra of lift and
pressure as well to estimate the SPL. Some of the assumptions are similar
for all three models and some are individual. Furthermore some numerical
issues have to be solved. Some of these are common to all three models and
some are individual as well.

Double-sided turbulence spectra imply that the transfer function models
are assumed symmetric in the wave number space for the models that are
expressed in two variables. The energy spectrum of the turbulence is sym-
metric in either wave number and this implies that if the transfer functions
are symmetric in either wave number then the integrand in Eqns. (2.96) or
(2.97) is symmetric as well and the integration are over 0 to ∞. The trans-
fer function models do not give numerically reasonable results when one of
the wave numbers or both are negative. The numerical condition that is
used for the transfer functions of lift distribution and lift can be expressed
in mathematical terms by

|g((x, )kx, k2)| = |g((x, )kx,−k2)| (4.1)

where g((x, )kx, k2) is any of the transfer functions in two variable wave num-
bers for either lift distribution (pressure spectra and SPL) or lift (lift spec-
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Figure 4.2: The resolution of points used to interpolate the model of lift
and lift distribution by Graham (1970). The red dots are the normalized
spanwise wave number. The blue dots are the normalized chordwise wave
number. The resolution for the lift distribution is identical to the resolution
for the lift coefficient. The values of the lift distribution have been inspected
at values of ν where the numerical value of the lift distribution diverges.

tra). The wave number, k2, is either kz or ky dependent on whether it is
the 2-D model by Atassi (1984) (Subsection 2.1.3) or the 3-D model by Gra-
ham (1970) (Subsection 2.1.4), respectively. The symmetric property in Eqn.
(4.1) is seen to be reasonable in Figure 4.1 because the absolute value of the
transfer function is not changed when the wave front is symmetric in the
direction of mean flow. The symmetric condition in Eqn. (4.1) is used in
the expressions for spectra given in Sections 4.2, 4.3, 4.4, and 4.5. This as-
sumption had to be made because the energy spectrum of the turbulence is
double sided and the transfer functions are numerical valid for positive wave
numbers only.

The integrations in Sections 4.2, 4.3, 4.4, and 4.5 are done numerically.
The software used to do the numerical integration is not able to integrate the
models to ∞ in order to get spectra. This issue has been solved by making
a coordinate transformation such that the integration is over 0 to 1 and at
the same time truncate the integration at an upper limit which is close to
1. The upper limit is dependent on the numerical behavior of the model at
high values of the wave number over which the model is integrated. The 1-D
model by Sears (1941) (Subsection 2.1.2) and the 2-D model are defined and
give reasonable results for any choice of positive wave numbers.
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Figure 4.3: The integrand of the pressure spectrum and lift spectrum of the
3-D model by Graham (1970). The integrand of the pressure spectrum for
the 3-D model given by Eqn. (2.96) is shown in a), b), and c) for x/c− c/2
equal to -.49, .01, and 0.41, respectively. The integrand of the lift spectrum
for the 3-D model given by Eqn. (2.97) is shown in d).

The coordinate transformation used is given by

ky =
yt

1 − yt

, yt ∈ [0; 1[, ky ∈ [0;∞[ (4.2)

where ky is the spanwise wave number. This coordinate transformation has
a Jacobian that is given by

dky =
dyt

(1 − yt)2
. (4.3)

The upper limit of the integration is determined by the highest spanwise
wave number at which the model converges to zero numerically. The upper
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limit of integration for the coordinate transformation is thus given as

yt,up =
ky,up

1 + ky,up
(4.4)

where the subscript up denotes the upper limit.
The upper limit for the 2-D model is introduced because the software used

to do the numerical integration is not able to handle ∞ as the upper limit
for this model. The upper limit of the integration is chosen as yt = 0.999
which corresponds to a ky = 999.

The upper limit for the 3-D model is determined by the validity of the
numerics as the spanwise wave number, ky, is increased.

Numerical considerations has been made to the calculation of transfer
functions for the lift distribution (Eqn. (2.95)) and the lift (Eqn. (2.83))
for the 3-D model. Values for the 3-D model are found by approximating
the solution in Chebychev series. This approximation has shown to be less
good at high dimensionless spanwise wave numbers. The accuracy of the
values of lift and lift distribution increase as higher the number, N , becomes
at which the Chebychev series are truncated but the computational time
increases as well. The Chebychev series are truncated at a N at which the
time of computation is reasonable and the accuracy has converged on the
fourth digit of the value of lift or lift distribution.

The 3-D model is numerically valid in a limited interval of wave numbers,
only. Further the 3-D model is computationally slow. This has the conse-
quence that the 3-D model is computed at the single points given in the mesh
in Figure 4.2. The values of the model in the mesh are then interpolated lin-
early in order to perform the numerical integration. The mesh is chosen in
order to have the finest resolution where the value of the model is largest.
The value of the model is largest at low wave numbers of both kx and ky,
consequently the resolution has to be fine at low wave numbers. The value
of the model is decreasing as one of the wave numbers is kept constant and
the other is increased. This is seen in Figures 4.3 and 4.4.

The computation of fluctuations of the lift is less time consuming than
the calculation of the lift distribution. The lift is truncated at N = 90, the
value of the lift is calculated and the absolute squared value is found. This
calculation of the lift is carried out at the discrete points shown in Figure
4.2. These discrete values of the absolute squared of the lift fluctuations are
then interpolated linearly.

The lift distribution is also calculated at the discrete values of wave num-
bers shown in Figure 4.2. The chord wise positions, x, of the calculations are
discrete as well and the calculations are at 50 positions. The positions are
regularly spaced with a distance, ∆x, of 0.02 starting at x = −.49 and ending
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Figure 4.4: The integrand of the pressure spectrum at given chord wise wave
number as function of spanwise wave number. The integrand of the pressure
spectrum given by Eqn. (2.96) for the 3-D model by Graham (1970) is
shown for x/c− c/2 equal to -.49, .01, and 0.41, respectively. The values are
normalized with the value of the integrand at ky = 0.01.
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Figure 4.5: The integrand of the lift spectrum and pressure spectrum of the
1-D model given by Eqn. (2.97) and Eqn. (2.96), respectively. The black
line is the integrand of Eqn. (2.97) for the 1-D model by Sears (1941). The
green, blue, and red line are the integrand of Eqn. (2.96). The green line is
at x/c − c/2 = −0.49, the blue line is at x/c− c/2 = 0.01, and the red line
is at x/c− c/2 = 0.41.

at x = 0.49 where the leading edge is at x = −0.50 and the trailing edge at
x = 0.50. The truncation of the Chebychev series is at two values of N . The
truncation is at N = 20 for values of κ ∈ [0, 3] and ν ∈ [0, 1] and outside
this region the truncation is at N = 64. The values of N are chosen like this
because the values of the lift distribution converge rapidly for κ ∈ [0, 3] and
ν ∈ [0, 1] and converge slower outside that region. The absolute square of
the lift distribution is inspected for discrete κ as function of ν at all x. The
value of the lift distribution is set equal to zero if it diverges at a value of
ν. The diverging is at a different ν depending of the position, x, chord wise.
Figure 4.4 shows the integrand at discrete values of κ at three chordwise
positions. It is seen in the figure that the lift distribution is truncated at
different values of ν depending on the chordwise position. The value of the
integrand in Figure 4.4 diverges for higher values of ν.

The numerics does not converge close to the trailing edge, see Figures
4.3a) to c) and Figure 4.4. It is clearly seen in Figure 4.3c) that the value
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of the integrand increases at high spanwise wave numbers. This increase is a
numerical and not physical feature because the value of the lift distribution
fluctuations converges to zero at high wave numbers. This is probably due
to the approximation to series of Chebychev polynomials and the estimation
of the Chebychev coefficients. The model further has to be truncated at
some N . The higher N is chosen the longer the computation time. Further
the accuracy of the model is becoming independent of the choice of N and
is not improved at high wave numbers in both directions. The range of
spanwise wave numbers used to calculate the pressure spectra and SPL is
becoming smaller at a certain point of the chord because the integrand has
to be truncated at some spanwise wavenumber.

The integrand for the lift spectrum for the 3-D model is seen in Figure
4.3d). It is seen to behave nicely in the grid of Figure 4.2. The value of the
transfer function outside the shown grid blows up and this is not believed to
be physical because the higher the wave number becomes in any direction
the less impact it will have on the lift (the lift fluctuations are becoming very
small). This implies that the aerofoil can not feel and respond to the distur-
bance of the turbulence, and thus the lift fluctuations and the lift distribution
goes to an absolute value of zero.

The transfer function for the lift distribution of the 1-D model in Eqn.
(2.45) has to be truncated at n = N where N is finite. An explicit expression
can not be found for the infinite sum thus the sum has to be truncated. Figure
4.5 shows Eqn. (2.96) in which Eqn. (2.45) is truncated with N equal to 5,
10, 64, and 128. The lines are on top of each other and no difference is seen
so the sum in Eqn. (2.45) could be truncated at N = 5 but N = 10 is chosen
for the calculations of the pressure spectra in Eqn. (2.96) and the SPL in
Eqn. (2.153). It is also seen in Figure 4.5 that the value of the integrand is
decreasing from leading edge (green line) to trailing edge (red line), and the
integrand is furthermore converging. The black line in Figure 4.5 shows the
integrand of the lift for the 1-D model in Eqn. (2.97) and this converges as
well as the integrand for the pressure spectra.

The integrand for the 2-D model is seen in Figure 4.6, where the integrand
for three different AOA’s for both the NACA0015 and NACA63415 profile is
shown. It is seen that the integrand changes both when the AOA is changed
and the camber is fixed and when the camber is changed and the AOA is
fixed.

The interval of chord wise wave numbers used in the figures of Sections
4.2, 4.3, 4.4, and 4.5 are chosen because of the numerical limitations of the
3-D model. This interval is chosen in order to be able to compare the three
models with each other and to be able to compare the models with data.

The transfer functions are dimensionless. Thus the integrations of models
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Figure 4.6: The integrand of the lift spectrum given in Eqn. (2.97) for the
2-D model by Atassi (1984), see also Subsection 4.3.1. The left column is
for camber corresponding to the NACA0015 profile. The right column is for
camber corresponding to the NACA63415 profile. The rows are for AOA’s
equal to -3.15◦, 0.19◦, and 9.88◦, respectively from top to bottom.
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Run 1 Run 2 Run 4
Leg L [m] ǫ L [m] ǫ L [m] ǫ

1 0.055 0.021 0.054 0.017 0.024 1.456
2 0.058 0.044 0.057 0.044 0.03 1.646
3 0.061 0.065 0.082 0.056 0.03 1.778
4 0.064 0.068 0.079 0.064 0.029 1.822
5 0.061 0.083 0.077 0.068 0.03 1.899
6 0.06 0.077 0.072 0.098 0.031 1.876
7 0.066 0.053 0.054 0.008 0.028 1.981
8 0.06 0.061 0.057 0.035 0.031 1.275
9 0.065 0.058 0.08 0.069 0.027 1.871

10 0.065 0.047 0.069 0.091 0.027 1.935
11 0.059 0.081 0.069 0.091 0.024 1.838
12 0.064 0.059 0.073 0.106 0.03 1.436
13 0.054 0.007 0.027 1.912
14 0.057 0.035 0.023 2.01
15 0.086 0.067 0.023 1.94
16 0.079⋄ 0.067⋄ 0.022 2.095
17 0.075 0.089 0.018 2.21
18 0.072∗ 0.114∗

Table 4.1: Estimates of L and ǫ from the NACA0015 experiment.

in Sections 4.2, 4.3, 4.4, and 4.5 give the dimensions of velocity squared and
have to be multiplied with the function, A2(ρ, U, c). The function is recalled
from Eqn. (2.52) as

A(U, c) =
1

2
ρcU

where ρ is the density of air, c is the chord length and U is the mean wind
speed. The function is called the amplification factor.

4.1.2 Model Parameters from Data

The data has to be used as input in the models in order to obtain pressure
spectra and lift spectra. This has to be done to estimate a realistic energy
spectrum for the turbulence and to find the amplification factor.

The data obtained from a triple wired hotwire are used to estimate the
length scale, L, and the mean kinetic energy dissipation, ǫ. The two param-
eters are estimated by fitting to the spectra of the three turbulence com-
ponents, u, v, w, see Table 4.1. The curves are fitted by the least squares
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method and L and ǫ are unique for a single leg. The hotwire is believed to
give reliable results for the turbulence, but the calibration of the instrument
was not good enough to be used for the mean wind speed. Hotwire data were
obtained only in the experiment with the NACA0015 profile. The estimates
for L and ǫ from the NACA0015 experiment is used for the NACA63415 ex-
periment as well. The flow conditions and turbulence generation are believed
to be similar in the two experiments so it is satisfactorily to use estimates
of L and ǫ at similar mean wind speeds for the NACA63415 experiment.
The estimate of the two parameters in Run 1 for the NACA63415 profile
are taken from Run 2, Leg 18 in the experiment with a NACA0015 profile
and the values are shown with a ∗ in Table 4.1. Similarly L and ǫ in Run
2 and Run 3 for the NACA63415 profile are taken from Run 2, Leg 16 in
NACA0014 experiment and the values are shown with a ⋄ in Table 4.1.

The data from the 5-hole pitot tube is used to estimate the mean wind
speed. The mean wind was measured with a cup anemometer as well. The
data from the 5-hole pitot tube are very similar to those of the cup anemome-
ter. The mean wind speeds estimated from the 5-hole pitot tube data is used
to find the correct amplification factor. The function, A2(ρ, c, U), is multi-
plied with the spectra of the pressure and lift spectra.

The corrected AOA’s are found from the pressure data obtained by the
pressure tubes. The mean pressure of the data from the pressure tubes are
known to be reliable and have been used for estimating corrected AOA’s
several times with reliable results as discussed previously.

The spectra of pressure and lift from the pressure data obtained by mi-
crophones have peaks at certain frequencies (wave numbers). The peaks are
at different wave numbers because kx = f

U
and the data are not obtained at

same mean wind speed at all runs. Furthermore the peaks are ignored when
spectra from data and models are compared because the peaks coincide with
the peaks in the pressure spectra obtained by the background microphone,
see Figure 3.13. Thus the peaks in spectra of pressure and lift are considered
not to be of aerodynamical origin but to be due to the wind tunnel.

4.2 Pressure

This section discusses the fluctuating pressure, p. The pressure spectra
will be found in order to compare data and models. It is a simple task to
find the pressure spectra from data and it is done as in Chapter 3.
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Figure 4.7: Comparison of pressure spectra from data and models at run 3,
leg 4 for the NACA0015 profile(see Table 3.4). The pressure spectra, fSp(f),
are plotted against wave number. The data are black, the 1-D model is shown
in red and the 3-D model is shown in blue. The data are obtained at a mean
wind speed of 25 m/s.
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4.2.1 Estimation of Pressure Spectra from Models

The models that are able to predict the fluctuating pressure at a given
point of the aerofoil are the 1-D model by Sears (1941) (Eqn. (2.45)) and the
3-D model by Graham (1970) (Eqn. (2.91)). The turbulence is assumed to
be isotropic which is a valid assumption according to Chapter 3. The data
from the hot wire are used to estimate the length scale, L, and the mean
kinetic energy dissipation, ǫ. These two parameters are used in the spectrum
given by Eqn. (2.114) (von Kármán 1948).

The pressure spectrum when the 1-D model is chosen is by Eqn. (2.96)
given as

Sp,1D(x, kx) = A2(ρ, c, U)Φww(kx)

∣

∣
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x,
kxc

2

)∣

∣

∣

∣

2

(4.5)

where Φww(kx) is given by Eqn. (2.114).

Likewise the pressure spectrum when the 3-D model is used becomes

Sp,3D(x, kx) = 2A2(ρ, c, U)

∫ ∞
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where Φww(kx, ky) is given by Eqn. (2.113).

It is seen from Eqns. (4.5) and (4.6) that the spectra calculated by Eqn.
(4.6) give a lower value than the spectra calculated by Eqn. (4.5). The

reason for this is that
∣

∣g
(

x, kxc
2
, 0
)∣

∣ >
∣

∣

∣
g
(

x, kxc
2
, kyc

2

)∣

∣

∣
for any ky > 0. Thus

the pressure spectra of the 1-D model will be above the pressure spectra of
the 3-D model when the spectra are plotted as function of kx.

4.2.2 Comparison of Models and Data

The pressure spectra for models and data are compared in Figures 4.7
to 4.9. The property in Eqn. (2.98) is used in order to compare the wave
number regime with the frequency regime. The plots show the data, the 1-D
model and the 3-D model for a selection of microphones. The data are chosen
for cases at an effective AOA of 0◦.

The microphones chosen for the NACA0015 profile in Figure 4.7 are the
ones along the dashed line in Figure 3.5 and are shown from the leading
edge to the trailing edge from the top left corner to the lower right corner,
respectively. The plots show that the data are approximately 1-2 decades
higher than for the 1-D model in general. The data from microphones near
the leading edge (x

c
− c

2
= −0.49 to x

c
− c

2
= −0.39, see also Table 3.1)

follow the features of the 1-D model quite well though with an amplitude of
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Figure 4.8: Comparison of pressure spectra from data and models at run
1, leg 5 for the NACA63415 profile (see Table 3.8). The pressure spectra,
fSp(f), are plotted against wave number. The data are black, the 1-D model
is red and the 3-D model is blue. The data are obtained at a mean wind
speed of 40 m/s.
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approximately 1 decade. The microphones 2 and 1, which are close to mid-
chord and the trailing edge, respectively, show a greater difference from the
1-D model than the microphones close to the leading edge. This might be
because the flow may not be considered inviscid downstream of microphone
3.

The Figures 4.8 and 4.9 show the comparison of models and data obtained
from the NACA63415 profile. The data are at zero lift conditions, and the
data in Figure 4.9 are tripped. The microphones shown in the figures are
placed at the green line in Figures 3.9 and 3.10, and they are all placed 86mm
from mid-span to the right of the incoming flow. The order of microphones
are from leading edge towards trailing edge by moving from top left to the
right and from top to bottom in the plots. The first five microphones are on
the suction side. The three last microphones in the plots are on the pressure
side. The difference between data and the 1-D model is approximately 1-2
decades at the suction side from the leading edge to about mid-chord. This
is the case at a mean wind speed of both 30 m/s and 40 m/s. The difference
is larger after mid-chord and is increasing to about 2 decades close to the
trailing edge at microphone 63. The difference between data and models are
larger on the suction side than on the pressure side. The difference at the
suction side near leading edge is approximately 1.5 decade and increases to
more than 2 decades near trailing edge in both Figure 4.8 and Figure 4.9.

It is seen that the pressure fluctuations decrease in magnitude from the
leading edge to trailing edge in the data from the three runs shown in this sec-
tion. This is as expected from theory (Figure 2.7). The difference between
models and data increases from mid-chord to trailing edge. The aerofoils
used, NACA0015 and NACA63415, have different properties but they show
equal magnitude of difference between data and models. The difference in-
creases slightly with increasing mean wind speed (increasing Reynolds num-
ber). Tripping seems not to affect the pressure because the difference between
models and data are similar in Figures 4.8 and 4.9. It is seen in Figures 4.7 to
4.9 that the pressure difference between data and the 1-D model is system-
atically around 1 decade from the leading edge to about mid-chord for both
the NACA0015 profile and the NACA63415 profile. The difference between
data and the 1-D model increases from about mid-chord to trailing edge to
more than 2 decades.

Reasons for the pressure fluctuations from data to be systematically
higher than the 1-D model and thereby the 3-D model are given below in
Section 4.3.3.
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Figure 4.9: Comparison of pressure spectra from data and models at run
3, leg 1 for the NACA63415 profile (see Table 3.8). The pressure spectra,
fSp(f), are plotted against wave number. The data are black, the 1-D model
is red and the 3-D model is blue. The data are obtained at a mean wind
speed of 30 m/s.
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Figure 4.10: Comparison of lift spectra from data and models at run 3 for
the NACA0015 profile. The colour legend is for data (full line) and the 2-D
model (short dashed line). The long dashed lines represent the 1-D model
(red) and 3-D model (blue). The lift spectra, fSL(f) are plotted against
wave number.

4.3 Fluctuating Lift

The fluctuating lift, L′, will be discussed in this section in terms of its
spectrum. The issue is to investigate which model fits data best. The models
have to be treated differently. The data are discrete so assumptions have to
be made in order to estimate L′ from these.

4.3.1 Estimation of Lift Spectra from Models

The symmetry mentioned in Section 4.1 is used to estimate the transfer
functions of L′ for the models. The spectrum of the lift, SL(kx), for the
models is estimated by Eqn. (2.97). The turbulence and the parameters are
as for the pressure. The lift fluctuations from the 1-D model by Sears (1941)
are described by Eqn. (2.49). The lift spectrum for the 1-D model is then
found as

SL,1D(kx) = A2(ρ, c, U)Φww(kx)
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(4.7)
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because the spanwise wavenumbers are assumed to be coherent.
Similarly the 3-D model from Graham (1970) and given by Eqn. (2.83)

is implemented into Eqn. (2.97) to give

SL,3D(kx) = 2A2(ρ, c, U)

∫ ∞
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where the numerical assumptions and methods discussed in Subsection 4.1.1
are utilized. The lift spectra calculated by Eqn. (4.7) will be above the lift
spectra by Eqn. (4.8) by use of similar arguments as in Section 4.2.

The 2-D model described by Goldstein and Atassi (1976), Atassi (1984)
and Eqn. (2.66) has to be treated in a slightly different way, because it is
affected by two velocity components, u and w. The lift spectrum takes into
account the contributions from both of these components. It becomes

SL,2D(kx, βA, m) = 2A2(ρ, c, U)
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(4.9)

where the transfer function for the lift is a function of the AOA, βA = AOAπ
180

,
and the second order coefficient, m, of a parabolic fit to the mean line of the
profile.

4.3.2 Estimation of Lift Spectra from Data

Data have to be treated differently for the two aerofoils used in the ex-
periments mentioned in Chapter 3.

The data on the NACA 0015 profile are obtained on the suction side only
from microphones. This means that the flat plate assumption of the pressure
difference over the aerofoil

∆p′(x, t) = −2p′(x, t) (4.10)

as mentioned in Chapter 2 has to be made. Then L′ can be estimated by
using a trapezoidal method to numerically integrate as

L′(t) =

N−1
∑

i

[∆p′(xi, t)nz(xi) + ∆p′(xi+1, t)nz(xi+1)] × |s(xi+1) − s(xi)|

(4.11)
where nz(xi) is the vertical component of the normal vector at the surface of
the profile at the chordwise position, x, for the ith microphone. Likewise s(xi)
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Figure 4.11: Comparison of lift spectra from data and models at run 1 for the
experiment with a NACA63415 profile. The colour legend is for data (full
line) and the 2-D model (short dashed line). The long dashed lines represent
the 1-D model (red) and 3-D model (blue). The lift spectra, fSL(f), are
plotted against wave number.

is the distance from the leading edge to the the position of the ith microphone
along the surface of the aerofoil. N is the number of microphones used to
estimate L′; N is 6 for the NACA 0015 profile, see Figure 3.5. The integration
is by Eqn. (4.11) not over the entire chord but only between 0.2% to 91.7%
chord.The remaining parts are abandoned. This method introduces an error
in the lift that may not be seen in the spectrum of the lift, because the
abandoned part may not give extra information in the frequency domain.
The lift force is by definition the normal force component to the chord line.
That is the reason for using nz only.

The data from the NACA 63415 profile are obtained from microphones
on both suction and pressure side, see Figure 3.7. L′ is in this case estimated
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as

L′(t) =

N−1
∑

i

{

[p′(xi, zi, t)nz(xi, zi) + p′(xi+1, zi+1, t)nz(xi+1, zi+1))]

×|s(xi+1, zi+1) − s(xi, zi)|
}

+ [p′(x1, z1, t)nz(x1, z1) + p′(xN , zN , t)nz(xN , zN)]

×|s(xN , zN ) − s(x1, z1)|. (4.12)

The last term is to close the path integral. The number of microphones used
(N) is 49 in this experiment. Eqn. (4.12) integrates over the entire profile
with a relatively high number of points. The estimate in this case is thus
believed to be more accurate than Eqn. (4.11) for the experiment with the
NACA0015 profile. The microphones are in Eqn. (4.12) assumed to be on a
line but they are placed on different spanwise positions (Figures 3.9 and 3.10
and Table 3.7). The microphones are believed to be close enough that the
error is minimized and the assumption of the microphones being on a line
is valid. The assumptions are based on that the frequencies investigated in
this thesis are in the low frequency domain such that the phase is not likely
shifted much for the small distances in question. The microphones were not
placed in a straight line of experimental reasons, because it could have lead
to more uncertainties originating from the holes for the microphones.

4.3.3 Comparison of Models and Data

The lift spectrum is seen for run 3 of the experiment with a NACA0015
profile in Figure 4.10. It is seen that the data are on top of each other until
separation occurs at 12◦. The lift spectrum increases after the AOA where
separation occurs. The fact that data are not affected by change in AOA
below separation is not expected. The 2-D model which is shown with short
dashed lines predicts that the AOA could have an influence. The data are
above the 1-D model (long red dashed line) at a frequency ∼ 50Hz. The
data is assumed to be between the 1-D model and the 3-D model (long blue
dashed line). This is assumed because the turbulence used together with the
3-D model is isotropic and the turbulence used with the 1-D model can be
regarded as completely anisotropic, and the data are obtained under near
isotropic conditions, see Table 3.10. This assumption might be valid because
the turbulence will be coherent along the aerofoil if it is anisotropic, as is the
case in Eqn. (4.7). Spanwise effects are included in Eqn. (4.8). It then seems
reasonable to assume that the lift fluctuations obtained from data would be
in between Eqns. (4.7) and (4.8).
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Figure 4.12: Comparison of lift spectra from data and models at run 3 for the
experiment with a NACA63415 profile. The colour legend is for data (full
line) and the 2-D model (short dashed line). The long dashed lines represent
the 1-D model (red) and 3-D model (blue). The lift spectra, fSL(f), are
plotted against wave number.

The lift spectra from the experiments with the NACA63415 profile are
shown in Figures 4.11 and 4.12. The data show also for the NACA63415
profile that no effect of AOA is present below the separation angle being in
this case 11◦. The data fall between the 1-D model and the 3-D model in
most of the frequency interval. The case which is tripped, Figure 4.12, is well
in between models.

The figures 4.10 to 4.12 show the lift spectrum for the three models and
for the data. It is seen that no effect of AOA is present in the data below the
AOA where separation occurs, see Chapter 3. All data below separation are
more or less on top of each other. This is surprising because the 2-D model
predicts a difference.

The separation is seen in data from both experiments, but no effect of
AOA is seen in data, surprisingly. Errors because of low spatial resolution
are expected at high frequencies especially on the NACA0015 profile because
few points are used to calculate the lift. This low spatial resolution causes
high frequencies not to be captured well. The error because of the low spatial
resolution is expected to increase with increasing wave number (frequency)
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because high frequencies require high resolution to be captured well. The
systematic error in pressure seem to be eliminated in the lift because the
lift spectra is between the 1-D model and the 3-D model or are just above
the 1-D model. The reason for the elimination of the error may be that the
background noise is filtered out when integrated. The assumed origin of the
background noise is discussed in Section 4.2.2. The phases of the pressure
which is causing higher values in the pressure spectra might be statistically
independent over the aerofoil such that they are canceled out. This canceling
effect is then decreasing the integrated pressure, the lift. Other incoherent
sources of noise of aerodynamical or acoustical origin in the measurements
will also partly average out in the lift signal. The lift spectrum increases
above the angle of separation which is expected to be due to increasing
generation of aerodynamical turbulence.

The figures 4.10 to 4.12 show that the data are in between the 1D-model
by Sears (1941) and the 3-D model by Graham (1970). The tripped case in
Figure 4.12 shows that data are well in between the models for the frequency
range, which gives confidence that a real wind turbine will do so too. A real
wind turbine will do so because it is exposed for weathering which will cause
a boundary layer similar to tripping.

The lift fluctuations from data were expected to be closer to the 3-D
model because spanwise effects of the vertical gust are included. An expla-
nation that this is not the case is the quality of the pressure data obtained
by microphones. The wind tunnel in which the experiments are carried out
is not anechoic, and this might have caused the pressure data to be system-
atically higher and also that the lift fluctuations are not as low as the 3-D
model predicts. Furthermore aerodynamically phenomena as transition from
laminar to turbulent flow in the boundary layer of the aerofoils might have
increased the pressure fluctuations systematically and the lift fluctuations to
a lesser degree.

The model by Graham (1970) is by the arguments above regarded as the
model which predicts the lift fluctuations most reliably.

4.4 Sound Pressure Level

The SPL estimated from the 1-D model by Sears (1941), the 3-D model
by Graham (1970), and the original model by Amiet (1975) are compared
in this Section. This comparison is carried out in order to investigate how
other models for the lift distribution will estimate the SPL in the acoustic
model. The comparison is made for the turbulence parameters in Table 4.1
for the experiments in Chapter 3. A comparison is also made for turbulence
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parameters representative of a wind turbine. Further the dipole structure of
the acoustic model is investigated.

The SPL is estimated by the model by Amiet (1975). This model is
described in Section 2.4 and is used at different stages dependent on which
model for the lift distribution is used. The 1-D model and the 3-D model are
implemented into Eqns. (2.135) and (2.151). The lift distribution used in
Amiet (1975) is given by Eqns. (2.142) and (2.143) which gives an estimate
of the SPL given by Eqn. (2.153).

Figure 4.13 compare the models at three different flow conditions. The
mean velocity is in Figure 4.13 from top to bottom 25m/s, 15m/s, and 30
m/s, respectively. The 1-D model and the 3-D model have SPL’s that is
below the model for the lift fluctuations by Adamczyk (1974) and used by
Amiet (1975).

Because the lift spectra for data are in between the 1-D model by Sears
(1941) and the 3-D model by Graham (1970) (kSL,1D(k) > fSL,Data(f) >
kSL,3D(k)) then it is assumed that this also will be the case for the SPL from
data. It has not been possible to estimate the SPL from data, because that
requires a larger number of microphones to get a good measure of the cross
spectra of the pressure.

The model for the SPL given by Eqn. (2.153) is not able to estimate the
SPL at an arbitrary point in space but is constrained to any point vertical
(z-direction) of the mid point (mid chord) of the aerofoil. The model given
by Eqn. (2.153) is simplified such that only points in z-direction of the mid
chord of the aerofoil can be estimated. The 1-D model and the 3-D model
are not constrained and are thus able to estimate the SPL in any point in
space. The behavior of the SPL in a spanwise section in a circle of 10m
radius around the aerofoil is shown in Figure 4.14. The dipole is modified
by the mean flow and the modification is greater the higher the frequency
becomes. A perfect dipole is depicted in Figure 4.14 by a thick black line.
The modification of the dipole is greater downstream than upstream.

The parameters of a wind turbine are found by using empirical laws for the
wind profile near the surface in the atmosphere and for the energy dissipation.
The wind speed at hub height, U(z), is set to 8m/s which is a reasonable value
for an operational wind turbine. The hub height is set to z = 67m, which
corresponds to a Vestas V80 wind turbine. The logarithmic wind profile is
used to estimate the friction velocity, u∗. The logarithmic wind profile is
valid for neutral atmospheric conditions and is given as

U(z) =
u∗
κK

ln
z

z0, R
(4.13)

where z is the height, κK is the von Kármán constant which is κK = 0.4,
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Figure 4.13: Plot of the SPL1/3 at the one third octave frequencies. The 1-D
model is represent by red, 1-D model is blue, and the original model (Eqn.
(2.153)) is black. The turbulence parameters, L and ǫ, and the mean wind
speed, U , are taken at runs and legs given in the plot label, see Tables 4.1,
3.4, and 3.8. The legs are chosen as close to zero mean lift conditions as
possible.
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Figure 4.14: Polar plot of the SPL chordwise and vertical of an flat aerofoil.
The SPL is normalized with the value vertical of mid chord. The values at
the axes are the fraction of the SPL at the position to the value vertical of
mid chord. The SPL is calculated in a circle 10m from mid chord around the
aerofoil at a given spanwise section. The black line is a perfect dipole. The
colours in the legend are at different frequencies. The thick red line at the
origin is the orientation of the aerofoil.
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and z0,R is the roughness length which is set to 0.05m. This value of the
roughness length is representative of grass land. The energy dissipation is
estimated by the empirical law

ǫ =
u3
∗

κKz
(4.14)

and the characteristic length scale of the turbulence, L, is set to be equal to
the hub height. The standard deviation of the wind speed, σu, is found by
(Panofsky and Dutton 1984)

σu = 2.4u∗ (4.15)

and the relative wind speed a wind turbine blade reacts on, Uwt is set to 80m/s
which is a typical tip speed of a wind turbine. The turbulence intensity of
the wind at the blade is then

Iwt =
σu

Uwt
. (4.16)

When these parameters are estimated then Eqns. (2.153), (2.135), and
(2.151) can be utilized. Figure 4.15 shows the SPL for a wind turbine with
parameters as given above. The 1-D model and the 3-D model have lower
SPL than the original model by Amiet (1975) at frequencies below ∼25Hz
and have higher SPL otherwise. This is similar properties as seen in Figure
4.13.

4.5 Bridge Deck Simulation

The data obtained from a model of a bridge deck are introduced in Chap-
ter 3. The data are analyzed and compared with the approximation of Gra-
ham (1970) by Mugridge (1971) in Larose (1997). The data are in this section
compared with the 3-D model by Graham (1970) which is physically based
whereas Mugridge (1971) is a mathematical approximation of the physics
in Graham (1970). The admittance and the co-coherence is compared with
data.

The admittance is given by

Ad(kx) =
1

4π2A2(ρ, c, U)

SL(kx)

Φww(kx)
(4.17)

where SL(kx) is given by Eqns. (2.97) and (2.83) and normalized and non-
dimensionalized with 4π2A2(ρ, c, U). This quantity is normalized with the
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Figure 4.15: Plot of the SPL1/3 at the one third octave frequencies. The 1-D
model is represented by red, 3-D model is blue, and the original model (Eqn.
(2.153)) is black. The turbulence parameters, L and ǫ, and the mean wind
speed, U , are calculated for representative conditions for a wind turbine.

vertical energy spectrum given by Eqn. (2.114). It describes how large a
fraction of the turbulent energy is used to generate lift fluctuations.

The comparison of Eqn. (4.17) against data is seen in Figure 4.16. Eight
different conditions of turbulence and width of bridge deck are plotted. The
3-D model is systematically below the data whereas the approximation by
Mugridge (1971) is over predicting the data at small wave numbers and under
predicting for large wave numbers. The 3-D model is expected to be lower
than the data from Figures 4.10 to 4.12.

The cross spectrum between sections of the profile separated by a distance
∆y is given by

χLL(kx,∆y) = 2A2(ρ, c, U)

∫ ∞

0

Φww(kx, ky)|g(kxB/2, kyB/2)|2 cos(ky∆y)dky

(4.18)
where g(kxB/2, kyB/2) is given by Eqn. (2.83) and B is the width of the
section of the bridge (chord length). The imaginary part vanishes in the cross
spectrum of the lift fluctuations because it is an uneven function in ky. Then
the co-coherence is found as the fraction of the absolute value of the cross
spectrum of the lift fluctuations at two sections separated with ∆y over the
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Figure 4.16: Comparison of the lift admittance from data from Larose (1997)
(long dashed lines) with models by Mugridge (1971) (full lines) and Graham
(1970) (short dashed lines) at different width of a bridge deck and different
length scales of turbulence. Eight different setups are plotted. The red line
indicates: L=0.43m, B=0.30m, Lw/B=0.80, Magenta: L =0.43m, B=0.38m,
Lw/B=0.63, Black: L=0.39m, B=0.15m, Lw/B=1.50, Blue: L=0.39m,
B=0.30m, Lw/B=0.73, Green: L=0.39m, B=0.38m, Lw/B=0.58, Yellow:
L=.15m, B=.15m, Lw/B=0.57, Gray: L =0.15m, B=0.30m, Lw/B=0.29,
and Cyan: L=.15m, B=.38m, Lw/B=0.23, where L is the length scale in
Eqn. (2.111) common to the three velocity components, B is the width
of the bridge deck, Lw is the length scale of the w-component defined as
Lw = 0.561L according to Eqn. (20), p. 107 in Larose (1997), see also Table
8 in Larose (1997), p. 107. This plot can be compared to the figure in Larose
(1997), p. 115.

auto spectrum of the lift fluctuations

coh
1/2
LL (kx) =

|χLL(kx,∆y)|
SL(kx)

. (4.19)

This gives a measure of the correlation of the lift fluctuations at two strips
normalized with the auto spectrum. The co-coherence for the vertical com-
ponent of the wind is given by Eqn. (2.117).

The co-coherence is seen in Figure 4.17. The figure shows the co-coherence
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of the lift at six different separation distances at two different turbulence
conditions. The co-coherence of the w-component is also shown. It is seen
that at low separation distances, ∆y of 0.03 and 0.06, the data are close to
coh

1/2
w (kx). The 3-D model by Graham (1970) describes the data quite well

at separation distances, ∆y, of 0.13, 0.16, 0.24, and 0.30. The model predicts
the difference between the two setups and is in the vicinity of data for large
separation distances.

The reality as represented by the data does not respond instantly as
the physics in the 3-D model predicts. The co-coherence gives a picture of
how the pressure difference in spanwise direction is equalized. For the two
low separation distances the co-coherence of lift data is closer to the co-
coherence of the w-component. This indicates that the pressure differences
on the bridge deck are not equalized instantly but needs a longer distance to
react.

The physical 3-D model captures the features seen in the data, although
the model under predicts the admittance systematically. The co-coherence
of the lift is well predicted for large separation distances.

4.6 Conclusions Regarding Analysis

Data have in this Section been analyzed and compared to models. The
data fall between the 1-D model by Sears (1941) and the 3-D model by
Graham (1970) when looking at the lift spectra. These two models seem to
underestimate the data systematically when looking at the pressure spectra.

The pressure data from the microphones are not useful below a frequency
of 10 Hz because of the dimension of the microphone. The 3-D model gives
numerically reasonable values in the interval κ ≡ kxc

2
∈ [0; 20] and ν ≡ kyc

2
∈

[0; 15]. This gives an upper limit for the frequencies that can be compared.
This upper limit is dependent on the mean wind speed.

The pressure spectra of the data are underestimated by the models. This
may be due to the properties of the wind tunnel. The wind tunnel is not
anechoic and thus the background noise is suspected to be seen in the pressure
data. The models are systematically around one decade below the data and
further the pressure spectra of data and models have the same behavior.

The spectra of the lift fluctuations derived from the data are in between
the spectra of the lift fluctuations by the 1-D model and the 3-D model. This
result gives reason to believe that the systematic error in the pressure spectra
is due to the background noise of aerodynamical and maybe acoustical origin.
This background noise seems to be filtered out when the lift fluctuations are
estimated.
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Figure 4.17: The square root of the coherence (co-coherence) of the lift at
different spanwise separation distances and two different conditions of tur-
bulence. Data from Larose (1997) (cyan and black lines) is compared with
models by Mugridge (1971) (dashed lines) and Graham (1970) (full lines) .
Red and cyan are for Lw/B= 0.73, green and black are for Lw/B= 1.50, see
also Table 8 in Larose (1997), p. 107. The co-coherence of the vertical wind
component, w, is shown with a blue line. This plot can be compared to the
figures in Larose (1997), pp. 117 and 118.

There are reasons to believe that the SPL from data would fall in between
the SPL’s from the 1-D model and 3-D model. The reason for this statement
is, that the lift fluctuations from data are in between models and because
the lift distribution is integrated over the aerofoil to obtain an estimate of
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the SPL. The acoustic model have dipole like structure but the dipole is
squeezed. The squeezing is dependent on frequency, the higher frequency
the more squeezing.

The 3-D model is able to predict reasonable the co-coherence of the lift
fluctuations from the pressure data of a bridge deck simulation. The 3-
D model systematically under predicts the admittance of the bridge deck
simulation data.



Chapter 5

Conclusion

Three different models for predicting the fluctuating lift on an aerofoil
have been described. These models of lift have been tested against data.
The lift distribution is presented for the 1-D model and is developed for the
3-D model. These two models of lift distribution are tested against pressure
data. They are also used to predict SPL.

Data are obtained for two different aerofoils. Profiles of a NACA0015
and a NACA63415 are used to obtain pressure data at the surface of aerofoil.
Surface pressure obtained by microphones is tested against models for the lift
distribution which in this case are the 1-D model and the 3-D model. The
surface pressure data by microphones are integrated numerically to obtain
the fluctuating lift. These derived data are tested against models for lift in
this case all three models.

The surface pressure are also obtained by pressure holes and these data
are able to describe mean pressures at chord wise positions reliably. The
pressure hole data are therefore used to get angles of attack of which the
mean flow impinges the aerofoil.

The mean wind speeds are obtained from 5-hole pitot tube data and
these data are only obtained at the experiment with NACA0015. The data
from the 5-hole pitot tube are used in similar conditions for the experiment
with a NACA63415 profile. The mean wind speed data are used to get the
magnitude of the lift and the lift distribution fluctuations from models in the
further analysis.

Data from a triple wired hot wire are used to get information of the
turbulence. The turbulence is close to be isotropic. The turbulence data are
used to estimate the length scale of the turbulence and the energy dissipation
of the turbulence.

The comparison of data and models seems to be similar for the two aero-
foils. The conclusion is that the models predict the different aerofoils equally.
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It is assumed reasonable that the lift fluctuations from data are in between
the 1-D model and the 3-D model because the former model by Sears (1941)
does not include spanwise effects from the turbulence, but the latter model
by Graham (1970) does. The lift fluctuations from data were expected to be
closer to the 3-D model because spanwise effects of the vertical gust are in-
cluded. An explanation that this is not the case is the quality of the pressure
data obtained by microphones. The calculated lift from data are similar for
different angle of attacks and thus the 2-D model is not able to describe the
data. Further the difference between pressure spectra of models and data
is systematic which highly probably is because of background noise of aero-
dynamical and acoustical origin in the wind tunnel. The models of the lift
indicate that noise from a wind turbine due to atmospheric turbulence may
be the most dominant according to the acoustical model by Amiet (1975).
The lift spectra and pressure spectra suggest that sound pressure level of
data will be between sound pressure level based on the 1-D model and sound
pressure level based on the 3-D model. The acoustical model may need more
work to be validated. It was not possible to test the acoustical model by the
measurements presented in this work.

The sound pressure level of data are not found because the spatial res-
olution of surface pressure by microphones on the aerofoils did not allow
this.

The aerodynamical model by Graham (1970) is compared to pressure
data obtained from a model of a bridge section (Larose 1997). This com-
parison shows that the model by Graham (1970) describes well the spanwise
variations in terms of the co-coherence of the lift. This is expected because
the aerodynamical model includes spanwise as well as chordwise variations
of the vertical gust.



Appendix A

Bessel Functions

Bessel functions are used in the analysis of aerofoil theory for solving
various problems like integrals and exponential relations.

A.1 Bessel Functions of First Kind

Bessel functions of the first kind, Jν(z), satisfy the differential equation
(McLachlan 1955)

d2Jν(zv)

dz2
v

+
1

zv

dJν(zv)

dzv

+

(

1 − ν2

z2
v

)

Jν(zv) = 0. (A.1)

In the above ν is the order of the Bessel function, it can be any real number.
The order will be an integer only, when n is used. Bessel functions can be
defined in various ways. The original definition by Bessel is (McLachlan 1955)

Jν(zv) =
1

2π

∫ 2π

0

cos(νθ − zv sin θ)dθ. (A.2)

In this text the definition

Jν(zv) =

∞
∑

m=0

(−1)m( zv

2
)2m+ν

m!Γ(m+ ν + 1)
(A.3)

which has an infinite convergence radius will be used. It is easily verified
that Eqn. (A.3) is a solution to Eqn. (A.1) by equating terms of equal
order. A useful relation is obtained if the products zν

vJν(zv) and z−ν
v Jν(zv)



A.1 Bessel Functions of First Kind 119

are differentiated with respect to zv.

d{zν
vJν(zv)}/dzv = d{

∞
∑

m=0

(−1)m(zv)
2m+2ν

22m+νm!Γ(m+ ν + 1)
}/dzv

zν
vJ

′
ν(zv) + νzν−1

v Jν(zv) =

∞
∑

m=0

(2m+ 2ν)(−1)m(zv)
2m+2ν−1

22m+νm!Γ(m+ ν + 1)

=

∞
∑

m=0

(−1)m(zv)
2m+2ν−1

22m+ν−1m!Γ(m+ ν + 1 − 1)

= zν
vJν−1(zv)

⇔ J ′
ν(zv) +

ν

zv
Jν(zv) = Jν−1(zv) (A.4)

where a prime means differentiation with respect to zv. Further the relation
Γ(m + ν + 1) = (m + ν)Γ(m + ν) is used (McLachlan 1955). Γ(m) is the
Gamma function with argument m. Similarly

d{z−ν
v Jν(zv)}/dzv = d{

∞
∑

m=0

(−1)m(zv)
2m

22m+νm!Γ(m+ ν + 1)
}/dzv

z−ν
v J ′

ν(zv) − νz−ν−1
v Jν(zv) =

∞
∑

m=1

2m(−1)m(zv)
2m−1

22m+νm!Γ(m+ ν + 1)
, m = r + 1

= z−ν
v

∞
∑

r=0

(−1)r+1(zv)
2r+ν+1

22r+ν+1r!Γ(r + (ν + 1) + 1)

= −z−ν
v Jν+1(zv)

⇔ J ′
ν(zv) −

ν

zv
Jν(zv) = −Jν+1(zv) (A.5)

can be derived. When Eqn. (A.5) is subtracted from Eqn. (A.4) then

2
ν

zv
Jν(zv) = Jν−1(zv) + Jν+1(zv) (A.6)

is obtained. From Eqn. (A.3) it is easily seen that

Jν(−zv) = (−1)νJν(zv). (A.7)

When the Bessel function of the first kind has an imaginary argument,
Jν(ızv), it will satisfy

d2Jν(ızv)

dz2
v

+
1

zv

dJν(ızv)

dzv
−
(

1 +
ν2

z2
v

)

Jν(ızv) = 0. (A.8)
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From the definition Eqn. (A.3) it is seen, when zv is substituted with ızv,
that

Jν(ızv) = eıπν/2
∞
∑

m=0

( zv

2
)2m+ν

m!Γ(m+ ν + 1)
(A.9)

where it is seen that the series itself satisfy Eqn. (A.8) because only the
series have zv-dependence.

A.2 Bessel Functions of Second and Third Kind

The Bessel function of second for integer order, n, is defined as

Yn =

[

∂

∂ν
{cos νπJν(zv) − J−ν(zv)}

/

∂

∂ν
sin νπ

]

ν=n

(A.10)

which by differentiating Eqn. (A.3) with respect to ν can be shown to be
(McLachlan 1955)

Yn(zv) =
2

π
ln
(zv

2

)

Jn(zv) −
1

π

n−1
∑

r=0

n− r − 1)!

r!

(

2

zv

)n−2r

− 1

π

∞
∑

r=0

(−1)r
(

zv

2

)n+2r
[ψ(n+ r + 1) + ψ(r + 1)]

r!(n+ r)!
, n ≥ 1(A.11)

where

ψ(m+ 1) =

∞
∑

i=1

(

1

i
− 1

m+ i

)

− γ, m > 0, ψ(1) = −γ. (A.12)

where γ is Euler’s constant. When the order is zero then

Y0(zv) =
2

π

{

γ + ln
(zv

2

)}

J0(zv) −
2

π

∞
∑

r=1

{

(−1)r
(

zv

2

)2r

(r!)2

r
∑

i=1

1

i

}

(A.13)

The order, n, is zero or a positive integer in this thesis. The Bessel function
of second kind is used to define the Hankel functions (Bessel functions of
third kind) which are complex functions defined as

H(1)
n (zv) = Jn(zv) + ıYn(zv) (A.14)

H(2)
n (zv) = Jn(zv) − ıYn(zv) (A.15)

where n is an integer. The Hankel function, H
(1)
n (zv), is used in Section 2.1.3

for orders n = 0 and n = 1.
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80, 0<

Figure A.1: The integration path is running from −∞ just below the real
axis to 0 and then around zero at the positive side and then to −∞ just
above the real axis.

A.3 Modified Bessel Functions of First Kind

The modified Bessel function of the first kind is defined from Eqn. (A.9)
as

Iν(zv) =

∞
∑

m=0

( zv

2
)2m+ν

m!Γ(m+ ν + 1)
(A.16)

and is a real function. This can be rewritten, when the relation (Watson 1952)

1

Γ(m+ ν + 1)
=

1

2πı

∫ 0+

−∞
t−ν−m−1etdt (A.17)

is used, as

Iν(zv) =
∞
∑

m=0

(

( zv

2
)2m+ν

m!

1

2πı

∫ 0+

−∞
t−ν−m−1etdt

)

. (A.18)

The integral in Eqn. (A.17) is a contour integral with the integration path
sketched in Figure A.1. The relation in Eqn. (A.17) is valid for all values of
ν. The integrand in Eqn. (A.17) is analytical except at the real axis from 0
to −∞ where it has a branch cut. This allows to choose the integration path
in a more convenient way, because it is in an analytical domain. This will be
evident later. Because the series in Eqn. (A.3) is uniform convergent then
also Eqn. (A.16) is uniform convergent. This property allows to interchange
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Figure A.2: The integration path with the substitution u = ew becomes from
∞− ıπ to −ıπ, then along the imaginary axis from −ıπ to ıπ and from this
point to ∞ + ıπ.

the order of summation and integration, thus

Iν(zv) =
1

2πı

(zv

2

)ν
∫ 0+

−∞

( ∞
∑

m=0

( zv

2
)2m

m!
t−ν−m−1et

)

dt

=
1

2πı

(zv

2

)ν
∫ 0+

−∞

( ∞
∑

m=0

( z2
v

4t
)m

m!
t−ν−1et

)

dt

=
1

2πı

(zv

2

)ν
∫ 0+

−∞
exp

(

z2
v

4t
+ t

)

t−ν−1dt

=
1

2πı

(zv

2

)ν
∫ 0+

−∞
exp

[

zv

2

(

zv

2t
+

2t

zv

)]

t−ν−1dt

=
1

2πı

∫ 0+

−∞
exp

[

zv

2

(

u+
1

u

)]

u−ν−1du (A.19)

where the definition

ex =
∞
∑

m=0

xm

m!
(A.20)

is used McLachlan (1955). The substitution u = 2t
zv

is linear and does not
alter the limits of the integration. The integration path is merely stretched.
Furthermore dt = zv

2
du which leads to the expression in Eqn. (A.19). The

substitution u = ew alters the integration path in Figure A.1 to the integra-
tion path sketched in Figure A.2. Further when the substitution is u = ew

then du = ewdw. The modified Bessel function then becomes

Iν(zv) =
1

2πı

∫ ∞+ıπ

∞−ıπ

exp (zv coshw − νw) dw, (A.21)

where the definition

cosh x =
1

2

(

ex + e−x
)

(A.22)
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is used. This integral can be evaluated along each of the three parts to give

Iν(zv) =
1

π

∫ π

0

exp (zv cos θ) cos νθdw

−sin νπ

π

∫ ∞

0

exp (−zv coshw − νw) dw (A.23)

where the relations

sin x = − sin(−x) (A.24)

cosx = cos(−x) (A.25)

cosx =
1

2

(

eıx + e−ıx
)

(A.26)

sin x =
1

2ı

(

eıx − e−ıx
)

(A.27)

cosh ıx = cosx (A.28)
∫ x

−x

f(x)dx = 2

∫ x

0

f(x)dx, f(x) is even (A.29)

are used. Further is utilized that the product of two even functions is even
and thus is nonzero when integrated from −π to π and the product of an
even and an uneven function is uneven and thus is 0 when integrated from
−π to π. The first term on the righthand side in Eqn. (A.23) is due to
the integration along the imaginary axis, and the second term is due to the
integration paths parallel to the real axis.

A.4 Modified Bessel Functions of Second Kind

The modified Bessel function of the second kind, Kν(zv), is defined as

Kν(zv) =
π

2

I−ν(zv) − Iν(zv)

sin νπ
. (A.30)

This function is obviously also a solution to Eqn. (A.8) because it is a linear
combination of modified Bessel functions of the first kind, and these are
solutions to Eqn. (A.8). The reason to define a modified Bessel function of
the second kind is to have a function which behaves nicely (goes to zero)
at infinity but has a singularity at 0, where Iν(zv) is 0 at zv = 0 and goes
monotonically to ∞ for zv → ∞. When the order of Kν(zv) is an integer
then it is defined as

Kn(zv) = lim
ν→n

π

2

I−ν(zv) − Iν(zv)

sin νπ
. (A.31)
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It is defined as this because

I−n(zv) =

∞
∑

m=n

( zv

2
)2m−n

m!(m− n)!
, r = m− n

=
∞
∑

r=0

( zv

2
)2r+n

(r + n)!r!

= In(zv) (A.32)

and sinnπ = 0 for n an integer. The lower limit in the summation in the
first equality above is due to Γ(t) goes to infinity when t ≤ 0 and t is an
integer, and does not contribute to the sum. The modified Bessel function
of the first kind with negative order becomes, when interchanging ν with −ν
in Eqn. (A.23)

I−ν(zv) =
1

π

∫ π

0

exp (zv cos θ) cos νθdw

+
sin νπ

π

∫ ∞

0

exp (−zv coshw + νw) dw (A.33)

where Eqn. (A.24) and Eqn. (A.25) is utilized. This operation is legal
because Eqn. (A.17) is valid for all ν. Then the modified Bessel function of
the second kind becomes

Kν(zv) =

∫ ∞

0

exp (−zv coshw) cosh(νw)dw. (A.34)

This representation of Kν(zv) is valid for all values of ν because cosh(νw) is
continuous for all values of ν and thus satisfies Eqn. (A.31). This leads to

K0(zv) =

∫ ∞

0

exp (−zv coshw) dw. (A.35)

The variable w in Eqn. (A.35) can be substituted as t = coshw and dw =
dt√
t2−1

, further the limits of integration changes. Thus

K0(zv) =

∫ ∞

1

e−zvt

√
t2 − 1

dt (A.36)

which becomes, when zv is substituted with ızv,

K0(ızv) =

∫ ∞

1

e−ızvt

√
t2 − 1

dt. (A.37)
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This substitution is allowed because of the definition of Iν(zv) in Eqn. (A.9).
In a similar way as in Eqn. (A.4) and Eqn. (A.5) it can be shown that

I ′ν(zv) =
ν

zv

Iν(zv) + Iν+1(zv) (A.38)

I ′−ν(zv) =
ν

zv

I−ν(zv) + I−(ν+1)(zv) (A.39)

I ′ν(zv) =
−ν
zv

Iν(zv) + Iν−1(zv) (A.40)

I ′−ν(zv) =
−ν
zv

I−ν(zv) + I−(ν−1)(zv). (A.41)

Differentiating Eqn. (A.30) with respect to zv, the following relation is ob-
tained

d

dzv

Kν(zv) =
d

dzv

(

π

2

I−ν(zv) − Iν(zv)

sin νπ

)

⇔ K ′
ν(zv) =

π

2

I ′−ν(zv) − I ′ν(zv)

sin νπ

=
ν

zv

π

2

I−ν(zv) − Iν(zv)

sin νπ
+
π

2

I−ν−1(zv) − Iν+1(zv)

sin νπ

=
ν

zv

Kν(zv) −
π

2

I−(ν+1)(zv) − Iν+1(zv)

sin(ν + 1)π

=
ν

zv
Kν(zv) −Kν+1(zv) (A.42)

where
sin(θ ± φ) = sin θ cos φ± cos θ sinφ (A.43)

is used. Eqn. (A.43) can be derived from eı(θ±φ)= eıθe±ıφ by equating the
imaginary parts. Similarly cos(θ ± φ) can be expanded by equating the real
parts. Similarly as Eqn. (A.42)

K ′
ν(zv) = − ν

zv
Kν(zv) −Kν−1(zv) (A.44)

is derived.
When ν = 0 in Eqn. (A.42) then

K ′
0(zv) = −K1(zv). (A.45)

This relation can be used when Eqn. (A.37) is differentiated with respect to
iz to give

dK0(ızv)

dızv
=

∫ ∞

1

−te−ızvt

√
t2 − 1

dt = −K1(ızv). (A.46)
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Further Eqn. (A.44) gives

dK1(ızv)

dızv

=

∫ ∞

1

−t2e−ızvt

√
t2 − 1

dt = − 1

ızv

K1(ızv) −K0(ızv). (A.47)

The results of Eqn. (A.37), Eqn. (A.46), and Eqn. (A.47) are used when
the lift distribution for a 1-D sinusoidal gust on a flat plate is analyzed.

A.5 Generating Function for Bessel Functions

When Eqn. (A.20) is utilized then

exp

[

zv

2

(

t− 1

t

)]

=

( ∞
∑

r=0

(

zvt
2

)r

r!

)( ∞
∑

m=0

(−zv

2t

)m

m!

)

=

∞
∑

r=0

( ∞
∑

m=0

(

zvt
2

)r (−zv

2t

)m

r!m!

)

, n = r −m

=
∞
∑

n=−∞

( ∞
∑

m=0

(−1)m
(

zv

2

)2m+n
tn

m!(n+m)!

)

exp

[

zv

2

(

t− 1

t

)]

=

∞
∑

n=−∞
tnJn(zv) (A.48)

where in the last equality the definition Eqn. (A.3) is used. Note that
Γ(m + ν + 1) = (m + ν)! when ν is an integer (McLachlan 1955). The
exponential function in Eqn. (A.48) is called the generating function for
Bessel functions for obvious reasons. A substitution of t = eıθ gives

eızv sin θ =

∞
∑

n=−∞
eınθJn(zv). (A.49)

This relation is useful when the following

J−n(zv) =

∞
∑

m=n

(−1)m( zv

2
)2m−n

m!(m− n)!
, r = m− n

=
∞
∑

r=0

(−1)r+n( zv

2
)2r+n

(r + n)!r!

= (−1)nJn(zv) (A.50)
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and the relations Eqn. (A.24) and Eqn. (A.25) is used. Now Eqn. (A.49)
becomes, when the real parts and imaginary parts are separated

cos(zv sin θ) + ı sin(zv sin θ) = J0(zv) + 2
∞
∑

n=1

J2n(zv) cos 2nθ

+2ı
∞
∑

n=1

J2n−1(zv) sin(2n− 1)θ.(A.51)

Further sin(π
2
− φ) = cosφ from Eqn. (A.43) then with the substitution

θ = π
2
− φ Eqn. (A.51) can be rewritten as

eızv cos φ = J0(zv) + 2
∞
∑

n=1

(−1)nJ2n(zv) cos 2nφ

+2ı

∞
∑

n=1

(−1)n+1J2n−1(zv) cos(2n− 1)φ

= J0(zv) + 2

∞
∑

m=1

ımJm(zv) cosmφ (A.52)

where Eqn. (A.43) and

cos(θ ± φ) = cos θ cosφ∓ sin θ sinφ (A.53)

is used.
A sinusoidal gust in 1-D can be described by Eqn. (A.52).
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Auxiliary Functions

The function

(−1)n

(−x+
√
x2 − 1)n

=
(−1)n(x+

√
x2 − 1)n

((−x+
√
x2 − 1)(x+

√
x2 − 1))n

= (x+
√
x2 − 1)n

(B.1)
is used in Eqn. (2.37) to describe the stream function upstream of a cylinder.
Its derivative is

∂

∂x

[

(x+
√
x2 − 1)n

]

=
n√
x2 − 1

(x+
√
x2 − 1)n (B.2)

and that is used to find the acceleration. When the acceleration is integrated
upstream of the aerofoil to find the velocity, then following the integral is
obtained. The integral can be solved by parts as

∫ −1

−∞
eık(x+1) ∂

∂x

[

(x+
√
x2 − 1)n

]

dx

=
[

eık(x+1)(x+
√
x2 − 1)n

]−1

−∞
− ık

∫ −1

−∞
eık(x+1)(x+

√
x2 − 1)ndx

= (−1)n − ık

∫ −1

−∞
eık(x+1)(x+

√
x2 − 1)ndx (B.3)
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This is used to find (2.41) as

−e
ıκ

U
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∂ψn
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(B.4)

where
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− 1
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